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Editorial on the Research Topic
Mobile and wearable systems for health monitoring
Over the past decade, there has been a growing interest in using mobile and wearable systems

for healthcare applications. To contribute to this field, our Research Topic on Mobile and

Wearable Systems for Health Monitoring has collected a variety of contributions, ranging

from original research to reviews and perspectives, all focused on exploring new or

existing methods, protocols, and models for health monitoring. These contributions cover

various topics, including machine learning algorithms, data quality, and using

smartphones and wearable devices to assess COVID and mental health. Additionally, our

initiative encouraged multidisciplinary approaches to explore innovative health

applications, resulting in exciting studies that examine new wearable and mobile devices

in a hospital setting. Our Research Topic aims to provide insights into the potential of

mobile and wearable systems for healthcare applications and inspire further research in

this field.

The COVID-19 pandemic emphasized the importance of leveraging digital

infrastructure for remote patient monitoring, which could be facilitated through the use

of wearable sensors. The review article by Seshadri et al. showed that by using predictive

platforms, these devices could potentially aid in disease detection and monitoring on an

individual and population level. Public health officials and researchers could also use

anonymous data to track and mitigate the spread of the virus. Their manuscript

highlights the potential of clinically relevant physiological metrics from commercial

devices in monitoring the health, stability, and recovery of COVID-19+ individuals and

front-line workers. This paper helps encourage front-line workers and engineers to

develop digital health platforms for monitoring and managing the pandemic.

It is challenging to evaluate the reliability of a wearable device in healthcare. The work by

Santos et al. discusses how a wearable ambulatory monitoring system was optimized to

monitor COVID-19 patients in isolation wards in the United Kingdom. The system used

a chest patch and pulse oximeter to estimate and transmit continuous vital sign data from

patients to remote nurse bays, minimizing the risk of infection for nursing staff. The

system operated through a secure web-based architecture and fault-tolerant software

strategies, allowing for remote monitoring of patients. The plan was used for almost half
01 frontiersin.org5
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of the patients in the isolation ward during the peak of hospital

admissions in the local area and was found to be effective in

monitoring patients. An updated version of the system has also

been used in subsequent waves of the pandemic in the UK. The

implementation of wearable ambulatory monitoring systems

represents a crucial step towards a safer and more effective way

to monitor COVID-19 patients in isolation wards, significantly

minimizing the risk of infection for nursing staff and opening a

promising path for the future of healthcare.

As the use of wearable sensors grows, researchers have

developed a range of wearable devices that collect data on our

daily activities, such as movement, sleep duration, heart rate, skin

temperature, and more, to monitor and analyze our mental

health. The data collected by these devices are translated into

patterns that can indicate symptoms of mental health disorders,

such as depression, anxiety, and stress. Machine learning helps

identify behavioral markers and the relationship between the raw

sensor data and mental health conditions. The review by

Sheikh et al. discusses the available smartphone-based, wearable,

and environmental sensors that can be used to detect mental

health conditions and provide a helpful tool for managing and

treating them.

Cardiovascular disease, which is the leading cause of mortality

worldwide, remains a popular field of research for new wearable

sensor algorithms. Electrocardiogram (ECG) signals continue to

be used throughout medicine and researchers have been

enhancing the accuracy of automated heart disease diagnosis by

exploring mathematical feature transformations for ECG signal

segments. Liang et al.’s team tested six different mathematical

transformation methods using 10-second ECG segments and

found that applying the reciprocal transformation resulted in

consistently better classification performance for normal and

abnormal heartbeats. The cubic transformation was the second-

best in terms of heartbeat detection accuracy. Surprisingly, the

commonly used logarithmic transformation did not perform as

well as the reciprocal or cubic transformations. By using the

optimal transformation method, the reciprocal transformation,

doctors can improve the accuracy of detecting normal and

abnormal heartbeats by 35.6%. The researchers concluded that

adding a simple data transformation step, such as the reciprocal

or cubic, to the extracted features can significantly enhance

current automated heartbeat classification, leading to better and

faster diagnoses of heart diseases.

In addition to advances in algorithms, new data collection

methods have also begun to emerge for cardiovascular disease,

such as the regular monitoring of blood pressure for detecting

hypertension and reducing the risk of cardiovascular disease.

Since the traditional cuff-based method can be inconvenient and

discourage regular monitoring. Smartphone sensors, such as

video cameras, can detect arterial pulsations and be used to

assess cardiovascular health. Researchers have developed

advanced image processing and machine learning techniques to

predict blood pressure using smartphones or video cameras. The

review by Steinman et al. discusses the challenges associated with

using smartphones in homes and clinics, but further testing is

necessary under different conditions. This research shows that
Frontiers in Digital Health 026
smartphones and video cameras have the potential to measure

multiple cardiovascular metrics beyond blood pressure, which

could significantly reduce the risk of cardiovascular disease.

The traditional functions of wearable sensors to measure

physical activity and sleep (actigraphy) has now been extended to

mobile and portable platforms that can be used in the home

environment. Despite the recognized importance of sleep and

circadian rhythm, conventional polysomnography (PSG)

monitoring requires specialized equipment, making it unrealistic

to assess the sleep stage in the home environment. The use of

camera-based methods for sleep monitoring has increased in

recent years; however, the published studies have mainly focused

on adults. Kamon et al. developed an infrared camera-based

monitoring system for children between 0‒6 years old. Extremely

randomized decision trees (“Extra Trees”), an ensemble machine

learning algorithm, were used to estimate the sleep stages from

various information extracted from body movements.

Comparable performance was achieved compared to simple PSG

scoring, suggesting that their system could be potentially used as

a non-contact sleep monitoring system for children at home.

Photoplethysmography (PPG) continues to be popular

technique widely used in Digital and Wearable Health

monitoring. However, there has yet to be a published consensus

on signal quality expectations, especially for morphological PPG

pulse analysis. Huthart et al. conducted a signal quality

expectation survey with fellow international researchers in skin

contact PPG measurements. They determined a consensus

regarding the minimum recording length, the minimum number

of undistorted pulses required, and the threshold proportion of

noisy beats needed for the recording rejection. Their study

provided initial recommendations to support the need to move

toward improved standardization in measurement protocol and

morphological pulse wave analysis and the need to gather

repeatable and meaningful PPG data for implementing PPG

sensing technology in Digital and Wearable Health devices.

In critical care settings, patients require continuous

monitoring, but current methods do not capture important

functional and behavioral indices. Advances in non-invasive

sensing technology and deep learning techniques can transform

patient monitoring by enabling continuous and granular

monitoring of critical care measures. The paper by Davoudi et al.

highlights current approaches to pervasive sensing in acute care,

identifies limitations and opportunities, and emphasizes the

potential of pervasive sensing technology to improve patient

outcomes by enabling real-time adaptation of pain medications,

personalizing analgesia choice, and improving assessments of

delirium and mobility.

As another example of home-based health monitoring,

Laidig et al. proposed a set of algorithms that use two foot-worn

IMUs to accurately determine spatiotemporal gait parameters

essential for clinical gait assessment without requiring

magnetometers or precise sensor mounting. The proposed

methods offer a calibration-free and unsupervised approach to

gait assessment in daily-life environments. The algorithms are

validated on a broad dataset of healthy subjects and orthopedic

and neurological patients walking on a treadmill, showing a
frontiersin.org
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strong correlation and high accuracy for walking speeds and

pathologies.

Folkvord et al. described a research study investigating the

effectiveness of self-tracking apps on psychological outcomes

related to self-empowerment and better-informed lifestyle

decision-making. The study will consist of three parts: a

systematic review of experimental evidence, a longitudinal field

experiment comparing exercise programs with and without the

aid of the self-tracking app Strava, and interviews with a subset

of participants to gather qualitative data. The authors hope this

study will provide a better understanding of the effects of self-

tracking apps on psychological outcomes and inform the

development of more effective health and activity monitoring tools.

A study by Kaye et al. examined changes in Chronic obstructive

pulmonary disease (COPD) patients’ COPD Assessment Test

(CAT) scores and short-acting beta-agonists (SABA) inhaler use

over six months in a digital health program that provided

electronic medication monitors (EMMs) and a smartphone app.

The results showed that CAT scores improved by a mean of −0.9
points, and SABA use decreased by −0.6 puffs per day, with

more remarkable improvement observed in patients with a

higher disease burden. These findings suggest that passively

collected data from EMMs can be used to monitor disease

burden and treatment outcomes in COPD patients.

In another application of mobile technology to pulmonary

medicine, an article by Dave and Gupta discussed machine

learning (ML) in contact tracing apps during the COVID-19

pandemic. ML can use data from these apps to forecast virus

spread and identify vulnerable groups. Still, it’s essential to

ensure the accuracy, reliability, and lack of biases in the dataset

to make reliable predictions. The article presents two

requirements to meet international data quality standards for

ML. It identifies where these requirements can be met, given

varying contact tracing apps and smartphone usage in different

countries. Lastly, this approach’s advantages, limitations, and

ethical considerations are discussed.

As we see the use of wearable and digital technologies being

applied to the treatment and monitoring of mental health

disorders—particularly for outpatient care—we are starting to see

more research exploring how wearable data can be used to

inform mental health treatment. A study by Abbas et al. aimed

to examine whether machine learning-based visual and auditory

digital markers can quantify response to antidepressant treatment

(ADT) with selective serotonin reuptake inhibitors (SSRIs) and

serotonin–norepinephrine uptake inhibitors (SNRIs). The

researchers used automated smartphone tasks to measure facial,
Frontiers in Digital Health 037
vocal, and head movement characteristics across four weeks of

treatment for MDD patients. Results show that digital markers

associated with MDD demonstrate validity as measures of

treatment response, with significant changes in the MADRS and

multiple digital markers, including facial expressivity, head

movement, and amount of speech.

In conclusion, the recent advancements in mobile and wearable

devices have opened tremendous opportunities to improve

practical health applications and enable more accurate clinical

decision-making. These technologies have greatly enhanced

clinical capabilities, from gait assessment to blood pressure

monitoring and COVID signs detection. Applying machine

learning and statistical models to different health applications has

shown promising results. The progress in mobile and wearable

devices highlights the central role that model development will

play in shaping the future of healthcare. This multidisciplinary

research topic covers a range of areas, including machine

learning, signal quality, patient reporting, mobile contact tracing,

virtual assessment, and computational approaches for health

monitoring.
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The COVID-19 pandemic has brought into sharp focus the need to harness and leverage

our digital infrastructure for remote patient monitoring. As current viral tests and vaccines

are slow to emerge, we see a need for more robust disease detection and monitoring

of individual and population health, which could be aided by wearable sensors. While

the utility of this technology has been used to correlate physiological metrics to daily

living and human performance, the translation of such technology toward predicting the

incidence of COVID-19 remains a necessity. When used in conjunction with predictive

platforms, users of wearable devices could be alerted when changes in their metrics

match those associated with COVID-19. Anonymous data localized to regions such

as neighborhoods or zip codes could provide public health officials and researchers a

valuable tool to track and mitigate the spread of the virus, particularly during a second

wave. Identifiable data, for example remotemonitoring of cohorts (family, businesses, and

facilities) associatedwith individuals diagnosedwith COVID-19, can provide valuable data

such as acceleration of transmission and symptom onset. This manuscript describes

clinically relevant physiological metrics which can be measured from commercial devices

today and highlights their role in tracking the health, stability, and recovery of COVID-19+

individuals and front-line workers. Our goal disseminating from this paper is to initiate a

call to action among front-line workers and engineers toward developing digital health

platforms for monitoring and managing this pandemic.

Keywords: wearable sensors, COVID-19, pandemic, predictive analytics, remote patient monitoring

INTRODUCTION

Overview of COVID-19
The Coronavirus Disease 2019 (COVID-19), first recognized in December 2019 in Wuhan,
China, is the latest respiratory disease pandemic currently plaguing global health. It has been
shown to be caused by a novel coronavirus, severe acute respiratory syndrome coronavirus-
2 (SARS-CoV-2), that is structurally related to the virus that causes SARS. Li et al.
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defined a suspected COVID-19 case as pneumonia that matched
the following four criteria: (1) fever, with or without a recorded
temperature; (2) radiographic evidence of pneumonia; (3) low
or normal white-cell count or low lymphocyte count; and
(4) no reduction in symptoms after antimicrobial treatment
for 3 days (1). As its name suggests, the leading cause of
fatality from COVID-19 is hypoxic respiratory failure (2–4).
COVID-19 has posed significant challenges for the medical and
civilian communities analogous to what was experienced in two
preceding instances of the SARS-CoV virus outbreak in 2002
and 2003 and the Middle East Respiratory Syndrome (MERS)
in 2012 (1, 5, 6). Importantly, Li et al. studied 425 patients with
confirmed COVID-19 in Wuhan and estimated that the basic
reproduction number (R0) for SARS-CoV-2, at the time, to be
2.2 (1). This suggests that each infected person, on average, can
spread the infection to an average of 2.2 other people. The virus
will likely continue to spread unless this number falls below 1.0
(5). Moreover, timely and effective containment strategies have
been a cornerstone of managing the COVID-19 outbreak and
reducing viral transmission.

Return to Daily Living Post-COVID-19:
From Testing to Digital Health
Implementation
Most plans for recovery and the return to “normal,” every-
day life are centered on testing—namely determining those
who currently have an infection and those who have developed
antibodies against the virus, indicating a possible recovery. With
any test, theremay be false positive or false negative results (7). Of
note, an antibody test, while useful in quantifying the number of
cases that have occurred in a population, is typically not suitable
for early disease detection and its association with immunity
to the virus has been put into question (8). Additionally, there
is considerable cross-reactivity between SARS-CoV-2 and four
other coronaviruses, including those associated with the common
cold (9). Polymerase chain reaction (PCR)-based tests are highly
sensitive and specific in the laboratory setting; however, high
costs and limited availability make these tests difficult to suit
population health needs. In the face of a pandemic, time is of
the essence and researchers must think of new ways to improve
disease diagnosis and monitoring of disease progression.

With new tests in clinical trials, we believe there is an
opportunity to leverage advances in remote patient monitoring
technology to assist in early disease detection and monitoring
by analyzing systemic infection precursors (Figure 1). Wearable
sensor data may enable providers and patients to be alerted of a
potential SARS-CoV-2 infection before symptoms become severe
(Figure 1A). Importantly, a recent study showed that individuals
with pre-existing hypertension, heart disease, or diabetes, which
makes up nearly half of the United States population, had
higher rates of intensive care hospitalization and death when
diagnosed with COVID-19 (12). Additionally, data suggests that
this vulnerable patient population also typically underreport their
symptoms (13–15), making remote detection of disease through
objective measures a possible way to improve timely escalation

of care. On a larger scale, hospitals could use localized, de-
identified data to track the spread and severity of the outbreak
without violation of users’ privacy to provide population-level
care (Figures 1B,C). This becomes more relevant when one
considers that the asymptomatic carrier rate is estimated to be
between 25 and 50% of the entire United States population (16,
17). With such a large population potentially carrying the virus,
digital health technologies that measure physiologic parameters
can be leveraged to help identify population clusters to identify
an emerging COVID-19 outbreak. Harnessing this information is
feasible as ∼16% of the United States population (∼52.8 million
people) currently have a smartwatch (18). Such technology
may enable a more precise approach for subsequent more
advanced testing (e.g., physiological testing), contact tracing,
and quarantining. To further incentivize the adoption of such
technologies, we envision companies that produce wearables will
continue to work with insurance providers and other governing
bodies to make these devices more accessible to the public (13).
Most recently, in Germany, the Robert Koch Institute (equivalent
of the United States Center for Disease Control and Prevention,
CDC) supported the adoption of a smartphone app (Corona-
Datenspende) which tracked temperature, pulse, and sleep from
a minimum of 10,000 volunteers wearing smartwatches or
fitness trackers with the aim of understanding how much of
the population is clinically symptomatic from an influenza-like
illness (ILI) (14). To date, more than 160,000 people have already
enrolled (15). Results from the app will be displayed on an
interactive online map, enabling both health authorities and the
general public to better assess the prevalence and community
distributions of infections (14). In the United States, a study
published in early 2020 from the Scripps Research Institute
demonstrated the ability to predict “hot spots” for influenza
utilizing resting heart rate and sleep data from a smartwatch
or fitness band (16). The team analyzed data from more than
47,000 consistent Fitbit users in five states (California, Texas,
New York, Illinois, and Pennsylvania) over a 2-years period and
found that when a cluster of individuals in one-region presented
with increased heart rate, a subsequent rise in ILIs was detected.
These models to map the prevalence of ILIs have correlated
well with CDC data in the range of 0.84–0.9 (16). These studies
highlight the clinical applications of wearable sensor technology
and in the case of a pandemic, where “flattening the curve” is
critical to limiting disease morbidity and mortality, such tools
have the potential to improve health at the population level.

MEASUREMENT OF PHYSIOLOGICAL
METRICS FROM WEARABLE SENSORS
FOR COVID-19 MONITORING

COVID-19, along with other viral illnesses, is associated with
several physiological changes that can be monitored using
wearable sensors (Table 1). Many metrics derived from heart
rhythm such as heart rate (HR), heart rate variability (HRV),
resting heart rate (RHR), and respiration rate (RR) could serve
as potential markers of COVID-19 infection and are already
measured by wearable devices such as the AppleWatch,WHOOP
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FIGURE 1 | Correlating clinical symptoms to the immune response of COVID-19 and when the implementation of wearable technology fits into the virus timeline.

(A) Correlating symptoms to the immunological pathway of COVID-19 described in this figure. Wearable sensors can be used to detect changes in physiological

metrics before a formal diagnosis. (B) Image from the WHOOP application correlating a decrease in recovery with a diagnosis by an individual diagnosed with

COVID-19 on Wednesday the 18th (red bar). (C) Schematic detailing an example of an iPhone application collecting physiological data from a wearable sensor and

translating those metrics to alert an individual on his/her overall health status. Figure reproduced and modified from Azuravesta Design (10), (A) and Team (11), (B).

Strap, Fitbit, Zephyr BioHarness, or VivaLNK Vital Scout
(Table 2). Additionally, changes in electrocardiogram (ECG)
waveforms could contain information indicative of an infection.
Many wearables report more complex metrics such as stress,
recovery, activity, and sleep, which are typically calculated using
a combination of cardiac and accelerometer-derived metrics.
Due to the integration of multiple measurements, these metrics
should exhibit an aggregate higher signal to noise ratio (SNR)
than individual raw signals alone and, therefore, have higher
predictive value. Core body temperature and arterial oxygen
saturation (SpO2) are also of clinical value due to the high
prevalence of fever and respiratory symptoms in COVID-19;
however, such measurements are not routinely measured by the
commercial wearables today. Furthermore, as patient-centered
quality metrics are considered, we hypothesize that wearable
devices, once validated via rigorous longitudinal randomized
controlled trials, can decrease invasive metrics derived from
arterial blood gas procedures (intended to detect how well lungs
move oxygen into the blood) or from obtaining cardiac troponins
(indicative of myocardial injury) (17).

The upcoming sub-sections in this paper will focus on
the current role wearable sensors in providing remote patient
monitoring for COVID-19. Our goal in each of these sub-
sections is to (1) summarize the clinical relevance of each
physiological metric as it relates to COVID-19, (2) provide a
brief technical overview of each parameter detection modality,
and (3) provide a brief overview of patient implications as it

relates to quality of care. Discussion of current clinical trials
utilizing commercially available, off-the-shelf (COTS) wearable
devices pertinent sensors to COVID-19 is included to highlight
the current work in this domain (Table 3).

Cardiovascular Monitoring
There are several metrics related to cardiac function such as
HR, HRV, and heart rhythm wherein changes in these metrics
may be indicative of COVID-19 infection. Viral illness increases
physiological stress on the body which typically manifests as
an overall increase in HR. In many cases of viral infection, an
elevated HR can be detected hours or days before the onset of
symptoms (20). Elevation in HR is also a typical physiological
response during fever as the body begins to mount a defense
to infection (21). An increase in RHR can be indicative of
systemic illness, and thus RHR data, on a population scale,
has been proven to accurately model the outbreak of influenza
(as previously described) (16). HRV, measured as the average
time difference between heart beats, provides insight into overall
health, performance, and stress of an individual. High HRV is
associated with fitness and health (22). A significant decrease in
HRV indicates inadequate recovery and is indicative of increased
physiological stress (23). While there is a lack of clinical evidence
on the predictive value of HRV for viral illness detection, there
is a large amount of self-reported and anecdotal evidence which
leads us to postulate that HRV trends can be used to predict the
onset of illness (23). Researchers at Scripps recently launched
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TABLE 1 | Sensor modalities for monitoring physiological metrics relevant to COVID-19.

HR Heart rhythm HRV RHR RR SpO2 Skin temp Core temp* Sleep

ECG x x x x x x

PPG x x x x x x x

Accelerometer x x

Temperature x x

HR, Heart Rate; HRV, Heart rate variability; RHR, resting heart rate; RR, respiration rate, SpO2, Blood Oxygen Saturation; ECG, Electrocardiogram; PPG, photoplethysmography;

Temp, Temperature.

*Core Temperature is measured based on HR and skin temperature and cannot be measured as a stand-alone metric.

TABLE 2 | Sampling of commercial wearable sensors used to monitor physiological parameters necessary for COVID-19 detection.

Company and device Form factor CT ST SpO2 RR HR HRV EDA Other Price ($) FDA

AIO Sleeve 2.0 Arm sleeve y y y Act, ECG $169 n

Apple Watch Series 4/5 Wrist monitor y y y Act, ECG $399 y

Beddit Contactless In-bed

sensor

y y Slp $150 n

Beurer SE80 Contactless In-bed

sensor

y y Slp $500 n

Biobeat Wrist monitor, Chest

Patch

y y y y y BP, ECG NA y

BioIntellisense Epidermal patch y y y Coughing, sneezing, freq NA y

Biostrap Wrist monitor y y y y Slp $175-320 n

Biovotion Everion Armband y y y y y Slp NA n

Cosinuss Two In-ear y y y y Act $330 n

Empatica Embrace Wrist monitor y y y Act, EDA NA y

Equivital LifeMonitor Chest belt y y y y y y GSR NA y

Fitbit Charge 4 Wrist monitor y y Act, Slp $150 n

Fitbit Ionic Wrist monitor y y Act, Slp $250 n

Fitbit Versa 2 Wrist monitor y y Act, Slp $200 n

Garmin Fenix 5 Wrist monitor y y Act, Slp $500 n

Garmin Forerunner 945 Wrist monitor y y y Act, Slp $550 n

Garmin Venu Wrist monitor y y y Act, Slp $300 n

Garmin Vivoactive 4 Wrist monitor y y y Act, Slp $270 n

Hexoskin Compression shirt y y y y Act, Slp $579 n

Kinsa Smart thermometer y $50 n

Oura Ring y y y y Act, Slp $299 n

Spire Health Tag Tag attached to

clothing

y y Act, Slp $399 n

VivaLNK Fever Scout Epidermal patch y $60 y

VivaLNK Vital Scout Epidermal patch y y y Act $150 y

WHOOP Wrist monitor y y y y Recovery, Slp $30 n

Act, activity; BP, blood pressure; CT, core temperature; EDA, Early Detection Algorithm for viral illness or wellness prediction; ECG, electrocardiogram; EDA, electrodermal activity; Freq,

Frequency; GSR, galvanic skin response; HR, heart rate; HRV, heart rate variability; NA, price not available online; RR, respiratory rate; Slp, sleep measures; SpO2, oxygen saturation;

ST, skin temperature. Table, Data used for table gathered from news reports, social media sites, and from Google Docs (19).

the Digital Engagement and Tracking for Early Control and
Treatment (DETECT) study which seeks to correlate changes
in HR to the incidence of acquiring a viral infection such as
COVID-19 (24, 25). While other viral illnesses are being studied
as well, the primary objective of this study is to assess HR,
activity, and sleep data in 100,000 individuals to identify ILIs via
the CareEvolution’s myDataHelps application (24). The study,
which commenced this past March, will utilize the Apple Watch,

Garmin watch, and Fitbit, which are connected to Apple Health,
Amazefit, or Google Fit platforms, respectively. Another study
by the team at Scripps Research Institute, in collaboration with
Stanford University and Fitbit, is assessing whether changes in
HR, skin temperature, and SpO2 can be used to predict the onset
of COVID-19 before symptoms even start (26). These studies
build upon the work published earlier this year by Scripps in
correlating changes in HR to influenza (16).
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TABLE 3 | Current clinical trials utilizing commercial wearable sensor devices to diagnose and monitor COVID-19.

Study name Institution(s)/companies Data source(s) Focus of study Clinical trials

registry/ref

N/A Central Queensland Univ;

Cleveland Clinic

WHOOP Strap 3.0 Correlating changes in respiration rate to predicting

COVID-19

N/A

COVIDENTIFY Duke AWs, Fitbits, Garmin Predicting and assessing severity of contracting

Covid-19 or influenza from wearable sensors and

wellness surveys

N/A

DETECT study Scripps Research Institute

Stanford Univ

Fitbit, Apple Watch,

Garmin, Amazefit, OURA,

Beddit, etc

Determining whether changes in heart rate, activity,

sleep, or other metrics might be an early indicator for

COVID-19 or other viral infections

NCT04336020

COVID-19 detection

study

Stanford Univ Fitbit, Garmin, Apple

Watch, and Oura

Enrolling subjects who are at higher risk of exposure. N/A

TeamPredict University California San

Francisco

Oura Ring Correlating changes in skin temperature and heart

rate to COVID-19

N/A

Kinsa N/A Smart Thermometer Correlating changes in skin temperature and social

distancing guidelines to COVID-19

N/A

Table is put together based on press releases found on social media platforms and in the news. Aws, Apple Watch; Univ, University; Ref, References; N/A, Not applicable.

Electrocardiogram (ECG) and photoplethysmography (PPG)
are widely used in wearable technology to monitor cardiac
function (27–30). ECG is a measurement of the electrical
activity in the heart, and PPG uses light (at specific nanometer
wavelengths) to measure changes in blood volume (27, 31).
While ECG sensors are typically implemented in the form
of an epidermal patch that adheres to the stratum corneum
(e.g., Zio Patch) and/or via leads to a benchtop instrument,
the commoditization of wrist-worn monitors with predictive
algorithms has enabled the measurement of heart rhythms
from wearable devices such as the Apple Watch 4 and 5,
although this measurement is not continuous (32, 33). On
the other hand, PPG can be measured continuously in many
locations on the body including the wrist, fingertips, earlobes,
torso, and more (31). In this sense, PPG is more versatile
and can be implemented in more form factors including
watches and earbuds (27). While both are viable to monitor the
metrics discussed above, ECG is a more direct measurement
of heart activity which could potentially provide more insight
toward the onset of COVID-19. There is growing evidence
suggesting that COVID-19 is burdened by a higher risk of
arrhythmic events (34). A study by Driggin et al. found
that in 138 hospitalized COVID-19 patients, arrhythmias such
as ventricular tachycardia/fibrillation represented the leading
complication (19.6%) after acute respiratory distress syndrome,
particularly in those admitted to intensive care unit where the
prevalence rose to 44.4% (35). Future work toward moving
this field forward, leveraging data analytics and wearable
sensors, could involve detecting such arrhythmias in patients
with COVID-19 in a real-time manner toward improving
patient outcomes.

Cardiovascular Strain, Sleep, and Activity
Levels
Many currently available wearable devices provide users with
calculations of advanced metrics such as stress or strain,
sleep, activity, and recovery. These metrics typically rely on

a combination of measurements and are calculated daily. The
combined measurements and long measurement time for these
metrics should yield a higher SNR and thus will likely be
better predictors of COVID-19 infection than any single raw
metric. Cardiovascular stress or strain (the terms are used
interchangeably between analytical platforms) is expressed as a
dimensionless unit derived from a combination of HR and HRV
data measured over a given day. For the purposes of this paper,
we will use the word strain. Devices such as WHOOP measure
cardiovascular strain based on time spent in HR zones. In the
context of athletic performance, a field where cardiovascular
strain has been extensively studied to modulate the internal
workloads of athletes (27–30, 36), an individual undergoing a
strength-based workout with minimal reps and periods of rest
will have a lower strain if their HR is not elevated for extended
periods of time (27, 36, 37). Increasing weight and adding
new strength exercises will cause muscle soreness and muscle
fatigue. This microtrauma from the eccentric lengthening of the
muscle fibers will cause a decrease in HRV especially in the
morning. Fatigued muscles will result in higher strain as the
day progresses because the body is working harder to recover
due to the disturbances in the individuals’ homeostatic state.
Along the same lines, cardiovascular strain is also expected to
increase when fighting a viral infection. A viral infection such as
influenza or COVID-19 does this by increasing the stress on the
cardiovascular system, indicated by increases in RHR, HR, blood

pressure, and an intrinsic stress hormone called catecholamines
(38). Sleep is usually detected using a combination of HR patterns

and accelerometer data. Sleep quality is assessed primarily
through the analysis of HR, RHR, and HRV, but accelerometry

may be used to determine disturbances. Elevated sleep duration
has been shown to be predictive of ILI. An increase in sleep
duration paired with a decrease in sleep quality would be
expected to occur in COVID-19 cases. Activity metrics are
intended to report the amount of physical exertion for a day or
a given timeframe. Activity scores are typically based on periods
of elevated HR and accelerometry. While changes in activity
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data may not be particularly useful for individual treatment or
diagnosis, general trends in activity data for a large population
could likely be used for pandemic modeling or to study the health
effects of social distancing and isolation. Martin et al. studied
the relationship between exercise and respiratory track viral
infections in small animal models and concluded that moderate
intensity exercise reduced inflammation and improved the
immune response to respiratory viral infections (39). The use of
wearable sensors toward monitoring activity levels could provide
an objectivemeans of staying physically active and healthy during
the COVID-19 pandemic. Recovery assessments are based on
sleep, sleep quality, and HRV. There is a growing amount of
evidence showing a clear downward trend in recovery scores in
the days leading up to the onset of COVID-19 symptoms. These
complex metrics may prove to be reliable indicators of COVID-
19, but it is important to consider that each wearable device
uses different algorithms and measurements for the calculation
of these scores, which severely limits the population on which
analysis of these metrics can be performed.

Respiration Monitoring
Respiration rate (RR) is of critical interest in COVID-19 cases due
to the severe effects the virus can have on the lungs. COVID-19
presents as a lower-respiratory tract infection inmost cases which
can cause inflammation of lung tissue, coughing, and shortness
of breath (40). The respiratory damage caused by COVID-19
reduces the overall efficiency of the lungs which results in an
increased RR to compensate (40). Significantly increased RR is
not as common in cases of other viral illnesses such as influenza
or the common cold because these viruses typically affect the
upper-respiratory tract (40). It may be concerning, however, that
by time the patient is tachypneic, the disease may already be in an
advanced stage. In a person who has a high likelihood of COVID-
19 exposure, a device that is able to detect subtle changes in
respiratory function prior to the onset of clinical symptoms, such
as shallow respirations, wheezing, and shortness of breath, has
the potential to be an effective tool. Of note, findings by Luo et al.
indicated that as many as 70% of frontline health care workers
are testing positive for COVID-19 (41). Frontline staff who care
for patients with COVID-19 could benefit from the remote use of
a wearable-sensor remote monitoring mechanism to objectively
monitor for pre-clinical signs of infection, as a measure to
prevent spread to other colleagues or patients. Additionally,
current COVID-19 guidelines suggest that measuring resting RR
can be used utilized as a criterion for intensive care unit (ICU)
admission (42).

A recent review by Massaroni et al. assessed the suitability
of different contact-based techniques for monitoring RR in
clinical settings, occupational settings, and sports performance
(43). Specifically, in the context of clinical settings, the authors
noted that contact-based techniques such as strain, impedance,
biopotential, and light intensity measurements offer a platform
to detect RR in a non-invasive and unobtrusive manner. Toward
the use of biopotential measurements for RR monitoring, RR
can be derived from wearable devices that measure heart
activity due to a phenomenon known as Respiratory Sinus
Arrhythmia (RSA) (44). RSA results in increased HR during

inspiration and decreased HR during expiration. Using this
information, any wearable that can accurately measure heart
rhythm can be used to derive respiration rate if an appropriate
algorithm is implemented. Baseline resting of respiration rate
can be determined when a subject is asleep and shows
very little variation from night to night (40). Therefore, a
significant increase in resting respiration rate indicates a high
likelihood of decreased respiratory efficiency. WHOOP has
focused on correlating changes in RR and recovery levels to
predicting COVID-19 in their users (45). WHOOP, which
recently partnered with Central Queensland University (CQU)
and the Cleveland Clinic on such a study, will utilize the
data collected from WHOOP’s hardware from volunteers who
have self-identified as having contracted COVID-19 to study
changes in their respiration rate over time (45). The data,
which is currently being collected for this study utilized the
WHOOP 3.0 strap, was validated externally to determine the
accuracy of respiration rate during sleep when compared against
polysomnography (46). Based on the study, the team from
WHOOP hypothesizes that measuring respiration rate during
sleep could be valuable in detecting abnormal respiratory
behavior in COVID-19 patients before symptoms are present
(45). Recently, researchers from Duke University launched the
“CovIdentify” study which utilizes devices such as the Fitbit
and data from the Apple Health app to monitor an individual’s
sleep schedules, oxygen levels, activity levels, and HR over a
12 months period to determine if they are risk for COVID-
19 (47, 48). Once the data is collected, the team will utilize
their predictive algorithms to detect respiratory infections from
the COVID-19 virus. Respiration rates are typically obtained
in research and clinical-related settings which may not be
indicative of individual’s respirations at home; however, given
that COVID-19 can complicate existing chronic respiratory
disease, monitoring individuals in home settings can receive a
more patient-centered approach to prescribing treatment (49).
There remains an unmet medical need to ensure that algorithms
that correlate changes in RR to COVID-19 are sensitive enough
to filter out other lower respiratory infections such as pneumonia
or influenza. Toward achieving this goal, the design of clinical
trials to mitigate false positive diagnosis is critical toward
the application of wearable sensor technology for COVID-
19 monitoring.

SpO2
The assessment of a patient with a respiratory illness typically
includes measurement of the blood oxygen saturation (SpO2),
as hypoxia in certain clinical scenarios is indicative of a
pneumonia. This is of particular importance in monitoring
progression and severity of disease in COVID-19, where resting
SpO2 was found to be significantly lower in patients with a
severe stage of the disease as determined by clinical symptoms
and CT scan. SpO2 measurements < 90% during hospital
admission is seen in COVID-19 patients with higher systemic
inflammatory markers and increased disease mortality (50,
51). While validated oximeters are abundant in the inpatient
setting, few patients have this technology available in their
homes. Smartphone-based pulse oximetry in the form of a
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camera-based app and a probe-based app, the latter using
an external plug-in probe, have been developed by several
companies and evaluated in two published studies (52, 53).
The plug-in probes showed modest accuracy in identifying
hypoxia as measured by standard pulse-oximetry; however,
the camera-based technology had limited ability to accurately
detect hypoxia and is not considered standard of care for this
purpose in the literature. PPG technology has been utilized in
wearable pulse oximetry and a large number of fingertip-type
oximeters are commercially available, but few meet acceptable
accuracy standards (54). Examples include the MightySatTM Rx
(Masimo) and Pulsox-310 (Konica Minolta). These available
technologies were designed for oxygen management in chronic
diseases such as chronic obstructive pulmonary disease (COPD)
and sleep apnea; moreover, little research has looked at
their utility in early detection and management of disease
progression in acute respiratory illnesses. At present, this
technology may be particularly useful, as more patients with
mild symptoms of COVID-19 are being asked to stay at
home and report changes in their respiratory symptoms via
telemedicine modalities in an attempt to reduce the spread
of the disease. In elderly patients or those with medical co-
morbidities that are known to be at higher risk of disease
progression, current wearable PPG technology may have a role
in identifying those patients who are self-isolating at home that
need a higher level of care due to hypoxemia which may or
may not be accompanied by other clinical symptoms of early
respiratory distress.

Temperature
Temperature measurement is extremely important to COVID-
19 detection and has already been widely used by numerous
countries as an immediate test to determine if travelers or
citizens may be infected with COVID-19. While quarantining
individuals with fever may prevent transmission to some degree,
this approach to temperature monitoring is not sufficient
because COVID-19 can be transmitted before a fever develops.
Continuous monitoring of skin temperature is currently being
implemented using wearable devices such as the TempTraq,
Oura ring, VivaLNK Fever Scout, and QardioCORE. The
TempTraq skin temperature sensor adheres to the body for
72 h and is currently being used to measure the temperature
of frontline workers here at University Hospitals Cleveland
Medical Center (55). A study performed by Stanford University
using the MOVES, Scanadu Scout, Basis B1, Basis Peak,
iHealth-finger, Masimo, RadTarge, andWithings found a notable
increase in skin temperature as well as HR and RHR in
the period preceding and during a viral infection (20). This
change in skin temperature, particularly if paired with RHR
and HRV information, could be used to predict COVID-
19 infection before symptoms arise. Any such temperature
sensing wearable device could also be used for fever tracking
during illness and alert users and medical staff to a dangerous
fever or sharp change in temperature. While skin temperature
measurement is easy to implement, it has been shown to deviate
up to 12◦F from core body temperature (20). Additionally,
temporal, oral, aural, and axillary temperature measurements

have all been shown to be invalid estimations of core body
temperature (compared against rectal thermometry) and are
more prone to change due to environmental or behavioral
factors (56). Core body temperature measurement provides a
much more stable baseline for assessment and could prove to
be more reliably indicative of illness than skin temperature
and provide more insight into fevers for remote patient
monitoring. Researchers at UT Southwestern Medical Center
found that fluctuations in core body temperature regulate the
body’s circadian rhythm (57). In the study, the researchers
focused on cultured mouse cells and tissues and found
that genes related to circadian functions were influenced by
changes in core temperature. Clinically, analytical platforms
combining core body temperature measurements with those of
respiration rate, HR, or HRV, could provide a more robust
platform for predicting the incidence of COVID-19 in ways not
done today.

Continuous skin temperature measurement is simple to
implement in both hardware and software and can easily be
implemented into a wearable device. Analog solutions such
as thermocouples and thermistors could be used reliably,
but digital temperature sensors are likely better for wearable
applications due to their small size (∼1 × 1mm), low power
requirements, and improved control. Such a sensor could be
integrated into many existing wearable form factors though
adhesive patches will likely prove more reliable due to constant
contact with the skin. The gold standard for core body
temperature is rectal thermometry. This measurement modality
is not feasible for continuous measurement where non-invasive
and unobtrusive monitoring is required. A large body of
research has shown that core body temperature can be reliably
predicted from skin temperature and HR through the use
of Kalman filters or other machine learning (ML) algorithms
(58, 59). While this technology needs further research and
development before clinical or diagnostic use, the application
of such algorithms could provide a non-invasive method to
study the response of core body temperature to illness and
provide advanced remote patient monitoring capabilities for
fever treatment.

While there have not been any clinical trials correlating
core body temperature to incidences of COVID-19, the smart
thermometer maker, Kinsa, has shown from skin temperature
data where people with the flu (and more recently COVID-19
infections) are located (60). The team studied a population in
Miami-Dade County, Florida and found that a spike in fevers
coincided with the well-known reports of Miami residents and
tourists loosely following social distancing recommendations. As
beaches closed and other isolation strategies were implemented
in the county, the team found a significant drop in fevers.
The team also noted that the trends observed in Miami hold
true for other areas of the country that they studied: as
individuals adhered to social distancing guidelines, within 5
days, a downward dip in fevers was observed (60). Another
start-up, Oura, has partnered with the University of California,
San Francisco on a new study to see if its device, Oura Ring,
can detect physiological signs that may indicate the onset of
COVID-19 (61). The study includes two parts wherein part one
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FIGURE 2 | Clinical pathway summarizing the role of wearable sensor technology and predictive analytics for monitoring COVID-19. (A) Physiological metrics

currently capable of being measured from commercial wearable sensors. (B) Changes in physiological metrics can be inputted into an early detection algorithm for

COVID-19 monitoring. The goal of such algorithms is to ensure the true positive rate is robust to support the use of the analytics for real-time clinical decision making.

(C) Integrated analytics to monitor COVID-19 can be used to monitor individual or population health. HRV, heart rate variability; Resp Rate, respiration rate; SpO2,

blood oxygen saturation; Temp, temperature; TP, True Positive; FP, False Positive; TN, True Negative; FN, False Negative.

involves having 2,000 frontline healthcare professionals wear
the Oura Ring to track skin temperature, sleep pattern, HR,
and activity levels. Part two of the study will involve Oura’s
general user population wherein its 150,000 global users can
opt in to participate and add to the overall pool of information
with their ring’s readings and daily symptom surveys (61).
Recently an Oura user in Finland claimed that the ring alerted
him that he was displaying symptoms of COVID-19 based on
decreased recovery levels (from 80 to 90% to 54 coupled) and an
increase in skin temperature of ∼1◦C. These changes prompted
the individual to get tested (61). The test results confirmed,
that while asymptomatic, the individual had COVID-19 (61).
The compilation of de-identified data sets from studies such
as the two mentioned for temperature monitoring and those
mentioned earlier on could lead to the development of an early
detection algorithm.

EARLY DETECTION ALGORITHM
TECHNOLOGY IS NEEDED FOR COVID-19
MONITORING

Many of the physiological changes measured by wearable devices
discussed in the above sections can potentially be detected
before a user experiences any significant clinical symptoms of

illness (Figure 2A).We postulate that wearable devices can detect
and alert users of possible infection with SARS-CoV-2 before
they develop clinical symptoms through the development of an
early detection algorithm (EDA) (Figures 2A,B). By notifying
wearable device users of possible early infection, EDA could allow
them the ability to self-isolate, seek care or diagnostic testing,
and take other steps to mitigate transmission of the infection

during a critical period of the disease process. Additionally,
wearables could be used for remote patient monitoring in
mild cases by allowing patients to report their vitals from

home, saving critical hospital resources and reducing the risk
of transmission to health care providers by avoiding in-person

assessments (Figure 2C). A combination of the metrics listed

above could result in a sufficiently high SNR to be used as a
predictor of viral illness or COVID-19 risk. Developing an EDA

with a high true positive and true negative rate is imperative

for the translation of this technological platform for remote
patient monitoring. Clinical staff such as intensive care nurses

use early-warning system indicators to detect if individuals are

at risk for further complications related to their care (62).
Remote patient monitoring using wearable sensor technology
provides an opportunity for developing more effective patient
interventions, balancing nurse-patient care ratios, and decreasing
costs associated with readmission rates and futile medical care.
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FUTURE OUTLOOK AND
RECOMMENDATIONS: ADOPTING
WEARABLE SENSOR TECHNOLOGY

The development of integrated sensor technology has made
it possible to remotely measure many physiologic parameters
accurately, many of which are clinically useful in monitoring
disease progression in a viral illness. The scope of influence of
this technology is broad; it may be used to help to identify an
individual under home-quarantine that needs a higher level-
of-care or a community where an emerging outbreak may
be imminent and requires an early intervention. We suspect
that one of the largest impediments for the mass adoption
of wearable sensors (and digital health technologies overall)
in the United States toward remote patient monitoring is
the issue of data privacy, data sharing, and underreporting.
Wearable technology companies must ensure that only users
who choose to participate will share their data (as done by
WHOOP), and that the data will be anonymized and used for
COVID-19 research only. Germany have provided us with a
good example of how population health data can be handled,
acknowledging their strong privacy concerns and stances on the
limited collection of digital data (63). Underreporting of data by
some populations may require their consent for safe data sharing
and privacy agreements so that it can be used to inform better

care, thus decreasing health disparities. The implementation of
current trials demonstrates the convergence of wearable data,
self-reported symptoms, molecular testing, and geospatial data
toward developing platforms for managing COVID-19 and other
outbreaks which may arise in the future. Building upon such
trials, we see an opportunity to design a device that can accurately
monitor many or all metrics of interest and through machine
learning is able to develop an algorithm to reliably detect
changes in population health status. A collaboration leveraging
the expertise of clinicians, data scientists, engineers, and nurses is
imperative to facilitate this advancement and may even be more
acutely desired should there be a second wave of this pandemic.
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Objective: Despite the vast number of photoplethysmography (PPG) research

publications and growing demands for such sensing in Digital and Wearable Health

platforms, there appears little published on signal quality expectations for morphological

pulse analysis. Aim: to determine a consensus regarding the minimum number of

undistorted i.e., diagnostic quality pulses required, as well as a threshold proportion of

noisy beats for recording rejection.

Approach: Questionnaire distributed to international fellow researchers in skin contact

PPG measurements on signal quality expectations and associated factors concerning

recording length, expected artifact-free pulses (“diagnostic quality”) in a trace, proportion

of trace having artifact to justify excluding/repeating measurements, minimum beats

required, and number of respiratory cycles.

Main Results: 18 (of 26) PPG researchers responded. Modal range estimates

considered a 2-min recording time as target for morphological analysis. Respondents

expected a recording to have 86–95% of diagnostic quality pulses, at least 11–20

sequential pulses of diagnostic quality and advocated a 26–50% noise threshold for

recording rejection. There were broader responses found for the required number of

undistorted beats (although a modal range of 51–60 beats for both finger and toe sites

was indicated).

Significance: For morphological PPG pulse wave analysis recording acceptability

was indicated if <50% of beats have artifact and preferably that a minimum of 50

non-distorted PPG pulses are present (with at least 11–20 sequential) to be of diagnostic

quality. Estimates from this knowledge transfer exercise should help inform students and

researchers as a guide in standards development for PPG study design.

Keywords: digital health, photoplethysmography, pulse, peripheral arterial disease, pulse wave analysis, signal

quality, wearable sensor, artefact rejection
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INTRODUCTION

Photoplethysmography (PPG) is a vascular optical measurement
technique, used to detect blood volume changes in the
microvascular bed of target tissue (1). Many studies have
been conducted investigating various body sites as a single
measurement (e.g., single PPG sensor located on a single body
site) and multi-site measurements (multiple PPG sensors located
across a range of body sites). The finger and toe pad sites are
usually assessed. A range of features of the pulse wave have
been studied, including pulse transit time, pulse interval, peak-
to-peak interval, amplitude, pulse contour, as well as their natural
variability (1). Subsequently, PPG has been utilized in an array
of settings, from bedside physiological measurement e.g., heart
rate, oxygen saturation, to hypertension assessment, and detailed
peripheral vascular assessment (1–4). PPG has also become a key
sensing technology in Digital and Wearable Health devices.

It is well-established that there is variability in the PPG
waveform over time and that there can be differences in
morphology and dynamics between different peripheral body
sites (1), for example respiration as well as blood pressure
changes canmodulate PPG signals over periods of seconds/10’s of
seconds. Furthermore, artifact from sensor and limb movement
and/or tremor can limit the reliable extraction of pulse features
and so having a recording of sufficient length helps identify,
and thus reject such episodes of noise (Figure 1) (5). These
signal variability considerations form the rationale behind taking
an average of multiple beats for representative morphological
analysis of the PPG “AC” pulsatile component and the
motivation for this study. However, despite the broad range
of studies concerning applications of PPG especially in Digital
Health (1, 3), as well as the significantly smaller number of

FIGURE 1 | Example of bilateral toe PPG recording from a healthy subject. “AC” pulsatile components can be seen for the toe recording, each superimposed on a

slowly varying “DC” baseline. Bilateral similarity would be expected for the pulse features at the toes, including for normalized shape averaged over all beats present.

The contralateral right (R) toe trace is of reasonable quality and has a normal shape characteristic. However, there is unacceptable levels of artifact present in the left

(L) toe trace and appears to result in an abnormal damped normalized pulse shape. Attempts at further signal filtering and/or cluster analysis would be unlikely to

salvage the left side toe trace for classification purposes.

investigations focussed specifically on quantifying signal quality
(6–12), there appears little yet published on signal quality
expectations, e.g., minimum length of recording or proportion
of noisy beats needed to reject a recording, which consequently
affects reproducibility and ultimate measurement value. We
therefore carried out a consensus exercise by composing a
questionnaire. We aimed to determine for morphological pulse
analysis if there was agreement regarding minimum recording
length, the minimum number of undistorted i.e., diagnostic
quality pulses required, as well as the threshold proportion of
noisy beats needed for the recording. Our wider goal is to transfer
knowledge from experienced PPG workers to other (future)
researchers and students internationally.

METHODS

We developed a set of questions based on a specific clinical
PPG measurement scenario in our questionnaire: finger and
toe pad PPG measurements carried out on a healthy adult
subject, acclimatized for at least 10min within a warm room.
The individual would be relaxed, lying supine with their arms
by their side, having been instructed to lie still and breathe
gently throughout. We identified a group of selected fellow PPG
workers established in the field and all of those contacted were
known to have published/presented their research, encompassing
various fields in the cardiovascular application of PPG. The
questionnaire was distributed internationally to known fellow
researchers working in skin contact PPG measurements.

The 6 questions on the questionnaire applicable to
morphological analysis of the “AC” pulsatile component of
PPG, i.e., pulse shape (13, 14), are summarized in the Appendix.

Frontiers in Digital Health | www.frontiersin.org 2 December 2020 | Volume 2 | Article 61969220

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Huthart et al. Photoplethysmography Signal Quality and Expectations

Each question had specific numerical/range selections to choose
from, there were no open responses to these questions. The
questions related to the minimum length of recording time,
the expected proportion of good quality beats per recording,
the extent of noise needed to reject a recording, the minimum
number of total and also sequential non-distorted i.e., diagnostic
quality pulses required (criteria for an analysable beat outlined
by Orphanidou (9): pulse requiring a clear peak, trough,
anacrotic, and catacrotic phases), as well as the minimum
number of respiratory cycles per recording needed, noting
the low-frequency alterations in the PPG signal associated
with respiration (15). The results from a subset of participants
specializing in PPG and peripheral arterial occlusive disease
(PAOD) diagnostics were also noted. Two authors independently
checked the results from the survey.

RESULTS

In total, we approached 26 individuals via e-mail worldwide.
Eighteen agreed to take part and give their views in the
poll, coming from organizations in countries covering at least
3 continents (i.e., including the US, Europe and Asia). One
questionnaire was only partially completed, and thus removed
from the study—giving 17 responses in total to summarize.

With the exception of question 1, participants could select
an answer relating to measurements at finger and toe sites
independently. However, due to differences in experience, some
opted to answer for only one measurement site. Hence, there was
a discrepancy in the number of responses for the two body site
locations (noting there were twelve full responses about the toe
measurement site). In the few circumstances where participants
had highlighted more than one answer per question for a single
site, we decided to use their lowest answer, as this indicated the
minimum threshold that they deemed acceptable.

The responses did tend to vary across the survey, but we
were able to obtain a modal range value for each of the related
questions (Table 1). For morphological analysis, for both the
finger and toe sites, a minimum recording time of 2min was
a recommended target and participants expected 86–95% of a
PPG recording to be of diagnostic quality i.e., beats with no
distortion. Participants advocated a threshold for the proportion
of beats with artifact required to reject a recording in the range
26–50%, and a minimum number of sequential undistorted beats
of 11–20. Less clear patterns from respondents, due to spread,
were for the number of respiratory cycles (modal choice was
marginally for >10 cycles but with responses similar for 2 and 5
cycles selections) and the minimum number of total undistorted
beats (for both finger and toe sites the modal selection was
marginally for 51–60 beats). Figure 2 shows key consensus results
for the expected proportion of good quality pulses and for the
proportion of beats with artifact to reject a recording. As well
as such bar charts, a series of scatterplots were also produced in
an attempt to identify relationships between answers to different
questions, however no obvious correlations were observed and
have therefore not been included.

The results from a subset of participants specializing in toe
PPG and PAOD diagnostic assessments showed, however, only
4 of the 17 responding authors had published data for this

TABLE 1 | Summary of modal selections for morphological PPG pulse wave

analysis.

Finger site Toe site

Modal selection for minimum PPG

recording time (minutes)

2 2

Modal selection of range for expected

proportion of undistorted i.e., diagnostic

quality beats (%)

86–95 86–95

Modal selection of range for proportion of

beats with artifact to reject a recording (%)

26–50 26–50

Modal selection of range for minimum

number of undistorted i.e., diagnostic

quality beats in the recording

51–60 51–60

Modal selection of range for minimum

number of successive undistorted i.e.,

diagnostic quality beats in the recording

11-20 11-20

Modal selection for minimum number of

respiratory cycles

>10 >10

The modal selections on the questionnaire were similar overall for finger and toe

measurement sites.

application area. Nevertheless, when the answers pertaining to
these specific parameters were compared to the rest of the
respondents, there appeared general agreement.

DISCUSSION

Responses varied across the survey, although for most
questions/sites a modal value could be ascertained. This
work pointed us to a potential memorable 50/50 rule of thumb
for guidelines in PPG i.e., finger and toe PPG pulse traces of
a few minutes in length can be acceptable for morphological
pulse wave analysis provided there was <50% of the beats with
artifact and that a minimum of 50 undistorted i.e., diagnostic
quality beats were present, and that there is potentially an
additional need for at least 10–20 successive good quality beats
in the recording. Given the vastness of PPG application, there
is unfortunately no exact way to formulate a “one size fits
all” standard but our results should have value in helping in
knowledge transfer to guide researchers and medical device
developers in PPG measurement and analysis.

The broadness in survey responses we believe was in part
related to a lack of agreed guidelines in PPG measurement
protocol and signal quality expectations. Coupled with this, in
relation to wider measurement protocol considerations, there
is an absence of standardized equipment (e.g., key probe/clip
attachment designs) and measurement set-up, other than the
general consensus that participants should be allowed a period of
time to rest (but no standardized time known), and to acclimatize
to the ambient measurement conditions (but no standardized
temperature and/or humidity defined) (1). Future follow-up
surveys should consider seeking expert consensus in each of
these areas for the benefit of wider measurement communities.
There is also a large number of clinical applications covered
by those surveyed and future studies could certainly look at
the applications aspect in more detail with specific analysis and
visualization of results in mind. Additionally, another possible
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FIGURE 2 | (A) Expected proportion of good quality beats i.e., artifact free

beats per PPG recording. For both finger (blue) and toe (orange) measurement

sites, all participants expected the majority of the recording to be undistorted

i.e., of diagnostic quality (>51%). Furthermore, the majority of respondents

expected ≥86–95% of beats to be of good quality (n = 9 and n = 7

respondents for the finger and toe sites, respectively). (B) Proportion of beats

with artifact required to reject a PPG recording for the finger (blue) and toe

(orange) sites. For both sites, the majority of respondents advocated that

≥26–50% of beats having noise was sufficient to reject a recording (n = 10

and n = 8 respondents for the finger and toe sites, respectively).

reason for the lack of a general recommendation, is a current
focus on noise-reducing and waveform identifying algorithms
(16), an important area of study especially concerning the
commercial use of PPG in wearable sensor systems for modern
Digital Healthcare. If the developed algorithms can robustly
eliminate noise and extract analysable pulse waves unfailingly,
one might argue there would be no need for a standard, as the
remaining signal should be of good quality. However, developing
noise-reducing algorithms in PPG has proved to be difficult, for
example with clustering methods ineffective with PPG signals
dominated by noise (17). Furthermore, excessive filtering often

leads to distortion of the PPG pulse shape, masking useful
physiological information, whilst too little filtering may allow
the quasi-static “DC” component to dominate over the “AC”
pulsatile component (1). In PPG this “DC” component can
include the low / very low frequency changes of the signal
and not just be a value at 0Hz (1). The high pass filter being
particularly important in PPG and needs careful selection for
PPG shape assessment, with 0.15–0.2Hz proposed by Allen and
Murray (18) showing no clear shape distortion for multi-site
PPG measurements at ear, finger and toe sites in a group of
healthy subjects (18). This work from 2004 also showed that
the ratios for PPG “DC” to “AC” components were similar at
finger and toe sites for this range of high pass filter settings.
This “DC”:“AC” measure of PPG variability also links to survey
findings that responses were similar for finger and toe sites
overall. To reiterate, the measurement methods and protocol
used are very important and should always be clearly defined. For
example, measurement device parameters, including the filtering,
operating wavelength, and mode used, should be declared in
research publications concerning contact PPG.

It is also important to comment on our bias assessment
of the survey design and subsequent analysis. A survey may
include a form of error such as sampling variability, interviewer
effects, frame errors, response bias, and non-response bias (19–
22). We designed the survey questions on PPG morphology and
signal quality to contain only close-ended questions, which are
answered by a simple selection from 7 (8 for Q1) choices. The
main reason being to create data that are easily quantifiable,
and straightforward to code. This also allowed us to categorize
respondents into groups based on the options they have selected,
thus increasing interpretability of the data. We also minimized
all biases in our research with the following areas considered.
Specification error—this did not occur as there was clear
communication between the experts and data analysts. Frame
error—this did not occur as our target population was those
experienced in PPG research. Non-response error—in our survey
all experts responded to questions regarding the finger site,
however 12 (of 17) responded to the questions concerning the toe
sites, potentially leading to a non-response error in this scenario.
We suggest that it was the case that the 5 non-respondents,
pertaining to toe measurements, focused their answers on their
main measurement site of interest rather than guessing for a
site they had little experience of. We also note that we did not
add any value on behalf of any of the experts. Measurement
error—our survey was carefully and manually carried out to
reduce the risk of such an error. Finally, processing error—
the lead (SH) and corresponding (JA) co-authors independently
checked all results presented in this paper from the original set of
questionnaire responses.

To our knowledge, this is the first report of its kind drawing
on the knowledge and experience of published PPG workers. We
obtained survey responses from 17 (12 of these responded on
toes) well-respected experts in the field, noting that in Delphi
exercises, a minimum of 12 respondents is generally considered
to be sufficient to enable consensus to be achieved (23, 24).
A possible limitation though may be the varying experience
among the researchers contacted, albeit working predominantly
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in morphological analysis, but with lesser involvement at the
toe site compared to the finger site. All of those contacted to
take part were professionally known by the senior author (JA)
and were known to have published/presented their research,
encompassing various fields in the cardiovascular application
of PPG across the globe. We accept that such PPG researcher
choice would involve bias and is potentially a limitation of
this study, and future wider surveys could be designed to
assess differences in opinion between researchers from different
geographical regions. However, this we believe is something
for the future in a carefully designed survey setting out to
investigate this specific aspect. Another limitation is the proposed
ranges for some questions being wide, and thus being heavily
open to interpretation, specifically the minimum length of time
per recording.

Our results have shown value and indicated key
recommendations for contact PPG recordings in relation
to noise and signal quality expectations. It is also important to
note signal quality and noise rejection are very important topics
in clinical physiological measurement not just for PPG but for
a range of signal types—this should be a very important topic
for design of noise reduction algorithms in Digital Healthcare
platforms including wearable sensing applications.

A potential future study would be to distribute another
questionnaire investigating a selection of these suggested ranges
further with narrower limits, and a more detailed description
of the purpose of the measurement i.e., it may be that a large
proportion of participants recommend that a recording warrants
rejection if 41–50% noise is present, compared to 31–40%.
Also, morphological analysis covers a wide range of sub-studies
in PPG, and therefore many researchers would put forward
answers to the above questions differing entirely, depending
on the pulse feature in question. The specific application to
Digital Health and Wearable sensing with PPG should be an
added focus. Furthermore, even though individuals were given
the opportunity to provide additional details at the conclusion
of the survey, written justification for their decisions would
have been insightful. In future follow-on surveys, a wider
range of body sites should be considered (including the ear
and forehead sites for example), as well user experiences and
expectations with various forms of transmission and reflection
mode sensor/tissue attachment technology as well as remote i.e.,
imaging PPG. Lastly, we believe it would next be helpful to issue
the survey to an open biosensor-based research community, for
future reference.

SUMMARY

In summary, our results can be used as a guide for future
studies in PPG and especially morphological pulse wave analysis,
specifically in determining wider views in justifying which signals
to utilize, discard and repeat. This area is very important
in Digital Healthcare systems with wearable sensing and the
need to gather repeatable and meaningful PPG data. Our
study also provides initial recommendations available for other
workers in the field of PPG—facilitating knowledge transfer to
students and researchers to support the move toward improved
standardization in measurement protocol, morphological pulse
wave analysis, as well as address the real-world problem of artifact
reduction in PPG.
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APPENDIX

Questionnaire Summary for PPGMorphological Analysis

1. When obtaining a PPG trace, what would you recommend as
a minimum duration of recording?

Time: � ≤10 s � 11–30 s � 31–60 s � 2 min
� 5 min � 10 min � 20 min � >20 min

2. Given the specified measurement setting over a 2-min period,
what percentage of beats would you expect to be of good
quality?

Finger site: � ≤10 � 11–25 � 26–50 � 51–75
� 76–85 � 86–95 � >95

Toe site: � ≤10 � 11–25 � 26–50 � 51–75
� 76–85 � 86–95 � >95

3. At what percentage of noise, relative to the number of pulse
waves acquired, should we discard a recording and/or repeat
it?

Finger site: � ≤10 � 11–25 � 26–50 � 51–75
� 76–85 � 86–95 � >95

Toe site: � ≤10 � 11–25 � 26–50 � 51–75
� 76–85 � 86–95 � >95

4. In the exploration of the photoplethysmographic pulse
shape, what would you recommend as a minimum number
of diagnostic quality pulse waves, in order that the average
obtained is a true representation of the individuals PPG pulse
shape?

Finger site: � ≤10 � 11–20 � 21–30 � 31–40
� 41–50 � 51–60 � >60

Toe site: � ≤10 � 11–20 � 21–30 � 31–40
� 41–50 � 51–60 � >60

5. In the exploration of the photoplethysmographic pulse
shape, what would you recommend as a minimum number
of successive diagnostic quality pulse waves, in order that the
average obtained is a true representation of the individuals
PPG pulse shape?

Finger site: � ≤10 � 11–20 � 21–30 � 31–40
� 41–50 � 51–60 � >60

Toe site: � ≤10 � 11–20 � 21–30 � 31–40
� 41–50 � 51–60 � >60

6. What minimum number of respiratory cycles would you
recommend recording a PPG trace for?

Finger site: � 1 � 2 � 3 � 4 � 5 � 6–10 � >10
Toe site: � 1 � 2 � 3 � 4 � 5 � 6–10 � >10
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Cardiovascular diseases continue to be a significant global health threat. The

electrocardiogram (ECG) signal is a physiological signal that plays a major role in

preventing severe and even fatal heart diseases. The purpose of this research is to

explore a simple mathematical feature transformation that could be applied to ECG signal

segments in order to improve the detection accuracy of heartbeats, which could facilitate

automated heart disease diagnosis. Six different mathematical transformation methods

were examined and analyzed using 10s-length ECG segments, which showed that

a reciprocal transformation results in consistently better classification performance for

normal vs. atrial fibrillation beats and normal vs. atrial premature beats, when compared

to untransformed features. The second best data transformation in terms of heartbeat

detection accuracy was the cubic transformation. Results showed that applying the

logarithmic transformation, which is considered the go-to data transformation, was not

optimal among the six data transformations. Using the optimal data transformation,

the reciprocal, can lead to a 35.6% accuracy improvement. According to the overall

comparison tested by different feature engineering methods, classifiers, and different

dataset sizes, performance improvement also reached 4.7%. Therefore, adding a simple

data transformation step, such as the reciprocal or cubic, to the extracted features can

improve current automated heartbeat classification in a timely manner.

Keywords: feature mapping, feature representation, feature transformation, feature conversion, feature

restructuring, data Wrangling

INTRODUCTION

Electrocardiographs (ECGs) have been a staple in medical practice for around a century. A
complete heartbeat process is initiated by the sinus node—consisting of the depolarization of
atriums and ventricles and the repolarization of the ventricles—inwhich atrial depolarization forms
a P wave, ventricular depolarization forms a QRS complex wave, and the repolarization of the
ventricles forms a T wave. Since its inception, ECGs have been used to diagnose physical heart
abnormalities (1). When beats conform to the basic structure of a QRS complex, they are called
normal beats; otherwise, they may be called arrhythmic. In an arrhythmic heartbeat—such as a
beat that occurs too fast, too slow, or is irregularly timed—the morphology of the ECG waves
changes accordingly.
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The accurate determination of beat types can assist in the
diagnosis of ECG signals. However, a more simplistic and
accurate way to distinguish the heartbeats is still an unmet need.
Past research has explored several ECG morphological features
and many complex classifiers for achieving higher classification
performance. Note that ECG morphological features (2),
including RR-interval features (3) and PT-interval features (4).
have been proposed, and some complex classification models,
such as artificial neural networks (5), extreme learning machines
(6), and deep neural networks (7) have been adopted. Although
these methods can achieve slight performance improvements,
the heavy computation (requiring off-line processing) limits
the application of these methods. Due to the development of
mobile medical technology, a greater need for robust lower
computational overhead is emerging.

The rapidly increasing accessibility of mobile devices and their
use in classifying different types of beats makes the investigation
of different potential patterns in ECG data especially important.
Any simple mathematical model can be incorporated in a mobile
app to provide preliminary diagnoses of heart-related problems;
this would offer patients awareness of a problem before receiving
a formal diagnosis from a physician. It could also be used to
promote timely self-treatment (e.g., electrolytic rebalance and
breathing techniques). Recently, in 2019, Oscar et al. noted
that the total number of smartphone users worldwide was
projected to surpass 2.5 billion. Furthermore, the United States
of America found that, as of 2017, ∼64% of its population uses
smartphones (8). Hence, the transformation method developed
in this study was aimed for use in the growing field of mobile
health. Therefore, this study focuses on whether it is possible to
devise a simple feature transformation method that can improve
the classification of different heartbeat events using multiple
feature calculations of ECG signals without the need for complex
algorithms that require high computational power to achieve
similar results.

MATERIALS AND METHODS

Hypotheses
To our knowledge, no study has investigated feature
transformations to classify different heartbeat events. The
main research question is: “What is the simplest mathematical
transformation that can improve classification performance
compared with the original features?”

Feature Engineering
ECG signals contain a wealth of heartbeat process information,
and high-quality, clear ECG signals can be used for the diagnosis
and evaluation of a variety of heart diseases. However, in some
cases, researchers can obtain only a small portion of the total
number of ECG features. For example, ECG signals can be
obtained from wearable ECG devices, but they are generally
of low quality and have high interference rates, thus making
it difficult to extract more accurate and effective information.
In this study, to reduce the effects of noise, an 8th order 0.5–
30Hz bandpass Butterworth filter was used for the raw ECG
signal (9). Meanwhile, the raw ECG signal without any filter

to process (unfiltered data) was also explored in this study in
order to compare the information with the filtered ECG data.
Feature engineering methods in time-series biomedical signals
are a common step in; for example, extraction of skewness,
kurtosis, entropy, signal-noise ratio, and so on, all of which
have been applied to ECG (10), photoplethysmogram (PPG)
(11) and electroencephalogram (EEG) (12) signals. In this study,
we adopted six feature-engineering methods to calculate ECG
features based on unfiltered and filtered ECG signals (13), such
as skewness (fS), kurtosis (fK), entropy (fE), the zero-crossing rate
(fZ), the signal-to-noise ratio (fN), and relative power (fR). The
formulas of these features are as follows:

1. Skewness (fS)

fS = 1/N

N
∑

n=1

[x[n]− µ̂x/σ ]
3 (1)

where µ̂x and σ are the empirical estimates of the mean and
standard deviation of x, respectively, and N is the number of
sampling points in unfiltered and filtered ECG signals.

2. Kurtosis (fK )

fS = 1/N

N
∑

n=1

[x[n]− µ̂x/σ ]
4 (2)

where µ̂x and σ are the empirical estimates of the mean and
standard deviation of x, respectively, and N is the number of
sampling points in unfiltered and filtered ECG signals.

3. Entropy (fE)

fE = −

N
∑

n=1

x[n]2 loge(x[n]
2) (3)

where x is the unfiltered and filtered ECG signal and N is the
number of sampling points.

4. Zero-crossing rate (fZ)

fZ = 1/N

N
∑

n=1

5{y < 0} (4)

where y is the filtered ECG signal of lengthN and5–the indicator
function 5{A}–is 1 if its argument A is true, and 0 otherwise.

5. Signal-to-noise ratio (fN )

fN = σ 2
signal/σ

2
noise (5)

where σsignal is the standard deviation of the absolute value of the
unfiltered and filtered ECG signal (y) and σnoise is the standard
deviation of the y signal.
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6. Relative power (fR)

Because most of the energy of the ECG signal is concentrated
within the 5–15Hz frequency band, the ratio of the power
spectral density (PSD) in this band to the PSD of the overall
1–40Hz signal provides a measure of fR:

fR =

15
∑

f=5

PSD/

40
∑

f=1

PSD (6)

where PSD is calculated using Welch’s method.

Feature Transformation
To improve features’ separability, a feature transformation is
applied to convert an original feature to a high dimensional
space. The original input features, obtained from the previous
subsection, are written as f. Feature transformation is a function
of the input attributes ϕ(f), defined as follows:

∅

(

f
)

=





















f
ln(f )
1
f

√

f

f 2

f 3

asin(f )





















(7)

where f is the tested feature. This study explores whether
the classification performance can be improved based only on
mathematical transformations, without the use of other external
features. We investigated six data transformations based on the
recommendations in (14, 15).

Database
The ECG dataset used in this study was obtained from the
MIT-BIH Arrhythmia Database (16, 17), which includes ECG
signals and corresponding annotated beat types. The database
is made up of 30-min ECG recordings from 48 patients. For
the consistency of feature calculations, we calculated the features
from the 10s-long ECG signal segments; each segment was part
of a separate heartbeat category. Some categories only had a
small sample size, so only normal beats (Norm), atrial fibrillation
(AF), atrial premature beats (APBs), and premature ventricular
contractions (PVCs) were included in this study, as they had
the largest sample sizes. Table 1 shows the statistics of the
heartbeat segments in the MIT-BIH Arrhythmia Database, in
which we can see that the number of samples in the different
categories varies greatly. Specifically, the number of Norms
(category 1) is four times larger than that of APBs (category 4)
and two times larger than that of AFs (category 2) and PVCs
(category 3). An unbalanced dataset can incorrectly represent
classification performance and, because a balanced dataset was
needed, a resampling technique was required. However, under-
sampling and oversampling have their own flaws (18), and in
order to reduce the impact of a resampling technique, two
different techniques were adopted to balance the data, namely
the random under-sampling technique (RUS) and the synthetic

TABLE 1 | The statistics of heartbeat segments in the MIT-BIH arrhythmia

database (10).

Index Heartbeat

type

Description Number of

segments

1 Norm Normal beat 283

2 AF Atrial fibrillation 135

3 PVC Premature ventricular contraction (PVC) 133

4 APB Atrial premature beat 66

Total (All) - 617

Note that the segment in this table means the 10 s length ECG segment.

minority oversampling technique (SMOTE) (19). For the RUS
process, the samples of category 1 (Norm) were resampled
randomly according to the numbers in category 2 (AF), category
3 (PVC), and category 4 (APB) to classify each other. For
the SMOTE process, categories 2, 3, and 4 were resampled
according to the number in category 1. The RUS and SMOTE
random samples were generated using MATLAB version R2019a
(The MathWorks, Inc., MA, USA). Finally, RUS-balanced and
SMOTE-balanced datasets were generated and used to classify
the different categories, as shown in Table 2.

Feature Evaluation
The original features were calculated first using six feature-
engineering methods and were named fS, fK , fE, fZ , fN ,
and fR. New features were then developed from different
dimensionalities based on these original features, including
logarithmic [ln(f )], reciprocal (1/f ), square-root (

√

f ), square
(f 2), cube (f3), and arcsine [asin(f )] calculations. To classify the
different ECG categories, these ECG features were extracted and
constructed based on the different feature-engineering methods
and mathematical transformations. The features were evaluated
by classifying the different heartbeat categories using multiple
linear and non-linear classifiers.

The dataset—and each category within the dataset—was
divided into a training set (70%) and a testing set (30%). In
the training set, 10-fold cross-validation was adopted to validate
the generalization ability of the trained classifier. In the testing
phase, the performance evaluation was based on the testing set by
the trained model. The F1 score was calculated as an evaluation
measure as follows:

F1 = 2 × Recall × Precision/(Recall + Precision) (8)

where precision = TP/(TP + FP) and recall = TP/(TP + FN).
Here, TP stands for true positives, FP stands for false positives,
and FN stands for false negatives.

In order to compare the change in the classification
performance, the difference measure (D-value) was adopted and
calculated as follows:

D value = F1transformed feature − F1original feature (9)

If D is positive (D > 0) then the transformed feature improved
the F1 accuracy, if D is zero, then transformed feature scored the
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TABLE 2 | The statistics of different categories in this study.

Trial number Heartbeat type Number of segments

(unbalanced dataset)

Number of segments

(RUS dataset)

Number of segments

(SMOTE dataset)

1 Norm vs. AF 283 vs. 135 135 vs. 135 283 vs. 283

2 Norm vs. PVC 283 vs. 133 133 vs. 133 283 vs. 283

3 Norm vs. APB 283 vs. 66 66 vs. 66 283 vs. 283

Norm, AF, PVC, and APB each represent normal beat, atrial fibrillation beat, Premature ventricular contraction, and Atrial premature beat. The unbalanced column shows that the

quantity of different categories varies greatly; the balanced column shows an approximately equal number of different categories after random sampling. RUS represented random

under-sampling and SMOTE represented Synthetic Minority Oversampling Technique.

same F1 score as the original feature, and if D is negative (D <

0), then the transformed feature scored less F1 score than the
original feature. Certainly, the main goal of this study is to find
the transformation method that is consistently achieve a D value
> 0, regardless of the feature extraction method, classifier, signal
quality, and sampling technique.

Classification
We used five linear and non-linear classifiers to evaluate
the different feature-engineering methods and mathematical
transformations. The classifiers were the k-nearest neighbor
(KNN), neural net (NN), support vector machine (SVM),
decision tree (TREE), and Naïve Bayes (NB). For the KNN
classifier, the number of neighbor points was set to 10. The NN
classifier was a feedforward neural network with an input layer,
a hidden layer with 10 neurons, and an output layer. The SVM
classifier with a quadratic kernel was used. For the TREE, the split
criterion of TREE was Gini’s diversity index (gdi); the maximal
number of decision splits was 100. For the Naïve Bayes classifer,
the kernel smoother type was the Gaussian kernel, and the
kernel smoothing density support was unbounded. In training
the model, 10-fold cross-validation was used, which protected
against overfitting by partitioning the dataset into multiple parts
and estimating the accuracy of each fold. Code written in
MATLAB was used to perform the feature evaluation and model
training. Figure 1 shows a work flowchart of this study.

Data Availability
The MIT-BIH Arrhythmia Database is publicly available and can
be downloaded from https://www.physionet.org/physiobank/
database/mitdb/.

RESULTS AND DISCUSSION

Each feature was used to classify different heartbeat categories,
and the F1 score for each of the feature classifications
was recorded and summarized in Appendix Table A. In
Appendix Tables A, A.1–A.3 showed the performance of three
classification trials (Norm vs. APB, Norm vs. AF, and Norm
vs. PVC) that were achieved based on the unbalanced dataset.
Tables A.4–A.6 showed the performance of three classification
trials that were achieved based on the RUS balanced dataset.
Tables A.7–A.9 showed the performance of three classification
trials that were achieved based on the SMOTE balanced dataset.
Each table in Appendix Table A contained the F1 score of

five classifiers that were achieved by unfiltered and filtered
ECG signals. The D-value in the table was calculated based
on the maximum F1 score of classifiers between the original
feature and the transformed features. For the original feature,
the D-value was always zero as the F1 score is subtracted
from itself, while the transformed feature had either a positive,
negative, or zero D value. A positive value meant that the
transformed feature improved the classification performance,
and a negative value meant that the transformed feature was
not helpful in classification. The first and last columns of
Appendix Table A are the D-values. The results show that not
all the mathematical transformations were consistently effective.
We set the original feature as the baseline of classification
with a D-value of zero. The D-value after the mathematical
transformations was either positive or negative. For example, the
D-value of fN had the most negative value, which showed that
the mathematical transformations for the signal-to-noise ratio
feature were not helpful.

When we analyzed Appendix Table A, we found some
interesting changes for filter processing, feature engineering,
feature transformations, and different classifiers. In Table A.2,
the F1 score of fS is only 40% by the KNN classifier. However,
the reciprocal of fS ( 1fS ) improves the F1 score to 75.6%. In
Table A.8, the F1 score of the same solution improved from 71.6
to 91.9%. From other tables, we also found a 10% improvement
of KNN after the reciprocal transformation of skewness. For filter
processing, the F1 score of KNN also had a big improvement. In
Table A.1, the F1 score of KNN for fZ , calculated by an unfiltered
ECG signal, was only 18.2%, which means that the solution can’t
work well at all. However, after the filtering process, the F1 score
of KNN reached 70%. In Table A.4, the F1 score of KNN for
fZ also improved from 46.5 to 73.7% after filtering. In addition,
when we see the F1 score difference in classifiers, we found
that KNN was not the best classifier, as it only shows a poor
result compared to other classifiers. However, when we adopted
some proper processing, such as filtering, transformation, and
resampling methods, the performance of KNN increased from
18.2 to 95.2%, which was higher than other classifiers found in
Tables A.1, A.4, A.7.

Actually, other feature engineering methods, except fZ , don’t
improve the performance of KNN. This tells us that the use of a
zero-crossing rate (fZ) and a KNN classifier should be concerned
with the noise of physiological signals, and a suitable filter should
be implemented first. It is an imperative that a solution regarding
the combining of optimal filter, feature engineering, feature
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FIGURE 1 | A work flowchart of this study.

transformation, and classifiers achieve better performance. In
addition, different feature engineering methods show different
characteristics. The reciprocal transformation of skewness ( 1fS )
significantly improves the F1 score. However, the reciprocal
transformation of other feature-engineering methods does not
show improvement at all, or only showsminor improvement. For
example, in Table A.2, the reciprocal transformation of skewness
improved the F1 score by 35.6% for the KNN classifier, and
improved the F1 score by more than 10% for other classifiers.
Tables A.1, A.4, A.5, A.7–A.9 also show similar changes.

We also analyzed cases of performance reduction. In
Table A.4, the D-value of (fK )

2 and the original fK was
−15.1%, which demonstrates that the square transformation
does not provide any help for the classification. From Table A.2,
ln(fZ) reduces the F1 score by 4.3%, and other transformed
features of fZ also had a negative D-value. As mentioned above
regarding fZ , the logarithm transformation of fZ wasn’t helpful
in improving the classification, which was not the best choice of
mathematical transformation.

For different classification issues, reciprocal transformation
did not improve the classification accuracy of all trials.
In Table A.9, the cube transformation made the highest
improvement for Norm vs. PVC classification by reaching
about 9.3%. Although the reciprocal transformation also made
an improvement, the improvement was only about 3.8%. In
Tables A.3, A.6, cube transformation was also superior to the
reciprocal transformation. According to this analysis, cube
transformation had an advantage in classifying Norm and PVC
compared with AF and APB.

As observed above, there was no one transformation to solve
all problems. Based on Appendix Table A, we summarize the
D-value as follows below:

A. D-value = 0 (No classification accuracy improvement)

The D-value being equal to zero means that applying feature
transformation can lead to no improvement. In fact, transformed
features can only provide the same result as the feature itself.
As can be seen in Table A.1, when the square root was applied
to the zero-crossing feature, the F1 score of fZ and

√

fZ
were the same result (89.8%); this was achieved by the Naïve
Bayes classifier. Feature transformation did not improve the
classification accuracy.

For the filtered process, similar results are shown in
Tables A.2, A.3, A.5, A.7; when fS was transformed to

√

fS,
the F1 score did not improve and the D-value was equal
to zero. For the unfiltered process, there were also similar
results, as shown in Tables A.1–A.3, A.6, A.7. The square
root did not improve the performance when compared to the
original feature.

B. D-value > 0 (Classification Improvement)

The D-value > 0 meant that the transformation improved
the classification performance when compared to the original
feature. We easily found the phenomenon in Table A.2 when
the fZ was transformed to 1

fS
, the F1 score improved from 80.8

to 89.9%. The D-value reached up to 9.1%. In Table A.4, the D-
value of (fN)

3 and fN reached up to 12.7% and 1
fS
obtained a 16%

D-value in Table A.5. In Table A.8, the same transformation of
1
fS

improved the F1 score from 71.6 to 91.9%, which obtained

a 20.3% D-value. More positive D-values can be found in
Tables A.2–9.

C. D-value < 0 (Negatively impact classification accuracy)

In Appendix Table A, it’s easy to find some negative D-values.
Negative D-values mean that the transformation is terrible and
is not helpful in classifying. It demonstrates that it is better not
to transform for an inappropriate transformation. In Table A.4,
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FIGURE 2 | Comparison of classification performance between unfiltered data and filtered data. Note that the reciprocal is the most consistently effective data

transformation.

(fK )
2 obtained a lower F1 score, from 68.1 to 52.9%, and the D-

value was −15.2%. Similarly, (fN)
3 decreased the F1 score from

74.2 to 65.9% in Table A.5, and its D-value was−8.3%.
The D-value clearly shows the change of different solutions.

This performance difference occurs due to the intercorrelation
between the classification, feature engineering methods, and
transformations. The optimal combination is valuable to explore
when the available methods are limited, such as in the application
with low computation and low battery.

Furthermore, to analyze the results clearly, an average
calculation for an overall analysis was conducted based on
the six feature engineering methods, and the averaged results
were plotted in Figure 2. Meanwhile, the corresponding D-
values between original and transformed features were shown
in Figure 3. From Figures 2, 3, we see that the filter improved
the performance for the unbalanced, RUS, and SMOTE.
Overall, the SMOTE achieved greater improvement than the

unbalanced and RUS balanced datasets. In addition, most of the
transformed features achieved a positive improvement compared
to the original feature. In Figure 2, the red box pointed out
the best transformation for each figure. According to the
statistics of F1 score, 1

f
and f 3 made greater improvements,

which were 4.7% (Norm vs. AF) and 3.3% (Norm vs.
PVC). Furthermore, 1

f
achieved the five best results, and

f 3 achieved the four best results. From these two sides, 1
f

was the most stable mathematical transformation. Figure 4

shows the average F1 score of the unbalanced, RUS, and
SMOTE datasets, which were a further overall calculation
based on Figure 2. And Figure 5 shows the corresponding
D-values between original and transformed features. The
performance of Norm vs. APB, Norm vs. AF, and Norm vs.
PVC were improved by 1.9, 2.6, and 1.8% by 1

f
, 1

f
, and

f 3, respectively.

Frontiers in Digital Health | www.frontiersin.org 6 December 2020 | Volume 2 | Article 61095631

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Liang et al. Impact of Data Transformation

FIGURE 3 | D-value comparison between the original and transformed features. Note that the reciprocal is the most consistently effective data transformation.

FIGURE 4 | Overall impact of data transformations on classifying ECG heartbeats by averaging the unbalanced, RUS, and SMOTE results. Note that the reciprocal is

the most consistently effective data transformation.

Most of the previous research on this topic focused on the
RR interval and various other morphological features. Because
of the broad spectrum of varying heart diseases—as well as signal
noise—ECGwaveformmorphologies can vary greatly. One of the

most difficult issues in this field of study is the correct extraction
of ECG morphological features. Although some researchers have
achieved higher classification performances using methods based
on hundreds of ECG morphological features (20–23), ECG
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FIGURE 5 | Overall D-value changes after averaging the unbalanced, RUS, and SMOTE results. Note that the reciprocal is the most consistently effective data

transformation.

signals with high levels of noise andmanymorphological features
are usually incorrectly extracted (7, 24, 25), and this affects the
robustness and effectiveness of the morphological method used.
A simple feature extraction followed by optimal mathematical
transformation, as this paper proposes, could be a new way to
improve the detection of heart rate abnormalities.

A simple mathematical transformation, as discussed in this
study, would likely not use significant processing energy or
battery life and would be especially helpful in situations in which
time and mobile battery life are critical. In contrast, complex
calculations and classifiers, which take longer to run on even
high-performance computers, would likely be less useful, as
mobile devices are usually used for their simplicity and quickness,
both of which the algorithm in this study promotes. However,
mobile processing is evolving rapidly, so it may be possible to
incorporate more complex methods into mobile devices in the
near future. It is therefore important to continue improving
the accuracy and reproducibility of the transformed features so
they can compete with more complex methods while having the
advantage of speed and simplicity.

Our findings are significant as they show the impact
of mathematical transformations on extracted features
and the overall accuracy in detecting abnormal heartbeats.
Calculating the optimal feature (such as skewness in our
study) and the optimal mathematical feature transformation
is easily programmable into simple-to-use heart activity
detection devices, unlike their more complex counterparts.
As mentioned earlier, considering battery life, processing
power, and the urgent need for an algorithm that will
quickly classify heartbeats, whether for personal or
medical purposes, the reciprocal feature-engineering
method will perform as desired, especially considering the
stable improvement in classification performance of the
transformed feature.

It is also important to note that AF, PVC, and APB are some of
themost prevalent arrhythmic conditions, and this algorithmwill
definitely be useful in themedical and self-care industry.With the
development of digital health technology, wearable ECG devices
are proliferating rapidly. The reciprocal transformation method
used in this study is useful in this context for promoting the
real-time detection of heart activity by reducing complexity and
improving accuracy.

The findings of this study do not mean that we always have to
use reciprocal transformation to improve classification accuracy.
However, it shows the importance of feature transformation.
Meanwhile, it also has some disadvantages and limitations. First,
the sample size is small in this study, and more clinical data
is needed to explore these new findings. Our study focused on
ECG segments that are 10s in length, which only contain three
types of abnormal heartbeats. Future research will explore other
types of abnormalities. Second, the dataset is not balanced, which
required the use of methods to upsample and downsample the
dataset. Third, reciprocal transformation is applicable in solving
the AF and APB detection, but it is not helpful in recognizing
the PVC category. In other ways, the cube transformation is
more favorable in solving the PVC category recognition. It
is important to note that this is an interrelated optimization
problem. In addition, given the data we have, we found that the
reciprocal improves feature sensitivity and separability, which
is beneficial to the classification. However, only AF, APB, and
PVC were studied. More abnormal heartbeat events should be
explored and validated in future work. Meanwhile, for upcoming
studies, regardless of the application, we recommend testing
the reciprocal as a feature transformation step and examining
different classifiers for better classification results.

CONCLUSION

We tested the hypothesis that a simple mathematical
transformation can lead to better heartbeat classification,
which could improve studies that rely on transformed features
as biomarkers. Six mathematical transformations were evaluated
for heart activity classification performance, and we found
that some processing steps for original fZ made the F1 score
improve from 18.2 to 95.2%. Meanwhile, we also found that
reciprocal 1

f
improved the overall (tested over different feature

engineering methods and different dataset sizes) classification
accuracy to 4.7%. The main finding was that the application
of a reciprocal transformation to features extracted from the
ECG signals improved heartbeat classification consistently. The
proposed extra mathematical step is therefore useful for big data
analytics and can be easily incorporated into mobile and portable
health applications.
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Objectives: Multiple machine learning-based visual and auditory digital markers have

demonstrated associations between major depressive disorder (MDD) status and

severity. The current study examines if such measurements can quantify response to

antidepressant treatment (ADT) with selective serotonin reuptake inhibitors (SSRIs) and

serotonin–norepinephrine uptake inhibitors (SNRIs).

Methods: Visual and auditory markers were acquired through an automated

smartphone task that measures facial, vocal, and head movement characteristics across

4 weeks of treatment (with time points at baseline, 2 weeks, and 4 weeks) on ADT

(n = 18). MDD diagnosis was confirmed using the Mini-International Neuropsychiatric

Interview (MINI), and the Montgomery–Åsberg Depression Rating Scale (MADRS) was

collected concordantly to assess changes in MDD severity.

Results: Patient responses to ADT demonstrated clinically and statistically significant

changes in the MADRS [F (2, 34) = 51.62, p < 0.0001]. Additionally, patients

demonstrated significant increases in multiple digital markers including facial expressivity,

head movement, and amount of speech. Finally, patients demonstrated significantly

decreased frequency of fear and anger facial expressions.

Conclusion: Digital markers associated with MDD demonstrate validity as measures of

treatment response.

Keywords: major depressive disorder, Montgomery-Åsberg Depression Rating Scale, machine learning, computer

vision, digital biomarker, antidepressant treatment, digital phenotyping

INTRODUCTION

Patients with major depressive disorder (MDD) are heterogeneous in both their clinical
presentation and their response to antidepressant treatment (ADT) (1, 2). It is theorized
that treatment effects may be obfuscated because MDD measurements combine heterogeneous
symptoms that reflect distinct neurobiological and social processes while pharmacological
treatments target specific neurobiological processes such as serotonergic tone. For example,
patients with different subtypes of MDD, such as cognitive and neurovegetative phenotypes,
have demonstrated differential treatment response to distinct classes of ADTs (3, 4). As such,
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there are significant efforts to refocus treatment research on
measures that match the underlying neurobiological treatment
target (5). Disentangling the heterogeneity in MDD can lead
to better risk and treatment response assessment by shifting
the focus of investigation to narrow phenotypes that reflect the
underlying neurological deficit and target of treatment (5, 6).

The use of digital measurements that relate to underlying
biological phenotypes, termed digital phenotyping (7), has
been proposed as a methodology to improve measurement
of underlying illness by capturing digital proxy measures of
clinical functioning. An example of digital phenotyping is the
measurement of activity as a proxy measure of mood or
anxiety states using actigraphy or geolocation captured from
an individual’s smartphone (8, 9). While novel measurements
are promising, validation is required before such metrics
can be interpreted clinically. The key steps to validation
include comparison with traditional clinical measures, both
cross-sectionally and as they change with the disease or
treatment course (10). Such measures should strive for ease
of collection and increased sensitivity to facilitate frequent,
accurate assessment and should be validated in relation to
narrower biological phenotypes and treatment targets than those
that traditional endpoints assess. This will ultimately lead to
improved, dynamic treatment research and clinical decision
making (9) based on modulation of underlying neurobiological
deficits (11).

Based on prior knowledge, visual, and auditory data sources
represent a compelling direction for objective measurement of
patient functioning in MDD. Beginning with observations by
Emil Kraepelin, patients with depression have been shown to
produce slowed and spaced out speech, where they appear to
“become mute in the middle of a sentence” and demonstrate
altered facial behavior, regarding which he states, “the facial
expression and the general attitude are sleepy and languid”
(12). These clinical observations by Kraepelin have been
corroborated and extended with standardized methods to assess
facial expressions, vocal characteristics, and movement patterns
using audio and video data sources. The same paucity of speech
has been observed in acutely suicidal patients (13). Indeed,
both speech and facial/bodily movement represent sensitive
biological outputs that change with physiological and cognitive
variability (13–15).

A number of visual and auditory characteristics that
correspond to known MDD symptoms can now be directly
quantified. This includes reduced gross motor activity (16),
slumped posture (17), reduced head movement variability (17–
19), reduced facial expressivity (20), reduced speech production
(21), and increased negative affect (22, 23). The automated
measurement of these clinical features introduces the possibility
of objective automated assessment. Given that audio and video
data sources can be captured remotely, this further introduces
the possibility of greatly scaling the reach and frequency
of assessment. Increased scale and objectivity can facilitate
increased accuracy and accessibility of clinical risk and treatment
response assessments.

Serotonin signaling deficits represent a primary biological
target for treatment in MDD. Serotonergic tone mechanistically

impacts motor functioning directly through interactions with
dopamine and norepinephrine signaling (24–26). Postmortem
comparison of suicides compared with controls demonstrates
significant reductions of brain serotonin (27, 28). More specific
mapping of mRNA expression patterns demonstrates reduced
expression of serotonin mRNA subtypes that are relatively
widespread and other subtypes that are specific to the frontopolar
cortex amygdala circuitry (29). This circuitry governs the
expression and regulation of threat and anxiety (30).

In this exploratory pilot study, we tested the ability of
digitally measured facial, vocal, and movement behaviors to
measure depression severity and treatment response across 4
weeks of ADT in individuals with MDD. We hypothesized that
overall facial expressivity, amount spoken, and head movement
measured from video and audio captured during smartphone-
based tasks would increase in response to ADT. We also
hypothesized that negative facial affect (i.e., fear and anger)
would decrease in response to treatment. In doing so, we aimed
to evaluate the ability of remote, automated, digital assessments
to measure depressive symptomatology with reliability and
accuracy.We also hoped that findings from this pilot study would
inform future studies with larger sample sizes that can delve
further into how such measurements are affected in different
MDD subpopulations and varying treatment regimens.

METHODS

Study Participants
Participants were identified through advertisements posted on
social media. Individuals who self-identified as experiencing
depression were screened over the telephone to assess depression
symptoms. Potentially eligible subjects were then scheduled for
an in-person pre-screening visit with a clinician to assess primary
eligibility criteria. Individuals who met the criteria and provided
informed consent participated in a screening assessment with
a psychological rater, which included the Mini-International
Neuropsychiatric Interview (MINI), Structured Interview Guide
for the Montgomery–Åsberg Depression Rating Scale (SIGMA-
MADRS), Columbia Suicide Severity Rating Scale (C-SSRS),
and the Quick Inventory of Depressive Symptomatology Self-
Report (QIDS-SR16). All study activities were approved by an
institutional review board.

To be included in the study, subjects had to meet Diagnostic
and Statistical Manual of Mental Disorders, 5th Edition (DSM-
5) criteria for single or recurrent MDD based on the MINI with a
currentmajor depressive episode of≥8 weeks and aMADRS total
score of ≥20. Participants must have also been, in the opinion
of the study psychiatrist, medically stable and a good candidate
for treatment with a monoamine ADT. Key exclusion criteria
included significant medical complications (e.g., uncontrolled
cardiac or endocrine disorders, and diagnosis or treatment
for cancer within the past 2 years), significant psychiatric
complications (e.g., other primary psychiatric diagnoses and
substance use disorders), intellectual disability (though no
participants had to be excluded based on this criteria), or the use
of certain prohibited concomitant medications (e.g., prescription
painkillers/opioids; though use of benzodiazepines was not an
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exclusion criterion, none of the study participants reported
in this manuscript were on benzodiazepines). Subjects who
endorsed active suicidal ideation with intent or recent suicidal
behavior (within the past 6 months), or who, in the opinion
of the investigator, were at significant risk for suicidal behavior
were excluded.

Participants who met screening eligibility criteria
subsequently completed a visit with a study psychiatrist
and were prescribed an ADT consistent with standard of
care. Participants who demonstrated significant decreases in
depression severity, indicated by a 30% reduction in MADRS
total score over 4 weeks of ADT, were included in the sample (n
= 18). The sample included seven men and 11 women (mean age
= 30.2± 8.6). The mean body mass index (BMI) was 28.7 ± 5.6.
Baseline total MADRS scores ranged from 25 to 45 (mean= 34.1
± 4.9). Five study participants (28%) were on ADT at the time
of screening, and most (89%) had recurrent MDD. The mean
major depressive episode duration was 11 months, ranging from
2 to 43 months.

Treatment and Assessment Conditions
All patients were prescribed either a selective serotonin reuptake
inhibitor (SSRI) or serotonin–norepinephrine uptake inhibitor
(SNRI) at label-specified doses based on the clinician’s discretion.
Time elapsed between the first participant in and last participant
out was 6 months. Treatment response was measured at biweekly
intervals using two independent assessments described below.

Assessments
Clinical Assessment

Montgomery–Åsberg Depression Rating Scale: The MADRS is
a 10-item clinician administered scale for the measurement
of MDD with validated clinical cut points for severe (>34),
moderate (20–34), mild (7–19), and asymptomatic (<7)
depression. The MADRS has demonstrated validity as a sensitive
measure of ADT response (31). The MADRS was administered
by trained psychological raters with prior scale experience at
week 0 (baseline) and at∼2 and 4 weeks posttreatment initiation.

Remote Smartphone-Based Video Assessments

All participants were asked to download the AiCure app
(AiCure, LLC, New York, NYwww.aicure.com) on their personal
smartphone for measurement of digital markers of MDD. They
were then trained by the study team on how to use the app
to participate in remote assessments. This software platform
has historically been used in clinical research for reporting of
patient behavior to clinicians, including medication adherence,
electronic patient-reported outcomes, and ecological momentary
assessments, with considerable work done on patient acceptance
and usability (32, 33). An additional functionality of capturing
video and audio in response to prompts (as described below) was
utilized for the purposes of this study (34, 35).

Participants completed weekly remote assessments for the
length of the study. The assessment consisted of a smartphone-
based adaptation of a paradigm to examine emotional valence
in response to varied emotional imagery (27, 28, 36). At each
assessment time point, they were prompted to view images taken

from the Open Affective Standardized Image Set (OASIS) (37).
The image set has emotional valence scores for each image based
on responses recorded from a large, heterogeneous population,
with lower scores referring to negatively valenced images and
higher scores referring to positively valenced images. The valence
scores were z-scored, and images with resulting scores of −0.5
to 0.5 standard deviation from the mean were considered
neutrally valenced, images with resulting scores <1.5 standard
deviation from the mean were considered negatively valenced,
and images with resulting scores >1.5 standard deviation from
the mean were considered positively valenced. The space in
standard deviations between the classifications was added to
ensure adequate separation between the image valences while
also ensuring that enough images were left in each class to allow
for there to be no repetition of images presented to the patients
over the course of the study.

As part of the weekly remote assessments, patients were shown
three positive images and three negative images padded with
seven neutral images in between. The images were shown in
series, starting with a neutral image, followed by a positive
image, and then another neutral image before showing a negative
image. This pattern was repeated until three positive and three
negative images were shown and ended with a neutral image.
This order was selected to avoid drastic shifts in image valences,
i.e., switching directly between negative and positive images; by
padding with neutral images, we hoped to alleviate any priming
effects that may be present. For each image, the participant was
asked to speak to the image by describing what they see in the
picture and how it makes them feel (see Figure 1) and were
required to speak for at least 10 s per image. Special care was
also taken to ensure that participants were not shown the same
image twice over the course of the study in order to limit any
habituation effects of participating in the assessments.

Digital Marker Calculation
Video and audio were captured continuously during the
smartphone assessment using the smartphone front-facing
camera and microphone. Data were uploaded and processed
through Health Insurance Portability and Accountability
Act (HIPAA)-compliant backend services for transfer and
storage of protected health information (PHI). Video was
extracted for analysis for the portion of the task where the
participant is observing the image and responding to it.
Both video and audio were extracted and analyzed for the
portion of the task when the participant was describing
the image.

All analyses were conducted in python with use of open-
source tools. All digital biomarker variables analyzed were
acquired through the use of OpenDBM, an open-source
software package that combines tools for measurement
of facial, vocal, and movement behaviors, developed
partially for the research presented in this manuscript
(https://github.com/AiCure/open_dbm). Code for all subsequent
statistical analyses presented in this manuscript has also been
made available online: https://github.com/AiCure/ms_dbm_
adamsclinicalstudy. A total of 17 digital measurements in
addition to the MADRS scores were used to measure response
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FIGURE 1 | Depiction of the smartphone-based assessment that all individuals completed. Video and audio of participant responses were recorded during the

assessment and used to quantify behavioral characteristics and subsequently measure digital markers of major depressive disorder (MDD) severity.

TABLE 1 | Repeated-measures ANOVA results for all visual and voice markers measured in response to positive, negative, and neutral visual stimuli from baseline to 4

weeks of ADT.

Neutral stimuli Positive stimuli Negative stimuli

Sph. F p +/– Sph. F/W p +/– Sph. F p +/–

Voice percentage T 5.60 0.0095 + T 3.59 0.0042 + T 4.66 0.0187 +

Anger intensity T 13.28 <0.0001 + T 21.19 <0.0001 + T 19.96 <0.0001 +

Anger count F 2.54 0.1214 n/a F 0.92 0.3787 n/a F 2.40 0.1307 n/a

Disgust intensity T 12.00 0.0002 + T 9.00 0.0009 + T 9.43 0.0007 +

Disgust count T 0.51 0.6033 n/a T 1.33 0.2796 n/a T 0.31 0.7358 n/a

Fear intensity T 41.23 <0.0001 + T 32.50 <0.0001 + T 60.38 <0.0001 +

Fear count F 4.84 0.0413 – F 0.67 0.5182 n/a F 0.77 0.4287 n/a

Happiness intensity F 6.03 0.0232 + F 5.21 0.0306 + F 4.38 0.0445 +

Happiness count T 0.03 0.9666 n/a T 0.46 0.6362 n/a F 1.72 0.2089 n/a

Sadness intensity T 13.53 <0.0001 + T 8.67 0.0012 + T 10.54 0.0004 +

Sadness count F 0.59 0.4690 n/a T 2.05 0.1473 n/a T 1.90 0.16815 n/a

Surprise intensity T 22.29 <0.0001 + T 17.31 <0.0001 + T 26.10 <0.0001 +

Surprise count T 0.14 0.8665 n/a T 0.20 0.8194 n/a T 0.16 0.8497 n/a

Overall expressivity T 32.60 <0.0001 + T 40.67 <0.0001 + T 36.95 <0.0001 +

Head movement mean F 8.90 0.0069 + F 3.58 0.0413 + F 2.49 0.1335 n/a

Head movement standard deviation F 3.68 0.0378 + T 1.53 0.2333 n/a F 1.59 0.2274 n/a

Head pose change mean F 5.01 0.0325 + T 3.18 0.0570 + F 1.41 0.2595 n/a

In particular, overall facial expressivity, voice percentage, and head movement markers showed an overall increase in response to treatment, consistent with the decrease in MDD

symptom severity. Sph. indicates sphericity assumption being true or false, F indicates F-statistic, p indicates p-value of F-statistic, and +/– indicates increased or decreased values

compared with baseline (n/a indicates no significant change was observed).

ADT, antidepressant treatment; MDD, major depressive disorder. Bold indicate the main findings.

to treatment. A subset of the results from those comparisons is
presented in the main text (Table 1). A full list of comparisons
is provided Supplementary Table 1. There was no primary
endpoint that was being analyzed as part of this study; rather, the
ability of a set of digital markers (facial, vocal, and movement)
was being analyzed individually, with the collective comparisons
indicating the usefulness of digital measurement tools
in general.

Facial Marker Calculation

First, all videos were segmented into individual video frames at
30 frames per second. Next, each frame was segmented into three
matrices consisting of red, blue, and green spectrum pixels for
use in computer vision (CV) modeling using OpenCV, an open-
source CV software package (38). Subsequently, each frame was
analyzed using OpenFace (39), an open-source software package
that has demonstrated validity next to expert human ratings
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of Facial Action Coding System (FACS) (23), a standardized
methodology to measure facial movements that reflect the
activity in the underlying human facial musculature used in the
production of basic emotions (i.e., happiness, fear, anger, surprise,
sadness, and disgust).

Specifically, for each frame OpenFace outputs, (1) binary
activation of each facial action unit (AU) was utilized to
calculate the presence of facial emotions, and (2) the degree
of expressivity for that AU was utilized to calculate intensity
of facial emotions. From AU measurements, emotion behavior
was calculated including (1) the presence or absence of each
emotion for each frame selected as the most probable based on
the observed AU activation, termed “count,” and (2) the level
of activation for each emotion and across all emotions, termed
“intensity.” Following the calculation of these variables for each
frame, a set of variables was calculated that represented the count
of emotions expressed across all frames divided by number of
frames (fear count, anger count, surprise count, sadness count,
happy count, and disgust count) and the intensity of emotion
averaged over all frames (fear intensity, anger intensity, surprise
intensity, sadness intensity, and disgust intensity). Additionally,
a composite score of overall facial intensity summed across all
emotions was calculated (overall facial expressivity).

Voice Marker Calculation

Recordings were segmented into speech and non-speech parts
using parselmouth, an open-source software package that utilizes
Praat software library (40) functions for vocal analysis (41). The
ratio of speech to white space between words was calculated to
represent the amount of time participants spoke compared with
non-speech (voice percentage).

Movement Marker Calculation

For each frame of video, head position and angle were acquired
using OpenFace. The average framewise displacement of the
head between frames (head movement mean) and its standard
deviation (head movement standard deviation) were calculated as
measures of head movement. The mean change in angle of the
head (head pose change mean) was calculated as an additional
measure of head movement.

Data Analysis
Change over time in MADRS and facial, voice, and movement
variables (termed digital markers) was calculated using repeated-
measures analysis of variance (ANOVA). To avoid capitalizing on
change when doing multiple comparisons or testing for multiple
hypotheses, p-values were corrected using false discovery rate
(FDR) correction (42). The sphericity assumption, which is
the condition where the variances of the differences between
all combinations of related groups are equal, was formally
tested for each ANOVA. When this assumption proved to
hold, the F-statistic and corresponding p-value were used.
When the sphericity assumption was violated, Mauchly’s W
statistic and corresponding p-value were used (43). Additionally,
pairwise comparisons were calculated between each time point to
determine where change across time points occurs (i.e., baseline

to 2 weeks, baseline to 4 weeks, and 2–4 weeks) controlling for
FDR using Tukey’s test.

RESULTS

Depression Response
Participants demonstrated a main effect for change in MADRS
scores from baseline to week 4 [F(2, 34) = 51.62, p < 0.0001].
Descriptive statistics demonstrate clinically relevant change
with patients moving from the clinical to non-clinical range
(Supplementary Table 1; Figure 2).

Participants demonstrated change in MDD severity as
measured by digital markers. To align time points between digital
markers and the MADRS scores, measurements from days 7 to
21 were averaged as the week 2 time point, and measurements
from days 22to 35 were averaged as the week 4 time point. Due
to missed remote assessments, a subset of the total sample of
18 had complete data across time points, with n = 12 for facial
markers and n = 11 for voice markers. All statistical results for
digital markers are presented in Table 1. Examples of marker
profiles across treatment are presented in Figure 2 alongside
the participants’ MADRS profile across treatment. All scores,
including MADRS, were normalized to a range of 0–1 to allow
visual comparison of the magnitude of change on digital markers
in comparison with change in MADRS clinical scores (Figure 2).

Facial Markers
All facial activity measures across all emotions (fear intensity,
anger intensity, surprise intensity, sadness intensity, disgust
intensity, and overall expressivity) along with the overall
expressivity score demonstrated significant positive change from
baseline to week 4 in response to all image prompts (positive,
neutral, and negative; see Table 1). This result indicates that
ADT produces a main effect on facial activity overall, which is
not bound to one particular facial musculature group or type of
external stimulus (Figure 2).

Across conditions, the frequency of expressions of anger
(anger count) decreases. The frequency of expressions of fear
also decreases, but only in response to neutral and negative
stimuli (fear count). Additionally, the frequency of expressions
of happiness (happy count) decreases in response to negative
stimuli only. Together, results indicate a general decrease in
expressions of anger and context-specific decreases in fear and
happiness expressions.

Voice Markers
The single variable representing the ratio of speech to
silence across sentences uttered (voice percentage) additionally
demonstrated significant positive change in response to ADT
across all conditions, indicating an increase in speech relative
to silence. This result is consistent with increased motor/muscle
activity observed in facial activity (Figure 2).

Movement Markers
Additionally, movement parameters demonstrated consistent
effects across conditions. The rate of head movement (head
movement mean) and the degree of variability in the rate
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FIGURE 2 | Response to treatment as measured by two independent assessments. Mean for each time point and standard error bars are shown. Results

demonstrate treatment’s significant effect on digital markers, which are highly concordant with change in depression symptom severity. (A) Montgomery–Åsberg

Depression Rating Scale (MADRS) scores acquired at baseline (BL), week 2, and week 4 showed significant decrease in response to antidepressant therapy (ADT)

[F (2, 34) = 51.62, p < 0.0001]. (B) Overall facial expressivity measured in response to positive [F (2, 28) = 40.66; p < 0.0001], neutral [F (2, 28) = 32.6; p < 0.0001], and

negative [F (2, 28) = 36.95; p < 0.0001] images demonstrated a significant increase in response to ADT as MADRS scores decreased. (C) Percentage of frames with

voice measured in response to positive [F (2, 26) = 3.59; p = 0.04], neutral [F (2, 26) = 5.59; p 0.009], and negative [F (2, 28) = 4.65; p = 0.02] images also demonstrated

a significant increase in response to ADT as MADRS scores decreased. All values in (B,C) were normalized between 0 and 1.

of head movement (head movement standard deviation) both
demonstrated significant increases in response to ADT. Head
pose change mean also demonstrated significant increase during
neutral and positive stimuli (see Table 1).

DISCUSSION

Results demonstrate a consistent effect of monoamine ADTs
(SSRIs/SNRIs) on digital markers of motor functioning, which
are highly concordant with change in MDD symptom severity.
Specifically, facial and vocal activities demonstrated robust
increases across 4 weeks following the initiation of treatment,
which mirrored decreases in symptom severity as assessed by
the clinician administered MADRS. The current findings suggest
that SSRI/SNRI treatment, which produces graded increases in
serotonin, reduces depression severity in part by rescuing motor
functioning (e.g., increased facial expressivity and increased
speech production).

Additionally, a decrease was observed across conditions in
the expression of anger. Patients with depression have long
demonstrated increased rates of anger than healthy counterparts
(44, 45). Furthermore, polymorphisms of the serotonin 1B
receptor that are associated with increased depression and suicide
risk are also associated with increased anger and fear (46, 47).
These results further indicate that the observed change in digital
markers in response to serotonin reuptake inhibitors reflects a
more specific phenotypic change in measurement of serotonergic
profile in the central nervous system.

Serotonin levels in the central nervous system are known to
have both direct and indirect effects (via dopamine) on motor
activity (48, 49). Both suicide (as measured in postmortem
brain tissue) and suicidal attempts, a key symptom class of
MDD, are associated with depleted serotonin (50). As such,
digital measurements that reflect motor behavior may represent
a sensitive measure of serotonergic tone and potentially other
neurotransmitter activities that affect motor functioning and
ultimately the overall clinical presentation.

The current work presents a number of limitations that should
be overcome through research that confirms and extends the
findings reported. First, while treatment success was confirmed
with clinical measures of MDD, dosage and treatment type were
not controlled in a manner to make direct inferences about
dose–response relationships. Future studies with larger sample
sizes that consider different treatment types will have to be
conducted to make comparisons on how they might affect digital
measurements in varying ways. In addition, the current study
was not adequately powered to assess the intra-subject variability
in treatment response. Future research should provide more
extensive experimental control of medication and dosage to
assess the relationship between magnitude of clinical response
and digital markers of motor activity.

Second, while facial movement results were robust, we do
not know if findings related to specific emotions would rise
to significance given a larger sample size or more sampling
occasions of the stimuli. One of the goals of the data
collection was to implement a very simple remote assessment
of objective visual and auditory markers to facilitate ease
of frequent assessment. However, the minimum sample to
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accurately measure each marker needs to be assessed through
the use of larger samples. For example, we observed decreases
in happiness in response to negative images. This result is
difficult to directly interpret. However, given a larger sample, we
may be powered to identify increases in happiness in response
to positive images, consistent with observations that depressed
patients display context-inappropriate affect (51, 52). It is also
possible that priming to the stimuli, i.e., the images shown
during the remote assessments, was a factor in the behavior
recorded and subsequently the data analyzed; both priming to the
stimuli and habituation to the assessment need to be evaluated in
future work.

Third, subtypes of depression and the range of depression
severity observed at the start of treatment were not evaluated
as variables in the analysis presented in this study due to the
small sample size used. However, the findings observed in this
study will greatly inform future work to determine sample sizes
needed to measure how digital measurements of facial, vocal, and
movement behaviors may differ across subpopulations of MDD
as well as different treatment types.

Ultimately, the current work holds promise as an example
of the potential to observe treatment effects that reflect
underlying neurobiological target engagement by shifting the
focus to monotonic neurobiologically based domains rather than
heterogeneous diagnoses (6). Further work should determine
if these same markers are relevant in other disorders and
treatments that are mechanistically affected by serotonergic
tone, as well as their relevance to other disorders with
motor and movement profiles including Parkinson’s disease and
schizophrenia (53). Second, the current work demonstrates the
success of non-invasive objective digital assessment as a tool to
assess treatment effects in MDD, which was the core focus of the
study. Importantly, no markers were scientifically novel; rather,
they were based on validated methods that are open and public
and have been previously reported in scientific literature.

The current work demonstrates, in the context of MDD, that
these data sources can be captured remotely through ubiquitously
available digital tools to provide measurements that are at
least as robust as traditional rating scales. It will be important
to determine if such models reliably track with other disease
states and treatment responses, as such models and applications
have significant potential to increase the rate and accuracy of
treatment decision making.

Together, the current study demonstrates that scalability,
through digital measurement, of monotonic characteristics
that reflects the underlying central nervous system activity.
This observation holds promise that frequent remote digital
assessment can be used to monitor, titrate, and even personalize
treatment for MDD and other psychiatric or neurological
conditions by grounding the measurements in narrow

phenotypes that match the underlying mechanistic target
of the treatment.
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Supplementary Figure 1 | Clockwise from top-left, weekly change in digital

measurement of overall expressivity, voice percentage, head pose change, and

head movement. Each of the variables have been split up by the kind of image

that the participants were speaking to: negatively, neutrally, or positively valenced

images. In the comparison presented in the main text, values for week 2 and 3

and values for weeks 4 and 5 were averaged into single time points to align the

digital measurement time points with the MADRS time points for side-by-side

comparison. It also increased the sample size, as not all participants provided

consistent weekly data and aggregation across weeks increased the n that could

be included in the repeated measures ANOVA. These figures demonstrate the

weekly change, further emphasizing the point made in the main text that digital

measurements can be conducted with greater frequency than traditional

assessments such as the MADRS. However, in these figures, the same patients

do not represent each time point. This explains the dip in values is observed at

time point 5, which is biased toward the subset of patients that had week 5 data

rather than being indicative of a consistent trend.
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Collecting and analyzing data from sensors embedded in the context of daily life has

been widely employed for the monitoring of mental health. Variations in parameters

such as movement, sleep duration, heart rate, electrocardiogram, skin temperature,

etc., are often associated with psychiatric disorders. Namely, accelerometer data,

microphone, and call logs can be utilized to identify voice features and social activities

indicative of depressive symptoms, and physiological factors such as heart rate and

skin conductance can be used to detect stress and anxiety disorders. Therefore,

a wide range of devices comprising a variety of sensors have been developed to

capture these physiological and behavioral data and translate them into phenotypes

and states related to mental health. Such systems aim to identify behaviors that are

the consequence of an underlying physiological alteration, and hence, the raw sensor

data are captured and converted into features that are used to define behavioral

markers, often through machine learning. However, due to the complexity of passive

data, these relationships are not simple and need to be well-established. Furthermore,

parameters such as intrapersonal and interpersonal differences need to be considered

when interpreting the data. Altogether, combining practical mobile and wearable systems

with the right data analysis algorithms can provide a useful tool for the monitoring and

management of mental disorders. The current review aims to comprehensively present

and critically discuss all available smartphone-based, wearable, and environmental

sensors for detecting such parameters in relation to the treatment and/or management

of the most common mental health conditions.

Keywords: mental health monitoring, wearables, personal sensing, physiological and behavioral monitoring,

digital phenotyping

INTRODUCTION

Mental illness is a health condition that alters a person’s thoughts, feelings, and/or behaviors
and causes the person distress and difficulty in functioning. The aggregate lifetime prevalence of
commonmental disorders across 39 countries has been estimated at around 30% (1). Mental health
disorders are a major contributor to global disease burden due to their high prevalence, impairment
of critical brain functions, and clinical course that is either chronic or remitting and relapsing.
Some of the general symptoms and warning signs for mental disorders include marked personality
change, inability to cope with problems and daily activities, strange and grandiose ideas, extreme
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mood swings, excessive anxieties, violent behavior, and thinking
or talking about suicide or harming oneself (2).

Conventionally, mental disorders are diagnosed by self-
report screening questionnaires or based on the Diagnostic
and Statistical Manual of Mental Disorders V. Therefore,
clinical diagnosis of mental disorders is achieved through the
patient’s subjective description of the symptoms, interviews and
psychological questionnaires, and the physician’s own expertise.
However, the conventional assessment of psychiatric disorders
based on a patient’s or informant’s recall is subject to inherent
biases, and unreliability as the key feature in mental disorders
is the variation of mood over time. In addition, mental
health disorders are often chronic and relapsing in nature,
and thus, long-term treatment management and assessment
are essential for patient symptom reduction and recovery, but
this is difficult to achieve with traditional methods, which rely
on retrospective reports that are subject to recall bias. The
lack of accurate methods for characterizing behavior and the
need for regular monitoring of mental health conditions poses
several physical and economical challenges, which, in recent
years, has prompted great interest in digital phenotyping of
mental health disorders through monitoring of physiological and
behavioral parameters that can be translated into biomarkers
of conditions, such as depression, anxiety disorders, bipolar
disorder, and schizophrenia.

Physiological measures, such as heart rate variability (HRV),
skin temperature (ST), electromyography (EMG), blood volume
pulse (BVP), blood pressure, and cortisol levels as well as
behavioral data, including sleep duration, social activities, and
voice features, are among the many factors influenced by many
mental health disorders. Consequently, capturing physiological
and behavioral data has been widely implemented for the
monitoring and general management of mental health.

In general, context sensing, personal sensing, mobile sensing,
and digital phenotyping are all terms referring to identifying
behaviors that relate to physical and mental health (2). Personal
sensing involves collecting and analyzing data from sensors
embedded in the context of daily life to detect and measure
physical properties. To translate the raw sensor data into
markers of behaviors and states related to mental health, the
captured data is converted into features that are used to define
behavioral markers through machine learning (3). Smartphones
and connected devices, such as smartwatches, can be used
to monitor behavior through passive detection of location,
acceleration, social activities, and voice features.

Passive collection of physiological and behavioral data has
been implemented for the diagnosis of various mental health
disorders. This includes a wide range of studies that have
investigated smartphone-based, wearable, and environmental
sensors for digital phenotyping and monitoring of mental health.
Until recent years, direct measurement of physiological data (e.g.,
HR, sleep quality, skin conductance) has been impractical as such
devices have traditionally been bulky, large, and expensive (4).
However, the development of various wearable devices, such as
wristbands, smartwatches, and fitness tracking devices, and the
common use of smartphones have facilitated the collection of
biologically significant data. As a result, new technologies are

rapidly being developed in fostering mental health and will allow
for collection and analysis of data derived from self-reports,
monitoring of behavioral patterns, and physiological sensing.
More importantly, patients with serious mental illnesses have
mostly shown good adherence and interest in using such devices
to collect physiological and behavioral data (4), which would
provide a vital complement to clinical visits.

The enthusiastic consumer and patient use of mobile devices,
the availability of high-speed wireless internet, and a high
prevalence of connected mobile devices with operating systems
have culminated in patient and provider interest in monitoring
mental symptoms and capturing behavioral and physiological
data. This paper provides a review on recent developments
in digital phenotyping based on physiological and behavioral
monitoring of symptoms related to mental health and discusses
the impact of such technologies in mental health care as, despite
the expanded interest in mobile and connected technology in the
arena of mental health, very few e-tools have been well-studied
and validated for their impact when implemented on a broad
scale (4).

METHODS

Searches of the literature were conducted in Web of Science,
PubMed, and Ovid [including Journals from Ovid, CityLibrary
Journals@Ovid, AMED (Allied and Complementary Medicine),
Embase, Global health, and Ovid MEDLINE]. Keywords used
in this search included “sensors,” “mental health monitoring,”
“personal sensing,” “mental disorders,” “physiological and
behavioral monitoring,” and “digital phenotyping.” Database
searches yielded 851 results of which 21 were review papers. The
references of relevant review papers were scanned to identify
applicable studies. From the combinations of the keywords and
36 relevant articles found in review references, 866 articles were
identified. Studies investigating physiological and behavioral
monitoring in any condition other than mental disorders were
excluded. Studies in which no sensing device was employed for
monitoring physiological and behavioral parameters were also
excluded. From careful analysis of titles and abstracts, 139 articles
were identified, 73 of which met the inclusion criteria and were
included for analysis (Figure 1).

The literature search yielded 73 studies, 55 of which
investigated wearable, mobile phone, and ambient sensors,
summarized in Tables 1–3. The remaining 18 papers focused
on identifying behavioral and physiological changes linked
to mental health and used existing monitoring systems
without considering and investigating a specific sensing
mode. These studies focused on identifying mental health–
related physiological and behavioral changes, some of
which are specifically discussed in section Mental Health–
Related Physiological and Behavioral Changes. The years of
publications analyzing different sensing devices for mental
health monitoring ranged from 2008 to 2020 with the
years 2015 to 2020 producing the majority of publications
(Figure 2). Wearables and sensor-enabled smartphone
applications constituted the majority of studies with 24
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FIGURE 1 | Diagram of the methodology used for the literature review process.

and 22 publications, respectively. A total number of nine
studies were found to investigate ambient sensors in mental
health monitoring.

In sorting the included studies by application types, it is
demonstrated that the majority of publications considered
in this review investigated the use of monitoring systems for
stress along with anxiety disorders and depression with just
2% difference between the two. Bipolar disorder monitoring,
accounting for 15% of the studies, is the next well-studied
condition for employment of behavioral and physiological
monitoring systems. Schizophrenia and posttraumatic stress
disorder (PTSD) monitoring comprise the smallest number of
publications (Figure 3A). The application of different devices,
including wearable, mobile phone, and ambient sensors,
was also analyzed for each mental health condition. In the
management of stress and anxiety disorders, wearable sensors
were the most employed monitoring systems, mostly sensing
physiological parameters, such as HR, electrodermal activity,
and ST to evaluate anxiety levels. Whereas, for depression
and bipolar disorder most of the studies used smartphone
sensors as the monitoring system. In the monitoring of
depression, the majority of studies focused on behavioral
parameters, including physical activity, sleep duration,
and conversation frequency to identify depressed mood.
Furthermore, to assess the pathological mood states involved
in bipolar disorder, physiological signals, such as HR and
respiration activity, as well as behavioral parameters, such as
mobility, social activity, sleep patterns, and voice features, were
monitored. Although ambient sensors are generally the least

investigated devices for mental health monitoring, they have

been widely considered for detecting cognitive impairment
(Figure 3B).

MENTAL HEALTH–RELATED
PHYSIOLOGICAL AND BEHAVIORAL
CHANGES

A wide range of studies have demonstrated the association
between physiological and behavioral patterns and different
mental disorders. For example, it has been suggested that
demonstrations of more phone activity from a combination
of increased GPS position changes, erratic accelerometer
movements, and increased social activity may be indicative of
the manic phase in bipolar patients (55). Moreover, analysis
of voice data through machine learning and natural language
processing and detection of the pitch, tempo, and loudness of
voice might serve as a potential marker of many psychiatric
illnesses, such as depression, anxiety, and even suicidality (56).
Portable noise sensors and GPS trackers have been used to
identify links between mental health and personal noise exposure
with high exposure to noise at the entire day level associated
with worse mental health (57). Moreover, HRV, respiratory sinus
arrythmia (RSA), electrodermal activity (EDA), ST, EMG, BVP,
blood pressure, and cortisol levels are among the physiological
markers that react to emotional experiences and can be used to
detect stress and other emotional states (58). Wearables can also
measure variables such as skin conductance and HR with greater
asymmetries in skin conductance amplitude on the two sides
of the body identified as an indicator of emotional arousal (3).
Therefore, sensor data can be used to monitor human emotion
states. However, the signals identified as physiological responses
during various emotional states should be stable and reliable
(59). Data from accelerometer-based wearable devices have also
been used to detect the association between physical activity and
depression (60). Although decreased levels of mobility and social
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TABLE 1 | Wearable physiological and emotional monitoring research prototypes.

Reference/product Purpose Device form factor Sensors/parameters Clinical application

Wearables

Jiang et al. (5), Newcastle

University, UK, 2019

Audio sensing, motion

detection, behavior

monitoring

Watch Light and temperature sensors, microphone,

accelerometers

Anxiety, autism

Guo et al. (6), Purdue University,

USA, 2016

Emotion recognition Scarf Heart rate sensor, Electrodermal Activity

(EDA) sensor

Emotion regulation

Hui et al. (7), The University of

Reading, 2018

Emotion recognition Glove PPG, electrodermal activity, skin temperature,

and electromyography (EMG) sensors

Emotion regulation

MyFeel (8), Sentio Solutions Inc Anxiety detection wristband Heart rate, electrodermal activity, and skin

temperature

Emotion recognition and

stress management

Reveal (9), Awake labs Anxiety detection Smartwatch Heart rate, electrodermal activity, and skin

temperature

Emotion recognition and

stress management

Thync (10), Thync Global Inc Increase energy and lower

stress

Patch Electrical Nerve Stimulation (TENS) and

Transcranial Direct Current Stimulation (tDCS)

Neurostimulation

AutoSense (11), Washington, USA,

2011

Stress detection Sensor Suite Electrocardiogram (ECG) measurement,

respiratory inductive plethysmograph (RIP),

Galvanic skin response (GSR), skin and

ambient temperature sensors, three-axis

accelerometer

Stress management

Mobile Sensing Platform (MSP) (12),

Choudhury et al., 2008

Automatic activity

recognition

Wearable device Microphone, visible light, pho-transistor,

three-axis digital accelerometer, digital

barometer, temperature, and digital compass

Cognitive assistance

Fletcher et al. (13), Boston, USA,

2011

ECG heart monitoring Neoprene band Electrodermal activity (EDA), 3-axis motion,

temperature and electrocardiogram (ECG)

Posttraumatic stress

disorder (PTSD),

drug-addiction

Vidal et al. (14), Lancaster

University, UK, 2011

Monitoring the link

between eye movements

and cognition

Wearable eye

tracking equipment

Electrooculography (EOG) Mental health monitoring

Psyche (15), Lanata et al.,

University of Pisa, Italy, 2015

Monitoring of pathological

mood states in bipolar

disorder

T-shirt Electrocardiogram-Heart Rate Variability

(HRV), piezoresistive sensors, tri-axial

accelerometers

Bipolar disorder

monitoring

Prociow et al. (16), University of

Nottingham, UK, 2012

Monitoring of bipolar

symptoms

Wearable and

environmental

sensors

Belt-worn accelerometer, wearable light

sensor, and Bluetooth encounters, PIR

motion sensors, door switches, remote

control usage monitor

Bipolar disorder

monitoring

Jin et al. (17), Newcastle, UK, 2020 Analyzing behavior signals

and speech under

different emotions

Wristband 6D acceleration and angular sensor,

temperature and humidity sensor, MEMS

microphones, audio code unit

Anxiety and depression

monitoring

Can et al. (18), Istanbul,Turkey,

2019

Continuous stress

detection

Samsung

Smartwatches,

Empatica E4

wristbands

Heart rate activity, skin conductance, and

accelerometer signals

Stress detection

Dagdanpurev et al. (19), Tokyo,

Japan, 2018

Measuring heart rate (HR),

high frequency (HF)

component of heart rate

variability (HRV), and the

low frequency (LF)/HF

ratio of HRV before,

during, and after the

mental task

Fingertip sensor Photoplethysmograph (PPG) sensor Major depressive disorder

(MDD) screening system

Horiuchi et al. (20), Kanagawa,

Japan, 2018

Measuring frequency,

duration, and velocity of

eye blinks as fatigue

indices

Smart glass Optical sensor: dye-sensitized photovoltaic

cells

Fatigue assessment

Minguillon et al. (21), Granada,

Spain, 2018

Classifying stress levels

based on EEG, ECG,

EMG, and GSR

Portable system RABio w8 (real-time acquisition of biosignals,

wireless, eight channels) system,

electroencephalography, electrocardiography,

electromyography, and galvanic skin

response

Stress detection

(Continued)
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TABLE 1 | Continued

Reference/product Purpose Device form factor Sensors/parameters Clinical application

Tsanas et al. (22), Edinburgh,

United Kingdom, 2020

Monitoring activity, sleep,

and circadian rhythm

patterns

Wrist-worn sensor Actigraphy, light, and temperature data Posttraumatic stress

disorder (PTSD)

monitoring

Razjouyan et al. (23), Houston,

USA, 2020

Quantifying physical

activity patterns and

nocturnal sleep using

accelerometer data

Chest-worn sensor Accelerometer data Identification of cognitive

impairment

McGinnis et al. (24), Burlington,

USA, 2018

Detection of internalizing

disorders in children

Belt-worn

measurement unit

Motion data Early detection of

depression and anxiety

disorders

Correia et al. (25), Braga, Portugal,

2020

Monitoring changes in

Heart rate variability (HRV)

elicited by a mentally

stressful task

Earlobe PPG sensor PPG sensor Stress detection

Mohino-Herranz et al. (26), Madrid,

Spain, 2015

Detection of stress,

mental overload and

emotional status in real

time

Vest Electrocardiogram (ECG) and thoracic

electrical bioimpedance (TEB) signals

Stress detection

communications were found to be indicative of higher depressive
symptoms, factors such as light intensity and smartphone
screen usage were unlikely to be predictive of depressed
mood (61). Also, physiological sensing, such as measurement
of HRV data as a marker of decompensation, has shown
promising results in monitoring schizophrenia. Furthermore,
Depp et al. suggests that, in patients with schizophrenia, less
GPS mobility is associated with greater negative symptom
severity and motivational deficit (62). However, it is important
to note that these relationships are not simple, and due to
their complexities, passive data may still have limited clinical
utility (63). Moreover, the validity of the data collected with
consumer technologies and how the information collected on
these platforms correlates with the disorders should be further
investigated (4).

GENERAL WORKFLOW OF MENTAL
HEALTH MONITORING SYSTEMS

The internet of things–based layers involved in the structure
of mental health monitoring systems is demonstrated in
Figure 4. The general system collects health information from
different sensing devices, including wearables, mobile phone
sensors, and ambient sensors. These devices are capable of
recording various physiological and behavioral data, including
HR, lung function, sleep duration, etc. The sensing layer
is typically followed by network and analysis layers, which
involve employing the appropriate data acquisition and analysis
techniques to eventually translate the raw sensor to achieve
digital phenotyping in the application layer. The network layer
comprising wired or wireless networks (e.g., Bluetooth, Wi-
Fi) performs the collection and storage of data. Thereafter, the
raw data is processed to extract features in the analysis layer,
which is discussed in detail below. The activity classification

step eventually categorizes the extracted features into different
conditions in the application layer.

Sensing Layer
An important aspect in the development of mental health
monitoring systems is the sensing layer, whose role is to collect
and transmit physiological, behavioral, and/or environmental
parameters, thereby detecting changes in these in a continuous
manner. To achieve the measurement of attributes related
to individuals, various sensors, such as inertial sensors (e.g.,
accelerometer, gyroscope, or barometric pressure sensors) or
physiological sensors (e.g., spirometer, ST, and blood pressure
sensors) can be used. Moreover, a number of on-object sensors,
such as environmental sensors, can be used for measuring indoor
environmental conditions, including humidity and temperature.

The studies investigating wearable and mobile monitoring
systems require constant interactions between fields such as
medicine and computer science. Therefore, prerequisites are
an important phase in these studies, some of which include
the need for user consent on data collection; ethical approvals;
and IT infrastructure, software, and hardware requirements
(64). Furthermore, the type and number of sensors are often
determined on the basis of application, all while considering their
impact on factors such as battery consumption, obtrusiveness,
and privacy (65). Sensor sampling rates, defined as the frequency
at which the data is collected, should also be determined.
Although high sampling rates provide more fine-grained
pattern details, its impact on the device battery life is an
important consideration (65). The studies are often performed
as longitudinal and quantitative to provide the data required
for building automatic predictive models and to measure a
certain state over a period of time. Clinicians, health researchers,
and patients should also couple mental health monitoring
systems with frequent standard self-report scales, such as the
Hamilton Depression Scale and the YoungMania Rating Scale, to

Frontiers in Digital Health | www.frontiersin.org 5 April 2021 | Volume 3 | Article 66281148

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Sheikh et al. Personal Sensing in Mental Health

TABLE 2 | Smartphone-based physiological and emotional monitoring research prototypes.

Reference/product Purpose Platform Sensors/parameters Clinical application

Mobile phone sensors

BeWell+ (27), Lin et al., USA,

2012

Evaluation of well-being based

on physical activity, social

interaction and sleep patterns

Sensor enabled smartphone

application

Human voice, sleep, physical

activity, and social interaction

Well-being monitoring

MoodRhythm, Matthews et al.

(28), USA, 2016

Monitoring of bipolar symptoms Sensor enabled smartphone

application

Phone’s light sensor,

accelerometers, and microphone,

as well as phone use events such

as screen unlocks and battery

charging state, communication

patterns including SMS and call

logs

Bipolar disorder

monitoring

MONARCA (29),

Faurholt-Jepsen et al.,

Copenhagen, Denmark, 2014

Monitoring of pathological mood

states in bipolar disorder

Sensor enabled smartphone

application

Phone usage, social activity

measured as the number and

length of incoming and outgoing

phone calls and text messages,

physical activity measured through

step counter, mobility based on

location estimation and speech

activity collected by extraction of

different voice features

Bipolar disorder

monitoring

Evidence-Baes Behavior (eB2)

app (30), Berrouiguet et al.,

Brest, France, 2018

Monitoring mobility patterns of

patients with depression

Sensor enabled smartphone

application

Physical activity, phone calls and

message logs, app usage, nearby

Bluetooth and Wi-Fi connections,

and location

Depression monitoring

CrossCheck (31), Wang et al.,

New Hampshire, USA, 2016

Monitoring passive smartphone

sensor data and self-reported

indicators of schizophrenia

Sensor enabled smartphone

application

Sleep, mobility, conversations,

smartphone usage

Schizophrenia

SIMBA (32), Beiwinkel et al.,

Lüneburg, Germany, 2016

Tracking daily mood, physical

activity, and social

communication in bipolar

patients

Sensor enabled smartphone

application

Geolocation Bipolar disorder

monitoring

Ben-Zeev et al. (33), New

Hampshire, USA, 2015

Analyzing stress, depression,

and subjective loneliness over

time

Smartphone sensor data Speech, sleep duration, geospatial

activity, and kinesthetic activity

Stress and depression

monitoring

Jacobson et al. (34), Lebanon,

USA, 2020

Predicting depressed mood

within a day

Smartphone sensor data collected

from “Mood Triggers” app

location, local weather information:

temperature, humidity,

precipitation, light level; heart rate

information: average heart rate and

heart rate variability; and outgoing

phone calls

Depression monitoring

Pastor et al. (35), Barcelona,

Spain, 2020

Digital phenotyping of patients

with alcohol use disorder and

anxiety symptoms

Smartphone sensor data collected

from “HumanITcare” app

Sleep cycle, heart rate, movement

patterns, and sociability

Monitoring anxiety

symptoms and alcohol

use disorder

Purple robot (36), Schueller

et al., Chicago, USA, 2014

Depression detection Sensor enabled web-based and

smartphone application

physical activity, social activity Depression monitoring

FINE, Dang et al., Hannover,

Germany, 2016

Depression detection Sensor enabled smartphone

application

Smartphone use, social activity,

movement

Depression monitoring

Mobilyze! (37), Burns et al.,

Chicago, USA, 2011

Prediction and intervention of

depression

Sensor enabled smartphone

application

Physical activity, social activity Depression monitoring

PRIORI (38), Gideon et al.,

Michigan, USA, 2016

Analysis of mood in individuals

with bipolar disorder

Sensor enabled smartphone

application

Analysis of voice patterns collected

from phone calls

Bipolar disorder

monitoring

SIMPle 1.0 (39), Hidalgo-Mazzei

et al., Barcelona, Spain, 2015

Bipolar disorder symptom

management and psycho-

educational Intervention

Sensor enabled smartphone

application

Smartphone usage, calls, and

physical activity

Bipolar disorder

monitoring

Me app (40), Asare et al., Oulu,

Finland, 2019

Predictive measures of major

depressive disorder

Sensor enabled smartphone

application

GPS location, physical activity,

light, noise, screen interaction,

battery, application notifications,

calls, messages

Depression monitoring

SOLVD app (41), Cao et al.,

Houston, USA, 2020

Monitoring depressive symptoms

of adolescents

Sensor enabled smartphone

application

Steps, GPS, SMS, call, light, and

screen time

Depression monitoring

(Continued)

Frontiers in Digital Health | www.frontiersin.org 6 April 2021 | Volume 3 | Article 66281149

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Sheikh et al. Personal Sensing in Mental Health

TABLE 2 | Continued

Reference/product Purpose Platform Sensors/parameters Clinical application

Toi Meme app (42), Daregel

et al., Paris, France, 2020

Monitoring of pathological mood

states in bipolar disorder

Sensor enabled smartphone

application

Motor activities (eg, number of

steps, distance) measured using

the smartphone’s motion sensors

Bipolar disorder

monitoring

DeMasi et al. (43), California,

USA, 2017

Mood monitoring Sensor enabled smartphone

application

Activity and sleep tracking using

accelerometer data

Depression and bipolar

disorder monitoring

Mobile Sensing and Support

(MOSS) app (44), Wahle et al.,

Zurich, Switzerland, 2016

Detecting depression and

providing personalized CBT

intervention

Sensor enabled smartphone

application

WiFi, accelerometer, GPS, and

phone use

Depression monitoring

Daus et al. (45), Stuttgart,

Germany, 2020

Mood recognition in bipolar

patients

Sensor enabled smartphone

application

Location, Accelerometer,

Smartphone usage, social

interaction

Bipolar disorder

monitoring

TABLE 3 | Ambient mental health monitoring research prototypes.

Reference Sensors/parameters Application

Ramón-Fernández et al. (46),

Alicante, Spain, 2018

Level of noise in the room, flow of people moving

through it, temperature, luminosity, and air quality

Stress detection

Kim et al. (47), Michigan, USA, 2017 Passive infrared motion sensors Depression monitoring

Dawadi et al. (48), Washington, USA,

2013

Motion sensors on the ceiling, door sensors on

cabinets and doors, and item sensors on

selected

Cognitive assessment

Alam et al. (49), Yongin, Korea, 2016 Web of objects system comprising a smart home

environment and lightweight biosensors

Psychiatric emergency

Hayes et al. (50), Oregon, USA, 2009 Measures of walking speed and amount of

activity in the home

Cognitive assessment

Mielke et al. (51), Braunschweig,

Germany, 2020

Detection of Psychomotor agitation by collecting

motion data

Mental health monitoring

Kasteren et al. (52), Amsterdam,

Netherlands, 2010

Activity monitoring using wireless sensor systems Cognitive assessment

Bradford et al. (53), Canberra,

Australia, 2013

Sensor-based in-home monitoring system for the

elderly

Cognitive assessment

Ribonia et al. (54), Cagliari, Italy, 2016 SmartFABER sensor network collecting

behavioral anomalies in the elderly

Cognitive assessment

evaluate their correlations. Therefore, the wearables and sensor-
enabled smartphone applications are combined with self-reports
to compare the sensor-derived measures with the reported
conditions and determine the associations between the sensor-
based auto-report and the self-report.

Network Layer
The network layer is responsible for connecting all the devices
in the sensory layer and allows the data to be collected, stored,
transmitted, shared, and aggregated. To protect the participants’
privacy, the data is anonymized, encrypted, transmitted via
secure connections, and finally stored in secure servers. The latter
can be performed in various ways; e.g., data acquired directly
from smartphones can be stored in the internal device memory.
Additional methods exist for data collected using wearables, such
as watches and wristbands, with which data may be sent to a
smartphone via Bluetooth or stored in secure storage platforms
managing sensitive data (66) or to a remote server or a computer
using wired, wireless, or internet connection. Various networks,

including Blutooth, Wi-Fi, Zigbee, and cellular, can be adopted in
the network layer.

Analysis Layer
Data Labeling

Machine learning algorithms rely on training data to find
patterns and generate predictive models. Therefore, the data
labeling phase, including tagging the sensor data with their
corresponding ground truth state, is important in training the
final predictive models. The data labeling phase can happen
on-site, at the hospital/clinic, or off-site while the participants
perform their daily routines at home/work/etc. Data tagging
can be achieved through periodic specialist/doctor assessments
on-site or by phone (66, 67), using self-reports often presented
by a mobile application in periodic intervals in which the
participant is in charge of the labeling process (68, 69) or
according to some event, such as labeling stress during an exam
situation (70).
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FIGURE 2 | Number of publications investigating monitoring systems in mental health from 2008 to 2020.

Data Analysis and Preprocessing

After collecting the data, exploratory data analysis and
preprocessing are used to better understand and visualize
the data and detect outliers. Preprocessing includes applying
filters and transformations, such as scaling, quantization,
binarization, and so on, to the raw data to reduce noise and
remove outliers. Dimensionality reduction techniques, including
principle component analysis (71) and multidimensional scaling
(72), are among the most common preprocessing techniques.
Feature extraction is then used to build feature vectors from
the raw sensor data. Feature vectors are required for machine
learning algorithms as they are representations of the original
data. Arithmetic mean, standard deviation, min, max, skewness,
kurtosis, root mean square, power spectrum density, energy,
and correlation coefficient are some of the common extracted
features for mental states detection (68, 73, 74).

Machine Learning Model Training

Different types of machine learning algorithms, including
supervised, unsupervised, semi-supervised, transfer, and
reinforcement learning, are used to find particular patterns and
relationships from the vast amount of collected data and finally
yield the appropriate predictive model(s). It should be noted that
algorithms are often combined to get the final predictive models.
However, there is a distinction between certain training schemes,
such as user-dependent and user-independent (general) models.
User-dependent models, trained with data from the specific
user under consideration and capturing the specific behavior of
each user, yield better results but require a lot of data training.
User-independent models, trained with data from all other users
excluding the target user, do not require any data for the target
user but might not perform well for atypical users. Although
Lu et al. suggest that user-dependent models perform much
better for stress detection (75), some studies propose that hybrid

models have the best of both user-dependent and -independent
models (68, 76).

As mentioned previously, physiological and/or behavioral
monitoring systems are often coupled with data analysis
platforms whose role is to convert raw sensor data into measures
of mental disorders. Accordingly, different machine learning
software tools/libraries are used for evaluating and training
personalized or general models. These include theWeka software
and the scikit-learn library used for bipolar detection (77,
78) and anxiety recognition (79), respectively. Furthermore,
InSTIL (Intelligent Sensing to Inform and Learn) is a software
platform designed for digital phenotyping. The platform provides
acquisition of sensor data from consumer smartphones and is
being used by studies that seek to collect passive and active
sensor signals (80). Another developed platform is the Remote
Assessment of Disease and Relapse (RADAR)-base platform,
which can be integrated with remote monitoring initiatives and
caters to large-scale data collection (81). These platforms provide
general remote data collection at scale, management of studies,
and real-time visualizations and ensure user privacy and security.
However, other tools, such asMatlabmachine learning toolboxes,
can be also used based on different application types.

Application Layer
Remote mental health monitoring is of great significance to
individuals with mental disorders as well as their caregivers
and physicians. Physiological and behavioral patterns can
reflect mental states of the patients, and thus, recording
such data provides physicians and caregivers with a useful
method for accurate intervention and diagnosis. For example,
data from accelerometers, GPS, and mobile phone sensors
can be used to detect physiological patterns associated with
depression or depressedmood states involved in bipolar disorder.
Furthermore, HR and EDA sensors can be employed to monitor
physiological markers that react to emotional experiences and
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FIGURE 3 | (A) Domain of the reviewed papers. (B) Investigated sensing devices for different mental disorders.

allow emotion recognition and the detection of stress levels.
Sleep, mobility patterns, and conversation frequency and patterns
are among the parameters used for monitoring schizophrenia.
Last, microphone, visible light, accelerometer, temperature,
and digital compass sensors are often utilized to provide
cognitive assistance.

Mental health monitoring systems can be also used to
facilitate monitoring of symptoms in home and hospital
environments. Using these systems instead of the conventional
questionnaires or manual tests delivers particular information
for physicians and caregivers and, thus, potentially assists self-
management of well-being, reduces health care costs, and
avoids undesirable consequences in a personalized manner.
Furthermore, employing these systems to provide ambient
assisted living, particularly for the elderly, provides an emergency
system that is essential for monitoring and detecting abnormal
physiological and behavioral states.

APPLICATIONS OF PHYSIOLOGICAL AND
BEHAVIORAL MONITORING SYSTEMS

A wide range of devices aimed at physiological monitoring
are presented, including wristbands and watches, chest straps,
vests, garments and shirts, patches and sleeves (82–87). A list
of wearable physiological and emotional monitoring systems can
be found in Table 1. Various mental health studies on personal
sensing have also utilized mobile phone sensors as they are
widely owned and contain a large number of embedded sensors
able to detect behavioral markers, such as sleep, social context,
mood, and stress (Table 2). The use of smartphone sensors has
been investigated for detecting the presence and severity of
several mental disorders, including depression, bipolar disorder,
and schizophrenia (29, 31, 88–90). Additionally, environmental
or ambient sensors are generally installed in a single room,
a house, or an entire building to understand the context of
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FIGURE 4 | Overview of the workflow of mental health monitoring systems.

that environment by gathering information from sensors and
providing assistance to the inhabitants. Ambient sensors have
been investigated in some mental health monitoring studies,
especially for detecting cognitive impairment (Table 3). The
sections below discuss in detail the various wearable, ambient,
and smartphone-based systems that have been investigated in
recent years for treatment and management of common mental
health disorders.

Emotion and Autonomic Activity
Recognition
Several wearable devices have been developed to monitor
emotional information. The scarf-based monitor developed
by Guo et al. uses an HR sensor and an EDA sensor to
detect emotional states. The scarf also emits an odor and
changes color to enhance the mood in response to negative
emotions (Figure 5) (6). Similarly, a smart glove developed
by Hui et al. utilizes a photoplethysmography (PPG) sensor
for HR, EDA, ST, and EMG sensors to recognize different
emotions, such as happiness, anger, fear, and disgust (7). To
achieve emotion recognition using sensor data, a study by Jang
et al. investigates the consistency on changes of bio-signals
as physiological responses induced by six basic emotions—
happiness, sadness, anger, fear, disgust, and surprise—using 60
different emotional stimuli. HR, skin conductance level (SCL),
mean of ST (meanSKT), and mean of PPG (meanPPG) were
measured before and during the presentation of the stimuli.
The results suggest that biosensors are useful tools for emotion
recognition as the physiological responses by six emotions were
consistent over time; in particular, physiological features, such as
SCL, HR, and PPG, are found to be very reliable (59). Moreover,
a smart glass containing dye-sensitized photovoltaic cells, in
which the optical sensors are positioned at the lateral side of
the eye, has been designed for fatigue assessment based on eye
blinks. The glass measures frequency, duration, and velocity of
eye blinks as fatigue indices, which can potentially benefit the
maintenance of physical and mental health (20). Also, a novel

measurement technique using wearable eye tracking for mental
health monitoring has been proposed based on the link between
eye movements and cognition (14). A number of wearable
monitoring systems have been studied to assess cognitive health
in older adults. Using the data from a chest-worn sensor, it
has been suggested that physical activity, including sedentary
and light activities, percentage of walk and step count, and
total sleep time and time in bed, are significant metrics for
identifying cognitive frailty in older adults (23). Furthermore,
a link between greater gait symmetry and better mental health
has been identified as well by employing a high-speed 3-D
motion sensing system to record gait mechanics in older adults
(92). Another system is the mobile sensing platform, which
is a small, wearable device designed for automatic activity
recognition and cognitive assistance using on-body sensors,
including microphone, visible light, pho-transistor, three-axis
digital accelerometer, digital barometer, temperature, and digital
compass (12).

Among studies employing ambient sensors, Alam et al.
objectified different home appliances and sensors as a web of
objects to create a smart home environment and combined
it with lightweight biosensors and web-based psychiatric
screening scales to assess patients’ psychiatric symptoms (49).
Additionally, with agitation being a symptom of many mental
illnesses, including dementia, Mielke et al. attempted to detect
psychomotor agitation patterns via installation of sensors in
the apartment and building a smart home environment (51).
The study proposes that the movement sequences identified
as conspicuous or critical can be indicative of psychomotor
agitation or possible mood and behavioral changes (51).
Particularly, ambient sensors have been used in a couple of
studies to achieve monitoring of cognitive health in older adults.
In a study by Kasteren et al. state change sensors were located
in doors, cupboards, refrigerator, etc., to provide an activity
monitoring system and assist in caregiving for the elderly in
their homes (52, 93). The Smarter Safer Homes project (53)
and SmartFABER (54) sought to detect cognitive decline and
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FIGURE 5 | Concept of a smart scarf designed for emotion recognition (91).

abnormal behaviors in the elderly by creating sensor-based in-
home monitoring systems that acquire data about the interaction
of the senior with the home environment. Early detection of
cognitive impairment has also been investigated in (50), by
installing an unobtrusive activity assessment system containing
motion sensors and contact sensors to monitor the activity of
older adults in their homes. Moreover, passive infrared motion
sensors have been employed to monitor the daily activities of
elderly persons and achieve long-term depression monitoring by
creating smart homes (Figure 6) (47). Last, a smart home test
bed was designed at Washington State University represented
by an apartment that was instrumented with motion sensors
on the ceiling and sensors on cabinets and doors as well as
sensors on selected kitchen items. The task quality of smart home
activities were quantified to assess the cognitive health of the
individuals (48).

Stress and Anxiety Disorders
Anxiety disorders are characterized by unrealistic and excessive
worry accompanied by symptoms such as extreme vigilance,
motor tension, restlessness, muscle tension, and disturbed
sleep (94). Various devices have been developed for emotion
recognition and stress management applications. As such, the
MyFeel wristband (8) developed by Sentio Solutions, Inc., and
Reveal (9), collect HR, EDA, and ST to evaluate anxiety levels
by applying data analytics and cognitive-behavioral techniques.
Thync (10) developed by Thync Global, Inc., employs electrical
nerve stimulation (TENS) and transcranial direct current
stimulation (tDCS) as neuro-stimulation technologies to increase
energy and lower stress. TENS delivers small electrical impulses
that reach the brain through the spinal cord and may help
alleviate stress levels by relaxing the muscles (95). tDCS has been
found to prevent chronic stress in a preliminary animal study
by modulating the neural activity through the application of a

FIGURE 6 | Sample configuration in an elderly house for long-term monitoring

of depression. [Modified from Kim et al., IEEE Sensors, 2017 (47)].

small current (96). A wireless sensor suite called AutoSense (11)
also provides information relating to general stress with 90%
accuracy by collecting and processing cardiovascular, respiratory,
and thermoregularity measurements. AutoSense integrates six
sensors in a small device and includes wireless transmission
to a mobile phone in real time, which provides monitoring
of physiological responses to real-life stressors and various
behaviors that may be related to stress, such as drinking,
smoking, physical activity, movement patterns, conversations,
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FIGURE 7 | AutoSense sensor suite including ECG leads and RIP connectors

plug in to the unit on the side. The red clip in the wearable packaging is used

to attach the unit to the (blue) RIP band that goes around the chest [Modified

from Ertin et al., SenSys, 2011(11)].

etc., (Figure 7) (11). Furthermore, in a study by Can et al., HR
activity, skin conductance, and accelerometer signals have been
captured by smart wearable devices to detect and discriminate
stress during situations such as contests, higher cognitive load
lectures, and relaxed time activities using machine learning
methods. The study used Samsung Smartwatches and Empatica
E4 wristbands for data acquisition with higher accuracy and
data quality obtained with the later class of devices (18). The
combination of different physiological parameters seems to
provide the highest accuracy for emotion classification. For
example, Can et al. suggest that a higher classification accuracy
was obtained when heart activity is combined with EDA than
when these modalities were used separately (18).

In relation to stress detection, a portable stress detection
system based on the RABio w8 (real-time acquisition of
biosignals, wireless, eight channels) system has been designed,
which is combined with software that comprises an application
programming interface and a graphical user interface. By
inducing different levels of stress, the system is demonstrated to
be efficient in classifying three levels of stress (stress, relaxed,
and neutral). The team is also working on a more wearable
version of this system as a cap embedded with all the electronics
(21). Furthermore, Jiang et al. develop a long-term wearable
well-being sensing watch that continuously and unobtrusively
detects details of behaviors that might be related to the onset
of anxiety and autism (5). The portable wearable device consists
of audio feature calculation without preserving the raw data
and a variety of digital sensors for collecting multimodal data
from the environment as well as physiological signals and
behavioral activity. It has been demonstrated that the social
audio features captured by the device are highly correlated with
questionnaire scores for monitoring individuals with high to low
autism traits (5). An undergoing study is also aiming to develop
digital phenotyping of patients with alcohol use disorder and

anxiety symptoms using data collected from a smartphone and
a wearable sensor. In this study, factors including sleep cycle,
HR, movement patterns, and sociability are sent and saved to the
HumanITcare app (35).

Utilizing the sensors embedded in smart mobile phones, a
new generation of well-being applications have been designed to
automatically monitor multiple aspects of physical and mental
health, for example, changes in the speech production process,
which happens during stress. Therefore, microphones, embedded
in mobile phones and carried ubiquitously by people, provide
the opportunity for the non-invasive and continuous detection
of voice-based stress (75). StressSense (75) and BeWell+ (27)
are sensor-enabled smartphone apps designed to monitor user
behavior. StressSense is designed to identify stress from the
human voice using microphones embedded in mobile phones.
BeWell+ continuously monitors user behavior, namely sleep,
physical activity, and social interaction, and promotes improved
behavioral patterns via feedback rendered as notifications, and
this has been shown to successfully convey information and
increase awareness (31). Ultimately, in the study by Boukhechba
et al. it is suggested that mobility features, such as location
entropy, are negatively associated with social anxiety with socially
anxious students avoiding public areas and engagement in
leisure activities. These findings were demonstrated by passively
generating GPS data from an app installed on participants’
personal mobile phones. Last, Ramon-Fernandez et al. propose
an environmental stressor monitoring system to identify stressful
environments based on parameters such as level of noise in the
room, flow of peoplemoving through it, temperature, luminosity,
and air quality (46).

Depression
Depression is one of the most common mood disorders, and
it is characterized by the absence of a positive affect; loss of
interest in activities and experiences; low mood; and a range
of associated emotional, cognitive, physical, and behavioral
symptoms (94). Interpretation of data from smartphone-based
geolocation sensors has identified the association between digital
markers and mental illness concepts, especially mood (97).
These geolocation-derived digital markers include number of
locations visited, distance traveled, and time spent at a specific
location. GPS embedded in participants’ smartphone, GSM
cellular network, and Wi-Fi are the common tools for measuring
geolocation (97). Conversation frequency and duration, sleep
disruption, social withdrawal and avoidance, mobility and GPS
features are among the factors related to depression that can
be detected using smartphone sensors (3). The evidence-based
behavior (eB2) app has been designed to identify changes in
the mobility patterns of patients with depression based on the
smartphone’s native sensors and advanced machine learning and
signal processing techniques. The app captures inertial sensors,
physical activity, phone calls and message logs, app usage, nearby
Bluetooth and Wi-Fi connections, and location. The study has
proposed that some specific mobility pattern changes can be
indicators of relapses or clinical changes; however, that might
not always be the case (30). Similarly, in a study by Ben-
Zeev et al. it is suggested that increased geospatial activity
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is associated with better depression scores. Nevertheless, the
same study identified that geospatial activity and sleep duration
are inversely associated with daily stress, and no correlations
were identified between sleep duration, geospatial activity, or
speech duration and loneliness (33). Furthermore, a momentary
assessment study aims to predict future depressed mood within
hour-to-hour time windows. Utilizing ideographically weighted
machine learning models and passive mobile phone sensor data,
the study shows the significant correlation between observed and
predicted hourly mood (34).

A study by Jin et al. proposes an attention-based deep learning
architecture combined with wearable sensing devices, which can
effectively classify mental states by analyzing behavior signals
and speech under different emotions (17). The sensing system
of the wearable device is used for analyzing the degree of
anxiety and depression and consists of 6-D acceleration and
angular sensors, a temperature and humidity sensor, MEMS
microphones, and an audio code unit (17). Also, a study by
McGinnis et al. sought to identify anxiety and depression in
children under the age of eight by developing objective measures.
To recognize children with internalizing disorders, the study
utilizes an instrumented fear induction task and captures the
six degree–of-freedom movement of a child using data from a
belt-worn inertial measurement unit. The results suggest that
the collected motion data are sensitive to behaviors that are
representative of child psychopathology (24). Last, a fingertip
PPG sensor has been developed by Dagdanpurev et al. as a
major depressive disorder (MDD) screening system (19). The
system employs autonomic nerve transient responses induced
by a mental task and logistic regression analysis to identify
MDD patients from healthy subjects. The self-monitoring system
achieved 83% sensitivity and 93% specificity in MDD screening
determined by ECG-derived HRV (20).

Bipolar Disorder
Bipolar disorder (BD), characterized by recurrent episodes
of depressed and manic mood states, is a leading cause of
disability worldwide and is associated with significant functional
impairment (98). In the management of BD, PSYCHE, a
personalized wearable monitoring system was trialed on 10
bipolar patients exhibiting depression, hypomania, mixed state,
and euthymia symptoms to assess the pathological mood states
by recording physiological signals (Figure 8). The pathological
mood states were assessed using a data mining strategy by
recording the physiological signals through information collected
from the autonomic nervous system. PSYCHE employs a
commonly used measure of entropy to analyze more than 400 h
of cardiovascular dynamics and characterize the symptoms.
This helped to improve the diagnosis and management of
psychiatric disorders (15). The system consists of a comfortable
t-shirt with embedded sensors, such as textile electrodes, to
monitor electrocardiogram (ECG) for HRV series, piezoresistive
sensors for respiration activity, and tri-axial accelerometers
for activity recognition, and provides a smartphone-based
interactive platform and data visualization to the patient and
physician, respectively. The t-shirt with the above-described
sensors is coupled with embedded electronics to acquire and

store the data and an internal tri-axial accelerometer to monitor
movement activity (15). Once the electronic device is detected
by a mobile application through Bluetooth, the physiological
data streaming is initiated. Several algorithms are then used to
process the physiological data collected and correlate it with the
mental health status of the patient. The data is then uploaded
automatically by patients who are connected at home to produce
predictive results that allow the physician to optimize the patient’s
treatment. Therefore, the textile-integrated platform together
with the smartphone framework offered long-term acquisition
of HRV data and helped discriminate different pathological
mood states and investigated the response to treatment on BD
patients (15). It has been demonstrated that data coming from the
PSYCHE platform (long-term HRV series) could be considered
as a viable biomarker for discriminating of bipolar patients and
their response to treatment (15).

In a study by Prociow et al. wearable sensing techniques
were coupled with environmental sensors to observe the areas
of life influenced by BD and match the collected information
with bipolar symptoms (16). The system included a wearable
light sensor and a belt-worn accelerometer, which was used
to detect restless behaviors, such as psychomotor agitation
and increased or decreased physical activity to identify mood
states. Moreover, the environmental system included bed sensors
and light detectors installed in the patients’ home to monitor
altered sleep patterns, such as insomnia, hypersomnia, and self-
deprivation of sleep, which are important diagnostic indictors
that a manic or depressive episode is occurring. Basic processing
performed on the behavioral data yielded from these sensors
provided information about early effects of a bipolar episode
on activity patterns. The study was performed on four healthy
subjects and one participant with BD. The recruited bipolar
patient remained euthymic (asymptomatic) throughout the
monitoring period (16).

Combining self-reports and passive sensor data, several
studies have sought to monitor mood fluctuations involved
in bipolar disorder. MoodRhythm is a smartphone application
that combines self-report and passive sensing via the use
of smartphone sensors for the long-term monitoring of
bipolar disorder. The application incorporates existing self-
report strategies from interpersonal and social rhythm therapy
and combines them with inputs from smartphone sensors
(28). Additionally, the MONARCA system was developed to
investigate the monitoring, treatment and prediction of bipolar
disorder episodes (Figure 9) (67, 78, 100–102). The MONARCA
project is a smartphone-based behavior monitoring technology
that leverages a variety of phone sensors to detect changes in
mental states. The system also includes a feedback loop between
patients and clinicians through a web portal that provides
detailed historical overviews of a patient’s data to generate
measures of illness activity (29, 55). The system investigates self-
monitored (subjective) or sensor-based automatically generated
(objective) behavioral data to monitor mood states in patients
with bipolar disorder. The automatically generated behavioral
data is collected by smartphones supporting different types
of sensors. Some of the sensor-based data on measures of
illness activity include phone usage, social activity measured
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FIGURE 8 | Overview of the PSYCHE wearable monitoring system. The system involves a T-shirt with embedded textile sensors, mobile application for physiological

signal acquisition from the wearable platforms, and feedback to patient and clinician [Modified from Lanata et al., IEEE Journal of Biomedical and Health Informatics,

2015 (15)].

as the number and length of incoming and outgoing phone
calls and text messages, physical activity measured through a
step counter, mobility based on location estimation, and speech
activity collected by extraction of different voice features without
recording the actual conversation. The study was performed for
a 9-month trial period to investigate the correlations between
subjective and objective behavioral data and the severity of
depressive and manic symptoms. Altogether, the MONARCA
system has been shown to recognize the clinical states of bipolar
patients (depression/mania) with 72–81% accuracy based on
location features. The system also shows high acceptance within
the patients and health care providers and is proved to be
effective in reducing the level of bipolar symptoms (29). Among
other studies targeting bipolar patients, Social Information
Monitoring for Patients with Bipolar Affective Disorder (SIMBA)
is a smartphone monitoring app tracking daily mood, physical
activity, and social communication in bipolar patients (32). Using
the data collected from the SIMBA app, it has been suggested
that the distance traveled by the bipolar patient is negatively
associated with manic states (32). However, this is contrary to
the findings of a study by Faurholt-Jepsen et al. (67) suggesting
that the number of changes in communication are positively
associated with manic states.

PTSD
PTSD follows significant trauma and is characterized by
emotional numbness; intrusive reliving of the traumatic episode;
disturbed sleep, including nightmares; and hyperarousal, such
as exaggerated startle responses (94). A couple of wearable
monitoring systems have been developed for individuals with
PTSD. Namely, a wrist-worn actigraphy sensor has been
investigated for the monitoring of activity, sleep, and circadian

patterns in PTSD, which involves long-lasting symptoms, such
as avoidance behaviors and sleep disturbance. The proposed
sleep detection algorithm has been demonstrated to match the
participants’ sleep diaries. Also, determined from the greater
nocturnal activity and awakenings, participants with PTSD were
found to exhibit more fragmented sleep patterns compared with
non-traumatized control groups (22). Furthermore, a wearable
sensor system has been designed and implemented consisting
of a neoprene band worn on the ankle as well as an optional
custom-designed ECG heart monitor worn on the chest, both
containing a Bluetooth radio that enables communication with
the patient’s mobile phone. The sensor bands contain circuitry
for measuring EDA, three-axis motion, temperature, and ECG.
The system has been studied for PTSD and drug addiction and
works by presenting therapeutic and empathetic messages to the
patient in the tradition of cognitive behavioral therapy when a
specific arousal event is detected (13).

Schizophrenia
Schizophrenia is a neuropsychiatric syndrome exhibiting
psychotic symptoms, such as hallucinations and delusions;
negative symptoms, including loss of motivation and blunted
affect; and last, cognitive symptoms, including impairments
in attention, working memory, verbal fluency, and various
aspects of social cognition (94). Continuous remote monitoring
and identification of subjective and objective indicators of
psychotic relapse is known to improve the management of
schizophrenia-spectrum disorders. Accordingly, the CrossCheck
project has identified statistically significant associations
between passive smartphone sensor data and self-reported
indicators of mental health in schizophrenia (31, 90). The
study suggests that lower rates of physical activity are linked to
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FIGURE 9 | The MONARCA application user interface [Modified from Bardram et al., 2013 (99)].

negative mental health. Also, it is demonstrated that patients
showing lower sociability indicated particularly with fewer
conversations during the morning and afternoon periods are
likely to exhibit negative feelings. Nevertheless, it has been
indicated that an increased number of phone calls and SMS
messages can also be associated with negative dimensions of
mental health as some individuals prefer to use the phone
instead of face-to-face communication during negative mental
states. Among other findings from monitoring of individuals
with schizophrenia-spectrum disorders is that visiting fewer new
places and going to bed later is associated with negative feelings,
and getting up earlier is suggested to be linked with positive
mood (103, 104).

DISCUSSION

The current review presents a comprehensive analysis of
developed sensor-based strategies in the management of mental
disorders that seek to monitor physiological and behavioral
data as indirect measures of health states. The literature
review identifies studies investigating monitoring systems for
the management of different mental disorders, including stress
and anxiety disorders, depression, BD, cognitive impairment,

PTSD, and schizophrenia. Principally, mental health monitoring

systems collect and interpret physiological and behavioral data to
relate them to the symptoms of mental conditions and achieve
digital phenotyping. Thereby, a number of environmental,
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wearable, and mobile phone sensors have been employed to
monitor parameters such as HRV, ST, EMG, BVP, blood pressure,
etc. In each study, the type and variety of sensors were
determined based on the application of the monitoring system
as well as the behavioral and physiological parameters that
were expected to be altered as a consequence of a specific
disorder. The predicted mood states were often compared with
the self-reports coupled with the monitoring systems. The
majority of the studies have also suggested specific correlations
between the collected behavioral and physiological parameters
and the studied mental disorder. However, it should be
noted that most of the developed technologies have not been
thoroughly validated for their usefulness in clinical applications.
Furthermore, the majority of monitoring systems target the
general public and healthy individuals for health and fitness
applications and are not certified as medical devices, and
their impact on emotional states needs to be assessed (58).
Also, these studies are subject to small sample sizes and
short follow-up times. Therefore, there remain many technical
and practical issues to overcome in digital approaches to
mental disorders that include maintaining compliance over time,
constraints on battery, manufacturing, durability, integration,
constraints with analysis and interpretation of information, data
accuracy, ethics/privacy issues, acceptability, and engagement
issues (98). The mental health monitoring systems employing
user-independent (general) models might also need to consider
diversities such as age and ethnicity when introducing a
predictive model. Moreover, despite the rapid development of
sensing technology for monitoring physiological and behavioral
data, challenges remain for the effective use of this abundant
data. These challenges include processing the raw sensor data
and managing the noise and artifacts, considering intrapersonal
and interpersonal differences when interpreting the data, cost-
effectiveness, and practicality of the device, providing privacy-
protecting strategies, designing an accessible data storage and
monitoring platform, and providing personalized coaching
strategies. The only way to overcome these challenges is by
interdisciplinary teams sharing expertise and methods and
involvement of end users.

Although body-worn sensors that recognize human activities
have the advantage of being at the user’s hand, deploying
these systems imposes some constraints, including protecting
the user’s privacy, being lightweight, offering limited computing
power, handling the real world’s noisy data and complexities,
and comprising machine-learning algorithms that are trainable
without requiring extensive human supervision. For instance, to
avoid privacy issues, speech information should be automatically
evaluated without preserving raw audio data (5). Another
constraint is that, among wearable systems, the participant
acceptability varies between different device forms, which is often
related to the appearance and comfort of the wearing sensors.
Accordingly, in a study by Huberty et al., it is demonstrated that
wrist and upper arm sensors are more preferred than a sensor
worn on the non-dominant hip in a sample of middle-aged
women (105). Moreover, the results from a patient trial address
the issue of non-adhering due to the discomfort of carrying
extra devices, forgetfulness, and lack of familiarity with personal

technology (16). Therefore, wearing and carrying extra devices
on a day-to-day basis has been found to be impractical, and
pursuing the environmental sensing via only a mobile phone
seems to be ideal. However, it should be noted that wearable
sensor features including skin conductance and temperature
were found to be more accurate (78.3% accuracy) in identifying
stress and poor mental health than mobile phone features
(73.5% accuracy) such as phone usage and mobility patterns
(106). Another shortcoming of mobile phone apps monitoring
behavioral markers is their noticeable effect on the battery life,
which can be a problem for users (61). Altogether, incorporating
sensors monitoring physiological and behavioral parameters into
a single, easy-to-use device has potential for the development
of a practical mental health monitoring system. Furthermore,
there is a crucial need for transparency and collaborative
partnership between providers and patients because trust in
the organization that collects the data and the purpose of data
collection are the main factors for acceptability of the sensing
systems. Additionally, ambient sensors can be expensive and
limited to a particular physical space, their proper functioning
requires calibration, and they might also raise privacy concerns.
Nevertheless, these sensors have the advantage of not requiring
direct contact with the user, hence, being free of wearing
or carrying devices. Last, there is crucial need for patients,
psychiatrists, and psychologists to adopt such means into their
treatment and general practice (16).

When considering physiological and behavioral data as
measures of mental health, it is important to consider that
sensors do not sense the mental state itself, but a behavior that
is the consequence of an underlying physiological alteration.
Furthermore, relying solely on physiological sensor data might
not be optimal as body changes may occur from other factors,
such as food or medication intake and physical exercise. Thus,
the mental health monitoring system should also consider the
individual characteristics of each user. Another important aspect
that should be considered is that the nature of the collected data
from these sensors differs from the usual information that is
available to and discussed with health care professionals. Patients
have been found to express more willingness to consent to passive
data retrieval from less personal sources, such as mobile phone
screen time, whereas respondents were found to be at least willing
to consent to more personal data, such as communication and
location data, as well as audio recording and analysis (107).
It has been noted that participants’ comfort with sharing data
depends on the data type and the recipient. Although some
individuals were shown to be comfortable with sharing their
health information, including sleep, mood, and physical activity
with their doctors, they were less comfortable sharing personal
data, such as communication logs, location, and social activity,
especially with the electronic health record systems and their
family (108).

Although there have been great advances in the automatic
monitoring of mental health, there remain challenges that
can pose several research opportunities. One of the key steps
in the development of mental health monitoring systems is
data labeling, which is used for finding associations between
the sensor data and the corresponding true mental state at
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that time span. Therefore, machine learning models should be
further explored to evaluate their potential for mental health
monitoring. Another aspect that needs to be considered when
monitoring physiological and behavioral patterns is the inter-
user differences. As aforementioned, user-dependent models are
suggested to perform better than user-independent (general)
models, and hybrid models can be used to combine the strengths
of both models (68, 75). Therefore, the potential of this type of
hybrid model should be further explored. Additionally, intra-
user differences that refer to the variability of physiological and
behavioral patterns for the same user should also be addressed.
Last, the mental health monitoring systems need to be clinically
validated and should be integrated with other systems, including
user databases, administrative tools for caregivers and physicians,
and support systems to achieve optimum communication
platforms. The application of multimodal sensing technologies
along with the appropriate machine learning methods is of
significance for achieving monitoring of mental health.

CONCLUSION

In conclusion, facile physiological and behavioral sensing
systems have the potential to directly enhance the management
and monitoring of mental health. Use of these devices can
increase patients’ self-awareness, which can positively affect the
management of their condition. This consciousness about one’s
mental state can prevent the worsening and further adverse
effects of many mental disorders. Therefore, technology needs to
be established inmental health as it has in other fields of medicine

to provide practical and point-of-care devices for those who are
affected. Development of monitoring devices will aid patients in
the management of their condition and immensely increase their
quality of life.
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Background: The COPD assessment test (CAT) is an 8-item questionnaire widely used

in clinical practice to assess patient burden of disease. Digital health platforms that

leverage electronic medication monitors (EMMs) are used to track the time and date

of maintenance and short-acting beta-agonist (SABA) inhaler medication use and record

patient-reported outcomes. The study examined changes in CAT and SABA inhaler use

in COPD to determine whether passively collected SABA and CAT scores changed in a

parallel manner.

Methods: Patients with self-reported COPD enrolled in a digital health program,

which provided EMMs to track SABA and maintenance inhaler use, and a companion

smartphone application (“app”) to provide medication feedback and reminders. Patients

completing the CAT questionnaire in the app at enrollment and at 6months were included

in the analysis. Changes in CAT burden category [by the minimally important difference

(MID)] and changes in EMM-recorded mean SABA inhaler use per day were quantified

at baseline and 6 months.

Results: The analysis included 611 patients. At 6 months, mean CAT improved by−0.9

(95% CI:−1.4, −0.4; p < 0.001) points, and mean SABA use decreased by−0.6 (−0.8,

−0.4; p< 0.001) puffs/day. Among patients with higher burden (CAT≥ 21) at enrollment,

CAT improved by −2.0 (−2.6, −1.4; p < 0.001) points, and SABA use decreased by

−0.8 (−1.1, −0.6; p < 0.001) puffs/day.

Conclusion: Significant and parallel improvement in CAT scores and SABA use at 6

months were noted among patients enrolled in a digital health program, with greater

improvement for patients with higher disease burden.

Keywords: chronic obstructive pulmonary disease, COPD assessment test, digital health, medication adherence,

short-acting beta-agonist, electronic medication monitoring
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a progressive
respiratory illness with substantial impact on the patient’s well-
being (1). The COPD Assessment Test (CAT) is a validated
questionnaire designed to assess the disease burden (2). While
the CAT is widely accepted in clinical practice, administration
is not performed at any routine cadence, limiting its clinical
value to identify patients with declining disease status potentially
needing intervention.

Remote patient monitoring (RPM) with digital health tools for
COPDmay enhance the current standard of care through regular
monitoring of symptoms and medication-taking behaviors (3, 4).
Today, there exists an abundance of digital tools to support RPM,
including wearables, smartphone or mobile phone applications,
short-messaging services (SMS), and sensors to track medication
use. These tools may help collect data between office visits and
provide regular insight into patient health.

In COPD, digital tools may also help enhance care
through recording use of as-needed inhaled short-acting beta-
agonists (SABA) for symptoms, monitoring adherence to daily
maintenance inhaler medication, and measuring lung function.
Electronic monitoring of SABA use may help identify patients
who have acute worsening of symptoms outside of routine
provider visits (5–7). Although SABA use is not captured in CAT,
symptoms that are commonly treated with SABA are a major
component of the questionnaire.

This study assessed changes in CAT scores and SABA use over
6 months among patients with COPD enrolled in a digital self-
management platform, which included electronic medication
monitors (EMMs) and a smartphone application (“app”).

METHODS

Patients with self-reported COPD enrolled in a digital self-
management platform (Propeller Health, Madison WI) between
August 2017 and December 2019. Those with an EMM-
compatible SABA inhaler and smartphone were eligible for the
study. Patients were instructed to attach a small EMM to their
SABA inhaler(s), and if available, to their maintenance inhaler(s)
(Figure 1).

EMMs had an expected battery life of 12–18 months and
did not require charging during the study period (8). The
EMMs passively monitored the date and time of inhaler
actuations when the EMM was depressed (6). These data were
transmitted wirelessly via Bluetooth synchronizations (“syncs”)
to the patient’s smartphone app. Patients received evidence-
based education, feedback on medication use, and reminders for
scheduledmedications andwere prompted to complete an in-app
CAT questionnaire monthly (2). Patients had the option to share
their information with their providers but were not required to
do so. To participate, patients were required to accept Propeller’s
Terms of Service which specified use of de-identified, aggregated
data for publication (9). This retrospective analysis was reviewed
by the Copernicus Institutional Review Board (PRH1-18-132).

Patients completing the CAT within 2 weeks from the date
of the first EMM sync (baseline) and again at 6 months

FIGURE 1 | A small electronic medication monitor (EMM) attaches to a

metered dose inhaler (MDI) to collect data on inhaler usage. Data is then

transmitted wirelessly via Bluetooth to a paired patient-facing

smartphone application.

(152–212 days) from the date of the first sync were studied.
CAT score burden was characterized as low (0–10), medium
(11–20), high (21–30), and very high according to standard
categories (31–40) (10). The first week of syncing was considered
a platform learning period, and thus inhaler use during this
period was excluded. Mean daily SABA use (puffs/day) and
daily maintenance adherence (percent of puffs taken/prescribed,
capped at 100%) were calculated during the 30 days following
the baseline CAT and 30 days prior to the 6-month CAT. At
baseline, unadjusted comparisons between mean daily SABA
use and mean daily maintenance inhaler adherence by CAT
burden were evaluated using a Wilcoxon rank-sum test (11).
From baseline to 6 months, minimally important differences of
CAT (2 points) and changes in CAT burden categories (low:
CAT 0–10, medium: CAT 11–20, high: CAT 21–30, and very
high: CAT 31–40) (2) were evaluated using the Chi-square
test (12). Changes in CAT, mean daily SABA use, and mean
daily maintenance adherence were estimated from baseline to
6 months using linear mixed-effect models (13) accounting
for within-patient variability and adjusting calendar month to
account for potential seasonal variation. Analyses were then
stratified by lower (CAT < 21) vs. higher (CAT ≥ 21) burden
categories to ensure a sufficient sample size. Because patients
served as their own control, adjustment for static individual-level
characteristics (e.g., age, gender) was not necessary. However,
we did conduct sensitivity analyses to adjust for differences
by age, CAT score, mean daily SABA use, and mean daily
maintenance adherence (10). All statistical tests were two-tailed
with an α = 0.05 threshold for statistical significance. All
analyses were conducted in R version 3.4 (R Foundation for
Statistical Computing).
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RESULTS

The analysis included 611 patients {mean [standard deviation
(SD)] age: 62 (8) years; 64% were >60 years}. All patients had
a SABA inhaler EMM, and 371 (60.7%) also had a maintenance
inhaler EMM. At baseline, mean (SD) CAT score was 22.6 (7.8).
Mean (SD) SABA use was 2.3 (3.1) puffs/day, and mean (SD)
daily adherence was 81 (27.1)%. Among patients with higher
CAT burden, 60% were ≥60 years of age compared to patients
with lower CAT burden where 71% were ≥60 years of age.
Baseline SABA use was greater among patients with higher
burden CAT scores compared to patients with lower burden CAT
scores [median (IQR): 1.4 (0.4, 3.9) vs. 0.8 (0.1, 2.4) puffs/day;
Wilcoxon rank-sum test p < 0.001], while baseline maintenance
adherence was consistent [median (IQR): 93.3 (72.5, 98.3)% vs.
93.3 (80.7, 100.0)%; Wilcoxon rank-sum test p= 0.08].

At 6 months, 277 (45%) patients had CAT scores that
improved by the minimally important difference (14). Using the
MID as a minimum threshold, 154 (25%) patients moved from
a higher burden category to lower burden category, while 351

TABLE 1 | Change in CAT burden categorya and MID change over 6 months

using a Chi-square test.

Overall Higher

burden

Lower

burden

P-value**

Category improvement

and MID decrease, n (%)

154 (25.2) 131 (34.7) 23 (9.9) <0.001

Category worsening and

MID increase, n (%)

106 (17.3) 40 (10.6) 66 (28.3)

No change, n (%) 351 (57.4) 207 (54.8) 144 (61.8)

aBurden categories were defined as low (CAT 0–10), medium (CAT 11–20), high (CAT

21–30), and very high (CAT 31–40) burden.

**P-value derived from a Chi-square test comparing CAT burden category change in

patients with higher vs. lower burden COPD.

(57.4%) patients had no category change. A larger percentage of
patients in the higher burden group moved to a lower burden
category or improved their CAT by the MID compared to those
in the lower burden group (34.7 vs. 9.9%, Chi-square p < 0.001)
(Table 1).

Linear mixed-effect models found that, from baseline to 6
months, mean CAT improved by −0.9 (95% CI: −1.4, −0.4;
p < 0.001) points, mean SABA use decreased by −0.6 (95%
CI: −0.8, −0.4; p < 0.001) puffs/day, and mean adherence
decreased by −4.0 (95% CI: −6.9, −1.2; p < 0.01) percent.
Among patients with higher CAT burden scores at enrollment,
CAT improved by −2.0 (95% CI: −2.6, −1.4; p < 0.001) points,
and SABA use decreased by −0.8 (95% CI: −1.1, −0.6; p <

0.001) puffs/day (Table 2). Sensitivity analyses did not change the
observed outcomes significantly (Supplementary Table 1).

DISCUSSION

This study examines 6-month changes in CAT scores, SABA use,
and maintenance adherence among patients using a digital self-
management platform for COPD. Patients with higher COPD
burden (CAT ≥ 21) had greater improvement with a significant
and parallel reduction in both CAT and EMM-measured SABA
use at 6 months. Moreover, many patients had a clinically
meaningful change in CAT score. The concurrent reductions in
CAT scores and SABA use suggest that passively collected SABA
data may serve to highlight patients at risk of increasing COPD
burden. Adherence to maintenance inhalers at baseline was high
(80%) with only a 4% decrease over 6 months and not reflective
of changes in CAT.

Digital technologies have demonstrated value in the clinical
setting for patients with COPD (6, 7, 15). Alshabani (7) found
that integration of an EMM with feedback in a 12-month quality
improvement study resulted in earlier identification of patients
with worsening condition, and significant reductions in SABA
use. Similar outcomes were observed in 190 Medicare-eligible

TABLE 2 | Change in CAT, SABA use and adherence over 6 months using linear mixed effects models.

Mean (SD) at

baseline

Mean (SD) at

6 months

Estimates* Lower 95% CI* Upper 95% CI* P-value

Overall, n = 611

CAT 22.6 (7.8) 21.7 (8.1) −0.9 −1.4 −0.4 p < 0.001

SABA use, puffs/day 2.3 (3.1) 1.6 (2.5) −0.6 −0.8 −0.4 p < 0.001

Adherence, % 81.1 (27.1) 76.8 (29.8) −4.0 −6.9 −1.2 p = 0.01

High burden, n = 378

CAT 27.4 (4.7) 25.4 (6.6) −2.0 −2.6 −1.4 p < 0.001

SABA use, puffs/day 2.7 (3.4) 1.8 (2.5) −0.8 −1.1 −0.6 p < 0.001

Adherence, % 79.6 (27.0) 74.5 (30.3) −4.6 −8.4 −0.9 p = 0.01

Low burden, n = 233

CAT 14.7 (4.8) 15.6 (6.5) 0.9 0.1 1.7 p = 0.03

SABA use, puffs/day 1.7 (2.4) 1.3 (2.3) −0.3 −0.6 −0.1 p = 0.01

Adherence, % 82.8 (27.2) 80.0 (28.8) −3.5 −8.2 1.2 p = 0.14

*Adjusted for enrollment month.

Frontiers in Digital Health | www.frontiersin.org 3 April 2021 | Volume 3 | Article 62426166

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Kaye et al. Concurrent Improvement in CAT, SABA

patients with COPD (6) where SABA use halved following
a 6-month digital health intervention, which included patient
outreach from clinical staff. Electronic monitoring of SABA use
has also been identified as a potential predictor of exacerbations
(5, 16) and higher SABA use has been associated with greater
CAT burden (10).

Continued research is needed to better understand the
mechanisms of behavior change and identify the most efficacious
digital modalities. Programs integrating and/or based on
behavior theories typically demonstrate stronger efficacy than
those that do not (17). Further, programs relying on digital
tracking alone may be less effective due to high attrition rates
(18). Hybrid programs integrating both digital and human
touch, as well programs including a combination of digital
modalities (e.g., EMM plus smartphone app), have demonstrated
stronger outcomes.

This study supports the use of a digital self-management
platform to complement standard of care, but there were
limitations. First, patients self-enrolled and were possibly more
motivated to modify their behavior and health. Second, patients
self-reported their COPD diagnosis, which was not confirmed
given the remote design. Moreover, we did not have access
to patient characteristics like gender and disease stage, which
may limit the generalizability of the results observed. Lastly,
while improved CAT and SABA use were observed over the
study period, modest decreases in adherence were also detected.
We hypothesize that improvement in COPD burden may
have led patients to ease use of their maintenance inhaler;
however, further investigation is needed to understand these
behavioral changes.

CONCLUSION

Patients enrolled in a digital self-management platform for
COPD demonstrated significant and clinically meaningful
improvement in CAT and a concurrent reduction in SABA use,
especially among those with higher COPD burden. This study
highlights the benefit of digital tools like EMMs to identify

associations not observed with pre-digital modalities (self-report,
prescription fills, etc.). However, EMMs are one tool in a myriad
of consumer andmedical-grade digital tools today. Future studies
in COPD should explore the added value of digital platforms
and/or tools that complement patient care by improving patient–
provider communication, and better understanding chronic
disease management.
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Background: The last few decades people have increasingly started to use

technological tools for health and activity monitoring, such as tracking apps and

wearables. The main assumption is that these tools are effective in reinforcing

self-empowerment because they support better-informed lifestyle decision-making.

However, experimental research assessing the effectiveness of the technological tools

on such psychological outcomes is limited.

Methods and Design: Three studies will be conducted. First, we will perform a

systematic review to examine the experimental evidence on the effects of self-tracking

apps on psychological outcome measurements. Second, we will conduct a longitudinal

field experiment with a between subject design. Participants (N = 150) begin a 50-day

exercise program, either with or without the aid of the self-tracking app Strava. Among

those who use Strava, we vary between those who use all features and those who use a

limited set of features. Participants complete questionnaires at baseline, at 10, 25, and 50

days, and provide details on what information has been tracked via the platform. Third, a

subset of participants is interviewed to acquire additional qualitative data. The study will

provide a rich set of data, enabling triangulation, and contextualization of the findings.

Discussion: People increasingly engage in self-tracking whereby they use technological

tools for health and activity monitoring, although the effects are still unknown. Considering

the mixed results of the existing evidence, it is difficult to draw firm conclusions, showing

more research is needed to develop a comprehensive understanding.

Trial registration: Netherlands Trial registration: NL9402, received on 20 April

2021; https://www.trialregister.nl/trial/9402.

Keywords: self-tracking, exercise, body empowerment, sports, psychological outcomes, self-determination

theory, psychological effects of health tracking technologies
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INTRODUCTION

People increasingly use technological tools for health and activity
monitoring (1–4). These activity tracking apps and wearables are
considered self-empowering because they can help users make
better-informed lifestyle decisions based on their data (5, 6).
Recent research, however, suggests that self-tracking technology
use may lead to bodily alienation rather than empowerment,
because it could encourage users to trust technology more than
what their own body tells them (7). Because these technologies
make explicit all sorts of bodily experiences and processes that
would otherwise remain unnoticed (heart rate, burned calories,
etcetera), people might develop a more objectified and distant
instrumental view on their body as something that needs to be
monitored and corrected—at the cost of a tacit, smooth reliance
on it (5).

To date, however, there is no empirical research, at least

to our knowledge, that examines the mechanisms leading to

either bodily empowerment or alienation. This protocol describes

the uses of different methodological approaches that we will

conduct in a project to investigate under which conditions the
use of a self-tracking app fosters bodily empowerment or bodily
alienation. More specific, the main objective that this project will
study is whether and under which conditions the use of self-
tracking technologies empowers or alienates people while doing
physical activity.

Collecting health related data with technological tools and
platforms is referred to as “self-tracking for health” (5, 7).
Self-tracking for health involves a self-monitoring process that
relies on the quantification of bodily processes (e.g., heart
rate, calories burned) and activities (e.g., step counts, types of
sports). People have been self-monitoring their body and life
for self-improvement since ancient times (8), although with the
introduction of digital technologies, users can (1) collect personal
and health data in real-time and at a much larger scale, (2) gain
information on parameters that are difficult—if not impossible—
to track otherwise, (3) obtain personalized feedback and gamified
targets derived from processing of collected data (7), and (4)
link their data to other data streams, such as social networking
platforms, enabling them to compare with others (4).

There is a widespread belief among technology developers,
health professionals and scholars that self-tracking technologies
can empower users to make healthier life choices (7–9). For
example, following Deci and Ryan’s (10). Self-Determination
Theory, it is argued that self-tracking technologies fulfill the
three needs for empowerment: (1) autonomy, (2) competence,
and (3) belongingness. Self-tracking technologies allow users
to regulate their physical activity without having to rely on
external parties (autonomy), help them reach personal targets
and compare their performance with others (competence),
and generate belongingness through online endorsements and
commenting features (11).

Given their assumed empowering potential, one might expect
spectacular usage rates for self-tracking technologies. Recent
intervention studies, however, report significant numbers of
drop out (11–14), with over 50% of new users dropping out
in <2 weeks (6). An explanation for this drop-out might be

that some users experience bodily alienation rather than bodily
empowerment (15). This study adopts a multi-method approach
to examine if the use of self-tracking technologies lead to bodily
alienation rather than bodily empowerment, and whether these
in turn predict future use of self-tracking technology as well as
future exercise behavior.

Classical phenomenological theories (16–18) shed light on
this possibility. They emphasize that in our normal interactions
with the world, our bodies function “transparently”: we are
typically not aware of our bodies functioning, such as our hearts
beating or our feet moving. Scholars argue that paying conscious
attention to these tacit bodily processes may have a disruptive,
alienating effect on individuals, because such “hyperreflectivity”
(16) disturbs our effortless, smooth flow of acting, like paying
attention to your feet disrupts your dancingmoves. In reflectively
engaging with our bodies, then, we may come to see our bodies
as objects or instruments to be tweaked and altered, rather than
functioning in the background of our everyday existence.

METHODS AND ANALYSIS

In total, three separate studies will be conducted in this
project, see for a detailed timeline and phases of the study
in Figure 1. First, we will perform a systematic review to
examine the experimental evidence on the effects of self-
tracking apps on psychological outcome measurements linked
to bodily empowerment and alienation to have a state of the
art understanding in this area. Second, we will conduct a
longitudinal field experiment with a between subject design.
Third, a subset of participants is interviewed to acquire additional
qualitative data. The study will provide a rich set of data, enabling
triangulation, and contextualization of the findings to provide an
answer to our research questions. We will provide some more
detailed information on the three separate studies here.

Study 1: Systematic Review
First, to have a state-of-the-art understanding of current existing
causal evidence we will conduct a systematic review focusing on
experimental studies. As a result of the systematic review we
will develop detailed hypotheses that we will test in Study 2:
An experimental study and Study 3: Interviews. Participants will
be blinded to the hypotheses. We will investigate the following
bibliographic databases: PubMed, PsychInfo, and ISI Web of
Science, whereby we will restrict our search to peer-reviewed
papers or dissertations written in English in the last 10 years
(>2010). Next, we will do a manual search in selected articles’
reference lists to make sure we do not miss any relevant studies.
Studies will be considered eligible if they; (1) report experimental
effects of the usage of self-tracking technologies on psychological
outcomes, (2) include self-tracking among healthy people and
people of any gender and age diagnosed with any type of
(chronical) disease, and (3) use self-tracking technologies on one
of the following devices for self-tracking; mobile (smart)phones
and applications, and/or wearables. Studies will be excluded if
they are published before 2010, are not peer-reviewed, are written
in a non-English language and have a non-experimental design.
The primary outcomes from this systematic review will be used
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FIGURE 1 | Enrolment, interventions, and assessment in the study period.

to develop the exact experimental design. For the systematic
review, we will follow the PRISMA standard guidelines whereby
we provide a detailed explanation to improve transparency. In
addition, we will present a flow diagram with all the selection
steps of the process and the exclusion criteria.

Study 2: Experimental Study
Second, we will conduct a longitudinal (50 days) field experiment
with a between subject design, aiming for 150 participants
that we will collect based on convenience sampling at the
Tilburg University campus, see also Recruitment section. We
will pre-register our trial (www.trialregister.nl) before we start
collecting data and we will include the CONSORT and SPIRIT-
statements in our reporting of the outcomes of this study. In
this study, we will create two groups that we will randomly
allocate to using Strava or not for their physical activity tracking,
randomly assigned based on enrolment. An eligibility criterion to
participate in the study is that participants must not have used

self-tracking technologies for at least 2 months before starting
the experiment. Participants complete questionnaires at baseline,
after 10 days, 25 days, and a final one after 50 days. We will
ask participants to provide details on what information has
been tracked via the platform. Next, a subset of participants is
interviewed (Study 3).

Power analyses (G∗Power) (19) with an F-test (MANCOVA),

suggest that a sample size of N = 148 is expected to be sufficient

to detect significant (α = 0.05), medium effects (f = 0.25) of

conditions (power= 0.80). We have based the medium effect size

on the study of Seo et al. (20). Considering that some participants

might drop out before the last measurement after 50 days, the
plan is to include more than 150 participants in the study. We
will conduct Multivariate analysis of (Co-)Variance to analyse the
primary and secondary outcomes of the experiment.

In the experiment we will repeatedly collect different
information (see also Figure 2), for example the primary
outcomes the motivation to conduct physical activities and
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FIGURE 2 | Timetable.

psychological need satisfaction, and the secondary outcomes
self-reported physical activity, engagement in physical activity,
enjoyment of physical activity, experiences of bodily alienation-
empowerment, physical body experience, objectified body
consciousness, self-objectification, wearable technology trust,
wearable technology motivation, and trust in Strava.We will only
use validated scales to assess these factors, andwill conduct Factor
Analysis and Reliability Analyses to make sure the scales we will
use are valid and reliable in our dataset as well. All functionalities
within Strava, using GPS for recording your physical activities,
connecting to people to share recordings of physical activity,
comment, or like physical activities of others or see reactions
of others on your recordings, share and detect routes, trainings,
races, and challenges with your network, connect to a (local)
club or community, share photo’s, and track and receive feedback
on level of fitness and progress, will be part of the study.
No specific assessment is considered to be more relevant than
other information because the current study will mainly be
conducted to test the differences between participants who use
a self-tracking app compared to participants who do not use
a self-tracking app. In future studies more attention could be
given to different functionalities and see the effects of these on
psychological or physiological outcomes.

Study 3: Interviews
Third, we will conduct an in-depth qualitative interview study.
For this study, we will invite 10–15 participants to take part
in this study. Based on the literature on in-depth qualitative
interviewing (19), this number is large enough to allow for
saturation of the themes that come up in the interviews while
still allowing heterogeneity in findings, also in the event some
interviewees will drop out. Recruitment will take place by
selecting a subset of participants from the experimental study
(study 2) who have volunteered to take part in the interview
study. To ensure a heterogeneous sample for our exploratory
study, selection criteria include a representation of various
gender-identities (the questionnaire provides options for “male,”
“female,” and “prefer not to say”) and various levels of user
intensity. By using a thematic list for interviewing, including
themes such as experiences of health and well-being, exercise
routine, and use of the communicative aspect of the Strava app,
we provide an overview of the underexplored phenomenon of
bodily empowerment and alienation in using Strava, while also
providing sufficient focus into bodily experiences of self-trackers.

To analyze the data acquired through this interview study, we
will use Interpretative Phenomenological Analysis. This method
aims at clarifying how people make sense of their bodies within a
larger context (21), and as such, it enables us to identify patterns
of bodily alienation and empowerment in the data on using the
self-tracking app Strava.

Recruitment
We will recruit participants at the Tilburg University Campus
through online participation platforms for scientific research.
Inclusion criterium is that participants should not use a self-
tracker already for their physical activities and are between 18 and
35 years old. Participant outside this age range and who already
use a self-tracker to record physical activities will be excluded
from the study. Participants will receive credits for participating
in the study.

Ethical Approval and Informed Consents
The ethical committee of the Tilburg School of Humanities and
Digital Sciences has provided ethical approval for the current
study (reference is REDC 2020.198). Explicit written consent to
participate will be collected from all participants.

Confidentiality
Participants will participate in the survey study with a participant
number, making them pseudonymous in the survey data, so that
they are not directly identifiable in the survey data. There will
be a key file (necessary, among others, to assign credits). This
key file linking participant number to their name will be stored
digitally in a password protected folder. This file will be destroyed
once the data have been collected. Identifiable information of
the participants participating in the interview study will be
pseudonymized when transcribing the data. The recordings
made of the interviews will be destroyed immediately after the
transcription of each interview. After completion of the study,
we will provide all participants with a written debriefing to fully
inform them about the study details. We will inform participants
to the maximum extent on the usage of the Strava app by
providing them with the privacy policy of Strava and asking for
them to sign when they have read it and that they comply. In
addition, active consent will be collected from all participants.
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Data Management
Considering that a large amount of data will be collected among
participants, a specific data management plan and strict protocol
has been written in close collaboration with the data steward
of the host institute (Tilburg School of Humanities and Digital
Sciences, the Netherlands). The host institute is very strict in
the treatment of the collected data with the highest level of
confidentiality to assure good management of data, which has
been tested and evaluated during the ethical approval process.

Data Monitoring and Auditing
The host institute is very strict in the treatment of the collected
data with the highest level of confidentiality to assure good
management of data, which has been tested and evaluated during
the ethical approval process.

Risk and Benefits to Participants
We do not consider any risks for the participants in the study.
Since we will conduct the study with a student population, the
benefits of participating in the study for participants is that they
receive credits.

Knowledge Translation and Dissemination
Considering both the societal and academic relevance of the
study, we will proactively communicate and disseminate the
outcomes of the proposed studies within this protocol as much
as possible. For example, we will aim to publish the outcomes
of the study in (open access) scientific international journals
and present the results on (inter)national symposiums and
conferences. Next, we will seek opportunities to publish the
outcomes in non-scientific outlets and present the results at
public events as well, in order to disseminate the outcomes of the
current project to a wider audience.

DISCUSSION

This study describes the protocol to systematically test whether
and under which conditions the use of self-tracking technologies
empowers or alienates, using a multi-method approach. This
question thus far remains unexplored.

Digital technologies provide opportunities to the ever more
detailed measurement and monitoring of people’s activities,
bodies, and behaviors in real time. In addition, they offer
possibilities for data archiving related to physical activity and for
sharing data with peers, directly, or through the social network of
users. Because peers can immediately see and react on someone’s
physical activity that was tracked, the perceived locus of causality,
the extent to which individuals perceive their actions as a result
of their external or internal reasons, could become externalized.
Without using a self-tracker, an individual might be motivated
to conduct physical activity because this person likes the activity
in itself, while when using a self-tracker, an individual might be
motivated to conduct physical activity because of the reactions
this person will receive from the personal community afterwards.
Via mobile digital devices, for instance, users are continuously
connected to the internet, which enables them to immediately
inform peers about physical activities and performances. Devices

and wearables are typically fitted with digital sensors that assess
not only activity and achievements, but also personal and health
related information. Such technologies are considered to be a
major source of potential revenue for digital developers and
entrepreneurs, but empirical evidence showing positive effects
remains scarce.

Considering the increasing use and popularity of digital
technologies, using these technologies on a day-to-day
basis raises important questions concerning their specific
psychological effects, and how these may in turn impact future
technology use and exercise behavior. Several studies show
the effect of self-tracking technologies on endurance (22),
well-being and self-determination to conduct physical activity
(23), belongingness (20), and sense of competence (23). Bodily
empowerment and alienation, however, appear areas that have
thus far been largely overlooked.

Generalizability
Although the proposed experiment and interviews focus on the
effects of using Strava, we believe the results of the current
study will be generalizable to more self-trackers that have similar
functionalities. An increasing number of self-tracker apps and
programs are being developed that are able to tracking workouts
and provide statistics of these workouts, discover, and connect
to local clubs, events and challenges, and interact with personal
communities. On the other hand, considering we will mainly
focus our study on a student population, we believe the outcomes
might be different for older (or younger) target groups because a
student populationmight bemore susceptible to social influences
than older target groups, or might be more vulnerable to external
factors influencing their bodily perceptions.

STRENGTH AND LIMITATIONS

One of the strengths of the current study is that until now
there have been limited studies examining the effects of using
self-trackers on bodily perceptions. To our knowledge, this is
the first systematic study that will examine the effects of using
self-trackers. Robust scientific evidence is needed, in particular
from large-scale Randomized Clinical Trials, with large sample
sizes, longitudinal data collection, and predetermined outcome
measurements that provide a comprehensive understanding
of the usage of self-trackers. Considering the enormous
societal success of self-tracking apps, it is essential to improve
our understanding and be able to provide evidence-based
recommendations about how these technologies influence
people, in particular in the long-term.

On the hand, the current study might face some limitation
and biases, such as selection bias, given that we will include
mostly students that are willing to participate in a study of
at least 50 days. Moreover, participants will receive credits
for participation in the study, which might be a different
motivation than other people who do not receive any
rewarding incentive for using the self-tracker. Based on the
interviews we will gather motivational aspects of using a self-
tracker that we cannot achieve with only an experimental
study. In addition, Strava might not be representative for
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all self-trackers, considering that it is a very popular app
with several functionalities that other self-tracking apps do
not have.
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The challenges presented by the Coronavirus disease 2019 (COVID-19) pandemic to the

National Health Service (NHS) in the United Kingdom (UK) led to a rapid adaptation of

infection disease protocols in-hospital. In this paper we report on the optimisation of our

wearable ambulatory monitoring system (AMS) to monitor COVID-19 patients on isolation

wards. A wearable chest patch (VitalPatch®, VitalConnect, United States of America,

USA) and finger-worn pulse oximeter (WristOx2® 3150, Nonin, USA) were used to

estimate and transmit continuous Heart Rate (HR), Respiratory Rate (RR), and peripheral

blood Oxygen Saturation (SpO2) data from ambulatory patients on these isolation wards

to nurse bays remote from these patients, with a view tominimising the risk of infection for

nursing staff. Our virtual High-Dependency Unit (vHDU) system used a secure web-based

architecture and protocols (HTTPS and encrypted WebSockets) to transmit the vital-sign

data in real time from wireless Android tablet devices, operating as patient data collection

devices by the bedside in the isolation rooms, into the clinician dashboard interface

available remotely via any modern web-browser. Fault-tolerant software strategies were

used to reconnect the wearables automatically, avoiding the need for nurses to enter

the isolation ward to re-set the patient monitoring equipment. The remote dashboard

also displayed the vital-sign observations recorded by the nurses, using a separate

electronic observation system, allowing them to review both sources of vital-sign data

in one integrated chart. System usage was found to follow the trend of the number of

local COVID-19 infections during the first wave of the pandemic in the UK (March to June

2020), with almost half of the patients on the isolation ward monitored with wearables

during the peak of hospital admissions in the local area. Patients were monitored for a

median of 31.5 [8.8, 75.4] hours, representing 88.1 [62.5, 94.5]% of the median time

they were registered in the system. This indicates the system was being used in the

isolation ward during this period. An updated version of the system has now also been

used throughout the second and third waves of the pandemic in the UK.

Keywords: electronic track & trigger, COVID-19, wearable devices, isolation wards, vital signs, continuous

monitoring, e-obs, remote patient monitoring
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INTRODUCTION

The Coronavirus disease 2019 (COVID-19) was declared a
global health emergency by the World Health Organisation
(1) at the beginning of March 2020. In its early stages, this
pandemic presented several challenges for in-hospital patient
care in the United Kingdom (UK): the fear of nosocomial
infections in clinical environments, the lack of knowledge about
the dynamics of virus transmission and initial shortages of
Personal Protective Equipment (PPE). These rapidly led to a
reduction in hospital admissions for non-COVID-19 disease,
e.g., for cancer treatment (2), and the need for rapid adaptation
of existing infectious disease protocols across the hospital
(3, 4).

While the most severely ill COVID-19 patients were
admitted to the Intensive Care Unit (ICU), those who
did not meet ICU admission criteria were placed under
observation on isolation wards (5). Our research group,
a collaboration between clinical staff and biomedical
engineers, was tasked by hospital management in Oxford
at the end of February 2020 with supplying them with
the most appropriate vital-sign monitoring system for
these isolation-ward patients. Six priority requirements for
the system were established (by order of appearance in
the manuscript):

1. Because COVID-19 is primarily a disease which affects
the cardio-respiratory system, it was decided that the
three most important physiological parameters to monitor,
ideally on a continuous basis, should be peripheral blood
Oxygen Saturation (SpO2), Respiratory Rate (RR), and Heart
Rate (HR).

2. The patients should not be confined to bed but should ideally
be ambulatory, an important factor in the recovery from
respiratory disease, for those patients stepping down from
Intensive Care.

3. The patients were to be remotely monitored within the
hospital, in the sense that they would be in individual rooms
on the infection wards, with the nursing staff caring for them
situated in another location nearby (the “nurse bays”), on the
same hospital floor.

4. Any additional continuous monitoring from wearables should
be fully integrated with the periodic nurse observations of the
full set of vital signs, comprising SpO2, RR, HR as well as Blood
Pressure (BP), Temperature (Temp), level of consciousness
and the corresponding Early Warning Score (EWS) (6), in
use throughout UK hospitals. The totality of the patient
information (continuous data from wearables and periodic
nurse observations) should be made available on real-time
displays on a central station in the nurse bays, away from the
isolation ward.

5. The amount of contact between the infected patients and
the nursing staff was to be minimised, which meant that
the frequency of nurse observations, which required the
use of PPE, could not be increased, even though it was
already known that the COVID-19 disease could lead to rapid
patient deterioration.

6. The system should work within the hospital cyber-
security infrastructure, compliant with patient
confidentiality standards.

It soon became clear to us that the wearable ambulatory
monitoring system (AMS) which we had been developing to
monitor high-risk patients continuously on general wards, and
create a virtual High-Dependency Unit (vHDU), could be
adapted to meet the above six requirements.

In the next section, we review state-of-the-art wearable
ambulatory monitoring systems, before providing an overview
of our vHDU system, based on commercial off-the-shelf
components, indicating how we had previously assessed their
wearability, accuracy, and reliability. We then describe how this
system was optimised to ensure that it met all of the above six
requirements and deployed to monitor patients infected with
the COVID-19 virus during the first wave of the pandemic
in the UK, from mid-March to June 2020. Finally, we discuss
preliminary results of the system usage in the isolation ward
during this period.

WEARABLE AMBULATORY MONITORING
SYSTEMS

State-of-the-art wearable AMS present a combination
of mechanical (e.g., accelerometer), physiological (e.g.,
Electrocardiogram, ECG), and biochemical sensors (e.g.,
glucose monitors) (7) and include adhesive patch, clothing,
chest-strap, upper-arm band, wristband, and finger-worn
monitors (8). ECG, HR, RR, SpO2, BP, Temp, and patient activity
are the clinical parameters most commonly tracked by current
AMS deployed for in-hospital monitoring (9).

The wireless technologies found in these wearable AMS range
from Wi-Fi and Bluetooth-Low-Energy (BLE) to cellular and
Radio-Frequency (RF) technologies. Data are usually transmitted
from the wearable(s) to an intermediate wireless client (e.g., a
tablet or smartphone, in a 1-to-1 routing configuration) and then
to an intranet or cloud server via Wi-Fi routers. Alternatively,
several wearables can transmit data to a single access point (N-
to-1 routing configuration), which then relays them to servers
via a wired network. Data from several patients are processed for
display and are typically reviewed by clinicians on workstations
or ward screens (often wall-mounted) and mobile applications,
in parallel and in real-time.

Examples of certified AMS with published validation or
feasibility studies in the hospital setting include (10):

• The Vista SolutionTM (VitalConnect, United States of America,
USA), which uses a disposable 5-day battery chest-patch to
collect ECG, HR, RR, body Temp, and activity data into a
client tablet via BLE (1-to-1 routing). The tablet, in turn,
retransmits the data overWi-Fi into the Vista SolutionTM cloud
platform. BP and SpO2 can also be collected via third-party
BLE devices.

• The ViSi Mobile System (Sotera Wireless, USA), which uses
one Wi-Fi enabled wrist-worn module, connecting to one
finger-probe pulse oximeter (for SpO2), to one 3- or 5-lead
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ECG chest module (for ECG/HR/RR/skin Temp/activity) and
to one upper-arm cuff module (for BP). The module transmits
the data to an intranet server, via the hospital Wi-Fi routers
(N-to-1 routing).

• The Sensium R© System (Sensium Healthcare Ltd, UK), which
uses a re-usable RF chest patch (disposable electrodes),
connected to an axilla probe, to measure HR, RR and body
Temp. A proprietary RF wireless router collects data from
several patches (N-to-1 routing) and retransmits them to a
central server via the hospital Wi-Fi (or wired connexion).

For all three examples, the centralised server/cloud data are
then made available to remote clinicians via a web-, desktop
application- or mobile app- based dashboards, on which it is
possible to review numerical data such as HR, RR, BP, referred
to also as “numerics” thereafter, waveforms such as the ECG,
and alert/notifications. Other in-hospital AMS broadly follow
similar architectures.

To date there have been no randomised controlled trials with
wearable based AMS that show significant clinical benefit/cost-
effectiveness, and clinical studies are still needed before these
systems can be adopted in large-scale clinical practise (10).

THE OXFORD VIRTUAL HDU
AMBULATORY MONITORING SYSTEM

Background Work
When we originally set out to identify suitable wearable devices
for our vHDU system, we focused on devices which also
provide the raw waveforms, i.e., the Photoplethysmogram (PPG)
and the ECG via wireless-transmission mode (e.g., BLE). The
availability of waveforms, not only enables further biomedical
signal processing research, but also allow clinical staff to review
these waveforms on bedside monitors to confirm the correct
application of the sensors to the patients.

In a first study, we assessed the wearability of a selection of
commercially-available wearables for monitoring the vital signs
of ambulatory patients (11). Our study, which used a prospective
observational cohort design, was reviewed and approved by
the Oxford University Research and Ethics Committee and
Clinical Trials and Research Governance teams (R55430/RE003).
Participants in the study were required to wear up to four
different AMS for up to 72 h each to mimic in-hospital use.

Next, a clinical accuracy study was conducted, in which up
to 33 healthy participants undertook six different motion tasks
followed by an hypoxia exposure phase (study approved by the
East of Scotland Research Ethics Service REC 2 (19/ES/0008),
study number ISRCTN61535692). During exposure to hypoxia,
participants were desaturated under controlled conditions to
seven SpO2 targets: {100, 95, 90, 87, 85, 83, 80}%, controlled via
an oxygen mask (overseen by an anaesthetist), whilst wearing
four wearable pulse oximeters, one standard Philips MX450
monitor pulse oximeter, one adhesive chest patch, and were fitted
with an arterial line. The protocol of this study can be found in
Areia et al. (12).

The accuracy of the pulse oximeter devices was assessed
by comparing their SpO2 and Pulse Rate (PR) estimates with

simultaneous gold-standard arterial blood oxygen saturation
(SaO2), measured from arterial blood gas sampled via the arterial
line, and with ECG-derived HR, respectively (we make the
assumption that PR and HR can be used interchangeably). The
accuracy of the chest patch was evaluated by comparing its
RR and HR estimates with simultaneous RR and HR estimates
derived from the reference capnography and the ECG. Full results
for both of these evaluations can be found in Santos et al. (13) and
Morgado et al. (14), respectively.

As a result of our wearability and accuracy evaluations, the
WristOx R© 3150 OEM BLE (Nonin Medical Inc., USA) (15)
finger-based pulse oximeter, named Nonin hereafter, and the
VitalPatch R© (VitalConnect, USA) (16) adhesive chest-patch were
ultimately selected as our wearable devices. From the Nonin, we
collect the PR, SpO2 (both at a sampling rate of 1Hz) and near-
infrared PPG waveform (at a sampling rate of 75Hz). From the
VitalPatch R©, we collect the HR and RR (both at a sampling rate
of 0.25Hz), patient posture (e.g., standing, sitting, lying down,
etc.), number of steps (at a sampling rate of 1Hz) and the single-
lead ECG and 3-axis accelerometer waveforms (at sampling rates
of 125 and 62.5Hz, respectively). Both devices compute signal-
quality indices and display battery status. BLE technology allows
these wearable devices to stream the combination of HR, RR,
and SpO2 data from active patients into a BLE-enabled tablet,
continuously for∼48 h and 5 days, respectively (meeting the first
and second requirements from section Introduction).

While Nonin’s BLE protocol documentation was provided by
the vendor, so that it could be implemented by a third-party,
VitalConnect only provided their Software Development Kit.
The latter limits the VitalPatch R© device to connect to only one
Android Operating System (OS) tablet at a time (1-to-1 routing).
As a result, BLE and Wi-Fi enabled Android tablets were the
only choices for the patient data collection device required in
our system use case. Wi-Fi technology allows the vital-sign data
recorded with the wearable devices data to be transmitted from
the Android tablets into remote servers via the hospital’s Wi-Fi
routers. The Samsung Tab A 2016 (SM-T585) and 2019 (SM-
T515), 10-inch, models were selected for data collection (see
Figure 1).

Patient Data Collection App
Figure 2 illustrates the data-flow diagram of the vHDU system.
The Android Java app was the first component of the system
to be designed. Our 1-patient to 1-tablet data routing approach
presented a cost limitation, but also an opportunity: given
that each tablet’s computational resources are available for each
patient, the first design decision was that as much of the
patient wearable data pre-processing as possible would occur
on the tablet app (rather than on the back-end server). Clinical
staff from the COVID-19 wards were interested in reviewing
remotely: (a) the patient vital-sign data and the connexion and
battery status of the devices in real-time; and (b) the vital-
sign times series trend retrospectively. Whilst (a) requires the
processing of high-rate data, (b) requires that the data are
summarised so as to make it feasible to both store it and allow the
clinical staff to browse hourly to daily vital-sign trends (low-rate
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FIGURE 1 | Hardware used to monitor COVID-19 patients on the isolation wards (from left to right): the Nonin finger-worn pulse oximeter, the Samsung Tab A 2019,

10-inch, with front and back protective casing, and the VitalPatch®.

vital-sign data). The pre-processing strategies applied to the data
collected in the app are described next.

Raw-Data Collection

To allow the detailed analysis and evaluation of the system
retrospectively, all the numerical and waveform (raw) data
from the devices were recorded in comma-separated values
(csv) files on the tablet. Each 5min, a batch of up to 10 files
were compressed in ZIP format (a lossless data compression
approach) and then sent to the back-end server (all files sent
successfully to the server are then subsequently deleted from
the app after 24 h). The raw csv files are recorded up to a
maximum of 30MB of data, corresponding to ZIP files of about
1.5MB. We note that for each hour of patient monitoring the
app creates about 7.5MB of compressed files. The app’s raw-
data upload to the back-end is represented by datastream #3 in
Figure 2. The corresponding web-service is described in section
Web-Application Back-End.

High-Rate Data Collection

The synchronisation of the high-rate vital-sign data, and
the connexion and battery status from the wearable and
tablet devices, were implemented using the ReactiveX library

(17). The latter uses a reactive programming paradigm, in
which each sensor data (i.e., patch, pulse oximeter, and tablet
data) is accumulated in its respective “Observable” variable,
asynchronously, and for a given time window. For each variable
and time window, either the last available data point or a
summary statistic was determined (the median was used in
our case, as it determines the most representative value in a
given window, being less influenced by motion artefact than the
mean). All the variables’ simultaneous window values were then
combined into a single (synchronised) data structure, using an
appropriate “datastream operator” (see the “Zip” operator, from
the ReactiveX library).

The following high-rate numerics datastreams (illustrated
as datastream #1 and datastream #2 in Figure 2, respectively,
and detailed in Table 1) were pre-processed on the tablet (as
described) and then sent to the back-end:

i. for each 2-s window, the most recent available numerics
(HR/PR, RR, SpO2, number of steps and patient posture);

ii. for each 10-s window, high-rate numerical estimates, i.e.,
median HR/PR, RR, and SpO2, the most recent number
of steps and patient posture, and the wearable/tablet device
status data (i.e., the available storage space, battery status,

Frontiers in Digital Health | www.frontiersin.org 4 September 2021 | Volume 3 | Article 63027378

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Santos et al. Wearable Monitoring System for COVID-19 Patients

FIGURE 2 | Virtual High-Dependency Unit (vHDU) system version 0.2 data-flow diagram. Components: (A) the Patient data collection tablet app, which retransmits

the wearables data to the back-end; (B) the Web-application back-end, which stores and relays that information to (C) the Clinician Dashboard client, which displays

the data from remote locations (via a web-browser). The main app datastreams of this system are: #1 - high-rate vital-sign values sent from the app to the

streaming-service, each 2 s; #2 - high-rate 10-s median vital-sign values and the most recent wearable status values, sent each 10 s to the web-service, and low-rate

5-min vital-sign median values, sent each 5min to the web-service; #3 - compressed files (ZIP format) with the wearables raw-data, sent to the web-service; #4 - HL7

(Health Level Seven standard) messages with e-obs chart data and patient Admission-Discharge-Transfers (ADT) information, which are sent from the hospital

systems into a HL7 receiver application on the vHDU back-end. Data transmission from both the VitalPatch® and Nonin devices to the tablet app is encrypted using

the Advanced Encryption Standard (AES) algorithm, over Bluetooth-Low-Energy. Data communication between the tablet app and the back-end web- and

streaming-services, and between the latter and the Clinician Dashboard is encrypted using the Secure Sockets Layer (SSL) algorithm over the HTTPS and the secure

Websockets protocols (for the web- and streaming-services, respectively). EWS, (local) Early Warning Score.

BLE and Wi-Fi connexion status), pre-processed into a (10-s)
“data-packet”.

The 2-s data-rate requirement came from feedback from staff
on the Cardiology wards (where our vHDU system was also
to be deployed), who need to track the vital signs of cardiac
patients in (near) real time. At such a high rate, it is possible
to replicate the real-time view from the Android tablet, located
at the patient bedside, on remote interfaces. This was also felt
to be an important feature for monitoring COVID-19 patients
on the isolation wards as it was known that the virus could
cause very rapid deterioration of a patient’s cardio-respiratory
system. Similarly, clinical research and ward staff confirmed that
updating the device connexion and battery status every 10 s
would be sufficient. We note that the high-rate vital-sign data
are not filtered (e.g., for motion artefacts) as the objective was
to display remotely real-time data from the devices.

Low-Rate Data Collection

To allow browsing large periods of vital-sign data from a remote
client, the research team decided to limit the resolution of
the low-rate data to 5-min windows. The low-rate data are

observed retrospectively and may be significantly influenced
by motion artefact. Therefore, to remove as many as possible
of the motion artefacts and ensure that each data channel
buffer would not consume too much memory, the vital-
sign data was first summarised for each 10-s window and
subsequently summarised further for each 5-min window,
using the median estimator in both cases. Five-minute median
values of HR/PR, RR, and SpO2, and the most recent
number of steps and patient posture in those windows,
were therefore estimated from the (non-overlapping) 10-s
medians aggregated from datastream described in item (ii),
section Raw-Data Collection, and finally sent to the back-
end server.

The 10-s and 5-min datastreams were recorded both in the
app and the back-end databases, generating ∼200KB of data per
patient monitoring hour (both detailed in Table 1 and illustrated
as datastream #2, in Figure 2, as the second is derived from the
first on the app, and then sent and stored on the same back-
end configuration, see also Table 2). This is negligible when
compared with the amount of raw-data recorded by the app.
Finally, the app database is cleared every time a patient is
disconnected from the vHDU system by the clinical staff.
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TABLE 1 | Technical specification of the datastreams sent from the app or from the e-obs hospital system into the vHDU system version 0.2.

Datastreamsa #1 #2 #3 #4

Protocol Socket.io HTTPS HTTPS HTTPS MLLP

Data source Wearables Wearables Wearables Wearables e-obs

Data frequency 2 s 10 s 5min 5min ∼ 4 h

Data format JSON JSON JSON ZIP HL7 v2.6

Data window sizeb 2 s 10 s 5min variable

(up to 30MB)

Synchronised X X Xc X

On clinician dashboard X Xd X X

Wearable Status

Connexion Most recent

Battery Most recent

Vital Signs

Heart rate Most recent Median Median Raw X

Respiratory rate Most recent Median Median Raw X

SpO2 Most recent Median Median Raw X

Blood pressure X

Temperature X

Oxygen therapy X

AVPU/GCS X

Steps Most recent Most recent Most recent Raw

Posture Most recent Most recent Most recent Raw

Waveforms

Electrocardiogram Raw

Photoplethysmography Raw

Acceleration (3-axis) Raw

“most recent” - the latest data point available in that window is used. “median” - the median value is determined over a given window. “raw” - all the (raw) data from the wearables

are collected.
aThe datastreams numbers match those used and illustrated in Figure 2.
bThe data windows do not overlap.
cThe 5-min medians are computed from the 10-s median values, which are synchronised as detailed in section High-Rate Data Collection.
dThe vital signs from the 10-s data-packet are only visible in the Clinician Dashboard in case the 2-s data are absent.

AVPU, Alert, Voice, Pain, Unresponsive scale; GCS, Glasgow Coma Scale; e-obs, hospital electronic observation system used by nurses to enter vital-sign observations; MLLP, Minimal

Lower Layer Protocol; JSON, JavaScript Object Notation.

App Interface

Figure 3 shows exemplar test data displayed in the patient

data collection app interface. It was designed to mimic the

functionality of bedside patient monitors. Once the tablet

registers with the web-application back-end, clinical staff can

enrol a patient in the AMS via their wristband Medical Record

Number (MRN) and location (i.e., ward, bay and bed, when the

last two are available). A monitoring session is then created on

the back-end, and data from one VitalPatch R© and one Nonin
devices can be linked and collected via the app. From top to
bottom in Figure 3: the VitalPatch R© and Nonin connexion status
and battery (in hours) are displayed on the top left and right
corners, respectively; the patient MRN and location are displayed
next; the waveform-grid (ECG in green and PPG in blue) and
the numerics-grid (HR, RR, SpO2, skin temperature—removed
when deployed at the isolation wards as it was not felt by the
clinical staff to be a reliable indicator -, number of steps and
patient posture) can be observed in the middle left and right of
the display, respectively.

Web-Application Back-End
The vHDU system back-end (Figure 2B) was developed to
receive and store the patient data collected by the app and
make them available to client interfaces on remote locations. It
consists of three main services (referenced in Figure 2B, using
the same numerals):

I The web-service, which uses the CakePHP framework
Model-View-Control (MVC) software architecture and the
Representational State Transfer (REST) approach for its
Application Programming Interfaces (APIs). This web-
service receives the 10-s and the 5-min app data, both
illustrated as datastream #2, in Figure 2, as both are further
processed on the back-end and stored on a relational database
(PostgreSQL). While the first is relayed to the clinician
dashboard via the streaming-service, the second is made
available to the same client interface via the REST API (e.g.,
when a particular patient chart is reviewed). The raw-data
compressed files are also received by the web-service, each
5min, and stored on the back-end filesystem (illustrated by
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TABLE 2 | Technical specification of the system deployed in the isolation ward.

Software Framework

(language)

Server 1 Server 2

Patient data

collection app

Android v28 (Java v8) - -

Streaming-

servicea
ExpressJS; Socket.io

(Javascript)

Node.js v12

Web-serviceb CakePHP v3

(PHP v7.3)

IIS v10 PostgreSQL v12

File upload

web-servicec
CakePHP v3

(PHP v7.3)

- IIS v10;

PostgreSQL v12

HL7 receiver Apache Camel v2;

Spring Framwork v4

(Java v8)

Apache Karaf

v4

PostgreSQL v12

Clinician

dashboard

ReactJS v16

(Javascript)

IIS v10 -

Servers 1 and 2 are both virtual machines with 8 GB of RAM, 4 CPUs each and the

main application containers running the vHDU system components are identified for

each server.
aStreaming-service configuration to relay datastream #1, and the 10-s data-packets from

datastream #2, to the Clinician Dashboard.
bWeb-service configuration to receive and process datastream #2 in Figure 2, which

includes both the 10-s and 5-min data-packets processed in Server 1 and stored in

Server 2.
cWeb-service configuration to receive and process datastream #3 in Figure 2, related

with the raw-data files (ZIP format) that are uploaded and stored in Server 2 each 5 min.

IIS, Internet Information Services; HL7, Health Level Seven standard.

the datastream #3, in Figure 2). Secure access to the web-
services resources is maintained via the use of Java Web
Tokens (JWT).

II The streaming-service: the Node.js framework was used to
develop the real-time communication of the 2-s high-rate
numerical data from the app to the remote interfaces. This
real-time communication is illustrated as datastream #1 in
Figure 2, being present in the arrow from the app component
to the streaming-service, and then in the arrow from the
latter to the Clinician Dashboard, in that figure. Note that the
2-s data are not stored on the back-end. Additionally, the 10-s
data stored in back-end, are also relayed from the web-service
(I) to the remote interfaces via the streaming-service. This
real-time communication is also represented in Figure 2,
first in the arrow from the web-service to the streaming-
service, and then in the arrow from the latter to the Clinician
Dashboard, in that figure. The socket.io protocol is used
for the real-time, bi-directional communication. JWT is also
used to authenticate the initial socket.io handshake request.

III The HL7 receiver: the development of this component
was based on prior work from the research group in
consuming HL7 (Health Level Seven standard) messages
from the hospital systems (18). Apache Java Camel is used
to receive (via Minimal Lower Layer Protocol, MLLP),
store and process the HL7 messages from the hospital’s
Admission-Discharge-Transfers (ADT) system and from the
hospital system responsible for the electronic notification
and documentation of vital-sign observations (e-obs) by
clinical staff (19), also known locally as the electronic

Track-and-Trigger (e-T&T) chart. Finally, a Java Spring
REST API makes these data available to the web-service
back-end, so they can be stored alongside the continuous
wearable data transmitted by the tablet app. The data-
flow of this component is illustrated as datastream #4 in
Figure 2.

Clinician Dashboard
The Clinician Dashboard (Figure 2C) was designed to allow
the review of both the real-time vital-sign and device status
data, from multiple patients in parallel, and the 5-min vital-
sign trend charts, for each patient, on the remote ward. The
ReactJS (JavaScript) framework was used to develop an interface
that could display both the high- and low-rate datastreams via
a web-browser (usually available from any hospital computer),
which includes:

i The staff accounts (secured via username and password
credentials) and patient details administration pages. Staff
accounts are pre-configured with a set of hospital wards from
which they are able to access data.

ii A homepage, which allows authorised clinical staff accounts
to browse a list of patient cards from their pre-configured set
of hospital wards. The web-service APIs allow this list to be
queried, whilst the socket.io protocol allows the streaming of
the device status data every 10 s, and of the real-time vital-sign
values, every 2 s, to each patient card. For each patient card,
the most recent values from the continuous datastream (HR,
RR, SpO2, number of steps, and patient posture) are displayed
alongside themost recent complementary nurse observations,
collected via the HL7 receiver (BP, Temp and level of
consciousness). Temp, the core body temperature, is recorded
by the nurses during their observations using a tympanic
thermometer, when they also assess the patient’s level of
consciousness using the Alert, Verbal, Pain, Unresponsive
(AVPU) Scale, or the Glasgow Coma Scale (GCS).

iii An augmented e-obs chart, with the full set of vital-sign data
for each patient, combining the (typically) 4-hourly vital-sign
observations from the nurse, and corresponding (local) Early
Warning Score, with the 5-min median vital-sign values (HR,
RR, SpO2) from the wearable AMS (the wearable data are not
scored at this point).

Figure 4 shows the implemented Clinician Dashboard
homepage, which allows authorised staff accounts to review
the active patient monitoring sessions from a computer screen
located at the nurse bay (the combination of the vHDU
system components described up to this point fulfils the third
requirement from section Introduction). Each card corresponds
to one patient monitoring session with data transmitted by
the patient data collection app. The patient is identified at
the top by their first/last names, MRN number and location
(ward short code/bay/bed). Real-time wearable data are
displayed alongside the complementary intermittent vital-sign
observation data.

The vital-sign timing is shown below its value in case the
values are older than a minute. The wireless connectivity of the
wearable devices and their battery status are shown at the bottom
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FIGURE 3 | Interface for the patient data collection app, implemented in Android Java. Exemplar test data are shown. The status of the wearable device can be

observed at the top of the image, with both the VitalPatch® and the Nonin devices in “Connected” state, and with serial numbers “016AC4” and “502854048,”

respectively. The top right icons enable (from left to right): restarting the app; checking the connexion status with the back-end server; checking the charging and

battery status; and entering the app settings. The patient can be unregistered by pressing the outlined “×” icon on the right of the patient information field. The live

vital-sign and waveform data (ECG, Electrocardiogram, and Pleth, Photoplethismography) values are displayed on the right side and left side of the app, respectively.

The lower right icon locks the app screen, leaving only the lower left clock displayed. In this case, the monitoring and streaming of the vital-sign data occur in the

background, likely to be a less distracting mode for patients (particularly useful at night, because of the light emitted by the tablet). IBME, Institute of Biomedical

Engineering; MRN, Medical Record Number; bpm, beats per minute; rpm, respirations per minute; HR, Heart Rate; RR, Respiratory Rate; TEMP, Temperature; SpO2,

peripheral blood Oxygen Saturation.

of each patient card. Finally, the patient card list can be filtered
by searching for their details, from the search box, at the top right
corner of the page header, or filtering by starred patients (note the
yellow/white stars at the top right corner of each card).

Figure 5 shows the augmented e-obs chart for an exemplar
COVID-19 patient, presenting the vital-sign observation sets
recorded by the nursing staff alongside the 5-min vital-sign
data estimates acquired using the wearables (meeting the fourth
requirement from section Introduction). These two different data
sources can be identified on the chart by the absence or presence
of the BLE symbol at the top of the temperature row, respectively.
Note that the column of the nurse-recorded observation set, at
18:04, is selected and the respective Temp, BP, HR, RR, SpO2,
oxygen therapy, AVPU, and (local) EWS values recorded at that
time, are shown in the rightmost column.

Figure 6 shows another COVID-19 patient data example in
which a 5-min median values, determined from the wearable
data, are selected, at 19:12 (a data-packet with only HR and
SpO2 from the Nonin, in this case). Displaying the wearable

data interleaved with the nurse observations facilitates the
review of the patient physiology trend by staff. Wearable data
estimates can be collapsed to show only the (most recent
5-min) estimates at 15-min, 30-min or hourly intervals, to
make it possible to review longer time-series more easily,
when needed.

Fault-Tolerant Software Strategies for
Continuous Monitoring
To optimise the wearable AMS prior to patient use, several
rounds of testing and troubleshooting were performed in 2019,
with the ward staff wearing the devices during working hours.
This allowed for software cheques, connectivity assessment, and
integration of the wearable AMS into the clinical environment.
The testing was also intended to encourage AMS familiarisation
amongst ward staff.

Reliability of the AMS was an important feature, as it is critical
that the nurses do not spend time investigating problems caused
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FIGURE 4 | Clinician Dashboard homepage with four exemplar test patient cards. Each card presents on the left: the Heart Rate, Respiratory Rate, peripheral blood

Oxygen Saturation (“O2”), Blood Pressure, and Temperature; and on the right: the Notifications (disabled at this time), continuous Early Warning Score (disabled at this

time), Level of consciousness, Steps and Posture. The patient name, Medical Record Number and location are shown at the top of each card. At the bottom of each

card, the status of the wearables, including connectivity and battery status, can be observed (from left to right, the VitalPatch®, tablet, and Nonin icons are shown

when present—such as in the first card). It can be noted that the upper left patient is “Starred” (by the active yellow star), with a VitalPatch® device connected, in

range and with a remaining battery of 118 h; the tablet has a battery charged at 50% of capacity; and the Nonin device is connected to the tablet but has no battery

left (0 h). The battery icon flashes in this case, to prompt for a change of batteries. The upper right patient had their last observation 3 months ago, showcasing the

system’s ability to keep the last patient state until they are discharged from the system (the Nonin also has no battery left in this case). The lower left patient has been

pre-registered but the wearable devices have not yet been attached to the patient, as indicated by the lack of icons for the wearables, and thus no vital-sign data are

available yet. The lower right patient has no “Patient, Name,” being identified only by the MRN in this case. The right-side Nonin icon is also greyed, representative of a

Nonin pulse oximeter associated with the patient but out of range from the patient’s assigned vHDU tablet. AVPU, Alert, Voice, Pain, Unresponsive scale; GCS,

Glasgow Coma Scale; J-WD, John Radcliffe Hospital Ward Code; MRN, Medical Record Number.

by loss of sensor data, as described in the fifth requirement

from section Introduction. The following fault-tolerant software

functionalities were implemented in the app to ensure its

reliability for continuous monitoring of the patients’ vital signs:

• a single app lockdown mechanism built into the Android
OS, the “kiosk mode,” which “pins” the vHDU app to the

foreground and limits the access to other tablet functionalities;
this mode allows the Android OS to re-open the app
automatically every time it closes;

• a background service that reconnects automatically to the BLE
wearables, whenever intermittent connexion losses occur, up
to 10min, which can happen e.g., if the patient is very active or
temporarily moves away from the tablet;
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FIGURE 5 | Exemplar augmented e-obs chart from the Clinician Dashboard, showing wearable and e-obs vital-sign data from a COVID-19 patient in the isolation

room. The header provides the patient’s demographics (from left to right): the ward, bay and bed location, the name, gender, age (with date of birth below), and the

MRN and NHS codes. The clinicians have the option to “Edit” the patient information, or “Terminate” the patient’s session in the vHDU system (automatically

unregistering them from the assigned tablet). The clinicians can review the periodic wearable data, i.e., the 5-min median estimates, using 15-, 30-, or 60-min

windows (the most recent 5-min estimates in each window are shown), alongside the intermittent e-obs data (usually entered 4-hourly by the nurses), to facilitate

tracking of the patient state. Wearable data is distinguished from the e-obs by using the Bluetooth sign at the top of the Temperature row. Only the e-obs data have

scores associated with it, presented in the T&T row at the top and bottom of the chart. In this hospital setting, an Early Warning Score greater or equal to 3 was

coloured red, denoting high risk. In this exemplar patient chart, only nurse observations (e-obs data) are present at the start, showing low SpO2 (89% at 2:30 AM) and

high RR, high Temp, and the use of oxygen therapy (26 rpm, 37.9◦C and Venturi mask 60, V60, at 15 litres per minute, respectively, at 6:35 AM). The wearable data is

summarised in hourly windows to allow the review of a longer monitoring period. It is possible to observe that during this period the VitalPatch® and the Nonin devices

were fitted to the patient from 13:00 and then temporarily removed between 16:00 and 23:00. Periodic VitalPatch® data was then consistently available for remote

monitoring of the patient status from the nurse bays; however, the Nonin was still removed often by the patient during that period (staff continued to try to use it to

monitor the patient’s continuous oxygen therapy, which can be confirmed by the presence of the Venturi mask, V40, in the 4-hourly e-obs data present during this

period). MRN, Medical Record Number; NHS, National Health Service; T&T, Track & Trigger; Sats, peripheral blood Oxygen Saturation; AVPU, Alert, Voice, Pain,

Unresponsive scale; GCS, Glasgow Coma Scale; RA, Room Air; O2, Oxygen.

• a background service that forces the app to restart and
reconnect if any connected wearable device is missing data for
more than 10min; this action resets the BLE connexion state
at the OS level, and the app resumes the previously persisted
patient- and wearable-registration state automatically.

These strategies guarantee that data loss is never >10min
from when an unaccounted software issue occurs in the app.
Finally, the Clinician Dashboard was configured to reload
automatically each 30min (i.e., when loaded on a web-browser
e.g., from the nurse bay). This ensures that its socket.io client
regains/maintains connectivity with the streaming-service, and
consequently keeping the patient cards data updated.

DEPLOYMENT OF THE AMS ON THE
ISOLATION WARD

In the previous section we detailed the Oxford vHDU AMS
functionalities supporting the first five requirements deemed

essential to allow the remote monitoring of the vital signs of
COVID-19 patients in their isolation rooms, from the remote
nurse bays. Next, we describe its deployment in the hospital’s
isolation ward. Our initial adaptation of the AMS for monitoring
COVID-19 patients on this ward was completed in just 3 weeks,
during March 2020. This isolation ward has a maximum capacity
of 19 isolation rooms, with two nursing bays outside the isolation
rooms. Four to five nursing staff and three to fourmedical doctors
oversee the ward, in each of its two shifts (staff numbers being
adjusted as required, in particular during the week-ends).

Software Configuration
The patient data collection app was installed on 20 Android
tablets, configured in “kiosk” mode and with Wi-Fi Protected
Access 2 (WPA2) accounts. The web-applications back-end
was deployed on one virtual server (except the compressed-
files upload web-service), and an additional virtual server
supported the databases and the compressed-files storage.
Their technical specifications can be reviewed in Table 2.
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FIGURE 6 | Exemplar augmented e-obs chart from the Clinician Dashboard, showing wearable and e-obs vital-sign data from a COVID-19 patient in the isolation

room. In this example, the wearable data from 10:44 to 19:12 is summarised in 15-min windows (i.e., the “15-min” view was activated, and only the most recent

available 5-min median estimates within each window are displayed), and shown alongside the intermittent e-obs data. Only the e-obs data had scores associated

with it, presented in the T&T row at the top and bottom of the chart. In this hospital setting an Early Warning Score (EWS) greater or equal to 3 was coloured red,

denoting high risk. In the period displayed in the chart, the VitalPatch® was already fitted. The increase in the VitalPatch® RR, might have triggered the nurse review of

the patient 1 h after the previous review (usually done 4-hourly when the previous total EWS is 2), as an additional e-obs set was entered by the nurse at this time, with

high RR (24 rpm), low SpO2 (90%) values and a total EWS of 4 (1 h after the previous e-obs set, at 10:35 AM). We note that at this point the patient was receiving

oxygen therapy via a nasal cannula (N) at 4 litres per minute. It is possible to observe that, in the subsequent 3 h, the VitalPatch® was removed and the Nonin pulse

oximeter fitted to the patient to monitor the SpO2 while the oxygen therapy was escalated, by applying a Venturi Mask 40 (V40) at 10 litres per minute, at 14:14. A

recovery trend can be observed, with HR and SpO2 estimates from the Nonin pulse oximeter stabilising in the evening at 72 bpm and 97%, respectively (displayed at

the end of the chart). Note that a nurse e-obs set is absent during this period in the chart (i.e., between 14:14 and 21:23, the time at which the patient was removed

from the vHDU system; the chart only shows up to 19:12). MRN, Medical Record Number; NHS, National Health Service; T&T, Track & Trigger; Sats, peripheral blood

Oxygen Saturation; AVPU, Alert, Voice, Pain, Unresponsive scale; GCS, Glasgow Coma Scale; RA, Room Air; O2, Oxygen.

Both tablets and servers were behind the Oxford University
Hospitals (OUH) National Health Service (NHS) Foundation
Trust firewall. The transmission of HL7 v2.6 messages over
MLLP is not encrypted. Therefore, an additional requirement
to having our servers only available from the hospital
intranet, was that they ran a bespoke anti-virus software and
were managed by the hospital cyber-security team. All data
communication between the tablet app and the servers was

encrypted using the Secure Socket Layer (SSL). The VitalPatch R©

and Nonin data communication was also encrypted using

the Advanced Encryption Standard (AES) over BLE. Finally,

the Clinician Dashboard accounts were pre-configured to

show data from the isolation ward only. These configurations

helped in achieving the essential data security and patient

confidentiality standards of the sixth requirement from section

Introduction. Finally, we note that patient data collected from

an electronic system that is part of a research study, such as
the vHDU system, is required to be deleted from the hospital

servers within a period of 5 years from the completion of

the study.

Hardware Configuration
The AMS hardware (tablets and wearables) was configured to
minimise the risk of the vHDU equipment spreading infection
and to facilitate its setup in the patients rooms:

i. the VitalPatch R© is a single-use device, and safely disposed of
after usage;

ii. one Nonin pulse oximeter is paired exclusively with one
Android tablet, and its serial number tagged on the tablet.
The serial number is broadcast to the tablet app, via BLE,
allowing staff to easily connect both. After use, the casing
and finger-probe of the device are cleaned with appropriate
wipes and the wrist-straps are replaced with newer ones, for
the next patient (the old straps were disposed in this case);

iii. tablets are covered with a back and front protective casing;
their app pre-configured with the ward, bay and bed
information; while in use, tablets are deployed near a power-
socket and within the reach of the Wi-Fi signal in each
isolation room; after use, they are cleaned with appropriate
wipes (or the casing replaced, as required) and, when not in
use, they are secured in bags at the nurse bays;
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iv. a dedicated computer screen is configured in the main
nurse bay to display the Clinician Dashboard, which allows
authorised staff to review the vital signs of multiple patients,
as well as the status of their wearable devices and tablet. The
dashboard is a web-application front-end, available from any
ward computer screen with a modern web-browser within
the hospital intranet.

Training and Maintenance
The vHDU system optimised for vital-signmonitoring of patients
on the isolation ward was deployed on 20th March 2020 and
the first patient was registered in the system on 23rd March
(20). Two one-hour training sessions per week were given by a
research nurse (LY) and a research engineer (CR), for the 1st
month following the start of the first wave of the pandemic,
to cover the entire staff. Between March and August 2020,
the biomedical research engineers (MDS, CR and MAP) and
one software engineer (RL), worked continuously to provide
equipment, system configuration and software improvements.
The clinical research staff (SV, CA, and LY) received weekly
feedback from the nurses managing the COVID-19 patients.

The ability to calibrate the VitalPatch R© RR estimates
manually, via the tablet App, was added 2 weeks after the initial
deployment. This device needs to identify the patient posture—
standing vs. lying down—to select the correct accelerometer axis
and start deriving RR (21). Prior to that, the patient had to take
about 30 steps for the RR estimation to be calibrated, which did
not happen if the device was fitted while the patient was in bed,
and remained in bed.

Finally, the integration of the 4-hourly nurse observations
vital-sign values into the Clinical Dashboard was completed and
deployed from themiddle of June 2020 (i.e., only continuous data
was shown in the patient cards and augmented chart up to this
point), allowing staff to review both sources of vital-sign data
in one interface. This led to the system architecture in Figure 2:
vHDU version 0.2.

RESULTS

System Uptake on the COVID-19 Isolation
Ward
Preliminary feedback regarding the uptake of the vHDU AMS
on the isolation wards was received mainly from clinical staff
during the training and system maintenance sessions offered by
the research team. It was not possible to interact with/interview
the patients during the pandemic. Feedback on the AMS usage
during the first wave can be categorised as follows:

i VitalPatch R©–The disposable cardiac patch was well-received
by both the clinical staff and the patients. Staff found it easy
to fit on the patient and connect to the tablet App, and that it
would not fall easily from the patient’s chest. Clinical research
staff observed that HR and RR signal quality deteriorated (i.e.,
noticeable by intermittent HR and absence of RR estimation)
when the patch was applied on patients from whom it was not
possible to clear the chest hair completely.

ii Nonin—Clinical staff reported that some patients found
it difficult to comply with using this device continuously.
This confirmed our wearability study findings (11), in
which finger-based pulse oximeters such as the Nonin,
were found to be less comfortable and tolerated than
the cardiac patches, and ring-shaped or wrist-only pulse-
oximeter devices. However, the Nonin was the only one
capable of regaining connectivity without nurse intervention
and with confirmed clinical-grade accuracy. Clinical staff
also reported to have compared the Nonin SpO2 estimates
with those from a Dinamap vital-sign monitor used in the
ward, in the first couple of weeks. Our hypoxia study (13)
showed that although the Nonin was within the clinical-
grade accuracy guidelines (i.e., Root-mean-squared error ≤
4%), it showed a negative bias of −1.92 (±2.73)%, and
motion significantly deteriorates its estimates. The device was
ultimately compulsory to use for those COVID-19 patients
requiring oxygen therapy (usually less active and lying in the
room beds), and therefore requiring remote monitoring of
their oxygen levels.

iii Linkage with the e-obs system data—displaying the 4-hourly
nurse observations alongside the wearables estimates in the
Clinician Dashboard was well-received by staff. However, the
manual introduction of the MRN (from the tablet App or
from the Dashboard) was found to be prone to error, as in
a couple of instances the incorrect number was introduced,
which prohibited the capture of the intermittent vital-sign
data from the HL7 receiver system. Vital-sign data capture
systems usually use a barcode scanner to acquire the patient
MRN (or other hospital identifier) automatically from the
patient wrist-band (avoiding error). It was not possible to
have such a solution ready for the AMS, as the patient
enrolment was oftenmade via the tablet app and it would have
potentially required a barcode scanner per isolation room.
To avoid this error, future approaches will use a combination
of visual cues and a camera-based barcode scanner approach
(via camera-enabled tablets).

Figures 5, 6 showwearable and e-obs data collected by the vHDU
system from two different COVID-19 inpatients in isolation
rooms. The wearable data are shown for hourly- and 15-min
windows, respectively. Both patients received oxygen therapy to
compensate for the low SpO2 (<90%), and high RR (>20 rpm).
The first patient maintained a low SpO2 throughout the displayed
period, requiring additional 4-hourly nurse observations to
adjust therapy. In contrast, the second patient showed two
relevant events in the wearable data: (a) an increase in the
VitalPatch R© RR estimate (displayed at 10:09), which might have
triggered a nurse review at 11:24 (resulting in a total EWS of
4 at that point, indicating deteriorating physiology), 1 h after
the previous nurse review; (b) a recovery trend towards the end
of the period displayed on the chart, the Nonin pulse oximeter
reporting SpO2 and HR values of 97% and 72 bpm, respectively.
For the latter patient, the nurse did not perform additional
observations during the afternoon period (between 14:14 and
21:23, the time at which the patient was removed from the vHDU
system—the figure only shows up to 19:12), indicating that, as
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TABLE 3 | Statistics on the vHDU system usage in the John Radcliffe Hospital

isolation ward, between the 20th of March and the 2nd of August 2020.

Metric Period: 20/03 – 02/08/2020

# Patients monitored 59

# Monitored hours 2,938.8

Median monitoring hours [Q1, Q3] 31.5 [8.8, 75.4]

Median monitoring hours [Q1, Q3] (%) 88.1 [62.5, 94.5]

# Nonin SpO2/Pulse Rate hours 1,500.5

# VitalPatch® Heart Rate hours 1,930.0

# VitalPatch® Respiratory Rate hours 1,649.9

Max number of patients simultaneously monitored 9

Q, Quartile.

long as the patient showed a recovery trend via the wearable
system, the nurse could make the decision not to enter (with full
PPE) the isolation room.

The system has now also been used during the second and
third waves of the pandemic in the UK (November 2020—
April 2021). Since April 2021, 20 semi-structured interviews
regarding its use have been held with members of the nursing
staff with experience of the system. These interviews were held
via telephone or face-to-face, and used purposive sampling to
gain as wide a range of views as possible. The findings from these
interviews will be reported in a subsequent paper.

Continuous Data Available for Remote
Monitoring on the COVID-19 Isolation Ward
Preliminary results regarding the continuous data captured by
the AMS, and available for the remote monitoring of COVID-
19 patients on the isolation rooms, during the first wave of
the pandemic in the UK, was reviewed as part of the quality
improvement project (Audit Datix ID Number 5973), approved
by the OUH Trust on 8th April 2020. These results were assessed
by calculating the total amount of data acquired by each device,
the median amount of data collected per patient and the number
of active monitoring sessions per day. The latter has been
compared with the number of new COVID-19 cases per day
in England (22) and the number of COVID-19 related hospital
admissions in England (23).

A total of 59 patients were monitored via wearable devices
between 20th March 2020 and 2nd August 2020. The system
monitored patients for a total of 2,938.8 h, corresponding to 88.1
[62.5, 94.5]% of the median time the patients were registered in
the system (Table 3). This corresponds to a median of 31.5 [8.8,
75.4] hours of vital-sign data per patient (minimum was 20min
and maximum was 10 days). The VitalPatch R© HR contributed
themost data with 1,930 h. The amount of RR data was about 16%
lower, mainly because of the 2-week delay in the introduction
of the manual re-calibration step required to start its estimation
from nurse input. The amount of SpO2 data is about 21% lower
than that of the HR because some patients found it difficult
to be compliant with the wearing of the finger-worn Nonin
probe. Staff would only enforce the wearing of the probe if the
patient was given oxygen therapy. When the VitalPatch R© data

was not available, the Nonin PR estimates would provide the HR
measurements on the dashboard.

From observation of Figure 7, we can infer that at the peak
of the first wave of the pandemic in the Oxford region, staff
placed half of the ward patients on continuous monitoring (i.e.,
nine out of a total of 19 available rooms), using our wearable
vHDU system.

Work is underway to analyse retrospectively the continuous
vital-sign data collected during the COVID-19 pandemic,
including the second and third waves (between March 2020
and April 2021) and corresponding patient adverse events (e.g.,
cardiac arrest calls, escalation of care, and mortality). This
analysis will include (a) the frequency of nurse observations
before and during the use of the vHDU system; (b) the
relationship between instances of oxygen desaturation and
associated respiratory and heart rate patterns; and (c) the
relationship between the patterns of the vital-sign collected by the
system and patients adverse events. We will also be reporting on
the results of these analyses in a subsequent paper.

DISCUSSION

Comparison With Other AMS
The challenges created by the COVID-19 pandemic to health
services throughout the developed world has led to the
accelerated deployment and acceptance of many remote
monitoring technologies in the clinical setting (2). The work
presented in this paper describes the adaptation of a wearables
based AMS for real-time remote monitoring of the vital signs
of COVID-19 patients being cared for on an isolation ward.
The major difference between our prototype system and those
reviewed earlier, is the assumption that nurse observations will be
recorded using third-party interoperable software. These data are
sent to the hospital Electronic Patient Record and made available
to our system via HL7. Our system then displays it alongside the
wearable continuous data.

We note that while the ViSi Mobile System only displays
wearable device data, the Vista Solution R© and Sensium R©’s “E-
Obs” package, allow staff to enter additional patient data in order
to compute the EWS, generate alerts and suggest a clinical action.
Our approach allowed clinical staff to retain their current e-obs
system, but to review those data alongside the wearables data in
one single chart (as illustrated in Figures 5, 6).

The 5-day battery life of the VitalPatch R© adopted in our
system, also helps minimise contact with patients in isolation
rooms, when compared with the ViSi Mobile System modules
which require daily charging. Finally, the Sensium R© System
does not include the continuous measurement of SpO2, the key
parameter for managing COVID-19 patients, many of whom
require oxygen therapy.

Usage of the Oxford vHDU AMS During the
First Wave
The need to undertake patient care on isolation wards while
keeping clinical staff safe, and the focus of the local hospital teams
(including clinical, engineering, and information technology) on
helping the UK NHS cope with the COVID-19 pandemic created
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FIGURE 7 | (A) Number of COVID-19 patients monitored via the virtual High-Dependency Unit (vHDU) system in the John Radcliffe Hospital isolation ward vs. the

number of new daily COVID-19 cases and new daily COVID-19 hospital admissions, in England, between the 20th of March and the 2nd of August 2020. (B) The

number of new daily COVID-19 cases in Oxfordshire, is shown for comparison. It can be observed that the system usage followed the trend of the first wave of the

pandemic in the UK.

an environment which enabled the rapid adoption of our vHDU
system into clinical practise. A number of factors helped in
deploying the system in such a short time:

a The prior selection of wearable devices that avoid the need for
constant adjustment by nursing staff: amongst all the wearable
pulse oximeters which we had previously investigated, the
Nonin device was the only one that demonstrated good
clinical accuracy, allowed consistent BLE communication and
activated automatically once the patient’s finger was positioned
within the probe. Similarly, the results obtained with the
VitalPatch R© confirmed the conclusions from our previous
wearability and functionality tests (11), as the patchwas rapidly
adopted on the isolation ward, with the advantage that it is
a disposable device, thereby avoiding the risk of spreading
the infection.

b The use of interfaces familiar to OUH clinical staff:
with minimal training, nursing staff when making their
observations were able to review the outputs of the data
collection app on the Android tablet as if it were a “bedside
monitor;” additionally, the charts on the remote Clinician
Dashboard were modelled on those used in the electronic
observation system, widely used throughout the hospital.

c The inclusion of fault-tolerant software mechanisms, e.g.,
to automatically recover from wireless disconnection of the
wearable sensors and unaccounted software issues (with
minimal data loss), to avoid nursing staff entering the isolation
ward in order to make adjustments.

d The close collaboration of the biomedical engineering and
the clinical research teams with the ward staff (and vice-
versa), enabled rapid feedback on the usage of the system,
so that it could continually be iterated. During this period,
biomedical expertise was required to improve the patient
data collection app, e.g., in facilitating the setup of the
VitalPatch R© RR estimation, and to design and develop the
patient chart displaying both the continuous and intermittent
vital-sign data. The clinical research team validated the AMS
functionalities with the ward staff.

The usage of the AMS on the isolation ward followed the trend
of the first wave of the pandemic in the UK. Usage decreased
when the number of COVID-19 related hospital admissions
decreased (as shown in Figure 7A) and when other hospital
wards were reorganised to make them more prepared to care
for patients with COVID-19. We also observed that the vital-
sign data availability followed that which we had previously seen
in our wearability study (11), the Nonin capturing 21% less
data than the VitalPatch R©. The analysis of the amount of data
captured per patient was limited to the time they were registered
in the system (i.e., ward admission/discharge times were absent
from our dataset). Nevertheless, vital-sign data was available to
be reviewed by clinical staff, i.e., from the remote nurse bays, for
a median of 88.1 [62.5, 94.5]% of the patients’ time in the system.
The latter, allied to the fact that half of the ward was using at least
one wearable device at the peak of the first wave, and that the
system was also used during the second and third waves of the
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pandemic in the UK, are good indicators that such systems are
needed to monitor patients in isolating rooms while keeping the
hospital staff safe.

Future Work
The Oxford vHDU AMS has now also been used during the
second and third waves of the pandemic in the UK. Therefore, the
next steps in evaluating and improving the AMS for the isolation
wards, include:

i the analysis of the human factors that might influence the
usage of the system in the ward, e.g., via focus groups
interviews with clinical staff;

ii the analysis of patterns in the continuous and intermittent
vital-sign data, collected by the vHDU system, vs. COVID-19
patients adverse events (occurring in the isolation ward);

iii the ability to combine the continuous HR, RR, and SpO2 data
from the wearables with the complementary data from the
nurse observations (BP, Temp and level of consciousness),
available from the hospital e-obs system (19), to compute the
EWS for each patient on the vHDU system;

iv the implementation of a notification system for clinical events
linked to abnormal physiology (e.g., alerts for low SpO2

values for COVID-19 patients), and for technical events,
such as missing wearable data (the validation of the scoring
and alerting system in a dedicated clinical study is currently
being planned);

v and finally, exploring the use of the system outside of the
hospital, as some patients could continue to be monitored
remotely after they have been discharged home.

CONCLUSION

We have developed and deployed a wearables system based on
commercial off-the-shelf components, that enables the remote,
real-time review of the vital signs of ambulatory COVID-19
patients on a set of individual rooms within the isolation ward
of our local hospital. The system was optimised to meet six
different requirements which had been established for reliable
continuous monitoring of the cardio-respiratory physiology of
the patients nursed on this ward. System usage increased when
ward occupancy increased during the peak of the first wave of
the pandemic in the UK, demonstrating the clinical usefulness of
the system.

Beyond the pandemic, we aim to conclude the evaluation
of our vHDU wearables system, in which we will evaluate
whether the addition of automated alerts to the AMS can
help nursing staff identify patient deterioration earlier (between
their regular vital-sign observations) in high-dependency or
step-down units.
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Walking is a central activity of daily life, and there is an increasing demand for objective

measurement-based gait assessment. In contrast to stationary systems, wearable inertial

measurement units (IMUs) have the potential to enable non-restrictive and accurate gait

assessment in daily life. We propose a set of algorithms that uses the measurements

of two foot-worn IMUs to determine major spatiotemporal gait parameters that are

essential for clinical gait assessment: durations of five gait phases for each side as well

as stride length, walking speed, and cadence. Compared to many existing methods,

the proposed algorithms neither require magnetometers nor a precise mounting of the

sensor or dedicated calibration movements. They are therefore suitable for unsupervised

use by non-experts in indoor as well as outdoor environments. While previously proposed

methods are rarely validated in pathological gait, we evaluate the accuracy of the

proposed algorithms on a very broad dataset consisting of 215 trials and three different

subject groups walking on a treadmill: healthy subjects (n = 39), walking at three

different speeds, as well as orthopedic (n = 62) and neurological (n = 36) patients,

walking at a self-selected speed. The results show a very strong correlation of all gait

parameters (Pearson’s r between 0.83 and 0.99, p < 0.01) between the IMU system

and the reference system. The mean absolute difference (MAD) is 1.4% for the gait

phase durations, 1.7 cm for the stride length, 0.04 km/h for the walking speed, and

0.7 steps/min for the cadence. We show that the proposed methods achieve high

accuracy not only for a large range of walking speeds but also in pathological gait as it

occurs in orthopedic and neurological diseases. In contrast to all previous research, we

present calibration-free methods for the estimation of gait phases and spatiotemporal

parameters and validate them in a large number of patients with different pathologies.

The proposed methods lay the foundation for ubiquitous unsupervised gait assessment

in daily-life environments.

Keywords: inertial sensors, IMU, human motion analysis, gait analysis, gait assessment, gait phases,

rehabilitation, walking
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1. INTRODUCTION

Walking is a central activity of daily life, and restrictions of
this ability lead to a reduction in the quality of life (1, 2).
Therefore, gait analysis is an important tool in different medical
and therapeutic fields (3, 4). The measurement of various gait
characteristics can either facilitate diagnosis or be used to

track the progress of rehabilitation. Gait can be measured by
spatial (e.g., step or stride length) and temporal (e.g., stride
time, cadence) parameters, relative durations of gait phases, and
kinematic and kinetic gait variables (5). These parameters are
used to quantify gait deviation in both clinical practice and
research, and their use varies with the medical field, the research

question, and the analysis options. While gait assessment in
clinical practice is mostly based on visual observation by medical
experts (6), it is desirable to support expert knowledge and

time by objective measurements. This is also important because
relevant gait changes are often too subtle to be detected by the
naked eye (7).

Traditionally, sensor-based gait assessment is performed with
stationary systems like marker-based optical motion tracking,
instrumented treadmills, or pressure-sensitive walkways (6, 8).
Besides being expensive, one major drawback of those systems
is that they are limited to a small capture space or require the
subject to walk on a treadmill (4, 9–12). Furthermore, the use of
walking aids is often not possible or restricted in combination
with such systems.

A promising, more ambulatory, and less restrictive
alternative is inertial gait analysis, i.e., gait analysis with
inertial sensor technology. Lightweight and battery-powered
inertial measurement units (IMUs) are used, which transmit the
data wirelessly.

The transition from expensive stationary systems to small
wearable sensors opens up possibilities that go beyond replacing
themeasurement technology used for gait assessment in a clinical
setting. Integrating objective long-term gait monitoring in day-
to-day life—as illustrated in Figure 1—could provide more
powerful tools for clinicians to help patients in rehabilitation
but also to gain further insights into disease progression.
Furthermore, non-obtrusive wearable plug-and-play systems
facilitate applications in neuroprosthetics (13) or exoskeletons
and can be used to provide biofeedback (14). In the last years,
wireless battery-powered IMUs have become smaller, lighter,
more accurate, and at the same time cheaper and more energy-
efficient, and it is to be expected that this development is going
to continue. For those new trends, it is important to develop
methods that can provide a wide variety of gait parameters that
are useful to medical experts. At the same time, the methods
need to be robust so that the system can be used by patients in
unsupervised settings, outdoors as well as indoors.

It has been shown by previous contributions (15–17) that
major gait parameters can be determined with two IMUs that are
placed on the feet or the shoes, as illustrated in Figure 1. This
includes stride length, gait phase durations (e.g., stance and swing
percentage), and also the cadence and walking speed.

Our aim is to propose methods for gait assessment that meet
the requirements for day-to-day life monitoring in unsupervised

settings and that are validated on a broad group of subjects
including patients with various gait pathologies. The proposed
methods do not assume any fixed orientation of the sensor with
respect to the foot and do not require the subject to perform
dedicated calibration movements. Furthermore, magnetometers
are not used since the magnetic field is known to be severely
disturbed in indoor environments (18). This makes the use
of inertial gait analysis easy and practical in clinical settings
and facilitates future applications of ubiquitous gait analysis in
home environments.

The remainder of the article is structured as follows. In
section 2, we briefly review existing methods for IMU-based
spatiotemporal gait parameter estimation. In section 3, we
describe the proposedmethods, which we then validate in section
4 using experimental data of 98 orthopedic and neurological
patients, as well as 39 healthy subjects walking at different
speeds. The results are discussed in section 5, and section 6
provides conclusions.

2. BRIEF REVIEW OF IMU-BASED
SPATIOTEMPORAL GAIT PARAMETER
ESTIMATION

Several methods have been proposed that employ inertial sensors
to obtain spatiotemporal gait parameters. In the following, we
present a brief overview of the current state of the art and
summarize the different hardware setups that are used, which
parameters are calculated, and how the methods were validated.
Table 1 categorizes 23 publications that provide a range of
examples for the variety of existing approaches in the estimation
of spatiotemporal gait parameters with inertial sensors.

There are different hardware setups, based on the number
of inertial sensors and their placement. The chosen setup has
an impact on which and how many parameters can be derived
from themeasured data. Themost commonly used setup consists
of two IMUs. As shown in Table 1, sensors are typically placed
on the feet or shoes and sometimes on the shank. This setup
is occasionally extended by adding a third sensor on the pelvis
or lumbar spine (34, 35). Note that it has even been shown
that temporal gait events can be obtained from a single IMU at
the pelvis (38), but the potential for extracting further spatial
parameters is limited. Full (lower) body motion tracking opens
up additional possibilities, as demonstrated with 7 IMUs on the
lower body and pelvis in (37) and with 8–15 IMUs in (36).
Another, less common, option consists of combining inertial
sensors with further measurement devices, e.g., a camera on
one foot and LEDs on the other foot to facilitate the direct
measurement of relative positions (39).

Some methods require that a known orientation of the sensor
axes with respect to the anatomical foot axes has to be ensured
by precise placement. Many methods in the literature are based
on such assumptions, including (13, 15–17, 22, 23, 25, 26, 30–
33). In practice, however, ensuring a precise placement is a
challenge, especially in non-supervised application scenarios and
during activities of daily life. Alternatives are to develop methods
that are agnostic to the sensor-to-segment orientation—e.g., by
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FIGURE 1 | Inertial gait analysis can be realized with two miniaturized IMUs on the shoes, enabling daily-life assessment outside of laboratory environments. From the

raw sensor data, orientation, gait phases, and velocity and position trajectories can be estimated. Parameters commonly used in gait analysis, such as stride length,

cadence, and walking speed, can easily be derived from this.

only relying on signal norms—or to determine this orientation
in a process commonly called anatomical calibration (40). For
setups with more sensors, there are recently developed methods
that facilitate automatic anatomical calibration by exploiting
kinematic constraints of the respective joints without requiring
the subject to perform precise calibration movements (41, 42).
For those setups, the linking of the sensors to the body segments
poses another challenge to a plug-and-play approach, which can
be solved by automatic pairing methods (43).

The calculation of spatiotemporal gait parameters is usually
implemented in a two-stage approach. In a first step, gait events
and corresponding gait phases are detected. In a second step,
spatial parameters are calculated.

Existing methods vary in the set of gait events or phases that
are detected. In many cases, the focus is only on the separation
between stance and swing (cf. Table 1), although sometimes
additional events, such as mid-swing (33), are also detected. It is
also common to detect four events that occur during the gait cycle
and are only defined by the ipsilateral (same) foot. Those events
are initial contact, full contact, heel rise, and toe-off, although
the terminology varies. Despite being common practice in gait
analysis (5, 44), employing bilateral information, i.e., combining
information from both feet to define the gait phase, is far less
common in IMU-based gait analysis. One example is (36) in
which single and double limb support durations are calculated.

There are various approaches for detection of gait events
using inertial sensors. It has been shown that exploiting features
of the angular rate signal in the sagittal plane is sufficient to
achieve reliable gait event detection (16, 22, 25, 30, 32). Many
other methods use both accelerometers and gyroscopes and
detect characteristic signal features in the inertial sensor data,
including (13, 15, 17, 19–21, 23, 31, 33). Sometimes automatic
adaption mechanisms are used to adjust thresholds based on

TABLE 1 | Overview of IMU-based spatiotemporal gait parameter estimation

literature.

Employed sensor setup

2 IMUs on feet/shoes (15, 17, 19–31)

2 IMUs on shank (13, 16, 27, 30, 32, 33)

3 or more IMUs (34–37)

Detected gait phases

Stance/swing (13, 16, 17, 22, 23, 27, 30, 32, 33, 35, 37)

4 unilateral events (15, 19–21, 25, 26)

Single/double support (29, 36)

Ground truth used for evaluation

Optical motion capture (20, 25, 26, 28, 29, 31, 34, 37)

Pressure-sensitive walkways (16, 17, 23, 32, 33, 35)

Instrumented treadmills (24, 27)

Pressure insoles (15, 30)

Others/none (19, 21, 22, 36)

Non-healthy subjects included in evaluation

None (healthy only) (21, 22, 24–28, 34, 36, 37)

≤ 20 (20, 30, 31, 33, 35)

> 20 (15–17, 23, 29, 32)

A total of 23 publications that describe estimation of spatiotemporal gait parameters with

IMUs are categorized based on sensor setup, detected gait phases, and the ground truth

and number of non-healthy subjects for evaluation.

the subject’s walking style (19–21, 33). An alternative to the
signal-based methods is to rely on a kinematic model to detect
gait events (36, 37). Machine learning methods, often based
on hidden Markov models (26, 35), are also used for event
detection [cf. (45)].

In addition to the detection of gait events, spatial parameters
such as stride length and walking speed are often calculated.
Those parameters are obtained by either signal integration,
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human gait models, or by machine learning methods (46).
By far the most common approach is numerical strapdown
integration of the accelerations (16, 17, 22, 27, 28, 31, 32, 37).
The cyclic nature of gait and the fact that there is frequent
ground contact are exploited to correct for drift that is due
to double integration. It has been shown that Fourier-based
integration is an alternative to numerical integration (34), that
spatial parameters can be obtained from kinematic models (27,
36), and that convolutional neural networks can also be used to
estimate spatial parameters (23).

Most publications focus on common spatiotemporal
parameters such as stride length, walking speed, and cadence.
Other than those spatiotemporal parameters, there is a multitude
of spatiotemporal gait parameters that are relevant in a clinical
context for various pathologies (6). Examples that can be
estimated using inertial sensors include step width (37), swing
width (31, 37), incline (22), and foot clearance (47).

Some publications (13, 19–21, 25, 33) focus on real-
time detection of events, e.g., to trigger functional electrical
stimulation (FES). While the approaches used are usually similar
to the ones used in offline gait analysis, this typically implies a
focus on minimizing the detection delay rather than the accuracy
of the reported values.

As shown in Table 1, evaluation is often performed with
marker-based optical motion capture as ground truth. Systems
based on the detection of pressure, such as pressure-sensitive
walkways, instrumented treadmills, and pressure insoles, are a
common alternative. In some cases, no validation with respect
to a gold standard is performed. Instead, the settings of a
(calibrated) treadmill are used for walking speed and incline
(22), a manually counted number of steps is combined with the
detection of irregularities (21), validation is performed by visual
inspection of the results (19), or the focus is only on test-retest
reliability (36).

Even though it has been shown that the accuracy of gait
analysis methods decreases when applied to non-healthy subjects
(45), the evaluation of inertial gait analysis methods is often only
based on healthy subjects. When data obtained from non-healthy
subjects is part of the evaluation, the number of subjects is often
small, for example five transfemoral amputees (20), 10 stroke
patients (33), 10 hemiparetic patients and 10 Huntington’s
disease patients (35), or 10 patients with Parkinson’s
disease (31).

To the best of our knowledge, few publications (15–17, 23, 29,
32) exist which propose methods for IMU-based spatiotemporal
gait parameter estimation and validate the methods on a larger
set of subjects with gait pathologies. In the following, we briefly
summarize those publications.

In (15), sensors are placed on the forefoot in a known
orientation, and four different unilateral gait events are detected
based on features of the angular velocity in the sagittal plane, the
norm of the accelerometer signal, and the derivative of angular
velocity norm. Using pressure insoles as reference, the method is
validated on 10 healthy and 32 orthopedic subjects.

The commercial Gait Up system is evaluated in (29) with 25
subacute stroke patients as subjects and marker-based optical
motion capture as reference.

Gait events and stride length are calculated in (16) based
on shank-mounted IMUs. Events are detected based on the
angular rate in the sagittal plane, and stride length is obtained
via double integration of the accelerations. The latter relies on
the proprietary orientation estimation algorithm provided by
the sensor manufacturer. Experimental evaluation is performed
using the GAITRite pressure-sensitive walkway as reference on
10 healthy elderly and 30 non-healthy subjects.

In (32), the same method is validated on a much larger
group of subjects, consisting of 236 community-living older
adults, including 31 mild cognitive impaired subjects and 125
Parkinson’s disease patients.

In (17), IMUs are placed laterally on the shoe in a fixed
orientation, stance, and swing durations are calculated based on
characteristic signal features, and the stride length is obtained via
double integration. The method is evaluated using a large data
set of 101 geriatric inpatients, with reference data obtained from
a GAITRite pressure-sensitive walkway.

Using the same gait event detection method and the same
data set for evaluation as (17), Hannink et al. (23) estimates
stride length, stride width, mediolateral change in foot angle, heel
contact times, and toe contact times using deep convolutional
neural networks.

In summary, the main shortcoming of existing approaches
for the vision of plug-and-play ambulatory gait analysis is that
most methods—especially those with broad validation—require
a precise attachment of the sensor to the subject’s foot. Some
methods only focus on gait events and do not provide spatial
parameters, and some methods rely on proprietary algorithms of
the sensor manufacturers. Furthermore, very few of the proposed
methods are validated on a large group of subjects with diverse
gait pathologies.

In the following section, we propose a set of methods that
combine the valuable achievements of existing methods with
additional features that overcome the remaining limitations.

3. METHODS

In the following, we propose a set of methods to determine
gait parameters from two IMUs attached to the foot. The
proposed methods are based on the following assumptions and
requirements: An IMU is attached to each foot (or shoe) in an
arbitrary orientation. This implies that the proposedmethod does
not make any assumption about the orientation of the sensor
coordinate system, which means it does not require any specific
sensor axis to be aligned with an anatomical or functional axis
of the foot. In order to avoid artifacts caused by toe or ankle
motions, and also to not limit the subject’s freedom of movement,
we propose to attach the IMU on the instep, i.e., the dorsal
side of the midfoot. We obtain the accelerometer and gyroscope
readings of both IMUs at a fixed sampling rate (typically in the
range 50–1,000Hz). We assume that data for several steps is
processed at once, which allows us to employ non-causal signal
processing to increase the accuracy compared to sample-by-
sample real-time capable methods. This processing can either be
performed in batches while the subject is walking, e.g., for use
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FIGURE 2 | Overview of the proposed modular set of methods to determine spatiotemporal gait parameters from foot-worn IMUs. While gait phase durations and

cadence are determined from gait events, stride length and walking speed are derived from a position trajectory obtained via piecewise strapdown integration of the

acceleration.

in biofeedback applications, or after the recording is completed.
During the recording, the subject walks either on a treadmill or
an indoor or outdoor ground.

The set of methods that we propose is explained in the
following subsections, and the presentation is structured as
follows. Separately for each foot, we use the recorded sensor
data to separate phases in which the foot is in full contact with

the ground from phases in which the foot moves, i.e., we detect
when strides take place (section 3.3). For each detected stride,

we then detect toe-off (section 3.5) and initial contact (section
3.6). The gait events from the ipsilateral and contralateral foot
are combined to define gait phases. We calculate the relative

duration of each gait phase and the cadence (section 3.7). We
then estimate the sensor orientation by sensor fusion of the
gyroscope and accelerometer readings (section 3.8) and double-
integrate the acceleration to obtain a position trajectory (section

3.9). From this position trajectory, we obtain the stride length and
the walking speed (section 3.10). Figure 2 provides an overview
of the proposed set of methods.

In the remainder of this section, we define parameters used by
the method. For an overview of those parameters and proposed

values, please refer to Table 2 in section 4. Our aim is to
define the parameters in a way that they are not sensitive to
different gait styles or velocities. In section 4, we demonstrate
that this approach works by only employing one common set of
parameters for validation on a very broad data set with healthy
and non-healthy subjects walking at different speeds.

3.1. Notation
Denote the accelerometer readings a(tk) ∈ R

3 and the gyroscope
readings ω(tk) ∈ R

3, sampled at times tk = kTs, k ∈ {1 . . N},
Ts ∈ R>0.

In the following, all times t with any index are multiples of
Ts. If any calculation yields a time that is not a multiple of Ts,
we assume that this value is rounded to the nearest multiple of Ts

and do not explicitly write this for the sake of a compact notation.
Furthermore, any summation over τ should be interpreted as
a summation with a non-integer step size of Ts, i.e., we simply
write

∑t2
τ=t1

x(τ ) instead of the longer butmathematically precise

notation
∑k2

k=k1
x(tk), k1 =

t1
Ts
, k2 =

t2
Ts
.

Unit quaternions in vector notation are used to represent
rotations and orientations (48). When a quaternion is used
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to represent the sensor orientation, it is the rotation from an
inertial reference frame with the z-axis pointing up (and arbitrary
heading) to the coordinate system of the sensor. In the context
of quaternion multiplication, which we denote by ⊗, three-
dimensional vectors are implicitly regarded as quaternions with
zero real part.

Furthermore, v⊺ denotes the transpose of the vector v.

3.2. Gait Events and Gait Phases
According to standard literature (44) and as illustrated in
Figure 3A, the gait cycle starts at initial contact. Each stride can
be separated into stance and swing. Stance consists of the gait
phases loading response, mid-stance, terminal stance, and pre-
swing. Swing can be separated into initial swing, mid-swing, and
terminal swing. The combination of mid-stance and terminal
stance is called single limb support and corresponds to the swing
phase of the contralateral foot. In standard literature (44), the
initial contact is commonly considered to be a very short gait
phase with a duration of 2%. As it is common practice in IMU-
based gait analysis (15, 19, 21, 26), we define the initial contact
as an event without duration. Note that sometimes the initial
contact is also called foot strike (26) or heel strike (15).

The separation between stance and swing and the separation
of stance into loading response, mid-stance, terminal stance, and
pre-swing is defined based on three events that describe a change
of ground contact of the feet: initial contact, heel rise, and toe-off.
In contrast, the separation of swing into initial swing, mid-swing,
and terminal swing is based on positional information of the feet
and on the tibia orientation. The gait phases are defined based
on bilateral events, i.e., the gait phase of the ipsilateral foot is
not only described based on the events of the same (ipsilateral)
foot but also based on toe-off and initial contact of the other
(contralateral) foot.

We will now describe how we determine five of those
gait phases (swing and the four sub-phases of stance) using
IMUs in a two-step approach. First, we detect four gait events
independently for each foot. We then use this gait event cycle of
both feet to derive gait phases for each foot.

To this end, for each stride i ∈ {1 . . M}, we define
the following events that we want to detect independently for
the right and left foot from the raw measurement data of the
corresponding IMU:

• initial contact – tic,i
• full contact – tfc,i
• heel rise – thr,i
• toe-off – tto,i.

Note that in addition to the three events used to define gait phase
transitions in Figure 3A, we introduce an event called full contact
that indicates that the foot is in full contact with the ground.
For various processing steps, such as zero-velocity updates and
position integration, we further define a rest instant trest,i at the
middle of the foot flat phase, i.e.,

trest,i :=
1

2

(

tfc,i + thr,i
)

. (1)

See Figure 3B for a plot of the raw accelerometer and gyroscope
data measured during one stride along with a graphical
representation of the gait event cycle defined by the introduced
events. In the following subsections, we will describe in detail
how we determine those time instants from the raw sensor data.

After having determined the gait events for both feet, we use
the gait event cycles from both feet to determine the gait phase
according to the commonly used definitions by (44). As shown in
Figure 4, finite automata for the gait phases of the left and right
foot are each driven by the gait event cycles of both feet.

Since time instances from both sensors are used for the
definition of the gait phase transitions, both feet must be
equipped with sensors, and precise time synchronization is
required. However, note that the separation into stance and
swing directly follows from the gait event cycle (as shown
in Figure 4) and is independent of the contralateral foot.
Therefore, we can determine stance and swing regardless of
the synchronization between the sensors. This is also useful if
only one foot is equipped with a sensor and facilitates on-chip
data processing.

Note that the three sub-phases of stance in the gait event
cycle hold further information that is not directly captured by
the standard gait phase definitions as given in Figure 3A. We
denote the phase from tfc,i to thr,i, in which the foot is fully
on the ground, as foot flat. Note that the other two sub-phases
of the stance phase, tic,i to tfc,i and thr,i to tto,i, are sometimes
called loading response and pre-swing (19, 21) but do not
correspond to the phases with the same name as defined in
standard literature (44).

Furthermore, as also shown in Figure 4, time-synchronized
events from both feet also allow for the distinction of double
support, single support, and zero-contact phases, which occur only
during running (44).

3.3. Foot Flat Detection
As the first step of gait phase detection, the phases in which
the foot is fully on the ground (foot flat) are detected.
When the foot is fully on the ground, the Euclidean norm
of the accelerometer readings will be close to 9.81m/s2,
and the norm of the gyroscope readings will be close to
zero. During a stride, we typically will see an increase in
the signal norms. However, it is possible that during the
motion phase there are long periods with only small changes
of velocity or small rotations. To obtain a robust stride
detection, we, therefore, first find activity using either the
accelerometer or the gyroscope readings and then combine
this information.

For an acceleration-based rest signal ra(tk), we consider the
absolute difference of the norm from 9.81m/s2,

a(tk) :=
∣

∣‖a(tk)‖ − 9.81
∣

∣ , (2)

and perform acausal thresholding using a threshold ath and
a hysteresis factor ha by applying hysteresis in forward and
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A

B

FIGURE 3 | (A) Definition of gait phases as used in standard literature [cf. (44)], and transitions based on gait events of the ipsilateral and contralateral foot. (B) Raw

accelerometer and gyroscope sensor readings and representation of the gait event cycle with a staircase-shaped signal. We define time instants tic,i , tfc,i , thr,i , tto,i that

mark characteristic events and a rest instant trest,i in the middle of the phase in which the foot is fully on the ground (foot flat).

backward direction, i.e.,

r∗a(tk) :=











1 a(tk) > (1+ ha)ath

0 a(tk) < (1− ha)ath

ra(tk−1) otherwise

(3)

ra(tk) :=











1 r∗a(tk) = 1

0 a(tk) < (1− ha)ath

ra(tk+1) otherwise

(4)

with r∗a(0) = 0 and ra(tN) = r∗a(tN). In the resulting signal,
zero-phases shorter than T0,min are set to one, and afterward,
one-phases shorter than T1,min are set to zero.

The same acausal thresholding with the removal of short
phases is applied to the gyroscope norm signal ω(tk) := ‖ω(tk)‖
using a threshold ωth and hysteresis factor hω , which yields
a gyroscope-based rest signal rω(tk). See Figure 5A for an
illustration of the thresholding method.

Both rest signals, ra(tk) and rω(tk), are combined into r(tk),
which is set to one if at least one of the two signals is one.
Afterward, zero-phases shorter than T0,min are set to one, and
then one-phases shorter than 2T1,min are set to zero. This process
is illustrated in Figure 5B. Each zero-to-one transition of the
resulting signal marks a heel rise thr,i, and each one-to-zero
transition marks a full contact tfc,i+1.

3.4. Automatic Threshold Adaptation
A common issue with thresholding approaches is that the
thresholds have to be adapted based on gait velocity and
also other gait and sensor characteristics (19, 20). Therefore,
instead of performing the thresholding of the accelerometer and
gyroscope norm using manually tuned thresholds ath and ωth,
we propose an algorithm that automatically determines these
thresholds for each trial based on the measured data.

The threshold ath is determined using an iterative algorithm
similar to (49), with l being the iteration index and wa being a
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FIGURE 4 | Derivation of clinically relevant gait phases from the gait event cycles. Following standard literature (44), events from both the left foot (filled arrows) and

the right root (outlined arrows) are necessary to define the gait phase of each foot. Furthermore, support phases based on the number of feet that are in contact with

the ground can be defined based on the gait events.

weighting parameter:

ath,0 =
1

2

(

max
tk∈[t1 ,tN ]

a(tk)+ min
tk∈[t1 ,tN ]

a(tk)

)

(5)

T+
= {tk ∈ [t1, tN]|a(tk) > ath,l} (6)

T−
= {tk ∈ [t1, tN]|a(tk) ≤ ath,l} (7)

ath,l+1 =
wa

|T−|

∑

tk∈T
−

a(tk)+
1− wa

|T+|

∑

tk∈T
+

a(tk). (8)

We perform 200 iterations to ensure convergence, i.e., ath : =
ath,200. Figure 6 illustrates the result of this process. Further, we
define a lower bound ath,min for this threshold.

Similarly, we determine the threshold ωth based on the
gyroscope norm ω(tk) and a weighting factor wω.

3.5. Toe-Off Detection
After determining heel rise and full contact, we want to detect
the beginning of the swing phase, i.e., the toe-off. During toe-off,
the foot first rotates approximately along the mediolateral axis
as the heel rises, then loses contact with the ground and rotates
in the opposite direction. An inertial sensor attached to the foot
cannot directly measure when the foot fully loses contact with
the ground, in contrast to, e.g., pressure-sensitive walkways. Note
that the accuracy of toe-off detection using pressure sensors also
depends on calibration and the chosen thresholds (12).

As rotation can be measured precisely with IMUs, we exploit
the fact that the direction of rotation of the foot changes when
transitioning from the phase in which the heel rises while the
toe stays on the ground to the phase in which the toe leaves the
ground. This approach is commonly used in existing literature, as
detailed in section 2. However, most methods directly rely on the
angular rate measured in the sagittal plane and thereby require at
least one sensor axis to be well-aligned with a functional axis of
the foot.

To be independent of the sensor orientation and also to obtain
a reliable detection if the subject exhibits strong inversion or
eversion during toe-off, we define a signal called tilt-rate Ŵi(tk),
from each heel rise thr,i to the subsequent full contact tfc,i+1, as

Ŵi(tk) := ω(tk)
⊺

∑tk
τ=thr,i

ω(τ )
∥

∥

∥

∑tk
τ=thr,i

ω(τ )
∥

∥

∥

, tk ∈ [thr,i, tfc,i+1]. (9)

The rationale behind the definition of the tilt-rate Ŵi(tk) is to
identify the main axis of rotation since the last heel rise and
compute the current rate of rotation around this main axis. This
enables us to detect a zero-crossing of the main rotation without
making any assumptions on the orientation of the sensor with
respect to the foot.

In general, the tilt-rate Ŵi(tk) will exhibit a change of sign after
a distinct peak (cf. Figure 7A). As theremight be noise, leading to

Frontiers in Digital Health | www.frontiersin.org 8 November 2021 | Volume 3 | Article 73641898

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Laidig et al. Gait Assessment by Inertial Sensors

A B

FIGURE 5 | (A) Illustration of the thresholding algorithm. Acausal hysteresis and the removal of short phases ensure the robust detection of the desired rest phase.

(B) Illustration of the combination of rω (tk ) and ra(tk ) into r(tk ). By using the OR combination of the accelerometer- and gyroscope-based signals, we are able to robustly

detect when the foot is not fully on the ground.

FIGURE 6 | Illustration of the result of the automatic thresholding algorithm for

a short segment of accelerometer data. The threshold ath is chosen such that

the mean of the values above and the mean of the values below are in a

certain proportion.

frequent sign changes right after thr,i, as well as large peaks later
during the stride, we propose the following strategy to robustly
determine the sign change of interest:

During the first half of the movement phase, let Ŵmax,i denote
the maximum value of Ŵi(tk), i.e.,

Ŵmax,i := max
tk∈[thr,i ,

1
2 (thr,i+tfc,i+1)]

Ŵi(tk). (10)

We then find the first time instant for which Ŵi(tk) ≥
1
2Ŵmax,i.

Starting from this time instant, we find the first time instant at
which Ŵi(tk) ≤ 0. We assume this time instant to be the toe-
off tto,i, i.e., the start of the swing phase. Figure 7A illustrates
this process.

Note that tto,i is defined based on a feature of the rotation
of the foot and not directly as the lift-off of the toes.

Using the maximum of the tilt rate (or any weighted average
of the maximum and zero-crossing time instant) are also
plausible approaches.

3.6. Initial Contact Detection
The initial contact marks the beginning of the loading response
and can be detected by the jerk, i.e., the change of acceleration,
caused by the foot touching the ground. We calculate the jerk
using the first-order backward difference approximation, i.e.,

j(tk) :=
1

Ts

(

a(tk)− a(tk−1)
)

. (11)

For every stride, we only consider a sub-window of the phase
between toe-off and the beginning of the subsequent foot-flat
phase and denote the start time of this window as twin,i : =
jwintto,i−1 + (1 − jwin)tfc,i, jwin ∈ [0, 1]. In this time window, we
first determine the maximum value of the jerk norm, i.e.,

jmax,i := max
tk∈[twin,i ,tfc,i]

‖j(tk)‖. (12)

We thenmark the first time instant in this windowwith ‖j(tk)‖ ≥

jthjmax,i as the start of the loading response tic,i. See Figure 7B for
an illustration of the initial contact detection.

3.7. Stride and Gait Phase Durations and
Cadence
For each detected stride, we calculate the stride duration as the
duration from one initial contact to the subsequent initial contact
of the same foot, i.e.,

Tstride,i := tic,i+1 − tic,i. (13)

For each detected stride, the duration of the swing phase
is the time between toe-off and initial contact of the
subsequent stride, i.e.,

Tswing,i := tic,i+1 − tto,i. (14)
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A B

FIGURE 7 | Detection of toe-off and initial contact events that define the swing phase. (A) Illustration of the toe-off detection. Between heel rise and full contact, the

tilt rate might exhibit multiple local maxima and zero-crossings. For a robust detection of the correct zero-crossing, we first find the maximum value during the first half

of the phase from thr,i to tfc,i+1 and search for the first zero-crossing after the tilt rate has reached half of this maximum. (B) Illustration of the initial contact detection

based on the jerk norm. Note how the jerk norm reflects the sudden change when the foot touches the ground much better than the accelerometer norm signal a(tk ).

The stance duration is the remaining duration of the stride:

Tstance,i := Tstride,i − Tswing,i. (15)

Since relative gait phase durations are easier to
interpret, we calculate

Tswing,rel,i :=
Tswing,i

Tstride,i
, (16)

Tstance,rel,i :=
Tstance,i

Tstride,i
. (17)

Similarly, for every stride we calculate relative gait phase
durations for loading response Tlr,rel,i, single limb support
Tsl,rel,i, terminal stance Tts,rel,i, and pre-swing Tps,rel,i, based on
the bilateral gait phases as defined in Figure 3A. Note that,
analogously, we can also calculate absolute and relative durations
for all other gait phases defined in Figure 3A.

To calculate the cadence, we multiply the inverse of the stride
duration by two in order to express the cadence as the number of
steps per minute instead of strides per minute, i.e.,

ci :=
2

Tstride,i
. (18)

3.8. Orientation Estimation
By fusing the gyroscope and accelerometer measurements, we
obtain an estimate of the sensor orientation with respect to a
global frame that has a vertical z-axis and an arbitrary heading.

Starting with an arbitrary initial orientation qω(0), e.g.,
[

1 0 0 0
]T
, we perform gyroscope strapdown integration

qω(tk) := qω(tk−1)⊗
[

cos
(

Ts
2 ‖ω(tk)‖

)

ω
⊺(tk)

‖ω(tk)‖
sin
(

Ts
2 ‖ω(tk)‖

)]⊺

.

(19)

Using this orientation, we transform the measured acceleration
into a (slowly drifting) inertial frame, i.e.,

aω(tk) := qω(tk)⊗ a(tk)⊗ qω(tk)
−1. (20)

In the rotating sensor frame, the gravitational acceleration can
point in different directions depending on sensor orientation.
In the inertial frame, however, the gravitational acceleration will
point in (almost) the same direction regardless of the sensor
orientation, and, when integrating, acceleration and deceleration
will cancel out. Exploiting this property, we low-pass filter each
component of aω(tk) by applying a moving average filter with a
window length of Ta in forward and reverse direction. Assuming
that the change of velocity over the filter window length is
small, the resulting filtered acceleration will be dominated by
the gravitational acceleration. This filtered acceleration aω,f(tk) is
then transferred back to the sensor frame

af(tk) := qω(tk)
−1

⊗ aω,f(tk)⊗ qω(tk). (21)

We then correct the inclination of the gyroscope strapdown
integration quaternion qω(tk) by using the filtered acceleration
as a vertical reference. To this end, we transform the filtered
acceleration into the global frame

ar(tk) := qa(tk−1)⊗qω(tk)⊗af(tk)⊗(qa(tk−1)⊗qω(tk))
−1, (22)

with qa(0) :=
[

1 0 0 0
]T
, and correct the inclination

n(tk) := ar(tk)×
[

0 0 1
]T

(23)

α(tk) := arccos

(

[

0 0 1
]T ar(tk)
∥

∥ar(tk)
∥

∥

)

(24)

qa(tk) := qa(tk−1)⊗
[

cos
(

α(tk)
2

)

n(tk)

‖n(tk)‖
sin
(

α(tk)
2

)]⊺

. (25)
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FIGURE 8 | Velocity trajectories with (solid) and without (dashed) linear drift

correction. The dotted line represents the subtracted linear drift approximation

for stride i. For demonstration purposes, the drift has been artificially increased

by a factor of 10.

Multiplication of the gyroscope strapdown integration
quaternion and the accelerometer correction quaternion
yields the sensor orientation,

q(tk) := qa(tk)⊗ qω(tk). (26)

3.9. Foot Velocity and Position Tracking
Using the estimated orientation, we perform double integration
of the measured accelerations to estimate the length of each
stride, i.e., the horizontal displacement between two adjacent
foot-flat phases.

To integrate accelerations, they are first transformed into the
reference frame

aε(tk) := q(tk)⊗ a(tk)⊗ q(tk)
−1. (27)

Assuming that the velocity is zero in the middle of the foot-flat
phase, i.e., at trest,i, we integrate those accelerations for each stride
which yields a velocity

vi(tk) := Ts

tk
∑

τ=trest,i

(

aε(τ )−
[

0 0 9.81
]T
)

, tk ∈ [trest,i, trest,i+1].

(28)
Due to measurement errors, mainly accelerometer bias, this
velocity is usually not zero at trest,i+1 even if the foot is perfectly
at rest. Therefore, we correct this drift linearly over the time
duration of the stride:

vdf,i(tk) := vi(tk)−
tk − trest,i

trest,i+1 − trest,i
vi(trest,i+1). (29)

See Figure 8 for an example velocity trajectory with and without
drift correction.

By integrating this drift-free velocity over the stride duration,
we obtain a position trajectory,

pi(tk) := Ts

tk
∑

τ=trest,i

vdf,i(τ ) = :

[

pi,x(t) pi,y(t) pi,z(t)
]T

. (30)

3.10. Stride Length and Walking Speed
We calculate the stride length Li as the horizontal displacement
during the stride i. Since pi(trest,i) = 0,

Li :=
√

pi,x(trest,i+1)2 + pi,y(trest,i+1)2. (31)

Note that this method does not make any assumption on the
orientation in which the sensor is attached to the foot. Also, note
that we integrate from trest,i to trest,i+1 and not from tic,i to tic,i+1

since this makes the zero-velocity assumption more robust.
By dividing the stride length by the stride duration, we obtain

the walking speed,

vi :=
Li

Tstride,i
. (32)

3.11. Summary of the Estimated
Parameters
After performing all steps presented above, the set of proposed
methods provides the time instants of the defined gait events,
the sensor orientation quaternion for each time instant, and
velocity and position trajectories. From those time-based signals,
the following gait parameters are extracted for each stride i:

• swing duration Tswing,rel,i [%]
• stance duration Tstance,rel,i [%]
• analogously, relative durations for the other gait phases as

defined in Figure 4

• stride length Li [cm]
• walking speed vi [km/h]
• cadence ci [steps/min]

Note that all quantities are calculated separately for each stride
of each foot. In many cases, only the mean of those values
over multiple steps will be of interest. However, this stepwise
calculation also allows for analysis of the variance and the
detection of trends.

The accuracy of those gait parameters is validated in the
next section.

4. EXPERIMENTAL VALIDATION

In this section, we aim to show that the less restrictive IMU-
based setup combined with the methods proposed in section 3 is
able to determine the same parameters as stationary systems that
are used in clinical practice while providing similar accuracy. To
this end, with a large data set consisting of three different subject
groups, we compare the parameters calculated by the proposed
methods with values reported by instrumented treadmills.

4.1. Setup
One PABLO R© Lower Extremity inertial sensor (Tyromotion
GmbH, Graz, Austria) was attached to each shoe (cf. Figure 9A).
The sensors measure angular rate and acceleration at a sampling
frequency of 110Hz. Each sensor has a size of 56 × 34 × 21 mm
and transmits the data wirelessly using Bluetooth. The sensors
were attached to the subjects’ shoes with special Velcro straps.
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B

A

FIGURE 9 | Experimental setup. (A) Patient with inertial sensors attached to

the shoe. (B) Instrumented treadmill at NTK Kapfenberg. Gait parameters are

derived from the measurement data of the inertial sensors with the proposed

methods and validated against parameters obtained from the instrumented

treadmill serving as ground truth.

Zebris Rehawalk instrumented treadmills (Zebris Medical,
Isny, Germany) were used as reference systems. Since the data
collection took place in various institutions (FH Joanneum Graz,
NTK Kapfenberg, Rehabilitation Center Kitzbühel), different
systems with identical function were used. See Figure 9B for a
picture of the setup at NTK Kapfenberg.

• FH Joanneum (Graz, Austria)

– Treadmill: h-p-c Mercury Med Treadmill (HP Cosmos,
Nussdorf, Germany), walking speed: 0–22 km/h in 0.1 km/h
steps, walking surface: 150× 50 cm

– Pressure measuring platform: FDM-THM-M-3i (Zebris
Medical, Isny, Germany), 120Hz, sensor area: 108.4 × 47.4
cm, 7,168 sensors.

• NTK (Kapfenberg, Austria)

– Treadmill: h-p-c Locomotion Med Treadmill (HP Cosmos,
Nussdorf, Germany), walking speed: 0–10 km/h in 0.1 km/h
steps, walking surface: 150× 50 cm

– Pressure measuring platform: FDM-THM-M-2i (Zebris
Medical, Isny, Germany), 120Hz, sensor area: 111.8 × 49.5
cm, 3,432 sensors.

• Rehabilitation Center Kitzbühel (Kitzbühel, Austria)

– Treadmill: h-p-c Mercury Med Treadmill (HP Cosmos,
Nussdorf, Germany), walking speed: 0–22 km/h in 0.1 km/h
steps, walking surface: 150× 50 cm

– Pressure measuring platform: FDM-THM-M-2i (Zebris
Medical, Isny, Germany), 120Hz, sensor area: 111.8 × 49.5
cm, 3,432 sensors.

4.2. Subjects and Experimental Procedure
The data collection was carried out in three different institutions
with different groups of subjects. Approval from the ethics
committee of the University of Graz was obtained, and an
informed consent form was signed by all participants.

Healthy participants were recorded at three different walking
speeds, each for two minutes: 1.5, 3, and 5 km/h. A prerequisite
for participation was the ability to walk on a treadmill at different
speeds. The healthy participants (n = 39) were recruited from the
students at the Physiotherapy Institute of FH Joanneum Graz.

Non-healthy participants with affected ability to walk were
asked to walk on a treadmill at a self-selected comfortable
walking speed. Patients who were unable to walk on a treadmill
were excluded during participant selection. The following set of
participants were recruited:

• Participants with different neurological diseases (n = 36)
were recruited from patients who were in neurological
inpatient rehabilitation at NTK Kapfenberg at the time of
data collection. This comprises 20 post-stroke patients, 6
patients with Parkinson’s disease, two with multiple sclerosis,
two with meningioma, two after polytrauma, and one patient
each with epilepsy, spinocerebellar ataxia, low back pain,
and polyneuropathy.

• Participants with various orthopedic diseases (n = 62) were
recruited from the patients who were in orthopedic inpatient
rehabilitation at Rehazentrum Kitzbühel at the time of data
collection. Of these, four patients had pathologies in the area
of the ankle or lower leg (e.g., ankle joint fractures, tibia
fractures), 21 patients at the knee (e.g., osteoarthritis, total
knee arthroplasty), 18 patients in the area of the thigh and hip
(e.g., osteoarthritis, total hip arthroplasty, femur fractures), 16
patients in the area of the lumbar spine (low back pain, lumbar
vertebrae fractures) as well as three patients in whom different
body areas were affected (polytrauma, polymyositis).

All participants had time to get used to walking on the treadmill
prior to the data collection. All participants were free to use the
treadmill support (handrail, fall protection system). For the data
collection, two minutes of walking was recorded simultaneously
by both systems. IMU data was recorded with a tool of the TyroS
software (Tyromotion, Graz, Austria) that allows the export of
raw gyroscope and accelerometer data. Zebris data was recorded,
analyzed, and exported with the software FDM v1.18.38 (Zebris
Medical, Isny, Germany).

4.3. Data Processing
For each trial, we obtain the following gait parameters from the
Zebris Rehawalk instrumented treadmill:

• loading response duration
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TABLE 2 | Parameter values used for the proposed IMU-based methods.

Symbol Description Value

ha Hysteresis factor for acceleration 0.23

hω Hysteresis factor for angular rate 0.23

wa Factor for ath auto-tuning 0.85

ath,min Lower bound for ath 1.8m/s2

wω Factor for ωth auto-tuning 0.8

ωth,min Lower bound for ωth 0 rad/s

T0,min Minimum duration of zero-phase 120ms

T1,min Minimum duration of one-phase 180ms

jwin Ratio of the window to look for initial contact 0.7

jth Threshold for jerk norm (relative to maximum) 0.95

Ta Time constant for acceleration moving average filter 8.0 s

This parametrization is used for the processing of all trials, regardless of gait pathology,

walking speed, or style, in order to show that the method works well without tuning the

parameters for specific gait characteristics.

• single limb support duration
• pre-swing duration
• swing duration
• stride length
• walking speed
• cadence.

These parameters are reported as averages over the whole trial.
The gait phase durations are relative to the stride duration and
reported separately for the left and right foot. We add the loading
response, single limb support, and pre-swing durations to obtain
the stance duration (cf. Figure 3A).

From phases in which the treadmill is not moving and
the foot is resting on the ground for approximately 5 s at
the beginning and end of each trial, gyroscope turn-on bias
is automatically estimated and removed. Using the methods
described in section 3, each recorded trial is processed with the
parameter values given in Table 2. Note that we use the same
set of parameters for all different subject groups and walking
speeds in order to demonstrate that the method works well
without adjusting the parameters for the specific gait velocity
and style.

The sensor attachment used for recording the data sets, as
shown in Figure 9A, ensures that one sensor axis is always
roughly aligned with the mediolateral axis of the foot. To
show that the proposed methods do not make assumptions
regarding the sensor orientation, we simulate a random sensor
attachment by multiplying all gyroscope and accelerometer
measurements with a random rotation matrix that is different for
each trial.

Finally, we calculate the same gait parameters as reported
by the reference system by averaging the respective
parameters, excluding the first and last three strides of
each foot, and compare the resulting values to the values
reported by the Zebris system. The results are found in the
following section.

4.4. Results
For each trial, we first consider the five main parameters
stance duration, swing duration, stride length, walking speed,
and cadence, and evaluate the difference between the proposed
methods (IMU) and the Zebris Rehawalk reference system (REF).
The results are presented separately for each of the three subject
groups in scatter plots and Bland-Altman plots (50) and can
be found in Figure 10, for the healthy participants walking at
three different speeds; in Figure 11, for the participants with
orthopedic diseases; and in Figure 12, for the participants with
neurological diseases.

The error (mean ± standard deviation) for the relative stance
duration is 1.04± 1.34% for healthy subjects,−0.29± 1.52% for
orthopedic patients, and 2.06± 1.63% for neurological patients.
For relative swing duration, the errors are −1.01± 1.35% for
healthy subjects, 0.32± 1.54% for orthopedic patients, and
−2.02± 1.64% for neurological patients. This means that the
average swing/stance duration error is in the range of 1–2% for
all subject groups.

For the stride length, the errors are −1.59 ± 1.53, −1.74
± 1.63, and 0.51 ± 1.37 cm for healthy subjects, orthopedic
patients, and neurological patients, respectively. This means that
the average stride length error is below 2 cm for all subject groups.

The mean errors and standard deviations for the
walking speed are −0.02± 0.05 km/h for healthy
subjects, −0.03± 0.05 km/h for orthopedic patients, and
0.03± 0.03 km/h for means that the average walking speed error
is below 0.05 km/h for all subject groups.

The cadence estimates show deviations of
0.68± 0.56 steps/min for healthy subjects, 0.55± 0.47 steps/min
for orthopedic patients, and 0.57± 0.51 steps/min for
neurological patients. This means that the average cadence
error is below 1 step/min for all subject groups.

As an additional evaluation metric, we calculate the mean
of the absolute difference (MAD) between the values reported
by Zebris and the IMU-based analysis over all trials. Table 3
summarizes the results for the three subject groups and all 215
evaluated trials.

The MAD of the stance and swing durations are ∼1.3%
for healthy subjects and orthopedic patients and 2.2% for
neurological patients. Note that we also evaluated the differences
for the three sub-phases of stance that the Zebris Rehawalk
reference system reports, i.e., loading response, single limb
support, and pre-swing. Table 3 shows that we can estimate
the duration of those phases with the same accuracy as stance
and swing.

To summarize, for all subject groups, the MAD is in the range
of 1–2% for gait phase durations, below 2 cm for the stride length,
below 0.05 km/h for the walking speed, and below 1 step/min for
the cadence.

5. DISCUSSION

In the present contribution, we have proposed a set of methods
for spatiotemporal gait analysis based on two inertial sensors
attached to the feet. Our methods allow for the calculation of
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FIGURE 10 | Scatter plots and Bland-Altman plots for stance and swing duration, stride length, walking speed, and cadence of 39 healthy subjects walking at 1.5, 3,

and 5 km/h. Red: 45-degree lines (y = x). Values obtained with the proposed IMU-based methods (IMU) are compared to the ground truth from the Zebris reference

system (REF). The average deviation is ∼1% for gait phase durations, below 2 cm for the stride length, below 0.05 km/h for the walking speed, and below 1 step/min

for the cadence.

the main spatiotemporal gait parameters that are also reported by
stationary laboratory systems: gait phase durations, stride length,
walking speed, and cadence. Using a large data set consisting of
healthy subjects walking at three different speeds, subjects with
orthopedic diseases, and subjects with neurological diseases, we
have validated the calculation of those parameters, using a Zebris
Rehawalk instrumented treadmill as reference. All parameters
show a very strong correlation (Pearson’s r between 0.83 and 0.99,
p < 0.01) (51). Figures 10–12 display consistent results over this

large and diverse group of subjects. Averaged over all trials, the
MAD with respect to the reference system is 1.4% for the gait
phase durations, 1.7 cm for the stride length, 0.04 km/h for the
walking speed, and 0.7 steps/min for the cadence.

In clinical practice and research, the presented parameters
are used to quantify gait abnormalities and to document
changes in the walking behavior of patients. Associations between
spatiotemporal gait parameters and functional capacity, or
increased mortality, have been demonstrated (52–54). A positive
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FIGURE 11 | Scatter plots and Bland-Altman plots for stance and swing duration, stride length, walking speed, and cadence of 62 orthopedic patients. Red:

45-degree lines (y = x). Values obtained with the proposed IMU-based methods (IMU) are compared to the ground truth from the Zebris reference system (REF). The

average deviation is below 1% for gait phase durations, below 2 cm for the stride length, below 0.05 km/h for the walking speed, and below 1 step/min for the

cadence.

correlation with cardiovascular-related mortality was found for
cadence (55). A reduction in walking speed has been shown to
correlate with fall risk, frequency of hospitalization, andmortality
(56–58). Stride length describes a strong correlation with walking
speed according to the research of (59). Slower walking speed,
altered gait phase duration, and increased variability of walking
increase the risk of falls (60). Furthermore, it was found that
psychological modalities, such as fear of falling, can also influence

stride length and gait phase duration (61). The minimal clinically
important difference (MCID) can be used to determine how
precisely these changes must be detected in order to make
a statement about their relevance. Despite thorough research,
specific values for the MCID could only be found for the walking
speed, ranging from 0.36 to 0.72 km/h (62–64). For IMU-based
measurement with the proposed methods, the smallest detectable
change (SDC) for walking speed is 0.21 km/h and clearly within
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FIGURE 12 | Scatter plots and Bland-Altman plots for stance and swing duration, stride length, walking speed, and cadence of 36 neurological patients. Red:

45-degree lines (y = x). Values obtained with the proposed IMU-based methods (IMU) are compared to the ground truth from the Zebris reference system (REF). The

average deviation is ∼2% for gait phase durations, below 1 cm for the stride length, below 0.05 km/h for the walking speed, and below 1 step/min for the cadence.

the MCID for all examined groups. For the other parameters, no
reported MCID values could be found, which is consistent with
the statement of (29).

The SDC for the cadence is 2.01 steps/min across all studied
groups of subjects. This allows for much more accurate
changes to be detected than those described as relevant in the
literature [e.g., reduction in cadence of 10 steps per minute
increases mortality by 4% (65)]. The achieved SDC for stride
length of 5.3 cm in the patients with neurological diseases

seems to be sufficiently accurate to capture the differences
occurring, for example, in Parkinson’s disease (66). The stance
and swing phase durations show an SDC of 6.5% across
all trials.

Unlike many existing contributions, we showed that the
proposed methods reliably work on patients in addition to
healthy subjects and still produce accurate results. This is
noteworthy since it has been shown that pathological walking
deteriorates the accuracy of many gait analysis methods (45)
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TABLE 3 | Deviation between IMU-based and Zebris gait parameters.

Stance [%] Swing [%] Stride Walking Cadence

LR [%] SLS [%] PS [%] length [cm] speed [km/h] [steps/min]

Healthy subjects (n = 39)

MAD 1.32 1.29 1.28 1.32 1.31 1.73 0.04 0.74

µ ± σ 1.04± 1.34 0.97± 1.34 −0.96± 1.33 1.03± 1.34 −1.01± 1.35 −1.59± 1.53 −0.02± 0.05 0.68± 0.56

rx,y 0.93 0.93 0.93 0.93 0.93 > 0.99 > 0.99 > 0.99

LoA −1.58 to 3.67 −1.65 to 3.59 −3.56 to 1.65 −1.60 to 3.66 −3.65 to 1.63 −4.59 to 1.40 −0.13 to 0.08 −0.42 to 1.77

SDC 5.25 5.24 5.21 5.26 5.28 6.00 0.21 2.19

Orthopedic patients (n = 62)

MAD 1.14 1.12 1.14 1.07 1.16 1.94 0.04 0.63

µ ± σ −0.29± 1.52 −0.33± 1.49 0.35± 1.49 −0.31± 1.44 0.32± 1.54 −1.74± 1.63 −0.03± 0.05 0.55± 0.47

rx,y 0.84 0.84 0.85 0.85 0.83 > 0.99 > 0.99 > 0.99

LoA −3.27 to 2.69 −3.26 to 2.60 −2.57 to 3.26 −3.13 to 2.51 −2.68 to 3.33 −4.93 to 1.46 −0.13 to 0.06 −0.37 to 1.47

SDC 5.96 5.86 5.84 5.65 6.02 6.39 0.19 1.84

Neurological patients (n = 36)

MAD 2.26 2.20 2.23 2.21 2.22 1.09 0.03 0.60

µ ± σ 2.06± 1.63 2.04± 1.65 −2.04± 1.64 2.06± 1.65 −2.02± 1.64 0.51± 1.37 0.03± 0.03 0.57± 0.51

rx,y 0.89 0.89 0.89 0.89 0.89 > 0.99 > 0.99 > 0.99

LoA −1.13 to 5.26 −1.19 to 5.28 −5.26 to 1.18 −1.16 to 5.29 −5.22 to 1.19 −2.18 to 3.20 −0.04 to 0.09 −0.43 to 1.58

SDC 6.39 6.47 6.44 6.46 6.41 5.38 0.13 2.01

All trials (215 trials)

MAD 1.43 1.39 1.40 1.40 1.41 1.68 0.04 0.68

µ ± σ 0.83± 1.65 0.78± 1.65 −0.76± 1.64 0.82± 1.64 −0.79± 1.66 −1.28± 1.73 −0.02± 0.05 0.62± 0.53

rx,y 0.87 0.87 0.88 0.88 0.87 > 0.99 > 0.99 > 0.99

LoA −2.41 to 4.07 −2.45 to 4.0 −3.98 to 2.46 −2.39 to 4.03 −4.05 to 2.46 −4.68 to 2.11 −0.12 to 0.09 −0.41 to 1.66

SDC 6.48 6.46 6.44 6.42 6.50 6.79 0.21 2.08

LR, loading response; SLS, single limb support; PS, pre-swing.

MAD, mean absolute difference between IMU-based and Zebris values.

µ ± σ , mean and standard deviation of difference between IMU-based and Zebris values.

rx,y : Pearson correlation coefficient (p < 0.01 for all values).

LoA, limits of agreement, µ − 1.96σ to µ + 1.96σ .

SDC, smallest detectable change, range between both LoA.

and specifically the neurologically induced gait abnormalities are
challenging for IMU-based gait analysis (29).

A fundamental challenge of IMU-based gait event detection
is that IMUs do not directly measure the gait parameters of
interest. For toe-off detection, the time instant of load relief
cannot directly be measured, and instead, the inversion of the
direction of rotation is used. Similarly, initial contact is not
detected based on the onset of load but based on the change of
acceleration. It is therefore important to properly validate the
IMU-based methods by comparing the estimated gait parameters
to a reliable ground truth.

As reference system, treadmills instrumented with Zebris
pressure measurement platforms were used, which are frequently
employed for gait analysis in clinical practice as well as scientific
data collection (12). This system shows good reliability (67),
but no studies could be found in which the validity of the gait
parameters was investigated. It should be noted that due to the
length of the pressure sensors (FDM-THM-M-3i: 0.85 cm; FDM-
THM-M-2i: 1.27 cm) there may be inaccuracies in the recording
of spatial parameters, which may have an effect on the results
of the comparative measurements. Moreover, calibration and

proper thresholding pose challenges in gait event detection based
on pressure measurements (12).

For the neurological patients, the reported duration of stance
is, on average, 2% longer than the reference duration. While
this is still a small deviation, it is worth noting because this
bias suggests a pattern that is common to this subject group.
One likely explanation is that toe-off is being detected later than
with the Zebris system. This might be due to a comparatively
long phase of load relief that causes the pressure to fall below
the threshold too early. Furthermore, the reversal of rotation
direction might happen later than for healthy subjects or
orthopedic patients. Still, even though both systems measure
inherently different phenomena, the observation deviation
is only 2%.

As a replacement for traditional stationary gait analysis
systems, which are commonly used in clinical practice, IMU-
based gait analysis offers several advantages. Measurement is
possible both on treadmills and overground and not restricted
to a dedicated laboratory. The small and lightweight IMUs
do not restrict the movement of the subject and can be used
in conjunction with walking aids such as wheeled walkers.

Frontiers in Digital Health | www.frontiersin.org 17 November 2021 | Volume 3 | Article 736418107

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Laidig et al. Gait Assessment by Inertial Sensors

Furthermore, only a very short setup time is required before
starting the actual measurement.

Unlike most existing methods (cf. section 2), the proposed
method makes gait analysis easier and faster by not requiring any
specific sensor attachment, which we demonstrated by simulating
a different random sensor-to-foot orientation in each trial. It does
notmake use ofmagnetometers and can therefore be used in both
indoor and outdoor environments.

While evaluation was limited to the gait phases reported by
the reference system, our proposed set of methods further allows
for the calculation of many gait phases (Figure 4), i.e., swing and
stance for each foot, four unilateral gait phases for each foot,
five bilateral gait phases following standard literature (44) for
each foot, and finally the distinction between double and single
support. To the best of our knowledge, no existing work on
IMU-based gait analysis describes the calculation of this set of
gait phases.

Besides the more fine-grained gait phases, there are many
more parameters that can be extracted, e.g., from the velocity
and position trajectories, such as the maximum velocity during
swing, foot clearance, and symmetry parameters. While it is not
surprising that the prevalence of pressure-based systems has led
researchers to focus on features based on ground contact, it is
to be expected that the focus of clinical gait analysis will be
directed toward other parameters as IMU-based systems become
more popular.

Furthermore, miniaturized lightweight sensors with a long
battery life open up possibilities for objective gait analysis outside
of clinical laboratories. Daily-life gait assessment over the course
ofmultiple days can bring insights that are not possible with short
sessions in a laboratory. If patients place the sensors on or in
the shoes themselves in an unsupervised telemedicine setting, not
requiring the sensor to be oriented in a special way becomes even
more important.

Technological advancement also facilitates real-time
biofeedback applications. While there are methods for real-
time applications that require event detection during a step (41),
e.g., to trigger FES, the proposed set of methods is real-time
capable in the sense that during walking, sections of data
containing a small number of strides can be processed and used
to provide feedback to the subject.

The presented work exhibits a few remaining limitations. In
the statistical analysis, the gait parameters were averaged over the
duration of the trial before comparison with the reference. While
it allows for single-stride errors to cancel out, this methodology
corresponds well with the use case of clinical gait analysis, in
which a subject is asked to walk for several steps, and averaged
parameters are then used to assess the gait. An additional stride-
by-stride comparison was not performed because the employed
reference system can only export averaged gait parameters. In
addition, it should be noted that all recordings were made on
treadmills and not while walking overground, which has an
influence on the movement pattern of gait (68, 69). Despite the
known differences between treadmill walking and overground
walking, treadmill gait analysis is considered a standard method
in clinical practice (70, 71), especially when weight support and
handrails are required for safety reasons.

6. CONCLUSION

In the present contribution, we have proposed a set of
methods for IMU-based gait analysis. Based on gyroscope
and accelerometer measurements from two inertial sensors
on the feet, we estimate durations of five gait phases, stride
length, walking speed, and cadence. Using a Zebris Rehawalk
instrumented treadmill as reference, we validated the proposed
methods based on a large data set consisting of healthy subjects
(n = 39) walking at three different speeds, subjects with
orthopedic diseases (n = 62), and subjects with neurological
diseases (n = 36). Averaged over all trials, the MAD with respect
to the reference system are 1.4% for the gait phase durations,
1.7 cm for the stride length, 0.04 km/h for the walking speed,
and 0.7 steps/min for the cadence. We also demonstrated that the
proposed methods work reliably not only in healthy subjects but
also in patients and still provide accurate results under different
pathological gait patterns.

This shows that the proposed setup in combination with
the proposed methods can accurately calculate relevant gait
parameters from the inertial sensor data and thus has the
potential to replace traditional stationary gait analysis systems.

Furthermore, we validated that the proposed methods work
well regardless of the orientation in which the sensor is
attached to the foot, and dedicated calibration movements
and magnetometer measurements are completely avoided.
The combination of these advantages facilitates long-term
ambulatory gait analysis in day-to-day situations without the
need for supervision by health professionals.

Future research will focus on the estimation of additional
gait parameters, on the validation on stairs and slopes,
and the validation against marker-based optical motion
capture systems.
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Regular blood pressure (BP) monitoring enables earlier detection of hypertension and

reduces cardiovascular disease. Cuff-based BP measurements require equipment that

is inconvenient for some individuals and deters regular home-based monitoring. Since

smartphones contain sensors such as video cameras that detect arterial pulsations,

they could also be used to assess cardiovascular health. Researchers have developed

a variety of image processing and machine learning techniques for predicting BP via

smartphone or video camera. This review highlights research behind smartphone and

video camera methods for measuring BP. These methods may in future be used at home

or in clinics, but must be tested over a larger range of BP and lighting conditions. The

review concludes with a discussion of the advantages of the various techniques, their

potential clinical applications, and future directions and challenges. Video cameras may

potentially measure multiple cardiovascular metrics including and beyond BP, reducing

the risk of cardiovascular disease.

Keywords: blood pressure, imaging, physiology, hemodynamics, cardiovascular digital health

INTRODUCTION

Blood pressure (BP) measurement is necessary in determining an individual’s risk for
cardiovascular disease and the need for early treatment. Early detection and treatment of BP may
delay or prevent conditions related to high BP, such as stroke. This is particularly important in the
Covid era, where there has been an increase in the number of virtual consultations with patients
(1). Digital or at-homemethods where individuals accurately and easily determine BPmay improve
population health, while minimizing hospital visits.

Methods for measuring BP at home or in the clinic are commonly cuff-based. Cuff-based
systems are automated; however, they present difficulty in portability outside the home. Many
individuals find application of the cuff awkward, inconvenient, and uncomfortable. This limits the
number of daily BP measurements. Since BP varies according to time, season, amount of sleep,
and activity, a single measurement over the course of a day, or every few days, does not provide an
accurate assessment of cardiovascular changes and BP variation in an individual (2).

Smartphones could serve as alternatives to the cuff. Many individuals possess smartphones and
operate their features with ease. Phones are embedded with cameras, microphones, light emitters,
and force sensors that can be used to obtain a cardiovascular pulse signal, and ultimately predict
BP. Due to their size, they overcome issues of portability, discomfort, or inconvenience.
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Methods that utilize video cameras to predict BP are
continually undergoing research and development for improved
accuracy. Most smartphone techniques utilize the video camera
to extract the photoplethysmography (PPG) signal from light
reflected from the skin. Due to complexity in relating the PPG
signal to BP, methodologies have been developed to determine
BP from video PPG. This includes image processing to extract
blood flow, machine learning algorithms for calculating BP, and
incorporation of smartphone features such as the microphone or
force sensors. Mathematical models may be applied to separate
hemoglobin signals from melanin and light, and the shape of the
pulse or different arrival times of the pulse used to predict BP (3).

This paper focuses on currently published video camera
and smartphone methods for BP measurement, highlighting
research efforts and experiments from a variety of groups. The
two categories of smartphone/video-camera BP measurements,
contact and non-contact, are covered. Present use of these
techniques is discussed, together with their clinical applicability.
We conclude by discussing the role of video cameras in
health and BP monitoring. This paper provides an in-
depth review of BP-video camera measurement technologies,
including their accuracy, image processing methodologies, and
machine learning algorithms used for predicting BP. This will
provide a resource for researchers in this field to compare
the advantages/disadvantages and technical details of various
published methods.

Video cameras and smartphones could measure BP non-
invasively. Through simultaneously measuring additional
cardiovascular properties such as heart rate or blood
oxygenation, video camera technologies may provide continuous
monitoring of multiple cardiovascular properties from an
individual’s home.

NON-INVASIVE SMARTPHONE CONTACT
MEASUREMENTS OF BLOOD PRESSURE

Contact methods typically involve pressing the fingertip against
the rear camera to acquire a PPG signal. The theory of reflection
mode PPG in video cameras is initially discussed. This is followed
by a description of the three categories of contact-based BP
measurements (see Table 1 and Figure 1): (1) Oscillometry; (2)
Analysis of pulse waveform features; (3) and Pulse transit time
(PTT), calculated as the time delay between two PPG waveforms
at different arterial sites.

Reflection Photoplethysmography and
Smartphones: An Introduction
The heart generates pulsatile flow, causing blood vessels in the
skin to expand and contract. Light absorption by hemoglobin in
the blood is maximized when the vessel is fully expanded during
systole and minimized during diastole. In reflection mode PPG,
light reflected from the skin is detected by a sensor or camera. The
PPG waveform has an oscillating “AC” component largely due to
arterial pulsation, which is superimposed on a DC component
corresponding to fat and blood volume.

In 2010, the smartphone was used to obtain a PPG signal
for heart rate assessment by pressing the finger against the rear
camera (27). Although data from red, green, and blue color
channels are obtained, the green channel is typically used for
calculating physiological parameters via video camera methods.
This is likely due to green light possessing higher absorption
by hemoglobin than red, while penetrating deeper into tissue
than blue (28). These techniques have been extended to estimate
BP (systolic, diastolic, mean) via a logarithmic equation relating
pressure to heart rate and pulse volume (19).

Application of Oscillometry to
Smartphones
Oscillometry techniques produce an automated digital pressure
output and determine BP with limited user input. Vibrations
produced through opening of the arterial wall travel through
air inside the cuff, and into a transducer producing an electrical
signal (29). The upper and lower envelopes of the oscillation are
traced as cuff pressure varies from above systolic pressure (SP)
to below diastolic pressure (DP). Algorithms then estimate the
mean, systolic, and diastolic pressures from the oscillogram (plot
of the oscillation amplitude vs. cuff pressure) (30, 31).

Oscillometry has been extended to smartphones.
Chandrasekhar et al. (16) developed a smartphone-based
device to detect varying pressure in a finger artery, similar to
that of a changing cuff pressure as with cuff-based oscillometry.
A case was attached to the smartphone that contained a PPG
sensor overlaying a force transducer, since a sensor capable of
detecting force applied by the finger was not present within the
phone itself. An infrared LED illuminated the finger pressed
against the PPG sensor, and the force sensor detected the varying
force applied by the user. An oscillogram was generated, and
finger BP related to brachial BP via fitting a parametric model to
the oscillogram.

Most users found the technique user-friendly and learned it
after 1–2 trials. However, whereas the accuracy of this technique
was comparable to a finger-cuff, only approximately 60 % of
BP measurements were successful with the device. More than
half the failures to output a BP value were attributed to a
“computation failure.” A special case was also required for
this method that incorporated sensors for production of a
finger oscillogram. An additional study by the same group (17)
incorporated the iPhone X’s built-in 3D touch force sensor and
camera for PPG detection, eliminating the need for a special case.

PPG Waveform Analysis to Predict Blood
Pressure
Calculating Blood Pressure From Waveform Analysis

A common approach to calculating BP is to extract features
from the pulse waveform related to the shape of the pulse.
The user turns on the LED flash, presses their finger against
the phone camera, and records a video. The resulting video
can be analyzed to produce a pulsatile waveform. Features
are then extracted characterizing the waveform such as pulse
width, slope of initial upstroke, height, time between pulses, etc.
These features are input into machine learning models, such as
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TABLE 1 | Contact methods for smartphone blood pressure (BP) measurement.

Publications Number of subjects in study and

additional experimental details

Accuracy of method Analysis/processing

method

Chandrasekaran et al. (4) 5 subjects

- 2 phones (1 camera, 1 microphone)

OR single phone camera with

external microphone

Still with single mobile:

SP: 98.59% accuracy

DP: 97.96% accuracy

Movement with single mobile:

SP: 97.45% accuracy

DP: 97.63% accuracy

- mean accuracy values calculated by Steinman et al.:

original data in paper provided individual but overall

mean values

Pulse Transit Time

Lamonaca et al. (5) 5 experiments Max error in SP: 11 mHg

Max error in DP: 12 mmHg

Waveform Analysis

Visvanathan et al. (6) 17 subjects Linear regression:

SP: 98.7% detection accuracy

DP: 99.7% detection accuracy

SVM:

SP: 100% detection accuracy

DP: 99.29% detection accuracy

* BP values divided into bins

Waveform Analysis

Visvanathan et al. (7) 156 subjects SP: 98.81% detection accuracy (cross validation)

DP: 98.21% detection accuracy (cross validation)

* BP values divided into bins

Waveform Analysis

Banerjee et al. (8) 23 subjects (15 training, 8 testing) SP: 4 ± 2 mmHg (MAE ± std)

DP: 4 ± 2 mmHg (MAE ± std)

- values calculated by Steinman et al.; original data in paper

only provided for individuals but not averaged

Waveform Analysis

Liu et al. (9) 12 subjects

- 2 cameras (1 for fingertip, other for

forehead temple)

- correlation 0.86 ± 0.06 between established PTT and OFP

* OFP is the time interval between minimum PPG signal from

temple and maximum of PPG signal from fingertip

Pulse Transit Time

Peng et al. (10) 32 subjects

stethoscope attached to phone

SP: 4.339 ± 6.121 (MAE ± std)

DP: 3.171 ± 4.471 (MAE ± std)

MP: 3.480 ± 4.961 (MAE ± std)

Heart Sounds Only

Junior et al. (11)

Junior et al. (12)

3 subjects

- heart sounds and camera

Mean percent error in automated vs. manual calculation of

PTT: 2.53% (maximum 3.00%)

Pulse Transit Time

Gao et al. (13) 65 subjects SP: 5.1 ± 4.3 mmHg (ME ± std)

DP: 4.6 ± 4.3 mmHg (ME ± std)

Waveform Analysis

Plante et al. (14) 85 subjects

- heart sounds and camera

SP: 12.4 ± 10.5 mmHg (MAE ± std)

DP: 10.1 ± 8.1 mmHg (MAE ± std)

Pulse Transit Time

Datta et al. (15) 118 subjects (68 training from

oximeter PPG; 50 smartphone PPG

for testing)

SP: Mean absolute percentage difference 7.4%

Correlation 0.57 with ground truth SBP

DP: Mean absolute percentage difference 9.1 %

Correlation 0.40 with ground truth DBP

Waveform Analysis

Chandrasekhar et al. (16) 32 subjects (35 subjects originally)

- special case used to measure PPG

and applied force

SP: 3.3 ± 8.8 mmHg (ME ± std)

DP: −5.6 ± 77 mmHg (ME ± std)

Oscillometry

Chandrasekhar et al. (17) 18 subjects (20 subjects originally)

- phone camera, iPhoneX 3D touch

feature to measure applied force

SP: −4.0 ± 11.4 mmHg (ME ± std)

DP: −9.4 ± 9.7 mmHg (ME ± std)

Oscillometry

Dey et al. (18) 205 subjects (160 training, 45 testing) SP: 6.9 ± 9.0 mmHg (MAE ± std)

DP: 5.0 ± 6.1 mmHg (MAE ± std)

Waveform Analysis

Matsumara et al. (19) 13 subjects SP: 0.67 ± 12.7 mmHg (ME ± std)

DP: 0.45 ± 8.6 mmHg (ME ± std)

MP: 0.49 ± 9.6 mmHg (ME ± std)

Waveform Analysis

Wang et al. (20) 7 subjects (nine subjects originally)

- phone accelerometer and camera

DP: 5.2 ± 2.0 (RMSE ± std) Pulse Transit Time

Baek et al. (21) 26 subjects

- convolutional neural network

without feature extraction

SP: 5.28 ± 1.80 (MAE ± std)

DP: 4.92 ± 2.42 (MAE ± std)

Waveform Analysis

(Continued)
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TABLE 1 | Continued

Publications Number of subjects in study and

additional experimental details

Accuracy of method Analysis/processing

method

OptiBP, Schoettker et al.

(22)

50 subjects for training (51 originally),

40 validation (50 originally)

SP: −0.7 ± 7.7 mmHg (ME ± std)

DP: −0.4 ± 4.5 mmHg (ME ± std)

MP: −0.6 ± 5.2 mmHg (ME ± std)

Waveform Analysis

Nemcova et al. (23) 22 subjects

- heart sounds and camera

SP: −0.2 ± 6.7 mmHg (ME ± std)

DP: −0.07 ± 8.8 mmHg (ME ± std)

Pulse Transit Time

Tabei et al. (24) 6 subjects

- cameras from 2 smartphones

SP: 2.07 ± 2.06 mmHg (MAE ± std)

DP: 2.12 ± 1.85 mmHg (MAE ± std)

Pulse Transit Time

Preventicus (app) Raichle et al. (25): 32

pregnant women

Dörr et al. (26): 965 subjects (1,036

subjects originally)

Raichle 2018: SP: 5.0 ± 14.5 mmHg (ME ± std)

Dörr 2021: SP: −0.41– ± 16.52 mmHg (ME ± std)

Waveform Analysis

ME, mean error; MAE, mean absolute error; SP, systolic pressure; DP, diastolic pressure; MP, mean pressure; PTT, pulse transit time; PPG, photoplethysmography.

FIGURE 1 | Diagram outlining methods for smartphone blood pressure (BP) estimation. (A) Contact methods, which require pressing the finger against the phone

camera to obtain a finger blood volume pulse. Pixels within the video are averaged in each frame. The signal may be further processed and filtered, producing a

waveform as a function of time. Features are extracted from the waveform and input into machine learning algorithms to calculate BP. Pulse transit time (PTT) may

also be correlated with BP, however multiple sensors are required. (B) Non-contact methods utilize ambient light reflected from the face. The resulting video is

processed to enhance the signal-to-noise ratio of the hemoglobin signal, whose features are be input into a machine learning algorithm to calculate BP (similar to

contact methods). Since multiple facial regions or body parts may be imaged simultaneously, PTT may be estimated using only a single camera by estimating the

difference between pulse arrival at different body regions.

neural networks or regression models, thereby calculating blood
pressure. Multiple features render algorithms less susceptible
to data variability, and increase pressure calculation accuracy.
Unlike methods such as PTT (see below), only one sensor
is needed, and it is less sensitive to motion artifacts because
the finger is pressed against the camera. This also produces

a stronger signal than with non-contact video PPG methods
(section Non-contact Video Camera Measurement of Blood
Pressure).

Use of the PPG waveform to predict BP is not limited to
smartphone-based PPG. As such, there is a range of machine
learning methods that are used, and methods for acquiring
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data. For example, datasets may be publicly available, such as
through the Multiparameter Intelligent Monitoring in Intensive
Care MIMIC database, (32) or frequently acquired via pulse
oximeter (33).

PPG waveform analysis faces challenges, several of which
are outlined in (34). Briefly, PPG waveforms are an indirect
measure of pressure. Finger sizes and pressing pressure vary
considerably between subjects, affecting the PPG waveform
and consequently influencing prediction accuracy. Diseases,
such as anemia, reduce hemoglobin concentration and alter
the relationship between blood volume and total hemoglobin.
Other diseases alter the circulation and body temperature, in
turn reducing the correlation between the peripheral pulse
measured with PPG and BP. Nevertheless, arterial BP, and
PPG signals have a high similarity in their morphology, with
potential for determining whether patients are normotensive
or hypertensive (35). Consequently, studies employing PPG
waveform analysis via smartphones (as detailed below)
have potential for predicting BP and diagnosing conditions
such as hypertension.

Lamonaca et al. (5) trained a neural network on 15,000
PPG pulses with associated pressure from MIMIC. Features
from the PPG pulses relating to length of time in portions
of the cardiac cycle, systolic upstroke time, diastolic time, and
cardiac period were extracted and input into the neural network
algorithm for training on the database. This trained network
was applied to PPG pulses acquired with a smartphone and
compared to pressure measured in the arm with a cuff. Over
five experiments, the maximum difference between predicted
and reference systolic values was 11 and 12 mmHg between
diastolic values. This is above the accuracy threshold of 5 ± 8
mmHg according to the Association for the Advancement of
Medical Instrumentation.

Visvanathan et al. (6) analyzed 14 time domain features of
the PPG waveform, in addition to height, weight, and age. These
were input into a linear regression or support vector machine
classification model to estimate BP. In 2014, a similar analysis
was performed that included additional features in the time and
frequency domain (7).

To reduce noise, Banerjee et al. (8) approximated the PPG
signal as a sum of two Gaussian functions. The cardiovascular
system was modeled as a circuit, with a peripheral resistance (R)
and arterial compliance (C). SP and DP were expressed as an
exponential function of R and C. Seven features from the PPG
signal modeled as the sum of Gaussians were input into a neural
network to calculate R and C, enabling estimation of SP and DP.

Gao et al. (13) applied a discrete wavelet transform to the
PPG signal to extract periodic features. Feature selection was
performed using a linear support vector machine, followed by
training a non-linear support vector machine to predict BP. The
mean error for DP was 4.6 ± 4.3 mmHg, and the error for SP of
5.1± 4.3 mmHg.

Datta et al. (15) analyzed the ratio of PPG features, systolic
upstroke time, the inverse of systolic upstroke time squared,
and age and body mass index (six features total). Mean absolute
error values of 7.4% (systolic) and 9.1% (diastolic) were obtained.
The advantage of measuring the ratio of features is to reduce

dependence on use of a particular camera or smartphone.
This provides an algorithm that is applicable between phones
and manufacturers, and is less likely influenced by sensor or
phone properties.

Dey et al. (18) incorporated 233 total features in the time and
frequency domain. A mean absolute error for DP of 5.0 ± 6.1
mmHg, and 6.9± 9.0 mmHg for SP was calculated.

These studies used feature extraction to predict BP, which
may be influenced by sensor and signal quality, and vary
between studies. It is possible to eliminate feature extraction, as
demonstrated by Baek et al. (21). In this study, a convolutional
neural network was applied to PPG signals without feature
extraction. They obtained a mean absolute error for DP of 4.92
± 2.42 mmHg, and 5.28± 1.80 for SP.

Large-scale studies in patients with a range of BP values
are necessary to assess the accuracy of an app or technique,
since inaccuracy may be induced at higher or lower BP ranges.
This could be attributable to utilizing training data largely from
normotensive populations, healthy/younger individuals, or using
invasive BPmeasures (instead of cuffs) as reference data (26). The
Preventicus BP estimation algorithm overestimated SP in low BP
ranges (< 130 mmHg), and underestimated SP in medium BP
ranges (130–160 mmHg) in pregnant women (25). In a recent
study of more than 900 individuals (300 hypertensive) using
the Preventicus app, overestimation of SP occurred at lower SP,
and underestimation at higher SPs, with decreasing performance
at higher pressures. OptiBP, a smartphone app, possessed high
accuracy when tested on a range of BPs (hypotensive to
hypertensive, 101 subjects total), suggesting it is more likely
to be applicable to the general population than Preventicus
(22). It is difficult to determine presently the reasons similar
techniques (OptiBP vs. Preventicus) are not equally successful
since they both follow a similar methodology (finger-pressing).
The Preventicus algorithm is a combination of frequency and
morphology analysis, and utilizes the knowledge that time
difference between the notch and peak represent peripheral
resistance and depends on BP (26). The OptiBP algorithm
obtains an average waveform over multiple measurements, with
less weight attributed to pulses with abnormal morphology.
Derivative-based features are extracted from the pulse, and
a non-linear model is used to predict BP. The final BP is
determined following a calibration procedure (22).

Pulse Transit Time (PTT): Using Signals
From Multiple Locations to Estimate Blood
Pressure
Calculating Blood Pressure From Pulse Transit Time

Waveform analysis extracts multiple pulse features, inputting
them into machine learning algorithms to calculate BP.
Prediction accuracy is dependent on selection of correct
features based on the waveform shape, which may depend on
characteristics of the sensor. Consequently, algorithms developed
on one smartphone may not be transferable to a different
phone, since each uses a different set of sensors. Algorithms
may require further development to automatically detect subtle
features in the pulses relatable to pressure, along with acquisition
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of large datasets for machine learning. These techniques are
often limited to the fingertip (one region), whereas pulse
information from multiple regions could increase accuracy of BP
estimation algorithms (36).

PTT overcomes some obstacles of waveform analysis,
requiring onlymeasurement of relative arrival times of two pulses
at different points in the body. PTT is inversely proportional
to pulse wave velocity, which increases with BP. It is used
as an indirect measure of BP, with a reduced PTT indicating
elevated pressure.

PTT and pulse arrival time (PAT) are often used
interchangeably. Technically, PTT is the time difference
between two points in the PPG waveforms measured at different
arterial sites. PAT represents the time difference between the
R-peak of the electrocardiogram and a characteristic point
in the PPG waveform, such as the foot. Since PTT is not in
pressure units, methods using PTT to estimate pressure require
calibration to relate the quantities. Accuracy of PTT-based BP
measurements therefore depends on calibration quality, possibly
requiring recalibration after several months. Calibration for each
individual is performed by acquiring multiple pressure and PTT
measurements and performing regression analysis to relate the
two quantities. Multiple pressure and PTT measurements may
be acquired through pressure perturbations such as exercise or
changing posture (37).

Inconsistencies impact the accuracy or variability of BP
recordings calculated from PTT. The characteristic points used
to determine PPG pulse arrival time differ between studies,
such as the foot or peak of the waveform, or the peak of the
second derivative waveform (38). Either marker may be used,
although effects of wave reflection from peripheral arteries are
minimized if the foot-to-foot time delay between waveforms is
used (37). Conditions for accurate BP calculation from PTT
include assumptions of negligible contraction of vasculature via
smooth muscle and negligible viscous effects, which induce PTT
variations without affecting blood pressure; andminimal changes
to arterial elasticity in response to disease or aging (37). Due to
this final condition, periodic recalibration is required for chronic
BP measurements, with calibration period depending on age.
In a theoretical study, for a 30-year-old the calibration period
to maintain accuracy (<1 mmHg error in BP calculation) is
approximately 1-year, decreasing to 6-months for a 70-year-old
(39). A study in 14 normotensive subjects (aged 20–36 years)
suggest shorter calibration periods, where regression coefficients
for calculating BP from PTT in a first test inaccurately predict
blood pressure in a repeat test 6-months later (40).

Incorporation of PTT Into Contact-Based

Smartphone Techniques

Two measurements are required to incorporate PTT into
smartphones: one PPG pulse, and a PPG pulse or indicator
of heartbeat. Chandrasekaran et al. (4) used two methods
for calculating BP based on recording of heart sound
(phonocardiogram, PCG) and finger pulse. The first method
required two smartphones. One was pressed against the user’s
chest to record the PCG, while the other detected the PPG finger
pulse. The second method was similar, except a single phone

was used. A finger PPG pulse was acquired, and a customized
external microphone attached to the smartphone to amplify the
acoustic heart signal. Estimated BP values achieved an accuracy
of approximately 95–100% when compared to a commercial
BP meter. Similar techniques combining PCG and PPG are
described in Junior et al. (11, 12) and Nemcova et al. (23). Such
techniques have been incorporated into phone apps, such as
AuraLife Instant Blood Pressure (IBP) (41). Clinical translation
of the AuraLife app has not been successful, where a clinical
study (85 participants, 53% with hypertension) of the app
found large errors in measured pressure and low sensitivity to
detecting hypertension (14).

A potential inaccuracy induced through PCG measurement
is reliance of the signal on closing instead of opening of heart
valves. This provides incorrect times for PTT determination since
valve closure does not indicate when blood is ejected from the
heart (20). Therefore, Wang et al. (20) instead investigated the
phone’s accelerometer to detect vibrations caused by mechanical
movement of the heart (seismocardiogram, SCG). The error in
DP over all subjects was 5.2 ± 2.0 mmHg (RMSE ± std). SP
was not calculated since the characteristic PPG point to calculate
PTT was the foot of the pulse, which measures arrival time
of diastole (20).

Some studies use two cameras and define PTT as the difference
in times between two characteristic points in the PPG pulses
at different body locations. Liu et al. (9) assembled a prototype
device with the front-camera pressed against the temple and the
finger contacting the rear-camera. Tabei et al. (24) incorporated
two smartphones, defining PTT as the time difference between
peak locations for each fingertip PPG. SP and DP were estimated
with a regression model, and compared to calculations with a
reference device. Estimates demonstrated a mean absolute error
for SP and DP of∼2 mmHg.

NON-CONTACT VIDEO CAMERA
MEASUREMENT OF BLOOD PRESSURE

A disadvantage of contact techniques is the PPG signal
dependence on finger pressing force, in contrast to non-
contact video camera techniques. Non-contact techniques can
simultaneously measure multiple body parts and regions of the
face, which are differentially innervated by sympathetic and
parasympathetic neurons. This additional information could
increase accuracy of camera prediction methods, compared
to more homogeneous data acquisition as per finger-pressing
contact techniques (36).

However, non-contact video methods are susceptible to noise
and artifacts unrelated to the hemoglobin signal. For example,
a dicrotic notch in the blood volume pulse is often absent in
video PPG, which could affect calculation of PTT. While some
signal reflected from tissue is due to hemoglobin, other light does
not pass through tissue and is reflected from the skin surface.
This is termed diffuse reflection (42). Other light reflection
is due to non-hemoglobin components, such as melanin. In
order to predict BP most accurately, and to avoid noise effects
being interpreted as part of the signal, mathematical/optical
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TABLE 2 | Non-contact methods for smartphone/video blood pressure (BP) measurement.

Publications Number of subjects and

additional experimental details

Accuracy of method Video processing method

Murakami et al. (44) 10 subjects Correlation coefficient of PTT with SP: −0.879 Single-Channel Analysis

Sugita et al. (45) 20 subjects Correlation coefficient with SP: ∼ 0.6 for pulse wave indices

from right hand

Single-Channel Analysis

Yoshioka et al. (46) 10 subjects Correlation coefficient between PTT and SP: −0.879

* same study subjects as Murakami et al. (44) above

Single-Channel Analysis

Jain et al. (47) 45 subjects SP: 3.90 ± 5.37 (MAE ± std)

DP: 3.72 ± 5.08 mmHg (MAE ± std)

Principal Component

Analysis

Jeong and Finkelstein (48) 7 subjects Correlation between SP and PTT: −0.80

- correlation obtained by averaging across values for

individual subjects provided in Jeong and Finkelstein (48)

Single-Channel Analysis

Secerbegovic et al. (49) 3 subjects PTT calculated from ECG and video forehead signal:

SP: 9.48 ± 7.13 mmHg (MAE ± std)

MP: 4.48 ± 3.29 mmHg (MAE ± std)

Correlation between PTT phase delay between forehead and

palm video signals and SP:−0.6045

Independent Component

Analysis

Huang et al. (50) 13 subjects SP: 14.02 mmHg (RMSE)

DP: 7.38 mmHg (RMSE)

Single-Channel Analysis

Khong et al. (51) 45 subjects SP: 4.22 ± 3.15 mmHg (MAE ± std)

DP: 3.24 ± 2.21 mmHg (MAE ± std)

Single-Channel Analysis

Patil et al. (52) 20 subjects Morning session

SP: 9.62 % (error rate)

DP: 11.63 % (error rate)

Afternoon session

SP: 8.4 % (error rate)

DP: 11.18 % (error rate)

Independent Component

Analysis

Chen et al. (53) 2 subjects SP: −2.40 % – 3.43 % (range of error compared to reference)

DP: −6.88 % – 5.26 % (range of error compared to reference)

Mathematical/Optical

Modeling

Fang et al. (54) 15 subjects SP: 11.2 mmHg (RMSE)

PP: 7.83 mmHg (RMSE)

Mathematical/Optical

Modeling

Viejo et al. (55) 15 subjects (70 % training, 15 %

validation, 15 % testing)

Correlation coefficient in testing phase between measured

BP, heart rate and reference BP, heart rate: 0.71

Single-Channel Analysis

Oiwa et al. (56) 8 subjects MP: range from 1.50 mmHg – 4.15 mmHg (MAE) Independent Component

Analysis

Shirbani et al. (57) 15 subjects Slope from plot of PAT measured from video PPG vs. DP:

−1.33 ± 1.70 ms/mmHg (mean ± standard error), p =

0.0024

Single-Channel Analysis

Adachi et al. (3) 10 subjects Without body movement:

SP:−1.0 ± 5.6 mmHg (ME ± std)

With body movement:

SP: −0.1 ± 12.2 mmHg (ME ± std)

Mathematical/Optical

Modeling

Luo et al. (36) 1,328 subjects (70 % training, 15 %

testing, 15 % validation) (data

collected from 2,348 subjects

originally)

SP: 0.39 ± 7.30 mmHg (ME ± std)

DP: −0.20 ± 6.00 mmHg (ME ± std)

PP: 0.52 ± 6.42 mmHg (ME ± std)

Transdermal Optical Imaging

Sugita et al. (45) 17 subjects (20 subjects originally) Correlation coefficient of right palm index with SP: < −0.5 Single-Channel Analysis

Sugita, Noro, et al. (58) 5 subjects SP: 25.7 mmHg (RMSE) Single-Channel Analysis

Fan et al. (59) 6 subjects SP: 8.42 ± 8.81 mmHg (MAE ± std)

DP: 12.34 ± 7.10 mmHg (MAE ± std)

Mathematical/Optical

Modeling

Takahashi et al. (60) 4 subjects Correlation between SP and PTT measured only in face via

video: −0.4543 (range from −0.7820 to −0.2900)

- average value not provided in original publication;

averaged here over the four individual values

Mathematical/Optical

Modeling

Rong and Li (61) 189 subjects (191 subjects originally;

70 % training; 30 % testing)

SP: 9.97, 2.1 ± 3.35 mmHg (MAE, ME ± std)

DP: 7.59, 0.79 ± 2.58 mmHg (MAE, ME ± std)

- showing here result obtained with the machine learning

method that produces the smallest MAE

Single-Channel Analysis

ME, mean error; MAE, mean absolute error; RMSE, root mean square error; SP, systolic pressure; DP, diastolic pressure; MP, mean pressure; PTT, pulse transit time; PPG,

photoplethysmography; PP, pulse pressure; PAT, pulse arrival time.
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TABLE 3 | Comparison of contact and non-contact BP measurement techniques.

Advantages of techniques Disadvantages of techniques Comments on specific contact/non-contact

techniques

Contact - higher signal achievable compared to

non-contact due to proximity of finger

to sensor and LED

- reduced sensitivity to subject motion,

since the finger is pressed against the

camera

- less sensitive to external lighting

conditions than non-contact methods

- signal may depend on finger pressing

force

- may require multiple sensors, such as

microphone, in addition to camera

- limited to certain regions of the body,

such as the finger, whereas the face

includes pulse information for predicting

BP

- may depend on height of hand relative

to heart

Oscillometry

- convenient, easy method to learn

- may require a special case to sense

applied pressure

Waveform Analysis

- prediction accuracy dependent on size of

training data, extent to which training data

reflects the characteristics of the population,

and features extracted for input into machine

learning algorithms

Pulse Transit Time

- easy, efficient measure that correlates with BP

- data may require calibration every 6-months to 1-

year, depending on age and health conditions of

subject

- multiple sensors required in the case of

contact methods

Heart Sounds Only

- may require attachment of a stethoscope to

smartphone to amplify heart sounds

Non-contact - may image multiple regions

simultaneously without additional

equipment/sensors

- signal does not depend on pressing

force, yielding more consistency across

subjects or between trials

- acquisition of blood pressure through

‘selfie’ or short video

- sensitive to lighting conditions, angle of

camera with face, and distance of

camera from face

- sensitivity to body and surface skin

movement

- relatively weak signal, since often the

camera is held a distance from the face

and ambient light is used as the

light source

Single-Channel Analysis

- usually green channel analyzed, followed by

application of PTT or waveform analysis

- susceptible to skin inhomogeneities, melanin,

lighting conditions

Transdermal Optical Imaging

- use of machine learning to extract hemoglobin

signal

- applied in study of over 1,300 individuals to

predict BP

Mathematical/Optical Modeling

- account for light reflectance from skin surface,

skin movement, melanin, and lighting. They may

therefore be potentially applied to a range of real-

life conditions outside the laboratory.

Independent Component Analysis

- assumes each channel contains a

hemoglobin component

- component with the strongest signal at the heart

rate selected as the pulse component

Principal Component Analysis

- may be used to determine which components of

the video signal are attributable to hemoglobin

pulsation

- can reduce data redundancy for optimal

performance of machine learning algorithms

models or machine learning techniques are used to specifically
extract the hemoglobin signal component. For example, the

chrominance model (CHROM) yields a higher blood volume

pulse SNR than techniques such as blind source separation,

even under conditions of movement due to its ability to remove

non-hemoglobin components such as diffuse reflection (42).

In exercise (subject movement) conditions, processing data

from only a single channel often does not yield a clear blood

volume pulse (43).
Consequently, a number of video camera processing

techniques have been developed for overcoming deficiencies

of single channel analysis, using sophisticated algorithms to

minimize noise effects. This section details these techniques.
Nevertheless, as will also be described, studies utilizing only a
single color channel for analysis are still able to produce accurate
estimates of BP or strong correlations between PTT calculations
and BP.

These methods are summarized in Table 2, while Table 3

compares the advantages and disadvantages of contact and non-
contact techniques.

Single Channel Video Analysis
PPG signal for heart and respiratory rate calculation was detected
from facial videos in 2008 by averaging pixel signal over the
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green channel (28). Machine learning techniques, such as neural
networks, can use features from the filtered, averaged signal to
predict BP (55, 61).

An advantage of video techniques is multiple regions may
be imaged simultaneously, enabling calculation of PTT using
only a single sensor (camera). This was demonstrated by Jeong
and Finkelstein, (48) who found a strong correlation between
SP and PTT through videos acquired of the face and hand.
Their study used high speed video recording (420 fps) to capture
1-min videos between/before/after exercise protocols, with the
subject seated and hand on a table. Other studies utilizing PTT
to estimate BP from single channel processing include: Yoshioka
et al. (46), Huang et al. (50), Khong et al. (51), Murakami et
al. (44) and Shirbani et al. (57). As an alternative to PTT, it
may be possible to capture videos of hands at different heights,
relating the difference in pulse amplitudes between the hands to
BP (58). Others use phase difference between PPG waveforms as
a surrogate for time delay, which has a higher correlation with SP
compared to time delay methods (62). Phase difference, however,
is distorted by skin inhomogeneities and may not provide a truly
accurate measure of PTT (63).

A disadvantage to requiring two pulse measurement locations,
as in Jeong and Finkelstein (48), is PTT varies according to
the distance between face and hand or body parts selected for
analysis. This will alter BP prediction when a subject adjusts their
posture. To overcome potential variability in measuring PTT
in different regions, Sugita et al. (45) calculated time difference
(TBH) betweenminimum values in a band-pass filtered waveform
from video of the palm, and the raw waveform from the palm.
They demonstrated smoothing the PPG waveform causes a phase
change indicating heart-rate variability, with TBH indicating
the degree of distortion of the PPG waveform. TBH showed a
similarly strong correlation with SP as the difference between
arrival times of waveforms in the palm and forehead. This
suggests TBH has similar accuracy as PTT in calculating BP, but
should be more applicable to situations where body movement
occurs, such as exercise.

Processing Video Data to Extract
Hemoglobin Information
Single-channel (typically green channel) data contains
hemoglobin information. The overall channel signal, however,
is affected by melanin content (skin tone), lighting, and subject
movement. This may be controlled in experimental situations
through consistent and bright lighting, and limiting subject
movement. In “real world” environments, there are a variety
of skin tones, background light, and subject motion. In these
situations, analysis of raw or filtered green channel data risks
acquisition of a distorted or altered waveform not accounted
for in algorithms relating waveform shape to BP. As detailed
below, video frames may be processed using machine learning
or mathematical algorithms to extract hemoglobin-dependent
features of the signal that are then used to estimate BP.

Transdermal Optical Imaging (TOI)

A study by Luo et al. (36) with over 1,300 normo-tensive subjects
demonstrated feasibility of non-contact BP measurement with

video camera (64, 65). Each 8-bit image from the three color
channels contains 8 bitplanes, with each pixel in a bitplane 0 or
1. A machine learning algorithm was trained to select bitplanes
corresponding to hemodynamic changes. This technique has
demonstrated successful calculation of heart rate and heart rate
variability, stress, facial blood flow, BP, and flow responses to
stimuli (36, 66, 67)(see Figure 2).

To calculate BP, transdermal blood flow data was acquired
from 17 facial regions with an Apple iPhone 6. The subject
was seated, with back straight and feet on the ground. Data
acquisition occurred over 2-min. One hundred and twenty
six features were extracted from the videos relating to pulse
characteristics, such as shape, amplitude, and heart rate. An
additional 29 “meta features” were selected to normalize for
variation in imaging conditions across the three channels, and
to account for ambient room temperature and demographic
characteristics. Principal component analysis (PCA) (68) reduced
data dimensions, producing 30 eigenvectors that were input
into a multi-layer perceptron to calculate BP. Accuracy was
approximately 95%, with an error bias of 0.39 ± 7.30 mmHg
(SP), −0.20 ± 6.00 mmHg (DP), and 0.52 ± 6.42 mmHg
(pulse pressure).

Mathematical and Optical Modeling

Adachi et al. (3) developed a mathematical model to determine
contributions from hemoglobin, melanin, and light shadowing
on video signal. Hemoglobin signal (PPG waveform) was
extracted through removal of the melanin and lighting effects
based on knowledge of the melanin light absorption spectrum
and camera spectral sensitivity. Features based on waveform
shape and PTT were obtained from the extracted PPG
waveforms, and used to predict BP. Following recording of data
for 30 s, BP was predicted under conditions of movement vs. no
body movement. Without body movement, the mean prediction
error from 10 subjects for SP was −1.0 ± 5.6 mmHg; with
body movement, the prediction error was −0.1 ± 12.2 mmHg.
Prediction error for DP was not included.

Fukunishi et al. (69) applied a model of light travel through
the skin to extract the hemoglobin signal and blood volume pulse
from an RGB camera. Using a high speed digital camera (capable
of 2,000 fps, operated at 500 fps), with each recording set at
8.7 s, the Fukunishi model was applied by Takahashi et al. (60) to
calculate PTT between forehead and chin, obtaining correlation
coefficients between PTT and SP ranging from∼−0.3 to−0.8 for
four subjects.

The CHROM model reduces the effect of motion and light
reflected from the skin that does not possess a pulsatile or blood
flow component. Fan et al. (59) and Chen et al. (53) (30 s of
video, at 60 fps) (53) adapted CHROM to extract PPG signals
from still videos of the face and hand, calculating PTT as the
time difference between peaks or the phase difference between
waveforms respectively. In both cases, subjects were sitting with
facing toward the camera and hand raised. In Fan et al. (59) the
authors developed a solution to a problem in video PPG where
the dicrotic notch is “buried” in the overall signal, causing a peak
shift and mis-estimation of PTT. This was accomplished through
adaptive Gaussian modeling, where the signal is modeled as a
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FIGURE 2 | Calculation of blood pressure (BP) by transdermal optical imaging (TOI). A machine learning algorithm selects the bitplanes from a video with the highest

signal for hemoglobin, from which the blood volume pulse is extracted from multiple facial regions (17 regions total). Features of the pulse are input into a multilayer

perceptron to calculate BP.

sum of two Gaussian curves and the parameters are calculated
through least squares minimization. A similar algorithm to
CHROM, plane orthogonal to surface (POS), (43) was used by
Fang et al. (54) to predict BP. The camera frame-rate was set to
90 fps, 15 subjects were video-imaged, with 10 videos each at 45 s
per video. Similar to Chen et al. and Fan et al. above, videos of
the face and hand were acquired, with PTT calculated between
the cheek and radial artery in palm due to these regions providing
the strongest signals.

Independent Component Analysis

Independent component analysis (ICA) assumes a signal is a
linear mixture of underlying sources and mathematically extracts
them (70). Poh et al. (71) demonstrated data from the color
channels could be decomposed into three components, one
corresponding to the blood volume pulse. The signal with
the largest frequency component corresponding to heart rate
is assumed to correspond to the blood volume pulse (72).
This analysis assumes each channel contains information on
hemoglobin-related fluctuations.

In a study of three healthy individuals, Secerbegovic et al.
(49) applied ICA, extracting the ICA component with the largest
signal at the heart rate frequency. Using PTT to estimate BP,mean
absolute error for SP and mean BP were 9.48 ± 7.13 and 4.48
± 3.29 mmHg respectively. Frame rate was 25 fps, with subject
seated and videos acquired simultaneously of face (forehead) and
palm, and video duration 3-min. Patil et al. (52) extracted similar
features of the PPG pulse as Adachi et al. These were input into a
single hidden layer neural network, obtaining average error rates
of 8.4–9.62% (systolic) and 11.18–11.63% (diastolic) between
afternoon and evening sessions. Subjects were permitted small
headmovements to simulate realistic work conditions. Oiwa et al.
(56) correlated facial PPG amplitude with reference BP following

ICA, obtaining a mean absolute error in the range 1.50–4.15 over
eight subjects. Data was acquired over a series of 2-min resting
state segments with eyes closed and 1-min cold stimulus state
segment, where subjects placed their hand in a cold (14◦C) water
bath with eyes opened.

Principal Component Analysis

Most of the video signal is not attributed to blood flow
fluctuations. PCA (73) calculates the main components that
contribute to signal intensity variation in an image. Jain et al. (47)
defined the PPG signal for each frame as the difference between
the raw video data in the red channel and the main principal
components. Twenty features in the time and frequency domain
(6, 74) were input into a polynomial regression algorithm (75) to
calculate BP. Mean absolute error was 3.72± 5.08 mmHg for DP
and 3.90± 5.37 mmHg for SP. Subjects were seated still with eyes
closed. Videos were acquired over 1-min. The initial and final 5-s
of the videos were discarded, with the best 10-s of the remaining
video processed further for analysis.

DISCUSSION, PERSPECTIVES, AND
FUTURE OUTLOOK

This review highlighted smartphone and video camera
techniques for measuring BP. Wearables, such as watches
or similar devices (76, 77), are outside the scope of the review,
although they increasingly play an important role in the field of
BP monitoring. Most smartphone methods for predicting BP are
PPG-based. Although Peng et al. (10) attached a stethoscope to
the smartphone microphone, using heart sounds only to estimate
BP, such studies are relatively infrequent.
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Smartphone BP monitors are potentially applicable to
ambulatory BP monitoring (examining BP continuously during
the day). Measurements in a doctor’s office are affected by
“white coat” syndrome, where patients are recorded as possessing
a higher BP recording when measured clinically. Since BP
varies throughout the day, improved understanding of how and
why these changes occur could assist physicians in prescribing
medication. Smartphones may measure pressure easily, with
no additional equipment required beyond the phone or case.
In contrast, cuffs may be awkward and bulky, inducing arm
soreness or rashes after multiple daily uses (78). Although a
smartphone may not be used at night when the user is asleep,
video cameras with infrared light can monitor vital signs using
similar techniques as those developed for the smartphone (79).

Contact methods have higher signal-to-noise-ratio due to the
proximity of skin to the sensor and usage of light beyond ambient
light (i.e., LED from phone). Additional features in the pulse wave
are distinguishable in contact vs. non-contact methods, such as
secondary peaks. In using machine learning algorithms to relate
waveform shape to BP, these additional features are helpful in
increasing the accuracy of the prediction as they may be affected
by BP. Contact methods are also less dependent on motion since
the finger remains pressed against the camera.

Non-contact methods possess other advantages. Contact
methods are influenced by the force with which the finger is
pressed against the camera. This could vary between individuals,
and between trials conducted in the same individual. For
waveform analysis, data from only a single region (fingertip)
is acquired. Non-contact methods acquire images of multiple
regions simultaneously. This enables simultaneous analysis of
waveform shape and PTT. Different regions of the body could
be affected differently by the sympathetic and parasympathetic
nervous system, which is not accounted for through analysis
of a single region. Contact methods that incorporate PTT may
require additional sensors such as themicrophonewhich produce
a weak signal, or a case containing multiple sensors such as an
electrocardiogram and PPG (27, 80). Oscillometry may require
a special case to simultaneously measure blood volume changes
and applied pressure (16), or the 3D Touch feature on the iPhone
X (17), which is not available in all phone types. Non-contact
methods do not face this issue since all phones are equipped with
a camera.

Several published methods possess a mean error ± standard
deviation within the clinically acceptable 5± 8mmHg. This is not
necessarily translatable to the clinic, as indicated in the trial of the
AuraLife app (14). Small sample sizes of published studies do not
necessarily hold for large populations. It is difficult to compare
published techniques based on accuracy measures, or to predict
which will be successful when applied to large populations.
Studies mostly use normotensive subjects, which may reduce
prediction accuracy at high and low BP. In a follow-up study
of the Anura TOI-based smartphone app (81), lower BPs tended
to be overpredicted, while higher BPs were underpredicted. This
was attributed to more limited training data at the extreme ends
of BP (81).

Many studies do not meet criteria for validating BP devices. In
addition to the AAMI criteria of MAE 5± 8mmHg, several other

criteria are listed (82), such as: at least 85 subjects; probability of
tolerable errors <10 mmHg is at least 85 %, where a tolerable
error is calculated as an average of three measurements against
a reference BP; reference BP measurements acquired by two
observers; and recording of number of absolute BP differences
within 5, 10, and 15 mmHg. The protocol must cover a sufficient
time frame to ensure that as the measurement device ages,
accuracy is not reduced (83). Many clinical validation protocols
are tested on new models, without testing sustained accuracy
over time, even though BP devices such as sphygmomanometers
decline in accuracy over 18-months (84, 85). Over time, an
individual may undergo physical changes in skin (i.e., aging)
or changes in size, which may influence PPG extraction and
BP estimation. Nevertheless, since non-contact methods should
be applicable across camera types and imaging conditions,
algorithms trained on data from a variety of subject types (age,
sex, still vs. movement, range of skin tones and types) should be
accurate for a sustainable time period.

TOI possesses advantages to other techniques for clinical
translation. The sample size of Luo et al. (36) is over 1,300; 155
features over 17 ROIs relating to waveform shape, population
demographics and PTT predicted BP. This is advantageous over
methods with small sample size and those that only measure
PTT or analyze a single region. A disadvantage of limiting
measurements to PTT is the phase shift used to measure PTT
partially depends on skin variability/inhomogeneity, affecting
PTT accuracy (63).

Luo et al. (36) acquired images under strict conditions:
normotensive, and consistent lighting and camera angle. Future
studies may include a wider range of pressures to determine
whether TOI may predict hypertension, and a variety of camera
angles and lighting conditions.

Video-camera processing techniques other than TOI may be
successful if applied to a larger population, or through optimized
analysis of PPG waveform features. For example, Adachi et
al. (3) only used eight features of the PPG waveform and the
time difference between two pulse waves from 10 subjects as
input features for learning. Due to the small sample size, it is
difficult to extrapolate their success to larger populations. Other
algorithms propose first classifying PPG waveforms into one of
three categories (hypotensive, normotensive, or hypertensive),
calculating BP according to the category to which the PPG
pulse was assigned (86). This method is an improvement
over traditional techniques which apply a generic algorithm to
calculate BP regardless of the subject’s BP range. Eulerian video
magnification is a video processing technique that enhances
blood flow signal (87). It has been applied to calculate PTT
in videos of wrist and neck, indicating its applicability to
BP measurements (88).

Future experiments may forego traditional image processing
techniques. Chen and McDuff (89) developed DeepPhys, a
convolutional neural network, and applied it to video frames
to recover the blood volume pulse, measuring heart and breath
rate. Convolutional neural network techniques may only produce
a single, total blood volume pulse. TOI, however, predicts BP
from multiple facial regions. This is advantageous since each
region is differentially innervated, possibly influencing pressure
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prediction. The potential to reduce dependence on feature
extraction is exemplified in the study by Baek et al. (21), who
applied convolutional neural networks to PPG data without
feature extraction to predict BP.

Additional possibilities are outlined in (90). This includes
(A) development of techniques and models robust to “real-life”
conditions such shadowing or movement; (B) application of
infrared light, which acquires videos in dark conditions and may
be less sensitive to variable ambient lighting; (C) development
of a large publicly available dataset, where different algorithms
may be applied and compared; (D) extraction of additional
features beyond PTT; (E) development of a model requiring
fewer calibrations.

This paper highlighted and compared the variety of methods
available for measuring BP with smartphones/video cameras. It
emphasizes variations in experimental design and the relevancy
of these variations in developing methods for BP measurement
that are efficient, easy to use, and non-invasive. This permits
regular BP monitoring, contributing to early hypertension or
cardiovascular disease risk detection. Possibilities for successful
BP monitoring was demonstrated in early studies, such as
Lamonaca et al. (5), that used the rear camera of the phone
in combination with the LED to extract a strong pulse signal
in the finger. Later studies included more features for analysis
(18), or used convolutional neural networks to predict BP
without waveform feature extraction (21). In parallel, non-
contact methods were developed that overcame deficiencies of
contact methods, such as BP prediction limited to a small field of
view (fingertip). Non-contact video methods initially processed
data from single channels, which is affected by motion, lighting,
and features not related to hemoglobin such as melanin. Recent
techniques, such as TOI or optical models, have extracted the
hemoglobin signal specifically and are less sensitive to artifacts
from non-hemoglobin sources.

Smartphone and video BP measurements will likely become
more common. Compared to cuff-based techniques, they are
cost-effective and convenient. Using a single video, BP may be
combined with heart rate detection and stress assessment (66),
blood oxygen saturation (23), and blood flow. This technology
can be developed for improved digital health consultations to
assess a number of health conditions. For example, measurement
of the multiple parameters described above currently requires a
visit to amedical health professional. This is time consuming, and
may necessitate meetings with multiple health professionals.

As methods and techniques for processing video images
advances, it is foreseeable a video consultation over Zoom
can relay to a doctor/nurse a patient’s vitals (heart rate,
BP, oxygen saturation, respiratory rate, etc.) and relate this
information to stroke risk or susceptibility to cardiovascular
disease. This information would be provided in real-time
and reduce the need for manual measurements by a medical
professional. In addition, through continuous and regular daily
monitoring of their own vitals privately with a smartphone,
patients can be alerted via algorithms whether further treatment
is necessary. Ambulatory BP monitoring (BP monitoring at

regular intervals during day, such as via a video camera)
may detect abnormal variations in BP not detectable with a
single BP measurement session at a doctor’s office. Furthermore,
ambulatory BP has been demonstrated to correlate more
strongly with organ damage caused by hypertension than BP
measurements conducted in a clinical setting (91). Data acquired
via smartphone may be automatically directed to a health
care team for further discussions and medical decisions. Such
technology can be extended to blood sugar measurements for
diabetes patients, and other information related to cholesterol,
fats, and hemoglobin (92). Video technology could be on
the cusp of a future where a patient’s home is transformed
into a “smartphone-based doctor’s office” where numerous
cardiovascular or blood-related metrics are assessed that would
previously require expertise and communication across multiple
health divisions.

Overall, smartphones and video cameras will provide a more
complete and earlier assessment of cardiovascular physiology,
helping to prevent stroke and blood vessel-related disorders.

AUTHOR’S NOTE

This review discusses video camera methods for measuring
blood pressure. During Covid, there has been an increase
in the number of virtual consultations with patients. Thus,
there is increased interest in developing technologies that
will allow patients to monitor vital signs from home. This
prevents unnecessary additional trips to doctors, provides
daily information on changes in cardiovascular health, and
may help detect signs leading to stroke or disease. In 2019,
our lab published a paper in Circulation: Cardiovascular
Imaging: “Smartphone-based blood pressure measurement using
transdermal optical imaging technology” by Luo et al. In a
study of over 1300 subjects, we demonstrated accurate blood
pressure prediction via video camera. This was achieved through
an imaging technology, transdermal optical imaging (TOI),
that uses machine learning to extract a cardiovascular pulse
signal from facial videos. As discussed in our review, there are
numerous additional smartphone technologies beyond TOI that
can also be used. Our review compares the different techniques
and their technical aspects such as image processing and data
analysis. The review concludes with the future of video camera
blood pressure measurement, and how it can be combined with
measurement of other metrics for a more complete assessment of
cardiovascular health.
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Machine Learning (ML) has been a useful tool for scientific advancement during the

COVID-19 pandemic. Contact tracing apps are just one area reaping the benefits, as

ML can use location and health data from these apps to forecast virus spread, predict

“hotspots,” and identify vulnerable groups. However, to do so, it is first important to

ensure that the dataset these apps yield is accurate, free of biases, and reliable, as any

flaw can directly influence ML predictions. Given the lack of criteria to help ensure this,

we present two requirements for those exploring using ML to follow. The requirements

we presented work to uphold international data quality standards put forth for ML. We

then identify where our requirements can be met, as countries have varying contact

tracing apps and smartphone usages. Lastly, the advantages, limitations, and ethical

considerations of our approach are discussed.

Keywords: digital health, mobile applications, COVID-19, contact tracing, AI

INTRODUCTION

Contact tracing involves identifying infected individuals and those they were in contact with to
halt virus transmission (1–3). Contact tracing traditionally involved paper-based methods and
have been able to help combat outbreaks such as SARS in 2003 (4, 5), Ebola in Africa in 2014
(6), and smallpox (7). Given the prevalence of smartphones, countries worldwide have rushed
to develop contact tracing apps to streamline and enhance the tracking process. These apps use
GPS capabilities via Bluetooth on smartphones to collect location data on individuals (3, 8, 9).
A risk assessment is conducted if an individual’s smartphone is close to an infected individual’s
smartphone for a long enough time. The individual receives a notification on the next steps they
should follow (e.g., self-quarantine or getting tested). Compared to paper-based methods, digital
methods reduce the time involved in contacting a set of close contacts. Moreover, a systematic
review found that contact tracing apps were less prone to data loss, opening paths for deeper health
monitoring (10). Given the promising benefits, various countries have developed proximity-sensing
applications to automatically trace contacts, notify users about potential exposures, and invite them
to isolate (11).

Prior Work in Digital Contact Tracing: Potential for Health
Monitoring
Data collected from contact tracing apps can be evaluated in two primary ways. The first uses data
analysis to perform a risk assessment that determines whether an individual should be notified of
any exposure to the virus (3, 8, 9), thereby increasing the efficiency and accuracy of contact tracing
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methods. As case examples, such methods have been employed
to control Ebola in Sierra Leone, tuberculosis in Botswana,
and whooping cough (pertussis) in the USA. In addition,
models that examined digital contact tracing have replicated
disease outbreaks in schools and found that the digital system
successfully identified participants’ close contacts (10).

The second use of data collected from contact tracing apps
involves deeper layers of health monitoring. Governments have
taken the aggregated data collected from all users to observe and
predict trends. By analyzing location and health data, this type of
analysis can monitor the spread of the virus, predict “hotspots,”
and forecast how resources should be distributed (5). From Ebola
to the Zika virus to influenza, predictive analysis has enabled
better resource allocation and public health planning (5, 6).

When the COVID-19 pandemic began, this effort was
continued. For instance, models used location data in Wuhan to
predict where the virus may arrive next in China. Other models
strengthened their predictions by combining location data with
other datasets, such as social media and credit card transactions,
to successfully pinpoint vulnerable groups and predict hospital
capacities (6, 7, 12).

Data and Network Consideration
There are unquestionable benefits to applying data analysis for
public health planning. However, it is well-known that any model
is only as good as the data provided. Biases and inaccuracies,
amongst other traits, can easily plague datasets and lead to faulty
results. With predictive analysis, this is an ever-greater concern,
as the data used for machine learning or model forecasting is
not only an input but also a part of training the software itself
(13). In other words, with predictive analysis, the overall system
performance is assessed, at least primarily, on its dataset, leading
any bias or inaccuracy to bring rise to large complications in how
a country may distribute resources or declare “hotspots” (13, 14).

For this reason, international data quality standards specific
to predictive analyses have been put forth. The standards
guide predictive analysis by ensuring the dataset being used
for predictive analysis is accurate, reliable, and comprehensive,
amongst many other traits. Given the demand for predictive
analysis, it is imperative that the datasets used to forecast health
planning uphold such data measures. In this paper, we analyze
how, in any part, health monitoring via contact tracing upholds
data quality standards. We use the international standard
of data quality measures to determine which measures are
upheld when analyzing data from centralized servers (network
topology consideration for data collection) for contact tracing
apps. Even in decentralized servers all the decentralized data
will be aggregated (data centralization in steps, to serve a
large population with variable smartphone capabilities) to be
consumed by ML in one way or the other. In addition to data
quality standards, we also examine ethical considerations. Our
objective is to break down and review data from centralized
servers for health monitoring data quality and from an
ethical standpoint.

However, apart from data and networks, many other factors
might affect data collection and quality. The adoption of the
contact tracing app is the most significant factor among them.

The following are reasons why contact tracing app intervention
failed in many countries, including the USA (15):

(a) Due to outdated laws about privacy, data collection,
and intention to use data, contact tracing apps may not be
deployed. (16).

(b) App developers may have faced difficulties devising an
“acceptable to all solution” due to technological feasibility issues
(e.g., type of network topology: centralized, decentralized, or
hybrid for communication or to store the data; biased predictive
algorithms; or the efficacy of communication channels: Wifi,
Bluetooth, Ultrasound, etc.).

(c) People may not have wanted to download/use the
application as intended due to distrust in the agency/government
that was collecting the data, ethical concerns (misuse of the data,
expiry of data), privacy concerns (e.g., surveillance), and over
cybersecurity issues (e.g., hacking).

METHODS

Evaluation of Network
Since ML models will be consuming the data generated by
contact tracing apps, the centralized network topology is being
considered. ML models both consume and generate a lot of
data. With the emergency use of contact tracing apps during a
pandemic and the current technology available, better prediction
can only be achieved through centralized servers.

Evaluation of Data Quality
International standards for data quality were surveyed to
determine which quality dimensions to use. Articles put forth
for quality dimensions specific to ML were analyzed. A list of
potential quality dimensions was developed, and ultimately, the
data quality model set forth by Rudraraju and Boyanapally (14)
was predominantly used. The model was based on a widely used
international data quality model (ISO/IEC 25012) and adapted
to the specific needs of ML (14–17). Further details of this data
quality model are delved into in the next section.

Criteria for Apps
To determine our criteria for ML application, research papers
from PubMed, ScienceDirect, and NCBI were sought out using
a combination of terms: contact-tracing, mobile applications,
COVID-19, AI, ML, trend-analysis, servers, etc. Reference lists
of papers and existing literature reviews were also referred to.
Studies published in English on contact tracing apps or applying
AI/ML to aggregated data were included (18). The criteria were
developed after understanding how to best envelope the data
quality dimensions put forth by Rudraraju and Boyanapally (14).

Global Adoption of Criteria
Before smartphones, other types of data (e.g., online news
aggregators, expert-curated discussions, and official reports)
were also used for epidemiology and predicting the spread of
pandemics. For example, a website (HealthMap.org), operated by
a team of researchers, epidemiologists, and software developers at
Boston Children’s Hospital, brings a unified and comprehensive
view of the current global state of infectious diseases. This website
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uses a continuous automated process (e.g., monitors, organizes,
integrates, filters, visualizes, and disseminates) and validated
online information data sources (e.g., online news aggregators,
expert-curated discussions, and official reports) to predict the
current global state of infectious diseases (19).

To determine where our ML/AI application criteria can be
met, we reviewed the smartphone penetration rate (percentage
of the population actively using smartphones) and the contact
tracing app’s server type (centralized or decentralized) per
country. ITU estimated that at the end of 2019, slightly more
than 51 per cent of the global population, or 4 billion people,
will be using the Internet; actual results are very close to the
predicted one (20). Smartphone penetration rates were taken
from Newzoo’s Global Mobile Market Report, last updated in
September of 2019 (21). The report lists the top 20 countries
with the most active smartphone users along with corresponding
smartphone penetration rates, which were taken for this review.
An active smartphone user is qualified as an individual that uses
the device at least once amonth. The percent of smartphone users
needed to use the contact tracing app to get to the 56% adoption
rate (8, 30) was then calculated using the country’s population
of smartphone users (see Table 2). To determine server type,
the main contact tracing app put forth by the government of
that country was assessed through systematic searches, as some
countries have second-party apps (22–27).

Data Quality Dimensions for ML
As noted, to significantly forecast virus spread, the data used
to train the ML model must be of quality, that is free of
biases, inaccuracies, and inefficiencies, amongst many other
traits, before it is analyzed (14). Noting the importance of quality
data, international models have been put forth as standards for
data scientists to follow. For this paper, we define quality data as
data that upholds international and ML-based data standards.

The ISO (International Organization for Standardization) and
the IEC (International Electrotechnical Commission) have put
forth standardized dataset specifications in their Data Quality
Model (ISO/IEC 25012) (17). This model has been widely
deployed as a standardized data guideline and is the base of our
quality dimension list (14). However, because this model was
developed in the context of statistical studies where data is input
instead of an architectural component, we also consider quality
dimensions put forth for ML specifically (14, 28, 29).

While there are no standardized data quality models for
ML, various authors recommended some models (13, 14).
For our analysis, we decided to envelop the data quality
dimensions for ML set forth by Rudraraju and Boyanapally
(14). Their list integrates dimensions from the ISO/IEC
25012 model, interviews with a range of data scientists, and a
thorough literature review of data quality attributes. Namely,
the quality dimensions we aim to uphold are: Accuracy,
Completeness, Credibility, Currentness, Efficiency, Traceability,
Understandability, Availability, Reproducibility, Relevancy,
Interpretability, Effectiveness, and Satisfaction. Definitions for
each were taken from the work of Rudraraju and Boyanapally
(14) and are listed in Table 1. For a deeper understanding of how

TABLE 1 | Data quality dimensions.

Data quality dimension Description

Understandability This attribute enables the users to interpret and express

the information in appropriate languages and symbols for

a specific context of use.

Fairness The machine is trained with data with the ratio of all

races (e.g., Black, white, etc.).

Currentness This attribute identifies the information that is up to date.

Efficiency Capability of providing suitable performance according

to the number of resources used.

Availability The degree to which the extracted data can be retrieved

by authorized users for that context of use.

Relevance To retrieve the data based on the requirement of the

end-user or targeted customers.

Context Coverage The level to which the system can be re-trained with the

data that matches the end user’s requirements.

Reproducibility The degree to which the data can reproduce the same

results and allow others to continue to train new machine

learning systems.

Traceability The extent to which the source of information, including

owner and/or author of the information, and any

changes made to the information can be verified.

Satisfaction The extent to which the end-user is satisfied with the

trained data.

Effectiveness The capability to produce the desired output from the

extracted data.

Completeness The ability of data to represent every meaningful state of

the represented real-world system.

Accuracy Data is accurate when data values stored in the

database correspond to real-world values or the extent

to which data is correct, reliable, and certified.

Interpretability To extract the data with the right language, units, and

symbols with better understandability.

Credibility The extent to which the information is reputable,

objective, and trustable.

Size Depending on the type of input data, the maximum

amount of data that varies is the size of the data.

This table shows the dimensions taken from Rudraraju and Boyanapally (14) that we used

in this paper.

these dimensions came to be, we direct the reader to the work of
Rudraraju and Boyanapally (14).

ANALYSIS

Ensure That the Contact Tracing App Can
Achieve at Least a 56% User Adoption
Rate
A group at the University of Oxford came up with an
epidemiological simulation model to demonstrate the
importance of contact tracing app intervention, indicating
that delaying contact tracing by 1 day after the onset of
symptoms could affect epidemic control and the resurgence of
coronavirus. The model’s assumptions and estimation of the
key matrices (e.g., vaccination, lockdown, quarantine, other
interventions, etc.) were derived from transmission dynamics
analysis of early coronavirus outbreaks in China. The group
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TABLE 2 | Applying ML to data from Contact-Tracing Apps.

Country Smartphone

penetration

rate (%)

Decentralized

or centralized?

Meets our

standards to

apply AI?

Percent of smartphone users

needed to meet threshold of

56% adoption rate (%)

United Kingdom 82.9 Decentralized No 67.6

Germany 79.9 Decentralized No 70.0

United States 79.1 Decentralized* No 70.8

France 77.5 Centralized Yes 72.3

Spain 74.3 Decentralized No 75.3

South Korea 70.4 Centralized Yes 79.6

Russia 66.3 Centralized Yes 84.5

Italy 60.8 Decentralized No 92.1

China 59.9 Centralized Yes 93.4

Japan 57.2 Decentralized No 97.9

Iran 54.8 Centralized No 102.1

Turkey 54.0 Centralized No 103.8

Mexico 49.5 ————–** No 112.9

Brazil 45.6 Decentralized No 122.7

Vietnam 44.9 Decentralized No 124.8

Philippines 33.6 Decentralized No 166.8

Indonesia 31.1 Centralized No 179.9

India 36.7 Centralized No 152.6

Bangladesh 18.5 Centralized No 303.7

Pakistan 15.9 Centralized No 352.5

The smartphone penetration rate per country and its server type to store contact tracing data. Countries listed above the red line have a smartphone penetration rate of at least 56%. If

a country has a centralized server, AI can be feasibly applied to the data (denoted by “yes” and green box). The percentage of smartphone users required to achieve a 56% adoption

rate is also listed. *In the United States, it should be noted that while certain states have begun to design official contract tracing apps, there is not a national consensus. **Information

on Mexico could not be retrieved.

measured successful outbreak control as a reduction in daily
virus incidence, daily hospitalizations, number of people in or
admitted to the hospital and ICU each day, daily deaths, number
of people in quarantine each day, and number of tests required
each day. This openly available model allows governments
to compare and evaluate different contact tracing strategies
alongside other real-time interventions (8). Any country may use
this simulation model to derive/validate/estimate key matrices
and use them for predictions.

Preliminary analysis of the UKNational Health Service (NHS)
Test and Trace programme at the Isle of Wight, by the same
group, showed that contact tracing app intervention has a
more significant impact on epidemic control. They concluded
that there were significant decreases in incidence and R (basic
reproduction number) (30). The group established the 56%
adoption rate metric after investigating the effectiveness of
contact tracing apps (8). This metric soon became the most
cited adoption rate across literature, with the World Health
Organization later stating that the adoption rate needed to be 60–
70% (4, 9). The authors concluded that combining digital contact
tracing with other interventions, such as community testing and
continued shielding of vulnerable individuals, can help prevent
coronavirus from rapidly re-emerging (8).

To further substantiate this metric, models examining contact
tracing apps have shown that an adoption rate lower than 56%
does not best represent a region’s population, leading to virus

resurgence and further lockdowns (8). As a case example, in a
contact tracing app study conducted in the Isle of Man, while
a 38% app adoption rate did improve aspects of the outbreak,
authors noted that it did not effectively shut down virus spread.
Although a 56% app adoption rate is far from complete usage by a
population, it is clear that this metric brings about a sufficient and
broad understanding of virus spread in the population that can be
extrapolated from, mitigating the many possible data biases and
inaccuracies that can arise.

A significant response to data biases and inaccuracies is
necessary when working with data from contact tracing apps.
Data riddled with biases can no longer be deemed fair. Further,
it can no longer be considered a reliable, relevant, and complete
representation of a population, which would generate long-term
impacts on the data’s effectiveness in stopping virus spread. For
example, if ML was applied to understand how to best distribute
resources to an incomplete dataset that did not represent the
entire population, there would be an imperfect determination
of “hotspots” (31). As a result, resource allocation of materials,
such as testing kits and personal protective equipment, would be
skewed (4, 32). Specifically, disproportionately more resources
may be given to wealthier demographics that presumably have
better access to smartphones than lower-income levels (33). It is
thus imperative to have a majority adoption rate and possibly
close to complete cooperation across ages and socioeconomic
zones, as ML can not only make inaccurate predictions but also
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perpetuate stereotypes, deepening biases across gender, income,
and race (30, 33). While an equitable distribution of smartphones
may be logistically difficult to achieve, at a minimum, to work
toward a credible dataset for ML to effectively act upon, we
believe that at least 56% of a region’s population must be using
the contact tracing app. By achieving an app adoption rate of
at least 56%, we believe that the following quality dimensions
can be upheld: data completeness, relevancy, credibility, fairness,
and effectiveness.

Ensure the Contact Tracing App Has a
Centralized Server to Store the Data
There are two dominating server types employed for contact
tracing apps: centralized and decentralized systems. Each server
has unique qualities and a differentiated ML approach. Before
discussing why we believe a centralized system is better
suited for upholding quality dimensions for data collected
from contact-tracing apps, we will overview centralized and
decentralized systems.

Centralized and Decentralized Servers
Amongst contact-tracing apps, there is global differentiation in
what a centralized or decentralized server is (22). In a centralized
server, data from the user is placed into a central source. In
a decentralized system, location and contact data are stored
locally on the user’s smartphone (7). The process for either
approach begins in the same way. When two smartphones come
in contact with one another (Bluetooth range), a pseudonym
code (anonymous identifier) is sent via Bluetooth to mark
that interaction (4, 9). When individuals get tested for the
virus, they can choose whether they want to upload the list
of unique, anonymous identifiers to a common database in
a decentralized model. This is the only information that the
database receives, and with it, other phones can compare their
unique identifiers with those of infected individuals to see if
there is a possibility of exposure (34). However, in a centralized
approach, the anonymous identifiers are uploaded along with
proximity/interaction data (21, 34).

Deploying ML Application to Centralized Servers
As a result of the differentiated server types, ML is applied
distinctly to each type. In centralized ML, the model is applied
directly to the aggregated server, which holds the data. In
decentralized ML, a model is sent to each smartphone. With the
data on that phone, the model is then trained, and only model
updates are sent to a central server, preventing any individual
data from entering a single port. That updated model is then
sent out to the next sequence of phones for training. In both,
server communication—whether of data or model updates—is
done through Bluetooth, Wi-Fi, or cellular networks. Further,
in both, the trained model with the input data is then used to
forecast virus spread (35).

Centralized Servers for Contact-Tracing Apps
Our analysis concludes that a centralized server is better suited
to uphold data quality dimensions in contact tracing apps.
Specifically, we believe that the following dimensions can be

upheld: accuracy, efficiency, currentness, size, completeness,
traceability, availability, interoperability, understandability,
and integrability.

We begin with data completeness, currentness, and size.
Contact tracing data must be up to date; any delay in gathering
accurate health or location data directly impacts what we know
about infected individuals in a community, leading to faulty ML
predictions. ML would be applied to location and health data
locally in a decentralized system—on each individual’s phone.
While this offers security benefits, as a centralized system would
store the same location and health data in a single server for ML,
there is a significant risk that location and health data from some
users will not be accounted for (36–38). Suppose a user shuts off
their phone, loses battery, or loses network connectivity during
the round their phone has been selected for ML. In that case, the
model will not take in that user’s location and health data for its
predictions until the next cycle.

Noting this concern, leading scientists have expressed that
those who employ decentralized ML must be open to only a
small subset of devices that may be active at each training round
(36). While the same connectivity issues could exist with a
centralized server (e.g., the phone could be powered down or
out of network), a centralized system does not rely on a single
point of data exchange for ML training. Updates are sent more
continuously, allowing location and health data to be transferred
once the phone returns to connectivity.

An additional issue for decentralized architectures is that
delays would impact the currentness of the dataset, and
any missing information would directly impact the size and
completeness of the dataset. This concern is deepened through
system heterogeneity–the term used to describe the fact that
today’s phones come from various manufacturers and that
not all ML models can operate similarly on each phone,
opening possibilities for data exclusion [for a review of system
heterogeneity in health systems, refer to (37)]. We believe that
a central port for data collection would help ensure that the
location and health data used are up to date and inclusive of
nearly all the available users when the ML model is applied.

Next, the dataset must be interoperable, understandable, and
integratable. This is especially critical in forecasting virus spread;
so as to strengthen predictions of clusters of cases or vulnerable
groups, many ML models have combined contact tracing data
with other datasets, such as credit card transactions or social
media. While a large, aggregated server is more susceptible to
complications from a crash, creating an integrated port for data
collection makes it easier to combine non-homogeneous data.
To elaborate on this point, not all local phones may have the
capability to combine outside data readily and feasibly, and
doing so would put in question data privacy advantages in a
decentralized system. A central port allows data to be cleaned
then analyzed together, ridding the architectural restraints of
configuring a system locally on each phone.

A central port also helps ensure that the data is traceable and
readily available. When contact tracing, it is integral to have a
method to trace back to the source of an infection or outbreak.
Doing so makes it possible to build upon what contact tracing
apps do with other methods—contacting family members in that
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household or determining new biomarkers. Through a single
aggregated server, it is possible to have a way to trace back data
to the point of an issue or a specific user anonymously. This
directly contrasts to localized information storage, a strategy that
promotes privacy but makes it difficult to locate a datapoint
anonymously (36–38).

Lastly, variations in data points between individual phones
and communication bottlenecks have led us to deem centralized
servers as more efficient for contact tracing apps. With efficiency
and currentness, the ML model can be quickly updated to
build the best predictions. In decentralized ML, rounds of
updates must be sent back to the central model, leading
communication efficiency to be a known bottleneck. In addition,
variations in data points collected tamper streamlining the ML
process as a whole, as the data may not be homogeneously
sent or “understandable.” Data satisfaction is essential for the
app’s end-user—the general people—and ensuring that data is
communicated well is imperative.

Due to challenges with expensive communication, system
heterogeneity, and interoperability, amongst other areas, we
believe that a centralized server is better suited for ML
application to data collected from contact tracing apps. While
a decentralized system offers advantages, mainly when privacy
and data currentness are not of central concern, our focus is on
maintaining international standards for applying ML to contact
tracing datasets. A centralized server will help us do exactly
that, consequently better ensuring that a contact tracing model
can continuously produce accurate, reliable, and consistent
predictions to combat virus spread.

WHERE IS IT POSSIBLE TO MEET THE
REQUIREMENTS?

Given the large variability in how countries are developing
their apps, it is important to note that not all countries will
be using a centralized server. In addition, given the large
variability in smartphone penetration rates, not all countries will
achieve an app adoption rate of 56%. To reach an adoption
rate of 56%, at least 56% of a country’s population must have
access to a smartphone and use the app through a forced
mandate or voluntarily. The data in Table 2 highlights the global
differentiation in server type as well as smartphone usage. Of
the countries listed, we see that France, South Korea, Russia,
and China meet both the requirements (highlighted in green,
Table 2). All countries above the red line have a smartphone
penetration rate of at least 56%. The United States is marked
with an asterisk because while certain states have begun to deploy
apps, there is no national consensus on whether the apps should
be implemented (24).

LIMITATIONS

Limitations of the Geographical Findings
The Newzoo report only included 20 countries: those with
the most active smartphone users. Thus, countries with

smaller populations and high smartphone penetration rates
were excluded.

First, it is essential to consider how those countries not
listed are implementing contact tracing apps to gain a complete
global understanding. For example, in Australia, the smartphone
penetration rate is estimated to be 80%, and leaders have leaned
toward a centralized server for their contact tracing app (39, 40).
Secondly, while widely deployed, the use of contact tracing is
still a developing effort, as decisions by leaders are amenable
to current updates on data privacy and app efficacy. Just as
the United Kingdom shifted from a centralized to decentralized
approach, Germany and Austria ultimately decided to go with
a decentralized approach (22). Lastly, it has been shown that
COVID-19 tracking systems do not capture data on immigrants
and other marginalized populations (33). Other groups without
smartphones, such as the elderly and children under the age of
10, are also not accounted for in any analysis by AI on contact
tracing data (8).

Limitations of the Approach
Despite the many advantages, we acknowledge that using a
centralized server and ensuring a high user adoption rate is
no panacea to ensuring quality data for virus forecasting. The
accuracy of the dataset itself is dependent on a myriad of other
factors, such as widespread testing, guaranteed app adoption
rate, and the app’s efficacy (4, 9). In cases where there is not
widespread and efficient testing, individuals will struggle to get
tested despite the app’s recommendations, making it difficult to
identify infected individuals and break the chain of transmission
(4, 9, 34). In addition, even if there is a smartphone penetration
rate of at least 56% in the country, the app’s efficacy will only go
as far as the number of individuals that agree to download it.

Lastly, despite the proposed benefits of the app itself, there is
uncertainty around its true efficacy. The concern is two-fold: (1)
There is little, if any, risk assessment or validation done on these
apps before launch and (2) There are design limitations (4, 9, 31).
For the first point, due to the urgency of the pandemic, countries
have rolled out contact tracing apps without a proper assessment
of the accuracy and success of the product (4). Will the app
accurately track individuals, and should ML be applied if it does
not? The second concern surrounds the design limitations of
smartphones, and thus, the app itself. GPS/Bluetooth capabilities
cannot account for situations in which individuals hold the
same geolocation but are spatially distanced (31). For example,
two individuals could be separated by a wall or on different
floors of a building. Further consideration must be given to the
management of false positives, as this would directly impact
quality standards, such as data completeness and credibility.

ETHICAL CONSIDERATIONS

In applying AI to data collected from a centralized server,
ethical considerations must be addressed (23, 25–27, 39, 41). As
mentioned, a decentralized server offers greater privacy because
the data is processed locally: on the user’s phone. Therefore, a
centralized server must encrypt the data and have high-security
protocols due to high susceptibility to data breaches (4, 41).
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Without security protocols, an individual’s right to privacy is
violated. As case examples, South Korea and Qatar have recently
scrutinized security loopholes found in their apps and the
implications on individuals (42). While it has also been shown
that decentralized models can also be susceptible to similar data
breaches, more research needs to be conducted to gain insight
into this field. Furthermore, while the app data is typically
anonymized, it has been shown that machine learning can re-
identify data, leading to ethical concerns over privacy rights (42,
43).

Next, there is no clear definition of when data should be
deleted from the central server. The World Health Organization
suggests that data be deleted after the pandemic has ended locally
(9). Given the large uncertainty of when that could be, questions
surrounding public surveillance and the duration and ease of
that surveillance arise (4). How long could governments track
individuals, and can individuals ever ask that their data be taken
off the server? Is it justifiable to continue to use ML to analyze the
data even after the pandemic subsides? What if there is mission
creep–analyzing the data outside the defined scope?

Lastly, to achieve greater adoption, countries such as Qatar
have decided to mandate the use of the contact tracing app (44).
Ethical analyses are necessary to understand whether it is justified
to mandate the use of an app despite violations of individual
rights. While a mandate would ensure that a majority uses the
app, certain individual rights, such as privacy and liberty, would
be infringed upon in the process (26).

CONCLUSION

We have presented a proposed method for using ML to
analyze data from contact tracing apps consistent with
data quality standards. In addition, we have identified
the countries in which our methods are most feasible,
later discussing ethical considerations, advantages, and
limitations of this approach. As the pandemic rages on,
it is ever more critical that ML models analyze quality
contact tracing data. We hope to shed light on the need for
a methodological approach, inspiring further research into
this field.
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Patients in critical care settings often require continuous and multifaceted monitoring.

However, current clinical monitoring practices fail to capture important functional and

behavioral indices such as mobility or agitation. Recent advances in non-invasive

sensing technology, high throughput computing, and deep learning techniques

are expected to transform the existing patient monitoring paradigm by enabling

and streamlining granular and continuous monitoring of these crucial critical care

measures. In this review, we highlight current approaches to pervasive sensing

in critical care and identify limitations, future challenges, and opportunities in this

emerging field.

Keywords: intensive care unit (ICU), wearable device, computer vision, pervasive sensing, patient monitoring

CURRENT CRITICAL MONITORING PARADIGM

Critically ill patients in the intensive care unit (ICU) require constant monitoring. Currently,
“continuous” monitoring of ICU patients is limited to automated vital sign measurements
such as heart rate, blood pressure, body temperature, oxygen saturation, and respiratory rate.
Other monitoring activities are limited by nurse availability for observing and documenting
events, e.g., documenting falls or self-extubation events or detecting any exacerbation in
important clinical indices such as mobility, agitation, pain, and consciousness. At present,
assessment of these indices heavily relies on manual and repetitive examinations by nurses,
leading to increased work pressure and the potential for burnout (1, 2). These manual indices
also suffer from human error in data entry, observer subjectivity, and limited measurement
granularity (3–5).

A more granular and continuous assessment of such critical care indices would enable a more
comprehensive view of patient health. For example, granular functional status and behavioral
assessment could lead to timely and personalized interventions based on data-driven guidelines.
The need for continuous and automated monitoring of ICU patients has led researchers to
incorporate non-traditional methodologies such as computer vision, wearable sensing technology,
and various analytics algorithms (6). A comprehensive picture of the current state of the research
in this domain will help outline the next steps and point out some of the questions that need to be
answered. This work evaluates the feasibility of such monitoring approaches that are amenable to
pervasive sensing in the ICU.

In the following sections, we detail current applications of pervasive sensing in ICU patient
care settings. We then outline the knowledge gap in the literature, discuss current limitations, and
highlight potential avenues for future research in augmenting traditional intensive patient care with
pervasive sensing technology.
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RECENT ADVANCES IN CRITICAL CARE
MONITORING

Currently, monitoring ICU patients’ functional status and
behavioral aspects is limited in both granularity and information-
richness. Pervasive sensing of the patient and their surrounding
environment can provide a more comprehensive, continuous
assessment of patient status. It can aid in quantifying patient
health trajectories during the ICU stay. Two of the main avenues
of research for pervasive sensing in the ICU involve using
wearable accelerometers or computer vision devices, such as
thermal or depth cameras, formonitoring the status of the patient
and their environment. Wearable accelerometer devices, often
resembling wristwatches, are lightweight, non-invasive, and easy
to use. They allow for various computational analyses, do not
pose any safety or comfort concerns for the patient, and do not
impede the care procedures in the ICU. Wearable sensors have
been previously used for quantifying humanmobility and activity
monitoring in various populations, and numerous analytic
approaches showcase their potential uses for ICU patients (7–
9). Applications of wearable accelerometers in the critical care
setting are wide-ranging, including but not limited to physical
activity (10–13) and energy expenditure monitoring (14), sleep
detection (8, 15), agitation or sedation monitoring (16, 17),
physiological signal monitoring (18, 19), fall detection (20, 21),
delirium detection and subtyping (9, 22), sepsis subtyping (12),
and frailty determination (23).

Another potential avenue for pervasive ICU monitoring
involves the application of computer vision techniques.
Computer vision provides a means for non-contact sensing of
the patient and their surroundings in the ICU, providing rich
information on several physical functions and behavioral aspects.
Possible applications of computer vision in the critical care
setting fall into two categories: (a) healthcare team observation,
such as measuring nursing workload (24) or monitoring hand
hygiene (25), and (b) patient monitoring. This article focuses on
the latter—computer vision applications for assessing patients
and their environment. Previous research has demonstrated
the potential applications of computer vision for fall detection
(26, 27), sleep pose detection (28), agitation detection (29),
physical activity monitoring (30, 31), head pose detection (22),
physiological signal monitoring (32), and visitation detection
(22, 33) in hospital settings (Figure 1).

PHYSICAL FUNCTION MONITORING

ICU patients spend most of their time lying in bed, with
significantly less time sitting in a chair, standing, or walking (22,
34). Patients’ limited physical activity in the ICU has been linked
with disruptions in circadian rhythm, a higher risk of delirium,
and adverse outcomes in terms of cognitive and functional status
at the time of hospital discharge and in the long term. Efforts
at introducing physical therapy and early mobilization improve
the patients’ mobility and clinical outcomes such as delirium
days, discharge disposition, and the risk of readmission or death
(35–38). However, currently, there is a need for an objective,

continuous, and accurate evaluation method to quantify the
effect of rehabilitation practices. Additionally, such quantitative
measures could be used to evaluate the association between a
patient’s activity levels and their outcomes during and after their
ICU stay.

Existing clinical routine measurements of patients’
mobility and physical status consist of limited standardized
observational scores such as the ICU Mobility Scale (IMS)
(39, 40). These observational evaluations aim to quantify
patient mobility (40), but they still lack granularity and
objectivity. Additionally, they provide limited information about
mobility patterns’ complex and dynamic nature throughout the
ICU stay.

Computer vision and wearable accelerometer devices can
provide more granular, objective, and continuous information
on functional activity. Both approaches have been used to
study physical activity in clinical settings to examine the
association with health outcomes such as delirium or sepsis.
However, there is limited research using computer vision or
accelerometers in the critical care domain (Table 1), despite
the high prevalence of sepsis or delirium in ICU patients.
For example, delirium prevalence in specialized ICUs can be
as high as 87%, and sepsis prevalence can be as high as
39% (46, 47).

Physical Activity
Recent efforts in the field of computer vision have applied deep
learning techniques to build models for automated physical
activity and posture recognition. Different camera types have
been used to detect patient mobility, including Red-Green-Blue
(RGB) cameras, depth cameras, and cameras that capture both
color and depth images, such as the Microsoft Kinect device.
Multi-view settings using multiple cameras installed at different
positions also have been used for capturing a more encompassing
view of the patient room (28, 31, 41, 42).

Generally, automated detection of patient mobility using
computer vision first requires patient identification in the scene.
After patient recognition, manually annotated datasets are used
to train the model to classify patient pose and mobility. Such
systems have been able to accurately classify patients’ high-level
activities such as nothing in bed (doing nothing, lying in bed), in-
bed activity, out-of-bed activity, and walking (30), and postures
such as lying in bed, sitting on the bed, sitting on the chair, and
standing (22) in the ICU. Depth camera-based systems have
been able to classify four provider activities: “moving the patient
into and out of bed” and “moving the patient into and out of
a chair” without incorporating the challenging step of patient
recognition (48, 49).

While computer vision techniques can identify a patient’s
posture, accelerometer devices can quantify the movement
intensity. Wearable devices allow for convenient data collection
and analysis since they provide continuous and patient-specific
data streams. Wearable accelerometers have been used for
examining physical activity patterns in different cohorts in
various ICU settings, including delirium patients, sepsis patients,
and patients with unilaterally motor impairment (10–13, 43, 50).
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FIGURE 1 | Applications of pervasive sensing for monitoring ICU patients, iconfinder.com.

TABLE 1 | Peer-reviewed publications using wearable devices and computer

vision in monitoring patients.

Task Data modality References

Physical activity Vision

Wearables

(10–12, 22, 28,

30, 31, 41–43)

Energy

expenditure

Wearables (14)

Fall risk Vision

Accelerometer

(20, 21, 26, 27,

44, 45)

Frailty Accelerometer (23)

Energy Expenditure
Building on activity intensity detection, wearable accelerometer
devices have been used for determining energy expenditure.
Previously energy expenditure estimation of accelerometer
devices has been validated in the healthy adult population
(14). However, it has been shown that energy expenditure
is overestimated in ICU patients by comparing mechanical
ventilation with indirect calorimetry. The current methodology
of estimation of energy expenditure relies on the detection of
physical activity. It does not incorporate physiological conditions
such as fever with shivering that may alter the energy expenditure
(51). Accurate estimation of energy expenditure in ICU patients
enables optimizing enteral feeding details to prevent overfeeding

and underfeeding, both of which increase the risk of infection and
prolonged weaning from mechanical ventilation (52).

Frailty
Accelerometer devices have also been used to detect frailty
(23), a geriatric syndrome defined as “a clinically recognizable
state of increased vulnerability, resulting from the aging-
associated decline in reserve and function across multiple
physiologic systems such that the ability to cope with every day
or acute stressors is compromised” (53). There is increasing
evidence of frailty being an indicator for decreased reserve and
increased vulnerability in critical care patients (54, 55). Frailty
has been shown to increase the risk of both adverse events
such as death and discharge to skilled nursing homes and
prolonged hospitalization and loss of independence after hospital
discharge (56, 57).

Falls
ICU patients experience decreased functional status and more
muscle atrophy (58) exacerbated by minimal physical activity.
They also suffer from impaired consciousness and attention
(59), further compounded by disrupted circadian rhythm
and sedation. While previous research has demonstrated the
importance of physical activity in ICU patients, the increased risk
of falls is brought on by confusion and agitation (60). Computer
vision can detect falls in hospital settings (26, 27, 44, 45), as well
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as accelerometer-based monitoring systems (20, 21). Still, these
approaches have not been adequately investigated in the ICU.

Despite the importance of accurate assessment and
monitoring of physical activity, energy expenditure, fall
risk, and frailty in ICU patients, few studies have investigated the
use of pervasive sensing to facilitate assessment and monitoring.

BEHAVIORAL MONITORING

Facial Expressions
Behavioral indices such as pain facial expressions are different
from physical activity indices. They do not elucidate gross
variations in patients and thus could elude the nurses’
observation. Facial expressions can also be influenced by
sedative-hypnotics and analgesics commonly used in the ICU.
While there is no validated facial expressions score in critical
care, a few preliminary studies have examined anxiety-related
facial expressions. Anxiety is highly prevalent in critical care
patients (61, 62). However, it is rarely screened in routine care
settings in the ICU (62). Computer vision approaches have been
used for anxiety detection (63, 64), focusing on features such as
head movement, mouth, and eye movement, and heart activity as
indicators of anxiety. Patient head pose angle and variability have
also been studied using computer vision and associated with pain
and agitation indicators (22, 65–67).

Pain
Continuous and objective monitoring of patient pain in the
ICU, including for non-communicative patient populations, can
pave the way for real-time adjustments to analgesics for optimal
patient care, patient experience, and better health outcomes.

While wearable accelerometers have previously been used for
studying pain (68), no study has investigated the relationship
between pain and physical activity in the ICU settings,
leaving unanswered the question of the complicated relationship
between mobility, mental agitation, stress, and pain. The issue
of pain in the ICU has many aspects. In addition to the
potential effect of pain on a patient’s physical activity, facial
expressions and physiological signals may also be affected by
pain. Previous work has investigated the feasibility of pain
detection using vital signs (69, 70). Although this approach uses
data routinely collected in the ICU, it has not shown strong
specificity for pain detection. Formalizing facial expression of
pain using facial action units (71) and advances in deep learning
and computational power available have made it more plausible
to move toward automated detection of facial expression of pain
in the ICU. Facial expressions are assessedmanually using several
behavioral pain scales such as Non-verbal Pain Scale (NVP),
Behavioral Pain Scale (BPS), and Critical Care Pain Observation
Tool (CPOT), particularly for non-communicative patients (72–
74). Researchers have used deep learning approaches to detect
facial expressions of pain and to recognize individual facial action
units associated with pain. Still, robust automated detection of
pain in the ICU scene based on facial information requires more
research and validation (75–79).

Agitation/Sedation
Agitation is prevalent in the ICU and is a large factor
in conditions such as delirium (80). Current methods for
assessing delirium rely on transient rather than continuous
assessment, which is an important limitation given the waxing
and waning characteristics which help define delirium. Over-
sedation has been shown to lengthen ICU duration and put
a patient at higher risk for delirium (81). In comparison,
under-sedation has been linked with increased agitation and
a higher risk of self-extubation (82, 83). Optimizing sedation
to better control patients’ agitation may lower the patient’s
risk of removing endotracheal tubes (84). Similar to pain,
accurate detection of a patient’s agitation and sedation levels
will improve the administration of sedative interventions to
optimize clinical decisions. Previous research has used sensors
for monitoring agitation in critical care settings. Agitation
detection methods have shown strong performance using
accelerometers (16, 17, 85), image-based approaches (29),
and pupillometric video devices (86). Using wearable devices
to study anxiety, researchers used Google Glass to discover
that heart rate, but not spontaneous blink rate, changes in
anxious patients (87).

Sleep Detection
Previous studies have shown generally poor sleep quality in
critical care settings (88). Sleep disruption in the ICU has been
linked to various factors, including but not limited to the type
and severity of the underlyingmedical condition, round the clock
health care activities, enteral feeding, medication side effects, lack
of natural light exposure and noise levels, and general disruptions
to patients’ circadian rhythm (88–90).

Sleep disturbance in ICU patients has been studied to
determine its effect on patient outcomes and recovery (91) and
has been shown to increase the risk of a longer stay in the
ICU, worse discharge outcomes, impaired defense mechanism,
and sleep disturbances that persist or develop after discharge
(90). Determining a patient’s sleep quality during their stay
in the ICU allows for evaluating the effectiveness of the
administered sleep hygiene interventions. Polysomnography,
as the gold standard for studying sleep, has previously been
investigated in ICU patients. However, polysomnography data
require interpretation and might not be feasible for continuous
data collection throughout the patient’s stay in the ICU since
it typically includes several EEG leads, electro-oculography, and
chin electromyography (92, 93).

Accelerometer devices have been evaluated in quantifying
sleep in healthy populations (15). However, previous studies
have shown that they overestimate sleep in the ICU settings,
possibly because the implemented sleep detection algorithms
rely on a lack of physical activity in determining sleep events.
ICU patients typically have low activity throughout the day,
resulting in fractured sleep and shallower sleep stages (8). Other
researchers have used computer vision to detect sleep pose, but
these studies have been investigated based on data from healthy
adults, limiting the generalizability of their performance to the
ICU setting (28, 94).
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ENVIRONMENTAL MONITORING

ICU patients spend most of their ICU stay in one room,
leaving the room only for medical procedures. Information about
the ICU room environment can enhance our understanding
of possible contributing factors to patients’ recovery speed.
Wearable accelerometer devices are more suited for monitoring
patients’ physical activity, but they do not capture any
information about patients’ surroundings. Computer vision
techniques offer additional opportunities for capturing and
studying the effects of environmental factors on patients’
recovery trajectories.

Visitation Detection
To encourage sleep hygiene, hospitals generally implement
official guidelines for regulating the presence of visitors in the
ICU. However, visitations and interactions with the environment
may be beneficial in improving patients’ experience by reducing
their anxiety, leading to a lowered risk of delirium and an overall
more positive experience during their ICU stay (95, 96). Accurate
detection of the number of visitors and healthcare personnel
in the room and environmental factors such as a room’s noise
and light at all hours allows for quantifying the effects of such
disruptions on patients’ sleep quality and circadian rhythm
integrity. Computer vision has been used to determine the
number of people in ICU care rooms (31, 33, 97) to understand
the association between visitation and clinical care disruptions
to patients with patients’ sleep hygiene and outcomes. Such
information could assist in developing more accurate evidence-
based visitation and sleep quality guidelines for ICU patients.

Light and Noise Monitoring
Light and noise intensity levels are primary contributors to sleep
deprivation and fragmentation in the ICU (91). Previous studies
have demonstrated the feasibility of using affordable light and
noise intensity sensors in ICU rooms (22, 98). Several studies
using noise intensity sensors in the ICU have determined that
noise level frequently surpasses the levels recommended by the
World Health Organization (WHO) (99, 100). Various sleep
hygiene interventions in the ICU population incorporate light
and noise exposure limits withmixed results in efficacy. Accurate,
continuous light and noise intensity measures can enhance our
understanding of the effect of environmental factors on patient
sleep and the efficacy of sleep hygiene guidelines (90).

NON-CONTACT VITAL SIGN MONITORING

In addition to novel physical activity and behavioral indices, the
use of computer vision and wearable devices has enabled non-
contact monitoring of vital signs such as heart rate and blood
pressure in the ICU. Such devices could remove the need for
electrodes and cuff-based devices sensitive to movement artifacts,
prone to detachment, and restricting patient movement. Recent
research in computer vision and wearable devices has focused on
the feasibility of non-contact monitoring of vital signs, including
the use of RGB and thermal cameras for contactless estimation
of heart rate, blood pressure, blood oxygen saturation, and

respiration rate in research, hospital and ICU settings [e.g., (32,
101–106)]. Wearable devices have been used for measuring heart
rate, oxygen saturation, and blood pressure in hospital and ICU
patients [e.g., (18, 19, 107)].

POST-DISCHARGE MONITORING

Critical care patients often require longitudinal monitoring
and follow-up visits after discharge from the hospital. Patients’
discharge destination can vary depending on the health status,
ranging from home and home care for more stable patients to
hospice for those who need more care with a lower chance for
recovery. While clinicians have access to many tools to assess
patients and determine a prognosis, current assessments do
not extend well to post-discharge monitoring, resulting in less
quantifiable information about post-discharge recovery (108).
Computer vision approaches are not suitable in these scenarios
due to technical and especially privacy concerns. However,
wearable sensors can be used for physical activity monitoring
and patient recovery (109), facilitating more comprehensive
evaluations between follow-up visits. There is currently limited
research on using this methodology to monitor the improvement
in patients’ functional status in free-living settings among
survivors of critical illness (109–111). With the increasing
popularity of accelerometer-equipped smartwatches, it is also
possible to monitor physical activity before and after a patient’s
ICU stay to examine its relation with health recovery.

TECHNICAL CHALLENGES AND FUTURE
DIRECTIONS

While the current body of literature shows strong potential
for using these novel approaches in critical care for faster,
more personalized, and more accurate clinical decisions, several
challenges need to be addressed (Figure 2).

Ethical and Privacy Concerns
Deep learning methods discussed in many of the computer
vision-based studies mentioned in this review require large,
labeled datasets for training and validation. The developed
models need to be validated in diverse populations in ICU
settings and consider age, gender, primary diagnosis, and
race. However, ethical and legal reasons rightly prevent the
construction of public datasets to protect the privacy of patients,
their visitors, and the healthcare team (112). Existing Privacy
guidelines typically mandate deidentification and temporary
recordings, while the current state of research still requires
raw recordings of the ICU room for post-event annotations
and analysis. While research in this direction could potentially
facilitate the clinical workflow, researchers should be cognizant
of the privacy implications and the tradeoff between privacy and
technological benefits.

Computer Vision
An essential intermediate step in several computer vision
approaches is detecting a patient in the room of each video frame.
Previous research (113–115) has shown promising results in
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FIGURE 2 | Directions of future research to enable effective and reliable pervasive monitoring in the ICU.

facial recognition in each single frame or tracking the patient face
during the recording, but most of these studies are validated on
an ideal frontal full-face view of a patient’s face or with standard
lighting. Real-world ICU rooms may be crowded, with varying
degrees of lighting and numerous objects that could partially
obscure the patient’s face, such as ventilators or oxygen masks.
Patient face identification will be even more challenging due
to variations in the face angle and obscuring elements such as
facial hair or glasses. Improved patient recognition adapted to
the ICU setting will make computer vision solutionsmore robust.
Because of the variable location of the bed and patient, the ideal
developed methodology should be agnostic to the bed/patient
location and position.

Sleep Detection
Sleep detection methods still require further research for reliable
use in ICU patients. Future approaches may focus onmultimodal
models and using wearable sensors to collect information on
activity, heart rate, and body temperature. Current wearable
activity sensors determine sleep based on a lack of activity and
wake periods, but this does not account for the minimal activity
of the ICU patients, thus resulting in low specificity.

Pain Assessment
Researchers also need to consider the effect of pain relief
medications, nociceptive generators, and interindividual
differences in pain processing in studying patients’ pain.
However, this is a challenging concept since medication effect

changes over time depending on pharmacokinetics such as
age, sex, weight, body surface area, renal and hepatic function,
fluid shifts, medication dosage, time since administration,
administration route, and drug-drug interactions. This
complexity often increases for continuous infusions of
medications. Additionally, model development relies on patient
self-report and nurses’ observation for non-verbal patients. The
uncertainty regarding how to translate pain intensity assessments
into objective, rational clinical decisions for analgesic therapies
that reduce pain intensity and patient risk further complicates
developing generalizable and reliable models. There is also a need
to integrate outcomes pertaining to pain, analgesic requirement,
and “patient function” to provide a more holistic perspective on
recovery trajectories.

Wearable Devices
Another implementation challenge for using wearable devices
in the ICU is the requirement of current devices to be
tightly secured on the skin to better capture patients’ subtle
movements. This may prove to be an inconvenience for some
patients, as continuous contact with the skin might cause
irritation or even could pose risks for infection, tissue ischemia,
compartment syndrome, and wound breakdown. Furthermore,
for patients with medical equipment on their wrists, wrist-worn
accelerometer devices might not be an option unless future
medical equipment includes built-in accelerometers.
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Forward-Compatibility
The inclusion of multiple data streams for different patient
care tasks using pervasive sensing also requires generalizability,
interoperability, scalability, and reliability of the systems.
Interoperable and generalizable systems can operate together
and be incorporated into different monitoring platforms,
while scalable systems will accommodate collecting data from
a larger number of patients. The accompanying analytical
algorithms need to be adaptable for new hardware choices.
Moreover, there must be a consensus on the measured
variables better to evaluate the performance of proposed
methods and devices. Ultimately, the positive impact of
such systems in critical care needs to be rigorously assessed
and validated.

Model Validation With Minimal Data Burden
To improve the adoption of pervasive sensing in routine
care in the ICU, developed models and devices should be
easily manageable by the care team with minimal or no
required training. Any developed model should be validated
to reduce the false alarm rate in the ICU -as is investigated
with vital sign-based alarms (116)-and should optimize
the visualization approach to prevent data fatigue. The
presentation of new information should be determined
by considering the preferences of the physicians and their
team and could include facets such as a daily summary,
continuous display or separate tabs, or simple alarms for specific,
pre-determined events.

Real-Time Models
Ultimately, any developed detection and prediction model
should report a patient’s status in real-time to allow the ICU
team to implement timely interventions, such as incorporating
more active physical therapy regimens, improving sleep hygiene
routines, and adapting administered medications. The necessary
communications infrastructure and reporting medium should be
optimized to avoid alarm fatigue to the already overburdened
ICU nurses.

CONCLUSION

Patients in the ICU have diverse and heterogeneous health
backgrounds, which necessitate more personalized and
dynamic treatments and interventions. This calls for developing
monitoring methodologies that provide continuous, objective,
and quantifiable patient information. Traditional monitoring of
vital signs, nursing observations, and self-reported pain scores
is essential but does not provide a comprehensive view of the
patient’s overall health status.

Advances in computation and computer vision fields and the
development of accurate measuring devices such as wearable
accelerometers have introduced more options for patient
monitoring in-home, community, and hospital settings. The
acute nature of health events in the ICU can benefit from
pervasive, passive sensing methodologies that reduce nurses’
workload and replace some of the tasks that require repetition of
measurements, such as detection of pain and agitation.Moreover,

pervasive sensing technology can enable measuring indices that
were not previously recorded, including a patient’s physical
activity level, facial expressions, and head pose variations.
Classification algorithms trained on the data from similar
scenarios may allow for more timely prediction of adverse events
such as falls and delirium, enabling the healthcare team to
prevent their occurrence.

Many of the proposed domains of the ABCDEF bundle,1 an
evidence-based guide for clinicians to improve ICU patients’
recovery and outcomes that emphasize pain assessment,
prevention, and management (117), require accurate monitoring
of the patients during their stay in the ICU. Continuous
monitoring of pain levels using computer vision approaches
will be helpful for continuous and accurate pain assessment
and ultimately for real-time adaptation of pain medications.
The choice of analgesia and sedation is another domain in
this guideline that can benefit from continuous monitoring
of the patients’ sedation levels to personalize analgesia choice.
Quantifying patients’ mobility also improves the evaluation of the
effectiveness of the administered mobility and exercise regimens.
Moreover, the use of accelerometer and vision sensors to detect
delirium can improve delirium assessments, as proposed in the
ABCDEF bundle.
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Daily monitoring is important, even for healthy children, because sleep plays a
critical role in their development and growth. Polysomnography is necessary
for sleep monitoring. However, measuring sleep requires specialized
equipment and knowledge and is difficult to do at home. In recent years,
smartwatches and other devices have been developed to easily measure
sleep. However, they cannot measure children’s sleep, and contact devices
may disturb their sleep.

A non-contact method of measuring sleep is the use of video during sleep.
This is most suitable for the daily monitoring of children’s sleep, as it is simple
and inexpensive. However, the algorithms have been developed only based on
adult sleep, whereas children’s sleep is known to differ considerably from that
of adults.

For this reason, we conducted a non-contact estimation of sleep stages for
children using video. The participants were children between the ages of 0–6
years old. We estimated the four stages of sleep using the body movement
information calculated from the videos recorded. Six parameters were
calculated from body movement information. As children’s sleep is known to
change significantly as they grow, estimation was divided into two groups
(0–2 and 3–6 years).

The results show average estimation accuracies of 46.7 ± 6.6 and
49.0 ± 4.8% and kappa coefficients of 0.24 ± 0.11 and 0.28 ± 0.06 in the age
groups of 0–2 and 3–6 years, respectively. This performance is comparable
to or better than that reported in previous adult studies.

KEYWORDS

sleep stage, sleep monitoring, children, video monitoring, video image processing,

machine leaning

Introduction

Sleep is an important part of daily life as it reduces stress and aids recovery.

Accordingly, monitoring sleep at home can contribute to health management (1, 2). In

addition, sleep plays an important role in the development of children (3) and is also

related to their parents’ health (4). Sleep quality in children can contribute to health

management. Therefore, it is important to monitor sleep quality in children on a daily

basis to detect sleep problems. Polysomnography (PSG) is commonly used to assess

sleep quality in clinical practice, but it requires measuring various biological signals,
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such as electroencephalograms (EEGs), electromyograms, and

electrooculograms and requires specialized equipment and

knowledge (5–7). Therefore, PSG scoring is not a realistic

method for assessing the sleep stage in the home environment.

In addition, the installation of various devices may diminish

the quality of sleep in children. Thus, measurement methods

that reduce the burden on equipment installation are needed.

In recent years, electrocardiograms (ECGs), pulse-rate laser

Doppler sensors (8, 9), and cameras (10) have been used to

quantify sleep quality in homes (11). In particular, camera-

based methods are considered the most suitable for

monitoring children’s sleep because they are entirely

noncontact and easy to install. This method uses the

relationship between body movements and sleep stages, and it

has been reported that there are significant differences in the

frequencies of body movements among sleep stages (12).

Nochino et al. (13) used an infrared camera to measure sleep

quality in four stages. However, this method is intended for

adults and is unsuitable for assessing sleep in children.

Long et al. (14) quantified sleep features and patterns in

children by using an infrared camera. In this study, children’s

sleep was estimated during both waking and sleeping stages.

However, it is believed that the secretion of growth hormone

responsible for children’s development occurs during deep sleep

(15). In addition, de Goederen et al. (16) used a radar system to

estimate the four stages of sleep in children, and achieved an

accuracy of 58.0%. However, the radar system is difficult to

install and expensive, thus making it difficult to use at home.

There are various sleep measurement devices, and methods

based on body movements (17). Two commonly used devices

include the smartwatch and smartphone. Chinoy et al. (18)

evaluated the smartwatch Fitbit Alta HR. The device provided an

estimation accuracy of 90% for the distinction between sleep and

wakefulness for adults. Patel et al. (19) used a dedicated

application to assess sleep on smartphones. Their results

confirmed the lack of a correlation relationship between the sleep

stage determined by the application and that determined by PSG.

Therefore, it is necessary to develop a simple method for

monitoring children’s sleep. We used an infrared camera, which

is easy to install and is inexpensive, to estimate the four sleep

stages of children aged 0–6 years. As it is known that sleep in

children changes considerably as they grow, we estimated the

sleep stages of children aged 0–2 years and 3–6 years. Previous

studies (13) have utilized support vector machines (SVMs) (20).

In this study, the extremely randomized trees (Extra Trees)

ensemble machine learning algorithm was used.
FIGURE 1

Measurement and analysis methods. A sleeping child was recorded
by an infrared camera, and body movements were extracted from
the video data. Some features were calculated by the body
movements as the training parameter for machine learning. And
machine learning was performed using the calculated futures and
sleep stage obtained by a simple PSG as the correct data.
Methods

In this study, we extracted body movement during sleep

from video recordings. Figure 1 shows the measurement and

analysis procedure. The measurements were performed in the
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subjects’ homes. Eight subjects participated who were aged 0–

6 years, with a mean age of 2.3 ± 2.1 years. The measurements

were conducted for 1–4 nights per person for a total of 14

nights. The variability in the number of nights per person is

attributed to the fact that the measurements were conducted

at home, and the measurements were not always accurate.

Informed consent for measurements was obtained from the

parent of all subjects. The experiment was approved by the

Ethical Review Committee for Medical Research Involving

Human Subjects, Ritsumeikan University (BKC-Human

Medicine-2020-053). A simple PSG was used as the gold

standard for learning and evaluating the classifier. This reduced

the burden on the child because the sleep stages were assessed

with far fewer electrodes than those used in PSG in clinical

practice. A small sensor was attached to the body for recordings

with the simplified PSG. The recording device was connected

wirelessly to reduce the burden on the child during sleep. A

simple PSG was used offline by a technician to score the sleep

stages. A video of the child sleeping was recorded at the same

time as the simple PSG recording. Figure 2 shows the flow of

sleep stage estimation from video recordings. Body movements

were extracted from the videos using video processing. Six

machine learning parameters were calculated from the extracted

body movements. Sleep stages were estimated from six

parameters using Extra Trees machine learning with the simple

PSG sleep stage as the answer response sleep stages.
PSG recording and sleep stage scoring

Simple PSG scoring was performed using a ZA-X EEG

sensor (Proassist, Japan). This device has four electrodes and
frontiersin.org
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FIGURE 2

Flow of sleep stage estimation. Two types of body movements were calculated every 0.5 s using difference processing, and six features were
calculated every 30 s. Then, machine learning was apply these feature values to sleep stage estimation.
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can measure data to estimate the sleep stage. The results of this

simple PSG instrument have been reported to have a

concordance rate of 85.5% compared with PSG scoring (21).

The measured data were used to estimate the sleep stages

automatically every 30 s based on the American Academy of

Sleep Medicine (8). Subsequently, a specialist technician

corrected the results. Stage W is defined as Wake, stage R as

rapid eye movement (REM), stages N1 and N2 as Light, and

stage N3 as Deep.
Region-of-interest selection and body
movement extraction

An ELP-USBFHD05MT-DL36-J camera (Shenzhen Ailipu

Technology Co., Ltd., China) equipped with infrared light-

emitting diodes (LEDs) was used. The camera’s resolution was

1,920 × 1,080 pixels, and measurements were performed at 2

frames per second. The camera was controlled by a Jetson

Nano (NVIDIA Corporation, United States of America). The

camera was placed around the bedding, so that the entire

bedding area could be observed. The camera was placed at a

height of about 1–2 m from the bed. For the experimental

design, it is better to install the cameras at the same height

under the same conditions. However, since this study was

conducted under the conditions that each household could

install the camera, it was not possible to standardize the

height conditions.

Figure 3 shows the body movement extraction procedure.

The bedding was extracted as a region-of-interest (ROI) in the

video for body motion extraction. The ROI extraction

eliminated body movements (other than those related to the

subject), such as the unintended appearance of parents. The

ROI was set manually by the researcher. The extracted ROIs

were transformed by trapezoidal correction according to their
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size. For the extraction of body motion, we used differences

and binarization. The difference calculation method is shown

in Equation 1. Id is the difference image, In is the n th frame,

x is the vertical pixel coordinate, and y is the horizontal pixel

coordinate.

Id(x, y) ¼ jIn(x, y)� In�1(x, y)j ð1Þ

In this process, the difference in pixel-by-pixel luminance

values between the nth and the (n− 1)th frames of the

grayscale video was calculated. In the binarization process,

pixels above the threshold were converted to white pixels

(luminance value: 255), and the pixels below the threshold to

black (luminance value: 0). Finally, the number of white

pixels was counted as the amount of body movement.

Equation 2 shows the equation for the amount of body

motion. dif fn is the amount of body motion in the nth

frame, Ibn is the image after binarization in the nth frame x is

the vertical pixel coordinate, and y is the horizontal pixel

coordinate.

dif fn ¼
Px

i¼1

Py
j¼1 Ibn(x, y)

255
ð2Þ

Motion extraction was performed twice, every 0.5 s, and two

motion values were extracted. The first amount of body

movement was calculated between the nth and (n− 1)th

frames, corresponding to a very small temporal difference

(0.5 s), allowing us to detect fast body movements. The

second amount of body movement was computed between

the nth and (n− 6)th frames, which corresponds to a large

temporal difference (3.0 s), therefore allowing the detection of

slow body movements.
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FIGURE 3

Procedure of the body movement extraction. Only the bed area was extracted from the video using trapezoidal correction, and converted to a black-
and-white image using grayscaling, differencing, and binarization processes. The number of white color pixels, It means that a pixel has had a change
in luminance value since the previous frame, was counted as the amount of body movement.
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Sleep stage estimation

Extra Trees was used to estimate the sleep stages from body

movements (22). To use this classification method, six

parameters were calculated from two types of extracted body

movements. These parameters were calculated once every 30 s.

This process is the same timing as the determination of sleep

stage based on simple PSG scoring. Extra Trees was then

trained using six parameters and the sleep stages from simple

PSG scoring. Sleep stages were estimated sequentially by using

the six parameters. The amount of body movement varied

with sleep stages (12). The amount of physical activity was

related to sleep, even in children (23, 24). In Wake, body

movements were large and frequent; in Light and REM, body

movements tended to be more frequent, but the number of

body movements was greater in Light than in REM.

Conversely, in the case of Deep, body movements were almost

absent. These results indicate that the average amount of body

movements, frequency of body movements, and elapsed time

are necessary to identify sleep stages. Therefore, six

parameters were calculated using the following equation to

represent the characteristics necessary for estimation. Note

that dif f i,0:5 is the fast body movement of the i th frame, and

dif f i,3:0 is the slow body movement of the i th frame.

Parameter 1: The first parameter was estimated using Equation

3 (n ¼ 1, 61, 121, � � �). This parameter is a moving average of

body movements during 30 s and represents the magnitude of

body movements. This parameter was used for Wake

classification.

SumMean30 ¼
Pnþ59

i¼n dif f i,0:5 þ dif f i,3:0
60

ð3Þ
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Parameter 2: The second parameter was estimated based on

Equation 4 (n ¼ 1, 61, 121, � � � ). This parameter is the

logarithm of the moving average over a period of 300 s. If the

result is less than one, then it is replaced by zero. If it is

greater than one, then the logarithm is calculated. This

parameter represents the frequency of body movements over

5 min and is used to discriminate between REM and Light.

PropMean300 ¼ log10

Pnþ599
i¼n dif f i,0:5 � dif f i,3:0

600

 !
ð4Þ

Parameter 3: The third parameter is given by Equation 5

(n ¼ 1, 61, 121, � � � ). This parameter is a moving average

over a period of 300 s and represents the magnitude of body

movement over a long period of time. This parameter was

used to discriminate the long-time Wake and long-time Deep

with little movement.

SumMean300 ¼
Pnþ599

i¼n (dif f i,0:5 þ dif f i,3:0)

600
ð5Þ

Parameter 4: The fourth parameter is given by Equation 6. This

parameter is the duration of frames during which body motion

is below a certain level, thus representing the duration of the

stationary state. Similar to parameter 3, this parameter was

used to discriminate between Deep and little movements.

NonBM ¼ 0 dif f i,0:5 þ dif f i,3:0 . k

NonBM ¼ NonBM þ 1 dif f i,0:5 þ dif f i,3:0 � k

(
ð6Þ
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Parameter 5: The fifth parameter is given by Equation 7

(n ¼ 1, 61, 121, � � � ). This is the time elapsed since the start

of the measurements. This parameter represents the number of

epochs. There was a tendency for deeper sleep in the first half

and more REM in the second half. Therefore, this parameter

was used to determine the difference between Deep and REM.

Epoch ¼ nþ 59
60

ð7Þ

Parameter 6: The sixth parameter is given by Equation 8

(n ¼ 1, 61, 121, � � � ). This parameter denotes the dispersion

of body movements during a period of 30 s and represents

the frequency of body movements. It was used to classify

Deep, which contains few body movements, and REM, which

contains many body movements.

Variance30 ¼Pnþ59

i¼n
(dif f i,0:5 þ dif f i,3:0)

2 � (dif f i,0:5 þ dif f i,3:0)
2

� �
ð8Þ

The size of a child’s body varies considerably at different stages

of growth. In this study, the amount of body movement used

varied considerably depending on the size of the child’s body.

Sleep duration also varied between the subjects and days. This

may lead to inaccurate estimation of the sleep stages. Therefore,

all parameters were standardized to have a mean of zero and a

variance of one. Standardization was implemented based on

Equation 9, where i denotes the number of parameters, Parami
FIGURE 4

Sleep stage and calculated parameters. (A) Moving average over 30 s and rep
time. (B) Logarithm of the moving average over 300 s and representation o
Moving average over 300 s and representation of the magnitude of the
movements below a certain level and representation of the duration of still
representation of the elapsed time. (F) Variance of body movements ov
movements over a short period of time.
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is the i th parameter, Parami is the average of the i th

parameter, and SParami denotes the variance of the i th parameter.

Standard Parami ¼ Parami � Parami

SParami

ð9Þ

These parameters constitute discrete data. The parameters

were not expected to differ considerably for each sleep stage.

Therefore, the classifier needs to be trained by dividing the

data into smaller pieces. For this reason, we used Extra Trees

based on decision trees as the classifier used in this study.

Examples of the results for the six calculated parameters are

presented in Figure 4. Because the tendency of the sleep stages

varied considerably depending on the child’s development,

machine learning with the Extra Trees classifier was used to

estimate and evaluate the two groups of children (0–2 years

old, and 3–6 years old).

Leave-one-out cross-validation was performed to evaluate

the classification performance, and accuracy, sensitivity, and

specificity were calculated for each of the four sleep stages to

evaluate the classification performance. The overall estimated

accuracy and Cohen’s kappa coefficient (25) were calculated.
Results and discussion

Results of simple PSG scoring

In total, 50 nights were evaluated: 21 nights for children

with ages in the range of 0–2 years, and 29 nights for those
resents the magnitude of the body movement over a short period of
f the frequency of body movements over a long period of time. (C)
body movement over a long period of time. (D) Duration of body
ness. (E) Number of frames converted to the number of epochs and
er a period of 30 s, and representation of the frequency of body
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in the 3–6 year age range. However, in many cases, scoring with

the simple PSG failed, and the data available for analysis were

limited to six nights for children aged 0–2 years old, and

eight nights for children aged 3–6 years old (a total of 14

nights). Most of the simple PSG scoring failures were caused

by children disliking the electrodes and removing them.

Another reason was the difficulty in operating the equipment.

Although PSG scoring is necessary for research, PSG scoring

is not a suitable method for daily monitoring of sleep stages

in children.

The percentage of each sleep stage obtained by PSG as

correct data is shown in Figure 5. The epochs are the total

number of sleep stages determined once every 30 s from PSG.

From this, REM sleep is more common in children aged 0–2

years old, while REM is less common in children aged 3–6

years old due to changes in the sleep cycles. However, in

clinical PSG examinations, the depth was approximately 30%

in normal subjects (26). However, the simple PSG scoring

results were low: 18% in children who were 0–2 years old,

and 22% in children who were 3–8 years old. This may be

because the device used was a simple PSG scoring device, the

subjects were children, and their sleep cycles were not stable.
Sleep stage estimation

Examples of estimated sleep stages are shown in Figure 6.

Table 1 presents the estimated results for each sleep stage.

Table 2 shows the estimation accuracy and kappa coefficient

of each dataset. The estimation accuracy of Wake was 90.3 ±

5.1% and was the highest in the age group of 0–2 years, and

97.5 ± 1.3% in the age group of 3–6 years. This was owing to

frequent body movements during wakefulness, which was well

characterized by parameter 1. However, the specificity of the

4th, 5th, and 6th datasets of children with ages in the range
FIGURE 5

(A) Percentages of sleep stages determined by simple polysomnography (PS
determined by simple PSG at ages in the range of 3–6 years.
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of 0–2 years was low. This may be owing to the short time

between bedtime and sleep onset and the low frequency of

mid-waking. The same tendency was observed in the second

children data with ages in the range of 3–6 years. The

estimation accuracy of Light was the lowest in both grooves,

and its sensitivity and specificity were also low. This was due

to the fact that Light accounts for approximately half of the

sleep period and includes the transition period to other sleep

stages. Therefore, it is inevitable that misclassification will

increase in machine learning. The accuracy of REM was

70.6 ± 7.2% in children with ages in the range of 0–2 years,

and 66.8 ± 4.7% in the 3–6 age group, thus indicating that the

accuracy of REM estimation was higher in the 0–2 age group

compared with that for children the 3–6 age group. This was

because REM accounts for a larger proportion of total sleep

in children with ages in the range of 0–2 years. In addition,

children’s sleep showed the same performance as that of

adults in the previous study, despite a higher percentage of

REM sleep. This is attributed to the effects of parameters 2, 5,

and 6. The accuracy of Deep sleep estimation was 75.9 ± 3.7%

in children with ages in the range of 0–2 years, and 79.5 ±

3.3% in children with ages in the range of 3–6 years, probably

because parameters 3–6 could be used to determine Deep

sleep. However, the low specificity of Deep sleep in children

with ages in the range of 0–2 years may be owing to the low

number of Deep sleep patterns in the sleep stages as judged

by simple PSG. The accuracy of the estimation of each sleep

stage is comparable to that reported in a previous study on

adults (13).

Table 2 shows that the mean accuracy of the estimates for

the age group 0–2 years old is 46.7 ± 6.6%, and the kappa

coefficient is 0.24 ± 0.11. In the age group of 3–6 years old,

the mean accuracy of the estimation is 49.0 ± 4.8%, and the

kappa coefficient is 0.28 ± 0.06. In a previous study (13), the

results for adults yielded an average estimation accuracy of
G) at ages in the range of 0–2 years. (B) Percentage of sleep stages
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FIGURE 6

Example of sleep stage estimation results. (A) Children with ages in the ranges of (A) 0–2 years, and (B) 3–6 years.

TABLE 1 Estimation of the different sleep stages for each studied subject.

Age Stages Data number Average

1 2 3 4 5 6 7 8

0–2 Deep Accuracy 73.7 78.1 78.9 73.0 71.5 80.4 – – 75.9 ± 3.7
Sensitivity 31.8 66.5 16.3 23.8 58.3 66.4 – – 43.8 ± 22.5
Specificity 19.9 37.3 21.5 35.6 37.5 50.4 – – 33.7 ± 11.4

Light Accuracy 60.8 62.9 47.9 49.8 54.8 62.9 – – 56.5 ± 6.7
Sensitivity 36.6 34.2 37.3 38.3 26.1 34.4 – – 34.5 ± 4.4
Specificity 60.4 53.9 44.0 37.5 51.2 63.1 – – 51.7 ± 9.7

REM Accuracy 79.8 75.6 60.1 70.6 64.9 72.8 – – 70.6 ± 7.2
Sensitivity 85.0 70.6 50.4 47.5 61.1 65.4 – – 63.3 ± 13.8
Specificity 61.7 59.1 42.2 54.8 43.6 61.9 – – 53.8 ± 8.9

Wake Accuracy 93.3 86.1 95.4 83.2 95.2 88.5 – – 90.3 ± 5.1
Sensitivity 65.2 40.8 96.5 44.6 28.6 83.3 – – 59.8 ± 26.4
Specificity 75.3 54.0 49.1 14.5 36.4 3.9 – – 38.9 ± 26.4

3–6 Deep Accuracy 80.8 82.2 82.6 79.0 73.8 78.4 76.1 84.4 79.5 ± 3.3
Sensitivity 69.7 71.4 67.6 70.4 54.3 65.5 51.4 75.2 66.5 ± 6.3
Specificity 52.8 57.4 54.4 45.5 58.7 46.3 58.4 68.8 52.5 ± 5.5

Light Accuracy 58.5 57.5 57.2 55.0 51.0 49.4 58.7 50.5 54.8 ± 3.8
Sensitivity 33.5 45.6 29.2 29.1 34.4 20.5 51.9 16.7 32.0 ± 8.3
Specificity 62.2 66.7 60.3 52.4 33.1 43.6 45.6 44.3 53.1 ± 12.7

REM Accuracy 72.1 71.5 65.1 68.5 63.5 60.2 68.7 58.5 66.8 ± 4.7
Sensitivity 71.8 53.4 73.9 67.7 27.4 58.9 39.4 67.1 58.8 ± 17.3
Specificity 45.5 39.9 44.5 49.5 30.0 34.0 41.6 29.1 40.6 ± 7.4

Wake Accuracy 97.3 95.1 98.6 98.8 96.5 97.4 99.1 97.2 97.3 ± 1.4
Sensitivity 89.7 75.0 85.1 74.6 97.8 71.4 91.2 66.7 82.3 ± 10.3
Specificity 76.1 9.2 78.4 95.7 62.9 89.6 96.3 73.9 68.6 ± 31.2
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TABLE 2 Total accuracy and kappa coefficient outcomes.

Age Data number

1 2 3 4 5 6 7 8 Average

0–2 Total accuracy [%] 53.8 51.4 41.2 38.3 43.2 52.3 – – 46.7 ± 6.6
Kappa 0.35 0.33 0.1 0.12 0.19 0.32 – – 0.24 ± 0.11

3–6 Total accuracy [%] 54.36 53.15 51.83 50.66 42.42 42.71 51.3 45.3 49.0 ± 4.8
Kappa 0.37 0.3 0.31 0.29 0.18 0.21 0.3 0.25 0.28 ± 0.06

FIGURE 7

Principal component analysis (PCA) results for six parameters, namely, magnitude of short-time body movement, frequency of long-time body
movement, magnitude of long-time body movement, rest time, elapsed time, and frequency of short-time body movement. The horizontal axis
is the first principal component, and the vertical axis is the second principal component.
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40.5 ± 2.2% and a kappa coefficient of 0.19 ± 0.04, which are

considered to reflect an equivalent or a better performance.

We believe that this is caused by the normalization of the

parameters. This may have reduced the effects of differences

in body size and total sleep time.

Another reason for the improved accuracy is attributed to

the fact that we changed the classifier from an SVM to Extra

Trees. Figure 7 shows the results of the principal component

analysis (PCA) for the six parameters used for visualization

(27). The repeatability of the PCA was 66.8%. The results

show that Extra Trees is more suitable than SVM (which uses

boundaries) because the difference between the features of

each stage is very small in the sleep stage.

Liang et al. (28) proposed a method to estimate sleep stages

using Fitbit. In this study, they reported that the estimation

accuracy of the four sleep stages for adults was 73.1 ± 11.9%.

Although the accuracy of our method was lower than that of

the study by Liang et al. (28), it is sufficient to be able to

conduct complete measurements without contact, and to be

applicable to children. In this study, a simple PSG was used

as the reference for actual sleep stages. However, even the
Frontiers in Digital Health 08
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clinically used PSG tests are not completely consistent among

specialist technicians (29, 30).

The estimated results for the age group of 0–2 years were

lower than those for the age group of 3–6 years. This is

because the sleep cycle of children with ages in the range of

0–2 years is less stable than that of children with ages in the

range of 3–6 years. This is also confirmed by the variance,

which shows that the estimation accuracy and variance of the

kappa coefficient are greater for children with ages in the

range of 0–2 years.

Although our system is less accurate than contact devices, it

is useful because it can be used for children with ages in the

range of 0–6 and because it is noncontact. However, our

system also has limitations. The system does not measure

autonomic nervous system activity. Thus, these indicators are

also needed if high-estimation accuracy is desired. Therefore,

it is possible to reduce the misclassification of Deep and REM

to Light.

Extra Trees was used in this study. However, as there are

many types of classifiers, it is necessary to compare the

performance with other classifiers.
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Conclusions

The estimation of sleep stages in children has not been

studied as comprehensively as studied in adults owing to

difficulties in measurement and PSG scoring. In this study, we

developed a sleep monitoring system for children with the use

of an infrared camera. The developed system extracted body

movements from a video and calculated six parameters from

body movements. The system then used Extra Trees to

estimate the four stages of sleep from the parameters. The

accuracy of the developed system was approximately 45% on

average compared with that of the simple PSG. However, the

average estimation accuracy for Deep, where growth hormone

is said to be secreted, was more than 75%. The performance

of this system was comparable to or better than those

reported in previous studies. For these reasons, it is suggested

that this system can be used as a noncontact sleep monitoring

system for children at home.

Our system can estimate four sleep stages, but not the REM/

NREM sleep cycle. It is known that children’s growth can be

confirmed by the REM/NREM sleep cycle [26]. Therefore,

developing a method to estimate the REM/NREM sleep cycle

is necessary.
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