About this Research Topic
Understanding how a material’s nanostructure affects its properties represents a significant challenge in material science. In this Research Topic we want to welcome contributions in the area of fibrous natural biopolymers for various applications, from health to environment. Our main focus is on understanding how the fiber nanostructure may affect a material’s property, both at the single fiber level and in the fiber assembly. Fibers and fiber materials can often be fabricated in different ways, which may change their nanostructure and hence allow for structure-function tunability. There are a variety of often complementary techniques to structurally characterize fiber materials, including electron microscopy, scattering/diffraction, solid state NMR and other spectroscopy techniques. In recent years, advanced imaging techniques, involving coherent X-rays, have received significant attention. On the mechanics side, strain mapping and stress-strain tensile characterization are the classical approaches. Effective functionalization that would enable sustained and localized molecular delivery is key in modern biomedicine. In biomedical applications biodegradability, biocompatibility, pharmacokinetics, and toxicity are fundamental characteristics of any fibrous assemblies of natural polymers that also may depend on the nanostructure. In this specific application field, most of the biomaterials have to be studied by in vitro and in vivo models, before clinical transferring or commercialization.
The aim of the current Research Topic is to cover promising, recent, and novel research trends in the field of fibrous assemblies of natural polymers. Areas to be covered in this Research Topic may include, but are not limited to:
• Fabrication and nanostructure characterization of natural polymeric fibrous assemblies
• Biomaterials development and application of natural polymeric fibrous assemblies
• Functionalization strategies to enhanced bioactivity
• Drug / gene / molecular delivery applications
• Cell delivery applications
• Clinical indication specific applications
Keywords: Natural Polymeric Fibrous Assemblies, Applications, Nanostructure Characterization, Synthesis, Fabrication, Structure-Function
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.