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(A) Example of gaze position data during LEGO model 
construction where workspace is notionally divided into 
quadrants; left near (LN), left far (LF), right near (RN), 
and right far (RF). Model to be replicated is located at 
home base plate (H) and model being constructed is at 
build base plate (B). Proportion of gaze directed toward 
each quadrant during construction of (B) first and last 
model and (C) all four models.

Image taken from: de Bruin N, Bryant DC and Gonzalez 
CLR (2014) “Left neglected,” but only in far space: 
spatial biases in healthy participants revealed in a 
visually guided grasping task. Front. Neurol. 5:4.  
doi: 10.3389/fneur.2014.00004
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Reaching with the arm and grasping with the hand and fingers
is a complex behavior that appears in utero, is elaborated over
the first few years of life, and serves useful everyday functions
throughout the course of human life. Several neurological condi-
tions can impair the ability to produce arm and hand movements
and so greatly impact on the quality of life and well-being of the
affected individuals. Given the fundamental role that arm and
hand movements play in everyday life, deficits related to arm and
hand function are one of the most debilitating motor conditions.
Neurological conditions that can affect arm and hand movements
include autism spectrum disorder, Parkinson’s and Huntington’s
diseases, amyotrophic lateral sclerosis, cerebral palsy, and stroke-
related motor cortex damage as well as spinal cord injury at cervical
levels. While arm and hand movement has received consider-
able attention from both clinicians and researchers from diverse
scientific backgrounds, there are a number of broad research
questions that still need to be addressed in this research field.
The present Research Topic is entirely devoted to arm and hand
movement in health as well as in disease. It is a compilation of
original research papers and reviews, clinical case studies, hypoth-
esis and theory articles, opinions, commentaries, and methods
articles that cover important aspects of the topic from different
perspectives.

In this volume, de Bruin et al. (1) present data that describe
how healthy adults use space while performing a visually guided
grasping task. A model for understanding hand functioning in
children with cerebral palsy is proposed by Arnould et al. (2)
while Johansson et al. (3) explore the effect of timing training
on upper limb movement in three children with diplegic cerebral
palsy. Parma et al. (4) compare the kinematics of the reach-to
grasp movement in patients with vascular and idiopathic Parkin-
son’s disease whereas Aluru et al. (5) evaluate the effect of auditory
constraints on motor performance at different stages after a stroke.
Lawrence et al. (6) measure dexterous manipulation in a cross-
sectional study comparing gender, age, and absence and presence
of disease. Kirsh et al. (7) provide evidence to support the view
that neurons outside the primary motor cortex – such as those
populating the pontomedullary reticular formation and the spinal
cord-drive movement and muscle synergies that primary motor
cortex neurons then break up to create individual wrist and finger
movements. Sacrey et al. (8) summarize current knowledge related
to reaching and grasping in autism spectrum disorder. On the

other hand, Whitwell et al. (9) reinstate patient DF’s amazing abil-
ity to use information regarding form and orientation of objects
to guide skilled reaching actions despite her visual agnosia. In an
opinion article, Moore (10) argues that nerve transfer is increas-
ingly popular and is becoming the best treatment strategy for most
brachial plexus damage as well as for patients with spinal cord
injury at cervical levels. Vicario (11) provides a personal com-
mentary on a paper from Hayashi et al. (12) and, in a review
article, Karl and Whishaw (13) summarize the evidence that show
that reaching and grasping are from distinct neural and evolu-
tionary origins. Irvine et al. (14) contribute a methods article that
assesses the reliability of the Irvine, Beatties, and Bresnahan (IBB)
forelimb recovery scale. Fouad et al. (15) demonstrate that contin-
uous viral-mediated brain-derived neurotrophic factor (BDNF)
over-expression promotes spasticity in rats with spinal cord hemi-
sections at cervical levels. Alstermark and Pettersson (16) bring
evidence to show that lesions to the corticospinal tract that spare
the cortico-reticulospinal pathway in the rat have no deleterious
effects on skilled reaching and grasping. Finally, Tosolini et al. (17)
describe how targeting the full length of the motor endplate region
in the mouse forelimb with Fluoro-Gold increases the uptake of
this neuroanatomical retrograde tracer in corresponding motor
neurons.

We are delighted to present“Arm and Hand Movement: Current
Knowledge and Future Perspective” as a Research Topic in Fron-
tiers in Neurology. We feel that this wide-ranging compilation of
articles by leading experts in upperlimb/forelimb movement and
working either in clinical or basic research settings has offered
fresh perspectives on the topic. We are thankful for the support of
all the scientists who have contributed to this Research Topic and
have shared with us their expertise and point of views. Their con-
tributions have deepened our appreciation of the challenge that
restoring arm and hand function in different pathologies repre-
sents. We invite the readers to experience the diversity in method-
ological approaches and experimental designs that together have
led to broaden our understanding of this particularly wide field of
research.
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Dexterous manipulation depends on using the fingertips to stabilize unstable objects. The
Strength–Dexterity paradigm consists of asking subjects to compress a slender and com-
pliant spring prone to buckling. The maximal level of compression [requiring low fingertip
forces <300 grams force (gf)] quantifies the neural control capability to dynamically regulate
fingertip force vectors and motions for a dynamic manipulation task. We found that finger
dexterity is significantly affected by age (p=0.017) and gender (p=0.021) in 147 healthy
individuals (66F, 81M, 20–88 years). We then measured finger dexterity in 42 hands of
patients following treatment for osteoarthritis of the base of the thumb (CMC OA, 33F,
65.8±9.7 years), and 31 hands from patients being treated for Parkinson’s disease (PD, 6F,
10M, 67.68±8.5 years). Importantly, we found no differences in finger compression force
among patients or controls. However, we did find stronger age-related declines in perfor-
mance in the patients with PD (slope −2.7 gf/year, p=0.002) than in those with CMC OA
(slope −1.4 gf/year, p= 0.015), than in controls (slope −0.86 gf/year). In addition, the tem-
poral variability of forces during spring compression shows clearly different dynamics in the
clinical populations compared to the controls (p < 0.001). Lastly, we compared dexterity
across extremities.We found stronger age (p=0.005) and gender (p=0.002) effects of leg
compression force in 188 healthy subjects who compressed a larger spring with the foot
of an isolated leg (73F, 115M, 14–92 years). In 81 subjects who performed the tests with
all four limbs separately, we found finger and leg compression force to be significantly cor-
related (females ρ=0.529, p=0.004; males ρ=0.403, p= 0.003; 28F, 53M, 20–85 years),
but surprisingly found no differences between dominant and non-dominant limbs. These
results have important clinical implications, and suggest the existence – and compel the
investigation – of systemic versus limb-specific mechanisms for dexterity.

Keywords: sensorimotor function, rehabilitation, dexterity, hand, leg, aging, sex differences, sociobiology

INTRODUCTION
Dynamic upper extremity function in general, and of the finger-
tips in particular, is essential for activities of daily living (ADLs)
and quality of life (1, 2). While there are multiple measures of
hand function, we have historically lacked a means to quantify
the dynamical interaction of the fingertips with objects with-
out the confounds of strength, functional adaptations, whole-arm
coordination, visual acuity, etc. We have proposed the Strength–
Dexterity (SD) paradigm as a versatile, repeatable, and informative
paradigm to quantify finger dexterity across the lifespan in some
clinical populations. We define dexterity as the sensorimotor capa-
bility to dynamically regulate fingertip force vectors and motions
to stabilize an unstable object (3–13). This paradigm consists of
testing the extent to which people can compress a slender spring
prone to buckling. The spring naturally becomes unstable as it is
compressed; thus the maximal level of compression is indicative
of the maximal sensorimotor capability to control the fingertips.
The springs are designed to require very low forces to reflect the
nature of ADLs. Moreover, functional magnetic resonance imaging

(fMRI) studies show the SD paradigm can systematically inter-
rogate brain function for dexterous manipulation, which exhibits
differential activity across cortical networks depending on the level
of difficulty and behavioral goals of the task (4, 7, 8).

Given that we have previously established the reliability and
utility of this approach to dexterity (3–13), the purpose of this
work is to understand the effects of gender, age, and disease on
this sensorimotor ability to control instabilities. The effect of age
on motor function in general, and hand function in particular, is
well known (2, 13–15). However, recent studies using the SD par-
adigm have demonstrated its ability to detect previously unknown
changes in dexterity lasting into late adolescence in typical devel-
opment (6, 9, 10), or starting in middle age in healthy older adults
(13). One goal of this work is to expand upon those findings by
including larger numbers of participants, and including those indi-
viduals diagnosed with clinical conditions. While the effect of gen-
der on muscle strength is well known, its effects on sensorimotor
function are less clear. There continues to be keen clinical interest
given the greater incidence of some musculoskeletal pathologies
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and injuries in women, such as osteoarthritis (16) and non-contact
ligament tears (17). The literature contains contradictory reports
(15, 18) that feed continued debate on the issue. Our own work
using the SD paradigm has hinted at gender differences in dexter-
ity in typical development (6, 10), but these remain to be explored
in detail.

Lastly, our more recent work has extended the concept of finger
dexterity to limbs in general. By simply scaling up the physical size
of our test system, we have introduced the concept of limb dex-
terity (19). The Lower Extremity Dexterity (LED) test has been
shown to be a valid and repeatable metric of dynamic leg function
(19). Importantly, our report of strong differences in leg dexterity
between men and women has begun to provide a neuromuscular
explanation for gender differences in agility, and the much higher
incidence of non-contact ligament tears in female athletes (19, 20).
We are therefore compelled to explore the nature of systemic ver-
sus limb-specific dexterity as it relates to age and gender. This is
necessary to further our understanding of the neural mechanisms
for dynamical function in health and disease.

MATERIALS AND METHODS
All participants gave their informed consent to the experimen-
tal protocol, which was approved by the Health Sciences Campus
Institutional Review Board at the University of Southern Califor-
nia in Los Angeles, and/or the relevant ethics committees at the
Institut de la Main-Clinique Jouvenet in Paris, and the Institute of
Sports Science in Innsbruck.

CONTROL SUBJECTS
We measured finger dexterity in 147 healthy volunteers (66F, 81M,
52.7± 21.6 years) between 20 and 88 years of age to use as baseline
data for comparison. Similarly, we measured single leg dexterity in
188 healthy volunteers (73F, 115M, 42.7± 23.6 years) between the
ages of 14 and 92 years. Of these, 81 volunteers from 20 to 85 years
of age (28F, 53M, 47± 22.8 years) completed both the finger and
leg dexterity protocols in order to evaluate dexterity systemically.
Participants were excluded if they had pathology of the hand or
a history of injury that prevented unrestricted use of their fingers
or legs.

CLINICAL POPULATIONS
We used a sample of convenience from two clinical conditions
known to affect hand function as a first exploration of the clinical
utility of this paradigm. Our goal was not to diagnose or evaluate
treatment, but simply collect cross-sectional data from patients
suffering from these conditions. For these clinical groups, partici-
pants were excluded if they were undergoing treatment for injury
or surgery and had not been released by their surgeon or physi-
cal/occupational therapist to participate in everyday ADL, had a
concurrent injury or pathologic condition that caused pain or dis-
comfort in the tested limb during physical activity and/or at rest,
had clinical, surgical, physical, cognitive, or other conditions that
may have prevented their ability to perform the tasks proposed in
this study, including the clinical restriction decided by the surgeon
or therapist, or were unable to complete the protocol.

The first clinical group, defined as patients treated for CMC OA,
consisted of 33 female participants (65.81± 9.72 years, 42 hands)

evaluated at an average of 40 months after treatment at Institut
de la Main. The same surgeon (Caroline Leclercq) performed the
treatments on all the patients. The CMC OA patients underwent
one of four treatment types: ligament reconstruction with ten-
don interposition (LRTI) arthroplasty (21), trapeziectomy (TS)
(22), non-surgical medical treatment (i.e., rehabilitation), and no
treatment.

The second clinical group, defined as patients treated for PD,
consisted of 16 volunteers (10M, 6F; 67.68± 8.5 years, 31 hands).
All patients were treated at the USC Keck School of Medicine,
Department of Neurology in the Parkinson’s Disease and other
Movement Disorders Clinic.

STRENGTH–DEXTERITY TEST
The SD test is well described elsewhere (3–12). Briefly, it involves
using the fingertips to compress as far as possible a slender spring,
prone to buckling. This requires control of fingertip motions
and force vectors at very low force levels (Figure 1A). It was
conducted with a custom spring (Century Springs Corp., Los
Angeles, CA, USA) outfitted with two miniature compression load
cells (ELB4–10, Measurement Specialties, Hampton, VA, USA).
The load cells were connected to a signal-conditioning box and
USB-DAQ (National Instruments, Austin, TX, USA), sampled at
2000 Hz using custom Matlab (The Mathworks, Natick, MA, USA)
software, and calibrated with a deadweight procedure. Participants
were asked to compress the spring in a controlled way at their own
pace to the point of maximal instability they can sustain (i.e.,
beyond which they felt it would slip out of their hand), and main-
tain that compression at a steady level for at least 5 s (Figure 1B)
(9, 10). They were then to release in a controlled way at their own
pace. After familiarization, at least 10 trials were performed for
each test limb and the compression force was defined as the mean
of the three maximal trials. Participants were allowed as many
practice trials as needed to obtain steady state compression for the
minimum required compression time of 5 s.

LOWER EXTREMITY DEXTERITY TEST
Similar to the SD test, the LED test is a single leg dynamic contact
control task that is based on the ability of participants to com-
press a slender spring (19, 20, 23). The LED test device consists of
a helical compression spring (Century Springs Corp., Los Ange-
les, CA, USA) mounted on a single-axis force sensor (Transducer
Techniques, Temecula, CA, USA) affixed to a stable base with a
15 cm× 30 cm platform affixed to the free end (Figure 2A). Par-
ticipants were positioned in an upright partially seated posture
on a bicycle saddle intended to stabilize the body and minimize
the extraneous use of the contralateral limb and upper extrem-
ities during testing. A computer monitor provided visual force
feedback of the vertical force (19, 20, 23). As with the SD test, par-
ticipants were instructed to slowly compress the spring with their
foot with the goal to raise the force feedback line as high as possible
and maintain that compression for at least 10 s (Figure 2B). After
familiarization, between 10 and 20 trials were performed for each
test limb (19, 20, 23) and the compression force was defined as
the mean of the three maximal trials. Participants were allowed as
many practice trials as needed to obtain steady state compression
for the minimum required compression time of 10 s.
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FIGURE 1 |The SD test (A) consists of compressing a compliant, slender
spring prone to buckling, and sustaining the maximal level of
compression for >5 s. The pulps of the thumb and index finger press against

miniature load cells. Sample data from spring compression are shown to the
right (B). The forces from the thumb and index finger, in gf, are averaged to
calculate the maximal compression force.
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FIGURE 2 |The LED test (A) consists of pressing an appropriately scaled-up spring with the foot against the ground. Compression forces, in N, are
quantified with a load cell located under the spring. Sample data from spring compression are shown to the right (B).

DATA ANALYSIS AND VARIABLE DESCRIPTIONS
The dependent variables for the SD and LED tests are defined
in Table 1. Linear regressions, two-tailed t -tests, and analysis of
variance (ANOVA) were applied to the data set, as appropriate,
to identify and quantify the relationships between test perfor-
mance, age, gender, and dominance and to compare performance
between clinical and control populations. Significance was set at
p < 0.05 for all analyses. Matlab R2013a and SPSS version 22 (IBM,
Armonk, NY, USA) were used for these analyses.

RESULTS
OVERVIEW
The ANOVA results are summarized in Table 2 and discussed in
detail in this section. We report strong age and gender effects in leg
and finger compression force in healthy participants. Furthermore,
we report strong effects of clinical condition (both CMC OA and
PD) on the force velocity, acceleration, and RMS of the SD test.
Interestingly, we report no differences in any variable between
the dominant and non-dominant sides of control participants,
patients diagnosed with CMC OA, and between self-reported
affected and unaffected sides of patients diagnosed with PD.

The results from the linear regression analyses of compression
force with respect to age are summarized in Table 3. We report
significant increases in compression force in both the finger and
leg in healthy participants under the age of 40, and vice versa for
those over the age of 40 years – but as clarified in the Section “Dis-
cussion,” this effect is not always seen when separating subjects by
gender. Furthermore, there were greater decreases in force with age
in the clinical groups compared to unimpaired participants.

FINGER SD TEST WITH CONTROL SUBJECTS IN THE SELF-REPORTED
DOMINANT HAND
We tested for the effects of age and gender on finger dexterity in the
self-reported dominant hand of 147 healthy individuals between
the ages of 20 and 88 years. When needed, some variables (Ff, Ḟf ,

F̈f , and RMSf) were transformed using the natural logarithm func-
tion to meet the assumptions of normality required for parametric
statistics. As shown in Table 2, an ANOVA with finger compres-
sion force as the dependent variable and age and gender as factors
performed on the transformed data revealed a significant effect
by both age (p= 0.017) and gender (p= 0.021). Furthermore, we
report no gender effects on the compression dynamics (Ḟ f , F̈ f ,
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Table 1 | Definition of variables used in analyses.

Variable Symbol Description

Finger compression force Ff Mean compression force during the hold phase of the SD test (units: gf)

Finger force velocity ·

F f
Mean of the absolute value of the first time derivate of compression force during the hold phase of

the SD test (units: gf/s)

Finger force acceleration ··

F f
Mean of the absolute value of the second time derivate of compression force during the hold phase

of the SD test (units: gf/s2)

Finger force RMS RMSf Magnitude of the mean of the force dispersions during the hold phase of the SD test (units: gf)

Leg compression force Fl Mean compression force during the hold phase of the LED test (units: N)

Leg force velocity ·

F l
Mean of the absolute value of the first time derivate of compression force during the hold phase of

the SD test (units: N/s)

Leg force acceleration ··

F l
Mean of the absolute value of the second time derivate of compression force during the hold phase

of the SD test (units: N/s2)

Leg force root-mean square (RMS) RMSf Magnitude of the mean force dispersions during the hold phase of the SD test (units: N)

Note that force magnitudes for the finger and leg tasks (cf. Figures 1 and 2) are two orders of magnitude apart.Therefore, we use the SI units of gf and N, respectively,

to accommodate those differences.

Table 2 | Summary of multifactor ANOVA results.

Variable Age Gender Side Clinical condition

Finger compression force (Ff) *p=0.017a *p=0.021a Control: p=0.461a p=0.081

PD: p=0.784

CMC OA: p=0.327

Finger force velocity (
·

F f ) *p=0.048a p=0.542a Control: p=0.408a *p < 0.001

PD: p=0.668

CMC OA: p=0.786

Finger force acceleration (
··

F f ) p=0.061a p=0.158a Control: p=0.672a *p < 0.001

PD: p=0.725

CMC OA: p=0.849

Finger force RMS (RMSf) p=0.880a p=0.989a Control: p=0.183a *p < 0.001

PD: p = 0.696

CMC OA: p=0.755

Leg compression force (Fl) *p=0.005 *p=0.002 p=0.295 –

Leg force velocity (
·

F l ) p=0.595 p=0.536 p=0.945 –

Leg force acceleration (
··

F l ) p=0.519 p=0.441 p=0.872 –

Leg force RMS (RMSl) p=0.532 p=0.135 p=0.237 –

aIndicates transformed data set.

*indicates significance level of 0.05.

Table 3 | Summary of linear regressions of compression force with age results.

Variable Controls <40 years Controls >40 years Clinical participants

Males Females All Males Females All CMC OA PD

Finger compression force (Ff) p=0.328 p=0.316 *p=0.019 p=0.09 *p=0.008 *p=0.002 *p < 0.001 *p < 0.001

Leg compression force (Fl) *p=0.001 p=0.09 *p < 0.001 p=0.055 p=0.076 *p=0.007 – –

Frontiers in Neurology | Movement Disorders April 2014 | Volume 5 | Article 53 | 10

http://www.frontiersin.org/Movement_Disorders
http://www.frontiersin.org/Movement_Disorders/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lawrence et al. Gender, age, and disease effects on dexterity

30 40 50 60 70 80 90

100

150

200

250

300

350

Age (yrs)

F
f (

g
)

20

FIGURE 3 | Linear regression of finger compression force with respect
to age. Younger adults (empty symbols) tended to show an increase in
compression force while older adults (filled symbols) showed a decrease.
Male participants (blue circles) tended to have greater values than females
(red triangles) as indicated by the position of the fit lines. SeeTable 3.

and RMSf) and no age effects on force accelerations and RMS, but
age does affect the finger force velocity (p= 0.048) (Table 2).

A linear regression of finger compression force with respect to
age, grouped by gender, is shown in Figure 3. Without accounting
for gender, adults under the age of 40 years have an increase in
finger compression force with age (p= 0.019) while adults over
40 have a decrease in force with age (p= 0.002). When the groups
are separated by gender, however, the increases in compression
force in younger males and females and decreases in older males
are no longer significant (Table 3). Note the offset in regression
lines, which agrees with the significant on the gender effect on
compression force as per the ANOVA.

FINGER SD TEST WITH CLINICAL SUBJECTS
We compared performance on the SD test (Ff, Ḟf , F̈f , and RMSf)
between clinical patients diagnosed with either CMC OA or PD
and a subset from our dataset of 29 healthy, age-matched vol-
unteers (10M, 19F; 65.6± 9.7 years, 48 hands) with no history
of hand injury or disease or neurological disorder. Interestingly,
we found no significant differences in finger compression force
among groups, however we found differences between the clinical
and control groups in compression dynamics (Ḟf , F̈f , and RMSf)
during the sustained compression as illustrated in Figure 4. We
found no differences in compression dynamics between the PD
and CMC OA groups; however, both groups showed significant
differences from the control participants (p < 0.001), indicating
distinctly different dynamical behavior during manipulation in
these clinical populations (Table 2).

Additionally, as in Ref. (9, 10, 13), we characterized the force
dynamics during the sustained compression by plotting the phase
portraits of Ff versus Ḟf versus F̈f (Figure 5). The character of the
phase portrait was quantified by the mean Euclidean distance from
the origin per unit time (9, 10, 13). A greater Euclidean distance is
suggestive of weaker corrective actions by the neuromuscular con-
troller enforcing the sustained compression (9, 10, 13). There are
clear differences in the phase portraits of the control and clinical
participants, with greater dispersion associated with the clinical
groups.

We also performed linear regressions of finger compression
force versus age in these three populations, which revealed that

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.1
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FIGURE 4 | Dynamic characteristics of the SD test. Control participants
(red triangles) had significantly greater stability during SD compression
compared to patients with CMC OA (blue squares) and PD (green circles).

individuals with CMC OA and PD showed greater rates of decline
compared to control subjects (p < 0.001), Figure 6. Patients with
CMC OA and PD had average rates of decline of −1.4 and
−2.7 gf/year, respectively, compared to −0.86 gf/year in control
participants (Table 3).

To further expand the analysis and investigate the effect of lat-
erality, we compared performance on the self-reported affected
hand to the unaffected hand in a subset (n= 8) of the PD group.
An ANOVA revealed no effect of side in any variables (Ff, Ḟf , F̈f ,
and RMSf; Table 2). We performed a similar analysis on the self-
reported dominant and non-dominant hands of a subset of the
CMC OA group (n= 17) and report no effect of laterality in any
variable (Ff, Ḟf , F̈f , and RMSf; Table 2).

LEG LED TEST WITH CONTROL SUBJECTS IN THE RIGHT LEG
Mirroring the work on finger dexterity, we also tested for effects
of age, gender, and dominance on leg dexterity in the right leg of
188 healthy individuals from 14 to 92 years. In order to account
for the age and gender effects on body weight, which may influ-
ence leg compression force, we included body mass index (BMI) in
the analysis. The data were normally distributed, and an ANOVA
with leg compression force as dependent variable, age and gen-
der as factors, and BMI as a covariate showed that compression
force is strongly affected by both age (p= 0.005) and gender
(p= 0.002; Table 2), but not by BMI (p= 0.198). Furthermore,
ANOVA on the force dynamics (Ḟl , F̈l , and RMSl) during sustained
compression showed no effect of gender, age, or BMI.

Linear regressions of leg compression force versus age revealed
significant increases in force in adults under the age of 40
(p < 0.001) and decreases in participants over 40 years (p= 0.007).
However, when separated by gender, increase in compression force
in young females and decreases in older males and females are no
longer significant (Table 3). As with the hand, there are increases
in compression force with respect to age in younger adults and
decreases in older adults; and the regression lines of male partic-
ipants are slightly shifted above those of females, corroborating
the ANOVA results that compression forces for male participants
tended to be greater on average than that of female participants
when using age as a factor (Figure 7). Note that in these subjects we
only tested one leg, the right leg, for expediency because the effect
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FIGURE 5 | Representative phase portraits of three participants from
each group (ages between 70 and 75 years): healthy control subjects
(first column), participants diagnosed with CMC OA (second column),

and participants diagnosed with PD (third column). The clinical
subjects exhibit greater dispersion in the phase portrait than the control
subjects.

of leg dominance was explored in a different subset of subjects (see
below).

DEXTERITY ACROSS BOTH FINGERS AND LEGS
Finally, we explored dexterity across the upper and lower extrem-
ities by comparing SD and LED performance in both fingers and
legs of 81 healthy volunteers between the ages of 20 and 85, each

labeled as self-reported dominant or non-dominant (Figure 8).
Surprisingly, ANOVA (in this case a repeated measures ANOVA
given that we collected finger and leg data in the same sub-
jects) revealed no effects of laterality (i.e., dominant versus non-
dominant) for any variable, when controlling for gender and age
in these participants (Table 2). However, we found statistically
significant (p < 0.001) Pearson’s product–moment correlation of
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FIGURE 6 | Comparison of rate of decline between clinical and control
populations. Finger compression force was plotted against age and
revealed that the clinical groups (PD and CMC OA, green circles and blue
squares, respectively) had a greater rate of decline with age than control
participants (red triangles).
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FIGURE 7 | Age- and gender-related changes in leg compression force.
Regressions against age indicated an increase in younger adults (empty
symbols) and a decrease in older adults (filled symbols). Male participants
(blue circles) tended to have greater values than females (red triangles) as
indicated by the position of the fit lines.

ρ= 0.458 between finger and leg compression forces in all subjects.
When separating them by gender, the Pearson’s product–moment
correlation was higher in females (ρ= 0.529, p= 0.004, n= 28)
than in males (ρ= 0.403, p= 0.003, n= 53).

DISCUSSION
There are multiple definitions for, and connotations of, the con-
cept of dexterity. In a series of recent publications using the SD
paradigm, we have argued that quantifying the sensorimotor abil-
ity to stabilize objects with the fingertips is a valid definition of one
aspect of finger dexterity (3–10). By focusing on how the finger-
tips act on an object by dynamically regulating the magnitude and
direction of fingertip forces, we can quantify important features of
using precision pinch (or tip-to-tip, or pincer grasp) to manipulate
objects. Therefore, the purpose of this comparative cross-sectional
study was to quantify how these features of dexterous manipula-
tion are affected by age, gender, and disease. We have previously
attributed the sensitivity of the SD test to detect functional changes
among both healthy and clinical populations across the life span
to its ability to focus on the sensorimotor function of the isolated
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FIGURE 8 | Correlation of finger and leg dexterity. Both male (blue
circles) and female (red triangles) participants showed significant
association between finger and leg compression force in the self-reported
dominant limb, with females exhibiting higher correlation than males,
ρ=0.529 and 0.403, respectively.

CNS-limb system without the confounds of visual acuity, whole-
arm function, or finger strength (3, 5, 6, 9–12). Furthermore, it has
allowed the detection and identification of specific and context-
sensitive brain circuits for dynamic control of the fingers (4, 7, 8).
Those prior findings inform our interpretation of our important
results now quantifying the effects of gender, age, and disease.

EFFECT OF AGE
Our results corroborate the effect of age we have reported for finger
dexterity in young children and adolescents (10), and older adults
(13). However, we extend those results in crucial ways. It is impor-
tant to note that our prior work (9) revealed no significant changes
in dexterous manipulation in middle age and therefore, we used
samples of convenience (college-aged students and older control
subjects for comparison to clinical populations of interest), which
resulted in an under sampling of subjects between 35 and 50 years
of age, but does not affect the results we report. First, we emphasize
our study of adults starting at 20 years of age, where we continue
to see an improvement in young adulthood. In an earlier study,
we report the strong association between improvements in finger
compression force and compression dynamics with maturation of
the brain in children and adolescents (10). To our knowledge, this
is the first report of continual improvement of dexterity into young
adulthood after the age of 20. The continual behavioral improve-
ments we see here are, therefore, credibly associated – at least in
part – with such neural maturation and have important clinical
implications for rehabilitation. For example, traumatic injuries
[such as spinal cord injury in males (24) and anterior cruciate lig-
ament (ACL) tears in females (17)] are most prevalent in young
adults. Our results indicating the presence of motor learning and
neural plasticity in early adulthood suggest that these individuals
would naturally have a propensity to respond to therapy better
than older adults. Similarly, our results now come from 147 adults
from 20 to 88 years of age. These include 108 subjects not pre-
viously analyzed and 39 from our previous reported pool of 98
subjects (13). This was critical to reveal the gender effect in finger
compression not previously significant (see below and Table 2),
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and now confirm what was a near significant effect of age on fin-
ger force dynamics hinted at in our previous work (6, 9, 10, 13),
Table 2.

While we also corroborate the finding that finger dexterity
begins to decline in middle age (13), this study goes on to reveal
differences in that decline in individuals aging with a disability. We
find that one condition (PD) exhibited a rate of decline two times
greater than another (CMA OA), and three times greater than
non-symptomatic control subjects (Figure 7). This has impor-
tant implications to the differential role in which different disease
mechanism produce disability (see below). Aside from the clinical
details we discuss below, the idea that finger dexterity is an indica-
tor of the integrity of the sensorimotor system (3), together with
the idea that loss of dexterity in older adults is not linked to mus-
cular weakness (13) or BMI, leads to the implication that in older
adults the ability of the nervous system to respond to therapy is
increasingly muted.

In our prior work (10) we have noted that, in parallel with the
development of the ascending and descending pathways between
brain and hand, there are striking developmental processes taking
place in the brain gray and white matter during childhood up to
adolescence, e.g., expansion of the white matter and pruning of
the cortical gray matter (25–30). Ehrsson et al. (31) demonstrated
that there is greater activity in the fronto-parietal sensorimo-
tor areas during the control of smaller forces than larger forces,
with control of larger forces associated with increased activity in
the M1 region. Fronto-parietal regions demonstrate significant
developmental changes in the adolescent years (28, 29, 32), and
the pruning of the gray matter occurs later in the frontal and
parietal areas (33) than in M1. These associations between the
development of cortical neural networks, including ascending and
descending pathways on one hand, and the dexterity measured
by our method are, of course, mostly empirical and speculative.
Our results now raise the possibility that these processes continue
into young adulthood. Moreover, they also seem to be reversed
(or counteracted) by the mechanisms of aging in a way that is
behaviorally measurable, in a way that has important clinical and
therapeutic implications.

EFFECT OF GENDER
The effect of gender on motor skill is not well documented,
necessarily predictable, or expected in dynamic finger function –
contrary to the well known effect of gender on muscle strength
or BMI. Given those differences in strength across genders, we
designed our test of dynamic sensorimotor function to require
only very low levels of force (<300 gf). We have reported hints
of a gender effect on dexterity in typically developing children
(6) – which may have been colored by a test protocol that tended
to require large forces. However, these new results now establish
without a doubt that females exhibit lower ability to control insta-
bilities with the fingertips than males at any age. The literature
does not report consistent gender effects, and the issue remains
very much debatable (6, 15, 18, 34). Our results add to this lit-
erature by providing a new example of performance differences
between women and men.

Given that we have found the SD paradigm to be infor-
mative of local and systemic neuromuscular mechanisms [e.g.,

brain maturation, muscle contractile speeds, functional brain
connectivity and networks, etc. (3–10)], this clear gender effect is
remarkable as it strongly suggests those sensorimotor differences
in women are a function of specific mechanisms at the level of the
muscles, spinal cord, and/or brain. This leads directly to testable
hypotheses at each of these hierarchical levels. For example, does
the excitability of motoneuron pools during the control of unstable
forces change differently in men versus women? What are the roles
of hormonal cycles in the general excitability and controllability
of the sensorimotor system? Are there differences in brain con-
nectivity in sensorimotor areas across genders as is now reported
for cognitive areas? There is a growing consensus that male brains
are structured to facilitate connectivity between perception and
coordinated action, whereas female brains are designed to facil-
itate communication between analytical and intuitive processing
modes (35). Our methodology now allows us to systematically
interrogate those differences in the context of the functionally
critical areas of dexterity.

EFFECT OF CLINICAL CONDITION
Our study also raises the similarly noteworthy question of why
a condition that is presumably purely orthopedic (i.e., CMC OA)
produces deficits in dynamic manipulation – and accelerated losses
with age – comparable to those in a purely neurological condition
(i.e., PD). Both the CMC OA and PD groups displayed significant
differences (p < 0.001) in the compression dynamics (Ḟf , F̈f , and
RMSf) compared to the control participants (Figure 4), although
no differences in compression force. That is, all three populations
were able to compress to the same amount, but not in the same
way. Similarly, detailed visualization of the finger force dynamics
during compression via phase portraits (Figure 5) shows subjects
with CMC OA and PD tend to demonstrate weaker correction
strategies. The greater amount of dispersion in the phase portraits
of clinical patients suggests a compromised ability to execute cor-
rections, or a different neural control strategy toward instability,
not seen in control subjects (10, 13). Whether these differences
in neural control, or the mechanisms of executing neural con-
trol, are similar or different in CMC OA and PD remains an open
question.

These results also challenge the notion that CMC OA is a strictly
orthopedic condition given that we now see it produces sensori-
motor deficits. The link between a disease of articular cartilage and
deficits in sensorimotor integration capabilities is underappreci-
ated and understudied in the literature. To elaborate, Figure 4
illustrates that the CMC OA and PD populations are essentially
indistinguishable when plotting finger force velocity versus finger
force RMS. These results raise the question, what is it about chronic
pain and damage to the joint that leads to changes in sensorimotor
capabilities? Others have begun to speak about this and a picture
is now emerging showing that chronic pain leads to reorganiza-
tion of brain circuits. For example, subacute low back pain induces
changes in connectivity and functional reorganization of the insula
and sensorimotor cortex, even after only 1 year with moderate pain
(36). Also, spontaneous pain due to knee OA is known to engage
brain regions distinct from those activated by pressure-evoked
pain, specifically prefrontal-limbic structures (37). The presence
of acute pain will naturally compromise function – but we now
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see that chronic pain also affects the performance of a dexterous
task even if it requires very low forces and does not elicit pain.
Our prior work suggests these deficits are credibly attributable to
structural or functional changes in portions of the nervous system
responsible for the neural control of dexterity.

At the other end of the clinical spectrum, PD starts out as a
purely neurological degenerative disease characterized by upper
and lower extremity rigidity, tremor, bradykinesia, and/or pos-
tural instabilities (38, 39). Our prior work has shown that the
cortical networks associated with controlling instabilities in dex-
terity can involve the basal ganglia (8), where degeneration of
dopamine-producing cells plays a central role in PD (39). Thus it
is expected that we would detect deficits in sensorimotor function
and, in turn, dexterous manipulation in this population. However,
our results allow us to go deeper than this. They allow us to, for
the first time, (i) systematically quantify behavioral deficits in PD
and other neurological conditions, (ii) disambiguate the contribu-
tions of different elements of the neuromuscular system to these
deficits, and (iii) easily and objectively quantify the effectiveness
of different treatment regimens (e.g., absorption of medication or
titration of deep brain stimulation level) during the daily – and
even hourly – fluctuations in motor deficits in PD that tradi-
tional measures cannot. However, it is also critical to note that
PD leads to significantly greater rates of decline of dexterity with
age when compared to healthy aging or with patients diagnosed
with CMC OA. This highlights the neurodegenerative nature of
the disease, and underscores the need to quantify the effects of PD
on sensorimotor processing and dexterous manipulation to better
understand its neurodegeneration and treatment.

How do our results speak to ADLs? The SD paradigm falls
clearly within the Body Functions and Structure Components of
the International Classification of Function [ICF (40)]. Under-
standing the link between SD performance and the Activity Lim-
itations and Participation Restriction Components of the ICF
requires further research. But as of now, we can say that the SD par-
adigm is likely very informative of systemic mechanisms that make
dexterous function possible – as argued throughout the Section
“Discussion.” That is, the SD paradigm reflects the potential to
execute ADLs without the confounds of functional adaptations
that mask the detrimental effects of disease. A clear example for the
upper extremity is that of manipulating small and/or deformable
objects such as beads or squeezing lemons, respectively. In both
these cases, the manipulation task is unstable in the same sense
that the SD paradigm specifies: they require accurate dynamical
regulation of the magnitude and direction of fingertip forces and
motions (9, 10, 13). For the lower extremity, we have proposed that
the SD paradigm may explain the risk of injury or falls (19, 20, 23)
because the regulation of dynamical interactions with the ground
is critical to locomotion and many sports activities, as mentioned
above.

SYSTEMIC VERSUS LIMB-SPECIFIC DEXTERITY
Another fundamental aspect of this work is that we extended the
concept of finger dexterity to limbs in general. We use the same def-
inition of dexterity to quantify the sensorimotor ability of the leg to
regulate dynamical interactions with the ground in a subset of our
participants. In the context of lower extremity function, the LED

test evaluates the ability of the sensorimotor system to control an
unstable ground contact with the isolated leg; and avoids potential
confounds often found in gait, posture, and balance studies such
as vestibular function, visuo-spatial perception, strength, whole-
body balance, locomotor confidence, and inter-limb coordination.
Clearly, our aim is not to study locomotion, but to focus on the
fundamental sensorimotor capabilities of the leg. Further work
is needed to establish its relationship to whole-body gait, pos-
ture, and balance capabilities. Nevertheless, our recent work on the
lower extremity has demonstrated the validity and reproducibility
of the LED test as a metric of dynamic leg function, and its corre-
lation to whole-body agility. It has also clearly detected differences
between young men and women (19, 20, 23). As in the case of the
fingers (6), we have shown that the LED test quantifies a previously
unrecognized functional domain related to dexterity of the isolated
leg that cannot be seen as simply a covariate of available functional
tests of strength, gait, or balance (41). Here we extend that prior
work on leg dexterity by measuring the same set of variables as
for the finger in 188 healthy volunteer participants (Tables 1–3).
To our knowledge, this is the first comparison of finger versus leg
dexterity that allows us to distinguish between systemic and limb-
specific sensorimotor capabilities. Interestingly, we find similar
effects of age and gender in both finger and leg dexterity.

The age and gender effects on leg compression force (Figure 7;
Table 3) naturally suggest that the same neural mechanisms and
networks for the fingers (discussed above) are at work in the leg
to some extent. Traditionally we have come to think of “dexterity”
as specific to fingers [e.g., Ref. (42–45)], and surely some features
are. Phylogenetically speaking, however, legs evolved earlier and
for the same purpose: to produce dynamical interactions with
the ground. Thus, the prior existence of neural circuits to reg-
ulate instabilities in ground contact during quadruped gait and
brachiation likely served as the foundation from which special-
izations evolved for manipulation in the human hand. Therefore,
our discussions above about the neurophysiological bases of age
and gender effects apply here as well. However, there are also
important differences. We found no age and gender effects on com-
pression dynamics (Ḟl , F̈l , and RMSl), and most of these effects
are far from significant even in this relatively large sample size
(Table 2).

These similarities and differences between finger and leg dex-
terity, as quantified by the SD and LED tests, suggest the existence
of specialized mechanisms for systemic versus limb-specific dex-
terity. First, it is clear that these results compel us to study in
detail the neurophysiological bases of leg dexterity in health and
disease, to at least to the level we have for the fingers. Moreover,
the multiple time scales and latencies with which these dynami-
cal tasks need to be controlled suggest a hierarchical organization
of neural control, in agreement with current thinking (46–48).
However, we must not be content with this generalization. Future
work must leverage available techniques [e.g., electromyography
(EMG), fMRI (7, 8), Hoffmann-reflex, transcranial magnetic stim-
ulation (TMS), coherence analysis (49), EMG-weighted averaging
(50)] in specific and well-directed studies to disambiguate among
peripheral, spinal, and cortical contributions and mechanisms of
dexterity. The SD paradigm allows such studies for the legs as it
has for the fingers.
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Second, our findings about leg dexterity nevertheless have
immediate utility, both scientifically and clinically. Understanding
the orthopedic and neurological effects of aging with a disability
on quality of life is now emerging as an important public health
issue (51–55) of immediate interest is the study of leg dexterity
in patients with PD, where shuffle gait, ataxia, and bradykinesia
are common – and the SD paradigm combined with clinical out-
come measures and the techniques mentioned above will serve
to clarify the mechanisms enabling leg dexterity and their neu-
roanatomical and functional hierarchy. Similarly, it is important
to follow up with studies in patients with hip or knee OA, where
we can begin to understand the effects of chronic pain on loco-
motor abilities both because OA is so prevalent, and because gait
deficits that lead to falls in the elderly are a pressing public health
problem (56).

In addition to providing insight into the nature of sensorimo-
tor dysfunction in clinical populations, the fact that the LED test is
able to discern gender differences (Figure 7; Table 2) may provide
insight into why young women have a much greater likelihood of
non-contact ACL tears than men (57). Though the reasons are not
clear, some theories include differences in knee alignments, lig-
ament laxity, hormone levels, muscle strength and conditioning,
and neuromuscular control (17, 20). The clearly reduced dexter-
ity we report in young women (both in fingers and legs) expands
on previous results (20) with a smaller sample size where gen-
der differences in dexterity were used to provide a neuromuscular
explanation for the higher incidence of ACL tears and reduced
agility in young female athletes. Moreover, given that we now show
that these gender differences in leg dexterity are present through-
out the lifespan also speaks to the fact that women over the age of
65 have a disproportionately greater occurrence of unintentional
falls than men (16, 58). Future work will include identifying those
with reduced leg dexterity who may have a greater risk for ACL
tears or falls and would benefit from preventative neuromuscular
training programs.

Interestingly, we saw no clear effect of limb dominance on
finger and leg dexterity in the subset of 81 participants who
completed the SD paradigm with all four limbs. After all, vol-
untary fine-motor tasks such as writing, cutting, catching, and
kicking exhibit strong effects of laterality. In fact, there is a mul-
titude of evidence supporting both functional (e.g., strength and
motor control) and anatomical differences at the cortical level
between dominant and non-dominant limbs (15, 59–64). It is
reported that long-term preferential use of muscles results in
a higher percentage of type 1 muscle fibers in the dominant
hand and, in turn, changes in motor unit firing behavior (61).
Furthermore, imaging studies have shown that the hemisphere
contralateral to the dominant hand demonstrates more efficient
motor control at lower activation levels and less crosstalk than the
non-dominant hemisphere (62, 63). One potential explanation
is that we simply did not have enough subjects to demonstrate
that latent effect, much as we did not find an age or gender effect
in this same group of 81 subjects spanning multiple ages. This
mirrors our prior work where we were not able to detect gen-
der effects for the upper extremity in studies with smaller sample
sizes (9). What is more striking, however, is that larger numbers

may be needed to detect an effect of limb dominance, if it is even
present.

Our lack of detection of limb dominance nevertheless raises
important questions. As mentioned recently, it is likely that hemi-
spheric specialization emerged to accommodate increasing motor
complexity of tasks during primate evolution. That is, instead of
the non-dominant limb being a lesser analog of the dominant
limb, Sainburg and colleagues (65) have proposed an alternative
view that motor lateralization reflects proficiency of each arm
for complementary functions in response to distinct movement
control mechanisms associated with specific unimanual tasks. We
speculate that the lack of effect of dominance suggests that the
SD and LED tests reveal and quantify subcortical mechanisms for
dynamical function that are not influenced by hemispheric differ-
ences – in accordance with theories of hierarchical neural control
and phylogenetic development of the nervous system. There is
evidence of subcortical contributions to motor control (i.e., dex-
terity) independent of limb dominance. In this hierarchical view
of motor control, the cerebellum, basal ganglia, spinal cord, etc.
are essential to executing and regulating motor function. In agree-
ment with Sainburg and colleagues (65), we speculate that hand
(or leg) dominance is therefore likely a late arrival to the motor
repertoire in humans that affects fine-motor tasks but not “low-
level” stabilization mechanisms tested by the SD paradigm. This
is supported by recent studies using Blood Oxygenation Level-
Dependent (BOLD fMRI) to evaluate how hand dominance and
task difficulty affect activation levels at the spinal cord (66) level.
They found significant differences in spinal cord activation levels
when performing simple unilateral tapping tasks with the domi-
nant and non-dominant hands – but they found no effect of hand
dominance during a more complex unilateral tapping task. The
SD paradigm may be engaging these systemic hierarchically com-
mon circuits to all limbs independently of cerebral lateralization.
A clinical consequence of this may be the fact that we did not
see differences across the self-reported affected versus unaffected
hand in patients with PD – although this requires further clinical
investigations with greater numbers of individuals.

How does this concept that dexterity requires both subcortical
and cortical mechanisms agree with or revise current thinking?
Very briefly, the literature on cortical involvement in dexterous
manipulation is large [e.g., the reviews in Ref. (45, 67, 68)]. Our
own fMRI studies agree with many others suggesting direct cor-
tical involvement by showing the SD paradigm can systematically
interrogate brain function for dexterous manipulation, which
exhibits differential activity across cortical networks depending
on the level of difficulty and behavioral goals of the task (4, 7, 8).
We have also proposed the likely evolutionary advantage of the
monosynaptic corticospinal tract to manipulation by enabling the
time-sensitive transitions from the control of motion to the control
of static force (5); and that the competition between descending
commands for manipulation likely involves the phylogenetically
older reticulospinal and the newer corticospinal tracts (69). How-
ever, our results here compel us to confront several inconvenient
facts to the cortico-centric view of the neural control of the
hand including time delays, our evolutionary history, and clini-
cal symptomatology. These issues can be resolved by paying more
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attention – and due credit – to subcortical mechanisms. For exam-
ple, many dynamic manipulation tasks (such as stabilization in the
SD paradigm) occur at time scales for which spinal–cortical–spinal
delays would compromise closed-loop control. Neural control
must, therefore, involve motoneuronal modulation by the spine
in human and non-human primates to some extent (70, 71). In
fact, neuroanatomists and electrophysiologists since the time of
Sherrington have sought to map the circuitry in the spinal cord
(72) to understand the spinally mediated excitation–inhibition
mechanisms that enable voluntary function [e.g., Ref. (73, 74)] –
and produce the clinical symptomatology of, for example, spas-
tic hypertonia present in many neurological disorders including
stroke, traumatic brain injury, cerebral palsy, multiple sclerosis,
and spinal cord injury [e.g., Ref. (75) and references therein].
Therefore, much as Lemon has written “it may be too sweeping a
generalization to suggest that cortico-motoneuronal connections
are the sine qua non of independent digit movements” (70), our
results indicate that it may be too sweeping a generalization to
suggest that cortical mechanisms are the sine qua non of dexter-
ity. Once again, this compels future work to disambiguate among
peripheral, spinal, and cortical contributions and mechanisms of
finger and leg dexterity.

Finally, this is the first time that to our knowledge a same par-
adigm is used to quantify both finger and leg dexterity. We report
their correlation in Figure 8, indicating that the sensorimotor
system may have a combination of systemic versus limb-specific
mechanisms, although the contribution of each remains unclear.
The fact that this correlation is greater in female than in male
participants (ρ= 0.529 versus ρ= 0.403, respectively) suggests a
much greater systemic component in women. We speculate that
dexterity is actually the sum of two components: the basic sys-
temic, plus the limb-specific. The stronger systemic component
in women may then suggest that men are able to add more
of the limb-specific component and thus show less correlation
overall. What could be the causes of this added plasticity for
limb-specific dexterity in men? In addition to genetically imposed
dimorphism (e.g., nature), sociobiological elements (e.g., nurture)
such as differential exposure to physical activity, cultural biases,
social expectations, etc., may play a role in the development and
learning of motor function (76). Thus, the differences in dexterity
across genders that we report, and in brain connectivity that others
report, may be – at least in part – its phenotypical neurobiological
consequence.
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The joints of the hand provide 24 mechanical degrees of freedom.Yet 2–7 principal compo-
nents (PCs) account for 80–95% of the variance in hand joint motion during tasks that vary
from grasping to finger spelling. Such findings have led to the hypothesis that the brain may
simplify operation of the hand by preferentially controlling PCs. We tested this hypothesis
using data recorded from the primary motor cortex (M1) during individuated finger and
wrist movements. Principal component analysis (PCA) of the simultaneous position of the
five digits and the wrist showed relatively consistent kinematic synergies across recording
sessions in two monkeys. The first three PCs typically accounted for 85% of the variance.
Cross-correlations then were calculated between the firing rate of single neurons and the
simultaneous flexion/extension motion of each of the five digits and the wrist, as well as
with each of their six PCs. For each neuron, we then compared the maximal absolute value
of the cross-correlations (MAXC) achieved with the motion of any digit or the wrist to the
MAXC achieved with motion along any PC axis.The MAXC with a digit and the MAXC with
a PC were themselves highly correlated across neurons. A minority of neurons correlated
more strongly with a PC than with any digit. But for the populations of neurons sampled
from each of two subjects, MAXCs with digits were slightly but significantly higher than
those with PCs. We therefore reject the hypothesis that M1 neurons preferentially control
PCs of hand motion. We cannot exclude the possibility that M1 neurons might control
kinematic synergies identified using linear or non-linear methods other than PCA. We con-
sider it more likely, however, that neurons in other centers of the motor system – such
as the pontomedullary reticular formation and the spinal gray matter – drive synergies of
movement and/or muscles, which M1 neurons act to fractionate in producing individuated
finger and wrist movements.

Keywords: cortico-motoneuronal, electromyography, hand, joint angle, kinematic synergy, principal component,
spike-triggered average

INTRODUCTION
The digits of the hand commonly have been thought to move
independently of one another. But kinematic analysis has shown
that simultaneous motion of multiple fingers occurs in virtually all
human hand and finger movements. These include not only activ-
ities of daily living such as grasping and haptic exploration (1–4),
but also sophisticated performances including finger spelling, typ-
ing, or piano playing (5–7), and even the individuated movements
made when normal human subjects are asked to move only one
finger (8, 9).

When simultaneous variation occurs in many independent ele-
ments – whether joint angles, muscles, or neurons – a limited
variety of fixed patterns, or synergies, potentially can account
for much of the simultaneous variation. The concept of syn-
ergies is useful, simplifying the problem of controlling all the

original elements, primarily if the number of synergies needed
to account for most of the variation in the data is substantially
less than the number of original elements. Several different math-
ematical approaches, both linear and non-linear, might be used
to identify such synergies, and which approach is most likely to
capture synergies potentially used by the nervous system cannot
be predicted.

Almost all prior studies of the kinematic synergies involved in
hand movements have used a comparatively straightforward, lin-
ear approach – principal component analysis (PCA) (10). In the
human studies cited above, application of PCA has identified pat-
terns of correlated motion among multiple joints of the fingers
and wrist. In general, a small number of such patterns, captured
as principal components (PCs), accounts for the vast majority
of the variance in the larger number of original elements, here
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mechanical degrees of freedom (DoFs), typically the rotation of
individual joints. Similarly in the grasping movements of non-
human primates, the simultaneous correlated motion of multiple
DoFs in the thumb, fingers, and wrist can be attributed largely to
a small number of PCs (11–15).

These observations have led to the hypothesis that,at some level,
the central nervous system (CNS) may simplify the computational
burden of controlling the hand by driving PCs of hand kinematics.
Patterns of simultaneous correlated movement kinematics, iso-
metric forces, or muscle activity have been attributed variously to
the spinal gray matter (16), the pontomedullary reticular forma-
tion (PMRF) (17–19), and the motor cortex (20, 21). If the PCs
of hand and finger movements are controlled at some level of the
CNS, then downstream neural, muscular, or mechanical elements
would be responsible for distributing motion to multiple mechan-
ical DoFs simultaneously. Upstream levels of the CNS then also
might work in terms of PCs. Alternatively, some upstream centers
might bypass the levels driving PCs and superimpose additional
control on hand kinematics. Here we examined the PCs of indi-
viduated finger and wrist movements in non-human primates, as
well as the extent to which neurons in the primary motor cortex
(M1) are correlated with these PCs as compared to the original
kinematics.

MATERIALS AND METHODS
Many of the methods used in the present study for behavioral
training, data collection, and initial analyses have been described
in previous reports, and are summarized here as needed.

ANIMALS AND BEHAVIORAL PROCEDURES
All care and use of these purpose-bred monkeys complied with
the U.S.P.H.S. Policy on Humane Care and Use of Laboratory
Animals, and was approved by the University Committee on Ani-
mal Resources at the University of Rochester. Each monkey was
trained to perform visually cued individuated flexion and exten-
sion movements of the right hand fingers and/or wrist (22). As the
monkey sat in a primate chair, the right elbow was held in a molded
cast, and the right hand was placed in a pistol-grip manipulandum,
which separated each finger into a different slot (Figure 1A). At
the end of each slot, the fingertip lay between two microswitches
(Figure 1B). By flexing or extending the digit a few millimeters,
the monkey closed the ventral or dorsal switch, respectively. The
manipulandum, in turn, was mounted on an axis that permit-
ted flexion and extension wrist movements, transduced with a
co-axial precision potentiometer. Each monkey viewed a display
(Figure 1C) on which each digit (and the wrist) was represented
by a row of five light-emitting diodes (LEDs). When the mon-
key flexed or extended a digit, closing a microswitch, the central
yellow LED went out and a green LED to the left or right, respec-
tively, came on, cueing the monkey as to which switch(es) had
been closed. For the wrist, the voltage read from the potentiome-
ter crossed fixed levels that substituted for flexion and extension
microswitches. Red LEDs to the far left or right were illuminated
one at a time, instructing the monkey to close that one switch (or
move the wrist). If the monkey closed the instructed switch within
the 700 ms response time allowed after illumination of the red
instruction LED, and held it closed for a 500 ms final hold period

without closing any other switches, the monkey received a water
reward. After each rewarded trial, the movement to be instructed
for the next trial was rotated in a pseudorandom order. We abbre-
viate each instructed movement with the number of the instructed
digit (1= thumb through 5= little finger, 6 or w=wrist), and the
first letter of the instructed direction (f – flexion; e – extension),
for example, “4f” indicates instructed flexion of the ring finger.
The behavioral task was controlled by custom software written in
TEMPO (Reflective Computing, Olympia, WA, USA), which also
generated 8-bit behavioral event marker codes.

While behavioral performance depended only on the clos-
ing of the microswitches for the fingers and the level cross-
ings for the wrist, a continuous analog signal representing the
flexion/extension position of each digit was generated using a
semiconductor strain gage (BLH SPB3-20-35) mounted on the
lever-arm of each microswitch (22). The gages mounted on the
flexion and extension switches for each digit were configured as
two legs of a Wheatstone bridge, the output of which was amplified,
low-pass filtered (5 kHz cutoff), and biased with a commercial cir-
cuit (Analog Devices 2B31J). Although the spring qualities of the
microswitches and their lever-arms produced a linear relationship
between fingertip position and force, here we will consider these
signals to represent fingertip position. A separate analog signal rep-
resenting the flexion/extension position of the wrist was provided
by the potentiometer coupled to the wrist axis.

DATA COLLECTION
After training, aseptic surgery under isoflurane anesthesia was
used to open a craniotomy over the left central sulcus at the
level of the hand representation, and to implant both a rectan-
gular Lucite recording chamber over the craniotomy and two
head-holding posts. Once the monkey had recovered from this
procedure and had become accustomed to performing the finger
movement task with its head held stationary,EMG electrodes made
of 32 gage, Teflon-insulated, multi-stranded stainless steel wire
(Cooner AS632, Chatsworth, CA, USA) were implanted percuta-
neously using aseptic technique in 8–16 forearm and hand muscles
under Ketamine anesthesia, using techniques adapted from those
of Cheney and colleagues (23–25). Muscles implanted typically
included 8–16 of the following: thenar eminence (Thenar); first
dorsal interosseus (FDI); hypothenar eminence (Hypoth); flexor
digitorum profundus, radial region (FDPr); flexor digitorum pro-
fundus, ulnar region (FDPu); flexor digitorum profundus, prox-
imal ulnar region (FDPpu); flexor digitorum superficialis (FDS);
flexor carpi radialis (FCR); palmaris longus (PL); flexor carpi
ulnaris (FCU); abductor pollicis longus (APL); extensor pollicis
longus (EPL); extensor digiti secundi et tertii (ED23); extensor dig-
itorum communis (EDC); extensor digiti quarti et quinti (ED45);
extensor carpi radialis (ECR); extensor carpi ulnaris (ECU), and
supinator (Sup).

Thereafter in daily recording sessions, conventional techniques
were used to record a single M1 neurons simultaneously with the
analog signals representing the flexion/extension position of each
digit and the wrist (sampled at 1 kHz) and with EMG activity
from the implanted forearm and hand muscles (EMG amplifi-
cation 2,000–100,000×, bandpass 0.3–3 kHz, sampling frequency
~4 kHz per channel) as the monkey performed individuated finger
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FIGURE 1 | Manipulandum and display for the individuated finger
and wrist movement task. (A) Pistol-grip manipulandum. (B) Overhead
view of a monkey’s finger between two microswitches with
semiconductor strain gages mounted on the lever-arm of each

microswitch. (C) Display of LEDs used to instruct movements (red) and
to inform the monkey for which fingers both switches were open
(yellow), or if not, then which one was closed (green). Reproduced with
permission from Ref. (22).

and wrist movements. During each recording session, two data
acquisition interfaces were used to store data to disk on two host
PCs, which also provided scrolling displays of all neuron, kine-
matic and EMG recordings (Power1401 interface, Spike2 software,
Cambridge Electronic Design, UK). The same neuron data and
behavioral event marker codes were stored in parallel in these two
data streams, while the six kinematic signals were stored together
on one system along with four EMG channels, and the remaining
EMGs were stored on the other system. A third data acquisition
interface and host PC running AVE software (courtesy Shupe,
Fetz, and Cheney) were used concurrently to form initial on-line
averages of rectified EMG for each channel using data segments
extending±50 ms from the time of all neuron spikes.

DATA ANALYSIS
Principal component analysis
If we consider each original element (here the motion of each
of the five digits and of the wrist) as a dimension in an abstract
Euclidean space with orthogonal axes, we can consider our data
(here the simultaneous positions of the five digits and the wrist at
each time step) as a cloud of points in the six-dimensional space.
If some of the original elements are correlated, then there will be
a direction in this space that accounts for their simultaneous, cor-
related variation. PCA can be thought of as a translation of the
origin and a rotation of the orthogonal axes such that as much of
variance in the data points as possible lies along a single axis, which
then is defined as that of the first PC (PC1) (10). A unit vector that

points in the direction of this new axis is termed the eigenvector of
PC1. A second orthogonal axis (PC2) will be found that accounts
for as much of the remaining variance as possible, and so forth
for as many PCs as there are original dimensions. The orthogonal
PC axes thus are another orthogonal coordinate system (a basis)
for viewing the same data. Just as a single data point can be con-
sidered to have a projection on each of the original axes, so the
same data point can be considered to have a projection on each
of the PC axes (in the direction of each of the eigenvectors). And
as successive points progress in a time series, their projections on
both the original axes and on the PC axes progress as time series.

Two important differences exist, however, between the original
axes and the PC axes: first, whereas projections of the data along
the original dimensions may be correlated, projections of the data
in the directions of the PC eigenvectors are uncorrelated. And sec-
ond, whereas the original elements may each have any amount of
variance, the PCs are rank-ordered according to the fraction of the
total variance accounted for by each, with PC1 accounting for the
most variance and progressively higher-order PCs accounting for
progressively less variance. For purposes of identifying synergies
and thereby reducing dimensions, low-order PCs are most likely to
represent meaningful synergies while high-order PCs that account
for little variance can be considered to be “noise” and disregarded.

For the present study, the kinematic data representing the
flexion/extension position of each digit and of the wrist was nor-
malized from −1 (greatest extension achieved by that digit) to
+1 (greatest flexion achieved by that digit) across each recording
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session, and downsampled to 200 Hz. PCA performed on these
normalized, six-dimensional kinematic data from each recording
session then resulted in six PC eigenvectors (the translated and
rotated basis of orthonormal unit vectors) rank-ordered according
to the variance accounted for by each, and the temporal weighting
of each eigenvector as a function of time throughout the recording
session.

Cross-correlation of neuron firing rate with kinematic variables
To enable cross-correlation of neuron firing rate with kinematic
variables, each neuron’s spike train was converted to an analog
representation of firing rate as a function of time as:

y (t ) =

{
(tn−1 − tn−2)

−1, t − tn−1 < tn−1 − tn−2

(t − tn−1)
−1, t − tn−1 ≥ tn−1 − tn−2

where y(t) is the estimate of the instantaneous firing rate at time
t, t n− 1 is the time of the most recent spike preceding time t, and
t n− 2 is the time of the spike preceding t n− 1. Hence at each 5 ms
time step, t, the time elapsed since the most recent spike, t − t n− 1,
was compared to the interval between the two most recent spikes,
t n− 2− t n− 1. If the time elapsed was less than the most recent
inter-spike interval, then the instantaneous frequency was set to
the inverse of this interval. If the time elapsed was greater than
or equal to the most recent inter-spike interval, then the instanta-
neous frequency was set to the inverse of the interval between the
most recent spike and the current time, providing a gradual decay
of instantaneous frequency until the occurrence of the next spike.

We then performed cross-correlation of each neuron’s instanta-
neous firing rate against each of the kinematic variables – both the
six original digit and wrist positions and their six PCs – for leads
and lags up to ±500 ms. Prior to cross-correlation, each signal
was mean-zeroed and normalized such that the auto-covariance
at zero lag was 1. Each cross-correlation was performed using data
over the entire duration of the recording, which in monkey C aver-
aged 777± 228 s (mean± SD; range: 370–1550 s) and in monkey
G averaged 690± 273 s (range: 178–1515 s).

RESULTS
The present data include 49 single-neuron recording sessions made
during 38 daily microelectrode penetrations in monkey C, and 155
single-neuron recording sessions made during 83 microelectrode
penetrations in monkey G (24, 25).

PRINCIPAL COMPONENTS OF INDIVIDUATED FINGER AND WRIST
MOVEMENTS
Principal component analysis was performed on the kinematic
data from each recording separately. Figure 2 shows the cumu-
lative variance accounted for as the number of PCs included in
rank order increased from 1 to 6. Each point here represents the
mean across all sessions from a given monkey. In both monkeys,
PC1 accounted for approximately 50% of the variance, and the
first three PCs together accounted for approximately 85% of the
variance. Consistent with other studies that have applied PCA to
the hand movements of both humans and non-human primates,
a few low-order PCs thus accounted for the large majority of the
variance in the present individuated finger and wrist movements.

FIGURE 2 | Cumulative variance explained by the rank-ordered
principal components. Each point represents the mean across all
recordings each monkey. Error bars indicate 1 SD.

The six eigenvectors derived by PCA are illustrated for four
selected sessions from each monkey in Figure 3. Within each
frame, the eigenvector for a given PC (row) in a given session
(column) is shown as a bar graph of its components along the
original digit and wrist dimensions. In some cases, the patterns of
correlated motion represented by a given PC changed rank order,
indicating session to session differences in the relative amount
of variance explained by the different patterns (black arrows in
Figure 3). But on the whole, inspection of these data suggested
considerable consistency from session to session and from monkey
to monkey.

To examine the consistency of the patterns identified by PCA
across all recording sessions more objectively, we performed
average-linkage cluster analysis on all six eigenvectors from all
sessions, using 1 minus the absolute value of the dot product
between eigenvectors as a distance measure. Because the dot prod-
uct between two unit vectors will be 1 if they point in the same
direction and −1 if they point in exactly opposite directions, two
eigenvectors that point along the same line in the six-dimensional
space will have a distance measure of 0, and two eigenvectors
that are orthogonal to one another (dot product of 0) will have a
distance measure of 1.

Initially, this cluster analysis was performed on all the sessions
from each monkey separately. Figure 4 illustrates the results, with
a dendrogram above, a distance matrix below, and color bands
along the margins of the distance matrix that show which rank-
ordered PCs from different sessions were grouped together by the
clustering process. Although our clustering method did not specify
the number of groups expected, in each monkey six major groups
of similar eigenvectors resulted, evident in the distance matrix as
six dark regions of similar size along the main diagonal.

We therefore defined six kinematic synergies in each monkey
by dividing the clustered eigenvectors into six groups of equal size,
as illustrated by lines drawn on each distance matrix to create an
evenly spaced, 6× 6 square grid. If the eigenvectors had clustered
into six perfectly distinct groups, with one eigenvector from each
session in each group, then the six large dark regions along the
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FIGURE 3 | Eigenvector components for each principal component in
four illustrative sessions from each monkey. (A) Monkey C; (B) Monkey
G. Each of the eight columns displays the components of the six PC
eigenvectors as a separate bar graph in each row, from PC1 (red) at the top
to PC6 (purple) at the bottom, from a single session. Within each bar graph,
the six bars represent the six components of the eigenvector projected onto

each of the original six DoF axes, from d1 through w. Solid arrows indicate
instances in which two similar eigenvectors swapped rank order reflecting
that one accounted for somewhat more variance in one session, whereas
the other accounted for more variance in the other session. Dashed arrows
indicate an instance in which the composition of three eigenvectors
changed between two sessions.

main diagonal would have been perfectly delimited by these lines.
While less than perfect, we felt that the borders of the dark regions
were close enough to the squares delimited along the main diago-
nal for us to consider that the lines delimited six different kinematic
synergies that were relatively consistent in each monkey. We refer
to these six kinematic synergies as S1–S6.

To visualize each kinematic synergy, we vector-averaged all
the eigenvectors assigned to a given synergy. Figures 5A,B show
these averaged eigenvectors for each of the six kinematic synergies
derived from the cluster analysis of the data from each monkey, C
and G, respectively. In addition, we pooled the eigenvectors from
the cluster analysis of both monkeys’ sessions and repeated the
cluster analysis. Here, we again divided the distance matrix into
an evenly spaced, 6× 6 square grid (not illustrated), and vector-
averaged the eigenvectors in each square along the main diagonal
to define synergies for all sessions from both monkeys considered
together. These average synergies across both monkeys are shown
in Figure 5C.

The first synergy, S1, was characterized by motion of digits 3,
4, and 5 in the same direction, with d3 moving the most. In mon-
key C, S1 also included some motion of d2 and d6 in the same
direction. S2 was dominated by movement of the wrist, d6. S3 was
dominated by movement of the thumb, d1, with slight movement
of d5 in the opposite direction. In monkey C, S3 also included
some motion of d2 and d3 in the same direction as d1. S4 con-
sisted primarily of motion of d2, in monkey C also including lesser
motion of d4 and d5 in the opposite direction. S5 can be charac-
terized as motion of d3 and d5 in opposite directions, in monkey G

including motion of d4 in the same direction as d5. S6 comprises
motion of d4 in one direction with motion of d3 and d5 in the
opposite direction. The six average kinematic synergies found in
the two monkeys thus were similar.

CROSS-CORRELATION OF M1 NEURON FIRING RATE AND MOVEMENT
KINEMATICS
For each M1 neuron, we preformed cross-correlation of its fir-
ing rate separately against the simultaneously recorded position of
each digit and of the wrist, as well as against the temporal weight-
ing of each of the six PCs derived from that simultaneous position
data. Figure 6 shows the 12 resulting cross-correlation func-
tions for neuron C0485, selected because it had relatively strong
cross-correlations with finger kinematics. The cross-correlation
functions with digits 1–6 in the left column show that this neu-
ron correlated inversely with motion of digits 2, 3, 4, and 5,
indicating that firing rate increased with extension of the dig-
its. Because negative correlations here are just as meaningful as
positive correlations, we focused on absolute values. The largest
absolute value of any of these six cross-correlations (ρ=−0.34)
occurred with d3 at a lead of −76 ms (indicated by the circle).
The cross-correlations with the six PCs are shown in the right
column. Here, the largest absolute value of any of the six cross-
correlations (ρ=−0.32) occurred with PC1 at a lead of −84 ms
(circle). The maximal absolute cross-correlation (MAXC) between
the firing rate of this neuron and any of the digits thus was similar
in both magnitude and timing to the MAXC obtained with any of
the PCs.
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FIGURE 4 | Clustering of PC eigenvectors. Shown here are the results of
separate clustering for monkey C (A) and monkey G (B). The resulting
dendrogram is shown above and the distance matrix below. Colored ticks
along the top and left sides of the distance matrix indicate the original PC
rank-order from PC1 (red) to PC6 (purple) of each eigenvector represented by

each column or row of the distance matrix. The distance matrix is symmetric
about its main diagonal. The six major dark squares along this diagonal
indicate that six relatively consistent kinematic synergies were present across
sessions from both monkeys. Lines have been drawn on the distance matrix
dividing both the rows and the columns into six groups of equal number.

COMPARING M1 NEURON CROSS-CORRELATIONS WITH ORIGINAL
KINEMATICS VERSUS KINEMATIC SYNERGIES
We reasoned that if an M1 neuron represented one of the kine-
matic synergies identified by PCA, then the cross-correlation of
its firing rate with that synergy should be stronger than its cross-
correlation with any of the individual digits or the wrist. For each
monkey, we therefore plotted each M1 neuron’s MAXC with any of
the digits against its MAXC with any of the average synergies. The
resulting scatterplots are shown separately for the two monkeys in
Figure 7. Here, values along the ordinate represent MAXC values
obtained with the kinematic data projected along the six averaged
eigenvectors shown in Figures 5A,B. Similar results were obtained,
however, using the projection along the PC eigenvectors from each
neuron’s individual recording session (as illustrated in Figure 3).
Across the population of neurons from each monkey, MAXC val-
ues with the digits and with the synergies were correlated strongly
with one another (using averaged synergies: monkey C, ρ= 0.94,
p < 10−22; monkey G, ρ= 0.93, p < 10−69; using individual ses-
sion PCs: monkey C, ρ= 0.94, p < 10−22; monkey G, ρ= 0.87,
p < 10−48). Some points fell above the line of unity slope (solid
line), indicating that for these neurons the MAXC with one of the
synergies was greater than the MAXC with any of the digits. But
paired testing showed that most points fell below the line of unity
slope, indicating that for most M1 neurons the MAXC with one

of the digits was greater than the MAXC with any of the synergies
(synergies: monkey C, z = 3.01, p < 10−2; monkey G, z = 4.02,
p < 10−4; PCs: monkey C, z = 1.99, p < 0.05; monkey G, z = 2.17,
p < 0.05, Wilcoxon signed rank tests). Furthermore, in each mon-
key, points representing neurons with higher MAXC values tended
to fall farther below the line of unity slope. The line best-fitting
the data in each monkey (dashed line) had a slope significantly
less than 1 (p < 0.05; synergies: monkey C, m= 0.85; monkey
G, m= 0.80; PCs: monkey C, m= 0.84; monkey G, m= 0.74).
Overall, rather than correlating more strongly with the kinematic
synergies identified by PCA, the firing rates of M1 neurons, partic-
ularly those more strongly cross-correlated with finger and wrist
kinematics, thus had somewhat stronger cross-correlations with
the position of one of the digits or the wrist than with any of the
average synergies or individual PCs.

Because some M1 neurons correlated most strongly with a kine-
matic synergy (points above the line of unity slope) whereas others
correlated most strongly with an original DoF (points below the
line), we also considered the possibility that the transformation
from synergies to the muscle activation needed to drive them
might occur at least in part within M1. More specifically, M1 neu-
rons with relatively direct output to spinal motoneuron pools,
particularly groups of cortico-motoneuronal (CM) cells with out-
put to a similar subset of muscles, might produce patterns of
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FIGURE 5 | Kinematic synergies. Vector averaging of the eigenvectors
clustered into each of the six squares along the main diagonal of the distance
matrices of Figure 4 resulted in the six synergies – S1 through S6 – shown
for monkeys C and G in (A,B), respectively. (C) shows the six synergies

resulting from the same process applied to the eigenvectors from all sessions
from both monkeys together. Within each bargraph, the six bars represent the
six components of that synergy’s eigenvector projected onto each of the six
original DoF axes, from d1 through w.

activation in multiple muscles that would facilitate a given synergy
(26, 27). If so, then those neurons that had stronger correlations
with synergies might be those with relatively direct output to
spinal motoneuron pools, whereas those neurons that had stronger
correlations with an individual digit or the wrist might be less likely
to have relatively direct outputs to muscles.

Each of the present neurons had been tested for such out-
puts with spike-triggered averaging of rectified EMG activity (24,
25). We classified the spike-triggered average (SpikeTA) effects of
each neuron as being pure (consistent with direct, monosynaptic
connections to motoneurons), synchrony (including synchroniza-
tion with other neurons that had connections to the motoneuron
pools), mixed (pure and synchrony effects in different muscles), or
none. Open shapes in Figure 7 indicate which neurons had which
type of SpikeTA effect. We observed no relationship between the
presence or absence of any type of SpikeTA effect in M1 neurons
and their correlations with synergies versus original DoFs.

We also examined the distribution of MAXCs over the dig-
its and kinematic synergies. The upper marginal histograms of
Figure 8 show that in each monkey, the largest number of M1
neurons had their MAXC with d1, the thumb, and the next largest
number with d6, the wrist. This is notable because in previous
work the thumb and wrist have been found to exhibit higher
degrees of independence than the other digits (22). The two
monkeys did not show similar distributions of MAXCs across
the synergies, however, as shown by the rightward marginal his-
tograms in Figure 8. In monkey C, the largest number of neurons

was best correlated with S2,which was dominated by d6,whereas in
monkey G, the largest number of neurons was best correlated with
S6, consisting primarily of motion in d4 with oppositely directed
motion in d3 and d5 (Using individual session PCs, neurons in
monkey C also were most often best correlated with PC2, and in
monkey G with PC6.). Considering each neuron’s MAXC with a
digit and its MAXC with a PC simultaneously, the two-dimensional
histograms of Figure 8 show that in monkey C, the largest number
of neurons was best correlated with d6 and S2 (dominated by d6
motion), and in monkey G the largest number was best correlated
with d1 and S3 (dominated by d1 motion).

DISCUSSION
KINEMATIC SYNERGIES OF THE HAND IN HUMANS AND MONKEYS
Previous studies have identified kinematic synergies of human
hand motion by applying PCA to joint angles monitored during
various activities, including grasping (1, 2, 11, 28), haptic explo-
ration (4), activities of daily living (3), and finger spelling (29).
PCA also has been applied to the kinematics of grasping in non-
human primates (12, 14, 15). To our knowledge, none of the many
other possible linear and non-linear mathematical methods for
dimensionality reduction have been applied to hand kinematics.
In preliminary studies, we examined the synergies identified in
the present individuated finger and wrist movement task by inde-
pendent component analysis (a linear method of dimensionality
reduction that does not require the new basis to be orthogonal),
but we found that for the present data the resulting independent
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FIGURE 6 | Cross-correlations of the same M1 neuron’s firing rate with
each original DoF and with each of the PCs from the same session. The
correlation coefficient (ordinate) is plotted as a function of the lead or lag
(abscissa). Negative times represent those at which discharge of the
neuron led the kinematic variable. Circles indicate the maximal absolute
cross correlation for this neuron with any of the digits (Digit 3) and with any
of the PCs (PC1).

components were not substantially different from the six origi-
nal DoFs, i.e., the five individual digits and the wrist. For these
reasons, the present study focused on the kinematic synergies
identified with PCA. We found that these kinematic synergies
were remarkably consistent across sessions and between mon-
keys. Nevertheless, we recognize that future studies using other
approaches might better identify kinematic synergies used by the
nervous system.

The studies cited above generally have found that: (i) a small
number of the lowest order PCs account for a substantial majority
of the variance in the motion of multiple joints; (ii) the syner-
gies identified by PCA generally were similar from one subject to
another; and (iii) the lowest order PCs represent a fundamental
opening and closing of the hand involving similar motion in the
thumb and all four fingers. In the present study, we likewise found
that (i) the first PC accounted for ~50% of the variance, and the
first three PCs for ~85%; (ii) the synergies identified by PCA were
relatively consistent across sessions and between monkeys, and
(iii) the first synergy (typically PC1) represented motion of the
fingers in the same direction, albeit to different degrees in the two
monkeys. In these three respects, the synergies identified here with

PCA are similar to those identified in previous studies, although
the present monkeys were instructed to move only one finger at a
time insofar as possible.

We examined the structure of the kinematic synergies identified
by PCA (Figure 5). Whereas S1 comprised simultaneous motion
of the fingers all in the same direction, S2 in both monkeys con-
sisted almost entirely of motion at the wrist, indicating that the
wrist often moved relatively independently of the digits. S3 and
S4, particularly in monkey G, likewise consisted almost entirely of
motion of the thumb or of the index finger, respectively, indicating
that each of these two digits also moved relatively independently.
Compared to S3 and S4 in monkey G, S3 and S4 in monkey C
included some motion of other radial digits (d1, d2, and/or d3)
in the same direction, with motion of the ulnar digits (d4 and d5)
in the opposite direction. In both monkeys, S5 and S6 represented
simultaneous, oppositely directed motion in even closer subsets
of the fingers. S5 comprised motion of the middle finger in one
direction, with motion of other digits, most consistently the lit-
tle finger, in the opposite direction. S6 comprised motion of the
ring finger in one direction, with motion of the middle and little
fingers in the opposite direction. In sum, whereas S1 comprised
motion of multiple digits in the same direction, S2, S3, and S4
consisted of relatively independent motion of the wrist, thumb,
and index finger, respectively, particularly in monkey G with some
degree of radio-ulnar “contrast” (i.e., oppositely directed motion)
in monkey C, and S5 and S6 consisted of increasingly close contrast
among the more ulnar digits.

These features of the synergies identified with PCA may be
related to findings on the relative independence of the digits and
the structure of muscles in the macaque hand. Our previous stud-
ies of the individuated finger and wrist movement task performed
by different monkeys demonstrated that the thumb, index finger,
and wrist moved with more independence than the more ulnar
digits – the middle, ring, and little fingers (22). Instructed move-
ments of these ulnar digits generally involved motion of them all
in the same direction (e.g., S1), with slightly more motion of the
instructed digit, as might be created by the combination of S1 with
one or more of the higher-order, “contrast” synergies. The combi-
nation of S1 and S6, for example, could produce more motion of
the ring finger (d4) than other digits.

None of the kinematic synergies identified with PCA appeared
to correspond to the activation of a particular muscle, however.
Although S1 might be thought to reflect the action of the extrinsic
multitendoned finger muscles – FDP, FDS, and EDC – in macaques
FDP consists of two major compartments: FDPr, which exerts the
most tension on d2, less on d3, and still less on d4; and FDPu, which
exerts the most tension on d5 and d4 and less on d3 (30, 31). And
the largest part of FDS acts on d3 and d4. Indeed, prior studies
have indicated that flexion of each finger is produced by a different
combination of activity in FDPr, FDPu, and FDS (32). S2 might
be thought to reflect the action of muscles that act only across the
wrist – FCR, FCU, ECR, and ECU – but ED23, EDC, and ED45,
all are activated during wrist extension along with ECR and ECU.
And higher-order synergies that include motion of some digits in
one direction with motion of other digits in the opposite direction
would have to be produced by coordination of forces acting on
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FIGURE 7 | Maximal absolute cross-correlations with original digit DoFs
versus kinematic synergies in each monkey. (A) Monkey C. (B) Monkey G.
In each scatterplot, each point represents an M1 neuron plotted at the
coordinates of its MAXC with any digit (abscissa) versus its MAXC with any of

the average kinematic synergies from that monkey (ordinate). The solid line has
a slope of 1.0, and the dashed line is the linear regression best fit to the data.
Open symbols indicate the points representing neurons that had different
types of effects in spike-triggered averages of EMG as indicated by the legend.

FIGURE 8 | Distributions of digits that cross-correlated most
strongly with each original digit DoF and with each PC.
Two-dimensional histograms shown as grayscale matrices indicate
the number of M1 neurons that had their MAXC with each joint DoF
and with each PC in monkey C (A) and monkey G (B). Note that the

marginal histograms above shown that in both monkeys, the largest
number of M1 neurons were best correlated with the thumb and
then with the wrist, whereas the synergy with which the largest
number of M1 neurons were best correlated differed between
monkeys: S2 for monkey C, S6 for monkey G.

different digits in different directions. Few if any of the kinematic
synergies identified by PCA, thus appear to represent the action of
single muscles. Rather, each kinematic synergy is likely to involve
coordinated activation in multiple muscles.

To some extent, the kinematic synergies identified here may
reflect the particular mechanical constraints of the present indi-
viduated finger and wrist movement task (Figure 1) in which
the instructed digit was required to move more than others, not
only in flexion but also in extension. More ethologically natural
human hand movements monitored during haptic exploration
also showed synergies dominated by the motion of the thumb or
the index finger, not unlike the present S3 and S4 (4) (S2 and S3 in
their Figure 3). Although the same study showed that individuated

movements of each digit could be reconstructed from the synergies
identified, neither this nor other previous studies of kinematic syn-
ergies have elicited individuated movements of the middle, ring,
and little fingers. Hence the “contrasts” between these digits repre-
sented by the present synergies S5 and S6, may not have appeared
in more ethologically natural hand movements.

REPRESENTATION OF KINEMATIC SYNERGIES IN THE PRIMARY MOTOR
CORTEX
Overall, M1 neurons that had progressively stronger correlations
with finger and wrist kinematics had stronger MAXCs with both
synergies (or PCs) and original DoFs. If an M1 neuron specif-
ically represented one of the kinematic synergies identified by
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PCA, then its firing rate would be expected to correlate more
strongly with some synergy than with the motion of any of the
individual digits or wrist. A minority of M1 neurons in each mon-
key – those represented by points lying above the line of unity
slope in Figure 7 – in fact did show MAXCs with one of the syn-
ergies larger than with any of the individual digits or wrist. The
majority of M1 neurons, however, showed a stronger correlation
with the motion of an individual digit or the wrist than with any
PC or kinematic synergy. Furthermore, in each monkey the M1
neurons that had progressively stronger correlations with kine-
matics showed particularly strong correlations with an original
DoF rather than with a synergy. So although some M1 neurons
might represent kinematic synergies in the present task, most M1
neurons represent these kinematic synergies no better than the
original DoFs.

SYNERGIES AND NEURAL CONTROL OF MOVEMENT
Although we found little evidence that kinematic synergies are
represented by M1 neurons more strongly than the original
digit and wrist DoFs, our findings do not exclude a number
of other possible ways in which synergies might be used by
the CNS in controlling movement of the wrist, hand and fin-
gers. First, methods other than PCA, either linear (e.g., indepen-
dent component analysis), or non-linear (e.g., Isomap), may be
necessary to identify kinematic synergies used by the nervous
system. Second, although here we used digit and wrist posi-
tions as the original DoFs, synergies of other kinematic, and/or
dynamic DoFs – such as velocity (15), acceleration, or force –
might be represented more strongly in M1 neuron firing. Alter-
natively, rather than working in the domain of kinematic and/or
dynamic synergies, the nervous system instead may control muscle
synergies.

Much of the basic generation of such muscle synergies might
occur at subcortical levels, including the PMRF and the spinal gray
matter. Neurons in the intermediate zone of the lumbar spinal gray
of the spinalized frog provide premotor drive for a limited num-
ber of muscular synergies (16), and rostral midbrain transection in
the frog leaves most natural muscular synergies intact (19). These
observations indicate that certain muscular synergies are mediated
in the spinal cord. In monkeys, outputs from the PMRF produce
relatively stereotyped facilitation of ipsilateral flexors and suppres-
sion of ipsilateral extensors (17, 33, 34), including hand muscles
(35, 36), and PMRF neurons participate in visually targeted reach-
ing movements (37, 38). Muscle synergies also have been identified
during reach-to-grasp movements in both monkeys (20, 39) and
humans (40–42), and remain largely unchanged after stroke dam-
ages the frontal cortex (18). Together, these studies suggest that in
primates, the PMRF may generate important muscular synergies.
M1 neurons, acting on subcortical centers, on spinal interneurons,
and on the motoneuron pools themselves, then might sculpt the
output to muscles so as to produce a wide variety of individuated
movements (43).
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We have recently reported that rats with complete thoracic spinal cord injury (SCI) that
received a combinatorial treatment, including viral brain-derived neurotrophic factor (BDNF)
delivery in the spinal cord, not only showed enhanced axonal regeneration, but also dete-
rioration of hind-limb motor function. By demonstrating that BDNF over-expression can
trigger spasticity-like symptoms in a rat model of sacral SCI, we proposed a causal rela-
tionship between the observed spasticity-like symptoms (i.e., resistance to passive range
of motion) and the over-expression of BDNF. The current study was originally designed to
evaluate a comparable combined treatment for cervical SCI in the rat to improve motor
recovery. Once again we found similar signs of spasticity involving clenching of the paws
and wrist flexion.This finding changed the focus of the study and, we then explored whether
this spasticity-like symptom is directly related to the over-expression of BDNF by adminis-
tering a BDNF antagonist. Using electromyographic measurements we showed that this
treatment gradually diminished the resistance to overcome forelimb flexion in an acute
experiment. Thus, we conclude that neuro-excitatory effects of chronic BDNF delivery
together with diminished descending control after SCI can result in adverse effects.

Keywords: spinal cord injury, BDNF, combined treatment,TrkB-Fc, EMG

INTRODUCTION
Axonal regeneration in the adult mammalian central nervous
system is inhibited by numerous factors (1) impeding the devel-
opment of effective treatments for brain or spinal cord injuries
(SCI). Consequently, it is likely that repair of the injured spinal
cord by axonal regeneration and plasticity will require a com-
bined treatment approach. Several combinatorial strategies have
been pursued with a wide range of outcomes [e.g., Ref. (2–5)].
These experiments are not only technically demanding, but also
challenging in the interpretation of the results, considering the
unpredictable effects of promoting neurite outgrowth and possible
interactions between treatment components (6, 7).

One prominent molecule that has been the subject of many
studies in spinal cord repair is brain-derived neurotrophic factor
(BDNF). BDNF not only has neuro-protective, regeneration, and
plasticity promoting effects but also neuro-excitatory properties
and binds with high affinity to the TrkB receptor and with lower
affinity to p75 [reviewed in Ref. (8)]. As such, BDNF is a prominent
candidate for combined treatment approaches [e.g., Ref. (6, 9, 10)].
However, due to the broad range of its effects, the consequences of
BDNF delivery can be complex. For example, we observed that a
combinatorial treatment involving BDNF (achieved by direct viral
vector injection and bone marrow stromal cell grafts genetically
modified to express BDNF) promoted spasticity in rats with a cer-
vical hemisection. Because the combined treatment also promoted

axonal regeneration and plasticity, the origin of the observed spas-
ticity remains unclear (11). We could, however, provide an indirect
explanation by demonstrating that the over-expression of BDNF
could promote the development of hyperreflexia in tail muscles
in a sacral model of SCI (11). Yet, it remains unclear whether
this effect of BDNF was caused by its neuro-excitatory properties
or through an augmentation of neuroplasticity and/or regenera-
tive growth. However, this was not the original question of the
current study. We initially set out to test a combined treatment
that addressed multiple limitations for neurite growth follow-
ing cervical SCI. The focus of the analysis shifted when severe
spasticity-like symptoms in the injured forelimb became evident,
which led us to focus on determining the cause of spasticity. To
address this question we administered a BDNF antagonist into the
spinal cord of rats that showed spasticity-like symptoms, and these
were gradually reduced by this treatment.

MATERIALS AND METHODS
ANIMALS
Adult female Fischer 344 rats (Charles River, 180–220 g) were
group housed and kept at 12/12 h light/dark cycle with ad libi-
tum water. The study was approved by the Animal Care and Use
Committee for Health Sciences of the University of Alberta, and
complies with the guidelines of the Canadian Council for Animal
Care.
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LESION SURGERY AND TREATMENT
Rats were anesthetized (using Hypnorm 0.16 mg/kg; Vetapharma,
Leeds, UK; and Midazolam 2.5 mg/kg; Sandoz, Canada; diluted in
sterile water) and mounted into a stereotaxic frame (Kopf Instru-
ments), and the spinal cord between C5 and C6 was exposed by
performing a laminectomy of half of the C5 segment. The spinal
cord was lesioned using a microsuction pipette and a spring scissor.
A lateral hemisection lesion was performed ipsilateral to the pre-
ferred paw as determined by a forelimb reaching task. A small gap
was created to ensure lesion completeness and provide space for
the cell graft. The dura was sealed with a thin agarose film (Sigma)
and fibrin glue (Baxter, USA), overlying muscles were sutured and
the skin was stapled. Rats were placed on a heating pad until they
were awake and received buprenorphine (0.03 mg/kg) as analgesic
and saline over the next 2 days.

Preparation of cell grafts to provide a tissue bridge for regenerating
axons
Fibroblasts were isolated from skin biopsies of Fischer 344 rats and
cultivated in D’MEM/10% FBS with antibiotics. Cells were trans-
duced with retroviral vectors to express BDNF as described by Lu et
al. (11, 12) or NT-3 (13) and selected for G418 resistance. BDNF
and NT-3 expression was measured in vitro, in 24 h cell culture
supernatants by ELISA as described (14, 15). BDNF-transduced
fibroblasts expressed 27 ng/106 cells/24 h, NT-3 transduced cells
expressed 134 ng/106 cells/24 h. For grafting, BDNF and NT-3
expressing cells were mixed 1:1 and 2–3 µl were injected into the
lesion site using a 5-µl Hamilton syringe at a concentration of
2.5× 104 cells/µl.

scAAV vector preparation and injections
Self-complementary adeno-associated viral vectors (scAAV) were
generated as described by Lu et al. (11). In order to attract regener-
ative growth out of the graft into the caudal spinal cord, BDNF, and
NT-3 (and GFP as control) transfected scAAV vectors (1.3 µl/site)
were injected 1.25, 2.5, and 4 mm caudal to the lesion on the side
ipsilateral to the lesion through pulled glass capillaries using a
Picospritzer II similar to Lu et al. (11). The injection volume was
divided over a depth of 1 and 1.5 mm.

One week post-lesion surgery, cell grafts and viral vector injec-
tion surgeries were performed in all lesioned animals in the
following groups:

Group 1 is a CONTROL group used to demonstrate the ability
of self-complementary adeno-associated virus (scAAV) vectors to
successfully infect spinal neurons. This group did not receive a cell
graft, only PBS, followed by injections of 4.3× 1011 vg/ml scAAV
vectors expressing Green Fluorescent Protein (scAAV2-GFP) at
1.25, 2.5, and 4 mm caudal to the lesion; n= 16.
Group 2, scAAV-BDNF group received an injection of PBS in the
lesion site, followed by 4.3× 1011 vg/ml scAAV-BDNF injections
at 1.25, 2.5, and 4 mm caudal to the lesion to serve as trophic
support for regenerating fibers; n= 5.
Group 3, the GRAFT/BDNF/NT-3 or FULL treatment group,
received a fibroblast cell graft (expressing BDNF and NT-3) into
the lesion site to provide a permissive cellular matrix that allows
axonal growth,and a trophic stimulus to stimulate axonal growth.

This group also received injections of a mixture of scAAV2 BDNF
(f.c. 4.3× 1011 vg/ml), scAAV2-NT-3 (f.c. 4.3× 1011 vg/ml), and
scAAV2-GFP (f.c. 4× 1010 vg/ml) mixed with 20 U/ml ChABC
(Seigaku, USA) caudal to the lesion (1.25, 2.5, and 4 mm). The
neurotrophic mixture is intended to provide trophic stimu-
lus beyond the lesion and ChABC degrades growth inhibitory
proteoglycans in the scar tissue (3). In addition, this group
also received a subcutaneous injection of the phosphodiesterase
(PDE) inhibitor, Rolipram, (AG Scientific, San Diego, CA, USA;
3 ml of 3 mg/kg in 2% DMSO and saline) once per day for 14 days
following the lesion. This drug elevates cAMP levels in the CNS
and augments regeneration-related gene expression in injured
neurons (16); n= 18.
Group 4, the GRAFT/scAAV-NT-3 group received a fibroblast cell
graft expressing BDNF and NT-3 into the lesion site, injections of
scAAV expressing NT-3 and GFP only, mixed with ChABC caudal
to the lesion and subcutaneous injections of rolipram; n= 7.
Group 5, the GRAFT/ChABC group received a fibroblast cell graft
expressing BDNF and NT-3 into the lesion site and ChABC injec-
tions 1.25, 2.5, and 4 mm caudal to the lesion, followed by daily
rolipram administration; n= 5.

BEHAVIORAL TESTING
Single-pellet grasping task
This test was performed as described previously (17, 18). In
order to motivate rats to grasp for sugar pellets (45 mg, banana
flavor; TestDiet, Richmond, CA, USA) in the task, restricted
amounts of food were allowed directly after the daily train-
ing session (10 g/rat/day). A transparent Plexiglas chamber
(30 cm× 36 cm× 30 cm) with a narrow opening in the front wall
and an attached shelf outside (2 cm distance from the inside of the
front wall, 3 cm above the floor) was used. Pellets were placed at a
distance such that the rats had to grasp them with their preferred
forelimb and could not reach them with their tongue. The pre-
ferred paw was determined for each rat during the first few training
sessions. Successful grasps were scored over a 10-min period only
when a rat was able to grasp the presented pellet, bring it to its
mouth and eat it. Pre-operative baseline values were obtained after
a 4-week training period (five times per week,10 min per rat). Post-
operative rehabilitative training of the injured forelimb started
1 week after graft implantation surgery (2 weeks post-lesion).

Forelimb placement
To further assess forelimb function, all rats were scored over a 4-
min period in a Plexiglas open field according to Martinez et al.
(19), with scores ranging from 0 (no function) to 20 (no deficit).
Behavioral components were categorized from global fore- and
hind-limb movements to antero-posterior coordination, which
included weight support, fine distal positioning, and stepping
abilities. Nine weeks post-lesion, asymmetries in spontaneous
forelimb use were evaluated by placing individual rats into a clear
Plexiglas cylinder (24 cm high/19 cm inner diameter). A mirror
was placed underneath the cylinder at an angle to facilitate the
videotaping of the rat’s vertical exploratory activity in the cylin-
der (Figure 1). Ten rearing movements were recorded in each test
session. Each forepaw placement on the wall of the cylinder was
scored during a rearing movement. If the affected forepaw was
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FIGURE 1 |Treatments involving BDNF promoted exaggerated wrist
flexion and affected forelimb use. Signs of wrist flexion became apparent
as early as 2 weeks after treatment (A). By 9 weeks post-injury the cylinder
exploration task indicated that animals in the FULL treatment group and the
scAAV-BDNF only group had significantly reduced use of the injured
forelimb (*) when compared to control animals (B). Error bars show
average±SE; *p < 0.05, **p < 0.005, ***p < 0.0005.

plantar on contact with the wall of the cylinder, the number of
contacts was multiplied by two, if only the dorsal surface of the
paw was placed on the wall, the number of contacts was multi-
plied by one and if the paw did not contact the wall a score of 0
was assigned, thus allowing for a maximum score of 20.

Grip strength
The grip strength of the forelimbs (or in other words, the force
needed to overcome wrist and digit flexion when actively or pas-
sively holding on to a bar) was assessed 9 weeks post-lesion by
measuring the maximum force (in gram) exerted by each forelimb,
with a Grip Strength Meter apparatus (Columbus Instruments,
OH, USA, Figure 2). For the final values, four readings for both
paws were obtained over three different trials and averaged for
post-operative analysis.

Sensory test
Forelimb withdrawal latency to a heat stimulus was measured prior
to injury (baseline) and 9 weeks post-lesion using methods previ-
ously described (20). Briefly, the rats were placed on a glass plate
over a light box, and a radiant heat stimulus (Ugo Basile) was
applied by aiming a beam of light onto the plantar surface of the
paw of each forelimb through the glass plate. The light beam was
turned off automatically when the rat lifted the limb, allowing
the measurement of time between the start of the light beam and
the paw withdrawal. Five minutes were allowed between three tri-
als, baseline values were averaged for each limb and compared to
post-injury values.

ELECTROPHYSIOLOGY
Electromyographic (EMG) recordings of flexor muscles of the
injured paw were carried out prior to perfusion. Animals were
anesthetized with 5% isoflurane gas anesthesia for induction and

FIGURE 2 | Brain-derived neurotrophic factor expression increases
wrist flexion: using an apparatus designed to measure grip strength
(A) we compared measurements between control animals and the rats
receiving scAAV-BDNF only or the FULL treatment (B). When compared
with the control group, a significant increase in “grip” strength was
observed in both the scAAV-BDNF and the FULL treatment groups at
9 weeks post treatment. The dashed line indicates a normal grip strength
value. Error bars show average±SE; **p < 0.01, ***p < 0.001.

1.5% for maintenance of anesthesia and placed into a stereotaxic
frame. The spinal cord surrounding the hemisection lesion was
exposed. To record EMG responses during manual wrist extension,
two electrodes with exposed tips (Teflon coated wire; A-M Systems,
Carlsborg, WA, USA) were inserted into wrist flexors of the fore-
limb ipsilateral to the lesion. The EMG signal was amplified (Grass,
Astro-Med Inc., West Warwick, RI, USA), digitized (5 kHz, Digi-
data 1322A; Axon instruments, Foster City, CA, USA), and filtered
(30–300 Hz) as described earlier (17). The muscle responses were
recorded under anesthesia before and 10, 20, and 30 min follow-
ing injection of the TrkB antagonist, TrkB-Fc (1 µl of 0.2 mg/ml;
Sigma) or saline into the spinal cord lesion site.

The following animals were selected for EMG analysis: (i) three
rats without signs of spasticity (one from the CONTROL group
and two from the FULL treatment group) received a TrkB-Fc injec-
tion. (ii) Four rats with spasticity (one from the scAAV-BDNF,
two from the FULL treatment group and one from GRAFT/NT-
3) received a saline injection only. (iii) Ten rats with spasticity
(two from scAAV-BDNF and eight from FULL treatment group)
received TrkB-Fc injection.

Electromyographic responses were recorded, and the burst
duration was measured using Axoscope software (Axoscope
9.0.1.16; Molecular Devices, Sunnyvale, CA, USA). The traces were
rectified and the average burst amplitude was quantified and then
multiplied by the burst duration using Microsoft Excel.

The animals were euthanized immediately following the
EMG recordings with pentobarbital (Euthanyl, Bimeda-MTC;
70/100 mg body weight) and transcardially perfused with
phosphate-buffered saline, followed by 4% paraformaldehyde
(PFA) in 0.1 M phosphate buffer, pH 7.4. The spinal cord
was removed, post-fixed in 4% PFA overnight at 4°C and
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cryo-protected in 30% sucrose over 2 days. The cervical enlarge-
ment encompassing the lesion site (C2–6) was embedded in Tissue
Tek (Sakura Finetek USA Inc., Torrance, CA, USA) and frozen in
2-methyl-butane at−60°C.

HISTOLOGY
Spinal cords were cryosectioned in the horizontal plane at 25 µm
and mounted in eight series onto Fisherbrand slides (Fisher Sci-
entific, Ottawa, ON, Canada). To evaluate the lesion site, sections
were counterstained with 0.1% Cresyl Violet and dehydrated in
increasing alcohol concentrations, cleared with xylene, and cov-
erslipped with Permount (Fisher Scientific). Lesion sizes were
reconstructed from C2 to C6 spinal cord tissue by analyzing every
fourth section through the dorso-ventral plane of the spinal cord
by using central canal and gray/white matter interphases as land-
marks. From these reconstructions, the percent cross-sectional
surface area of the damaged tissue was measured using Image J
(NIH) software. Animals with lesions deviating from a complete
hemisection by >10% were removed from this study.

Immuno-histochemistry of serotonergic (5-HT) fibers was car-
ried out on every second horizontal section encompassing the
lesion site using rabbit anti 5-HT antibody (S5545, Sigma-Aldrich,
Oakville, ON, Canada). In brief, following a 10% normal goat
serum (NGS, Vector Labs, Burlingame, CA, USA) blocking step,
the slides were incubated in 1:1000 dilution of primary antibody
containing 1% NGS overnight at 4°C. The slides were then washed
in TBS before an overnight incubation at 4°C in the secondary
antibody (Vector Labs, Burlingame, CA, USA). Application of ABC
and DAB solutions according to manufacturer’s recommendations
followed (Vector Laboratories, Burlingame, CA, USA). After three
washing steps of 10 min in TBS, the slides were serially dehydrated
with alcohol, cleared with xylene, and coverslipped in Permount
(Sakura Finetek USA, Torrance, CA, USA).

The density of 5-HT fibers rostral and caudal of the lesion
was quantified from images taken at 400× using a Leica light
microscope. Images were saved as 8-bit gray-scale TIFF files and
imported into Image J software version 1.43q (NIH), where thresh-
old values were adjusted. Selected threshold values were kept
constant for all images to standardize the amount of background
included in quantification. Integrated density measurement, rep-
resenting the sum of the values of the pixels in an image, was
averaged from five different images.

STATISTICS
To determine statistical differences between treated and untreated
animals, Student’s t -test and a one-way ANOVA with Tukey’s hon-
estly significant difference post hoc test (Prism, V 4.0; GraphPad,
San Diego, CA, USA) were used. All results and figures are pre-
sented as means± SE of the mean. Statistical significance is stated
for p values <0.05.

RESULTS
FUNCTIONAL RECOVERY
The post-lesion recovery process was overshadowed by the appear-
ance of signs of spasticity in the forelimb ipsilateral to the lesion.
The first signs involved clenching of the paw and especially pro-
nounced wrist flexion that appeared 2 weeks post-injury. Post hoc

analysis indicated that these signs of spasticity occurred in ani-
mals in all treatment groups. However, by 6 weeks, only 12% of
rats (2 out of 16) in the control treatment group showed abnormal
wrist flexion and clenching of the paw. This stood in contrast to
60% (3 out of 5) of rats that were injected with scAAV-BDNF and
72% (13 out of 18) of rats belonging to the FULL treatment group
(involving cell grafts expressing BDNF and NT-3 in the lesion site
and scAAV-BDNF expression caudal to lesion) and three out of
seven rats (43%) in the GRAFT/NT-3 group which received the
cell grafts expressing BDNF and NT-3 in the lesion site and scAAV-
NT-3 only expression caudal to lesion. In the, GRAFT/ChABC
group, consisting of cell grafts expressing BDNF and NT-3 and
ChABC injection, only one out of five rats (20%) displayed signs
of spasticity. These effects made further functional testing difficult.
Rats with these signs of spasticity were unable to plantar step or to
grasp for food pellets. Consequently, because most animals were
unable to retrieve pellets, the single-pellet task had to be aban-
doned entirely. Although rats in all groups attempted to reach for
pellets, a significant decline in the attempt rate was apparent in the
treated groups when compared to their baseline attempt rate mea-
surements (FULL treatment group: 15.4%, scAAV-BDNF group:
35%, GRAFT/NT-3 group: 56.7%; GRAFT/ChABC group: 25.7%,
and control group: 86.7%).

A test capable of quantitatively assessing the deficits in
hand/wrist function was the cylinder test (Figure 1A). When
exploring the wall with their paws, rats showing signs of spasticity
did not use the affected limb to explore, significant deficits were
observed in the group receiving scAAV-BDNF only (3.5± 1.3), in
the group receiving graft expressing BDNF/NT-3 and scAAV-NT-
3 expressing vectors (3.4± 1.6), as well as in the FULL treatment
group (2.7± 0.9) when compared to control group (9.4± 1.5)
or the graft expressing BDNF/NT-3 and ChABC treated group
(8.25± 3.4; Figure 1B).

When quantifying the forelimb deficits using a forelimb score
[Ref. (19); a score of 0 indicates no forelimb function and 20 indi-
cates no deficit] rats in the group receiving scAAV-BDNF only
performed somewhat worse than control treated rats (9.2± 0.6
vs. 11.2± 0.8); however this difference was not found to be sta-
tistically significant. When controls were compared to the rats
receiving the FULL treatment with markedly more cells expressing
BDNF (due to the graft) a significant decrease in the performance
was found (7.3± 0.5; p= 0.0008; data not shown).

A test that dramatically illustrates the inability to open the paw
and the rigidity of the wrist flexors in these rats is the grip strength
test (Figure 2A). By sliding the paw over the bar of the force sensor,
the paw basically “hooked” onto the bar and the animal could be
pulled away from the sensor in order to measure the force needed
to overcome flexion and to release the bar. When comparing these
forces between the groups for the unaffected arm (contralateral to
the lesion), no differences were found. This is of interest consider-
ing that a potential neuro-excitatory effect of BDNF could spread
over the entire spinal cord. Because the values were comparable
between all groups, an average value from all animals (118.2± 4 g)
is indicated in Figure 2B as “normal” grip strength.

When testing the affected limb we found that control ani-
mals with hemisection lesion (and no treatment) usually exert
a moderate to weak resistance when being pulled away from the
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bar. The force necessary before releasing/sliding the affected paw
over the bar was significantly lower than that for the unaffected
paw(s) (60.1± 31.5 vs. 118.2± 4 g; p= 0.022). In contrast, rats
with signs of spasticity were hardly able to release the bar resulting
in higher values than those in the unaffected paw and significantly
higher than the control treated rats on the affected side (scAAV-
BDNF vs. Control p= 0.0057; FULL vs. Control p= 0.0001;
scAAV-BDNF vs. GRAFT/NT-3 p= 0.048; FULL vs. GRAFT/NT-
3 p= 0.001; FULL vs. GRAFT/ChABC p= 0.012). Rats receiv-
ing only scAAV-BDNF were statistically indiscernible from those
receiving the full treatment (144.2± 35.6 vs. 157.2± 15.6) as both
had abnormally high “grip” strength. Whereas the GRAFT/NT-3
treated group (76.7± 10.1 g) was not different from the CON-
TROL (60.1± 31.5 g), or the GRAFT/ChABC treated group
(73.5± 10.2 g).

In summary, during normal activities, the majority of rats
receiving scAAV-BDNF only or in combination with other treat-
ments were unable to extend their wrist or open the digits of
their paw. Further, the average force needed to overcome the wrist
flexion was significantly increased.

This unexpected treatment-induced motor deficit, likely related
to BDNF over-expression by cell grafts and spinal scAAV injec-
tion, did not allow the continuation of the originally planned
experiment, and consequently, the focus shifted to the possible
role of BDNF in the development of spasticity. Therefore, histo-
logical results are only reported for serotonergic fibers because of
serotonin’s neuro-excitatory properties and potential role in the
development of spasticity.

Because of the involvement of BDNF in nociception (21), the
Hargreaves apparatus was used to analyze the possible treatment
effect on the latency of injured forelimb withdrawal in response to
a painful stimulus pre and post treatment. Only two groups, FULL
and the GRAFT/NT-3, showed a significant reduction in latency of
withdrawal of their preferred forelimb (p value: 0.016 and 0.038,
respectively), indicating thermal hypersensitivity, in response to
thermal stimulation when compared to baseline latency values
(FULL: 9.0 vs. 11.4 s, GRAFT/NT-3 9.5 vs. 11.4 s). Other treat-
ment groups did not show any significant change in withdrawal
latency following lesion (data not shown). These results do indi-
cate that within our experiment there was no obvious link between
changes in nociception and the occurrence of spasticity-like symp-
toms. The lack of effects on thermo-sensitivity in some of the
groups where BDNF was over-expressed could be based on var-
ious factors including effects of other treatment components or
insufficient BDNF levels.

ANIMAL WEIGHTS
Because earlier findings indicate that BDNF reduces weight gain
in rats (22, 23), decreased weight in the groups of animals
receiving scAAVs expressing BDNF or a combination of grafts
expressing BDNF and scAAVs expressing BDNF, might be one
potential indicator for adverse effects of increased BDNF levels
(Figure 3A).

When we compared the animal weights at the end of the exper-
iment (i.e., 9 weeks post-injury) between the control rats that
received a lesion and GFP expressing scAAV vectors (207± 1.7 g)
and those that received only scAAV-BDNF (201± 1.1 g), we found

FIGURE 3 | Brain-derived neurotrophic factor application influences
weight gain (A). Although baseline weight measurements were not
statistically different between the treatment groups (not shown), after
9 weeks of recovery, the control group had gained significantly more weight
than the FULL treatment group. Animals that received only scAAV-BDNF
but no cell graft BDNF had moderate weight gain and were not significantly
different from either group (A). (B) Shows a representative example of a
horizontal section through a lesion site with cell graft (left; indicated by an X)
and without (right). Micrographs were taken at 100× magnification. There
was no difference in lesion size among the groups (C). *p < 0.05.

a small, non-statistically significant decrease in weight gain. Rats
that received the FULL treatment (which entails, among others,
BDNF and NT-3 expressing cell grafts in addition to the injection
of scAAV-BDNF) showed a significant difference (192± 2.3 g).
GRAFT/NT-3 and GRAFT/ChABC treated group was not statisti-
cally different from any other treatment groups. However, it has to
be kept in mind that this weight loss might have also been influ-
enced by other treatment components such as rolipram injections
in addition to the chronic BDNF over-expression by either the
fibroblast cell graft or scAAV vectors.

LESION SIZES
Lesion sizes were analyzed from reconstruction of serial sections
(Figures 3B,C). Following our exclusion criteria, animals with
lesions deviating from a complete hemisection by >10% were
removed from this study (n= 4); a comparison of the lesion
sizes between the groups showed no statistical difference between
either group. The control group had only 2.2% (±1.1) tissue
spared in comparison to 4.1% (±2.8) in the scAAV-BDNF only
group, 1.1% (±1.4) in the FULL treatment group, 3.7 (±0.01) in
the GRAFT/NT-3 group, or 4.12 (±0.01) in the GRAFT/ChABC
group. Thus, variations in lesion size were only minor, and
differences in functional outcome can therefore confidently be
attributed to the different treatments.
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SPROUTING OF SEROTONERGIC FIBERS
Nine weeks after SCI, the density of 5-HT positive fibers both
immediately rostral and caudal to the lesion site was quantified
in order to visualize and compare the possible role of 5-HT fiber
sprouting in the observed spasticity following SCI (Figure 4A).

The integrated density of 5-HT fibers was compared among all
groups (Figure 4B). The highest values for 5-HT were observed in
the GRAFT/NT-3 group (2923± 307) which is statistically signif-
icant when compared to the control group (2148± 117) and the
scAAV-BDNF only group 1621± 418 (p= 0.0330, 0.0424, respec-
tively). The average density value in the FULL treatment group was
2354± 212 and 2423± 337 in GRAFT/ChABC (not significant to
controls).

FIGURE 4 | 5-HT fibers do not facilitate treatment-induced spasticity
following SCI. (A) Gray-scale images following 5-HT immunohistology
show a high density of 5-HT fibers immediately rostral to lesion and their
subsequent reduction following SCI caudal to the lesion. (B) Quantification
of integrated 5-HT fiber density rostral and caudal to the lesion does not
indicate significant influence of the BDNF treatment. Data presented as
mean±SEM, *p < 0.05.

Caudal to the lesion, 5-HT density was reduced and even
though the FULL treatment group contained significantly more
fibers than the scAAV-BDNF only group (p= 0.034; 1059± 116
vs. 503± 178; respectively),neither group was statistically different
from the control group (863± 68). The FULL treatment group was
however, significantly different from the GRAFT/ChABC group
(1059± 116 vs. 395± 52; p= 0.0339), but not different from
GRAFT/NT-3 group (1059± 116 vs. 739± 229). Thus, it appears
unlikely that differences in the availability of serotonin contributed
to the increase in spasticity of the treated groups.

ANTAGONIZING BDNF
In order to investigate the underlying mechanisms of the observed
increase in spasticity-like symptoms of animals that received
BDNF treatment either by scAAV vector expression or in com-
bination with grafts expressing BDNF, we quantified the muscle
activity elicited by overcoming the wrist flexion before and after
the spinal injection of the BDNF antagonist TrkB-Fc.

Before injection of TrkB-Fc into the lesion site, wrist flexion was
manually overcome three times in a row with an interval of about
3 s, which was repeated every 10 min following the TrkB-Fc injec-
tion for a total of 30 min. When this experiment was performed in
rats without signs of spasticity (n= 3), there was no resistance to
the stretch and no EMG activity was detected before or during the
extension of the wrist into a horizontal position (i.e., 180°) even
before TrkB-Fc was injected. Therefore, for this experiment only
rats that demonstrated resistance and an EMG response in flexor
muscles to stretching of the wrist (i.e., displayed spasticity-like
symptoms) were included.

When averaging the rectified EMG from all three stretches
and comparing this value to values measured at 10 and 20 min
following a spinal saline injection, we found in four animals
with spasticity-like symptoms (one from the scAAV-BDNF, two
from the FULL treatment group, and one from GRAFT/NT-3
group) only an insignificant decrease in EMG response over time
(Figure 5). Only after 30 min, a significant decline of 11% was
observed.

In contrast, in 10 animals with spasticity-like symptoms
(two scAAV-BDNF and eight of the FULL treatment group)
that received the BDNF antagonist injection, the EMG response
dropped by 51± 9.8% starting as early as 10 min after TrkB-Fc
injection and continued to decline to 64± 8.4% at 20 min and
80± 6.6% at 30 min. The difference in the stretch induced average
and rectified EMG amplitude at each time point was statistically
significant between saline and TrkB-Fc injected rats (Figure 5).

Interestingly, a significant effect of TrkB-Fc was also found in
one out of two control treated rats that showed severe wrist flex-
ion/spasticity,at 20 and 30 min post injection (p= 0.024 and 0.036,
respectively).

DISCUSSION
Brain-derived neurotrophic factor is a prominent neurotrophic
factor with a long history and a variety of effects. Such effects
include the modulation of cell survival (ranging from protec-
tion to cell death), the enhancement of neurite outgrowth and
axonal regeneration, the promotion of myelination, as well as
the modulation of synaptic transmission, the post-injury immune
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FIGURE 5 | Spinal BDNF antagonist reduces resistance to overcome
wrist flexion in animals that exhibit spasticity-like symptoms. EMG
recordings from wrist flexor muscles of the forelimb ipsilateral to the lesion
before and at three different time points following TrkB-Fc injection show a
gradual decline in stretch-evoked EMG responses. Note the relative
inactivity in the recording before and in between the stretch-evoked bursts
(A). When quantifying the EMG response and normalizing it to the values
found in control animals under anesthesia only (did not receive Saline or
TrkB-Fc injections; dotted line) we found a significant drop in EMG response
at 10 min, and a continuous decline over the next 20 min when TrkB-Fc
infusion was compared to saline injections (B). #Indicates a significant
reduction of EMG response at 30 min post saline injection when compared
to control animals that were under anesthesia only (dotted line; p=0.0286).
White columns represent rats that received saline, black columns represent
rats that received the BDNF antagonist. Bars show means±SEM;
*p < 0.05. **p < 0.005. Dashed lines indicate the SEM for control
anesthesia (dotted line).

response and neuronal excitability [reviewed in Ref. (8)]. Not sur-
prisingly, BDNF also frequently makes it onto the list of potential
SCI treatments [e.g., Ref. (11, 24–30)]. Considering the broad
effects of BDNF, it is also not surprising that the mechanisms
by which BDNF influences functional outcomes is sometimes
difficult to discern. Understanding the mechanism by which a
treatment influences functional recovery (or decline) is more chal-
lenging when several treatments are combined. A good example
of this can be found in a recent report by Lu and colleagues
(11), where a combined treatment not only resulted in enhanced
plasticity of various descending fiber systems (e.g., serotonergic
fibers) and axonal regeneration, but also in an undesired effect
(i.e., increased occurrence of spasticity). Obviously it is of utmost
importance to explore whether the increased spasticity was due
to treatment-mediated augmentation of neurite growth and plas-
ticity and/or possibly through an acute neuro-excitatory effect of
BDNF (31, 32).

Another challenge of using BDNF for treating SCI is its well-
established role in affecting sensory and nociceptive pathways
in the spinal cord (21) and its ability to modulate glutamate

receptors and sensitization (33, 34). Thus, a possible link between
the observed spasticity-like symptoms found in the present study
and neuropathic pain could be suggested. Yet, in this study no con-
sistent change was found in thermo-sensitivity and it is unlikely
that the signs of spasticity are related to increased pain. For exam-
ple, it could be assumed that when assessing the grip strength,
increased pain sensitivity would result in a withdrawal rather than
an increase in grip strength.

Another potential mechanism involved in promoting spas-
ticity could be aberrant serotonergic sprouting and the subse-
quent increased levels of serotonin, which could increase neuronal
excitability (35, 36). In the current study, we did not find sig-
nificant differences in the serotonergic innervation between the
groups and demonstrate that a BDNF antagonist reduces spastic-
ity within minutes. This indicates that an acute neuro-excitatory
effect of permanent BDNF expression underlies the increase in
signs of spasticity. The relatively fast effect of the TrkB antago-
nist also indicates that, although baseline activity in the flexed
muscle was very low, a contracture [shortening of the mus-
cle; Ref. (37)] was not involved in the observed spasticity-like
symptoms.

It has to be kept in mind that spasticity-like symptoms were also
observed in a small percentage of rats with spinal hemisection that
received only GFP expressing viral vectors. It appears as though
the continuous BDNF over-expression exacerbated this naturally
occurring process by decreasing the threshold for the development
of spasticity. Curiously, the application of the BDNF antagonist
also reduced the spasticity in one control treated rat, indicating
that BDNF signaling might also be involved in post-injury regula-
tion of neuronal excitability. Indeed, increases in BDNF expression
after SCI have been reported (38–40), which can contribute to
increased neuronal excitability by reducing the amount of current
required to reach threshold [i.e., rheobase; Ref. (41, 42)].

There are many possible mechanisms by which BDNF can exert
its excitatory effects. For example, BDNF may increase calcium
and sodium influx through TrkB signaling (43). Furthermore,
activation of the TrkB-PLC pathway may raise the membrane
potential through calcium-mediated channel opening (44). BDNF
has also been reported to down-regulate the potassium-chloride
co-transporter KCC2 (45), which down-regulates the inhibitory
influence of gamma-aminobutyric acid (GABA) receptors. The
most rapid and potent excitatory effects of BDNF, however, have
been shown to involve Nav1.9, on a time scale similar to the action
of glutamate (32).

Considering its neuro-excitatory properties, it is not surprising
that over-expression of BDNF can also promote beneficial effects
without promoting neuronal survival or regeneration. For exam-
ple, Boyce et al. (41), showed that the injection of BDNF expressing
vectors improved locomotor function in rats with complete spinal
cord transections.

Effects of BDNF on synaptic connectivity have been described
in dissociated cultures of early embryonic hippocampal neurons,
where it increased the number of functional synaptic connections
(46). At the same time, studies of long-term effects of BDNF in
dissociated cortical cultures have suggested that BDNF decreases
neuronal firing rate by reducing the strength of all excitatory inputs
onto a given neuron (47). Bolton et al. (48) found that actions of
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BDNF underlying the increase in activity, involved enhancement
of both excitatory and inhibitory synaptic transmission in parallel,
but via distinct cellular mechanisms.

In the current study, it can only be speculated which neuronal
population(s) responded to the BDNF antagonist, since the stretch
induced spasticity-like reflex was decreased. From earlier stud-
ies (31, 49) it is likely that motoneurons play a major role in
the development of spasticity. Generally speaking, following the
administration of the BDNF antagonist we found a decline in
EMG amplitude (see Figure 5 at 20 min) and a decline in burst
duration in parallel to the decline in spasticity-like symptoms.
This is in line with the idea that after SCI spasticity is related to
the re-occurrence of plateau potentials in motoneurons allowing
activity beyond the time of depolarization (49, 50).

In conclusion, although the permanent expression of BDNF
using viral vectors may well promote certain aspects of recovery
through neuro-excitatory mechanisms, the potential side effects
would caution such application and point to the use of regulated
expression systems to control BDNF expression (14). The general
involvement of the TrkB receptor in the development of spasticity
warrants further exploration.
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Impairments in motor functioning, which, until recently, have rarely been a primary focus in
autism spectrum disorder (ASD) research, may play a key role in the early expression of bio-
logical vulnerability and be associated with key social-communication deficits. This review
summarizes current knowledge of motor behavior in ASD, focusing specifically on reaching
and grasping. Convergent data across the lifespan indicate that impairments to reaching
and grasping emerge early in life, affect the planning and execution of motor programs,
and may be impacted by additional impairments to sensory control of motor behavior. The
relationship between motor impairments and diagnostic outcomes will be discussed.

Keywords: reaching, reach-to-grasp, motor planning, motor execution, movement, autism spectrum disorder,
review

INTRODUCTION
Autism spectrum disorder (ASD) is a developmental disorder
characterized by impairments in social communication and the
presence of repetitive or restricted behaviors (1). ASD is one of
the most prevalent forms of developmental disability internation-
ally, with current estimates at 1 in 88 (2, 3). In his original case
series, Kanner (4) described ASD primarily in relation to severe
impairment in social–emotional and communication ability but
also commented on several aspects of motor development: motor
milestones were generally within normal limits and fine motor
coordination was “very skillful,” although some patients had gross
motor deficits. However, more recent reports suggest that gross
and fine motor deficits are prevalent in ASD (5–10) and include
impairments in basic motor control (11–13), difficulty perform-
ing skilled motor gestures (14, 15), abnormal patterns of motor
learning (16, 17), and disturbances in the reach-to-grasp move-
ment (18, 19). To date, these motor abnormalities are categorized
as “associated (as opposed to core) symptoms” (8) and are thought
to interfere with the development of adaptive skills (15, 20–22).
Motor impairments may have primary effects on achieving inde-
pendence in activities of daily living (such as holding a spoon),
but also secondary effects on social functioning, by interfering
with children’s ability to participate in age-appropriate activities
with peers (such as team sports).

The embodied theory of cognition posits that we should con-
sider cognition in terms of its function in serving adaptive behavior
(23). It follows therefore that complex adaptive behaviors, such as
those of the hands, should be more closely related to cognitive
functions than simple adaptive behaviors, such as those of walk-
ing. Reaching and grasping is a complex and fundamental motor
activity that serves as a vital mode of exploration for children

as they learn about the physical world (24). The ability to plan,
execute, and monitor ongoing movement is an important aspect
of completing an action toward a goal that is integrated in the
environment (25). As such, disturbances in grasping patterns may
impact how children play, explore, use tools, and engage socially.
This review is aimed at providing a detailed summary of current
knowledge of skilled use of the hands in ASD, focusing specifically
on reaching and grasping.

Systematic searches were performed in four computerized bib-
liographic databases (PUBMED, ISI WEB of Science, PsycINFO,
ScienceDirect) to identify existing literature on reaching and
grasping in ASD. The search terms included “reaching” and/or
“grasping” with “autism.” Additional articles of interest were
located in the reference sections of the articles from the systematic
search. To be included in the review, a paper had to: (1) examine
hand movements during reaching and/or grasping tasks in chil-
dren with ASD, (2) include a comparison group of typically devel-
oping (TD) children (without a family history of ASD), but it could
also include other groups for comparison, such as children with
other forms of developmental disability (DD), and (3) confirm
the ASD diagnosis using a multidisciplinary approach. Twenty-
five articles met inclusion criteria and were included in the body
of the review. The results of the search are presented below; begin-
ning with a description of how manual-motor behavior develops
in the first years of life in infants at-risk for,or diagnosed with,ASD.
The remainder of the review is organized around the framework
of a motor episode; describing how ASD affects motor planning
and motor execution, as well as how ASD affects ongoing motor
adjustment and knowledge across the lifespan (Figure 1). The
review ends with a discussion of the implications of impairments
to motor behavior, and how they relate to diagnosing ASD.
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FIGURE 1 | Framework of review. A movement is planned and then
executed. The executed movement is monitored, as online corrections aide
ongoing movements and offline corrections aide the planning of
subsequent movements.

REVIEW FINDINGS
EARLY MOTOR DEVELOPMENT
The analysis of early object manipulation may yield information
on atypical development even before the onset of more core symp-
toms of ASD. During typical development, infants grasp objects
and manipulate them using their oral, tactile, and visual senses to
explore object characteristics (26). These sensorimotor skills are
strongly associated with hand and finger sophistication in later
development (27, 28). For example, after grasping a block, infants
will bring it to their face to look at it, will rub their fingers along
it to feel its texture, and will place it in their mouth to taste it.
Atypical object exploration has been reported for infants as young
as 12 months of age, who are later diagnosed with ASD. Com-
pared with TD peers, infants who later received a diagnosis of
ASD demonstrated more spinning and rotating of objects, as well
as unusual visual exploration of objects (29). Retrospective parent
reports of oral- and manual-motor skills from primary caregivers
of children with ASD (n = 172) and TD children (n = 44) suggest
that impaired oral-motor abilities (e.g., blowing a raspberry, stick-
ing out tongue, and making animal sounds) and manual-motor
abilities (e.g., grabbing dangling toys, block play) were able to dis-
tinguish ASD from TD children during infancy and toddlerhood
(with sensitivity at 83% and specificity at 93% for oral-motor abili-
ties and sensitivity at 89% and specificity at 86% for manual-motor
skills in children later diagnosed with ASD). Surprisingly, correla-
tional analyses revealed that oral- and manual-motor abilities of
infants with ASD were better able to distinguish children with ASD
from their TD peers than delays in the prototypical milestones
of crawling or responding to name (30). A comparison of ASD
and DD is necessary to separate the ASD-specific impairments
from general delay when examining the associations between
oral- and manual-motor abilities and social-communication out-
comes. Nevertheless, oral- and manual-motor skills are not purely
a “motor problem” and children with high verbal skills likely have
better comprehension as well as expression, although such tasks
do not require much verbal instruction.

Accordingly, several groups have examined whether oral, man-
ual, and motor skills are related to diagnostic outcomes in infants at
high-risk (HR) for ASD (for example, younger siblings of a child
with ASD). Bhat et al. (31) examined the relationship between
early gross motor behavior, as measured by the Alberta Infant
Motor Scale [AIMS; (32)] at 3 and 6 months of age, and com-
munication outcomes, as measured by the Mullen Scale of Early
Learning [MSEL; (33)] at 18 months of age in HR (n = 24; 12 male)
and TD infants (n = 24; 9 male). Compared to TD controls, HR
siblings displayed the delayed motor performance on the AIMS

at 3 and 6 months of age, but more importantly, all HR siblings
who met criteria for a communication delay at 18 months of age
exhibited a motor delay at 3 months of age. Mulligan and White
(34) prospectively examined the relationship between sensory and
motor behaviors in HR infants (n = 13; mean age 12.6 months; 5
males; 4 of the 13 were diagnosed with ASD at 30 month follow-
up) and their TD peers (n = 12; mean age 12.1 months; 5 males) by
asking infants and caregivers to participate in a 10-min play session
and a 5-min eating session. Their behaviors were video-recorded
and coded for the presence or absence of mouthing objects, object
manipulation, hand to mouth with spoon, and plays with food.
HR and TD infants showed a similar performance across the two
sessions, although the HR infants moved around less and manip-
ulated objects in their hands less frequently than the TD controls.

The relationship between poor motor ability and ASD con-
tinues into childhood. Using Part I (oral-motor assessment) of
the Kaufman Speech Praxis Test for Children (35), Adams (36)
compared oral-motor abilities and simple and complex phone-
mic production in children with ASD (n = 4; mean age 8.5 years)
against a TD control group (n = 4; mean age 9.0 years). Chil-
dren were asked to execute non-speech motor movements (e.g.,
pucker lips), produce simple phonemes (e.g., vowel-to-vowel
movements), and produce complex phonemes (complex conso-
nant production, polysyllabic synthesis). Children with ASD were
impaired on performance of oral movements, particularly those
involving in the tongue and lips, and these impairments impacted
their ability to perform complex phonemic production and sound
blending. In accordance with these results, Gernsbacher et al. (30)
found that performance of oral- and manual-motor behaviors in
ASD differed depending on level of verbal fluency. Minimally flu-
ent (n = 20; mean age 7.4 years) and highly fluent children with
ASD (n = 20; mean age 8.3 years) completed Part I of the Kaufman
Speech Praxis Test for Children (35) and were coded as “able” or
“unable” to complete tasks of “control saliva,” “protrude tongue,”
“produce vocalizations,” and “pucker lips,” etc. Overall, the mini-
mally fluent children were less able to complete oral–manual skills
than the highly verbal children, showing impairment on tasks such
as “open mouth,” “spread lips,” and any tasks involving with the
tongue. Results such as these highlight the important relationship
between non-vocal oral abilities and vocal production. An under-
standing of these impairments is important when assessing social
and communication ability in HR infants, as well as older children
with ASD, as impairments in oral- and manual-motor ability can
confound the assessment of both verbal and non-verbal language,
extending into the ability to engage socially with peers. That said, it
is important to acknowledge that many factors contribute to com-
munication functioning other than oral–motor skills. Moreover,
difficulties comprehending instructions may confound assessment
of motor skills in children with ASD who have receptive language
delays, which may need to be taken into account in interpreting
other findings summarized in this review.

MOTOR PLANNING
The analysis of motor planning may yield early information con-
cerning impairments in cognitive processing in ASD (37). Before
completing a motor act, such as reaching for a block to build a
tower, a motor plan first needs to be developed. Motor planning
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involves the sequence of motor commands that convert the cur-
rent state of one’s body into the desired state. Thus, when building
a tower, a person must formulate a plan that consists of lifting
his/her hand, extending it toward a block, shaping his/her digits
to grasp the block, and then transporting the block to the table to
begin construction.

Reaction time tasks
Recording reaction time is the simplest way to measure motor
planning, as it provides a basic measure of the time taken to formu-
late a motor plan. The majority of studies report that participants
with ASD typically show longer reaction times than their TD peers
(18, 38–41). However, when presented with simple tasks, such as
drawing a line between the two targets, children with ASD and TD
perform similarly. Dowd et al. (42) investigated motor planning
and motor execution in young children with ASD (N = 11; mean
age = 6.2 years) and TD children (N = 12; mean age = 6.6 years)
using a point-to-point movement task, in which participants were
required to use a stylus to move between two points on a digital
screen. Overall,ASD and TD groups did not differ on any measures
examined, but the ASD group did have more variable reaction
times. In a similar experiment, Papadopoulos et al. (43) presented
adolescents with Asperger’s disorder (N = 20; mean age 9.6 years),
high-functioning ASD (N = 19; mean age 9.8 years), and TD chil-
dren (N = 18; mean age 9.8 years) with visual stimuli on a tablet;
two small or large yellow circles were positioned on a horizontal
plane from left to right and were separated by a space of 12–25 cm.
The participants were asked to draw a line between the two tar-
gets as fast and accurately as possible. Kinematic analysis showed
that time to complete the movement did not differ between the
three groups; however, the high-functioning ASD group had more
variable end-points when compared to the TD group, suggesting
the lack of a well-formed movement plan following a series of
repetitions. It is interesting that more variable reaction times are
typical of children with Attention Deficit Hyperactivity Disorder
[ADHD; (44)], and given that a substantial proportion of children
with ASD also show signs of ADHD (45), it may be important to
determine the specificity of the finding of high variability to ASD
(i.e., examine children with ASD who do and do not show signs
of ADHD).

When presented with a more complex task, group differences
begin to emerge in relation to planning a movement. Glazebrook
et al. (46) asked the participants with ASD (n = 9; mean age
26.9 years) and their TD peers (n = 9; mean age 25.1 years) to
move their index finger as quickly as possible to an illuminated
circular target after a starting cue. During the trials, the size of
the targets as well as the distance between the targets varied. As
reported with simpler tasks, adults with ASD had more variable
performance than the TD controls, but they also required more
time to prepare and execute their movements, and reached lower
peak acceleration and velocity than TD controls. In a follow-up
experiment, Glazebrook et al. (38) used a more complex exper-
imental set-up consisting of a black box with 10 switches, 2 of
which served as a start position for the index finger of each hand.
Adults with ASD (n = 18; mean age 23.7 years; 17 male) and TD
controls (n = 18; mean age 20.6 years; 12 male) were presented
with a valid precue to indicate either hand required (left/right)

or distance of the target to grasp (near/far). Following illumina-
tion of the target, the ASD participants took longer to respond
and complete the movement, and again were more variable in
responding than the TD controls. When performing the same
task, but receiving an invalid precue, Nazarali et al. (40) found
that adults with ASD (n = 12; mean age 26.2 years; 12 male) take
longer to reprogram and complete their movement (as indicated
by increased reaction and execution times) than their TD peers
(n = 12; mean age 22.8 years; 10 male). The effect was even more
pronounced for invalid “hand” cues than invalid “direction” cues.
These results are of particular importance for planning deficits in
ASD. That is, when presented with an invalid “hand” precue, addi-
tional sequences of movements must be included in the new plan
(i.e., put down left hand, lift right hand, reach to left space), than
if presented with an invalid “direction” cue (i.e., move left hand to
left space instead of right space). It follows therefore that if ASD
is indeed associated with a planning deficit, it would not be sur-
prising that the ASD group would be more affected than their TD
peers. In accordance, the complex tasks presented above require
multi-level processing; seeing a cue, formulating a plan, and ini-
tiating a motor response. As such, it is possible that observed
impairments on such tasks may not be purely related to motor
skills per se, but rather from an incoordination between cognitive
processing and motor output.

Reach and grasp tasks
That individuals with ASD take longer to respond to an invalid cue
may lend further weight to findings from sequential motor tasks,
which indicate that children with ASD may be less responsive to
visual information when planning a sequential task. Using a reach,
grasp, and place paradigm, Fabbri-Destro et al. (47) examined how
children with high-functioning ASD (n = 12; mean age = 10 years)
and sex and age-matched controls execute motor plans by manip-
ulating the size of the container into which a grasped object is to
be placed. While TD participants adjust the temporal character-
istics of the reach and grasp components of the sequence based
on the size of the final placement container, children with ASD
did not alter how the movements were executed. The authors sug-
gested that children with ASD program sequential movements
in independent steps, rather than as a cohesive pattern and do
not utilize the visual feedback of end-point target when planning
their overall movement. Thus, it could be argued that the delayed
response following the presentation of an invalid cue may not
be due to planning deficits per se, but rather an impairment in
registering and responding to visual feedback. Indeed, evidence
from functional imaging of connective networking in the brain
suggests that individuals with ASD have impaired communication
between brain networks, and thus may have trouble coordinating
a movement in response to a visual cue (48).

Hughes (17) examined motor planning in children with ASD
by employing a reach-to-grasp task that encouraged a particular
hand posture. Hughes also included a group of children with DD
as a comparison group to help identify ASD-specific impairments
to planning ability. Children with ASD (n = 36; 12–14 years), DD
(n = 24; 10–12 years), and TD (n = 28; 3–5 years) were asked to
pick up a rod that had one end painted black and the other end
painted white and place one of the colored ends into one of two
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disks so that the rod stood upright. By varying the starting position
of the bar, it is possible to encourage the participants to produce
an overhand or underhand grip, leading to either comfortable or
awkward final posture depending on their planning abilities (see
Figure 2). The criterion for a correct response, and thus appro-
priate motor planning, was an appropriate hand action on the
underhand trials, in which the person begins with an uncom-
fortable grasp to end with a comfortable grasp. There were no
group differences on the overhand trials, which required no spe-
cial planning (grasp horizontal bar and supinate wrist to place
end closest to pinky finger into ring). For the underhand (uncom-
fortable) condition, however, the ASD group made fewer correct
initial postures than the DD group, and both groups together per-
formed more poorly than the TD group. Hughes (17) suggested
that performance of the ASD group resulted from a fundamen-
tal deficit in motor planning leading to inability to plan a series
of movements that would result in a comfortable end-grasp pos-
ture. However, a similar experiment using an end-state comfort
task by van Swieten et al. (49) failed to detect motor planning
differences between ASD and TD groups. Children with ASD
(n = 20; age range 9–14 years), developmental coordination disor-
der (DCD; n = 11; age range 9–13 years), and TD peers (n = 44; age
range 9–14 years) were presented with a wooden dowel attached
to a rotating platform. One end of the dowel was painted red
and the participants were told to place their thumb on the red
end of the dowel as the start position, and rotate their wrist to
move the dowel 180° to the end position. The children had to
choose between performing either the minimum amount of rota-
tion or end-state comfort (on 50% of the trials, these coincided).
Interestingly, the ASD and TD groups performed similarly on the
task, choosing end-state comfort on approximately 75% of trials;
however, both groups differed from the DCD group, who more
often chose minimal rotation over end-state comfort (approxi-
mately 60% of trials). The discrepancy between the findings from
Hughes (17) and van Swieten et al. (49) may be due to the com-
plexity of the plan required to complete the tasks. The Hughes
(17) task parameters required the processing of three sequential
aspects of the reaching motion; that is, participants needed to
choose between an overhand and underhand grasp, lift the object,
and either supinate or pronate their wrist to place the object in a
hole. In contrast, the task of van Swieten et al. (49) only required
the child to process one aspect of the motion (either supinate
or rotate their wrist), begging the question of whether the motor
impairments seen on the Hughes (17) task may be due to problems
processing multiple pieces of information to formulate a succinct
motor plan.

To summarize, analysis of motor planning in ASD has sug-
gested increased variability in movement onset and offset (42, 43),
increased reaction time to valid cueing (38, 39), delays in reiniti-
ating and completing a movement following invalid cueing (38,
40), and impairments when planning a comfortable end-grasp
posture, depending on the complexity of the plan required (17,
49). When taken together, the results of motor planning literature
suggest that individuals with ASD have trouble in formulating a
motor plan when asked to process multiple pieces of informa-
tion (i.e., complex task), which may be cognitively taxing and thus
interferes with motor output.

FIGURE 2 | Experimental design of the underhand grasps used in
Hughes (17). (A) The rod and ring set-up; (B) example of a comfortable
end-state underhand grasp; (C) example of an uncomfortable end-state
underhand grasp. Note that the rod is positioned the same for each trial,
only the color of the end of the rod to be placed in the ring differs between
trials [adapted from Ref. (17)].

MOTOR EXECUTION
Analyses of motor execution (that is, acts of carrying out planned
movements) provide the opportunity to understand the neuro-
logical underpinnings of cognitive processing that precede such
movements. Commands from the motor cortex are sent to the
corresponding nerves and muscles to carry out the motor act. For
example, after planning to grasp a block with the right hand, a
person must then specify the particular muscle contractions to
move the limb in the correct direction and shape the digits appro-
priately for grasping. Due to the reciprocal interactions between
motor cortex, sensory input, and motor output, there are ample
opportunities for errors to occur when executing a motor plan.
Here, we review motor execution in children with ASD.

Grasping tasks
Using a grasp and place task, Forti et al. (50) found that the
movement duration of participants with ASD is nearly twice as
long as those of controls. Participants with ASD (n = 12; mean
age 3.5 years; nine males) and age and sex-matched TD controls
were instructed to transport a rubber ball from a start loca-
tion and drop it into a hole, located 30 cm away, while wearing
kinematic markers (markers placed on the body that allow the
online/offline tracking of body segments). In addition to taking
longer to complete the movement, children with ASD had higher
velocities at movement terminus. Although the ASD group was
able to accurately transport the ball and drop it into the hole,
every member of the ASD group made corrections at least once
after entering the area of the hole, whereas fewer than half the
TD controls made corrections. Interestingly, there were no dif-
ferences observed for the initial movement phases, which should
reflect motor planning processes. In a related study, Stoit et al.
(51) examined feed-forward motor control in children with ASD
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(n = 31; mean age 11.6 years) and TD children (n = 29; mean
age 10.5 years) using a precision versus power grasp task. Feed-
forward movements rely on internal models for accuracy and do
not require the online use of sensory feedback evolving during the
action (52). Participants were seated behind a table and presented
with two cylinders, a small cylinder affording precision grasp-
ing and a large cylinder affording power grasping. For each trial,
participants received a cue, administered by a human hand, to
indicate the location (left/right) or grip-type (precision/power)
of the target to be grasped (see Figure 3). As in the previous
study, movement times were significantly longer in the ASD group,
although there were no differences in initiation errors or time
to respond following start cue between the two groups. Using
a similar reach-to-grasp task, Mari et al. (18) report that reach-
ing and grasping kinematics are largely uncoupled and executed
in a successive non-overlapping manner in children with ASD.
Children with ASD and their TD peers (n = 20 per group; 7–
13 years) grasped wooden blocks of varying sizes and distances
and specific kinematic measures were recorded, including time
to reach peak velocity, deceleration time, as well as the coordi-
nation of the reach and grasp components. Because the reach
component is controlled by the proximal musculature of the
shoulder and elbow and the grasp component is controlled by
distal musculature of the forearm and hand, it is possible that the
ASD group might show an impairment of coordination. Over-
all, the children with ASD performed the movement quite well,
and did not differ from their TD peers. Exploring the results fur-
ther, the performance of the ASD group was contrasted by IQ.
An identified “lower functioning” group (IQ range 70–79) showed
evidence of desynchronization between the reach and grasp com-
ponents, whereas the identified “higher functioning” group (IQ
range 80–109) demonstrated a closely integrated and overlapping
movement. These results highlight the importance of including IQ
and/or developmental matched controls to determine specificity
of findings to ASD.

The results of Cattaneo et al. (53) also support the incoordi-
nation of motor components of a reaching-to-grasp movement in
ASD. Electromyography (EMG) recorded muscle activity related
to mouth opening during an eating task in children with ASD and

FIGURE 3 | Example of the cueing used by Stoit et al. (51). (A) Pointing
cue to indicate cylinder to be grasped (left or right); (B) hand shape cue to
indicate cylinder to be grasped (precision or power).

age-matched TD controls (n = 8; mean age = 6.5 years for both
groups) showed that EMG activity started before the hand even
grasped the object for the TD group. In contrast, EMG activity
in the children with ASD started much later, when the hand was
bringing the food to the mouth. A recent report by Pascolo and
Cattarinussi (54) critically evaluated the results of Cattaneo et al.
(53) and failed to replicate their finding of impaired synchro-
nization between grasping and eating. Pascolo et al. employed
the same methodology as Cattaneo et al. but applied increased
control over the experimental set-up. For example, the supple-
mentary information that accompanied the original article by
Cattaneo et al. acknowledged that the distance between the child
and the food varied across trials and there were extra person-
nel in the room when the experiment was conducted (which
could be distracting). To examine the effect of these limitations
on mouth activation, Pascolo et al. varied the distance of tar-
get (near, far, and comfortable distance) and had the children
reach for food in a quiet room without extra personnel. Pas-
colo et al. (54) did not find any differences between the per-
formance of the ASD group (n = 7; mean age = 7.3 years) and
their TD peers (n = 12; mean age = 7.7 years), as both groups
opened their mouth after the food had been grasped. Interest-
ingly, when looking at the effect of distance on mouth opening,
Pascolo et al. found that the further the target was away from the
body, the later the onset of mouth opening. The lack of repli-
cation between Cattaneo et al. and Pascolo et al. likely relates
to differences in experimental methodology employed. Pascolo
et al. carefully controlled for two extraneous influences on the
performance of children with and without ASD, by having them
repeat the same movement numerous times in a quiet setting.
Cattaneo et al. had children with and without ASD perform a
grasping and eating movement in a more naturalistic setting, with
variance in food location and extraneous persons present. The
difference in set-up between these two experiments emphasizes
the importance of task boundaries when considering experimen-
tal results. When presented with a quiet environment in which
one movement is repeated, ASD children perform similarly to
TD children. When they are presented with a more naturalistic
environment, in which variance occurs between trials, and extra-
neous personnel are present, the cognitive system of children with
ASD becomes taxed, resulting in impaired motor performance.
This is in accordance with results from motor planning, which
suggest that motor performance of individuals with ASD simi-
larly become impaired when asked to process multiple pieces of
information (17, 38, 47).

MOTOR CORRECTION
The analysis of motor corrections can provide information on an
individuals’ ability to understand and respond to ongoing stim-
uli in the environment. Ongoing adjustment during movement
execution is termed online control. The internal representation
of the movement is compared to the executed movement, and
adjustments to the movement are made based on visual and
proprioceptive feedback (55). For example, when lifting a block
to build a tower, somatosensory feedback guides the application
of differential force to blocks made of foam versus those made
of wood.
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Load-lifting tasks
In a unique experiment, Schmitz et al. (25) investigated motor
adjustment during a bimanual load-lifting task in children with
ASD (n = 8; mean age 7.9 years, six males) and their TD peers
(n = 16; mean age 6.0 years; seven males). Participants wore a
bracelet on their right hand equipped with a strain gage that
supported a platform on which a load could be placed. Motor
adjustment was measured from the angular displacement of the
forearm along the elbow joint, and activity of bicep and tricep
muscles were recorded using surface electrodes. The response of
the arm was measured when the load was removed by the experi-
menter or by the participants’ left hand. The results indicated that
the maximal angular amplitude of the elbow did not differ between
ASD and TD children in either the experimenter- or self-unload
conditions, although the latency for bicep inhibition took longer
in the ASD group. The delay in bicep response of the ASD group
suggests a lack of anticipation of the unloading force, and as such,
they respond only after receiving sensory feedback that the load
had been lifted from the platform.

A recent experiment by David et al. (24) examining motor
adjustment included a comparison group of children diagnosed
with DD to help distinguish between impairments due to general
delay versus those that were ASD specific. Grip and load force
were measured in children with ASD, DD, and TD peers (n = 21
per group; 2–6 years) during a grasp and place task. Grip force
was measured from the digits on the grasping hand and load force
was measured from the proximal musculature of the reaching arm
and shoulder. Within the TD group, age was inversely related to
grip-to-load force onset latency and time to peak grip force; how-
ever, there were no similar age-related decreases between grip and
load force for either the ASD or DD groups, suggesting that the
impairments to motor adjustment on this task reflect a matura-
tional delay, rather than an ASD-specific delay. In an earlier report,
David et al. (56) examined grip and load force adjustments in a
group of older, high-functioning children with ASD (n = 13; mean
age 11.2 years). The adolescents were instructed to lift a target
from a start position on load cell and place it on a target platform,
approximately 6′′ away. On this task, the ASD group had longer
grip-to-load force onset latencies, greater grip force at movement
onset, and more variable performance than TD controls. However,
peak grip force and time to peak grip force did not differ between
the ASD and TD groups. The children with ASD consistently did
not respond until the load was removed, suggesting they were
unable to use ongoing experience to anticipate upcoming unload
force.

Adaptation tasks
Motor adaptation is the modification of a voluntary movement
based on error feedback between repeated trials (57). To be consid-
ered “adaptation,” the movement must change in respect to one or
more parameters (e.g., force or direction), the change must occur
gradually (i.e., over minutes to hours), and once these changes have
occurred, the person must show “after-effects” and “de-adapt” the
movement in a similar manner to return back to the original state
(58). To understand the role of visual and proprioceptive feedback
in motor adaptation in children with ASD, Masterton and Bieder-
man (59) trained children with ASD (n = 11; mean age 10.4 years)

and intellectual disability (ID; n = 11; mean age 11.6 years), as
well as younger (n = 11; mean age 9.1 years) and older TD chil-
dren (n = 11; mean age 14.1 years) to place a wooden block onto
a target while viewing the target apparatus through a prism lens
that displaced vision of their environment. Overall, the ASD and
ID groups took longer to adjust their movements under the adap-
tation task, requiring almost double the amount of time to adapt
to reaching with the prism glasses than both TD groups. Inter-
estingly, transfer of motor adaptation of the reaching hand to the
non-adapted (non-reaching) hand was found only for the ASD
group. The authors suggest that the transfer of adaptation to the
non-reaching hand is a clear indication that ASD children rely
on proprioceptive, rather than visual information to complete the
target-reaching task. It is possible that difficulty with processing
sequential visual information may account for the ASD partici-
pants’ motor execution impairments and consequent reliance on
proprioceptive input.

Other experiments examining motor adaptation have not
reported differences in adaptation rates between ASD and TD
groups. Gidley Larson et al. (60) had high-functioning ASD
(n = 20; mean age 10.9 years; 17 males) and TD (n = 16; mean
age 10.8 years; 11 males) participants complete a ball-throwing
task at baseline without prisms (pre-adaptation), while wear-
ing prism goggles (adaptation), and again without prism glasses
(post-adaptation). In contrast to the findings of Masterton and
Biederman (59), the ASD and TD groups showed similar adapta-
tion rates and adaptation effects on movement performance. With
a sub-set of the same participants, Gidley Larson et al. (60) fur-
ther explored adaption in ASD by asking participants to grasp the
handle of a robot tool to move a cursor onto a target, which was
presented on a screen. The view of the hand controlling the robot
tool was blocked throughout the task. On some of the trials, a
perturbation (force or visual) was given to assess for participants
ability to plan alternate strategies. All children exhibited clear indi-
cations of adaptation and reached similar rates of adaptation to
the force and visual perturbations, with no significant group dif-
ferences on any of the measures. The discrepancy in findings may
result from the simpler adaptation tasks in Gidley Larson et al. (60)
(i.e., throwing a ball and moving a robot tool), compared to those
of Masterton and Biederman (59), which required the grasping
and placement of small blocks, a more cognitively taxing task.

Motor knowledge
The ability to calibrate our body to perform motor actions is
referred to as affordance perceptions. When shaping our digits
to grasp, we use a smaller aperture for a block to be obtained with
a pincer grasp and a larger aperture for a block to be obtained
with a power grasp when building our tower. Affordance percep-
tion contributes to successful performance of many motor and
non-verbal social capabilities. For example, when participating
in team sports, such as badminton, one needs to be able to cal-
ibrate his/her body to hit the shuttlecock lightly, compared to
tennis, in which the ball needs to be hit with more force. Being
able to adjust one’s body allows for successful motor performance
on both tasks. Linkenauger et al. (61) determined that adolescents
with ASD poorly estimate their motor affordances when presented
with a perceptual-motor integration task. Youth (n = 12; mean
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age 11.1 years; all male) and adults with ASD (n = 8; mean age
22.4 years; all male), and age- and sex-matched TD controls were
asked to estimate the maximum extension of their reaching arm
(i.e., how far they could reach), as well as maximum digit aper-
ture (i.e., the largest foam block their digits were able to grasp).
Following their estimates, participants completed a reach distance
task and grasping task to determine their maximal actual values.
The ASD groups made drastically larger errors (17–20% for youth;
14–26% for adults) than the TD groups (3–5% for youth; 5–7%
for adults), suggesting they overestimated their motor affordance.
These findings raise the possibility that motor deficits in ASD
could originate in the inability to use the motor system to deter-
mine action capabilities and utilize prior knowledge of our own
capabilities to aid in planning and executing the task at hand.

To examine the relationship between action understanding and
ASD, Cossu et al. (62) presented high-functioning ASD children
(n = 15; mean age 8.1 years; 13 males) and two TD samples, one
matched for chronological age (mean age was 8.7 years) and a sec-
ond, for younger chronological age (mean age 4.9 years), with three
tasks. The children watched a video clip and were asked to imitate
actions (conventional or non-conventional actions on objects),
produce pantomimes of actions (e.g., shown a tool and required
to pantomime the correct action of the tool), or understand a pan-
tomimed action (e.g., watch an actor mime an action without an
object and point to the object “used” in the pantomimed action).
The authors found that the children with ASD were significantly
worse at imitating conventional actions on objects, imitating fin-
ger posturing, and imitating oral–facial gestures than both the
younger and age-matched controls. The children with ASD per-
formed similarly to the younger control group when identifying
tools used in pantomimed actions, but both groups performed
worse than the older TD group. The simultaneous impairment of
action imitation, production, and comprehension of pantomime
action suggests that the process of constructing an action motor
representation is impaired in children with ASD. Critically how-
ever, is that language ability was not controlled for in these studies.
It has been reported that the ability to imitate familiar gestures
(such as conventional actions on objects) is correlated with lan-
guage comprehension (63). Without controlling for language abil-
ity, one cannot rule out that the lack of imitation may be the result
of reduced comprehension of the task requirements (64).

In summary, individuals with ASD appear to be impaired in
both the online [i.e., use of ongoing sensory feedback; (25)] and
offline control of movement [i.e., using memory from previous
trials; (24, 56)], as well as in estimating their motor abilities (61).
That is, they are unable to use both ongoing visual feedback, as
well as information from a previous movement, to plan subsequent
movements more effectively [also noted by Khan et al. (65)]. These
impairments may result from deficits in the visual control of move-
ment in ASD, resulting in an increased reliance on proprioceptive
feedback to complete movements [as supported by adaptation
transferring to the non-adapted hand for ASD only; (59)].

DISCUSSION
There is now robust evidence from early motor development,
motor planning and execution, as well as motor correction that
movement is impaired in ASD. Very young children display

abnormal play with toys (e.g., spinning, flicking), less toy play, and
atypically visually explore objects (29, 30). As they get older, chil-
dren with ASD show impairments in motor planning, including
delays in movement initiation and impairments when planning
complex sequences of movements resulting in a comfortable end-
grasp posture (17, 38, 42, 43), and impairments in motor execu-
tion, such as increased movement duration, end-point corrections
at movement terminus, and desynchronization between compo-
nents of a reaching movement (38–40, 50, 53). Impairments to
online and offline corrections are also evident, as they are unable
to use both ongoing visual feedback, as well as information from
a previous movement to plan subsequent movements more effec-
tively (24, 25, 56). One might postulate that abnormal toy play,
including abnormal sensory control, in very young infants could
interfere with subsequent opportunities for motor learning and
may also impact social communication. For example, if a child has
trouble in grasping an object, and continues to stare at it as he
or she spins the object in his or her hands [as per Ref. (29)], the
child in turn may spend less time showing the object to a parent
or friend and engaging in other joint attention behaviors.

Are motor impairments and cognitive outcomes in ASD
related? Findings linking motor ability to outcomes in individ-
uals with ASD have been replicated numerously in the literature
(66–68). For example, the transition to independent sitting is asso-
ciated with greater variations in babbling (69), motor delays at
18 months of age are highly predictive of a diagnosis of ASD at
3 years of age in HR toddlers (70), and better motor performance
in newly diagnosed 2-year-olds with ASD is associated with better
future outcomes at 4 years of age (71). Although delays in motor
and communication development may represent co-existing but
relatively independent aspects of the ASD phenotype, there may
be consequences of motor delays that impact on opportunities
for developing and practicing social-communication skills. For
example, if a child is delayed in sitting, and spends most of his
or her time on the tummy, then he or she would have less time
with the hands free to engage in reaching and grasping for objects,
showing objects, and requesting objects than an infant who has
matured to a sitting position. As such, the onset of these “social”
behaviors may also be delayed. This is consistent with the findings
of Libertus and Needham (72), who found that TD infants who
engage in active, self-produced reaching movements also engage
in spontaneous orienting to faces, whereas infants who engage
in passive toy play (watching others play with objects) showed
less spontaneous orienting to faces. Clearly, there are other fac-
tors that influence social-communication development, as well as
examples of neurological conditions associated with severe motor
impairments yet relatively preserved social skills [e.g., early onset
neuromuscular disorders; (73)]. However, there is evidence that
motor- and social-communication skills are correlated in ASD,
both in the school age years (74) and in infancy (31). More-
over, gross and fine motor delays may be among the earliest
identifiable signs distinguishing infants with ASD from their TD
peers (75–77).

Impairment in object manipulation may also impact how oth-
ers’ actions are understood (51, 78–81). Evidence for this comes
from findings that, during action observation, mu rhythm desyn-
chronization is less evident in ASD. Mu rhythm is a pattern of
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electrical activity that comes from the area of the brain that con-
trols voluntary movement (primary motor cortex) when at rest.
When large number of neurons synchronize in preparation for a
movement, or when viewing an actor making a movement, the
mu rhythm is described as “desynchronized” (82). Bernier et al.
(83) found reduced mu rhythm desynchronization during move-
ment observation in ASD, and reduced desynchronization was
associated with poorer imitation skills. Similarly, Oberman et al.
(84) report that, although individuals with ASD exhibit desyn-
chronization of mu rhythm during voluntary movements, mu
desynchronization is absent when observing an actor perform the
same movement. Interestingly, the degree of mu desynchroniza-
tion in ASD is sensitive to level of familiarity,only responding when
individuals can identify with the stimuli in a personal way (85). The
lack of a mu desynchronization response when observing an actor
may result from an impaired mirror neuron mechanism (MNM)
in ASD (62). Mirror neurons are involved in imitation of simple
movements (86), learning of complex skills (87), in the perception
of communicative actions (88), and in the detection of basic action
intentions (89). Parietal mirror neurons code the goal of both an
executed and observed motor act, such as grasping an object, and
also code the overall intention of the action, whether the actor
intends to bring the grasped object to the mouth or place it in a
container (90–93). Deficits in the MNM have been reported during
movement execution and observation for children with ASD [Ref.
(94, 95); see review by Rizzolatti and Fabbri-Destro(96)]. As men-
tioned previously, Cattaneo et al. (53) employed EMG to record
muscle activity related to mouth opening during an eating task in
ASD. When observing an actor pick up a food item and transport it
to the mouth, EMG increases in mouth muscles were found for the
TD controls, but not for the ASD group. These results suggest that
children with ASD have impaired mu desynchronization that may
translate to a dysfunctional MNM. Such impairments may impact
motor learning and action understanding, which may ultimately
lead to misinterpretation of others’ actions.

Although mirror neurons play an important role in action exe-
cution and observation (97, 98), they are unlikely to fully account
for the myriad of motor impairments displayed by individuals
with ASD. Pathological studies consistently report abnormalities
in brain regions known to mediate motor function, including the
cerebellum and subcortical white matter (99–106). The cerebellum
is one of the key structures required to form accurate internal mod-
els of motor acts, making reciprocal connections with motor areas
of the cortex to carry out planned corrections during movement
execution (107, 108). As such, it is likely that cerebellar abnormal-
ities play a role in movement correction impairments seen in ASD,
as well as impairments to eye movements [such as prolonged star-
ing; for a recent review of the role of the cerebellum in ASD, see
Ref. (109)]. In addition, abnormal connectivity between adjacent
primary sensory and motor areas has been reported in ASD (48,
51), and may account for impairments seen during the online con-
trol of movement (110). Moreover, reduced connectivity between
more distal areas of the motor system, such as between visual and
motor regions sub-serving action, may be responsible for impair-
ments in motor planning and motor execution in individuals with
ASD (48, 51).

How do motor impairments relate to social impairments? Typ-
ically, a child has a full repertoire of movement that he or she can
use to engage in social interactions. With respect to the current
review, the ability to properly manipulate objects is important for
activities of daily living (such as brushing teeth), engaging in solo
play activities (such as assembling a puzzle), and participating in
team sports (such as baseball). Yet, many children with ASD have
impaired motor behavior, detectable as early as 3 months of age
(31). Being able to participate in peer play would require a child to
respond in a timely manner (catch a ball before it hits you or the
ground), perform skilled motor tasks (hitting a ball with a base-
ball bat), engage in eye contact (to understand and show action
intention), and respond to social cues (understanding when it is
appropriate to steal a base). Many of these behaviors are those that
are impaired by ASD. Not surprisingly, Leary and Hill (20) propose
that motor ability might have a significant impact on the core char-
acteristics of ASD. The idea is, when a person is unable to respond
to another’s action in a timely fashion, he/she will miss the positive
reinforcement associated with interpersonal interactions. A child’s
experiences throughout development may be drastically altered
if, at an early age, he/she is unable to remain involved in social
interaction, and as a result, may withdrawal from social activities
[reported in Ref. (20)]. This “motor cognition” perspective does
not imply that social impairments are a direct result of motor
impairments, but rather that impaired movements may interfere
with opportunities for positive social experiences and thus, social
learning. Conversely, reduced social interaction opportunities may
also contribute to poor action understanding. Thus, the relation-
ship between social and motor competencies/impairments may
be reciprocal in ASD, a hypothesis that remains to be explored in
future longitudinal research.

There are common methodological limitations present in the
literature reviewed here. First, many of the articles have relatively
small sample sizes; Adams (36) sample consisted of only 4 children
with ASD, Glazebrook et al. (46) recruited only 9 children with
ASD, and sample sizes of individuals with ASD in the other studies
ranged from as few as 8 (53) to as many as 36 (17). With the small
sample sizes in several of the studies, there is a risk of participa-
tion bias in oversampling individuals with ASD who present with
motor difficulties. Second, there is quite an age range in several
of the experiments. The developmental course of motor develop-
ment in individuals with ASD is not well understood, particularly
when considering the timespan from toddlerhood to adulthood.
Because of this, it is difficult to compare the results from one age
group (i.e., young childhood) to another (i.e., adulthood). Third,
there is a general lack in appropriate controls. When determining
the ASD-specific deficits in movement, many studies report the
use of TD control only. However, the results of Hughes (17) and
David et al. (24) highlight the importance of including a control for
intellectual or developmental level. Similarly, the results of Mari
et al. (18) demonstrate the importance of stratifying intelligence
when interpreting experimental results. Fourth, importantly, the
severity of ASD symptomology varies across the studies reviewed
here, and as such, the comparability of study conclusions might
be constrained by the methodological limitations present in the
literature.
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Overall, there has been much research examining the relation-
ship between social communication and motor behavior in ASD.
To fully engage in social interaction, a child has a full movement
repertoire of functional actions for use in communication and for
understanding the communicative nature of others’ movements
(111). A shift in focus to this “motor cognition” perspective sug-
gests that interventions for children with ASD should include
both a motor and a social component, as there is ample evi-
dence that impairments in cognitive function are associated with
impairments in movement (70, 76, 112–115). Many activities that
promote social skills, such as cooperative board games or card
play that involve turn taking, require the use of fine motor skills
(e.g., grasping small game pieces, shuffling cards). As such, incor-
porating motor training into intervention programs could boost
confidence in action capabilities and promote socialization and
communication.
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Despite the great need of interventions to maintain and improve motor functions in chil-
dren with diplegic cerebral palsy (DCP), scientific evaluations of existing training methods
are rare.This study aimed to explore individual effects of synchronized metronome training
(SMT) on motor timing, spatio-temporal movement organization, and subjective experi-
ences of changes in upper-limb functions in three children with DCP. All children participated
in an individualized 4-week/12 session SMT training regime. Measurements before training
(Pre), after training (Post1), and at 6 months post completed training (Post2) were made by
the applied SMT training equipment, optoelectronic registrations of goal-directed upper-
limb movements, and a questionnaire assessing subjective experiences of changes in
upper-limb functions and usability. In general, the training regime was shown to have
little effect on motor timing. However, some positive changes in spatio-temporal move-
ment organization were found. Two children also reported substantial long-lasting positive
changes in subjective experiences of hand/arm functionality in terms of increased move-
ment control and reduced muscle tone. For these children, parallel kinematic findings also
indicated smoother and faster movement trajectories that remained at Post2. Although
highly individualized, the shown improvements in upper-limb kinematics and subjective
experiences of improved functionality of the hands/arms for two of the cases warrant
further explorations of SMT outcomes in children with DCP.

Keywords: diplegic cerebral palsy, intervention, synchronized metronome training, motor control, kinematic, motor
coordination, children

INTRODUCTION
The characterization of cerebral palsy (CP) has moved from
mainly describing deficits in motor functioning to implicating
multiple modalities including sensory, perceptual, and motor
problems (1). In addition, therapeutic approaches to CP are begin-
ning to move from an exclusive focus of limiting lower-level
motor constraint to also addressing improvements of higher-level
derived deficits such as problems with motor planning ability (2,
3). Accordingly, increased attention is being directed toward train-
ing methods that encompass improvements in action planning and
connections between multiple modalities in children with CP, for
example, timing and rhythmicity training or motion interactive
games (4, 5).

Assuming that motor performance is mediated by an internal
timing mechanism (6, 7), enhanced motor timing is expected to
positively affect the performance and planning of motor actions.
In line with this notion, repetitive and rhythmic movements have
been shown to improve arm paresis following a stroke (8) and
induce reorganization of motor networks within the central ner-
vous system (9). Further, interventions based on rhythm percep-
tion and production and/or timing and rhythmicity training, such
as rhythmic auditory stimulation (RAS), music intonation therapy
(MIT), and the Interactive Metronome® (IM), have been reported

to improve motor functions in a variety of clinical populations and
functions [e.g., Ref. (10–13)]. For example, RAS has been found to
re-establish healthy gait dynamics in patients with Parkinson’s dis-
ease (14). Of particular relevance to the present study, two recent
case studies involving chronic stroke patients (15) and children
with hemiplegic CP (HCP) (5) observed positive effects of timing
and rhythmicity training in terms of reduced arm impairment,
increased functional ability, and better organized goal-directed
upper-body movements. Taken together, these reports suggest
that timing and rhythmicity training may contribute to increased
brain communication, efficiency, and synchrony between brain
regions related to motor functions, which leads to improved motor
functions and better coordination of movements (16).

The IM is a synchronized metronome training (SMT) device
thought to improve the execution of motor programs (17). To
this end, the IM apparatus employs a metronome beat to set a
rhythm that the participant uses to time motor tasks. A comput-
erized guidance system provides auditory and/or visual feedback
to the participant to illustrate the accuracy of synchronization
between his/her motor performance and the cueing beat. IM train-
ing involves reducing the mean negative synchronization error
during normal tracking of a regularly occurring auditory tone
metronome beat. Thus, the IM method is targeted at practicing
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motor planning and timing for enhanced temporal synchroniza-
tion of movements. As such, the method appears favorable as an
intervention for children with CP.

Although the IM and other training regimes seem theoretically
promising, there are few studies to date that have used sensitive
measurements to evaluate the potential effects of these training
methods on performance and/or possible transfer effects to differ-
ent functions. In this effort, kinematic analysis has been shown to
be a promising tool (4) and has been used previously to identify
positive short- and long-term effects of IM training in children
with relatively mild HCP (5). The aim of the present study was to
continue the latter exploration in three children with diplegic CP
(DCP), at a more severe level of disability, to investigate whether
a similar pattern regarding improved timing ability and poten-
tial long-term retention of effects in spatio-temporal movement
organization could be observed in these cases following 4 weeks of
IM training. Further, a questionnaire aimed at detecting subjec-
tive experiences of possible changes in the arms and hands with
regard to muscle tone and functionality in daily living activities
was administered.

MATERIALS AND METHODS
PARTICIPANTS
Participants included three children with DCP recruited locally
through registration records at Kolbäcken Child Rehabilitation
Centre in Umeå, Sweden (Table 1). Two participants (case II
and III) received upper-limb botulinum toxin treatment but not
in close occurrence to their respective individual training and
testing period. One participant (case III) received post-surgery
(lower limb) physical therapy training in parallel with participa-
tion. Informed parental and child consent was obtained, the study
was approved by the Umeå Regional Ethical Board and conducted
in accordance with the Declaration of Helsinki. In addition, kine-
matic data from one typically developing (TD) child (girl, 12 years)
performing the goal-directed task at one measurement session
were collected in order to provide the readers with an example of
the task performance differences between DCP and TD shown in
Figure 2.

APPARATUS AND PROCEDURE
A detailed description of the study design and methods can
be found elsewhere (5). All participants underwent 4 weeks of

Table 1 | Participant demographics, hand and gross motor function,

and comorbidities.

Case Age (years) Sex MACS GMFCS Other diagnoses

I 12 F II III ID, autism, epilepsy,

visual deficit

II 16 M IV IV ID, dysarthrosis,

strabismus, visual deficit

III 13 M III IV ID, CVI, partial epilepsy,

strabismus, asthma,

scoliosis

MACS, manual ability classification system; GMFCS, gross motor function

classification system; ID, intellectual disability; CVI, cortical visual impairment.

individually adjusted IM training (12 sessions, ~30 min/session),
supervised by a trained IM instructor (case I–II: AMJ, case III:
assisting physical therapist). Due to the immobility of the legs
of the participants, training only involved bilateral and unilateral
rhythmic movements of the upper-limbs, with instant auditory
feedback (guide sounds) of timing synchronization. Two baseline
assessments (2 min clapping to a pre-set beat of 54 bpm with or
without guide sounds) were executed at the start of each session
and at Pre, Post1 (1 week), and Post2 (6 months). These assess-
ments were used as a measure of individual changes in self-paced
and auditory guided timing [deviation in milliseconds (ms) to
the auditory signal] and rhythmic performance (variability of
motor responses). Variability was measured as the mean devia-
tion from an exact synchronization (regardless of the clap being
late or early). Only registered sensor presses (i.e., successful claps)
were used in the variability measure. Case II had nearly com-
plete paresis of the right arm/hand, thus, training and baseline
assessments were tailored to activate primarily the more func-
tional left side. In addition, case II exhibited severe hypersensi-
tivity toward the auditory presented guide sounds, resulting in
spasticity and inability to perform the timing training. Conse-
quently, guide sounds were not introduced until the later stages of
the training when case II showed greater audio tolerance. Due
to the varying abilities of the children they successfully com-
pleted different numbers of repetitions within their individualized
IM training. In total, case I completed 13 011, case II 7 746,
and case III 6 692 repetitions within their 12 sessions of IM
training.

Three-dimensional (3D) kinematic recordings (six-camera,
ProReflex, Qualisys Inc., Gothenburg, Sweden) of goal-directed
upper-limb movements (pressing three light-switch buttons in a
sequential order with a clenched fist) were made before (Pre) and
at two occasions after the 4-week training period; Post1 ~1 week
after concluded training and Post2 at 6 months after concluded
training. For case I, markers were fixated with skin-friendly adhe-
sive tape to the left and right shoulders (diameter: 29 mm), elbows
(diameter: 19 mm), and wrists (diameter: 12 mm). For case II
and III, markers were only attached to the preferred side (shoul-
der, elbow, wrist) and non-active shoulder (see Figures 1A,B, for
the experiment condition, full marker set-up, and a matching 3D
recording).

The data were sampled at a frequency of 120 Hz/s and the
pre-set recording time was individually adjusted based on indi-
vidual pre-practice and instruction trials that, if possible, were
made with both hands. In the unimanual condition, the test par-
adigm involved performance with either the non-preferred (more
affected) or preferred arm–hand (less affected) and with both
arms–hands simultaneously in the bimanual condition, corre-
sponding to a total of 36 trials. The participants were instructed
to press the light-switch buttons in a sequential order starting
on an auditory computer-generated signal. The sequential order
was determined by a contra-balanced block design, where the
children started from a specific point and pressed the three light-
switch buttons starting from the bottom (and moving to the
top, “extension”), top (and moving to the bottom, “flexion”), side
(and moving inward, “adduction”), or center (and moving out-
ward, “abduction”) with either the right, left, or both hands (see
Figure 1A). Due to a severely affected non-preferred side, case II

www.frontiersin.org March 2014 | Volume 5 | Article 38 | 53

http://www.frontiersin.org
http://www.frontiersin.org/Movement_Disorders/archive


Johansson et al. Timing training in children with DCP

FIGURE 1 | Photo illustrating the experiment condition and the marker
set-up (A), and an example of 3D movement registration (displacement
of the corresponding markers) during (bimanual) light-switch task
performance (pressing three light-switch buttons in a sequential,

side-to-center order) (B). Starting positions of the hands are denoted by the
small white circles at the lower end of the table in 1A and the white arrows
denote the four directions studied (bottom–top, top–bottom, side–center,
center–side).

and III only performed the task with the less affected side during
testing (12 trials each in total) using the thumb (case II) or index
finger (case III) as they were unable to form a clenched fist. The
onset and offset of each trial were identified from the 3D move-
ment trajectories (X, Y, and Z plane) and the tangential velocity of
the wrist marker (see Figures 2A,B). On- and off-set were further
verified by 2D video recordings that were synchronized with the
optoelectronic recording system. The onset of the movement was

determined as the frame when the wrist marker had a velocity of
20 mm/s and increased during the following five frames. The off-
set was defined as the frame when the wrist marker had a velocity
of 100 mm/s and increased after the last successful light-switch
button press.

Subjective experiences of IM training effects on upper-limb
function with regard to muscle tone and functional ability in
daily living were collected by means of a questionnaire before
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FIGURE 2 | Examples of 3D movement displacement during
unimanual light-switch task performance (starting from resting
and sequentially moving to the top button, the middle button,
and the bottom button) with corresponding velocity profiles from
the wrist marker for Case III at the Pre (A1,B1) and Post1 (A2,B2)

occasion, and for a 12-year-old, typically developing (TD)
comparison child (A3,B3). The small circles in the velocity profiles
denote the start/stop of a movement unit (MU) corresponding to 31
MUs/10 s duration in B1, 16 MUs/6.4 s duration in B2, and 4 MUs/1.3 s
duration in B3.

training commenced; directly after, and at 3 and 6 months after
completed training. Participants were asked to judge changes as;
(1) substantially positive, (2) somewhat positive, (3) unchanged,
(4) somewhat negative, or (5) substantially negative, with possibil-
ity to give open-ended descriptions and examples of any changes
in experience.

KINEMATIC DATA ANALYSIS
Prior to analyses, the kinematic data were smoothed using a sec-
ond order 12 Hz Butterworth filter. Extracted parameters from

the markers were the cumulative (3D) distance (accumulated
movement distance) and the number of movement units (MUs,
segmentation of movement trajectories) by use of customized
MATLAB (The Mathworks Inc., Boston, MA, USA) scripts. A MU
was defined as an acceleration phase followed by a deceleration
phase with an accumulated increase or decrease in velocity of
at least 20 mm/s and an acceleration or deceleration exceeding
5 mm/s2 (18), exemplified in Figure 2B. Further, the duration of
each individual task performance was identified and extracted (see
Figure 2B). Before statistical analyses, all data were mean valued to
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one light-switch button press as the number of successful presses
varied between trials.

STATISTICAL ANALYSIS
Wilcoxon matched pairs tests with an alpha value of 0.025 were
used to analyze differences in kinematic outcomes (based on trial
level data) between Pre and Post1, and Pre and Post2. Effect sizes
were derived using Pearson’s correlation coefficient for significant
results. For case I, no analyses by side were conducted due to an
inadequate number of data points (report is thus based on data
including both sides). Only significant test statistics and effect
sizes of these results are presented. All mean values (M ), standard
deviations (SD), and significant effects are presented in Table 2.

RESULTS
CASE I
Training outcomes
Case I showed a modest improvement in self-paced timing abil-
ity (mean timing deviation from exact synchronization without
guide sounds) from Pre to Post1 and a more pronounced improve-
ment when guide sounds were included. The variability was lower
with guide sounds (millisecond variability; Pre= 151; Post1= 94;
Post2= 135) than without (millisecond variability; Pre= 542;
Post1= 284; Post2= 375). The timing ability was not substantially
changed from Post1 to Post2 (see Figure 3A).

Unimanual condition
A twofold increase in the number of MUs of the head at Post2
compared with Pre (T = 3, p < 0.01, r = 0.10) was shown. The 3D
distance of the shoulder increased significantly between the Pre
and Post2 occasion (T = 4, p < 0.01, r = 0.51). Similarly, the 3D
distance of the elbow increased between Pre and Post2 (T = 4,
p < 0.01, r = 0.38). Further, the 3D distance of the head increased
from Pre to Post1 (T = 23, p= 0.01, r = 0.12) and Pre and Post2
(T = 0, p < 0.01, r = 0.38). See Table 2.

Bimanual condition
As in the unimanual condition, the number of MUs of the head
increased significantly between Pre and Post2 (T = 31.5, p < 0.01,
r =−0.04). The 3D distance of the shoulder (T = 6, p < 0.01,
r = 0.44) and elbow (T = 12, p < 0.01, r = 0.08) increased signif-
icantly between Pre and Post1. Further, the increase in distance
of the elbow remained at Post2 (T = 23, p < 0.01, r = 0.04). See
Table 2.

Subjective experience of changes in arm and hand function
Case I reported no changes in muscle tone or the functionality of
the arms and hands after completing IM training.

Case I summary
Although with large variability, case I showed a modest improve-
ment in timing ability without guide sounds and a more sub-
stantial improvement with guide sounds. Although large, the vari-
ability in the timing responses did decrease between Pre and Post1,
both in the self-paced and auditory feedback conditions. Some sig-
nificant changes in kinematics were however shown, mainly from
the Pre to Post2 tests. Generally, in both the uni- and bimanual
condition the 3D distance increased with decreased variability.

FIGURE 3 | Rhythmic and timing performance (self-paced and with
guide sounds) for case I (A), case II (B), and case III (C) at the Pre, Post1,
and Post2 occasions.

Specifically, the 3D distance of the head increased, as did the
number of MUs in the unimanual condition. Case I reported no
effects of the IM training on daily functionality or muscle tonus.

CASE II
Training outcomes
Case II showed no improvement in self-paced timing ability
and displayed large variability (millisecond variability; Pre= 150;
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Table 2 | Durations, MUs, and 3D distances for the cases presented by occasion.

Unimanual Bimanual

Pre Post1 Post2 Pre Post1 Post2

M SD D M SD D M SD M SD D M SD D M SD

CASE I

Duration (s) 1.4 0.3 + 1.5 0.3 + 1.6 0.7 2.3 0.4 − 2.3 0.4 + 2.4 0.6

MUs (n): shoulder 7.7 2.9 + 10.7 6.2 − 7.2 3.8 14.8 4.3 + 17.7 6.4 − 12.1 3.7

MUs (n): elbow 5.4 1.8 + 7.4 3.4 − 5.3 2.3 11.2 3.2 + 12.1 3.3 − 9.9 3.1

MUs (n): wrist 6.1 2.0 + 6.4 3.3 − 5.4 2.3 11.1 3.6 + 13.0 3.9 − 10.5 2.6

MUs (n): head 5.2 2.5 + 7.3 5.3 + 10.5 4.3** 8.8 1.9 + 9.8 2.3 + 12.0 4.9**

3D distance: shoulder 73 25 + 103 63 + 77 22** 108 38 + 170 45** + 118 34

3D distance: elbow 152 57 + 200 134 + 182 48** 184 43 + 238 39** + 235 42**

3D distance: wrist 205 47 + 248 87 + 232 89 268 52 + 276 70 + 307 54

3D distance: head 58 23 + 104 70** + 105 71** 164 67 + 198 43 + 195 46

CASE II

Duration (s) 5.3 1.4 − 4.4 0.4 − 3.4 1.3*

MUs (n): shoulder 30.0 10.5 − 28.1 6.0 − 17.8 9.8**

MUs (n): elbow 32.7 12.7 − 31.7 12.4 − 18.0 11.7*

MUs (n): wrist 25.0 7.6 − 22.5 7.1 − 14.3 9.3**

MUs (n): head 19.7 7.5 + 22.4 5.6 + 22.8 17.5

3D distance: shoulder 96 16 + 118 52 − 92 49

3D distance: elbow 234 49 + 328 177 − 187 107

3D distance: wrist 328 57 + 392 140 − 290 181

3D distance: head 373 96 − 245 178 − 154 90*

CASE III

Duration (s) 5.5 0.8 − 3.2 0.4 − 3.1 0.6*

MUs (n): shoulder 58.8 31.7 − 23.1 8.4** − 22.7 6.2**

MUs (n): elbow 47.9 27.8 − 24.8 9.3* − 19.7 4.7*

MUs (n): wrist 31.5 14.4 − 13.0 5.5** − 12.4 2.8**

MUs (n): head 49.1 19.8 − 18.5 7.9** − 23.0 4.7**

3D distance: shoulder 76 29 − 73 23 − 42 17

3D distance: elbow 103 21 + 114 83 − 76 22

3D distance: wrist 152 41 + 184 29 + 161 61

3D distance: head 108 29 − 103 42 − 90 50

M, mean; SD, standard deviation; D, direction of change relative to the pre-test (+, increase; −, reduction); s, seconds; MU, mean number of movement units.

Significant differences relative to the pre-test occasion are indicated in bold.

*p < 0.025, **p < 0.01.

Post1= 163; Post2= 161). The self-paced timing ability was
slightly worse at Post1 versus Pre but improved again slightly at
Post2 (see Figure 3B).

Unimanual condition
As shown in Table 2, a significant reduction in movement duration
was apparent between Pre and Post2 (T = 3, p < 0.025, r = 0.16).
The number of MUs of the shoulder (T = 3, p < 0.01, r = 0.14),
elbow (T = 5, p < 0.025, r = 0.21), and wrist (T = 11, p < 0.01,
r = 0.23) was also reduced significantly from Pre to Post2. Regard-
ing the 3D distance of the head, a reduction between Pre and Post2
was apparent (T = 0, p < 0.025, r = 0.17).

Subjective experience of changes in arm and hand function
Directly after completing IM training, case II reported a substantial
improvement with regard to movement ability of the less affected

arm and hand (the trained side). Further, the more affected arm
and hand were perceived as having substantially less muscle tone,
a somewhat improved usability in leisure activities, and a substan-
tial improvement in movement ability. These changes generally
remained at the 3- and 6-month follow-up.

Case II summary
Case II showed some variability in timing performance during
training and at the Pre, Post1, and Post2 test occasions, while
no clear improvement in timing ability was shown. The move-
ment duration decreased and some significant changes in terms
of kinematics were also shown for this participant, all emerging
at Post2. MUs of the shoulder, elbow, and wrist decreased, as did
the relative 3D distance of the head. Interestingly, although no real
improvements were shown in timing and the effects on movement
kinematics did not emerge until the Post2 test occasion, case II
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reported substantial improvements in movement ability and mus-
cle tone directly after the training period and, although slightly
less substantial, after 6 months. More importantly, these changes
allowed case II to engage more in leisure activities and to use the
less affected arm in daily living situations.

CASE III
Training outcomes
Case III showed marginal improvements in self-paced timing
ability but not with guide sounds. The variability was stable
over the occasions both with (millisecond variability; Pre= 159;
Post1= 181; Post2= 174) and without (millisecond variability;
Pre= 187; Post1= 183; Post2= 169) guide sounds. The changes
in timing ability from Pre to Post1 were not maintained at Post2
(see Figure 3C).

Unimanual condition
The movement duration was significantly reduced between Pre
and Post2 (T = 0, p < 0.025, r = 0.71). The number of MUs
was reduced between Pre and Post1 of the shoulder (T = 1,
p < 0.01, r = 0.29), elbow (T = 3, p < 0.025, r = 0.59), wrist
(T = 1, p < 0.01, r = 0.39), and head (T = 1, p < 0.01, r = 0.21).
These reductions in movement segmentation remained at Post2
(shoulder: T = 1, p < 0.01, r =−0.09; elbow: T = 3, p < 0.025,
r =−0.49; wrist: T = 1, p < 0.01, r =−0.30; head: T = 1, p < 0.01,
r =−0.06). See Table 2.

Subjective experience of changes in arm and hand function
Case III reported that the less affected arm and hand had some-
what less tone, somewhat improved usability in dressing, feeding,
and leisure activities, and somewhat improved movement ability
directly after the IM training had concluded. The largest changes,
as reported in the open-ended questions, related to movement
control, speed, and motivation to activate the hand and arm. The
changes that were reported to remain at the 3- and 6-month
follow-up were also mainly related to motivation, movement
control, and speed.

Case III summary
Case III showed a marginal improvement in timing ability with
large millisecond deviation from exact synchronization with the
metronome and large variability. In the kinematic task, movement
duration decreased gradually between Pre and Post2. In terms of
kinematic outcomes, a substantial reduction in the number of
movement segmentations between Pre and Post1 was apparent
and these remained at Post2. The kinematic results suggest large
effects on temporal aspects of movement trajectory while subtle
and variable changes could be noted on spatial parameters. Case III
experienced some meaningful changes in muscle tone and move-
ment ability, which improved elements of daily living ability. The
most persistent changes were reported to be related to motivation,
movement control, and speed.

DISCUSSION
The IM training regime aims at facilitating underlying neural pro-
cessing capacities to improve the execution of motor programs
(17). This case study was aimed at exploring the effects of 4 weeks

of IM training on timing and rhythmic ability with the arms
and hands, planning and spatio-temporal organization of goal-
directed upper-limb movements, and the subjective experience of
effects on muscle tone and functional ability in daily living in three
children with a DCP diagnosis. Of interest was also to investigate
the existence of long-term retention of possible effects. Using the
same study design and methods as in the present study, we have
previously shown that two children with HCP displayed long-
lasting motor learning as manifested by remaining timing ability
and significant Pre–Post advances in spatio-temporal movement
organization following IM training (5). The interpretations of the
results from the current study are, however, less straightforward.

SYNCHRONIZED METRONOME TRAINING OUTCOMES
In the present study, all cases showed relatively poor initial timing
ability with high variability and either modest, marginal, or no
convincing improvements at Post1 and Post2. However, an indi-
cation of motor learning was apparent for case I who showed
some reduction in variability at Post1, both with and without
guide sounds, where also a reduction in the millisecond deviation
from exact synchronization with the metronome was apparent.
Although these effects did not remain at Post2, the results can be
regarded as an indication of motor learning during the active phase
of training. Perhaps, a longer training period would be prefer-
able for this case. It is also possible that an increased amount
of training that included more repeated activations would have
improved the timing ability for case II and III. In our previous
study including two children with HCP, a relatively good initial
timing ability and an evident and stable improvement in timing,
both self-paced and with guide sounds, were shown (5). Other
studies have shown similar results at a group level in children with
ADHD (19), mixed attentional and motor coordination disorders
(12), children with no known disability (10), and in skilled golfers
(20). Another possible explanation for the present findings is thus
that the IM equipment may fail to detect changes in timing and
rhythmicity in cases with severe biomechanical constraints.

In general, the present findings suggest that the efficacy of IM
training is dependent upon the severity of the child’s condition
and the specific constraints that this imposes. Specific constraints
may be located in the interpretation and amount of information
derived from sensory input as well as in proprioception and the
control over muscle groups needed for successful performance
(21). A specific constraint may be found in the emergent timing
properties of trajectory control that are requested by the SMT
method applied. This is relevant because most movements in IM
training should be smooth, continuous, and circular in fashion
(e.g., hand clapping with circular motions). In such conditions,
timing is a by-product that emerges from the dynamics of tra-
jectory control (22) where inability to produce movements with
emergent timing elements may be a specific limitation that might
account for the relatively poor timing performance of the partici-
pants. Further, sources of constraints may be found in the presence
of ID, visual deficits, and the diagnosis of autism, which of course
poses special consideration of training and outcomes. As such, the
training equipment used in this study may not have an optimal
design to meet the specific individual needs in order to maximize
its accessibility for the participants.
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SPATIAL AND TEMPORAL KINEMATIC PROPERTIES
Although limited improvements in timing ability were shown for
all cases, some significant changes in movement kinematics were
found. Most kinematic studies of upper-body motor functions in
children with CP have focused on HCP (2, 3, 23–29) and inves-
tigations into these abilities in children with DCP are sparse. In
the current study, substantial reductions in movement segmen-
tations (MUs) were shown for both case II and III. Smoothness
of movement trajectory has been shown to have high test–retest
reliability when investigating a reach-and-grasp task in children
with varying degrees of CP (30) and can be used as a measure of
both biomechanical functionality and motor planning ability (27).
For case II and III, little change was detected on spatial proper-
ties of the movements, suggesting that the increase in smoothness
of the movement trajectories has a more temporal character. An
accompanying increase in movement speed was also apparent.
Taken together, these findings suggest that case II and III showed
improvements in motor control and/or planning ability after the
IM training. The effects emerged at Post2 for case II and at Post1
for case III, with remaining effects at Post2 for case III, thus indi-
cating a possible reorganization of movement representations in
the motor cortex as an effect of SMT. Case I on the other hand
showed pre- to post-test increases in MUs of the head in both
the bi- and unimanual condition. This finding could be inter-
preted as an expression of compensatory strategies by means of
increased looking. It could, however, alternatively indicate diffi-
culty attending to the task. At the same time, the 3D distances of
the (proximal) shoulders and elbows increased, whereas no sig-
nificant changes over test occasions were detected for the (distal)
wrists regarding both 3D distance and MUs. Thus, augmented
head and proximal movements did not seem to affect the more
distal reaching strategy in case I, suggesting no alternation of the
underlying movement representations (and planning) related to
the end-motion trajectories as an effect of SMT.

SUBJECTIVE EXPERIENCE OF TRAINING OUTCOME
Despite that no convincing changes were detected in synchro-
nization ability, substantial subjective immediate and long-term
improvements were reported in relation to muscle tone, arm/hand
functionality, and usability by case II and III. These effects are in
line with the more considerable improvements shown in terms of
movement organization for these cases.

SUITABILITY OF IM TRAINING IN CHILDREN WITH DCP
Given the results shown in this case study, the IM training regime
appears to be a feasible method for upper-limb timing train-
ing in children with DCP. However, it is a poor instrument for
detecting changes in rhythmic ability and its accessibility seems
to be somewhat limited for children with more severe types
of CP. For the children participating in the present study, it is
plausible that the repeated activation element, rather than the
training of synchronization embedded in IM training, was dri-
ving the changes detected. Further, the individual biomechanical
constraints and co-occurring sensory–motor, cognitive, and neu-
ropsychiatric diagnoses likely reduced the accessibility to the IM
training regime. Thus, when considering timing training for chil-
dren with DCP, it is recommended that special attention should be

given to individual needs and abilities and efforts should be made
to improve accessibility. Previous studies reporting positive effects
of timing training have mainly investigated clinical cases with uni-
lateral brain lesions such as individuals with chronic hemiparetic
stroke (8, 15) and HCP (5). On a speculative note, it is possible that
this is due to bimanual timing training facilitating effects from the
non-paretic to the paretic side. In the case of bilateral brain lesions
(involved in DCP), effects may not be underpinned by a similar
bilateral transfer of skill.

LIMITATIONS OF THE PRESENT STUDY
Apart from obvious limitations, such as the cases being few and
heterogeneous, there are some additional limitations to the present
study that need to be addressed. Firstly, the use of two different
instructors for the training sessions could have affected the out-
come of the training. Given that the training was carried out in
accordance with the manual provided by the IM, however, the
effect of the instructor should be minimal. Secondly, the IM device
does not allow extraction of data other than overall mean values.
Unfortunately, this makes the quantification of deviation from the
beat in the timing task less optimal. Thirdly, although the partic-
ipants had to struggle with the simple light pressing task due to
the severity of their CP and performed relatively few trials, there
is a possibility that improvements at the post-intervention ses-
sions could be related to increased familiarity/practice with the
task itself. With this in mind, the use of multiple pre-tests would
have strengthened the present design. Alternatively, to control for
such potential learning effects in more functionally adept individ-
uals, cases could be habituated to the task prior to the start of the
intervention.

CONCLUDING REMARKS
While the effects of IM training on motor timing were uncon-
vincing, several promising changes in kinematic outcomes and
functionality could be observed for two of the cases. This case study
highlights the importance of developing accessible and individu-
alized training methods that can accommodate the complexity of
function that is always associated with early brain lesions that cause
CP. Further, the kinematic outcomes pinpoint the importance of
developing sensitive measures that are adjustable to the individual
competencies of the child with CP. By adopting such an approach,
more refined and systematic evaluations of training programs
can be made, allowing a better scientific justification of different
therapeutic interventions. Based on the current findings, further
research investigating the effects of SMT methods in children with
DCP are warranted. In future studies, it would be advisable to use
larger samples with a case–control design and a dose–response
SMT paradigm to maximize individual effects. Additionally, it
would be relevant to study the effects of introducing SMT training
at an earlier age.
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Hemispatial neglect is a common outcome of stroke that is characterized by the inabil-
ity to orient toward, and attend to stimuli in contralesional space. It is established that
hemispatial neglect has a perceptual component, however, the presence and severity of
motor impairments is controversial. Establishing the nature of space use and spatial biases
during visually guided actions amongst healthy individuals is critical to understanding the
presence of visuomotor deficits in patients with neglect. Accordingly, three experiments
were conducted to investigate the effect of object spatial location on patterns of grasping.
Experiment 1 required right-handed participants to reach and grasp for blocks in order to
construct 3D models.The blocks were scattered on a tabletop divided into equal size quad-
rants: left near, left far, right near, and right far. Identical sets of building blocks were available
in each quadrant. Space use was dynamic, with participants initially grasping blocks from
right near space and tending to “neglect” left far space until the final stages of the task.
Experiment 2 repeated the protocol with left-handed participants. Remarkably, left-handed
participants displayed a similar pattern of space use to right-handed participants. In Exper-
iment 3 eye movements were examined to investigate whether “neglect” for grasping in
left far reachable space had its origins in attentional biases. It was found that patterns of
eye movements mirrored patterns of reach-to-grasp movements. We conclude that there
are spatial biases during visually guided grasping, specifically, a tendency to neglect left far
reachable space, and that this “neglect” is attentional in origin.The results raise the possi-
bility that visuomotor impairments reported among patients with right hemisphere lesions
when working in contralesional space may result in part from this inherent tendency to
“neglect” left far space irrespective of the presence of unilateral visuospatial neglect.

Keywords: pseudoneglect, visuospatial neglect, attention, human, peripersonal space, reach-to-grasp, handedness

INTRODUCTION
Successful action and interaction with the environment are depen-
dent on correctly perceiving the space around us as well as the
objects within that space. In our daily lives we interact with and
manipulate objects which are nearby; for example, picking up a
glass of water at the dinner table. We also interact with objects
which are further away by moving to the target, changing posture,
or using a tool to bring the object within working space. Accord-
ingly, space is typically behaviorally differentiated into periper-
sonal and extrapersonal space. Peripersonal space is commonly
defined as the space immediately surrounding the body in which
hand and arm actions on objects can be performed most effectively
(1). In contrast, extrapersonal space refers to the space beyond
peripersonal space (2). Interactions with an object in extraper-
sonal space would require a person to physically move toward the
object, or the object would need to be moved toward the person.
Impairments of spatial perception can have a devastating effect on
our functional independence and quality of life.

A relatively common acquired disorder of spatial perception is
hemispatial neglect which is characterized by deficits in the ability

to respond to, orient toward, and attend to stimuli presented in
contralesional (typically the left side of) space despite intact basic
motor and sensory functions (3). A number of clinical tests are
commonly used to assess the presence, severity, and progression
of neglect, including line bisection tasks, target cancelation, target
detection, and drawing and copying tasks. These tasks are normally
completed in peripersonal space with neglect patients (follow-
ing right hemisphere stroke) typically displaying a rightward bias
of veridical midpoint in the line bisection task, decreasing target
detection from right to left in the target cancelation and detection
tasks, and a drawing which is incomplete on the left hand side in
the copying task (4–10). Double dissociations of neglect symptoms
have, however, been reported between contralesional peripersonal
and extrapersonal space for the line bisection and task cancela-
tion tasks. In some patients the rightward bias is present only in
peripersonal space and is attenuated or extinguished in extraper-
sonal space, conversely other patients show more severe neglect
in extrapersonal space than in peripersonal space (11–17). Dis-
sociation between peripersonal and extrapersonal space has also
been observed amongst neurologically intact adults when using
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the line bisection task. In contrast to neglect patients, however,
healthy adults typically display a systematic leftward displacement
of the line midpoint from true center when completing the task in
peripersonal space, a phenomenon which is commonly referred to
as pseudoneglect (18, 19). While some studies have failed to find
an effect of distance (i.e., peripersonal vs. extrapersonal space)
in pseudoneglect (14, 20) other studies have reported that when
working in extrapersonal space, healthy participants display simi-
lar rightward shifts of bisection as patients with neglect (21–25).
Collectively, these observations suggest a functional and neural
dissociation between the coding of near and far space in humans.

Despite the apparent simplicity of the target cancelation and
line bisection tasks, they are both complex activities in which
perceptual and motor factors are generally implicated. While the
severe perceptual deficits experienced by people living with hemis-
patial neglect have been extensively studied and well documented
[see Ref. (26–28) for review], the presence, direction, and severity
of visuomotor impairments, particularly in contralesional space,
is less clear. Numerous studies have reported visuomotor difficul-
ties that parallel the perceptual impairments of neglect patients
(29–35), while other studies have shown normal (or near normal)
visuomotor performance in reaching and grasping tasks on both
sides of space amongst neglect patients (36–39). Methodologi-
cal considerations including the common omission of a patient
group with right hemisphere lesions but without neglect continue
to contribute to the ongoing controversy surrounding visuomotor
performance amongst individuals with neglect (40); however, thus
far, an inimitable explanation for the divergence in the literature
has yet to be determined. It is necessary to first establish the nature
of space use and potential spatial biases during goal-directed visu-
ally guided actions amongst healthy individuals before we can fully
understand the presence, severity, and ultimately the rehabilitation
and treatment of visuomotor deficits in patients with neglect.

Accordingly, the purpose of the present series of studies was
to characterize space use during an ecologically valid visually
guided grasping task in healthy adults. The task involved reach-
ing for and grasping building blocks scattered on a tabletop in
order to replicate a series of 3D models (41, 42). The tabletop
was notionally divided into equal size quadrants differentiated
into left and right hemispace and near and far reachable space
(left near, left far, right near, and right far). The blocks neces-
sary to build each model were available in each of the quadrants
(i.e., equivalent characteristics for each quadrant). The grasping
task was conducted amongst right-handed (Experiment 1) and
left-handed (Experiment 2) participants, allowing us to determine
whether handedness plays a role in the patterns of space use. The
experiment was subsequently repeated amongst right-handed par-
ticipants fitted with eye tracking glasses (Experiment 3) allowing us
to investigate whether spatial biases observed during the grasping
task were attentional in origin.

EXPERIMENT 1: RIGHT-HANDERS
MATERIALS AND METHODS
Participants
Sixteen self-reported right-handed participants were recruited
from the University of Lethbridge student population to take part
in Experiment 1 (six males; 18–35 years). Participant gender was

not balanced, as gender differences have not been reported in
earlier studies involving a similar task (43). The study was per-
formed with approval by the University of Lethbridge Human
Subject Research Committee. Written informed consent was pro-
vided prior to the initiation of the study. Participants were naïve
to the purposes of the study.

Apparatus and stimuli
Handedness questionnaire. Participants completed a modified
version of the Edinburgh (44) and Waterloo (45) handedness
questionnaires upon completion of the building block task. This
modified handedness questionnaire included questions on hand
preference for 22 different activities, with participants identifying
which hand they prefer to use for each activity [see Ref. (42) for
complete description].

Block building task. Participants were instructed to construct a
total of eight models; four using MEGA BLOKS® and four using
LEGO® blocks (ranging in size from <0.7 L× 0.7 W× 1.0 cm H to
6.3 L× 3.1 W× 2.0 cm H). Each model was constructed from 10
blocks, which varied in color, size, and/or shape (for a total of 40
blocks per set of 4 models). The blocks for one set of four models
were distributed within the workspace (70 L× 122 W× 74 cm H)
which was notionally divided into equal sized quadrants demar-
cated by left (LEFT) and right (RIGHT) hemispace, as well as near
and far reachable space. Near reachable space (NEAR) was defined
as the space within reach of either hand without trunk flexion
(approximately 0–35 cm), whereas far reachable space (FAR) was
the workspace beyond the limits of actable space without trunk
flexion (approximately 35–70 cm). These limits were adjusted for
each participant to account for body/arm length. Each partici-
pant sat on the chair in front of the table and was asked to fully
extend his/her arms (without trunk flexion). The point on the
table at which the tip of the fingers reached was considered the
limit of NEAR and the beginning of the FAR reachable space. The
outer boundary of FAR space was such that it represented the
furthest reachable space with trunk flexion and full arm exten-
sion (approximately 70 cm). There were no visible demarcations
in the workspace that would cue participants that space use was
the variable of interest. One set of the same 10 blocks necessary to
complete a single model was randomly distributed into each quad-
rant of the workspace (Figure 1A); participants were unaware of
this manipulation.

Procedures
Participants were seated centrally in front of the table
(122 L× 122 W× 74 cm H) at a normalized distance such that
when the arms were fully extended the fingertips would reach the
notional division between NEAR and FAR reachable space. Con-
sequently, a change in posture (i.e., trunk flexion) was necessary in
order to grasp the blocks in FAR (reachable) space. The first model
to be replicated was placed on a base plate located centrally at the
far junction between left and right space (Figure 1A). Participants
were requested to replicate the displayed model as quickly and
accurately as possible on a second base plate (19 L× 19 W cm)
located centrally immediately in front of the participant (at the
intersection of right and left space; Figure 1A) from the blocks dis-
tributed on the tabletop. No further instructions were provided.
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FIGURE 1 | Experimental set-up. (A) Example of workspace prior to first
trial. Red dashed lines notionally divide the workspace into quadrants; left
near (LN), left far (LF), right near (RN), and right far (RF) reachable space.
Model to be replicated is located on far base plate “H” positioned between
LF and RF quadrants. Model to be constructed on near base plate “B”
positioned between LN and RN quadrants. (B) Examples of 10-piece
models. Workspace set-up and models are illustrated with MEGA BLOKS®.

As such, participants were free to use either or both hands to grasp
blocks, construct, and stabilize the model. Prior research (42) using
the task has highlighted the bimanual nature of the task, however,
no specific instruction as to hand use were provided. Following
replication of the sample model, both models were removed from
the table and a new model to be replicated was provided, this
process was repeated until a set of four models had been com-
pleted. Building blocks were not replaced between trials, but were
replaced between each set of four models. The same eight mod-
els were used for each participant (see Figure 1B for examples);
model order was randomized between participants.

The total time taken to complete each trial (i.e., search and
construction) was recorded using a stopwatch. In addition, model
construction was recorded for subsequent analysis using a digital
video camera (JVC HD Everio®) placed directly in front of the
participants (approximately 160 cm away from participant) with
a clear view of the workspace, building blocks, and participants’
hands.

Data processing and analysis
All video recordings were analyzed offline. Each grasp was scored
manually as a left- or right-handed grasp to ipsilateral or contralat-
eral space. The total number of grasps was also calculated to allow

the determination of the percentage of right hand use [(num-
ber of grasps with right hand/total number of grasps)× 100]. In
addition, the videos of the construction of the first and fourth
model in each model set were manually scored to provide the
number of building blocks removed from each quadrant for each
model. Model 1 provides information on space use when there
is equal opportunity to grasp blocks from any quadrant of space
while Model 4 offers data on the space attended to (i.e., grasped
from) last. To provide a more detailed indication of space use, par-
ticipant grasps were numbered in the order of occurrence (1–40)
and that number was allocated to the appropriate quadrant. Each
set of four models yielded a sum grasp total of 820 for the 40 blocks.
The minimum possible grasp total for a quadrant was 55, which
would indicate that all 10 blocks for the first model (grasps 1–10;
1+ 2+ 3+ 4+ 5+ 6+ 7+ 8+ 9+ 10= 55) were selected from
the same quadrant. The highest possible grasp total for a quadrant
was 355, indicating that all 10 blocks for the fourth model (grasps
31–40; 31+ 32+ 33+ 34+ 35+ 36+ 37+ 38+ 39= 355) were
selected from the same quadrant. Within a quadrant, a grasp total
between 55 and 355 would indicate that the blocks in that quad-
rant were selected over the course of more than one model. Lower
numbers indicate that blocks from that quadrant were grasped ear-
lier in the construction of the model set; higher numbers indicate
that blocks were generally grasped later in model construction.
Data were averaged across model sets.

Data were analyzed using SPSS Statistics 18.0 for Windows
(SPSS Inc., Chicago, IL, USA). Statistical significance was set at
α= 0.05 unless otherwise stated. Effect size (ES) was reported as
η2 values. Handedness questionnaire and hand use data were sum-
marized descriptively. The percentage of contralateral grasps made
with each hand over the course of model set construction was
assessed using paired samples t -tests. Trial times were entered into
a one-way repeated measures analyses of variance (RM ANOVA),
with Models 1–4 as a within-subject factor. When statistical signif-
icance was reported Bonferroni corrected pairwise comparisons
were performed between all model pairs (p≤ 0.008). Space use
data for the first and fourth models (based on blocks used)
were entered into separate two-factor (hemispace× distance) RM
ANOVAs, with hemispace (LEFT, RIGHT), and distance (NEAR,
FAR) as within-subject factors. Bonferroni corrected pairwise
comparisons were performed between the near space quadrants
(LN and RN) and the far space quadrants (LF and RF) pairs
(p≤ 0.025) when statistical significance was established. Similarly,
overall space use as determined by grasp total scores was analyzed
using a two-factor (hemispace× distance) RM ANOVA. Subse-
quently, Bonferroni corrected planned pairwise comparisons were
performed between left far (LF) space and left near (LN), right
near (RN), and right far (RF) space (p≤ 0.017).

RESULTS
Handedness questionnaire
All participants self-reported as right-handed; this was confirmed
by the handedness questionnaire score. The average handedness
questionnaire score was +34.8± 4.9 (scores ranging from+22 to
+41) where +44 would indicate exclusive right hand use for the
identified activities (−44 would indicate exclusive left hand use).
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Trial times
Trial times were significantly affected by the model being con-
structed [F(3,45)= 4.922, p= 0.005, ES= 0.247], with partici-
pants completing the final model (Model 4) significantly faster
than the first [t (15)= 4.724, p < 0.001] and third [t (15)= 3.653,
p= 0.002] models.

Hand use for grasping
Overall, participants used their dominant right hand for
69.5± 13.9% of all grasps. Analysis of contralateral grasps showed
that participants used their left hand significantly less than their
right hand [t (14)= 5.488, p < 0.001] when grasping in contralat-
eral space (right hand= 21.9± 12.8%; left hand= 2.4± 1.73%).

Space use
First model. Participants grasped 6.5± 1.5 blocks from right
and 3.5± 1.5 blocks from left hemispace to construct the first

model, resulting in a significant main effect of hemispace
[F(1,15)= 20.932, p < 0.001, ES= 0.583; Figure 2A]. A significant
main effect of distance [F(1,15)= 21.867, p < 0.001, ES= 0.593;
Figure 2A] revealed that when constructing the first model partic-
ipants grasped more blocks from near reachable space than from
far reachable space (NEAR= 6.5± 1.7 blocks; FAR= 3.5± 1.7
blocks). The interaction between hemispace and distance was not
significant (p > 0.05).

Fourth model. When constructing the fourth model, par-
ticipants grasped more blocks from left space when com-
pared with right space as indicated by a significant main
effect of hemispace [F(1,15)= 17.790, p= 0.001, ES= 0.543;
LEFT= 6.3± 1.9 blocks, RIGHT= 3.7± 1.9 blocks; Figure 2A].
In addition, a significant main effect of distance [F(1,15)= 12.023,
p= 0.003, ES= 0.445; Figure 2A] revealed that participants

FIGURE 2 | Experiment 1: right-handers. (A) Representation of the
proportion of blocks (0–10) used from each quadrant for the construction of
the first and fourth models in the model set. Data are means and standard

errors. (B) Overall grasp score for each quadrant of space. Data are means
and standard errors. LF, left far; LN, left near; RN, right near; RF, right far.
*p < 0.05, **p < 0.01, ***p < 0.001 with respect to LF.
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grasped more blocks from far reachable space when compared with
near reachable space (NEAR= 4.0± 1.6 blocks, FAR= 6.0± 1.6
blocks). Moreover, a significant hemispace by distance interaction
[F(1,15)= 4.747, p= 0.046, ES= 0.240; Figure 2A] indicated that
participants differentially grasped blocks from left or right hemi-
space depending upon whether they were grasping in near or far
reachable space. Participants displayed a tendency to grasp more
blocks from left space than right space when grasping in near
reachable space [LN–RN, t (15)= 2.663, p= 0.018]. This pattern
of preference for blocks from left hemispace was further exac-
erbated when participants were reaching in far reachable space
[LF–RF, t (15)= 3.626, p= 0.002].

Overall. When investigating the overall patterns of space use for
grasping during model set construction a significant main effect
of hemispace [F(1,15)= 28.011, p < 0.001, ES= 0.651; Figure 2B]
was observed. On average, participants grasped blocks from
left space later in model set construction when compared with
right space (LEFT= 462.3± 46.9, RIGHT= 357.7± 46.9). Partic-
ipants also grasped blocks from far reachable space on average
later in model set construction when compared to near reach-
able space as confirmed by a significant main effect of distance
[F(1,15)= 14.973, p= 0.002, ES= 0.500; NEAR= 372.9± 49.5,
FAR= 447.1± 49.5; Figure 2B]. Although there was not a signifi-
cant interaction between factors (p > 0.05), comparisons between
the overall grasp score for the LF quadrant and the overall grasp
scores for each of the other three quadrants did reveal that partici-
pants grasped blocks from LF space significantly later in model
set construction than from LN [t (15)= 4.015, p= 0.001], RN
[t (15)= 6.352, p < 0.001], or RF [t (15)= 4.663, p < 0.001] space
(Figure 2B).

DISCUSSION
The purpose of Experiment 1 was to describe space use during an
ecologically valid bimanual visually guided grasping task amongst
right-handed participants. The results demonstrated that space
use for grasping varied according to hemispace and spatial proxim-
ity to the participant. More specifically, when participants had the
opportunity to grasp building blocks from any quadrant of space
(i.e., Model 1) they preferentially selected blocks from right space;
moreover, the majority of blocks were selected from near reachable
space. In contrast, participants largely ignored (or,“neglected”) the
blocks in LF space until later in model set construction.

It is possible that this pattern of space use may have been
influenced by hand dominance and associated biomechanical con-
straints. One could argue that participants chose to grasp in right
hemispace first because that space is closer to their dominant right
hand. To examine this possibility, the protocol used in Experiment
1 was repeated in a group of left-handed participants for Experi-
ment 2. If the pattern of grasping observed in Experiment 1 was
a consequence of handedness, it was expected that left-handed
participants would display the reverse behavior; that is, partici-
pants would choose to grasp from left hemispace first, and would
“neglect” right rather than left far space.

EXPERIMENT 2: LEFT-HANDERS
In Experiment 2 the conditions of Experiment 1 were repeated with
left-handed participants.

MATERIALS AND METHODS
Participants
Sixteen self-declared left-handed participants from the Univer-
sity of Lethbridge took part in Experiment 2 (nine males; 18–
35 years). The study was performed with approval by the Univer-
sity of Lethbridge Human Subject Research Committee. Written
informed consent was provided prior to the initiation of the study.
Participants were naïve to the purposes of the study.

Apparatus and stimuli
Apparatus and stimuli were identical to those used in Experiment 1.

Procedures
Procedures were the same as in Experiment 1.

Data processing and analysis
The data processing and analysis techniques used in Experiment 1
were repeated for Experiment 2.

RESULTS
Handedness questionnaire
Participants had an average handedness questionnaire score of
−14.8± 11.3. The range of scores was from+9 to−29, two partic-
ipants reported using their right hand on average more than their
left in the selection of activities targeted by the questionnaire. All
participants, however, self-identified as being left-handed and all
participants used their left hand to fill the questionnaire and sign
the consent form.

Trial times
A significant main effect of model [F(3,45)= 4.203, p= 0.011,
ES= 0.219] indicated that trial times were significantly affected
by the model being constructed. More specifically participants
completed the final model (Model 4) significantly faster than the
first [t (15)= 3.142, p= 0.007] model.

Hand use for grasping
Left-handed participants used their non-dominant right hand for
45.6± 10.0% of all grasps. Interestingly, there was not a signifi-
cant difference between hands when analyzing contralateral grasps
(p > 0.05) with participants using their right hand for 4.0± 3.7%
of grasps to left hemispace and their left hand for 8.4± 8.6% of
grasps to right hemispace.

Space use
First model. A significant main effect of distance [F(1,15)=
111.667, p < 0.001, ES= 0.917; Figure 3A] revealed that partici-
pants grasped significantly more blocks from near compared to
far reachable space (NEAR= 7.5± 1.3 blocks; FAR= 2.5± 1.3
blocks) when constructing the first model. There was not a sig-
nificant main effect of hemispace or a significant hemispace by
distance interaction (p > 0.05).

Fourth model. Participants grasped more blocks from left
space compared to right space (LEFT= 5.9± 1.9 blocks,
RIGHT= 4.1± 1.9 blocks) when constructing the fourth
model as indicated by a significant main effect of hemi-
space [F(1,15)= 10.970, p= 0.005, ES= 0.422; Figure 3A].
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de Bruin et al. Left neglected in far space

FIGURE 3 | Experiment 2: left-handers. (A) Representation of the
proportion of blocks (0–10) used from each quadrant for the construction of
the first and fourth models in the model set. Data are means and standard

errors. (B) Overall grasp score for each quadrant of reachable space. Data are
means and standard errors. LF, left far; LN, left near; RN, right near; RF, right
far. *p < 0.05, **p < 0.01, ***p < 0.001 with respect to LF.

In addition, left-handed participants grasped significantly
more blocks from far reachable space than near reachable
space [F(1,15)= 14.195, p= 0.002, ES= 0.486; NEAR= 3.6± 1.9,
FAR= 6.4± 1.9; Figure 3A]. Moreover, block selection from near
and far reachable space was differentially affected by whether the
block was being grasped in left or right space, as indicated by
a significant hemispace by distance interaction [F(1,15)= 5.400,
p= 0.035, ES= 0.265; Figure 3A]. When reaching to near space
participants did not differentially grasp blocks from left or right
hemispace (LN–RN, p > 0.025); however, when reaching to far
space participants grasped more blocks from left space when
compared to right space [LF–RF, t (15)= 3.014, p= 0.009].

Overall. A significant main effect of hemispace [F(1,15)= 5.807,
p= 0.029, ES= 0.279; Figure 3B] revealed that participants
grasped blocks from left hemispace on average later in
model set construction than blocks located in right hemispace

(LEFT= 436.2± 54.6, RIGHT= 383.8± 54.6). In addition, a sig-
nificant main effect of distance [F(1,15)= 60.472, p < 0.001,
ES= 0.801; Figure 3B] indicated that participants grasped blocks
from far reachable space on average later in model set construction
than those located in near reachable space (NEAR= 347.1± 45.7,
FAR= 372.9± 45.7). Moreover, a hemispace by distance inter-
action that approached significance [F(1,15)= 4.123, p= 0.060,
ES= 0.216; Figure 3B] suggested that participants differentially
grasped blocks from near and far reachable space depend-
ing on whether the blocks were being grasped from left
or right hemispace. More specifically, the overall grasp score
was significantly higher in LF space than LN [t (15)= 7.588,
p < 0.001], RN [t (15)= 7.015, p < 0.001], and RF [t (15)= 3.093,
p= 0.007] space, indicating that on average participants grasped
blocks from left far space later in model set construction
than the blocks elsewhere in space (Figure 3B) just as right-
handers did.
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Comparison between right- and left-handed participants
A three-factor RM ANOVA was conducted to assess the effect
of hand dominance on space use as determined by the overall
grasp score. Hemispace (LEFT, RIGHT) and distance (NEAR,
FAR) were within-subjects factors, Experiments 1 and 2 were
the between subject factor. A significant distance by experiment
interaction [F(1,30)= 4.246, p= 0.048, ES= 0.124] indicated that
the experiment (and consequently the participants handedness)
influenced space use with respect to whether the participant was
grasping in NEAR or FAR reachable space. Specifically, partici-
pants in Experiment 2 (left-handed) grasped blocks from NEAR
reachable space on average earlier in model set construction
than participants in Experiment 1 (right-handed). The interac-
tions between hemispace and experiment, and distance, hemi-
space, and experiment were not significant (p > 0.05) imply-
ing that the “neglect” of LF space was not a product of hand
dominance.

Correlation analysis for Experiments 1 and 2
To further investigate whether the tendency to neglect the LF
space was a product of using the left hand less often for grasp-
ing, a bivariate correlation analysis was conducted between the
overall grasp score for space use in LF space and the average left
hand use for grasping on the data from all participants (right-
and left-handed). Right-handed participants grasped with their
left hands 29.8± 13.8% of the time, in contrast with left-handers
who used their left hands for 54.2± 9.9% of grasps. The overall
correlation between left hand use and LF space was not significant
(p > 0.05), suggesting that the neglect of LF space is not related to
hand use. In addition, a correlation analysis between the overall
grasp score for LF space and the handedness questionnaire score
was not significant (p > 0.05).

DISCUSSION
The second experiment was designed to investigate whether
“neglect” of LF reachable space was a consequence of handedness.
In other words, because the participants in Experiment 1 were all
right-handed, one could argue that this hand preference was the
cause of the observed LF neglect. Surprisingly, left-handed partici-
pants behaved much as right-handers. Both right- and left-handed
participants delayed grasping in LF space generally toward the end
of the task. This finding (and the fact that there was no correlation
between overall LF space use and left hand use for grasping or
handedness questionnaire score) suggests that the observed spa-
tial biases were not simply a product of biomechanical constraints
resulting from hand dominance.

The phenomenon that young healthy adults display an inherent
tendency to neglect LF reachable space during grasping expands
our current knowledge of visuospatial processing in general, but
also has implications for our understanding of visuomotor deficits
in a variety of patient populations. In the first instance it is nec-
essary to elucidate the basis of these spatial biases. One possibility
worthy of investigation was that the pattern of space use was a
consequence of attentional biases. Accordingly, the experimen-
tal protocol was repeated with participants wearing eye tracking
glasses (coupled with a scene camera) to provide an inference
of the direction of visual attention during the reaching-to-grasp

task. We hypothesized that if the neglect of LF space during grasp-
ing was a consequence of inattention, then the patterns of gaze
would closely mirror those of grasping (i.e., participants would
not direct visual attention to left far space until later in model set
construction).

EXPERIMENT 3: EYE TRACKING
In Experiment 3 the protocol used in Experiments 1 and 2 was
repeated in a population of right-handed participants fitted with
eye tracking glasses to provide information on gaze position.

MATERIALS AND METHODS
Participants
Twelve self-reported right-handed participants were recruited for
this study (three males; 18–35 years). The University of Lethbridge
Human Subject Committee approved the study. All participants
provided written informed consent prior to participation in the
study. Participants were naïve to the nature of the study.

Apparatus and stimuli
Handedness questionnaire. The handedness questionnaire used
was the same as that used in Experiments 1 and 2.

Building block task. The building block task that was used was
the same as that used in Experiments 1 and 2 with the exception
that participants constructed only one set of four models (using
MEGA BLOKS®) in the task.

Eye tracker. Participants were fitted with head-mounted eye
tracking glasses (Eyelink II®; SR Research, Osgoode, ON, Canada)
with a scene camera mounted anteriorly near the center of the
headband. The eye tracking glasses allow 3D eye tracking whilst the
addition of the scene camera enables the overlay of gaze position
onto the outward scene video (collected at 30 Hz).

Procedures
The procedures were the same as those used in Experiments 1 and
2 with the exceptions that the workspace consisted of a table-
top (70 L× 120 W× 74 cm H) surrounded on three sides by black
partitions and walls. The eye tracker was fitted to the participant
and calibrated according to manufacturer recommendations. Fol-
lowing calibration participants were requested to close their eyes
while the building blocks were distributed appropriately on the
tabletop. The first model to be replicated was placed on a base
plate located centrally at the far border of the workspace between
left and right space (Figure 1A). Once data recording was initi-
ated, participants were instructed to open their eyes and use the
available blocks to replicate the displayed model as quickly and
accurately as possible on a second base plate (19 L× 19 W cm)
located centrally immediately in front of them (at the intersection
of right and left space; Figure 1A). Following completion of the
model, participants were asked to close their eyes while both mod-
els were removed and a new model to be replicated was provided.
Each participant constructed the same four models; model order
was randomized between participants.

Gaze position and model construction were recorded for
subsequent analysis using the eye tracker and associated scene
camera.

www.frontiersin.org January 2014 | Volume 5 | Article 4 | 67

http://www.frontiersin.org
http://www.frontiersin.org/Movement_Disorders/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

de Bruin et al. Left neglected in far space

Data processing and analysis
All recordings were analyzed offline. The videos were cropped
into individual trials (i.e., Models 1–4) using the events of the
eyes opening and the final release of the constructed model with
both hands. The scene videos for the first and fourth model were
manually scored to provide the number of blocks (0–10 blocks)
grasped from each quadrant for these models. In addition, a more
detailed indication of space use was provided by numbering each
grasp (1–40) as described in Experiment 1.

Each frame of gaze position data was also manually scored
as being allocated to a particular quadrant of space, the “home”
model and plate, or the “build” model and plate to provide an
inference of overt visual attention. The initial gaze position (not
directed toward the home or build models) during construction
of Model 1 was recorded for each participant. The relative pro-
portion of the trial during which gaze was directed to each of
the quadrants was calculated [(frames with gaze located in a spe-
cific quadrant/overall frames that gaze position was located in any
of the four quadrants)× 100] for each of the four models. Gaze
directed to the home and build models and plates was excluded
from the analysis.

Data analysis procedures were the same as those used in Exper-
iments 1 and 2 with the exceptions that the initial gaze position
data (for Model 1) was summarized descriptively and gaze posi-
tion data for the first and fourth models and over the course of the
complete model set were entered into separate two-factor (hemi-
space× distance) RM ANOVAs, with hemispace (LEFT, RIGHT),
and distance (NEAR, FAR) as within-subject factors.

RESULTS
Handedness questionnaire
Participant handedness was determined by the modified handed-
ness questionnaire, with the average score of +32.3± 5.2 (scores
ranging from +20 to +38) confirming that all participants were
right-handed.

Trial times
A main effect of model approaching significance [F(3,33)= 2.783,
p= 0.056, ES= 0.202] suggested that trial time was affected by the
model being constructed, follow-up comparisons however, failed
to reach significance (p > 0.017).

Hand use for grasping
Participants used their right hand for 60.0± 11.9% of all grasps.
The analysis of contralateral grasps revealed that participants made
significantly more contralateral grasps with the right hand to
left hemispace (11.9± 10.1%) when compared to grasps made
with the left hand to right hemispace [1.9± 2.6%; t (11)= 2.907,
p= 0.014].

Space use
First model. When constructing the first model in the set, par-
ticipants grasped more blocks from right space than left space
(LEFT= 3.5± 1.2 blocks, RIGHT= 6.5± 1.2 blocks) as con-
firmed by a significant main effect of hemispace [F(1,11)= 17.471,
p= 0.002, ES= 0.614; Figure 4A]. In addition, a main effect of
distance [F(1,11)= 7.694, p= 0.018, ES= 0.412; Figure 4A] indi-
cated that participants grasped more blocks from near space when

compared to far space (NEAR= 6.8± 2.3 blocks, FAR= 3.2± 2.3
blocks). The hemispace by distance interaction was not significant
(p > 0.05).

Fourth model. A significant main effect of hemispace
[F(1,11)= 11.957, p= 0.005, ES= 0.521; Figure 4A] revealed
that participants grasped significantly more blocks from left
hemispace than from right hemispace (LEFT= 6.7± 1.7 blocks,
RIGHT= 3.3± 1.7 blocks) to construct the fourth model in the
model set. Space use for grasping during the construction of the
fourth model was not, however, significantly influenced by dis-
tance (p > 0.05). Participants grasped 4.3± 2.1 blocks from near
space and the remaining 5.7± 2.1 blocks from far space. In addi-
tion, the hemispace by distance interaction was not significant
(p > 0.05).

Overall. When analyzing space use for grasping across the con-
struction of all four models it was found that participants grasped
blocks from left hemispace on average later in model set construc-
tion than blocks in right hemispace, as indicated by a significant
main effect of hemispace [F(1,11)= 13.128, p= 0.004, ES= 0.544;
LEFT= 457.2± 44.8, RIGHT= 362.8± 44.8; Figure 4B]. A sig-
nificant main effect of distance [F(1,11)= 6.374, p= 0.028,
ES= 0.367; Figure 4B] revealed that participants grasped blocks
in far space on average later than those in near space
(NEAR= 359± 70.6, FAR= 461± 70.6). The hemispace by dis-
tance interaction failed to reach significance (p > 0.05), however,
planned comparisons between the overall grasp score for LF space
and the overall grasp score for each of the other three quadrants
of space (as per Experiments 1 and 2) revealed that participants
grasped blocks from LF space on average later in model set con-
struction than from LN space [t (11)= 2.882, p= 0.015], RN space
[t (11)= 4.063, p= 0.002], or RF space [t (11)= 3.169, p= 0.009;
Figure 4B].

Gaze position
Gaze position data for one participant was discarded due to
equipment failure. An example of gaze position data during con-
struction of the fourth model for one participant is provided in
Figure 5A.

First model. Gaze position for the remaining 11 participants
was not significantly affected by hemispace or distance (p > 0.05)
during the construction of the first model. Furthermore, the
hemispace by distance interaction was not significant (p > 0.05).

Fourth model. A significant main effect of hemispace
[F(1,10)= 33.588, p < 0.001, ES= 0.771; Figure 5B] was observed
during construction of the fourth model in the set, with partici-
pants spending a higher proportion of model construction time
with gaze positioned in left hemispace as compared to right hemi-
space (LEFT= 69.9± 11.4%, RIGHT= 30.1± 11.4%). In addi-
tion, when constructing the fourth model participants spent more
time with gaze positioned in far space as compared to near space
(NEAR= 27.0± 20.3%, FAR= 73.0± 20.3%) as indicated by a
significant main effect of distance [F(1,10)= 14.149, p= 0.004,
ES= 0.586; Figure 5B]. The hemispace by distance interaction
was not significant (p > 0.05).
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FIGURE 4 | Experiment 3: eye tracking. Space use: (A) Representation of
the proportion of blocks (0–10) used from each quadrant for the construction
of the first and fourth models in the model set. Data are means and standard

errors. (B) Overall grasp score for each quadrant of space. Data are means
and standard errors. LF, left far; LN, left near; RN, right near; RF, right far.
*p < 0.05, **p < 0.01, ***p < 0.001 with respect to LF.

Overall. A significant main effect of hemispace [F(1,10)= 4.741,
p= 0.054, ES= 0.322; Figure 5C] revealed that on average par-
ticipants directed gaze more toward left hemispace than right
hemispace (LEFT= 55.8± 8.9%, RIGHT= 44.2± 8.9%) across
the construction of all four models. Furthermore, a significant
main effect of distance [F(1,10)= 17.180, p= 0.002, ES= 0.632;
Figure 5C] was reported with gaze position being directed toward
near space for 35.2± 11.9% of model set construction and far
space for the remaining 64.8± 11.9%. The hemispace by dis-
tance interaction was not significant (p > 0.05). The fact that
gaze was predominantly directed toward left space across the con-
struction of the model set suggests that during construction of
the second and/or third models participants must have allocated
overt attention predominantly to left hemispace. Analysis using a
2 (hemispace)× 2 (distance)× 4 (Model) RM ANOVA revealed

a significant hemispace by model interaction [F(3,30)= 11.338,
p < 0.001, ES= 0.531]. More specifically, during construction of
the first two models participants allocated gaze equally to left and
right hemispace (p > 0.05), however, for construction of the third
and fourth models, participants spent significantly more time
with gaze allocated to left hemispace [Model 3, t (10)= 3.721,
p= 0.004; Model 4, t (10)= 5.795, p < 0.001]. Finally, to investi-
gate whether the tendency to direct gaze to left hemispace resulted
from participants directing gaze to LF space planned pairwise
comparisons between LF space and LN, RN, and RF space were
conducted. Results indicated that participants directed their gaze
to the LF quadrant for a significantly larger proportion of model
construction than LN space [t (10)= 3.096, p= 0.011] and RN
space [t (10)= 4.210, p= 0.002]. Participants displayed a tendency
to direct gaze toward LF space more than RF space, however, this
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de Bruin et al. Left neglected in far space

FIGURE 5 | Experiment 3: eye tracking. Gaze position: (A) Example of gaze
position data during construction of the fourth model for a single participant.
Each red circle represents gaze position for a single frame of video. Dashed
black lines notionally divide workspace into quadrants; left near (LN), left far
(LF), right near (RN), and right far (RF). The model to be replicated is located at
the far “home” base plate “H” and model being constructed is located at the

near “build” base plate “B.” (B) Representation of the proportion of gaze (%)
directed toward each quadrant of reachable space during construction of the
first and fourth models in the model set. Data are means and standard errors.
(C) Overall proportion of gaze directed to each quadrant of space. Data are
means and standard errors. *p < 0.05, **p < 0.01, ***p < 0.001 with respect
to LF.

difference failed to reach significance [t (10)= 1.924, p= 0.083;
Figure 5C].

Initial gaze position
Initial gaze position was located in LN space for 18.2% of partic-
ipants, LF space for 27.3% of participants, RN space for 9.1% of
participants, and the RF quadrant for the remaining 45.5% of par-
ticipants. To gain an inference of whether gaze was directed to the
quadrant where the first block would be grasped from or rather
whether the participants surveyed their options prior to initiat-
ing grasping, a Cramer’s V test between initial gaze position and
initial grasp location was completed. The Cramer’s V analysis was
not significant (p > 0.05), suggesting participants did not initially
locate their gaze to the quadrant from which they would grasp the
first block.

DISCUSSION
Overall patterns of space use were very similar between Exper-
iments 1 and 3, with right-handed participants grasping blocks
from LF space on average later in model set construction than
blocks in the other three quadrants. As anticipated, the overall
pattern of gaze position paralleled the pattern of grasping, partic-
ularly during construction of the fourth model with gaze being

directed to task relevant locations. More specifically, visual atten-
tion appeared to be fairly evenly distributed between quadrants
early in model set construction when participants were presum-
ably surveying the workspace assessing their options, however, by
the fourth model participants’ dedicated considerable visual atten-
tion to LF space. Whilst this finding might not be surprising, as the
majority of the remaining blocks were located in the LF quadrant
what was perhaps surprising were the results from the initial gaze
analysis. Previous studies have shown that grasping is preceded
by eye movements toward the object to be grasped (46–51). The
results of the initial gaze analysis however, showed no relation-
ship between initial gaze position and initial grasp location. This
finding suggests a dissociation between gaze and grasp and will be
discussed in more detail in the general discussion. The findings
from Experiment 3 do provide support for the notion that the spa-
tial biases, specifically the neglect of LF space, observed amongst
right- and left-handed participants during the reaching-to-grasp
task may be attentional in origin; this possibility will be further
discussed in the following section.

GENERAL DISCUSSION
We assessed space use for grasping during a bimanual visually
guided reach-to-grasp task amongst healthy adults. In addition,
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we characterized the patterns of gaze position throughout the
grasping task to provide an inference of overt visual attention.
Participants were required to locate, grasp, and orient to specific
building blocks available on a tabletop in order to replicate a series
of complex 3D models. The tabletop was notionally divided into
equal sized quadrants differentiated by left and right hemispace, as
well as near and far reachable space. The building blocks necessary
to construct each model were available in each of the quadrants.
Participants displayed a tendency to “neglect” left far space until
the final stages of the task. Moreover, similar patterns of space
use were observed for both right- and left-handed participants
suggesting that the patterns of space use for grasping were not
simply a result of hand dominance and associated biomechanical
constraints. Despite a dissociation between initial gaze position
and initial grasp location, the overall gaze position data largely
corresponded with patterns of grasp (i.e., participants overt atten-
tion was directed toward the space from which participants were
grasping building blocks) which highlights the possibility that the
observed “neglect” of left far space may partially be a result of
inherent attentional biases.

To our knowledge, this is the first study to characterize space use
during a natural visually guided bimanual grasping task in healthy
adults. The findings of this study expand our understanding of spa-
tial cognition in humans. This knowledge has thus far been largely
garnered from studies on non-human species or alternatively from
studies that have utilized standardized paper-and-pencil or com-
puterized assessments to test specific aspects of spatial attention
and perception, spatial memory and/or mental imagery (52, 53).
Though these common assessments have provided a wealth of
knowledge on spatial biases in healthy, aging, and patient popula-
tions, the tasks are typically presented in two-dimensional space
(i.e., computer monitor) and/or are unimanual and are therefore
not truly representative of the bimanual object interactions that we
complete hundreds of times each day. As such, these standardized
tasks do not address the question of whether equivalent spatial
biases are present in real-world grasping tasks. By developing an
ecologically valid bimanual task that has well characterized motor
and perceptual demands (i.e., replicable visuomotor requirements,
visuospatial complexity) it has been possible to add to our under-
standing of the spatial biases that occur in complex, multi-factorial
tasks typically encountered in the everyday environment.

We found that when constructing the first model in the
model set (i.e., when there was equal opportunity to grasp
blocks from all quadrants) right-handed participants preferen-
tially grasped blocks from right hemispace. Left-handed partici-
pants also selected marginally more pieces from right hemispace
when compared to left hemispace (5.4 blocks from right hemi-
space, 4.6 blocks from left hemispace); however, it should be noted
that this differential pattern of lateral space use was not signif-
icant. All participants grasped the majority of blocks from near
reachable space (i.e., reachable without movement of the trunk).
Whilst the spatial biases observed relating to distance likely reflect
the biomechanical efficiency and comfort of grasping targets in
closer proximity to the body (i.e., shorter movement trajectory)
we suggest that the lateral spatial biases may be influenced by hand
preference. It has previously been reported that right-handed indi-
viduals use their dominant hand almost exclusively when grasping

objects in ipsilateral space (i.e., right hemispace) or at the body
midline (54–56). Furthermore, a strong right hand preference
remains when right hand dominant individuals reach to contralat-
eral space. In contrast, left-handed individuals have a tendency
to use their dominant and non-dominant hands more equally,
normally using the hand ipsilateral to the object for grasping
(41, 57–59). In agreement with these earlier studies, the partic-
ipants in Experiment 1 grasped approximately 71± 14% of the
blocks for the first model with their dominant right hands. In
contrast, the left-handed participants in Experiment 2 grasped
around 46± 10% of the blocks with their non-dominant hands,
moreover, 91% of these grasps with the right hand were in right
hemispace. Although it remains possible that the “neglect” in LF
space is due exclusively to biomechanical constraints, it is unlikely.
First, assuming that left-handers by definition are more skilled
with their left hand, one would have expected this group to show
the opposite pattern of space use to right-handers and therefore
neglect RF space. This was not the case, however, with left-handers
showing a similar pattern of neglect of LF space to right-handers.
Second, there was no correlation between left hand use and the
overall grasp score (space use) in the LF quadrant. This find-
ing strongly suggests that hand preference for grasping did not
influence participants’ space use with respect to the LF quad-
rant. Finally, investigations of kinematics of left- and right-handed
reach-to-grasp movements have revealed, at most, minimal differ-
ences between hands (60–63) suggestive that the preference to
use the right hand (particularly in right space) is not driven by a
kinematic advantage.

In stark contrast to the pattern of space use observed during
construction of the first model, when constructing the fourth and
final model in the series participants grasped the majority of blocks
from the far left quadrant where the majority of the remain-
ing blocks were located. The finding that LF space was largely
“neglected” until alternative spatial locations had been exhausted
was confirmed by the overall grasp score data. This “neglect” of
LF space until later in model set construction would appear to
be somewhat intuitive for right-handed participants based upon
the biomechanical inefficiency associated with the longer move-
ment trajectory to make grasps to far contralateral space with the
dominant hand, or alternatively the necessity of using the non-
dominant ipsilateral hand. Indeed, this would be consistent with
the literature (64–66) suggesting that contralateral movements are
computationally more complex and therefore presumably more
effortful for the participant. Again, however, the pattern of space
use for grasping was largely consistent between right- and left-
handed participants. As left-handers typically reach to left far space
with their dominant hand it appears that biomechanical inefficien-
cies cannot fully explain the “neglect” observed. In contrast, the
spatial biases for grasping seen in the current studies are consistent
with numerous studies that have found that neurologically healthy
adults tend to display a rightward bias in bisection performance
when viewing lines in extrapersonal space (21–25). Gamberini
et al. (22) for example, presented participants with lines at four
viewing distances (two in peripersonal space, two in extrapersonal
space) in both real and virtual environments. Participants dis-
played an abrupt left-to-right shift of bisection upon transitioning
from peripersonal to extrapersonal space in both environments.
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Despite the entirety of the current task being completed in reach-
able space, it should be noted that in our experiments a leftward
bias, characteristic of the pseudoneglect exhibited by healthy adults
(18, 19) was not observed when participants were grasping in near
reachable space.

The gaze position data collected during the same reaching-
to-grasp task provides additional insight into the spatial biases
observed amongst the right- and left-handed participants and sug-
gests the possibility that the patterns of space use for grasping may
have their origins in visual attentional biases. During construction
of the first model participants’gaze appeared to be fairly evenly dis-
tributed in all quadrants. We speculate that the lack of spatial bias
during the construction of the first model results from the novelty
of the workspace and task. This postulation was further supported
by inspection of the initial gaze position data, which indicated
a dissociation between gaze position and initial grasp location.
Initially, gaze was predominantly directed to RF space whilst the
participants’ initial grasp tended to be located in LN space. In
agreement with the literature (67–70) the participants appeared to
scan the workspace to locate the salient blocks prior to initiating
construction rather than use memory of spatial location. Further-
more, participants did not limit their search to the favored area of
grasping (i.e., RN space). During the construction of subsequent
models, however, as may be expected the spatial distribution of the
gaze position data largely mirrored that observed in the grasping
behavior with gaze being directed toward the task relevant loca-
tions (46–51). Specifically, when constructing the fourth model,
participants directed overt visual attention predominantly toward
left hemispace and far space, this corresponds with the location of
the majority of the blocks remaining in the array (as well as the
spatial biases observed during grasping). Interestingly, the overall
gaze position data (i.e., across all four models) indicated that on
average participants dedicated a greater proportion of overt visual
attention to left hemispace and far space.

A possible explanation for the increased visual attention to left
hemispace in the right-handed participants is that when grasp-
ing blocks from left space participants would either be using their
dominant right hand to reach and grasp in contralateral space, or
alternatively would be using their non-dominant hand to grasp
the block in ipsilateral space. It is conceivable that both of these
scenarios would be more attentionally demanding for the partic-
ipant than using the dominant hand to reach in ipsilateral space.
Therefore, we may expect that participants would allocate more
attentional resources (i.e., gaze) to effectively and efficiently grasp
blocks in left hemispace. Further inspection of the gaze position
data presented the possibility that the participants’ overt visual
attention may have been drawn toward far space by the placement
of the “home” model. This postulation is in agreement with prior
work (67–70) suggesting that one of the two major functions of the
eyes during everyday actions is to gather information on objects
with which we are interacting (locating and checking ). In the case
of the model building task this would necessitate frequently check-
ing the “home” model to identify the next block to be located as
well as to ensure the accuracy of the replica model. Despite the
exclusion of gaze directed to the “home” model or base plate from
our analyses, the “home” model may have attracted the partici-
pants gaze to far space. We intend to examine these possibilities in

future studies to elucidate the basis of the observed spatial biases
described here. Despite the reported natural propensity for gaze to
be drawn toward left far space the finding that the general pattern
of gaze followed that of grasping provides support for the postu-
lation that the observed patterns of space use for grasping result
from attentional biases.

Our findings have implications for our understanding of visuo-
motor deficits in a variety of patient populations,particularly those
with hemispatial neglect. The data suggests that neurologically
intact individuals physically neglect left far space, potentially as
a consequence of inattention to this spatial location. This raises
the possibility that the spatial biases observed among individu-
als with left hemispace neglect (i.e., bias toward right hemispace)
may not purely be a result of syndrome specific neglect but may
reflect in part an exacerbation of an inherent tendency to neglect
left far peripersonal space. Alternatively, it is possible that the
findings could be explained by hemispheric specialization for visu-
ally guided grasping. Neuroimaging studies have revealed several
brain areas implicated in the planning and execution of human
[i.e., superior parieto-occipital cortex (SPOC); (71, 72)] and pri-
mate [i.e., V6A; (73, 74)] visually guided grasping. Furthermore
these studies have highlighted the unique role of the posterior
parietal cortex in coding reachable vs. unreachable space (71, 72,
75). For example, Gallivan et al. (72) found that SPOC was selec-
tively activated for objects within reachable space. Interestingly,
this activation was found in the left hemisphere for both right-
and left-handers. If SPOC in the left hemisphere turns out to be
specialized for distinguishing object within reach then, one might
expect objects within right hemispace to be preferentially discrim-
inated. This bias could account for the late use of LF space for
grasping. Future research should aim to elucidate the basis of the
neglect of left far space with respect attentional biases and/or hemi-
spheric specialization. In addition, the contribution of this inher-
ent neglect of left far space to the visuomotor deficits observed in
patients with right hemisphere lesions with and without unilateral
visuospatial neglect warrants further investigation.
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The Dual Visuomotor Channel Theory proposes that manual prehension consists of two
temporally integrated movements, each subserved by distinct visuomotor pathways in
occipitoparietofrontal cortex. The Reach is mediated by a dorsomedial pathway and trans-
ports the hand in relation to the target’s extrinsic properties (i.e., location and orientation).
The Grasp is mediated by a dorsolateral pathway and opens, preshapes, and closes the
hand in relation to the target’s intrinsic properties (i.e., size and shape). Here, neuropsy-
chological, developmental, and comparative evidence is reviewed to show that the Reach
and the Grasp have different evolutionary origins. First, the removal or degradation of
vision causes prehension to decompose into its constituent Reach and Grasp compo-
nents, which are then executed in sequence or isolation. Similar decomposition occurs
in optic ataxic patients following cortical injury to the Reach and the Grasp pathways and
after corticospinal tract lesions in non-human primates. Second, early non-visual PreReach
and PreGrasp movements develop into mature Reach and Grasp movements but are only
integrated under visual control after a prolonged developmental period. Third, compara-
tive studies reveal many similarities between stepping movements and the Reach and
between food handling movements and the Grasp, suggesting that the Reach and the
Grasp are derived from different evolutionary antecedents. The evidence is discussed in
relation to the ideas that dual visuomotor channels in primate parietofrontal cortex emerged
as a result of distinct evolutionary origins for the Reach and the Grasp; that foveated vision
in primates serves to integrate the Reach and the Grasp into a single prehensile act; and,
that flexible recombination of discrete Reach and Grasp movements under various forms
of sensory and cognitive control can produce adaptive behavior.

Keywords: prehension, Reach, Grasp, Jeannerod, dual visuomotor channels, parietofrontal cortex, visually guided
grasping, haptically guided grasping

INTRODUCTION
Prehension, the act of reaching to grasp an object, is used for many
everyday functions, the most common of which is to retrieve a food
item and place it in the mouth for eating. Prehension is performed
with little conscious effort and appears as a seamless act. Thus, it
is not surprising that it is sometimes considered a single move-
ment in experimental research (1–4) or that it is proposed to have
a single evolutionary origin, possibly derived from walking (5),
climbing through tree branches (6, 7), digging (8), or capturing
prey (9).

Nonetheless, distinctive changes in prehension have been
reported after brain injury as some patients display curious impair-
ments in hand preshaping for grasping despite being able to
accurately transport the hand to the location of a visual target. To
explain this phenomena Jeannerod (10) proposes that prehension
actually consists of two distinct but temporally integrated move-
ments, a Reach and a Grasp, each mediated by different neural
pathways which project from visual to motor cortex via the pari-
etal lobe. The Dual Visuomotor Channel Theory (10, 11) has since

received support from electrophysiological, neuroanatomical, and
brain imaging studies while also generating insight into the biome-
chanics of prehension [for reviews see Ref. (12–15)]. Nonetheless,
it does raise new questions concerning the evolutionary origins of
prehension. Specifically, how did the Reach and the Grasp come
to be mediated by different neural substrates? Indeed, the theory
seems to suggest that prehension has not one,but two,evolutionary
origins.

Various animal species display a wide range of Reach and
Grasp specializations using the tongue, mouth, neck, tail, trunk,
or hand, each of which can be guided by various sensory modal-
ities including olfaction, audition, somatosensation, and vision
(16, 17). Thus, evolutionary pressures favoring either the Reach
or the Grasp could explain differences in forelimb specialization
in different phylogenetic lineages. As an extreme example, the
third digit is specialized for stepping in the horse (18) and spe-
cialized for foraging and prey capture in the aye-aye (19, 20). In
primates, the Reach and the Grasp appear to have co-evolved and
are put to integrated use in the many movements that comprise
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prehension. Nevertheless, distinct functional, biomechanical, and
neuroanatomical features of the Reach and the Grasp suggest that
each has its own evolutionary history.

This review re-examines the origins of primate prehension
with the aim of identifying evolutionary antecedents for the
Reach and the Grasp. The Dual Visuomotor Channel Theory is
described first, followed by behavioral, neuropsychological, and
developmental evidence that without vision prehension decom-
poses into discrete Reach and Grasp components. Comparative
evidence is then presented to show that Reach and Grasp move-
ments are not only identifiable in the forelimb movements of
primates, but also in many non-primate species. Collectively,
the evidence suggests that the Reach and the Grasp are derived
from different evolutionary origins and were only recently, in
phylogenetic terms, integrated together under visual control in
primates.

THE DUAL VISUOMOTOR CHANNEL THEORY
The Dual Visuomotor Channel Theory has its origins in the pro-
posal that pointing has two phases. A ballistic movement brings
the forelimb to the general location of a target and then a visu-
ally guided corrective movement positions the hand on the target
(21). Indeed, dual phase guidance may be a general feature of
animal movement (22). The distinctive contribution of the Dual
Visuomotor Channel Theory is that it describes prehension in
ethological terms: the Reach serves to bring the hand into con-
tact with the target by transporting it to the appropriate location
whereas the Grasp serves to shape the hand for target purchase.
As distinct behaviors, the Reach and the Grasp may be subject to
different evolutionary pressures and adaptive specializations that
can be analyzed by comparative methods.

Distinctive features of the Reach and the Grasp are summarized
in Table 1. The Reach transports the hand to the location of the tar-
get so that the digits align with appropriate contact points on the
target. It is produced largely by proximal musculature of the upper
arm, is guided by the extrinsic properties of the target (location and
orientation), and is coded in egocentric coordinates relative to the
reacher. The Grasp preshapes the digits by first opening them to a
peak aperture that scales to target size, then gradually closes them
on approach to the target, and finally closes them completely for
target purchase. The Grasp is produced mainly by distal muscula-
ture of the hand and digits, is guided by the intrinsic properties of
the target (size and shape), and can be coded in spatial coordinates
intrinsic to the hand irrespective of the hand’s location relative to
the body (23).

The Reach and the Grasp are subserved by largely seg-
regated visuomotor pathways in occipitoparietofrontal cortex
(Figure 1). The dorsomedial Reach pathway projects through
the superior parietal lobule via the parietal reach region (PRR),
which includes the superior parieto-occipital cortex (SPOC/V6A),
medial intraparietal sulcus (mIPS), and anterior precuneous
(aPCu). It then projects to dorsal premotor cortex (PMd), and
finally to primary motor cortex (M1). The dorsolateral Grasp
pathway projects through the anterior intraparietal sulcus (aIPS)
to ventral premotor cortex (PMv) and from there to M1 (13,
14, 24–27). Long-train intracortical microstimulation of the
dorsomedial pathway elicits reaching movements in awake and

Table 1 | Reach and Grasp components of the DVC theory.

Reach Grasp

1. Musculature Proximal (upper arm) Distal (lower arm and hand)

2. Function Transport hand to

target

Shape hand for target

purchase

3. Spatial properties Extrinsic (location

and orientation)

Intrinsic (size and shape)

4. Spatial coordinates Egocentric Non-Ego and Egocentric

5. Visuomotor channel Dorsomedial

parietofrontal cortex

Dorsolateral parietofrontal

cortex

FIGURE 1 |The dorsomedial Reach pathway (Blue) and the dorsolateral
Grasp pathway (Green), adapted from Grafton (31). (aIPS, anterior
intraparietal sulcus; M1, primary motor cortex; mIPS, medial intraparietal
sulcus; PMd, dorsal premotor cortex; PMv, ventral premotor cortex; S1,
primary somatosensory cortex; S2, secondary somatosensory cortex;
SMA, supplementary motor area; SPOC, superior parieto-occipital cortex;
V1, primary visual cortex; V2, secondary visual cortex; V3A, visual area 3A;
V6A, visual area 6A; *, intraparietal sulcus; **, parieto-occipital sulcus).

anesthetized monkeys, whereas microstimulation of the dorso-
lateral pathway elicits grasping and/or manipulatory movements
(28–30).

The Dual Visuomotor Channel Theory posits that concurrent
visual inputs to the dorsomedial and dorsolateral pathways allow
the Reach and the Grasp to be simultaneously executed as a single
integrated act (Figure 2A). The preeminent role of vision is illus-
trated by the act of foviating the target from movement onset until
target contact (32). This visual attention is essential for identify-
ing the terminal point of the Reach, i.e., contact locations on the
target, and also for coordinating closure of the hand on approach
to the target. Nevertheless, non-visual and cognitive inputs may
act through the visuomotor Reach and Grasp pathways in order
to acquire targets in the absence of visual guidance (33), to pro-
duce pantomime Reach and Grasp movements (34, 35), and also
to produce spontaneous Reach and Grasp gestures associated with
speech (36).
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FIGURE 2 | Representative still frames illustrating (A) the Preshape
strategy used to acquire a visible target and (B) theTouch-then-Grasp
strategy used to acquire an unseen and unknown or uncertain target.
Note: for the Preshape strategy the Reach and the Grasp are temporally

integrated such that the hand preshapes and orients to the intrinsic properties
of the target before touching it. For the Touch-then-Grasp strategy the Reach
and the Grasp are temporally dissociated such that the hand does not shape
to the intrinsic properties of the target until after touching it.

VISUAL OCCLUSION DISSOCIATES THE REACH AND THE
GRASP IN HEALTHY ADULTS
One approach to dissociating the Reach and the Grasp is to manip-
ulate the relative extrinsic or intrinsic properties of a single visual
target, but this manipulation has produced ambiguous results. For
example, Jeannerod (10) finds that when the size of a visible target
is changed unexpectedly, the Grasp is altered but the Reach is not.
In contrast, Jakobson and Goodale (37) find that both the Reach
and the Grasp are altered. The difficulty in dissociating the Reach
and the Grasp with this approach is that when the shape or loca-
tion of the visual target is changed, both extrinsic and intrinsic
target properties are altered resulting in concurrent adjustments
in both the Reach and the Grasp.

An alternative way to dissociate the Reach and the Grasp is
to remove vision, such that the extrinsic and intrinsic properties
of the target must be determined non-visually. Karl et al. (38)
asked blindfolded participants to reach for targets of varying size:
a blueberry, donut ball, and orange slice. Targets were randomly
presented, one at a time, on a pedestal in front of the participants
so that they would not know which target they were reaching for
on any given trial. In performing the task, participants advanced an
open hand above and then down onto the target, often palpitating
in the region of the target until touching it. The dorsal trajectory
and open digits appeared to enhance the chances of target contact.
After touching the target, the participants used haptic cues to shape
the digits for grasping. Sometimes the hand released contact with
the target before the digits preshaped and closed to Grasp. At other
times, the target was stabilized or manipulated by some digits while

the remaining digits shaped to Grasp. Hand scaling after target
contact was equal to that of visually guided hand preshaping. Thus,
when the extrinsic and intrinsic properties of the target cannot be
visually determined, the prehensile act decomposes into sequen-
tial Reach and Grasp movements, each guided by somatosensation.
The Reach, likely mediated by proprioception, is performed first
and serves to locate the target by touching it. Only after contact
do the hand and digits shape to haptic cues in order to Grasp the
target. This two-staged act is termed a Touch-then-Grasp strategy
and is illustrated in Figure 2B.

A variation of this experiment had participants learn about the
extrinsic and intrinsic properties of the target through repeated
non-visual experience (39). Blindfolded participants reached 50
times for a donut ball. Although initially unknown, both the loca-
tion and size of the target could be learned through repetition.
As was found in the unknown target experiment, participants
persisted in using a dorsal Reach trajectory, in which the hand
approached the target from above and an open hand and digits
were used to locate the target by touching it. Nevertheless, within
a few trials the participants began to preshape hand aperture to
the size of the target before touching it. Scaling of hand aper-
ture became indistinguishable from that of sighted participants.
Thus, previous non-visual experience had differential effects on
the Reach and the Grasp such that a dorsal Reach trajectory became
coupled with a preshaped Grasp. Another experimental varia-
tion had participants perform the task using peripheral vision, a
manipulation that provided enough visual information to identify
each target while still degrading information about target size and
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location (Hall et al., unpublished). Similar results were obtained,
participants maintained a dorsal Reach trajectory but could scale
hand aperture to target size before touching it albeit, less accurately
than under foveal vision.

The finding that previous somatosensory experience can
instruct accurate hand preshaping for the Grasp raises the ques-
tion of whether online haptic inputs could produce fully integrated
Reach and Grasp movements similar to that of visually guided pre-
hension. Online haptic feedback is known to be available in acts
such as reaching for a part of the body or objects on the body.
Thus, participants were asked to reach for one of three different
sized food targets that were randomly placed in their mouth by
the experimenter (40). When reaching to grasp the target, partic-
ipants preshaped and oriented the hand prior to target contact,
closed the digits in anticipation of target contact, and successfully
grasped the target on the first attempt. Scaling of hand aperture
was as accurate, and for some food items, more accurate, than that
of visually guided grasping. Thus, online haptic information from
a target held in the mouth is as informative as online vision for
guiding integrated Reach and Grasp movements.

The behaviors called upon in these studies resemble many
everyday actions in which people reach for and manipulate objects
under degraded visual conditions. Such acts include reaching for
objects in the dark, reaching for objects contacting the body (41,
42), or sequential reaching acts in which one object is grasped
while visual attention is directed to a subsequent target. Collec-
tively, these studies support the idea that somatosensation and
vision both have access to the Reach and Grasp pathways (43–47).
As will be discussed below, this conclusion further suggests that
somatosensation may have been formative in the evolution of dis-
tinct Reach and Grasp movements and their underlying neural
substrates.

VISUAL IMPAIRMENT DISSOCIATES THE REACH AND THE
GRASP AFTER BRAIN INJURY
The Reach and the Grasp are also dissociated after localized brain
injury that disrupts visual input to one or both of the visuomo-
tor pathways. Patients with such injury display optic ataxia; an
impairment in visually guided hand movements despite normal
visual perception (48, 49). Recent work with optic ataxic patients
support the postulate of the Dual Visuomotor Channel Theory
that the visuomotor pathways of the Reach and the Grasp are
subject to a double dissociation.

A number of patients with damaged visual inputs to the Grasp,
but not the Reach, pathway have been described (50, 51). These
patients have no problem reaching to the location of a visual target
and consistently touch it on the first attempt; however, they use an
open hand to do so and only close their digits to grasp the target
after touching it. Thus, these patients seemingly adopt a modified
Touch-then-Grasp strategy. They use vision to determine the tar-
get’s extrinsic properties (location) but are unable to use vision
to determine the target’s intrinsic properties (size and shape) and
thus cannot preshape the hand to Grasp prior to target contact.
Instead they rely on haptic cues after target contact to shape their
digits to the contours of the target in order to Grasp it.

Cavina-Pratesi and colleagues (52) describe the reverse condi-
tion, in which a patient cannot perform a visually guided Reach but

can perform a visually guided Grasp. The patient, M.H., suffered
an anoxic episode, disrupting visual inputs to the Reach but not
the Grasp pathway. M.H. accurately opens, preshapes, and closes
his hand to Grasp a visual target, but only if the target is located
adjacent to his hand; i.e., if he doesn’t have to Reach for it. If he does
have to Reach for it, he must first locate it by touch before shaping
his hand to Grasp it: “Presumably M.H., wittingly or unwittingly,
compensates for the direction and distance errors resulting from
his damaged visual reaching network, by habitually opening his
hand widely: the wider the hand aperture, the higher the proba-
bility of successfully acquiring the object.” M.H.’s visually guided
Reach movements are inaccurate regardless of whether the move-
ment is directed inward (toward his body) or outward (away from
his body), indicating that his deficit is related to visual guidance
of the Reach and not the location of the target within egocentric
space. Thus, M.H. can use vision to guide his hand in relation to the
intrinsic (size and shape) but not extrinsic (location) properties
of a target.

The neural substrates that integrate the Reach and the Grasp
under visual control may extend beyond the cortex into the spinal
cord. Karl and Whishaw (53) re-examined the Reach and the Grasp
movements of monkeys with bilateral corticospinal tract (CST)
lesions, first described by Lawrence and Kuypers (54). The analy-
sis suggests that these monkeys may also use a Touch-then-Grasp
strategy to acquire visual targets. They Reach toward the target
using an open and extended hand and often miss the target on the
first attempt. They then palpitate the hand in the vicinity of the
target until they touch it. After initial contact, the hand releases
contact with the target, re-shapes, re-orients, and finally closes to
Grasp the target (Figure 3). Similar impairments in hand preshap-
ing have also been reported following more selective CST lesions
in monkeys (55–57).

Taken together these lesion studies suggest that the visuomo-
tor pathways of the Reach and the Grasp are separate. They also
suggest that if brain injury deprives a subject of visual informa-
tion, somatosensory mediated Reach and Grasp movements are
adopted. Finally, it is possible that direct corticomotoneurons in
primates mediate the motor output for visual control of the Reach
and the Grasp pathways. It is instructive that direct corticomo-
toneurons and the dorsal visual stream evolved concurrently in
the primate lineage.

DISSOCIATION OF THE REACH AND THE GRASP IN EARLY
INFANCY
At about 5 months of age human infants begin to haphazardly
reach for visual targets, gradually becoming more accurate at
bringing a single hand to the target, and finally developing preci-
sion grips to grasp (58–63). We have re-examined the development
of infant reaching in order to determine whether the Reach and the
Grasp have different developmental profiles. The results show that
the Reach and the Grasp emerge independently as PreReach and
PreGrasp movements in early development and require a signifi-
cant length of time to become fully integrated under visual control.

Young infants produce a variety of PreReach movements before
they can direct a single hand to the location of a visual target.
From birth infants can orient the eyes and head to a visual tar-
get (64, 65). Soon after, they reach for the target with the mouth
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by thrusting the head forward and flexing the abdominals [Ref.
(66); Video S1 in Supplementary Material], eventually they use a
fisted hand to swipe and wave at the target (67). Consummation of
these PreReach movements into a targeted, visually guided Reach
only emerges at about 5 months of age. Initially an open hand
advances along a jerky trajectory to make imprecise contact with
the target (61). This ability develops equally whether the infant has
sight of their hand or not and successful contact with the target is
signaled by haptic rather than visual feedback (68, 69). However,
by 7–9 months, visual control of the Reach improves significantly
such that the location and orientation of the open hand accurately
reflect the extrinsic properties of the target at the moment of target
contact (53, 70, 71).

Young infants also produce a variety of PreGrasp movements
before they can preshape the hand and digits to match the contours
of a visual target. At birth the digits display a closed and flexed pos-
ture, but by 1 month they adopt a collected posture in which the
hand is relaxed and partially open (72). Nevertheless, newborn
infants will close the digits on an object that makes haptic contact
with the palm (73) and by at least 4 months of age infants can use
haptic cues to shape the hand to match the contours of an object
(74). By 2 months of age infants start “hand babbling,” producing
a variety of spontaneous but complex digit movements that form
a variety of Grasp configurations. Movements include extension
and flexion of individual digits, sequential digit movements, and
pressing individual digit pads together to form vacuous pincer
and precision grips [Ref. (75); Video S2 in Supplementary Mate-
rial]. At 4 months, these movements become self-directed and are

used to grasp the infant’s own body or clothing. In performing
these movements, infants do not look at their hands, suggesting
that the movements are shaped by somatosensation rather than by
vision.

Not only do the Reach and the Grasp emerge independently in
early development, but they require a long developmental period
to be integrated under online visual control. When infants first
start to Reach to visual targets, they advance an open hand along
a jerky trajectory, often missing the target on the first attempt
or making multiple contacts between the open hand and target
before closing to Grasp it. Thus, they do not preshape the hand
to the target and use a Touch-then-Grasp strategy similar to that
described above for unsighted adults. As infants age, they become
more accurate at using vision to direct an open handed Reach
to the target on the first attempt; however, they do not preshape
the hand and haptic contact with the target continues to instruct
shaping of the Grasp, similar to the first set of optic ataxic patients
described in the previous section [Figure 4; Ref. (68, 76)]. Thus,
the Reach and the Grasp are dissociated in early development
and complete integration of the two movements under visual
control, such that the hand accurately preshapes prior to target
contact, does not appear to be complete until at least 2 years of age
(53, 77).

In summary, analyses on the development of prehension
provide evidence that the Reach and the Grasp follow inde-
pendent developmental profiles. Initially, both the Reach and
the Grasp emerge under somatosensation and only later come
under visual control. Even then, visual guidance of the Reach

FIGURE 3 | Representative still frames illustrating theTouch-then-Grasp
strategy used by a macaque monkey to acquire a visible target 5 months
after a bilateral corticospinal tract lesion. Note: even though vision is

available the monkey advances an open hand toward the target, and only
shapes and closes the hand to grasp the target after it has been touched
[videos provided by Lawrence (54)].

FIGURE 4 | Representative still frames illustrating theTouch-then-Grasp strategy used by a 7-month old human infant in order to acquire a visible
target. Note: even though vision is available the infant advances an open hand toward the target, touches the target, and, only after contact, then re-orients,
shapes, and closes, the hand to Grasp it.
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develops before visual guidance of the Grasp. Finally, integration
of the Reach and the Grasp under visual control only appears
after a protracted developmental time course lasting into early
childhood.

DISTINCT EVOLUTIONARY ORIGINS FOR THE REACH AND
THE GRASP
The preceding lines of evidence show that somatosensory and
visual information have equal access to the neural pathways that
control the Reach and the Grasp. When vision is removed or
limited, as occurs with visual occlusion, brain injury, or early
in development, the Reach and the Grasp are dissociated by a
Touch-then-Grasp strategy that maximizes the use of haptic feed-
back for guiding each movement independently. Nevertheless, the
Reach and the Grasp can be integrated under non-visual con-
trol, similar to visually guided prehension, if online haptic feed-
back concerning the target is available. In the following section
we will consider evidence that haptically mediated Reach and
Grasp movements are phylogenetically older than those guided
by vision.

In phylogenetically early quadrupeds, the neural control of the
forelimbs and hindlimbs is tightly coupled to subserve locomotion,
but even when stepping a forelimb has independence. Forelimb
stepping is achieved by first flexing the forelimb to release contact
with the substrate and then extending it to re-establish contact
at another location (78). Semi-independent control of a single
forelimb likely evolved to allow animals to circumvent obstacles
and to navigate over uneven terrain (5, 79–81). Complete inde-
pendence of a single forelimb allowed the stepping movement
to be adapted for a variety of non-locomotor functions such as
pushing, swatting, or digging. For instance, a polar bear may
flex and extend a single forelimb in order to pin a slippery fish
to the ground, a cat may flex and extend a single forelimb to

swat at a fly, or a boar may flex and extend a single forelimb
to uncover a food item covered by soil. Thus, the wide range of
independent forelimb movements produced by various animals,
including Reach movements, may be derived from a common
origin, stepping.

Our behavioral and kinematic analyses reveal similarities
between forelimb stepping and the Reach movement which sup-
port the idea of common origin (Figure 5). We have exam-
ined a variety of movements in rodents and primates, includ-
ing walking in rats, crawling in humans, and climbing and
reaching in both species. In all of these behaviors, the fore-
limb movement is initiated by flexing the elbow and lifting the
hand from the substrate. The digits then flex and close in a
collected posture as the limb is transported forward. The digits
then open and extend as they approach the target. The hand
then pronates in the lateral to medial direction and is finally
placed on the target or substrate (38, 82, 83). Thus, a number
of kinematic similarities shape both forelimb stepping and the
Reach movement.

For movements of stepping and its derivatives, vision is not
essential. Vision is usually directed ahead of the limb’s target (84,
85). Thus, the step is performed in the absence of online sensory
control until it receives haptic confirmation associated with limb
placement. A rat may use vibrissae cues to signal where to step
(83) but in its forward movement, this sensory signal precedes
the step. Likewise, a rat may use olfactory cues to locate a food
item that it will retrieve with a Reach, but the animal must dis-
place its head in order to clear a path for the hand to the target
(86). As a result, rats perform both stepping and Reach move-
ments in the absence of online visual control (83, 87). Thus, like a
blindfolded human reaching for an unknown target, the rat does
not preshape the hand prior to target contact and cannot learn
to do so even with extended training (88). Detailed information

FIGURE 5 | Representative still frames illustrating the kinematic
structure of (A) a rat forelimb stepping movement, (B) a rat Reach
movement, and (C) a human non-visual Reach movement. Note: all
three movements share a common kinematic structure in which the hand

is first lifted from the underlying substrate, the digits collect and extend
as the arm is advanced forward, and the hand pronates before being
placed on the new substrate. Adapted from Whishaw et al. (83) and Karl
et al. (38).
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on the sensory control of the forelimb for most actions in most
animal species is not available, but available evidence suggests
that visual guidance is not prominent in species other than pri-
mates. Taken together, comparative evidence for kinematic sim-
ilarities in the structure of forelimb transport, collection, and
lateral to medial pronation, coupled with the distinct absence of
hand preshaping, argues that only the Reach movement, not an
integrated Reach-to-Grasp movement, is derived from forelimb
stepping.

The Grasp action, especially grasping a food item, is a com-
mon forelimb movement in many vertebrate orders (16, 17, 89).
Grasping not only involves holding a food item and bringing it to
the mouth with a hand, but taking an item from the mouth with
a hand or taking it from one hand with the other hand, as well as
manipulating the item in preparation for consumption. Further-
more, in various non-primate species, specialized hand and digit
movements may be used to Grasp and remove the hard shell from
a sunflower seed, the spiky legs from a cricket, or the fleshy peel
from an orange (90–93). In all of its manifestations these Grasp
movements are guided by hapsis. Thus, the demands of a diverse
diet have led to the evolution of dexterous and haptically sensitive
hands (94–96).

The many manipulations made by the hand in handling food
require preshaping by both the hand and the mouth to receive
the food item (97). These preshaping movements are the likely
origin of hand preshaping for the primate Grasp. Comparisons
of rat and human hand preshaping prior to retrieving a food
item from the mouth are illustrated in Figures 6 and 7. The
human is blindfolded and the location of the rodent’s eyes pre-
vent it from observing its hands. For both species, online haptic
feedback from the food in the mouth guides hand preshaping

in order to Grasp the food item. The movement is initiated by
lifting the hand from a substrate, preshaping the hand to the
size of the target, and closing the digits on approach to the tar-
get in order to Grasp it (Figure 6). Even though rodents are
unable to preshape the hand when reaching to a distal target;
they, like primates, readily use oral hapsis to scale hand aper-
ture to the size of a target in the mouth (Figure 7), which is also
similar to visually guided hand preshaping displayed by primates
(40, 97).

After the target is grasped a large and varied vocabulary
of specialized grip configurations and independent digit move-
ments may be used to manipulate, explore, or stabilize the
food item (Figure 8). For further descriptions in non-primates
see (17, 91–93, 97). For descriptions in primates see (98–
100). That both rodents and primates use haptic information
to Grasp a food item in the mouth suggests that haptically
guided hand preshaping, as well as manipulatory digit move-
ments, predate visually guided Grasp movements in primates
(40, 96).

DISTINCT ANATOMICAL ORIGINS FOR THE REACH AND THE
GRASP
In addition to classic work (5), recent electrophysiological and
brain imaging studies in non-human primates and humans
support the notion that cortical control of the Reach could
be derived from a pre-existing locomotion pathway in pari-
etofrontal cortex. Like the Reach, stepping appears to be medi-
ated by a dorsomedial pathway in parietofrontal cortex. Elec-
trical stimulation of this pathway elicits bilateral movements of
the forelimbs and hindlimbs that resemble spontaneous run-
ning or leaping in monkeys (28–30, 101). In humans, regions

FIGURE 6 | Representative still frames illustrating the kinematic
structure of (A) a rat food handling movement and (B) a human
food handling movement. Note: both movements share a common
kinematic structure in which the hand is first lifted from the substrate,

the digits then preshape to the target, and finally the digits close on
approach to the target in order to grasp it. White arrows indicate hand
preshaping in the rat. Adapted from Whishaw et al. (97) and Karl et al.
(38, 40).
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FIGURE 7 | Representative still frames illustrating hand preshaping
before touching the target in (A) rat food handling movements, (B)
human food handling movements, and (C) human visually guided
Grasp movements. Note: in all three situations online haptic (food
handling) or visual (Grasp) information is available to guide hand preshaping
such that a large peak hand aperture is used to Grasp a large food item, an
intermediate peak hand aperture is used to Grasp a medium-sized food
item, and a small peak hand aperture is used to Grasp a small food item.
Adapted from Whishaw et al. (97) and Karl et al. (40).

of dorsomedial posterior parietal cortex (PPC) mediate reach-
ing to visible targets with the arms and hands, but also subserve
pointing and stepping movements to visible targets with the foot
(102–106). Although the stepping and Reach pathways overlap
in dorsomedial PPC, they appear to diverge in frontal cortex.
Thus, regions of overlap (SPOC/V6A, mIPS) may code for a spe-
cific behavioral function; i.e., transport of a limb to a different
spatial location, whereas regions of divergence (PMd/SMA and
M1) might specify the body part used to execute that behavior,
i.e., the foot (stepping) or the hand [forelimb stepping/Reach;
Ref. (104)].

Food handling, like grasping, may be mediated by a dorsolat-
eral pathway in parietofrontal cortex. Electrical stimulation of this
dorsolateral pathway elicits hand-to-mouth movements, in which
the hand is lifted toward an open mouth and the digits shape to
Grasp (28–30, 101). In humans, a similar region in the inferior
parietal lobule is activated when performing grasping movements
with either the mouth or hands (107). Furthermore, aIPS, the
parietal region of the dorsolateral Grasp pathway, receives strong
somatosensory inputs (29, 108–110) and mediates grasping and
manipulatory digit movements directed toward both visual and
haptic targets (44–46, 111, 112). Thus, it is possible that, like the
stepping and Reach pathways, the food handling and Grasp path-
ways may overlap in parietal cortex (aIPS), which might code
for a specific behavioral function, i.e., shaping a body part to
grasp/manipulate a target, whereas regions of divergence (M1)
could specify the body part used to execute that behavior, i.e., the
mouth (bite) or the hand (Grasp).

FIGURE 8 | Representative still frames illustrating specialized grip
configurations and independent digit movements in rodents during
food handling. (A,B) A rat eating uncooked spaghetti, the left hand holds
the pasta near the mouth with the digit tips (a modified precision grip)
while the right hand uses a scissor grip between digits 4 and 5 to push
the pasta toward the mouth. (C,D) A hamster eating a sunflower seed,
both hands hold the seed in a modified precision grip between digit 1 (the
thumb) and digits 2 and 3 as the mouth bites into the shell. Two objects
can also be held at once, the seed is held in a modified (bilateral) pincer
grip between digits 1 and 2, the shell is held in a bilateral power grip
between the palm and digits 3 and 4, while digit 5 is positioned on the
ventral surface of the seed, likely to stabilize the grip on both objects.
(E,F) A Mongolian gerbil eating a sunflower seed. A bite from the incisors
is used to open the shell (not shown). The bottom half of the shell is held
in the digit tips as the left hand uses a precision grip to grasp and discard
the top portion of the shell. The left hand then grasps the bottom half of
the shell in the digit tips (precision grip) and discards it as the right hand
uses a precision grip to hold the seed in the mouth. Adapted from
Whishaw et al. (93), Whishaw et al. (92).

Interestingly, lesions to V6A, a crucial node in the dorsome-
dial Reach pathway, disrupt both Reach and Grasp movements
(113), although, as demonstrated by Cavina-Pratesi et al. (52),
the Grasp impairments could emerge as a secondary consequence
of misreaching. Nevertheless, V6A receives inputs from AIP [the
macaque homolog of human aIPS; Ref. (108, 114)] and con-
tains orientation- and grip-selective neurons (115–117). Thus,
V6A could have originally evolved to serve the Reach, but through
its connections with AIP, it may also monitor preshaping of the
Grasp as the hand is advanced toward the target. Thus, primate
V6A may serve as a visuoproprioceptive “integrator,” ensuring that
visually guided Reach and Grasp movements unfold in tempo-
ral synchrony (116). Indeed, the neural substrate that integrates
the Reach and the Grasp must emerge early in the visuomotor
pathways in order to integrate the two movements from action
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onset. One way to determine whether the grip-selective prop-
erties of neurons in V6A are intrinsic to this cortical area, or
emerge in response to inputs from AIP, would be to selectively
lesion AIP while observing the effect on grip-selective neurons
in V6A.

Although non-primate species do not display visually guided
hand preshaping during reaching, behavioral evidence suggests
that the sensorimotor representations of the Reach and the Grasp
should be similar to that of primates with respect to motor control.
For instance, the rat has a well-developed forelimb representation
in anterior motor cortex consisting of a relatively smaller rostral
forelimb area (RFA) and a larger caudal forelimb area [CFA; for a
reviews see Ref. (118, 119)]. Microelectrical stimulation of these
regions produces brief movements of distal and proximal regions
of the contralateral forelimb, respectively. Longer train electri-
cal stimulation in the RFA is more likely to elicit movements
involving the hands, including grasping, whereas stimulation in
the CFA elicits whole limb movements (120), some of which
resemble reaching. Inactivation of these regions disrupts Grasp
and Reach movements respectively (Brown and Teskey, unpub-
lished). Additionally, results from brainstem stimulation in freely
moving rats suggest separate subcortical regions mediate the Reach
(stepping movements) and the Grasp (food handling movements).
For example, forced forelimb movements are obtained by electri-
cal stimulation in the region of nucleus gigantocellularis whereas
fictive eating (the rats sits on its haunches and engages in food
handling and eating without food) from the region of the locus
coerulelus (121).

We also suggest that descending projections from cortical
motor regions may form the efferent control of the cortical visuo-
motor Reach and Grasp pathways. The direct projections of the
CST are distinctive in primates (122) but have been associated
with the production of independent digit movements (54, 123,
124). Yet there are many difficulties with the independent digit
theory, including definitional difficulties related to independent
digit movements as well as evidence that deficits following cor-
tical injury are related to movement synergies, not independent
digit control (125, 126). Independent digit movements are also
distinctive in the hand babbling movements of infants as young
as 2 months of age (75), well before maturation of the direct con-
nections of the CST is complete (127, 128). In the earliest stages
of development and following CST lesions in primates, prehen-
sion resembles optic ataxia in that the Reach and the Grasp do
not appear to integrate under visual control, but are characterized
instead by a distinct absence of hand preshaping as well as the use
of modified Touch-then-Grasp strategies. The prolonged develop-
mental period required to integrate the Reach and the Grasp also
seems to parallel the long maturational period characteristic of the
direct projections of the CST. Taken together, this evidence seems
to suggest that, in primates, visual integration of the Reach and
the Grasp co-evolved with direct corticospinal projections from
motor cortex.

Collectively, anatomical studies confirm predictions from
behavioral work that separate pathways should subserve the Reach
and the Grasp in non-primate species and that these species could
be further examined to identify the neural origins of primate Reach
and Grasp movements. Specifically, it is proposed that the neural

circuits for stepping are the evolutionary antecedent for the Reach
whereas the neural circuits for food handling are the evolutionary
antecedent for the Grasp. Early in their evolution these movements
were importantly dependent on non-visual guidance, including
somatosensation and olfaction,whereas visual control of the Reach
and the Grasp appears to have emerged later as a primate special-
ization. The proposition that visually guided Reach and Grasp
movements might be derived from pre-existing non-visual step-
ping and food handling circuits fits well with recent evidence that
movement representations in primate parietofrontal cortex are
both effector- and modality-independent (42).

CONCLUSION
Healthy adults use vision to integrate the Reach and the Grasp into
a unified prehensile act by preshaping the hand and digits to the
size and shape of a visible target as the hand is advanced toward it.
This behavior is critically dependent on foveal vision. Nevertheless,
when visual inputs are limited or disrupted as occurs during early
development, under visual occlusion, or following brain injury,
prehension decomposes into its constituent movements: a Reach
that advances an open hand in order to haptically locate the target
and a haptically guided Grasp that shapes the hand and digits for
target purchase.

The independence of the Reach and the Grasp under non-
visual control supports the proposition of the Dual Visuomotor
Channel Theory that the neural substrates of the Reach and the
Grasp are distinct and derived from different evolutionary ori-
gins. Collective evidence suggests that the primate Reach is one
of a number of species-specific adaptations derived from fore-
limb stepping, whereas the primate Grasp is one of a number
of species-specific adaptations derived from food handling. Thus,
distinct motor circuits for the “Reach” and the “Grasp” may have
emerged relatively early in evolution and were likely influenced
more by non-visual than visual inputs. Expansion of the primate
visual system would have given rise to a number of new connec-
tions between occipital and parietofrontal cortex, allowing vision
to harness these pre-existing“Reach”and“Grasp”circuits resulting
in multiple visuomotor pathways from occipital to parietofrontal
cortex (Figure 9). No longer constrained by the necessity of haptic
control, the Reach and the Grasp could be executed simultane-
ously, rather than sequentially, giving primates the unique ability
to preshape the hand to the intrinsic properties of a visual target
before touching it.

Finally, distinct neural and evolutionary origins for the Reach
and the Grasp would allow for a multiplicity of Grasp movements
including various single handed pincer, precision, or power grasps,
as well as any combination of two handed grasps to be combined
with a multiplicity of Reach movements including single handed
reaches, two handed reaches, pushes, throws, or swats, all of which
can executed under various forms of sensory or cognitive control.
Thus, the proposition that distinct motor circuits for the Reach and
the Grasp evolved separately and only came under visual control
late in the evolutionary process supports the idea that the Reach
and the Grasp pathways in parietofrontal cortex are accessed not
only by vision, but also by a variety of non-visual and cogni-
tive inputs in order to produce a diverse repertoire of adaptive
behaviors upon which natural selection may act.
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FIGURE 9 | A model illustrating the proposed evolutionary origins for
dual visuomotor Reach and Grasp channels in primate parietofrontal
cortex. The original dorsomedial stepping/Reach circuit (blue) and the
dorsolateral food handling/Grasp circuit (Green) evolved first and were
subsequently harnessed by the primate visual system (Orange) through
neural re-use (129). (aIPS, anterior intraparietal sulcus; M1, primary motor
cortex; mIPS, medial intraparietal sulcus; PMd, dorsal premotor cortex;
PMv, ventral premotor cortex; S1, primary somatosensory cortex; S2,
secondary somatosensory cortex; SMA, supplementary motor area; SPOC,
Superior parieto-occipital cortex; V1, primary visual cortex; V2, secondary
visual cortex; V3A, visual area 3A; V6A, visual area 6A, *, intraparietal
sulcus, **, parieto-occipital sulcus).

ACKNOWLEDGMENTS
This research was supported by the Natural Sciences and Engineer-
ing Research Council of Canada (Jenni M. Karl, Ian Q. Whishaw),
Alberta Innovates-Health Solutions (Jenni M. Karl), and Canadian
Institutes of Health Research (Ian Q. Whishaw).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Journal/10.3389/fneur.2013.00208/
abstract

Video S1 | PreReach movements made with the mouth in a 2-month old
human infant. Adapted from Foroud and Whishaw (66).

Video S2 | Hand babbling in a 2-month old human infant. Note the
production of independent digits movements and vacuous pincer and precision
grips. Adapted from Wallace and Whishaw (75).
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Brain lesions may disturb hand functioning in children with cerebral palsy (CP), mak-
ing it difficult or even impossible for them to perform several manual activities. Most
conventional treatments for hand dysfunction in CP assume that reducing the hand dys-
functions will improve the capacity to manage activities (i.e., manual ability, MA). The aim
of this study was to investigate the directional relationships (direct and indirect pathways)
through which hand skills influence MA in children with CP. A total of 136 children with
CP (mean age: 10 years; range: 6–16 years; 35 quadriplegics, 24 diplegics, 77 hemiplegics)
were assessed. Six hand skills were measured on both hands: touch-pressure detection
(Semmes–Weinstein esthesiometer), stereognosis (Manual Form PerceptionTest), proprio-
ception (passive mobilization of the metacarpophalangeal joints), grip strength (GS) (Jamar
dynamometer), gross manual dexterity (GMD) (Box and Block Test), and fine finger dex-
terity (Purdue Pegboard Test). MA was measured with the ABILHAND-Kids questionnaire.
Correlation coefficients were used to determine the linear associations between observed
variables. A path analysis of structural equation modeling was applied to test different mod-
els of causal relationships among the observed variables. Purely sensory impairments did
seem not to play a significant role in the capacity to perform manual activities. According
to path analysis, GMD in both hands and stereognosis in the dominant hand were directly
related to MA, whereas GS was indirectly related to MA through its relationship with GMD.
However, one-third of the variance in MA measures could not be explained by hand skills.
It can be concluded that MA is not simply the integration of hand skills in daily activities
and should be treated per se, supporting activity-based interventions.

Keywords: cerebral palsy, hand, manual ability, activities of daily living, body functions, dexterity, path analysis,
relationships

INTRODUCTION
Hand functioning, the ability of the hands to perform properly
in various contexts, requires the integrity of the central nervous
system and, therefore, may be disturbed by different brain disor-
ders. Cerebral palsy (CP) is the most prevalent form of physical
disability in children (1), occurring in 1 out of 303 live births
(http://www.cdc.gov/ncbddd/cp/index.html). Almost 50% of chil-
dren with CP present an arm–hand dysfunction (2, 3). Children
with unilateral spastic CP seldom use their paretic hand spon-
taneously in daily activities (2, 4). For these reasons, increasing
attention in the last decade has focused on hand functioning in
children with CP.

Abbreviations: AIC, Akaike information criterion; AROM, active range of motion;
β, standardized path coefficient; BIC, Bayes information criterion; χ2, chi-squared
statistic; CAIC, consistent Akaike information criterion; CIMT, constraint-induced
movement therapy; CP, cerebral palsy; DH, dominant hand; FFD, fine finger dex-
terity; GMD, gross manual dexterity; GMFCS, gross motor function classification
system; GS, grip strength; HABIT, hand–arm bimanual intensive training; ICF, inter-
national classification of functioning, disability, and health; IQ, intellectual quotient;
MA, manual ability; MBRs, mental body representations; n, number; NDH, non-
dominant hand; P, proprioception; Q1, first quartile; Q3, third quartile; RMSEA,
root mean square error of approximation; S, stereognosis; SD, standard deviation;
SE, standard error; TD, touch-pressure detection.

The impact of CP on a child’s hand functioning may be formal-
ized through the theoretical framework of the International Clas-
sification of Functioning, Disability, and Health (ICF) (5). Accord-
ing to the ICF, CP may affect three separate but related domains of
functioning: body functions and structures (body domain), activ-
ities (individual domain), and participation (social domain). In
the present work, only the body and individual domains were
considered, as the social dimension cannot be reduced to the sole
functioning of the hands. Body functions include the physiologi-
cal or psychological functions of the different body systems. Body
structures refer to the anatomic parts of the body (e.g., organs,
limbs, and their components). By definition, CP is a consequence
of early brain lesions that may affect the corticospinal tract. CP
may impact the hand and its components (e.g., muscles, joints,
and bones), as well as several body functions (e.g., muscle strength,
control of rapid coordinated movements, touch-pressure detec-
tion, and recognition of common objects and shapes). CP may
also limit the ICF domain of activities, which refers to the ability to
execute an essential task or action of daily living (e.g., eating,drink-
ing, grooming, or dressing). In this paper, the term “hand skills”
will be used to refer to hand functions (ICF body domain) and
hand mobility (ICF activity domain, mobility subdomain). The
term “manual ability” (MA) will be used to refer to the children’s
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capacity to manage daily activities requiring the use of hands and
upper limbs (ICF activity domain, self-care subdomain) (6).

One fundamental rehabilitation goal is to improve the child’s
ability to manage daily activities necessary for autonomous liv-
ing (7). Most conventional treatments endeavor to reduce hand
impairments by normalizing movement patterns, stretching spas-
tic muscles, strengthening weakened muscles, etc., assuming that
body impairments are largely responsible for the difficulties expe-
rienced in daily activities (2). However, the ICF stresses the
importance of addressing the impact of CP on the child’s hand
functioning beyond the body level. The ICF has contributed to
a recent shift away from body functions and toward the activi-
ties and participation perspectives (8). Recent neurorehabilitation
concepts have emphasized what children do in their actual envi-
ronment, rather than what they can do in a standardized environ-
ment (9). Newly developed activity-based interventions, including
constraint-induced movement therapy (CIMT) (10) and hand–
arm bimanual intensive therapy (HABIT) (11), provide evidence
for the improvement of hand functioning (12–14).

Understanding the interrelationships between hand skills and
how these are related to MA in children with CP is crucial for plan-
ning and implementing the most appropriate rehabilitation inter-
ventions. According to previous studies in children and adolescents
with CP, MA was not related to passive range of motion (15), but
was moderately to highly related to other hand motor skills (e.g.,
active range of motion, muscle tone/strength/coordination, dex-
terity, and quality of movement) (3, 15–20). Touch-pressure detec-
tion and proprioception were weakly or not associated with MA,
whereas two-point discrimination and stereognosis were moder-
ately to highly related to MA (3, 15). However, these studies used
correlation coefficients or multiple regression analyses to study the
relationships between hand skills and MA. Although informative,
these statistical techniques do not account for the potentially com-
plex interrelationships among hand skills, such as causal chains in
which some hand skills may influence other mediating variables,
which, in turn, may predict the outcome variable (i.e., MA).

Path analysis is a more powerful tool for interpreting the rela-
tionships among a set of variables. By including “mediators,” path
analysis can identify directional relationships (both direct and
indirect pathways) through which hand skills influence MA. To our
knowledge, only one study has applied path analysis in children
with CP to study the directional relationship among spasticity,
weakness, gross motor function, and activities (21). Spasticity and
strength had significant indirect effects on activities, through their
effects on gross motor function. According to us, gross motor func-
tion mediates between body functions and activities as it reflects
a combination of both ICF domains. In the same way, dexter-
ity which is one of the hand skills that best predicts MA (3) and
the independence in daily activities (22–25) involves both the ICF
domains of body functions and activities (i.e., mobility subdo-
main including lifting/carrying objects, fine hand use, and hand
and arm use). Therefore, we hypothesized that dexterity might
link hand functions to MA. Our purpose in the present study was
to investigate the directional relationships through which hand
skills influence MA in children with CP, and to explore whether
dexterity mediates the relationships between hand functions
and MA.

MATERIALS AND METHODS
PARTICIPANTS
A cross-sectional analysis was conducted with data derived from
two existing studies (26, 27) (n= 124) and pre-treatment data
from an unpublished study investigating the efficacy of inten-
sive bimanual training (n= 12). These studies were previously
approved by the ethics committee of the Université catholique de
Louvain. All children in this study were over 6 years old, to ensure
that they had mature manipulative skills in activities of daily liv-
ing. Children in the study presented no major intellectual deficit
(IQ≥ 60 or normal school level) and were recruited through sev-
eral centers dedicated to CP. All 12 children from the second (27)
and the unpublished studies presented unilateral spastic CP. Con-
sistent with previous hand–arm bimanual intensive trials, children
from the unpublished study had to be able to grasp light objects
and lift the more affected arm 15 cm above a table surface and
were excluded if they presented: (1) uncontrolled seizures, (2)
botulinum toxin injections or orthopedic surgery in the upper
or lower extremities within the previous 12 months or planned
within the study period, and (3) visual problems likely to inter-
fere with treatment/testing. The entire sample included mainly but
not exclusively children with spastic CP (84% spastic syndrome,
4% dyskinetic syndrome, 1% ataxic syndrome, and 11% mixed
syndrome). The participant characteristics are shown in Table 1.

OUTCOME MEASURES
Six hand skills were assessed on both hands, starting with
the dominant hand (DH): stereognosis (S), proprioception (P),

Table 1 | Participants’ characteristics (n=136).

Characteristics n

Age (years) 10.0±2.6 (6–16)

SEX

Girls 56

Boys 80

LIMB DISTRIBUTION

Quadriplegia 35

Diplegia 24

Hemiplegia 77

Right 38

Left 39

SYMPTOMATIC CLASSIFICATION

Spastic syndrome 124

Dyskinetic syndromea 5

Ataxic syndrome 2

Mixed syndrome 15

GMFCS

Level I: most independent motor function 61

Level II 38

Level III 12

Level IV 21

Level V: least independent motor function 4

GMFCS, gross motor function classification system.
aAthetosic, dystonic, and choreic movements.
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touch-pressure detection (TD), grip strength (GS), gross man-
ual dexterity (GMD), and fine finger dexterity (FFD). Using the
modified Manual Form Perception Test, S was determined as the
number of objects out of 10 that a child could correctly identify
by touch (28). P was measured by passively moving the metacar-
pophalangeal joints of the thumb and index finger, and counting
the number of joint movement directions that a blindfolded child
correctly identified out of 10 trials (5 each for the thumb and
index finger) (28). TD was measured by applying the filaments
of the Semmes–Weinstein esthesiometer (Lafayette Instrument
Company, Loughborough, UK) to the tip of a blindfolded child’s
index finger, and recording the force required to bend the thinnest
filament that the child could detect (29). GS was determined as
the average maximal force exerted on a Jamar hydraulic hand
dynamometer (Therapeutic Equipment Corporation, Clifton, NJ,
USA) across three trials (30). Using the Box and Block Test (31),
GMD was determined as the maximum number of blocks trans-
ported individually from one compartment of a box to another in
1 min (32). FFD was measured from three trials of the Purdue
Pegboard Test (33) (Lafayette Instrument Company, Sagamore
Parkway North, USA) as the average number of pegs picked up
from a cup and placed into the holes of a board within 30 s (34).

Manual ability was measured with the ABILHAND-Kids ques-
tionnaire (26). For each child, the child’s parents rated 21 mostly
bimanual activities on a 3-level response scale (0: impossible, 1: dif-
ficult, or 2: easy), according to their child’s perceived difficulty in
performing the activity. Each activity had to be completed without
technical or human assistance, regardless of the limb(s) or adaptive
strategies used. Activities not attempted in the last 3 months were
not scored and were encoded as missing responses. As reported
in a previous study (26), ordinal total scores obtained on the
ABILHAND-Kids questionnaire were transformed into interval-
level measures according to the Rasch model (35). Interval-level
measures were expressed in logits (i.e., the natural logarithm of
the odds of success of a child for an activity). These measures
were subsequently recalculated into the percentage of the range
of logit measures of the scale (0–100), to facilitate their clinical
interpretation.

DATA ANALYSIS
Descriptive statistics were performed for each variable, to examine
the children’s clinical characteristics. Pearson’s correlation coef-
ficients were used to explore the magnitude of bivariate linear
associations among hand skills and between hand skills and MA,
according to Guilfords’ guidelines (36).

All hand skills that significantly related to MA were subse-
quently included in a path analysis of structural equation modeling
to test a set of multiple regression equations simultaneously, and
to assess the directional relationships (both direct and indirect)
through which the predictors influence the outcome variable (37).

Path analysis requires the development of one hypothesized ini-
tial model (e.g., of the directional relationships among the set of
variables) that is tested against the observed data and progressively
refined through successive analyses to fit the data. The theoret-
ical initial model was based on evidence from ICF theoretical
considerations (5), relevant literature, and bivariate results. The
maximum likelihood method was used to estimate the strength

and significance of hypothesized connections among the variables
included in the path model. Both unstandardized and standardized
path coefficients were estimated.

Unstandardized path coefficients indicate the expected amount
of change in MA per unit change in one predictor, while all other
predictors are controlled. Unstandardized path coefficients cannot
give the relative contribution of each predictor to each dependent
variable because they reflect the different metrics used to assess the
variables. However, they are useful for testing the path model with a
different sample, or with the same sample at different time points.
Standardized path coefficients indicate the expected amount of
change in MA per standard deviation (SD) change in one predic-
tor, while all other predictors are controlled. Standardized path
coefficients estimate the magnitude of relationships among dif-
ferent variables. They can be understood as correlation measures
showing the direct effect of an independent or mediating vari-
able on a dependent variable when other predictors are controlled.
Non-significant path coefficients imply that the parameters do not
differ from zero and could be deleted from the model.

Various fit indices were used to assess the adequacy of the
hypothesized path model and to determine how well it explains
the data (37). A good fit of the model to the data is indicated
by a non-significant chi-squared (χ2) statistic (p > 0.05), a root
mean square error of approximation (RMSEA) below 0.06 (with a
lower bound of the 90% confidence interval <0.05 and an upper
bound <0.10), an adjusted goodness-of-fit index above 0.90, and
goodness-of-fit, normed fit, comparative fit, and Tucker–Lewis
indices above 0.95 (37, 38).

Path analysis also provides modification indices, which suggest
causal pathways that may be added to improve the goodness-of-fit
indices. Additional pathways were only included in the model if
they made sense clinically. The path model was modified several
times by systematically removing non-significant path coefficients
and adding the causal pathways suggested by the modification
indices, until the goodness-of-fit indices indicated that the path
model fit the data well. Predictive fit indices favoring simpler mod-
els, including the Akaike information criterion (AIC), consistent
Akaike information criterion (CAIC), and Bayes information cri-
terion (BIC), were considered to choose the more parsimonious
model (37). The path model with the lowest AIC, CAIC, and BIC
values was chosen as the final model.

The Statistical Package for Social Sciences (SPSS) version 20.0
was used for all statistical analyses. AMOS version 21.0 was used
for the path analysis. All assumptions underlying the path analysis
were verified; namely, the linearity, normality, and constant vari-
ance of the residuals, the absence of influential outliers, and the
absence of multicollinearity. To prevent problems with collinear-
ity, when independent variables were intercorrelated by more than
0.80, only one variable was selected. Selection was made on the
basis of the clinical sense and the magnitude of the relationship
with the dependent variable. The alpha level of significance was
fixed at 0.05 for all statistical tests.

RESULTS
DESCRIPTIVE ANALYSIS OF HAND SKILLS AND MANUAL ABILITY
Table 2 summarizes the measures of hand skills and MA. Raw
scores for hand motor skills were converted into standardized
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Table 2 | Descriptive statistics of manual ability and hand skills.

Variables Mean SD Median Q1 Q3 Range Z -score

(mean±SD)

DEPENDENT VARIABLE

Manual ability (% logits) 62.69 22.00 – – – 0–100 –

INDEPENDENT VARIABLES: HAND SKILLS

S_DH (n/10) – – 10.00 9.00 10.00 1–10 –

S_NDH (n/10) – – 9.00 6.00 10.00 0–10 –

P_DH (n/10) – – 10.00 10.00 10.00 0–10 –

P_NDH (n/10) – – 10.00 8.25 10.00 0–10 –

TD_DH [log10 (10×mg)] – – 2.80 2.40 3.20 2–7 –

TD_NDH [log10 (10×mg)] – – 2.80 2.40 3.60 2–7 –

GS_DH (kg) 13.77 7.77 – – – 0–42 −1.93±1.67

GS_NDH (kg) 7.37 6.17 – – – 0–27 −3.06±1.64

GMD_DH (n/1 min) 39.61 18.28 – – – 0–86 −2.40±2.72

GMD_NDH (n/1 min) 24.33 16.82 – – – 0–67 −4.88±2.80

FFD_DH (n/30 s) 8.69 4.70 – – – 0–18 −5.38±4.16

FFD_NDH (n/30 s) 3.14 4.01 – – – 0–14 −7.78±3.24

SD, standard deviation; Q1, first quartile; Q3, third quartile; DH, dominant hand; NDH, non-dominant hand; n, number; S, stereognosis; P, proprioception; TD,

touch-pressure detection; GS, grip strength; GMD, gross manual dexterity; FFD, fine finger dexterity.

scores (Z -scores), according to normative data (30, 34, 39). For
our sample, the mean MA measure was 63± 22 on a logit
scale from 0 to 100. All hand skills were more impaired in
the non-dominant hand (NDH) compared to the DH. Gross
motor and FFD deficits were observed in both hands for all CP
types. This finding indicates that in hemiplegics, the dexterity
of the “non-paretic” hand may also be affected, especially in the
achievement of fine finger movements. Children with CP were
more severely affected in their dexterity compared to other hand
skills.

BIVARIATE ASSOCIATIONS WITHIN HAND SKILLS AND WITH MANUAL
ABILITY
Table 3 reports the correlation coefficients among hand skills and
between hand skills and MA. In both hands, MA was significantly
but moderately related to hand motor skills and S, but weakly
related to P. Although MA was not significantly related to TD in
the DH, it was weakly related to TD in the NDH. GMD and FFD
presented the highest correlations with MA for both hands, fol-
lowed by S in the DH and GS in the NDH. In both hands, GMD
and FFD were very highly intercorrelated (≥0.87).

To prevent problems with collinearity, only GMD was selected
for path analyses. A high association was observed between GMD
and GS in the NDH. In both hands, S was moderately related
to all other motor and sensory hand skills, except TD in the
DH, for which a weak relationship with S was observed. Over-
all, moderate relationships were found among sensory hand skills.
Weak relationships appeared between sensory (TD, P) and motor
hand skills, except for GS in the DH, which was only related
to S. Moderate to high correlations were observed among hand
motor skills. Finally, weak (S and FFD) to moderate (P, TD, GS,
and GMD) associations were found between hands for each hand
skill.

PATH MODEL OF HAND FUNCTIONING IN CHILDREN WITH CEREBRAL
PALSY
Figure 1 illustrates the final path model of hand functioning in
children with CP. The entire model accounted for 66% of the
variance in MA. The chi-squared value (χ2

= 8.12, 7 df, p= 0.32)
representing the overall goodness-of-fit was not significant, sup-
porting the fit of the path model. The path model showed an
adequate fit to the data according to all of the other fit indices,
except for the upper bound of the 90% confidence interval of the
RMSEA (i.e., 0.12), which was slightly higher than the optimal fit
criterion (i.e., <0.10).

Table 4 reports the unstandardized path coefficients, their
associated standard error (SE), and their significance. All causal
pathways were significant, demonstrating that all parameter esti-
mates differed significantly from zero. Table 4 also shows the
standardized path coefficients (β; see Figure 1), which reflect the
relative importance of each causal pathway. The GMD in both
hands (βGMD_DH→MA= 0.27; βGMD_NDH→MA= 0.43; p < 0.001)
and S in the DH (βS_DH→MA= 0.29; p < 0.001) were the only
hand skills to contribute directly to MA. The GS and purely
sensory skills (P, TD) did not have a significant direct relation-
ship with MA. However, in both hands, GS indirectly contributed
to MA through its impact on GMD (βGS_DH→GMD_DH= 0.71;
βGS_NDH→GMD_NDH= 0.75; p < 0.001). The GS in the DH and
NDH explained 50 and 57% of the variance in GMD, respectively.
The GMD in the DH was indirectly related to MA through its influ-
ence on S (βGMD_DH→S_DH= 0.56; p < 0.001) and accounted for
31% of the variance in S.

Table 5 shows the standardized direct, indirect, and total con-
tributions of hand skills on MA. The indirect effect was calculated
as the product of the direct effects that comprised it. For instance,
in the DH, GS indirectly affected MA through two pathways:
its direct influence on GMD (0.71× 0.27= 0.19) and its indirect
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influence on S (0.71× 0.56× 0.29= 0.12). Thus, the global indi-
rect effect of GS in the DH on MA was equal to 0.31. A similar
indirect contribution of GS on MA was observed in the NDH
(0.75× 0.43= 0.32). Among all of the hand skills investigated
in the study, GMD were the strongest contributors to MA in
both hands. Although GMD in the NDH had a higher direct
impact on MA (βGMD_NDH→MA= 0.43) than GMD in the DH
(βGMD_DH→MA= 0.27), similar total contributions were found for
both hands due to the indirect effects of GMD on MA through S
in the DH (βGMD_DH→S_DH→MA= 0.16).

DISCUSSION
This study is the first attempt to establish a model for understand-
ing hand functioning in children with CP. According to the path
analysis, GMD in both hands and S in the DH were directly related
to MA, whereas GS was indirectly related to MA through its rela-
tionship with GMD. However, one-third of the variance in MA
was not explained by the hand skills investigated in this study.

The path analysis provided a comprehensive picture of hand
functioning in children with CP by identifying several mediators
through which hand skills influence MA. Among the hand skills
investigated, GMD measures in both hands were the strongest
contributors to MA. Although related, dexterity is a separate con-
cept from MA. Dexterity refers to the physiological functions of
the hand and central nervous system that enable the execution
of rapid and coordinated hand movements and mobility, without
purposeful functioning. Dexterity tasks are generally performed
in a short period of time. Such tasks are not representative of daily
activities performed continuously throughout the day, in which
fatigue may play a role (39, 40). Moreover, dexterity tasks are too
artificial in nature and require too limited of movement patterns to
reproduce the meaningful situations encountered in daily life (41,
42). By contrast, MA refers to the use of combined hand functions
aimed at executing activities generally considered to be essential
for an individual’s daily living. Several factors (e.g., learned non-
use phenomenon, motivation, cognitive skills, familial and social
environments, etc.) may explain why people with similar dexterity
skills might present varying MA levels (3, 40). To prevent problems
with collinearity, in this study, only GMD was selected in the path
model. GMD was preferred to FFD, as GMD measures in both
hands presented the highest correlations with MA. Moreover, in
our experience, the Box and Block Test is friendlier and more sen-
sitive than the Purdue Pegboard Test to differentiate more affected
CP children. However, a similar path model fitting the data was
found when FFD was included instead of GMD.

Apart from GMD in both hands, S in the DH was the only hand
skill investigated in the study that contributed directly to MA. A
high relationship between S and MA was also previously reported
in children with unilateral congenital CP (15). The influence of
GMD on S confirms that the recognition of an object by tactile
sensation requires that the object be moved in the hand to perceive
its shape. Active in-hand manipulation is considered to be more
efficient in object identification than passive manipulation (43).
Thus, failure to identify some objects by touch might result from
manipulative deficits, rather than from real sensory impairments
(3). Carlson and Brooks (44) showed that healthy individuals pre-
sented reduced S when placed in a simulated hemiplegic hand
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Arnould et al. Hand functioning in CP children

FIGURE 1 | Final path model, illustrating hand functioning in children
with CP. Rectangles and ovals represent observed and unobserved
variables, respectively. A single-headed arrow indicates a direct effect
between two variables, pointing from the “cause” (arrow tail) to the
“effect” (arrow head). A curved, double dashed arrow indicates a correlation
between two variables without any causal assumption. Numbers beside the
single- and double-headed arrows correspond to standardized path

coefficients. Numbers in the upper right-hand corner of each rectangle
represent squared multiple correlations (R2) (i.e., proportion of the variance
in the dependent variable accounted for by the set of independent
variables). The letter “D” inside an oval represents the unobservable
disturbance (i.e., measurement error and the variance amount of a
dependent variable unexplained by the predictors) associated with each
dependent and mediating variable.

Table 4 | Maximum likelihood parameter estimates for the final path

model of hand functioning in children with CP.

Parameter Unstandardized SE p-Value Standardized

DIRECT EFFECTS

GS_DH→GMD_DH 1.71 0.11 <0.001 0.71

GS_NDH→GMD_NDH 2.01 0.12 <0.001 0.75

GMD_DH→S_DH 0.04 0.01 <0.001 0.56

GMD_DH→MA 0.32 0.08 <0.001 0.27

GMD_NDH→MA 0.56 0.08 <0.001 0.43

S_DH→MA 4.30 0.91 <0.001 0.29

COVARIANCES

GS_DH↔GS_NDH 25.61 4.65 <0.001 0.54

D1↔D2 99.20 14.94 <0.001 0.70

VARIANCES

GS_DH 59.88 7.29 <0.001

GS_NDH 37.85 4.61 <0.001

D1 (GMD_DH) 172.63 21.04 <0.001

D2 (GMD_NDH) 117.31 14.29 <0.001

D3 (MA) 160.69 19.56 <0.001

D4 (S_DH) 1.47 0.18 <0.001

SE, standard error; DH, dominant hand; NDH, non-dominant hand; GS, grip

strength; GMD, gross manual dexterity; S, stereognosis; MA, manual ability; D,

disturbance (i.e., unexplained variance).

position compared to a normal hand position. Other studies have
confirmed the importance of hand mobility in object recogni-
tion, through the moderate associations between S and dexterity

Table 5 | Direct, indirect, and total effects of hand skills on manual

ability.

Hand skills Effectsa

Direct Indirect Total

S_DH 0.29 – 0.29

GS_DH – 0.31 0.31

GS_NDH – 0.32 0.32

GMD_DH 0.27 0.16 0.43

GMD_NDH 0.43 – 0.43

aStandardized path coefficients.

DH, dominant hand; NDH, non-dominant hand; S, stereognosis; GS, grip strength;

GMD, gross manual dexterity; MA, manual ability.

(45–49). Our path analysis revealed that GMD could account for
31% of the variance in S.

In both hands, GS indirectly contributed to MA through its
impact on GMD, confirming the relationships observed in the
literature between hand strength and dexterity (3, 46, 47, 50).
Although deficient GS may influence a child’s ability to hold and
maintain the grip of objects, objects can be efficiently stabilized in
other ways (e.g., against a table surface or body) to perform man-
ual activities. According to Sakzewski et al. (47), a GS >1 kg may be
adequate for the NDH to be an effective assisting hand in biman-
ual tasks. In our sample, only 13% of the children presented a GS
below 1 kg in their NDH, and no more than two children were
severely affected in both hands. Although children with CP can
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Arnould et al. Hand functioning in CP children

develop functional compensatory strategies using the less affected
hand solely, the path model emphasizes that the success of manual
activities, in terms of strength and dexterity, requires cooperation
of both hands.

Sensory inputs are important in anticipatory control and grip-
lift tasks (43, 51). However, in this study, TD and P were weakly or
not related to MA, consistent with other findings in the literature
(3, 14, 45). It can be hypothesized that TD and P were not suffi-
ciently impaired in our sample to affect the achievement of manual
activities in a significant way (52, 53). Krumlinde-Sundholm and
Eliasson (45) and Gordon and Duff (46) found that TD was less
impaired than two-point discrimination in children with uni-
lateral spastic CP. They suggested that the children might have
had deficient lateral inhibition or tactile spatial resolution, which
are required for two-point discrimination (45, 46). The children’s
peripheral nerve fibers may have been relatively intact, as reflected
by TD (54). TD and P involve low-level sensory processing of
somatic stimuli (55). However, higher-level mental body repre-
sentations (MBRs) that are generated from multisensory inputs
are crucial for our daily interaction with the outside environment
and may play a role in controlling motor behavior (56). MBRs
refer to abstract representations of one’s body derived from sen-
sory inputs, like TD or P, but capable to reciprocally influence
primary tactile processing and to modulate the perception of exter-
nal objects that may be body-referenced, thereby playing a role in
perception and/or action (57). MBRs develop slowly during onto-
genesis in healthy children (58) and do present abnormalities in
cortical activation in children with CP (59, 60). This suggests that
children with CP may be unable to fully integrate external stim-
uli into high-level sensorimotor processes (such as MBRs), which
may disturb motor output. Taking MBRs into account in future
work [see Gandevia et al. (61) and Longo et al. (62) for MBRs
measurement] may reveal whether this aspect contributes to MA.

Disturbances representing the unexplained variances of MA
and other mediating variables (GMD in both hands and S in the
DH) had to be added in the path model (see Figure 1) since the
model is supposed to show all variables that affect the dependent
variables. Without disturbances, the path model would make the
implausible claim that a dependent variable is measured with-
out any measurement error and is an exact linear combination
of the predictors. The significant disturbance covariance between
GMD in the DH and NDH indicates that these mediating vari-
ables shared at least one common omitted cause (e.g., severity of
the disorder). This illustrates the complexity of understanding the
relationships among hand skills and between them and MA. More-
over, good fit of a path model does not guarantee that all relevant
predictors have been included in the model. Hand skills other than
those measured in this work may also impact the achievement of
manual activities in CP children. It would be interesting to test the
potential contribution on the model of body structures, such as
the corticospinal tract dysgenesis measured by the diffusion tensor
imaging symmetry index, as a moderate association of this struc-
ture with the ABILHAND-Kids questionnaire has been observed
(27). Tactile spatial resolution as measured by the grating orienta-
tion task should be investigated in the future; unlike the two-point
discrimination test, the stimulus-induced neural image is issued
only from spatial cues (63). Spasticity is another hand skill that

would be interesting to explore in CP children. Reduction of spas-
ticity remains a primary focus in the clinical management of CP,
with the assumption that it will lead to an improvement in MA.
The reduction of muscle tone (e.g., by botulinum toxin) improves
the active range of motion (AROM) of the antagonist muscles,
which could create new potentials to learn and improve manual
skills (64, 65). However, this was not confirmed by the study of
Rameckers et al. (65) showing that though reduced tone leads to
an increase in AROM, this gain was not translated into more upper
limb function and thus children were not able to benefit from the
changes induced by botulinum toxin. Only one study (15) has
demonstrated moderate relationships between ABILHAND-Kids
measures and spasticity as tested by the Modified Ashworth Scale,
a scale that does not comply with the concept of spasticity (i.e.,
a velocity-dependent increase in muscle tone) (66). Apart from
dexterity, other potential mediators between hand functions and
MA could be tested in a path model. For instance, the quality
of movement, as measured by the Quality of Upper Extremity
Skills Test (67) or the Melbourne Assessment of Unilateral Upper
Limb Function (68), and the actual use of the affected hand in
bimanual activities, as measured by the Assisting Hand Assessment
(69), could link hand impairments to MA because they include
items related to both the ICF domains of the body functions and
activities (i.e., subdomain of mobility) (9).

By exploring the process by which hand skills are related to
MA, this study highlights potential treatment priorities to improve
hand functioning in children with CP. First, the strengthening of
hand muscles may indirectly contribute to improve MA, through
its impact on dexterity. In the past, muscle strengthening was not
recommended for children with CP because it was believed that
muscle strengthening would increase spasticity (21). However, in
their study of nine hemiplegic children, Vaz et al. (70) observed
significant strength gains due to wrist muscle strengthening by
electrostimulation, but no change in passive stiffness. A recent
study of 10 children with CP found good short-term efficacy of
repetitive intensive strengthening training of the hand, in terms
of muscle strength, muscle size, kinematics, and motor function
(71). Although additional studies are required to confirm the effi-
cacy of strength training on MA, we believe that weakness of
the hand muscles, including spastic muscles, should be treated.
Second, dexterity training of children with CP can be helpful to
improve MA. The GMD in both hands were the strongest con-
tributors to MA. The GMD mediated the relationship between
hand functions and MA, possibly because GMD reflects a combi-
nation of both the ICF domains of body functions and activities.
Third, our finding that hand skills only partially predicted MA
in children with CP has several clinical implications. A thera-
pist cannot assume that an improvement in hand skills will result
in a correspondingly higher MA. Interventions focused solely on
reducing hand impairments may be questionable, especially as
it is more important for CP children to manage daily activities
autonomously than it is for them to have “normal” hand functions
(72). This conclusion does not mean that interventions based on
body functions are useless; indeed, they may be important, espe-
cially for preventing secondary impairments (e.g., contractures
or deformities) (73). However, as MA is not simply the integra-
tion of hand skills in daily activities, MA should be treated per se,
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Arnould et al. Hand functioning in CP children

supporting the usefulness of activity-based interventions such as
CIMT or HABIT.

Some limitations should be noted in the interpretations of our
findings. The current cross-sectional dataset limits our ability to
make causal inferences. A longitudinal study design with multi-
ple end-point measurements is required to ascertain the temporal
sequence and to confirm the causal relationships between vari-
ables. An additional limitation is the sample size. Although we
used a moderate sample size for SEM (37), the necessary number
of subjects depends on the model complexity; more parsimo-
nious models (i.e., with less parameter estimates) require smaller
samples than more complex models (37). A common sample size
guideline for path analysis suggests that 10–20 subjects per para-
meter are sufficient for reliable model precision (37). Our sample
size was adequate, as the ratio of subjects to parameters was 10:1
(i.e., 136/14). As 52% of our sample was constituted by spastic
hemiplegic children, the identified path model might reflect the
hand functioning of spastic hemiplegics more than that of all CP
types. However, children were recruited from different settings
(e.g., a CP reference center, university hospitals, special education
schools, and rehabilitation centers); thus, the original sampling
likely provided a fairly representative CP sample.

The proposed path model is only one possible model of hand
functioning in children with CP. A good fit indicates that the
model is consistent with the relationships observed in the data.
However, there may be other models that also fit the data well.
Whenever possible, the relative fit of alternative theoretically plau-
sible models should be considered (74). Several alternative models
that included small modifications were tested, all of which pre-
sented worse goodness-of-fit and predictive fit indices than the
proposed model. Although this result strengthens our confidence
in the proposed model, future studies are required to validate our
model by confirming models that are based on other independent
samples with larger sample sizes and longitudinal study designs
(74). The robustness of the model could be tested by selecting
other measures of the involved variables. As more evidence is accu-
mulated across studies, we can be more confident in the accuracy
of the proposed model.

Although the present study should be regarded as prelimi-
nary in light of its limitations, it offers potentially helpful clinical
guidelines about the relevant hand skills that should be accounted
for when designing hand-care interventions, as well as treatment
priorities that should be set up to improve hand functioning in
children with CP. Hand muscle strengthening and dexterity train-
ing may be useful to improve MA in children with CP. However,
MA is not simply the integration of hand skills in daily activ-
ities and should be treated per se, supporting the usefulness of
activity-based interventions.
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Patient DF, who developed visual form agnosia following carbon monoxide poisoning, is
still able to use vision to adjust the configuration of her grasping hand to the geometry of a
goal object. This striking dissociation between perception and action in DF provided a key
piece of evidence for the formulation of Goodale and Milner’sTwo Visual Systems Hypoth-
esis (TVSH). According to the TVSH, the ventral stream plays a critical role in constructing
our visual percepts, whereas the dorsal stream mediates the visual control of action, such
as visually guided grasping. In this review, we discuss recent studies of DF that provide
new insights into the functional organization of the dorsal and ventral streams. We confirm
recent evidence that DF has dorsal as well as ventral brain damage – and that her dorsal-
stream lesions and surrounding atrophy have increased in size since her first published
brain scan. We argue that the damage to DF’s dorsal stream explains her deficits in direct-
ing actions at targets in the periphery.We then focus on DF’s ability to accurately adjust her
in-flight hand aperture to changes in the width of goal objects (grip scaling) whose dimen-
sions she cannot explicitly report. An examination of several studies of DF’s grip scaling
under natural conditions reveals a modest though significant deficit. Importantly, however,
she continues to show a robust dissociation between form vision for perception and form
vision-for-action. We also review recent studies that explore the role of online visual feed-
back and terminal haptic feedback in the programming and control of her grasping. These
studies make it clear that DF is no more reliant on visual or haptic feedback than are neu-
rologically intact individuals. In short, we argue that her ability to grasp objects depends
on visual feedforward processing carried out by visuomotor networks in her dorsal stream
that function in the much the same way as they do in neurologically intact individuals.

Keywords: patient DF, two visual systems hypothesis, grasping, perception and action, dorsal and ventral streams

Just a few days after her 34th birthday in 1988, a young woman
was taking a shower in her newly renovated cottage and was nearly
asphyxiated by carbon monoxide from a poorly vented water
heater. Although she had passed out from hypoxia, her partner
found her before she died and rushed her to hospital. When she
emerged from her coma, it was clear that her brain had been badly
damaged from lack of oxygen. Her vision was particularly affected.
She could no longer recognize common objects by sight or even
her husband and friends. In the days and weeks that followed her
accident, she showed some improvement, but in the end she was
left with a profound visual form agnosia; in other words, she could
no longer identify objects on the basis of their shape. Indeed, in
later testing, it became apparent that DF (as she is now known
in the literature) could not identify even the simplest of geomet-
ric figures, although her ability to see colors and visual textures
remained relatively intact.

DF’s ability to perceive the form of objects is so compro-
mised that she cannot distinguish a rectangular block of wood

from a square one with the same surface area (Figure 1A). Such
blocks are often referred to as “Efron” blocks, after the psychol-
ogist, Robert Efron, who first devised shapes such as these to
test for visual form agnosia (1). DF cannot even manually esti-
mate the widths of the blocks by opening her finger and thumb
a matching amount (2, 3). Nevertheless, one aspect of DF’s visu-
ally guided behavior with respect to object form has remained
remarkably preserved. When she reaches out to pick up one of the
Efron blocks, the aperture between her thumb and finger scales
in flight to the object’s width (2–7). Similarly, even though DF
cannot distinguish perceptually amongst objects on the basis of
their orientation and shape, she orients her wrist correctly when
posting her hand or a wooden card through a slot (2, 8, 9) and
places her fingers on stable grasp points when picking up smooth-
spline, pebble-like shapes [Figure 1B; see Ref. (10)]. In other
words, despite a profound deficit in form perception, DF seems
able to use information about object form to guide her grasping
movements.
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Whitwell et al. Two visual systems hypothesis and DF

FIGURE 1 | (A) Examples from a set of Efron blocks that, by definition, are
matched for surface area, texture, mass, and color, but vary in width and
length (1). In the grasping task, DF reached out to pick these objects up
across their width. In a typical perceptual task, she is asked to indicate
manually the width of the block by adjusting her thumb and index-finger a
matching amount or to provide same/different judgments about pairs of
these objects. (B) Examples of the pebble-like shapes used in Goodale
et al. (10). DF was asked to either (i) reach out to pick up the shapes
presented at one of two possible positions one at a time or (ii) give explicit
same/different judgments about pairs of shapes when they had different
shapes and different orientations (top left), the same shape but different
orientations (top right), different shapes but same orientations (bottom left),
and same shape and orientation (bottom right).

DF’s dissociation was one of the key pieces of evidence for
the original formulation of the Two Visual Systems Hypothe-
sis (TVSH) put forward by Goodale and Milner in 1992 (11).
According to the TVSH, the ventral stream of projections from
early visual areas to the inferotemporal cortex mediates vision for
perception, whereas the dorsal stream of projections to the pos-
terior parietal cortex mediates the visual control of actions. DF
was later shown to have bilateral damage in her ventral stream,
particularly in a region of the lateral occipital cortex (area LOC;
see Figure 1) implicated in object recognition [for review, see Ref.
(12)]. Other patients, who have damage to the dorsal but not the
ventral stream, show clear deficits in visuomotor control but rela-
tively spared visual perception (10, 13, 14). Although this double
dissociation is by itself compelling, the TVSH is also supported
by a broad range of additional evidence extending from monkey
neurophysiology to neuroimaging studies of both patients and
neurologically intact individuals [for review, see Ref. (15–18)].

Nevertheless, it is important to acknowledge that DF’s lesions
are not restricted to her ventral stream. Her brain shows the typ-
ical pattern of diffuse atrophy that is seen in patients who have
experienced hypoxia from carbon monoxide poisoning, but in her
case the cortical thinning is most evident in the posterior regions
of the cerebral cortex (see Figure 2). Moreover, in addition to
the bilateral damage to LOC in her ventral stream, the original
clinical scans also showed evidence of localized damage in the

parieto-occipital cortex (POC) of her left hemisphere (2). Sub-
sequent high-resolution MRI scans confirmed the presence of a
POC lesion in the left hemisphere while noting extensive bilateral
atrophy in the posterior regions of the intraparietal sulcus and
in POC of the right hemisphere (19), and the most recent scans
indicate that the lesion to POC is now evidently bilateral (20), sug-
gesting that the atrophy has increased in size in these and other
areas (see Figure 2). Nevertheless, functional magnetic resonance
imaging (fMRI) makes it clear that, despite the lesions to the POC
and atrophy in the surrounding tissue, there is robust activation
in the anterior intraparietal sulcus of DF’s brain during visually
guided grasping [Ref. (19); see Figure 3]. This dorsal-stream area
has long been associated with the planning and execution of pre-
hensile movements in both monkeys (21–24) and neurologically
intact humans (19, 25–32). Importantly, the activation in DF’s
anterior intraparietal cortex occurs despite the fact that she has
functionally complete bilateral damage of LOC, suggesting that the
computations that mediate her spared visual control of grasping
are not dependent on form processing in the ventral stream.

The bilateral damage to area POC in DF’s brain warrants some
discussion of the role of this brain area, particularly since it forms
part of the dorsal stream. After all, the TVSH would predict that
damage to this area would affect visually guided action. In fact,
a mounting body of evidence implicates POC in the control of
visually guided reaching, particularly to targets presented in the
periphery [for review see Ref. (34–38)]. In an important study,
Karnath and Perenin (38) carried out an analysis of lesion sites in
16 optic ataxic patients with unilateral damage to either the left or
the right posterior parietal cortex. The authors contrasted these
patients with control patients who had sustained damage to their
parietal cortex but who did not exhibit optic ataxia. Their analysis
showed that the greatest degree of lesion overlap that was unique
to the optic ataxic patients occurred in POC and in the precuneus.
Critically, all of the patients with optic ataxia showed misreaching
errors when reaching out to touch targets presented in the periph-
ery of their contralesional field. Although there is clear evidence
that optic ataxia can include visuomotor deficits in central vision
[e.g., Ref. (13, 14, 39, 40)], it is well-known that optic ataxia more
frequently manifests itself as misreaching to targets presented in
the periphery (41, 42). In fact, peripheral and centrally guided
reaches might well rely on separate networks in the posterior pari-
etal cortex (43, 44). Clavagnier et al. (43) have argued that the POC
forms part of a fronto-parietal network of areas that is critical for
visually guided reaches to peripherally presented targets.

Given the damage to DF’s POC, it is perhaps not surprising
that this region shows unusually little, if any, fMRI activation in
this region when she reaches out to touch targets (19) and that
she exhibits a gross deficit when reaching out to point to targets in
the periphery, but not when pointing to targets presented centrally
(33, 45). Thus, DF’s deficit in peripheral reaching is likely due to
the damage in her POC. There is also some indication that the POC
in monkey and in man plays a role in the control of grasps that are
directed at peripheral targets (46–48). For example, patient MH,
who developed optic ataxia following a unilateral POC lesion, not
only shows a deficit in pointing to targets presented in the periph-
ery of his contralesional field, but he also shows a deficit in grip
scaling when grasping these same objects. Critically, however, if the

www.frontiersin.org December 2014 | Volume 5 | Article 255 | 99

http://www.frontiersin.org
http://www.frontiersin.org/Movement_Disorders/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Whitwell et al. Two visual systems hypothesis and DF

FIGURE 2 | A 3D rendering of the cortical gray matter boundary of
DF’s brain. The peripheral surface of her gyri is depicted as lighter and
more reflective, whereas, the sulci are depicted a darker gray. The
areas of cortical thinning are painted in translucent light blue and
encompass much of peri- and extrastriate cortex, especially in the left
hemisphere [see Ref. (20) for a detailed analysis]. There are also
prominent bilateral lesions in the lateral occipital cortex (LOC) and

additional lesions in the parieto-occipital cortex (POC) marked in dark
blue. Importantly, the cortical tissue surrounding most of the calcarine
sulcus, corresponding to primary visual cortex (V1) is intact, as are
most of the frontal, temporal, and parietal cortices. The small lesion in
the anterior part of the upper bank of the calcarine sulcus in her left
hemisphere accounts for the partial quadrantanopia in her lower visual
field [see Ref. (10, 33)].

objects are closer and he does not have to reach out toward them
before picking them up, MH’s grip scaling is normal. This suggests
that his grasping deficit is secondary to his deficit in reaching (49).
Interestingly, DF also shows a deficit in grip scaling when reach-
ing out to pick up targets located in her peripheral visual field
(33). But again, this deficit in grasping targets in the periphery
might be secondary to her demonstrated deficit in reaching into
the periphery, as it is in patient MH.

Nevertheless, DF’s visuomotor performance, even centrally, is
not completely normal in all situations. Himmelbach and col-
leagues (50) revisited DF’s grasping with the aim of testing for a
dissociation using the independent sample t -tests recommended
by Crawford et al. (51). Himmelbach et al. compared her perfor-
mance [as reported in Ref. (2,10)] with that of 20 new age-matched
control participants on three different visuomotor tasks: posting
a hand-held card through a slot, picking up Efron blocks of vary-
ing width, and picking up smooth-spline pebble-like shapes (2,
10). Although DF’s grip scaling (as measured by correlations)
with rectangular objects fell within the range of the new con-
trol participants, the grasp points she selected when picking up
the pebble-like shapes were not as optimal as those of the new
control participants tested by Himmelbach et al. Her performance
on the card-posting task was also slightly, but significantly, poorer
than that of the controls. Nevertheless, as the authors themselves

admit, the tests also revealed that DF’s data set satisfied Craw-
ford et al.’s (52) criterion for a “strong/differential” dissociation.
Unlike the criterion for a “classic” dissociation in which the patient
shows a deficit in one task but not the other, the criterion for
a “strong/differential” dissociation allows for a deficit in both
tasks, but, critically, requires a dramatically greater deficit in one
task than in the other. In other words, despite the presence of
slight impairments, DF’s performance on the action tasks were
consistently better than her performance on the corresponding
perceptual tasks – and this difference was much larger for her than
it was for the controls.

Although DF’s spared visuomotor abilities have been examined
in a number of different settings, it is her ability to scale her grip
aperture to the relevant dimension of a goal object when picking
it up that has been tested most often. No matter how the com-
putations underlying the programming and control of grasping
are conceptualized [e.g., Ref. (53–59)], there is general agreement
that the accurate grasping of a goal object normally requires a
visual analysis of the object’s shape so that the final positions of
the thumb and fingers can be computed correctly with respect to
the relevant dimension of the object, such as its width. Any error in
this computation could lead to the object being knocked away or
fumbled. When assessing DF’s grasping ability, investigators have
typically relied on the known positive linear relationship between
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FIGURE 3 | Horizontal section through DF’s brain illustrating grasp-
and reach-related activation in the anterior intraparietal sulcus (aIPS).
Grasp-specific activation is largely restricted to the right hemisphere. Note
that these regions are activated despite the presence of bilateral damage to
the parieto-occipital cortex (POC). Unlike healthy controls, there was little or
no activation associated with reaching in the POC (19).

the maximum opening of the hand mid-flight and object’s targeted
dimension (see Figure 4). Given the survey of DF’s dorsal-stream
damage discussed above and in light of Himmelbach’s findings,
we examined DF’s grip scaling (as measured by regression slopes)
across a range of studies in which she grasped centrally located tar-
gets under naturalistic viewing conditions which included online
visual feedback (2–7). Critically, the targets in all these studies
were drawn from a set of blocks that varied in width and length
but were matched for surface area, texture, mass, and color, so that
she could not discriminate one from another in perceptual tests.
DF clearly scales her grip aperture to the widths of these targets
when reaching out to pick them up (see Figure 4). Nevertheless,
she does show a modest, though significant, deficit when compared
to the controls. Critically, from study to study, DF’s estimations of
the widths of these targets remain at chance, whereas, not surpris-
ingly, the estimations made by the controls are essentially perfect.
Moreover, a formal test of the difference in performance across the
two conditions indicates a significant strong/differential dissocia-
tion (52). In short, over the course of two decades of testing, DF’s
dissociation between object vision-for-action and object vision for
perception remains as strong as ever.

As remarkable as DF’s visually guided grasping is, however, it
is clearly not without limitations. In fact, there are a number of
seemingly simple task modifications that have a remarkably detri-
mental effect on her grip scaling. For example, if a target object is
shown to DF and then taken away, she is unable to scale her grasp
appropriately when she is asked to show how she would pick the
target up should it have remained there. In healthy participants,
of course, grip aperture still correlates well with the object’s width,
even for delays as long as 30 s. In DF, however, all evidence of grip

scaling disappears after a delay of only 2 s (3). DF’s poor perfor-
mance cannot be due to a general impairment in memory: she has
no difficulty showing how she would pick up an imaginary orange
or a strawberry, objects that she would have encountered before
her accident or would have handled in the past. In other words,
when she pretends to pick up an imaginary orange, her hand opens
wider than it does for an imaginary strawberry (3). Moreover, she
is as accurate as normally sighted controls when asked to open her
finger and thumb a particular amount (e.g., “show me how wide
5 cm is”) with her eyes closed. Indeed, her manual estimations in
this task are much better than they are when she is asked to indi-
cate the width of an Efron block placed directly in front of her.
It is important to note that even though the grasping movements
made by normal participants in the delay condition are scaled to
the width of the remembered objects, they look very different from
those directed at objects that are physically present. This is because
the participants are “pantomiming” their grasps in the delay con-
ditions, and are thus relying on a stored perceptual representation
of the object they have just seen. Presumably, DF’s failure to scale
her grasp after a delay arises from the fact that she cannot use a
stored percept of the object to drive a pantomimed grasping move-
ment because she never “perceived” the target object in the first
place.

DF’s inability to pantomime grasps becomes relevant in the
context of a more recent series of experiments on DF’s grasping
abilities, which prompted the suggestion that her ability to grasp
objects accurately relies critically on haptic feedback rather than on
visual feedforward processing as is the case in normal individuals.
Using an ingenious mirror apparatus, Schenk (60) demonstrated
that DF’s grip scaling is completely abolished in a task in which
the target remains visible (as a virtual image in the mirror) yet is
physically absent (behind the mirror) so that when her hand closes
down on the apparent edges of the virtual target, it closes down on
“thin air.” Schenk argued that DF’s failure to show grip scaling in
this situation is due to the absence of haptic feedback, which would
compensate for her poor visual abilities. According to Schenk, DF’s
grip scaling relies on the integration of visual and haptic feedback
about location of the finger and thumb endpoints that are, pre-
sumably, applied in a predictive manner on subsequent trials [for
a discussion of Schenk’s interpretation and related issues, see Ref.
(61, 62)]. When such haptic feedback is absent, Schenk argues,
DF’s ability to grasp objects falls apart because her degraded form
vision cannot, by itself, support visually guided grasping.

We have offered an alternative, more straightforward explana-
tion. We contend that grasping tasks in which the target is visible
but not available to touch are actually pantomime tasks in which
the participant has to pretend to contact the object. For the visuo-
motor systems in the dorsal stream to remain engaged, we would
argue, there must be some sort of tactile confirmation that the
visible target has been contacted at the end of the movement. In
the absence of such feedback, participants revert to pantomim-
ing and pretend to grasp the object they see in the mirror. This
conclusion is supported by the fact that the slopes of the function
relating grip aperture to object width in the normal participants
in the absent-object task are much steeper than those typically
observed in normal grasping in which the target object is physi-
cally present (63). In fact, the slopes resemble those seen in manual
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FIGURE 4 | (A) Superimposed snapshots of a reach-to-grasp action directed
at an Efron block. Red double-headed arrows indicate “grip aperture”, the
Euclidean distance between the tracked markers placed on the tips of the
thumb and index-finger (B) sample trajectories of the thumb and
index-finger (blue circles) during a precision pincer grasp as the hand
reaches out toward the object. The grip aperture is indicated in red. The light
blue line reflects the peak grip aperture, which is achieved well-before the
fingers contact the object. (C) Grip aperture plotted as a function of time
(e.g., percent movement time). The peak grip aperture is again indicated in
light blue. (D) Peak grip aperture shows a positive linear relationship to the
target size of the object, and so it is thought to reflect the visuomotor
system’s anticipatory estimate of the target’s width. The slopes can be used
as indicators of “grip scaling.” (E) The slopes for grasping and manual

estimation for both the controls (open circles) and DF (X’s) across studies in
which Efron blocks were used, the visual conditions were “ecological” (i.e.,
online visual feedback was available), and the controls were gender-matched
and age-appropriate for DF. Although DF scales her grasp to the width of the
Efron blocks, her slopes are significantly shallower than those of the
controls, using either independent or paired-samples variants of the t -test
(pmax < 0.04). The slopes of DF’s manual estimations are essentially zero and
clearly different from those of the controls (pmax < 6 × 10−3). Critically, the
difference in slopes between the grasping and manual estimation tasks falls
well-outside of the range of the controls (pmax < 5 × 10−3). In other words,
across a number of comparable studies of DF’s grasping and perceptual
estimation ability, her performance when grasping Efron blocks is sharply
dissociated from her performance when perceptually estimating their width.

estimations of object width, suggesting that participants are relying
on a perceptual representation of the target to drive their behavior
rather than engaging more“encapsulated”visuomotor networks in
the dorsal stream that normally mediate visually guided grasping.
In short, in the absence of any tactile feedback, the participants
default to a pantomime grasp. DF, of course, is at an enormous
disadvantage in this situation because she does not perceive the
form of the virtual image in the mirror and thus cannot generate a
pantomimed response. As a consequence, her grip aperture bears
no relationship to the width of the target in this situation.

To test this idea, we recently examined DF’s performance using
the same mirror set-up used by Schenk (60). In our experiment,
however, there was always an object behind the mirror for her to
grasp. Importantly, the width of that object never changed, even
though the width of the object viewed in the mirror varied from
trial to trial (5, 6). With this arrangement, DF always experienced
tactile feedback at the end of the movement, but the feedback
was completely uninformative about whether or not her grasp
was properly tuned to the width of the object in the mirror. Con-
trary to what Schenk’s visuohaptic calibration hypothesis would

predict, we found that DF continued to show excellent grip scaling
in this task. In other words, DF was able to use visual informa-
tion in a feedforward manner to scale her grasp in the complete
absence of reliable haptic feedback. Tactile contact by itself was
evidently enough to keep the visuomotor systems in her dorsal
stream engaged.

It is worth mentioning another prediction that follows from the
visuohaptic calibration hypothesis (60, 64). According to Schenk,
the reason DF is unable to manually estimate the width of an object
is that, unlike in the grasping task, she experiences no haptic feed-
back about the object’s width after she makes each estimate. We
tested this prediction directly by allowing DF to pick up the object
immediately after she had made her estimate (6, 7). Again, con-
trary to the visuohaptic calibration hypothesis, we found that DF
continued to be unable to indicate the width of the object despite
having accurate haptic information about the width of the target
after every estimate. It would appear that an explicit estimate of
size, reflecting what she perceived (or perhaps more correctly, did
not perceive) of the object’s width, could not take advantage of the
haptic feedback.
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As we pointed out earlier, the TVSH does not rest entirely
on the evidence from DF. Support for the central ideas of the
hypothesis comes from a broad range of studies, from monkey
neurophysiology to human neuroimaging. Moreover, there is also
converging evidence from other patients with visual form agnosia.
Patient JS, for example, has bilateral lesions in the ventral stream
that were more medial than DF’s, but showed a similar dissoci-
ation between visual form perception and the visual control of
grasping (65). In fact, there are a number of anecdotal reports in
the long literature on visual form agnosia that such patients are
able to reach out and grasp objects with surprising accuracy [e.g.,
Ref. (66)].

Patient DF’s ability to use object form to guide the configura-
tion of her grasping hand in the absence of conscious awareness
of that form is reminiscent of what Weiskrantz and his colleagues
called “blindsight” in an influential article published in The Lancet
in 1977 (67). Patients with blindsight are able to respond to visual
stimuli presented in their blind field despite a complete absence
of visual phenomenology in that field. In fact, subsequent inves-
tigations of patients with “action” blind sight [for review, see Ref.
(68)] have revealed a dissociation between prehension and percep-
tual size-estimation (69–73). These patients typically have lesions
to the earliest visual cortical areas, including primary visual cor-
tex or even the pathways from the lateral geniculate nucleus that
innervate these areas. In a recent paper, Whitwell, Striemer, and
Goodale (73) found that a young woman with a unilateral lesion of
V1 was nevertheless able to scale her hand to the width of objects
that she could not perceive. This observation coupled with many
others demonstrating spared visuomotor control in patients with
V1 lesions suggests that the posterior parietal cortex enjoys privi-
leged access to visual inputs that bypass the retino-geniculo-striate
route. One possible route for such transmission is the well-known
set of projections from the superior colliculus in the midbrain to
the pulvinar – and from there to the middle temporal area (MT)
and the posterior parietal cortex. There are other candidate path-
ways as well [for review see Ref. (15)]. It seems unlikely that these
extra-geniculo-striate projections evolved to be a“back up”should
V1 happen to be damaged, but rather play a more integral role
in the mediation of visually guided movements in neurologically
intact individuals. It seems likely that these pathways normally
supply the dorsal stream with essential information for the visual
control of movements such as reaching and grasping – and that in
DF’s brain such pathways would also be at work.

In summary, the demonstration that DF has a remarkable abil-
ity to use information about object form and orientation to control
skilled actions despite having a massive deficit in form vision has

stood the test of time. Although a number of critics have tried
to argue otherwise, it appears that she is able to use feedforward
visual information about the shape of objects to guide her hand
and fingers as she reaches out to grasp them – and her spared ability
to do this does not depend on some sort of abnormal recruitment
of haptic information to augment her compromised visual pro-
cessing. Instead, it appears that vision-for-action in DF, at least as
it applies to the control of grasping, depends on the recruitment
of relatively intact visuomotor networks in her dorsal stream, and
that these networks are engaged in much the same manner as they
are in the normal healthy brain.
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Lower motor neuron dysfunction is one of the most debilitating motor conditions. In this
regard, transgenic mouse models of various lower motor neuron dysfunctions provide
insight into the mechanisms underlying these pathologies and can also aid the development
of new therapies. Viral-mediated gene therapy can take advantage of the muscle-motor
neuron topographical relationship to shuttle therapeutic genes into specific populations
of motor neurons in these mouse models. In this context, motor end plates (MEPs) are
highly specialized regions on the skeletal musculature that offer direct access to the pre-
synaptic nerve terminals, henceforth to the spinal cord motor neurons. The aim of this
study was two-folded. First, it was to characterize the exact position of the MEP regions
for several muscles of the mouse forelimb using acetylcholinesterase histochemistry.This
MEP-muscle map was then used to guide a series of intramuscular injections of Fluoro-
Gold (FG) in order to characterize the distribution of the innervating motor neurons. This
analysis revealed that the MEPs are typically organized in an orthogonal fashion across the
muscle fibers and extends throughout the full width of each muscle. Furthermore, target-
ing the full length of the MEP regions gave rise labeled motor neurons that are organized
into columns spanning through more spinal cord segments than previously reported. The
present analysis suggests that targeting the full width of the muscles’ MEP regions with
FG increases the somatic availability of the tracer. This process ensures a greater uptake
of the tracer by the pre-synaptic nerve terminals, hence maximizing the labeling in spinal
cord motor neurons. This investigation should have positive implications for future studies
involving the somatic delivery of therapeutic genes into motor neurons for the treatment
of various motor dysfunctions.

Keywords: motor end plates, motor neurons, Fluoro-Gold, mouse forelimb, motor neuron columns, retrograde
tracing

INTRODUCTION
Knowledge regarding the organization of the lower motor neuron
system has significantly developed through the work of Sher-
rington (1892), Romanes (1941, 1946, 1951), and Rexed (1954).
Collectively, their work has established that motor neurons in the
ventral horn of the spinal cord that innervate skeletal muscles
are arranged into longitudinal columns. More recently, retrograde
tracers, either applied to the peripheral nerve stump or injected
intramuscularly, have been instrumental in defining the connec-
tivity between individual skeletal muscles and the innervating
motor neuron columns in various mammalian species (Kristens-
son and Olsson, 1971a,b; McHanwell and Biscoe, 1981; Jenny
and Inukai, 1983; Nicolopoulos-Stournaras and Iles, 1983; Brichta
et al., 1987; Callister et al., 1987; Hörner and Kümmel, 1993;
Novikova et al., 1997; Vanderhorst and Holstege, 1997; McKenna
et al., 2000; Choi et al., 2002; Tosolini and Morris, 2012; Bác-
skai et al., 2013a,b). Together, these studies further characterize
the organization of motor neuron columns throughout the spinal
cord.

Dysfunctions or diseases of the lower motor neurons are
amongst the most debilitating motor disorders. In this regard, the
emergence of numerous transgenic mouse models of lower motor
neuron conditions provide insight into the mechanisms under-
lying these pathologies (Gurney et al., 1994; Wong et al., 1995,
2002; Hsieh-Li et al., 2000; Kaspar et al., 2003; Ishiyama et al.,
2004; Turner et al., 2009; Wegorzewska et al., 2009; Kimura et al.,
2010; Towne et al., 2010; Xu et al., 2010; Guo et al., 2011; Riboldi
et al., 2011; Pratt et al., 2013). For example, the Cu/Zn superoxide
dismutase type-1 (SOD-1) mouse model was developed in order
to further understand the etiology and pathogenesis of a subtype
of amyotrophic lateral sclerosis (Gurney et al., 1994; Wong et al.,
1995; Raoul et al., 2005; Zhong et al., 2009; Towne et al., 2010;
Riboldi et al., 2011). This is also the case for the survival motor
neuron 1 (SMN) knockout mouse model of spinal muscular atro-
phy (SMA) (Hsieh-Li et al., 2000). With these mouse models,
viral-mediated gene therapy can take advantage of the muscle-
motor neuron topographical relationship to retrogradely shuttle
therapeutic genes into specific populations of motor neurons (for
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recent reviews, see Bo et al., 2011; Wang et al., 2011; Federici and
Boulis, 2012; Franz et al., 2012; Lentz et al., 2012). This approach
has been explored using intramuscular bolus injections (Baum-
gartner and Shine, 1997, 1998; Kaspar et al., 2003; Nakajima et al.,
2008, 2010; Uchida et al., 2012; Benkhelifa-Ziyyat et al., 2013).
With this gene delivery method, however, the levels of transgene
expression in motor neurons and, therefore, the outcomes of the
therapy often remain suboptimal.

Motor end plates (MEPs) are highly specialized regions on the
skeletal musculature that offer direct access to the pre-synaptic
nerve terminals, henceforth to the spinal cord motor neurons.
We have recently described the location and span of the MEP
regions for several muscles of the rat forelimb (Tosolini and Mor-
ris, 2012). Targeting the entire MEP region with retrograde tracers
has revealed that the motor neuron columns supplying the rat
forelimb span more cervical segments and exhibit greater overlap
with neighbor columns than previously reported (Tosolini and
Morris, 2012). The aim of the present investigation was to extend
this knowledge to the mouse, the species of choice for gene target-
ing in animal models of various motor conditions (Hsieh-Li et al.,
2000; Kaspar et al., 2003; Ishiyama et al., 2004; Turner et al., 2009;
Wegorzewska et al., 2009; Kimura et al., 2010; Towne et al., 2010;
Xu et al., 2010; Guo et al., 2011; Riboldi et al., 2011; Pratt et al.,
2013).

MATERIALS AND METHODS
ANIMALS
All experimental procedures complied with the Animal Care and
Ethics Committee of the University of New South Wales and were
performed in accordance with the National Health and Medical
Research Council of Australia regulations for animal experimen-
tation. A total of 38 adult male C57BL/6 mice (ARC, Western
Australia) weighing between 20 and 30 g at the time of surgery
were used in this study. The mice were housed in groups of five
in an animal holding room under 12-h light–dark cycle. Water
and chow were available ad libitum throughout the course of the
experiment.

ACETYLCHOLINESTERASE HISTOCHEMISTRY
Acetylcholinesterase histochemistry (AChE) was performed on
mice carcasses as per Tosolini and Morris (2012). Six lightly
perfused mice were obtained through tissue sharing. The skin
was removed from the carcasses and the entire bodies were
immersed for 4 h at 4˚C in a solution containing 200 ml of
phosphate buffer (PB), 290 mg acetylthiocholine iodide, 600 mg
glycine, and 420 mg copper sulfate (all reagents from Sigma-
Aldrich, St. Louis, MO, USA). The carcasses were subsequently
washed for 2 min in distilled water and developed by rapid
immersion (i.e., 5–10 s) in a 10% ammonium sulfide solu-
tion.

SURGERY
Anesthesia was induced with isoflurane (Provet, Sydney, NSW,
Australia; 1–2% in O2). The fur covering the targeted areas was
shaved and cleaned with 70% ethanol. For each muscle under
investigation, a small incision was made directly in the skin to
expose the muscle of interest. Fluoro-Gold (FG) (Fluorochrome,

Denver, CO, USA) injections were manually performed through
graded glass micropipettes (DKSH, Zurich, Switzerland) along the
entire MEP region. Great care was taken to preserve the fasciae cov-
ering both the targeted muscles and those in the surrounding. Spe-
cial care was also taken to ensure that the blood vessels surrounding
the muscles were left intact. After the injections, the muscles were
wiped with gauze to remove any tracer that may have inadvertently
seeped from the injected muscle. A total of 47 series of intra-
muscular injections along the full extent of the MEP region were
performed into the following muscles: acromiotrapezius (n= 6),
acromiodeltiodeus (n= 6), spinodeltoideus (n= 5), biceps brachii
(n= 6), triceps brachii (n= 6), extensor carpi ulnaris (n= 4),
extensor carpi radialis (n= 6), flexor carpi ulnaris (n= 4), and
flexor digitorum profundus (n= 4). For these injections, the vol-
ume of FG varied between 2 and 6 µl depending on the size
of the muscle (i.e., triceps brachii received 6 µl whereas exten-
sor carpi ulnaris received 2 µl). Triceps brachii was also targeted
with either a 3-µl bolus injection of FG into the thickest part of
the muscle (n= 6) or with 3 µl injections restricted to the ante-
rior or the posterior portion of its MEP (n= 4). In additional
animals, 3 µl of FG was applied directly onto the intact fasciae
covering triceps brachii (n= 4). The skin was subsequently closed
with surgical clips (Texas Scientific Instruments LLC, Boerne, TX,
USA).

HISTOLOGICAL PROCESSING AND DISSECTION
After the intramuscular injections of FG, the mice were kept for
7 days to allow for optimal retrograde transport of the neuronal
tracer. After this period of time, the mice received a lethal dose
of Lethabarb (Virbac, Sydney, NSW, Australia) and were intracar-
dially perfused with 0.1 M PB followed by 4% paraformaldehyde in
0.1 M PB. Dissections of the spinal cord were made from the dorsal
aspect whereby the paravertebral muscles were reflected/removed
and the cervical vertebral column was exposed. The bony spin-
ous process of C2 was identified and then removed, exposing
the C2 dorsal roots, which were then colored with a permanent
marker. Vertebrae C3–T1 were subsequently removed one by one
and the dorsal roots were colored in alternating colors (i.e., C2,
C4, C6, and C8 were colored with a green marker and C3, C5,
C7, T1 were colored with a blue marker). After this process, the
cervical spinal cord was cut transversely into two-segment blocks
(i.e., C2–C3, C4–C5, C6–C7, and C8–T1 blocks). For each block,
a fiducial mark was made in situ in the white matter, half way
between two adjacent roots to indicate the boundary between the
segments. The blocks were then removed from the body, post-
fixed overnight in a solution containing 4% paraformaldehyde
in 0.1 M PB and then cryoprotected in a 30% sucrose solu-
tion (Sigma-Aldrich, St. Louis, MO, USA) in distilled water for
2 days at 4˚C. Each block of spinal cord tissue was cut longitu-
dinally in 50 µm-thick sections and mounted onto microscope
slides. The slides were air-dried and then coverslipped with an
anti-fade medium containing DAPI (Invitrogen, Carlsbad, CA,
USA).

DATA ANALYSIS AND PRESENTATION
After the AChE procedure, the bodies were photographed, and
Adobe Photoshop CS6 was used to transpose the average locations
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of the MEPs onto a diagrammatic representation of the mouse
forelimb adapted from Komárek (2004) and DeLaurier et al.
(2008).

The spinal cord tissue sections were photographed and ana-
lyzed under epifluorescence to detect FG-labeled motor neurons.
Motor neurons were considered positively labeled when FG gran-
ulations were present within both the soma and at least one
axon/dendrite (Vanderhorst and Holstege, 1997; Tosolini and
Morris, 2012; Bácskai et al., 2013a,b). Adjacent tissue was also
scrutinized to eliminate double counting of motor neurons. For
each tissue section, FG labeled motor neurons were plotted as
single black dots on a separate layer of a diagrammatic repre-
sentation of the spinal cord using Adobe Photoshop CS6. Root
exit points, the position of the central canal and the fiducial
marks created during dissection were used as spatial references.
The Adobe Photoshop layers were subsequently stacked together
to create a single two-dimensional representation of the posi-
tion of the motor neurons innervating each forelimb muscle. For
each muscle, individual data plots were then presented side by
side on a schematic diagram of a spinal cord (Figure 3). The
data plots derived from intramuscular injections performed on
the left forelimb were transposed onto the right spinal cord to
maintain consistency with the representation. For all muscles,
data plots were then combined to form a representative motor
neuron column and were represented concurrently in rostro-
caudal, dorso-ventral, and medio-lateral axes in the same figure
(Figure 5).

RESULTS
MOTOR END PLATE DELINEATION
Overall, for each muscle the location of the MEP region was simi-
lar between animals. The location and span of the MEPs for each
muscle investigated is shown in Figure 1. Figure 1A is a pho-
tograph showing the lateral view of a mouse forelimb after an
AChE reaction. The MEPs can be seen as black speckles travers-
ing the muscle fibers. On this photograph, the boundaries of each
muscle as well as the direction of their muscle fibers can also be
observed, allowing for in situ muscle orientation. Figures 1B,C
are schematic representations of the lateral and medial forelimb
on which the location of the MEPs were transposed. The MEPs
are typically organized in an orthogonal fashion across the muscle
fibers. The MEP regions can be seen as extending across the full
width of the muscles, passing through, but not limited to the region
commonly referred to as the muscle “belly” (Figures 1A–C). It is
worthwhile to note that some muscles do not have a “belly” region
but still have a clearly observable MEP region. This is the case
for acromiotrapezius, spinodeltoideus, and acromiodeltoideus. As
each muscle has its own shape, so too does its MEP region. In
most instances, the MEP regions are sinusoidal-like or V-shaped,
however they never appeared to form a straight line. For muscles
with multiple heads such as triceps and biceps brachii, the MEP
region is located in the common part of the muscle, not in the
heads. The thin and narrow muscles, such as those acting on the
wrist joint (extensor carpi radialis, extensor carpi ulnaris, flexor
digitorum profundus, and flexor carpi ulnaris) have their MEP

FIGURE 1 | Distribution of the motor end plate (MEP) regions for the
mouse forelimb. (A) Lateral view of the mouse forelimb after an
aceytlcholinesterase (AChE) histochemical reaction to reveal the location of
the MEPs. In this figure, the MEPs appear as black speckles traversing the
brown muscle fibers. From this lateral view, the following muscles can be
seen: (1) acromiotrapezius, (2) spinodeltoideus, (3) acromiodeltoideus, (4)
triceps brachii, (5) extensor carpi radialis, and (6) extensor carpi ulnari. The
insert shows a close up view of the MEPs from a portion of the triceps brachii

muscle. (B,C) Composite diagrams representing the location of the MEPs
from the lateral (B) and medial (C) view of the forelimb. The color-coded
forelimb muscles targeted are: acromiotrapezius (turquoise),
acromiodeltoideus (green), spinodeltoideus (dark blue), biceps brachii
(orange), triceps brachii (yellow), extensor carpi ulnaris (red), extensor carpi
radialis (magenta), flexor carpi ulnaris (light blue), and flexor digitorum
profundus (purple). The black dotted lines on each muscle are representative
locations of the MEP region.
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region located closer to the elbow joint rather than in the middle
of the muscle (Figures 1A–C).

FLUORO-GOLD LABELED MOTOR NEURONS
The intramuscular injections of FG gave rise to intense labeling
of motor neurons in proximity to the border between the gray
and white matter. Figure 2 is a photomicrograph of a right cervi-
cal cord to illustrate a typical column of labeled motor neurons.
On this figure, FG granulations are present within multiple motor
neuron somas and their processes.

DISTRIBUTION OF MOTOR NEURON COLUMNS SUPPLYING
INDIVIDUALLY TARGETED MUSCLES
A total of nine forelimb muscles were targeted with intramuscu-
lar injections of FG: three muscles acting on the shoulder joint
(acromiotrapezius, acromiodeltoideus, and spinodeltoideus), two
muscles acting on the elbow joint (biceps brachii and triceps
brachii), and four muscles acting on the wrist joint (extensor
carpi radialis, extensor carpi ulnaris, flexor carpi ulnaris, and flexor
digitorum profundus).

Acromiotrapezius
Acromiotrapezius, one of the muscles forming the trapezius mus-
cle group (Komárek, 2004; DeLaurier et al., 2008), can be seen
on the lateral aspect of the mouse forelimb (Figures 1A,B).
Acromiotrapezius is a thin but large muscle connecting the spinous
processes of vertebrae to the acromion process of the scapula. It
is involved in retraction, elevation, and depression of the scapula.
Six series of injections were performed along the MEP region of
acromiotrapezius, four of which gave rise to intense labeling in the
ventral horn of the cervical spinal cord. Data from these successful
series injections (n= 4) were included in the present analysis. Such
injections resulted in labeled motor neurons forming a column
spanning segments C2–C6 of the spinal cord (Figure 3A).

Acromiodeltoideus
Acromiodeltoideus, one of the two muscles comprising the del-
toid muscle group (Komárek, 2004; DeLaurier et al., 2008), is
located on the lateral aspect of the mouse forelimb (Figures 1A,B).
Acromiodeltoideus also acts on the glenohumeral joint. It is a small
triangular muscle located at the anterior point of the shoulder at
the junction of spinodeltoideus and biceps brachii (Figures 1A,B).
Six series of injections of FG were performed in acromiodeltoideus
and all six gave rise to intense labeling spanning segments C3–C7
of the cervical spinal cord (Figure 3B). Data from these successful
series of injections (n= 6) were included in the present analysis.

Spinodeltoideus
Together with acromiodeltoideus, spinodeltoideus belongs to the
deltoid muscle group (Komárek, 2004; DeLaurier et al., 2008).
Spinodeltoideus is a trapezoidal-shaped muscle present on the lat-
eral surface of the mouse forelimb (Figures 1A,B), immediately
adjacent to acromiotrapezius. As is the case with acromiotrapezius
and acromiodeltoideus, spinodeltoideus acts on the glenohumeral
joint. Five series of intramuscular injections were performed on
spinodeltoideus. Of these five series of injections, four series gave
rise to bright labeling of motor neurons spanning segments C3–
C6 of the cervical spinal cord (Figure 3C). Data from these four

FIGURE 2 | Photomicrograph of a DAPI-stained longitudinal section
through a right cervical spinal cord demonstrating a typical column of
Fluoro-Gold (FG)-labeled motor neurons. The insert displays a higher
magnification of motor neurons with clear FG granulations in the somas
and axons/dendrites. GM, gray matter; WM, white matter. The dashed line
represents the border between GM and WM.

successful injections (n= 4) were included in the present analysis.
It is worthwhile to mention that, in one case, two labeled motor
neurons were present in C7. These two motor neurons were not
taken into account in further analysis.

Biceps brachii
Biceps brachii is located on the ventral aspect of the upper forelimb
(Figures 1A–C) (Komárek, 2004; DeLaurier et al., 2008). The two
proximal heads of biceps brachii unite to form one distal muscle
mass that flexes the elbow joint. A total of six series of intramuscu-
lar injections of FG were performed into biceps brachii and all of
the series gave rise to intense labeling of motor neurons between
segments C3 and C7 of the spinal cord (Figure 3D). Data from
these six successful series of injections (n= 6) were included in
the present analysis.

Triceps brachii
Triceps brachii is located on the dorsal aspect of the upper fore-
limb (Figures 1A–C) (Komárek, 2004; DeLaurier et al., 2008).
Similarly to biceps brachii, the three proximal heads of triceps
brachii join to form one belly that extends the elbow joint. A total
of six series of intramuscular injections of FG were performed
into triceps brachii, four series of which resulted in intense label-
ing of a motor neuron column that spans segments C4–T1 of the
spinal cord (Figure 3E). Data from these four series of injections
(n= 4) were included in the present analysis. In one series case,
however, three labeled motor neurons were present in rostral T1.
These three motor neurons were not taken into account in further
analysis.

Extensor carpi ulnaris
Extensor carpi ulnaris is one of the two muscles targeted in
the present investigation that extends the wrist joint (Komárek,
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FIGURE 3 | Composite diagram illustrating the distribution of labeled
motor neurons from each targeted muscle. Each black dot represents one
labeled motor neuron and each columnar-shaped data set represents the
FG-labeling observed after intramuscular injections in one muscle. (A)
Acromiotrapezius, (B) acromiodeltoideus, (C) spinodeltoideus, (D) biceps

brachii, (E) triceps brachii, (F) extensor carpi ulnaris, (G) extensor carpi
radialis, (H) flexor carpi ulnaris, and (I) flexor digitorum profundus. Spinal cord
levels are indicated in the white matter on the right hand side of each
diagram. Each cervical/thoracic spinal cord segment is demarcated by dashed
lines. These lines correspond to the halfway point between two nerve roots.

2004; DeLaurier et al., 2008). Extensor carpi ulnaris is a thin and
shallow muscle located on the dorsal aspect of the distal forelimb
(Figures 1A,B). Overall, there were four series of intramuscular
injections performed in extensor carpi ulnaris, with three series
giving rise to intense motor neuron labeling located between seg-
ments C2 and C8 of the cervical spinal cord (Figure 3F). Data from
these three successful series of injections (n= 3) were included in
the present analysis. In one case, however, one labeled motor neu-
ron was present in caudal C2. This motor neuron was not taken
into account in further analysis.

Extensor carpi radialis
Together with extensor carpi ulnaris, extensor carpi radialis, which
is located on the dorsal part of the mouse distal forelimb, extends
the wrist joint (Figures 1A–C) (Komárek, 2004; DeLaurier et al.,
2008). Extensor carpi radialis is comprised of a smaller brevis and

a larger longus compartments; however, both parts were targeted
together. A total of six series of intramuscular injections of FG
were performed into extensor carpi radialis. Of these six series, five
series of injections gave rise to consistent labeling of motor neu-
rons spanning cervical segments C2–C7 (Figure 3G). Data from
these five injections (n= 5) were included in the present analysis.

Flexor carpi ulnaris
Flexor carpi ulnaris, a flexor muscle that acts on the wrist joint, is
located on the ventral aspect of the distal part of the mouse fore-
limb (Figure 1C) (Komárek, 2004; DeLaurier et al., 2008). A total
of four series of intramuscular injections of FG were performed in
flexor carpi ulnaris. Of these injections, three gave rise to intense
labeling of motor neurons forming a column between segments
C6 and T1 of the spinal cord (Figure 3H). Data from these three
injections (n= 3) were included in the present analysis.
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Flexor digitorum profundus
As is the case for flexor carpi ulnaris, flexor digitorum profundus
is a wrist flexor located on the ventral aspect of the mouse distal
forelimb (Figure 1C) (Komárek, 2004; DeLaurier et al., 2008). A
total of four series of intramuscular injections were performed
into flexor digitorum profundus and all four series gave rise to
intense motor neuron labeling between segments C5 and T1 of
the spinal cord (see Figure 3I). Data from these four injections
(n= 4) were included in the present analysis.

PARTIAL TARGETING OF THE MOTOR END PLATE REGION IN TRICEPS
BRACHII
Figure 4A is a schematic representation of the portions of the MEP
region of triceps brachii that were selectively targeted with FG.
These regions are the anterior and posterior halves and the center
of the MEP region. Figure 4B shows the distribution of labeled
motor neurons resulting from these partial injections. Injections
throughout the full length of the MEP region gave rise to columns
of labeled motor neurons that extends from segment C4 through
the rostral part of C8. In comparison, the partial targeting of the
MEP region gave rise to correspondingly partial labeling of triceps
brachii’s motor neuron column. More specifically, the targeting of
the anterior portion of the MEP region resulted in the labeling of
motor neurons forming a column mainly spanning segments C4–
C5. Conversely, FG injections limited to the posterior part of the
MEP region for triceps brachii gave rise to a column of positively
labeled motor neurons, the bulk of which was confined within
segments C7 and the rostralmost aspect of C8. Moreover, single
injections of FG in the center of the MEP region produced labeling
in fewer motor neurons mainly confined to segment C7. Further-
more, the application of FG onto the external surface of triceps
brachii’s fascia resulted in a negligible number of labeled motor
neurons.

OVERALL ORGANIZATION OF THE MOTOR NEURON COLUMNS
SUPPLYING THE MOUSE FORELIMB
Figure 5 is a diagrammatic representation of the motor neuron
columns for all muscles targeted in the present investigation. On
the rostro-caudal axis, these columns of motor neurons encompass
segments C2–T1 of the mouse spinal cord (Figure 5A). As shown
in this figure, a great amount of overlap can be observed between
these motor neuron columns. Motor neuron columns innervating
the muscles acting on the glenohumoral joint (i.e., acromio-
trapezius, acromiodeltoideus, and spinodeltoideus) extend from
segments C2 to C7 whereas the motor neuron columns supply-
ing the muscles acting on the elbow joint (i.e., biceps brachii
and triceps brachii) span segments C3–C8. Moreover, the exten-
sor (i.e., extensor carpi radialis, extensor carpi ulnaris) and flexor
(i.e., flexor carpi ulnaris and flexor digitorum profundus) muscles
acting on the wrist joint are innervated by motor neuron columns
spanning segments C2–C8 and C5–T1, respectively. Overall, there
is a topographical relationship, on the rostro-caudal axes, between
the different muscles targeted in the present analysis and the motor
neuron columns that innervate them. This relationship is such
that the proximal-most muscles (e.g., acromiotrapezius) are inner-
vated by motor neuron columns located in the rostral segments

FIGURE 4 | Selective Fluoro-Gold (FG) targeting of the motor end plate
region in triceps brachii and the resulting labeling in the spinal motor
neurons. (A) Schematic representation of the motor end plates (MEPs)
selectively targeted on the triceps brachii muscle. The green and red dots
represent the anterior and posterior halves of the entire MEP region,
respectively. The blue dots indicate the location of a bolus injection of FG in
the belly of the muscle. The double-headed arrow indicates the
antero-posterior direction. (B) Distribution of labeled motor neurons
resulting from selective MEP injections of FG as indicated in (A). The black
motor neuron column is taken from Figure 3E and represents the typical
labeling observed after full-length MEP injections in triceps brachii. The red
motor neuron column was obtained after FG injections along the posterior
half of the MEP region. The green motor neuron column was obtained after
FG injections along the anterior half of the MEP region. The blue motor
neuron column was obtained after FG bolus injections in the belly of triceps
brachii. The magenta “column” was obtained after application of FG onto
the external surface of the fascia over triceps brachii. Each cervical/thoracic
spinal cord segment is demarcated by dashed lines. These lines correspond
to the halfway point between two nerve roots.

of the cervical spinal cord whereas the distal-most muscles (e.g.,
flexor carpi ulnaris) are supplied by columns located more cau-
dally. Exceptions to this organizational scheme are the motor
neuron columns for the two wrist extensors, namely extensor carpi
radialis and extensor carpi ulnaris. Although these muscles are
located in the distal part of the forelimb, they are supplied by
motor neuron columns located in rostral segments of the spinal
cord. Figure 5B shows the motor neuron columns in the trans-
verse plane at spinal cord levels C3, C5, and C7. On this plane,
the columns of motor neurons also exhibit a high level of overlap
with each other. Overall, there is a dorso-ventral topographical
relationship between the muscles targeted in the present investi-
gation and the motor neurons that supply them. This relationship
is such that the proximal (e.g., acromiotrapezius) and distal mus-
cles (e.g., flexor carpi ulnaris) are innervated by motor neuron
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FIGURE 5 | Color-coded schematic map of the motor neuron columns
innervating the Fluoro-Gold targeted forelimb muscles. The color
schemes remain consistent with that of Figures 1B,C. (A) Rostro-caudal
map of the motor neuron columns innervating the targeted forelimb
muscles. These columns were obtained by combining plots from Figure 3.
The nerve root exit points represent the halfway point between spinal cord
segments throughout C2–T1. (B) Dorso-ventral and medio-lateral map of
the motor neuron columns innervating the targeted forelimb muscles for
spinal cord segments C3, C5, and C7. The gray matter contours were
adapted from Watson et al. (2009).

columns located ventrally and dorsally, respectively, within the
ventral horn spinal cord.

DISCUSSION
We have recently targeted the entire MEP region of several muscles
of the rat forelimb with retrograde tracers (Tosolini and Morris,
2012). The results of this analysis showed that the motor neu-
ron columns that supply these muscles extend over more cervical
spinal cord segments and display greater overlap with one another
than formerly reported. The aim of the present investigation was
to transfer this knowledge to the species of choice for the design of
genetically engineered models of motor dysfunction, namely the
mouse. The main outcomes of this study are first, the production
of a detailed map of the motor end plate region for nine mus-
cles of the mouse forelimb. This map was subsequently used as
a guide to target the entire motor end plate region of these mus-
cles with FG. The second main outcome is the characterization
of the topographical organization that exists between the mouse
forelimb muscles and the motor neuron columns that innervate
them.

MOTOR END PLATE ANALYSIS
To our knowledge, the present study is the first description of the
MEP regions in the mouse forelimb. This analysis revealed that the
MEP region for the different muscles targeted is located orthogo-
nally to the direction of the muscle fibers. It is noteworthy that the
MEP region is not consistently located within the fleshy part of a
muscle (i.e., the muscle “belly”). Moreover, some muscles such as
acromiotrapezius, spinodeltoideus, and acromiodeltoideus are flat

and therefore do not have such a fleshy region. In these muscles
as well as in triceps and biceps brachii, the MEP region traverses
the entire width of the muscle (see Figure 1). The thin and narrow
muscles, such as extensor carpi radialis, extensor carpi ulnaris,
flexor digitorum profundus, and flexor carpi ulnaris have a fleshy
part where the MEP regions are located. However, in these muscles,
the so-called “belly” is not located in the center of the muscle but
closer to the elbow joint. In most cases, the MEP region does not
form a straight band. Rather, MEPs often exhibit a sinusoidal-like
curve or are V-shaped. These findings are consistent with previous
MEP characterization in the rat forelimb (Tosolini and Morris,
2012).

Fluoro-Gold was also injected along partial aspects of the MEP
region in triceps brachii (see Figure 4A). The rostro-caudal extent
of the labeling obtained from these partial MEP injections was then
compared with that resulting from injections along the full length
of the MEP region (see Figure 4B). Injections of FG restricted
to the anterior half of the MEP region gave rise to a column
of labeled motor neurons spanning only the rostral part of the
columns of neurons obtained after complete MEP region injec-
tions. Conversely, FG injections restricted to the posterior half of
the MEP region in triceps brachii produced a column of labeled
motor neurons spanning only the caudal half of the column of
motor neurons obtained after complete MEP region injections.
Interestingly, combined labeling from the anterior and posterior
MEP injections resulted in a column of similar span to that pro-
duced from the injections of the complete MEP region. These
data suggest the existence of a MEP/motor neuron topographical
relationship, although more data points need to be generated to
confirm this a priori interesting finding. Should such organization
be confirmed for triceps brachii, the MEP/motor neuron rela-
tionship will have to be established for the other muscles of the
mouse forelimb. Injections selectively targeting the belly of triceps
brachii were also performed (see Figure 4). As compared with the
complete MEP data, these injections gave rise to shorter columns
with substantially less FG-positive motor neurons. Together, these
data can explain, at least partly, why targeting the entire MEP
region with FG gave rise to labeled motor neurons spanning more
spinal cord segments than recently observed (e.g., Bácskai et al.,
2013a).

METHODOLOGICAL CONSIDERATIONS
In the present analysis, functionally diverse muscle groups that
act on the three major joints of the forelimb were targeted with
FG, namely the shoulder, elbow, and wrist. Superficial muscles
of the mouse forelimb were selected for this tract-tracing exper-
iment because these muscles are easily accessible. Indeed, the
deeper muscles of the forelimb require a significant amount of
dissection before they can be exposed and subjected to neu-
ronal tracer injections, hence creating a risk for contamina-
tion of the tracers to surrounding muscles. It is our opin-
ion that the superficial muscles of the forelimb have greater
translational relevance than the deeper ones, as they are more
likely to be the target in clinical trials involving somatic gene
therapy.

In our hands, FG has proven to be a reliable and robust retro-
grade tracer that produces intense labeling of the neuronal somas
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and processes, therefore allowing for easy identification and direct
count of motor neurons (see Figure 2). Importantly, unlike some
other neuronal tracers, FG does not have the tendency to leak
out of the cells (Schmued and Fallon, 1986). Yet, leakage has been
recently reported after intramuscular injections of FG in the mouse
forelimb (Bácskai et al., 2013a). It is important to note that mus-
cle fasciae consist of tough layers of fibrous connective tissue that
act as a natural barrier to tracer leakage (Haase and Hrycyshyn,
1986). In the present study, great care was taken to leave the mus-
cle fasciae intact, aside from the penetrations of the ultra-thin
micropipettes. It is also worth mentioning that the outermost
aspect of the fasciae (i.e., the fasciae that can be readily visual-
ized once the skin over the muscle of interest is cut open) was
difficult to puncture even with the sharpest glass micropipettes.
As the innermost fasciae (i.e., the fasciae that cover the innermost
part of the muscles) would offer the same resistance against punc-
ture, we are confident that the minute amount of tracer injected
did not contaminate the deep muscles underlying those of interest.
Additionally, the exposed region was routinely wiped off imme-
diately after each injection in order to remove any tracer that
may have seeped out. Special care was also taken to ensure that
the blood vessels surrounding the muscles were not perforated.
Taken together, these precautions ensured that insignificant spuri-
ous labeling was generated in the present investigation. However,
leakage of the tracer to adjacent muscles cannot be entirely ruled
out. To investigate the possibility that, despite these extensive pre-
cautions, some tracer might have been taken up by non-targeted
surrounding muscles, FG was directly applied onto the external
fascia covering triceps brachii (see Figure 4B). The result of such
application of FG resulted in negligible labeling, therefore con-
firming that, at least in our hands, spurious labeling was not
significant.

Overall, all injections of FG in the same muscles resulted in
similar labeling for each animal. However, some variability was
observed, in the extent, on the rostro-caudal axes, of the motor
neuron column (see Figure 3). The same observation has been
reported in previous tract-tracing investigations of the organiza-
tion of motor neurons supplying the skeletal muscles (Hollyday,
1980; McHanwell and Biscoe, 1981; Nicolopoulos-Stournaras and
Iles, 1983; Vanderhorst and Holstege, 1997; McKenna et al., 2000;
Coonan et al., 2003; Tosolini and Morris, 2012; Bácskai et al.,
2013a,b). This variability could be due to intraspecies differences
with regard to the overall number of motor neurons innervat-
ing a muscle, a phenomenon that, in turn, influences the length
and/or spatial distribution of the motor neuron columns. Inter-
estingly, we also found slight differences in spatial distribution
of motor neuron columns within the same animal, i.e., between
homologous muscles in the left and right forelimbs. It is possible
that this finding reflects forelimb use preference (i.e., handed-
ness). Forelimb preference when reaching is well documented
in the rat (Gharbawie et al., 2007; Alaverdashvili et al., 2008;
Alaverdashvili and Whishaw, 2010; Morris et al., 2011); how-
ever, it is still a matter of debate in the mouse (Neveu et al.,
1988; Takeda and Endo, 1993; Waters and Denenberg, 1994; Bid-
dle and Eales, 1996; Bulman-Fleming et al., 1997). In the present
study, forelimb use preference was not determined prior to the

delivery of neuronal tracer. Thus, whether forelimb use preference
affects the distribution of the motor neuron columns remains
to be investigated. On the other hand, one cannot rule out that
there could have been differences in the uptake of FG across
different injections targeting the same muscle. Indeed, although
great care was taken to minimize inter-injection variability, the
uptake of FG could have been suboptimal in some cases. In
these instances, the number of labeled motor neurons can actu-
ally be considered as an underestimation of the actual population
(Nicolopoulos-Stournaras and Iles, 1983; Tosolini and Morris,
2012).

TRANSLATIONAL RELEVANCE
Neurological conditions that affect lower motor neurons are
among the most debilitating motor disorders. Genetically based
mouse models are currently available for conditions that directly
affect the output of spinal cord motor neurons on the skeletal
musculature. In particular, these include models of amyotrophic
lateral sclerosis, i.e., the SOD-1-G93A and A315T-TDP-43 strains
(Jackson Laboratory, Bar Harbor, ME, USA) (Kaspar et al., 2003;
Ishiyama et al., 2004; Turner et al., 2009; Wegorzewska et al.,
2009; Towne et al., 2010; Xu et al., 2010; Guo et al., 2011;
Riboldi et al., 2011). Likewise, models of Duchenne’s muscu-
lar dystrophy, i.e., the various mdx strains (Jackson Laboratory,
Bar Harbor, ME, USA) (Kimura et al., 2010; Pratt et al., 2013)
and of SMA, i.e., the SMN−/− strain (Hsieh-Li et al., 2000)
are also available. Mice with these above-mentioned mutations
display a typical motor phenotype with upper and lower limb
deficits.

Several treatment strategies have been designed in an attempt
to reverse the motor phenotype in these mutant mice. For instance,
both pharmaceutical and cell-based therapies have been per-
formed through different routes of administration (Raoul et al.,
2005; Henriques et al., 2011; Teng et al., 2012). These therapeutic
approaches have been shown to slow the progression of the motor
phenotype, to increase lifespan of the affected animals but are
yet to eradicate these conditions. Targeted delivery of therapeutic
agents to motor neurons for the treatment of ALS-like phenotypes
has also been achieved via intramuscular injections and the ensu-
ing retrograde transport along the peripheral nerve (e.g., Kaspar
et al., 2003; Wu et al., 2009; Calvo et al., 2011). Intramuscular
injection and retrograde delivery of therapeutic molecules is a
minimally invasive surgical procedure and, in combination with
viral vectors, offers promising potential for translational gene ther-
apy aiming at the restoration of motor function (Baumgartner
and Shine, 1998; Giménez y Ribotta et al., 1998; Kaspar et al.,
2003; Nakajima et al., 2008; Towne et al., 2010; Uchida et al., 2012;
Benkhelifa-Ziyyat et al., 2013). The present anatomical investiga-
tion has clearly shown that targeting the full width of the muscles’
MEP region can maximize the success of somatic delivery of ther-
apeutic molecules to spinal cord motor neurons. Thus, knowledge
regarding the precise anatomical relationship between the differ-
ent muscles of the mouse forelimb and the location of: (1) their
MEP region and (2) the spinal cord motor neuron columns that
supply them will prove to be valuable tools to further investigate
new treatment for ALS and other related motor disorders.
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Brachial plexus and peripheral nerve
injuries lead to significant upper extremity
dysfunction and disability. Traditionally,
both have been treated with nerve graft-
ing when a tensionless, end-to-end repair
is not feasible. Despite our best efforts,
functional outcomes of this procedure are
less than ideal due to the long distances
that the axons must regenerate to reach
their end organs. Over the past 20 years our
understanding of nerve anatomy, topogra-
phy, and regeneration has improved and
the surgical technique of nerve transfers
has been developed. Due to improved func-
tional outcomes, decreased morbidity, and
surgical time, we are now experiencing a
paradigm shift in the treatment of brachial
plexus and peripheral nerve injuries from
nerve grafting to nerve transfers (1, 2).

Motor function after nerve injury is
dependent on both time to reinnervation
and the number of motor axons reinner-
vating the target muscle (3). Nerve trans-
fers capitalize on these two factors and are
the reason for their clinical success. Nerve
transfers, by definition, involve coapting a
healthy, expendable donor nerve or fascicle
to a denervated recipient nerve to restore
function to the recipient end-organ (skin
for sensation or muscle for motor func-
tion). They can be performed closer to the
recipient target allowing for earlier reinner-
vation of the muscle and quicker return of
function. Further advantages include that
nerve transfers are performed outside the
zone of injury and scarred field, can be per-
formed on patients with delayed presenta-
tion, and can avoid interpositional nerve
grafting, which leads to increased numbers
of regenerating nerve fibers making it to
the target organ (3).

The ideal timing of nerve transfers has
not yet been established, but reinnervation

of the muscle by 12–18 months after injury
is a common goal. Indications are evolv-
ing and currently include patients with
proximal nerve root avulsions, high level
peripheral nerve injuries, large neuromas-
in-continuity, and/or multi-level nerve
injuries. In our group, we use nerve trans-
fers to treat most brachial plexus injuries
(avulsions or not) and peripheral nerve
injuries in upper arm or proximal fore-
arm. We usually reserve nerve grafting for
nerve injuries in the distal forearm or hand
because the regenerative distances and time
to reinnervation of the muscle are short. At
these distal injuries, functional outcomes
with grafting are similar to those seen with
nerve transfers and donor site morbidity
from a nerve transfer is avoided.

In brachial plexus injuries, a hierar-
chy of return of function exists with
efforts directed to restoring elbow flexion
first, followed by shoulder function, then
hand function. For upper trunk injuries,
multiple combinations of nerve transfers
have been described. The double fascicular
nerve transfer is the most common nerve
transfer performed to return elbow flexion.
This transfer involves coapting redundant
nerve fascicles from the median and ulnar
nerves to the biceps brachii and brachialis
branches of the musculocutaneous nerve.
Many have reported their experience with
this transfer and patients have achieved
at least Medical Research Council (MRC)
strength of 3 with most achieving grade
4 or greater without evidence of donor
site morbidity (4–6). For restoration of
shoulder function transfers of the spinal
accessory nerve to the suprascapular nerve
and a branch of the triceps to the axil-
lary nerve are most commonly performed.
Thoracodorsal nerve and intercostal nerves
transferred to the long thoracic nerve are

also common to restore scapular stabil-
ity provided by the serratus anterior mus-
cle. Restoration of shoulder abduction
and external rotation has been successfully
reported with these nerve transfers (7, 8).
In lower plexus injuries, the brachialis
branch of the musculocutaneous nerve can
be transferred with encouraging results to
the anterior interosseous nerve to restore
prehension. Previously, these lower plexus
injuries were treated with free functional
muscle transfers given the great regen-
erative distance from the brachial plexus
to the forearm musculature. However,
free functional muscle transfers are asso-
ciated with increased morbidity, opera-
tive time, and lengthy hospital stays. The
brachialis to anterior interosseous nerve
transfer avoids these drawbacks and estab-
lishes a platform for restoring function
to the hand.

In addition to their use for brachial
plexus injuries, nerve transfers to restore
hand function following peripheral nerve
injuries are also gaining momentum. New
transfers continue to be developed as our
understanding of nerve topography grows.
Ulnar nerve injuries result in loss of power
grip, pinch strength, and hand dexterity.
The pronator quadratus branch of the
anterior interosseous nerve can be trans-
ferred to the motor component of the ulnar
nerve distally in the forearm to reinner-
vate the intrinsic muscles of the hand (9).
It was originally described as an end-to-
end coaptation if no regeneration of the
ulnar nerve is expected, but recently Mack-
innon and colleagues have shown effi-
cacy of an end-to-side “supercharge” coap-
tation enabling proximal regeneration of
the ulnar nerve to proceed as well (10).
Upper extremity trauma frequently results
in radial nerve injuries impairing both
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Moore Nerve transfers restore function

wrist and finger extension. Although ten-
don transfers are functional for patients
with radial nerve palsies, nerve transfers
from the median to radial nerves allow
for independent thumb and finger exten-
sion (11). To restore median nerve func-
tion, transfer of branches of the radial
nerve, the brachialis branch, and branches
of the ulnar nerve have been described with
good outcomes (12). Focusing on syner-
gism and redundancy of function has led
to the success of these transfers.

An exciting application of nerve trans-
fers is in the field of spinal cord injury
(SCI). Drs. Susan Mackinnon and Ida Fox
at Washington University in St. Louis, MO,
USA are leading developers in the use of
nerve transfers to restore upper extrem-
ity function in patients with cervical SCI.
These transfers are being developed to
increase volitional control and improve
independence. Unlike brachial plexus or
peripheral nerve injuries, SCI patients have
intact lower motoneurons below the level
of injury and thus, the motoneuron –
peripheral nerve – muscle end-organ con-
nection remains intact. For this reason,
the muscle is “preserved” and nerve trans-
fers in SCI patients can be performed
without the time sensitivity found with a
peripheral nerve injury. Specific transfers
for SCI include transfer of the brachialis
branch of the musculocutaneous nerve to
the anterior interosseous nerve to improve
prehension and transfer of the deltoid
nerve branches to the triceps branches to
improve elbow extension. Evaluation and
collaboration among the physiatrists, ther-
apists, and surgeon are critical to identi-
fying ideal candidates, developing opera-
tive plans, and ultimately achieving suc-
cess with nerve transfers in this patient
population.

In conclusion, nerve transfers are an
essential tool for the peripheral nerve sur-
geon to improve upper extremity func-
tion after nerve injury. I would argue that
nerve transfers are the preferred treatment
for high peripheral nerve injuries and for
most patterns of brachial plexus injury. In
addition, they will likely play an increas-
ing role in managing SCI patients. Return
of earlier, more effective upper extremity
function supports the importance of this
surgical technique. As we critically analyze
and report our outcomes with nerve trans-
fers, further indications and expectations
of return of function will be elucidated.
The paradigm shift; however, is happening
now. Nerve transfers viewed as“standard of
care” may not be far away. Currently, they
certainly hold great promise and should
be considered in restoring upper extremity
function in patients with devastating nerve
injuries.
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The corticospinal system is a major motor pathway in the control of skilled voluntary move-
ments such as reaching and grasping. It has developed considerably phylogenetically to
reach a peak in humans. Because rodents possess advanced forelimb movements that can
be used for reaching and grasping food, it is commonly considered that the corticospinal
tract (CST) is of major importance for this control also in rodents. A close homology to
primate reaching and grasping has been described but with obvious limitations as to inde-
pendent digit movements, which are lacking in rodents. Nevertheless, it was believed
that there are, as in the primate, direct cortico-motoneuronal connections. Later, it was
shown that there are no such connections. The fastest excitatory pathway is disynap-
tic, mediated via cortico-reticulospinal neurons and in the spinal cord the excitation is
mainly polysynaptically mediated via segmental interneurons. Earlier behavioral studies
have aimed at investigating the role of the CST by using pyramidotomy in the brainstem.
However, in addition to interrupting the CST, a pyramidal transection abolishes the input to
reticulospinal neurons. It is therefore not possible to conclude if the deficits after pyrami-
dotomy result from interruption of the CST or the input to reticulospinal neurons or both.
We have re-investigated the role of the CST by examining the effect of a CST lesion in the
C1–C2 spinal segments on the success rate of reaching and grasping. This lesion spares
the cortico-reticulospinal pathway. In contrast to investigations using pyramidal transec-
tions, the present study did not demonstrate marked deficits in reaching and grasping.
We propose that the difference in results can be explained by the intact cortical input to
reticulospinal neurons in our study and thus implicate an important role of this pathway in
the control of reaching and grasping in the rat.

Keywords: skilled forelimb movements, reaching, grasping, corticospinal tract lesion, reticulospinal, interneuron,
motorneuron

INTRODUCTION
Skilled reaching and grasping are among the most complex volun-
tary movements that many different species of animals perform
for their daily living and survival. The corticospinal tract (CST)
plays a major role in the control of skilled voluntary movements
such as reaching and grasping in higher species (1–5). This func-
tion has developed during phylogeny and has reached its peak
in man (3, 6, 7). Rodents also perform skilled forelimb move-
ments and it is generally accepted that the CST has an important
role for reaching and digit grasping (8, 9). At first, microcircuit
analysis using anatomical tracing and electrophysiology suggested,
as in the primate, the existence of direct cortico-motoneuronal
connections (10). These results further emphasized the idea that
independent digit movements can only be performed if there are
direct cortico-motoneuronal connections. Later, it was shown that
there are no such connections in rodents (11, 12). It has been
shown that the fastest excitatory pathways from motor cortex in
the rat are mediated disynaptically via a cortico-reticulospinal–
motoneuronal pathway (11). In the earlier behavioral studies, the
lesion was made in the pyramid (8) at the brainstem level or
in the motor cortex (9) and therefore interrupted not only the

CST, but also cortico-reticular projections. We have now inves-
tigated the contribution of the CST in the rat by comparison of
the success rate of reaching and grasping of a small morsel of
food with the forepaw before and after transection of the axons
in the dorsal column in the C1/C2 segmental border. This lesion
eliminates the corticospinal input to the segmental interneurons
(sINs), but spares the input to reticulospinal neurons as shown in
Figure 3D (11).

MATERIALS AND METHODS
ETHICS
The study was conducted in accordance with national laws (The
Swedish Animal Protection Act and Animal Protection Ordinance)
including approval by a regional ethical committee (Swedish Board
of Agriculture).

SUBJECTS AND HOUSING
The experiments were made on 13 female Wistar and 5 Sprague-
Dawley rats (age 2–3 months, weight 300–400 g). They were
housed in groups of six to eight in a cage (1.5 m wide, 0.5 m
deep, and 0.5 m high) with grid walls and enriched with bedding,
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tubes, hammocks, and shelters. A test box (25 cm wide, 30 cm deep,
35 cm high; c.f. Figure 1) for behavioral experiments was directly
attached at the end of the home cage.

BEHAVIORAL TEST
The animals were trained in a behavioral paradigm testing the abil-
ity to remove a morsel of food placed 10–15 mm behind a vertical
slit. The rats were first familiarized with a simplified test by allow-
ing the entire group, for three nights (separated by 48 h), ad libitum
retrieval of crushed morsels of their regular food pellets (Harlan
Teklad) through a slit in the front wall of the test box. The morsels
were contained in a vertical cylinder with a hole placed directly
behind the slit. Thereafter, the animals were trained at daytime in
a setup mounted in the test box only during experiments. It resem-
bled that of Whishaw et al. (8), but with the difference that the slit
was not positioned in the front wall of the test box but was located
between glass walls (1 mm thick) protruding 55 mm from the front
wall (c.f. Figure 1). The bottom wall was positioned 23 mm above
the floor. The farther side wall (background) was painted black to
improve the contrast of the paw in the video images. The height
of the slit was 20 mm and the width 13 mm. The intention of this
arrangement was to allow for comparison with a test in the cat,
developed by Górska and Sybirska (13), with retrieval of food from
a horizontal tube at shoulder level. The morsels consisted of cut
pieces (about 2 mm× 3 mm) of Rotastak Milk Drops (Armitage

FIGURE 1 | Schematic drawing of the test box (oblique lateral view;
measurements in millimeters) showing the behavioral paradigm with
a vertical slit formed by glass walls. The upper part of the space between
the vertical walls is covered so that the height of the slit is 20 mm.

Pet Care). During the experiments, the home cage was separated
into two parts with a slideable hatch so that only animals kept in
the part to which the test box was attached could enter it and per-
form the test. In the first experiment, the entire group of rats had
access to the test box but this number was successively reduced in
the next two to five experiments so that the animals were normally
tested one at a time. Occasionally, two animals had access to the
test box and were tested in the same experiment. The rats were
moderately fasted during the preceding night (about 10 pellets
of their regular food and 2 dl of glucose solution were left in the
cage). The preoperative training period consisted of 10–20 sessions
with a minimum inter-session interval of 2 days. Each experiment
continued until the animal was satiated (20–100 trials).

Of the four animals, the behavior of which are described in
this study, three (corresponding to lesions in Figures 2A,C,D)
performed the movement with the left forelimb and the fourth
animal (Figure 2B) with the right forelimb. In two of them
(Figures 2A,B), the movements were recorded with a Motionscope
PCI camera system (Redlake Imaging, San Diego, USA) with par-
allel sampling (two cameras, 250 Hz sampling rate, shutter 1/1250;
sampling period 2 s) of views from above and from the lateral side.
The entire experiments were also recorded on digital video cam-
eras (40 Hz, Panasonic, Japan). In the two others (Figures 2C,D),
the movements were recorded with digital video cameras (100 Hz,
Sony, Japan).

MOVEMENT ANALYSIS
The movements were evaluated qualitatively from the video
images. In addition, the success rate, defined as the percentage of
trials in which the morsel was grasped and brought to the mouth
[c.f. (9)] was calculated from all trials performed in an experi-
ment. This parameter was 90% at the end of the pre-operative
training. Postoperatively, the success rate was measured on the
first day each individual animal participated in the test and which
corresponded to day 8, 16, 11, and 7, respectively in the animals the

FIGURE 2 | Histological control. Transverse extent of spinal selective
lesions in four rats (A–D) giving complete interruption of the CST but with
remaining fibers in unlesioned areas of the DC. The asterisks in (A,B) show
the position of a notch cut, after fixation, in the lateral funicle on one side to
identify that side of each section when mounting them.
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lesions of which are shown in Figures 2A–D. In the one animal,
which performed the arpeggio movement and which was filmed
with high-speed video, the movement was rated according to
Whishaw et al. (14) using a three-point scale (2= arpeggio present,
1= arpeggio slightly abbreviated but recognizable, 0= arpeggio
absent). Since the number of animals with adequate lesion was
limited (n= 4; c.f. results) and high-speed video was used only in
two of them, the material was considered too small for statistical
analysis.

SURGERY AND ANIMAL CARE
Anesthesia was induced by isoflurane after which Dormicum (i.p.),
Hypnorm (i.p.), Atropine (s.c.), Carprofen (s.c.), and Ringer’s
Acetate solution (s.c.) were administered. The animal was posi-
tioned on a heating pad, intubated, and artificially ventilated.
The anesthesia was maintained with isoflurane using a Univen-
tor unit (Agnthos, Lidingö, Sweden). Rectal temperature, sPO2,
ECG, and end-tidal CO2 was continuously monitored. The bor-
der between the C1 and C2 vertebras was exposed by a midline
incision and retraction of the dorsal neck muscles. In some cases,
a small laminectomy was made of either the caudal part of C1 or
the rostral part of C2. The dura was opened transversally and the
dorsal column partially transected with watch-makers forceps. The
forceps were inserted into the dorsal column contralateral to the
intended side of lesion. Starting from the dorsal root entry zone, an
oblique lesion was made in the contralateral dorsal column along
the pia layer overlying the dorsal horn. When reaching the ven-
tral part of the dorsal column the lesion was enlarged to a bilateral
transection of that area. The neck muscles were sutured with Vicryl
(4–0) and the skin with Monocryl (4–0) sutures. Buprenorphine
(s.c.) and Ringer’s acetate solution (s.c.) were given immediately
postoperatively. Vital values were monitored until sPO2 could be
maintained above 95% with spontaneous breathing in room air.
The animal was then put on a heating pad in a separate part of the
home cage. During the first postoperative week, the animals were
kept at least two together in an area of the home cage with a height
reduced to 15 cm to restrict them from climbing on the grid walls.

CONTROL OF LESIONS
Electrophysiology
The completeness of the CST lesion was assessed in acute electro-
physiological experiments. The preparation has previously been
described in detail Alstermark et al. (11). In brief, the animals were
anesthetized with a mixture of fentanyl and midazolam (2.8 ml/kg
i.p.) and then by α-chloralose (60 mg/kg i.v.). Atropin (0.5 mg),
dexamethasone (2 mg) was administered just after the induction
of anesthesia. During recordings, the animals were immobilized
with pancuronium bromide and artificially ventilated. The ros-
tral part of the C1 and the C4-Th1 spinal segments were exposed
by laminectomy and a posterior craniotomy was performed over
the cerebellum to allow for insertion of stimulating electrodes in
the pyramid. Corticofugal fibers were stimulated in the contralat-
eral pyramid at 0.5 mm lateral to the midline, 2 mm rostral to the
Obex level with a rostral angle of 30° using tungsten electrodes.
Recording of the descending volley was made from the surface of
the DC, cord dorsum potential (CDP), rostral and caudal to the
lesion using a silver ball electrode. Using glass micro-electrodes,

intracellular records were obtained from forelimb motoneurons
(MNs) in C6–C8, with a minimal membrane potential of 40 mV.
All signals were sampled using a Digidata 1200 recording system
and analyzed off-line with Clampfit (Axon Instruments, Foster
City, CA, USA).

Histology
At the end of the acute experiments the animals were sacrificed
with pentobarbital (i.v.) and perfused with 3% formaldehyde solu-
tion after which the spinal cord was removed. The C1–C2 segments
were freeze-sectioned (50 µm), stained with cresyl violet and the
transverse extent of the lesion evaluated histologically.

RESULTS
C1–C2 CST/DC LESIONS
Complete transection of the CST with minimal damage to more
dorsally located fibers was achieved only in 4 animals out of 18. In
the other cases, which were excluded, the CST lesion was incom-
plete or the entire dorsal column was transected. Figure 2 shows
the histological extent of the four successful C1/C2 DC lesions. In
all cases, the lesion covered the most ventral part of the DC bilat-
erally were the CST is located. In addition, the lesions interrupted,
to different extents, also more dorsally located fibers in the DC. On
the side ipsilateral to the performing limb (right side in Figure 2B,
left side in Figures 2A,C,D), the largest dorsal extent was found
in lesion Figure 2B. In the other animals, the lesions were more
confined to the ventral part of the DC.

ELECTROPHYSIOLOGY
In all animals, it was verified that the lesion had completely abol-
ished the corticospinal volley recorded below the lesion. The
experimental setup is outlined schematically in Figure 3D. The
volley was recorded from the surface of the DC in C1 and C4. It
can be seen that the lesion completely abolished the corticospinal
volley in C4. The negative component (upward) was eliminated
and only the stimulus artifact remained. In two animals (lesion in
Figures 2C,D), intracellular recordings were made from forelimb
MNs innervating wrist and digit extensor or flexor muscles. In
Figures 3A,B is illustrated intracellular recordings from a flexor
MN (upper traces).

A single electrical stimulus given in the contralateral pyramid
(Pyr) evoked no effect, whereas a double pulse elicited excitatory
postsynaptic potentials (EPSPs) as shown in Figure 3B. Latency
measurements from the second electrical stimulus to the onset of
the EPSPs are shown in Figure 3C. The latencies ranged between
2.5 and 4.6 ms (n= 15, 3.48± 0.17 ms). In the lower traces of
the cord dorsum recordings, a small synaptic volley was observed
(arrow head) after the second pyramidal stimulus. This synaptic
volley had a latency of 1.9 ms from the stimulus as indicated by the
arrow head in C. Thus, the shortest EPSP latencies shown in the
histogram (2.5–3.0 ms) were in a monosynaptic range measured
from the synaptic volley (below 1 ms), whereas longer latencies
(3.0–4.0) were in a disynaptic range. The longest latencies (4.2–
4.6) could be compatible with a trisynaptic range. The shortest
latency EPSPs recorded after the C1–C2 CST lesion are compati-
ble with transmission by reticulospinal neurons projecting directly
to forelimb MNs (11), as shown in Figure 3D in green color.
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Alstermark and Pettersson CST lesion, reaching and grasping

FIGURE 3 | Electrophysiological control. (A,B), upper traces are
intracellular recordings from a MN antidromically identified by stimulation
of the ulnar/median nerves. Lower traces were recorded from the cord
dorsum in the same segment (C7) as the intracellular recordings. The
contralateral pyramid was stimulated electrically with a single pulse at
100 µA in (A) and with two pulses in (B,C), histogram of EPSP latencies
measured from the second pyramidal stimulus to the onset. Arrow head

indicates the arrival of the synaptic volley in C7. (D) Schematic circuit
diagram of demonstrated cortico-motoneuronal pathways. ReST in
green, PN pathway in blue and sINs in orange. Note that the ReST has
both monosynaptic projection to MNs and disynaptic projection via PNs
and sINs. The red area indicates the lesion of CST in C1–C2. Cord
dorsum recordings from C1 and C4 evoked by a single stimulation in the
contralateral pyramid at 100 µA.

A disynaptic excitatory pathway could include both C3–C4 pro-
priospinal neurons (PNs; blue) and sINs; orange that are activated
by reticulospinal neurons (15). Thus, these findings are in agree-
ment with those obtained after acute transection of the CST in the
rat (11) and suggest that these pathways can operate also after a
chronic CST lesion.

BEHAVIOR
Figure 4 shows two examples of reaching and grasping movements
obtained preoperatively (Figure 4A) and on the 8th postoperative
day (Figure 4B) in the same animal (lesion shown in Figure 2A).
Video sequences from the same rat are illustrated in Movies S1
and S2 in Supplementary Material (pre- and post-operative). It
is evident that, in both cases, the animal was able to reach for
the morsel of food without signs of dysmetria, to perform a digit
grasping movement resulting in successful retrieval and to bring
the morsel to the mouth. Both pre- and post-operatively, digit
grasping involved preparatory extension and abduction of the dig-
its (frames 120 ms pre-operatively and 100 ms post-operatively)
and an arpeggio movement (16) i.e., a combination of prona-
tion and digit flexion, during which the digits were successively
put down on the surface, starting with digit 5 (frames 136, 144,
and 152 ms pre-operatively and frames 108, 116, and 124 ms post-
operatively. In both movements, the morsel was first touched by
digit 3 and then grasped by combined flexion and adduction
of the digits. Then the paw was supinated before bringing the

food to the mouth. The pre- and post-operative movements are
markedly comparable and note the remaining supination, which
was lacking following pyramidotomy (8). In the present study,
supination was evident in the post-operative movements invari-
ably and the paw was never put down pronated (flat) onto the
floor after retrieval. The post-operative arpeggio movements in
this rat resembled those observed pre-operatively and the mean
rating on a three point scale (c.f. methods) was 1.3 (n= 22) pre-
operatively and 1.4 (n= 12) in the first post-operative experiment.
Similar findings were made in the other rats with the exception that
one of them (corresponding to the lesion in Figure 2B) did not
perform arpeggio movements in the test, neither pre- nor post-
operatively. The success rate in each individual animal on the first
post-operative day in which the animal participated in the test was
94% (Figure 2A, day 8), 96% (Figure 2B, day 16), 96% (Figure 2C,
day 11), and 88% (Figure 2D, day 7).

DISCUSSION
The present results suggest that the control of reaching and grasp-
ing with the forelimb in the rat is not critically dependent on
spinal circuits controlled by the CST. Following the CST lesion
at C1–C2 levels, all the rats showed similar success rate as before
the lesion in reaching and grasping the piece of food with the
forepaw. Our results differ from previous findings suggesting a
role of the CST in the control of the forelimb (8, 9). Earlier, much
emphasis was given to a direct excitatory cortico-motoneuronal
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Alstermark and Pettersson CST lesion, reaching and grasping

FIGURE 4 | Images of reaching and digit grasping movements obtained with high-speed video (250 Hz) preoperatively (A) and 8 days postoperatively
(B) viewed from the lateral side and from above. Times are given in milliseconds relative to the first image. The background has been digitally retouched.

that was considered to provide a high degree of dexterity in the
rat (10), but later it was proposed that also indirect cortico-
motoneuronal CST pathways were important (9, 11). In fact, it
was shown that there is no such direct pathway. Instead, the fastest
excitatory pathway from the motor cortex is mediated disynapti-
cally via a cortico-reticulospinal–motoneuronal pathway, whereas
long latency excitation is mediated via sINs (11, 12). Our present
electrophysiological control experiments confirm that disynaptic
excitation could still be evoked in forelimb MNs after the chronic
CST lesion. One explanation for the different results in the present
study compared to those of Whishaw et al. (8) and Alaverdashvili
and Whishaw (9), may be that in the latter two studies the pyra-
midal lesion and motor cortex lesion eliminated the cortical input
to reticulospinal neurons as well as to the spinal cord.

Since our lesions did not interrupt rubral pathways, we do not
exclude that they may also contribute to this forelimb motor con-
trol. It was shown that lesions of the nucleus ruber resulted in
defective control of reaching and paw movements (14), especially
the searching (arpeggio) component during pronation (17) and

the importance of the rubrospinal tract in the control of grasp-
ing was demonstrated in the cat (4). Interestingly, Whishaw et al.
(14) found that even following combined lesions of the pyramid
and of nucleus ruber, the rats could still reach and grasp despite
their deficits. Whishaw et al. (14) in fact emphasized that “some
components of skilled limb use are supported by descending neural
pathways or spinal cord circuits other than the crossed rubrospinal
or corticospinal projections.” Our results suggest that one candidate
could be the cortico-reticulospinal pathway.

From a phylogenetic perspective, it is interesting that there is a
striking similarity in the kinematics of reaching and grasping in
the rat and mouse (18). In the mouse, it was recently shown that
reticulospinal neurons in the lower brain stem are important in
the control of these movements (19). This finding is supported
by electrophysiological experiments using intracellular recordings
from adult mouse forelimb MNs that demonstrated a disynap-
tic cortico-reticulospinal excitatory pathway (20). In contrast to
the rat, the CST evoked excitation in mouse forelimb MNs was
much weaker and less frequent (20). These authors proposed that
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Alstermark and Pettersson CST lesion, reaching and grasping

the CST may be less involved in the control of MNs, but may be
more so in the control of segmental reflex systems in the mouse.
The present results suggest that the same be true in the rat. It
appears that there is a gradual expansion in the control of spinal
circuits by the CST during phylogenesis, with a weak control in the
mouse, stronger in the rat of sINs, even stronger in the cat with
additional projection to C3–C4 PNs and strongest in primates
with the additional direct CM projection (21). In contrast, the
cortico-reticulospinal input still remains throughout these species
although it is becoming weaker. Even so, the cortico-reticulospinal
pathway to forelimb MNs was shown to be highly plastic and could
be strengthened after partial spinal cord lesion involving both the
CST and rubrospinal tract in the cat (22). Our finding is of inter-
est from a phylogenetic perspective since it shows that similar
skilled movements like reaching and grasping can be controlled by
different motor pathways in different species of animals.
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Movie S1 | Examples of pre-operative movements in the rat illustrated in
Figure 4.

Movie S2 | Examples of post-operative movements in the rat illustrated in
Figure 4.
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The performance of patients with vascular parkinsonism (VPD) on a reach-to-grasp task
was compared with that of patients affected by idiopathic Parkinson’s disease (IPD) and
age-matched control subjects. The aim of the study was to determine how patients with
VPD and IPD compare at the level of the kinematic organization of prehensile actions. We
examined how subjects concurrently executed the transport and grasp components of
reach-to-grasp movements when grasping differently sized objects. When comparing both
VPD and IPD groups to control subjects, all patients showed longer movement duration
and smaller hand opening, reflecting bradykinesia and hypometria, respectively. Further-
more, for all patients, the onset of the manipulation component was delayed with respect
to the onset of the transport component. However, for patients with VPD this delay was
significantly smaller than that found for the IPD group. It is proposed that this reflects a
deficit – which is moderate for VPD as compared to IPD patients – in the simultaneous
(or sequential) implementation of different segments of a complex movement. Altogether
these findings suggest that kinematic analysis of reach-to-grasp movement has the ability
to provide potential instruments to characterize different forms of parkinsonism.

Keywords: bradykinesia, hypometria, idiopathic Parkinson’s disease, kinematics, reach-to-grasp, vascular
parkinsonism

INTRODUCTION
In both behavioral and neural terms, human reach-to-grasp
behavior can be dissociated into separate transport and grip com-
ponents (1–6). In the first instance, kinematic analysis of the
reaching phase shows that during the transport of the hand toward
the object, the fingers begin to pre-shape, by progressively open-
ing the grip with straighten fingers and subsequently by closing the
grip until it matches the object size. The analysis of the grasping
phase confirms that key landmarks, such as the point in time in
which grip size is the largest (maximum grip aperture) occurs well
before the fingers come into contact with the object, indicating
that the motor configuration that is formed by the hand in contact
with the object represents the end result of a motor sequence that
begins well ahead of the action of grasping itself (7–11). In the
second instance, neural computations regarding the reach com-
ponent occur within the medial intraparietal and the superior
parieto-occipital cortex (2, 5) whereas the neural underpinnings
of the grasp component occur within a lateral parieto-frontal cir-
cuit involving the anterior intraparietal area and both the dorsal
and the ventral premotor areas (12).

While there is an extensive literature demonstrating the key
roles of fronto-parietal networks in reaching for and grasping
objects (6, 13–15), there are less studies examining the role played
by subcortical structures – such as the basal ganglia – during

the performance of similar tasks in humans (16). An important
perspective on the role of cortico-basal ganglia circuits in the
unfolding of the reach-to-grasp movement have so far come from
the study of patients with idiopathic Parkinson’s disease (IPD),
wherein reduced tonic levels of dopamine in midbrain neurons
results in a disrupted functionality of the thalamocortical–basal
ganglia circuit, which is responsible for the motor irregularities
(17, 18). It has been suggested that upper-limb motor deficits in
IPD can be decomposed into at least two major aspects, namely
intensive (amplitude, speed) and coordinative [integration and/or
coordination of multiple movement components; (19–23)]. As
for the intensive performance, the evidence indicates an absolute
slower implementation of actions with respect to healthy controls
(HC), but no shortfalls in the ability to modify the spatiotemporal
characteristics of the prehension pattern in response to experi-
mentally imposed changes (19). Individuals diagnosed with IPD
are thus able to correctly regulate movement parameters and the
overall form of the motor program appears to be maintained (24).
Rather, it was the coordinated activation of the two components
that revealed abnormalities in patients diagnosed with IPD. For
instance, the onset of the grasping component was delayed with
respect to the onset of the reaching component (19, 20). These
results suggest that the grasping deficit shown by patients diag-
nosed with IPD in the activation of concurrent motor programs
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apply not only to the motor programs that are completely inde-
pendent, but also to those only largely independent, which do show
functional coordination.

The evidence so far reviewed refers to studies comparing the
performance of patients diagnosed with IPD with neurologically
healthy participants. To date, still little is known on how other
forms of Parkinsonism impact on the kinematic organization of
reach-to-grasp movements, especially the forms linked to cortico-
basal degeneration. Among these syndromes there is vascular
parkinsonism [VPD; (25)], a clinically heterogeneous syndrome
that can be separated from IPD on the basis of the presence of addi-
tional focal signs, the absence of three typical signs, namely resting
tremor in the upper limbs, true akinesia, and definite benefit from
levodopa assumption (26). The lesions responsible for VPD are
mostly basal ganglia lacunes and/or subcortical white matter vas-
culopathy of the Binswanger’s type (27, 28). In rare cases, a single
striatal infarct, striatal cribriform cavities, or ischemic changes in
the substantia nigra have induced this type of parkinsonism (29).
All in all, the pathophysiology of VPD is still poorly understood
and we are not able to fully explain the reason why, despite same
apparent lesion loads, some patients do develop parkinsonism
while others do not. Therefore, it appears crucial to explore alter-
native markers with the goal of facilitating the characterization of
this disorder.

With respect to motor assessment, gait disorders have primarily
been considered and characterized in the VPD population, mostly
because reminiscent of – nevertheless distinct from – the gait
issues found in patients with IPD (30, 31). Typically, the gait is
wide-based, marked by start and turn hesitation as well as by slow
and short shuffling steps (32). To refer to such motor problems,
terms like “lower body,” “lower half” parkinsonism, or “frontal-
type” gait disorders have been forged (30). Conversely, in terms
of upper-limb movements, minimal or no dysfunctions have been
reported. To date,available literature is suggestive of no true upper-
limb akinesia or resting tremor, and preserved arm swing (26, 33).
A point worth noting, however, is that such conclusions have been
drawn on the basis of observational studies and no thorough kine-
matical investigations of upper-limb movements in VPD patients
has been conducted.

Indeed, a close inspection of the causes underlying gait deficits
in VPD might provide the ground for investigating more exhaus-
tively upper-limb movements in this population. Gait problems
in VPD are largely caused by ischemic damage to the “motor
cortex–basal ganglia” and “frontal cortex–basal ganglia” connec-
tions (33). An aspect limiting the ability of central motor control
systems to generate appropriately modulated descending com-
mands. Because the above-mentioned connections are also rele-
vant for the coordination of upper-limb movements, pathological
descending signals might also affect the unfolding of this kind of
actions.

In the attempt to further delineating upper-limb movements
and to explore this coordinative aspect of motor control in patients
with VPD, in the present study we asked a group of patients with
VPD to carry out reach-to-grasp movements in the direction of
visual targets of different sizes. The performance of these patients
was then compared with that of a matched group of patients with
IPD and with a group of neurologically HC.

Because no previous reach-to-grasp kinematical analysis on
patients with VPD has been performed, only tentative predictions
are advanced. First, on the basis of previous reports of pyramidal
slowing (that might qualify for the term bradykinesia), a slowness
of movement might be foreseen (34). Second, assuming that VPD
performance is in line with that of patients with IPD, a modi-
fication of the amplification of hand opening in relation to the
size of the object might be expected. Third, given the difficulties
expressed by patients with VPD in coordinating gait, a dysfunction
in activating almost simultaneously motor plans might be evident
and emerge also at the level of the coordination of the transport
and prehension components of the reach-to-grasp movements.
Other aspects of reach-to-grasp kinematic parameterization are
estimated to be largely unaltered with respect to neurologically
healthy participants (19, 24).

MATERIALS AND METHODS
PARTICIPANTS
Three groups of participants were recruited for the study. The
first group (N = 12) was composed of patients with VPD. Demo-
graphic information, clinical data, vascular risk factors (35), and
imaging details for these patients are outlined in Table 1. Partici-
pants in the second group (N = 12) were all diagnosed with IPD
and were treated with dopaminergic drugs (Table 2). Patients with
vascular lesions detected on magnetic resonance imaging (MRI)
were excluded from the study with the exception of those with
minimal evidence of small vessel disease considered normal for
the patient’s age and in areas other than the basal ganglia (36). An
independent radiologist, blinded to the study design and modality,
evaluated the scans. The severity of Parkinson’s disease symptoms
in both groups of patients studied was assessed by a board-certified
neurologist using two different measures: the Hoehn and Yahr (37)
severity scale and the Unified Parkinson’s Disease Rating Scale
(38). All of the patients with IPD and three patients with VPD
were tested after they had taken their medication. The fact that
levodopa was producing optimal therapeutic responses was pro-
vided by the UPDRS, which was administered to those patients
prior to their respective experimental session. None of the par-
ticipants showed therapy-related motor complications that could
interfere with the study task. A third group (N = 12) was made up
of healthy participants (HC) without neurological or skeletomo-
tor dysfunctions. The Mini-Mental State Examination (MMSE)
was used to provide an index of the patients’ current global cog-
nitive state (39). The scores of the patients with VPD and IPD
ranged between 28 and 30 (Tables 1 and 2) while all the HC par-
ticipants had a score of 30, all falling within a normal range of
cognitive functioning. Mean age was not significantly different in
the groups studied nor significant differences in terms of disease
duration in the two groups of patients were highlighted. Both the
IPD and VPD patients scored an average of 18 out of 20 on visual
acuity test, while the participants in the HC scored 20 out of 20.
All the participants showed right-handed dominance (40). The
experimental session was individual and lasted an hour. Approved
by the ethics committee of the University of Padova, this study was
carried out in accordance with the principles of the Declaration of
Helsinki. Written informed consent was obtained from all of the
participants.
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Table 1 | Demographic data and clinical features of the patients with vascular parkinsonism (VPD) studied.

PD

patient

Age

(years)

Sex Years since

diagnosis

Most affected

upper-limb

UPDRS

(upper-limb)

UPSRR

score

MMSE

score

Clinical signs

T R B A P O F

1 66 F 3 L 4.4 35 30 − − − − − − −

2 68 F 3 L 3.3 37 30 − − − − − − −

3 68 F 2 L 6 31 30 − − + − − − −

4 69 F 4 L 4.8 34 30 R − + − − − −

5 69 F 1 L 3 33 29 − − + − − − −

6 70 F 3 R 8 36 29 L − + − − − −

7 72 F 2 L 3 35 28 R + + − − − −

8 68 M 2 L 6.2 32 29 L − − − − − −

9 66 M 4 R 5 36 30 L + + + − − −

10 67 M 2 L 10 34 29 R − + + − − −

11 69 M 3 L 4 37 30 − − L − − − −

12 71 M 2 L 8 35 30 − − + + − − −

Patient Onset Clinical features MRI Vascular risk factors L-DOPA response

1 Insidious Hemiparkinsonism following stroke, bradykinesia DWML, PWML Hypertension Not tried

2 Insidious Asymmetric parkinsonism with tremor, bradykinesia DWML, PWML Hypertension Good

3 Acute Hemiparkinsonism following stroke, bradykinesia Lesion contralateral LN Hypertension Not tried

4 Acute Asymmetric parkinsonism with tremor, bradykinesia Bilateral GP lesion Hypertension, stroke Not tried

5 Acute Hemiparkinsonism following stroke, bradykinesia Lesion contralateral GP Stroke Not tried

6 Acute Hemiparkinsonism following stroke, bradykinesia Bilateral GP lesion Hypertension, stroke Poor

7 Insidious Hemiparkinsonism following stroke, bradykinesia DWML, PWML Family history of stroke Good

8 Acute Hemiparkinsonism following stroke, bradykinesia Bilateral GP lesion Hypertension, diabetes Not tried

9 Acute Shuffling gate, bradykinesia Lesion contralateral LN Stroke Not tried

10 Insidious Lower body parkinsonism, bradykinesia DWML, PWML Family history of stroke Good

11 Insidious Shuffling gate, asymmetrical Parkinsonism with rest

tremor, bradykinesia

DWML, PWML Hypertension Good

12 Acute Hemiparkinsonism following stroke, bradykinesia Lesion contralateral GP Stroke Not tried

STIMULI AND APPARATUS
The visual stimuli (i.e., to-be-grasped targets) consisted of two
plastic spherical objects (small object= 4 cm diameter; large
object= 8 cm diameter). At the beginning of the session, each
individual was asked to place his/her right hand on a starting
platform within which a pressure sensitive switch was embedded
(i.e., starting switch). The platform was designed with slight con-
vexities dictating a natural flexed posture of the fingers (Figure 1).
The target object was placed on a second pressure sensitive switch
(i.e., the ending switch) embedded within the working surface
(Figure 1). To control vision, the participants were asked to wear
spectacles fitted with liquid crystal lenses (Translucent Technolo-
gies Inc., Toronto, ON, Canada), able to change from opaque to
transparent (Figure 1). Participants were told that pressing the
starting switch, which would determine visual availability of the
target (i.e., opening of the spectacles), should correspond to the
onset of the reaching movement toward the target.

RECORDING TECHNIQUES
Hand kinematics was measured by means of a flex sensor glove
(CyberGlove, Virtual Technologies, Palo Alto, CA, USA), worn

on the participant’s right hand (Figure 1). The sensors’ linearity
was 0.62% of maximum non-linearity over the full range of hand
motion. The sensors’ resolution was 0.5° remaining constant over
the entire range of joint motion. The output of the transducers
was sampled at 12-ms intervals.

PROCEDURES
At the beginning of the session, the participant was positioned
with his/her elbow and wrist resting on a flat surface, the forearm
horizontal, the arm was oriented in a natural parasagittal plane
passing through the shoulder, and the right hand was placed in
a pronated position with the palm toward the working surface
on the starting switch. The target was aligned with the partici-
pant’s body midline, located 33 cm from the hand starting position
to the left of the participant’s right shoulder (Figure 1). The
sequence of events for each trial was the following: (1) once cor-
rectly positioned, the participant’s vision was occluded while the
target was being placed on the working surface; (2) 500 ms later
an auditory signal was sounded; (3) participants were instructed
to reach toward, grasp, and lift the target when they heard the
tone. The participants were instructed to reach for the object at
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Table 2 | Demographic data and clinical features of the patients with idiopathic Parkinson’s disease (IPD) studied.

PD

patient

Age

(years)

Sex Years since

diagnosis

Stage of

the disease

Most affected

upper-limb

UPDRS

(upper-limb)

UPSIT

score

MMSE

score

Dopaminergic

medication

Clinical signs

T R B A P O F

1 65 F 4 II L 4 18 30 0–0–0 − + + − − − −

2 66 F 1 II L 9 15 30 0.5–0.5–0.5b
− − + + − − −

3 68 F 2 II R 8 14 30 1–1–1a
− − + + − − −

4 68 F 3 I R 5 15 29 0–0–0 − − R L − − −

5 71 F 1 I R 6 14 30 0–0–0 − + R − − − −

6 71 F 2 II L 12 13 30 1–1–1 R R + + − − −

7 66 M 3 II L 2 17 28 0–0–0 − − + + − − −

8 66 M 3 II L 10 17 29 1–1–1a
− + R + − − −

9 67 M 2 II L 5 17 30 1–0–1a
− + + + − − −

10 68 M 2 I L 3 15 30 1–1–1a R + + + − − −

11 68 M 3 I L 2 17 30 0–0–0 − − R − − − −

12 69 M 2 I R 8 12 30 0–0–0 − − + − − − −

Medication: number of tablets, morning–midday–evening (dopaminergic medication, a50 mg; b125 mg). Clinical signs: signs when medicated, according to examina-

tion at time of testing and self report: T, resting and/or postural tremor; R, rigidity; B, bradykinesia; A, akinesia; P, problems with static and dynamic upright posture;

O, on–off phenomenon; F, freezing; “+,” both sides affected; “−,” neither side noticeably affected; L, left side mainly affected; R, right side mainly affected; MMSE,

Mini-Mental State Examination. Stage of the disease was determined on the basis of the Hoehn and Yahr’s scale.

FIGURE 1 | Graphical representation of the experimental set-up.
Legends indicate the relevant details.

a natural speed. An experimenter visually monitored all the tri-
als to ensure that participants complied with instructions. The
experimenter noted that the participants naturally grasped the
small objects between the thumb and the index finger, at times
also with the help of the middle fingers, while the large objects
were grasped using the thumb and the rest of the fingers. The

task was performed under two experimental conditions: (i) a
reach-to-grasp movement toward the large target (“large” condi-
tion); and (ii) a reach-to-grasp movement toward the small target.
Each participant took part in a total of 48 trials (24 for each
experimental condition), which were presented in randomized
order.

DEPENDENT MEASURES
In accordance with previous reports assessing the kinematics of
reach-to-grasp movements in patients with IPD, the dependent
variables specifically relevant to test our hypotheses were: (i) move-
ment time, namely the time occurring from the release of the
starting switch and the time at which the hand closed upon the
object, to test for the slowness in movements in patients with
Parkinson’s disease; (ii) maximum grip aperture, or the ampli-
tude of the maximum distance reached by the index finger and
thumb in the transport phase, to test for hand opening alterations
[hypometria; (41)]; and (iii) delay, or the interval between the
beginning of the arm movement and the opening of the fin-
gers, to test for impaired coordination of the reach and grasp
components (19).

DATA ANALYSIS
For each dependent measure, a mixed analysis of variance
(ANOVA) with “target size” (small, large) as within-subjects fac-
tor and “group” as between-subjects factor (VPD, IPD, HC) was
performed. The main assumptions behind this statistical model
(i.e., normality and sphericity) were checked before running the
ANOVA. The Kolmogorov–Smirnov test showed that the nor-
mality assumption was satisfied (α-level: p < 0.05). The Mauchly
test showed that the sphericity assumption was not violated.
Results from the ANOVA performed on the slope absolute val-
ues were assessed through post hoc comparisons using t -tests. The

www.frontiersin.org May 2014 | Volume 5 | Article 75 | 127

http://www.frontiersin.org
http://www.frontiersin.org/Movement_Disorders/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parma et al. Reach-to-grasp in vascular parkinsonism

Bonferroni’s correction was applied whenever required (α-level:
p < 0.05).

RESULTS
MOVEMENT TIME
The main effect of “target size” was significant for movement
duration [F(1, 11)= 388.92, p < 0.0001, ηp2

= 0.972]. For all
groups movements toward the small stimulus were longer than
those toward the large stimulus (1385± 180 vs. 1322± 109 ms).
The main effect of “group” was significant for movement dura-
tion [F(2, 11)= 159.76, p < 0.0001, ηp2

= 0.936; Figure 2A].
Post hoc contrasts indicate that movement duration for the
VPD group (1581± 45 ms) was comparable to that of the IPD
group (1593± 38 ms), and both longer than for the HC group
(887± 52 ms; ps < 0.05). No significant two-way interaction “tar-
get size” by “group” was found (ps > 0.05).

MAXIMUM GRIP APERTURE
The main effect of “target size” was significant [F(1, 11)= 919.96,
p < 0.0001, ηp2

= 0.988]. Participants’ maximum grip aperture
was larger for the large target as compared to the small target
(100± 9 vs. 63± 4 mm). Significant differences across groups
were also evident [F(2, 11)= 78.11, p < 0.0001, ηp2

= 0.877;
Figure 2B]. Post hoc contrasts revealed that the amplitude of maxi-
mum grip aperture was significantly larger for the HC participants
(87± 31 mm) than for both the VPD (78± 24 mm) and the IPD
groups (78± 24 mm; ps > 0.05). A significant two-way interaction
“target size” by “group” was found [F(2, 11)= 72.99, p < 0.0001,
η2

p = 0.869]. For the large target, maximum grip aperture was
larger for HC participants (111± 2 mm) than for both the VPD
(95± 5 mm) and the IPD groups (95± 5 mm; ps > 0.05). More-
over, for the small target, maximum grip aperture was larger for
HC participants (67± 3 mm) than for the IPD group (61± 6 mm;
p > 0.05).

DELAY
The main effect of “target size” was not significant for the delay
(p > 0.05). The main effect of group was found to be signifi-
cant [F(2, 11)= 555.19, p < 0.0001, ηp2

= 0.981; Figure 2C]. The
delay was longer for the VPD when compared to HC participants
(85± 12 vs. 73± 8 ms; p < 0.05). But it was shorter when com-
pared to that exhibited by the IPD group (246± 23 ms; p < 0.05).
When comparing the IPD and the HC groups a significant differ-
ence did emerge (246± 23 vs. 73± 8 ms; p < 0.05). No significant
two-way interaction “target size” by “group” was found (p > 0.05).

DISCUSSION
The aim of this study was to compare the kinematic patterning
of patients diagnosed with VPD and IPD during a reach-to-grasp
task. The results indicate that patients with VPD showed simi-
lar movement durations and hand-grip conformation to patients
with IPD, but longer movement duration and smaller hand open-
ing than controls. Furthermore, for patients with VPD the onset
of the grasping component was delayed with respect to the onset
of the transport component when compared to the performance
of controls. Although this pattern has been retrieved also for the
patients with IPD, the VPD group showed a significantly shorter

FIGURE 2 | Visual presentation of the dependent variables measured
for each of the groups tested. (A) Bar plot represents the movement
duration expressed in milliseconds (ms). (B) Bar plot shows the maximum
grip aperture measured in millimeters (mm). (C) Bar plot demonstrates the
delay between the beginning of the arm movement towards the target
object and the opening of the fingers to grasp it. VPD, vascular
parkinsonism; IPD, idiopathic Parkinson’s disease; HC, healthy controls.

delay. Interestingly, the standard prehension task provides a sim-
ple and natural opportunity to examine whether the organization
of upper-limb movements is somewhat dysfunctional in patients
with VPD. The nature of this task, composed of a proximal trans-
port component and a distinct but inter-related distal manipu-
lation constituent, makes it a potentially good candidate for the
exploration of the motor consequences of the disorder. This view
is also supported by empirical evidence suggesting that subthala-
mic nucleus and internal pallidum overactivity is responsible for
motor-related deficit in VPD (42) and that in primates the palli-
dal output of the basal ganglia is directed toward the ventrolateral
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thalamus, which selectively innervates the hand representation in
the primary motor cortex (43, 44). Nevertheless this assumption
should be taken with a certain degree of caution, given that the
putative pathophysiology of VPD varies according to the type of
evidence found and the behavioral manifestations observed can
be linked to lesions at any level of the cortico-subcortical motor
loops (45).

Zooming on the results of the kinematic analysis, significantly
different patterns were found for the two target sizes in all the
groups studied. The movement time was longer and the maxi-
mum grip aperture was reduced for smaller as compared to larger
targets in both groups of patients (19, 24) as well as in the neu-
rologically healthy participants (8–10). Thus, patients with VPD,
as for the other groups, were able to modify the spatiotemporal
characteristics of the grasping pattern in response to experimen-
tally imposed changes in the size of the object. Patients with VPD
showed longer movement duration for actions requiring greater
accuracy such as when reaching for smaller objects (8–10). And
they were able to scale hand opening in relation to the size of the
object to be grasped (8–10). It appears, therefore, that VPD does
not necessarily lead to any significant impairment of the central
processes involved in organizing the reach-to-grasp movement.

Patients with VPD took longer to complete the movement
and reached a smaller peak aperture than age-matched control
participants. Similarly, and as previously demonstrated, patients
with IPD demonstrated that their reach-to-grasp movements were
slower (19, 24) and their maximum grip aperture smaller (41)
with respect to control participants. Thus, VPD patients do show
bradykinesia and hand hypometria, which limits the speed of
movement execution and affects the modulation of hand aperture,
respectively. This suggests that, as reported for patients with IPD,
patients with VPD might have problems modulating movement
speed and the command related to the opening/closing phases of
the hand.

The kinematic analysis of the reach-to-grasp task allows exam-
ining the hypothesis that Parkinson’s disease leads to a problem
with concurrent execution of functionally independent motor
programs with the same limb (19, 46). In this respect, significant
grasp-transport coordination impairments have been observed
(19, 47). On average, IPD patients tended to start distancing the
index finger and the thumb later than control subjects, relative
to the onset of the transport movement (i.e., delay). It appears,
therefore, that IPD does lead to a significant impairment of the
central processes involved in organizing the concurrent execution
of functionally independent motor programs, which are executed
by the same effector system. It is possible that the disease affects
the well-established motor programs controlling the coordination
of subcomponents in the performance of everyday actions such as
reaching and grasping.

Here, we found that also patients with VPD started to open the
hand later than controls. A point worth noting, however, is that the
extent of the delay between the transport and the manipulation
components was less for the patients with VPD than for patients
with IPD, resembling the delay exhibited by the control partici-
pants. Nevertheless, this effect but might be the result of the same
mechanism, namely the difficult coordination of movements with
a motor output system – disrupted by pathological descending

signals – which significantly limit the ability to assemble move-
ment components. Tentatively, we suggest that lesions linked to
VPD motor outcomes may affect the responsiveness of cortical
areas to activation – defined as the readiness to the elaboration
of triggers not originating from the basal ganglia – and result in
an inadequate cortical preparation of the movement. If this lack
of cortical responsiveness was confined to a specific neural chan-
nel (e.g., reach or grasping), this would explain why a movement
shows a delay of activation. The different pattern of results might
indicate that the more focal pathophysiology resulting in VPD less
affects this cortical readiness phenomenon. The ultimate reason
why this is so, still remains to be determined.

We are fully aware that the present study has some limitations.
Indeed, VPD encompasses a heterogeneous set of conditions and
the extent of the spectrum of VPD remains quite imprecise. How-
ever, given the promising results in finding markers differentiating
VPD and IPD kinematical profiles, further work should address
a full characterization of the unfolding of the reach-to-grasp
movement in this population.

In conclusion, the present study provides the first attempt to
compare the kinematic patterning of reach-to-grasp movements
in VPD with respect to the better characterized IPD, in the effort
of unveiling possible upper-limb dysfunctions in this population.
The results indicate that the basic pattern of performance is similar
across the two groups of patients. They both show bradykine-
sia, hypometria, and loss of coordination between the reach and
the grasp components. However, the dysfunction in the concur-
rent execution of the coordinated motor plans, patients with VPD
appear to be much less compromised than patients with IPD. With
a certain degree of caution, we contend that this kinematical land-
mark might be a useful tool for distinguishing across different
parkinsonian syndromes.
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The IBB scale is a recently developed forelimb scale for the assessment of fine control
of the forelimb and digits after cervical spinal cord injury [SCI; (1)]. The present paper
describes the assessment of inter-rater reliability and face, concurrent and construct valid-
ity of this scale following SCI. It demonstrates that the IBB is a reliable and valid scale that
is sensitive to severity of SCI and to recovery over time. In addition, the IBB correlates
with other outcome measures and is highly predictive of biological measures of tissue
pathology. Multivariate analysis using principal component analysis (PCA) demonstrates
that the IBB is highly predictive of the syndromic outcome after SCI (2), and is among the
best predictors of bio-behavioral function, based on strong construct validity. Altogether,
the data suggest that the IBB, especially in concert with other measures, is a reliable and
valid tool for assessing neurological deficits in fine motor control of the distal forelimb, and
represents a powerful addition to multivariate outcome batteries aimed at documenting
recovery of function after cervical SCI in rats.

Keywords: spinal cord injury, recovery of function, forelimb functional task, reliability, validity

INTRODUCTION
Motor function loss is a major consequence of spinal cord injury
(SCI) and has been the focus of experimental studies for over a cen-
tury. Most studies have used thoracic injury models and assessed
locomotor function as the primary outcome measure. A number
of cervical injury models have been developed (3–9), and are being
used more frequently due to the understanding that the majority
of SCI occurs at this level in the human population (10). Indi-
viduals with cervical injuries are reported to be most interested
in the reinstatement of hand function (11), and hence outcome
measures focused on recovery of forelimb use are becoming more
commonplace.

In our attempts to model cervical SCI, we chose to use unilateral
injuries to reduce the burden of neurological deficits, including
bladder dysfunction and quadriplegia. Prior work (4) had shown
the feasibility of this approach. We used the well-established MAS-
CIS injury device for the early studies (6), but are now using the
IH device (2, 12) due to its currently widespread use in the SCI
research community. We selected outcome measures that evalu-
ated spontaneously expressed behaviors, thus reducing training
requirements and food deprivation since weight loss is a consis-
tent consequence of SCI. In our initial studies (6), we measured
paw placement during vertical exploration as originally described

by Schallert et al. (13) for assessing forebrain injuries, groom-
ing as originally described by Bertelli and Mira (14) for assessing
brachial plexus injuries, over-ground locomotion in an open field
and on the Catwalk apparatus (Noldus Information Technology,
Sterling, VA, USA), and locomotion on a horizontal ladder (4,
15, 16). Performance on most of these measures reflected graded
injury effects, and using principle components analysis (PCA),
these behavioral outcomes were seen to co-vary with biomechan-
ical and anatomical descriptors of the lesion (2). However, what
was missing in this battery of tests was an assessment of distal
forelimb and digit function.

Food retrieval and manipulation for consumption is a critical
behavior that is spontaneously expressed in all individuals across
mammalian species, and requires involvement of both proximal
and distal forelimb. A novel task involving food manipulation was
described by Allred et al. (17) and was based on the observations
of Whishaw and Coles (18). In this task, pasta is presented to rats
for eating and forelimb use is assessed during consumption. This
test was sensitive to a number of forebrain injuries. In our ini-
tial attempts to use this test with spinal cord injured animals, we
discovered that our rats were not particularly interested in eating
pasta but would readily consume sugared cereal, which is avail-
able in a variety of shapes of consistent size. The manipulation of
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these cereal pieces was observed to involve detailed movements of
the forelimbs and digits as the rats rotated the cereal pieces and
somewhat systematically bit off small chunks to eat. Therefore, we
attempted to evaluate the movements that were used to manipulate
these food items while recovering from unilateral cervical contu-
sion injuries. The first attempt to establish a recovery scale was
presented in a video and manuscript (1) describing the methods,
and termed the “IBB.” The scale was generated by characterizing
the movements made during cereal eating over the post-SCI recov-
ery period, and assigning an ascending series of numbers for each
functional set, and adjusting the scale until it reflected a sequential
representation of the recovery (1). This procedure was based on
our prior experience in developing and testing the Basso–Beattie–
Bresnahan (BBB) locomotor rating scale (19). In that effort, we
used an iterative process to construct an ordinal scale that with-
stood the test of inter-rater reliability (IRR) and construct validity
(20, 21). The usefulness and metric properties of motor outcome
scales are not always tested or considered in the SCI literature.
But in response to suggestions made as more and more laborato-
ries adopted the BBB and more data became available, this scale
was modified in light of a growing body of data that suggested the
metric properties were not optimized (22). A similar approach has
been taken in the construction of scales for walking in human SCI
patients (23). Similarly, in the present paper, we describe modifi-
cations to the original IBB scale based on our iterative evaluation
of its usefulness and attempt to establish its validity and reliability.
In addition, using the syndromics approach described recently for
cervical SCI (2), we are now able to evaluate the relationship of
this new outcome scale to other forelimb functional tests currently
in use in our laboratory and in the field.

We first provide a brief history of the scale and metric properties
analysis that guided its initial development. We then present results
of IRR testing across a group of 9–10 novice and expert raters, and
propose some minor revisions that improve reliability. Finally, we
address the issue of validity (face, concurrent, predictive, external,
and construct validity) for the IBB scale.

The results demonstrate that the IBB is a reliable and valid
scale that is sensitive to injury severity and recovery over time. In
addition, the IBB correlates with other outcome measures and is
highly predictive of biological measures of tissue pathology. Mul-
tivariate analysis using PCA demonstrates that the IBB is highly
predictive of the syndromic outcome after SCI, and is among the
best predictors of bio-behavioral function, that is, there is good
evidence of construct validity. Altogether, the data suggest that the
IBB, especially in concert with other measures, is a reliable and
valid tool for assessing neurological deficits in fine motor con-
trol of the distal forelimb, and represents a powerful addition to
multivariate outcome batteries aimed at documenting recovery of
function after cervical SCI in rats. Further, the similarities of “hand
function” across rodents and primates may make such measures as
this especially important in translating therapeutic strategies from
rodent studies to clinical studies in man.

MATERIALS AND METHODS
ANIMALS
Long Evans and Sprague Dawley rats aged 77–87 days at the time
of injury were used in the initial scale development and validity

testing (N = 70). All experiments adhered to the National Insti-
tutes of Health Guide for the Care and Use of Animals and were
approved by the Institutional Animal Care and Use Committee
(IACUC) at the University of California San Francisco (UCSF).
For many of the subjects, the primary data on non-IBB out-
comes have been presented elsewhere as part of recently published
papers (2, 24). These data are re-plotted here (with permission)
for the purposes of comparative (concurrent) validity testing of
the IBB.

SURGICAL PROCEDURES FOR CERVICAL SCI
All surgical procedures were performed aseptically as described
previously (6). Briefly, animals were anesthetized with Ketamine
HCL (80 mg/kg, Abbott Laboratories, North Chicago, IL, USA)
and Xylazine (20 mg/kg, TraquidVed, Vedco Inc., St Joseph, MO,
USA) intraperitoneally (ip) or with isoflurane before surgery. A
dorsal, midline skin incision was made, the skin dissected, and
the trapezius muscle was cut just lateral to the midline from
C2 to T2. Spinous processes from C4 to T1 were exposed and
a C5 dorsal laminectomy was performed to expose the entire
right side and most of the left side of the underlying spinal
cord. Contusion injuries were produced using the Infinite Horizon
Impactor (Precision Systems and Instrumentation LLC, Fairfax,
VA, USA) with a modified impactor tip 2 mm in diameter, with
a force of 75 (mild) or 100 (moderate) kdynes. Cord hemisec-
tions were performed in a separate group of animals at the same
vertebral level by inserting the tip of a #11 blade at the mid-
line and sweeping laterally to cut all fibers of the hemi-cord.
The sham group of animals underwent the laminectomy without
SCI. The wound was closed in anatomical layers. The analgesic,
buprenorphine (0.05 mg/kg, Buprenex, Hospira, IL, USA), and
the antibiotic, Cefazolin (50 mg/kg, Henry Schein, Melville, NY,
USA) were administered, and the animal recovered overnight in an
incubator (Thermocare®, Intensive Care Unit with Dome Cover;
Thermocare, Incline Village, NV, USA). All animals were inspected
daily for wound healing, weight loss, dehydration, autophagia,
and discomfort. Appropriate veterinary care was provided when
needed.

SURGICAL PROCEDURES FOR TRAUMATIC BRAIN INJURY
A controlled cortical contusion injury (CCI) was produced using
a device that has been described in detail elsewhere (25). Briefly,
rats were mounted in a Kopf stereotaxic frame under isoflurane
anesthesia. A unilateral craniectomy (6.0 mm diameter) between
3.0 mm posterior and 3.0 mm anterior to bregma, and between 1.0
and 7.0 mm lateral to bregma was produced using a high-speed
drill. CCI was produced using a 5.0 mm diameter impactor with
a convex tip (Custom Design & Fabrication, Inc., Sandston, VA,
USA), oriented perpendicular to the cortical surface. The cortex
was compressed to a depth of 2.0 mm at 4.0 m/s velocity with a
dwell time of 150 ms. Sham animals received the craniectomy only.
During the surgical procedure, heart rate and blood oxygenation
were monitored with a Mouse Ox™ pulse-oximeter (Torrington,
CT, USA); temperature was monitored and maintained at 37.5°C.
The injury sites were closed and the animals were recovered in an
incubator (Thermocare®, Intensive Care Unit with Dome Cover;
Thermocare, Incline Village, NV, USA).
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COMBINED SCI + TBI
In animals with both traumatic brain injury (TBI) and SCI, both
surgical sites were prepared and then the TBI was performed
followed by the SCI. All other aspects of the procedure were as
described above and previously (24).

BEHAVIORAL TESTING
All behavioral testing for the IRR and validity testing was per-
formed by raters who were blind to the experimental condi-
tion. Testing was typically performed pre-operatively and on
post-operative days 2, 7, 14, 21, 28, 35, and 42 after injury.

Forelimb testing using the Irvine, Beattie, and Bresnahan (IBB)
Scale
Rats were given pieces of cereal in their home cage twice daily
beginning as soon as they entered the lab. Forelimb function was
assessed while rats were eating cereal as described previously (1).
Briefly, rats were individually placed in a Plexiglas cylinder (diam-
eter= 20 cm; height= 46 cm) or in their home cage and given
spherical- and donut-shaped pieces of cereal (“Reeses Puffs™,”
The Hershey Co., and“Froot Loops™,”Kellogg’s Co.) that were of a
consistent size and shape prior to the initiation of eating. Rats were
not scored when eating cereal pieces that were broken prior to the
initiation of testing. Each trial was recorded to allow slow motion
HD playback and evaluation of forelimb use. Videos of animals
eating the cereal were evaluated using a standardized scoring sheet
(Figure 1) to record observations of forelimb behaviors, includ-
ing joint position, object support, wrist and digit movement, and

grasping method used while consuming both cereal shapes. An
IBB score was assigned using the 10-point (0–9) ordinal scale for
each shape, and the highest score reflecting the greatest amount of
forelimb recovery, was assigned.

Grooming test
Forelimb grooming function was assessed using a scoring system
described previously (6). Cool tap water was applied to the ani-
mal’s head and back with soft gauze, and the animal was placed
in a clear plastic cylinder (diameter= 20 cm; height= 46 cm)
or in their home cage. Grooming activity was recorded with a
video camera from the onset of grooming through at least two
stereotypical grooming sequences (~2 min). A score was assigned
depending on the highest region touched by the hand as follows: 0,
no contact with the head; 1, contact with the mouth only; 2 contact
with the snout below the eyes; 3, contact with the face from the
eye level to below the ears; 4, contact with the ears; 5, contact with
the head behind the ears. Slow motion video playback was used to
score each forelimb independently by the maximal contact made
while initiating any part of the grooming sequence. The animals
were tested on day 2 post-operatively, and then at least weekly until
sacrifice.

Forelimb use during vertical exploration: forelimb asymmetry or
cylinder test
Animals were placed in a clear plastic cylinder and spontaneous
exploratory behavior was recorded for 5 min. Slow motion video
playback was used to determine the number of times the ani-
mal placed its left, right, or both hands against the side of the

FIGURE 1 |The revised scoring sheet with individual categories that accompanies the Irvine, Beatties, and Bresnahan (IBB) forelimb scale. The first half
of the sheet represents recovery of proximal forelimb function and the latter part of the sheet focuses on recovery of the forepaw.
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cylinder during weight-supported movements according to previ-
ously published criteria (26). Individual placements were scored
as either “left” or “right” when 0.5 s or more passed without the
other limb contacting the side of the cylinder. If both hands were
used for weight-supported movements within 0.5 s of each other,
a score of “both” was given. Results are reported as a percentage of
contralateral limb use versus total placements and reported as the
“paw preference” outcome.

Over-ground locomotion
Forelimb use during over-ground locomotion was assessed in an
open field. Limb use for stepping was assessed using a simple
four-point scale: 0, no use of the forelimb; 1, stepping on the dor-
sal surface of the paw; 2, stepping on both the dorsal and plantar
surface of the paw; 3, stepping on the plantar surface only.

CatWalk
The walkway and CatWalk analysis program was used to measure
forelimb function during gait as described previously (27). Briefly,
animals were trained to cross a glass walkway (120 cm long) with
black Plexiglass walls and ceiling. Light transmitted through the
walkway floor revealed foot contacts which were captured and col-
lected by a digital video camera placed underneath the runway (for
details, see Figure 9). A digital file for each run across the middle
90 cm of the walkway was analyzed using the CatWalk program
(version 7). Measurements for locomotion included stride length,
print area during maximal contact, and the distribution of total

steps among the four limbs. During training, animals were gen-
tly guided to make complete passes across the walkway and were
reinforced with sugared cereal or access to the home cage. Data
were gathered pre-operatively (baseline), and then at 2–3 week-
intervals post-operatively. Data were averaged across five runs in
which the animal maintained a constant speed across the middle
90 cm of the CatWalk runway.

Inter-rater reliability testing protocol
Inter-rater reliability was assessed by measuring means and stan-
dard deviations of ratings of the same 10 rat videos chosen to
represent all parts of the IBB scale, across multiple raters similar
to that described for the BBB (21). In the first IRR, nine par-
ticipants were given an initial IBB training session in which
videos of the pattern of recovery in rats with cervical unilat-
eral SCI were shown and the method of scoring using the IBB
was explained. The rating of individual rats was then practiced
with concurrent discussions, followed by individuals silently rat-
ing, and then comparing and discussing scores with those of the
trainers. Then each participant was given a CD with ten videos
of rats performing at all levels of recovery; each CD presented
the videos in a different, randomized order. Also provided to
each rater were a set of data recording sheets (Figure 1), a copy
of the originally published IBB manuscript and video instruc-
tions (1), a set of frequently asked questions with answers, and a
score determination guide for ease of assigning scores (Figure 2
shows the revised version). All participants then independently

FIGURE 2 |The score determination guide. This guide can be used to aid in the selection of the correct IBB score after viewing the video and filling out the
IBB score sheet.
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Irvine et al. Reliability and validity of the IBB

evaluated the 10 videos and assigned IBB scores based on the
descriptions provided in Ref. (1). Data sheets were then col-
lected, analyzed, and compared to a consensus score for each
rat, arrived at by the original scale developers viewing, discussing,
and arriving at a consensus score for each video. This consensus
score was determined after all raters (including the experienced
raters) had completed and submitted their independent ratings
of the videos. The initial IRR test results then were discussed
with the participants and problems in recognizing behavioral ele-
ments and in assigning scores were identified. Choices, definitions,
and the score sheet were then revised to overcome the identified
issues for the purpose of improving clarity and consistency in
score assignment. Subsequently, a second IRR test was performed
approximately 3 months later, with 10 raters most of whom par-
ticipated in the first IRR test described above, and using the newly
revised definitions and the modified score sheet. Consensus scores
were determined as in test 1 and individual scores were again
assessed for variation from the consensus score as in the first
IRR test.

HISTOLOGICAL PREPARATION AND MORPHOLOGICAL ANALYSIS
Animals were perfused through the left ventricle of the heart with
4% paraformaldehyde under deep anesthesia with pentobarbital
or ketamine–xylazine. The cords were removed and post-fixed in
4% paraformaldehyde for 2 h and then cryoprotected in PBS con-
taining 30% sucrose. A 2 mm block containing the lesion epicenter
was then incubated in 100% OCT for 1 h and then mounted in a
cryomold (filled with OCT) in coronal orientation and rapidly
frozen using dry ice. The blocks were stored at −80°C until sec-
tioning. The cords were cut coronally at 10 µm and every section
was retained and mounted. Sections were stained with Luxol fast
blue or eriochrome cyanine for myelin/white matter integrity and
counterstained with Cresyl violet or neutral red for cell body
assessment.

Sparing at lesion epicenter
A camera lucida drawing of the section with the largest lesion
extent (i.e., the lesion epicenter) was made outlining intact gray
and white matter, and the lesion. Pixel counts from digitized draw-
ings in Adobe Photoshop 5.5 (Adobe Systems Inc., San Jose, CA,
USA) were used to determine the area of spared tissue for both
hemi-cords at the lesion epicenter. The percent sparing for the
ipsilateral hemi-cord was determined by dividing the total spared
ipsilateral tissue area, spared white matter tissue area, or spared
gray matter tissue area, by the same measure from the contralat-
eral hemi-cord [(ipsilateral spared tissue area/contralateral spared
tissue area)× 100]. Quantifying pathology in this manner normal-
ized tissue sparing within subjects and corrected for any biological
differences in spinal cord size or tissue preparation. Motor neuron
counts through the lesion region were performed as in Ferguson
et al. (28).

STATISTICAL ANALYSIS
All analyses were performed using SPSS v.19 (IBM) using base,
regression, advanced models, and missing values packages. All
graphs were generated in Graphpad Prism.

Inter-rater reliability assessment
Comparisons across raters were analyzed by assessing individual
rater deviations from the “gold standard” or experienced rater-
derived consensus scores on the same set of behavioral videos,
using the formulas

Difference =
∑

i,j

∣∣Xj − µj
∣∣ (1)

and the mean difference score (MDS) is represented by

MDS=
Difference

ni,j
(2)

where i= individual rater, j = individual rat, Xij= observed score
on rat j by rater i, µj= consensus score on rat j, nij= total number
of observations by all raters for all rats.

Separate MDS values were calculated for expert and novice
raters. In addition, MDS values for the novice and expert raters
were regressed onto the consensus scores to assess the degree of
linear correlation of assessments across raters.

Validity assessment
Internal and face validity were examined by testing whether the
IBB responded to the impact of graded injury and recovery over
time using two-way mixed analysis of variance (ANOVA). In
addition, we assessed sensitivity/propriety of applying parametric
statistics (e.g., ANOVA) to the IBB by assessing variance-explained
(eta squared). Concurrent validity was assessed by correlating the
IBB with other more established behavioral measures used by the
SCI research community. Predictive validity was assessed by cor-
relating IBB scores with terminal histology. Construct validity was
assessed at a multivariate level using exploratory factor analysis
using the principal component analysis (PCA) extraction method
(2, 29, 30).

RESULTS
INITIAL SCALING
Based on general observations of rats with SCI while consum-
ing cereal, we first divided the behaviors into different categories
(posture, proximal forelimb joint movement, contact with the
food object, digital clubbing, wrist movements, digital move-
ments, and grasping method). These categories were further
subdivided into ranks (e.g., no, yes but abnormal, yes but nor-
mal) and operational definitions were developed to describe
the categories and attributes. Categories were loosely arranged
to reflect the sequence of recovery, and scores were assigned
(0, 1, 2) to reflect the rank-ordered attributes. Initial scaling
involved summation of these ranked features and then the result-
ing 55-point scale was subjected to evaluation of the metric
properties such as score frequency distribution, ordinality, dis-
continuities, and interval properties (22). This analysis revealed
that certain features did not progress in an ordered sequence and
further reanalysis revealed problems with reliability and sensi-
tivity that increased measurement error and reduced ordinality.
Through this process, we improved the operational definitions of
observed behaviors and switched from a summation-based scale
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Irvine et al. Reliability and validity of the IBB

to an ordinal scale with fixed definitions of each point. Ulti-
mately, scores were winnowed down to a 10-point (0–9) scale
that was published in video format (1). In the present paper,
further modifications to the operational definitions are reported
to correct for inconsistencies and interpretational difficulties
identified during the formal IRR testing analysis as presented
below.

DATA RECORD SHEET
An initial scoring sheet was developed to use with the IBB for ease
of recording observations while viewing subjects eating cereal,
and was provided in the original IBB manuscript and video
(1). The data sheet was organized from left to right to reflect
the course of recovery after SCI, with the earliest behaviors to
recover being positioned on the left and the later behaviors
on the right. The individual subcategories were organized from
top to bottom to reflect less to more recovery. This data sheet
was revised to reflect changes resulting from the current analy-
sis as described below; the revised data sheet is now shown in
Figure 1.

INTER-RATER RELIABILITY
Inter-rater reliability test 1
The results of the first IRR test (nine raters; three experienced,
six novice) are shown in Figure 3 and present the MDS (i.e.,

FIGURE 3 | Results of inter-rater reliability testing using a standardized
set of rat behavioral videos before and after revision of the IBB
operational definitions and score sheet. (A) Three experienced raters and
six novice raters participated in the first round of inter-rater reliability
testing. Mean difference scores (MDS) from a “gold-standard” consensus
score were calculated as described in the methods. Following score-sheet
revisions, a second round of inter-rater reliability testing was performed by
three experienced and seven novice raters. Note that the MDS values as
well as their standard errors (SE) were reduced after the revisions,
indicating an increase in inter-rater reliability. (B) Pearson correlations
between the mean IBB score and the consensus score suggest a high
degree of agreement with consensus in both novice and experienced
raters, providing strong evidence that the IBB has high inter-rater reliability
that improves with practice.

the absolute value of the difference between the assigned score
and the consensus or “gold standard” score) for ratings of perfor-
mance shown in the 10 videos. Experienced raters scored within <1
point of the consensus score (0.8± 0.36) while novice raters scored
within an average of 1.5± 0.5 points of the consensus score. This
suggests that experienced raters independently assigning scores
for the 10 videos are more accurate than novice raters, but novice
raters could clearly get in the range of experienced raters with only
a one-day training session. Correlational analysis of the separate
expert inter-rater scores revealed significant reliability (all r values
>0.9, p < 0.0001).

On review of the results by the group, a number of issues were
identified that caused problems for the raters. These were:

1. The original scale rated the Predominant Elbow Joint Position
as “extended, partially flexed, or fully flexed.” Discrimination
between partially and fully flexed appeared to be problematic,
and perhaps irrelevant in more recovered animals. There-
fore, the predominant position subcategories were reduced to
“extended” or “flexed” (Figure 4).

2. The definition for Proximal Forelimb Movements was ini-
tially defined only by the range of the movement; consideration
of frequency of movements was identified as a feature that
also reflected recovery and was deemed important to add to
the operational definition. For example, many raters did not
observe extensive movements in more well-recovered animals
and thus scored the rat as 0 or 1, even though the rat was exhibit-
ing a lot of recovery (Figure 5). Experienced raters appeared to
ignore this aspect, so better clarification was warranted.

3. The explanation of the subcategory for Predominant Forepaw
Position, “Extended, Non-Adaptable,” was unclear and needed
more explanation. Participants also recommended that the
designation of “Partially Flexed Adaptable”be changed to“Par-
tially Extended Adaptable,” so the emphasis is on the recovery
of extension (Figure 6).

4. The subcategories of “Cereal Adjustments,” “Exaggerated
Movements,” and “Subtle Movements” needed further clari-
fication as a distinction between these two levels was difficult.
Momentary loss of contact, if the movement does contribute
to proper cereal adjustment, was added to the explanation to
increase discriminability (Figure 7).

5. Digit 5 was rarely visible. Elimination of the documentation
of Digit 5 was recommended as it could not be consistently
observed and scored.

6. A review of the participants’ data sheets revealed errors in
score assignment. These errors were typically due to either
ignoring a feature marked on the score sheet, or missing a fea-
ture required for a particular score. It was recommended that
double-checking score assignments for accuracy be performed.
The score determination guide also was revised to make scoring
easier (Figure 2).

The revised IBB scale and definitions are shown in Table 1; the
changes from that provided in Irvine et al. (1), are indicated by
italics and underlining.
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Irvine et al. Reliability and validity of the IBB

FIGURE 4 | Amendment: predominant elbow position. The rat is assessed
for the most common position (more than 50% of the time) assumed by the
elbow during eating. Extended is when the elbow is held straight with an

angle of more than 160°. Flexed – The elbow is flexed with an angle of less
than 160°. (Revisions of the IBB scale from the JoVE 2010 version are
highlighted in italics.)

FIGURE 5 | Amendment: proximal forelimb movements. The rat is
assessed for movements made by the shoulder and/or elbow of the
impaired forelimb that may or may not result in contact of the forelimb with
the cereal. These proximal forelimb movements are defined as either:
none – there are no shoulder and/or elbow movements of the impaired
forelimb. Slight (A,B) is defined as infrequent movements (<5% of the
time) through less than third the range of the shoulder and/or elbow joint;
twitches and shrugs fall into this category. Extensive is defined as frequent
movements (>5% of the time) by the impaired forelimb OR movements
(C,D) that are more than third the range of the shoulder and/or elbow joint.
In early recovery, these movements can be numerous and erratic.
(Revisions of the IBB scale from the JoVE 2010 version are highlighted in
italics.)

Inter-rater reliability test 2
After the changes were made, a second IRR test (three experi-
enced, seven novice raters) was performed to determine if the
changes increased clarity and thus accuracy. As shown in Figure 3,
following the revisions, experienced raters had a mean difference
from consensus score of 0.16± 0.15 points and novice raters had

a MDS of 1.23± 0.05. Experienced observers continued to show
more accurate ratings, but all raters increased accuracy. The revi-
sions not only increased accuracy, but also reduced variability in
score assignment and improved IRR as reflected by a reduction in
the overall variability in score assignments. Improved accuracy is
revealed by the reduction in deviation from the consensus score.
In addition, Pearson correlations between each rater and the gold
standard were consistently high (Figure 3B).

VALIDITY
Internal and face validity
To assess internal and face validity of the IBB, we tested its sensitiv-
ity to a well-established experimental manipulation: graded SCI.
We assessed sensitivity using a mixed repeated measures ANOVA
(F-test) as well as effect size calculations (eta squared,η2). To assess
the IBB’s sensitivity to recovery we performed repeated IBB testing
over the post-injury interval. As shown in Figure 8A, the IBB was
highly sensitive to the main effect of injury [sham, 75, 100 kdynes,
or hemisection; F(3,24)= 120.89, p < 0.00001]. Effect size calcu-
lations indicated a very large effect of injury on IBB (η2

= 0.94),
over six times higher than the classical definition of “large” effect
size (0.14) (31). This indicates that the IBB was highly sensitive to
the effect of SCI. The IBB also performed very well as a measure
of recovery over time, F(3,72)= 27.52, p < 0.00001, η2

= 0.53. In
addition, the IBB was highly sensitive to the injury× time interac-
tion, F(9, 72)= 7.20, p < 0.00001,η2

= 0.47. The interaction term,
in particular, indicates that the IBB is highly sensitive to the vari-
able patterns of recovery produced by different SCI gradations.
In addition, as shown in Figure 8A (inset), the IBB correlated
very highly with the observed (“actual”) injury force biomechan-
ical read-out from the IH device force transducer (r =−0.96;
r2
= 0.93), providing strong evidence of face validity. Altogether

these findings indicate that the IBB is an internally valid measure
for assessment of recovery after SCI.

Concurrent validity: relationship to other functional tests
To assess concurrent validity, we compared the IBB to other estab-
lished tests of outcome after SCI performed within the same
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Irvine et al. Reliability and validity of the IBB

FIGURE 6 | Amendment: predominant forepaw position. The rat is
assessed for the most common position (more than 50% of the time)
assumed by the digits. Scored as either (A) clubbed flexed fixed – the digits
are flexed and held in a fist with joint angles of about 90°. (B) Extended,
non-adaptable – One or more of the digits are partially extended with joint
angles between 180° and 160°; in addition, these digits DO NOT CONFORM

to the shape of the cereal. (C) Partially extended, adaptable – digits are
partially extended with joint angles between 160° and 90°; in addition, these
digits CONFORM to the shape of the cereal. Diagrams within the squares are
observing the impaired forepaw, depicting digits 1 and 3 (*), from above.
(Revisions of the IBB scale from the JoVE 2010 version are highlighted in
italics.)

FIGURE 7 | Amendment: cereal adjustments (control). The rat is
assessed for movements made by the impaired forelimb that are
synchronized in time with successful manipulatory movements of the
unimpaired forelimb, and that contribute to the proper manipulation of the
cereal. These cereal adjustments can be defined as either: none – there
are NO cereal adjustments made by the impaired forelimb.
Exaggerated – movements by the shoulder and/or elbow and/or wrist of
the impaired forelimb that cause a loss of contact between the volar
surface of the impaired forepaw and the cereal, which DO NOT adjust
(control) the cereal position or DO NOT contribute to the proper

manipulation of the cereal by the volar surface of the forepaws.
Subtle – movements by the shoulder, and/or elbow, and/or wrist of the
impaired forelimb that may or may not momentarily cause a loss of
contact between the volar surface of the impaired forepaw and the cereal,
which DO adjust (control) the cereal position or DO contribute to the
proper manipulation of the cereal by the volar surface of the forepaws. [If
animals show both exaggerated and subtle proximal forelimb movements
during eating, they are scored as having exaggerated movements, as
these disappear with further recovery.] (Revisions of the IBB scale from
the JoVE 2010 version are highlighted in italics.)

subjects, i.e., the grooming task, paw placement in a cylinder,
CatWalk, and forelimb use for over-ground locomotion in the
open field (Figures 8B-D; Figure 9). The IBB demonstrated
a similar overall pattern of recovery as other measures, how-
ever, with mild injuries (75 kdynes) it appeared to show less
of an asymptotic performance ceiling in later recovery stages,
suggesting that it may have greater sensitivity to continued
recovery in high-functioning individuals. In addition, the IBB
significantly correlated with paw preference asymmetry in the
cylinder (Figure 8B, r =−0.87; r2

= 0.75), forelimb grooming
test (Figure 8C, r = 0.85; r2

= 0.73), and forelimb open-field
(Figure 8D, r = 0.66; r2

= 0.43). Comparisons to the CatWalk
yielded less robust correlations (Figure 9), with significance
reached (rcrit= 0.317) for the correlation with left (contralateral)
forelimb print area (r = 0.32; r2

= 0.10), right (ipsilateral) fore-
limb step distribution (r = 0.55; r2

= 0.31), and right forelimb

stride length (r = 0.37; r2
= 0.14). This reinforces prior work sug-

gesting that only a subset of CatWalk measures are sensitive to the
effects of unilateral cervical contusion injuries (2, 6). Altogether,
the analytics reveal that the IBB has high concurrent validity.

Predictive validity: relationship to terminal histology
To assess the predictive validity of the IBB test, we assessed
its ability to predict postmortem histology (Figure 10). The
IBB scores were averaged over the 42-day recovery inter-
val and the binned IBB scores were correlated with post-
mortem histopathological assessment of total tissue sparing, white
matter sparing, and gray matter sparing and motor neuron
counts. The results revealed significant correlations for each of
these measures (r = 0.93, r2

= 0.87; r = 0.89, r2
= 0.79; r = 0.88,

r2
= 0.77; r = 0.68, r2

= 0.46, respectively; Figure 10, insets).
Together, these results suggest that the IBB is highly predictive
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Table 1 | Revised IBB Forelimb Recovery Scale.

0: The predominant elbow position is EXTENDED, with NO or SLIGHT proximal forelimb movements and/or NO non-volar support by the forelimb

ipsilateral to the injury site.

1: The predominant elbow position is FLEXED, with SLIGHT proximal forelimb movements and SOME non-volar support by the forelimb ipsilateral to

the injury site. The predominant forepaw position is CLUBBED, FIXED, and FLEXED.

2: The predominant elbow position is FLEXED, with EXTENSIVE proximal forelimb movements and ALMOST ALWAYS non-volar support by the

forelimb ipsilateral to the injury site. The predominant forepaw position is CLUBBED, FIXED, and FLEXED.

3: The predominant elbow position is FLEXED, with EXTENSIVE proximal forelimb movements and NONE or SOME volar support by the forelimb

ipsilateral to the injury. NONE or EXAGGERATED cereal adjustments are present. The predominant forepaw position is EXTENDED,

NON-ADAPTABLE.

4: The predominant elbow position is FLEXED, with EXTENSIVE proximal forelimb movements and SOME volar support by the forelimb ipsilateral to

the injury site. EXAGGERATED cereal adjustments are present with NON-CONTACT movements of DIGIT 2 and possible wrist movements. The

predominant forepaw position is EXTENDED, NON-ADAPTABLE.

5: The predominant elbow position is FLEXED, with EXTENSIVE proximal forelimb movements and ALMOST ALWAYS volar support by the forelimb

ipsilateral to the injury site. SUBTLE cereal adjustments are present with CONTACT MANIPULATORY movements of DIGIT 2 and possible wrist

movements. The predominant forepaw position is EXTENDED, NON-ADAPTABLE.

6: The predominant elbow position is FLEXED, with EXTENSIVE proximal forelimb movements and ALMOST ALWAYS volar support by the forelimb

ipsilateral to the injury site. Wrist movements and SUBTLE cereal adjustments are present with CONTACT MANIPULATORY movements of DIGIT 2

and NON-CONTACT movements of DIGIT 3. The predominant forepaw position is EXTENDED, NON-ADAPTABLE with an ABNORMAL grasping

method.

7: The predominant elbow position is FLEXED, with EXTENSIVE proximal forelimb movements and ALMOST ALWAYS volar support by the forelimb

ipsilateral to the injury site. Wrist movements and SUBTLE cereal adjustments are present with CONTACT MANIPULATORY movements of DIGIT 2

and 3 and NON-CONTACT movements of DIGIT 4. The predominant forepaw position is PARTIALLY EXTENDED but ADAPTABLE with a

SOMETIMES NORMAL grasping method.

8: The predominant elbow position is FLEXED, with EXTENSIVE proximal limb movements and ALMOST ALWAYS volar support by the forelimb

ipsilateral to the injury site. Wrist movements and SUBTLE cereal adjustments are present with CONTACT MANIPULATORY movements of DIGITS

2, 3, and 4. The predominant forepaw position is PARTIALLY EXTENDED, ADAPTABLE with a SOMETIMES NORMAL grasping method.

9: The predominant elbow position is FLEXED, with EXTENSIVE proximal limb movements and ALMOST ALWAYS volar support by the forelimb

ipsilateral to the injury site. Wrist movements and SUBTLE cereal adjustments are present with CONTACT MANIPULATORY movements of DIGITS

2, 3, and 4. The predominant forepaw position is PARTIALLY EXTENDED, ADAPTABLE with an ALMOST ALWAYS NORMAL grasping method.

REVISED IBB DEFINITIONS

Predominant elbow joint position:

The rat is assessed for the most common position (more than 50% of the time).

EXTENDED: The elbow is held straight with an angle of >160°.

FLEXED: The elbow is flexed with an angle of <160°.

Proximal forelimb movements:

The rat is assessed for movements made by the shoulder and/or elbow of the impaired forelimb that may or may not result in contact of the forelimb

with the cereal.

NONE: There are no shoulder and/or elbow movements of the impaired forelimb.

SLIGHT: Infrequent movements (<5% of the time) by the impaired forelimb through less than a third of the range of the shoulder and/or elbow.

(Twitches and shrugs fall into this category.)

EXTENSIVE: Frequent movements (>5% of the time) by the impaired forelimb OR movements that are greater than one-third of the range of the

shoulder and/or elbow. In early recovery, these movements can be numerous and erratic.

Note: If animals show both slight and extensive proximal forelimb movements during eating they are scored as having extensive movements.

(Continued)
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Table 1 | Continued

Contact non-volar support:

The rat is assessed for its ability to use the non-volar surface of the impaired forelimb to stabilize the cereal piece and in doing so, maintaining it in a

position to aid eating. (Areas of the forelimb that may act as supports are the forearm above the wrist, the wrist or the back of digits.)

NONE: No non-volar support by the forelimb during eating (<5% of the time).

SOME: Non-volar support of the object does occur during eating but not always.

ALMOST ALWAYS: Non-volar support of the object occurs nearly always or always during eating (>95% of the time).

Predominant forepaw position:

The rat is assessed for the most common position (more than 50% of the time) assumed by the digits, from flexed to extended, during eating.

CLUBBED, FLEXED, AND FIXED: Digits are flexed with joint angles greater than 90° and are held in a fist.

EXTENDED, NON-ADAPTABLE: One or more of the digits are partially extended with joint angles between 180° and 160°; in addition, these digits

do not conform to the shape of the cereal.

PARTIALLY EXTENDED, ADAPTABLE: Digits are partially extended with joint angles between 160° and 90°; in addition, these digits conform to the

shape of the cereal.

Contact volar support:

The rat is assessed for its ability to use the volar (palmar) surface of the impaired forepaw to stabilize the cereal and, in doing so, maintains a position to

aid eating.

NONE: No volar support by the forelimb during eating (<5% of the time).

SOME: Volar support of the object does occur during eating but not always.

ALMOST ALWAYS: Volar support of the object occurs nearly always or always during eating (>95% of the time).

Cereal adjustments (Control):

The rat is assessed for movements made by the shoulder and/or elbow and or/wrist of the impaired forelimb that are synchronized (in time) with

successful manipulatory movements of the unimpaired forelimb, and that contribute to the proper adjustment (control) of the cereal position by the

volar surface of both forepaws.

NONE: There are NO manipulatory movements made by the volar surface of the impaired forepaw.

EXAGGERATED: Hypermetric movements of the shoulder and/or elbow and/or wrist of the impaired forelimb that:

Cause a loss of contact between the volar surface of the impaired forepaw and the cereal, and

DO NOT adjust (control) the cereal position or DO NOT contribute to the proper manipulation of the cereal by the volar surface of the forepaws.

SUBTLE: Tiny movements of the shoulder and/or elbow and/or wrist of the impaired forelimb that:

May or may not momentarily cause a loss of contact between the volar surface of the impaired forepaw and the cereal, and

DO adjust (control) the cereal position or DO contribute to the proper manipulation of the cereal by the volar surface of the forepaws.

Note: If animals show both exaggerated and subtle proximal forelimb movements during eating, they are scored as having exaggerated movements, as

these disappear with further recovery.

Wrist movements:

The rat is assessed for the presence of wrist movements of the impaired forepaw during eating, once volar support has been established. Movements

of the wrist that occur in the absence of contact between the impaired forepaw and the cereal are not scored. These movements can occur in any

direction, e.g., a dorsal (towards the back) to ventral (down towards the stomach) direction or medial (in towards the body midline) to lateral (away from

the body midline) direction:

YES

NO

Presence of digit movements:

The rat is assessed for the presence of movements made by the individual digits during eating.

NON-CONTACT, YES or NO: Movements of the digits occur but these movements do not result in volar contact with the cereal.

CONTACT MANIPULATORY, YES or NO: Movements of the digits occur that do result in volar contact of the digit with the object and, in doing so,

contribute to manipulation of the cereal.

(Continued)
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Irvine et al. Reliability and validity of the IBB

Table 1 | Continued

Grasping method:

The rat is assessed for the most common (more than 50% of the time) grasping technique used during the eating phase. Several grasping methods

exist but the most common are the “pincer,” the “hook,” and the “whole” grasp. The grasping techniques used by the rat are stereotypical depending

on the size and shape of the cereal piece.

ABNORMAL: Consistent use of an alternative method of grasping to the method used prior to injury to support and control the cereal piece during

the eating phase.

SOMETIMES NORMAL: Inconsistent use of the grasping method used prior to injury to support and control the cereal piece during the eating

phase.

ALMOST ALWAYS NORMAL: Consistent use of the grasping method used prior to injury to support and control the cereal piece during the eating

phase.

The changes from that provided in Ref. (1), are indicated by italics and underlining.

of histological changes after SCI, providing strong support for its
use as a behavioral biomarker for SCI outcome assessment.

Correlations of individual variables with the IBB score were
done using all animals including the shams. The reason for this
was that we wanted the entire range of behavior and anatomy
to be represented (i.e., from most injured with no function to
no injury and normal function). An alternative approach is to
ask if the scale is sensitive within the range of injury and partial
function, i.e., without the shams. Table 2 presents the corre-
lations figured both ways. Pearson correlations (r) and shared
variance (r2) deflated without shams, indicating a smaller but
often still significant dynamic range within different injury con-
ditions. This suggests that the IBB has sensitivity across a wide
dynamic range of injury conditions. Note that rcrit= 0.31 for
p < 0.05.

External validity: responsiveness to other types of neurological
injuries
To assess whether the IBB has external validity, we tested a new
population of subjects and also assessed its sensitivity to alter-
native forms of neurological injury in the context of a model-
development effort for central nervous system (CNS) polytrauma
(SCI+TBI; (24)). IBB was assessed in subjects receiving either a
unilateral cervical SCI alone (75 kdynes), TBI alone, or SCI+TBI
combined injuries (with the TBI either ipsilateral or contralateral
to the SCI). If the IBB has high external validity then it should
show graded sensitivity in this new population of subjects. The
results are shown in Figure 11, and demonstrate that IBB was
highly sensitive to the impact of injury condition, F(4,37)= 15.74,
p < 0.00001. The sensitivity of the IBB to CNS injury was rein-
forced with a very large effect size η2

= 0.63, over four times higher
than the classical cut off for “large” effect size [η2

= 0.14; (31)].
Together, the results indicate that the IBB has high external valid-
ity for the combinatorial effect of SCI+TBI. Note, that the IBB
was selectively sensitive to the impact of TBI contralateral to the
SCI, but little impacted by TBI alone. This suggests that the IBB,
like the grooming test, is somewhat selective for the effects of SCI,
and perhaps, selectively sensitive to anatomical substrates through
which contralateral cortical contusion impacts SCI recovery [see
Ref. (24), and “Discussion” section for further review).

Construct validity: multidimensional syndromic assessment
Spinal cord injury is an intrinsically multifaceted syndrome that
can be conceptualized within a multivariate, big-data analytic
framework (2, 32–37). In this context, we can assess construct
validity of SCI outcome batteries by borrowing well-established
methods from the educational and neuropsychiatric testing fields.
Namely, we can apply multivariate exploratory factor analysis on
the full set of multi-trait multi-method outcomes to derive the
underlying latent structure of the SCI syndromic space (2, 29, 38,
39). This approach is a realization of classical arguments about
strong inference and the need to leverage full-information to deal
with complexity in biology and neuroscience (40).

To assess the relationship of the IBB to multidimensional SCI,
we performed exploratory factor analysis using the extraction
method of PCA. PCA integrates the full bivariate cross-correlation
matrix of all biological and functional outcomes through mul-
tivariate pattern detection coupled with dimension-reduction
((2, 29); Figure 12). In essence, PCA reduces the total num-
ber of observed variables down to a small number of principal
components (PCs; or “latent variables”) that concisely summarize
the overall set of observations within the dataset. We performed
PCA on the full set of outcome variables presented (in univariate
form) in Figures 8–11. PCA revealed three latent multivariables
(PC 1–3) that together accounted for 81.4% of the variance in
outcome (Figures 12A–C). To understand how individual out-
come metrics relate to the PC syndromic patterns, we plotted the
correlation (so called “loadings”) of each outcome metric on the
PC patterns. Significant loadings above 0.45 are represented as
arrows where arrow size indicates magnitude and heat represents
valence (positive vs. inverse relationships). Note that IBB loads
very highly on PC1, indicating that it is a highly de-noised measure
of the latent construct represented by PC1. As in prior work (2),
the PC1 loading pattern suggests that it represents the relationship
between tissue sparing and recovery of function – the multidimen-
sional target for neuroprotective therapies. The fact that the IBB is
the highest loading variable on PC1, suggests that it is a powerful
surrogate biomarker for the set of variables represented by PC1.
In addition, note that IBB does not load on PC2 or PC3, which
are both devoid of histological loadings. This suggests that the
IBB is a highly selective detector of the histopathology–behavior
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Irvine et al. Reliability and validity of the IBB

FIGURE 8 | Face, internal, and concurrent validity of the IBB score.
(A) Face and internal validity of the IBB score is provided by responsiveness
to experimentally graded spinal cord injuries as well as the correlation (inset)
with a biomechanical measurement of tissue displacement at the time of
contusion injury. Concurrent validity is provided by comparisons with other

established outcomes including (B) paw placement, (C) grooming score, and
(D) forelimb open field. Insets reflect the scatterplot and regression line
between the IBB and each of the established tests. The Pearson correlation
(r ) and the shared variance (r 2) for each appear above the scatterplot; group
identity for each point is color coded.

relationship. Combined with the univariate validity testing, the
multivariate results provide strong validation of the IBB as a
measure of recovery of function following cervical SCI.

DISCUSSION
DEVELOPMENT OF THE IBB
A major goal of preclinical modeling for SCI is to identify methods
that can be used to evaluate treatments for translation to clinical
trials. Our prior work on cervical SCI (6) used a variety of tasks
to measure forelimb function including the grooming task, paw
placement in a cylinder, CatWalk, and forelimb open-field loco-
motion. It is noteworthy that these tasks largely assessed proximal
forelimb movements with some limited information about hand
use. None of these tests focused on digit function, which we con-
sider to be important to assess for the translational relevance of
our preclinical outcome testing. A number of tasks that assess dis-
tal forelimb movements in rodents have been described especially
by Whishaw and colleagues, and many have focused on the “reach-
to-grasp task” [reviewed in Ref. (41)]. This task however, requires
extensive training and food deprivation. We also considered an
alternative task, pasta eating, that required hand use to accommo-
date a variety of food shapes (17, 18) and was sensitive to forebrain

injuries. However, during the process of trying to acclimate rats
to a variety of food items, we noticed that acutely injured subjects
demonstrated movements of the affected limb during eating that
did not contribute to food manipulation. The hand was fixed in a
fisted position preventing the digits from grasping the food, and
the forelimb was only used to support the food item. In contrast,
the contralateral limb showed fine digital movements. Allred and
colleagues (17) had made similar observations in their description
of the “Vermicelli handling task,” in which rats are filmed eating
pieces of thin pasta and manipulation of the pasta was compared
to pre-injury handling methods. However, the juxtaposition of the
digits during pasta eating made it difficult to discern movement
of individual digits, and only movements with physical contact
with the pasta were described and assessed. We considered that
this strategy would ignore the rats’ attempts to use the forepaw
ipsilateral to the SCI, and its continued improvement over time.

We therefore explored developing a formal observational scale
to rate recovery of both proximal and distal forelimb movements
in the affected limb during food manipulation, including fine dig-
ital control. Using a high-definition camera, we filmed subjects
eating consistently sized cereal pieces in a Plexiglas cylinder sur-
rounded by mirrors to enable 360° viewing of the movements.
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Irvine et al. Reliability and validity of the IBB

FIGURE 9 | Concurrent validity of the IBB with respect to automated gait
analysis on the CatWalk. (A) Left forelimb step distribution. (B) Left forelimb
stride length. (C) Left forelimb print area. (D) Right forelimb step distribution.
(E) Right forelimb stride length. (F) Right forelimb print area. Insets reflect the

scatterplot and regression line between the IBB and each of the CatWalk
outcomes. The Pearson correlation (r ) and the shared variance (r 2) appear
above each scatterplot; group identity for each point is color coded. *
Indicates significant correlation above r crit =0.317.

Both uninjured subjects and subjects with a range of unilat-
eral cervical injuries produced by the IH device were examined
over 6 weeks. Initial observations were unconstrained notes based
loosely on the structured note-taking scheme of the BBB locomo-
tor rating scale (19). Like the BBB, attention was first given to gross
position of the joints in the affected limb and then to more refined
features of movement. We also noted differences in the grasping
techniques across different cereal shapes, largely inspired by work
of Whishaw and colleagues. The result of this analysis, termed the
“IBB,” was described in Irvine et al. (1).

In the current paper, we have assessed this method for both reli-
ability and validity. These are distinct but related issues in the field
of testing theory. IRR deals with the issue of consistent scoring
of observations whereas validity deals with the issue of whether a
measurement assesses what it purports to assess. These issues will
be discussed separately below.

INTER-RATER RELIABILITY
Inter-rater reliability deals with whether an assessment tool is con-
sistent from rater to rater. To assess IRR, we used an approach
similar to that used during the development of the BBB Locomo-
tor Rating Scale (21). This approach relied on assessing deviations
from a gold-standard consensus score that is derived by expert
raters working together as a team. The current study used a con-
sistent set of videos to assess IRR. This provided some advantages
over the live-rating strategies used to assess the BBB scale. First,
it ensured that there was only one view of the behavior, provid-
ing a more direct assessment of inter-rater variability. Second,
we could randomize the presentation of the exact same behavior
allowing us to control for sequence effects in raters. We found that
there was a high concurrence of score assignment for both experi-
enced and novice raters, and that concurrence was improved after
some minor adjustments to the scale definitions and procedures.
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Irvine et al. Reliability and validity of the IBB

FIGURE 10 | Predictive validity of the IBB score with respect to
histological outcome after spinal cord injury. (A) IBB score. (B) Total
tissue sparing at lesion epicenter. (C) White matter sparing at lesion
epicenter. (D) Gray matter sparing at lesion epicenter. Insets reflect the

scatterplot and regression line between the IBB (averaged over time) and
each of the established tests. The Pearson correlation (r ) and the shared
variance (r 2) appear above each scatterplot; group identity for each point is
color coded.

Table 2 | Correlations of individual variables with IBB score.

Variable r (all subjects) r2 (all subjects) r (no shams) r2 (no shams)

Actual force −0.96 0.93 −0.75 0.56

Tissue displacement −0.83 0.70 −0.09 0.01

Abnormal paw PL −0.87 0.75 −0.69 0.48

Grooming 0.85 0.73 0.47 0.22

Forelimb open field 0.66 0.43 0.67 0.45

LF step distribution −0.21 0.04 −0.31 0.10

LF stride length 0.07 0.00 0.34 0.12

LF print area 0.32 0.10 0.42 0.17

RF step distribution −0.55 0.31 −0.27 0.08

RF stride length 0.37 0.14 0.67 0.45

RF print area 0.29 0.09 0.03 0.00

Total sparing 0.93 0.87 0.55 0.30

WM sparing 0.89 0.79 0.61 0.37

GM sparing 0.88 0.77 0.06 0.00

Motorneuron sparing 0.68 0.46 0.27 0.07

Note that separate correlations were calculated for all injury conditions (all subjects) and excluding shams (no shams). Note that Pearson correlations (r) and shared

variance (r2) deflated without shams, indicating a smaller but often still significant dynamic range within different injury conditions. This suggests that the IBB has

sensitivity across a wide dynamic range of injury conditions. Note: rcrit =0.31 for p < 0.05.

We also found that experience improves consistency and accuracy
of score assignment [as was observed with the BBB; Ref. (21)].
Novice raters could be trained to identify the behavioral features
for rating within a single day, and were able to identify definitional
issues that, when changed, improved accuracy for both novice and
experienced raters. The full set of IRR assessment videos and mate-
rials are available to qualified neurobiological researchers upon
request. Given that the videos are identical, researchers should be
able to match their results to those presented in the current paper.

INTERNAL/FACE VALIDITY
The internal or face validity of this measure is reflected in its abil-
ity to detect differences in the degree of injury to the nervous
system. Performance in cohorts of animals with 75 and 100 kdyne
unilateral contusion SCI, lateral hemisection, and combined SCI
with TBI showed that the IBB was sensitive to varying damage to
the spinal cord and cortex, both individually and in combination.
Graded SCI produced differential recovery (Figure 8A). Inter-
estingly, TBI alone produced a mild initial deficit which quickly
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Irvine et al. Reliability and validity of the IBB

FIGURE 11 | External validity of the IBB Score. (A) The IBB was performed
in an independent cohort of subjects as part of a model-development project
for spinal cord injury (SCI) with concomitant traumatic brain injury (TBI). Note

that the IBB was sensitive to the impact of SCI as well as the additive effect
of SCI+TBI. (B) Paw placement and (C) grooming in the same subject cohort
for comparative purposes. Reprinted with permission from Ref. (24).

recovered (by 1 week post-TBI; Figure 11, green line). Whishaw
et al. (42) showed that cortical lesions did not affect the abil-
ity of rats to pick up food with their mouth and transfer it to
their hands for manipulation, but did observe that cortical injuries
produced difficulty with pronation and supination. This type of
deficit could be reflected in the early mild suppression of the IBB
score after the cortical injury alone. Interestingly, the addition
of a cortical injury contralateral to an SCI, produced a signifi-
cant depression of IBB scores over the SCI alone, suggesting that
the contralateral cortex was involved in the recovery from the
SCI. A TBI placed ipsilaterally to the SCI, did not show the same
effect as the contralaterally placed TBI, and in fact slightly, but
not significantly, improved outcome on this measure. The dual
lesions’ effect on the circuitry supporting paw use is complex and
a multivariate approach to determining the output shows that this
is indeed the case (35) but is beyond the scope of the present
discussion.

CONCURRENT VALIDITY
Concurrent validity asks how performance on this test relates to
performance on other tests used to assess recovery after unilat-
eral SCI [e.g., Ref. (4, 6, 9)]. The current study found that IBB
scores correlate very highly with paw placement and grooming
scores, and less highly, but still significantly, with forelimb use
for locomotion in the open field and on the Catwalk (although
only on some of the Catwalk measures). These tests evaluate hand
use during vertical exploration, during grooming of the face and
head, and for locomotion respectively. Other tests which evalu-
ate hand use during grasp and retrieval [e.g., Ref. (42–44)] were
not tested. The IBB test focuses on a different aspect of forelimb

use than the reach and grasp tasks. The IBB represents an assess-
ment of hand use during food manipulation for consumption as
opposed to reaching and grasping tasks, which involve forelimb
use for retrieval of items distal to the animal (41, 45). During
reaching tasks, animals are required to extend their arm through
a slot to reach a food object. The hand is then brought over the
food pellet using a stereotyped arpeggio movement and the pel-
let is grasped, followed by bringing the food to the mouth. For
the IBB, animals first locate the food on the floor of the cage
using at least olfaction and somatosensory input via the vib-
rissae, they pick the food up with their mouth and then bring
the forelimbs to the mouth to support and manipulate the food,
especially if the item is large. The food is then rotated and posi-
tioned for biting with both hands. The reach and grasp tasks
do not focus on this proximal manipulation during consump-
tion. In this sense the IBB is complementary to reach and grasp
tasks.

Whishaw has pointed out that “reach and grasp” is a highly
evolutionarily conserved function that is similar across the mam-
malian class, and thus is likely to be a useful tool for translational
modeling (41). While the ability to use fine digital movements
increases and individuates as one “ascends” the class from rodents
to primates, the basic organization of the neural systems under-
ling these behaviors are likely to be similar. Therefore, attempts
to develop outcome measures with similar features across species
that can be combined to develop batteries of tests evaluating differ-
ent substrates for recovery, would seem to increase the probability
of translation from rodent injury models to the human clinical
situation. In this sense, the IBB represents an important addition
to a complete battery of tests that can be used to assess recovery
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Irvine et al. Reliability and validity of the IBB

FIGURE 12 | Construct validity of the IBB Score. Principal component
analysis (PCA) extracted three orthogonal multivariable principal
component (PC) clusters that together accounted for 81.4% of the
variance in outcome after SCI. (A) PC1, the largest cluster of variance
(51.6%) reflects the relationship between forelimb function and
histological outcome. Note the IBB score is the highest loading variable
on PC1, providing evidence of construct validity. (B) PC2 (18.3%
variance) reflected the relationship of forelimb weight support and gait.

(C) PC3 (11.5% variance) reflects forelimb stride length. (D) PCA extracts
the PCs through eigenvalue decomposition of the bivariate correlation
matrix of all outcomes, here represented as a heat map of Pearson
values. PCs are reflected as the Venn intersection (gray) across outcome
domains and the PC loading values (correlation between each variable
and the PC cluster) are represented as arrows where gage represents
loading magnitude and heat reflects direction (red positive relationship,
blue inverse relationship).

of function after cervical SCI. By combining data from multiple
tests, we will have a better, more holistic view of recovery after
neurological injury.

PREDICTIVE AND EXTERNAL VALIDITY
To test the predictive validity of the IBB, we examined the rela-
tionship with the underlying tissue damage in the spinal cord. We
found that the IBB scores were highly and significantly correlated
with the amount of tissue sparing at the SCI lesion site. How the
IBB predicts SCI severity in comparison to other tests is discussed
in the multivariate section below. The IBB was minimally sensitive
to the impact of TBI alone, but as mentioned above, showed a
similar sensitivity to combined SCI+TBI as the paw placement
test (24). In a recent report from Speck et al. (46), the IBB was also
shown to be sensitive to recovery from peripheral nerve injuries
in mice.

CONSTRUCT VALIDITY: MULTIVARIATE ASSESSMENT OF FUNCTION
Findings from multifaceted outcome batteries applied to the same
subject ultimately need to be integrated in some manner to derive a
complete picture of forelimb recovery. Multivariate statistical pat-
tern detectors such as PCA and the related approach of exploratory
factor analysis provide quantitative means to perform this inte-
gration across outcomes (29, 39). This approach has classically
been applied in the human assessment literature as a tool to gauge

construct validity: the degree to which an individual test measures
or “taps into” an underlying trait of interest [e.g., intelligence,
executive function, memory etc.; Ref. (39)]. Indeed, this appli-
cation of multivariate statistics is the underlying basis for most
modern, standardized human achievement and neuropsycholog-
ical tests. However, PCA has rarely been applied in preclinical
research studies to assess the validity of scales used in animal mod-
els of neurobiological disorders. In the present paper we applied
PCA to, (1) integrate outcome across multiple assessment tools,
and (2) to assess the construct validity of the IBB. Based on prior
work, we knew that PCA has the capacity to detect specific neu-
robiological substrates for forelimb recovery after SCI, specifically
tapping into the relationship between tissue sparing and multi-
faceted forelimb function on the first principal component (PC1)
(2, 32, 33, 37). The question in the current paper was, “does the
IBB predict (or “load onto”) the established forelimb neurobehav-
ioral recovery construct outcome set?” The results indicated that
not only did the IBB predict the forelimb neurobehavioral recov-
ery construct (PC1), but it actually had the highest loading of all
of the outcome variables assessed, providing strong evidence of
construct validity for the IBB.

It is noteworthy that the IBB did not correlate as well with
CatWalk measures of gait during locomotion. This suggests that
the CatWalk assesses different neurobiological substrates than the
IBB. This is consistent with prior work showing that the CatWalk

Frontiers in Neurology | Movement Disorders July 2014 | Volume 5 | Article 116 | 146

http://www.frontiersin.org/Movement_Disorders
http://www.frontiersin.org/Movement_Disorders/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Irvine et al. Reliability and validity of the IBB

outcome metrics do not have high construct validity with respect
to multivariate tissue sparing in contusive SCI (PC1) but do
tap into orthogonal variance (PC2, PC3) related to hemisection
injuries (2). This indicates that the CatWalk may reflect tissue
changes not captured by crude measures of histological sparing
after unilateral cervical SCI. This could account for the observa-
tion that hemisection injuries impact CatWalk, a model in which
white matter and gray matter sparing at the lesion epicenter are
relatively consistent. This dissociation between CatWalk and tissue
sparing is reminiscent of the pattern observed in prior analy-
ses that have included the horizontal ladder test after cervical
SCI (6, 47). The horizontal ladder, the CatWalk and forelimb
locomotor function clustered together as a coherent functional
assessment construct (PC2); however, this outcome cluster did
not correlate with histological sparing (47). We have argued that
this indicates that CatWalk and horizontal ladder reflect fine-
details of locomotor recovery that are organized by more subtle
neurobiological changes (perhaps due to sprouting and plastic-
ity), not reflected by gross gray and white matter sparing metrics
per se (2, 37).

FORELIMB OBJECT MANIPULATION AS A TRANSLATIONAL TOOL
Our group has begun developing a primate analog to the IBB to
facilitate cross-species translation of SCI research findings (34,
48, 49). Early work suggests that the IBB can be scaled up into
an analogous object manipulation task in a non-human pri-
mate (NHP) model of cervical SCI in the rhesus macaque (48,
49). The primate version of the task shows strong sensitivity for
loss and recovery of function after cervical lateral hemisection
injuries. In addition, early cross-species testing of construct valid-
ity suggests that the rodent IBB and primate object manipulation
task co-load along with tissue sparing on PC1, enabling con-
sistent assessment of translational features of forelimb recovery
(34, 48, 49).

Of course, the utility of object manipulation as a translational
outcome measure may depend on the neurobiological substrates
under study. It is often assumed that much of the loss and recov-
ery of fine digital movement, and reach and grasp, in humans
after CNS damage or degeneration is due to loss of cortico-spinal
tract (CST) function. The classic work of Lawrence and Kuypers
(50–52) indeed points to the pyramidal tract as a critical medi-
ator of forelimb and especially fine digital control in primates.
However, attempts to assign specific roles to the multitude of
descending tracts and intra-spinal circuits in experimental mod-
els of SCI have proven to be difficult, and recent work suggests
that there may be considerable redundancy in the organization
of forelimb motor function. For example, Fouad and colleagues
tested performance on a single pellet reaching task after various
lesions of the dorsal and lateral funiculi, and found little corre-
lation between lesion size and performance in the rat (53). In a
related study, Morris et al. (54) found that lesions restricted to the
dorsolateral funiculus where the rubrospinal tract is located, only
affected the “arpeggio” movement, and not other aspects of reach
and grasp.

It seems clear that more flexibility and individuation of move-
ment might be supported by the development of the cortical
system mediated through the CST as the primate CST developed,

and that the ability of primates to produce highly accurate ballistic
movements in space and to produce individual finger movements
is extraordinary. However, recent work from several laboratories
using NHPs suggests that recovery of fine digital control can be
accomplished via reorganization of descending reticular systems
impinging upon interneurons in the cervical cord. This raises the
issue of how much of the forelimb control is mediated by corti-
cal brainstem circuits versus those organized intrinsically within
the cervical cord. In the case of the IBB scale, the results of our
CCI studies suggest that the circuits in the sensorimotor cortex are
involved in recovery of forelimb and fine digital movements, but
that certainly much of this circuitry is organized at the spinal level,
at least in the rodent.

Comparative studies of the neurobiology of forelimb recovery
after rodent and primate SCI are a major focus of ongoing stud-
ies (55, 56). Object manipulation tasks such as the IBB will play
an important role in making these cross-species comparisons to
unravel the neurobiological substrates of forelimb recovery in the
context of translational therapeutic testing.

CONCLUSION
The IBB is a recently developed forelimb scale for the assessment
of fine control of the digits after damage to the nervous system (1).
The present paper suggests that the IBB has strong IRR and validity
(face, concurrent, and construct). Thus, the IBB may be useful in
conjunction with, and in comparison to, other measures of fore-
limb and fine digital control in other mammalian species including
primates. And, it may be a valuable adjunct to the armamentarium
of translational tools for assessing recovery after nervous system
damage and degeneration.
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they applied TMS upon the neural regions 
which resulted in a joint activation during 
the execution of time and quantity process-
ing tasks. Moreover, they used two different 
timing tasks (time discrimination vs. time 
reproduction) with the purpose of exploring 
the time numerosity interaction in the pres-
ence and in the context of a reduced involve-
ment of categorical magnitude judgment. 
Remarkably, this work shows that TMS 
upon the right inferior frontal gyrus (IFG) 
impairs categorical duration discrimination, 
but in contrast, it has no effect on time esti-
mation in the duration reproduction task. 
On the other hand, the TMS upon the right 
intraparietal cortex (IPC) modulates the 
degree of influence of numerosity on time 
reproduction and impairs precise time esti-
mation. This evidence is striking insofar as it 
provides clear evidence of a common neural 
origin for the processing of time and numer-
osity in a precise region of the parietal cor-
tex. The provided results lead the authors 
to propose a two-stage model of numeros-
ity–time interactions, in which it is stated 
that the categorical decision takes place in 
the frontal cortex, whereas the interaction 
of numerosity information on perception 
of time occurs within the parietal cortex. 
Nevertheless, in the context of the present 
discussion there are two aspects worthy of 
receiving attention: the “motor” nature of the 
time reproduction task and the involvement 
of hand/fingers body part for its execution.

Previous studies have shown neural 
activity in the parietal cortex for particular 
visuomotor actions involving right hand/
fingers representation such as grasping 
(Baumann et al., 2009), and the go/no go 
task (Sugawara et al., 2013). Interestingly, 
this parietal activation occurred after the 
Go stimulus, which can be considered the 
equivalent of the stimulus disappearance 
in the time reproduction task, of Hayashi 

A commentary on

Interaction of numerosity and time in pre-
frontal and parietal cortex
by Hayashi, M. J., Kanai, R., Tanabe, H. 
C., Yoshida, Y., Carlson, S., Walsh, V., and 
Sadato, N. (2013). J. Neurosci. 33, 883–893.

The interaction of time and numerical 
representation in the human brain is cur-
rently object of debate in the field of cog-
nitive neuroscience. A wide amount of 
research based on “A theory of Magnitude 
(ATOM)” (Walsh, 2003), a model which 
proposes common cortical metric for the 
representation of space, time, and numbers, 
has provided extensive evidence in support 
of this suggestion (Dormal et al., 2006; Xuan 
et al., 2007; Oliveri et al., 2008; Vicario et al., 
2008, 2012; Lu et al., 2009; Vicario, 2011). 
For instance, it has been shown that merely 
looking at numbers causes a bias in a time-
bisection task that depends on its magnitude 
(Vicario, 2011). Nevertheless, there are also 
works which contrast with such proposal as 
it seems that these two dimensions refer to 
at least partially separated neural segrega-
tions (for instance, see Dormal et al., 2008; 
Agrillo et al., 2010). Thus, we are only begin-
ning to understand the complex neuronal 
mechanisms underlying the interaction of 
these magnitudes in the human brain.

In a recent issue of the Journal of 
Neuroscience, Hayashi et al. (2013) added 
new insight into the current debate on 
the interaction of time and numerosity 
by exploring their neural correlates. The 
use of transcranial magnetic stimulation 
(TMS) for the investigation of this issue in 
the human brain is not new in the litera-
ture, as an attempt was previously made by 
Dormal et al. (2008). However, in the current 
work Hayashi et al. (2013) have used a clever 
methodology for testing their hypothesis as 

et al. (2013). In fact, in this task participants 
were instructed to start the time reproduc-
tion action once the stimulus (digit or dot 
arrays) disappeared from the computer 
screen. It is also interesting to note that the 
parietal cortex of the right hemisphere is 
directly involved in motor tasks performed 
with the right hand. For instance, Hinkley 
et al. (2009) have recently reported that 
two regions of the right posterior parietal 
cortex were active in all the experimental 
subjects asked to perform a grasping task 
with their right hand. Thus, in considera-
tion of this evidence, it is not possible to 
exclude that TMS upon the right IPC might 
affect performance by modulating the accu-
racy with which participants performed the 
required movement with their right hand, 
rather than their timing ability. In fact, by 
using a time reproduction it is not possi-
ble to disentangle the effect played by TMS 
on the motor and temporal dimensions of 
this task.

In strict connection with this argu-
ment is the close relationship between the 
representation of numerosity and hand/
fingers in the parietal cortex, as showed by 
the common parietal activation for finger 
movements (Sugawara et al., 2013) and 
numerical cognition (Dormal et al., 2008). 
Moreover, previous works have extensively 
shown that, in both forced (Dehaene et al., 
1990) and free-response (Daar and Pratt, 
2008; Vicario, 2012) paradigms, perceiving 
numbers affects the execution of fingers 
action. The relationship between fingers and 
numerosity is also supported by the study of 
Costa et al. (2011) showing that deficits in 
fingers gnosia were found in association to 
mathematical difficulties. Interestingly, the 
authors provide argument that the deficits 
in fingers gnosia could not be attributed to 
a shortage in working memory capacity but 
rather to a specific inability to use fingers 
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to transiently represent magnitudes. All 
these works provide further support to the 
argument of a close relationship between 
hand/fingers and numerical magnitude 
through different experimental designs. 
Although the studies above mentioned have 
explored mechanisms qualitatively differ-
ent from those investigated by Hayashi et al. 
(2013), the involvement of the hand/fingers 
at motor and/or representational level rep-
resents the trait d’union among all of these 
studies.

Taken together these results suggest that 
there may be a limit related with the use 
of the time reproduction task for testing 
the interaction of time and numerosity 
since it becomes difficult to establish: (i) 
if numerosity modulates performance by 
affecting the execution of the hand/fingers 
movements or the temporal representation 
of participants; (ii) if the effect played by 
TMS on the current timing task is due 
to its modulatory effect on hand/fingers 
motor planning rather than on timing 
performance. To overcome these concerns 
a good control would have been to subject 
participants to a non-timing motor task 
which involves the hand also (as in the case 
of the current time reproduction task), to 
ensure that the reported effect is not related 
to the execution of the action and/or to 
the hand/fingers involvement. Perspective 
works devoted to dissociate the interaction 
between time and numerosity might focus 
on experimental paradigms that are able to 
control the factors mentioned above (action 
and hand/fingers representation). The use 

of a verbal time estimation task (Hurks and 
Hendriksem, 2011) could represent a valid 
solution to clear these limits. In fact, this 
task does not require the involvement of 
hand/fingers movements.
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In order to develop evidence-based rehabilitation protocols post-stroke, one must first
reconcile the vast heterogeneity in the post-stroke population and develop protocols to
facilitate motor learning in the various subgroups. The main purpose of this study is to
show that auditory constraints interact with the stage of recovery post-stroke to influ-
ence motor learning. We characterized the stages of upper limb recovery using task-based
kinematic measures in 20 subjects with chronic hemiparesis. We used a bimanual wrist
extension task, performed with a custom-made wrist trainer, to facilitate learning of wrist
extension in the paretic hand under four auditory conditions: (1) without auditory cueing;
(2) to non-musical happy sounds; (3) to self-selected music; and (4) to a metronome beat
set at a comfortable tempo.Two bimanual trials (15 s each) were followed by one unimanual
trial with the paretic hand over six cycles under each condition. Clinical metrics, wrist and
arm kinematics, and electromyographic activity were recorded. Hierarchical cluster analy-
sis with the Mahalanobis metric based on baseline speed and extent of wrist movement
stratified subjects into three distinct groups, which reflected their stage of recovery: spas-
tic paresis, spastic co-contraction, and minimal paresis. In spastic paresis, the metronome
beat increased wrist extension, but also increased muscle co-activation across the wrist.
In contrast, in spastic co-contraction, no auditory stimulation increased wrist extension
and reduced co-activation. In minimal paresis, wrist extension did not improve under any
condition.The results suggest that auditory task constraints interact with stage of recovery
during motor learning after stroke, perhaps due to recruitment of distinct neural substrates
over the course of recovery.The findings advance our understanding of the mechanisms of
progression of motor recovery and lay the foundation for personalized treatment algorithms
post-stroke.

Keywords: bimanual movements, upper extremity, rehabilitation, motor learning/training, electromyography, task
specificity, cerebrovascular disorders

INTRODUCTION
Stroke strikes one in six people worldwide. It is the leading cause
of disability in the United States (1) and Europe (2), and the sec-
ond leading cause of disability in the world (3). Hemiparesis is
the most common reason for stroke-related disability, and the
majority of individuals with hemiparesis have persistent deficits in
hand function (4). There has been a recent surge in the availabil-
ity of new rehabilitation strategies post-stroke. However, several
large randomized controlled trials have failed to show the bene-
fit of any one intervention over conventional treatment (5), and
there remains a lack of understanding about how to select an
appropriate treatment strategy for a given individual. While it is
now accepted that task-specific training is an important aspect
of a rehabilitation intervention, the constraints under which the
task(s) should be practiced to be optimally therapeutic are not
known. A constraint may be defined as the specific conditions

under which a task is performed, for example, with one hand or
both, with auditory/visual/multi-sensory feedback or without, etc.
Task constraints are important because they regulate the informa-
tion that is processed and assimilated by the nervous system, and
the selection of constraints for any specific task may depend on
the integrity and/or capacity to recruit specific neural substrates
that facilitate processing of the relevant movement-related infor-
mation. The stage of motor recovery, as measured by the level
of motor impairment, may provide an indication for the type of
task-specific constraints that are useful during practice for a given
individual.

Fortunately, recovery of motor function after a hemiplegic
stroke has been shown to follow a predictable pattern. Twitchell
(6), Brunnstrom (7), and Fugl-Meyer et al. (8) described a hier-
archical progression of recovery of patients who initially present
with flaccid paralysis on one side of the body with areflexia. The
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reflex activity returns next and becomes heightened as spasticity
emerges, and voluntary movements occur in stereotypical flexor
and extensor synergy patterns. Spasticity then reaches its maxi-
mum level, producing characteristic patterns of stretch-sensitive
responses such as spastic co-contraction. Eventually, the synergy
patterns start to break up and spasticity begins to reduce as nor-
mal patterns of voluntary movement are restored. The emergence
and disappearance of spasticity are thus important milestones in
motor recovery (9, 10), although the severity of spasticity may vary
considerably and temporary arrests in recovery or “plateaus” can
occur at any stage (6).

Recent imaging studies further show how recovery processes
unfold after a stroke [see Ref. (11) for review]. Early in recov-
ery, the undamaged contralesional hemisphere shows increased
activation (12–15), but eventually normal sensorimotor later-
alization is restored in the stroke-affected hemisphere (16–18).
Importantly, increases in neural activity in the contralesional
motor areas in the first weeks after stroke correlate with bet-
ter motor recovery in humans (19, 20) and monkeys (15),
although persistent activation of the motor and non-motor areas
in the contralesional hemisphere is noted in patients with poor
motor outcome (18, 21). A recent longitudinal case study of a
patient’s recovery over 21 months revealed continuous change
in activation in the contralesional hemisphere with concomi-
tant improvement in motor performance, whereas the ipsile-
sional hemisphere demonstrated significant change only toward
the end of the study period (22). Taken together, these stud-
ies suggest that (1) redundant homologous pathways in the
intact hemisphere can facilitate re-organization of the central
nervous system, particularly in the earlier stages of recovery,
and (2) that motor recovery occurs over a protracted and
variable time period post-stroke. Hence the time since stroke
may not reflect where an individual is in his or her recovery
process.

Two kinds of bimanual training protocols have been devel-
oped to capitalize on contralesional cortical activity post-stroke.
In active bimanual training, both arms move independently and
simultaneously, requiring that individuals have at least some active
movement on the paretic side. Active bimanual arm training com-
bined with rhythmic auditory stimulation (BATRAC protocol)
led to increased recruitment in the contralesional and ipsilesional
hemispheres with concomitant improvement in performance of
the paretic hand (23, 24). These data suggest that there may be
a synergistic effect of bimanual and auditory constraints, but
their individual contribution to performance improvement has
not been ascertained. Rhythmic auditory stimulation by itself has
also been found to be a useful adjunct to post-stroke rehabilita-
tion (25–28). In active–passive bimanual training, the non-paretic
arm drives movements of the paretic arm and leads to simulta-
neous mirror movements of both arms. Here, bimanual training
occurred without auditory stimulation, was used to prime the
ipsilesional motor cortex for subsequent training with the paretic
arm, and also led to significant gains in arm function (29–32).
An advantage of the active–passive approach is that it requires
little active movement in the paretic arm and can therefore be
used in individuals with significant paresis. Furthermore, the
active–passive approach may be used to probe subsequent motor

learning with the paretic arm. We have previously shown that
motor learning is often impaired with the paretic hand, but may
be temporarily restored after prior practice with the non-paretic
hand (33).

In this study, we sought to determine the effect of various
auditory constraints on bimanual-to-unimanual (paretic hand)
learning in individuals at different stages of motor recovery post-
stroke. Rhythmic stimulation with a metronome has been shown
to improve spatiotemporal control of arm movements, perhaps
via activation of brainstem–cerebellar networks (34, 35). How-
ever, several lines of evidence suggest that emotional drive via
activation of limbic networks may also be an important predic-
tor of motor performance (36) and post-stroke motor recovery
(37). Music has been shown to activate a bilateral network of
mesolimbic structures involved in processing emotions and reward
information (38), and affective vocalizations have been shown to
modulate attention via activation of pre-frontal–limbic networks
(39). It is not clear when over the course of recovery one type
of auditory stimulation versus another or no auditory stimula-
tion will be beneficial. Hence, the objectives of this study were
to: (1) characterize the stage of recovery in a disparate group of
subjects with post-stroke hemiparesis using task-based kinematic
measures, and (2) to examine how various types of auditory con-
straints interact with stage of recovery to facilitate learning with
the paretic limb on a bimanual-to-unimanual learning task. Since
voluntary wrist extension is frequently compromised post-stroke
(40) and active wrist extension ability is predictive of hand func-
tion (41), we focused our task on training of wrist extension in
the paretic hand. We hypothesized that auditory constraints that
enhance emotional drive would facilitate learning of wrist exten-
sion with the paretic arm particularly in the early stages of recovery
post-stroke.

MATERIALS AND METHODS
SUBJECTS
Twenty subjects with chronic post-stroke hemiparesis (at least
6 months prior to enrollment) were recruited through referrals
from physicians at the Rusk Institute of Rehabilitation Medicine
and through public advertisement. Subjects provided informed
consent in accordance with the Institutional Review Board of the
New York University School of Medicine. All subjects had at least
15° of passive and 5° of active wrist extension on the paretic side
to perform unimanual movements, and they were screened to rule
out hearing deficits prior to participation.

PROTOCOL
The clinical assessments and experimental protocols were admin-
istered by well-trained research staff at the Motor Recovery
Research Laboratory in the Rusk Institute of Rehabilitation Med-
icine. At the first visit, the Fugl-Meyer Scale (8) was used to
assess upper extremity motor impairment; the Modified Ash-
worth Scale (42) assessed spasticity in the affected shoulder, elbow,
wrist, and finger joints; active and passive range-of-motion at
shoulder, elbow, wrist, and finger joints were measured using a
goniometer (43), and the threshold for joint proprioception was
also assessed. Depression and mood were assessed using the 15-
item Geriatric Depression Scale, which has been recommended for
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FIGURE 1 | Custom-made wrist extension trainer.

the assessment of post-stroke depression in adults of all ages (44,
45), and the Brunel Mood Scale (BRUMS) (36), respectively. An
appropriate tempo for the metronome beat was then determined
by asking subjects to flex and extend their paretic wrist at a com-
fortable pace using a custom-made wrist trainer (Figure 1) for
15 s. Subjects then selected three familiar songs from public media
to increase their feeling of vigor, happiness, and calmness. An up-
tempo major key song that matched their metronome speed, or
was in multiples of their metronome speed, was chosen to induce
a positive mood-state. The BRUMS Scale was repeated after the
subjects listened to their self-selected song to verify improvement
in mood-states (Figure 2).

At the second visit, subjects performed repeated bimanual and
unimanual (with the paretic hand) wrist flexion-extension move-
ments using a custom-made wrist trainer. The device was designed
to constrain movement of the wrist in the sagittal plane, and limit
compensatory movement of the forearm and arm. The height of
the chair was adjusted to keep the shoulders level and maintain
proper alignment of the trunk. Table height and the position of
the wrist trainer were maintained across all task conditions for
each subject. Before the start of the experiment, subjects were
informed that the goal of training was to facilitate wrist extension.
Electromagnetic motion sensors (trakSTAR, Ascension Technol-
ogy Corporation, Shelburne, VT, USA) affixed to the limb seg-
ments on each side measured wrist kinematics. Bipolar surface
electrodes (DE 2.1, Delsys Inc., Natick, MA, USA) affixed over
the flexor carpi ulnaris (FCU) and extensor carpi radialis longus
(ECRL) muscles on each limb recorded electromyographic (EMG)
signals. Video, kinematic, and EMG data were captured synchro-
nously using The Motion Monitor (Innovative Sports Training
Inc., Chicago, IL, USA), and analysis was performed offline using
Spike 2 (Cambridge Electronic Design, Cambridge, England).

Wrist movements were performed under four different audi-
tory conditions: (1) at baseline without auditory cueing; (2) to
positively valenced affective “happy” sounds (baby’s laughter)
recorded for 11 s and looped continuously, providing non-musical
and non-rhythmic auditory stimulation; (3) to the self-selected
up-tempo major key song chosen during visit 1; and (4) to a
metronome beat set at each individual’s comfortable tempo. The
subject was required to complete one cycle of wrist extension and
flexion to each beat. Each condition consisted of 18 15-s trials of
wrist flexion and extension, where subjects performed two biman-
ual trials followed by one unimanual trial with the paretic hand. A

20-s rest break was provided between each trial to prevent fatigue.
The order of the conditions was counterbalanced across subjects,
and subjects rated their fatigue levels after the completion of all
trials for each condition.

DATA ANALYSIS
Kinematic data were sampled at 120 Hz and EMG data were sam-
pled at 1206 Hz. The kinematic data were low pass filtered at
6 Hz and up-scaled to 1206 Hz using linear interpolation. The
EMG data were filtered using a dual band pass filter (10–52.5
and 67.5–500 Hz) and the root mean square (RMS) of the sig-
nal was obtained for wrist flexion and extension phases of the
movement separately. The EMG signals were normalized to the
maximum amplitude recorded for each muscle across all trials
and conditions (46, 47) to facilitate within- and between-subject
comparisons. This method was chosen after extensive reliabil-
ity testing of different methods of normalization (by Ying Lu).
Movement speed, amplitude of wrist extension, wrist extensor
activation (RMS of agonist, ECRL), wrist flexor activation (RMS of
antagonist, FCU) during extension, and co-activation (defined as
RMS of antagonist, FCU/RMS of agonist, ECRL) were the vari-
ables used in the analyses. Recognizing that the subjects may
present at various stages of recovery at the time of the study,
we used hierarchical cluster analysis with the Mahalanobis metric
(48) based on baseline wrist kinematics to stratify subjects into
groups. The stratification scheme corresponded well with recov-
ery characterized by the Fugl-Meyer Scale as shown in the results
below. We then fit linear mixed effect models with group inter-
actions and individual random effects to assess: (1) differences
among subject clusters, and (2) learning rates across repeated
unimanual trials with the paretic hand after bimanual priming
with the four auditory conditions. Learning rate on uniman-
ual trials was defined as the slope of the linear trend fit over
the six unimanual trials. All the statistical analyses were con-
ducted using R (v. 2.15.1). The R package “lme 4” was used for
the mixed effect model estimation. To control for multiple com-
parisons but preserve statistical power (due to low sample size
in the subgroups), we present all results but choose to interpret
results with marginal statistical significance (0.01 < p < 0.05) with
caution.

RESULTS
Our first objective was to characterize the stages of recovery across
a disparate group of patients with post-stroke hemiparesis. Since
wrist kinematics provide direct, objective, and reliable measures
of movement ability in the paretic hand, we used the movement
speed and extent of wrist extension from the first trial with the
paretic hand under the baseline condition (no auditory cueing) to
perform hierarchical cluster analysis (48), which stratified subjects
into three distinct groups (Figure 3).

Clinical metrics (Table 1) showed clear differences across the
three groups. The Fugl-Meyer scores were lowest in group 1, fol-
lowed by group 2, and then group 3 (p= 0.047). Active wrist
motion, measured using goniometry separately from the wrist
extension task, showed that both wrist flexion and extension were
surprisingly lowest in group 2, intermediate in group 1, and highest
in group 3 (p < 0.001). Spasticity at the wrist flexors was, however,
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FIGURE 2 | Mean Brunel Mood Scale scores at baseline and after listening to self-selected music. Error bars represent the standard error. *Represents
statistically significant differences at p < 0.05.
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FIGURE 3 | Cluster dendrogram from hierarchical cluster analysis using the Mahalanobis metric based on speed and amplitude of wrist extension on
the first trial with the paretic hand at baseline (without auditory stimulation). Three distinct groups emerged.

highest in group 1, and similar in groups 2 and 3 (p= 0.066).
There were no significant differences among the three groups in
joint proprioception at the wrist, depression scores, mood scores,
tempo of the metronome beat or selected song, or fatigue levels.
Note that the mean time since stroke was also not different across
the three groups (p= 0.89).

Baseline performance metrics on the wrist extension task
also showed clear differences across the three groups. Move-
ment speed was higher in group 3 compared to groups 1 and

2 (p < 0.001, Figure 4A). Extent of wrist extension was lowest
in group 2 (where attempted wrist extension produced para-
doxical flexion), intermediate in group 1, and highest in group
3 (p < 0.001, Figure 4B). Wrist extensor muscle (ECRL) activa-
tion was also lowest in group 2, intermediate in group 1, and
highest in group 3 (p= 0.047, Figure 4C), whereas wrist flexor
muscle (FCU) activation was not differentiated in the three groups
(p= 0.877, Figure 4D). Co-activation between wrist extensor and
flexor muscles was highest in group 2, intermediate in group
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Table 1 | Clinical characteristics of subjects: aSub, subjects in each group (see also Figure 2); bage, in years; cH/H, handedness/hemiparesis; dTSS,

time since stroke in months; eFMS, Fugl-Meyer score, values represent total upper extremity scores out of a maximum of 66/hand and wrist

score out of a maximum of 30; fAROM, active range-of-motion in degrees at the wrist measured with a goniometer; gMAS, modified Ashworth

Scale measured at the wrist. Lesion location and stroke subtype obtained from: hradiology reports and imedical history narrative from subject.

Suba Age/sexb H/Hc Stroke location/subtype TSSd FMSe AROMf AROM MASg MAS

Flexion Extension Flexors Extensors

G
ro

up
1

S
pa

st
ic

pa
re

si
s

2 43/F R/R L frontal hgeh 8 21/8 20 15 3 1

3 43/M L/R L subcortical hgei N/A 35/20 20 15 3 1

5 62/F R/L R parietal hgeh 71 48/22 15 15 3 2

7 36/M R/R L MCA infarcts with hgeh 37 38/20 20 20 1 1

11 65/M R/R L BG infarcth 50 51/21 33 35 2 1

14 52/M R/R L IC occlusioni 123 28/10 20 15 3 1+

18 60/F R/L R cerebral hgei 84 33/18 20 10 2 2

Mean 51.6 62.2 36.3/17 21.1 17.9 2.4 1.4

(SD) (11.2) (39.9) (10.6/5.6) (5.6) (8.1) (0.8) (0.5)

G
ro

up
2

S
pa

st
ic

co
-c

on
tr

ac
tio

n 1 28/F R/R L MCA infarcth 44 51/21 10 5 1 0

4 46/F R/L R MCA hgei 77 42/20 20 10 2 2

6 61/M R/R L cerebral hgei 18 37/21 15 15 3 3

9 54/M R/R L lacunar infarcth 49 54/27 20 10 1 1

12 56/M R/R L lacunar infarcth 51 62/27 10 5 1+ 1+

21 87/F R/L R MCA infarcth 84 25/5 15 5 1 2

Mean 55.3 53.8 45.2/20.1 15.0 8.3 1.6 1.6

(SD) (19.3) (23.9) (13.3/8.0) (4.5) (4.1) (0.8) (1.0)

G
ro

up
3

M
in

im
al

pa
re

si
s

8 47/M R/R L IC occlusioni 71 35/25 30 25 3 1

10 69/F R/R L thalamic infarcth 24 58/25 50 55 1 1

13 42/F R/L R IC occlusionh 30 40/20 50 70 2 2

15 71/M R/L R MCA infarcth 37 55/20 50 45 1 1

16 41/M R/R L BG hgeh 192 65/29 60 50 1 1

19 59/M R/R L thalamic infarcth 36 59/26 75 60 1 1

20 62/M R/R L MCA infarcth 69 60/27 40 30 1 1.1

Mean 55.9 65.6 53.1/24.5 50.7 47.9 1.4 1.1

(SD) (12.5) (58.8) (11.2/3.4) (14.3) (16.0) (0.8) (0.4)

P -value across the three groups 0.89 0.047 <0.001 <0.001 0.066 0.502

Bolded variables showed statistically and/or clinically important differences across the three groups.

1, and lowest in group 3 (p= 0.07, Figure 4E). Taken together,
the baseline performance and clinical metrics enabled charac-
terization of recovery patterns into the three descriptive groups
below.

GROUP 1 – SPASTIC PARESIS
In this group, performance on the paretic side (Figure 4, shown
in blue) relative to the non-paretic side showed low movement
speed (~10%), moderate wrist extension (~20%), moderate acti-
vation in the wrist extensor (~30%), and five times greater co-
activation. Clinically, these subjects had the lowest Fugl-Meyer
scores (range 21–51), but had 15–33° of active wrist flexion and
10–35° of active wrist extension. Spasticity was observed predom-
inantly in the wrist flexors. Lesion location and stroke subtype
(Table 1) suggest that these subjects had very severe strokes that
were caused predominantly by intracerebral hemorrhage (subject

#s 2, 3, 5, 18) or hemorrhagic transformation of ischemic infarcts
(subject # 7).

GROUP 2 – SPASTIC CO-CONTRACTION
In this group, performance on the paretic side (Figure 4, shown
in red) relative to the non-paretic side showed very slow move-
ment speed (~7%), paradoxical wrist flexion on attempted wrist
extension (−27%), minimal activation of the wrist extensor mus-
cle (~10%), and ~10 times greater co-activation. Clinically, these
subjects had higher Fugl-Meyer scores (range 25–62) than those in
group 1. However, they had only 10–20° of active wrist flexion and
5–15 of active wrist extension. Spasticity was distributed equally
in both wrist flexors and extensors for the most part. Lesion loca-
tion and stroke subtype (Table 1) suggest that these subjects had
moderately severe strokes caused predominantly by infarcts in the
MCA territory (subject #s 1, 9, 12, 21).
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FIGURE 4 | Group means computed for the first trial with the paretic
hand. (A) Speed of wrist extension in degrees per second; (B) extent of
wrist extension in degrees; (C) root mean square of wrist extensor muscle
activation during wrist extension; (D) root mean square of wrist flexor
muscle activation during wrist extension; (E) log of wrist co-activation
computed as ratio of wrist flexor to extensor muscle activation. The blue
bars represent the group with spastic paresis, which had the lowest

Fugl-Meyer scores, the red bars represent the spastic co-contraction
group with intermediate Fugl-Meyer scores, and the green bars represent
the minimal paresis group, which had the highest Fugl-Meyer scores.
Values for the non-paretic hand are shown in gray for reference. Error bars
represent the standard error. *Represents differences between the three
groups at p < 0.05, and +represents differences between the three groups
at p < 0.1.

GROUP 3 – MINIMAL PARESIS
In this group, performance on the paretic side (Figure 4, shown
in green) relative to the non-paretic side showed relatively high
movement speed (~60%), substantial wrist extension (~77%),
and wrist extensor activation (~75%), and twice the co-activation
as the non-paretic side. Clinically, these subjects had the highest
Fugl-Meyer scores (range 35–65) and the greatest range of active
wrist flexion (30–75°) and extension (25–70°) of the three groups.
Lesion location and stroke subtype (Table 1) suggest that these
subjects had a mixed variety of strokes predominantly in the MCA
territory.

Our second objective was to examine how different types
of auditory stimuli interact with bimanual training to facilitate
subsequent learning with the paretic limb in the three groups.
Subjects performed six cycles of two bimanual trials followed by
one unimanual trial with the paretic hand, where each trial con-
sisted of multiple repeats of wrist flexion-extension over 15 s. We
were interested in the changes in wrist extension, wrist extensor
activation, wrist flexor activation, and co-activation over the six
unimanual trials for each of the auditory conditions (represented
by the different line patterns, see Figure 5). The mean level of
the trend lines provides an indication of the amplitude of over-
all performance, whereas the slope of the trend lines quantifies
the rate of learning on the paretic side. A positive slope suggests
sustained improvement whereas a negative slope suggests reduced
performance under that constraint. Subjects in the spastic pare-
sis (Figure 5A) and spastic co-contraction (Figure 5B) groups
started with low or negative wrist extension, but showed sustained
improvements under certain auditory constraints. Subjects in the
minimal paresis group (Figure 5C), showed good wrist extension
at first, but did not improve much over the repeated trials.

The slope (unit change per trial) succinctly summarizes which
auditory conditions couple with bimanual training for sus-
tained improvement on the paretic side in the three groups
(Figure 6). In the spastic paresis group (Figure 6A), wrist exten-
sion improved most with the metronome beat (slope b= 0.86,
p= 0.03), even though it also increased wrist flexor activity
(b= 0.0021, p < 0.0001) and co-activation (b= 0.07, p= 0.004).

Self-selected music did not increase wrist extension, but margin-
ally increased flexor muscle activity (b= 0.0010, p= 0.04). Thus
rhythmic auditory constraints improved motor control in subjects
with spastic paresis who were at an earlier stage in motor recovery
post-stroke. In the spastic co-contraction group (Figure 6B), wrist
extension improved most without any auditory cueing (b= 1.83,
p < 0.0001), which increased wrist extensor muscle activation
(b= 0.004, p= 0.0002) and decreased co-activation across the
wrist joint (b=−0.1, p= 0.0006). In contrast, self-selected music
increased co-activation (b= 0.059, p= 0.04) in this group. Thus
practice without auditory constraints was most beneficial in sub-
jects with spastic co-contraction. In the minimal paresis group
(Figure 6C), there was no improvement in wrist extension across
the auditory conditions. The slope for wrist extension was most
negative with happy sounds (b=−0.86, p= 0.03), wrist exten-
sor activation decreased with the metronome beat (b=−0.0022,
p= 0.02), and wrist flexor activation increased without auditory
stimulation (b= 0.0012, p= 0.015).

DISCUSSION
Neurological and behavioral differences between patients and
within each patient over the course of post-stroke recovery can
influence how learning occurs during task-specific interactions.
Hence, it is necessary to reconcile the vast clinical and movement
heterogeneity in the post-stroke population to develop evidence-
based rehabilitation protocols directed toward more homogenous
groups of patients. Toward this end, the purpose of this study was
to: (1) stratify subjects with post-stroke hemiparesis according
to their stage of recovery using task-based kinematic measures,
and (2) to examine how various types of auditory constraints
interact with stage of recovery to facilitate learning of a wrist
extension task with the paretic limb. The subjects were strati-
fied into three distinct groups based on their speed and extent
of wrist extension. Differences in clinical metrics and task perfor-
mance led to the characterization of stage of recovery into three
groups: (1) the spastic paresis group showed weak extensor drive
with flexor spasticity and moderate co-activation of the flexors
and extensors, and higher level of motor impairment; (2) the
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FIGURE 5 |Trendlines of wrist extension performance variables over six repeated trials with the paretic hand under each condition for the three
groups: (A) spastic paresis (blue); (B) spastic co-contraction (red); (C) minimal paresis (green). The four conditions are represented by the different
patterned lines.

spastic co-contraction group showed higher flexor activation rel-
ative to the extensor and excessive co-activation of the flexors and
extensors, with moderate level of motor impairment; and (3) the
minimal paresis group showed restored extensor drive, low lev-
els of co-activation, and minimal level of motor impairment. The
effect of auditory constraints on rate of learning with the paretic
hand after bimanual training was measured by the slope of wrist
extension, and wrist extensor and flexor muscle activation pat-
terns. Auditory stimulation with a metronome beat increased the
rate of learning of wrist extension in subjects with spastic paresis,
even though it increased flexor activation and co-activation across
the flexor and extensor muscles. In contrast, bimanual training
without auditory stimulation produced the greatest improvement
in subjects with spastic co-contraction, increased wrist exten-
sor activation, and reduced co-activation. Auditory stimulation
in subjects with minimal paresis did not improve wrist exten-
sion, but performance was sensitive to the effects of auditory
stimulation in this group. These results suggest that altering audi-
tory task constraints during the same task can have different and
even opposite effects on motor performance and learning in indi-
viduals at different stages of recovery post-stroke. These results

cannot be explained by differences in proprioceptive sensation,
task difficulty, or fatigue across the groups or conditions. The
results further our understanding of possible mechanisms under-
lying progression of recovery from one stage to the next after
stroke.

STRATIFICATION OF SUBJECTS REFLECTS TEMPORAL STAGES IN
POST-STROKE RECOVERY
Subjects with stroke have traditionally been classified based on the
time elapsed since their stroke into acute (0–3 months), subacute
(3–6 months), and chronic (6 months onward) categories. Recov-
ery has been found to be most rapid in the acute and subacute
periods (49), but recently compiled evidence shows that it contin-
ues well into the chronic period (50), although the trajectory of
recovery may be punctuated by “plateaus” or temporary arrests in
recovery. All the subjects in our study were in the chronic phase
and may be considered to have plateaued. In longitudinal studies,
increases in Fugl-Meyer scores suggest progression toward recov-
ery. The Fugl-Meyer Scale is based on the observation of sequential
recovery of motor function by Twitchell and Brunnstrom (6, 9, 10).
It is the most widely used quantitative measure of motor recovery
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FIGURE 6 |The bars represent the mean slopes showing the effect of auditory stimulation on bimanual-to-unimanual learning for wrist extension
performance variables in the three groups: (A) spastic paresis (blue); (B) spastic co-contraction (red); (C) minimal paresis (green). Error bars represent
the standard error. **Represents differences between the three groups at p < 0.01, and *represents differences between the three groups at p < 0.05.

post-stroke (51, 52), and the scores have been shown to correlate
with the extent of corticospinal tract damage (53). Hence, one
can consider subjects with lower Fugl-Meyer scores as being more
impaired or at an earlier stage in the recovery process compared
to those with higher scores. In this study, subjects in the spastic
paresis group had the lowest average Fugl-Meyer scores (both total
and for the wrist and hand), which progressively increased in the
spastic co-contraction and minimal paresis groups.

Fugl-Meyer scores have also been used to stratify subjects into
groups (54, 55), but the cut-offs have been variable. Further-
more, the Fugl-Meyer Scale was constructed on the assumptions
that recovery proceeds in a proximal-to-distal fashion and from
synergistic-to-isolated movements (8, 51); however, both these
assumptions have been contested recently (56–58). To circumvent
the shortcomings of the Fugl-Meyer Scale in stratifying subjects,
we used task-based kinematic measures, that is, speed and extent
of wrist extension during the task, as direct, objective, and reliable

measures of movement ability to stratify subjects into groups. Note
that wrist movement amplitudes recorded during the task were
lower than those recorded with goniometry prior to the task as
would be expected due to the repetitive nature of the task.

We found that the spastic paresis group showed higher speed
and amplitude of movement than the spastic co-contraction
group, even though the Fugl-Meyer scores were higher in the
spastic co-contraction group. This may seem surprising and con-
tradictory to the notion of a linear improvement in movement
ability over the course of post-stroke recovery. However, Twitchell
observed that spasticity or tone continues to increase and reaches
a peak before it starts to decrease (6). In this study, we measured
spasticity clinically using the Modified Ashworth Scale, and by the
extent of co-activation across the flexors and extensors during the
task. We found that the spastic co-contraction group had equally
increased tone in both the flexors and extensors, and 10 times
greater co-activation on the paretic side than on the non-paretic
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side. While some degree of co-activation between the agonist and
antagonist muscles is normal during movement, excessive co-
activation leads to reduced movement speed and amplitude (59).
Therefore, it follows that a progression of recovery from spastic
paresis would lead to a dip in movement ability due to increases
in co-activation before it begins to improve again as seen across
our three groups. Our results suggest that the processes underlying
progression of recovery are non-linear, and predict that movement
kinematics and muscle activation patterns may worsen as recovery
progresses and then get better. These predictions should be con-
firmed by future longitudinal studies that measure kinematics and
EMG over time.

Furthermore, our results show that auditory constraints
increase movement amplitude but also increase muscle co-
activation in subjects with spastic paresis, suggesting that individ-
uals at earlier stages of motor recovery benefit from an excitatory
drive. In contrast, in subjects with spastic co-contraction, who
were at a later stage in recovery and showed excessive co-activation
from excitatory overdrive, auditory constraints were not helpful.
Instead, bimanual-to-unimanual training without auditory stim-
ulation led to reduced muscle co-activation and increased agonist
muscle activity, suggesting that an inhibitory drive may be more
beneficial to transition from spastic co-contraction. These find-
ings are discussed further in the sections below. Thus, we propose
that stratification of subjects based on relatively simple kinematic
parameters of speed and extent of movement into the groups: (1)
spastic paresis, (2) spastic co-contraction, and (3) minimal paresis
reflects temporal stages in the course of post-stroke recovery, and
transition from each of these stages may be triggered by specific
constraints imposed during training.

RHYTHMIC AUDITORY STIMULATION IMPROVES PERFORMANCE IN
INDIVIDUALS WITH SPASTIC PARESIS
At baseline, subjects with spastic paresis had both weakness and
spasticity, defined as velocity-dependent increase in muscle tone
at rest (60), as measured by the Modified Ashworth Scale (61). The
emergence of spasticity is thought to reflect re-organization of the
descending brainstem pathways leading to diffuse and synergistic
patterns of movement. Weakness predominates in the early stages
of spasticity (62), hence, while subjects in the spastic paresis group
could activate their wrist extensor muscle, their range of wrist
extension was limited. Spasticity was greater in the flexor muscles,
consistent with the emergence of a flexor synergy pattern (10).
Co-activation across the flexors and extensors was increased, but
not disabling, as it did not hinder wrist extension (63, 64). In this
group, auditory stimulation with a metronome beat in conjunc-
tion with bimanual training led to increased wrist extension, while
that with self-selected music and happy sounds did not. However,
both the metronome beat and self-selected music increased wrist
flexor activation.

Both the metronome beat and self-selected music have rhyth-
mic components; the rhythm was even and constant with a
metronome, but uneven and changing with music. Both even and
uneven rhythmic stimulation have been shown to increase mus-
cle co-activation (65). The underlying mechanism is thought to
be increased excitability of spinal motor neurons via the reticu-
lospinal pathway, with facilitation of the H-reflex response (66,

67). Using functional MRI and effective connectivity analyzes, it
has been shown that listening to music relative to scrambled musi-
cal sounds, activates a bilateral network of mesolimbic structures
including the nucleus accumbens and the ventral tegmental area
(38) leading to dopamine release and arousal. The ventral tegmen-
tal area in turn forms part of the midbrain reticular formation
where the reticulospinal tracts originate. Excitation of the reticu-
lar formation is known to increase spasticity via the reticulospinal
projections to the spinal cord (68). Thus, both the metronome beat
and stimulating music can increase muscle tone and co-activation
that may be helpful in earlier stages of recovery from flaccid paral-
ysis. Non-musical and non-rhythmic auditory stimulation, as in
our happy sounds condition, does not produce this effect. Fur-
thermore the type of music, whether stimulating or relaxing, can
modulate the extent of arousal and may produce a different effect
on muscle tone.

However, only auditory stimulation with a metronome beat
in conjunction with bimanual training led to increased uniman-
ual wrist extension, while that with self-selected music and happy
sounds did not. Even rhythms have been shown to reduce the vari-
ability in EMG responses, whereas uneven rhythms increase the
variability in healthy individuals (65). Patients with stroke show
disordered motor unit recruitment on EMG (69–72), but training
to even metronome beats has been shown to decrease EMG vari-
ability (73) and improve motor outcomes post-stroke (23, 25, 27,
73–75). More efficient motor unit recruitment and sensorimotor
synchronization (28) to the even metronome beat can explain the
increased wrist extension without a notable increase in extensor
activation as seen in our subjects with spastic paresis. In con-
trast, the variable rhythms in music and subtle differences in the
type of music chosen, the tempo of the song and its match to
the individual’s physical abilities may have influenced attention to
the rhythmic component of music leading to a reduced peripheral
synchronizing effect on wrist extension.

In healthy individuals, sensorimotor coupling to temporally
structured auditory input has been shown to recruit a striato-
thalamo-cortical-system involving basal ganglia, thalamus, pre-
motor cortex (PMC), supplementary motor area (SMA), and dor-
solateral prefrontal cortex [see Ref. (76) for review]. Simultaneous
bimanual rhythmic movements involve interhemispheric coupling
primarily in the PMC, posterior parietal cortex, and cerebellum
(77), and switching from simultaneous bimanual synchronized
movements to unimanual movements leads to a higher degree
of interhemispheric connectivity involving the PMC, SMA, and
sensorimotor areas (78). Furthermore, studying acallosal patients
has shown that temporal coupling during rhythmic movements
arises in large part from interactions between the two hemispheres
(79). Taken together with these data, our results suggest that
bimanual-to-unimanual movements synchronized to rhythmic
auditory stimulation excites a bilateral distributed sensorimotor
network, which may facilitate the progression of motor recovery
in individuals with spastic paresis.

AUDITORY STIMULATION DOES NOT IMPROVE INHIBITORY CONTROL
IN INDIVIDUALS WITH SPASTIC CO-CONTRACTION
When the threshold for reflex activity continues to reduce due to
progressive re-organization of the supraspinal descending drive
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to the spinal cord, peripheral structures of the muscle, muscle
spindles, and fascia are further shortened and spasticity evolves
into stretch-sensitive forms such as spastic co-contraction (63).
Spastic co-contraction refers to inappropriate antagonist recruit-
ment triggered by volitional command (64). Clinically, spastic
co-contraction opposes voluntary movement and contributes to
impairment in active function, which was seen clearly in our sub-
jects in this group where attempted wrist extension produced para-
doxical wrist flexion. While some degree of co-activation between
the agonist and antagonist muscles is normal during movement
and necessary for joint stability, better movement accuracy and
energy efficiency during functional activities, it has been shown
to decrease with skill training (80–82). However, its persistence
post-stroke signals disrupted reciprocal inhibition of antagonist
muscles (83). Sensory feedback from muscle afferents mediates
reciprocal inhibition through both spinal and cortical mechanisms
(84, 85). Cortical suppression of the antagonist muscle is initiated
centrally during preparation of agonist muscle contraction (86,87)
and the degree of suppression is proportional to the amplitude of
stretch of the muscle (88).

Bilateral synchronous mirror symmetric flexion-extension
movements have been shown to modulate cortical inhibition in
neurologically intact individuals (89) and subjects with stroke
(30). Somatosensory and visual information from each side of
the body is processed bilaterally (90–92), and interlimb coordi-
nation is mediated by motor representations in the parietal and
premotor areas shared by both limbs (93). Transcallosal path-
ways between homotopic regions of the two hemispheres (94–96)
may also facilitate transmission of accurate sensory information
from the intact hemisphere (33). Passive wrist extension on the
affected side (which was facilitated by linked movements with
the unaffected hand in this study) in severely impaired patients
has been shown to produce fMRI changes in contralesional sec-
ondary sensorimotor areas in the ventral premotor and parietal
cortices (97), which play a crucial role in re-organization of motor
output. Thus, in patients with spastic co-contraction, bimanual
training without auditory stimulation may restore sensory feed-
back, and reinstate reciprocal control in the paretic hand, aiding
progression to the next stage of post-stroke recovery. In contrast,
self-selected music may have continued to potentiate the stretch
reflex through facilitation of descending spinal pathways in this
group as discussed above.

INDIVIDUALS WITH MINIMAL PARESIS SHOW VARIED RESPONSES TO
AUDITORY STIMULATION
In subjects with minimal paresis, there was little change in wrist
extension across the auditory conditions perhaps due to a ceiling
effect. Later stages of recovery have been shown to be medi-
ated by re-organization in the ipsilesional cortex (16–18). Thus,
it is not surprising that subjects in this group, who were far-
ther along in their recovery, did not benefit substantially from
either bimanual-to-unimanual training or auditory stimulation
at the wrist. These strategies would perhaps still be applicable
for training of hand and finger control. Subjects with minimal
paresis no longer had significant spasticity or co-contraction, but
were clearly still impaired compared to the unaffected side. The
challenge in these subjects is fine-tuning of muscular control

and restoration of dexterity, which may require different types
of task constraint.

CONCLUSION
This was a single-session study where bimanual-to-unimanual
training of the paretic side was focused on improvement in per-
formance and learning of a wrist extension task, as restoration
of control at the wrist is especially challenging after stroke and
necessary for hand function. The main purpose and novelty of
this study is to show that auditory stimulation interacts with
stage of recovery post-stroke to influence motor learning on a
bimanual-to-unimanual wrist extension task. Several important
conclusions may be drawn from this study. First, subjects in the
chronic post-stroke period can be stratified based on simple move-
ment kinematics to reflect their temporal stage of recovery, which
may not be reflected by the time since stroke, and which in turn
can inform the selection of strategies to drive subsequent progres-
sion of recovery post-stroke. Our data predict that during natural
progression of post-stroke recovery, there could be a dip in move-
ment ability due to increased co-contraction and then an increase
in movement ability when co-contraction is inhibited. Second, our
results show how different auditory constraints influence motor
performance at various stages of recovery, perhaps through exci-
tation and inhibition of distinct neural substrates. The effects of
auditory constraints on muscle activation patterns provide insight
into the mechanisms of transition across impairment levels, con-
tributing to the understanding of how re-organization of CNS
pathways may occur. Third, bimanual-to-unimanual learning can
be a useful model to probe the rate of learning during single-
session studies, providing an alternative to or a stratification tool
prior to lengthy and expensive randomized control trials. We
have recently found that long-term training locks-in the transient
improvement seen during single-session bimanual-to-unimanual
training (Preeti Raghavan, unpublished data). Together, the results
lay the foundation for personalized protocols for post-stroke reha-
bilitation to advance the progression of recovery from one stage
to the next, and hold significant implications for further research
and clinical practice. Future work may confirm the effect of audi-
tory constraints seen in our study on longitudinal progression of
motor recovery in patients at different stages of recovery.
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