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Editorial on the Research Topic

Gene and Environment Interactions in Neurodevelopmental Disorders

The knowledge that both the genetic patrimony and lifetime environmental exposures define
disease risk is well-accepted. However, the so-called Gene-Environment effects—when the
consequences of an environmental exposure vary according to the genetic background—are less
understood (Kloke et al., 2013). This is especially true in early life when individuals undergo a
series of dynamic and tightly linked developmental processes (Miguel et al., 2019a). The brain and
the periphery reorganize during specific developmental time periods to adapt to changes in the
environment the subjects are being raised. These are known as “critical periods” (Hensch, 2004).

There has been an increased interest in unraveling how certain types of exposure occurring
during these critical periods affect developmental trajectories. Characterizing relevant genes and
proteins involved and their precise timing of action in relationship with the type and severity of
the environmental exposure is critically needed and was the main aim of this Research Topic.
The articles enclosed in this Research Topic represent important advances in the understanding
of these relationships.

Focusing onmain genetic effects, Zhongling et al. reported a case of Joubert syndrome associated
with a new mutation in IFT74, a gene responsible for regulating cilia composition. Wang Y.
et al. identified increased allele frequencies of single nucleotide polymorphisms (SNPs) from the
Interleukin-23 (IL-23) gene in children with cerebral palsy compared to healthy controls. The
perspective from Malatesta et al. focuses on the environmental stimulus, proposing the existence
of a critical period during which caregiver’s postural and motor lateral biases influence offspring
hemispheric lateralization.

During gestation, fetal environment is defined by the maternal metabolic milieu, which
influences fetal development. Wang H. et al. investigated the effects of high maternal estradiol on
proliferation and differentiation of fetal hypothalamic neural stem/progenitor cells (NSC/NPCs)
in mice and identified critical effects on neurogenesis related genes. Sandoval et al. explored
another maternal internal state during pregnancy: immune activation, which usually results from
infections. Though maternal immune activation induced behavioral alterations compatible with
autism spectrum disorders and schizophrenia in the offspring, this was not exacerbated by the loss
of vesicular zinc, another known risk factor for neurodevelopmental disorders.

Szekely et al. compiled five candidate polymorphisms (one per gene: DAT1, DRD4, DRD2,
COMT, BDNF) in a multilocus score, to explore their interaction with prenatal adversity and
postnatal parenting behavior on the development of attentional competence skills in 18- and
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FIGURE 1 | Gene and environment interactions in neurodevelopmental disorders. Created with BioRender.com.

24-months children. The same candidate polymorphisms
representing COMT and BDNF were used in the study from
Cao-Lei et al., investigating the effects of prenatal maternal
stress (defined by exposure to a natural disaster during
pregnancy) on hippocampal volumes at 11–12 years of age.
The SNP located on COMT gene moderated the effect of
maternal distress on hippocampal volumes, suggesting that
gene-environment interactions have long-term effects on brain
neuroanatomical features.

de Mendonça Filho et al. used a novel approach to genomic
profiling (Silveira et al., 2017; Hari Dass et al., 2019; Miguel
et al., 2019b), representing variations in a prefrontal cortex-
specific BDNF gene co-expression network in children, and show
that this biological mechanism moderates the effect of prenatal
adversity on cognitive developmental trajectories between 6 and
36 months. Intriguingly, epigenetics-related components of the
BDNF gene network moderate the effects of prenatal adversity
on gray matter content in cortical regions later in childhood.
The same approach (Silveira et al., 2017; Hari Dass et al., 2019;
Miguel et al., 2019b) was employed by Potter-Dickey et al. to
investigate if prefrontal, striatal and hippocampal Cannabinoid
Receptor 1 (CNR1) gene co-expression networks moderate the
effect of parental caregiving quality on infant attachment styles.

Finally, Batra et al. demonstrated that the genetic background
associated with higher fasting insulin regulates the effects of early
adversity on the development of inhibitory control in young
children, corroborating the programming effects of insulin on
executive functions in response to early adversity (Batra et al.,
2021).

The Research Topic compiles evidence that gene-
environment interactions influence neurodevelopment,
proposing mechanisms by which this moderation occurs
(Figure 1). The studies illustrate novel techniques that can
uncover biological targets and pathways with important
implications for early detection, prevention, and treatment of
neurodevelopmental disturbances.
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Background: Cerebral palsy (CP) is a syndrome of non-progressive motor dysfunction

caused by early brain development injury. Recent evidence has shown that

immunological abnormalities are associated with an increased risk of CP.

Methods: We recruited 782 children with CP as the case group and 770 healthy

children as the control group. The association between IL-23R single nucleotide

polymorphisms (SNPs; namely, rs10889657, rs6682925, rs1884444, rs17375018,

rs1004819, rs11805303, and rs10889677) and CP was studied by using a case–control

method and SHEsis online software. Subgroup analysis based on complications and

clinical subtypes was also carried out.

Results: There were differences in the allele and genotype frequencies between CP

cases and controls at the rs11805303 and rs10889677 SNPs (Pallele = 0.014 and

0.048, respectively; Pgenotype = 0.023 and 0.008, respectively), and the difference

in genotype frequency of rs10889677 remained significant after Bonferroni correction

(Pgenotype = 0.048). Subgroup analysis revealed a more significant association of

rs10889677 with CP accompanied by global developmental delay (Pgenotype = 0.024

after correction) and neonatal encephalopathy (Pgenotype = 0.024 after correction).

Conclusion: The present results showed a significant association between IL-23R and

CP, suggesting that IL-23R may play a potential role in CP pathogenesis.

Keywords: cerebral palsy, inflammatory cytokines, interleukin, gene polymorphism, IL23R

INTRODUCTION

Cerebral palsy (CP) is a central motor disorder syndrome that manifests with abnormal muscle
tension and motor function (Cheng et al., 2011; Wu et al., 2011). Individuals with CP often exhibit
sensory, perceptual, cognitive, communication, and behavioral disorders, as well as epilepsy and
secondary musculoskeletal problems (Beliakoff and Sun, 2006). Although perinatal medicine has
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developed rapidly in recent years, epidemiological studies have
shown that the incidence of CP has remained stable at 2–3.5
children out of every 1,000 children (Pennington et al., 2013).
CP has been a prominent disease among children’s disabilities
for a long time due to a lack of effective treatments (Tator et al.,
2007; Tatla et al., 2013). CP seriously affects the quality of life of
individuals and also brings a heavy financial burden to families
and society (Duval et al., 2003; Yunus and Lima, 2009). The
identification of its etiology and pathogenesis is essential to the
prevention and control of CP.

CP is caused by non-progressive brain damage during the
development of the fetus or infant, which can be divided into
congenital and acquired damage. Congenital non-progressive
injuries are caused by prenatal developmental defects, such
as genetic defects, developmental defects, malformations,
intrauterine infections, etc. Acquired injuries are caused by
postpartum acquired factors, such as premature labor, asphyxia,
hypoxic–ischemic encephalopathy (HIE), low birth weight
(LOW), and pathogenic jaundice (Sachdev et al., 2001; Jacobsson
and Hagberg, 2004). Increasing evidence now indicates that
genetic factors are likely to play an important role in CP
pathogenesis. In general, CP is regarded as the result of the
combined effects of multiple genes and environmental factors.
Moreover, CP has been reported to have multiple susceptibility
genes, including IL-6, NOS1, OLIG2, ATG5, and ATG7 (Xu et al.,
2017; Yu et al., 2018; Sun et al., 2019; Xia et al., 2019).

A great deal of evidence suggests that neuroinflammation
has been found to participate in, modulate, and even induce
the pathological process of immature brain injury and various
cytokines have been associated with CP and neurodevelopmental
disability. Previous studies have found that immature brain
injury induced by secondary inflammation is one of the
important pathological mechanisms of hypoxic–ischemic brain
injury (Elovitz et al., 2011; Albertsson et al., 2014; Marshall and
Plotkin, 2019). Abnormal activation of cytokines can cause brain
damage, and fetuses are more likely to produce inflammatory
reactions or brain damage after being affected by inflammatory
cytokines due to immature brain development, thus further
affecting the normal development of the brain. At present, many
inflammatory cytokines have been reported to be significantly
associated with CP or neurodevelopmental disorders, such as IL-
6, IL-8, IL-10, and IL-17 (Strle et al., 2001; Chiricozzi et al., 2011;
Chen et al., 2013; Magalhaes et al., 2019).

Interleukin-23 (IL-23), also known as p19, is a member
of the IL-12 heterodimer cytokine family (Oppmann et al.,
2000), which is mainly produced by activated dendritic cells,
macrophages, and monocytes. IL-23 plays an important role in
the regulation of tissue homeostasis and congenital or adaptive
immunity. IL-23 is involved in the pathogenesis of many chronic
inflammatory diseases, such as psoriasis, arthritis, inflammatory
bowel disease, and multiple sclerosis (MS). Drugs targeting IL-
23 have been used in clinical research regarding immunologic
diseases (Wiekowski et al., 2001; Schon and Erpenbeck, 2018).
IL-23 binds to the IL-23 receptor (IL-23R) through its N-
terminal immunoglobulin domain, which activates downstream
signaling pathways and exerts biological functions. Human IL-
23 receptors (IL-23R) are mainly expressed in activated memory

T cells, natural killer (NK) cells, and intrinsic immune cells
(ILCs). Its extracellular domain contains a signal sequence,
one N-terminal Ig-like domain, and two cytokine receptor
domains. In a genome-wide association study in 2006, IL-23Rwas
significantly associated with Crohn’s disease, an inflammatory
bowel disease. The A allele of rs11209026, a low-frequency IL-23R
variant, was negatively correlated with Crohn’s disease (Bloch
et al., 2018). At the same time, some studies have shown that
IL-23R mutation is significantly correlated with inflammatory
demyelinating diseases, such as MS (Li et al., 2016).

Based on the above information, we speculate that IL-23Rmay
be associated with susceptibility to CP, but no relevant studies
have been reported thus far. Then, we used a case–control study
to explore the possible association of IL-23R with CP, which will
provide genetic evidence for evaluating the role of IL-23R in the
etiology of CP and its related potential mechanisms.

MATERIALS AND METHODS

Participants
In this study, 782 children with CP and 771 healthy controls
were recruited from the centers for CP rehabilitation and Child
Healthcare Departments in the Third Affiliated Hospital of
Zhengzhou University, Zhengzhou Children’s Hospital. This
study was approved by the ethics committee of Zhengzhou
University. The guardians of these participants provided written
informed consent. The case group comprised 542 males (69.3%)
and 240 females (30.7%), and the mean age was 18.5 ± 15.4
months. The control group comprised 771 healthy children,
including 515 males (66.8%) and 256 females (33.2%), and the
mean age was 19.3± 16.8 months (Table 1).

TABLE 1 | Clinical characteristics of all participants.

Characteristic CP cases (n = 782) Controls (n = 771)

Sex (male:female) 542:240 515:256

Preterm (<37 weeks) 47 10

<2,500 g 40 2

Birth asphyxia 234 13

Type of CP

Spastic CP 522 NA

CP with quadriplegia 284 NA

CP with diplegia 126 NA

Complications

CP with PVL 67 NA

CP with HIE 108 NA

CP with GDD 299 NA

Type of CP 310 NA

Maternal factors

PROM 71 26

TPL 58 0

PIH 26 7

CP, cerebral palsy; PVL, periventricular leukomalacia; HIE, hypoxic–ischemic

encephalopathy; GDD, global developmental delay; PROM, premature rupture of

membrane; TPL, threatened premature labor; PIH, pregnancy-induced hypertension.
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CP Diagnosis, Classification, and
Exclusion Criteria
In the case group, we excluded children diagnosed with
congenital metabolic diseases and myopathy as well as children
with a family history of nervous system diseases. Pediatric
rehabilitation specialists confirmed the CP diagnosis using
standard criteria related to non-progressive disorders of
movement control and posture (Rosenbaum et al., 2007).
All participants received a detailed clinical evaluation with
comprehensive pre-test counseling.

The available clinical information included demographic
variables, such as sex, gestational age, mode of delivery,
singletons, and twins, as well as the known risk factors [such as
pregnancy-induced hypertension (PIH), perinatal asphyxia, and
threatened premature labor], CP complications [such as global
developmental delay (GDD)], and neonatal complications (such
as HIE).

GDD diagnosis is limited to individuals under the age of
5 years old when the clinical severity level cannot be reliably
assessed during early childhood. GDD is diagnosed when an
individual fails to meet the expected developmental milestones in
several areas of intellectual functioning and applies to individuals
who are unable to undergo systematic assessments of intellectual
functioning, including children who are too young to participate
in standardized testing. Neonatal encephalopathy (NE) is a
clinical syndrome that includes HIE, intracranial hemorrhage,
various metabolic disorders, neurodegenerative diseases, and so
on; its diagnosis requires at least two senior neonatologists.

Genotyping and Statistical Analysis
Peripheral blood samples were obtained from the subjects for
genomic DNA extraction. According to the single nucleotide
polymorphism (SNP) location in IL-23R, a minor allele frequency
(MAF) >0.1, and potential function, we selected seven SNPs
(rs10889657, rs6682925, rs1884444, rs17375018, rs1004819,
rs11805303, and rs10889677, Figure 1) as candidates and
genotyped them by the MassARRAY system. Shanghai Perchant
Biotechnology Co., Ltd. synthesized primers and probes.

We performed statistical analysis with SHEsis, an online
program (http://analysis.bio-x.cn/) that can test Hardy–
Weinberg equilibrium (HWE) and linkage disequilibrium (LD)

and calculate allele frequencies, genotype frequencies, and
haplotype frequencies for each SNP locus in the case group and
control group. The P values were two-tailed, and we considered
P < 0.05 to be significant. We also calculated the odds ratio
(OR) and its 95% confidence interval (CI). We employed the
Bonferroni correction to account for multiple testing on each
individual SNP and haplotype. We used the G∗power 3.1
software to evaluate the statistical efficacy.

RESULTS

Overall Analysis
By performing power calculations, the sample size utilized in the
present study has >85% power to detect a significant association
(α < 0.05) when using an effect size index of 0.1. The genotype
distributions of rs17375018 among control subjects showed a
significant deviation from HWE (P = 0.011); therefore, we
only analyzed the remaining six SNPs, namely, rs10889657,
rs6682925, rs1884444, rs1004819, rs11805303, and rs10889677.
There were two linked LD blocks with coefficient D′ value more
than 0.8 (Figure 2). Block 1 included rs10889657, rs6682925, and
rs1884444, whereas block 2 comprised rs1004819, rs11805303,
and rs10889677.

For all subjects, the allele frequencies of rs11805303 (P =

0.014) and rs10889677 (P = 0.048) and the genotype frequencies
of rs10889657 (P = 0.028), rs11805303 (P = 0.023), and
rs10889677 (P = 0.008) were significantly different between
CP patients and controls. After Bonferroni correction, only
the rs10889677 AA genotype frequency was significantly more
enriched in CP children than in controls (OR = 1.178, 95% CI
= 1.002–1.386, Pc= 0.048) (Table 2).

Haplotype analysis is a powerful strategy to determine
whether or not the above-mentioned CP-associated SNPs have
a greater effect when analyzed together. Hence, we performed
a haplotype analysis of rs11805303 and rs10889677 SNPs. The
haplotypes CC (P = 0.036) and TA (P = 0.013) presented a
significant association with CP; the positive association of TA
with CP was significant even after Bonferroni correction (P =

0.039). Furthermore, there was a statistically significant global
effect of the haplotype (P = 0.039) (Table 3).

FIGURE 1 | SNPs in IL-23R. Highest population minor allele frequency: highest minor allele frequency observed in any population including 1,000 Genomes Phase 3,

ESP, and genomAD.
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FIGURE 2 | Distribution of blocks defined by linkage disequilibrium scores of six SNPs in IL-23R. The data indicate D′ values.

Subgroup Analysis
CP is a highly heterogeneous condition that likely has
multiple etiologies. It is reasonable to speculate that the broad
clinical spectrum of CP can be at least partially attributed to
considerable genetic heterogeneity. Therefore, we conducted
subgroup analysis according to clinical phenotypes. There was a
significant association of CP+GDDwith rs10889657, rs1004819,
rs11805303, and rs10889677, and the association of rs10889677
met the Bonferroni correction cut-off for multiple testing (OR=

1.293, 95% CI= 1.034–1.61, P = 0.024, Table 4).
Furthermore, we analyzed the associations between IL-23R

and CP subtypes with various risk factors. There were significant
differences in the rs11805303 allele frequency and the rs10889677
genotype frequency between controls and CP patients with NE;
the association of rs10889677 with CP+NE remained significant
even after Bonferroni correction (OR = 1.176, 95% CI = 0.947–
1.460, P = 0.024, Table 5). There were no significant differences
in either allele or genotype frequencies of the other SNPs in the
other CP subgroups defined by clinical phenotypes and available
risk factors (Supplementary Table 1).

DISCUSSION

CP is a heterogeneous condition with multiple causes (Badawi
and Keogh, 2013). The etiology in an individual patient is often
multifactorial. These known CP causes, such as periventricular
leukomalacia (PVL), NE, infarct, and premature delivery,
account for only a minority of the total cases (Cowan et al., 2003;
Yildiz et al., 2012; Colver et al., 2014; Chang et al., 2015). A single
severe adverse event can be sufficient to cause CP, but much
more often it is not a single cause, rather multiple concurrent

risk factors that precede CP (Hankins and Speer, 2003; Djukic
et al., 2009). Secondary neuroinflammation is associated with
many CP risk factors. Findings from animal and clinical studies
suggested that persistent neuroinflammation might prevent
regeneration or exacerbate brain damage (Elovitz et al., 2011).
Altered inflammation is one of the common causes of CP
(Chiricozzi et al., 2011; Chen et al., 2013; Xia et al., 2018).
Although the exact cause of CP is largely unknown, it is thought
to be due to a combination of an altered fetal inflammatory
response and primary brain damages.

Abnormal inflammation is one of the important pathological
causes of immature brain injury (Djukic et al., 2009; Du
et al., 2011), which is involved in the pathogenesis of central
nervous system diseases, such as epilepsy, Parkinson’s disease,
cerebral ischemia, and hemorrhage, and may easily lead to
secondary brain insult. During cerebral ischemia–reperfusion
injury, inflammatory cells, such as microglia, astrocytes, and
leukocytes, are activated. The activated inflammatory cells
synthesize and secrete inflammatory mediators, phenomena that,
in turn, further activate inflammatory cells and aggravate brain
injury (Moon et al., 2009; Albertsson et al., 2018).

Some inflammatory cytokines are involved in immune
responses, which cause brain injury through an inflammatory
mechanism (McAdams and Juul, 2012). Several inflammatory
cytokines have been identified as being involved in CP or
other neurodevelopmental disorders, such as IL-6, IL-8, and IL-
17 (Chiricozzi et al., 2011; Chen et al., 2013). Our previous
studies found that rs1800795 (G174C), located in the IL-6
promoter region, was significantly associated with CP, and that
the risk of spastic hemiplegia and quadriplegia in carriers of
the rs1800795C allele also significantly increased (Djukic et al.,
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TABLE 2 | Allele and genotype frequency analysis of SNPs of IL-23R.

Group Allele frequency p value OR [95% CI] Genotype frequency p-value H-W

rs10889657 C T C/C C/T T/T

CP 347 (0.267) 953 (0.733) 0.09 0.861 [0.725–1.023] 59 (0.091) 229 (0.352) 362 (0.557) 0.028a 0.011

Control 372 (0.297) 880 (0.703) 53 (0.085) 266(0.425) 307 (0.490) 0.665

rs6682925 C T C/C C/T T/T

CP 625 (0.422) 855 (0.578) 0.406 0.940 [0.813–1.088] 133 (0.180) 359 (0.485) 248 (0.335) 0.681 0.876

Control 634 (0.437) 827 (0.563) 139 (0.189) 365 (0.497) 231 (0.314) 0.807

rs1884444 G T G/G G/T T/T

CP 517 (0.344) 985 (0.656) 0.169 0.900 [0.776–1.046] 91 (0.121) 335 (0.446) 325 (0.433) 0.275 0.744

Control 556 (0.368) 954 (0.632) 97 (0.128) 362 (0.479) 296 (0.392) 0.402

rs1004819 A G A/A A/G G/G

CP 532 (0.566) 408 (0.434) 0.05 1.194 [1.000–1.425] 168 (0.357) 196 (0.417) 106 (0.226) 0.063 0.001

Control 544 (0.522) 498 (0.478) 150 (0.288) 244 (0.468) 127 (0.244) 0.16

rs11805303 C T C/C C/T T/T

CP 628 (0.415) 884 (0.585) 0.014b 0.835 [0.723–0.964] 150 (0.198) 328 (0.434) 278 (0.368) 0.023c 0.003

Control 696 (0.460) 818 (0.540) 167 (0.221) 362 (0.478) 228 (0.301) 0.304

rs10889677 A C A/A A/C C/C

CP 1121 (0.750) 373 (0.250) 0.048d 1.178 [1.002–1.386] 429 (0.574) 263 (0.352) 55 (0.074) 0.008e 0.099

Control 1079 (0.718) 423 (0.282) 378 (0.503) 323 (0.430) 50 (0.067) 0.085

OR, odds ratio; CI, confidence interval.The P values corrected by Bonferroni are a0.168, b0.084, c0.138, d0.288, e0.048.

TABLE 3 | Haplotype analysis of rs11805303 and rs10889677 SNPs.

Haplotype Case

(frequency)

Control

(frequency)

P value OR (95% CI)

CA 250.91

(0.171)

271.19

(0.183)

0.413244 0.924

(0.765–1.117)

CC 356.09

(0.242)

410.81

(0.277)

0.036346 0.838

(0.711–0.989)

TA 850.09

(0.578)

793.81

(0.536)

0.013013 1.203

(1.040–1.392)

Fisher’s P value 0.039

Pearson’s P value 0.039

2009; Wu et al., 2009). Central nervous system inflammation is
often characterized by microglia activation, and active microglia
will mediate neurotoxicity by secreting inflammatory cytokines,
proteins, or other bioactive substances, resulting in secondary
brain injury (Tang and Le, 2016).

A recent study demonstrated that inflammatory factors are

related to microglia activation (Zhao et al., 2020). IL-23 mainly
acts as a pro-inflammatory cytokine and has potential anti-

tumor and anti-infection effects. IL-23R can activate Janus

kinase (JAK). IL-23 bound IL-23R can active downstream
JAKs and phosphorylate the signal transducer and activator of

transcription (STAT) binding site in the intracellular region of
the receptor. STAT dimerizes and is phosphorylated by JAKs.

The phosphorylated STAT dimers enter the nucleus and act on
downstream target genes. IL-23R has been identified to associate

with multiple diseases, including alopecia areata (rs10889677)

and nephropathy (rs10805303) (Figure 3) (Safrany et al., 2011;

Yu et al., 2012; Huang et al., 2016; Qin et al., 2016; Poomarimuthu

et al., 2018; Sode et al., 2018; Zhong et al., 2018; Kramer
et al., 2019; Loures et al., 2019; Ruyssen-Witrand et al., 2019;
Tabatabaei-Panah et al., 2020).

Our results showed that IL-23R rs10889677 increases
susceptibility to CP at the overall level and in some
subgroups. These findings suggest that IL-23R is a potential
susceptibility gene for CP. Furthermore, studies have shown
that rs10889677 is related with different diseases in different
races, such as Crohn’s disease in both Jewish and non-
Jewish populations, ankylosing spondylitis in Caucasian
patients, Graves’ disease in North Americans, and ulcerative
colitis in Europeans (Duerr et al., 2006; Wellcome Trust
Case Control et al., 2007; Brown, 2008; Huber et al., 2008;
Silverberg et al., 2009). Therefore, we have sufficient reason
to assume the positive association of IL-23R gene with
the CP etiology. Whether IL-23R, as a gene associated
with inflammatory bowel disease, can also affect the brain
development of children by affecting intestinal flora remains to
be seen.

Given that TNF-α and IL-6 are significantly increased
after brain injury (Leviton and Dammann, 2004; Xie et al.,
2014), we hypothesize that IL-23R, like other inflammatory
factors TNF-α and IL-6, may cause brain damage and lead to
CP through the following steps. (1) Increased inflammatory
cytokines promote the release of nitric oxide synthase and free
radicals and excitatory amino acids, which have toxic effects on
neurons, especially developing brain tissue. (2) They will trigger
a systemic inflammatory response that leads to brain damage
when undergoing intrauterine infection. (3) Endothelial cell
damage can cause thrombosis. Inflammatory factors will activate
platelets, lead to their aggregation, activate coagulation factors,
and damage white matter neurons. (4) The damage will increase
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TABLE 4 | Allele and genotype frequencies of IL-23R in CP with GDD and the control group.

Group Allele frequency P value OR (95% CI) Genotype frequency P value Group Allele frequency P value OR (95% CI)

rs10889657 C T C/C C/T T/T

CP 132 (0.253) 390 (0.747) 0.06 0.801 (0.635–1.009) 23 (0.088) 86 (0.330) 152 (0.582) 0.026a 0.038

Control 372 (0.297) 880 (0.703) 53 (0.085) 266 (0.425) 307 (0.490) 0.665

rs6682925 C T C/C C/T T/T

CP 239 (0.424) 325 (0.576) 0.578 0.946 (0.777–1.151) 54 (0.191) 131 (0.465) 97 (0.344) 0.608 0.412

Control 634 (0.437) 827 (0.563) 139 (0.189) 365 (0.497) 231 (0.314) 0.807

rs184444 G T G/G G/T T/T

CP 196 (0.343) 376 (0.657) 0.279 0.894 (0.731–1.094) 38 (0.133) 120 (0.420) 128 (0.448) 0.201 0.246

Control 556 (0.368) 954 (0.632) 97 (0.128) 362 (0.479) 296 (0.392) 0.402

rs1004819 A G A/A A/G G/G

CP 219 (0.592) 151 (0.408) 0.021b 1.328 (1.044–1.688) 71 (0.384) 77 (0.416) 37 (0.200) 0.051 0.06

Control 544 (0.522) 498 (0.478) 150 (0.288) 244 (0.468) 127 (0.244) 0.16

rs11805303 C T C/C C/T T/T

CP 232 (0.403) 344 (0.597) 0.019c 0.793 (0.652–0.963) 53 (0.184) 126 (0.438) 109 (0.378) 0.051 0.124

Control 696 (0.460) 818 (0.540) 167 (0.221) 362 (0.478) 228 (0.301) 0.304

rs10889677 A C A/A A/C C/C

CP 439 (0.767) 133 (0.233) 0.024d 1.293 (1.034–1.619) 174 (0.608) 91 (0.318) 21 (0.073) 0.004e 0.067

Control 1,079 (0.718) 423 (0.282) 378 (0.503) 323 (0.430) 50 (0.067) 0.084

P value after Bonferroni a0.077, b0.126, c0.114, d0.144, e0.024.

TABLE 5 | Allele and genotype frequencies of IL-23R in CP with NE and the control group.

Group Allele frequency P value OR (95% CI) Genotype frequency P value Group Allele frequency P value OR (95% CI)

rs10889657 C T C/C C/T T/T

CP 146 (0.271) 392 (0.729) 0.271 0.881 (0.703–1.104) 25 (0.093) 96 (0.357) 148 (0.550) 0.163 0.109

Control 372 (0.297) 880 (0.703) 53 (0.085) 266 (0.425) 307 (0.490) 0.665

rs6682925 C T C/C C/T T/T

CP 257 (0.425) 347 (0.575) 0.619 0.952 (0.787–1.154) 48 (0.159) 161 (0.533) 93 (0.308) 0.434 0.116

Control 634 (0.437) 827 (0.563) 139 (0.189) 365 (0.497) 231 (0.314) 0.807

rs184444 G T G/G G/T T/T

CP 219 (0.369) 375 (0.631) 0.984 1.002 (0.823–1.220) 36 (0.121) 140 (0.495) 114 (0.384) 0.891 0.276

Control 556 (0.368) 954 (0.632) 97 (0.128) 362 (0.479) 296 (0.392) 0.402

rs1004819 A G A/A A/G G/G

CP 201 (0.552) 163 (0.448) 0.322 1.128 (0.888–1.434) 62 (0.341) 77 (0.423) 43 (0.236) 0.391 0.051

Control 544 (0.522) 498 (0.478) 150 (0.288) 244 (0.468) 127 (0.244) 0.16

rs11805303 C T C/C C/T T/T

CP 244 (0.405) 358 (0.595) 0.023a 0.801 (0.661–0.970) 52 (0.173) 140 (0.465) 109 (0.362) 0.083 0.541

Control 696 (0.460) 818 (0.540) 167 (0.221) 362 (0.478) 228 (0.301) 0.304

rs10889677 A C A/A A/C C/C

CP 450 (0.750) 150 (0.250) 0.141 1.176 (0.947–1.460) 177 (0.590) 96 (0.320) 27 (0.090) 0.004b 0.011

Control 1,079 (0.718) 423 (0.282) 378 (0.503) 323 (0.430) 50 (0.067) 0.084

P value after Bonferroni a0.138, b0.024.

the permeability of the blood–brain barrier, thereby allowing
peripheral bacteria and inflammatory factors to enter the brain,
aggravating brain damage. (5) They promote the release of
prostaglandins and other substances, resulting in pregnancy’s
advance labor, leading to an increased risk of CP.

Our study has some limitations. First, this is a study based
on a single gene for susceptibility to CP. Given the genetic
heterogeneity and gene–gene interaction involved in the CP

etiology, other candidate genes that are part of the IL-23R
signaling pathway need to be analyzed together. Second, we were
unable to measure IL-23R protein expression in the brains of the
subjects in the current study; future studies are encouraged to
examine the inflammatory cytokine alteration in the brain. Third,
although our study demonstrated an association between the IL-
23R rs10889677 SNP and CP, further functional and replicated
studies are necessary to verify the association of IL-23R with
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FIGURE 3 | The diseases linked to different sites of IL-23R. The SNPs studied in the present study are marked in red.

CP, which is of great significance to identify the CP etiology
and pathogenesis.

In summary, a significant association between IL-23R and
CP was firstly detected in Han Chinese, suggesting that the IL-
23R gene has a significant effect on the risk of CP, especially
in subjects with GDD or NE. The inflammatory response and
cytokine cascade are likely to play a role in the occurrence and
development of CP. This result needs to be further validated
with well-designed studies with large sample sizes and in other
populations. We should also pay attention to the possibility of
increased risk of CP if the fetus is found to carry the IL-23R risk
genotypes before or after delivery.
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Gianluca Malatesta*, Daniele Marzoli, Giulia Prete and Luca Tommasi

Department of Psychological, Health and Territorial Sciences, University “G. d’Annunzio” of Chieti and Pescara, Chieti, Italy

In humans, behavioral laterality and hemispheric asymmetries are part of a complex
biobehavioral system in which genetic factors have been repeatedly proposed as
developmental determinants of both phenomena. However, no model solely based on
genetic factors has proven conclusive, pushing towards the inclusion of environmental
and epigenetic factors into the system. Moreover, it should be pointed out that epigenetic
modulation might also account for why certain genes are expressed differently in parents
and offspring. Here, we suggest the existence of a sensitive period in early postnatal
development, during which the exposure to postural and motor lateral biases, expressed
in interactive sensorimotor coordination with the caregiver, canalizes hemispheric
lateralization in the “typical” direction. Despite newborns and infants showing their own
inherent asymmetries, the canalizing effect of the interactive context owes most to adult
caregivers (usually the mother), whose infant-directed lateralized behavior might have
been specifically selected for as a population-level trait, functional to confer fitness to
offspring. In particular, the case of the left-cradling bias (LCB; i.e., the population-level
predisposition of mothers to hold their infants on the left side) represents an instance
of behavioral trait exhibiting heritability along the maternal line, although no genetic
investigation has been carried out so far. Recent evidence, moreover, seems to suggest
that the reduction of this asymmetry is related to several unfavorable conditions, including
neurodevelopmental disorders. Future studies are warranted to understand whether
and how genetic and epigenetic factors affect the lateralization of early mother-infant
interaction and the proneness of the offspring to neurodevelopmental disorders.

Keywords: laterality, hemispheric asymmetry, mother-infant interaction, cradling-side bias, behavioral
epigenetics, autism spectrum disorders

BEHAVIORAL EPIGENETICS AND THE DEVELOPMENT OF
LATERALIZATION

Studies on lateralization have progressed at a remarkable pace in recent decades, gathering
multiple levels belonging to different disciplines and traditions of research. Neural, behavioral
and genetic aspects of asymmetries are becoming more and more connected to each other in the
all-encompassing framework of biological evolution. Theoretical models suggest that interactive
behaviors are key to the evolution of population-level lateral biases (e.g., Ghirlanda andVallortigara,
2004): a stable equilibrium in the asymmetrical distribution of lateralized behavioral phenotypes of a
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given species might be reached through the fitness contribution
of both antagonistic and synergistic interactions occurring
among its members (Ghirlanda et al., 2009). Empirical evidence
seems also to suggest that early development is a crucial context
in which synergistic interactions affect lateralization (Karenina
et al., 2017). However, only rarely evolutionary accounts of
lateralization including developmental plasticity as a determining
factor have been suggested (e.g., see Michel et al., 2018).

In humans, the ontogeny of lateralization emerges from
the multifaceted interaction between genetic and environmental
factors that have not been understood in full detail (Güntürkün
and Ocklenburg, 2017). Structural asymmetries of the brain are
but a small fraction of the Bauplan of neural lateralization—the
largest part being expressed in the form of functional
asymmetries—and they consist in the allocation of different roles
to two structurally similar brain hemispheres (Corballis, 2017).
Functional asymmetries are ubiquitous in the nervous system
especially in the neocortex, and they emerge in many behavioral
and mental functions, including action (Guiard, 1987; Serrien
and Sovijärvi-Spapé, 2015), imagination (Marzoli et al., 2011a,b,
2013, 2017a; Prete et al., 2016b; Altamura et al., 2020), perception
(Marzoli and Tommasi, 2009; Brancucci and Tommasi, 2011;
Prete et al., 2015d, 2018b; Prete and Tommasi, 2018), emotion
(Prete et al., 2014a, 2015a,c; Wyczesany et al., 2018), attention
(Yamaguchi et al., 2000; Chen and Spence, 2017) and memory
(Iidaka et al., 2000; Penolazzi et al., 2010; D’Anselmo et al.,
2016). Language can be considered the most emblematic case
of functional asymmetry, also because the history of discoveries
on brain lateralization (and localization) began precisely with
aphasia studies (Leblanc, 2017). Nevertheless, it must be noted
that motor functions deserve a special place in this list,
particularly because of the peculiar status of handedness as a
function that is lateralized both behaviorally and neurologically
from early childhood (Bondi et al., 2020): around 90% of humans
show a preference for using the right hand, which is controlled
by the left brain hemisphere (McManus, 2002; Tommasi,
2009). Additionally, footedness should also be granted a special
position in the field of human laterality, having been shown
to share similarities with handedness both in behavioral and
neuropsychological terms, and to be less influenced by cultural
and social factors than handedness (Elias and Bryden, 1998;
Tran et al., 2014; Packheiser et al., 2020a,c). Population-level
motor asymmetries which seem to be precursors of handedness
are observed already during fetal life (Hepper et al., 1990;
Hepper, 2013; see also Baciadonna et al., 2010 for analogous early
predictors of limb laterality in a non-human species), speaking
in favor of a substantial genetic contribution. In this regard, the
search for genetic factors of human functional lateralization has
been characterized by single- or multiple-gene theories aimed to
explain handedness, and continues nowadays within molecular
genetics studies addressed to the identification of specific
loci (Cuellar-Partida et al., 2021). Interestingly, these studies
also suggest a partly common ground among genetic variants
influencing the development of brain functional laterality and
the emergence of neurodevelopmental disorders (Wiberg et al.,
2019). However, no evidence has proven strong enough to
exactly explain the statistical frequencies of hand preference

observed in families (Medland et al., 2009; McManus et al.,
2013; Armour et al., 2014). Environmental factors have been
therefore implicated, from the effect of hormones (Geschwind
and Galaburda, 1985; Berretz et al., 2020) and fetus position
in utero (Previc, 1991), to the visual experience of own and others’
hands during early infancy (Michel and Harkins, 1986; Fagard
and Lemoine, 2006). Michel et al. (2018) suggested that the
development of lateralization begins prenatally, and progresses
postnatally as a head orientation preference, predominantly
right-biased in infants (Michel and Harkins, 1986). Such an early
rightward postural asymmetry would have the effect of placing
their right hand in their visual field more than their left hand,
thus causing cascading feedback-based proprioceptive effects
during movement, possibly facilitating the gradual emergence
of right-handedness. This suggestion was also confirmed by
the observation of children with congenital muscular torticollis,
whose restricted early visual experience affected the later
development of handedness (Ocklenburg et al., 2010). On the
other hand, right-handedness might also be fostered by children
imitating adult’s manual preferences (Fagard and Lemoine,
2006). Similar mechanisms might be involved not only in the
development of handedness, but also in the attentional bias
toward the right side of others’ body observed in both right- and
left-handers (Marzoli et al., 2015, 2017a,b, 2019; Lucafò et al.,
2016, 2021; see also Marzoli et al., 2014), which in turn could
account for the left-handers’ advantage in fighting and sports
(e.g., Groothuis et al., 2013). Although the relative weight of
genetic and environmental determinants of handedness has not
been established yet, epigenetic effects have been hypothesized at
both the molecular (Leach et al., 2014) and the behavioral level
(Schmitz et al., 2017), and the same should be true for other
instances of functional asymmetries.

In addition to prenatal processes occurring in utero
(e.g., Ocklenburg et al., 2017), behavioral epigenetics could
play a major role during postnatal life, specifically because
of parental care: humans, as many mammalian species,
are indeed characterized by altriciality, that is an extended
period after birth during which the newborn is helpless
and depends on external sources (i.e., adults) for survival
(Gubernick, 2013). This means that the social and behavioral
environment is crucial—through an extraordinarily complex
matrix of variables—for development. This ‘‘epigenetic niche’’
exerts an effect on the offspring’s endophenotype, bringing
about the expression of the genes in an environment shared
with the caregivers. Importantly, the social bonding between
parent and offspring is an environment in and of itself, and
since the attachment behavioral system is the predisposed
motivational structure that brings the infant and the mother
to seek proximity to each other (Simpson and Belsky, 2008;
Norholt, 2020), it may well constitute a very powerful context
for the development of laterality. In this frame, lateralization
research might take advantage of an important example of
epigenetic niche: in the last decades, in fact, ‘‘cradling behavior’’
emerged as a specific case of lateralized social behavior
involving parent (in particular the mother) and child, potentially
modulating the development of hemispheric lateralization
(Packheiser et al., 2019b).
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FIGURE 1 | An example of left-cradling bias (LCB).

CRADLING-SIDE BIAS AS MATERNAL
EFFECT

Cradling behavior has been consistently reported as
left-lateralized at the population level, especially in women
(65–70% of women cradle infants to the left of their body
midline; see Figure 1; Packheiser et al., 2019b), and the bias has
been causally linked to the development of the right hemisphere
(Manning and Chamberlain, 1991; Harris et al., 2001; Bourne
and Todd, 2004).

Indeed, it has been shown that the left-cradling bias
(LCB) sets the postural conditions that facilitate an optimal
emotional attunement between adult and infant because the
right brain hemispheres of both are predominantly engaged
during interactions in which the infant is held on the left
side of the adult (Harris et al., 2010). This bias can be
supposed to provide the infant with what Gilbert Gottlieb
called ‘‘experiential canalization’’ (Gottlieb, 1991), a form of
supervised narrowing of experience that the infant is predisposed
to receive during a precise period. This is supported by a
great amount of evidence: (i) in adults, cradling behavior is
more strongly left-biased during the first year of life of the
child and then declines in strength (Dagenbach et al., 1988);
(ii) adults are selectively biased to the left when cradling
(or even imagining cradling) infants or dolls rather than
when holding or carrying inanimate objects (Harris et al.,
2000); (iii) females are significantly more left-biased than
males (Packheiser et al., 2019b); and (iv) the LCB seems
to be transmitted from mother to daughter as a sex-linked
inherited trait (Manning and Denman, 1994). In light of this

evidence, it could be argued that the adult genes encode
for the presence of an ‘‘obligatory’’ behavior in the mother-
infant attachment during a ‘‘sensitive period’’ of the infant’s
development, and for a population-level predisposition to
implement it asymmetrically on the left side. The experiential
side of the story would consist of the interaction and
sensorimotor coordination between adults and infants arising
from the LCB. From this perspective, such an experience might
modulate epigenetically the direction of the development of
typical brain lateralization, triggered and scaffolded by the
parent or the caregiver. Interestingly, the stronger LCB in
females and the related maternal intergenerational transmission
might be consistent with epigenetic studies indicating that
certain genes are expressed differently in parents and offspring,
as occurs in the case of differential parental imprinting
(e.g., maternally derived duplications of a specific portion
of chromosome 15 lead to an increased risk of autism
and schizophrenia more than analogous paternally derived
duplications; Cook et al., 1997; Isles et al., 2016).

A further aspect of this epigenetic view is that the LCB could
be advantageous from an evolutionary perspective, because it is
correlated to fitness-related traits in mothers, and possibly in
children. For instance, research has shown that the correlates of
cradling are indirectly evident when comparing women showing
different degrees of left (typical) or right (atypical) cradling
(Malatesta et al., 2019a,b, 2020b), bringing to the hypothesis that
an atypical trajectory inmaternal cradlingmight be one early sign
of interference of dyadic socio-emotional communication, and
thus of potential neurodevelopmental dysfunctions (Malatesta
et al., 2020a,d). The fact that this left-sided population-level
asymmetry goes in the direction opposite to that of a majority
of right-handers, moreover, provides an important hint that it
possibly attained a special functional status during evolution,
and this speculation is further supported by the presence of
an LCB also in left-handers. In this regard, it should be
noted that the bias is detectable also in left-handers, indicating
that it does not depend upon the fact that holding on the
left would free the adult’s dominant hand (Packheiser et al.,
2019b). As such, the epigenetic niche represented by the mother
cradling the baby would consist, in strictly biological terms, in
a genuine maternal effect (Maestripieri and Mateo, 2009). This
is supported by evidence of sex- and side-dependent effects of
social perception obtained in previous works—for instance, the
fact that the well-known left-face bias seems to be stronger
for female faces, suggesting a greater sensitivity for the female
face in the right hemisphere (Parente and Tommasi, 2008;
Prete et al., 2016a, 2017), and the fact that females showing
an LCB are more likely attracted by the left rather than right
profile of a baby compared to females showing the opposite bias
(Malatesta et al., 2020c).

Among the main explanations suggested for the LCB,
the right-hemisphere hypothesis—the most accredited one
today—revolves around the interaction and the socio-emotional
information exchanged between the cradling and the cradled
individual (Manning and Chamberlain, 1991; Harris et al.,
2001; Bourne and Todd, 2004; for similar considerations in
non-human species see Giljov et al., 2018). According to this

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 March 2021 | Volume 15 | Article 66852019

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Malatesta et al. Laterality and Neurodevelopmental Disorders

hypothesis, the right hemisphere should be mainly involved in
emotional processing (Levy et al., 1983; Gainotti, 2012; Prete
et al., 2014b, 2015b, 2018a), leading to a left hemibody and
hemiface superiority in both the expression and the encoding of
emotions. Similarly, evidence confirming the right-hemisphere
hypothesis has been collected also for other lateralized social
behaviors such as embracing and kissing (Ocklenburg et al.,
2018; Packheiser et al., 2019a, 2020b). Therefore, cradling
might represent a specific interactional framework benefiting
both the mother and the infant, whose lateralization has
unlikely been left to chance by evolutionary pressures. From
the mother’s point of view, the left-side positioning might
facilitate the monitoring of her infant’s well-being cues through
her left visual and auditory fields, which project more directly
to her right hemisphere (i.e., the one more involved in
social and emotional processing; Brancucci et al., 2009; Prete
et al., 2020a,b). Consistently, left-cradling individuals exhibit
a stronger leftward bias for the processing of emotions from
faces (Harris et al., 2001, 2010; Bourne and Todd, 2004).
Moreover, the discovery of a preference for the left profile
of infants in women showing a left-cradling bias (Malatesta
et al., 2020c) suggests that a further adaptive function of
the LCB might consist in a facilitated monitoring of the left
hemiface of the infant, which is considered more expressive
(Mendolia and Kleck, 1991) and whose emotional valence is
identified more accurately, especially when a negative emotion
is displayed (Kleck and Mendolia, 1990). Similarly, the LCB
might expose the right hemisphere of children to the more
expressive side of the mother’s face (Hendriks et al., 2011). It
is also possible to suppose that this double interaction (Table 1)
gave an important advantage to both mothers and infants during
the evolution by fostering typical neurodevelopment in the
cradled infants.

In this regard, it has been shown that individuals cradled
on the mother’s right side during infancy showed a significant
decrease of the typical left bias for emotional faces compared
to left-cradled individuals, suggesting that mothers’ cradling
laterality has crucial outcomes on their children’s development
of socio-emotional abilities, such as the ability to perceive facial
emotions later in life (Vervloed et al., 2011).

CRADLING BEHAVIOR AND
NEURODEVELOPMENTAL DISORDERS

The role of the LCB in facilitating emotional communication is
supported by findings suggesting that a reduction or inversion
of the typical cradling lateralization is associated with several
factors that might interfere with the quality of the mother-infant

TABLE 1 | Table summarizing the double interaction of left-cradling bias (LCB)
functions from the perspective of mother and infant.

Mother Infant

Monitoring the infant through the left
visual and auditory fields.

Exposure to the mother’s left-hemiface.

Exposure to the infant’s left-hemiface. Monitoring the mother through the left
visual and auditory fields.

relationship and be a sign of a lack of wellbeing in the cradling
woman. In previous studies, we showed that a reduction of
the LCB is related to: (i) reduced empathy and increased
depressive symptoms in mothers (Malatesta et al., 2019b); (ii)
non-optimal patterns of attachment styles in females (Malatesta
et al., 2019a); and (iii) prejudiced attitudes towards the cradled
individual’s ethnic group in females (Malatesta et al., 2020b).
Similarly, the negative association between atypical (right)
cradling and the quality of the mother-infant relationship
seems to be confirmed by the fact that stress and negative
affective states reduce the leftward asymmetry (Bogren, 1984;
Weatherill et al., 2004; Suter et al., 2007, 2011; Reissland
et al., 2009; Scola et al., 2013; Boulinguez-Ambroise et al.,
2020; Pileggi et al., 2020). Furthermore, a link between this
population-level bias and the later development of a typical
cognitive and socio-emotional functioning has been suggested
by recent findings associating developmental disorders—such
as autism spectrum disorder (ASD)—and atypical patterns of
lateralization in cradling (Jones, 2014; Pileggi et al., 2015;
Forrester et al., 2019, 2020; Herdien et al., 2020; Malatesta
et al., 2020a,d). This link is also highlighted by evidence
unveiling that ASD constitutes a group of neurodevelopmental
disorders that, besides entailing chronic and severe impairment
in socio-communicative and empathic relationships, are also
characterized by an early hypolateralization of brain functions
(e.g., Escalante-Mead et al., 2003; Stroganova et al., 2007),
including a reduced left bias for faces (Ashwin et al., 2005;
Dundas et al., 2012). Furthermore, given that parents of children
with ASD exhibit autistic traits to a greater extent compared
with controls (Bishop et al., 2004; Ruta et al., 2012; Bora et al.,
2017) and given that autistic traits in adults are associated with a
reduced LCB (Fleva and Khan, 2015), we have hypothesized an
association between reduced left-cradling preference in mothers
and later diagnosis of ASD in children (Malatesta et al., 2020a,d).
This perspective is in line with research on other forms of
systematic deviation from the typical behavioral lateralization
such as left-handedness. For example, although the issue is
still debated (McManus, 2019), left-handedness has been related
to several impairments (e.g., in cognitive abilities such as
intelligence and spatial abilities; Gibson, 1973; Johnston et al.,
2009; Nicholls et al., 2010; Papadatou-Pastou and Tomprou,
2015; Somers et al., 2015) and has been considered as a cue
of reduced fitness (e.g., for evidence in favor of a relation
between reduced right-handedness and decreased academic
and socioeconomic success see Deary et al., 2007; Strenze,
2007), along with other negative predictors of fitness (e.g.,
fluctuating asymmetries such as ear, digit, or wrist asymmetries;
Manning et al., 1997) which have been related to atypical brain
asymmetries (Thoma et al., 2002) and left-handedness itself
(Kobyliansky and Micle, 1986).

CONCLUSION

We propose the idea that human caregivers play a canalizing
role during a sensitive period of developmental plasticity via
their own lateralized motor patterns. These would give rise
in the infant to lateralized experiences in multiple sensory
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modalities, due to the bidirectional nature of interactive
behavior at very close contact. Of all biases, the case of
cradling would be extremely interesting to examine with
such an approach because its obligatory and simple nature
could qualify it as a major epigenetic determinant of neural
lateralization. Moreover, the LCB could be the access point
to a wider pattern of lateralized adult-infant interactive
and social behaviors (embracing, caressing, kissing, cuddling,
tickling, whispering, et cetera) acting as epigenetic niches for
typical development. Further studies are needed to establish
associations among the lateralized experience provided by
those interactive behaviors, hemispheric asymmetries, and
motor, cognitive and socioemotional development. Given the
role of the attachment system as a regulator of proximity
seeking (Simpson and Belsky, 2008), and the previous evidence
linking the cradling side to attachment in adults (Malatesta
et al., 2019a), a major target should be the search for links
among the observed patterns of infant attachment and the
aforementioned motor, neural and developmental variables.
Furthermore, cradling behavior has coevolved with the infant’s
proclivity to actively cling onto the caregiver (Berecz et al.,
2020), and being held or carried on the left or the right
side of the adult’s body imposes complementary degrees of
freedom on the infant’s left and right upper limbs. Thus,
a direct effect of adult-infant postural laterality is expected
to be manifested in the differential use of arms and hands
by the infant. More specifically, it is possible to predict that
left-sided cradling favors the development of right-handedness
in the infant, an effect already assessed in nonhuman primates
(Hopkins, 2004) and investigated only partially in humans
(Scola and Vauclair, 2010).

Based on the state-of-the-art on the cradling-, embracing-
and kissing-side bias research, a better understanding of the
adaptive role of these behavioral asymmetries appear desirable
to verify their potential function. For example, although
research carried out since 1960 has examined the possible
correlations between typical/atypical cradling lateralization and
several variables in different populations, we do not know
much about its association with typical brain organization

and increased fitness, and the possible outcomes on the
offspring of being cradled on the left or the right during
infanthood. Compared to other asymmetrical patterns of brain
organization (e.g., handedness), cradling behavior necessarily
involves the joint participation of two individuals: one cradling
and another being cradled. In this regard, it is plausible
that lateral cradling preferences are strongly associated with
affective functioning, which is known to be strongly impaired
in disorders such as autism, schizophrenia, and alexithymia
(Tordjman, 2008).

To conclude, this perspective aims to encourage the detailed
study of the nature and effects of the motor and sensory
lateral biases expressed in the context of adult-infant interactive
behavior. Due to the difficulties in directly manipulating such
a dyadic interaction to show possible causal effects in humans,
the involvement of animal models might be a useful approach
(Manning et al., 1994; Karenina et al., 2017; Giljov et al.,
2018; Boulinguez-Ambroise et al., 2020). Moreover, the lateral
preference stability over time has received little attention to
date, with conflicting findings (Dagenbach et al., 1988; Manning,
1991; Scola et al., 2013; Todd and Banerjee, 2016; Malatesta
et al., 2020a). Therefore, the dynamics and spatiotemporal
progression of the active and passive biases of the dyad over
time should be investigated with a microgenetic approach,
and their directionality and strength should be associated with
longitudinal assessments of hemispheric asymmetries, cognitive
development, and the pattern of attachment between parent
and infant.
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High maternal estradiol is reported to induce metabolic disorders by modulating 
hypothalamic gene expression in offspring. Since neurogenesis plays a crucial role during 
hypothalamus development, we explored whether prenatal high estradiol exposure (HE) 
affects proliferation and differentiation of fetal hypothalamic neural stem/progenitor cells 
(NSC/NPCs) in mice and performed RNA sequencing to identify the critical genes involved. 
NSC/NPCs in HE mice presented attenuated cell proliferation but increased neuronal 
differentiation in vitro compared with control (NC) cells. Gene set enrichment analysis of 
mRNA profiles indicated that genes downregulated in HE NSC/NPCs were enriched in 
neurogenesis-related Gene Ontology (GO) terms, while genes upregulated in HE  
NSC/NPCs were enriched in response to estradiol. Protein-protein interaction analysis of 
genes with core enrichment in GO terms of neurogenesis and response to estradiol 
identified 10 Hub mRNAs, among which three were potentially correlated with six 
differentially expressed (DE) lncRNAs based on lncRNA profiling and co-expression 
analysis. These findings offer important insights into developmental modifications in 
hypothalamic NSC/NPCs and may provide new clues for further investigation on maternal 
environment programmed neural development disorders.

Keywords: prenatal exposure, estradiol, neural stem/progenitor cells, neurogenesis, RNA sequencing, gene set 
enrichment analysis, protein-protein interaction, interaction network

INTRODUCTION

The theory that the intrauterine environment can influence prenatal development and the 
future health of offspring (Bateson et  al., 2004) has resulted in increased interest in the 
developmental origin of chronic disease. Ovulation induction clinically used in assisted reproductive 
technology generates a supraphysiologic level of blood estradiol, which may predispose offspring 
to an abnormal intrauterine environment after fresh embryo transfer (Hu et  al., 2014).  
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Our previous study reported a programming effect by high 
maternal estradiol during early pregnancy on the hypothalamic 
glucoregulatory system of male mouse offspring, which induces 
adult metabolic disorders (Wang et  al., 2018). This discovery 
indicates that high prenatal estradiol levels alter hypothalamus 
development, though the underlying mechanism is not yet 
well understood.

Neural stem/progenitor cells (NSC/NPCs) generate neurons 
during a process called neurogenesis (Bond et  al., 2015). In 
the central nervous system (CNS), neurogenesis begins in the 
embryonic stage and continues throughout life. NSC/NPCs are 
preprogrammed to form specific types of functional neurons 
even before birth (Fuentealba et  al., 2015); therefore, the study 
of prenatal neurogenesis may help researchers understand the 
mechanisms underlying adult neural disorders.

The hypothalamus regulates the metabolic homeostasis of 
the whole body and is sensitive to adverse prenatal environment 
(Ralevski and Horvath, 2015), so the development of 
hypothalamic neurons could affect metabolism in later life. 
Hypothalamic NSC/NPCs are first generated between embryonic 
day 10.5 (E10.5) and E14.5  in rodents (Padilla et  al., 2010), 
and can proliferate to form neurospheres and differentiate into 
neurons in vitro (Desai et  al., 2011). Substantial evidence has 
shown that dysfunctions of hypothalamic NSC/NPCs are 
associated with metabolic disorders, such as obesity and glucose 
intolerance (Li et  al., 2012, 2014; Livesey, 2012), but the 
corresponding whole genomic features of these NSC/NPCs are 
rarely reported.

RNA sequencing (RNA-Seq) is an effective approach to 
revealing genome alterations which provides expression 
information for all transcripts, including mRNAs and non-coding 
RNAs. LncRNAs may play a considerable regulatory role by 
interacting with mRNAs, so exploring the link between them 
may provide more clues for elucidating molecular pathways. 
Gene set enrichment analysis (GSEA) is a robust and tractable 
analytical method for interpreting RNA-Seq data, as it can 
detect differential enrichment of biological functions across an 
entire network of genes (Subramanian et  al., 2005), without 
the limitations associated with the single-gene method.

Because a prenatally programmed adult hypothalamic 
disorder resulting from high maternal estradiol has been 
identified (Wang et  al., 2018), here we  explore whether 
neurogenesis potential is affected in fetal hypothalamic  
NSC/NPCs and attempt to identify the key lncRNA-mRNA 
network through integrated bioinformatic analysis. These 
findings may help us to understand molecular modifications 
of fetal hypothalamic neurogenesis resulting from an adverse 
intrauterine environment.

MATERIALS AND METHODS

Animal Model and 5-Bromodeoxyuridine 
Labeling in Fetal Brain
A mouse model of prenatal high estradiol exposure was created 
based on our previously published method (Wang et al., 2018). 

Briefly, 8-week-old pregnant C57BL/6 mice received 100 μg/kg/d 
estradiol valerate [Sigma; high estradiol (HE) group] or an 
equal amount of blank solvent [corn oil; control (NC) group] 
via gavage from E5.5 to E11.5. For bromodeoxyuridine (BrdU) 
labeling, pregnant mice at E14.5 received a single intraperitoneal 
injection of 100  mg/kg BrdU (Sigma) 2  h before euthanized; 
then, the fetuses were extracted and decapitated. Male fetuses 
were identified by visual identification of testes next to the 
bladder using a dissection microscope. The brains of male 
fetuses were removed and fixed in 4% paraformaldehyde (PFA) 
for 24  h and then infiltrated with 20–30% sucrose. Brain 
sections of 20  μm were made using a freezing microtome 
(Leica) for immunofluorescence staining.

Tissue Immunofluorescence
Brain sections were blocked with 5% bovine serum albumin/0.3% 
Triton X-100 for 1  h at room temperature and incubated with 
primary antibodies mouse anti-Nestin (1:200, Millipore, catalog 
no. MAB353) and rabbit anti-BrdU (1:100, Abcam, catalog 
no. ab152095) overnight at 4°C, followed by reaction with 
secondary antibodies anti-rabbit Alexa Fluor 488 (1:200, 
Invitrogen, catalog no. A-11008) and anti-mouse Alexa Fluor 
594 (1:200, Invitrogen, catalog no. A-11005) for 2  h at room 
temperature before counterstaining with 4',6-diamidino-2-
phenylindole. The BrdU+Nestin+ cells were counted in five serial 
sections across the hypothalamus in each mouse.

NSC/NPC Isolation and Neurosphere 
Assay
The brains of E14.5 male fetuses were dissected quickly on 
ice to remove the hypothalami, which were then fragmented 
in Neurobasal-A (Gibco), digested with TrypLE (Gibco) in 
37°C for 15  min, and gently triturated into single cells with 
tips. The cells were then washed twice in Neurobasal-A and 
suspended in a proliferation medium containing Neurobasal-A, 
2% B27 (Gibco), 10  ng/ml EGF (PeproTech), 10  ng/ml bFGF 
(PeproTech), and 1% GlutaMAX (Gibco), seeded in ultralow 
adhesion 6-well plates at a density of 105/ml (Li et  al., 2012), 
and incubated in 5% CO2 at 37°C. The neurospheres were 
photographed under a microscope for 4  days (Marshall et  al., 
2007), and the number was counted and diameter measured 
using the software ImageJ on the fourth day after isolation.

NSC/NPC Proliferation and Differentiation 
Assay
To assess the proliferation ability of NSC/NPCs, the primary 
neurospheres were digested to count single cells and passaged 
at a density of 105/ml in ultralow adhesion 6-well plates. The 
total cell number in each of the first four passages was calculated 
based on the assumption that all of the cells from the previous 
passage were replated. For the BrdU incorporation assay, primary 
NCS/NPCs were plated on Matrigel (BD)-coated coverslips at 
a density of 105/ml in proliferation medium and cultured for 
24  h. Then, the cells were treated with 10  μm BrdU for 2  h 
before immunofluorescence staining.
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For induced differentiation, primary NSC/NPCs were seeded 
as single cells at a density of 3  ×  105/ml in Matrigel-coated 
coverslips placed in 24-well plates in differentiation medium 
containing Neurobasal-A, 2% B27, 1% fetal bovine serum (Gibco), 
and 1 μm retinoid acid (Sigma). The medium was changed every 
second day for 10  days, and then, the coverslips were removed 
to receive immunofluorescence detection of target neuron markers.

NSC/NPC Immunofluorescence
For immunofluorescence staining of NSC/NPCs, neurospheres 
were moved using tips to seed on Matrigel-coated coverslips for 
20  min before detection, and cells on coverslips were fixed with 
4% PFA for 15 min and blocked with 5% bovine serum albumin/0.3% 
Triton X-100 for 1  h at room temperature. Cells were then 
incubated with primary antibodies rabbit anti-Sox2 (1:400, Cell 
Signaling Technology, catalog no. 23064), mouse anti-Nestin (1:200, 
Millipore, catalog no. MAB353), rabbit anti-BrdU (1:100, Abcam, 
catalog no. ab152095), or mouse anti-Tuj1 (1:200, Cell Signaling 
Technology, catalog no. 4466) overnight at 4°C and with secondary 
antibodies anti-rabbit Alexa Fluor 488 (1:200, Invitrogen, catalog 
no. A-11008), anti-mouse Alexa Fluor 594 (1:200, Invitrogen, 
catalog no. A-11005), or anti-mouse Alexa Fluor 488 (1:200, 
Invitrogen, catalog no. A-11001) for 2  h at room temperature 
before counterstaining with 4',6-diamidino-2-phenylindole. The 
BrdU/Nestin and Tuj1 positive cells were counted in each group.

RNA-Seq Analysis
Three samples of first-passage NC and HE  NSC/NPCs were 
harvested separately, each containing cells obtained from two 
mice. RNA was extracted with TRIzol (Invitrogen), its quality 
valued by spectrophotometer, and its integrity checked by 
Agilent 2,100 bioanalyzer. Total RNA was enriched by oligo 
beads, fragmented into small pieces, and reverse transcribed 
into cDNA. Second-strand cDNA was synthesized by DNA 
polymerase I  with dUTP to construct a strand-specific library. 
The cDNA was then purified, end-repaired, poly A-added, and 
ligated to Illumina adaptor. The libraries were size-selected by 
agarose gel electrophoresis, PCR-amplified, and sequenced by 
Illumina NextSeq  500 by Personal Bio Co. (Shanghai, China).

The raw RNA-Seq data were filtered by removing low-quality 
and adaptor-related reads. The clean reads were then aligned 
to the mouse reference genome (10 mm) using Tophat2. Coding 
and non-coding transcripts were distinguished by Coding 
Potential Calculator, Coding-Non-Coding Index, and Pfam-scan. 
Non-coding RNAs with length >200  nt and exon number ≥2 
were considered to be lncRNAs. Expression values were expressed 
as reads per kilobase per million reads. Differential expression 
analysis was conducted using DESeq2 (Love et  al., 2014). 
LncRNAs and mRNAs with a log2 (fold change) ≥1 or ≤−1 
and FDR  <  0.05 were considered differentially expressed.

Bioinformatics Analysis
We conducted enrichment analyses using GSEA with the 
standard procedure obtained from the GSEA Web site.1  

1 http://www.gsea-msigdb.org/gsea/index.jsp

The number of permutations was set to 1,000, and FDR < 0.25 
with p  <  0.05 was considered statistically significant. 
We  downloaded gene sets needed for Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and Gene Ontology (GO) analysis 
from the GSEA Web site. The enrichment bubble diagrams 
were made with R software (version 4.0.3).

A protein-protein interaction (PPI) network of selected 
mRNAs was constructed using STRING 11.0,2 and the Hub 
mRNAs [the top 10 nodes ranked by Maximal Clique Centrality 
(MCC); Chin et  al., 2014] were identified using the plugin 
cytoHubba in Cytoscape software.3

To explore the lncRNA-mRNA regulatory network, Pearson’s 
correlation coefficient (PCC) between DE lncRNAs and Hub 
mRNAs was calculated and plotted using R software, and gene 
pairs with PCC ≥0.990 or ≤−0.990 and p < 0.05 were considered 
to be  potentially correlated. The interaction network was 
visualized using Cytoscape software.

Quantitative Real-Time Polymerase Chain 
Reaction
Total RNA of NSC/NPCs was extracted using TRIzol (Invitrogen) 
and reverse-transcribed into cDNA using Primer Script RT 
Reagent Kit (Takara) and amplified with QuantiNova SYBR 
Green PCR Kit (QIAGEN) according to the manufacturer’s 
instructions. The thermocycling conditions were 95°C for 2 min, 
followed by 40  cycles of 95°C for 5  s and 60°C for 10  s. The 
primers are listed in Table 1. GAPDH was used as an endogenous 
control, and the relative expression level was analyzed using 
the 2−△△CT method.

Statistical Analysis
Data aside from RNA-Seq and bioinformatics analysis were 
analyzed using the Statistical Package for Sciences Software, 
version 21.0 (IBM), and are presented as the mean  ±  standard 
error of the mean. Unpaired Student’s t-tests were used for 
comparisons between two groups, and p < 0.05 was considered 
statistically significant.

RESULTS

Prenatal High Estradiol Affects 
Neurogenesis Potential of Fetal 
Hypothalamic NSC/NPCs
Serum estradiol after gavage in the HE  pregnant mice reaches 
a peak value of four times that of the control group (Wang 
et  al., 2018), forming a high maternal estradiol environment. 
Fetal brain sections were made on E14.5, and hypothalamic 
NSC/NPCs were isolated at the same time (Figure 1A). Authentic 
biomarkers Sox2 and Nestin were used to label NSC/NPCs (Suh 
et al., 2007; Gilyarov, 2008). Tissue immunofluorescence presented 
decreased number of BrdU+Nestin+ cells in HE fetal hypothalami 
after BrdU injection (Figures  1B,C), indicating a reduction of 

2 https://string-db.org
3 http://www.cytoscape.org
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proliferating NSC/NPCs in vivo. Immunofluorescence staining 
of Sox2 and Nestin in neurospheres was performed for  
NSC/NPC identification after cell isolation (Figure  1D). The 
neurosphere assay showed a decreased amount of neurospheres 
with shorter average diameters in HE  NSC/NPCs compared 
with NC on the fourth day (D4) of the first passage (Figures 1E,F), 
and the proliferation curve presented the accumulated NC  
NSC/NPC number significantly exceeded that in the HE  group 
from the second to fourth passage (P2 to P4; Figure  1G), 
indicating attenuated proliferation ability in HE  NSC/NPCs. 
We  also performed BrdU incorporation assay in primary  
NSC/NPCs and found the decreased proportion of proliferating 
NSC/NPCs in vitro in HE  group (Figures  1H,I).

NSC/NPCs from two groups were induced to differentiate 
into neurons, and the neuronic marker Tuj1 (Lee et  al., 1990) 
was stained for quantification. The results showed neurons 
formed in both groups after a 10-day induction (Figure  1J); 
however, in contrast with proliferation assay, the number of 
neurons significantly increased in HE NSC/NPCs (Figure 1K).

Transcriptional Analysis of NSC/NPCs 
Reveals Hub mRNAs Involved in 
Neurogenesis
To elucidate the transcriptional changes related to altered 
neurogenesis, we compared the transcriptional profile of HE and 

NC NSC/NPCs by RNA-Seq. Heatmap of mRNAs showed 
distinctly different clustering between NSC/NPCs from two 
groups (Figure  2A). mRNAs with a log2 (fold change) ≥1 or 
≤−1 and FDR < 0.05 were considered DE mRNAs, the volcano 
plot presented a total of 117 DE mRNAs, including 45 upregulated 
and 72 downregulated in HE  NSC/NPCs compared with NC 
(Figure  2B). We  conducted GSEA afterward, aiming to find 
neurogenesis-related gene sets (Figures  2C–F). The results 
revealed that genes downregulated in HE  NSC/NPCs were 
enriched in neurogenesis-related GO biological processes (BP), 
such as neuroblast division, neuroblast proliferation, stem cell 
division, and neuron fate commitment, while genes upregulated 
in HE  NSC/NPCs were enriched in response to estradiol 
(Figure  2D). The enrichment plots of these gene sets are 
presented in Figure  2G.

To further explore key mRNAs in the gene sets above and 
their interactions, mRNAs with core enrichment in each gene 
set (found in GSEA details) were picked for PPI analysis in 
STRING followed by Hub gene identification using Cytoscape. 
The top  10 genes ranked by MCC score were identified as 
Hub mRNAs, including Tbr1, Six3, Foxg1, Pou3f2, Dlx2, Fezf2, 
Dlx1, Nkx2-1, Sox1, and Notch1 (Figure  2H).

To validate the mRNA profiling and Hub gene identification 
results, the expression of the Hub mRNAs above was screened 
by quantitative real-time polymerase chain reaction with 
NSC/NPC samples used in RNA-Seq (six NC mice and six 
HE  mice). The relative gene expression indicated all 10 Hub 
mRNAs decreased in the HE  NSC/NPCs compared to the 
NC group and were identical to expression trends in RNA-Seq 
(Figure  3).

Identification of DE lncRNA-Hub mRNA 
Interaction Network
Epigenetic modification is recognized to regulate early life 
neurodevelopment (LaSalle et  al., 2013; Yao et  al., 2016), and 
dysregulation of lncRNAs leads to impaired development or neural 
dysfunction (Ng et  al., 2013); therefore, we  investigated whether 
lncRNA profiles were affected in NSC/NPCs with prenatal high 
estradiol stimulation. The resultant heatmap showed separated 
clustering of lncRNA transcripts in two groups (Figure  4A). 
Transcripts with a log2 (fold change) ≥1 or ≤−1 and FDR < 0.05 
were considered DE lncRNA transcripts, and the volcano plot 
showed a total of 85 DE lncRNA transcripts, including 58 upregulated 
and 27 downregulated transcripts in the HE NSC/NPCs compared 
with the NC group (Figure  4B). The correlation between these 
DE lncRNA transcripts and the Hub mRNAs identified above 
were evaluated by constructing an expression matrix and calculating 
the PCC of each gene pair (Figure  4C). Gene pairs with a PCC 
≥0.990 or ≤−0.990 and p  <  0.05 were considered potentially 
correlated (Figure  4D). The co-expression network of these 
correlated genes was constructed (Figure 4E), including 6 lncRNA 
transcripts (ENSMUST00000037953, ENSMUST00000136217, 
ENSMUST00000138077, ENSMUST00000145804, ENSMUST 
00000170557, and ENSMUST00000189763) and 3 Hub mRNAs 
(Sox1, Fezf2, Foxg1). Among them, ENSMUST00000189763, 
ENSMUST00000037953, and ENSMUST00000145804 were 

TABLE 1 | Primer sequences for quantitative real-time polymerase chain 
reaction (qPCR).

Gene Primer type Primer sequence

Tbr1 Forward GCAGCAGCTACCCACATTC
Reverse GTCCTTGGAGTCAGGAAAATTGT

Six3 Forward TCAACAAACACGAGTCGATCC
Reverse TGGTACAGGTCGCGGAAGT

Foxg1 Forward GAAGGCCTCCACAGAACG
Reverse CAAGGCATGTAGCAAAAGAGC

Pou3f2 Forward GCAGCGTCTAACCACTACAGC
Reverse GCGGTGATCCACTGGTGAG

Dlx2 Forward GGCTCCTACCAGTACCACG
Reverse GTAGCCCAGGTCGTAGCTG

Fezf2 Forward GCAAAGGCTTTCACCAAAAA
Reverse GCATGTGGAAGGTCAGATTG

Dlx1 Forward ATGCCAGAAAGTCTCAACAGC
Reverse AACAGTGCATGGAGTAGTGCC

Nkx2-1 Forward ATGAAGCGCCAGGCTAAGG
Reverse GGTTTGCCGTCTTTGACTAGG

Sox1 Forward TTTTCCGGGGTTTACTTCC
Reverse GCTCGAGGTCCGTCACTC

Notch1 Forward TGCCACAATGAGATCGGCTC
Reverse GGGCACATAGGGCAGTTCA

Egfr Forward ATGAAAACACCTATGCCTTAGCC
Reverse TAAGTTCCGCATGGGCAGTTC

Fgfr1 Forward ACTCTGCGCTGGTTGAAAAAT
Reverse GGTGGCATAGCGAACCTTGTA

Fgfr2 Forward GCCTCTCGAACAGTATTCTCCT
Reverse ACAGGGTTCATAAGGCATGGG

Fgfr3 Forward CCGGCTGACACTTGGTAAG
Reverse CTTGTCGATGCCAATAGCTTCT

Fgfr4 Forward GCTCGGAGGTAGAGGTCTTGT
Reverse CCACGCTGACTGGTAGGAA
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FIGURE 1 | Isolation and evaluation of fetal hypothalamic neural stem/progenitor cell (NSC/NPC) neurogenesis potential in a mouse model. (A) Schematic of the 
method used to generate fetal brain sections and hypothalamic NSC/NPCs in a mouse model. (B) Representative images of bromodeoxyuridine (BrdU) and Nestin 
immunofluorescence in fetal hypothalamic tissue; scale bar: 200 μm. Arrows show BrdU+Nestin+ cells. (C) Quantification of BrdU+Nestin+ cells in five serial fetal 
hypothalamic tissue sections (n = 3 mice per group). (D) Representative images of Sox2 and Nestin immunofluorescence in neurospheres; scale bar: 100 μm. 
(E) Representative images of neurosphere formation across 4 days in the two experimental groups; scale bar: 400 μm. (F) Top: quantification of neurospheres on D4 
of passage in two groups (n = 3 mice per group). Bottom: measurement of average diameters of neurospheres on D4 of passage in two groups (n = 3 mice per 
group). (G) Accumulated cell number of NSC/NPCs from P1 to P4 in the two experimental groups (n = 3 mice per group). (H) Representative images of BrdU and 
Nestin immunofluorescence in NSC/NPCs; scale bar: 100 μm. Arrows show BrdU+Nestin+ cells. (I) Quantification of BrdU+Nestin+ cells (%) in NSC/NPCs (n = 3 mice 
per group). (J) Representative images of Tuj1 immunofluorescence in neurons differentiated in vitro in the two experimental groups; scale bar: 100 μm. 
(K) Quantification of Tuj1 positive cells (%) in the two experimental groups (n = 3 mice per group). Error bars represent the standard error of the mean. Significance 
was determined by Student’s t-test. *p < 0.05; **p < 0.01; and ****p < 0.0001.
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upregulated and the rest were downregulated. Therefore, 
we  estimated these lncRNA-mRNA interactions may play a part 
in mediating the less proliferative and more neurogenic potential 
of fetal hypothalamic NSC/NPCs resulting from high maternal 
estradiol exposure.

DISCUSSION

Mounting evidence suggests that an adverse intrauterine 
hormonal environment could impair the health of offspring. 
High maternal estradiol is usually induced by ovarian stimulation 
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FIGURE 2 | mRNA profiling and Hub mRNA identification. (A) Heatmap of 117 DE mRNAs in HE NSC/NPCs compared to NC. Red indicates upregulation, and 
blue indicates downregulation; row scale is from 0 to 1. (B) Volcano plot of DE mRNAs in HE NSC/NPCs compared with NC, red dots represent 45 upregulated 
mRNAs, and blue dots represent 72 downregulated mRNAs. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results from gene set enrichment 
analysis (GSEA). The x-axis represents normalized enrichment score (NES), and the y-axis represents KEGG terms. The size of the dot indicates gene count, and 
the color indicates normalized value of p. Positive and negative NES indicate upregulation and downregulation in HE. (D-F) GO BP, CC (cellular component), and MF 
(molecular function) enrichment results from GSEA. The x-axis represents NES, and the y-axis represents GO terms. The size of the dot indicates gene count, and 
the color indicates normalized value of p. Positive and negative NESs indicate upregulation and downregulation in HE, respectively. (G) The enrichment plot of gene 
sets involved in neurogenesis and estradiol response. (H) Protein-protein interaction analysis of genes with core enrichment and Hub mRNA identification. Colored 
nodes indicate Hub mRNAs, with their shade positively correlated with the Maximal Clique Centrality score.
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in assisted reproductive technology, and it can disrupt 
neurodevelopment, resulting in metabolic disorders and 
diminished verbal abilities in offspring (Wang et  al., 2018; 
Zhou et  al., 2020). In our previous study, high maternal 
estradiol led to insulin resistance and disordered eating in 
mouse offspring due to decreased insulin receptor and elevated 
neuropeptide Y expression in the hypothalamus (Wang et  al., 
2018). That these alterations were detected postnatally  
prompted us to search for corresponding events in earlier 
developmental stages.

Because fetal NSC/NPCs proliferate and differentiate actively, 
they are vulnerable to exogenous stimulators like high maternal 
estradiol, which can pass through the placental barrier (Gude 
et al., 2004) and may directly affect their biological properties. 
We  isolated primary neural stem cells from the fetal 
hypothalamus and cultured them as neurospheres. Actually, 
neurospheres may derive from mixed cells with dynamic 
markers, and even the purified cells remain heterogeneous 
(Pastrana et  al., 2011), resulting in limitations in neurosphere 
assay if applied alone. Therefore, we  examined proliferation 
in Sox2 and Nestin-positive cells both in vivo and in vitro, 
which are recognized to be  NSCs and NPCs (Bani-Yaghoub 
et  al., 2006; Ernst and Christie, 2006; Hernandez et  al., 2007; 
Campbell et  al., 2015). Since the vast majority of the primary 
cells were Sox2 and/or Nestin positive, as shown in 
Figures  1D,H, we  consider the researches were performed 
mainly in the same population of cells in two groups. Although 
a small proportion of other type of cells might exist, their 
effect on gene expression appeared insignificant when compared 
with NCS/NPCs. In consideration of the limitations of our 
study, we  believe single-cell RNA-Seq should make a more 
precise method in future research. In fact, the cell composition 
in neurospheres would possibly change during different passages, 
and we  speculate that the diminished proliferation might be  a 
continuation of properties in primary NSC/NPCs, and further 
studies are expected to reveal whether increased cell apoptosis 
and senescence could occur.

The proliferation medium contained EGF and bFGF, which 
are essential factors for NSC/NPC growth. To explore whether 
cell proliferation changed due to different levels of EGF and 

bFGF receptors, we  examined the mRNA expressions of them 
in primary NSC/NPCs and found no significant difference 
between the two groups (Supplementary Figure S1). This result 
indicated that the decreased proliferation in HE  NSC/NPCs 
was not attributed to different levels of growth factor receptors 
in the culture medium, but more likely to the intrauterine 
programming effect.

Neurogenesis is a complex process, and how NSC/NPCs 
are maintained, divided, and differentiated remain 
controversial (Lazutkin et  al., 2019). Our results indicated 
decreased proliferative activity and increased neuronal 
production in HE  NSC/NPCs; however, whether or not this 
resulted from premature exhaustion of the stem cell pool 
requires further study. A comprehensive evaluation of 
hypothalamic neurogenesis from the prenatal period to 
adulthood may show us a more precise effect of high maternal 
estradiol on neurodevelopment. It should be  noted that the 
NSC/NPC differentiation assay was carried out in vitro, 
which generates early and immature neurons rather than 
functional neurons, and an in vivo labeling of NSC/NPCs 
at the embryonic stage followed by detections like lineage 
tracing may provide a more accurate indication of their 
differentiation directions.

Several published studies show that estrogen stimulates both 
proliferation and differentiation of NSC/NPCs (Okada et  al., 
2010; Li et  al., 2020) and attenuates damage to neurogenesis 
in the developing brain caused by chemical drug exposure 
(Li et  al., 2019); however, another study shows that 10  nM 
estradiol increases NSC/NPCs proliferation and stimulates 
differentiation into neurons in vitro, but 50  nM estradiol 
markedly decreases NSC/NPCs proliferation (Zhang et  al., 
2019a). Thus, the effects of maternal estradiol on neurogenesis 
of fetal hypothalamic NSC/NPCs may be  dose dependent, and 
the dose that caused metabolic disorder in our mouse model 
exerted a different effect on proliferation and differentiation. 
The stimulative effect on neuron formation may explain our 
previous finding that hypothalamic neuropeptide Y increases 
in HE  offspring (Wang et  al., 2018); that is, prenatal high 
estradiol probably promotes orexigenic neuron generation, 
leading to disordered eating.

FIGURE 3 | Verification of selected mRNAs by qPCR. Fold change of 10 Hub mRNAs in HE NSC/NPCs compared with NC (n = 6 mice per group). Significance 
was determined by Student’s t-test. *p < 0.05; **p < 0.01; and ***p < 0.001.
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We used log2 (fold change) ≥1 or ≤−1 and FDR < 0.05 
as the cutoffs to define DE genes in our study, and  
looser criteria of log2 (fold change) ≥1 or ≤−1 with p  <  0.05 
were also tried to identify DE genes and predict DE 
lncRNA-Hub mRNA regulatory network. This method presented 

567 DE mRNAs (383 upregulated and 184 downregulated) 
and 148 DE lncRNA transcripts (89 upregulated and 59 
downregulated) in HE  NSC/NPCs compared with NC 
group  (Supplementary Figures S2A–D). In spite of this, the 
potentially correlated DE lncRNA-Hub mRNA pairs remained 

A B

C D

E

FIGURE 4 | LncRNA profiling and DE lncRNA-Hub mRNA interaction network construction. (A) Heatmap of 85 DE lncRNA transcripts in HE NSC/NPCs compared 
to NC. Red indicates upregulation, and blue indicates downregulation; row scale is from 0 to 1. (B) Volcano plot of DE lncRNA transcripts in HE NSC/NPCs 
compared to NC. Red dots represent 58 upregulated transcripts, and blue dots represent 27 downregulated transcripts. (C) Heatmap of DE lncRNA-Hub mRNA 
Pearson’s correlation coefficient (PCC) score. Orange indicates positive PCC, and blue indicates negative PCC. PCC ≥0.990 or ≤−0.990 and p < 0.05 are labeled 
with ★. (D) List of correlated DE lncRNA transcript-Hub mRNA pairs, with their PCC and value of p. (E) The interaction network of six DE lncRNA transcripts and 
three Hub mRNAs. Red indicates upregulation, and blue indicates downregulation in HE NSC/NPCs compared to NC. Triangles represent lncRNAs, and rectangles 
represent mRNAs.
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unchanged compared with those marked in Figure  4C 
(Supplementary Figure S2E).

Gene set enrichment analysis (GSEA) revealed both 
enrichment and expression of mRNA profiles in two groups; 
positive NES indicated upregulation in HE  compared with 
NC NSC/NPCs, and negative NES indicated downregulation. 
Although KEGG enrichment did not reveal items directly 
involved in cell proliferation and differentiation, it showed 
differential enrichment of cell cycles, DNA replication, 
nucleotide excision repair, and RNA polymerase. Moreover, 
we found upregulated mRNAs that are enriched in Huntington’s 
and Parkinson’s disease in the HE  NSC/NPCs, suggesting 
an increased risk of neurodegenerative disease in offspring 
exposed to high maternal estradiol, which requires further 
validation. The GO CC and MF enrichment revealed 
downregulated genes enriched in autophagosome and  
dopamine receptor binding, and upregulated genes enriched 
in neurotransmitter binding and glutamate receptor  
binding in HE  NSC/NPCs. These discoveries may help  
illuminate the mechanisms of maternal estradiol-induced 
neurodevelopmental disorders.

The GO BP enrichment result revealed downregulated 
genes in HE  NSC/NPCs enriched in stem cell division, 
neuroblast proliferation, and neuroblast division, which 
consisted with their less proliferative potential observed. 
However, genes enriched in neuron fate commitment also 
decreased in HE  NSC/NPCs, which seemingly contradicted 
the more neurogenic activity in vitro. To find a rational 
explanation for this, we  focused on Hub mRNAs of core 
enrichment in these gene sets.

The Hub mRNAs were identified based on a PPI network 
consisting of genes enriched in neurogenesis and response to 
estradiol; however, the top  10 Hub mRNAs ranked by MCC 
in Cytoscape were all genes involved in neurogenesis, and 
they were all downregulated in HE  NSC/NPCs. This result 
may be  explained by the fact that Hub genes are highly 
connected genes in a co-expression network, and genes enriched 
in response to estradiol failed to present such close connections 
with those enriched in altered neurogenesis, implying a probable 
indirect effect of estradiol stimulation on neurogenesis in our 
study. Most of these Hub mRNAs are transcription factors 
except Notch1. Pou3f2 influences multiple stages of neurogenesis 
by promoting neural transcription factor Tbr1 (Dominguez 
et  al., 2013), which regulates cell differentiation and migration 
and involves glutamatergic neurogenesis (Mihalas and Hevner, 
2017). Six3, Foxg1, and Sox1 maintain the balance between 
proliferation and neuronal differentiation of NSC/NPCs. 
Specifically, upregulation of Six3 plays a role in keeping  
NSC/NPCs in an undifferentiated state (Appolloni et al., 2008); 
Foxg1 deficiency leads to premature differentiation of neurons, 
and its overexpression increases the NSC/NPC pool (Hanashima 
et  al., 2004; Brancaccio et  al., 2010); and Sox1 loss induces 
depletion of proliferating NSC/NPCs with increased cell cycle 
exit (Bylund et  al., 2003). Dlx1 and Dlx2 drive GABAergic 
neuron generation (Lindtner et  al., 2019; Barretto et  al., 2020), 
and Fezf2 is involved in the dopaminergic neuron generation 
(Eckler and Chen, 2014); moreover, knockdown of Fezf2 leads 

to decreased Foxg1 and Six3 in mouse embryonic stem cells 
(Wang et  al., 2011). Notch1 signaling is reported to promote 
NSC/NPC proliferation but decrease neuronal differentiation 
during meningitis and spinal cord injury (Peng et  al., 2019; 
Zhang et  al., 2019b). Nkx2-1 is a critical factor maintaining 
the anorectic gene Pomc expression from early development 
to adulthood (Orquera et  al., 2019). To sum up, the published 
information above supports our findings that decreased Six3, 
Foxg1, Sox1, Fezf2, and Notch1 in HE  NSC/NPCs directly 
correlated with decreased proliferation and enhanced neuronal 
generation, which probably reflected a premature differentiation. 
As the upstream regulator of Pomc, decreased Nkx2-1 in 
HE offspring could contribute to the verified orexigenic phenotype 
in later life (Wang et  al., 2018). Since Pou3f2, Tbr1, Dlx1, and 
Dlx2 are involved in the generation of glutamatergic or 
dopaminergic or GABAergic neurons, figuring out the neuron 
types that these NSC/NPCs tended to form would help validate 
the effect on neurogenesis of these genes in our experiment.

The published studies fail to specify the effect of estradiol 
on Hub mRNAs above during neurogenesis. One research 
shows estradiol stimulation does not affect Notch1 expression 
during hippocampus development but reduces the level of its 
transcriptionally active domain (Bender et  al., 2010). Since 
we previously found DNA methylation programs hypothalamic 
gene expression in HE  offspring (Wang et  al., 2018), it may 
support the hypothesis that expression changes of these Hub 
mRNAs could be  attributed to epigenetic regulators, such as 
DNA methylation and non-coding RNAs.

LncRNAs are important components of regulatory networks 
in CNS development whose dysregulation leads to neurological 
disorders (Ng et  al., 2013). Since lncRNAs exert functions 
mainly through regulating mRNA expression, we  constructed 
the interaction network between DE lncRNAs and Hub mRNAs, 
aiming to discover lncRNAs possibly connected with the 
altered  neurogenesis. Our study predicted six DE lncRNA  
transcripts correlated with three Hub mRNAs based on their 
expression level. These lncRNA transcripts (ENSMUST 
00000037953, ENSMUST00000136217, ENSMUST 00000138077, 
ENSMUST00000145804, ENSMUST00000170557, and ENS 
MUST00000189763) are coded by genes 2810032 G03Rik, 
Prdm16os, Gm13110, Ppp1r18os, Gm17035, and D130058E05Rik, 
respectively, according to Ensemble genome browser.4 We  also 
checked the expression correlations between DE lncRNAs and 
all mRNAs in Figure  2H (mRNAs with core enrichment in 
neurogenesis and response to estradiol, core mRNAs for short), 
which predicted a potential regulatory network of 14 DE 
lncRNA transcripts and 11 core mRNAs (Supplementary  
Figures S3A–C). In consideration of our limited sample size, 
we  repeated the co-expression analysis of these lncRNAs and 
mRNAs using the pubic dataset GSE65487  in Gene Expression 
Omnibus, which assessed the RNA profiles of proliferating 
progenitors, differentiating progenitors and neurons from E14.5 
mouse cortex. However, five of DE lncRNAs were not detected 
in GSE65487 (Supplementary Figure S3D), and four of the 
rest presented potential correlations with three mRNAs each, 

4 http://asia.ensembl.org/index.html
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when the cutoffs were set to be  PCC ≥0.900 or ≤−0.900 and 
p  <  0.05 (PCC ≥0.990 or ≤−0.990 identified no significant 
correlation; Supplementary Figures S3E,F). Although we failed 
to discover the same lncRNA-mRNA pair as demonstrated in 
our study by using this public dataset, it still reflected possible 
connections of these lncRNAs with neurogenesis. Since there 
are not yet any published literatures about the functions of 
these lncRNAs, future work focused on their specific roles is 
expected to help answer questions regarding development-
originated neuroendocrine disorders.

In short, our research presents the cytologic changes in early 
neural development under a high maternal estradiol environment 
and reveals the corresponding whole genomic features with a 
prediction of the underlying molecular modifications. This study 
demonstrates comprehensive information about fetal hypothalamic 
NSC/NPCs with prenatal high estradiol exposure and contributes 
to our understanding of the fetal-programmed adult diseases.
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Supplementary Figure S2 | DE gene identification and DE lncRNA-Hub mRNA 
interaction network analysis using log2 (fold change) ≥1 or ≤−1 with p < 0.05 as the 
cutoff. (A) Heatmap of 567 DE mRNAs in HE NSC/NPCs compared to NC. Red 
indicates upregulation, and blue indicates downregulation; row scale is from 0 to 1. 
(B) Volcano plot of DE mRNAs in HE  NSC/NPCs compared to NC, red dots 
represent 383 upregulated mRNAs, and blue dots represent 184 downregulated 
mRNAs. (C) Heatmap of 148 DE lncRNA transcripts in HE NSC/NPCs compared 
to NC. Red indicates upregulation, and blue indicates downregulation; row scale is 
from 0 to 1. (D) Volcano plot of DE lncRNA transcripts in HE NSC/NPCs compared 
with NC. Red dots represent 89 upregulated transcripts, and blue dots represent 
59 downregulated transcripts. (E) Heatmap of DE lncRNA-Hub mRNA PCC score. 
Orange indicates positive PCC, and blue indicates negative PCC. PCC ≥0.990 or 
≤−0.990 and p < 0.05 are labeled with ★.

Supplementary Figure S3 | DE lncRNA-core mRNA interaction network 
construction and verification with public dataset. (A) Heatmap of DE lncRNA-
core mRNA PCC score. Orange indicates positive PCC, and blue indicates 
negative PCC. PCC ≥0.990 or ≤−0.990 and p < 0.05 are labeled with ★ (DE 
lncRNA-Hub mRNA) or ● (DE lncRNA-non Hub mRNA). (B) List of correlated DE 
lncRNA transcript-core mRNA pairs, with their PCC and value of p. (C) The 
interaction network of 14 DE lncRNA transcripts and 11 core mRNAs. Red 
indicates upregulation, and blue indicates downregulation in HE  NSC/NPCs 
compared to NC. Triangles represent lncRNAs, and rectangles represent mRNAs. 
(D) List of lncRNAs in panel B with the corresponding lncRNA genes found in 
GSE65487. (E) Heatmap of lncRNA-mRNA PCC score graphed using data from 
GSE65487. Orange indicates positive PCC, and blue indicates negative PCC. 
PCC ≥0.900 or ≤−0.900 and p < 0.05 are labeled with ★. (F) List of correlated 
lncRNA-mRNA pairs presented in panel E, with their PCC and value of p.
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Receptor 1 Expression-Based
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Attachment is a biological evolutionary system contributing to infant survival. When
primary caregivers/parents are sensitive and responsive to their infants’ needs, infants
develop a sense of security. Secure infant attachment has been linked to healthy brain
and organ-system development. Belsky and colleagues proposed the term differential
susceptibility to describe context-dependent associations between genetic variations
and behavioral outcomes as a function of parenting environments. Variations in the
Cannabinoid Receptor Gene 1 (CNR1) are associated with memory, mood, and reward
and connote differential susceptibility to more and less optimal parental caregiving
quality in predicting children’s behavioral problems.

Aim: To determine if parental caregiving quality interacts with children’s expression-
based polygenic risk score (ePRS) for the CNR1 gene networks in the prefrontal cortex,
striatum, and hippocampus in predicting the probability of attachment security and
disorganized attachment.

Design: Prospective correlational methods examined maternal-infant pairs (n = 142)
from which infants provided DNA samples at 3 months. Parental caregiving quality
was assessed via the Child Adult Relationship Experiment (CARE)-index at 6 months,
and attachment security via the Strange Situation Procedure at a mean age of
22 months. The CNR1 ePRSs include genes co-expressed with the CNR1 genes
in the prefrontal cortex, striatum, or hippocampus, and were calculated using the
effect size of the association between the individual single nucleotide polymorphisms
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from those genes and region-specific gene expression (GTEx). Logistic regression
was employed (alpha < 0.05, two-tailed) to examine the main and interaction effects
between parental caregiving quality and ePRSs in predicting attachment patterns.
Interpretation of results was aided by analyses that distinguished between differential
susceptibility and diathesis-stress.

Results: Significant interactions were observed between (1) maternal sensitivity and
ePRS in the striatum in predicting attachment security, (2) maternal unresponsiveness
with the ePRS in the hippocampus in predicting disorganization, and (3) maternal
controlling with the ePRS in the hippocampus in predicting disorganization.

Conclusion: These findings offer support for genetic differential susceptibility to the
quality of maternal sensitivity in the context of the ePRS in the striatum. However,
the significant interactions between hippocampal ePRS and maternal unresponsiveness
and controlling in predicting the probability of disorganization were more suggestive of
the diathesis-stress model.

Keywords: expression-based polygenic risk score (ePRS), cannabinoid receptor gene 1 (CNR1), parent–child
relationship quality, CARE-index, strange situation procedure, APrON study, attachment security, attachment
disorganization

INTRODUCTION

Since psychiatrist John Bowlby first considered the importance of
infants’ secure attachments with their caregivers to later mental
health, research on attachment patterns has exploded (Sroufe
et al., 2005; Cassidy, 2016). Attachment theory has not only
provided a basis for international research programs but has
also become an influential perspective on child development
in clinical and welfare practice (Sroufe et al., 2005; Kozlowska
and Elliott, 2014; Teti and Kim, 2014). The most fundamental
aspect of attachment theory is that a child’s attachment behavior
has social-biological underpinnings promoting a vulnerable
infant’s proximity to the attachment figure, improving their
chance of survival (Simpson, 1999; Cassidy, 2016). When
primary caregivers/parents are available and responsive to their
infants’ needs, infants develop a sense of security, making
them feel safe, secure, and protected (Bowlby, 1982; Benoit,
2004; Solomon and George, 2016). Infants anticipate their
parents’ responses to their distress and shape their attachment
behaviors accordingly (Benoit, 2004). When observed and scored,
infant attachment behavior typically is classified into one of
four attachment patterns: secure, insecure-avoidant, insecure-
resistant, and disorganized (Ainsworth et al., 1978; Main and
Solomon, 1986). A growing body of evidence links infant
secure attachment patterns to healthy brain and organ-system
development and insecure and disorganized attachment to
increased levels of all-cause morbidity, chronic inflammation,
coronary artery disease, and an array of mental health disorders
(Schore, 2000, 2001; Sroufe, 2005; Puig et al., 2013).

Parental caregiving quality, typically characterized by qualities
of maternal sensitivity, control, and responsiveness, predicts
infants’ attachment pattern (De Wolff and van Ijzendoorn, 1997;
van Ijzendoorn et al., 1999; Madigan et al., 2006; Crittenden,
2010; Bailey et al., 2017). Sensitivity is a caregiver’s ability
to perceive, accurately interpret, and respond promptly and

accurately to an infant’s cues (Ainsworth et al., 1978). High
maternal sensitivity involves responding to infant/child cues that
signal needs or distress, such as fussiness due to hunger or fatigue,
in a timely fashion, while low maternal sensitivity is indicated
by low responsiveness (Barnard and Guralnick, 1997). High
maternal sensitivity also denotes behaviors contrary to overtly
or covertly hostile behaviors or attempts to excessively control
infant behavior in routine interactions (Kelly et al., 2008). While
sensitive caregiving may support the development of acceptable
emotional expressions and optimal regulation, harsh, controlling
caregiving behaviors may undermine children’s emotional
development. Therefore, high-quality parental caregiving is
typically characterized by sensitive and responsive interactions
attentive to infant needs while mitigating excessive intrusion
and control. A greater degree of sensitivity shows the infant
that the caregiver is dependable, which creates a secure base for
the child then to explore the world (Thompson, 2016). Parental
sensitivity is regarded as one of the most important determinants
of infant attachment security (Fearon et al., 2006; Bakermans-
Kranenburg and van Ijzendoorn, 2007; Colmer et al., 2011),
while traumatic events thought to undermine parental caregiving
predict disorganized attachment (Lyons-Ruth, 2015).

However, despite being an important factor in predicting
attachment patterns, parental caregiving quality does not explain
as much variance as one might expect (De Wolff and van
Ijzendoorn, 1997; van Ijzendoorn et al., 1999; Bailey et al.,
2017). There has been evidence to support associations between
attachment patterns and several sociodemographic factors such
as maternal age (Esma et al., 2018), socioeconomic status
(Acevedo et al., 2012), migration background (Keller, 2018),
infant sex (Weinberg et al., 1999; David and Lyons-Ruth, 2005),
infant gestational age (Wille, 1991), descriptive factors such as
maternal depression (Kohlhoff and Barnett, 2013), social support
(Jacobson and Frye, 1991), and infant birth weight (Wille, 1991;
Weiss et al., 2000). In addition, there is a growing body of
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evidence suggesting that individuals’ genetics may influence
attachment patterns (Lakatos et al., 2000, 2002; Belsky and
Beaver, 2011; Luijk et al., 2011; Belsky et al., 2015; Pappa et al.,
2015; Golds et al., 2020). Specifically, disorganized attachment
patterns have been linked to genetic variations of the genes
responsible for regulating dopamine (DA; Lakatos et al., 2000,
2002; Gervai et al., 2005, 2007; van Ijzendoorn and Bakermans-
Kranenburg, 2006).

The majority of the literature examining the roles of parental
caregiving behavior and genetics in predicting attachment
relates to neurotransmitters, particularly those implicated in
reward processing (Bakermans-Kranenburg and van Ijzendoorn,
2016; Feldman, 2017). DA is a neurotransmitter associated
with motivation or pleasure necessary to promote a response
to environmental cues that signal reward and depend on
carrying out a specific action or behavior to receive it (Du
Hoffmann and Nicola, 2014). The endocannabinoid system
(ECS) is implicated in a wide variety of brain functions,
such as reward processing as well as memory, mood, and
motor control. The Type 1 Cannabinoid Receptor (CB1),
encoded by the Cannabinoid Receptor 1 (CNR1) gene, is a key
component of the endocannabinoid system and is expressed in
both the central and peripheral nervous systems, particularly
on axon terminals in the cerebellum, hippocampus, basal
ganglia, frontal cortex, amygdala, hypothalamus, and midbrain
(Romero-Fernandez et al., 2013; Brzosko et al., 2015). The
CB1 receptor is an important component of the ECS in the
nervous system, regulating synaptic transmission by modulating
neurotransmitters’ release, including DA (Tao et al., 2020). Two
of the most commonly studied CNR1 polymorphisms include
rs1049353 (Agrawal et al., 2012) and rs7766029 (Juhasz et al.,
2009) in relation to different phenotypic outcomes, especially in
the rs1049353 genotype, A allele. Previous studies support the
notion that outcomes can vary with the different polymorphic
variants of these genes. For example, when the CNR1-A allele
is absent, the caregiving environment’s impact on children’s
externalizing behaviors is attenuated. Higher levels of negative
caregiver control, in the presence of the CNR1-A gene, predicted
parent-report of more externalizing behaviors in children. In
comparison, lower levels of negative caregiver control predicted
the report of less externalizing behaviors in a differentially
susceptible manner (Letourneau et al., 2019).

Genetic variations can have varying functional effects in
different biological contexts; thus, specific genes may produce
different observable outcomes in response to either stressful or
protective environments (Del Giudice, 2016). Belsky and Pluess
(2009a) proposed utilizing the term differential susceptibility
when describing genes associated with both adaptive and
maladaptive changes in phenotypes in response to “supportive”
and “unsupportive” parental caregiving environments. Parental
caregiving quality incorporates constructs such as nurturing,
acceptance, and cohesion, and involves behaviors toward
the child (e.g., praising, encouraging, and giving physical
affection), which signal to the child love, support, and
acceptance (Barnes et al., 2000). In short, genetic differential
susceptibility theory may explain why some infants appear to
have increased susceptibilities to parental caregiving qualities.

Genetic variation leading to neurobiological and temperamental
traits characterized by highly sensitive and responsive stress
physiology may determine increased susceptibility to stress and
adversity (Del Giudice, 2016). Highly genetically susceptible
children have disproportionately high morbidity rates when
raised in adverse stressful environments; in addition, children
with a higher degree of genetic susceptibility more frequently
exhibit mental health symptoms in adolescence (Essex et al.,
2011), exhibit epigenetic modifications (i.e., decreased DNA
methylation; Goodman et al., 2018), and are more likely to
exhibit behavioral problems under circumstances of low caregiver
support (Skowron et al., 2014; Letourneau et al., 2019). In
contrast, children with a high degree of genetic susceptibility
become more socially integrated, have the lowest levels of illness
(Boyce et al., 1995), and highest school engagement levels when
receiving high-quality parental caregiving (Obradović et al.,
2010). This dichotomy in children with a high degree of
genetic susceptibility suggests a unique opportunity to identify
individuals who could be at risk for poor health outcomes by
assessing children’s genetic differential susceptibility to parental
caregiving quality. However, a rival explanation for some of these
associations is diathesis-stress, in which poor developmental
experiences (e.g., low-quality parenting) are most likely to impact
the development of individuals who carry vulnerability factors
that result in maladaptation. Ascertaining whether parenting
interacts with genetic factors in either a differential susceptibility
or diathesis-stress manner is a subject of ongoing exploration
(Garmezy et al., 1984; Roisman et al., 2012; Portella et al., 2020).

Novel genomic metrics that either predict gene expression
in tissue-specific regions or use gene co-expression information
may provide a more comprehensive view of a specific gene or
a gene network’s role in modulating an individual’s response
to environmental variations, compared to that provided by
the single candidate gene approach (Gamazon et al., 2015;
Barth et al., 2020). Expression-based polygenic risk scores
(ePRS) offer one such approach to understand the underlying
genetic background linked to behavioral outcomes (Hari Dass
et al., 2019). ePRS is a genomic risk profiling method that
recognizes a gene network contribution to a particular condition
or outcome derived from a combination of small effects from
many genetic variants. ePRS scores are derived based on
transcriptional co-expression profiles from specific regions of the
mouse (GeneNetwork) and human (Brainspan) brains, used to
identify Single Nucleotide Polymorphisms (SNPs) functionally
associated with gene expression in the human brain (GTEx).
ePRS analyses provide a new paradigm to identify gene-by-
environment interactions (McGrath et al., 2013; Plomin, 2013;
Iyegbe et al., 2014; Silveira et al., 2017; Belsky et al., 2019; De Lima
et al., 2020).

When attachments form in early infancy, activation and
closer links are observed among neurobiological brain systems
underpinning affiliation, reward, and stress management (Ulmer-
Yaniv et al., 2016). Functional magnetic resonance imaging
(fMRI) has been used to investigate the brain activity associated
with humans’ various social attachments (Feldman, 2017).
These fMRIs provide evidence for three main inter-connected
neural systems that integrate to establish, maintain, and
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enhance our attachments to others, including the reward-
motivation system (Berridge and Robinson, 1998), the embodied
simulation/empathy network (Gallese, 2014), and mentalizing
processes (Frith and Frith, 2006). The reward-motivation
system comprises the striatum (nucleus accumbens, caudate,
and putamen), amygdala, ventral tegmental area, orbitofrontal
cortex, ventromedial prefrontal cortex, and anterior cingulate
cortex (ACC). The existence of convergent projections from
the cortex to the striatum, along with hippocampal and
amygdala-striatal projections, places the striatum as a central
entry port for processing emotional/motivational information
supporting human attachment (Haber and Knutson, 2010;
Robinson et al., 2012; Pauli et al., 2016). The reward-motivation
system employs DA and oxytocin rich pathways (Schultz,
2000; Berridge et al., 2009; Haber and Knutson, 2010) and
supports multiple attachment-related motivational behaviors,
such as social orienting, social seeking, and maintaining contact
(Acevedo et al., 2012; Chevallier et al., 2012). Attachments have
an intrinsic motivational value that combine immediate hedonic
responses with approach motivation, goal-directed behavior, and
learning (Berridge and Robinson, 1998).

The embodied simulation/empathy network includes the
insula, ACC, inferior frontal gyrus, inferior parietal lobule,
and supplementary motor area. Embodied simulation is an
ancient evolutionary mechanism essential to grounding a
‘shared world’ in the brain and underpins the human capacity
to build and maintain attachments (Craig, 2009; Gallese,
2014). Finally, the formation and maintenance of attachment
bonds also rely on higher-order mentalizing processes that
involve complex top-down inferences (Frith and Frith,
2006; Van Overwalle, 2009). Mentalizing processes underpin
attachment and reinforce attachment formation by building
on the individual’s ability to appreciate multiple perspectives,
understand others’ goals and motives, and keep in mind their
values and concerns (Ciaramidaro et al., 2014; Hari et al., 2015).
The mentalizing system consists of frontotemporal–parietal
structures, particularly the superior temporal sulcus, posterior
cingulated cortex, temporoparietal junction, temporal pole, and
medial prefrontal cortex (Feldman, 2017).

To the best of our knowledge, this is the first study that
seeks to investigate if infant genetic susceptibility interacts with
the quality of parental caregiving in predicting attachment
patterns using observational measures. This understanding could
offer empirical evidence of infants’ physiological responsivity
to positive (and negative) parental caregiving (Barth et al.,
2020). We propose utilizing the innovative approach of ePRS
to determine if parental caregiving quality (i.e., sensitivity,
unresponsiveness, and controlling) interacts with children’s
ePRS for the prefrontal cortex, striatum, and hippocampus
CNR1 gene networks in predicting the probability of secure
and/or disorganized attachment. Previous studies examining
various polymorphic variants, including CNR1, in relation to
children’s behavior have suggested that they have the potential
to interact with environmental influences in a differentially
susceptible manner (Young et al., 2002; Letourneau et al.,
2019). Due to the activation of the neurobiological systems
associated with the ECS that underpin affiliation, reward, stress

management, responsiveness to the environment, and mood
(Lupica et al., 2004; Ranganathan and D’Souza, 2006; Hill et al.,
2009; Zuurman et al., 2009; Zanettini et al., 2011; Feldman, 2017),
and thus potential to relate to attachment pattern formation
in infancy (Berridge and Robinson, 1998; Acevedo et al., 2012;
Chevallier et al., 2012), we chose this specific gene (CNR1)
and tissue-specific networks for study. We focused on the
prefrontal cortex due to its association with cognitive, emotional
functions, impulse control, and adaptive behaviors (Morecraft
and Yeterian, 2002; Bechara and Van Der Linden, 2005), and
the striatum for its involvement in the reward motivation system
and potential to relate to attachment formation in infancy
specifically (Feldman, 2017). Convergent projections from the
cortex to the striatum, along with hippocampal and amygdala-
striatal projections, places the striatum as a central entry port
for processing emotional/motivational information supporting
human attachments (Haber and Knutson, 2010; Robinson et al.,
2012; Pauli et al., 2016; Feldman, 2017). Finally, as part of the
limbic system, the hippocampus was chosen for its spatial and
emotional memory involvement. The hippocampus plays an
essential role in social memory and consolidating declarative or
explicit memories of facts or events that enable conscious recall
from long-term memory (Campbell and Macqueen, 2004). The
ability to recognize and memorize familiar conspecifics (social
memory) is a critical aspect of social interactions in animals
(McGraw and Young, 2010; Okuyama et al., 2014, 2016). As the
hippocampus develops, the infant can recognize and remember
their caregiver and begin to feel a sense of pleasure with them
during engaging interactions (Chambers, 2017).

We hypothesize that within the three selected brain regions
(i.e., prefrontal cortex, striatum, and hippocampus): (1) higher
maternal sensitivity will interact with ePRS for the CNR1
gene networks in predicting a higher probability of secure
attachment and reduced probability of disorganization, (2)
higher maternal controlling will interact with ePRS for
CNR1 gene networks in predicting a reduced probability of
secure attachment and higher probability of disorganization,
and (3) higher maternal unresponsiveness will interact with
ePRS for CNR1 gene networks in predicting a reduced
probability of secure attachment and higher probability of
disorganization.

MATERIALS AND METHODS

This secondary analysis employs data from the Fetal
Programming Study (Giesbrecht et al., 2017), a sub-study
derived from the larger Alberta Pregnancy Outcomes and
Nutrition (APrON) longitudinal cohort study (Kaplan et al.,
2014), which ended enrollment in 2012. The Fetal Programming
Study aimed to examine biomarkers of maternal stress during
pregnancy and collect data on parent–infant interaction quality
and attachment (Kaplan et al., 2014; Giesbrecht et al., 2017;
Letourneau et al., 2017). Ethics approval was obtained from the
Conjoint Health Research Board at the University of Calgary
in Alberta, Canada. All participants in the study completed
a process of informed consent prior to participating. For this
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project’s scope, relevant data were collected at study visits during
pregnancy and 3, 6, and 22 months postpartum.

Participants and Recruitment
Recruitment of 294 pregnant women into the Fetal Programming
study took place between 2011 and 2012 in a large western
Canadian city. Expectant mothers were recruited through media
advertisements and maternity, ultrasound, family medicine, and
obstetric clinics (Kaplan et al., 2014). To be eligible at enrollment,
mothers: (1) were less than 22 weeks pregnant, (2) were
16 years of age or older, (3) were pregnant with a singleton, (4)
reported abstaining from alcohol and tobacco during pregnancy,
(5) reported not receiving a glucocorticoid medication during
pregnancy, and (6) reported no known fetal complications.
Mothers were excluded if they could not answer questions in
English or planned to move out of the region during the study’s
timeframe (Kaplan et al., 2014). Of the 294 recruited participants
in the Fetal Programming Study, 142 maternal infant-pairs
provided an infant Deoxyribonucleic Acid (DNA) sample in
the form of a buccal swab or blood sample with sufficient
quantity to calculate ePRS and completed all assessments of
maternal-infant relationship quality and attachment patterns
(Thomas et al., 2017).

Procedures and Measures
Data were collected on mothers’ demographic characteristics
at enrollment and infant demographic characteristics at birth.
Additional data were collected during pregnancy and postpartum
on depression and social support. Blood was drawn, or
buccal cells were collected from children at 3 months of age.
Observational assessments of maternal-infant interaction quality
(predictor) were conducted at 6 months of age and infant
attachment pattern (outcome) at 22 months.

Predictors
To measure parental caregiving quality, we employed the Child
Adult Relationship Experiment (CARE)-Index (Crittenden,
2010). It is valid with infants from birth up to 15 months
(Crittenden and Bonvillian, 1984; Crittenden and DiLalla, 1988;
Ward and Carlson, 1995; Leadbeater et al., 1996; Leventhal
et al., 2004), and inter-rater reliability values range between
r = 0.73 and 0.95 (Leventhal et al., 2004; Azar et al., 2007).
When the infants were 6 months of age, a 5-min observational
procedure was carried out by videotaping the mother–infant
pairs engaging in play with age-appropriate toys. Seven aspects
of interaction behavior are assessed, including facial expression,
verbal expression, positional and body contact, affection, turn-
taking, control, and activity choice. Total scores for parental
sensitivity, controlling, and unresponsiveness are derived,
ranging from 0–14 (Crittenden, 2010). Author Letourneau is a
reliable CARE-Index coder and supervised the administration
and blinded data coding. Trained, independent designates coded
video recordings at Crittenden’s laboratory, who achieved a 94.4%
inter-rater agreement on the three observable constructs. For
each of the CARE-Index subscales (i.e., sensitivity, controlling,
and unresponsiveness), three scoring category groups were
created, including: “low” which included maternal-child dyads
that scored less than one standard deviation below the calculated

mean; “mean,” which included maternal-child dyads that scored
within one standard deviation above or below the calculated
mean; and “high” which included maternal-child dyads that
scored more than one standard deviation above the calculated
mean. These categories enabled data in graphs and figures to be
interpreted more readily.

To collect DNA for analysis, blood was drawn from infants
at a study visit at 3 months of age. All samples were drawn
by a certified phlebotomist using either a butterfly needle
or a 25-gauge 3/4 inch infant needle. The blood samples
were processed within 6 h of collection at the affiliated
hospital genetics laboratory. This process involved spinning
the vacutainer at 3,000 rotations per minute for 15 min to
separate the plasma, buffy coat (i.e., leukocytes and platelets),
and erythrocytes. The buffy coat was extracted using a pipette
from the collection container, placed into a microcentrifuge
tube, and stored at −80◦C for DNA extraction at a later
date. Buccal epithelial cells (BEC) were also collected from
infants if their blood draw yield was low or unobtainable.
This was done by rubbing a sterile cytology brush up and
down the infant’s entire cheek ten times on two different swabs
to ensure an adequate sample was obtained. The BEC and
processed blood leukocytes were kept in short-term storage at
−80◦C before DNA extraction. DNA extraction was done by
cell lysis, followed by purification using the Gentra Puregene
method (Qiagen, Venlo, Limburg, Netherlands). The samples
were processed for DNA purification using the Autopure method
(Qiagen, Venlo, Limburg, Netherlands) and processed further
using the cell lysate program. Samples were left open to air
allowing for evaporation of excess ethanol, and low-TE buffer
was added to the tubes. After DNA extraction, the isolated
DNA samples were stored at 4◦C at the affiliated hospital
genetics laboratory.

The genetic data were extracted using Illumina
HumanCoreExome BeadChipVersion 1 and subjected to
quality control (QC) procedure using PLINK 1.9 (Chang et al.,
2015). SNPs with missing call rate > 5%, minor allele frequency
(MAF) < 5%, or violation of Hardy-Weinberg equilibrium
(HWE) with p-value < 1e-30, as well as samples with missing call
rate > 5%, outliers on heterozygosity or sex mismatches were
removed. This final data set included 179 subjects and 289,296
genotyped SNPs. Then we utilized the Sanger Imputation
Service for imputation. After the post-imputation QC and the
imputation accuracy filter (INFO-score) > 0.80, the final data set
included 23,752,992 SNPs.

To describe the population stratification, we performed
principal component analysis using SMARTPCA (Patterson et al.,
2006) on this pruned dataset of genotyped SNPs (with r2 < 0.20,
sliding window of 50 and an increment of 5 SNPs).

The ePRS was created considering genes co-expressed with
the Cannabinoid Receptor (ePRS-CNR1) in the prefrontal cortex
(see Figure 1), striatum (see Figure 2), and hippocampus (see
Figure 3) according to the protocol previously described by
Silveira et al. (2017) and Hari Dass et al. (2019). In summary, the
genetic score was created using (a) Genenetwork1, (b) Brainspan2,

1http://genenetwork.org
2http://www.brainspan.org/rnaseq/search/index.html
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FIGURE 1 | Prefrontal CNR1 gene network using GeneMANIA. Black diamonds indicate query genes, whereas gray diamonds indicate related genes added by
GeneMANIA. GeneMANIA converts mRNA expression data from Gene Expression Omnibus (GEO) to functional association networks, connecting co-expressed
genes through purple lines. Node sizes represent gene scores, reflecting how often paths that start at a given gene node end up in one of the query genes.

and (c) GTEx3. In (a), we identified the transcriptional co-
expression profiles of CNR1 (4,704 genes co-expressed with
CNR1 in mice prefrontal cortex, 1,717 genes co-expressed
with CNR1 in mice hippocampus, and 86 genes co-expressed
with CNR1 in mice striatum r > 0.5) (GeneNetwork). These
genes were filtered by selecting those that were overexpressed
during fetal/childhood (up to 5 years of age) at 1.5-fold more
than adult gene expression in human postmortem samples
(Brainspan). The final list included 343 genes for the CNR1
prefrontal gene network, 12 genes for the striatal network,
and 175 genes for the hippocampal network. Based on the
functional annotation of these genes in the National Center for
Biotechnology Information, United States National Library of
Medicine4 using GRCh37.p13, we gathered all of the existing
SNPs from these genes present on our data, merged this list with
SNPs that were available on GTEx, and retained the resulting
list of SNPs for linkage disequilibrium clumping (r2, 0.25). The
final lists of SNPs included 8506 independent functional SNPs
for CNR1 prefrontal ePRS, 3446 SNPs for the hippocampal ePRS,
and 434 SNPs for the striatal network. Based on the children’s

3https://www.gtexportal.org/home/
4https://www.ncbi.nlm.nih.gov/variation/view/

genotype data, alleles at a given cis-SNP were weighed by the
estimated effect of the genotype on gene expression (GTEx in
which the effect allele is the alternative allele). Final ePRSs were
obtained by summation over all SNPs accounting for the sign
of correlation coefficient between the genes and CNR1 gene
expression in the different regions. For inclusion in modeling, the
CNR1 ePRS scores were standardized. Enrichment analysis of the
gene networks was done using MetaCore R© (Clarivate Analytics5).
Cytoscape R© software (Shannon, 2003) and GeneMANIA app
(Franz et al., 2018) were used to visualize the gene networks.
The nodes are the elements of a network, and edges are the
connection between these elements, that represent co-expression.
Further, CNR1 ePRSs were then categorized into two groups,
through a median split to characterize children into low or
high ePRS groups.

Outcome
Attachment patterns were measured at a mean age of 22 months
via the Strange Situation Procedure (SSP), the gold standard
assessment for attachment patterns in infancy (Ainsworth et al.,
1978). The coding scale was originally designed for children

5https://portal.genego.com/
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FIGURE 2 | Striatal CNR1 gene network using GeneMANIA. Black circles indicate query genes, whereas gray circles indicate related genes added by GeneMANIA.
Node sizes represent gene scores, reflecting how often paths that start at a given gene node end up in one of the query genes.
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FIGURE 3 | Hippocampal CNR1 gene network using GeneMANIA. Black hexagons indicate query genes, whereas gray hexagons indicate related genes added by
GeneMANIA. Node sizes represent gene scores, reflecting how often paths that start at a given gene node end up in one of the query genes.

between 12 and 20 months of age but is commonly used
up to 24 months (Ainsworth et al., 1978; van IJzendoorn
and Kroonenberg, 1988; Solomon and George, 2016). The SSP
procedure contains eight brief episodes designed to activate
infant’s attachment behaviors by evoking mild levels of stress
in children (e.g., seeking proximity to the parent) through
a series of mother–child separations and reunions between
the infant and mother and interactions between the infant
and a ‘stranger’ (a research confederate), where the child’s
behaviors were observed through a two-way mirror and video-
recorded for coding. A coder (Author Hart) deemed reliable
by Alan Sroufe of the Institute of Child Development at the
University of Minnesota (ABCD Model) and by Marinus van
Ijzendoorn at Cambridge University (Type D) using the Main
and Solomon Coding System, coded all SSP videotapes for

patterns of attachment using standard categories of secure (B),
insecure with subtypes avoidant (A) and resistant (C), and
disorganized (D; Ainsworth et al., 1978; Main and Solomon,
1986). To attain a D code, Main’s coding scheme was applied
(Main and Stadtman, 1981; Main and Solomon, 1990), which
assesses the degree of disorganized behavior in an interpretive
way regarding conflict (e.g., aggressive outbursts) and/or
disruptive behaviors (e.g., immobilized, disoriented, misdirected,
behavior, sudden disordered activities, uninterpretable noises
or movements) during the SSP. An expert coder at the
Institute for Child Development also re-coded a random
15% of recordings. Cohen’s kappa for inter-rater reliability
was 0.73. Due to the relatively small group sample sizes
of insecure category subtypes (A and C) and disorganized
(D), we dichotomized the sample into two groups, which is
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common in published research (Lewis-Morrarty et al., 2015;
Fresno et al., 2018). The dichotomized groups used in the
analyses were comprised of infants classified as secure (B)
versus insecure (A, C, and D) and disorganized (D) versus
organized (A, B, C).

Covariates
Demographic (i.e., maternal age, education, marital status,
household income, country of birth; infant birth weight,
gestational age, and sex) and descriptive (i.e., depression and
social support) variables were considered. Mothers’ perceptions
of the quality of their partners’ social support at 3, 6, and
22 months postnatal were assessed via the Social Support
Effectiveness Questionnaire (SSEQ). The SSEQ is a 35-item
measure that evaluated the type (i.e., emotional/affirmational,
informational, instrumental, and negative) and self-perceived
effectiveness of the support mothers received from their partner
or another support person. Total scores range from 0 to
80, with higher scores indicating more effective support from
partners. The internal consistency for this instrument is strong
(Cronbach’s alpha = 0.87) when used to distinguish levels of social
support for childbearing women (Rini et al., 2006; Stapleton
et al., 2011; Giesbrecht et al., 2017). The Edinburgh Postnatal
Depression Scale (EPDS) was employed at 3, 6, 12, and 22 months
postpartum. On a 10-item self-administered scale, the parent
is asked to select the number next to the response closest to
how they have felt in the past 7 days. For women, the EPDS
has been found to have high sensitivity (83.6%) and specificity
(88.3%) for identifying depressive symptoms and the widely
accepted cut-off of EPDS ≥ 10, indicating at least probable
minor depression (Pop et al., 1992; Matthey et al., 2006). We
attempted to employ latent class analysis for both covariates
to reduce the data collected at multiple time points (three
times for social support, four times for depression). Only the
analysis of social support revealed latent classes, categorized as
high and low support. As no latent classes were identified for
depression, we selected the maximum value on the depression
scale over the four measurement time points and employed that
value in analyses.

Statistical Analyses
First, the sample characteristics were analyzed with descriptive
summaries, including frequencies, means, and standard
deviations as appropriate. Second, univariate logistic regression
associations between sample characteristics and attachment
security/insecurity and disorganization/organization were
examined to identify significant covariates for inclusion in
the modeling that follows. Third, logistic regression modeling
was employed to examine the main effects of the CARE-Index
(sensitivity, controlling, and unresponsiveness) separately (X
variable) using ePRS for CNR1gene networks in the prefrontal
cortex, striatum, and hippocampus (Z variable; Model 2)
and their interaction terms (Model 3), adjusting for principal
components (PCs) for ancestry and sex of the child, along with
any identified covariates above. We fitted each model to the
data by maximum likelihood and ranked the models by their
Akaike Information Criterion (AIC) to control for overfitting

(Akaike, 1973). Further, to aid in visualizing the results, we
computed the unadjusted predicted probability of attachment
pattern for each value of the parental caregiving quality predictors
(CARE-Index sensitivity, controlling, and unresponsiveness)
considering interaction with ePRS categorized into low (−1SD)
and high (+1SD) scores.

Analysis of Differential Susceptibility
An additional step was performed in models with a significant
interaction term to ensure that any observed differential
susceptibility effects were not an artifact of imposing linear
model assumptions on non-linear relationships (Model 4).
Following the recommendations outlined by Roisman et al.
(2012), additional linear regression models, including X2 and
Z∗X2 as predictors, were created to verify that neither of these
two terms were statistically significant. A post hoc analysis
for the interaction terms in model 3 included analysis of

TABLE 1 | Sociodemographic and descriptive characteristics of study
participants.

Variables Frequency Percentages

Maternal age in years [mean (SD)] 31.4 [3.90]

Gestational age at birth in weeks [mean (SD)] 39.34 [1.57]

Birth weight in kilograms [mean (SD)] 3.41 [0.51]

Secure attachment

Yes 68 47.9%

No 74 52.1%

Disorganized attachment

Yes 17 12.0%

No 125 88.0%

Sex of child

Male 72 50.7%

Female 70 49.3%

Household income

Below $70,000 26 18.3%

$70,000 or more 116 81.7%

Marital status

Single 2 1.4%

Married 140 98.6%

Ethnicity

Non-Caucasian 24 16.9%

Caucasian 118 83.1%

Born in Canada

No 30 21.1%

Yes 112 78.9%

Education level

Below degree 43 30.3%

Degree or more 99 69.7%

Social support (latent class)

Class 1 (low social support) 72 50.7%

Class 2 (high social support) 70 49.3%

Depressive symptoms max value (3, 6, 12, and
22 months)

EPDS < 9 102 71.8%

EPDS ≥ 10 40 28.2%
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Proportion of Interaction (PoI; i.e., the proportion of the total
area represented in the interaction plots uniquely attributable
to differential susceptibility) and Proportion Affected (PA; i.e.,
the proportion of the population that is differentially affected
by the moderator–Z variable; Roisman et al., 2012). The regions
of significance (RoS) analyses were conducted using a Web-
based program developed by Fraley6. Further, as per Roisman
et al. (2012), evidence for differential susceptibility can be
confirmed when the RoS analyses are performed to determine
whether the moderator (Z variable) and the outcome variable
are correlated at the low and high ends of the distribution
of the predictor (X variable). Results should be considered
significant only within a certain range of interest, that is
±2SD of the observed predictor variable. Values for the PoI
index should be approximately within 0.40 and 0.60, and for

6http://www.yourpersonality.net/interaction

the PA index should be close to 0.50 (Roisman et al., 2012;
Portella et al., 2020).

RESULTS

Table 1 presents a descriptive analysis of the study variables. The
mean age of mothers was 31.40 (SD = 3.90) years. The majority of
women were married (98.6%), had attained a university degree or
more (69.72%), and had household incomes ≥$70,000 (81.69%).
Males made up approximately half of the sample of children
(50.7%), and most of the mothers were born in Canada (78.9%).
Less than half of children demonstrated a secure (48%) rather
than an insecure attachment pattern (52%). Table 2 presents
the results of the bivariate analyses of associations between
predictors and attachment pattern, revealing that only birth
weight significantly predicts disorganization.

TABLE 2 | Associations between predictors and attachment pattern.

Variables Secure Insecure OR 95% CI Not disorganized Disorganized OR 95% CI

P-value [n (%)] [n (%)] P-value

Maternal age in years
[mean (SD)]

31.69 (3.97) 31.13 (3.8) 1.04 (0.95, 1.13)
p = 0.393

31.43 (3.81) 31.17 (4.66) 0.98 (0.86, 1.12)
p = 0.769

Gestational age at birth 39.41 (1.24) 39.28 (1.8) 1.05 (0.85, 1.29) 39.41 (1.52) 38.87 (1.88) 0.82 (0.62, 1.10)

Birth in weeks [mean (SD)] p = 0.639 p = 0.185

Birth weight in kg [mean
(SD)]

3.48 (0.48) 3.34 (0.54) 1.74 (1.89, 3.36)
p = 0.101

3.45 (0.49) 3.07 (0.57) 0.23 (0.08, 0.65)
p = 0.005

ePRS CNR1 −0.15 (0.90) 0.14 (1.06) 0.74 (0.53, 1.04) −0.07 (0.97) 0.55 (1.08) 1.97 (1.13, 3.43)

p = 0.087 p = 0.017

Maternal sensitivity 5.19 (1.75) 5.33 (2.27) 0.96 (0.69, 1.34) 5.32 (1.89) 5.0 (3.01) 0.65 (0.38, 1.15)

p = 0.806 p = 0.139

Maternal controlling 2.70 (3.68) 2.61 (3.46) 0.97 (0.70, 1.35) 2.52 (3.47) 3.75 (4.02) 1.42 (0.89, 2.25)

p = 0.856 p = 0.139

Maternal unresponsiveness 6.07 (3.45) 6.05 (3.71) 1.05 (0.75, 1.46) 6.14 (3.58) 5.25 (3.49) 0.84 (0.51,1.39)

p = 0.783 p = 0.510

Sex

Male 31 (45.59) 41 (55.41) 1.48 (0.76, 2.87) 64 (51.20) 8 (47.06) 1.16 (0.42, 3.20)

Female 37 (54.41) 33 (44.59) p = 0.243 61 (48.80) 9 (52.94) p = 0.748

Household income

Below $70,000 12 (17.65) 14 (18.92) 1.09 (0.46, 2.55) 21 (16.80) 5 (29.41) 0.48 (0.15, 1.51)

$70,000 or more 56 (82.35) 60 (81.08) p = 0.845 104 (83.20) 12 (70.59) p = 0.207

Born in Canada

No 15 (22.06) 15 (20.27) 0.89 (0.40, 2.01) 25 (20.0) 5 (29.41) 0.59 (0.19, 1.84)

Yes 53 (77.94) 59 (79.73) p = 0.794 100 (80.0) 12 (70.59) p = 0.372

Education level

Below university degree 22 (32.35) 21 (28.38) 0.83 (0.40, 1.69) 38 (30.40) 5 (29.41) 1.03 (0.34, 3.14)

University degree or more 46 (67.65) 53 (71.62) p = 0.607 87 (69.60) 12 (70.59) p = 0.934

Maternal depression (max value)

Not depressed 47 (69.12) 54 (73.97) 1.27 (0.61, 2.64) 93 (73.81) 9 (56.25) 2.19 (0.76, 6.35)

Depressed 21 (30.88) 19 (26.03) P = 0.523 33 (26.19) 7 (43.75) p = 0.148

Social support (latent class)

Low social support 36 (53.73) 36 (48.65) 0.82 (0.42, 1.58) 66 (52.80) 6 (35.29) 2.05 (0.71, 5.89)

High social support 31 (46.27) 38 (51.35) p = 0.547 59 (47.20) 11 (64.71) p = 0.176

Bolded indicates a p value of less than 0.05.
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ePRS CNR1 Prefrontal Cortex
Hypothesis 1. We hypothesized that higher maternal
sensitivity would interact with CNR1 ePRS in the prefrontal
cortex in predicting a higher probability of secure attachment
and reduced probability of disorganization, controlling for
covariates. With respect to the probability of attachment
security or disorganization, logistic regression revealed no
significant associations in any model (results not shown).

Hypothesis 2. We hypothesized that higher maternal
controlling would interact with CNR1 ePRS in the
prefrontal cortex in predicting a reduced probability of
secure attachment and a higher probability of disorganization.
With respect to both attachment security and disorganization,
logistic regression revealed no significant interactions
(results not shown).

Hypothesis 3. We hypothesized that higher maternal
unresponsiveness would interact with CNR1 ePRS in the
prefrontal cortex to predict a reduced probability of secure
attachment and a higher probability of disorganization. With
respect to both attachment security and disorganization,
logistic regression revealed no significant interactions
(results not shown).

ePRS CNR1 Striatum
Hypothesis 1. We hypothesized that higher maternal
sensitivity would interact with CNR1 ePRS in the striatum
in predicting a higher probability of secure attachment
and reduced probability of disorganization, controlling for
covariates. We observed a significant interaction between
striatum CNR1 ePRS and maternal sensitivity in predicting
the probability of attachment security in the fully adjusted
model 3 (see Table 3). This model complied with a differential
susceptibility assessment, given that the crossover point was
within the limits of the X variable (maternal sensitivity) and
indices were near expected values (PoI = 0.67, PA = 0.63). See
Figure 4 for the graphed associations. With respect to the
probability of disorganization, logistic regression revealed no
significant associations in any model (results not shown).

Hypothesis 2. We hypothesized that higher maternal
controlling would interact with CNR1 ePRS in the striatum
in predicting a reduced probability of secure attachment and
a higher probability of disorganization. With respect to both
attachment security and disorganization, logistic regression
revealed no significant interactions (results not shown).

Hypothesis 3. We hypothesized that higher maternal
unresponsiveness would interact with CNR1 ePRS in

TABLE 3 | Associations among maternal sensitivity, striatal gene network for CNR1ePRS, covariates, and secure vs. insecure attachment pattern.

Variables Model 1
Adjusted OR (95% CI)

Model 2
Adjusted OR (95% CI)

Model 3
Adjusted OR (95% CI)

Model 4
Adjusted OR (95% CI)

Maternal sensitivity 0.93 (0.67, 1.31)
p = 0.693

– 0.93 (0.64, 1.34)
p = 0.929

4.8- (0.57, 40.31)
p = 0.148

Maternal sensitivity2 – – – 0.92 (0.83, 1.02)
p = 0.123

Striatal_ePRS – 0.90 (0.64,1.26)
p = 0.542

0.86 (0.59, 1.23)
p = 0.414

1.05 (0.65,1.70)
p = 0.829

Maternal
sensitivity × hippocampal
ePRS

– – 0.64 (0.43, 0.96)
p = 0.031

0.54 (0.32, 0.91)
p = 0.019

Maternal
sensitivity2

× striatal ePRS
– – – 0.71 (0.44, 1.13)

p = 0.152

Female 1.51 (0.77, 2.94)
p = 0.227

0.64 (0.33, 1.25)
p = 0.193

0.59 (0.29, 1.19)
p = 0.144

1.64 (0.81, 3.34)
p = 0.167

PC1 – 0.10 (0.0, 18.51)
p = 0.388

0.10 (0.00, 18.52)
p = 0.387

0.06 (0.00, 12.76)
p = 0.303

PC2 – 165.81 (0.00, 3.15E + 9)
p = 0.410

244.85 (0.00, 5.05E + 9)
p = 0.378

168.38 (0.00, inf)
p = 0.417

PC3 – 0.01 (0.00, 19.42)
p = 0.250

0.01 (0.00, 11.31)
p = 0.191

0.0 (0.00, 6.75)
p = 0.141

AIC 201.07 204.90 203.03 200.39

PoI – – 0.67 –

Crossover point – −0.34 –

PA index – – 0.63 –

CI, confidence interval; OR, odds ratio. PC 1, 2, 3, principal component for ancestry; AIC, Akaike Information Criterion; PoI, proportion of interaction; PA, proportion
affected; inf, very large CI and OR; bold refers to p < 0.05. Logistic regression modeling for main effects of the sensitivity (X variable; model 1) using ePRS for CNR1 gene
networks in the striatum (Z variable; model 2) and their interaction terms (Model 3), adjusting for principal components (PCs) for ancestry and sex of the child. Model fit
statistics (AIC; model) confirmed that Model 3 was optimal. Bolded indicates a p value of less than 0.05.
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FIGURE 4 | Interaction between Striatal Gene Network and Maternal Sensitivity in Predicting Attachment. Shows that higher maternal sensitivity and a low CNR1
ePRS in the striatum predicts a higher probability of secure attachment. Higher maternal sensitivity and a high CNR1 ePRS in the striatum predicts a lower probability
of secure attachment.

the striatum to predict a reduced probability of secure
attachment and a higher probability of disorganization. With
respect to both attachment security and disorganization,
logistic regression revealed no significant interactions
(results not shown).

ePRS CNR1 Hippocampus
Hypothesis 1. We hypothesized that higher maternal
sensitivity would interact with CNR1 ePRS in the
hippocampus in predicting a higher probability of secure
attachment and reduced probability of disorganization,
controlling for covariates. With respect to both attachment
security and disorganization, logistic regression revealed no
significant interactions (results not shown).

Hypothesis 2. We hypothesized that higher maternal
controlling would interact with CNR1 ePRS in the
hippocampus to predict a higher probability of insecure
attachment and a higher probability of disorganization,
controlling for covariates. With respect to the probability of
attachment security (results not shown), logistic regression
revealed no significant associations in any model. However,
we observed a significant interaction between hippocampal
CNR1 ePRS and maternal controlling behavior in predicting
the probability of disorganization in the fully adjusted model

3 (see Table 4). This model did not comply with the criteria
for differential susceptibility, given that the cross over point
was not near the midpoint of X or even within the limits of
the X variable (maternal controlling) and indices were outside
of expected values (PoI = 0.16, PA = 0.22), suggesting that this
interaction is more indicative of diathesis-stress. See Figure 5
for the graphed associations.

Hypothesis 3. We hypothesized that higher maternal
unresponsiveness would interact with CNR1 ePRS in the
hippocampus in predicting a higher probability of insecure
attachment and higher probability of disorganization,
controlling for covariates. With respect to the probability of
attachment security, logistic regression revealed no significant
associations in any model (results not shown). We observed
a significant interaction between hippocampal CNR1 ePRS
and maternal unresponsiveness in predicting the probability
of disorganization in the fully adjusted model 3 (see Table 5).
See Figure 6 for the graphed association. This model did
not comply with the criteria for the differential susceptibility
model, given that the cross over point was not near the
midpoint of X or even within the limits of the X Variable
(maternal unresponsiveness) and indices were outside of
expected values (PoI = 0.73, PA = 0.68), suggesting that this
interaction is more indicative of diathesis–stress.
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Gene Network Analysis
Enrichment analysis demonstrated the prefrontal CNR1 gene
network is enriched for gene ontology terms related to nervous
system development (FDR q = 7.493e-16), regulation of neuron
differentiation (FDR q = 1.958e-13), and neurogenesis (FDR
q = 2.514e-13). The hippocampal network is enriched for gene
ontology terms related to regulation of transcription (FDR
q = 1.757e-21) and regulation of metabolic processes (FDR
q = 1.022e-21). The striatal network is enriched for GO terms
related to transcription initiation (FDR q = 7.619e-9), histone
acetylation (FDR q = 2.124e-5), and the cannabinoid signaling
pathway (FDR q = 4.786e-4).

DISCUSSION

This study set out to analyze if parental caregiving qualities (i.e.,
sensitivity, controlling, and unresponsiveness) interacted with
the ePRS for the CNR1 gene networks in the prefrontal cortex,
striatum, and hippocampus in predicting the probability of secure
or disorganized attachment patterns. We hypothesized that
higher sensitivity, lower controlling, and lower unresponsiveness
would interact with ePRS for CNR1 in these three brain regions in
predicting a higher probability of secure attachment and reduced

probability of disorganization. Results for the prefrontal cortex
failed to reject the null hypotheses for interaction effects between
sensitivity, unresponsiveness, and controlling with CNR1 ePRS
on either security of attachment or disorganization. Within the
striatum, we observed a significant interaction between maternal
sensitivity and CNR1 ePRS in predicting attachment security.
We observed that higher maternal sensitivity and a low CNR1
ePRS in the striatum predicted a higher probability of secure
attachment. The opposite is true for high CNR1 ePRS; higher
maternal sensitivity and a high CNR1 ePRS in the striatum
predicts a lower probability of secure attachment. Within the
hippocampus, we observed a significant interaction between
both unresponsiveness and controlling with the CNR1 ePRS
in predicting disorganization. Higher maternal controlling and
a higher CNR1 ePRS in the hippocampus predicted a lower
probability of disorganization, and higher maternal controlling
with a lower CNR1 ePRS predicted a higher probability
of disorganization. Finally, we observed that high maternal
unresponsiveness coupled with a low CNR1 ePRS in the
hippocampus predicted a lower probability of disorganization
and higher maternal unresponsiveness with a high CNR1 ePRS
predicted a higher probability of disorganization.

In summary, low CNR1 ePRS in the striatum, a region of
the brain involved in the reward motivation system, predicted

TABLE 4 | Associations among maternal controlling, hippocampal gene network for ePRS, covariates, and disorganized versus organized attachment pattern.

Variables Model 1
Adjusted OR (95% CI)

Model 2
Adjusted OR (95% CI)

Model 3
Adjusted OR (95% CI)

Model 4
Adjusted OR (95% CI)

Maternal controlling 1.35 (0.83, 2.21)
p = 0.221

- 1.58 (0.89,2.81)
p = 0.112

1.13 (0.61, 2.11)
p = 0.691

Maternal controlling2 1.0 (0.94, 1.06)
p = 0.973

Hippocampal ePRS – 1.44 (0.79, 2.59)
p = 0.229

1.79 (0.92, 347)
p = 0.083

1.21 (0.45, 3.21)
p = 0.700

Maternal
controlling × hippocampal
ePRS

– – 0.47 (0.25, 0.89)
p = 0.021

0.29 (0.10., 0.86)
p = 0.026

Maternal
Controlling2

× Hippocampal
ePRS

– – – 1.65 (0.67, 4.08)
p = 0.270

Female 1.14 (0.39, 3.30)
p = 0.804

1.23 (0.40, 3.73)
p = 0.715

0.92 (0.28, 2.95)
p = 0.883

1.03 (0.31, 3.38)
p = 0.962

Birth weight (kgs) 0.25 (0.09, 0.70)
p = 0.008

0.24 (0.08, 0.77)
p = 0.016

0.20 (0.06, 0.72)
p = 0.014

0.22 (0.06, 0.77)
p = 0.018

PC1 – 0.04 (0.00, 149.96)
p = 0.436

1.05 (0.00, 224.54)
p = 0.438

0.02 (0.00, 184.59)
p = 0.401

PC2 – Inf (0.06, inf)
p = 0.109

Inf (0.72, inf)
p = 0.05

Inf (2.17, inf)
p = 0.039

PC3 – 2.14 (0.01, inf)
p = 0.844

1.05 (0.00, inf)
p = 0.991

1.19 (0.00, inf)
p = 0.963

AIC 102.28 104.63 101.15 103.85

PoI – – 0.16 –

Crossover point – – 0.78 –

PA index – – 0.22 –

CI, confidence interval; OR, odds ratio. PC 1, 2, 3, principal component for ancestry; AIC, Akaike Information Criterion; PoI, proportion of interaction; PA, proportion
affected; inf, very large CI and OR; bold refers to p < 0.05. Logistic regression modeling for main effects of the controlling (X variable; Model 1) using ePRS for CNR1
gene networks in the hippocampus (Z variable; Model 2) and their interaction terms (Model 3), adjusting for principal components (PCs) for ancestry and sex of the child.
Model fit statistics (AIC) confirmed that Model 3 was optimal. Bolded indicates a p value of less than 0.05.
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FIGURE 5 | Interaction between Hippocampal Gene Network and Maternal Controlling in Disorganized Attachment. Shows that higher maternal controlling and a
high CNR1 ePRS in the hippocampus predicts a lower probability of disorganization. Higher maternal controlling and a low CNR1 ePRS in the hippocampus predicts
a higher probability of disorganization.

a greater likelihood of secure attachment in the context of
more optimal parental caregiving (i.e., greater sensitivity).
Within the hippocampus, a region of the brain known for
its involvement in spatial and emotional memory, suboptimal
parental caregiving (i.e., greater degrees of controlling and
unresponsive parental behavior) predicted a decreased likelihood
of disorganized attachment with a high CNR1 ePRS with
respect to maternal controlling and a low CNR1 ePRS
with respect to maternal unresponsiveness. Our findings
offer support for the genetic differential susceptibility to
the quality of maternal sensitivity within the context of
the CNR1 ePRS in the striatum, as suggested by Belsky
(1997), who theorized that children may differ in their
receptiveness to parenting influences. However, in the case of
the significant interactions between hippocampal CNR1 ePRS
and maternal unresponsiveness and controlling in predicting
the probability of disorganization, the analyses carried out to
confirm differential susceptibility were more suggestive of the
diathesis-stress model. The diathesis-stress model suggests that
poor developmental experiences (e.g., low-quality parenting) will
have the greatest impact on the development of individuals
who carry vulnerability factors (e.g., genetic polymorphisms),
which are latent diatheses that result in maladaptation when
“turned on” by poor environmental experiences (Garmezy et al.,
1984; Roisman et al., 2012). These findings are consistent

when examining the role that genetics may play in how
children form attachments, as other studies have observed
that parenting particularly affected children with various
polymorphisms of genes that regulate the DA system (i.e., DAT1
9- and 10-repeat and Dopamine Receptor D4 7-repeat) and
reward sensitivity (Bakermans-Kranenburg et al., 2008; Bosmans
et al., 2020). Our findings further support the notion that
multiple genes may make a child more or less susceptible
to their caregiving environment (Belsky and Beaver, 2011;
Roisman et al., 2012), but in a manner consistent with either
differential susceptibility or diathesis-stress, given the brain
region under study.

Attachment is a relationship between infants and their
caregivers, representing a brain-based biological evolutionary
system promoting infant survival (Ainsworth et al., 1978;
Chisholm, 1996). In attachment pattern formation, activation
is observed among the neurobiological systems underpinning
affiliation, reward, and stress management (Ulmer-Yaniv et al.,
2016). These observations are likely a result of the intrinsic
motivational value that combines the immediate hedonic
responses in developing bonds with approach motivation, goal-
directed behavior, and learning (Berridge and Robinson, 1998).
Our findings related to the CNR1 gene network in the prefrontal
cortex, striatum, and hippocampus corroborates the associations
between the genetic variations within the ECS and attachment
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pattern formations. When primary caregivers/parents provide
a supportive environment, infants develop a sense of security,
making them feel safe, secure, and protected (Bowlby, 1982;
Benoit, 2004; Solomon and George, 2016). In contrast, evidence
suggests that disorganized attachment is predicted by sub-
optimal parenting and can lead to child behavioral and lifespan
mental health problems (Main and Solomon, 1990; Lakatos et al.,
2000, 2002; Sroufe, 2005; Puig et al., 2013).

The CNR1 gene networks within the prefrontal cortex,
striatum, and hippocampus were chosen to be examined
within the context of differential susceptibility, yet findings
also pointed to the diathesis-stress model. CNR1 gene has been
identified through extensive research as having polymorphisms
associated with different observable outcomes (e.g., externalizing
behavior and self-regulation) in response to differences in
parenting/caregiving qualities (Belsky and Pluess, 2009b;
Belsky and Beaver, 2011). In addition, these gene networks
were examined within these brain regions because of the
existence of convergent projections from the cortex to the
striatum, along with hippocampal and amygdala-striatal
projections, that places the striatum as a central entry port for
processing emotional/motivational information in supporting
the development of human attachments (Feldman, 2017). While

several studies have focused on the effects of specific variations of
these genes in relation to behavior and self-regulation (Belsky and
Pluess, 2009b; Belsky and Beaver, 2011; Letourneau et al., 2019),
this is the first study to our knowledge that not only examines
the associations between these genes and attachment patterns
but also utilizes ePRS to predict the probability of disorganized
attachment patterns. Our findings suggest that it is important to
consider both the ePRS and the brain region when looking at a
child’s susceptibility to their caregiving environment and provide
promise for examining these gene networks in other regions
of the brain or other gene networks where a candidate gene
approach has been associated with varying attachment patterns
and differential susceptibility or diathesis-stress [e.g., dopamine
receptor D4 gene (DRD4) and a disorganized attachment pattern;
Lakatos et al., 2000; Bakermans-Kranenburg and van Ijzendoorn,
2016].

Attachment theory provides a framework that explains
the influence of early social experiences on normal and
problematic development (Lakatos et al., 2000). Even in the
case of adopted children who are not biologically related
to their parents, it was found that early mother–infant
interactions and attachment patterns predicted later social-
emotional and cognitive development (Stams et al., 2002).

TABLE 5 | Associations among maternal unresponsiveness, hippocampal gene network for ePRS, covariates, and disorganized versus organized attachment pattern.

Variables Model 1
Adjusted OR (95% CI)

Model 2
Adjusted OR (95% CI)

Model 3
Adjusted OR (95% CI)

Model 4
Adjusted OR (95% CI)

Maternal unresponsiveness 0.88 (0.51, 1.49)
p = 0.629

– 0.69 (0.36, 1.32)
p = 0.261

4.45 (0.41, 47.88)
p = 0.218

Maternal unresponsiveness2 – – – 0.94 (0.88, 1.01)
p = 0.088

Hippocampal ePRS – 1.44 (0.79, 2.59)
p = 0.229

1.57 (0.81, 3.03)
p = 0.182

1.17 (0.51, 2.68)
p = 0.700

Maternal
unresponsiveness × hippocampal
ePRS

– – 2.56 (1.29, 5.08)
p = 0.007

4.36 (1.78, 10.64)
p = 0.001

Maternal
unresponsiveness2

× hippocampal
ePRS

– – – 2.08 (0.95,4.52)
p = 0.065

Female 1.12 (0.39, 3.19)
p = 0.843

1.23 (0.40, 3.73)
p = 0.715

0.96 (0.30, 3.08)
p = 0.949

0.98 (0.28, 3.40)
p = 0.983

Birth weight (kgs) 0.24 (0.08, 0.67)
p = 0.006

0.24 (0.08, 0.77)
p = 0.016

0.16 (0.04, 0.61)
p = 0.007

0.13 (0.03, 0.53)
p = 0.004

PC1 – 0.04 (0.00, 149.96)
p = 0.436

0.05 (0.00, 376.37)
p = 0.509

(0.00, 196.55)
p = 0.378

PC2 – Inf (0.06, inf)
p = 0.109

Inf (1.99, inf)
p = 0.119

Inf (361.76, inf)
p = 0.010

PC3 – 2.14 (0.01, inf)
p = 0.844

0.74 (0.001, 2.14 E + 7)
p = 0.940

0.05 (0.00, 356.35)
p = 0.519

AIC 103.50 104.64 99.71 98.04

PoI – – 0.73 –

Crossover point – – −0.48 –

PA index – – −0.68 –

CI, confidence interval; OR, odds ratio. PC 1, 2, 3, principal component for ancestry; AIC, Akaike Information Criterion; PoI, proportion of interaction; PA, proportion
affected; inf, very large CI and OR; bold refers to p < 0.05. Logistic regression modeling for main effects of the unresponsiveness (X variable; Model 1) using ePRS for
CNR1 gene networks in the hippocampus (Z variable; Model 2) and their interaction terms (Model 3), adjusting for principal components (PCs) for ancestry and sex of the
child. Model fit statistics (AIC) confirmed that Model 3 was optimal. Bolded indicates a p value of less than 0.05.
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FIGURE 6 | Interaction between Hippocampal Gene Network and Maternal Unresponsiveness in Disorganized Attachment. Shows that high maternal
unresponsiveness and a low CNR1 ePRS in the hippocampus predict a lower probability of disorganization. Higher maternal unresponsiveness and a high CNR1
ePRS in the hippocampus predict a higher probability of disorganization.

Disorganized infant-parent attachment has become an area of
significant interest to researchers and clinicians due to its clear
associations with lifespan developmental and psychological
disorders (Newman et al., 2015). We have demonstrated
that variations among the CNR1 gene networks in the
various brain regions (i.e., prefrontal cortex, striatum, and
hippocampus) demonstrated different findings in predicting
secure and disorganized attachment (De Wolff and van
Ijzendoorn, 1997; van Ijzendoorn et al., 1999; Madigan et al.,
2006; Crittenden, 2010; Cyr et al., 2010; Leerkes, 2011; Bailey
et al., 2017). Understanding genetic factors that may affect
the security of an infant’s attachment with the mother may
help identify those at risk for attachment disorganization
by adding predictive possibility (Bakermans-Kranenburg
and van Ijzendoorn, 2007). Failure to consider a child’s
genotype and differential susceptibility (or diathesis-stress)
to experiences (e.g., caregiver sensitivity, responsiveness,
and controlling) may pose a barrier to understanding the
broader set of predictors of secure attachment pattern
and undermine interventions aimed at changing a child’s
socioenvironmental exposures.

Limitations and Strengths
This study has many strengths, including the prospective design
and observational assessments of maternal-child relationship
quality (i.e., sensitivity) and attachment patterns; however,
there are several limitations to note. First, the sample that we
employed for this secondary data analysis is highly educated
(69.72% of mothers having a university degree) as compared
with the provincial (28.2%) and national (28.5%) averages,
which may limit generalizability (Letourneau et al., 2019;
Statistics Canada, 2020). Further, the majority of women were
married (98.6%) and had household income ≥$70,000 (81.69%).
Finally, parity or the presence of siblings for each child
was not factored into the analysis, potentially affecting the
maternal perception of infant cues, thereby affecting maternal
sensitivity (Rutherford et al., 2017). In addition, only “maternal”
caregiving quality was assessed; however, rather than seeking
to reinforce gender stereotypes, we recognize that primary
caregivers may be mothers, fathers, or others. We also recognize
that in Canada (Findlay and Kohen, 2012) and in our study
(Kaplan et al., 2014), the majority of primary caregivers of
infants are mothers.
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CONCLUSION

To the best of our knowledge, this is the first study that
examines the interaction between maternal parental caregiving
qualities (i.e., sensitivity, controlling, and unresponsiveness) and
children’s ePRS for the CNR1 gene networks in the prefrontal
cortex, striatum, and hippocampus in predicting the probability
of secure and disorganized attachment patterns in young
children. This research provides a foundation to explore genetic
susceptibilities to varying caregiving environments in predicting
attachment patterns and other outcomes. This research also
provides a starting point for exploring other gene networks
and influences on children’s differential susceptibility to their
environments. Promoting secure attachment patterns is a public
health goal, as it is associated with lifelong health and a
reduced likelihood of all-cause morbidity, chronic inflammation,
coronary artery disease, and an array of mental disorders.
Further research in the area may allow practitioners to target
interventions to support those most at risk for insecure or
disorganized attachment, thereby reducing the risk for negative
life-long sequelae.
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Background: Few studies have explored the complex gene-by-prenatal environment-
by-early postnatal environment interactions that underlie the development of attentional
competence. Here, we examined if variation in dopamine-related genes interacts with
prenatal adversity to influence toddler attentional competence and whether this influence
is buffered by early positive maternal behavior.

Methods: From the Maternal Adversity, Vulnerability and Neurodevelopment cohort,
134 participants (197 when imputing missing data) had information on prenatal
adversity (prenatal stressful life events, prenatal maternal depressive symptoms, and
birth weight), five dopamine-related genes (DAT1, DRD4, DRD2, COMT, BDNF ),
observed maternal parenting behavior at 6 months and parent-rated toddler attentional
competence at 18 and 24 months. The Latent Environmental and Genetic Interaction
(LEGIT) approach was used to examine genes-by-prenatal environment-by-postnatal
environment interactions while controlling for sociodemographic factors and postnatal
depression.

Results: Our hypothesis of a three-way interaction between prenatal adversity,
dopamine-related genes, and early maternal parenting behavior was not confirmed.
However, consistent two-way interactions emerged between prenatal adversity and
dopamine-related genes; prenatal adversity and maternal parenting behavior, and
dopamine-related genes and maternal parenting behavior in relation to toddler attentional
competence. Significant interaction effects were driven by the DAT1, COMT, and
BDNF genotypes; prenatal stressful life events; maternal sensitivity, tactile stimulation,
vocalization, and infant-related activities.
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Conclusions: Multiple dopamine-related genes affected toddler attentional competence
and they did so in interaction with prenatal adversity and the early rearing environment,
separately. Effects were already visible in young children. Several aspects of early
maternal parenting have been identified as potential targets for intervention.

Keywords: attention, child, prenatal adversity, dopamine, genes, maternal sensitivity to infant cues, parenting
(MeSH)

INTRODUCTION

There is increasing evidence that an adverse prenatal
environment contributes to the risk of developing attention-
deficit/hyperactivity disorder (ADHD; Banerjee et al., 2007;
Thapar and Rutter, 2009). The most commonly studied prenatal
risks of ADHD are maternal lifestyle factors, such as smoking,
alcohol consumption, substance use, and severe stress/anxiety
experienced during pregnancy (Fleming et al., 1988; Banerjee
et al., 2007; Li et al., 2010). Further, low birth weight and
prematurity at birth—as indicators of a suboptimal intrauterine
environment—have also been implicated in the risk for ADHD,
particularly inattention symptoms (Bhutta et al., 2002; Strang-
Karlsson et al., 2008). However, much less is known about
the role of prenatal maternal depression in the development
of offspring ADHD symptoms. This is important given that
approximately 40% of mothers of children with ADHD have
a history of major depression, making them 2–3 times more
likely to be depressed than women in the general population
(Chronis-Tuscano et al., 2003; Kessler et al., 2006). Furthermore,
prenatal depression is consistently linked to shorter gestation
and lower birth weight, which are both common risk factors of
ADHD (Field et al., 2006; Field, 2011). The available literature
suggests that maternal depressive symptoms during pregnancy
can negatively shape the offspring’s attention system and
increase the risk of comorbidity in those children who already
have a diagnosis of ADHD (Chronis-Tuscano et al., 2010;
Van Batenburg Eddes et al., 2013). Based on the above, in the
present study we capture prenatal adversity in three important
ways: through the number of stressful life events experienced
by women during pregnancy, maternal depressive symptoms
during pregnancy, and birth weight of children.

The considerable variability in neurodevelopmental
outcomes among children who experience prenatal adversity
indicates potential differences in children’s vulnerability
to the environment. Previous research has highlighted the
importance of genetic factors in conferring such vulnerability
(Caspi et al., 2002; Rutter, 2006; Laucht et al., 2007). Indeed,
gene-environment interactions (G × E) are increasingly
recognized as important contributors to the emergence of
psychopathology (Caspi and Moffitt, 2006; Rutter, 2006;
Belsky et al., 2009). Yet, there have been few published studies
examining the contribution of G × E effects to ADHD (Thapar
et al., 2007; Nigg, 2012) and even fewer that have specifically
focused on the prenatal environment (for a review, see Franke
and Buitelaar, 2018). Not surprisingly, these studies have mainly
focused on dopaminergic genes, as both pharmacological
and genetic research suggest a critical role for dopamine in

attentional, motivational, and exploratory neurobehavioral
processes (Faraone et al., 2005; Thapar et al., 2007). Regarding
attention in particular, animal studies have suggested a direct link
between selective lesions of dopaminergic neurons and altered
attentional processes in rodents and primates (Nieoullon, 2002;
Thiele and Bellgrove, 2018). Based on these studies, the specific
attention components that were most affected included selective
attention, spatial attention, detection of novelty, and sustained
attention (for a review, see Nieoullon, 2002). Notably, the exact
result of lesioning dopaminergic neurons in different brain
regions depended on the nature of the brain area concerned.
As dopamine is mainly present in the frontal cortex and basal
ganglia in the brain, it is hypothesized that attention deficits
might confer alterations in these subcortical brain structures
closely linked to cortical regions rather than simple alterations in
dopaminergic transmission (Nieoullon, 2002). Thus, behavioral
changes following cortical dopamine depletion have to be
interpreted in light of any associated changes in dopaminergic
transmission at a subcortical level (Nieoullon, 2002). For
instance, methylphenidate, a drug that is most commonly
used in the treatment of ADHD by modulating dopaminergic
transmission, was found to equally increase frontal cortical
activity in both healthy controls and children with ADHD
during a response inhibition task, whereas it increased striatal
activity only in children with ADHD and decreased it in healthy
controls (Vaidya et al., 1998). More directly relevant to our
study, genetic variation linked to dopaminergic transmission in
both the frontal cortex and related subcortical regions impacted
infant attention at age 9 months (Holmboe et al., 2010).

Dopaminergic Genes by Prenatal Adversity
Interaction Effects on ADHD
The dopamine transporter DAT1 gene has been a prime
candidate for research in this context. The gene codes for a
solute carrier protein responsible for the reuptake of dopamine
from the synaptic cleft to the presynaptic neuron. This protein
is densely present in the striatum and nucleus accumbens and
constitutes the primary mechanism of dopamine regulation
in these brain regions (Ciliax et al., 1999). The most widely
studiedDAT1 polymorphism is a variable number tandem repeat
(VNTR) sequence in the 3′ untranslated region that is 40 base
pairs (bp) in length (Vandenbergh et al., 1992). The most
common alleles are the 10 (480-bp; 71.9%) and 9 (440-bp; 23.4%)
repeats (Doucette Stamm et al., 1995). This polymorphism is
believed to be functional, influencing dopamine transporter
availability and binding potential (Gizer et al., 2009) and is
associated with sustained attention (Loo et al., 2003). DAT1
has been found to interact with prenatal maternal smoking
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(Brookes et al., 2006; Neuman et al., 2007), alcohol consumption
(Kahn et al., 2003), and family adversity (Laucht et al., 2007)
to increase the risk for ADHD. Some studies reported that the
DAT1-prenatal maternal smoking interactions were significant
only in boys homozygous for the 10-repeat allele and only for
hyperactive-impulsive symptoms (Altink et al., 2008; Becker
et al., 2008), while another, smaller study found no interaction
effect for DAT1 and prenatal maternal smoking on ADHD
(Langley et al., 2008).

Another popular candidate for G× E studies on ADHD is the
dopamine receptor D4 gene (DRD4), specifically a 48bp VNTR
on exon 3. DRD4 is predominantly expressed in the frontal
lobe, such as the orbitofrontal cortex and anterior cingulate
(Floresco and Maric, 2007). The most common alleles of this
polymorphism are the 2-, 4-, and 7-repeat alleles, although
this varies significantly across ethnic groups (Chang et al.,
1996). This VNTR is likely functional in that the 7-repeat allele
slightly differs from the 2- and 4-repeat alleles in secondary
messenger activity and in response to clozapine, an antipsychotic
medication (Asghari et al., 1994, 1995). The VNTR has further
been found to influence sustained attention and information
processing from an early age (Auerbach et al., 2001; Fan et al.,
2003). In terms of its interaction with the environment, results
suggest that the 7-repeat allele of DRD4 exacerbates the effects
of prenatal adversity, as reflected in increased risk for ADHD
and more severe ADHD symptoms (Grizenko et al., 2012). One
study found similar relations but only in the case of teacher-
reported inattention symptoms rather than parent-reported
ADHD symptoms (Altink et al., 2008). Another, smaller study
reported a lack of significant G × E between DRD4 and any
measures of prenatal adversity (i.e., maternal smoking, alcohol
use, or child’s birth weight (Langley et al., 2008).

An additional dopaminergic gene that has been examined in
relation to environmental adversity and ADHD is the dopamine
receptor D2 (DRD2) gene (Ficks and Waldman, 2009). DRD2 is
expressed in the basal ganglia and prefrontal cortex and is key
in regulating the mesolimbic reward system (Usiello et al., 2000).
Studies of DRD2 have tended to focus on a TaqIA restriction site
(rs1800497), downstream from DRD2 located in an exon of a
neighboring gene, ANKK1 (Neville et al., 2004; Grizenko et al.,
2012). Nonetheless, this polymorphism is known to influence
DRD2 expression levels (Gluskin and Mickey, 2016). DRD2 has
been implicated in affecting selective attention in patients with
schizophrenia (Nkam et al., 2017). In terms of G× E interactions
involving DRD2, ADHD was more prevalent among children
whose mothers experienced less stable marital environments
(i.e., having had no or multiple marriages) only if they were
homozygous for the TaqI-A2 allele (Waldman, 2007).

Another important gene that has been studied in a
G× E framework in ADHD is the catechol-O-methyltransferase
(COMT), which is involved in the degradation catecholamines,
such as dopamine. COMT has a particularly important role in
the frontal cortex, where it accounts for approximately 50–60%
of the metabolic degradation of dopamine (Karoum et al., 1994).
The gene includes a common functional polymorphism with a
methionine (‘‘met’’) to valine (‘‘val’’) substitution at codon 158.
The met allele is associated with low enzyme activity, while the

val allele is associated with high enzyme activity (Chen et al.,
2004). This polymorphism has been implicated in relation to
distractibility (Holmboe et al., 2010) and attentional control
(Goldberg and Weinberger, 2004; Blasi et al., 2005; Ciampoli
et al., 2017). Regarding its interaction with prenatal adversity
among children with ADHD, one study found that those who
carried the COMT val/val genotype (for rs4680) were more
susceptible to the adverse effects of prenatal risks as indexed
by lower birth weight to develop early-onset antisocial behavior
(Thapar et al., 2005). Furthermore, in a combined analysis of
two large cohorts (ALSPAC and PREDO) there was a robust
interaction effect of child COMT (val/val rs4680) genotype with
maternal prenatal anxiety to predict ADHD symptoms assessed
at multiple time points (O’Donnell et al., 2017).

Finally, significant G × E effects have also been reported for
inattention symptoms involving the brain-derived neurotrophic
factor (BDNF) gene, which, besides being a regulator of
neuronal development and function, plays a role in dopamine
neurotransmission (Guillin et al., 2001; Narita et al., 2003). BDNF
exerts influence on the brain’s mesolimbic and corticolimbic
reward pathways by modulating their response to dopamine
(Guillin et al., 2001). A common polymorphism on the BDNF
gene in which a valine is replaced by a methionine at codon 66
(Val66Met; rs6265) has been shown to influence the intracellular
trafficking and activity-dependent secretion of BDNF in brain
(Chen et al., 2004). The BDNF gene has been associated with
general cognitive performance (Dincheva et al., 2012). Within a
G × E context, Lasky-Su et al. (2007) found that in lower SES
environments children (6–18-year-old) carrying the risk alleles
of rs1013442, rs1387144, or Val66Met was associated with having
more inattention symptoms.

Parent-Child Interactions and Their
Influence on ADHD
Notably, and perhaps more importantly for clinicians, certain
environmental factors have the potential to modify the impact
of prenatal adversity in genetically susceptible children (Thomas
et al., 2015). Parenting, for instance, is a robust environmental
predictor of developmental outcomes in children with ADHD
(Deault, 2010). While positive parenting can protect against
developing comorbidity in children with ADHD—even when
exposed to maternal depression (Chronis-Tuscano et al.,
2007)—negative parenting has been associated with elevated
ADHD symptomatology above and beyond shared genetic effects
(Harold et al., 2013). High levels of negativity in parent-child
interactions or reciprocal coercive communication are common
in families of children with ADHD (Danforth et al., 1991; Pfiffner
et al., 2005; Romirowsky and Chronis-Tuscano, 2014). Sensitive
parenting may be particularly effective at buffering the negative
effects of prenatal adversity on child cognition and behavior
(Laucht et al., 2001; Plamondon et al., 2015; Pickles et al., 2017).
Randomized clinical control trials found that parent training
promoting positive parent-child interactions was effective in
ADHD (Young and Amarasinghe, 2010). Although the exact
mechanisms are currently unknown, there is an indication
that the positive effects of a more sensitive/less intrusive
parenting style on ADHD may be indirect, by supporting
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the development of protective mechanisms, such as inhibitory
control mechanisms in children (Miller et al., 2019). Importantly,
the general recommendation is that for preschool children
showing signs of ADHD parent training should be the first line of
treatment, and medication introduced only in case when parent
training is not effective (Daley et al., 2009; Pelham et al., 2016).
Thus, the literature suggests that parents have a key role in the
development of their children’s attention skills (Gauvain, 2001;
Davis and Williams, 2011). Attentional competencies develop
through dynamic and continuous interactions between the child
and their physical and social surroundings (Vygotsky, 1978;
Landry et al., 2002). In this process, parents initially regulate their
child’s attention through supportive parenting or ‘‘scaffolding’’
until children are able to regulate their own attentional processes
(Conner et al., 1997; Gauvain et al., 2001). Failure to develop
appropriate attention regulation skills in early childhood can
have lasting effects on later development and academic success
(Blair, 2002). Although during the preschool years it may
be challenging to differentiate delayed regulatory skills from
true ADHD, research suggests that, in both cases, parent-child
interactions may be key to minimizing later adverse outcomes
(Davis and Williams, 2011).

Statistical Issues in Modeling
Gene-by-Environment Interaction Effects
To date, most G × E studies on ADHD (and other psychiatric
disorders) have considered a single genetic variant and a single
environmental exposure at a time, which significantly limits the
explanatory value of G × E models for complex phenotypes,
such as ADHD. These G × E models often have very small
effect sizes and low replication rates (Risch et al., 2009; Lee et al.,
2012). One recommended strategy to overcome this limitation
is to simultaneously examine multiple candidate genes affecting
the same biological pathway (e.g., dopaminergic transmission)
as well as multiple relevant environmental factors (Pennington
and Bishop, 2009). In a review, Pennington and Bishop (2009)
suggested computing composite G and E risk scores across
candidate genes and environmental factors and test for G and
E main effects and G × E interactions in one omnibus analysis.
Then, in case of a significant interaction effect, follow-up analyses
should be performed to specify which risk alleles and which
environments contribute to the overall effect. However, until
now there has been a lack of appropriate statistical methodology
to perform such multi-G× E analyses. We recently developed a
method for the analysis of complex interactions betweenmultiple
genes and environments (Jolicoeur-Martineau et al., 2019, 2020).
The Latent Environmental and Genetic InTeraction (LEGIT)
approach can be used to construct complex multi-interaction
models without the need to estimate an additional parameter
for each interaction term, thus improving scalability, especially
with higher order interactions. An important limitation of
previous G × E models is the lack of information concerning
the specific form of the interaction effect (Widaman et al.,
2012). For instance, the diathesis-stress model assumes that the
differences between individuals with and without the ‘‘risk’’
allele of a given genetic variant will manifest only under adverse
circumstances, such that individuals carrying the ‘‘risk’’ allele

are affected negatively, while those without the ‘‘risk’’ allele
remain relatively unaffected by the environment (Belsky et al.,
2009). In comparison, the differential-susceptibility model posits
that individuals carrying the ‘‘risk’’ allele are generally more
sensitive to the effects of the environment than those without the
‘‘risk’’ allele (Belsky, 1997; Boyce and Ellis, 2005). Accordingly,
compared to those with the non-risk allele, individuals with the
‘‘risk’’ allele exhibit poorer outcomes in negative environments,
similar outcomes in average environments, and superior
outcomes in positive environments. The LEGIT approach allows
us to distinguish between these two theoretical frameworks,
which may have important consequences for prevention and
intervention strategies.

Here, we use a rich longitudinal dataset to examine how
dopaminergic candidate genes simultaneously interact with
prenatal adversity, and early parenting to influence toddlers’
attentional competence measured longitudinally at two time
points. We apply LEGIT—with a G × E1 × E2 design to address
this question. Our findings may advance the literature in three
important ways. First, we examine the effect of prenatal adversity
by including a number of well-established measures of prenatal
adversity in one model. Second, we simultaneously consider
the modifying effect of multiple dopamine-related genes known
to affect the developing human attention system. Third, we
complement this by additionally examining important aspects of
the early rearing environment that may buffer the negative effects
of prenatal adversity in genetically susceptible children. We
address these questions using an approach that was specifically
designed to deal with the complexity of simultaneously testing
multiple interaction effects in relation to an outcome. Due to
methodological limitations, few studies to date have attempted
to look at the joint contribution of multiple genetic risk
variants and multiple environmental exposures (both adverse
and protective) to early attention development. This, however,
seriously limits our understanding of complex human behavior,
which is underlined by the interplay of numerous biological and
environmental factors. One novelty of this study is thus the use
of LEGIT that enabled the simultaneous testing of a large number
of G × E interactions by using latent genetic and environmental
features and an alternating optimization algorithm. Another
novelty of our study is the inclusion of both macro- and micro-
level analytic observations of early maternal behavior. Maternal
behaviors included here were analyzed on a second-by-second
level within the context of a 20-min mother-infant interaction.
Given the time- and labor-intensive nature of collecting such
fine-grained data, we are not aware of many G × E studies on
early child attention that have used observational measures of
early parenting, furthermore both at a macro- andmicro-analytic
level.

MATERIALS AND METHODS

Participants
The participants were mother-child dyads from the Maternal
Adversity, Vulnerability and Neurodevelopment (MAVAN)
project, a Canadian community-based prenatal cohort of
590 women and their children in Montreal (Quebec) and
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Hamilton (Ontario). Women were recruited in maternity
hospitals from 2003 to 2009 during their routine ultrasound
examinations. A detailed description of the cohort has been
presented elsewhere (O’Donnell et al., 2014). Informed consent
was obtained at the time of recruitment and at each time
point of data acquisition. Ethics Review Board approval was
obtained from the institution of each study site. Retention
rates for the MAVAN subjects were 97.4% at 6 months, 84.0%
at 18 months, and 80.6% at 36 months. The present study
included 134 mother-child dyads with complete data either at
18 or 24 months of child age. The reduction of sample size
from 577 to 134 participants is explained by the following:
240 participants had missing genotype data (due to partial
funding), 61 participants had missing information on prenatal
adversity; seven participants had missing data regarding early
parenting; 86 participants had missing information on postnatal
maternal depression; 49 participants hadmissing outcome data at
both 18 and 24 months. Thus, the final sample for the complete
case analysis included 134 women and their children.

Measures
Genotyping
Child genotype was obtained from buccal swabs. using the
TaqMan methods on the ABI-7000 for single nucleotide
polymorphism (SNP) markers and ABI-3100 for repeat
polymorphisms. To ensure a clear result, any ambiguous
genotypes were discarded and the subjects were re-genotyped
until the results were unambiguous. Each 20th marker was
re-genotyped to check for error rates (0.5%). For the present
study, we were interested specifically in genes directly or
indirectly related to the dopaminergic system. The five candidate
genes included dopamine receptors DRD2, DRD4, dopamine
transporter DAT1, the catechol-o-methyltransferase (COMT),
and the brain-derived neurotrophic factor (BDNF). DRD2 was
captured using SNP rs1800497 (also known as TaqIA) with A
as the risk allele (Nyman et al., 2007; Moro et al., 2019). COMT
was captured using SNP rs4680 with Met as the risk allele
(Holmboe et al., 2010; Soeiro-De-Souza et al., 2013). BDNF was
captured using SNP rs6265 with Val as the risk allele. These
SNPs were coded as the number of ‘‘risk’’ alleles divided by
two (i.e., 0 for no risk allele, 0.5 for one risk allele, 1 for two
risk alleles). DAT1 was captured using the 40bp VN TR located
in exon 15 coded dichotomously as 1 (10R/10R) and 0 when
9R/9R or 9R/10R (Cornish et al., 2005; Holmboe et al., 2010).
DRD4 was captured using the 48bp (VN TR) polymorphism in
exon 3 coded dichotomously as 1 (6-8R) and 0 (2-5R), as per
Schmidt et al. (2001). Genotype distributions did not deviate
from Hardy-Weinberg equilibrium (p> 0.05).

Prenatal Life Events
An adapted version of the Prenatal Life Events Scale (Lobel, 1997;
Lobel et al., 2000) was used to assess the occurrence of 17 life
events (e.g., being robbed, being involved in a serious accident,
having someone close die) that women may have experienced
during the pregnancy (24–36 weeks). This adapted version did
not include those items from the original version of the scale that
had an especially low frequency of occurrence. For each event

endorsed, participants reported how undesirable or negative the
event was on a scale from 0 (not at all) to 3 (very much). Life
events that were evaluated as strongly undesirable (i.e., score of
2 or 3) were coded as 1, everything else was coded as 0. Scores
were summed to quantify the number of stressful life events.
Total scores ranged from 0 to 17, with higher scores indicating
the presence of more stressful life events during pregnancy. Not
surprisingly, the internal reliability of this scale was low (α = 0.42)
due to the wide range of possibly unrelated life events.

Prenatal Depressive Symptoms
Women rated their depressive symptoms at 24–36 weeks
of pregnancy using the Center for Epidemiologic Studies
Depression Scale (CES-D; Radloff, 1977) The CES-D includes
20 items capturing mood-, appetite- and sleep-related symptoms
in community-based populations. Each item was rated on a scale
from 0 (rarely or none of the time) to 3 (most or all of the time)
and the items were summed. Total scores ranged from 0 to 60,
with higher scores indicating more severe depressive symptoms.
Internal reliability of the CES-D in the present sample was high
(α = 0.92).

Birth Weight
Children’s weight at birth was assessed at the time of delivery (in
grams).

Maternal Sensitivity and Parenting Behaviors
When children were 6 months old, maternal sensitivity and
maternal parenting behaviors were observed during a 20-min
free-play session, which took place in the participant’s home
and was videotaped for coding purposes. We assessed maternal
sensitivity using the Ainsworth Maternal Sensitivity Scales
(Ainsworth et al., 1978). This is a validated gold standard, macro-
analytic-level measure of maternal sensitivity, focusing on four
aspects of early care: sensitivity to infant signals, cooperation vs.
interference with ongoing behavior, psychological and physical
availability, and acceptance vs. rejection of infant’s needs.
Scores ranged from 1 to 9, with higher scores indicating more
highly involved mothers. Mean inter-rater reliability (intra-class
correlation) for the Ainsworth scale ratings was 0.88 (n = 28).
The four scales were very highly correlated (r > 0.94). As such,
we used only the sensitivity scale. Maternal parenting behaviors
were assessed using the Behavioral Evaluation Strategies and
Taxonomies (BEST; Educational Consulting, Inc. Florida, USA; S
and K NorPark Computer Design, Toronto). The BEST consists
of second-by-second micro-analytic-level frequency ratings and
duration measures of maternal and child behaviors (Fleming
et al., 1988). Two trained raters scored the duration and
frequency of specific behaviors. Inter-rater reliabilities (intra-
class correlation) ranged 0.74–0.90 (n = 18). Maternal sensitivity
and BEST behaviors were coded independently, with coders of
one scheme blind to codes on the other. Parental behaviors
included maternal attention towards the child, tactile contact
between mother and child, maternal vocalization, and mother-
child activities. These measures have been used in our past
research (Krpan et al., 2005; Giardino et al., 2008; Wazana
et al., 2015; Graffi et al., 2018). For the purpose of this study,
the duration of the respective maternal behaviors was first
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transformed into percentages of the total duration the mother
spent interacting with her child, which excluded the time spent
feeding, talking to someone else, or where the dyad was obscured.
Percentages were subsequently z-standardized and averaged to
form a score on the following dimensions:

1. Attention: focused (i.e., concentrated) looking at the infant,
unfocused (i.e., unconcentrated) looking at infant or focused
looking at an infant-related object (i.e., joint attention),
‘‘mother and infant are focusing on the same object’’

2. Tactile stimulation: kissing, poking/tickling,
mouthing/raspberries, stroking/patting

3. Vocalization: humming/singing, talking, laughing/smiling
4. Infant-related activities: social games, showing toy, play with a

toy, play without a toy, rocking/jiggling, grooming the infant

Child Attentional Competency
Attentional competency was assessed using the Attention
subscale from the Competence domain of the Infant-
Toddler Social and Emotional Assessment (ITSEA) at 18 and
24 months (Briggs-Gowan and Carter, 1998, 2007). The ITSEA
is a developmentally and clinically sensitive parent-rated
questionnaire of social-emotional problems and competencies in
1–3 year-olds (Briggs-Gowan and Carter, 1998). The Attention
subscale is formed by summing five items assessing attentional
function, such as ‘‘plays with toys for 5 min or more,’’ ‘‘looks
at things for a minute or longer.’’ Internal consistency of the
Attention subscale in the present sample was good (Cronbach’s
alpha = 0.76 at 18 months and 0.74 at 24 months). Scores were
distributed evenly across the range of possible values (0–2) at
both time points, values were higher at 24 months (M = 1.43,
SD = 0.45) than 18 months (M = 1.29, SD = 0.51), with moderate
consistency over time (ICC(3,1) = 0.57, ICC(3,k) = 0.73). Outcome
scores were divided by 2 to rescale them between 0 and 1. Using
a linear model (LM) with a constrained outcome variable is
problematic as model predictions could go beyond the observed
range. Therefore, we used a generalized linear model (GLM)
with a Quasi-binomial family, which ensures that the outcome is
constrained to the range [0, 1] instead of being unconstrained,
such as when using a Gaussian family.

Covariates
Covariates included child sex, maternal age at delivery, and
maternal education (‘‘high school or less,’’ ‘‘some college,
completed college, or some university,’’ and ‘‘university graduate
or more’’). We additionally included a covariate that indicated
whether the child had available data on attentional competency
at 24 months to adjust for the fact that baseline attentional
competency was significantly better at 24 months (β = 0.18,
S = 9,862.5, p< 0.0001). The intercept β0 of the model represents
attentional competency at 18 months, while β0+ β24M together
represents attention competency at 24 months. All continuous
variables were standardized except for maternal age.

Statistical Analysis
Descriptives
Hardy-Weinberg equilibrium of genotype distribution
was tested using exact tests (Engels, 2009). Since most

continuous variables used in this study are non-normally
distributed, we used non-parametric tests to describe the
characteristics of our sample. We used chi-square tests
for categorical-by-categorical, Wilcoxon rank-sum tests
for binary-by-continuous, and Wilcoxon signed-rank
tests for paired comparisons. We examined correlations
between variables used in analyses using Kendall’s tau
coefficients.

Main Analyses
Data were analyzed using the LEGIT R (Jolicoeur-Martineau
et al., 2019) with a repeated measures design to predict
attentional competency at 18 and 24 months. We fitted a 3-way
G × E1 × E2 interaction model where G is a weighted sum
(i.e., latent score) of the five dopamine-related candidate genes
(i.e., DRD2, DRD4, BNDF, COMT, DAT1), E1 is a weighted
sum of our three prenatal adversity variables (i.e., prenatal
maternal stressful life events, prenatal maternal depressive
symptoms, and birth weight), and E2 is a weighted sum of all
early maternal parenting behaviors (i.e., Ainsworth sensitivity,
maternal attention, tactile stimulation, vocalization, and infant-
related activities). A schematic representation of the proposed
three-way interaction model is shown in the Supplementary
Figure 1. Further information on how the latent sum of G,
E1, E2, and their interactions were calculated is provided as
Supplemental Material.

Treatment of Missing Data
Missing information was imputed for participants that had at
least one measure available for each latent score (i.e., G, E1,
and E2), and the outcome variable at either 18 or 24 months
(N = 197). All analyses were performed on both the complete
cases (N = 134) and the imputed dataset (N = 197). Given that
our model included interaction terms, traditional imputation
methods which do not account for non-linearities are bound
to be biased (Seaman et al., 2012). Thus, we used missForest
(Stekhoven and Buhlmann, 2012), which has been shown to
outperform the popular multiple imputation method by chained
equations (mice) with predictive mean matching (pmm; Buuren
and Groothuis-Oudshoorn, 2010). Furthermore, the imputation
accuracy of MissForest has been shown to approach state-
of-the-art modern imputation techniques (Yoon et al., 2018;
Payrovnaziri et al., 2020).

Similar to many complex, non-linear methods, it is not
possible to pool estimates from multiple imputations using
LEGIT. As the signs of the parameters inside the latent scores
may differ randomly (models with the same parameters, but
with different signs can be equivalent), pooling across multiple
LEGIT models would lead to a regression of the parameters
towards zero. Moreover, given the various parameters involved,
it is difficult to know which sign is the correct one. All these can
make pooling highly inconsistent, if not impossible. In addition,
performing variable selection is unfeasible using multiple
imputations. For the above reasons, we used a single imputation
method called missForest. Contrary to other methods, such
as mice, MissForest produces similar imputations when using
different random seeds.
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Variable Selection
To be more parsimonious, we can apply variable selection
to retain only the most important elements in each latent
score (G, E1, E2). Unfortunately, quality-of-fit measures like
the Akaike information criterion (AIC; Akaike, 1998), corrected
Akaike information criterion (AICc; Hurvich and Tsai, 1989),
and Bayesian information criterion (BIC; Schwarz, 1978) are
not defined in GLMs of quasi-binomial family. This means
that we cannot use variable selection with these fit measures.
Consequently, the variable selection was performed in the LM
models, and the retained variables were included in the GLM
models of the quasi-binomial family. Variables selected in the LM
models generally remained significant in the GLM models, and
their relative contribution did not change meaningfully. Variable
selection was performed using ‘‘parallel natural evolutionary
variable selection’’ available within LEGIT. Models with the
lowest AICc value were considered as best fitting the data. Results
from the models both with and without variable selection are
presented.

In-Sample and Out-of-Sample Effect Sizes
To further assess model fit, we also examined the in-sample
effect size and out-of-sample effect size. In-sample effect size was
estimated using the regular R2, out-of-sample effect size (which
measures how well the model generalizes to new observations)
was estimated using the leave-one-out cross-validated (LOOCV)
R2. The LOOCV was calculated in the same way as the R2 with
the exception that the predictions for a given participant were
obtained from a model that did not include the participant in
question.

Data analysis was carried out in version 9.4 of the
SAS System for Windows (Copyright © 2002–2012, SAS
Institute Inc. SAS and all other SAS Institute Inc. product
or service names are registered trademarks or trademarks
of SAS Institute Inc., Cary, NC, USA). Graphical outputs
and imputations were generated using R version 3.2.5
(R Development Core Team., 2016).

RESULTS

Descriptive Analyses
Sample characteristics are shown in Table 1; correlations
between the predictors, outcomes and covariates are shown
in Table 2. Attentional competence at 18 and 24 months
were highly correlated (r(103) = 0.50, p < 0.0001). Attentional
competence at 18 months was positively associated with
maternal sensitivity (r(120) = 0.14, p = 0.04) and negatively
associated with postnatal depressive symptoms (r(120) = −0.13,
p = 0.04). Attentional competence at 24 months was negatively
associated with birth weight (r(117) = −0.14, p < 0.05),
prenatal depressive symptoms (r(117) = −0.22, p = 0.01), and
postnatal depressive symptoms (r(117) = −0.28, p = 0.0002).
Prenatal depressive symptoms were positively associated with
prenatal life events (r(134) = 0.24, p < 0.0001) and postnatal
depressive symptoms (r(134) = 0.41 p < 0.0001). Maternal
parenting measures were not significantly associated with each
other, except for vocalization, which was positively related to

infant-related activities (r(134) = 0.16, p = 0.006) and maternal
sensitivity (r(134) = 0.19, p = 0.003). Significant gene-environment
correlations were observed between DRD2 and birth weight
(r(134) = −0.16, p = 0.02) and between DRD4 and prenatal
depressive symptoms (r(134) = −0.15, p = 0.04) and vocalization
(r(134) = 0.15, p = 0.03).

Three-Way Interaction Models
In the complete-case analysis, the G × E1 × E2 interaction
effect emerged significant (β = −17.17, SE = 3.50, p < 0.0001).
However, this was not replicated in the imputed analysis
(β =−0.87, SE = 1.31, p = 0.51). Although both the complete-case
and imputed data analyses had relatively large in-sample effect
sizes (R2 = 0.31 and 0.26, respectively), their out-of-sample effect
sizes were very low (LOOCV R2 = −0.16 and 0.07, respectively),
indicating poor generalization. The negative LOOCV R2 and the
fact that the three-way interaction effect was only significant
in the non-imputed analysis are strongly suggestive of model
overfitting. For these reasons, we reran all analyses without the
three-way interaction term but retaining all two-way (i.e., G× E1,
G × E2, E1 × E2) interaction terms. Results of the three-way
interaction models are shown in Table 3.

Two-Way Interaction Models
Results of the two-way interactions models are shown in Table 4.
All two-way interaction effects were significant in both the
complete-case and imputed analyses (p < 0.0001). In the
complete-case full model, DAT1 (β = 0.15, SE = 0.05, p = 0.002),
BDNF (β = 0.25, SE = 0.12, p = 0.04), and COMT (β = −0.52,
SE = 0.09, p < 0.0001) seemed to be the most important genetic
drivers of the observed interaction effects. Among the prenatal
adversity factors, maternal stressful life events emerged as most
important for the interaction (β = 0.87, SE = 0.15, p < 0.0001).
Regarding early maternal parenting, tactile stimulation (β = 0.22,
SE = 0.08, p = 0.01), vocalization (β = 0.32, SE = 0.09, p = 0.0003),
and infant-related activities (β = 0.40, SE = 0.11, p = 0.0003)
seemed to be the most relevant in interacting with dopamine-
related genes or with prenatal adversity. Themodel hadmoderate
effect size (in-sample R2 = 0.32, LOOCV R2 = 0.03), interaction
effects are visualized in Figure 1.

In the variable selection model, DAT1 (β = 0.30, SE = 0.07,
p< 0.0001), and COMT (β =−0.70, SE = 0.11, p< 0.0001) were
retained for the genetic component; prenatal stressful life events
(β = 1) for the adversity component; and maternal vocalization
(β = 0.40, SE = 0.12, p = 0.0008), maternal infant-related activities
(β = 0.50, SE = 0.15, p = 0.001), andmaternal sensitivity (β = 0.09,
SE = 0.05, p = 0.10) for the early maternal parenting component.
The effect size of the model with variable selection was moderate
(in-sample R2 = 0.41 and LOOCV R2 = 0.17).

A very similar picture emerged in the imputed models. In
the full model without variable selection, maternal sensitivity
emerged as an additional important early parenting behavior
for the observed interactions (β = 0.07, SE = 0.03, p = 0.03).
In the variable selection model, DAT1 (β = 0.12, SE = 0.04
p = 0.005), BNDF (β = 0.37, SE = 0.10, p = 0.0002) and
COMT (β = 0.50, SE = 0.07, p < 0.0001) were retained for
the genetic component; maternal stressful life events for the
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TABLE 1 | Demographic characteristics of MAVAN participants.

N = 134 (n = 103 at both time points, n = 17 at
18 months only, n = 14 at 24 months only)

M (SD) or N (%)

Maternal characteristics
Age 30.46 (4.75)

Education
High school or less and partial college 21 (15.67%)
Completed college or some university
University graduate or higher 45 (33.58%)

Income (CAD)
<15,000 68 (50.75%)
15,000–<30,000
30,000–<50,000 4 (3.15%)
50,000–<80,000 16 (12.60%)
>80,000 30 (23.62%)

Prenatal depressive symptoms 36 (28.35%)
Postnatal depressive symptoms 41 (32.28%)
Maternal infant-related attention 11.94 (9.43)
Maternal tactile stimulation 11.06 (8.84)
Maternal vocalization 0.04 (0.29)
Maternal infant-related activities −0.01 (0.51)
Maternal sensitivity 0.05 (0.47)

0.03 (0.42)
5.64 (1.92)

Child characteristics
Gender (boys) 60 (44.78%)
Birth weight (g) 3329.02 (442.37)
DRD2 (Number of A1 alleles) 0: 85(63.43%), 1: 43(32.09%), 2: 6(4.48%)
DRD4 2–5 Repeat: 90 (67.16%), 6–8 Repeat: 44(32.84%)
DAT1 9R/9R or 9R/10R: 59(44.03%), 10R/10R: 75(55.97%)
BDNF (Number of Val Allele) 0: 90(67.16%) / 1: 38(28.36%) / 2: 6(4.48%)
COMT (Number of Met allele) 0: 35(26.12%) / 1: 71(52.99%) / 2: 28(20.90%)
Attentional competence at 18 months 1.29 (0.51)
Attentional competence at 24 months 1.43 (0.45)

TABLE 2 | Kendall-Tau correlation matrix of all variables included in analyses.

Variables 1 2 3 4 5 6 7 8 9 10 11 12

1. Attention at 18 months 1 − − − − − − − − − − −

2. Attention at 24 months 0.50∗∗∗ 1 − − − − − − − − − −

3. Prenatal depression −0.05 −0.22∗∗∗ 1 − − − − − − − − −

4. Postnatal depression −0.13∗
−0.28∗∗∗ 0.41∗∗∗ 1 − − − − − − − −

5. Prenatal life events 0.04 0.06 0.24∗∗∗ 0.14∗ 1 − − − − − − −

6. Birth weight (g) −0.12 −0.14∗ 0.01 0.01 −0.06 1 − − − − − −

7. Maternal age 0.08 0.09 −0.05 −0.06 −0.01 0.02 1 − − − − −

8. Maternal infant-related
attention

0.05 −0.04 0.04 0.06 −0.03 −0.10 0.02 1 − − − −

9. Maternal tactile
stimulation

0.09 0.08 0.00 0.03 0.02 −0.08 −0.02 −0.02 1 − − −

10. Maternal Vocalization 0.05 0.10 −0.11 −0.01 0.01 −0.04 0.09 0.07 0.07 1 − −

11. Maternal infant-related
activities

0.08 −0.03 −0.02 0.02 −0.10 −0.04 −0.11 −0.04 0.06 0.16 1 −

12. Maternal sensitivity 0.14∗ 0.07 −0.07 −0.09 −0.06 0.09 0.09 0.08 0.07 0.19∗∗ 0.05 1
13. DRD2 genotype 0.02 0.04 0.06 0.07 −0.07 −0.16∗ 0.11 0.11 −0.02 0.02 0.05 0.06
14. DRD4 genotype 0.10 0.02 −0.15∗

−0.10 −0.10 0.05 0.13 −0.06 −0.10 −0.10 0.16∗ 0.11
15. DAT1 genotype −0.04 −0.02 0.01 −0.01 −0.07 −0.09 −0.00 −0.07 0.00 0.02 0.07 0.01
16. BDNF genotype −0.04 −0.14 −0.06 −0.05 −0.05 −0.01 −0.04 −0.08 −0.04 −0.04 −0.04 0.06
17. COMT genotype 0.07 0.11 −0.07 −0.07 −0.05 0.04 0.05 −0.05 −0.05 −0.05 −0.07 −0.05

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

adversity component (β = 1); and maternal sensitivity (β = 0.07,
SE = 0.03, p = 0.03), tactile stimulation (β = 0.22, SE = 0.06,
p = 0.0006), vocalization (β = 0.30, SE = 0.07, p < 0.0001),

and infant-related activities (β = 0.41, SE = 0.10, p < 0.0001)
for early maternal parenting. Effect sizes of both models were
moderate (in-sample R2 = 0.25, LOOCV R2 = 0.10 for the full
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TABLE 3 | Predicting toddler attentional competence at 18 and 24 months based on the three-way interaction of prenatal adversity, dopamine-related genes, and early
maternal parenting behaviors with/without imputation.

Without Imputation With Imputation
Nobs = 134, N = 237 Nobs = 197, N = 394

Predictors
Intercept −0.05 −0.01
24 months present 0.33∗ 0.40∗∗∗

Maternal age 0.04∗ 0.03∗

Postnatal depression −0.21∗∗
−0.28∗∗∗

Boys −0.14 −0.23∗

Maternal education (college) −0.18 −0.30
Maternal education (university) −0.15 −0.37∗

Prenatal adversity (E1) 0.60∗∗ 0.03
Dopamine-related genes (G) −1.19∗∗

−0.79∗∗

Early maternal parenting (E2) 1.91∗∗∗ 0.45∗

E1 × G −1.25 −1.26∗∗∗

E1 × E2 3.00∗∗∗ 1.01∗∗∗

G × E2 −7.23∗∗∗
−5.07∗∗∗

G × E1 × E2 −17.17∗∗∗ 0.87
G
DRD2 0.21∗∗∗ 0.00
DRD4 0.02 0.05
DAT1 0.05 0.11∗

BDNF 0.57∗∗∗ 0.35∗∗∗

COMT 0.16∗∗∗
−0.49∗∗∗

E1

Prenatal depressive symptoms 0.16 0.00
Prenatal stressful life events 0.40∗∗∗ 0.85∗∗∗

Birth weight (g) −0.44∗∗∗
−0.14

E2 0.19 0.00
Infant-related attention 0.28∗∗∗ 0.22∗∗∗

Tactile stimulation −0.02 0.30∗∗∗

Vocalization 0.23 0.41∗∗∗

Infant-related activities 0.28∗∗∗ 0.08∗

Maternal sensitivity
R2 0.31 0.26
LOOCV R2

−0.16 0.07

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

model; in-sample R2 = 0.25, LOOCV R2 = 0.14 for themodel with
variable selection).

DISCUSSION

In a prospectively followed prenatal cohort, we examined the
complex interplay between three important forces of attention
development: 1) genetic variations in the dopaminergic pathway
(using a genetic score composed of five dopamine-related
genes), prenatal adversity (captured through children’s birth
weight, the presence of prenatal maternal depressive symptoms
and stressful life events), and the earliest rearing environment
(captured through a range of observed maternal parenting
behaviors). Our study benefitted from a sample with rich
measures on prenatal adversity, dopamine-related gene variants,
observational measures of maternal parenting behavior, and
repeated assessments of toddlers’ attentional competence. A
further strength of our study was the use of a statistical approach
(LEGIT) to simultaneously analyze complex G × E interactions,
which provides greatly enhanced power over traditional models
that analyze a single G× E effect at a time.

Our hypothesis of finding a three-way interaction effect for
prenatal adversity, dopamine-related genes, and early maternal

behavior on toddlers’ attentional competency was not confirmed.
Although the complete case analysis indicated the presence of
such an interaction effect, the model did not generalize, and
when imputing missing observations, the interaction effect was
not significant anymore. These observations point to possible
model overfitting, especially in smaller samples. In line with this,
when we reran the analysis without the three-way interaction
term, a more consistent picture emerged. Significant two-way
interaction effects emerged for prenatal adversity by dopamine-
related genes; prenatal adversity by early maternal behavior; and
dopamine-related genes by early maternal behavior on toddler
attentional competence in both the complete case analysis and
analysis with imputation for missing data. Furthermore, the in-
and out-of-sample effect sizes also indicated that the model
generalizes.

Our findings suggest that multiple dopamine-related genes
interact with prenatal adversity to predict toddler attentional
competence. Based on our models, DAT1, COMT, and BDNF
emerged as the most significant among the genes tested.
Previously, DAT1 has been one of the most consistently
implicated candidate genes in relation to ADHD by linkage,
association, and meta-analytic studies (Sharp et al., 2009).
Importantly, DAT1 genotype has been linked to variation
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TABLE 4 | Predicting toddler attentional competence at 18 and 24 months based on two-way interactions between prenatal adversity, dopamine-related genes, and
early maternal parenting behaviors with/without imputation and with/without variable selection.

Without Imputation With Imputation
Nobs = 134, N = 237 Nobs = 197, N = 394

Predictors All Best choice All Best choice

Intercept 0.19 0.52 −0.10 −0.02
24 months present 0.31∗ 0.30∗ 0.40∗∗∗ 0.40∗∗∗

Maternal age 0.03 0.02 0.04∗∗ 0.03∗

Postnatal depression −0.35∗∗∗
−0.31∗∗∗

−0.28∗∗∗
−0.28∗∗∗

Boys −0.31∗
−0.37∗∗

−0.22∗
−0.24∗

Maternal education (college) −0.34 −0.28 −0.29 −0.31
Maternal education (university) −0.25 −0.25 −0.36∗

−0.37∗

Prenatal adversity (E1) 0.11 0.06 0.06 0.03
Dopamine-related genes (G) −0.91∗

−0.44 −0.85∗∗
−0.83∗∗

Early maternal parenting (E2) 0.69∗ 0.55∗ 0.51∗∗ 0.40∗

E1 × G −2.02∗∗∗
−1.44∗∗∗

−1.31∗
−1.09∗∗∗

E1 × E2 1.48∗∗∗ 0.85∗∗ 1.00∗∗∗ 0.83∗∗∗

G × E2 −6.34∗∗∗
−2.99∗∗∗

−5.67∗∗∗
−4.88∗∗∗

G
DRD2 −0.04 0.02
DRD4 0.03 0.06
DAT1 0.15∗∗ 0.30∗∗ 0.10∗ 0.12∗∗

BDNF 0.25∗ 0.35∗∗∗ 0.37∗∗∗

COMT −0.52∗∗∗
−0.70∗∗∗

−0.47∗
−0.50∗∗∗

E1

Prenatal depressive symptoms 0.01 −0.00
Prenatal stressful life events 0.87∗∗∗ 1∗∗∗ 0.84∗∗∗ 1∗∗∗

Birth weight (g) −0.12 −0.16
E2

Infant-related attention −0.02 −0.00
Tactile stimulation 0.22∗ 0.24∗∗∗ 0.22∗∗∗

Vocalization 0.32∗∗∗ 0.40∗∗∗ 0.30∗∗∗ 0.30∗∗∗

Infant-related activities 0.40∗ 0.50∗∗ 0.40∗∗∗ 0.41∗∗∗

Maternal sensitivity 0.04 0.09 0.07∗ 0.07∗

R2 0.32 0.41 0.25 0.25
LOOCV R2 0.03 0.17 0.10 0.14

∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

in both cognitive and neurobiological measures of attention
(Gizer et al., 2009; Sharp et al., 2009). Moreover, a number
of environmental factors have been hypothesized to moderate
the effect of DAT1 on ADHD-related phenotypes (Franke and
Buitelaar, 2018). Some of these include prenatal factors, such as
maternal smoking and alcohol use during pregnancy, prenatal
maternal stress, and birth weight (for a review, see Franke
and Buitelaar, 2018). Contrary to our findings, the single study
that looked at DAT1 by prenatal stress interaction effect on
ADHD reported a lack of such effect (Grizenko et al., 2012).
However, that study used a retrospective design to collect
information on prenatal maternal stress when children were
6–12 years old. The two studies that assessed interactions
of DAT1 with birth weight reported nominally significant
effects on the occurrence of conduct problems in children
with ADHD in a case-only study (Langley et al., 2008) and
significant G × E effects for a genetic index including DAT1,
DRD4, and DRD2 and birth weight on ADHD symptoms
in a sibling sample (Jackson and Beaver, 2015). Importantly,
certain aspects of parenting were also shown to interact with
DAT1 in relation to ADHD-related phenotypes. These include
parental expressed emotions, negative and positive parenting

practices, and maternal warmth (for a review, see Franke
and Buitelaar, 2018). In summary, our study supports prior
evidence for the involvement of DAT1 in ADHD-related
phenotypes in interaction with either the prenatal or postnatal
environment.

Although a recent meta-analysis did not confirm the main
effect of COMT gene variants on ADHD, it could not rule out
the importance of COMT in combination with other factors
(Sun et al., 2014). Indeed, in a combined analysis of two large
cohorts (ALSPAC and PREDO), prenatal anxiety and child
COMT genotype predicted ADHD symptoms at multiple time
points (O’Donnell et al., 2017). In addition, COMT genotype also
seemed to interact with prenatal maternal smoking to predict
aggressive behavior and autistic symptoms in children with
ADHD (Nijmeijer et al., 2010; Brennan et al., 2011) and interact
with birth weight to predict antisocial behavior in children with
ADHD (Thapar et al., 2005). Interactions of theCOMT gene with
parenting behavior have not been investigated to our knowledge
in relation to ADHD. In summary, our findings are in line with
previous literature suggesting an interplay between COMT and
the prenatal environment to shape ADHD-related phenotypes.
Furthermore, we add to the existing literature by showing that a
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FIGURE 1 | The prediction of toddler attentional competence at 18–24 months based on the two-way interaction model (Table 4) without missing data imputation
and without variable selection (column 1). (A) When prenatal adversity is low, attentional competence of young children with low dopaminergic genetic scores
increases from low to high with increasingly positive early maternal parenting behavior. Meanwhile, children with moderate or high dopaminergic genetic scores start
at a relatively high level of attentional competence, which seems to be unaffected by an increase in early positive maternal parenting behaviors. (B) When prenatal
adversity is moderate, young children with low dopaminergic genetic scores start at moderate levels of attentional competence, which rapidly increases as positive
early maternal parenting behavior increases. Meanwhile, children with moderate or high dopaminergic genetic scores start at a high level of attentional competence,
which seems to be unaffected by an increase in early positive maternal parenting behaviors. (C) When prenatal adversity is high, young children with low
dopaminergic genetic scores start at a high level of attentional competence, which seems relatively unaffected by increasingly positive early maternal parenting
behaviors. Children with moderate dopaminergic genetic scores initially have moderate levels of attentional competence, which increases linearly as positive early
maternal parenting behavior increases. Children with high dopaminergic genetic scores initially have low levels of attentional competence, which also increases
linearly as early positive maternal parenting behaviors increase. Note. Figures for the two-way interaction models with/without imputation and with/without variable
selection all look very similar. Note 2. Despite the absence of a three-way interaction effect, results must be graphically represented similarly to a three-way
interaction model, since all three main components (i.e., G, E1, and E2) interact with one another in two-way interactions within the same model.

genetic index includingCOMT interacts withmaternal parenting
behavior to affect the attentional competence of young children.

Variants in the BDNF gene have also been implicated
in ADHD-related phenotypes both as exerting a main effect
(Langley et al., 2008; Li et al., 2014; Luo et al., 2020) and
in interaction with environmental stressors, such as early
deprivation or family SES (Lasky-Su et al., 2007; Gunnar et al.,
2012) in both European and Asian populations. G× E studies of
ADHD-related phenotypes involving the BDNF gene, however,
are still rare. One interesting study examined the interaction of
the BDNF Val66Met polymorphism and parenting in children
(aged 6–15 years) diagnosed with ADHD and found a significant
interaction effect for child BDNF by mothers’ positive feelings
about caring in relation to the development of internalizing
comorbidities (Park et al., 2014).

We further found that prenatal adversity interacted with
both dopamine-related genes and maternal parenting behavior
in affecting toddler attentional functioning. There is growing
evidence for the involvement of prenatal adversity in the risk for
developing ADHD-related phenotypes (Glover, 2011; Graignic-
Philippe et al., 2014), although there is currently insufficient
support for a causal relationship (Sciberras et al., 2017). The
most commonly researched adversities in relation to ADHD
include maternal prenatal smoking, alcohol and substance use,
maternal stress, and offspring birth weight (Morgan et al., 2018).
Unfortunately, we were unable to investigate the effects of
prenatal smoking, alcohol, and substance use as these variables
had an extremely large proportion of missing data in our cohort.
Nevertheless, we did examine the effects of prenatal maternal
stress and birth weight, as well as maternal prenatal depressive
symptoms, which have also been consistently implicated in the

development of maladaptive child outcomes (Madigan et al.,
2018). Of all prenatal adversities considered here, maternal
prenatal stress seemed to be the most relevant component when
considering offspring dopamine-related genes. This finding is
partly in line with a recent study that reported significant G × E
effects for prenatal maternal stress and children’sDRD4 genotype
but not DAT1 on ADHD symptoms (Grizenko et al., 2012).
However, as both this and our study show, not all children
exposed to prenatal adversity will experience later difficulties.
Constitutional characteristics, such as genetic variation may
be key in determining who will be more susceptible to the
deleterious effects of the environment, as is contended by the
diathesis-stress or differential susceptibility hypotheses (Belsky,
1997, 2005; Ingram and Luxton, 2005).

Another noteworthy finding of this study is that early positive
maternal behavior seemed to buffer the effect of both prenatal
adversity and genetic susceptibility although not their joint
effect on toddler attentional competence. The observation that
positive maternal behavior may attenuate both environmental
and genetic risks is in line with previous literature (Sonuga-Barke
and Harold, 2018) and has important consequences for guiding
interventions such as behavioral parent training programs for
families with ADHD. Despite the strong evidence in support
of a biological basis for ADHD symptoms, researchers have
speculated that the child’s environment may play a particularly
salient role in determining outcomes for children with ADHD,
even if environmental factors may not be the primary cause
of their core symptoms (Barkley, 2006). During infancy, the
caregiver provides much of the child’s attention regulation
through orienting (Posner et al., 2014). This external control
eventually becomes internalized as toddlers gradually gain
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control over their own emotional and cognitive states through
self-regulation (Posner et al., 2014). Therefore, understanding
the ways in which parents can help their children better regulate
their attention, emotions, and behavior is going to be invaluable
for the success of behavioral parent training programs, for
parents typically play a major role in changing their child’s
behavioral symptoms (e.g., through parent training and behavior
therapy programs; Johnston and Mash, 2001; Deault, 2010). A
newly emerging field of ‘‘therapy genetics’’ has produced some
promising results to this end. In one study among a large group
of toddlers with externalizing problems, the largest effect for a
video-feedback-based intervention promoting positive parenting
and sensitive discipline was found in children carrying the
DRD4 7R allele (Bakermans-Kranenburg et al., 2008). In another
smaller pilot study of children with ADHD, the largest effects of
a behavioral parent training program were seen in children not
homozygous for the DAT1 10R allele (van den Hoofdakker et al.,
2012).

Our study also pinpointed a number of specific maternal
behaviors that were linked with improved attentional
competence in toddlers, such as maternal sensitivity, tactile
stimulation, vocalization, and activities including play and
grooming. These behaviors emerged from coded observations
of mother-child interactions rather than maternal self-reports.
The over-reliance on self-report questionnaires for assessing
parenting behavior may limit both the validity and reliability of
the parenting behaviors being assessed. In addition, most prior
studies tended to isolate one or two parenting behaviors, rather
than examining several parenting measures simultaneously to
explore if more robust associations exist that go beyond specific
measures of parenting (Deault, 2010).

ADHD has classically been viewed as a primarily fixed
cognitive ‘‘deficit,’’ mainly underlined by genetic and
neurobiological mechanisms (Barkley, 1990; Weiss and
Hechtman, 1993; Hinshaw, 1994). However, this view
falls short in accounting for the way environmental and
biological risk factors seem to interact to produce the diverse
developmental pathways, clinical outcomes, and frequent
comorbidities observed in ADHD (Mannuzza et al., 2004;
Castellanos et al., 2005; Halperin et al., 2008). As a result,
researchers have recently turned to the biopsychosocial
framework to better explain the complex developmental
processes underlying the pathophysiology of ADHD (Singh,
2008). Contrary to the fixed deficit model, the biopsychosocial
theory posits that ADHD is caused by the interplay of genetic and
environmental influences that occur throughout development
in underlying neurobiological systems (Sonuga-Barke, 1998,
2009). Accordingly, the original risk for developing the disorder
can be moderated by later factors that alter the trajectory of
development for better or worse (Taylor, 1999; Singh, 2008).
Understanding these moderating influences—both protective
and harmful—is essential for predicting key features of the
disorder, such as its emergence, persistence, offset, and the
frequent development of comorbidities (Sonuga-Barke, 2009).
In line with this thinking, here we reported that certain positive
aspects of the early maternal behavior moderated the negative
impact of both prenatal adversity and genetic susceptibility

on toddlers’ attentional competence, albeit not their joint
effect.

Although our findings were mainly interpreted in relation
to the pathophysiology of ADHD, it was done so, since the
overwhelming majority of available G× E studies that examined
interactions between the very environmental exposures and
genetic variants we considered in this study, focused on
ADHD-related deficits in attention. However, it is important
to note that attention deficits are present in numerous other
psychiatric disorders, such as schizophrenia, bipolar disorder,
mood disorders, and autism spectrum disorder to name a few
(Burack et al., 2017). Furthermore, dysfunctions in the dopamine
system that are related to the gene variants we considered here
are also implicated, amongst others, in schizophrenia, bipolar
disorder, Parkinson’s disease, phenylketonuria, and autism
spectrum disorder (Diamond et al., 1997; DiCarlo et al., 2019;
Nieoullon, 2002; Hayden andNurnberger Jr, 2006; Scheggia et al.,
2012; Mandolini et al., 2019; Pigoni et al., 2019). We plan on
following our participants to see if lower attentional competence
early in life will evolve into cognitive and psychopathological
problems later on.

Inevitably, we were faced with a number of limitations.
First, obtaining rich measures and detailed coding of maternal
behavior meant that we had to compromise regarding the sample
size. However, as Jolicoeur-Martineau et al. (2019) previously
demonstrated, LEGIT performs well with sample sizes similar to
that of the current study. Second, we assessed maternal prenatal
depressive symptoms at a single time point. Consequently, this
prevented us from examining the effect of timing and chronicity,
the latter of which is a known modifier of the effect of maternal
depressive symptoms on child outcomes (Brennan et al., 2000;
Hammen and Brennan, 2003; Lahti et al., 2017; Tuovinen et al.,
2018). Third, toddlers’ attentional competency was rated by
the mothers. This can be problematic when mothers are also
reporting on their own mood symptoms. Nevertheless, our study
benefitted from using observational measures of early maternal
parenting behaviors, which were rated by trained coders blind
to the mothers’ prenatal depressive symptoms and offspring
attentional competency. Furthermore, the ITSEA used to assess
toddlers’ attentional competency is a valid parent-report measure
(Carter et al., 2003), which is less prone to measurement error.
Parents are asked to report on what is present, i.e., their
child’s everyday activities that are indicative of the level of
their attentional functioning (e.g., ‘‘Plays with toys for 5 min
or more.’’), rather than what is absent, i.e., deficits in their
children’s attentional functioning. The assessment of ADHD can
be challenging in the early years, thus recognition of important
developmental processes, such as attentional competence can be
a useful guide to the types of processes that are likely precursors
to the disorder (Deault, 2010). As our young participants become
older and increasingly capable of understanding verbal task
instructions, we aim to repeat these analyses using laboratory-
based assessments of child attention.

Implications
As, we have seen here, prenatal adversity can render genetically
susceptible children to exhibit lower attentional competence
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already in toddlerhood, while a positive early rearing
environment facilitates the development of children’s attentional
competence. Therefore, standard prenatal care should include
components that target women’s psychological well-being
during pregnancy. At the same time, interventions for children
with a high susceptibility for developing attentional problems
might benefit from promoting positive parenting practices. In
addition, these findings underscore the importance of including
measurement of the psychosocial environment of the child in
line with the biopsychosocial formulation of mental disorders,
even when studying neurodevelopmental disorders or related
processes (White et al., in press). Furthermore, future research
should combine longitudinal developmental cohorts with similar
available measures to investigate the complex interplay between
the various genetic and environmental components that act
to produce complex phenotypes. The computational tools
necessary to investigate such complex interactions are now
readily available to researchers.
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Joubert syndrome (JBTS) is a rare ciliopathy characterized by developmental delay,

hypotonia, and distinctive cerebellar and brain stem malformation called the molar tooth

sign (MTS). We reported a 15-month-old female with dysmorphic features (flat nasal

bridge, almond-shaped eye, and a minor midline notch in the upper lips), hypotonia,

polydactyly, development delay, and MTS. Whole exome sequencing revealed biallelic

heterozygous mutations c.535C>G(p.Q179E/c.853G>T) (p.E285∗) in IFT74, which were

inherited from the parents. So far, only one article reported JBTS associated with IFT74

gene mutation, and this is the second report of the fifth patient with JBTS due to variants

in IFT74. All five patients had developmental delay, postaxial polydactyly, subtle cleft of

the upper lip, hypotonia, and MTS, but notably without renal and retinal anomalies or

significant obesity, and they shared the same mutation c.535C>G(p.Q179E) in IFT74,

and c.853G>T(p.E285∗) that we found was a new mutation in IFT74 that related with

Joubert syndrome. Those findings highlight the need for the inclusion of IFT74 in gene

panels for JBST testing.

Keywords: Joubert syndrome, ciliopathy, IFT74, developmental delay, polydactyly, cleft lip

INTRODUCTION

Joubert syndrome (JBTS, OMIM: P213300) is a rare, autosomal recessive ciliopathy characterized
by three primary findings: a distinctive cerebellar and brain stem malformation called the molar
tooth sign (MTS), hypotonia, and developmental delay (Parisi et al., 2017). About 35 ciliopathy-
related genes are known to cause JBTS (Radha Rama Devi et al., 2020); those genes encode
proteins localized to the pericilia, whose dysfunction would alter cilia composition or signaling
(Parisi, 2019). The Intraflagellar transport(IFT) complex is the main module for regulating cilia
composition, which consists of IFT-A and IFT-B, and IFT74 is required for the stabilization of IFT-
B (Brown Jason et al., 2015). However, the relationship between JBST and IFT is rarely studied;
thus far, only three studies have researched the correlation between JBST and IFT (Halbritter et al.,
2013; Bachmann-Gagescu et al., 2015; Luo et al., 2021). In February this year, Luo et al. (2021)
reported for the first time that JBST could be caused by IFT74mutation. This paper was the second
report of the fifth case of IFT74-associated JBTS; we found a new mutation in IFT74-associated
JBTS and present new craniofacial dysmorphisms, which helped to expand the clinical phenotype
and genotype of this syndrome.

CASE REPORT

The proband was a 15-month-old female who was referred to our department because
of developmental delay. She was the first child of non-consanguineous Chinese parents.
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FIGURE 1 | (A) craniofacial dysmorphism (B). polydactyly (C) MTS in brain MRI.
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FIGURE 2 | DNA electrophoregram with the c.535C >G in exon8 and c.853G>T in exon11.
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She was delivered at term via spontaneous vaginal delivery
to a 35-year-old mother after an uncomplicated pregnancy.
Birth weight was 3,400 g. Immediately after birth, craniofacial
dysmorphisms with a flat nasal bridge, almond-shaped eye, and a
minor midline notch in the upper lips and postaxial polydactyly
of the hands and feet were noticed (Figures 1A,B). She achieved
rising head and sitting at 3 and 8 months old, respectively.
Delayedmotor development was noticed when she couldn’t crawl
at 1 year, and slight hypotonia of lower limbs was found. She
began speaking at 1 year with slowly progressive. At the age of
9 months, she underwent a hand polydactyly excision.

There were no other family members with the presence
of birth defects, developmental delay, and/or any other
neurological disorders.

On examination at 15 months of age, she can stand with
the assistant and speak several words. Her weight was 13 kg,
height was 82 cm, body mass index (BMI) was 19.3 kg/m2.
Head circumference was 46 cm. Investigations showed that blood
count, urine routine test, biochemical test, thyroid hormones, 25
hydroxyvitamin D3 -were normal. No significant abnormalities
were seen in cardiac and abdominal ultrasound examinations.
An audiology evaluation was normal. Fundoscopic examination
showed no retinal dystrophy, and cranial MRI showed MTS
(Figure 1C). Neuropsychological development assessment was
performed at the age of 16 months; the development quotient
(DQ) assessment was as follows: total (64)- gross motor (52)—
fine motor (64)—adaptability (64)—language ability (55)—social
ability (67).

FIGURE 3 | Pedigree of the family.

With parental consent, blood was collected from the child
and parents, and whole-exome sequencing was performed.
Genomic DNA was extracted from the blood sample with
the Blood Genomic DNA Mini Kit following manufacturer’s
guidelines (CWBIO). The whole-exome library was prepared
using the SureSelect Human All Exon V6 (Agilent) and
KAPA Hyper Prep Kit (KAPA) following the manufacturer’s
protocol. All sequencing was performed on the Nova seq
6,000 platform (Illumina) (Testing Service Company:
The medical laboratory of Nantong Zhongke, China).
Alignment and variant calling were performed with an in-
house bioinformatics pipeline. Variants with a minor allele
frequency of <0.05 in population databases and expected to
affect coding/splicing of the protein or were present in the
Human Gene Mutation Database (HGMD) (Stenson et al.,
2003) were included in the analysis. The American College
of Medical Genetics and Genomics (ACMG) Standards and
Guidelines for the interpretation of sequence variants were
followed in this study.Two heterozygous variants in IFT74,
NM_025103.4,c.535C>G(p.Q179E)/c.853G>T(p.E285∗) were
identified. Sanger sequencing showed the variants were
inherited from the parents, confirming that the variants
were indeed biallelic (Figures 2, 3). c.535C>G(p.Q179E)
was predicted to be “disease causing” with a score of
0.99 (MutationTaster), “benign” with a score of 0.126
(PolyPhen-2), and “tolerated” with a score of 0.14 (SIFT),
and c.853G>T(p.E285∗) was predicted to be “disease causing”
with a score of 1 (MutationTaster).
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TABLE 1 | Clinical features of patients with biallelic IFT74 variants.

Featrue IFT74-JBST

case 5 (our

case)

IFT74-JBST

Case 1 (Luo)

IFT74-JBST

Case 2 (Luo)

IFT74-JBST

Case 3 (Luo)

IFT74-JBST

Case 4 (Luo)

IFT74-BBS

case 1

(Lindstrand)

IFT74-BBS

case 2

(Kleinendorst)

IFT74-BBS

case 3 (Mardy)

Age 1 year 3 months 13 years 5

months

1 year 11

months

4 years 6

months

7 years 2

months

36 years 11 years 6 years

Gender Female Female Female Male Male Male Female male

Ethnicity Chinese Chinese Chinese Chinese Chinese NA Dutch mixed race

Variant 1 c.853G>T (p.E

285*)

c.92delT

(p.L31Hfs*25)

c.92delT (p.

L31Hfs*25)

c.306-24A>G

(p.103_135del)

c.85C>T (p.

R29*)

Deletion of exon

14–19

c.371_372del (p.

Q124Rfs*9)

c.1685-1G > T

Variant 2 c.535C>G (p.

Q179E)

c.535C>G (p.

Q179E)

c.535C>G (p.

Q179E)

c.535C>G (p.

Q179E)

c.535C>G (p.

Q179E)

c.1685-G>T c.1685-1G>T c.1685-1G > T

Height (cm) 13 148.5 78 104 116 NA 162.7 126.7

Weight (kg) 82 40 8.9 14 17.8 NA 70.94 36.9

BMI (kg/m2) 19.33 18.14 14.63 12.94 13.23 NA 26.80 22.99

MTS + + + + + – – –

Oculomotor

apraxia

– + + + + NA – –

Respiratory

abnormality

– – + + – NA – –

Hypotonia +a + + + + NA – –

Retinal

involvement

– – – – – Retinitis

pigmentosa

Rod–cone

dystrophy

Early retinal

dystrophy

Optic nerve

hypoplasia/RNFL

defect

+/+ +/+ –/– –/+ NA/NA –/– +

Renal involvement – – – – – – – –

Liver involvement – – – – – NA – –

Postaxial

polydactyly

+ + + + + + + +

Developmental

delay

+ + + + + – –b +

Intellectual

disability

Mild – Moderate Mild Mild + – –

Hypogonadism (in

males) or genital

abnormalities (in

females)

– – – – – Hypogonadism – –

Craniofacial

dysmorphisms

Midline notch in

the upper lip Fat,

nasal bridge,

almond-shaped

eye

Midline cleft lip Midline notch in

the upper lip

Midline cleft lip Midline notch in

the upper lip

Microcephaly Macrocephaly Normal

Truncal obesity – – – – – + + +

Diabetes mellitus – – – – – – – –

Behavioral

problem

– – Self-mutilation – – – – –

JBTS, Joubert syndrome; BBS, Bardet–Biedl syndrome; BMI, body mass index; MTS, molar tooth sign; NA, not available or not mentioned; RNFL, retinal nerve fiber layer; –, not present;

+, present.
aslight hypotonia of lower limbs.
bOnly speech delay in childhood.
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FIGURE 4 | Distribution of eight IFT74 gene mutations (transcript: NM_025103.4).

Accroding to ACMG, c.535C>G(p.Q179E) was
pathogenic(PS1+PS3),while c.853G>T(p.E285∗) was
uncertain significant(PM2).

LITERATURE REVIEW

The databases of Pubmed, EMCC, EBSCO, and Cochrane Library
were searched with the keywords of “Joubert syndrome” and
“IFT74,” and only one related study was found (Luo et al.,
2021). And there were three articles (Lindstrand et al., 2016;
Kleinendorst et al., 2020; Mardy et al., 2021) about IFT74 gene
mutation related to Bardet-Biedl syndrome (BBS). The clinical
features and mutations of all these cases were summary in
Table 1, Figure 4.

DISCUSSION

This is the second report of IFT74 variants causing a JBTS,
validating IFT74 as a JBTS gene. So far, only one previous
report of four cases with JBTS caused by biallelic IFT74
variants has been published by Luo et al. (2021) this year.
Luo et al. described four affected individuals from three non-
consanguineous families presenting with MTS on brain MRI,
delay in global developmental milestones, postaxial polydactyly,
and subtle cleft of the upper lip, all the affected individuals shared
one missense variant (p.Q179E), and the pathogenic effects of the
variant were evaluated by animal model, the IFT74 was identified
as a JBTS-associated gene. Our patient’s phenotype was consistent
with Luo et al.’s report and also shared the missense variant
(p.Q179E); however, the other mutation, c.853G>T(p.E285∗),
found in our patient had not been reported in Joubert syndrome.
The patient also had craniofacial dysmorphisms with a flat nasal
bridge and almond-shaped eye, and these features have not been
previously described in patients with a mutation of IFT74.

IFT74 gene is located on chr9: 26956412-27066134, with
20 exons (ensembl, 2021). IFT74 encodes a core intraflagellar
transporter protein (IFT) that belongs to a multiprotein complex
involved in the transport of ciliary proteins along axonemal
microtubules. This protein binds to intraflagellar transporter

protein 81 and transports microtubule proteins within the cilium,
which is required for ciliogenesis (Ncbi.nlm.nih.gov., 2021).
Although JBTS is known to be a recessive and heterogeneous
ciliopathy (Bachmann-Gagescu et al., 2020), very little attention
was paid to the relationship between IFT74 and JBTS. Until
this year, Luo et al. (2021) comprehensively analyzed the cohort
of 4 patients, all of which carried pathogenic mutations in the
IFT74 and showed similar phenotypes, and identified IFT74 as a
JBTS-associated gene.

Previous studies have suggested that IFT74 gene mutation is
mainly associated with BBS, which is characterized by obesity
and related complications, retinal cone-rod dystrophy, postaxial
polydactyly, cognitive impairment, and renal malformations
and/or renal parenchymal disease (Forsythe et al., 2018).
Combined with previous reports and our findings, we found that
the patients with biallelic variants in IFT74 all suffered from
postaxial polydactyly and none of them had renal involvement,
and the cleft lip was a special craniofacial dysmorphism in
IFT74 related JBTS while retinal dystrophy and truncal obesity
could be seen in all IFT74 related BBS. Intellectual disability was
common in IFT74 related JBTS but with a mild or moderate
degree. The mutations of IFT74 with JBTS include 2 non-
sense mutations,2 frameshift mutations, 1 splice mutations, 1
missense mutation, and were distributed in exons 2, 5, 8, 11,
and intron 4. IFT74 mutations with BBS include 1 complete
gene deletions and 1 splice mutations, distributed in exons 14–
19 and intron 19. Those showed that the IFT74 mutation before
exon 11 were associated with JBST, while mutations after it was
associated with BBS. Although the mutation was in the same
gene, mutations in different locus regions may result in various
protein changes, leading to these two distinct syndromes. The
most common mutation type is c.535C>G (p. Q179E), which
was present in all the IFT74 related JBST; mechanistic studies
suggested that pathogenic variants in IFT74 lead to defects in
cilia length, ciliogenesis, cilia composition, and Hh signaling
(Luo et al., 2021), whether c.535C>G (p. Q179E) is hot spot
mutations or not need to be confirmed by future data. The
mutation c.853G>T(p.E285∗) found in this patient had not been
reported in Joubert syndrome, and there was no research on
the pathogenesis of this mutation, but according to our clinical
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finding, it play a vital part in the JBTS, suggesting the loss of
function due to this mutation may be pathogenic, further studies
on the alter function of this mutation are needed.

In conclusion, our study reported a compound
heterozygous mutation in the IFT74 gene
[c.535C>G(p.Q179E)/c.853G>T(p.E285∗)] in a Chinese
family with JBTS.As far as we know, this is the second
report of the fifth case in IFT74 mutation-related JBST. This
patient helps to expand and clarify the clinical spectrum of
IFT74-related JBST, and the cases with IFT74 mutation are
summarized in Table 1. The IFT74 mutation-related JBST
manifested developmental delay, postaxial polydactyly, subtle
cleft of the upper lip, hypotonia, and MTS on brain MRI,
but notably without renal and retinal anomalies or significant
obesity. Our case also presents new craniofacial dysmorphisms
of the flat nasal bridge and almond-shaped eye and the
new mutation c.853G>T(p.E285∗) in JBST.All our findings
highlight the need for the inclusion of IFT74 in gene panels for
JBST testing.
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While the co-morbidity between metabolic and psychiatric behaviors is well-established,
the mechanisms are poorly understood, and exposure to early life adversity (ELA) is a
common developmental risk factor. ELA is associated with altered insulin sensitivity and
poor behavioral inhibition throughout life, which seems to contribute to the development
of metabolic and psychiatric disturbances in the long term. We hypothesize that
a genetic background associated with higher fasting insulin interacts with ELA to
influence the development of executive functions (e.g., impulsivity in young children).
We calculated the polygenic risk scores (PRSs) from the genome-wide association
study (GWAS) of fasting insulin at different thresholds and identified the subset of single
nucleotide polymorphisms (SNPs) that best predicted peripheral insulin levels in children
from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort [N = 467;
pt-initial = 0.24 (10,296 SNPs), pt-refined = 0.05 (57 SNPs)]. We then calculated the refined
PRS (rPRS) for fasting insulin at this specific threshold in the children from the Maternal
Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort and investigated its
interaction effect with adversity on an impulsivity task applied at 36 months. We found
a significant effect of interaction between fasting insulin rPRS and adversity exposure
predicting impulsivity measured by the Snack Delay Task at 36 months [β = −0.329,
p = 0.024], such that higher PRS [β = −0.551, p = 0.009] was linked to more impulsivity
in individuals exposed to more adversity. Enrichment analysis (MetaCoreTM) of the SNPs
that compose the fasting insulin rPRS at this threshold was significant for certain nervous
system development processes including dopamine D2 receptor signaling. Additional
enrichment analysis (FUMA) of the genes mapped from the SNPs in the fasting insulin
rPRS showed enrichment with the accelerated cognitive decline GWAS. Therefore, the
genetic background associated with risk for adult higher fasting insulin moderates the
impact of early adversity on childhood impulsivity.
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Frontiers in Neuroscience | www.frontiersin.org 1 September 2021 | Volume 15 | Article 70478583

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.704785
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.704785
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.704785&domain=pdf&date_stamp=2021-09-01
https://www.frontiersin.org/articles/10.3389/fnins.2021.704785/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-704785 August 26, 2021 Time: 12:28 # 2

Batra et al. Early Adversity, Insulin, and Impulsivity

INTRODUCTION

Early life adversity (ELA) increases the risk for adult chronic
disease, including psychopathology, metabolic, endocrine, and
cardio-metabolic conditions (Malaspina et al., 2008; Rice et al.,
2010; O’Donnell and Meaney, 2017; Van den Bergh et al.,
2017; McQuaid et al., 2019; Monk et al., 2019). Neuroimaging
studies have associated certain prenatal adversities with altered
structural and functional trajectories in brain development
(Bock et al., 2015; Egeland et al., 2015; Kim et al., 2015;
O’Donnell and Meaney, 2017; Osborne et al., 2018; Monk et al.,
2019). Since certain areas of the brain continue developing
until late adolescence, the brain is also highly sensitive to
postnatal adversity. Childhood adversity has been linked to long
term behavioral outcomes and neurobiological consequences:
emotional problems (Danese et al., 2020), aggressive behaviors
(El-Khodary and Samara, 2020), changes in brain electrical
activity (Marshall et al., 2004; Vanderwert et al., 2010), cognitive
functions (Burneo-Garcés et al., 2019), and executive functions
(Ursache et al., 2016). The mechanisms contributing to the
development of these phenotypes involve gene by environment
interactions resulting in behavioral differences (e.g., attention,
impulsivity, and food preferences). However, not all individuals
exposed to adversity develop these alterations. Responses to early
adversity exposure have individual differences that are mostly
driven by the genetic background.

At the neuroendocrine level, ELA is linked to alterations in
responsivity to stress while also altering insulin sensitivity at
different ages. Stressful conditions or adversities happening early
in life, either pre- or postnatally, can affect glucose homeostasis
and insulin function in the short and long terms. Some adversities
are associated with a higher risk for insulin resistance and
diabetes, such as: maternal/paternal history of diabetes (Beck-
Nielsen and Groop, 1994; Groop et al., 1996), exposure to
gestational diabetes (Krishnaveni et al., 2005), socioeconomic
status (Everson et al., 2002), placental insufficiency (Camacho
et al., 2017), cigarette smoking (Mouhamed et al., 2016), maternal
malnutrition (Reusens et al., 2011), and chronic stress (Han
et al., 2016; Yan et al., 2016). Such adverse events associate with
both growth and metabolism (Wijlaars et al., 2011; Bhopal et al.,
2019; Salmela et al., 2019). These events also alter responses to
subsequent stressors (McGowan et al., 2009; Labonte et al., 2012;
Peckins et al., 2020) and induce chronic inflammation (Flouri
et al., 2020; Kokosi et al., 2020), both of which modify glucose
homeostasis and insulin sensitivity (Facchi et al., 2020; Zannas
et al., 2020). Beyond acute effects on brain development and child
behavior (Lim et al., 2018; Chen et al., 2019; Lambert et al., 2019),
long-term effects of adversity increase the risk for both metabolic
diseases (Thomas et al., 2008; Fuller-Rowell et al., 2019) as well
as psychopathologies later in life (Vaughn-Coaxum et al., 2019;
Lund et al., 2020; Vogel et al., 2020).

Insulin is one of the primary hormonal regulators of
metabolism in animals with several different functional roles
(Brockman and Laarveld, 1986). Although most peripheral
tissues depend on insulin signaling to acquire glucose, such
is not the case with the brain as insulin is not needed for
glucose transport into neurons (Kullmann et al., 2016). However,

brain insulin does play a role as a neuroregulatory peptide
(Woods et al., 1979; Bruning et al., 2000; Hallschmid et al.,
2012) acting in different brain areas such as the ventral tegmental
area, striatum, hypothalamus, hippocampus, olfactory bulb, and
prefrontal cortex (Ghasemi et al., 2013). Insulin within these
areas modulates the development and expression of different
executive function behaviors (Kullmann et al., 2016), such as
attention, inhibitory control, and working memory. Insulin has
also been shown to reduce activity in the prefrontal areas that
control behaviors such as inhibitory control of eating (Heni et al.,
2015). Furthermore, abnormal insulin levels and function are
seen in Alzheimer’s patients where insulin impairments have been
linked to learning deficits and memory formation impairments
(Zhao and Alkon, 2001).

Considering that the genetic background represents variations
in biological function, our objective was to develop a model
that predicts an executive function behavior, impulsivity, as
a function of the interaction between biological markers of
elevated fasting insulin levels and ELA in children. To do so,
we first assessed the relationship between a polygenic risk score
(PRS) derived from genome-wide associations with high fasting
insulin (Scott et al., 2012) and the actual peripheral insulin
levels measured in children from the Avon Longitudinal Study
of Parents and Children (ALSPAC) cohort (Boyd et al., 2013;
Fraser et al., 2013). The genome-wide association study (GWAS)
of fasting insulin (fasting insulin GWAS) was performed in
adults where the insulin measured was collected from individuals
following a fasting period (Scott et al., 2012). Since our study
inspects the role of insulin in children, we used the ALSPAC
cohort’s data on peripheral insulin levels to identify the polygenic
markers most highly associated with peripheral insulin levels in
children. We further refined these markers to only include single
nucleotide polymorphisms (SNPs) that significantly predicted
peripheral insulin levels in ALSPAC. Because brain insulin levels
are not readily measured or available, a genetic marker reflecting
peripheral insulin levels in children was used to inspect insulin’s
role in neurodevelopmental behaviors. Using the SNPs identified
in the discovery cohort ALSPAC, we calculated a refined
PRS (rPRS) in an independent cohort [Maternal Adversity,
Vulnerability and Neurodevelopment (MAVAN)] to investigate
the interaction between the genetic background associated with
fasting insulin in children and ELA to predict childhood
impulsivity. Our methodology allowed us to create a PRS that is
highly associated with fasting insulin in children (ALSPAC) and
then investigate behavior outcomes in an independent cohort of
children (MAVAN), thus refining a GWAS obtained by an adult
cohort (Scott et al., 2012).

MATERIALS AND METHODS

Participants
We used data from two prospective birth cohorts, one based
in England (ALSPAC) (Northstone et al., 2019) and the other
in Canada (MAVAN) (O’Donnell et al., 2014) to analyze
the gene by environment interaction effects on cognitive
neurodevelopment outcomes.
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Avon Longitudinal Study of Parents and Children
The ALSPAC cohort included pregnant women from the county
of Avon, United Kingdom (Boyd et al., 2013; Fraser et al., 2013;
Northstone et al., 2019) (N = 14,541) with expected delivery dates
between April 1991 and December 1992. Additional recruitment
(N = 913) was done during later phases, bringing the total sample
size to 15,454. Participants provided informed written consent to
participate in the study. Consent for biological samples had been
collected in accordance with the Human Tissue Act (2004). Ethics
approval for the study was obtained from the ALSPAC Ethics
and Law Committee and the local research ethics committees (a
full list of the ethics committees that approved different aspects
of the ALSPAC studies is available at http://www.bristol.ac.uk/
alspac/researchers/research-ethics/). Data were collected during
clinic visits or with postal questionnaires. Please note that the
study website contains details of all the data that is available
through a fully searchable data dictionary and variable search tool
at http://www.bristol.ac.uk/alspac/researchers/our-data/. For the
purpose of our analysis, we included children of 8.5 years old (an
age closer to the outcome measure in the MAVAN cohort), whose
mothers had a pregnancy duration between 37 and 42 weeks, a
maternal age at delivery greater than 18 years, a child birthweight
greater than 2 kg, child alive at 1 year of age, and we only
included singleton pregnancies in the analysis. Figure 1 describes
the subset of the sample for the purpose of the analyses in the
ALSPAC cohort. There were 467 subjects with complete data
available for the analyses.

Maternal Adversity, Vulnerability and
Neurodevelopment Project
The study MAVAN is a birth cohort that followed up children
from birth up to 6 years of age in Montreal (Quebec) and
Hamilton (Ontario), Canada, and has 630 recruited participants
(O’Donnell et al., 2014). Mothers aged 18 years or above,
with singleton pregnancies, and fluent in French or English
were included in the study. Several maternal chronic illnesses,
including placenta previa and history of incompetent cervix,
impending delivery, a fetus/infant affected by a major anomaly,
or gestational age < 37 weeks composed the exclusion criteria.
Approval for the MAVAN project was obtained by the ethics
committees and university affiliates (McGill University and
Université de Montréal, the Royal Victoria Hospital, Jewish
General Hospital, Centre hospitalier de l’Université de Montréal
and Hôpital Maisonneuve-Rosemount) and St. Joseph’s Hospital
and McMaster University, Hamilton, QC, Canada. Informed
consent was obtained from all participants. Figure 2 describes the
criteria and selection of MAVAN sample for the purpose of our
research. There were 101 subjects with complete data available
for the analyses.

Genotyping
Avon Longitudinal Study of Parents and Children
Children in the ALSPAC cohort were genotyped using the
Illumina HumanHap550 quad chip genotyping platform by the
Wellcome Trust Sanger Institute, Cambridge, United Kingdom
and the Laboratory Corporation of America, Burlington, NC,
United States (Richmond et al., 2017). Standard quality control

(QC) procedure was applied: participants with inconsistent self-
reported and genotyped sex, minimal or excessive heterozygosity,
high levels of individual missingness (>3%), and insufficient
sample replication (IBD < 0.8) were excluded. Also, SNPs
with call rate < 95%, MAF < 1%, or not in Hardy-Weinberg
Equilibrium (HWE; p < 5 × 10−7) were removed. Following
the QC, the genotyping data was imputed using Impute
v3 and Haplotype Reference Consortium (HRC) imputation
reference panel (release 1.1), which resulted in 38,898,739 SNPs
available for analysis.

The population structure of ALSPAC cohort was described
using principal component (PC) analysis (Patterson et al., 2006;
Price et al., 2006), which was conducted on the genotyped
SNPs with MAF > 5% with the following pruning parameters
for linkage disequilibrium: 100-kilobase sliding window, an
increment of 5 SNPs, and variance inflation factor (VIF)
threshold of 1.01. To account for population stratification, the
first ten PCs were included in the analysis.

Maternal Adversity, Vulnerability and
Neurodevelopment
Genome-wide platforms (the Infinium PsychArray v1 or the
PsychChip v1.1/v1.2, Illumina, Inc.) were used to genotype
229,456 autosomal SNPs of buccal epithelial cells of children in
MAVAN, according to the manufacturer’s guidelines. SNPs with
call rate < 95%, MAF < 5%, or not in HWE (p < 1× 10−30) were
removed. Afterward, imputation using the Sanger Imputation
Service (McCarthy et al., 2016) and HRC as the reference
panel (release 1.1) was performed and SNPs with an info
score > 0.80 were retained for the analysis, resulting in
16,249,769 autosomal SNPs.

Similar to the ALSPAC cohort, the population structure
of the MAVAN cohort was evaluated using PC analysis of
all autosomal SNPs that passed the QC and not in high
linkage disequilibrium (r2 > 0.2) across 50-kilobase region and
an increment of 5 SNPs (Price et al., 2006). Based on the
inspection of the scree plot, the first three PCs were the most
informative of population structure and were included in all
subsequent analyses.

Polygenic Risk Scores
The rPRS procedure was administered in this study to inspect
the interaction between genetic markers for fasting insulin and
ELA to predict impulsivity in children using a GWAS constructed
from adult data.

Avon Longitudinal Study of Parents and Children
The fasting insulin PRS was calculated using the fasting insulin
GWAS, shown in Figure 3 (N = 108,557) from the Meta-Analyses
of Glucose and Insulin-related traits Consortium (MAGIC)
(Scott et al., 2012). Prior to any PRS calculation, the GWAS
was subjected to LD clumping with r2 of 0.2 and ALSPAC
cohort as a reference dataset. PRS at 100 different GWAS p-value
thresholds were calculated for each subject in the ALSPAC
cohort as a sum of the risk alleles count weighted by the
effect size described in the GWAS for each SNP (Dudbridge,
2013; Wray et al., 2014). Using ALSPAC as a discovery cohort,
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FIGURE 1 | Block scheme describing sample selection in the ALSPAC cohort.

we identified the threshold at which the PRS had the best
prediction of peripheral insulin levels in children at age 8.5 years.
The strongest (R2 = 0.039) and most significant (p = 0.071)
association in children at age 8.5 years was identified to be
with a PRS at pt-initial = 0.24 threshold (consisting of 10,296
SNPs) as shown in Figure 4. To further refine the PRS, a
process explained through Figure 5, we ran a linear regression
analysis for each SNP within the 0.24 threshold PRS to find
which SNPs were significantly associated (pt-refined < 0.05) with
the peripheral insulin levels. There were 57 SNPs significantly
associated with peripheral insulin levels within the SNPs included
in the 0.24 threshold. The list of these SNPs can be found
in Table 1 with their corresponding p-values from the fasting

insulin GWAS (Scott et al., 2012). These 57 SNPs included
in the rPRS were ranging in p-values from 0.000123 to 0.238
in the original GWAS (Scott et al., 2012), however, they were
all significantly associated with the peripheral insulin levels
in children (all p-values < 0.05). This finding confirms that
SNPs associated with adult risk for high fasting insulin may
not be the same as SNPs associated with children risk for high
fasting insulin.

Maternal Adversity, Vulnerability and
Neurodevelopment
The 57 SNPs within the PRS that we discovered to be associated
with peripheral insulin levels in the ALSPAC cohort were used
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FIGURE 2 | Block scheme describing sample selection in the MAVAN cohort.

FIGURE 3 | Genome-wide association study (GWAS) for fasting insulin from the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC). Each dot
represents a single nucleotide polymorphism (SNP), with the x-axis showing genomic location and the y-axis showing the association level of each respective loci to
fasting insulin. The gene names for all significant SNPs are displayed in the plot. This plot was obtained from FUMA.

to construct a PRS in MAVAN. The PRS was standardized. Since
the SNPs were selected through a refinement process of a PRS
that was created through conventional means, we henceforth
refer to this PRS in the MAVAN cohort as the rPRS. The rPRS
was calculated similarly to the PRS scores in ALSPAC, as a
weighted sum of 57 SNPs.

Early Life Characterization
To investigate the interaction between the PRS and ELA,
we estimated adversity exposure using a cumulative score
involving different environmental variables (Silveira et al., 2017)
for each individual in the MAVAN cohort as described by
Silveira et al. (2017) and de Lima et al. (2020). The adversity
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FIGURE 4 | Association between fasting insulin PRS and peripheral insulin
levels. We calculated polygenic risk scores from the fasting insulin GWAS at
100 different thresholds. Using ALSPAC as a discovery cohort, we identified
the PRS threshold with the strongest correlation in predicting peripheral insulin
levels in children at age 8.5 years. The strongest (R2 = 0.039) and most
significant (p = 0.071) association was identified to be 0.24 in children at age
8.5 years in the ALSPAC cohort [N = 467; pt−initial = 0.24 (10,296 SNPs)].

score was created by combining several markers of adversity.
The following instruments were included as markers in the
score: (1) The Health and Well-Being Questionnaire (Kramer
et al., 2001) to obtain information on how often and to what
degree the woman lacked money for basic needs (Kanner
et al., 1981) using the Daily Hassles Scale, on chronic stress
with the romantic partner (Pearlin and Schooler, 1978), on
conjugal violence (Newberger et al., 1992; Parker et al., 1993), on
anxiety during pregnancy (Dunkel-Schetter, 1998), on birth size
percentile, and on gestational age; (2) Smoking during pregnancy;
(3) Household gross income (Daveluy et al., 1998); (4) Child
Health Questionnaire (Plante et al., 2002) to assess acute, chronic
conditions and hospitalizations; (5) Maternal mental health
through the Beck Depression Inventory (BDI) (Beck and Ward,
1961), Edinburgh Postnatal Depression Scale (EPDS) to screen
for postpartum depression (Cox et al., 1987), and State-Trait
Anxiety Inventory (STAI) to measure psychological components
of state and trait anxiety (Spielberger, 2010); (6) Attachment
through the Preschool Separation-Reunion Procedure (PSRP)
applied at 36 months (Cassidy et al., 1992) (Solomon and George,
2008); (7) Family Assessment Device to assess family functioning
based on the McMaster Model of Family Functioning (Moss et al.,
2004). For every item with a continuous score, we used either the
15th or the 85th percentile as the cut-off to add a point to the
adversity score. Presence of each component yields one point, and
the adversity score represents the summation of the points where
the higher the score, the more adversity has been experienced
by the individual.

Behavioral Outcomes
In the Snack Delay Task at 36 months (Golden et al., 1977;
Campbell et al., 1982; Vaughn et al., 1984; Kochanska et al.,
1996), the children placed their hands flat on a table in front
of them and restrained themselves from eating a single M&M
candy from under a glass cup placed on the table. The children
were told to delay eating until the research assistant rang a bell.

The test was conducted over four distinct trials (using delays of
10, 20, 15, and 30 seconds). Halfway through each trial delay,
the experimenter lifted the bell but did not ring it. The children
received a behavioral score for each trial (“behavior code”) based
on attempts to eat the candy before the bell rang. Coding ranged
from 1 to 7, as displayed in Table 2. For each trial, the ability
of the children to wait for the M&M was also recorded (snack
delay latency to eat: 1 = child keeps hands on the table during the
entire time either before OR after the bell is lifted and 2 = child
keeps hands on the table during the entire time before AND after
the bell is lifted). This latter score (1 or 2) and the behavioral
code score (ranging from 1 to 7) culminated to provide a total
performance score (ranging from 2 to 9) for each of the four
trials. A “global cooperation score” rated the ability of the child
to engage and complete the task (0 = the child is unwilling or
unable to engage in the task; 1 = the child is unwilling or unable
to complete the task because of feeling tired, angry, irritable, or
sick, or does not have the capacity to understand the instructions;
2 = the child does all the trials but has comprehensive or
motivational difficulties, or is passive or inhibited, and 3 = the
child understands the task well and participates). Children with
a global score of 3 were included in the analysis. The Snack
Delay Task was applied to children in the MAVAN cohort at the
age of 36 months.

Statistical Analysis
Data analyses were carried out using R (R Core Team, 2019).
Baseline comparisons between low and high PRS groups were
done in the MAVAN cohort. Mean differences of the main
confounding variables were assessed using the Student’s t-test for
independent samples if they were continuous variables or the chi-
square test if they were categorical variables. Significance levels
for all measures were set at α < 0.05.

We used linear regression models to test the association
between the outcome of impulsivity, evaluated using the Snack
Delay Task in this case, and the predictors including adversity
exposure, rPRS, and their interaction term with sex and the
first three genomic PCs as covariates. In summary, we ran the
following three linear regression models:

1. Outcome∼ sex+ PC1+ PC2+ PC3+ Adversity Score
2. Outcome∼ sex+ PC1+ PC2+ PC3+ rPRS
3. Outcome ∼ sex + PC1 + PC2 + PC3 + Adversity

Score× rPRS

To identify the form of interaction between the rPRS and the
adversity score, we used Roisman’s method (Roisman et al., 2012;
Belsky et al., 2015) of simple slopes analysis and examined the
regions of significance (RoS) to determine the range of values
of the predictor for which regression of the outcomes on the
moderator (rPRS) is statistically significant. To explore the form
of interaction, Roisman also recommends the use of two metrics
designed to help identify between diathesis-stress and differential
susceptibility models: the proportion of interaction (PoI) index
and the proportion affected (PA) or the percentage above index.
Both metrics show a preponderance of differential susceptibility
when greater than a certain threshold. As a sub-analysis to handle
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FIGURE 5 | Refined PRS (rPRS) methodology. This flow chart depicts the rPRS process. Each color in the gradient on the fasting insulin GWAS represents a
threshold. In step 1, we used 100 different thresholds between p-value 0 and 1 from the fasting insulin GWAS and found the threshold that best predicts insulin
levels in ALSPAC Children (PRS threshold 0.24), indicated by the white dotted line on the GWAS. In step 2, we ran a correlation for each SNP within the 0.24 PRS
threshold to find which SNPs significantly predicted (p < 0.05) the peripheral insulin levels. Lastly, in step 3, using the SNPs that significantly predicted peripheral
insulin levels from step 2, we calculated the rPRS in the MAVAN cohort.

the missing cases for the adversity score, we imputed the data
with hot-deck imputation (hot.deck package in R) (Cranmer
et al., 2020), assuming missing at random mechanisms. We
imputed all adversity score components, calculated the extended
adversity score on an additional 98 subjects, and repeated the
linear regression analysis on the imputed datasets of 199 subjects
each, reporting the pooled estimates from 30 imputed sets.

Enrichment Analysis
Enrichment analyses for gene ontologies were performed using
MetaCoreTM (Clarivate Analytics) on the SNPs that compose
the fasting insulin rPRS. Furthermore, gene-based enrichment
analyses were performed in FUMA1 (MacArthur et al., 2017;
Watanabe et al., 2017; Aguet et al., 2019) after mapping the SNPs
composing the fasting insulin rPRS to genes with the biomaRt
package in R (Durinck et al., 2005, Durinck et al., 2009). We

1https://fuma.ctglab.nl/

also used GeneMANIA (Warde-Farley et al., 2010) to determine
if the genes were part of a network. Specifically, the gene list
derived from the fasting insulin rPRS is entered in GeneMANIA.
GeneMANIA then extracts linked mRNA expression data from
the Gene Expression Omnibus (GEO) and connects co-expressed
data to form functional association networks. The node sizes
represent gene scores indicating the number of paths that start
at a given gene node and end up in one of the query genes.

RESULTS

Baseline Characteristics
Baseline comparisons between low and high rPRS groups were
performed in the MAVAN cohort. No differences were found for
the main confounding variables in the MAVAN cohort, as shown
in Table 3. Participants’ characteristics for ALSPAC cohort are
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TABLE 1 | Single nucleotide polymorphisms (SNPs) included in the
refined PRS for MAVAN.

SNP P-value (Fasting Insulin GWAS)

rs7574670 0.000123

rs13225097 0.000846

rs196808 0.005017

rs6885750 0.010573

rs4841679 0.011172

rs870870 0.018874

rs2665316 0.019226

rs4405319 0.031478

rs11724118 0.045920

rs10804992 0.046243

rs6552502 0.058479

rs397234 0.058594

rs11898925 0.061942

rs1866816 0.061986

rs7807790 0.062096

rs2965106 0.062112

rs275146 0.062816

rs7155790 0.065848

rs9840453 0.067170

rs11693862 0.073821

rs1492377 0.074815

rs1377315 0.083513

rs4686837 0.088538

rs4803789 0.089959

rs10520768 0.090182

rs2295308 0.093524

rs7598551 0.094168

rs7332334 0.101271

rs728586 0.103540

rs4779876 0.103930

rs1935492 0.103989

rs7983099 0.112130

rs923554 0.118880

rs1885414 0.123295

rs9863801 0.126196

rs11891202 0.135653

rs4382157 0.136635

rs5753103 0.150747

rs17035960 0.151128

rs884972 0.151753

rs10002944 0.154237

rs10145606 0.156256

rs892114 0.159405

rs6543408 0.178625

rs4766912 0.184907

rs7138803 0.185122

rs2544164 0.197849

rs12219445 0.198058

rs1664256 0.199221

rs11603179 0.201429

rs11820303 0.211331

rs2341647 0.217823

rs6888754 0.219617

rs9808140 0.221567

rs1058065 0.223190

rs12731669 0.231006

rs7243066 0.238047

TABLE 2 | The Snack Delay Task was performed at 36 months in the children
from the MAVAN cohort.

Snack Delay – Test Scoring

1 Eats before bell is lifted

2 Eats after bell is lifted

3 Touches candy before bell is lifted

4 Touches candy after bell is lifted

5 Touches cup or candy before bell is lifted

6 Touches cup or candy after bell is lifted

7 Waits for bell to ring before touching cup or candy

Each child was asked to place their hands flat on a table and to restrain themselves
from eating a single M&M candy from under a glass cup placed on the table in front
of them. The children were instructed to delay eating until the research assistant
rang a bell. The test was conducted over four distinct trials (using delays of 10, 20,
15, and 30 seconds) and the scores of each trial were added together for the final
cumulative score.

reported in Table 4. Table 5 details the degree of missing data
for each component of the adversity score.

Interaction Between Fasting Insulin PRS
and the Adversity Score Associates With
Impulsivity in MAVAN
We performed a linear regression analysis to investigate the
interaction effect between the refined genetic score (rPRS)
and adversity exposure on the Snack Delay Task in the
MAVAN cohort applied at 36 months, adjusted by population
stratification PCs and sex. A significant interaction effect was
observed, as displayed in Figure 6, between fasting insulin
rPRS and adversity exposure on impulsivity measured by the
Snack Delay Task [β = −0.329, p = 0.024]. Simple slope
analysis at ± 1 SD rPRS showed that higher ELA is linked to
more impulsivity in children with higher rPRS [β = −0.551,
p = 0.009]; there was no effect of adversity on impulsivity in
the low rPRS group [β = 0.139, p = 0.348]. The region of
significance is to the right side of the red line in Figure 6,
which suggests that the association between impulsivity and
the rPRS is significant in children highly exposed to adversity.
We also analyzed the form of the interaction according to
Roisman (Roisman et al., 2012). The RoS, as well as the
PoI (0.984) and PA (0.782) are consistent with the diathesis-
stress model.

To obtain a distribution of the statistics of interest (interaction
coefficient) and its confidence interval, we applied a non-
parametric bootstrap, which resulted in estimated beta = −0.329
(SE = 0.1764) and 95% confidence interval (−0.6729, −0.0202)
for the effect of interaction between rPRS and adversity on Snack
Delay Task in MAVAN.

The main effect of the refined genetic score (rPRS) on the
Snack Delay Task in MAVAN [N = 101] applied at 36 months,
adjusted by PCs and sex, was not significant [β = −0.190,
p = 0.126]. The main effect of adversity on the Snack Delay Task
in MAVAN [N = 101] applied at 36 months, adjusted by PCs
and sex, was also not significant [β = −0.131, p = 0.171]. When
performing imputations on the missing cases of the adversity
score (final N = 199), the effect of the interaction between rPRS
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TABLE 3 | Participants’ characteristics in MAVAN.

Sample descriptive Total (n = 101) Low PRS (n = 50) High PRS (n = 51) p

Sex – male 44.6% (45) 42.0% (21) 47.1% (24) 0.756

Maternal age at birth (years) 30.51 (4.65) 30.17 (4.36) 30.84 (4.94) 0.470

Gestational age (weeks) 39.32 (1.17) 39.34 (1.27) 39.29 (1.08) 0.846

Birth weight (g) 3,326 (458) 3,371 (472) 3,281 (443) 0.325

Duration of breastfeeding (months) 7.23 (4.82) 6.91 (4.83) 7.54 (4.83) 0.511

Smoking during pregnancy 11.9% (12) 10.0% (5) 13.7% (7) 0.786

Maternal education – university degree or above 62.4% (63) 68.0% (34) 56.9% (29) 0.342

Low income at 36 m 11.2% (11) 12.2% (6) 10.2% (5) 1.000

Self-reported ethnicity (Caucasian) 78.1% (75) 80.9% (38) 77.1% (37) 0.2

Numbers are presented as mean (SD) or percentage (number of participants). Comparison between low/high PRS groups were carried out using Student t-test for
continuous variables and chi-square test for categorical variables.

and adversity score on Snack Delay outcome was no longer
statistically significant [β = 0.082, p = 0.168].

TABLE 4 | Participants’ characteristics in ALSPAC.

Sample descriptive Total (n = 467)

Sex – male 52.5% (245)

Maternal age at birth (years) 29.89 (4.44)

Gestational age (weeks) 39.76 (1.18)

Birth weight (g) 3,532 (482)

Breastfeeding at 3m (yes) 51.5% (240)

Smoking during pregnancy (yes) 19.1% (89)

Maternal education – university degree or above 18.7% (84)

Low Socioeconomic Status (SES) measured at 2 years, 9 months 37.3% (174)

Self-reported ethnicity (White) 99.8% (457)

Numbers are presented as mean (SD) or percentage (number of participants).

TABLE 5 | Details of missing data for specific components of the adversity score
in Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN).

Instruments included in
the Adversity score

Number of
items

N
available

Missing

Birth information 2 199 0

Household gross income 1 199 0

Child hospitalization 1 199 0

Family Assessment Device 12 136 63

Attachment (scoring 28 min
video of parent-child
interaction)

1 165 34

Beck Depression Inventory 21 170 29

Edinburgh Postnatal
Depression Scale

10 182 17

State-Trait Anxiety Inventory 40 195 4

Pregnancy anxiety 1 172 27

Smoking during pregnancy 1 172 27

Marital strain 9 193 6

Daily Hassles Scale 5 199 0

Physical/sexual abuse 2 199 0

Adversity score Composite 101 98

For the main analysis, only complete cases were considered. A sub-analysis after
imputing the missing variables using hot deck imputation was also performed.

FIGURE 6 | Maternal Adversity, Vulnerability and Neurodevelopment
regression analysis. rPRS was calculated for children in MAVAN using the
fasting insulin GWAS with significant SNPs identified in ALSPAC through the
rPRS methodology. Linear regression analysis showed a significant interaction
between fasting insulin rPRS and adversity exposure on impulsivity [N = 101,
β = –0.329, p = 0.024], tested by the Snack Delay Task applied at 36 months:
higher adversity is linked to higher impulsivity in children with higher rPRS
[rPRS = mean ± 1 SD, β = –0.551, p = 0.009], represented by the solid blue
line. The dashed light blue line represents the low rPRS group, where the
effect of adversity on impulsivity using the Snack Delay Task was not
significant [β = 0.139, p = 0.348]. We also analyzed the form of these
interactions according to Roisman. The regions of significance, as well as the
proportion of interaction (PoI = 0.984) and proportion affected (PA = 0.782)
are consistent with the diathesis stress form of interaction.

Enrichment Analysis on Fasting Insulin
PRS
Enrichment analyses (MetaCoreTM) of the SNPs that compose
the fasting insulin refined genetic score (rPRS) show that this
subset of SNPs was significant for several nervous system
development processes, as shown in Figure 7. Enrichment
analysis (FUMA, see text footnote 1) of the genes mapped
by the SNPs that compose the fasting insulin rPRS showed
that these genes were significantly differentially upregulated in
the following brain specific tissues, as shown in Figure 8:
hippocampus, frontal cortex Brodmann area 9 (BA9),
anterior cingulate cortex Brodmann area 24 (BA24), and
the hypothalamus. Furthermore, these genes also had a
significant GWAS enrichment for accelerated cognitive decline
after conversion of mild cognitive impairment to Alzheimer’s
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disease (FDR adjusted p-value = 0.013). Using GeneMANIA
(Franz et al., 2018), we discovered that this set of genes was part
of a single co-expression network in Homo sapiens, as shown
in Figure 9, indicating their shared involvement in biological
processes (Ma et al., 2018).

DISCUSSION

The purpose of this study was to explore whether the genetic
background associated with higher fasting insulin interacts with
ELA to predict impulsivity, tested using the Snack Delay Task,
in children. We demonstrated that the calculation of a rPRS,
consisting of SNPs most associated with peripheral insulin levels
in children and representing the risk for high fasting insulin
levels early in life, can be derived from the GWAS of fasting
insulin in adults. This refined polygenic score interacted with
ELA exposure to predict impulsivity in children in the MAVAN
cohort. Additionally, we observed that the SNPs composing the
fasting insulin rPRS and their mapped genes were significantly
correlated with various nervous system development processes.

Instead of using an arbitrary p-value threshold to calculate the
PRS, we calculated the PRS at one hundred different thresholds
in the independent cohort ALSPAC as a training sample. To
calculate the PRSs, we applied the PRSoS tool (Chen et al., 2018).
For each threshold, we explored the association between PRS
and peripheral insulin levels within the ALSPAC cohort. This
technique allowed us to identify the threshold of 0.24 to best
predict peripheral insulin levels in children (Chen et al., 2020).
To further refine this PRS, we associated each SNP within the
subset obtained from the 0.24 threshold PRS with peripheral
insulin levels in the discovery cohort ALSPAC and selected only
the SNPs that significantly predicted the peripheral insulin levels
in children to calculate our final rPRS. This refinement was
necessary as the genetic markers for fasting insulin levels in
adults may not be comparable to the genetic markers for fasting
insulin levels in children. Since there is no GWAS available
to identify the SNPs most associated with risk for high fasting
insulin levels in children, we took an alternative approach, the
rPRS, that allowed us to identify a subset of SNPs associated
with high fasting insulin levels in children. Usually, analyses
identifying which PRS threshold should be used are based on
the greatest proportion of variance explained in the outcome,
which would be the Snack Delay Task in this study. That does
not take into account which PRS threshold is best predicting
the phenotype composing the PRS itself, making our approach
distinctive. Another strength in our approach is that we used
a training sample to identify the best PRS threshold to use in
our test sample. Subsetting the list of SNPs further adds to our
distinctive methodology because we can be confident that the
genetic background of fasting insulin used within the analysis
is in fact correlated with actual peripheral insulin levels in
children. The rPRS is a better predictor than peripheral insulin
levels because the genetic background represents a more stable
characteristic than the fluctuant insulin levels, which oscillate
diurnally and may not be an accurate representation of a child’s
fasting insulin levels later in adulthood. By using the rPRS, which

was calculated using the GWAS related to adult fasting insulin
levels, we obtained a more accurate representation of the risk of a
child to develop high fasting insulin. There is no overall effect of
either adversity score or rPRS, but there is an interaction effect of
adversity and rPRS on impulsivity at 36 months. Specifically, the
effect of adversity on impulsivity was seen for individuals with a
higher rPRS for fasting insulin.

Although the results of the interaction between rPRS and
adversity were no longer significant after imputing the missing
cases for the adversity score, we want to emphasize that the
adversity score is a composite measure computed based on
several different tools and assessments, including total scores of
instruments (e.g., BDI) or complex behavioral tasks such as the
Attachment profile assessed through detailed coding of filmed
interactions (Strange Situation Task) (Table 5). Therefore, as
much as imputations can be technically performed, we are not
convinced that the imputed data can capture the multifaceted
feature of our unique composite score, so our main analysis is
focused on complete cases. Our missing data was mostly related
to unit-level non-response (no information was collected for
the respondent on a specific survey/instrument/questionnaire)
rather than item non-response (the respondent was missing
one or two questions of the survey/instrument/questionnaire)
(Dong and Peng, 2013). Unit-level non-response can be more
challenging to impute with confidence (Yan and Curtin, 2010).
Relaxing the complexity of the adversity score mentioned above
and considering the missing components of the score as missing
items in the dataset, the hot-deck imputation was applied.
While imputation is useful and necessary to support analysis
and summarization, the imputation model should be properly
specified, which we believe is difficult to achieve in this particular
case. Some of the variables that compose the adversity score,
for example the Attachment security information, are derived
from a laboratory procedure designed to capture the balance
of attachment and exploratory behavior under conditions of
increasing moderate stress (Solomon and George, 1999), a
unique measure that is hardly comparable to any other measure
available in the dataset. Finally, we assumed a missing at random
mechanism for the missing data, although adversity itself could
be associated with the missingness pattern (Howe et al., 2013;
Houtepen et al., 2018). Therefore, the results of this sub-analysis
should be considered with caution.

The gene ontology enrichment analyses, done through
MetaCoreTM, showed that the SNPs composing the fasting
insulin rPRS are associated with nervous system development.
Some of the enriched processes should be highlighted, such
as the neurophysiological process of dopamine D2 receptor
signaling in the central nervous system. The dopamine system
has been linked to impulsive behavior in animal models and
human studies (van Gaalen et al., 2006; Dalley and Roiser,
2012). This finding is interesting because it suggests a potential
neurodevelopment pathway to support the relationship between
the genetic background linked to insulin, ELA, and dopamine.
Previous animal models from our laboratory have demonstrated
that animals exposed to ELA showed a pronounced aversion
to delayed rewards in addition to an increase in the medial
prefrontal cortex D2 levels (Alves et al., 2019). Additionally, our
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FIGURE 7 | Enrichment analysis through MetacoreTM. Enrichment analysis of the SNPs that compose the fasting insulin rPRS shows that this subset of SNPs is
significant for certain nervous system development processes: neurophysiological process of GABA-B receptor signaling at postsynaptic sides of synapses
(p = 0.019, FDR = 0.05), neurophysiological process of dopamine D2 receptor signaling in the CNS (p = 0.034, FDR = 0.05), single-stranded RNA binding
(p = 0.022, FDR = 0.038), and development involving neurogenesis and synaptogenesis (p = 0.019, FDR = 0.023).

FIGURE 8 | Brain tissue differentially upregulated by fasting insulin genes. Enrichment analysis through FUMA of the genes mapped by the SNPs that compose the
fasting insulin rPRS show that these genes are significantly differentially upregulated in brain specific tissues identified in the figure.

laboratory has shown that animals that have experienced ELA
have a delay in dopamine release in the nucleus accumbens in
response to palatable food, but insulin administration reverts this
delayed effect (Laureano et al., 2019). These studies show that the
relationship between ELA and dopamine is moderated by insulin.
The set of fasting insulin SNPs identified in this present study
could lead to further insight on the genetic background linking
dopamine to impulsivity. Since the mechanism involving this
association is still unknown, our findings bring us a step closer
to this understanding.

Enrichment analyses in MetaCoreTM revealed that the rPRS
is enriched for single-stranded RNA binding. This suggests that
the SNPs composing the rPRS play a crucial role in post-
transcriptional regulation of gene expression (Guo et al., 2014)

and hence are key in gene by environment interaction effects.
The genes mapped to the SNPs in the rPRS are also differentially
upregulated in the frontal cortex BA9, which is known to
be involved in several executive functions such as short-term
memory, inductive reasoning, working memory, and planning
(Yogev-Seligmann et al., 2008). These findings, in addition to
the genes being enriched for the accelerated cognitive decline
GWAS, suggest that the genetic background associated with
fasting insulin can impact several neurodevelopment executive
functions, impulsivity being one of them, as well as risk
for cognitive decline later in life. This aligns with studies
that identified insulin receptors at hippocampal glutamatergic
synapses, suggesting a role of insulin in neurotransmission,
synaptic plasticity, and modulation of learning and memory,
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FIGURE 9 | Gene co-expression network. Enrichment analysis through GeneMANIA and Cytoscape of the genes mapped by the SNPs that compose the fasting
insulin rPRS show that these genes are part of a co-expression network in Homo sapiens. Red circles indicate query genes, whereas green circles indicate related
genes added by GeneMANIA. GeneMANIA translates mRNA expression data from Gene Expression Omnibus (GEO) to functional association networks that connect
co-expressed genes through the pink lines displayed. The node sizes represent gene scores, indicating the number of paths that start at a given gene node and end
up in one of the query genes.

while its inhibition is described in Alzheimer’s disease and related
animal models (Bomfim et al., 2012).

There are limitations within our study. Our discovery cohort
and our testing cohort both largely consist of White/European
ancestry, allowing us to identify the SNPs required within
one cohort and testing the hypothesis within another cohort
that has a similar population structure. Unfortunately, we
cannot be certain that this subset of SNPs will be relevant
for a different ancestry. Different ancestries have distinct allele
frequencies (Frudakis et al., 2003) and this could result in
peculiarities in the interaction between the genetic background
and the environment. In fact, differential linkage disequilibrium
between ancestral populations can produce false-positive SNPs
when local ancestry is ignored, meaning that gene expression
traits have differences as a function of genetic ancestry (Park
et al., 2018). Furthermore, several studies showed genomic
differences when investigating multi-ancestry genomic analysis

(Bryc et al., 2015; Sung et al., 2019). In addition to ancestry,
culture can impact one’s behaviors, especially those related to
executive functions like impulse control. There have been several
examples of gene-culture interactions such as the cultivators
in West Africa whose agriculture, which consisted of malaria-
carrying mosquitos, showed preference for the hemoglobin S
(HbS) “sickle-cell” allele to provide protection from malaria
(Livingstone, 1958). Similarly, Polynesians being exposed to cold
stress and starvation during their long open-ocean voyages may
have resulted in positive selection for thrifty metabolism leading
to type 2 diabetes susceptibility in present day Polynesians
(Houghton, 1990). This gene-culture evolution emphasizes that
one’s lifestyle and environment have lasting impact and could
be responsible for the differences seen in gene-environment
interactions. Unfortunately, to the best of our knowledge,
there is currently no fasting insulin GWAS available in a
different ancestry for us to address this limitation within our
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work. Future studies including a discovery cohort with peripheral
insulin information in children and testing cohort of similar
population structure in children are warranted.

These results together confirm that both ELA and the
biological machinery associated with higher insulin levels are
important factors influencing impulsivity in children. Our
analyses showed that the genetic background associated with
high fasting insulin levels moderates the effects of adversity
on childhood impulsivity. This reinforces the idea that insulin
signaling, which is implicated in metabolism and child growth,
also plays a role in neurodevelopment. Previous studies have
shown that impulsivity is a core feature of both psychopathology
and metabolic diseases (Schachar and Logan, 1990; Silveira et al.,
2012; Testa et al., 2019). Therefore, the interaction described
here could be the basis to explain the co-morbidity associated
with ELA exposure. Our results align with Hari Dass et al.
(2019), which used a biologically-informed polygenic score based
on insulin-related gene networks to predict both childhood
impulsivity and risk for dementia later in life.

In conclusion, our present findings provide support for the
impact of exposure to ELA in interaction with the genetic
profile associated with high fasting insulin in predicting executive
functions such as impulsivity in children. This research can be
highly impactful as it provides insights into the vulnerability of
executive function disorders early on in an individual’s life. The
biological mechanisms that we discovered to be involved in these
processes can inform the development of early interventions and
more efficient management of such health outcomes.
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Gene-by-environment interactions influence brain development from conception to
adulthood. In particular, the prenatal period is a window of vulnerability for the interplay
between environmental and genetic factors to influence brain development. Rodent and
human research demonstrates that prenatal maternal stress (PNMS) alters hippocampal
volumes. Although PNMS affects hippocampal size on average, similar degrees of
PNMS lead to different effects in different individuals. This differential susceptibility to
the effects of PNMS may be due to genetic variants. Hence, we investigated the role
of genetic variants of two SNPs that are candidates to moderate the effects of PNMS
on hippocampal volume: COMT (rs4680) and BDNF (rs6265). To investigate this, we
assessed 53 children who were in utero during the January 1998 Quebec ice storm. In
June 1998 their mothers responded to questionnaires about their objective, cognitive,
and subjective levels of stress from the ice storm. When children were 11 1/2 years
old, T1-weighted structural magnetic resonance imaging (MRI) scans were obtained
using a 3T scanner and analyzed to determine hippocampal volumes. We collected and
genotyped the children’s saliva DNA. Moderation analyses were conducted to determine
whether either or both of the SNPs moderate the effect of PNMS on hippocampal
volumes. We found that objective hardship was associated with right hippocampal
volume in girls, and that the BDNF and COMT genotypes were associated with left
hippocampal volume in boys and girls. In addition, SNPs located on COMT moderated
the effect of maternal objective distress in boys, and subjective distress in girls, on both
right hippocampal volume. Thus, we conclude that an individual’s genotype alters their
susceptibility to the effects of PNMS.

Keywords: prenatal maternal stress (PNMS), hippocampal volumes, COMT, BDNF, gene-by-environment
interactions, natural disaster
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INTRODUCTION

The hippocampus plays a key role in memory formation and
learning (Spalding et al., 2013; Voss et al., 2017) and has been
involved in spatial mapping and internalizing behaviors, such
as anxiety and depression (Engin and Treit, 2007; Gatt et al.,
2009; Gujral et al., 2017). In addition, the hippocampus is
involved in control of hypothalamic-pituitary-adrenal (HPA)
axis negative feedback (Snyder et al., 2011), and corticosteroid
exposure seems to be linked to hippocampal volume and
function (Sapolsky et al., 1990; Brown et al., 2004). Stressors
occurring between the fetal period and childhood, as well as
genetic factors [reviewed in Miguel et al. (2019)], can influence
hippocampal development, thereby inducing long-term effects
on brain structure and function.

Prenatal maternal stress (PNMS) is one such factor that
has been thoroughly researched for its effects on hippocampal
development in animals. These studies have provided substantial
evidence that PNMS affects hippocampal development (Charil
et al., 2010; Ortega-Martinez, 2015; Grigoryan and Segal, 2016).
Magnetic resonance imaging (MRI) scans demonstrate that
PNMS is associated with reduced hippocampal volume (Uno
et al., 1994; Schmitz et al., 2002; Coe et al., 2003). Although these
studies consistently demonstrate a reduction in hippocampal
volume following PNMS, Schmitz et al. (2002) report a sex-
specific effect, with reduced volume only observed in female rats,
while other studies find effects in both sexes.

In humans, Qiu et al. (2013) have demonstrated that increased
maternal anxiety during pregnancy was associated with reduced
hippocampal growth in the offspring’s first 6 months of life,
suggesting that maternal anxiety during pregnancy predicts
differences in hippocampal development; however, it remains
unclear whether it is the heritable trait of anxiety or exposure
to maternal stress hormones in the intrauterine environment
that precipitates this effect. Recent research yields inconsistent
results, such that stressful life events during the prenatal or early
postnatal period were not associated with hippocampal volume
(Marečková et al., 2018). Many studies have also investigated the
effect of postnatal stress on hippocampal structure in humans.
It has been demonstrated that patients with posttraumatic stress
disorder, as a result of adversity in early life or adulthood,
exhibit reduced hippocampal volume (O’Doherty et al., 2015;
Bromis et al., 2018). However, other research has failed to
replicate previous findings (De Bellis et al., 1999; Bonne et al.,
2001; Yamasue et al., 2003). For example, a study of Vietnam
war veterans with PTSD and their combat-naïve identical twins
suggests, in fact, that smaller hippocampal volumes represent
a pre-existing risk factor for developing PTSD in the face of
trauma (Shin et al., 2006). Taken together, the disparity in
findings concerning the effect of stress on hippocampal structure
in humans, and the different effects of PNMS in male and female
animal models, suggests that individuals may be differentially
susceptible to the effects of PNMS. Differential susceptibility can
occur as a function of genetic differences in the population that
alter an individual’s vulnerability to the effects of life events.

Indeed, single-nucleotide polymorphisms (SNPs) that affect
brain development were observed to moderate the effect of

maternal anxiety during pregnancy on the child’s brain structure.
For example, a SNP rs6265 converting a valine (Val) to
methionine (Met) on the brain-derived neurotrophic factor
(BDNF) gene, which promotes the growth, maturation and
survival of nerve cells, influences the degree to which maternal
anxiety induces DNA methylation in the offspring, and influences
the relationship between the offspring’s methylation and brain
volume (Chen et al., 2015). Specifically, this paper reports
that the Met/Met genotype in offspring was associated with
a greater impact of maternal anxiety on DNA methylation
and with a greater correlation between DNA methylation and
right amygdala volume. Meanwhile, the Val/Val genotype was
associated with a greater correlation between DNA methylation
and left hippocampal volume. Moreover, another study reported
that the interaction between the BDNF rs6265 Met allele and
low family cohesion is associated with smaller left hippocampal
volume in subjects with pediatric bipolar disorder (Zeni et al.,
2016). Rabl et al. (2014) explored gene -by- environment effects
between SNPs and adverse life events on hippocampal volume
in healthy individuals. Among the SNPs studied, catechol-O-
methyltransferase (COMT) Val158Met and BDNF Val66Met
moderated the association between adverse life events and
hippocampal volume in a large sample of healthy humans.
The rs4680 COMT gene variant induces a Val to Met amino
acid transition at codon 158 (Val158Met), resulting in a 4-fold
decrease in enzyme activity in Met carriers. Qiu et al. (2015)
investigated whether SNPs in the COMT gene of offspring could
moderate the effects of maternal anxiety on brain structure,
specifically prefrontal and parietal cortical thickness. The authors
found that among rs737865-val158met-rs165599 haplotypes, the
A-val-G haplotype exhibited a positive relationship between
maternal anxiety and the offspring’s cortical thickness in the right
ventrolateral prefrontal cortex and the right superior parietal
cortex. Meanwhile, the G-met-A haplotype exhibited a negative
relationship between maternal anxiety and the offspring’s cortical
thickness in the bilateral precentral gyrus and dorsolateral
prefrontal cortex. This demonstrates that particular COMT
genotypes confer heightened vulnerability of frontal and parietal
cortex regions to the effects of prenatal maternal anxiety. While
these studies demonstrate that SNPs moderate the relationship
between maternal anxiety and in utero neurodevelopment,
further research is required to elucidate this relationship. The
research to date has investigated only short-term effects of
maternal anxiety on brain structure, demonstrating effects on
children up to 6 months old.

Unlike animal studies, human research often lacks a randomly
assigned stressor. The limitation of stressors from human studies
is that they may be associated with an individual’s traits, such
as impulsivity or neuroticism, which may be transmitted to the
offspring genetically. If a pregnant woman experiences stress
that she or the father may have induced, in part, by their own
temperament (e.g., divorce or job loss), and their child grows up
to develop a similarly difficult temperament, it becomes almost
impossible to determine the extent to which the association
between the stress in pregnancy and the child’s difficulties are
due to genetic transmission, the intrauterine environment, and
the postnatal rearing environment. Natural disasters randomly
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affect large populations and have a sudden onset that affects
pregnant women in different stages of pregnancy. Project Ice
Storm provides a unique opportunity to determine the effects of
the mothers’ objective hardship, subjective distress and cognitive
appraisal of a stressor through a quasi-randomly assigned event.
Consequently, we use natural disasters to study the effects of
prenatal maternal stress on the development of the offspring.

In the current project, studying PNMS derived a natural
disaster, our goal was to (1) determine the effect of three measures
of PNMS (objective hardship, subjective distress, and a negative
cognitive appraisal) on left and right hippocampal volume in
young adolescents; (2) determine the effect of genetic variants
of COMT Val158Met and BDNF Val66Met on left and right
hippocampal volume; and (3) determine the extent to which
selected SNPs moderate the effect of PNMS on hippocampal
volume. Since sex is an important determinant for the effects
of stress on brain development, we expected that SNPs would
differentially affect males and females.

MATERIALS AND METHODS

Participants
Recruitment
Following the ice storm in January 1998, our research group
contacted obstetricians in the Montérégie, a region southeast
of Montreal, Canada that was highly affected by the crisis.
Physicians from four hospitals in the region identified women
who met the following criteria: (1) were pregnant during, or
within 3 months of the ice storm; (2) French Canadian; and
(3) 18 years old or older. The families that responded were
significantly better educated and had higher incomes than the
regional averages. Families who gave consent have been assessed
periodically. The protocols were approved by the Research Ethics
Board of the Douglas Hospital Research Centre.

Participants
In this study, 53 children who were in utero during the ice storm,
or were conceived within 3 months of the ice storm, were assessed
at the age of 11 1/2 years. Among the 53 children, 15 (28.3%) had
been in their first, 14 (26.4%) in their second, and 10 (18.9%)
in their third trimester on January 9, 1998 (the peak of the
ice storm). The remaining 14 (26.4%) children were conceived
within 3 months of the storm; they were also considered
as “exposed” because maternal stress hormones could still be
elevated within 3 months of a major stressor. The participants
included 27 boys and 26 girls for whom both brain and genotype
data were available. We included children who were conceived
within 3 months following the ice storm (preconception) because
of the potential for long-term effects of the ice storm which
continued to affect the population after the reference date of
January 9, 1998. All participants were right-handed.

Measures
Prenatal Maternal Stress
Objective hardship, subjective distress, and cognitive appraisal
measures were collected through maternal questionnaires mailed

to the families on June 1, 1998, 5 months after the beginning
of the ice storm.

Objective hardship
To estimate objective hardship of the mother, our group
developed a questionnaire with items to evaluate four categories
of exposure objectively (threat, loss, scope, and change).
Questions in each category quantified experiences such
as “number of days without electricity” and “number of
displacements from home”. Each category has a maximum score
of eight points and is summed to create the Storm32 score
(Laplante et al., 2007). In our sample, the Storm32 scores ranged
from 5 to 24 and averaged 11.55 (SD = 4.53).

Subjective distress
The subjective distress of mothers was evaluated using the
22-item Impact of Event Scale-Revised (IES-R) (Weiss and
Marmar, 1997), which includes questions concerning the severity
of posttraumatic stress-like symptoms in three categories
(hyperarousal, intrusion, and avoidance). The IES-R has good
internal consistency (α = 0.93) and satisfactory test-retest
reliability (r = 0.76) (Brunet et al., 2003) and was adapted to relate
specifically to the ice storm. A cutoff score of 33 is often used to
screen for probable PTSD. In our sample, the IES-R scores ranged
from 0 to 40 and averaged 9.43 (SD = 9.68).

Cognitive appraisal
The mother’s cognitive appraisal of the storm was assessed by
asking “If you think about all of the consequences of the ice
storm on your household members, would you say they were”
and providing five response options on a Likert scale [“Very
negative” (1), “Negative” (2), “None” (3), “Positive” (4), and
“Very positive” (5)]. As our interest is the effect of negative
cognitive appraisal about the ice storm on child outcomes, we
compared the “Negative cognitive appraisal group” (recoded as
0), which included participants who had rated the consequences
as very negative and negative, with a “Neutral/Positive cognitive
appraisal group” (recoded as 1), which included participants who
had rated the consequences as none, positive, or very positive.

Hippocampal Volume
MRI acquisition
Anatomical magnetic resonance imaging (MRI) was performed
at the Unité de Neuroimagerie Fonctionnelle (UNF) du
Centre de Recherche de l’Institut Universitaire de Gériatrie
de Montréal (CRIUGM) on a 3.0T Siemens MAGNETOM
Trio TIM Syngo (Siemens, Erlangen, Germany), with a
12-channel head coil. A total of 65 children underwent a
three-dimensional, high-resolution, whole brain, structural
T1-weighted magnetization-prepared gradient-echo image (MP-
RAGE) sequence; TR = 2,300 ms, TE = 2.98 ms, TI = 900 ms;
256 mm field of view, 1 mm slice thickness, 176 slices, sagittal
acquisition, time = 9 min. For this study, only 53 children’s data
were analyzed, as rest of 12 children had no genetic data.

MRI preprocessing
All MR images were converted from their standard Digital
Imaging and Communications in Medicine (DICOM) format to
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MINC2 (Medical Image NetCDF). Images were then corrected
for intensity non-uniformity and underwent normalization for
signal intensity (Talairach and Tournoux, 1988).

Total intracranial volume
For each subject, total intracranial volume (TIV) was
automatically obtained using the Brain Extraction based on
non-local Segmentation Techniques (BEaST) method (Eskildsen
et al., 2012). The resulting skull masks were then manually
corrected by an expert rater.

Automatic segmentation of the hippocampus
Bilateral hippocampal volumes, including subfields [(i) cornu
ammonis (CA) 1, (ii) CA2/CA3, (iii) CA4/dentate gyrus,
(iv) stratum radiatum/stratum lacunosum/stratum moleculare,
and (v) subiculum] were automatically segmented using the
Multiple Automatically Generated Templates brain segmentation
(MAGeT-Brain) algorithm, which includes input from digital
atlases by Winterburn et al. (2013), based on five high-resolution
(0.3 mm isotropic) T1-weighted images (two males and three
females, ages 29–57, avg. 37). The hippocampal atlases described
here are available freely online1 and when used with the MAGeT-
Brain2 segmentation technique produce reliable delineations of
the hippocampus, including subfields.

Manual corrections and normalization
Whole left- and right-hippocampal volumes were delineated
by merging the automated segmentation outputs of the
hippocampal subfields to produce a single label for the whole
hippocampus in each hemisphere. To increase the precision
and validity of volumetric results, all hippocampal labels
underwent manual corrections by an expert rater following the
Pruessner segmentation protocol (Pruessner et al., 2000). Finally,
to control for interindividual differences in total intracranial
volume that may account for differences in hippocampus
volume, hippocampal volumes were normalized by calculating a
hippocampal volume-total intracranial volume ratio (HCV/TIV).

Table 1 presents descriptive statistics for all of the PNMS,
demographic, and brain variables for boys and girls separately.

Genotype Assessment
When Project Ice Storm children were 8 1/2 years old, saliva
samples were collected during a laboratory assessment using
Oragene DNA self-collection kit (OG-500) (DNA Genotek)
and stored at room temperature until further analysis. DNA
extraction was performed using PrepIT-L2P kit (DNA Genotek)
according to the manufacturer’s instructions. DNA yield was
measured using NanoDrop 8000 Spectrophotometer V2.1
(Thermo Fisher Scientific). DNA was stored at −80◦C until
analysis. rs6265 (BDNF) and rs4680 (COMT) were genotyped
using Sequenom iPLEX Gold Technology (Ehrich et al., 2005) at
McGill University and the Génome Québec Innovation Centre.
All participants had call rates >98%, indicating generally good
quality DNA and results.

1info2.camh.net/kf-tigr/index.php/Hippocampus
2cobralab.ca/software/MAGeTbrain

Genotype Frequencies
The major/major homozygote, heterozygote, and minor/minor
homozygote genotype frequencies of each SNP are presented in
Table 2. In addition, we tested each SNP for accordance with
the Hardy-Weinberg equilibrium, which indicates whether the
genotype frequencies in our sample were representative of the
general population. Indeed, the SNP located on COMT met
the Hardy-Weinberg equilibrium; however, the SNP located on
BDNF could not be tested for the Hardy-Weinberg equilibrium
because the minor genotype was not represented. Although
studying BDNF using our sample was, therefore, limited, we
still assessed the effect of having 1 or 2 major BDNF alleles
on hippocampal volume because of the importance of this gene
in hippocampal development. SNP genotype coding for COMT
for the three different comparisons was as follows: AA (1) vs.
AG (2) vs. GG (3); AA (1) vs. AG + GG (2); GG (1) vs.
AA+AG (2). Genotype coding for the single BDNF comparison:
CC (1) vs. TC (2).

Control Variables
Many factors are known to alter fetal development, and thus,
induce long-term effects on hippocampal volume. To control
for this, we tested the effect of some of these factors (maternal
cigarette smoking during pregnancy, maternal alcohol use during
pregnancy, socioeconomic status, birth weight, and timing of
exposure during pregnancy) on HCV/TIV ratio in boys and girls.
We controlled for factors that were correlated with HCV/TIV.
The correlations between these potential control variables and
HCV/TIV are presented in Table 3.

Statistical Analysis
Correlations and ANOVAs were conducted to determine the
associations between PNMS and SNPs on HCV/TIV ratio.
Moderation hierarchical regression analyses were conducted to
determine whether either of the two SNPs moderate the effect
of PNMS on HCV/TIV ratio. More specifically, analyses tested
whether the two SNPs of interest moderate the effect of objective
hardship, subjective distress, and/or cognitive appraisal on left
and right HCV/TIV ratios. First, as mentioned above (Table 3),
potential covariates that correlated significantly with the outcome
were entered in the model. Accordingly, when testing for effects
in both left and right HCV/TIV ratio in boys, we controlled
for the number of glasses of alcohol the mother drank per
week during her pregnancy. In addition, for left HCV/TIV
ratio in girls we controlled for socioeconomic status (SES). No
potential covariates were added to the right HCV/TIV model in
girls. Additionally, for analyses focusing on subjective distress
or cognitive appraisal, objective hardship was included as a
covariate. Second, one of the components of prenatal stress
(objective hardship or subjective distress or cognitive appraisal)
was entered. Third, genotypes (COMT or BDNF) were entered:
analyses included the number of major or minor alleles, but
also dichotomized variables such that genotype groups included
either minor allele carriers (minor merged with heterozygote) vs.
major/major genotype carriers, or major allele carriers (major
merged with heterozygote) vs. minor/minor genotype carriers.
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TABLE 1 | Descriptive analysis of variables.

Sex Child Variables N Min Max Mean SD

Boys Objective PNMS 27 5.00 24.00 11.2593 4.26608
Subjective PNMS 27 0.00 40 10.2593 10.89316
Maternal cognitive appraisal 27
Negative 7 (25.9%)
Positive 20 (74.1%)
Number of days of pregnancy when ice storm happened 27 −62 274 89.93 101.424
Gestational age at birth (weeks) 27 32.29 41.29 39.4709 1.99009
Edinburgh postnatal depression score 26 1.00 16.00 7.7308 4.01555
Socioeconomic status (SES) Hollingshead scale 27 11.00 44.00 27.5926 10.39696
Number of cigarettes/day 27 0.00 15.00 1.2593 3.85898
Number of glasses of alcohol/week 27 0.00 2.00 0.1611 0.45454
Child birth weight 27 1655.0 4185.0 3405.945 611.0644
Left HCV 27 2302 3649 3002.48 339.067
Right HCV 27 2310 3406 2953.37 296.586
Left HCV_TIV RATIO 27 0.18 0.25 0.2125 0.01974
Right HCV_TIV RATIO 27 0.18 0.23 0.2092 0.01825
TIV 27 1243630 1603640 1412972.22 93490.764

Girls Objective PNMS 26 5.00 24.00 11.8462 4.85545
Subjective PNMS 26 0.00 24 8.5692 8.36712
Maternal cognitive appraisal 26
Negative 11 (42.3%)
Positive 15 (57.7%)
Number of days of pregnancy when ice storm happened 26 −73 261 92.38 99.407
Gestational age at birth (weeks) 26 32.86 41.43 39.4451 1.63997
Edinburgh postnatal depression score 26 1.00 13.00 5.1538 3.42569
Socioeconomic Status (SES) Hollingshead scale 26 11.00 65.00 26.9231 12.21449
Number of cigarettes/day 26 0.00 25.00 2.1538 5.40698
Number of glasses of alcohol/week 26 0.00 2.00 0.1182 0.43080
Child birth weight 25 1855.0 4432.0 3426.486 535.0978
Left HCV 26 2426 3322 2932.38 246.412
Right HCV 26 2350 3201 2864.00 233.635
Left HCV_TIV RATIO 26 0.18 0.27 0.2170 0.02025
Right HCV_TIV RATIO 26 0.18 0.25 0.2120 0.02002
TIV 26 1177870 1579900 1354365.38 83589.316

HCV, hippocampal volume; TIV, total intracranial volume.

TABLE 2 | Genotype frequencies.

Boys Girls

Major/Major
homozygote

Heterozygote Minor/Minor
homozygote

Major/Major
homozygote

Heterozygote Minor/Minor
homozygote

COMT rs4680 GG; Val/Val
3 (11.1%)

GA; Val/Met
20 (74.1%)

AA; Met/Met
4 (14.8%)

GG; Val/Val
5 (19.2%)

GA; Val/Met
8 (30.8%)

AA; Met/Met
13 (50.0%)

BDNF rs6265 CC; Val/Val
9 (33.3%)

CT; Val/Met
18 (66.7%)

TT not represented CC; Val/Val
4 (15.4%)

CT; Val/Met
22 (84.6%)

TT not represented

Frequency is represented in number of participants and percent of participants. For BDNF, the minor homozygous Met/Met genotype was not represented in our sample.

TABLE 3 | Associations between risk factors and HCV/TIV ratios in boys and girls.

Boys Girls

Left HCV/TIV ratio Right HCV/TIV ratio Left HCV/TIC ratio Right HCV/TIV ratio

Mother’s cigarettes during pregnancy r = −0.179 r = −0.202 r = −0.151 r = −0.314
Maternal alcohol during pregnancy r = −0.389* r = −0.418* r = 0.155 r = 0.313
Socioeconomic status r = −0.333# r = −0.281 r = 0.449* r = 0.247
Birth weight r = 0.309 r = 0.278 r = −0.040 r = −0.014
Timing of exposure during pregnancy r = 0.062 r = 0.047 r = 0.121 r = 0.106

r, Pearson’s correlation coefficient; #p < 0.10, *p < 0.05.
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Finally, the PNMS-by-SNP interaction term was added to the
model. All analyses were conducted for boys and girls separately.

RESULTS

Bivariate Correlations Between PNMS or
Genotype and HCV/TIV Ratio
As shown in Table 4, in boys, there was a marginally significant
correlation between greater objective hardship and larger left
HCV/TIV ratio (r = 0.324, p = 0.099). In girls, objective hardship
was positively correlated with right HCV/TIV ratio (r = 0.392,
p = 0.048). Neither subjective distress nor cognitive appraisal was
significantly associated with HCV/TIV ratio in girls or boys.

In boys, the COMT genotypes were correlated with left
HCV/TIV ratio (r = 0.561, p = 0.002) with a similar
trend on the right HCV/TIV ratio (r = 0.334, p = 0.089)
(Table 4). An ANOVA (p = 0.008, F = 5.917, df = 2) and
Tukey post hoc test demonstrated that in boys the major

homozygote genotype (GG) was significantly associated with
larger left HCV/TIV ratio compared to the heterozygote
(GA) (p = 0.037) and that of the minor homozygote (AA)
(Figure 1). For BDNF genes, there was a trend for the major
homozygote (CC) of the BDNF gene to be associated with
smaller Left HCV/TIV ratio (r = 0.369, p = 0.058) in boys
(Table 4), however, no significant finding for right HCV/TIV
ratio was observed.

In girls, there were no associations between COMT genotypes
and HCV/TIV. For BDNF genotypes, the major homozygote
genotype (CC) associated with larger left HCV/TIV ratio
(r =−0.457, p = 0.019), with a similar trend with right HCV/TIV
(r =−0.348, p = 0.082) (Figure 2).

Gene-by-Environment Interaction
Moderation hierarchical regression analyses were conducted to
test whether the two SNPs of interest moderate the effect of
objective hardship, subjective distress and cognitive appraisal on
the ratio of left and right HCV/TIV ratio.

TABLE 4 | Associations between PNMS and genotypes with HCV/TIV ratios in boys and girls.

Boys Girls

Left HCV/TIV ratio Right HCV/TIV ratio Left HCV/TIV ratio Right HCV/TIV ratio

Objective PNMS r = 0.324# r = 0.280 r = 0.305 r = 0.392*

Subjective PNMS r = −0.014 r = 0.317 r = 0.142 r = 0.023

Cognitive appraisal r = −0.093 r = 0.032 r = 0.103 r = −0.019

COMT (rs4680) r = 0.561** r = 0.334# r = −0.099 r = −0.259

BDNF (rs6265) r = 0.369# r = 0.160 r = −0.457* r = −0.348#

HCV, hippocampal volume; TIV, total intracranial volume.
r, Pearson’s correlation coefficient; #p < 0.10, *p < 0.05, **p < 0.01.
Genotype coding:
COMT: AA = 1, AG = 2, GG = 3.
BDNF: CC = 1, TC = 2.

FIGURE 1 | Effect of rs4680 (COMT) genotype on hippocampus/TIC ratio volume in boys. ∗p < 0.05.
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FIGURE 2 | Effect of rs6265 (BDNF) genotype on hippocampus/TIC ratio volume in girls. #p < 0.10, ∗p < 0.05.

Effect of PNMS, Genotype and Gene-by-Environment
Interaction on HCV/TIV Volume in Boys
For the left HCV/TIV ratio in boys
In the objective hardship model, we found that the covariate,
maternal alcohol consumption during pregnancy, explained
15.1% (p = 0.045) of variance in the left HCV/TIV. Next,
a marginally significant 9.3% of additional variance was
explained by objective hardship levels (p = 0.099): greater
hardship was associated with larger left HCV/TIV (Table 5).
The addition of the main effects of the genotypes increased
variance explained by 16.3% (p = 0.020) with significant
effects from COMT genotypes [major homozygotes (GG) vs.
heterozygotes (GA) vs. minor homozygotes (AA)], or 14.9%
(p = 0.026) additional variance explained when comparing
effects from major homozygotes (GG) vs. minor allele carriers
(AA + AG). The full models explained 40.6 and 39.2% of
variance, respectively. The main effect of minor homozygotes
(AA) vs. major allele carriers (AG + GG) and the interactions
were not significant.

In the subjective distress model, maternal alcohol
consumption and objective hardship explained a significant
24.4% of variance in the outcome (p = 0.035). Subjective distress
explained a non-significant additional 1.8% of variance. The
main effects of the COMT genotypes [major homozygotes
(GG) vs. heterozygotes (GA) vs. minor homozygotes (AA)]
significantly increased variance explained by 15.3% (p = 0.025)
while a significant additional 13.8% of the variance (p = 0.035)
was explained by the major homozygotes (GG) vs. minor-allele
carriers (AA + AG) genotypes. The full models explained 41.4
and 40.0% of variance, respectively. The main effect of minor
homozygotes (AA) vs. major allele carriers (AG+ GG) as well as
the interactions were not significant.

In the cognitive appraisal model, maternal alcohol
consumption during pregnancy and objective hardship
explained a significant 24.4% of variance in the outcome

(p = 0.035). Cognitive appraisal explained a non-significant
additional 0.7% of variance. The COMT genotype main effect
(major homozygote vs. heterozygote vs. minor homozygote)
significantly increased variance explained by 17.3% (p = 0.018),
while a significant additional 14.5% of the variance was explained
by the comparison of the minor homozygotes vs. major-allele
carriers (p = 0.031). The full models explained 42.3 and 39.6%
of variance, respectively. The main effect of minor homozygotes
(AA) vs. major allele carriers (AG + GG) as well as the
interactions were not significant.

For the right HCV/TIV ratio in boys
In the objective hardship model, we found that the covariate,
maternal alcohol consumption during pregnancy, explained
17.5% (p = 0.03) of the variance. Neither the main effect of
objective hardship (6.7%) nor of COMT genotypes (1.3–2.5%)
were significantly associated with right HCV/TIV. However,
COMT genotypes [major homozygotes (GG) vs. minor-allele
carriers (AA + AG)] were found to significantly moderate
the effect of objective hardship on right HCV/TIV ratio (R2-
Change = 0.122, p = 0.049), with the full model explaining 37.8%
of the variance in right HCV/TIV volume (Table 5). As shown
in Figure 3, for major homozygotes (GG), there was a negative
association between objective hardship and right HCV/TIV
volume (p = 0.084) with greater objective hardship associated
with smaller volumes; however, for minor-allele carriers (GA and
AA), there was no association between objective hardship and
right HCV/TIV volume (p = 0.106). Below objective hardship
levels of 10.86 (slightly below the group average) there was
a significant difference in right HCV/TIV volume between
genotypes, with major homozygotes having larger volumes than
the minor-allele carriers. At low levels of maternal objective
hardship, the mean right HCV of GG boys is approximately
4 standard deviations (SD) above the group mean while at
moderate levels of hardship the GG and A-allele carriers all
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TABLE 5 | Effect of PNMS, genotype and gene-by-environment interaction on HCV/TIV volume in boys, controlling for maternal alcohol consumption during pregnancy with left and right HCV/TIV volume.

Left HCV/TIV ratio (Boys) Right HCV/TIV ratio (Boys)

Objective PNMS Genotype Interaction Total Objective PNMS Genotype Interaction Total

BETAa CH R2 p BETA CH R2 p BETA CH R2 p R2 BETAa CH R2 p BETA CH R2 p BETA CH R2 p R2

COMT

AA vs. AG vs. GG 0.437 0.163 0.020 1.586 0.032 0.272 0.439 0.170 0.025 0.387 −2.101 0.057 0.188 0.324

AA + AG vs. GG 0.305 0.093 0.099 −0.399 0.149 0.026 −1.422 0.014 0.473 0.407 0.259 0.067 0.158 −0.121 0.014 0.521 4.154 0.122 0.049 0.378

AA vs. AG + GG 0.233 0.047 0.228 0.626 0.002 0.817 0.293 0.124 0.013 0.527 −1.676 0.013 0.545 0.268

Subjective PNMS Genotype Interaction Total Subjective PNMS Genotype Interaction Total

BETAb CH R2 p BETA CH R2 p BETA CH R2 p R2 BETAb CH R2 p BETA CH R2 p BETA CH R2 p R2

COMT

AA vs. AG vs. GG 0.426 0.153 0.025 −0.026 0.000 0.970 0.414 0.201 0.034 0.301 0.716 0.032 0.318 0.363

AA + AG vs. GG −0.142 0.018 0.465 −0.388 0.138 0.035 0.293 0.003 0.731 0.403 0.250 0.055 0.192 −0.154 0.022 0.411 −0.958 0.037 0.285 0.356

AA vs. AG + GG 0.227 0.045 0.246 0.428 0.005 0.691 0.312 0.135 0.016 0.484 0.559 0.009 0.602 0.322

Cognitive appraisal Genotype Interaction Total Cognitive appraisal Genotype Interaction Total

BETAb CH R2 p BETA CH R2 p BETA CH R2 p R2 BETAb CH R2 p BETA CH R2 p BETA CH R2 p R2

COMT

AA vs. AG vs. GG 0.095 0.007 0.654 0.453 0.173 0.018 −1.187 0.043 0.210 0.466 0.235 0.041 0.265 0.199 0.033 0.312 1.617 0.079 0.113 0.395

AA + AG vs. GG −0.395 0.145 0.031 0.897 0.023 0.375 0.418 −0.107 0.011 0.570 −1.847 0.096 0.083 0.390

CH R2, Change in R-squared (R2).
a: control for the number of glasses of alcohol the mother drank per week during her pregnancy.
b: control for the number of glasses of alcohol the mother drank per week during her pregnancy, objective PNMS.
COMT genotype coding:
AA (1) vs. AG (2) vs. GG (3);
AA (1) vs. AG + GG (2);
GG (1) vs. AA + AG (2);
Bold means significant.
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FIGURE 3 | COMT moderates objective hardship on right HCV/TIV ratio in boys. Moderation analyses demonstrate that there is a significant COMT-by-Objective
PNMS interaction effect in boys (p = 0.049). For the major homozygote (COMT genotype GG, solid line) there is a marginally significant negative association between
objective hardship and right HCV/TIV ratio volume (p = 0.084); however, for the heterozygote and minor homozygote COMT genotypes (A allele carriers, red dashed
line) there is no association between objective hardship and right HCV/TIV ratio. There is a region of significance (p < 0.05) when objective hardship levels are below
10.86, such that participants with major genotypes have a larger right HCV/TIV ratio compared to minor allele carriers. The green dashed line indicates the value of
10.83. ∼p < 0.10.

averaged right HCV at the group mean. The other interactions
with objective hardship were not significant.

The main effects of subjective distress or cognitive appraisal
on right HCV/TIV volume, or the interactions including them,
were not significant.

Thus, in boys, the only significant interaction effect between
any maternal stress components and genotypes was between
objective hardship and COMT on right HCV/TIV ratio.
The full models, including maternal stress, COMT genotype,
G × E interactions (if significant), and the covariate maternal
alcohol consumption during pregnancy, explained 25.5–42.3%
of the variance.

There were no significant interaction effects between PNMS
and BDNF genotypes on hippocampus volumes in boys.

Effect of PNMS, Genotype and Gene-by-Environment
Interaction on HCV/TIC Volume in Girls
For the left HCV/TIV ratio in girls
In the objective hardship model the covariate, SES, explained
20.1% (p = 0.021) of variance. There were no significant
main effects of objective maternal stress (0.8%) nor of COMT
genotypes (<0.1–0.7%), and no significant interaction effects.

In the subjective hardship model, SES and objective hardship
explained together a marginally significant 21.0% of variance
in the outcome (p = 0.067). Controlling for these covariates,
subjective distress explained a non-significant additional 0.1%
of variance, and COMT genotypes main effect were also
non-significant (<0.1–0.7%). However, the COMT genotypes
[major homozygotes (GG) vs. heterozygotes (GA) vs. minor
homozygotes (AA)] were found to significantly moderate
the effect of subjective distress on left HCV/TIV ratio (R2-
Change = 0.144, p = 0.047), with the full model explaining

35.8% of the variance in the outcome (Table 6). As shown in
Figure 4A, for major homozygotes (GG), there was a marginally
significant negative association between subjective distress and
left HCV/TIV ratios (p = 0.092) with greater subjective distress
related to smaller volumes. Left HCV/TIV ratio is approximately
1 SD above the mean at low levels of maternal subjective
distress but at high levels of distress (a log-IESR of 3.2 which is
equivalent to an IES-R score of 23.5 indicative of possible PTSD)
they are about 1 SD below the mean. For minor homozygotes
or heterozygotes, however, there was no association between
subjective distress and left HCV/TIV ratios. There is no statistical
region of significance within the observed range. The COMT
comparison of major homozygotes (GG) vs. minor-allele carriers
(AA+ AG) (Figure 4B) was also found to significantly moderate
the effect of subjective distress on left HCV/TIV ratio in girls
(R2-Change = 0.330, p = 0.001), with the full model explaining
54.1% of the variance in left HCV/TIV volume (Table 6). As
shown in Figure 4B, for major homozygotes (GG), there was
a significant negative association between subjective distress
and left HCV/TIV ratio (p = 0.0026) with greater subjective
distress related to smaller volumes; at low maternal subjective
distress, the left HCV/TIV ratio for GG homozygotes was about
3 SD above the mean, while at high levels it was about 1.3
SD below the group mean. However, for minor-allele carriers,
there was no association between subjective distress and left
HCV/TIV ratios which remained at about the group mean
level. Below log-transformed subjective distress level of 1.480
(equivalent to a low IES-R score of 3.39) there was a significant
difference in left HCV/TIV volume between genotypes, with
major homozygotes having larger volumes than the minor-allele
carriers. However, above log-transformed subjective distress level
of 2.771 (equivalent of a low-moderate IES-R score of 14.97)
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TABLE 6 | Effect of PNMS, genotype and gene-by-environment interaction on HCV/TIC volume in girls, controlling for socioeconomic status With left HCV/TIV.

Left HCV/TIV ratio (Girls) Right HCV/TIV ratio (Girls)

Objective PNMS Genotype Interaction Total Objective PNMS Genotype Interaction Total

BETA CH R2 p BETA CH R2 p BETA CH R2 p R2 BETA CH R2 p BETA CH R2 p BETA CH R2 p R2

COMT

AA vs. AG vs. GG −0.055 0.003 0.777 −0.467 0.020 0.468 0.233 −0.227 0.051 0.235 −0.623 0.036 0.320 0.241

AA + AG vs. GG 0.106 0.008 0.628 0.002 0.000 0.991 0.653 0.014 0.544 0.224 0.392 0.154 0.048 0.122 0.015 0.529 0.791 0.021 0.462 0.189

AA vs. AG + GG −0.084 0.007 0.664 −0.527 0.020 0.461 0.237 −0.260 0.066 0.177 −0.816 0.049 0.235 0.269

Subjective PNMS Genotype Interaction Total Subjective PNMS Genotype Interaction Total

BETA CH R2 p BETA CH R2 p BETA CH R2 p R2 BETA CH R2 p BETA CH R2 p BETA CH R2 p R2

COMT

AA vs. AG vs. GG −0.058 0.003 0.769 −1.211 0.144 0.047 0.358 −0.220 0.048 0.261 −1.091 0.117 0.070 0.327

AA + AG vs. GG 0.031 0.001 0.879 0.009 0.000 0.966 3.271 0.330 0.001 0.541 −0.098 0.009 0.628 0.108 0.011 0.591 2.785 0.244 0.007 0.418

AA vs. AG + GG −0.084 0.007 0.671 −0.640 0.035 0.347 0.252 −0.260 0.066 0.185 −0.738 0.047 0.257 0.275

Cognitive appraisal Genotype Interaction Total Cognitive appraisal Genotype Interaction Total

BETA CH R2 p BETA CH R2 p BETA CH R2 p R2 BETA CH R2 p BETA CH R2 p BETA CH R2 p R2

COMT

AA vs. AG vs. GG −0.090 0.008 0.637 0.335 0.009 0.618 0.286 −0.247 0.059 0.209 0.739 0.045 0.270 0.268

AA + AG vs. GG 0.255 0.059 0.197 0.061 0.003 0.759 −0.120 0.000 0.916 0.272 0.104 0.010 0.608 0.154 0.022 0.444 0.124 0.000 0.915 0.186

AA vs. AG + GG −0.095 0.009 0.621 0.414 0.012 0.573 0.289 −0.264 0.068 0.178 1.062 0.077 0.141 0.308

CH R2, Change in R-squared (R2).
COMT genotype coding:
AA (1) vs. AG (2) vs. GG (3);
AA (1) vs. AG + GG (2);
GG (1) vs. AA + AG (2);
Bold means significant.
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FIGURE 4 | COMT moderates subjective distress on left HCV/TTV ratio in girls. (A) Major homozygotes vs. heterozygotes vs. minor homozygotes: Moderation
analyses demonstrate that there is a significant COMT-by-subjective distress interaction effect on left HCV/TIV ratio in girls (p = 0.047). For the minor homozygote
(AA genotype, dotted line) and heterozygote (AG genotype, dashed line) there is no association between subjective distress and left HCV/TIV ratio (p = 0.165 and
p = 0.409, respectively). For major homozygote (GG genotype, solid line) there is a marginally significant negative association between subjective distress and left
HCV/TIV ratios (p = 0.092). There are no statistical significance transition points within the observed range of the predictor. ∼p < 0.10. (B) Major homozygotes vs.
minor allele carriers on left HCV/TIV ratio: Moderation analyses demonstrate that there is a significant COMT-by- subjective distress interaction effect on left HCV/TIC
ratio in girls (p = 0.001). For major homozygotes (GG genotype, solid line), there is a significant negative association between subjective distress and left HCV/TIV
ratio (p = 0.0026) but for minor homozygotes and heterozygotes (AA and AG genotypes, red dashed line) there is no association between subjective distress and left
HPV/TIV ratio (p = 0.129). There are regions of significance (p < 0.05) such that below log-transformed subjective distress levels of 1.48 and above 2.77 there is a
significant difference between left HCV/TIV ratio of major homozygotes and minor-allele carriers. ∗∗p < 0.01. (C) Major homozygotes vs. minor allele carriers on right
HCV/TIV ratio: Moderation analyses demonstrate that there is a significant COMT-by-subjective distress interaction effect on right HCV/TIC ratio in girls (p = 0.007).
For major homozygotes (GG genotype, solid line) there is a significant association between subjective distress and right HPV/TIV ratio volume (p = 0.008); however,
for minor homozygotes and heterozygotes (AA and AG genotypes, red dashed line) there is no significant association between subjective distress and HCV/TIV ratio
(p = 0.272). There is a region of significance (p < 0.05) between genotypes below log-transformed subjective distress levels of 0.717 and above 2.705, such that
right HCV/TIC ratio were significantly different between the major homozygotes and the minor-allele carriers. The two green dashed lines indicates the regions of
significance. ∗∗p < 0.01.

major homozygotes had significantly smaller volumes than the
minor-allele carriers. The interaction with minor homozygotes
vs. major allele carrier was not significant.

Controlling for SES and objective hardship, the main effect
of cognitive appraisal and its interactions with COMT genotypes
were not significant.

For the right HCV/TIV ratio in girls
In the objective hardship model, objective hardship had a
significant main effect on right HCV/TIV ratio, such that higher

PNMS was associated with a larger ratio, explaining an additional
15.4% of the variance (p = 0.048). However, there was no
significant main effect of any genotypes on right HCV/TIV
volumes (R2-change = 1.5–6.6%), or of any interactions involving
objective hardship.

Controlling for objective hardship, the effect of subjective
distress (R2-change = 0.9%) and COMT genotypes
(R2-change = 1.1–6.6%) on right HCV/TIV volumes were
not significant. However, COMT genotypes [major homozygotes
(GG) vs. minor-allele carriers (AA + AG)] moderated
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the effect of subjective distress on right HCV/TIV ratios
(R2-change = 0.244, p = 0.007) with the full model explaining
41.8% of the variance in the outcome (Table 6). As shown in
Figure 4C, for major homozygotes (GG), there was a significant
negative association between subjective distress and right
HCV/TIV ratios (p = 0.008) with greater subjective distress
related to smaller volumes; at low subjective distress GG
homozygotes had right HCV/TIV ratios about 1.25 SD above the
group mean while at high levels their HCV/TIV ratio was about
1.6 SD below the mean. For minor-allele carriers (AA + AG),
however, there was no association between subjective distress
and right HCV/TIV ratios. Below subjective distress level of
0.717 (equivalent to a very low IES-R score of 1.05) major
homozygotes (GG) had significantly larger volumes than the
minor-allele carriers (AA + AG), and above subjective distress
level of 2.705 (equivalent to a low-moderate IES-R score of 13.95)
major homozygotes (GG) had significantly smaller volumes than
the minor-allele carriers (AA + AG). The other moderations
involving subjective distress were not significant.

There were no significant main effect of cognitive appraisal or
interactions involving this variable.

Thus, in girls, the significant interaction effects between
maternal stress components and genotypes were between
subjective distress and COMT on left and right HCV/TIV ratio.
The full models, including maternal stress, COMT genotype,
G × E interactions (if significant), and SES for the HCV/TIC
ratio, explained 16.8–54.1% of the variance.

Additionally, there were no significant interaction effects
between PNMS and BDNF genotypes on hippocampus
volume in girls.

DISCUSSION

The main objective of this study was to test whether children’s
genotype would moderate the effects of maternal stress derived
from 1998 Quebec ice storm during pregnancy on their
hippocampal volume, thereby resulting in differential effects of
PNMS on brain structure.

First, we examined the main effect of each component of
PNMS on hippocampal volume. The previous literature reported
associations between increased prenatal maternal anxiety and
reduced hippocampal growth (Qiu et al., 2013), and the
non-association between perinatal stressful life events and
hippocampal volume (Marečková et al., 2018). Surprisingly,
then, we found that higher maternal objective hardship was
associated with larger, not smaller, right hippocampal volume in
girls. Therefore, it seems that different types of stressors during
pregnancy could result in mixed findings, at least when not taking
genotype into account.

Second, zero-order correlations revealed associations between
genotypes and hippocampal volume with COMT (rs4680) and
BDNF (rs6265). Major homozygotes of COMT (Val/Val) are
associated with larger hippocampal volume in boys, while major
homozygotes of BDNF (Val/Val) are associated with larger
hippocampal volume in girls. Although COMT Val carriers
were reported in previous studies to have smaller hippocampal

volumes than Met allele carriers in healthy individuals (Giordano
et al., 1993; Taylor et al., 2007), our observation is consistent
with the recent finding that COMT Val allele was significantly
associated with larger hippocampal volume in healthy Chinese
college students (ages from 19 to 21 years) (Wang et al.,
2013). These correlations do not, of course, take prenatal
stress into account.

The only significant gene-by-environment interactions
involved the COMT genotype. Under maternal objective
hardship conditions that are below the group mean (Figure 3),
boys with the COMT major homozygotes have more than one
standard deviation greater right hippocampal volume than that
of minor-allele carriers who have approximately average ratios;
however, because the right HCV/TIV ratios of boys with major
homozygotes decrease as objective hardship increases (while
those of the minor allele carriers are unaffected by PNMS), under
high objective hardship there is little difference in HCV/TIV
ratios between COMT genotypes. COMT is highly expressed
in the hippocampus and the COMT minor allele results in
reduced COMT enzymatic activity 3–4 fold which leads to
higher dopamine levels. The HPA axis is activated in response
to stress, which results in the release of the cortisol. Although
Project Ice Storm tends to have very low correlations between
objective hardship and maternal cortisol levels at recruitment
(5 months after the start of the storm), our finding might
suggest that high acute cortisol levels at the time of the storm
(that would have been triggered by stress) and lower dopamine
availability in Val carriers due to the higher enzymatic activity
may collaborate to negatively affect hippocampal volume in
boys. Similarly, in girls at low levels of maternal subjective
distress, girls with major homozygotes again exhibit about one
standard deviation greater left and right hippocampal volumes
than those associated with minor allele carriers. However, this
group difference is not seen under conditions of low-medium
subjective distress, and is reversed in both the left and right
hippocampi under conditions of higher subjective distress
(Figures 4B,C). Our finding is supported by a recent PTSD
study in which COMT Val158Met polymorphism moderated the
relationship between PTSD symptom severity and hippocampal
volume (Hayes et al., 2017): reduced left hippocampal volume
was observed with increasing PTSD symptom severity in Val/Val
carriers, but there was no association between PTSD symptom
severity and left hippocampal volume for either of the Met
allele carriers, and there were no significant main effects, nor
an interaction effect, for the right hippocampus. Further, the
authors suggested that putatively lower dopamine availability in
Val carriers may interact with traumatic stress to negatively affect
hippocampal structure.

Remarkably, in our study adolescents in the major
homozygote group have a significantly larger hippocampal
volume in low objective and low subjective PNMS conditions
compared to high PNMS conditions, while heterozygotes
and minor homozygotes do not seem to be affected by
the levels of PNMS. Therefore, our results suggest that as
maternal stress increases in severity children who are carriers
of the Val/Val genotype are more likely to show reductions
in hippocampal volume than Met carriers, indicating that
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the major homozygotes may be more susceptible to the
effects of PNMS.

In contrast to the sex differences in the effects of the
COMT and BDNF genotypes on hippocampal volume at
early adolescence, it has previously been reported that the
minor homozygote BDNF genotype is associated with reduced
hippocampal volume in both male and female adults (Bueller
et al., 2006). Given that we measured hippocampal volume
at 11 1/2 years old, rather than in adulthood, it is possible
that the genotype-dependent sex differences in male and
female hippocampal volume are specific to this age group,
which represents the onset of adolescence. The mechanism
underlying the sex-specific effects of COMT and BDNF SNPs
on hippocampal volume in early adolescence remains unclear
but is likely influenced by sex hormones that are highly
expressed in the hippocampus and interact with hippocampal
function (Goldstein et al., 2001). Sex hormones may influence
the role of BDNF and COMT through various mechanisms.
For example, estrogen is known to alter levels of BDNF
expression, thereby leading to disproportionate regulation of
BDNF protein levels in females compared to males (Sohrabji
and Lewis, 2006). These same sex hormone differences found
between adolescent males and females may also explain observed
sex differences in the moderation effects. While the COMT
genotype moderated the effect of prenatal maternal objective
hardship in boys, this SNP moderated the effect of maternal
subjective distress in girls. These sex-specific results are in
line with our original hypothesis, which postulated that results
would differ between males and females and indicate sex
differences in brain development that are particularly prevalent
at the onset of puberty. Our finding was supported by Jahnke
et al. (2021) in which maternal stress during pregnancy
was reported to influence the functioning of HSD11B2 in
placenta in a sex-specific manner, suggesting that maternal
chronic stress may exhaust HSD11B2’s protective mechanism,
exposing the newborn to high amounts of maternal cortisol,
which could alter the fetal HPA axis and influence long-term
neurobehavioral development.

Limitations and Advantages
Although the results described here further our understanding
of the interaction between genetic variants and PNMS on
hippocampal structure in children, as our sample included only
53 children, further research with larger cohort is required to
validate these findings. Given the importance of the BDNF
gene, it is unfortunate that our sample was missing subjects
with the minor homozygote genotype for a full investigation
of this gene’s effects. On the other hand, natural disasters
provide unique opportunities to study the effect of an objective,
randomly assigned stressor in a human population, thereby
overcoming many limitations of previous human gene-by-
environment research. The 1998 Quebec ice storm was a powerful
enough stressor that high scores on the maternal objective
hardship scale predicted a full standard deviation lower IQ
in the children at age 2 (Laplante et al., 2004) and again at
5 1/2 years (Laplante et al., 2008), higher body mass index and
obesity rates at ages 5 1/2 (Dancause et al., 2012) through age

15 (Liu et al., 2016), and higher insulin secretion (Dancause et al.,
2013) and pro-inflammatory cytokines (Veru et al., 2015) at age
13. Consequently, using this population-level acute stressor, we
have been able to delineate the influences of PNMS and SNPs on
hippocampal volume in early adolescent offspring.

Our findings support the hypothesis that individuals exhibit
differential susceptibility to the effects of PNMS, and that genetic
variants that alter the function or expression of proteins, underlie
these differences. We showed that, in some cases, genetic variants,
PNMS, and the gene-by-environment interaction combined
explained up to half the variance in hippocampal volume.
This is significant as it increases our understanding of how
genetic and environmental factors work in combination to affect
hippocampal development.

CONCLUSION

This work has increased our understanding of gene-by-
environment interactions during prenatal brain development.
Specifically, we have found that a SNP located on COMT
significantly moderates the effects of PNMS on hippocampal
volume, resulting in differential susceptibility between COMT
genotypes to the effects of PNMS. In addition, the effect of
different aspects of PNMS – objective hardship and subjective
distress – on hippocampal volume was differentially moderated
by the SNPs of interest. When moderated by SNPs located
on COMT, subjective distress exhibited greater effects on
hippocampal volume than objective hardship and cognitive
appraisal in girls, while objective hardship had the most effect
in boys. Overall, in accordance with our hypothesis, these results
suggest that a child’s genotype can alter their vulnerability to the
effects of PNMS; however, these effects are often specific to a
particular sex and/or aspect of stress.
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Background: Previous studies focused on the relationship between prenatal conditions
and neurodevelopmental outcomes later in life, but few have explored the interplay
between gene co-expression networks and prenatal adversity conditions on cognitive
development trajectories and gray matter density.

Methods: We analyzed the moderation effects of an expression polygenic score (ePRS)
for the Brain-derived Neurotrophic Factor gene network (BDNF ePRS) on the association
between prenatal adversity and child cognitive development. A score based on genes
co-expressed with the prefrontal cortex (PFC) BDNF was created, using the effect size of
the association between the individual single nucleotide polymorphisms (SNP) and the
BDNF expression in the PFC. Cognitive development trajectories of 157 young children
from the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort were
assessed longitudinally in 4-time points (6, 12, 18, and 36 months) using the Bayley-
II mental scales.

Results: Linear mixed-effects modeling indicated that BDNF ePRS moderates the
effects of prenatal adversity on cognitive growth. In children with high BDNF ePRS,
higher prenatal adversity was associated with slower cognitive development in
comparison with those exposed to lower prenatal adversity. Parallel-Independent
Component Analysis (pICA) suggested that associations of expression-based SNPs and
gray matter density significantly differed between low and high prenatal adversity groups.
The brain IC included areas involved in visual association processes (Brodmann area 19
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and 18), reallocation of attention, and integration of information across the supramodal
cortex (Brodmann area 10).

Conclusion: Cognitive development trajectories and brain gray matter seem to be
influenced by the interplay of prenatal environmental conditions and the expression
of an important BDNF gene network that guides the growth and plasticity of
neurons and synapses.

Keywords: BDNF, polygenic score, prenatal adversity, cognitive development, gray matter

INTRODUCTION

Brain-derived Neurotrophic Factor (BDNF) is a protein involved
in several biological pathways – from neurogenesis, promotion of
neuronal survival and differentiation, to modulation of synaptic
plasticity – playing a central role in both the developing and adult
nervous system (Hempstead, 2014). Acting through its high-
affinity tyrosine receptor kinase B (TrkB) receptor, it mediates
neurite and spine outgrowth (Binder and Scharfman, 2004; Ji
et al., 2005), and this signaling is also important for synaptic
plasticity (Ji et al., 2005; Lu et al., 2014), a phenomenon that
enables the organism to change according to environmental
stimuli, and makes possible learning and memory. Also, it
controls short and long-lasting synaptic interactions in the
hippocampus, and its expression mediates working memory
processes in the prefrontal cortex (Gold et al., 2003; Xing et al.,
2012; Kowiański et al., 2018). BDNF is expressed in almost all
brain regions, but the highest levels are found in the frontal
cortex, hippocampus, and amygdala (West et al., 2014). Several
studies indicate altered BDNF expression in brain structures
like the prefrontal cortex (PFC), hippocampus, and striatum in
post-mortem human brains of patients that suffered psychiatric
illnesses. There are decreased levels of BDNF mRNA and protein
expression in the hippocampus of suicide victims (Banerjee et al.,
2013), and significant differences in BDNF transcripts allow to
distinguish schizophrenia, bipolar disorder, and major depressive
disorder patients from healthy subjects, suggesting that the
BDNF system is implicated in several physiological aspects of
brain development (Molendijk et al., 2012; Banerjee et al., 2013;
Reinhart et al., 2015).

Prenatal exposure to stress, maternal depression/anxiety, low
social support, and poor access to prenatal health services
have long-term effects on child cognitive development that
are well documented (Monk et al., 2012; O’Donnell et al.,
2014a; Silveira et al., 2017). Brain plasticity and maturation are
affected by positive and negative environmental exposures during
sensitive periods of development (Nelson and Gabard-Durnam,
2020). The brain matures in a hierarchical manner, meaning
that the quality of maturation of early-developing regions will
affect the subsequent development of other regions (Tottenham,
2019). Gene expression in different brain regions at different
developmental stages indicates that timing is an important factor
at the transcriptome level (Somel et al., 2009; Haeussler et al.,
2017). This makes complex cerebral regions, for instance, the
PFC, particularly sensitive to environmental conditions. The PCF
receives several inputs from all other cortical areas, playing a key

role in planning and performance of higher thinking, cognitive,
affective, and social behaviors throughout development (Kolb
et al., 2012); such interconnectivity results in a longer period
needed for maturation (Fuster, 2015).

Expression of BDNF, and TrkB receptors begins early during
brain development, especially in the cortical plate, both in
rodents and primates (for a review, see Bartkowska et al., 2010).
Therefore, it is not surprising that disturbances in its function
early in life have remarkable effects upon neuronal structure
and function. For example, transgenic mice with a functional
reduction in BDNF or TrkB genes have a curtailment of dendritic
arborization in cortical neurons in the prepubertal period (Xu
et al., 2000; Gorski et al., 2003), and impairments in memory
(Gorski et al., 2003). In this scenario, studies using animal models
of prenatal stress have reported altered BDNF signaling during
post-natal development (Badihian et al., 2020; Sobolewski et al.,
2020). Stressors such as maternal immune activation during
gestation, repeated restraint, or variable stress during pregnancy,
cause altered BDNF expression in the PFC at different ages
during development of the offspring (Matrisciano et al., 2012;
Hemmerle et al., 2015; Niu et al., 2020). Accordingly, prefrontal
TrkB and glucocorticoid receptor (GR) activities are known to
be modulated by exposure to stressors (reviewed in Barfield and
Gourley, 2018), and TrkB-GR interaction has been suggested
(Numakawa et al., 2009). Therefore, prolonged variations in
glucocorticoids could affect both GR and BDNF-TrkB function
in the PFC (Barfield and Gourley, 2018), contributing to stress-
induced cognitive alterations. In addition, abnormal signaling in
the BDNF/TrkB pathway was reported to lead to abnormalities
in the GABAergic and glutamatergic activities in the PFC (Sakata
et al., 2009; Zhang et al., 2013).

Negative exposures during the prenatal and early postnatal
period have been associated with cognitive and brain
development in different ways. Behaviorally, the attainment
of cognitive skills is understood as a developmental cascade,
characterized by a cumulative process in which functioning
at a lower level of behavior (e.g., visuomotor integration, fine
motor skills, habituation) affects higher-level functions that
develop later (e.g., IQ, language and executive functions) (Almas
et al., 2016; Choi et al., 2018; Camerota and Willoughby, 2019).
In terms of neurodevelopment, experiments with infant rats
exposed to caretakers that displayed abusive behaviors show
increased levels of methylation of BDNF DNA throughout the
life span, and reduced BDNF gene expression in the adult PFC
(Roth et al., 2009). Prenatal exposure to stress was also associated
with high methylation and lower expression of the BDNF gene
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in the PFC and hippocampus (Roth et al., 2011; Badihian et al.,
2020). In humans, brain structure is also impacted by early
life stressors, resulting in several morphological and functional
alterations (Buss et al., 2010; Hair et al., 2015; Noble et al., 2015).
The mentioned interrelated pathways affect the developing
individual resulting in a predisposition for disease and poorer
developmental outcomes later in life. Adolescence is also a
sensitive period for PFC development. The PFC is one of the last
brain regions to mature (Fuster, 2015; Hoops and Flores, 2017),
and it is known to undergo significant structural remodeling,
with dendritic and synaptic pruning during adolescence
(Bourgeois et al., 1994; Shaw et al., 2020). This period of synaptic
remodeling is believed to generate a refinement of connections
(Barfield and Gourley, 2018). Therefore, exposure to adversities
during this period can impact on PFC circuitry, and on adult
behavior (Shaw et al., 2020). However, before this period of
pruning, there is an initial phase of neuronal differentiation,
dendritic spine and synapse overproduction, that occurs during
prenatal and early childhood periods that will influence future
development, stressing the relance of this sensitive window
(Bourgeois et al., 1994; Lotfipour et al., 2009).

In summary, a large body of evidence indicates that
early exposure to environmental adversity affects cognitive
development, and some individuals are more susceptible than
others to this long-term effect. Individual differences likely
affect the impact of environmental exposure on several child
developmental outcomes (Belsky, 2013; Silveira et al., 2017). It
was shown that genetic variation in the BDNF gene (the Val66Met
polymorphism), which decreases BDNF function (Egan et al.,
2003), can lead to lower memory levels (Egan et al., 2003),
and is associated with impairment in executive functioning
(Nagata et al., 2012). This is particularly significant in individuals
with high levels of early life adversity (Gabrys et al., 2017), in
which this variation was associated with difficulties in attentional
flexibility, a PFC-based function. Also, previous studies involving
Val66Met polymorphisms suggested a role of the BDNF gene in
moderating the effects of early adversity on attention problems
and child behavior (Drury et al., 2012; Gunnar et al., 2012;
O’Donnell et al., 2014b). However, it is known that the action of
a gene is not isolated, but correlated in concert with other genes
in functional networks (Gaiteri et al., 2014).

Genome-wide association studies (GWAS) are an important
technological advance for the understanding of human health
and disease but are still not able to inform the underlying
tissue-specific mechanisms that explain phenotypic variation
(Silveira et al., 2017; Hari Dass et al., 2019). GWAS considers
only the highly significant genetic variants associated with a
disease, thus are not enlightening of the several manifestations
or endophenotypes that may precede the phenotype (Dalle Molle
et al., 2017; Hari Dass et al., 2019). We propose a novel genomics
approach, using a biologically informed genetic score based on
genes co-expressed with the BDNF gene specifically in the PFC
(BDNF ePRS) during the prenatal and early life periods to
investigate the association with child cognitive development from
6 to 36 months of age. For a sub-sample of participants that we
were able to follow up and collect structural Magnetic resonance
images at age 9 we analyzed the multivariate association between

the single nucleotide polymorphisms (SNPs) from the BDNF
ePRS and gray matter density in order to uncover the mechanism
of the interaction between prenatal environment and genotype
and its association with brain development.

MATERIALS AND METHODS

Participants and Cohort Characteristics
Participants’ data were derived from the Maternal Adversity,
Vulnerability and Neurodevelopment prospective community-
based cohort MAVAN (O’Donnell et al., 2014). A hundred and
fifty-seven children from two sites - Montreal (Québec) and
Hamilton (Ontario), Canada - composed the sample of the
present study. Pregnant women were recruited around 13 to
20 weeks of gestation from obstetric clinics in hospitals. They
were eligible to take part in the study if over 18 years of age, fluent
in either English or French, and did not have serious obstetric
complications during the pregnancy or delivery of the child, had
a child with extremely low birth weight, or had any congenital
diseases. Children were monitored from birth up to 12 years
of age using several assessments of neurodevelopment. Ethical
approval for this study was obtained from the Douglas Mental
Health University Institute (Montreal) and St-Joseph’s Healthcare
(Hamilton Integrated Research Ethics Board). For this work, we
considered cognitive neurodevelopmental data from the 6, 12,
18, and 36-months postnatal periods (N = 157), and a magnetic
resonance imaging from a follow-up sample of 47 children at age
nine (mean age = 9.3, SD = 1.4), the characteristics of the sample
are shown in Table 1.

Measures
Cumulative Prenatal Adversity Score
The cumulative prenatal adversity score is a measure used
to describe prenatal adversity conditions. It is composed of
several indicators identified in the literature as being related to
negative children’s outcomes (Silveira et al., 2017). It surveyed
pregnancy conditions, maternal mental health during pregnancy
(anxiety, depression), presence of chronic diseases such as

TABLE 1 | Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN)
sample characteristics.

Variables Cognitive
development sample

(6–36 months)

MRI sample
(9 years)

N = 157 N = 47

Gestational weeks, M (SD) 39.0 (1.2) 39.3 (1.2)

Birth weight (grams), M (SD) 3326.3 (448.3) 3256.1(458.7)

Income less than $30,000 a year 26 (16.5%) 16 (34.0%)

Maternal education: some
community-college or less

14 (8.9%) 6 (12.8%)

Male sex 76 (48.4%) 28 (59.6%)

Smoking during pregnancy 17 (10.8%) 11 (23.4%)

Montreal site 81 (51.5%) 38 (80.8%)

Cumulative prenatal score, M (SD) 1.3 (1.2) 1.2 (1.2)
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TABLE 2 | Psychometric scales used to compose the Cumulative Prenatal Adversity Score.

Measure Description Scoring

Daily Hassles Scale (Lobel and
Dunkel-schetter, 1990)

Indicates the level of struggle and frequency in respect to lack of money for basic
needs such as food and electricity since the beginning of pregnancy. The mean
test-retest reliability of the scale is.79.

Lack of money score above 9.

Center for Epidemiological Studies
Depression Scale (CESD) (Radolf, 1977)

Assesses depressive symptomatology in the general population with emphasis on
affective and somatic components. 20 items are scored on a 4-point Likert scale
and high scores indicate more severe depressive symptoms. The internal
consistency of the scale is.85 (coefficient Alpha).

Prenatal depression scores above 22.

State-Trait Anxiety Inventory (STAI)
(Spielberger, 1989)

A measure of trait and state anxiety composed of 20 items for each construct.
Internal consistency coefficients for the scales ranged from.86 to.95.

Pregnancy anxiety score above 1.95.

Abuse Assessment Screen (Newberger
et al., 1992)

Presence of domestic violence or sexual abuse during pregnancy. One point for the presence.

Marital Strain Scale (Pearlin and
Schooler, 1978)

The Marital Strain Scale of Pearlin and Schooler is used to assess chronic stress
with the romantic partner.

Marital strain score less than 2.9.

Health during pregnancy Presence of chronic diseases during pregnancy: diabetes, hypertension, asthma,
current or resolved), current severe vomiting, vaginal spotting or bleeding during the
past 4–6 weeks, current anemia/constipation/blood in stool, or current
vaginal/cervical/urinary tract infection/diarrhea.

One point for the occurrence of any
pathology.

Smoking Smoking anytime during pregnancy. One point for the presence.

Gestational age Gestational age in weeks. One point if gestational
age ≤ 37 weeks.

Birth size Birth size percentile bellow 10th percentile or above 90th percentile One point for the presence.

Income Household total gross income. One point if less than $30,000 a year.

diabetes, hypertension, vaginal spotting or bleeding, smoking
during pregnancy, low birth size percentile, gestational age,
and socioeconomic characteristics. Further descriptions of all
instruments included in the cumulative prenatal adversity
environment are presented in Table 2. For each met criterion
- such as size percentile below 10th percentile or above 90th
percentile or smoking during pregnancy - one point was given
and all points were summed to obtain the adversity score. For
psychometric scales, we considered 85th percentile as a cut-off
value for positive screening stated by the instrument.

Cognitive Development Measure
The Bayley Mental Scale of Infant Development
The Bayley Mental Scales (BSID-II) development index
(MDI) is a composite of children’s language and cognitive
abilities. It assesses age-appropriate levels of memory, problem-
solving, habituation, incipient number concepts, generalization,
classification, vocalizations, and language skills (Bayley, 1993).
Psychometric properties of the Bayley scale indicated good to
excellent evidence for the validity and reliability of the scale (Silva
et al., 2020). Children’s development assessment was performed
by trained and experienced professionals.

Brain-Derived Neurotrophic Factor Gene Network
Score
Genotyping
At first, genetic variation in children was described using
genome-wide platforms PsychChip and PsychArray (Illumina)
using 200 ng of genomic DNA collected from buccal epithelial
cells. SNPs with low call rate (bellow 95%), low p-values on
Hardy-Weinberg Equilibrium exact test (p < 1e-40), and minor
allele frequency smaller than 5% were removed. Quality control

(QC) procedure was carried out using PLINK 1.951 (Purcell
et al., 2007). Samples of individuals with a call rate less than 90%
were also excluded. Imputation was performed using the Sanger
Imputation Service and the Haplotype Reference Consortium
(HRC) as the reference panel (release 1.1) by McCarthy et al.
(2016) resulting in 20,790,893 SNPs with an information score
higher than 0.80 and posterior genotype probabilities over 0.90.

Brain-Derived Neurotrophic Factor Expression Polygenic
Score
The BDNF ePRS was calculated considering genes co-expressed
with the BDNF gene in the PFC following the protocol described
at Silveira et al. (2017) and Hari Dass et al. (2019). Three genetic
databases were involved in thesis process: the Genenetwork1,
Brainspan2, and GTEx (Genotype-Tissue Expression The GTEx
Consortium, 20133).

First, using the Genenetwork, the genes co-expressed with
the BDNF gene in the PFC in mice were selected considering
an absolute co-expression correlation equal to or higher than
0.5. Based on the Mouse Genome Informatics (MGI) database
we identified human homologous genes. Then, we considered
the Brainspan database to select human homologous transcripts
that are enriched during the prenatal period to five years of age
in the human PFC. At this point, we selected only transcripts
that were differentially expressed in the PFC at ≥ 1.5-fold in
comparison with adult samples, this list had 51 genes. This list
was used to select individual SNPs within start/end ± 500 bp
position of the genes according to NCBI in humans (the National
Center for Biotechnology Information, United States National

1http://genenetwork.org
2http://www.brainspan.org/rnaseq/search/index.html
3https://www.gtexportal.org/home/
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TABLE 3 | List of genes co-expressed with the BDNF gene and included in the PFC BDNF ePRS.

Gene Symbol Ensembl Description PFC Co-expression Correlation
with the BDNF gene in mice

PGD ENSG00000142657 Phosphogluconate dehydrogenase −0.81

CBX5 ENSG00000094916 Chromobox 5 0.7

SET ENSG00000119335 SET nuclear proto-oncogene 0.65

NUP62 ENSG00000213024 Nucleoporin 62 0.63

PFDN2 ENSG00000143256 Prefoldin subunit 2 0.62

SMARCD1 ENSG00000066117 SWI/SNF related, matrix associated, actin dependent regulator of
chromatin, subfamily d, member 1

−0.62

CCT4 ENSG00000115484 Chaperonin containing TCP1 subunit 4 0.61

CCT2 ENSG00000166226 Chaperonin containing TCP1 subunit 2 0.60

GTF2F2 ENSG00000188342 General transcription factor IIF subunit 2 0.59

EIF3E ENSG00000104408 Eukaryotic translation initiation factor 3 subunit E 0.59

SLC39A6 ENSG00000141424 Solute carrier family 39 member 6 −0.59

SEZ6 ENSG00000063015 Seizure related 6 homolog −0.58

BTG3 ENSG00000154640 BTG anti-proliferation factor 3 0.57

MYCN ENSG00000134323 MYCN proto-oncogene, bHLH transcription factor 0.57

ODC1 ENSG00000115758 Ornithine decarboxylase 1 0.57

ANTXR2 ENSG00000163297 ANTXR cell adhesion molecule 2 0.56

BCL10 ENSG00000142867 BCL10 immune signaling adaptor 0.56

CCT3 ENSG00000163468 Chaperonin containing TCP1 subunit 3 0.56

MYL12A ENSG00000101608 Myosin light chain 12A 0.56

SERBP1 ENSG00000142864 SERPINE1 mRNA binding protein 1 0.56

NR4A2 ENSG00000153234 Nuclear receptor subfamily 4 group A member 2 0.55

IGSF9 ENSG00000085552 Immunoglobulin superfamily member 9 0.55

PTPRS ENSG00000105426 Protein tyrosine phosphatase receptor type S −0.54

PHF5A ENSG00000100410 PHD finger protein 5A 0.54

RSL1D1 ENSG00000171490 Ribosomal L1 domain containing 1 0.54

ARF4 ENSG00000168374 ADP ribosylation factor 4 0.54

NFIL3 ENSG00000165030 Nuclear factor, interleukin 3 regulated 0.54

SEC61A1 ENSG00000058262 SEC61 translocon subunit alpha 1 0.53

PSMA2 ENSG00000106588 Proteasome 20S subunit alpha 2 0.53

DNAJB5 ENSG00000137094 DnaJ heat shock protein family (Hsp40) member B5 0.53

GDI2 ENSG00000057608 GDP dissociation inhibitor 2 0.53

NFIB ENSG00000147862 Nuclear factor I B −0.53

LMO3 ENSG00000048540 LIM domain only 3 −0.53

RPL11 ENSG00000142676 Ribosomal protein L11 −0.52

NA ENSG00000155130 Myristoylated alanine rich protein kinase C substrate 0.52

DACT1 ENSG00000165617 Disheveled binding antagonist of beta catenin 1 0.52

KDM6B ENSG00000132510 Lysine demethylase 6B 0.52

NPM1 ENSG00000181163 Nucleophosmin 1 0.51

CDK8 ENSG00000132964 Cyclin dependent kinase 8 −0.51

OBSCN ENSG00000154358 Obscurin, cytoskeletal calmodulin and titin-interacting RhoGEF −0.51

ING1 ENSG00000153487 Inhibitor of growth family member 1 0.50

RBM7 ENSG00000076053 RNA binding motif protein 7 0.50

MTHFD2 ENSG00000065911 Methylenetetrahydrofolate dehydrogenase (NADP + dependent) 2,
methenyltetrahydrofolate cyclohydrolase

0.50

BAZ1A ENSG00000198604 Bromodomain adjacent to zinc finger domain 1A 0.50

SEC11A ENSG00000140612 SEC11 homolog A, signal peptidase complex subunit 0.50

MMP24 ENSG00000125966 Matrix metallopeptidase 24 −0.50

Library of Medicine4). From the gathered SNPs we retained
only common SNPs between MAVAN genodata and GTEx and

4https://www.ncbi.nlm.nih.gov/variation/view/

applied a linkage disequilibrium clumping procedure (r2 > 0.2),
to keep independent SNPs with the lowest association p-values in
the across 500 kb region. The final list consisted of 46 genes, with
a 473 SNPs included in the BDNF ePRS.
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FIGURE 1 | Gene ontology processes related to the genes included in the co-expression PFC BDNF ePRS.

Finally, to calculate the BDNF ePRS score we used the GTEx
as a reference to weight the selected 473 SNPs. We multiplied the
number of effect alleles for each SNP by the estimated coefficient
of the association between each SNP and the genes’ expression
in the PFC and by the sign of correlation between the gene
expression of the particular gene and the BDNF. We summed all
weighted SNPs to obtain the PFC BDNF ePRS score. High ePRS
scores indicate higher predicted expression levels of genes that
composed the BDNF network. The calculation of the BDNF ePRS
score was done using PRSoS software tool (Chen et al., 2018).

In order to control for population stratification a principal
component analysis was performed using SMARTPCA on the
pruned dataset. For the pruned dataset we kept common variants
(MAF > 0.05), not in linkage disequilibrium (r2 < 0.20, with
a sliding window of 50 kb and an increment of 5 SNPs).
Pruning was performed using PLINK 1.9. Based on a screen plot
inspection the first three principal components that were the
most informative of population structure were retained (Price
et al., 2006). For validation of how the gene network scores
change across brain regions, developmental stage, and gene of
interest see Hari Dass et al. (2019).

Data Analysis
Brain-Derived Neurotrophic Factor Expression
Polygenic Score Enrichment Analysis
Biological interpretation of genes that comprised our genetic
score was performed using enrichment analysis using
MetaCoreTM (Clarivate Analytics). The enrichment identifies
statistically significant pathway maps and gene ontology
processes associated with this list of genes after false discovery
rate (FDR) correction, to summarize the most enriched
and pertinent biology associated with the set of genes under

investigation (Huang et al., 2009). We also performed enrichment
analysis to identify genes differentially expressed at different
developmental phases, via functional mapping of genetic and
expression using the FUMA tool (Watanabe et al., 2017).

Cognitive Development Trajectories
With the aim of exploring cognitive development longitudinally,
we first run item analysis across different age-based forms of the
Bayley Mental Scale using 1-parameter (Rasch) Item Response
Theory (IRT). IRT modeling assumes that the probability of a
correct response to an item is based only on the ability of the
subject and the difficulty of items (Rasch, 1960; de Ayala, 2009),
and thereby yields both sample and test independent estimates
of item parameters and individual abilities on the latent trait
being measured (DeMars, 2010). To scale infant performance
for growth interpretations, concurrent vertical scaling was
performed taking advantage of an overlapping common item
structure (Kolen and Brennan, 2014). This analytical approach
provides information on the developmental ordering of items,
and the measurement precision associated with the reliability of
items and the scores of participants. The calculated separation
index shows the scale scores’ capacity to discriminate among
children with high, medium, and low ability. The higher the
value, the better the separation that exists between the items
and between persons and the more precise the representation of
the measured ability. Reliability values above 0.80 are considered
adequate and separation index above 3 suggests that the scores are
sensitive enough to discriminate participants (Linacre, 2010). At
this stage cognitive development was estimated using Winsteps
Version 3.7 (Linacre, 2010); psychometric properties of the
Bayley Mental scaled items and estimates of items’ fit can be
found in the supplementary materials.
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FIGURE 2 | Average gene expression in brain areas at different developmental stages.

Modeling of the cognitive development curve was performed
using Linear Mixed Effects Model (LME) (Gałecki and
Burzykowski, 2013; Fox and Weisberg, 2019). Models were
fitted including the fixed effect of prenatal adversity score, BDNF
ePRS, three population stratification principal components,
children’s sex, and age at data collection time point, and a
quadratic term to model the observed non-linear pattern
between age and the outcome. We also considered an interaction
term between prenatal adversity, BDNF ePRS, and age. For
random effects, participants’ age and the quadratic age term
were specified as nested effects with an autoregressive error
correlation structure (Fox and Weisberg, 2019), to model
individual cognitive development. The pseudo R2 for generalized
mixed-effect models (Nakagawa and Schielzeth, 2013) was used
to compute Cohen’s f 2 measure of local effect size, in which
values bellow 0.02 indicate small effect sizes, medium values
from 0.02 to 0.15, and values greater than 0.15 are considered
large effect (Selya et al., 2012). Packages lme4 (Pinheiro et al.,
2018) and reghelper (Hughes, 2020) from R software (R Core
Team, 2019) were used to perform the statistical analysis.

Structural Magnetic Resonance Imaging
Acquisition and Data Preparation
High-resolution T1-weighted images for the whole brain of
47 children from MAVAN cohort were acquired using a 3T
Trio Siemens scanner in Montreal and GE MR750 Discovery
3T Magnetic Resonance Imaging (MRI) scanner in Hamilton.
We used the following parameters: Montreal) 1 mm isotropic
3D MPRAGE, sagittal acquisition, 256 × 256 mm grid,
TR = 2300 ms, TE = 4 ms, FA = 9degrees; Hamilton) a
3D inversion recovery-prepped, T1-weighted anatomical data
set, fSPGR, axial acquisition, TE/TR/flip angle = 3.22/10.308/9,
512 × 512 matrix with 1mm slice thickness and 24cm FOV.
Computational Anatomy Toolbox (CAT12) from the Statistical
Parametric Mapping software (SPM12) was used to process the
T1-weighted images. In the preprocessing step, the images were
normalized, registered to Montreal Neurological Institute (MNI)
space, and segmented into gray matter (GM) and white matter
(WM) by voxel-based morphometry. After a high-dimensional

Diffeomorphic Anatomical Registration Through Exponentiated
Lie Algebra (DARTEL) normalization, that takes into account
the sample specific spatial intensity distribution of structural
MRI, a smoothing process was applied using 8mm full width
half maximum kernel.

Parallel Independent Component Analysis
A multivariate Parallel Independent Component Analysis (p-
ICA) was performed to identify the relationship between two
different data modalities in a data-driven manner (Khadka et al.,
2016). In this case, the components of BDNF ePRS (genotype
∗ GTEx gene expression slope for each SNP) and whole-
brain voxel-based gray matter density were used. This analysis
estimates the maximally independent components within each
data modality separately while also maximizing the association
between modalities using entropy terms based on information
theory (Liu and Calhoun, 2014; Pearlson et al., 2015). This
process results in each identified independent component
resultant from the p-ICA, being an additive subcomponent of the
overall multi variant signal that also considers the relationship
with a second data modality The prenatal adversity score was
used to define the groups for comparison (23 children high
environmental score, 24 children low environmental score),
aggregated with the most significant principal components from
population stratification for adjustment (ethnicity). The Fusion
ICA Toolbox5 within MATLAB R© R2019 was used to run the
analysis. The number of independent components estimated
using minimum description length criteria (Calhoun et al.,
2010; Pearlson et al., 2015) was 15 for genetic data and 8
for MRI data. The different resulting ICs are interpretable
as brain Talairach coordinates are extracted from the MRI
components, indicating brain regions that contribute to the
overall independent component. As for the genetic modality, the
biological relevance of the functionally related SNPs statistically
correlated with brain phenotypes is inferred by subsequent
enrichment analysis, using annotation software such as the
Metacore, thus providing information for interpretation of the
genetic independent components. To identify significant brain

5http://mialab.mrn.org/software/fit/
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TABLE 4 | Descriptive statistics of scaled cognitive developmental ability
estimates of the Bayley Mental items.

Timepoint N Mean SD

6 months 157 −4.82 13.26

12 months 157 43.61 12.41

18 months 157 100.52 17.72

36 months 157 217.25 16.42

regions and SNPs that contributed the most to the ICs, IC weights
were converted to z-scores and a threshold at | z| > 2.5 was
used. Loading coefficients, which describe the presence of the
identified component across subjects (Liu et al., 2012), were
extracted for each component, modality, and subject. The mean
subject-specific loading coefficients of these components between
children from high and low prenatal adversity groups were
compared using Student’s t-test.

RESULTS

Establishment of the Early Life
Brain-Derived Neurotrophic Factor Gene
Network
The biologically-informed method for selecting SNPs
is designed to capture the genes intricately acting in
conjunction with the BDNF gene in the prenatal and early
life period, hence describing the gene network of interest
acting during a specific sensitive period of development.
The final list consisted of 46 genes and can be seen in
Table 3.

Metacore R© enrichment analysis of the 46 genes that
contributed to the BDNF ePRS shows false discovery rate (FDR)
for pathway maps (Figure 1). Gene ontology processes were
enriched for several epigenetic processes, neuron differentiation,
and cellular transport. The main biological processes involved
in the BDNF ePRS network included biosynthesis of complex
macromolecules, regulation of gene expression and RNA
transcription, maintenance of neuronal stem cells, neurogenesis,
and neuron development.

To enlighten which genes of the BDNF ePRS are differentially
expressed at different developmental phases, we performed
a functional mapping of genetic and expression using the
FUMA tool (Watanabe et al., 2017). In Figure 2, it is possible
to observe that some genes comprising our genetic score have
specific expression patterns across distinct developmental
periods, suggesting that the function of this gene network varies
during development. It is important to notice that our score
is enriched for early life developmental periods (transcripts
differentially expressed in the PFC in comparison with adult
samples), so it is expected that these genes would be highly
expressed in early life.

To further understand these different expressions across
development, we performed enrichment analysis in the subset
of genes that co-variated with age (ARF4, CBX5, CCT2,
DACT1, KDM6B, MYCN, MYL12A, NFIB, ODC1, PGD,

TABLE 5 | Results of the linear mixed-effect regression analysis of cognitive
developmental trajectories.

β SE f2 P

Intercept −12.65 1.66 0.18 < 0.001

BDNF ePRS −3.19 1.35 0.01 0.02

Prenatal Adversity 0.31 0.75 0.03 0.68

BDNF ePRS x Prenatal Adversity 1.73 0.79 0.01 0.03

Age (months) 10.60 0.23 3.20 < 0.001

BDNF ePRS x Age 0.17 0.06 0.01 0.01

Prenatal Adversity x Age −0.14 0.04 0.02 < 0.001

BDNF ePRS x Prenatal Adversity x Age −0.12 0.04 0.02 < 0.001

Age quadratic term −0.07 0.01 0.26 < 0.001

Sex female 1.87 1.67 0.00 0.27

PC1 −34.50 20.64 0.01 0.10

PC2 21.31 15.79 0.01 0.18

PC3 −8.11 16.30 0.00 0.62

RSL1D1, SERBP1, SET, SEZ6, SLC39A6, SMARCD1). These
genes are significantly enriched for the gene ontology process of
regulation of gene expression, DNA transcription, biosynthesis
of RNA, and macromolecules. The subset list of genes was
also related to chromatin remodeling, axogenesis, and nervous
system development.

Cognitive Development Trajectories
Repeated measures analysis of variance yielded significant
mean differences of cognitive development at each time point,
F(3,468) = 962.8, P < 0.001, with significant Bonferroni
adjusted p-values for pairwise comparisons between all age
groups. Descriptive data on cross-sectional scaled cognitive
development at 6, 12, 18, and 36 months are presented in
Table 4.

To best characterize the cognitive developmental trajectories
from 6 to 36 months we visually inspected the scaled cognitive
scores, and data suggested that cognitive skills followed a
curvilinear trajectory, which we modeled by adding age quadratic
term that reached statistical significance. Our final LME model
is presented in Table 5. The model considered growth velocity
(age linear term), and acceleration (age quadratic term) of
cognitive development, and an interaction effect between BDNF
ePRS, prenatal adversity, and age. Neither of the covariates
(population stratification components and sex) significantly
predicted the outcome.

The BDNF ePRS score, prenatal adversity and age presented
a significant interaction on cognitive development trajectory
(β = −0.12, P < 0.001). Cognitive development differences
for children with higher BDNF ePRS scores exposed to
low and to high prenatal adversity were larger (Figure 3,
red line [low adversity] vs purple line [high adversity])
in comparison to children with low BDNF ePRS scores
(Figure 3, green line [low adversity] vs blue line [high
adversity]). The model shows that, on average, infants
with high BDNF genetic scores were more susceptible
to prenatal adversity exposure (higher BDNF ePRS and
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FIGURE 3 | Cognitive developmental growth as function of age, BDNF gene network and cumulative prenatal adversity. Predicted estimates of cognitive
development were plotted considering high (+ 1SD) and low (–1SD) BDNF ePRS and high (+ 1SD) and low (–1SD) prenatal adversity for sake of the interaction
visualization. Prenatal adversity effects on cognitive development trajectories are larger for children with high BDNF ePRS scores (red vs purple lines) in comparison
with children with low BDNF ePRS scores (green and blue lines).

higher prenatal adversity was associated with slower cognitive
development trajectory).

Brain-Derived Neurotrophic Factor
Expression Polygenic Score and Gray
Matter Associations
Magnetic Resonance Imaging scans from 47 participants at age
nine, indicated significant pairs of ICs from two data modalities,
the whole-brain voxel-based gray matter density and SNPs
from the BDNF ePRS. This means that the pICA identified
relationships between the two data modalities, allowing the
characterization of the associations between specific portions
of our gene network and specific brain regions, suggesting
an anatomo-functional basis of the phenotypic differences in
neurodevelopmental trajectories. These associations indicated
that the genetic IC 10 (G10) was significantly correlated to MRI
IC (B6), r = −0.65, p = 5.76e-07; genetic component 13 (G13)
and MRI component (B8), r = 0.63, p = 1.45e-06; and genetic

component 11 (G11) and MRI component 5 (B5), r = −0.42,
p = 2.98e-03.

Comparison of the mean loading coefficients of these three ICs
between children from high and low prenatal adversity groups
indicated statistically significant differences for G10 (t = 2.36,
p = 0.02), G11 (t = −2.05, p = 0.04), B8 (t = −3.34, p = 0.001)
and B5 (t = 2.09, p = 0.04), see Supplementary Table 5. This
means that participants from the two prenatal adversity groups
contributed differently to the overall IC data pattern.

The G11-B5 IC pair showed significant differences for both
the genetic and brain-phenotype components concerning high
and low prenatal adversity and was selected for further analysis.
This pair is of primary interest to our study aims and suggests
that the relationship between these components is moderated by
variations in the quality of the perinatal environment (Figure 4).
The G10-B6 and G13-B8 pairs were less informative regarding
our main objective, as for the G10-B6 pair only the genetic
modality had a significant difference between our groups of
interest, and for the G13-B8 pair, only the brain-phenotype
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FIGURE 4 | Associations between Gene IC G11 and Brain IC B5. (A) Bar plots of estimated loading coefficients for statistically significant brain phenotype (B-5) and
genetic component (G11) pair. (B) Brain areas comprising the B5 component according to group differences. (C) Scatter plot of loading coefficients of B5 and G11
and association between them for low and high prenatal adversity groups. Lines and dots colors represent the High and Low prenatal adversity score groups.
(D) Enrichment analysis of G11 dominant SNPs. Loading coefficients represent the weight of the overall components for each subject. Significant differences in
components are seen contrasting high and low adversity groups, indicating that individuals from high and low adversity groups contributed differently to the overall
pattern of the component. *P < 0.05.

component was significant. Brain regions and SNPs comprising
these components are described in Supplementary Tables 3, 4.

The interpretation of the significant ICs pair was done by
extracting brain Talairach coordinates from MRI IC and by
enrichment analysis of the genetic IC, proving interpretable
information from the observed patterns. All the significant brain
regions for the B5 component as well as for the other brain-
phenotype components (B6 and B8) are listed in Supplementary
Materials. Many regional variations contribute to the B5
component, located mainly in distinct portions of the occipital,
frontal, and parietal cortex. The most prominent regions
according to Brodmann areas were 19 and 18 (occipital cortex),
7 (parietal cortex), 6 (frontal cortex) that contributed bilaterally
and both negatively and positively to the overall pattern.
Brodmann area 10 (anterior PFC) was also associated with the
genetic component, although with a less prominent contribution

to the overall pattern of the component (Figure 4B). In the G11
component, from the 473 SNPs used, 16 significantly contributed
to the component (Z-Threshold > ± 2.5). Enrichment analysis
showed significant pathway maps related to these SNPs such
as the transcription role of heterochromatin protein 1 (HP1)
family in transcriptional silencing (FDR = 0.001) and start of
DNA replication in early S phase on cell cycle (FDR = 0.018).
As for process networks, cell cycle S phase and mitosis
(FDR = 0.016) were significant, and gene ontology processes
were related to central nervous system development, more
specifically commissural neuron axon guidance (FDR = 0.001)
and regulation of mRNA processing (FDR = 0.025), response to
dsRNA (FDR = 0.011) and negative regulation of transcription by
RNA polymerase II (FDR = 0.017). This suggests that variations
in gray matter density from the identified regions (from B5)
and identified SNPs (from G11) vary together across the sample
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subjects and that subjects from high and low prenatal adversity
groups contribute differently to the overall data pattern of B5 and
G11 (Figures 4A,C).

DISCUSSION

This study aimed at examining the hypothesis that the effects
of prenatal exposure to adversity on cognitive trajectories are
moderated by the prefrontal BDNF gene network. Differential
response to prenatal exposure was captured using a novel
bioinformatics approach that provides a biologically-informed
genetic score, based on genes co-expressed with the BDNF in
the PFC. Significant associations between SNPs weighted by gene
expression and gray matter density at 8 to 10 years of age were
located mainly in distinct portions of the occipital, frontal, and
parietal cortex.

Longitudinally, high BNDF ePRS levels at the PFC were
associated with higher environmental susceptibility in predicting
the cognitive growth trajectory. Our data support the differential
susceptibility model that postulates that individuals that are more
likely to be affected by adverse environmental conditions are also
most likely to benefit from positive conditions (Belsky, 2013;
Belsky et al., 2018). The highest differences were observed in
later development (36 months). This result might be related
to the delayed messenger RNA expression in the PFC (Somel
et al., 2009) and corroborates the enrichment analysis done
with FUMA that shows different patterns of gene expression
especially at beginning of infancy (Figure 4). Previous research
found constancy on BDNF mRNA levels through development
in the hippocampus, and variability at the temporal cortex
with the highest expression in neonates that decreased with age
(Webster et al., 2006).

The neurobiological processes enriched in the BDNF ePRS
network were mostly associated with biosynthesis of complex
macromolecules, regulation of gene expression and RNA
transcription, maintenance of neuronal stem cells, neurogenesis,
and neuron development. This is in line with previous animal
research that proposes that BDNF system is critically involved
in neuron development (Jones et al., 1994), regulation of genes
that are associated with synaptic function (Mariga et al., 2015),
dendritic growth of cortical neurons (Martin and Finsterwald,
2011), and formation of the neural networks being secreted
locally by activity-dependent manner (Hayashi et al., 2007).

Going beyond the analysis of polymorphisms in G × E
studies, we integrated information about the gene network of the
BDNF with its function at the PFC in a specific developmental
period, taking advantage of a cumulative measure of prenatal
adversity that reflects a more global level of environmental
influence (Silveira et al., 2017; Camerota and Willoughby,
2019). Several mechanisms might be involved in the relation of
prenatal adversity and cognitive development, and the observed
moderation by the BDNF ePRS. For example, activity-dependent
transcription of BDNF is controlled by at least 9 distinct
promoters, partially mediated by dynamic changes in DNA
methylation (Martinowich et al., 2003; Sakata et al., 2009).
Boersma et al. (2013) have found evidence of reduced BDNF

expression in response to increased methylation of BDNF at the
exon IV in both the amygdala and the hippocampus of prenatally
stressed rat’s offspring. In humans, prenatal depressive symptoms
were also associated with the BDNF promoter IV region along
with NR3C1 1F (Braithwaite et al., 2015), suggesting that this
epigenetic marker is developmentally sensitive to the quality of
the early environmental exposure (Romens et al., 2015).

Another mechanism that may be involved, is the variability
of gene expression in different brain regions at different
developmental stages. In order to verify if the genes that
composed the PFC BDNF ePRS are co-expressed in infancy and
if the list of co-expressed genes is maintained in adulthood,
we used databases that included gene expression levels in the
human cortex. The heatmap obtained (Figure 2) demonstrates
that a high proportion of these genes have different expression
levels from early prenatal to late infancy, but others maintained
a similar pattern. The pattern of the specific genes that varied
from early prenatal to late infancy points to a special role of the
network during development, which may be implicated in the
relation of early life adversity effect on cognitive development
(Gold et al., 2003; Braithwaite et al., 2015).

To further explore the interaction between cumulative
prenatal adversity exposure with our genetic scores, we analyzed
the association of the BDNF ePRS weighted SNPs in relation and
brain matter density considering groups of high x low adversity.
The strongest associations were observed at Brodmann areas 19,
6, 18, and 7 that contributed bilaterally and both negatively and
positively to the overall pattern. The areas are related to visual
association processes, including visual-motor integration, feature
extracting, interpretation of images, attentional and multimodal
integrating functions, as well as planning of complex and
coordinated movements and convergence between vision and
proprioception (Gentile et al., 2011; Bear et al., 2016). Significant
associations were also found at the anterior PFC (Brodmann area
10). This area is involved in higher-order cognitive functions, for
instance, the processing of internal states, strategic processes in
memory recall, reallocation of attention, and more broadly the
integration of information from across the supramodal cortex
(Ramnani and Owen, 2004; Baird et al., 2013), all of which may be
associated with the differential responsiveness to environmental
adversity, as reflected in our main interaction finding.

Previous research indicates that prenatal exposure to tobacco
correlates with a decrease in cortical thickness in the orbitofrontal
cortex, in addition to the reduction in BDNF mRNA and protein
levels (Lotfipour et al., 2009; Yochum et al., 2014). Experimental
and prospective studies have shown that high pregnancy anxiety
is negatively associated with gray matter volume, spine density,
and dendritic complexity in the PFC (Murmu et al., 2006; Buss
et al., 2010) supporting the idea that prenatal adversity has
implications at the neurobiological and structural level.

The integration of genotype and gray matter data using p-ICA
analysis suggests that environmental conditions have an especial
impact on important neurodevelopmental processes. The G11
component is implicated in neural growth, DNA replication,
regulation of mRNA processing, and commissural neuron axon
guidance. The aforementioned processes are highly susceptible
to environmental influences via epigenetic factors including
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DNA methylation and histone acetylation changes (Martinowich
et al., 2003; Boulle et al., 2012; Braithwaite et al., 2015).
The central role that the BDNF plays in neural development,
learning, and memory processes suggests that prenatal exposure
to unfavorable intrauterine conditions may compromise proper
cognitive function via dysfunction of the BDNF system (Jones
et al., 1994; Gomez-Pinilla and Vaynman, 2005; Boersma et al.,
2013). The disruption of the BDNF network could be even more
critical to the more susceptible individuals identified in our study
since BDNF function have been repeatedly related to learning and
memory, as well as the somatosensory and visual cortices (Gold
et al., 2003; Lotfipour et al., 2009; Chiang et al., 2011; Xing et al.,
2012). Thus, the observed environmental groups’ differences in
common components of gray matter density and the weighted
SNPs appear to play a role in a complex phenotype such as
cognitive development.

Although long-lasting effects of prenatal adversity exposure
were observed in cognitive behavior and gray matter density,
we acknowledge that a continued influence of prenatal maternal
adversity during the postnatal period is mediated through the
quality of mother-infant interactions and the environmental
conditions (Monk et al., 2012). The quality of interactions
between caregivers and infants during the postnatal period can
have a profound impact on several developmental domains
predicting neuronal excitability and synaptic plasticity via
epigenetic pathways (Meaney, 2010; Nguyen et al., 2015; Ohta
et al., 2017). It is important to highlight that prenatal negative
exposure is not determinant of a negative outcome, but rather
offers possible optimistic opportunities for intervention during
postnatal development (Bos et al., 2009; Silva et al., 2020).

With this work we expect to contribute with the
understanding of how prenatal adversity and the BDNF
gene network shape neural and cognitive development, aiming at
ultimately inform and improve both prevention and intervention
endeavors, yet a few limitations should be addressed. This
study would benefit from replication in a different longitudinal
cohort specific to the age bands that comprised our sample
since during this period children go through several important
sensitive periods of development. The smaller sample size
of our neuroimaging study is also an aspect that suggests a
need for replication using a falsification approach to avoid
Type-I errors. Also, PFC subregions have been reported to
develop following temporally different trajectories (Shapiro
et al., 2017). Therefore, depending on the time when the
stressor is applied, distinct effects could be expected in these
different subregions, leading to later effects on specific aspects
of cognitive behavior. Distinct PFC regions have also been
shown to interact differently with the HPA axis: in rodents, GR
gene knockdown in the IL cortex potentiated CORT response
to a novel stressor in animals previously subjected to chronic
stress, while GR knockdown in the PL cortex did not result in
the same effect (McKlveen et al., 2013). In addition, functions
such as attentional flexibility, reversal learning, and working
memory, for example, are dependent on distinct PFC regions
(Birrell and Brown, 2000; Manes et al., 2002; McAlonan and
Brown, 2003; Gisquet-Verrier and Delatour, 2006). Although
exposure to post-natal stress can have opposing effects on

dendrite structure and spine density in distinct PFC regions,
such as mPFC and OFC (Liston et al., 2006), specific effects of
prenatal stress on neuronal structure according to different PFC
regions are less studied. Unfortunately, the database (GTEx)
used to calculate our polygenic score did not have expression
data available from distinct PFC regions. We believe that
future studies approaching this point considering specific PFC
regions are warranted.

The broader literature on G x E contains few reports of a
network approach specific to a determined brain region, use
of psychometric modeling to obtain cognitive development
trajectories, and the integration of genotype data with
neuroimage. We demonstrated that the PFC BDNF gene
network moderates the association between exposure to
cumulative prenatal adversity and cognitive growth. Our
results provide support for the developmental origins of health
and disease (DOHaD), along with prenatal fetal programing
of biological mechanisms, and differential susceptibility
hypotheses (Silveira et al., 2007; Belsky, 2013; Barth et al.,
2019). The focus on genes co-expressed with the BDNF allowed
us to identify different patterns of enrichment throughout
developmental stages that are in line with the multiple
sensitive periods of brain development (Knudsen, 2004).
It also made it possible to inspect specific pathways more
comprehensively than the candidate-gene approach (Silveira
et al., 2017). Thus, we expect to contribute to the understanding
of neurobiological processes of cognitive development, and
how prenatal adversity exerts a long-term influence on this
complex phenotype.
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Zinc is important in neural and synaptic development and neuronal transmission. Within
the brain, zinc transporter 3 (ZnT3) is essential for zinc uptake into vesicles. Loss of
vesicular zinc has been shown to produce neurodevelopmental disorder (NDD)-like
behavior, such as decreased social interaction and increased anxiety- and repetitive-
like behavior. Maternal immune activation (MIA) has been identified as an environmental
factor for NDDs, such as autism spectrum disorders (ASDs) and schizophrenia (SZ),
in offspring, which occurs during pregnancy when the mother’s immune system reacts
to the exposure to viruses or infectious diseases. In this study, we investigated the
interaction effect of a genetic factor [ZnT3 knockout (KO) mice] and an environmental
factor (MIA). We induced MIA in pregnant female (dams) mice during mid-gestation,
using polyinosinic:polycytidylic acid (polyI:C), which mimics a viral infection. Male and
female ZnT3 KO and wild-type (WT) offspring were tested in five behavioral paradigms:
Ultrasonic Vocalizations (USVs) at postnatal day 9 (P9), Open Field Test, Marble Burying
Test, three-Chamber Social Test, and Pre-pulse Inhibition (PPI) in adulthood (P60–75).
Our results indicate that loss of vesicular zinc does not result in enhanced ASD- and
SZ-like phenotype compared to WT, nor does it show a more pronounced phenotype
in male ZnT3 KO compared to female ZnT3 KO. Finally, MIA offspring demonstrated an
ASD- and SZ-like phenotype only in specific behavioral tests: increased calls emitted in
USVs and fewer marbles buried. Our results suggest that there is no interaction between
the loss of vesicular zinc and MIA induction in the susceptibility to developing an ASD-
and SZ-like phenotype.

Keywords: vesicular zinc, maternal immune activation, autism spectrum disorders, schizophrenia, polyI:C,
behavior, ZnT3, SLC30A3
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INTRODUCTION

Brain development is a complex process that is influenced by
genetic and environmental factors. The development of the
central nervous system, which begins in the early embryonic
stages, includes various critical periods of vulnerability, at
which point alterations to the fetal environment can result
in structural and functional abnormalities in offspring organs,
including the brain (Rice and Barone, 2000; Schlotz and
Phillips, 2009). This could lead to increased susceptibility to
diseases and psychiatric disorders later in life as physiological
changes may occur in the process (Rice and Barone, 2000;
Schlotz and Phillips, 2009). For instance, during pregnancy,
maternal immune activation (MIA) can lead to changes in
the fetal environment, contributing to the disruption of brain
development in exposed offspring (Meyer, 2014). Zinc deficiency
is another risk factor that has been identified as a contributor to
neurodevelopmental disorders (NDDs), such as autism spectrum
disorders (ASDs) and schizophrenia (SZ) (Yasuda et al., 2011;
Grabrucker, 2013; Nuttall, 2017; Ha et al., 2018; Joe et al.,
2018). Zinc is an essential component of the structure and
functioning of the brain. It plays a role in the development
of neurons and synaptic connections, as well as in neural
transmission (Sandstead et al., 2000). Within the brain, zinc
transporter 3 (ZnT3) is important for the uptake of zinc into
vesicles and it is expressed in zinc-enriched areas such as
the cerebral cortex, amygdala, and hippocampus [as depicted
by Cole et al. (1999) using modifications of Timm’s silver-
sulfide stain].

Zinc concentration in the brain increases with age and
remains constant in adulthood (Takeda, 2001). Dysregulation of
zinc homeostasis has the potential to modify the functioning
of neurotransmitter receptors and second-messenger systems,
potentially causing brain dysfunctions and neurological diseases
(Takeda, 2000; Nakashima and Dyck, 2008). Loss of vesicular
zinc has been shown to produce NDD-like behavior, including
decreased social interaction and preference for social novelty;
decreased time spent in the center of the open field test; increased
repetitive behavior in the marble burying test; and age-related
cognitive decline, as shown by deficits in the novel object
preference test, the Morris water task, and T-maze test (Cole
et al., 1999; Yoo et al., 2016; McAllister and Dyck, 2017). Dietary
zinc deficiency has also been associated with different conditions
including neural development disorders, impaired immunity,
and degenerative diseases (Yasuda et al., 2011; McAllister and
Dyck, 2017).

Autism spectrum disorders and SZ are associated to prenatal
risk factors, such as MIA (Canetta and Brown, 2012; Canetta
et al., 2016; Scola and Duong, 2017). ASDs are defined as NDDs
characterized by key behavioral features: social impairments,
difficulties communicating, stereotyped behaviors, and abnormal
responses to sensory stimulation (Patterson, 2006; Theoharides
and Zhang, 2011; Yoo et al., 2016). According to the Public Health
Agency of Canada, in 2018, 1 in 66 children and youth have
been diagnosed with ASDs, and it is predominantly diagnosed in
males (Public Health Agency of Canada, 2018). In humans, ASDs
are usually noticed in the first or second year of life, indicating

that prenatal and/or early postnatal development may be critical
(Koh et al., 2014).

As previously mentioned, genetic risk is thought to be the
leading cause of ASDs. More than 500 genes may be involved
(Parellada et al., 2014; Ronemus et al., 2014). One of the well-
known genes associated with ASDs is SHANK3. Mutations of this
gene have been found in people with ASDs, making it a candidate
gene to study for these disorders (Fourie et al., 2018). SHANK3
is involved in synapse formation and synaptic transmission,
providing support to organize other proteins at the synapse
(Koh et al., 2014; Arons et al., 2016; Tao-Cheng et al., 2016).
Interestingly, SHANK3 activation and function requires zinc, and
an endogenous source of free zinc for SHANK3 modulation is
the release of zinc from synaptic vesicles (Koh et al., 2014; Arons
et al., 2016; Ha et al., 2018).

Schizophrenia is a psychotic disorder that affects
approximately 1% of the population worldwide (Meyer
and Feldon, 2012). It is defined by positive symptoms
(e.g., hallucinations and/or delusions), negative symptoms
(e.g., anhedonia), and cognitive deficits associated with the
positive and negative dichotomy (e.g., attention and memory
deficits) (Missault et al., 2014). SZ is usually noticed during
adolescence or early adulthood (Meyer and Feldon, 2009). The
disruptions in behavioral, mental, and emotional functions
are believed to be a product of genetic and environmental
factors in brain development early in life and peri-adolescence
(Meyer and Feldon, 2009).

A gene that has been associated with SZ is SLC30A3 (ZnT3)
expressed in the glutamate synapse in the hippocampus and
cerebral cortex; it has been shown to be downregulated in
three SZ patient cohorts (Maycox et al., 2009; Perez-Becerril
et al., 2014, 2016). The findings suggested that ZnT3-gene is
a SZ susceptibility gene that could have sex-dependent effects,
impacting females more than males. Another gene that has
been associated with SZ is SHANK3, the same gene previously
mentioned to be associated with ASDs (Arons et al., 2016; Zhou
et al., 2016).

Zinc deficiency during pregnancy has been shown to increase
the risk of impairments in offspring (Vela et al., 2015). There
is clinical evidence that zinc deficiency may impact brain
development, as low levels of serum zinc are commonly observed
in patients with ASDs and SZ (Grabrucker, 2013; Joe et al., 2018).

Zinc deficiency, from diet in humans and ZnT3 KO in mice,
has been shown to trigger a suppressed immune response to
pathogens making animals with zinc deficiency more susceptible
to infections (Fukada and Kambe, 2018). A study by Yoo et al.
(2016) used ZnT3 KO mice to study the role of vesicular zinc
in ASDs. Their results suggest that ZnT3 KO leads to a sex-
dependent autistic-like phenotype (Yoo et al., 2016).

Maternal immune activation has been modeled in rodents
by exposure to a pathogen, which triggers an immune response
in the mother. Epidemiological studies looking at the effects of
MIA have shown a recurrent link with NDDs in adult offspring
(Fortier et al., 2007; Atladóttir et al., 2010; Bitanihirwe et al.,
2010; Vuillermot et al., 2012; Zhang et al., 2012). A well-known
model of viral-like immune activation is achieved by injection
of polyinosinic:polycytidylic acid (polyI:C), which mimics a viral

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 February 2022 | Volume 16 | Article 769322131

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-769322 February 16, 2022 Time: 14:58 # 3

Sandoval et al. MIA Phenotype in ZnT3KO Mice

infection as a synthetic viral-like double stranded RNA (dsRNA)
(Fortier et al., 2004). Injections of polyI:C in rodents have been
shown to induce sickness behavior, such as reduced appetite,
decreased body weight, and increased body temperature (Fortier
et al., 2004; Ratnayake et al., 2014).

Polyinosinic:polycytidylic acid has been associated with Toll-
like receptor-3 (TLR3), a receptor that is specific to dsRNA
viral infection, as it activates cytokines (including interleukin-
1β, interleukin-6, and tumor necrosis factor-α), causing an
inflammatory response (Fortier et al., 2004; Cunningham
et al., 2007). It is not surprising that the use of polyI:C in
rodents increases the level of pro-inflammatory factors, such as
cytokines, due to its interaction with TLR3 (Fortier et al., 2004;
Cunningham et al., 2007; Ratnayake et al., 2014). Cytokines are
small proteins that are involved in cell-to-cell communication
produced by immune cells in response to inflammation and
are involved in the regulation of neurodevelopment processes
(Scola and Duong, 2017).

Maternal immune activation models exhibit disturbances in a
variety of brain regions, including the hippocampus, prefrontal
cortex, insula, cingulate cortex, mid-temporal lobe, and parietal
lobe (Spann et al., 2018). These brain regions are involved
in deciphering emotions, behavioral reactivity, attention, and
learning and memory (Scola and Duong, 2017; Spann et al.,
2018). Non-human animal studies have identified behavioral
abnormalities in MIA exposed offspring using various behavioral
tasks relevant to NDD-like symptoms: anxiety (open-field test,
elevated plus maze), communication [ultrasonic vocalizations
(USVs), olfactory sensitivity], social interaction (three-chamber
social test, social recognition), repetitive behavior (marble
burying test, self-grooming), and sensory stimuli sensitivity [pre-
pulse inhibition (PPI), latent inhibition] (Meyer et al., 2005;
Crawley, 2007; Smith et al., 2007; Malkova et al., 2012; Ratnayake
et al., 2014; Kim et al., 2017; Mueller et al., 2021).

To our knowledge, it is unknown whether or not there is
an interaction between an environmental factor (MIA) and the
genetic factor of ZnT3 deletion. To elucidate the behavioral
consequences following MIA exposure, offspring underwent a
battery of behavioral assays to assess core symptoms associated
with ASD- and SZ-like symptoms, as well as comorbid features,
often observed in human patients: USVs, open field, marble
burying, three-chamber social test and PPI. Based on previous
studies, we hypothesized that offspring of a polyI:C exposed
mothers would demonstrate an NDD-like phenotype compared
to the control offspring. Additionally, we expected that this
phenotype would be more severe in ZnT3 KO mice than in wild-
type (WT) mice. More specifically, we expected to observe either
an increased or decreased number and length of USVs in pups. In
adult mice, it was anticipated that they would have decreased time
spent in the center of the open field test—indicating increased
anxiety-like behavior—as well as less distance traveled in the open
field, increased stereotyped behavior in the marble burying test,
decreased social interaction in the three-chamber social test, and
low inhibition in the PPI test. Furthermore, we hypothesized that
this phenotype would be more pronounced in male ZnT3 KO
mice compared to female ZnT3 KO mice. Lastly, we hypothesized
that there would be an interaction effect between genotype and

treatment in which case ZnT3 KO offspring of polyI:C-injected
mothers would show the more severe NDD-like phenotype.

MATERIALS AND METHODS

Animals
All procedures were approved by the Life and Environmental
Sciences Animal Care Committee at the University of Calgary
and conformed to the guidelines established by the Canadian
Council on Animal Care. Male and female C57BL/6× 129Sv mice
heterozygous for the ZnT3-coding gene (slc30A3) were paired
and housed in standard cages (28 cm × 17.5 cm × 12 cm,
bedding, nesting material and a house as an enrichment object).
Offspring, both male and female, were housed with the mother
until postnatal day 21 (P21), after which they were weaned and
housed in standard cages with 2–5 littermates of the same sex.
They were kept on a 12 h light/dark cycle with lights on at 7 a.m.
at an ambient room temperature of 22◦C, and food and water
available ad libitum.

Experimental Design
We generated seven cohorts of offspring for this experiment.
In total, 71 heterozygous (ZnT3+/−) females were paired with
57 heterozygous males, but only 45 were impregnated and gave
birth. From the 45 pregnant females, 7 dams did not deliver live
pups, and 1 dam had complications during delivery, resulting in
a total of 37 viable litters.

To determine the beginning of gestation, the appearance of a
seminal plug was considered embryonic day 0.5 (E0.5). At E12.5,
dams were injected with polyI:C (20 mg/kg; Sigma-Aldrich, St.
Louis, Mo, United States), which was dissolved in 0.9% saline and
administered via intraperitoneal (i.p.) injection. Control females
were given an equivalent volume of 0.9% saline (0.001 mL/g),
also via i.p. injection. That same day (E12.5) male breeders
were removed from the cage and the dams were single housed
until birth. The body weights of dams were recorded on a daily
basis until E16.5 to confirm that the polyI:C induced an acute
response, identified by a decrease in weight, 24-h post-injection
(Fortier et al., 2004).

Offspring were genotyped after being weaned in order to
determine which mice to use for behavioral testing. In this case,
only WT and ZnT3 KO male (WT-Saline: n = 12; KO-Saline:
n = 7; WT-PolyI:C: n = 13; KO-PolyI:C: n = 7) and female (WT-
Saline: n = 9; KO-Saline: n = 9; WT-PolyI:C: n = 5; KO-PolyI:C:
n = 8) offspring were selected for testing. Ear tissue sample was
taken from mice to extract DNA using proteinase K. Polymerase
chain reaction (PCR) was used to amplify DNA, using primers
oIMR3663 (mutant), oIMR3693 (WT), oIMR3694 (common).
To determine the alleles contained in the sample, we ran gel
electrophoresis accompanied by positive and negative controls.
For a diagram of the experimental timeline, see Figure 1.

Behavioral Assessments
For the following tests, experimental mice were habituated to the
test room for 30-min prior to each testing day. All tests were
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FIGURE 1 | Experimental timeline. Pregnant dams were administered polyinosinic:polycytidylic acid (polyI:C) at embryonic day 12.5. Female and male, wild-type
(WT) and zinc transporter 3 knockout (ZnT3 KO) offspring underwent five behavioral tests. The first behavioral test was completed on P9. The other tests were done
in adulthood, between P60-P75, across five consecutive days.

conducted during the light phase of the light/dark cycle between
10 a.m. and 5 p.m.

Ultrasonic Vocalizations
At P9, the dams were removed from the nest and placed
in a clean holding cage while their pups were left in
their home cage. The home cage, containing the pups, was
moved to the testing room. Following habituation, pups were
removed from the home cage, one at a time, isolated from
their siblings and placed in a Plexiglas recording chamber
(28 cm × 17.5 cm × 12 cm). The test was performed in
a room with the lights turned off. USVs were recorded for
4-min using an UltraSoundGate 116Hm microphone (Avisoft
Bioacoustics, Berlin, Germany) and collected using Avisoft
Recorder USGH (Kim et al., 2017). After the USV recording,
pups were placed in a separate holding cage to avoid re-testing
the same pup.

To avoid any stress in the mother and offspring due to foreign
olfactory cues, gloves were changed after handling each litter.
Additionally, gloved hands were rubbed in the cage bedding of
the home cage for a few seconds, prior to handling the pups to
ensure the transfer of the litter smell to the gloves. The recording
cage was cleaned with 70% ethanol after each litter.

The recorded USV calls were scored using DeepSqueak 2.6.1
software (Coffey et al., 2019). DeepSqueak is a free software that
runs through MATLAB (R2018b, Natick, MA, United States).
The software was used to determine the number of calls made
by the pups and the length of their calls.

Open Field Test
To assess anxiety-like behavior, mice were placed individually
near the center of an arena (40 cm× 40 cm× 40 cm) containing
approximately 1.3 cm bedding. We have found that the addition
of bedding, which is not typical, reduces stress in the mice
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and has allowed us to probe for any stereotypies. Movement
was recorded for a period of 10-min (Kim et al., 2017). We
used an overhead camera (Basler acA1300-60mg GigE, Basler
AG, Berlin, Germany) fixed to the ceiling above the arenas, or
a Sony Handycam HDR-SR8 camera for the 2nd cohort. The
total distance traveled, and the total time spent in the center
of the field (20 cm × 20 cm) were measured using EthoVision
XT 14 software (Noldus Information Technology Inc., Leesburg,
VA, United States).

The arena was cleaned with 70% ethanol after each mouse.
Mice were tested by sex group, and the bedding was changed
between male and female mice.

Marble Burying Test
To measure repetitive behavior, mice were placed in a cage
(28 cm× 17.5 cm× 12 cm) containing 4 cm of bedding. We used
20 identical black-painted glass marbles placed in an equidistant
4× 5 array on top of the bedding. Mice were left in the cage for a
duration of 10-min, after which they were placed back into their
home cage (Kim et al., 2017). The number of marbles buried in
10-min was counted and converted to a three-level scale: if the
marble was not buried, it was given a score of 0; if it was 50%
buried or less it was given a score of 0.5; and if it was buried more
than 50% buried a score of 1 was given. The sum of these scores
was divided by 20 to obtain the ratio of marbles buried.

The cage with bedding and the marbles were cleaned with 70%
ethanol after each mouse. Mice were tested by sex group, and
separate cages were used for male and female mice.

Three-Chamber Social Test
Social interaction was assessed using the three-chamber test
across 2-days. On the first day, mice were placed individually in
the three-chamber arena (40 cm × 60 cm × 22 cm partitioned
equally lengthwise) and left to freely explore all chambers for
10-min. The right and left chambers held an empty wire-mesh
cylinder (8.5 cm diameter× 9.5 cm) (Kim et al., 2017). Therefore,
this exploration allowed for the evaluation of a mouse’s preferred
cylinder and chamber. The next day, the doors to the right and
left chambers were initially blocked, and the mouse was placed
in the middle chamber for 5-min (habituation). After this period,
the doors were opened to allow free exploration in all chambers
for 10-min. The previously determined preferred side had a novel
object (a mini stapler) in the mesh cage, and the other side had a
novel conspecific, a heterozygous mouse of the same sex and age
as the experimental mouse, in the mesh cage. In the cases where a
mouse did not have a preference, cylinders were placed randomly.

An overhead camera (Basler acA1300-60mg GigE, Basler AG,
Germany) was used to record the total time spent exploring
each mesh cage containing the novel conspecific/novel object.
EthoVision XT 14 software (Noldus Information Technology
Inc., Leesburg, VA, United States) was used to automatically
assess the total time spent exploring each mesh cage. The social
index was calculated using the time spent exploring mesh cages:

novel conspecific
novel conspecificnovelõbject .

The arena was cleaned with 70% ethanol after each mouse.
Mice were tested by sex group, and the bedding was changed
between male and female mice.

Pre-pulse Inhibition
Sensory-motor gating was assessed using PPI of the acoustic
startle response. This test involves the presentation of a lower
intensity sound prior to the acoustic startle stimulus and the
measurement of the startle response. The mice were individually
placed in an isolation chamber (5 cm × 10 cm × 5 cm),
which includes a force sensor to detect the movement of the
mouse. The startle response was measured and analyzed using
a SM100SP Startle Monitor system (Hamilton-Kinder LLC, San
Diego, CA, United States).

The session began with a 5-min acclimatization period with
background white noise (65 dB) and proceeded with four 115 dB,
40 ms sound bursts—which were not included in the analysis as
they measure the baseline of the acoustic startle response. The
session included six of each of the following trial types for a total
of 18 trials: 20 ms pre-pulse stimuli at 70 dB (PPI 5 dB higher
than background), 75 dB (PPI 10 dB higher than background),
and 85 dB (PPI 20 dB higher than background) (Thackray et al.,
2017). Each session lasted approximately 18-min. Percent PPI
was calculated using the formula: pulse−prepulse

pulse 100.
The chamber was cleaned with 70% ethanol after each mouse.

Mice were tested by sex group.

Statistical Analysis
Statistical analyses were conducted using IBM SPSS Statistics
(version 25). A 2-way Analysis of Variance (ANOVA) with
[Genotype (WT vs. ZnT3 KO) × Treatment (Saline vs. PolyI:C)]
as factors was performed to analyze each behavioral test, unless
otherwise specified. A separate ANOVA was run for each sex
(male and female). A critical alpha of p < 0.05 was used to assess
statistical significance, and significant interactions were followed
up with (Bonferroni-corrected) post-hoc tests. GraphPad Prism 8
software was used to create all the graphs presented in the section
“Results.”

RESULTS

Weight of Mothers and Litter Size
A repeated-measures ANOVA [Treatment (Saline vs.
PolyI:C) × Days (day 1.5–day 16.5)] was performed to assess the
weight of the dams during pregnancy. Sphericity was violated
according to Mauchly’s Test of Sphericity, χ2(119) = 1040.171,
p < 0.001, and therefore, a Huynh-Feldt correction was used
(ε = 0.083). All pregnant females (dams) increased in body weight
as pregnancy progressed [F(1.228,34.373) = 146.500, p < 0.001],
with no difference in weight progression between saline- and
polyI:C-injected dams [F(1.228,34.373) = 0.848, p = 0.386]. We
previously hypothesized that dams injected with polyI:C would
demonstrate a loss of weight 24-h post-injection (day 13.5), and
saline-injected dams would continue gaining weight consistently.
A priori comparison revealed that the weight significantly
decreased in polyI:C-injected dams by an average of 2.956 g [F(1,

28) = 5.877, p = 0.022] at day 13.5 (Figure 2). Furthermore, 72%
of the dams from the saline group gave birth to viable litters, but
only 49% of polyI:C-injected dams gave birth to viable litters.
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However, litter size did not differ between the saline-injected
(7.40 ± 2.542) and polyI:C-injected (7.29 ± 2.544) groups
[t(35) = 0.126, p = 0.900].

Ultrasonic Vocalizations
We determined the latency to emit the first call, counted the
number of USV calls emitted by pups, and measured the
average length of calls. Means ± SD values can be found in
Supplementary Table 1.

Latency
In males, there was a significant difference between genotypes
[main effect of genotype: F(1, 34) = 4.695, p = 0.037;
genotype × treatment interaction: F(1, 34) = 0.008, p = 0.931]
in which ZnT3 KO male offspring emitted their first call sooner
than their WT counterparts. There was no significant difference
between treatments [main effect of treatment: F(1, 34) = 0.061,
p = 0.807] (Figure 3A).

In females, there was no significant difference between
genotypes or treatments on the latency to emit the first call [main
effect of genotype: F(1, 27) = 0.016, p = 0.899; main effect of
treatment: F(1, 27) = 0.717, p = 0.404; genotype × treatment
interaction: F(1, 27) = 2.253, p = 0.145] (Figure 3B).

Number of Calls
In males, there was a significant difference between the two
genotypes in the number of calls emitted [main effect of genotype:
F(1, 34) = 5.165, p = 0.029; genotype× treatment interaction: F(1,

34) = 0.498, p = 0.485], with ZnT3 KO male offspring emitting
a greater number of calls than WT offspring. There was also a
significant difference between the two treatments observed [F(1,

34) = 4.734, p = 0.037], in which MIA-offspring emitted more calls
than male offspring of saline-injected mothers (Figure 3C).

In females, there was no significant difference between
genotypes or treatments for the number of calls emitted [main
effect of genotype: F(1, 27) = 0.491, p = 0.490; main effect of
treatment: F(1, 27) = 0.029, p = 0.865; genotype × treatment
interaction: F(1, 27) = 0.216, p = 0.646] (Figure 3D).

Calls Length
In males, there was no significant difference between genotypes
or treatments for the number of calls emitted [main effect of
genotype: F(1, 34) = 0.569, p = 0.456; main effect of treatment:
F(1, 34) = 0.326, p = 0.572; genotype× treatment interaction: F(1,

34) = 0.193, p = 0.663] (Figure 3E).
In females, there was no significant difference between

genotypes or treatments for the number of calls emitted [main
effect of genotype: F(1, 27) = 1.499, p = 0.231; main effect of
treatment: F(1, 27) = 0.488, p = 0.491; genotype × treatment
interaction: F(1, 27) = 0.325, p = 0.573] (Figure 3F).

Open Field
Distance Traveled
In males, there was no significant difference between genotypes or
treatments on the distance traveled [main effect of genotype: F(1,

34) = 0.434, p = 0.514; main effect of treatment: F(1, 34) = 3.617,

p = 0.066; genotype × treatment interaction: F(1, 34) = 0.306,
p = 0.584] (Figure 4A).

In females, there was a statistically significant interaction
between treatments and genotypes on the distance traveled
[F(1, 27) = 4.569, p = 0.042]. Follow-up t-tests did not identify
significant effects of polyI:C treatment in either genotype [WT:
t(4.764) = −1.961, p = 0.110; KO: t(15) = 0.007, p = 0.994].
No significant difference was observed between genotypes [F(1,

27) = 1.530, p = 0.227]. There was a significant main effect of
treatment [F(1, 27) = 4.533, p = 0.043] in which MIA-offspring
traveled longer distances (Figure 4B). Means± SD can be found
in Supplementary Table 1.

Time Spent in the Center
In males, there was no significant difference between genotypes
or treatments on the time spent in the center of the open field
[main effect of genotype: F(1, 34) = 0.963, p = 0.333; main effect
of treatment: F(1, 34) = 0.219, p = 0.643; genotype × treatment
interaction: F(1, 34) = 1.099, p = 0.302] (Figure 4C).

In females, there was no significant difference between
genotypes or treatments on the time spent in the center of
the open field [main effect of genotype: F(1, 27) = 0.730,
p = 0.400; main effect of treatment: F(1, 27) = 0.495,
p = 0.488; genotype × treatment interaction: F(1, 27) = 0.341,
p = 0.564] (Figure 4D).

Marble Burying
In males, there was no significant difference between genotypes
or treatments on the proportion of marbles buried [main effect
of genotype: F(1, 34) = 1.524, p = 0.225; main effect of treatment:
F(1, 34) = 3.007, p = 0.092; genotype× treatment interaction: F(1,

34) = 0.643, p = 0.428] (Figure 5A).
In females, there was no significant difference between the

two genotypes on the proportion of marbles buried [main effect
of genotype: F(1, 27) = 3.148, p = 0.087; genotype × treatment
interaction: F(1, 27) = 0.967, p = 0.334]. There was a significant
difference observed between the two treatments [F(1, 27) = 21.077,
p < 0.001], indicating that female MIA-offspring buried fewer
marbles than offspring from saline-injected mothers (Figure 5B).
Means± SD can be found in Supplementary Table 1.

Three-Chamber Social Test
Social behavior was measured by determining the time offspring
spent in the chambers containing the mesh cages. The social
index was calculated using the time spent exploring mesh
cages: novel conspecific

novel conspecificnovel object . Means ± SD can be found in
Supplementary Table 1.

In males, there was no significant difference between
genotypes or treatments on the social index [main effect of
genotype: F(1, 34) = 0.140, p = 0.710; main effect of treatment:
F(1, 34) = 0.482, p = 0.492; genotype× treatment interaction: F(1,

34) = 0.537, p = 0.468] (Figure 6A).
Likewise, in females, there was no significant difference

between genotypes or treatments on the social index [main effect
of genotype: F(1, 27) = 0.055, p = 0.817; main effect of treatment:
F(1, 27) = 0.007, p = 0.936; genotype× treatment interaction: F(1,

27) = 0.307, p = 0.584] (Figure 6B).
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FIGURE 2 | Body weight of ZnT3+/– dams, recorded from gestational day 1–16. A significant body weight decrease was observed 24-h after
polyinosinic:polycytidylic acid (polyI:C) administration (Day 13). Error bars depict SEM, *p < 0.05, ***p < 0.001.

Pre-pulse Inhibition
Means± SD can be found in Supplementary Table 1.

In males, the interaction between genotype and treatment
at PPI 5 was close to significance, but this interaction was not
significant at PPI 10 or 20 [PPI 5: F(1, 34) = 3.487, p = 0.070;
PPI 10: F(1, 34) = 0.027, p = 0.871; PPI 20: F(1, 34) = 2.655,
p = 0.112]. A follow-up independent t-test did not identify a
statistically significant difference between WT and ZnT3 KO
offspring of saline-injected mothers at PPI 5 [t(16) = 0.398,
p = 0.696] or ZnT3 KO MIA-offspring were less inhibited by the
pre-pulse at 70 dB (PPI 5) compared to the WT MIA-offspring
[t(18) = 2.904, p = 0.009, Bonferroni-corrected α = 0.008]. There
was no significant main effect of treatment [PPI 5: F(1, 34) = 0.058,
p = 0.811; PPI 10: F(1, 34) = 0.192, p = 0.664; PPI 20: F(1,

34) = 0.339, p = 0.564] or genotype, with the exception of PPI 5,
in which case ZnT3 KO male offspring were less inhibited by the
pre-pulse at 70 dB (PPI 5) compared to WT offspring, [PPI 5: F(1,

34) = 5.741, p = 0.022; PPI 10: F(1, 34) = 0.054, p = 0.817; PPI 20:
F(1, 34) = 1.227, p = 0.276] (Figure 7A).

In females, there was no significant interaction between
treatments and genotype on PPI 5, 10, or 20 [PPI 5: F(1,

27) = 0.097, p = 0.758; PPI 10: F(1, 27) = 0.286, p = 0.597; PPI
20: F(1, 27) = 0.190, p = 0.666]. There was no significant main
effect of treatment, except at PPI 20 where MIA-offspring had
greater inhibition than offspring of saline-injected mothers [PPI
5: F(1, 27) = 2.089, p = 0.160; PPI 10: F(1, 27) = 1.867, p = 0.183;
PPI 20: F(1, 27) = 5.891, p = 0.022]. There was no genotype
effect at any PPI intensity [PPI 5: F(1, 27) = 0.360, p = 0.554;
PPI 10: F(1, 27) = 0.215, p = 0.646; PPI 20: F(1, 27) = 0.750,
p = 0.394] (Figure 7B).

DISCUSSION

The aim of this study was to determine the effects of prenatal
immune challenge, MIA, in mice lacking vesicular zinc. We
hypothesized that offspring of polyI:C-exposed dams would
demonstrate an ASD- and SZ-like phenotype. Furthermore, we
hypothesized that ZnT3 KO mice would show an enhanced

ASD- and SZ-like phenotype compared to WT mice. Finally, we
hypothesized that this phenotype would be more pronounced in
male ZnT3 KO offspring compared to female ZnT3 KO offspring.

The results, summarized in Table 1, show that polyI:C-
induced MIA at E12.5 leads to alterations in behavior of
males that fall within one key diagnostic criterion for ASDs
and SZ: communication. Anxiety-like, social, and repetitive-like
behaviors remained unchanged. In females, MIA led to behavior
alterations opposite to that of what was expected, changing one
key diagnostic criteria for ASDs and SZ: repetitive-like behavior.
Other measures of behavior such as communication, anxiety-
like behavior, and social behavior, remained unchanged. As for
sensorimotor gating measured in the PPI test, a deficit was
observed in female (at 85 dB) ZnT3 KO offspring of polyI:C-
injected mothers and greater inhibition was observed in female
offspring of polyI:C-injected mothers (at 85 dB).

Offspring of a Polyinosinic:Polycytidylic
Acid Exposed Dams Demonstrated an
Autism Spectrum Disorder- and
Schizophrenia-Like Phenotype Only in
Certain Behavior Tests
Maternal immune activation induction by polyI:C has been
shown to produce an ASD- and SZ-like phenotype in offspring
(Giovanoli et al., 2014; Grabrucker, 2014; Spann et al., 2018).
Previous studies reported changes in USVs (increased or
decreased calls), decreased distance traveled and decreased time
spent in the center of the open field, increased marble burying,
decreased social interaction, and deficits in PPI (Malkova et al.,
2012; Schwartzer et al., 2013; Careaga et al., 2017; Kim et al.,
2017). It is interesting that we observed different results in some
of the tests. These difference could be due to the timing, dosage,
and number of polyI:C injections (Kentner et al., 2018). Timing
and dosage of polyI:C injection have been studied before, and the
most common gestational points are E9, E12.5, and E17.

Changes in offspring behavior tests are observed when polyI:C
is administered at any of the three gestational points; however,
results vary depending on the tests performed. A study compared
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FIGURE 3 | Ultrasonic vocalizations (USVs) by postnatal day 9 pups. Latency to emit a call (A,B), number of calls (C,D) and average call length (E,F) were
measured. (A) Male zinc transporter 3 knockout (ZnT3 KO) offspring took less time to emit their first call compared to wild-type (WT) offspring. No effect of
polyinosinic:polycytidylic acid (polyI:C) treatment was observed. (B) In female offspring, no significant difference was observed. (C) Male maternal immune activation
(MIA)-offspring emitted more calls than saline-injected offspring and male ZnT3 KO offspring emitted more calls than WT offspring. (D) No significant difference was
observed in female offspring. (E) Male offspring did not demonstrate a statistically significant difference between treatments or genotypes. (F) Female offspring did
not demonstrate statistically significant differences between treatments or genotypes. Error bars depict SEM, ∗p < 0.05.
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FIGURE 4 | Distance traveled (A,B) and time spent in the center (C,D) in the open field test. (A) Male maternal immune activation (MIA)-offspring tended to travel
shorter distances than male offspring of saline-injected mothers, though the difference was not significant. (B) Female MIA-offspring traveled greater distances than
female offspring from saline-injected mothers. (C,D) No significant differences were observed in the time spent in the center between treatment and genotype, in
either male or female offspring. Error bars depict SEM, ∗p < 0.05.

FIGURE 5 | Marble burying test. (A) Male maternal immune activation (MIA)-offspring tended to bury fewer marbles compared to saline-offspring, though the
difference was not significant. (B) Female MIA-offspring buried fewer marbles compared to saline-offspring. Error bars depict SEM, ∗∗∗p < 0.001.
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FIGURE 6 | Social interaction assessed in the three-chamber social test. (A) In males, no significant difference was observed between treatment or genotype. (B) In
females, no significant difference was observed between treatment or genotype. Error bars depict SEM.

polyI:C administration at E9 and E17, and found opposite results,
meaning that a deficit in one test at E9, was not significant at E17,
and vice versa (Meyer et al., 2006b). This suggests that there may
be different critical periods for the development of different brain
systems/structures that underlie the different behaviors. Another
study showed that polyI:C injection resulted in deficits in PPI and
increased anxiety-like behavior at E12.5, but at E17, it resulted in
decreased social interaction and time spent in the center of the
open field (Meyer et al., 2006a,b; Ozawa et al., 2006; Hsiao et al.,
2012; Reisinger et al., 2015).

Dosages of polyI:C used in previous studies vary from 2.5 to
20 mg/kg, and some studies have used multiple administrations
rather than a single shot. The most commonly used dosage has
been 20 mg/kg, and so far, it is the dose at which more differences
have been observed in offspring. However, some studies have
shown that lower doses produce more severe ASD- and SZ-
like features in some, but not all, key symptoms. For example,
5 mg/kg of polyI:C administered three times during pregnancy
produced extreme repetitive-like behavior and significantly lower
sociability (Malkova et al., 2012). Aside from differences observed
in behavioral outcomes in offspring, a dose-dependency has been
observed in the maternal immune response, in which different
doses activated different levels of pro-inflammatory cytokines
(Meyer et al., 2005). This could influence the impact MIA has
on the fetal brain and, consequently, the different behavioral
outcomes that develop in adult offspring.

Although many studies have looked at MIA using different
times, dosages, and number of polyI:C administrations, it
is unclear how those differences truly impact the behavioral
outcome of the offspring. This is due to a lack of replication
in studies of MIA models (Kentner et al., 2018). Most studies
use different assays, different timelines, different mouse models,
and different purposes. One way that we could improve this
is by increasing the transparency of the experimental design.
For instance, in our experiment, many of the female breeders
that did not deliver live pups were from the polyI:C-injected
group. Furthermore, 72% of the dams from the saline group gave
birth to viable litters, but only 49% of polyI:C-injected dams
gave birth to viable litters. This could mean that the dosage

of polyI:C we administered could have been too high for our
mice. However, most studies of MIA models do not report losses.
Many studies do not explain the reasoning for choosing a specific
timeline. Doing so would allow others to better understand the
approach and be better able to replicate the study. Providing exact
measurements of the equipment or techniques used would also
improve behavior testing in general.

Another important variable to consider is that many studies
have tested offspring at different ages, which could explain
the contrast between our results and what has been reported
previously. Many of the published studies have used adolescent
mice instead of adult mice. It is important to consider which
symptoms we are evaluating to determine at what age we should
test mice. For instance, if we are assessing ASD symptoms, we
should test in early life stage and in adulthood. However, if
we are testing SZ symptoms, which is diagnosed in adolescence
and early adulthood in humans, we should test in adolescence
and early adulthood to align with the clinical diagnosis we
are trying to model (Kentner et al., 2018). The behavior tests
should also align with the main purpose being studied. There is
evidence that MIA models induce behavioral outcomes that are
relevant across different neurological disorders, such as ASDs, SZ,
depression, ADHD, bipolar disorder, and cerebral palsy (Canetta
and Brown, 2012; Reisinger et al., 2015; Scola and Duong, 2017;
Spann et al., 2018).

Zinc Transporter 3 Knockout Mice Do
Not Show Enhanced Autism Spectrum
Disorder- and Schizophrenia-Like
Phenotype
Contrary to what we had hypothesized, ZnT3 KO mice did not
show a more severe ASD- and SZ-like phenotype than WT mice.
A lack of differences between genotype could, perhaps, indicate
that the ZnT3 KO mice compensated for the lack of zinc during
development. It is also possible that the behavior tests used in this
experiment did not require vesicular zinc signaling. Besides the
study by Yoo et al. (2016), most studies that have looked at ZnT3
KO mice have found no difference or only mild differences in
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FIGURE 7 | Sensory-motor gating assessment in the pre-pulse inhibition (PPI) test. (A) In males, no significant difference was observed between treatment or
genotype. (B) Female wild-type (WT) maternal immune activation (MIA) offsprinxg showed greater inhibition and zinc transporter 3 knockout (ZnT3 KO) MIA offspring
showed impaired inhibition compared to both WT and ZnT3 KO offspring of saline-injected mothers at 85 dB (PPI 20). Error bars depict SEM, ∗p < 0.05.

behavior tests between KO and WT genotypes (Cole et al., 2001;
Martel et al., 2011; Thackray et al., 2017).

In the introduction, we mentioned a study that found an ASD-
like phenotype in male ZnT3 KO mice (Yoo et al., 2016). Since we
did not see the same results they did, it is worth exploring what
was different in our experimental approaches. The first possibility
that could explain the differing results, is that Yoo et al. (2016)
ran behavior tests in mice that were 4–5 weeks of age. However,
we ran our behavior tests between 60 and 75 days of age (8–
9 weeks of age), except for USVs, which we measured at P9. This
would suggest that ZnT3 KO offspring show big differences at a
younger age, but these effects are short-lasting and go away a few
weeks later. Another possible explanation would be that we tested

behaviors in a different order than they did and used different
tasks; they started with the three-chamber social test, then marble
burying, with the open field or reciprocal social interaction tests
last. It also appears that they conducted the three-chamber social
test slightly differently: one side chamber had a conspecific and
the other side (and middle chamber) were empty, then they
placed the same conspecific in one side and a new conspecific
on the other side, leaving the middle chamber empty (Yoo et al.,
2016). Having two conspecifics, rather than one conspecific and
a novel inanimate object, such as the one presented here, could
possibly be evaluating different features. The approach used by
Yoo et al. (2016) is testing the curiosity-like behavior of a mouse
to a novel conspecific compared to how much time it spends
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TABLE 1 | Summary of behavioral statistically significant (p < 0.05) and marginally significant [#] (0.05 < p < 0.100) test results.

Male Female

USVs

Number of calls (n) Increased calls in MIA-offspring Increased calls in ZnT3 KO offspring No difference

Length of calls (s) No difference No difference

Latency of call (s) ZnT3 KO offspring were faster to emit their first call No difference

USV min 1 Increased calls in ZnT3 KO offspring No difference

USV min 2 Increased calls in MIA-offspring No difference

USV min 3 Increased calls in MIA-offspring# No difference

USV min 4 Increased calls in MIA-offspring# No difference

Open field

Distance traveled(m) Decreased distance traveled in MIA- offspring# Increased distance traveled in MIA- offspring

Total time spent in center (s) No difference No difference

Marble burying Decreased marble burying in MIA- offspring# Decreased marble burying in MIA- offspring

Decreased marble burying in ZnT3 KO offspring

3-Chamber social test No difference No difference

PPI

PPI5 Deficit in ZnT3 KO MIA-offspring No difference

PPI10 No difference No difference

PPI20 No difference Greater inhibition in WT MIA- offspring

Deficit in ZnT3 KO MIA-offspring

exploring the other conspecific that is no longer new. In our
approach, we were looking at the preference between socializing
with a novel conspecific or exploring a novel inanimate object.

Previous studies that used the ZnT3 mouse model to study
behavioral outcomes, observed no difference between WT and
ZnT3 KO mice for the time spent in the center or the distance
traveled in the open field test (Cole et al., 2001; Martel et al., 2010;
Thackray et al., 2017). ZnT3 KO mice also did not show social or
PPI deficits compared to WT mice (Cole et al., 2001; Martel et al.,
2011; Thackray et al., 2017). Based on these observations, our
results are similar in that no differences were observed between
ZnT3 KO mice and WT mice.

Autism Spectrum Disorder- and
Schizophrenia-Like Phenotype Is Not
More Pronounced in Male Zinc
Transporter 3 Knockout Compared to
Female Zinc Transporter 3 Knockout
We observed no significant difference between male and female
ZnT3 KO mice. However, male offspring had more statistically
significant differences than females did in the behavior assays.

It is possible that MIA, in general, affects females differently
than males. Most studies have investigated male offspring and the
studies that looked at both sexes either found no sex differences
or only males showed significant ASD- and SZ-like phenotype
(Grabrucker et al., 2016; Hui et al., 2018; Coiro and Pollak,
2019; Lins et al., 2019; Gogos et al., 2020). It is well known that
clinical diagnosis of ASD and SZ is more common in males
than females (Public Health Agency of Canada, 2018, 2020).
This could potentially be due to differences in the severity of
symptoms related to ASD and SZ, where female symptoms are
more subtle than in males. Therefore, it is not surprising that our

results show differences in key features of ASD and SZ in males,
but not females. A reason we may be seeing sex differences in our
results, namely, how males show more ASD- and SZ-like features
than females, could be due to estrogen. A relationship between
estrogen and ZnT3 has been shown, in which case, higher levels
of estrogen reduce ZnT3 levels (Lee et al., 2004). Estrogen has also
been shown to influence inflammatory response; that is, lower
levels of estrogen increase inflammation (Monteiro et al., 2014).

Autism Spectrum Disorder- and
Schizophrenia-Like Phenotype Is Not
More Pronounced in Zinc Transporter 3
Knockout Offspring of
Polyinosinic:Polycytidylic Acid Exposed
Dams
We hypothesized that MIA prenatal exposure would affect the
brain in the fetus causing important alterations that could
interact with loss of ZnT3 later in life. Our results suggest
that there is no interaction between MIA exposure and loss of
vesicular zinc. Since we observe deficits in some PPI results,
it is possible that the interaction between MIA and ZnT3
KO is more relevant to a schizophrenic model. This could be
further explored by testing other symptoms of SZ-like behavior
such as locomotor activity in response to psychotomimetic
drugs (e.g., ketamine), working memory (e.g., T-maze working
memory task), and spatial navigation (e.g., Morris water task)
(Powell and Miyakawa, 2006).

Previous studies have shown that prenatal injection of polyI:C
affect maternal care behavior, and an aspect we did not measure
in this study (Ronovsky et al., 2017; Berger et al., 2018).
Consequently, changes in maternal care have been shown to
greatly impact offspring behavior (Champagne et al., 2008;
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Ronovsky et al., 2017; Berger et al., 2018). A possible way to
control for maternal care effect would be to use cross-fostering
design and to include maternal care measures in the experimental
design, such as nest building, licking of pups, and pup retrieval
(Richetto et al., 2013; Ronovsky et al., 2017; Berger et al., 2018).

CONCLUSION

For this study, a lack of vesicular zinc did not produce offspring
that were more susceptible to developing ASD- and SZ-like
features in all the behavior assays performed in this experiment.
We observed an ASD- and SZ-like phenotype in male offspring
of polyI:C-injected dams, but not in female offspring.

It is important to keep in mind that environmental stressors
and genetic mutations do not lead to NDDs. Rather, these
events increase the risk of changes in brain morphology and
behavior. Not all offspring exposed to MIA will develop an
NDD later in life.
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