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INTRODUCTION

Colorectal cancer (CRC) is one of the most common forms of cancer and a major cause of
cancer-related death in both men and women worldwide (Lao and Grady, 2011; Siegel et al., 2017).
Over 881,000 people globally have died from CRC, while 1.8 million were newly diagnosed with
CRC in 2018 (Bray et al., 2018). The death rate of CRC has been steadily declining since 1990 (Siegel
et al., 2017), but precise diagnosing and treating CRC remains challenging. Many patients exhibit
few symptoms until the tumor has metastasized, making biomarkers for early diagnosis essential.
Liquid biopsy is an easy and non-invasive method to detect ctDNA (circulating tumor DNA) in
plasma or serum samples for early diagnosis, prognosis, or treatment (Tarazona and Cervantes,
2018). But ctDNA from a liquid biopsy is difficult to process and the lack of accuracy is still a
problem (Kolencik et al., 2020); as a result, most previous studies focused on tumor tissue samples.
For CRC patients, ctDNA is used to detect not only RAS mutations, but also DNA methylation,
such as SEPTIN9 methylation (Song et al., 2018).

Epigenetic modifications play an important role in CRC genesis and progression (Danese and
Montagnana, 2017). Epigenetics investigates heritable phenotype changes without alterations in
the DNA sequence (Dupont et al., 2009). Epigenetic modifications include DNA methylation,
histone modification, and genomic imprinting. DNA methylation is one of the best-characterized
epigenetic mechanisms (Li and Zhang, 2014), which adds methyl groups to DNA, often at CpG
sequences (Ehrlich et al., 1982). Emerging evidence suggests that some epigenetic modifications,
DNA methylation in particular, can be important biomarkers for CRC (Ahmed, 2007). Aberrant
DNA methylation is tissue-specific and often appears at early stages of cancer development (Jahn
et al., 2011), making it a potentially ideal biomarker for early diagnosis of CRC.

We have previously constructed a biomarker database for colorectal cancer (CBD) (Zhang et al.,
2018). Despite numerous reports on this subject so far, to our best knowledge, no database for
cancer epigenetic biomarkers has been built yet. To enable the systematic study of epigenetics
in CRC, we hereby established the first cancer epigenetic biomarker database, which was named
CRC-EBD (Epigenetic Biomarker Database for Colorectal Cancer). CRC-EBD stores the epigenetic
biomarkers information on CRC from PubMed literature. As precision medicine is becoming
the new scientific paradigm (Morere, 2012), our database is built with more focus on collecting
information regarding clinical samples in order to promote future translational researches on CRC.
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MATERIALS AND METHODS

Data in CRC-EBD was manually collected from PubMed. We
used “(colon[ti] OR rectosigmoid junction[ti] OR rectal[ti] OR
anus[ti] OR bowel[ti] OR colorectum[ti] OR colorectal[ti]) AND
(biomarker∗[tiab] OR marker∗[tiab] OR indicator∗[tiab] OR
predicator∗[tiab] OR (drug target∗[tiab]) OR (therapeutic
target∗[tiab])” as the term to search the PubMed for
the CRC biomarkers. In addition, we used the keyword
“AND methylat∗[tiab]” for methylation biomarker, “AND
histone∗[tiab]” for histone modification, and “AND
epigenetics∗[tiab] NOT methylation[tiab] NOT histone∗[tiab]” for
other epigenetic biomarkers. In total, 1,444 articles were screened
for these biomarkers in PubMed citations until December, 2019.

The following rules were applied to screen articles about CRC
epigenetic biomarkers.

1) The article should contain clear statements like “Epigenetic
modification (such as DNA methylation, histone
modification, or other epigenetics modifications) is a
biomarker/marker/indicator of CRC.” If the statement
includes expressions like “can/may/has potential,” the
corresponding data is included. This key statement can be
searched in our database under “Description”.

2) Reviews or meta-analyses are excluded in the screening of
CRC biomarkers.

3) If the article includes information about
AUC/sensitivity/specificity or other assessment of the
accuracy of the biomarker for prediction or classification of
CRC, the value should be statistically significant.

FIGURE 1 | Pipeline of database construction.

4) Biomarkers from different articles have different IDs in our
database, even if they share the same name, but with different
clinical conditions for CRC, such as biomarker for diagnosis,
prognosis, or treatment of CRC.

5) If both single and combinatorial biomarkers are included in
one article, all the reported markers are given different IDs in
our database.

We eventually selected 355 biomarkers, along with 694 records of
sample information and 420 records of epigenetics information
from the articles. The various cancer names in the original articles
were uniformly changed to colorectal/colon/rectal cancer. A
common format, as in “methylation of APC,” was adopted for
all the biomarker names in CRC-EBD. All gene symbols and
miRNA names were annotated as the official gene symbols
from NCBI and miRBase. The biomarkers were also labeled
with sample resources (blood, stool, and tissue) and clinical
applications (diagnosis, prognosis, and treatment). Moreover,
sample information of the patients (e.g., nationality, age, and
TNM stage,) was collected for further analysis in personalized
medicine. The pipeline of data collection, database construction,
and functions of CRC-EBD is shown in Figure 1.

B/S (Browser/Server) structure and WAMP (Windows Server
2016 + Apache 2.4.39 + MySQL (10.4.6-MariaDB) + PHP
7.3.8) were used to construct the database. Users can access
our database using their own browsers without installing other
components. HTML and CSS were used to create the web pages
and display the information. PHP and JavaScript were applied
to connect the database and realize the search function. The
data is stored in the MySQL database, which can be easily and
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FIGURE 2 | Distributions of the biomarkers in CRC-EBD. (A) Epigenetic types. (B) Biomarker types. (C) Sample types. (D) Cancer types.

quickly accessed. The charts in the statistics page were generated
dynamically using ECharts (Li et al., 2018).

DISCUSSION

The epigenetic biomarkers in our online database can be searched
by epigenetics name, epigenetics type, CRC subtype, biomarker
type, and application. Epigenetics name searching mode allows
users to enter the name of a gene, miRNA, or histone in a text
box. Similarly, under CRC subtype searching mode, users can
type in a text box the CRC subtypes or cancer names. Epigenetics
types can be searched by DNA methylation, RNA methylation,
histone modification, or others. Furthermore, users can select the
biomarker type (diagnostic, prognostic, or therapeutic) and the
application mode (blood, stool, tissue, or bowel lavage fluid) for
their searches. The search result will be shown in a new webpage
containing the list of biomarkers, and users can click each item
for more detailed information.

Among the 355 epigenetics biomarkers in our CRC-EBD,
81.69% (290) of them are single DNA methylation biomarkers,
whereas 11.52% are combinatorial (Figure 2A). Based on the
clinical applications, 59.72% of the biomarkers are diagnostic,
among which 9.86% are combinatorial for diagnosis, prognosis,
or treatment (Figure 2B). 225 (63.38%) biomarkers are applied
for tissue samples, 39 (10.99%) for stool, 77 (21.69%) for blood,
and 13 (3.66%) for multiple sample types. A combined biomarker
(miR-124-3, ZNF582-AS1, and SFRP1 methylation) is the only
one reported for bowel lavage fluid detection (Figure 2C). 92.98%
of the biomarkers in our database are applied for colorectal
cancer research, demonstrating its prominence in the current
field of studies (Figure 2D).

Six hundred and ninety four groups of samples in total are
collected in the CRC-EBD: 457 are tissue samples (tumor samples
and healthy samples), 73 are stool samples, 131 are serum/plasma
samples or others. Though stool or blood samples are easier
and more convenient to acquire, most of the previous studies
are based on tissue samples directly connected to cancer genesis
and progress.

CRC-EBD is the first online resource for epigenetic
biomarkers of cancer. We will expand the database to other
cancers in the future. This database will offer the users a
systematic perspective on the heterogeneous cancer and promote
epigenetics research on cancers.
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Tools for the Recognition of Sorting 
Signals and the Prediction of 
Subcellular Localization of Proteins 
From Their Amino Acid Sequences
Kenichiro Imai 1 and Kenta Nakai 2*

1 Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology 
(AIST), Tokyo, Japan, 2 The Institute of Medical Science, The University of Tokyo, Tokyo, Japan

At the time of translation, nascent proteins are thought to be sorted into their final 
subcellular localization sites, based on the part of their amino acid sequences (i.e., sorting 
or targeting signals). Thus, it is interesting to computationally recognize these signals from 
the amino acid sequences of any given proteins and to predict their final subcellular 
localization with such information, supplemented with additional information (e.g., k-mer 
frequency). This field has a long history and many prediction tools have been released. 
Even in this era of proteomic atlas at the single-cell level, researchers continue to develop 
new algorithms, aiming at accessing the impact of disease-causing mutations/cell 
type-specific alternative splicing, for example. In this article, we overview the entire field 
and discuss its future direction.

Keywords: protein sorting/targeting, subcellular loalization, sorting/targeting signals, prediction methods, 
bacteria, archaea, eukarya

INTRODUCTION

Although we  should not underestimate the importance of non-coding genes, the main players 
of the genetic system of living organisms are still regarded as protein-coding genes, which 
specify amino acid sequence information. Thus, in principle, we  should be  able to infer the 
in vivo fate of any protein from its amino acid sequence, if its environmental conditions, such 
as the cell type where it is synthesized, are appropriately given. For example, we  should be  able 
to predict the three-dimensional structure of a protein from its sequence or to design novel 
amino acid sequences that take a desired three-dimensional structure (Baker, 2019), as well as 
to predict how it binds/interacts with other proteins/small molecule ligands (Vakser, 2020). 
Another important information to be predicted is which kind of post-translational modifications, 
if any, it will take [at which residue(s); Audagnotto and Dal Peraro, 2017]. Also, it may be possible 
to predict the half-life of a given protein/peptide-based on the degradation signals (degrons) 
and/or other properties (Mathur et  al., 2018; Eldeeb et  al., 2019). Finally, the prediction of 
subcellular localization of a protein based on its amino acid sequence is a challenging field in 
bioinformatics. It is well accepted that the protein sorting for subcellular localization is regulated 
by so-called protein sorting (or targeting) signals, which are typically represented as a short 
stretch(es) of its amino acid sequence. Nowadays, many of the protein localization mechanisms/
pathways that recognize and utilize such signals have been clarified. Therefore, many predictors 

8

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.607812&domain=pdf&date_stamp=2020-11-25
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.607812
https://creativecommons.org/licenses/by/4.0/
mailto:knakai@ims.u-tokyo.ac.jp
https://doi.org/10.3389/fgene.2020.607812
https://www.frontiersin.org/articles/10.3389/fgene.2020.607812/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.607812/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.607812/full
https://www.frontiersin.org/articles/10.3389/fgene.2020.607812/full


Imai and Nakai Prediction of Protein Subcellular Localization

Frontiers in Genetics | www.frontiersin.org 2 November 2020 | Volume 11 | Article 607812

have been developed for the recognition of such sorting signals 
and attempts have been done to combine such predictors, 
leading to the comprehensive prediction of the final localization 
site. However, not all such signals have been clarified. Moreover, 
not all proteins are equipped with such typical signals and use 
some alternative (minor/exceptional) pathways. Adding the 
knowledge of such exceptional cases will make the prediction 
system gradually more realistic but the objective assessment of 
its performance, like the ones commonly used in the field of 
machine learning, will become difficult because the knowledge 
of exceptional cases are quite unlikely to be  generalized (in 
other words, any sequence features of such exceptional proteins, 
which are nothing to do with their sorting mechanisms, would 
work as clues for their prediction). It should be  also noted 
that the practical value of subcellular localization predictors 
has been degraded because the localization information is being 
comprehensively determined with subcellular proteomics 
experiments (Harvey Millar and Taylor, 2014). However, the 
rise of synthetic biology as well as precision medicine will 
demand prediction tools that enable the prediction against 
artificial proteins and/or the prediction of the impact of mutations/
polymorphic variations on potential sorting signals.

In this review article, we  will introduce the outline of  
this field, emphasizing its recent progress. The readers are 
recommended to refer to additional reviews by other authors 
and ourselves, too (Imai and Nakai, 2010, 2019; Du and Xu, 2013; 
Nielsen, 2017; Nielsen et  al., 2019).

PREDICTION OF SUBCELLULAR 
LOCALIZATION SITES FOR BACTERIAL/
ARCHAEAL PROTEINS

Even in the simplest type of organisms, which are unicellular 
organisms without any subcellular compartments, proteins can 
be  localized at either the cytoplasmic space, the cellular 
membrane, or the extracellular space (i.e., secreted). This is 
basically the case for so-called Gram-positive bacteria and 
archaea, but, in reality, they also have a cell wall for another 
localization site. The basic prediction strategy for these proteins 
is to combine two kinds of predictors: a predictor for N-terminal 
signal peptides and that for transmembrane segments. Namely, 
a protein that neither has an N-terminal (and cleavable) signal 
peptide nor any hydrophobic transmembrane segment(s) is 
predicted to be  localized at the cytoplasmic space; a protein 
that has any transmembrane segment(s) (including an N-terminal 
uncleavable segment) is predicted to be localized at the cellular 
membrane; and finally, a protein that has a cleavable N-terminal 
signal peptide but does not have any transmembrane segment(s) 
is predicted to be  secreted to the extracellular space or to 
be localized at the cell wall. In Gram-positive bacteria, proteins 
that are anchored to the cell wall are characterized with the 
existence of the LPXTG-motif, followed by a hydrophobic 
domain and a tail of positively-charged residues (for recent 
review, see Siegel et  al., 2017). On the other hand, Gram-
negative bacteria contain one more membrane, the outer 

membrane, instead of the cell wall. Therefore, their possible 
localization sites are the cytoplasmic space, the inner membrane 
(which is equivalent to the membrane of Gram-positive bacteria), 
the periplasm, the outer membrane, and the extracellular space. 
Generally speaking, proteins that are localized at the latter 
three sites (the periplasm, the outer membrane, and the 
extracellular space) have an N-terminal cleavable signal peptide 
but do not have any hydrophobic transmembrane segment(s). 
Proteins that are integrated into the outer membrane are typically 
β-barrel proteins (Bakelar et  al., 2017). To distinguish these 
three types of proteins, their difference in amino acid composition 
and/or k-mer frequency as well as motif/homology-based 
methods are often used.

A pioneering work to propose the above formalism is 
published in 1991 (Nakai and Kanehisa, 1991), where the 
predictor was named PSORT (I). In 2003, its approach was 
inherited and elaborated by Fiona Brinkman’s group (Gardy 
et  al., 2003); their software is named PSORTb (or PSORT-B). 
Its latest version is PSORTb 3.0 (Yu et  al., 2010). The group 
published an excellent review of bacterial protein subcellular 
localization in 2006 (Gardy and Brinkman, 2006). According 
to the assessment shown in the review, PSORTb was the best 
predictor at that time. The group also releases PSORTdb, which 
contains a collection of experimentally-determined information 
of subcellular localization as well as systematic outputs of 
PSORTb applied to thousands of bacterial proteomes [its latest 
reference reports v. 3.0: (Peabody et  al., 2016) but its latest 
version is v. 4.0]. The same group also proposes PSORTm, a 
variant of PSORTb designed for the prediction of metagenomic 
data (Peabody et  al., 2020). The basic idea of PSORTm is to 
first identify the taxonomy of each read based on a reference 
database of microbial proteins. From the estimated taxonomy, 
the read is automatically classified with cell envelope types 
and then it is subject to a variant of PSORTb, which uses 
various types of analyses (such as motif/profile analysis) for 
its subcellular localization prediction. Although the assessment 
of its precise accuracy would be  difficult, they report an 
assessment using artificial data and the comparison with the 
prediction against pre-assembled data. In view of the rapid 
growth of microbiome analyses, the need of characterizing 
metagenome data should increase even more and thus the 
field looks promising. Of course, other groups have developed 
a variety of predictors for bacterial/archaeal proteins, among 
which PSO-LocBact (Lertampaiporn et  al., 2019), GPos-ECC-
mPLoc/Gneg-ECC-mPLoc (Wang et al., 2015), BUSCA (Savojardo 
et  al., 2018b), which will be  introduced below, and ClubSub-P 
(Paramasivam and Linke, 2011) are released relatively recently. 
Some of them claim that they can deal with proteins with 
multiple-locations. Although once a database for (eukaryotic) 
proteins with multiple subcellular localizations is released (Zhang 
et al., 2008), it still seems difficult to classify multiple localizations 
objectively and quantitatively because the data come from 
different sources which rely on different experimental conditions 
(but see the discussion below).

Beyond the basic scheme described above, there are several 
issues to be  further explored. One is the prediction of several 
specialized localization sites, such as host-associated, type III 
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secretion, fimbrial, flagellar, and spore. In PSORTb, they are 
treated as subcategories. Of course, it is favorable that a predictor 
can deal with such localization sites but it is questionable if 
such a predictor can also deal with artificial proteins that are 
transported to such locations. In other words, it is likely that 
such predictions are easily done with simple homology transfer 
from known examples. Another issue is how to deal with the 
proteins that are transported with minor pathways. For the 
users’ convenience, it is desirable that a predictor can inform 
users which pathway the input protein will use. For example, 
it is surely useful if a predictor informs us that the input 
protein will be  transported via the twin-arginine translocation 
pathway (Palmer and Stansfeld, 2020) or the lipoprotein signal 
peptidase II-dependent pathway (El Arnaout and Soulimane, 
2019). This can already be done with several predictors, including 
SignalP-5.0 (Almagro Armenteros et  al., 2019, see below). 
Hopefully, more knowledge of various protein sorting pathways 
should be  incorporated into predictors, even if the objective 
assessment of their predictability would become difficult. In 
this sense, more benchmarking efforts/systematic analysis of 
subcellular localization from various viewpoints would 
be  valuable (Stekhoven et  al., 2014; Orioli and Vihinen, 2019; 
see below).

PREDICTION OF SUBCELLULAR 
LOCALIZATION SITES FOR 
EUKARYOTIC PROTEINS

So far, many prediction methods of eukaryotic protein subcellular 
localization have been developed. They are mainly based on 

biological/empirical sequence features related to subcellular 
localization. In these methods, a variety of machine learning 
algorithms, such as the k-nearest neighbor (k-NN) classifier, 
the Random Forest classifier, the support vector machine (SVM), 
and the deep learning, have been used. Those methods usually 
target 10 main localization sites, where subcompartments of 
localization sites are merged into 10 major sites in order to 
increase the number of proteins per localization site (see 
Table  1). As further explained below, for the prediction of 
subcellular localization sites, three types of prediction features 
are generally used: targeting signal features, sequence-based 
features, and annotation-based features (Figure 1). The features 
associated with targeting signals are most powerful, when 
available, and many subcellular localization predictors based on 

TABLE 1 | Representative subcellular locations covered by predictors for 
eukaryotic proteins.

Main location Representative subcompartments

Nucleus inner and outer membranes, matrix, chromosome, 
nucleus speckle, etc.

Mitochondrion inner and outer membranes, matrix, 
intermembrane space

Endoplasmic reticulum (ER) ER membrane and lumen, microsome, rough ER, 
smooth ER, etc.

Plastid inner and outer membranes, stroma, thylakoid, etc.
Golgi apparatus Golgi apparatus membrane, lumen
Lysosome/Vacuole vacuole lumen and membrane, lysosome lumen 

and membrane, etc.
Peroxisome matrix, membrane
Cytoplasm cytosol, cytoskeleton
Cell membrane cell membrane, cell projection, apical, basal, etc.
Extracellular –

FIGURE 1 | Summary of representative prediction approaches of different subcellular localization.
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targeting signal features have been developed. Thus, we  first 
overview the representative targeting-signal predictors and then 
predictors for localization sites.

Prediction of Targeting Signals
The targeting signals are roughly grouped into two categories: 
N-terminal targeting signals and non-N-terminal targeting 
signals. The mitochondrial targeting signal (presequences), the 
signal sequence for the secretory pathway (signal peptides), 
and the transit signal for chloroplast (transit peptides) are 
well-known as N-terminal targeting signals, while the nuclear 
localization signal (NLS) and the nuclear export signal (NES) 
are internal signal sequences. Peroxisome matrix proteins 
contain peroxisomal targeting signal type 1 (PTS1) in the 
C-terminus.

Prediction of Mitochondrial Targeting Signal
Mitochondria have been estimated to host 1,000 to 1,500 distinct 
proteins. Approximately, 99% of mitochondrial proteins are 
encoded in the nuclear genome and are imported by translocases 
in the mitochondrial outer and inner membranes. Approximately 
60% of mitochondrial proteins possess an N-terminal cleavable 
targeting signal (presequence; Vögtle et  al., 2009). These 
presequences are typically recognized by the translocase of the 
outer membrane (TOM) receptors, which consist of Tom20 
and Tom22, in the TOM complex. Then, they direct the 
translocation of signal-containing proteins through the main 
protein translocation channel, Tom40 (Pfanner et  al., 2019). 
Upon translocation across the outer membrane, the presequence-
containing proteins are transferred across the inner membrane 
by the translocase of the inner membrane complex (TIM23) 
with the presequence translocase-associated motor (PAM). The 
length of presequences is 20–60 amino acid residues (Calvo 
et  al., 2017). The representative features of presequences are 
high and low composition of arginine residues and negatively-
charged residues, respectively (von Heijne, 1986; Schneider 
et  al., 1998). Positively charged amphiphilicity (amphiphilic 
α-helical structure with hydrophobic residues on one face and 
positively-charged residues on the opposite face) is also a well-
characterized feature (Chacinska et  al., 2009; Fukasawa et  al., 
2015). Recently, the TOM complex structure was revealed by 
cryo-electron microscopy and it provided structural insights 
into the import path of precursor protein containing presequence 
through the TOM complex (Araiso et  al., 2019). Presequence 
is typically cleaved by three mitochondrial peptidases in the 
matrix (MPP, Icp55, and Oct1; Mossmann et  al., 2012). The 
cleavage by MPP occurs after the position of two amino acids 
of C-terminal to an arginine (the R-2 motif). Icp55 and Oct1 
subsequently cleave off one amino acid and eight amino acids 
from the newly-emerged N-terminus, respectively. Therefore, 
proteins processed by MPP and Icp55 have an arginine at 
position -3 (the R-3 motif) in the presequence, while proteins 
processed by MPP and Oct1 have an arginine at position 
-10  (the R-10 motif).

MitoProtII (Claros, 1995), TargetP (Emanuelsson et al., 2000), 
Predotar (Small et al., 2004), TPpred3.0 (Savojardo et al., 2015), 

and MitoFates (Fukasawa et  al., 2015) were widely used 
presequence prediction methods. Those are developed using 
machine-learning techniques with these features of 
presequences. Those tools are also capable of predicting the 
existence of presequence as well as their cleavage site. 
MitoProtII and MitoFates are specific predictors for 
(mitochondrial) presequences, while TargetP, Predotar, and 
TPpred3.0 can also predict other N-terminal targeting signals, 
such as secretory signal sequence and chloroplastic targeting 
signal. Recently, TargetP2.0 is developed as a deep learning 
model, using bidirectional long-short-term memory (LSTM) 
and a multi-attention mechanism (Armenteros et  al., 2019). 
Among existing tools, three of them (MitoFates, TPpred3.0, 
and TargetP2.0) perform better in the prediction of both 
the presequence existence and its cleavage site. MitoFates 
employs an SVM classifier by combining amino acid 
composition and physicochemical properties with positively 
charged amphiphilicity, discovered presequence motifs, and 
position-weight matrices of cleavage site patterns. TPpred3.0 
is a combination of a Grammatical Restrained Hidden 
Conditional Random Field, N-to-1 Extreme Learning 
Machines, and SVMs. We  compared the performance of 
those three methods, using recent proteomic data of the 
N-termini of mouse mitochondrial proteins (we omitted 
proteins whose length of cleaved N-terminal sequences is 
shorter than 10 or longer than 100 amino acids in the 
comparison; Calvo et  al., 2017). The recalls of presequence 
prediction by TPpred3.0, MitoFates, and TargetP2.0 are 63.2, 
75.9, and 79.9%, respectively. Whereas the recalls of the 
cleavage prediction by TPpred3.0, MitoFates, and TargetP2.0 
are 27.0, 28.8, and 45.5%, respectively. MitoFates and 
TargetP2.0 show better performance on the presequence 
prediction. In the cleavage site prediction, TargetP2.0 far 
outperformed other methods, though the cleavage site 
prediction is still a challenging task. About 20% of mouse 
cleavage site data does not match with the R-2, R-3, and 
R-10 motifs (Calvo et  al., 2017). It will be  necessary to 
better characterize these untypical presequences.

Prediction of Signal Sequence
The targeting signal sequence for the secretory pathway (signal 
peptides) is located at the N-terminal of protein sequence in 
both eukaryotes and prokaryotes. The length of signal peptides 
is 16–30 amino acid residues. It is estimated that about 10–20% 
of eukaryotic proteome and 10% of bacterial proteome have 
the signal peptide at N-terminus (Kanapin et al., 2003; Ivankov 
et  al., 2013). In eukaryotic cells, the signal recognition particle 
(SRP) co-translationally recognizes signal peptides upon their 
emergence from the ribosome and transfers them to the Sec61 
translocon in the endoplasmic reticulum (ER) membrane via 
the SRP receptor (Nilsson et  al., 2015). The signal peptidase 
cleaves off signal peptides and thus mature proteins are generated. 
Signal peptides share several characteristic features (von Heijne, 
1990); they have tripartite architecture: a positively charged 
N-terminus (n-region), a hydrophobic segment (h-region), and 
a cleavage site for signal peptidase (c-region). The cleavage 
site is characterized by the (-1, -3) rule; amino acids with 
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small, uncharged side chains at the -1 and -3 position relative 
to the cleavage site.

For predicting signal peptides and their cleavage sites, many 
prediction methods, such as SignalP 4.0 (Petersen et al., 2011), 
SPEPlip (Fariselli et  al., 2003), Phobius (Krogh et  al., 2007), 
and DeepSig (Savojardo et  al., 2018a), have been developed. 
The discrimination between secretory and non-secretory proteins 
based on the signal peptide prediction has been most successful 
in targeting signal predictions because SignalP  3.0 has already 
achieved the best Matthews’ Correlation Coefficient (MCC) 
of 0.76  in eukaryotic data sets in an assessment study in 
2009 (Choo et  al., 2009). Recently, SignalP has been further 
improved as a deep neural network-based method, combining 
with conditional random field classification and optimized 
transfer learning (SignalP-5.0; Almagro Armenteros et  al., 
2019). According to their benchmark results, SignalP-5.0 
outperforms other methods in predicting both the signal 
peptide existence and the cleavage site: the MCC was 0.88  in 
the signal peptide prediction and the recall of cleavage site 
detection was 72.9%.

Prediction of Chloroplastic Targeting Signal
The translocons at the outer and the inner membranes of 
chloroplasts, the TOC and TIC complexes mediate the targeting 
and import of ~3,500 different nuclear-encoded proteins. Those 
proteins are imported from the cytoplasm via interaction 
between their cleavable, N-terminal chloroplast targeting signal 
(transit peptides), and the TOC–TIC import systems (Li and 
Chiu, 2010; Paila et  al., 2015). The transit peptide is removed 
off by the activity of stroma processing peptidase (SPP), which 
is related to the mitochondrial peptidase, MPP. SPP does 
not interact stably with the TOC–TIC import system, thus 
the cleavage event occurs after protein translocation or upon 
the emergence of the transit peptide cleavage site into the 
stroma. Chloroplast transit peptides are mostly unstructured 
but can form α-helical structures in hydrophobic environments 
(Bruce, 2001; Jarvis, 2008). In addition, chloroplast transit 
peptides have a high content of hydroxylated amino acids 
(e.g., serine residues) and positively charged amino acids and 
a very low content of negatively charged amino acids (Bhushan 
et  al., 2006). Transit peptides and presequences are therefore 
similar in several aspects. In spite of the similarities, chloroplast 
transit peptides direct precursor proteins specifically to 
chloroplasts. Ge et al. (2014) demonstrated that transit peptides 
and presequences can be  discriminated by their charge 
properties and hydrophobicity. Also, the analysis of 916 
chloroplast proteins revealed an N-terminal domain beginning 
with Met-Ala and the low composition of arginine in the 
N-terminal portion (Zybailov et  al., 2008). Moreover, Lee 
et al. (2019) recently showed that mitochondrial or chloroplast 
targeting specificities are characterized by the N-terminal 
regions of these targeting signals: an N-terminal multiple-
arginine motif was identified as the mitochondrial specificity 
factor and chloroplast evasion signal. Cleavage sites of transit 
peptides are characterized by higher content of Ala, Ile, Cys, 
and Val residues (Gavel and von Heijne, 1990). The three 
motifs, [V,I][R,A]↓[A,C]AAE, S[V,I][R,S,V]↓[C,A]A, and [A,V]

N↓A[A,M]AG[E,D], are derived by a set of 198 cleavage sites 
(Savojardo et  al., 2015).

The existing prediction tools for the chloroplastic targeting 
signal deal with cleavable N-terminal transit peptides. Widely 
used prediction methods have been integrated as a part of 
prediction of N-terminal targeting signals in general: e.g., 
TargetP (Emanuelsson et  al., 2000), iPSORT (Bannai et  al., 
2002), Predotar (Small et  al., 2004), and TPpred3 (Savojardo 
et  al., 2015). Among those tools, TPpred3 achieved better 
performance for transit peptide prediction (46% precision 
and 64% recall). As mentioned above, TargetP is recently 
updated to version 2.0 as a deep learning model (TargetP2.0; 
Armenteros et  al., 2019). In their comparison, the precision 
and recall of chloroplastic transit peptide identification of 
TargetP2.0 are 90 and 86%, respectively, while those of 
TPpred3 are 76 and 69%. In the cleavage site prediction, 
the recalls of TargetP2.0 and TPpred3 are 49 and 30%, 
respectively. Like mitochondrial presequence prediction, the 
cleavage site prediction of chloroplastic targeting signal is a 
difficult problem. Comparing with the data size of signal 
peptides, that of transit peptides is quite small and thus the 
lower performance could have been caused by this reason. 
Larger-scale N-terminal proteomics data of chloroplastic 
proteins would be  necessary for the improvement of their 
cleavage site prediction.

Prediction of Nuclear Localization Signals and 
Nuclear Export Signals
Nuclear proteins are transported into or out of the nuclei 
through the nuclear pore complex by the importin-β (Impβ) 
family nucleocytoplasmic transport receptors (Kimura and 
Imamoto, 2014). The human proteome contains 20 Impβ family 
proteins: 10 are nuclear import receptors (importin-β, 
transportin-1, -2, -SR, importin-4, -5 (RanBP5), -7, -8, -9 and -11), 
seven are export receptors (exportin-1 (CRM1), -2(CAS/CSE1L), 
-5, -6, -7, -t, and RanBP17), two are bi-directional receptors 
(imporin-13 and exportin-4), while the function of remaining 
RanBP6 is undetermined (Kimura and Imamoto, 2014). Those 
nucleocytoplasmic transport receptors are thought to recognize 
specific targeting signals on those cargo proteins. Several types 
of NLSs and NESs have been reported, so far. The most studied 
NLS is the classical NLS (cNLS) that binds to Impα, which 
is a cargo-binding adaptor exclusively used for Impβ (Lange 
et  al., 2007). Sequences similar to the Impβ binding (IBB)-
domain in Impα act as NLSs that bind directly to Impβ. 
Other known NLSs/NESs that bind directly to Impβ family 
are: the PY-NLS for Trn1 and Trn2 (Lee et  al., 2006), the 
Leu-rich NES for CRM1 (Hutten and Kehlenbach, 2007), the 
SR-domain for TrnSR (Maertens et  al., 2014), and the β-like 
importin binding (BIB)-domain, which binds to several 
nucleocytoplasmic transport receptors (Jäkel and Görlich, 1998). 
In addition, the RG/RGG-rich segment for Trn1 and the 
RSY-rich segment for TrnSR were reported recently (Bourgeois 
et al., 2020). However, these known NLSs/NESs do not explain 
all of the cargo recognition sites. Moreover, recent proteomic 
analysis for the identification of cargo proteins of 12 
nucleocytoplasmic transport receptors (10 nuclear import 
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receptors and 2 bi-directional receptors; Kimura et  al., 2017) 
also pointed out that about 30% of identified cargos are 
shared by multiple receptors. The degree of multiplicity and 
diversity of cargo recognition by nucleocytoplasmic transport 
receptors are still controversial.

Among known nuclear targeting signals, cNLS and NES 
of CRM1 are well characterized. Thus, existing prediction 
methods of NLSs and NESs mainly target these two types. 
cNLSs are grouped into monopartite and bipartite NLSs. 
Monopartite NLS is characterized with a single stretch of basic 
residues (e.g., KR[K/R]R and K[K/R]RK), while bipartite NLS 
has two clusters of basic residues, separated by a spacer region 
of 10–12 amino acids (e.g., KRX10–12K[K/R][K/R]; Kosugi et al., 
2009). Lisitsyna et al. (2017) assessed the prediction performance 
of widely used methods, Nucpred (Brameier et  al., 2007), 
cNLSmapper (Kosugi et  al., 2008a), NLStradamus (Ba et  al., 
2009), NucImport (Mehdi et  al., 2011), and SeqNLS (Lin and 
Hu, 2013), using a human NLS dataset (Lisitsyna et  al., 2017). 
NucPred, seqNLS, and NLStradamus showed better MCCs 
(~0.3); however, the recalls of those methods were still ~45%. 
Recently, Guo et  al. (2020) reported INSP, which is a NLS 
predictor based on a multivariate regression model integrating 
PSSM-based conservation score, protein language-based SVM 
learning score, disorder-based structural score, and amino acid 
physical chemistry property-based score. On their test dataset, 
INSP showed 50.6% precision at 67.0% recall, whereas seqNLS, 
NLStradamus, and cNLSmapper obtained 60.6% precision at 
36.4% recall, 53.9% precision at 35.6% recall, and 50.9% 
precision at 50.9% recall, respectively. INSP showed a favorable 
balance between the prediction precision and recall, but NLS 
prediction seems to be still difficult because the cNLS sequence 
patterns are often observed in non-nuclear protein sequences 
(i.e., false positives).

Nuclear export signals function as essential regulators for 
the export of hundreds of distinct cargo proteins by interacting 
with CRM1. So far, 11 consensus patterns of NES have been 
proposed by a peptide-library study and structure analyses 
of CRM1-NES (Kosugi et  al., 2008b; Fung et  al., 2015, 2017). 
In general, NESs are represented by Φ0-x1-2-Φ1-(x)2-3-Φ2-(x)2-

3-Φ3-x-Φ4 (Φ1-4 denote Leu, Val, Ile, Phe, and Met while 
x is any amino acid. Φ0 is not restricted to the hydrophobic 
amino acids). Those hydrophobic residues in Φ0–Φ4 are 
bound to the corresponding hydrophobic pockets in CRM1. 
Based on the pattern of these Φ’s and spacing sequences, 
the NES motifs are classified into seven classes and four 
additional reverse classes, representing binding in the opposite 
direction. Several prediction tools for NESs, such as NetNES 
(La Cour et al., 2004), NESsential (Fu et al., 2011), NESmapper 
(Kosugi et  al., 2014), Wregex (Prieto et  al., 2014), LocNES 
(Xu et  al., 2015), and NoLogo (Liku et  al., 2018) have been 
developed, representing the consensus sequences with regular 
expressions or PSSMs as well as biophysical properties (disorder 
propensity, solvent accessibility, and secondary structure 
information). Among those tools, LocNES outperformed other 
prediction tools; however, the precision is ~50% at 20% recall. 
The low performance is caused by high false-positive rates. 
As mentioned above, the NES consensus patterns are simple 

and commonly observed in other protein sequences. Thus, 
it seems to be difficult to improve the prediction performance 
by only using the sequence information. Recently, Lee et  al. 
(2019) provided a comprehensive table for cargo proteins, 
containing the location of the NES motifs with the disordered 
propensity, the predicted secondary structures, and the 
conserved domain information. They also proposed a structure 
modeling-based prediction which predicts the binding energy 
of the NES peptide bound to the binding groove of CRM1, 
using multiple structures of CRM1-NES peptide complex as 
templates (Lee et  al., 2019). The structure-based methods 
performed at the same level as LocNES in recall rate but 
outperformed LocNES in specificity and false-positive rate. 
Thus, combining sequence-based and structure-based 
predictions seems promising in significantly improving the 
NES prediction. Moreover, NLSdb, which is a database 
containing NLSs and NESs, has been recently updated 
(Bernhofer et  al., 2018). In this update, the potential set of 
novel NLSs and NESs has been generated by an in silico 
mutagenesis protocol. Then, the potential NLSs and NESs 
match at least one nuclear protein but do not match any 
non-nuclear proteins. The updated NLSdb contains 2,253 
NLSs (1,614 are potential NLSs) and 398 NESs (192 are 
potential NESs). The data would be useful to further improve 
the NLS and NES prediction performances.

Prediction of Subcellular Localization Site 
of Protein in a Cell
Existing methods for predicting subcellular localization sites 
can be  grouped into four categories. The first category of 
prediction methods uses only sequence-based features. Some 
sequence-based features are used in localization site prediction 
because their differences are empirically known to be correlated 
with the differences between localization sites. Such empirical 
features include the frequency of dipeptides, n-grams, and 
k-mers as well as the pseudo amino acid composition of 
the entire amino acid sequence (or that of predicted mature 
sequence). Pseudo amino acid composition is more informative 
in terms of incorporating sequence-order information of a 
protein sequence (Chou, 2001). These empirical sequence-
based features have also been popular in various amino acid 
sequence-based predictions. Besides these systematically 
defined features, sequence features of various known targeting 
signals are more or less useful, as mentioned above. Functional 
motifs are also used in the prediction because sequence 
motifs associated with the function of a protein are closely 
related to its localization site (for example, a protein containing 
a DNA-binding motif is likely to be localized in the nucleus). 
The first sequence-based method was PSORT (I) (Nakai and 
Kanehisa, 1992), which was developed about 30  years ago, 
and later many other methods, such as WoLF PSORT 
(Horton et al., 2007), CELLO2.5 (Yu et al., 2006), and DeepLoc 
(Almagro Armenteros et  al., 2017), have been developed. 
WoLF PSORT is an update of PSORT II (Horton and Nakai, 
1997), which converts the input amino acid sequences into 
a numerical vector consisting of amino acid composition and 
PSORT/iPSORT (Nakai and Kanehisa, 1992; Bannai et al., 2002) 
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localization features, and then classifies proteins into subcellular 
locations with a weighted k-NN classifier. CELLO2.5 is a 
two-level SVM classifier system: the first level comprises a 
number of SVM classifiers, each based on distinctive sets 
of feature vectors generated from amino acid sequence data, 
and the second level SVM classifier functions as the jury 
machine to generate the probability distribution of decisions 
for possible localizations. Recently, several deep learning-
based predictors are developed. DeepLoc is their representative. 
DeepLoc uses recurrent neural networks (RNNs) with long 
short-term memory (LSTM) cells that process the entire 
amino acid sequence and an attention mechanism identifying 
sequence regions important for the subcellular localization.

The second category of predictors uses annotation-based 
features obtained from experimental evidence. GO terms, 
localization annotation in UniProt, functional domain, protein-
protein interaction, and literature information from PubMed 
abstracts are categorized into this type of features. mGOASVM 
(Wan et al., 2012) is a predictor for the subcellular localization 
of multi-location proteins based on GO-terms. In mGOASVM, 
multi-label GO vectors, which are the occurrences of GO terms 
of homologous proteins, are constructed, and then GO vectors 
are recognized by SVM classifiers equipped with a decision 
strategy that can produce multiple-class labels for a query 
protein. pLoc-mEuk (Cheng et  al., 2018) is recently developed 
by extracting the key GO information into “Chou’s general 
Pseudo Amino Acid Composition.” pLoc-mEuk can also deal 
with proteins with multiple locations. Generally speaking, 
however, compared with those features, the transfer of localization 
annotation from homologous protein seems to be  simpler and 
more useful. We previously pointed out that a simple homology-
based inference outperforms methods based on machine learning 
if a homologous protein with localization annotation is available 
(Imai and Nakai, 2010).

The third category is the predictors combining sequence-
based and annotation-based features, such as MultiLoc2 (Blum 
et  al., 2009), SherLoc2 (Briesemeister et  al., 2009), YLoc 
(Briesemeister et  al., 2010), and LocTree3 (Goldberg et  al., 
2014). MultiLoc2 utilizes an SVM predictor, MultiLoc (Höglund 
et  al., 2006), which is based on overall amino acids and the 
presence of known sorting signals, combined with phylogenetic 
profiles and GO terms. SherLoc2 combines MultiLoc2 and 
EpiLoc (Brady and Shatkay, 2008), a prediction system based 
on features derived from PubMed abstracts. YLoc is based on 
a simple naive Bayes classifier, which combines various features 
ranging from simple amino acid composition to annotation 
information, like PROSITE domains, and GO terms from close 
homologs. LocTree3 improves over a machine learning-based 
predictor, LocTree2 (Goldberg et al., 2012), by the combination 
of the machine learning-based method with a homology-based 
inference transfer through PSI-BLAST.

The fourth category is the ensemble of several prediction 
methods (meta-servers), which collects prediction scores of 
several predictors, and then they are trained by a machine 
learning technique, such as the Random Forest classifier 
and SVM. SubCons (Salvatore et  al., 2017) is a recent 
ensemble method, which combines four predictors (CELLO2.5, 

LocTree2, MultiLoc2, and SherLoc2) using a Random Forest 
classifier. BUSCA also integrates different prediction methods. 
Prediction pipeline of BUSCA consists of predictors for 
targeting signals [DeepSig (Savojardo et  al., 2018a) and 
TPpred3 (Savojardo et al., 2015)], for GPI-anchors [PredGPI 
(Pierleoni et  al., 2008)], for transmembrane domains 
[ENSEMBLE3.0 (Martelli et al., 2003) and BetAware (Savojardo 
et al., 2013)], and for discriminators of subcellular localization 
of both globular and membrane proteins [BaCelLo (Pierleoni 
et  al., 2006), MemLoci (Pierleoni et  al., 2011), and SChloro 
(Savojardo et  al., 2017)].

Recent Benchmarks for Subcellular 
Localization Prediction
Evaluation of prediction performance of subcellular localization 
prediction is often difficult due to the following reasons: (i) 
There are often overlaps between their own training data and 
the test data of different methods. In those cases, the 
performances could be  overestimated. (ii) Comparison of 
sequence-based methods with annotation-based methods or 
methods combining sequence- and annotation-based methods 
tends to be  unfair. For example, the measured accuracy of 
annotation-based methods would become apparently higher 
if the majority of test data used for sequence-based methods 
are included in the databases used for the prediction by 
annotation-based methods.

To evaluate the prediction performance with less bias, 
Salvatore et  al. recently made a benchmark dataset which 
consists of proteins containing identical subcellular annotations 
in at least two out of the three resources (Salvatore et  al., 
2017): two large-scale study data on subcellular localization 
of human proteins (Uhlen et  al., 2010; Fagerberg et  al., 2011; 
Breckels et  al., 2013; Christoforou et  al., 2014) and proteins 
with “manually curated” annotation of subcellular localization 
in UniProt (UniProt Consortium, 2019). Then, they examined 
the performance of six state-of-the-art methods [CELLO2.5 
(Yu et  al., 2006), LocTree2 (Goldberg et  al., 2012), MultiLoc2 
(Blum et al., 2009), SherLoc2 (Briesemeister et al., 2009), WoLF 
PSORT (Horton et  al., 2007), and YLoc (Briesemeister et  al., 
2010)] as well as SubCons (Salvatore et  al., 2017) for eight 
localization sites (nucleus, mitochondria, ER, Golgi apparatus, 
lysosome, peroxisome, plasma membrane, and cytoplasm). They 
used the Generalized Squared Correlation (GC2; Baldi et  al., 
2000) for performance evaluation. GC2 is a subtype of Gorodkin 
measure (Gorodkin, 2004), which can be seen as a generalization 
of MCC that applies to K-categories. The Gorodkin measure 
is more informative than the accuracy measure when there is 
an imbalance of classes. For K  =  2, the Gorodkin measure 
squared is GC2. In this assessment, SubCons showed the best 
overall prediction performance, GC2  =  0.32, and the second 
best was SherLoc2 (GC2  =  0.27). On the other hand, during 
the development of DeepLoc (Almagro Armenteros et al., 2017), 
the authors made an independent test set by performing a 
stringent homology partitioning against experimentally annotated 
protein data in UniProt. Homologous proteins that fulfill a 
certain threshold of similarity were clustered, and then each 
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cluster of homologous proteins was assigned to one of the 
five folds, ensuring that similar proteins were not mixed between 
the different folds. Four were used for the training and validation 
while the remaining one for testing. Using the test set, they 
compared the prediction performance of DeepLoc with the 
above six methods (CELLO2.5, LocTree2, MultiLoc2, SherLoc2, 
WoLF PSORT, and YLoc) and iLoc-Euk (Chou et  al., 2011) 
in 10 localization sites (extracellular and plastid are added 
into the above eight localization sites). DeepLoc showed the 
best Gorodkin measure of 0.735, and the second and third 
best were achieved by iLoc-Euk at 0.682 and YLoc at 0.533, 
respectively.

Although efforts to evaluate the prediction performance with 
less bias have been made, more efforts seem to be  necessary. 
According to recent benchmarking reports based on human 
data sets and membrane proteins (Orioli and Vihinen, 2019; 
Shen et al., 2020), sequence-based methods tend to show lower 
performance than annotation-based methods, including meta 
methods. However, a certain number of proteins (or their 
highly homologous ones) in the benchmark test data seem to 
be included in the database used in annotation-based methods. 
In addition, methods trained and tested with newly constructed 
data tend to show better performance because older data tend 
to include more mislabeled or questionable examples. Indeed, 
Almagro Armenteros et  al. (2017) pointed out a considerable 
decrease of experimentally confirmed proteins in UniProt after 
a major change in the annotation standards on release 2014_09. 
The prediction performances of machine learning algorithms 
significantly depend on the datasets used. Some of the previously 
developed methods may outperform newer methods when they 
are trained and tested with the latest datasets. For fair assessments, 
performance comparison should therefore be  done in each 
category with standardized benchmark data sets, ensuring 
independence between training and test data sets. Unfortunately, 
to the best of our knowledge, such standardized benchmark 
data sets have not been constructed so far. The data sets used 
in previous studies are often used in the development of novel 
methods. The standardization of prediction performance 
comparison is a big challenge but this is essential and important 
in this field. Recent progress in proteome-wide subcellular 
protein mapping (see below) would provide substantial 
information on the subcellular localization of unverified or 
unseen proteins as well as the information for correcting 
mislabeled proteins, which should be  helpful in constructing 
standardized benchmark data sets, obviously.

PROTEIN LOCALIZATION RESOURCES 
OBTAINED FROM RECENT SPATIAL 
PROTEOMICS APPROACHES

Proteomics data for capturing the spatial distribution of proteins 
at the subcellular level (subcellular protein mapping) are useful 
resources for their predictive studies. Recent advances in high-
throughput microscopy, quantitative mass spectrometry (MS), 
interactome mapping, and machine learning applications for 

data analysis have enabled proteome-wide subcellular protein 
mapping (Lundberg and Borner, 2019; Borner, 2020). Three 
experimental approaches are generally used for spatial proteomics: 
proteome-wide imaging of protein localization, protein–protein 
interaction network analysis, and MS-based organelle profiling. 
All of these approaches have produced numerous available 
data of human protein subcellular localization. The Human 
Cell Atlas provides an invaluable resource of imaging data at 
a single-cell level (localization of 12,003 proteins; Thul et  al., 
2017). The global organellar map based on biotin identification 
(BioID) data is now available as a resource of protein–protein 
interaction network analysis (4,145 proteins; Go et  al., 2019). 
Several organelle profiling resources are obtained from fibroblasts 
(2,533 proteins; Jean Beltran et  al., 2016) and cell lines: HeLa 
(8,710 proteins; Itzhak et  al., 2016), five different cancer cell 
lines (12,418 proteins; Orre et  al., 2019), and U-2 OS (2,412 
proteins; Geladaki et  al., 2019). In addition, organelle profiling 
resources of mouse primary neurons (Itzhak et al., 2017), mouse 
liver (Krahmer et  al., 2018), mouse pluripotent stem cell 
(Christoforou et  al., 2016), rat liver (Jadot et  al., 2017), and 
Saccharomyces cerevisiae (Nightingale et  al., 2019) are 
also available.

Each of these approaches has its own merits for the 
identification of protein localization: the imaging approach 
provides multiple localizations and has a single-cell resolution 
while the MS-based approach can provide peptide-level resolution 
and reveal the differential localization of splicing isoforms, 
proteolytically processed forms, and the isoforms via differential 
post-translational modifications. A recent imaging-based large-
scale study reports that about a half of all proteins are localized 
at multiple compartments, suggesting that there is a shared 
pool of proteins even among functionally unrelated organelles 
(Thul et  al., 2017). Prediction of proteins that exist in two or 
more subcellular location sites is an important issue for 
understanding the biological process in a cell. A recent review 
summarizes the prediction methods that can deal with proteins 
with multiple locations (Chou, 2019).

A number of differentially localized isoform pairs were found 
by MS-based approaches (Christoforou et  al., 2016; Geladaki 
et  al., 2019). Such localization change at the isoform level is 
an interesting issue in terms of targeting signal usage. Protein 
isoforms seem to be  generated by a stress response or in a 
tissue-specific manner. Thus, a number of localization changes 
at the isoform level may have been unidentified still. For 
mitochondrial proteins, we  previously applied MitoFates to 
search for differentially-localized candidates of isoforms and 
obtained 517 genes, which were 44% of the predicted 
mitochondrial genes (Fukasawa et  al., 2015), suggesting that 
the major localization changes of mitochondrial protein isoforms 
are regulated by the changes in their N-terminal targeting 
signal. Recently, relative protein levels of more than 12,000 
genes across 32 normal human tissues were quantified and 
tissue-specific or tissue-enriched proteins were identified (Jiang 
et al., 2020). Also, they identified a total of 2,436 tissue-enriched 
protein isoforms. Those isoforms may be  useful for the 
investigation of tissue-specific localization changes at the 
isoform level.
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Multiple localization proteins and localization changes among 
isoforms imply potential “moonlighting” activity. Comprehensive 
analyses of these proteins should boost our further understanding 
in cell biology.

CONCLUSION

A number of computational tools for the analyses of protein 
subcellular localization are introduced in this review. Although 
many of the localization sites of a given protein would be  able 
to be  predicted through a mere homology transfer nowadays, 
we  would like to emphasize that the subcellular localization 
prediction problem is not a pedantic one at all. The authors 
believe that the in silico accumulation of various knowledge 
on protein sorting/targeting processes is important. Prediction 
methods can be  used for assessing how much we  understand 
these processes quantitatively. The future methods should 
be  useful for various purposes, such as for the evaluation of 
artificial proteins, for understanding why some proteins are 

localized at multiple positions and for inferring how tissue-
specific and/or condition-specific isoforms can change their 
localization sites. Therefore, in our opinion, the knowledge-
based approach would be  most important in the future of 
this field and such knowledge should be  integrated into the 
wider knowledge on the in vivo fate of proteins since all of 
the processes are interrelated with each other (Nakai, 2001).
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Stem cells from fetal tissue protect against aging and possess greater proliferative
capacity than their adult counterparts. These cells can more readily expand in vitro
and senesce later in culture. However, the underlying molecular mechanisms for
these differences are still not fully understood. In this study, we used a robust rank
aggregation (RRA) method to discover robust differentially expressed genes (DEGs)
between fetal bone marrow mesenchymal stem cells (fMSCs) and aged adult bone
marrow mesenchymal stem cells (aMSCs). Multiple methods, including gene set
enrichment analysis (GSEA), Gene Ontology (GO) analysis, and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis were performed for functional
annotation of the robust DEGs, and the results were visualized using the R software.
The hub genes and other genes with which they interacted directly were detected
by protein–protein interaction (PPI) network analysis. Correlation of gene expression
was measured by Pearson correlation coefficient. A total of 388 up-regulated and
289 down-regulated DEGs were identified between aMSCs and fMSCs. We found
that the down-regulated genes were mainly involved in the cell cycle, telomerase
activity, and stem cell proliferation. The up-regulated DEGs were associated with cell
adhesion molecules, extracellular matrix (ECM)–receptor interactions, and the immune
response. We screened out four hub genes, MYC, KIF20A, HLA-DRA, and HLA-DPA1,
through PPI-network analysis. The MYC gene was negatively correlated with TXNIP,
an age-related gene, and KIF20A was extensively involved in the cell cycle. The results
suggested that MSCs derived from the bone marrow of an elderly donor present a
pro-inflammatory phenotype compared with that of fMSCs, and the HLA-DRA and HLA-
DPA1 genes are related to the immune response. These findings provide new insights
into the differences between aMSCs and fMSCs and may suggest novel strategies for
ex vivo expansion and application of adult MSCs.

Keywords: bone marrow mesenchymal stem cell, fetal stem cell, adult setm cell, robust rank aggregation,
hub genes
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INTRODUCTION

Stem cells can be isolated at all stages of ontogeny, from the early
developing embryo to the post-reproductive adult organism.
Adult stem cells are less potent than embryonic stem cells, but
still play a very important role in maintaining overall health (Jin,
2017). Adult bone marrow was the first source of mesenchymal
stem cells (MSCs) to be identified and is still by far the best
characterized (Friedenstein et al., 1987; Kolf et al., 2007; Lv
et al., 2014). These cells hold great promise as seed cells in
tissue engineering and regenerative medicine, based on their self-
renewal, multi-differentiation, and immunoregulation abilities
(Dogan et al., 2014; Wei et al., 2015; Castagnini et al., 2016;
Mehrabani et al., 2016). However, there is growing evidence that
demonstrates that the number of bone marrow-derived MSCs
is limited and declines with the age of the donor (Dexheimer
et al., 2011). Thus, long-term cell culture is needed to obtain large
numbers of cells suitable for clinical applications. However, MSCs
may undergo senescence, as well as impaired function during
ex vivo expansion (Turinetto et al., 2016).

Although fetal and adult MSCs share the same morphology
and surface molecules, previous studies have shown that MSCs
from fetal tissues are more adaptable, with greater self-renewal
capacity, both in vivo and in vitro (O’Donoghue and Fisk, 2004;
Guillot et al., 2007; Ding et al., 2011). The prevalence of MSCs
in fetal bone marrow is significantly higher than that in adult
tissue (O’Donoghue and Fisk, 2004; Ding et al., 2011). Fetal MSCs
are readily expandable in vitro, with a shorter doubling time,
and display no obvious change in phenotype after 20 passages
(Campagnoli et al., 2001). Existing research recognizes the critical
role telomerase plays in self-renewal and the replicative potential
of stem cells (Hayflick, 2000). Comparative studies of fetal liver
hematopoietic stem cells (HSCs) and adult bone marrow HSCs
have confirmed that fetal stem cells have higher telomerase
activity and again suggest that proliferative potential is limited
and declines with age (Verfaillie et al., 2002). In addition,
telomere length is longer in fetal MSCs (Xu et al., 2016).

Another advantage of MSCs is their immunomodulatory
properties (Chen et al., 2011; Andrzejewska et al., 2019).
Bone marrow MSCs (BM-MSCs) from both adults and fetuses
reportedly possess immune-suppressive effects. Fetal MSCs
display immunological inertness and appear to have stronger
immunomodulatory abilities than their adult counterparts
(Götherström et al., 2005; Chang et al., 2006).

Mesenchymal stem cells isolated from fetal tissue may
therefore have greater potential for clinical application, but the
exact mechanisms by which they exert their effects are still
not very clear. Moreover, the application of fetal tissue is not
widely accepted and is still being debated. Understanding the
difference between fetal and adult stem cells and their regulatory
mechanisms may provide new insights for the clinical application
of adult stem cells.

In this study, two existing datasets from Gene Expression
Omnibus (GEO) were analyzed by the robust rank aggregation
(RRA) method, which facilitates the detection of genes that
are ranked consistently in multiple datasets and assigns a
significance score for each gene (Reimand et al., 2010). This

method was used to identify robust differentially expressed
genes (DEGs) between MSCs derived from elderly adult bone
marrow and fetal bone marrow. Functions of these robust DEGs
were then explored by gene set enrichment analysis (GSEA),
Gene Ontology (GO), and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses. Using protein–protein interaction
(PPI) network analysis, we screened out four hub genes, MYC,
KIF20A, HLA-DRA, and HLA-DPA1, which were closely related
to function. Furthermore, GO and KEGG enrichment analyses
were utilized to verify potential biological functions of hub genes
and their first neighbors.

MATERIALS AND METHODS

Microarray Data Information
All available datasets were acquired from the GEO database1.
The screening criteria of datasets were inclusion of gene
expression data of BM-MSCs from fetal and aged donors.
Eventually, two datasets, GSE97311 (Spitzhorn et al., 2019) and
GSE68374 (Paciejewska et al., 2016), were included in the study.
Series matrix files and platform information of GSE97311 and
GSE68374 were downloaded from the GEO database for further
study. The GSE97311 dataset contained three fetal femur-derived
MSC samples and four adult MSC samples. The GSE68374
dataset included three biological replicates for both fetal and
adult bone marrow-derived MSC samples.

Data Processing and Identification of
Robust DEGs
The microarray data of GSE97311 and GSE68374 were initially
normalized and differential expression was analyzed using the
R software though the “limma” package (Ritchie et al., 2015).
The results were presented on a volcano plot (Li, 2012). We
then used the “RobustRankAggreg” package (Reimand et al.,
2010) to integrate the differential expression results of the two
datasets to identify the robust DEGs. As this RRA method screens
genes ranked consistently better than expected based on null
hypothesis of uncorrelated inputs, batch effect correction is not
needed (Liu et al., 2018). Benjamini–Hochberg’s method was used
to control the false discovery rate (FDR). The P-value of each
gene represents its ranking in the final gene list. Genes with a
P-value < 0.05 and | logFC| > 1 in the final list were considered
significant DEGs for the next mining. The R package “pheatmap”
was used to visualize expression patterns of the top 40 DEGS
(top 20 up-regulated genes and top 20 down-regulated genes)
from RRA analysis.

Gene Set Enrichment Analysis (GSEA)
The following sets were downloaded from the Molecular
Signatures Database version 7.12: H.all.v7.symbles.gmt,
c2.cp.kegg.v7.1.symbols.gmt, and other interesting gene
sets involved in the oxidative response, production of
interleukin 6, telomerase activity, and stem cell self-renewal

1www.ncbi.nlm.nih.gov/geo/
2www.gsea-msigdb.org/gsea/msigdb/index.jsp
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in c5.bp.v7.1.symbols.gmt. The GseaPreranked tool was then
used to perform enrichment analysis for all the DEGs integrated
via RRA method, which are ranked by log FC from large to small.
Gene set permutations were performed 1000 times for each
analysis. We then visualized the results of GSEA using “ggplot2”
in the R package (Ito and Murphy, 2013).

Functional Enrichment Analysis of
Robust DEGs
BinGO (Maere et al., 2005), a plug-in of Cytoscape, was used for
GO enrichment. The KEGG pathway analyses were conducted
by the R package “clusterprofiler” (Yu et al., 2012). The GO
terms and KEGG pathways with adjusted P-value < 0.05 were
considered statistically significant and visualized by the “GOplot”
package (Walter et al., 2015). The Z-score was calculated,
which hinted at whether the biological process (or/molecular
function/cellular component) or KEGG pathway was more likely
to be reduced (negative value) or increased (positive value).

z − score = \frac
{(

up− down
)}
{

√
{count}}

Identification of Hub Genes and Their
First Neighbors by PPI Network Analysis
The DEGs with P < 0.001 were defined as the most robust
DEGs and uploaded to the STRING database to establish a PPI
network (Szklarczyk et al., 2017). Interaction scores > 0.4 were
set as the cut-off point. The STRING analysis results were then
imported into the Cytoscape software version 3.8.0, and the
network was ranked by degree and betweenness methods using
the cytoHubba plug-in (Chin et al., 2014) to select hub genes.
Hub genes were screened according to the degree score > 10 and
ranked at the top 10 of total genes, sorted by the betweenness
method. We then selected the first neighbors of hub genes that
were directly related to the hub genes, to construct their sub-
networks, respectively.

Correlation Analysis and Functional
Enrichment Analysis
Correlations were analyzed by Pearson’s correlation (Schober
et al., 2018) for genes involved in the sub-network, which
was built by hub gene and its first neighbors. Genes with a
Pearson’s correlation coefficient greater than 0.5 were considered
most significant correlation with hub genes and were selected
for GO annotation and KEGG pathway enrichment analysis.
A total of 13 samples were included in correlation analysis
and the expression of genes was obtained from GSE97311 and
GSE68374 datasets.

RESULTS

Identification of Robust DEGs by the
RRA Method
The expression profiles of aged adult BM-MSCs (aMSCs) were
compared with those of fetal BM-MSCs (fMSCs). Based on the
screening criteria of P < 0.05 and | logFC| > 1, a total of

933 DEGs were identified from GSE97311, including 553 up-
regulated genes and 380 down-regulated genes (Figure 1A).
In addition, 993 DEGs, including 496 up-regulated genes and
497 down-regulated genes, were identified from GSE68374,
according to the same criteria (Figure 1B). We integrated
the results of the two datasets using the RRA method, and
obtained 14,024 up-regulated genes and 9872 down-regulated
genes (Supplementary Table S1), which finally yielded 677
robust DEGs. A heatmap of the top 20 up-regulated robust
genes and top 20 down-regulated robust genes are presented
in Figure 1C, and a complete list of the robust DEGs is
provided in Supplementary Table S2. The most significant up-
regulated gene was AKR1C3 (P = 4.24E-07, logFC = 4.005),
followed by FMO3 (P = 4.79E-06, logFC = 3.849), and TMEM140
(P = 5.60E-06, logFC = 3.385). Moreover, FBN (P = 2.02E-
06, logFC = −3.449); SCD (P = 4.05E-06, logFC = −3.363);
CLDN1 (P = 5.60E-06, logFC =−3.209) were the most significant
down-regulated genes.

GSEA Reveals Differences Between
aMSCs and fMSCs
The ranked list of DEGs is shown in Supplementary Table S3.
Results of GSEA for KEGG pathways revealed that most up-
regulated DEGs in aMSCs were related to immune-related
diseases (Figure 2A), and down-regulated DEGs were abundant
in the cell cycle, ribosome pathway, and spliceosome pathway
(Figure 2C). Using hallmark gene sets, the interferon response
and myogenesis were enriched in aMSCs (Figure 2B). Moreover,
E2F targets, the G2M checkpoint, and MYC targets were enriched
in fMSCs (Figure 2D). Gene sets with the highest enrichment
scores were all associated with the cell cycle. All gene sets were
significantly enriched at an FDR < 0.05.

Analysis of Gene Sets Related to Aging
and Stem Cell Self-Renewal
To further determine the functions of robust DEGs in specific
biological processes, we performed GSEA analysis related to
aging and stem cell self-renewal. The GO annotation in terms
of response to oxidative stress and IL-6 production enriched in
the aMSC group (Figure 3A). The GO gene sets of telomerase
activity, somatic stem cell population maintenance, stem cell
division, and stem cell proliferation were all enriched in
fMSCs (Figure 3B).

GO and KEGG Enrichment Analysis of
Robust DEGs
Using the BINGO plug-in, we obtained a global perspective
of the changes in gene expression patterns. The up-regulated
DEGs in aMSCs were enriched in biological processes such
as the immune response, response to stimulus, extracellular
structure organization, cell adhesion, and biological adhesion
(Figure 4A). In contrast, down-regulated DEGs were mainly
enriched in the cell cycle and developmental processes
(Figure 4B). Based on the results of KEGG enrichment
analysis, the top five significant pathways were cell adhesion
molecules, complement and coagulation cascades, Staphylococcus
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FIGURE 1 | Identification of differentially expressed genes (DEGs). (A) Volcano plot of DEGs for dataset GSE68374. (B) Volcano plot of DEGs for dataset GSE97311.
(C) The heatmap of the top 40 (20 up-regulated and 20 down-regulated) DEGs according to P-value identified by the RRA method. The number in the heat map
represents log FC. The gradual color ranging from red to green indicates the changing process from up- to down-regulation. Genes circle by black ellipses are the
hub genes screened out by subsequent analysis.

aureus infection, hematopoietic cell lineage, and extracellular
matrix (ECM)–receptor interaction. Unlike the other
pathways, the peroxisome proliferator-activated receptor
(PPAR) signaling pathway was more likely to be inhibited in
aMSCs (Figures 5A,B).

Identification of Hub Genes and Their
First Neighbors
The PPI network established by the most robust DEGs
(P < 0.001) contained 144 nodes and 291 edges. We screened
four hub genes, considering the degree (DC) and betweenness
(BC) centrality (Figures 6A,B). Among them, MYC (DC = 26,
BC = 9816.96488) and KIF20A (DC = 17, BC = 4690.54753)
were up-regulated in the fMSC group, and HLA-DRA (DC = 11,
BC = 2105.09486) and HLA-DPA1 (DC = 11, BC = 2105.09486)
were up-regulated in the aMSC group. We then selected their
first neighbors and structured the respective sub-networks.
As shown in Figures 7A–C, there were 26 nodes and 63
edges in the sub-network of MYC; and 18 nodes and 89
edges in the sub-network of KIF20A. Both HLA-DRA and

HLA-DPA1 were part of the same network, which included 12
nodes and 34 edges.

Correlation Analysis and Functional
Enrichment Analysis of Sub-Networks
We analyzed gene-gene expression correlation coefficients for
genes in sub-networks (Figures 7D–F) and filtered out genes
with a Pearson correlation coefficient > 0.5. Correlation
coefficient, P-values, and coefficient of variation for all the genes
included in the correlation analysis are shown in Supplementary
Tables S4, S5. Some interesting examples are shown in
Supplementary Figure S1. The GO and KEGG pathway analyses
were also performed for these genes (Figures 8A–F). For MYC,
we observed that both MYC and TXNIP, a gene up-regulated
in aMSCs, were involved in negative regulation of cell division.
The KEGG analysis showed that the cell cycle, breast cancer,
oocyte meiosis, and human T-cell leukemia virus 1 infection
were enriched. Several biological processes and GO terms, such
as miotic nuclear division, mitotic sister chromatid segregation,
and nuclear division, were abundant in KIF20A-related genes.
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FIGURE 2 | Gene set enrichment analysis (GSEA) for DEGs. The top three enriched gene sets (according to GSEA enrichment score) in aMSC group: (A) for KEGG;
(B) for HALLMARK. The top three enriched gene sets (according to GSEA enrichment score) in fMSC group: (C) for KEGG; (D) for HALLMARK. All gene sets are
significantly enriched at a false discovery rate (FDR) < 0.05. The location of the vertical bar shows the occurrence of the gene in the ranked list.

Pathways implicated with these genes were similar to MYC and
its closely related neighbors. For HLA-DRA and HLA-DPA1, GO
terms such as antigen processing and presentation of peptide
antigen, and the interferon gamma mediated signaling pathway
were enriched; and KEGG pathways associated with antigen
processing and presentation, hematopoietic cell lineage, and Th
cell differentiation were enriched.

DISCUSSION

Human BM-MSCs (hBM-MSCs) are promising sources
for tissue engineering and regenerative medicine. Human
fetal MSCs (hf-MSCs) have more primitive expression
profiles and greater proliferative capacity than their adult
counterparts (Spitzhorn et al., 2019). These cells can more
readily expand in vitro and senesce later in culture. Both
aMSCs and fMSCs harbor immunomodulatory capacity and
are non-immunogenic, even though some differences have
been reported (Götherström et al., 2005; Chang et al., 2006;
Chen et al., 2011; Andrzejewska et al., 2019). The underlying

molecular mechanisms for these differences are still not
fully understood.

In this study, we used bioinformatics to mine the underlying
molecular mechanisms that explain the difference between
aMSCs and fMSCs. To our best knowledge, this is the first study
to use the RRA method to analyze the difference between aMSC
and fMSC sources in human bone marrow. Götherström et al.
(2005) explored the gene expression profile of MSCs derived
from the fetal liver and adult bone marrow. Other studies have
shown that MSCs derived from different sources possess distinct
biological properties (Berebichez-Fridman and Montero-Olvera,
2018; Kozlowska et al., 2019).

Only two datasets in the GEO database, GSE97311 and
GSE 68374, met our experimental requirements. We performed
robust differential expression profiling analysis using the two
existing GEO datasets and obtained 677 robust DEGs, including
388 up-regulated and 289 down-regulated DEGs in aMSCs
compared with fMSCs. The most significantly up-regulated gene
in aMSCs was AKR1C3. This gene may play an important
role in the pathogenesis of allergic diseases such asthma and
may have a role in controlling cell growth or differentiation.
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FIGURE 3 | Analyses of gene sets related to aging and stem cell self-renewal. (A) Interleukin 6 production (NES = 1.939, FDR q-value = 0.019); positive regulation of
telomerase activity (NES = –1.616, FDR q-value = 0.021); response to oxidative stress (NES = 1.4371426, FDR q-value = 0.076). (B) Somatic stem cell population
maintenance (NES = –1.378, FDR q-value = 0.069); stem cell division (NES = –1.207, FDR q-value = 0.158); stem cell proliferation (NES = –1.266, FDR
q-value = 0.046). The color bar indicates the sort order of genes (blue represents up-regulated in aMSC group and red represents up-regulated in fMSC group). The
location of vertical bar indicates the occurrence of that gene within the ranked list and the height of the bar indicated the enrichment score.

The most significantly up-regulated gene in fMSCs was FBN2,
which regulates the early processes of elastic fiber assembly and
osteoblast maturation.

The GSEA was conducted for all DEGs in the final robust
rank list. Gene sets abundant in fMSCs, such as those associated
with the cell cycle, E2F targets, and MYC targets, were all related
to proliferation. These results further support the notion that
fMSCs have greater self-renewal abilities than aMSCs and are
consistent with earlier observations (Chen et al., 2011). One
unexpected finding was the up-regulated immune response in
aMSCs. We found all of the most significantly enriched gene sets
in aMSCs involved in the immune response. Several reports have
shown that aging leads to the pro-inflammatory phenotype, with
activated innate immune responses (Danilova, 2006; Salminen
et al., 2008). The chronic low-grade inflammatory state of
elderly donors may be the reason for the heightened immune
response of aMSCs.

As previous studies have shown, IL-6 is a reliable aging
parameter and senescent MSCs release excess IL-6 (Salminen
et al., 2008; Suvakov et al., 2019). Thus, we conducted GSEA
on interesting biological processes, including IL-6 production,
telomerase activity, oxidative stress, and stem cell self-renewal.
The results showed enrichment of IL-6 production and oxidative
stress in aMSCs; and enrichment of telomerase activity and stem
cell proliferation related gene sets in fMSCs. These results further
suggest that MSCs derived from elderly adults possess age-related
characteristics. The disadvantages of aMSCs could be partially
attributed to these intrinsic age-related drawbacks.

Consistent with published data, robust DEGs enriched in
several KEGG pathways, such as cell adhesion and ECM-
receptor, which also participate in the immune response, are
reportedly down-regulated pluripotency markers that inhibit
mouse embryonic stem cell self-renewal (Taleahmad et al., 2015).
The PPAR pathway is down-regulated in aMSCs; and this might
be explained by reduced PPAR activity related to increased
inflammation levels in old age (Michalik and Wahli, 2008).
Regarding GO annotation, the up-regulated DEGs in adults
compared with those in fetuses were involved in the immune
response, and cell–cell and cell–ECM contact; whereas down-
regulated expression was observed in aMSCs compared with
fMSCs in cell cycle progression and development.

The PPI network was then constructed by the most robust
DEGs with P-values < 0.001 and |logFC| > 1, to evaluate
the relationship between these genes and identify hub genes.
We detected four hub genes: MYC, KIF20A, HLA-DRA, and
HLA-DPA1 according to BC and DC.

Prior studies have noted the important role of MYC in a
range of cellular processes, including proliferation, the cell cycle,
and pluripotency maintenance in stem cells (Lüscher, 2001;
Kumamoto et al., 2009; Chen et al., 2018). Furthermore, c-MYC
can inhibit replicative senescence caused by telomere damage
by promoting the expression of human telomerase reverse
transcriptase (hTERT), a catalytic subunit of telomerase (Xu et al.,
2001). Past research has revealed that high expression of c-MYC is
associated with increased self-renewal and differentiation, which
is regulated by Sox2 (Park et al., 2012). A recent study showed
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FIGURE 4 | Gene Ontology analyses of robust up-regulated (A) and down-regulated (B) DEGs by BINGO plug-in. There is no enrichment for molecular function in B.
The size of the nodes is proportional to the number of genes in that term. Significance decreases from dark orange (p = 1.00E-9) to yellow (p = 1.00E-4).

that the proliferative capacity of human MSCs derived from bone
marrow is linked to c-MYC expression (Melnik et al., 2019).
Sufficient c-MYC expression may be essential to maintain high
proliferative rates and an undifferentiated state of MSCs during
ex vivo expansion.

In the present study, MYC as a hub gene was up-regulated
in fetal BM-MSCs. We found a negative correlation between the
expression of MYC and TXNIP (correlation coefficient = −0.77).
Oberacker et al. (2018) showed that TXNIP plays a crucial role
in aging processes. Age-related up-regulation of TXNIP results
in reduced resistance to oxidative stress, and thereby accelerates

aging. The present study reveals that fMSCs with high expression
of MYC and low expression TXNIP may explain why fMSCs
possess greater proliferative capacity and are more resistant to
aging. The negative correlation between MYC and TXNIP in
BM-MSCs warrants further research. Nevertheless, we must also
acknowledge that high levels of c-MYC increase the risk of
oncogenesis (Kozlowska et al., 2019).

The mitotic kinesin, KIF20A, is essential for central spindle
organization at anaphase as well as cytokinesis regulation (Zhang
et al., 2019). It is supposedly a key factor in cell proliferation and
invasion in many cancers (Sheng et al., 2018; Zhang et al., 2019).
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FIGURE 5 | Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of robust DEGs. Chord plot (A) and circle plot (B) show the relationship between genes
and KEGG pathways. (A) Chord plot depicting the relationship between genes and the top five KEGG pathways. (B) Circle plot depicting the distribution of genes in
the top 10 KEGG pathways.

FIGURE 6 | DEGs with a P-value < 0.001 ranked by betweenness (A) and degree (B) methods using cytoHubba in Cytoscape. The change of color from orange
red to yellow represents the change of centrality score from high to low.

A recent study showed that KIF20A could reportedly be regulated
by MYC (Pan et al., 2020). There is currently no data regarding
the function of KIF20A in adult stem cells, and the relationship
between MYC and KIF20A is unclear. Our findings suggest that
KIF20A is extensively linked with the cell cycle in BM-MSCs,
and is moderately correlated (correlation coefficient = 0.41)
with MYC.

Another major difference was observed in immunoregulatory
function. Both HLA-DRA and HLA-DPA1 belong to the major
histocompatibility complex class II, are up-regulated in aMSCs,
and mainly involved in antigen procession and presentation.

The aMSCs express intermediate levels of HLA class I and
low levels of HLA class II, while fMSCs express no HLA
class II (Gotherstrom et al., 2003; O’Donoghue and Fisk,
2004). Previous reports have shown that adult MSCs contain
intracellular deposits of class II alloantigen, and their surface
expression can be induced under inflammatory conditions, such
as in the presence of INFγ (Gotherstrom et al., 2003; Ryan
et al., 2005). The BM-MSCs can therefore be recognized by
allogeneic lymphocytes, possess immunomodulatory properties
in vitro, and suppress the proliferation of activated lymphocytes
(Ryan et al., 2005; Chen et al., 2011). However, Gallipeau and
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FIGURE 7 | Sub-networks (A–C) and correlation matrixes (D–F) of hub genes and their first neighbors: (A,D) MYC; (B,E) KIF20A; (C,F) HLA-DRA and HLA-DPA1.

FIGURE 8 | Interactive genes of hub-genes were filtered by a Pearson correlation coefficient > 0.5 and GO (A–C) and KEGG pathway (D–E) analyses were
performed for these genes. GO and KEGG analyses for (A,D) interactive genes of MYC; (B,E) interactive genes of KIF20A; (C,F) interactive genes of HLA-DRA and
HLA-DPA1. Cut off = adjust P < 0.05, the top four are shown in plot.

colleagues proposed discrepancies in the immune-suppressive
activities of MSCs arising from intrinsic variability of each donor
source, with an average age > 65 years (Romieu-Mourez et al.,
2012). Furthermore, the immunomodulation of MSCs can be
regulated by inflammatory conditions; in low-level inflammatory
microenvironments, BM-MSCs promote inflammation and act
as antigen-presenting cells (Betancourt, 2013). The BM-MSCs
from elderly donors in this study seemed to have a pro-
inflammatory phenotype, which may be due to the chronic
low-grade inflammatory conditions of aged donors.

As for cancerous condition, there is a growing body of
evidence suggests that it plays a key role in the maintenance and
progression of tumor. Fernando et al. highlight the importance
of tumor microenvironment, especially for MSC, in multiple
myeloma (MM) (Fernando et al., 2019). The telomeric length of
MM – MSC is more lower and genes, such as CDC20, CDC6,
involved in cell cycle are decrease in expression, which exhibit
similar down-regulated in aMSCs. However, immune response
related genes, for instance, HLA-DRA, are also down-regulated
in MM – MSC, which is up-regulated in aMSCs.
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CONCLUSION

Through data mining and network analysis, we detected four hub
genes, MYC, KIF20A, HLA-DRA, and HLA-DPA1. Expression of
the MYC gene was negatively correlated with that of TXNIP,
a known senescence-associated gene. Furthermore, KIF20A is
extensively linked with the cell cycle. The other two core
genes, HLA-DRA and HLA-DPA1, are implicated in the immune
response and may be induced by age-related inflammatory
conditions. We infer that BM-MSCs derived from elderly
donors may have age-related drawbacks. These cells show lower
proliferative capacity and a pro-inflammatory phenotype. More
experiments are required for further verification of these findings.
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Background: Prostate cancer (PCa) is occurred with increasing incidence and

heterogeneous pathogenesis. Although clinical strategies are accumulated for PCa

prevention, there is still a lack of sensitive biomarkers for the holistic management in

PCa occurrence and progression. Based on systems biology and artificial intelligence,

translational informatics provides new perspectives for PCa biomarker prioritization and

carcinogenic survey.

Methods: In this study, gene expression and miRNA-mRNA association data

were integrated to construct conditional networks specific to PCa occurrence and

progression, respectively. Based on network modeling, hub miRNAs with significantly

strong single-line regulatory power were topologically identified and those shared by

the condition-specific network systems were chosen as candidate biomarkers for

computational validation and functional enrichment analysis.

Results: Nine miRNAs, i.e., hsa-miR-1-3p, hsa-miR-125b-5p, hsa-miR-145-5p,

hsa-miR-182-5p, hsa-miR-198, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-34a-5p, and

hsa-miR-499a-5p, were prioritized as key players for PCa management. Most of these

miRNAs achieved high AUC values (AUC > 0.70) in differentiating different prostate

samples. Among them, seven of the miRNAs have been previously reported as PCa

biomarkers, which indicated the performance of the proposed model. The remaining

hsa-miR-22-3p and hsa-miR-499a-5p could serve as novel candidates for PCa

predicting and monitoring. In particular, key miRNA-mRNA regulations were extracted

for pathogenetic understanding. Here hsa-miR-145-5p was selected as the case and

hsa-miR-145-5p/NDRG2/AR and hsa-miR-145-5p/KLF5/AR axis were found to be

putative mechanisms during PCa evolution. In addition, Wnt signaling, prostate cancer,

microRNAs in cancer etc. were significantly enriched by the identified miRNAs-mRNAs,

demonstrating the functional role of the identified miRNAs in PCa genesis.
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Conclusion: Biomarker miRNAs together with the associated miRNA-mRNA relations

were computationally identified and analyzed for PCa management and carcinogenic

deciphering. Further experimental and clinical validations using low-throughput

techniques and human samples are expected for future translational studies.

Keywords: miRNA biomarker, prostate cancer management, miRNA-mRNA network modeling, miRNA regulatory

pattern, systems biology

INTRODUCTION

Prostate cancer (PCa) is a kind of malignant tumors which ranks
first in the incidence of male leading cancer types according
to the reports from Cancer Statistics 2020 (Siegel et al., 2020).
It has been acknowledged that the occurrence and progression
of PCa are highly heterogeneous, resulting in the difficulty in
PCa precision medicine and personalized healthcare. In clinical
practice, although the level of serum prostate-specific antigen
(PSA) and multi parameter Magnetic Resonance Imaging (MRI)
techniques are widely tested for PCa screening, the sensitivity and
specificity are still need to be measured for improving positive
detection rate and avoiding unnecessary biopsy.

As a class of post-transcriptional regulators, microRNAs
(miRNAs) are found to be active in carcinogenesis, including
PCa (Khanmi et al., 2015). Extensive efforts showed that miRNAs
could regulate down-stream messenger RNAs (mRNAs) though
complementary base pairing and eventually affect the signal
transmission of pathways and the function of cellular activities
(Esteller, 2011). Currently, the identification and prioritization of
miRNAs as biomarkers for PCa theranostics is of clinical interest,
which would help the early diagnosis, prognosis tracking and
targeted therapy of PCa patients (Bhagirath et al., 2018;Wei et al.,
2020).

In the era of artificial intelligence and biomedical informatics,
data-driven translational PCa research brings a new frontier for
systems modeling of complex genetic interactions (Lin et al.,
2020). The structural characteristics within biological networks
offer great opportunities for understanding cancer heterogeneity
at systems biology level (Liu Y. Y. et al., 2011). Accumulating
evidences have demonstrated the functional importance of hub
nodes in gene network for prioritizing key players during PCa
development. For example, Zhu et al. identified five miRNAs
and seven genes for predicting the biochemical recurrence-free
survival of PCa by evaluating the significance of differential
expression and the location of genes in the network (Zhu et al.,
2020). Analogously, Tu et al. proposed an integrated framework
that considers both dynamical changes of gene expression and
static features in protein-protein network for extracting key
miRNA-mRNA pairs associated with docetaxel resistance in PCa
(Tu et al., 2019).

It is reasonable that hub genes are located in the center of the

network by directly connect more partner genes to control the

information flow. In addition to such regulatory pattern, special
structures hidden in the network are still worth being explored
for investigating the strength of genes in network stability.
Biomarkers hold the power to indicate the dynamical alternations

in biological systems, searching for vulnerable hallmarks from
miRNA-gene regulations would therefore provide crucial clues
for cancer biomarker discovery (Lin et al., 2019). In our
previous studies, we found that a certain number of genes were
independently regulated by single miRNAs and a new parameter,
i.e., NSR (number of single-line regulation) was defined based
on network vulnerability theory to quantify the single-line
regulation of miRNAs in miRNA-mRNA network. According
to statistical evidences, miRNAs with higher NSR values were
structurally important to serve as candidate biomarkers for
cancer management (Lin et al., 2018b), and five miRNAs were
computationally screened and validated for PCa metastasis (Lin
et al., 2018a).

On the basis of our previous findings, in this study we expand
our research interest and update the bioinformatics framework
to identify key miRNAs functionally important in the whole
process during PCa evolution as both of the diagnosis and
metastasis monitoring are hot topics for precision medicine.
In methodology, two PCa condition-specific miRNA-mRNA
networks, i.e., PCa occurrence and progression-specific network,
are respectively constructed and characterized based on the
integration of novel gene expression and network topological
signatures. Meanwhile potential miRNA-mRNA pairs in PCa
evolution are deciphered for functional survey and multi-level
carcinogenesis understanding. In particular, the traditional hub
property is improved by combing and measuring the single-line
regulatory power of miRNAs in the computational simulation
process, which would enhance the overall predictive performance
and biological significance of the bioinformatics model. The
schematic pipeline is shown in Figure 1.

MATERIALS AND METHODS

Dataset Collection and Processing
The miRNA and mRNA datasets were both collected from
gene expression omnibus (GEO) (Edgar et al., 2002), where
the super-series GSE21032 provides the integrative genomic
profiling of human PCa (Taylor et al., 2010), including the
clinically localized primary PCa (pPCa), metastatic PCa (mPCa)
and the normal adjacent benign prostate samples. Here the
normalized datasets of sub-series GSE21036 and GSE21034
were downloaded for further analysis. As illustrated in Table 1,
GSE21036 contains a total of 99 pPCa, 14 mPCa and 28
normal miRNA samples screened by Agilent-019118 Human
microRNA Microarray 2.0 G4470B platform, whereas GSE21034
consists of the whole-transcript expression data for 131 pPCa,
19 mPCa, and 29 normal control prostate samples profiled on
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FIGURE 1 | The schematic pipeline of this study. PCa, prostate cancer; pPCa, clinically localized primary prostate cancer; mPCa, metastatic prostate cancer; DE,

differentially expressed; eBayes, empirical bayes; BH FDR, Benjamini-Hochberg false discovery rate.

Affymetrix Human Exon 1.0 ST Array. In addition, GSE54516
with miRNA expression data measured in prostate benign
and tumor tissues using miRNA Taqman plates was chosen
as an independent dataset for result validation (Gu et al.,
2015).

To ensure the specificity of the RNAs in PCa genesis,
differential expression analysis was performed and compared
among different sample groups, i.e., normal vs. PCa and
pPCa vs. mPCa. Based on the evaluation of statistics
approaches for generating differentially expressed (DE)
genes from Microarray data (Jeffery et al., 2006), the
empirical bayes (eBayes) method was chosen for raw p-
value calculation (Smyth, 2004) and the Benjamini-Hochberg
false discovery rate (FDR) was then applied to adjust raw
p-values. For the gene associated with multiple probes, the
probe with the most significant variation was selected and
assigned. The criterion for DE-miRNA and DE-mRNA
identification was defined as the adjusted p-value (adj.
p-value) < 0.05.

Model Development Based on Network
Construction and Characterization
The bioinformatics model was developed based on the
characterization of miRNA regulation in PCa condition-
specific miRNA-mRNA network. As shown in Figure 1, a human
global miRNA-mRNA network was first constructed as the
reference by integrating both experimentally validated and
computationally predicted miRNA-mRNA pairs from public
databases and software tools (Lin et al., 2018b). Then DE-
miRNAs and DE-mRNAs were mapped onto the given network
to extract PCa condition-specific networks. In this study a total
of two networks, i.e., PCa occurrence-specific and progression-
specific networks, were measured, respectively, where the former
described the role of miRNAs in PCa occurrence process and
the latter simulated miRNA regulation during PCa progression
and metastasis.

To quantity the regulatory pattern of miRNAs in the network,
the feature parameters NTG (number of targeted genes) and
NSR were defined and used for biomarker prioritization. Among
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TABLE 1 | Datasets used in this study.

RNA type GEO accession Platform Sample source Normal sample PCa sample

pPCa mPCa

miRNA GSE21036 GPL8227 Human prostate 28 99 14

mRNA GSE21034 GPL10264 Human prostate 29 131 19

miRNA GSE54516 GPL18234 Human prostate 48 51

PCa, prostate cancer; pPCa, clinically localized primary prostate cancer; mPCa, metastatic prostate cancer; GEO, Gene Expression Omnibus.

TABLE 2 | Statistics and topological features of the identified miRNAs.

miRNA Expression adj. p-value NTG NSR NSR/NTG

I II I II I II I II

hsa-miR-1-3p Down 4.10e-3 1.10e-30 69 75 15 17 0.2174 0.2267

hsa-miR-125b-5p Down 3.03e-3 8.98e-16 45 48 12 8 0.2667 0.1667

hsa-miR-145-5p Down 1.96e-7 8.00e-25 56 57 11 17 0.1964 0.2982

hsa-miR-182-5p Up 1.25e-9 2.46e-2 47 44 10 7 0.2128 0.1591

hsa-miR-198 Up 9.19e-3 7.67e-5 50 47 14 9 0.28 0.1915

hsa-miR-22-3p Down 4.11e-3 2.45e-2 83 82 19 14 0.2289 0.1707

hsa-miR-24-3p Down 5.82e-6 1.12e-9 39 43 7 10 0.1795 0.2326

hsa-miR-34a-5p Down 1.20e-2 2.24e-2 58 59 9 14 0.1552 0.2373

hsa-miR-499a-5p Down 4.22e-4 3.13e-2 73 76 10 10 0.1370 0.1316

adj.p-value, adjusted p-value; NTG, number of targeted genes; NSR, number of single-line regulation; I, Normal vs. PCa; II, pPCa vs. mPCa.

them, NTG represents the number of genes targeted by certain
miRNAs. According to the theory of network sciences, hub
nodes with more links in the network are functionally important
in biological systems. Meanwhile our previous findings have
demonstrated that biomarker miRNAs held strong single-line
regulatory power in the network since the single-line points
are vulnerable and the dysregulation in such sites are likely to
cause the disorder at the systems level (Lin et al., 2018b, 2019).
Thus, NSR parameter is set to indicate the number of genes
independently regulated by a given miRNA. In addition, the ratio
NSR/NTG was calculated to further evaluate the significance of
miRNAs on gene regulation.

Based on above network systems and feature parameters,
miRNAs with significantly high NTG, NSR, and NSR/NTG
values (p-value < 0.05, Wilcoxon signed-rank test) were
prioritized in each PCa-specific network and those shared by
the two networks were selected as key players for predicting
the occurrence and progression of PCa. Moreover, the shared
miRNA-mRNA pairs were also identified for functional and
carcinogenic survey.

Performance Evaluation and Comparison
The receiver-operating characteristic (ROC) and clustering
analysis were performed based on the expression data of the
identified miRNAs using ROCR and Pheatmap package in R
program, respectively. Here the area under ROC curve (AUC)
was calculated for each miRNA to evaluate and compare the
biomarker potential on differentiating prostate samples, i.e.,
normal vs. PCa and pPCa vs. mPCa. Moreover, an additional

index called prediction precision was defined as the percentage
of literature-reported PCa miRNA biomarkers in the whole
predicted set to validate and compare the performance of the
proposed model.

Functional Exploration and Carcinogenic
Analysis
The functional carcinogenesis of the identified miRNAs in PCa
evolution was investigated based on the research paradigm
of miRNA-gene-pathway axis. First the targets of miRNAs
were retrieved from each PCa condition-specific network
and miRNAs-mRNAs shared by the two networks were then
collected as key regulations for gene ontology (GO) annotation
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis using the online tool Database for
Annotation, Visualization and Integrated Discovery (DAVID,
version 6.8) (Kanehisa and Goto, 2000; Huang da et al., 2009).
The top ten significant terms with p-value < 0.05 were chosen
for pathogenic understanding of their associations with cellular
proliferation, invasion, metastasis and the responses to PCa
treatment through literature exploration.

RESULTS

Biomarker miRNAs Identified for PCa
Management
In this study, two PCa condition-specific networks, i.e.,
occurrence-specific and progression-specific network, were
respectively, extracted based on humanmiRNA-mRNA reference
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network and the selected sample datasets. Among them, the
occurrence-specific network comprised 6,063 regulatory pairs
associated with 138 DE-miRNAs and 2,035 DE-mRNAs between
normal and PCa samples. In the progression-specific network,
a total of 7,510 regulations among 169 DE-miRNAs and 2,238
DE-mRNAs with the expression change in PCa progression and
metastasis were statistically identified.

After network structure-based filtration, 17 and 19
miRNAs with significantly high NTG, NSR and NSR/NTG
values were computationally screened in PCa occurrence-
specific and progression-specific network, respectively (see
Supplementary Table 1), and the shared nine miRNAs, i.e., hsa-
miR-1-3p, hsa-miR-125b-5p, hsa-miR-145-5p, hsa-miR-182-5p,
hsa-miR-198, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-34a-5p,
and hsa-miR-499a-5p, were finally collected as key players during
PCa evolution. As illustrated in Table 2, hsa-miR-182-5p and
hsa-miR-198 were over-expressed in the initiation and metastasis
processes of PCa, whereas the remaining seven miRNAs were
down-regulated during PCa development.

As shown in Figure 2A, the ROC analysis strengthened the
power of the identified miRNAs for classifying different prostate
samples, i.e., normal vs. PCa and pPCa vs. mPCa. For example,
the average AUC between the groups of normal and PCa was
0.7862 (ranged from 0.6802 to 0.9447), and it reached 0.8057
(ranged from 0.6291 to 0.9986) for discriminating pPCa and
mPCa samples. In the validation set, the average AUC was 0.8010
(ranged from 0.5960 to 0.9608), which was comparable with that
in the prediction set. In particular, hsa-miR-145-5p achieved the
overall best performance on PCa predicting and subtyping (both
AUC > 0.9), demonstrating its prospects for carcinogenic study
and future clinical translation. However, as shown in Figure 2B

the three groups were not well distinguished by combing the
expression signature of these miRNAs, which indicated that the
identified miRNAs would not be suitable to serve as potential
biomarker combinations.

Literature-Based Functional Annotation
and Validation
According to the review of citations in PubMed, seven of the
identified miRNAs (77.8%, 7/9), i.e., hsa-miR-1-3p, hsa-miR-
125b-5p, hsa-miR-145-5p, hsa-miR-182-5p, hsa-miR-198, hsa-
miR-24-3p, and hsa-miR-34a-5p have been previously reported
as biomarkers or molecular tools for PCa prediction. For
example, Xie et al., investigated the diagnostic value and
carcinogenic mechanisms of hsa-miR-1 (namely hsa-miR-1-3p)
in PCa. The result of meta-analyses and bioinformatics studies
showed that this miRNA was significantly down-expressed in
PCa samples and it could regulate pathways associated with
androgen receptor (AR) activities in PCa development (Xie
et al., 2018). Hudson et al. performed in vitro analysis and
proved the tumor suppressor function of hsa-miR-1 in PCa cell
proliferation and motility. Besides the down-regulation in pPCa
samples, the expression of this miRNAs was found to be reduced
in distant metastasis, which indicated its power for prediction
PCa progression and recurrence (Hudson et al., 2012). Zhu
et al. identified hsa-miR-125b (namely hsa-miR-125b-5p) as an

independent factor indicating castration resistant in PCa (Zhu
et al., 2015), and thismiRNA could improve the prediction of PCa
status on the basis of serum PSA screening (Roberts et al., 2015).
Xu et al. evaluated the level of hsa-miR-145 expression (namely
hsa-miR-145-5p) in urinary extracellular vesicles between PCa
and healthy or benign prostate hyperplasia subjects. They found
that the expression of this miRNAs was significantly altered in
the urine of PCa patients, which highlighted its potential for
PCa non-invasive diagnosis (Xu et al., 2017). Moreover, this
miRNA was both detected in our previous studies using different
network systems and computational models, demonstrating its
significance on tumor regulation in PCa invasion, metastasis, and
castration resistance (Zhu et al., 2015; Lin et al., 2018a). Based on
RT-qPCR testing and validation, Bidarra et al. reported that the
level of hsa-miR-182-5p was related to the advanced stage of PCa
pathogenesis, and it was over-expressed in the plasma samples
of patients with metastasis (Bidarra et al., 2019). Similarly, the
expression of hsa-miR-198 was found to be increased especially
in the cohorts of high-grade (Gleason score ≥ 8) PCa (Walter
et al., 2013), which was consistent with the result in this
study. In addition, hsa-miR-24-3p and hsa-miR-34a-5p were also
functional regulators in progression and therapeutic intervention
by targeting PCa-related genes. Lynch et al. used the PCR to
investigate the role of hsa-miR-24 (namely hsa-miR-24-3p) in
PCa cell lines. Compared with the normal prostate epithelial
cell line, hsa-miR-24 was down-regulated in PCa. This pattern
was closely correlated with higher level of serum PSA and other
clinical indices for PCa monitoring. Moreover, p27 (CDKN1B)
and p16 (CDK2NA) were confirmed as targets of this miRNA
in PCa cells (Lynch et al., 2016). Liu et al. announced that hsa-
miR-34a (namely hsa-miR-34a-5p) was a tumor suppressor gene
and it could inhibit the stem cells and metastasis by directly
targeting CD44 (Liu C. et al., 2011). Meanwhile this miRNAwas a
predictive biomarker for docetaxel responses associated with PCa
therapy (Corcoran et al., 2014).

Although the remaining miRNAs, i.e., hsa-miR-22-3p and
hsa-miR-499a-5p, have not been reported as PCa biomarkers
yet, they were also powerful for PCa classifying and subtyping
based on ROC analysis of this study. Hence these two miRNAs
could serve as novel candidates for PCa diagnosis and prognosis.
In summary, in this study the proposed bioinformatics model
outperformed our previous method by increasing the prediction
precision from 40 to 77.8% (Lin et al., 2018a), and more
experimental validations using wet-lab approaches are needed in
the future work.

Key miRNA-mRNA Regulations in PCa
Carcinogenesis: A Focused Study on
hsa-miR-145-5p
A total of 194 miRNA-mRNA regulations among the nine
miRNA biomarkers and 172 dysfunctional mRNAs were
extracted from PCa occurrence and progression networks to
investigate their carcinogenetic role in PCa evolution at the gene
level. As shown in Figure 3A, approximately half of the mRNAs,
single-line or co-regulated by the identified miRNA candidates,
were involved in PCa genesis according to literature reports. In
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FIGURE 2 | The ROC and clustering analysis for the identified miRNAs. (A) ROC analysis. Blue curve: Normal vs. PCa for diagnostic performance evaluation; Red

curve: pPCa vs. mPCa for prognostic and subtyping performance evaluation. Green curve: validation based on an independent dataset. (B) Clustering analysis. The

(Continued)
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FIGURE 2 | blue, orange and red blocks represent normal, pPCa and PCa sample, respectively, and the degree of green and red in the map indicates the relative

expression level of miRNAs from low to high, respectively. ROC, the receiver-operating characteristic curve; AUC, area under the ROC curve; PCa, prostate cancer;

pPCa, clinically localized primary prostate cancer; mPCa, metastatic prostate cancer.

TABLE 3 | Functional mechanisms of hsa-miR-145-5p in PCa carcinogenesis.

miRNA function Potential target Gene function

• Suppressing AR signaling in PCa cells.

• The level is inversely correlated with

PSA alternation, the occurrence of

metastasis phenotype and the response

to androgen deprivation therapy.

• PMID: 25969144

NDRG2 • A prognostic biomarker and regulator downstream of AR.

• Associated with PCa malignant and metastatic progression.

• Affecting the growth of androgen-dependent and castration-

resistant PCa.

• PMID: 24222185, 25756511

KLF5 • A functional factor for Androgen-AR signaling.

• Promoting cell proliferation in PCa cells.

• PMID: 32245249

IRS1 • G972R variant is associated with the risk of PCa occurrence.

• PMID: 15678496

ZFP36 • The expression change is associated with the overall survival

and indicates the PCa biochemical recurrence.

• PMID: 26563146

GOLM1 • Promoting the progression of PCa via activating PI3K-AKT-

mTOR signaling.

• PMID: 29181846

MYO6 • The knockdown inhibits the growth and results in the

apoptosis of PCa cells.

• PMID: 27431378

ILK • The inhibition suppresses the activation of B/Akt and

induces apoptosis of PTEN-mutant PCa cells.

• PMID: 10716737

PCa, prostate cancer; PMID, PubMed ID.

this study the regulations between hsa-miR-145-5p and known
PCa-related genes were further analyzed since hsa-miR-145-
5p was highly prioritized with the overall best performance
on PCa prediction and subtyping in our ROC validation. As
summarized in Table 3, hsa-miR-145-5p is a tumor suppressor
in PCa development. It inhibited the AR signaling in PCa cells
and the expression was inversely correlated with the change of
AR and serum PSA level. In a well-characterized PCa cohort,
this miRNA was found to be associated with the metastasis
phenotype and could indicate the survival and the response
to androgen deprivation therapy (Larne et al., 2015). Based
on network extraction, seven PCa-related genes, i.e., NDRG2,
KLF5, IRS1, ZFP36, GOLM1, MYO6, and ILK, were identified as
potential targets in PCa carcinogenesis. Among them, NDRG2 is
a prognostic biomarker and negative regulator downstream ofAR
(Ren et al., 2014; Yu et al., 2015). It predicts PCa clinicopathologic
features such as malignant and metastatic progression and affects
the growth of androgen-dependent and castration-resistant PCa
(Yu et al., 2015). Li et al. showed that KLF5 was a key factor
in androgen-AR signaling. It promoted the proliferation of PCa
cells and could serve as a therapeutic target for PCa treatment
(Li et al., 2020). As a famous star driving the carcinogenesis
of PCa from normal prostate tissue to cancer biology, the AR
signaling has already been explored across different researches,
and the results in this study computationally demonstrated new

insights and improved the understandings in AR-mediated PCa
genesis. As described in Figure 3B, hsa-miR-145-5p/NDRG2/AR
and hsa-miR-145-5p/KLF5/AR were inferred to be correlated
with PCa evolution, which would be helpful for PCa diagnosis
and therapy. In addition, hsa-miR-145-5p may regulate PCa cell
proliferation, invasion, metastasis and apoptosis through other
functional genes and associated pathways, which highlighted the
underlying diversity and complexity in miRNA-PCa interaction
(Persad et al., 2000; Neuhausen et al., 2005; Wang et al., 2016;
Zhu et al., 2016; Yan et al., 2018).

GO and Pathway Enrichment Analysis
Functional enrichment analyses were performed on
biomarker miRNA targets shared by PCa condition-specific
networks to help decipher the miRNA-PCa carcinogenetic
relationships at the GO and pathway level. In terms of the
GO analysis, three domains, i.e., biological process (BP),
cellular component (CC) and molecular function (MF),
were annotated, respectively. As listed in Figure 4A and
Supplementary Table 2, some of the significant BP terms
were associated with the positive or negative regulation of
cell proliferation and migration, indicating the potential role
of the identified miRNAs in PCa invasion and metastasis. In
the domain of CC, cytoplasm, nucleus, nucleoplasm, cytosol
and extracellular exosome were the top-five ranked items
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FIGURE 3 | The identified miRNAs and key miRNA-mRNA regulations in PCa occurrence and progression. (A) Overview of regulatory associations. Orange hexagon:

PCa-related genes. (B) Potential mechanisms of hsa-miR-145-5p in PCa evolution. pPCa, clinically localized primary prostate cancer; mPCa, metastatic prostate

cancer.
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and at the MF level, transcriptional activator activity, RNA
polymerase II core promoter proximal region sequence-
specific binding, protein binding, transmembrane receptor
protein tyrosine kinase activity, and transcription factor
binding etc. uncovered important clues for molecular
function understanding.

To better investigate the mechanisms of the
identified miRNAs in PCa, pathway enrichment was
conducted and analyzed. As illustrated in Figure 4B and
Supplementary Table 2, most of the significantly enriched
terms were closely involved in PCa development, such as Wnt
signaling, prostate cancer, microRNAs in cancer, p53 signaling,
PI3K-AKT signaling, andMAPK signaling etc. For example,Wnt
signaling is implicated in PCa-related osteoblast differentiation
as a key driver. It could activate AR-mediated transcription and
promote cell proliferation of androgen-independent PCa (Seo
et al., 2017; Wang et al., 2020). The genetic variants or abnormal
regulations in Wnt signaling provide new approaches for
predicting the aggressive behavior of PCa (Shu et al., 2016), and
bring candidate targets for PCa personalized therapy (Nandana
et al., 2017). Currently, extensive efforts have demonstrated that
miRNAs could influence PCa cell activities by regulating genes to
inactivateWnt signaling pathway (Du et al., 2019; Ghafouri-Fard
et al., 2020). Compared with our previous research, the prostate
cancer signaling was enriched higher in this study (Lin et al.,
2018a). As shown in Supplementary Figure 1, GF and GFR
controlling the signal transduction from outside to inside of
cell membrane were regulated by the identified miRNAs, and
the remaining targets were potentially associated with PCa cell
proliferation and survival. p53 is a well-known tumor suppressor
protein responding to various cellular stresses such as the
growth, invasion and metastasis in PCa development (Takayama
et al., 2018; Zhang et al., 2020). As another two cancer-related
pathways, PI3K-AKT and MAPK signaling have been widely
reported as targets of miRNAs and genes during PCa activation
(Wu et al., 2019; Zheng et al., 2019). In particular, the crosstalk
and signaling cascades among I3K-AKT-mTOR,MAPK, AR, and
Wnt improve the mechanistic insights into PCa tumorigenesis
and accelerate the understanding in androgen-deprivation
therapeutics for precision medicine and personalized healthcare
of PCa patients (Shorning et al., 2020).

DISCUSSION

PCa is developed with increasing incidence and high
heterogeneity. In clinical practice, strategies used for PCa
screening and monitoring have improved over the years,
however, it still lacks sensitive factors to indicate the dynamical
changes within prostate signals at the early stage. As a member
of non-coding RNAs, miRNAs are reported to regulate gene
expression in various biological processes including PCa
carcinogenesis, which provide an attractive direction for PCa
precision medicine and personalized healthcare.

In the era of translational informatics and intelligent
medicine, systems biology creates unprecedented opportunities
to integrate multi-dimensional data for computer-aided

knowledge discovery. In this study, we collected gene expression
and miRNA-mRNA association datasets to identify and
explore key miRNAs as candidate biomarkers for PCa holistic
management at the network level. Compared with our previous
studies solely considering the metastatic or castration-resistant
status of PCa (Zhu et al., 2015; Lin et al., 2018a), this study
updated the datasets and bioinformatics parameters for model
refining, and focused on the functional role of miRNAs
associated with the whole development process in PCa,
therefore two condition-specific miRNA-mRNA networks were
respectively constructed to describe the regulatory pattern and
dynamical change between PCa occurrence and progression.
In particular, the hub theory and single-line regulation pattern
of miRNAs were integrated for the first time to measure
the regulatory power, and miRNAs locating at hub sites
to independently regulate genes were extracted from each
network system based on the definition and characterization
of network topologies. Finally, nine miRNAs shared by two
networks, i.e., hsa-miR-1-3p, hsa-miR-125b-5p, hsa-miR-145-5p,
hsa-miR-182-5p, hsa-miR-198, hsa-miR-22-3p, hsa-miR-24-3p,
hsa-miR-34a-5p, and hsa-miR-499a-5p, were chosen as candidate
biomarkers during PCa evolution for performance evaluation
and carcinogenic survey.

To validate the potential of the identified miRNAs, ROC
and clustering analysis were sequentially performed to test the
ability in PCa diagnosis and prognosis. Fortunately, most of
these miRNAs achieved higher AUC both in differentiating
normal vs. PCa and pPCa vs. mPCa samples based on the
prediction and an independent validation dataset, which
indicated the predictive power of the miRNAs. Among them,
hsa-miR-145-5p was top-ranked as the key factor and the
result was highly consistent with that in our previous findings
using different training datasets and network analysis strategies
(Lin et al., 2018a). According to PubMed literature searching,
seven of the miRNAs have been reported to be associated with
PCa genesis and could serve as biomarkers or therapeutic
targets for PCa prevention. Combing with computational
prediction, key miRNA-mRNA were screened to decode the
relationships between miRNA genotypes and PCa phenotypes
at the gene and pathway level, respectively. In particular, hsa-
miR-145-5p/NDRG2/AR and hsa-miR-145-5p/KLF5/AR axis
were inferred to be latent mechanisms during PCa occurrence
and progression according to bioinformatics identification
and literature validation. Moreover, pathways including Wnt
signaling, prostate cancer, microRNAs in cancer, p53 signaling,
PI3K-AKT signaling, andMAPK signaling etc. were significantly
enriched for pathogenesis understanding.

It should be admitted that several limitations still need to be
considered. First, the structural robustness is comprehensively
weighted in this study, however, the proposed model lacks
sufficient information related to the biological function of
miRNAs and mRNAs. Hence the computational framework
can be updated by reasonably adding PCa-associated genes
as prior knowledge to improve the specificity of miRNAs
in PCa carcinogenesis. Second, the complexity and diversity
of the background network is not powerful enough. The
development of PCa is a dynamical process, so that changeable
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FIGURE 4 | Functional enrichment analyses on biomarker miRNA targets shared by PCa occurrence and progression-specific networks. (A) Top ten significantly

enriched BP terms. (B) Top ten significantly enriched KEGG pathways. All of the p-values were negative 10-based log transformed. PCa, prostate cancer; BP,

biological process; KEGG, Kyoto Encyclopedia of Genes and Genomes.

signals in the network system from normal to different
PCa states are meaningful for capturing and comparison.
To better understand the heterogeneity across PCa stages,
miRNAs specific to PCa conditions, e.g., the occurrence,
invasion, metastasis and therapeutic intervention, should be
respectively analyzed. Last but the most important, it is
difficult to collect enough samples of advanced or mPCa
in a short period of time due to the inoperability of these
patients. In our future work, low-throughput experiments using
wet-lab approaches such as qPCR and western blot will be
conducted to validate the identified miRNAs and miRNA-
mRNA regulations for biomarker measurement and long-range
clinical translation.
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Extended phenotypes are manifestations of genes that occur outside of the organism 
that possess those genes. In spite of their widespread occurrence, the role of extended 
phenotypes in evolutionary biology is still a matter of debate. Here, we explore the indirect 
effects of extended phenotypes, especially their shared use, in the fitness of simulated 
individuals and populations. A computer simulation platform was developed in which 
different populations were compared regarding their ability to produce, use, and share 
extended phenotypes. Our results show that populations that produce and share extended 
phenotypes outrun populations that only produce them. A specific parameter in the 
simulations, a bonus for sharing extended phenotypes among conspecifics, has a more 
significant impact in defining which population will prevail. All these findings strongly 
support the view, postulated by the extended fitness hypothesis (EFH) that extended 
phenotypes play a significant role at the population level and their shared use increases 
population fitness. Our simulation platform is available at https://github.com/guilherme-
araujo/gsop-dist.

Keywords: extended phenotypes, Moran process, simulated platform, system biology, network

INTRODUCTION

The main idea behind the extended phenotype (Dawkins, 1982) lies in how far a gene effect can 
reach. According to Dawkins (1982), a gene can have its effect outside of the physical body of 
the bearer with several types of consequences, including environmental ones. In that way, a gene 
extends its effect in, for example, a beaver’s dam, a spider’s web, or a bird’s nest. Although the 
examples above represent physical structures, extended phenotypes are also seen as signals (Schaedelin 
and Taborsky, 2009), social interactions (Wang et al., 2008), or manipulations of behaviors (Hoover 
et  al., 2011). Extended phenotypes are described in all taxonomic kingdoms, from viruses (Hoover 
et al., 2011) to humans (Dixson, 2019). Although the widespread existence of extended phenotypes 
is clearly established in contemporaneous evolutionary biology (reviewed in Bailey, 2012), the 
degree and intensity of its effects are still controversial (Hunter, 2009; Bailey, 2012).
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Besides the obvious effect of the extended phenotypes in 
the fitness of the organism who generated it, many authors 
have discussed their indirect genetic effects (Laland, 2004; 
Wang et  al., 2008; de Souza, 2013; Fisher et  al., 2019). One 
type of indirect genetic effect is through social interactions 
mediated by extended phenotypes (Wang et al., 2008). Extended 
phenotypes could also affect other parties’ fitness through 
niche construction, as discussed by Laland (2004). A few 
years ago, the extended fitness hypothesis (EFH) had been 
proposed, which states that extended phenotypes serve as a 
link between individual and group selection (de Souza, 2013). 
Suppose the following scenario: a spider web is abandoned 
by the individual who built it. A different spider from the 
same species can then use that web, which in turn contributes 
to the fitness of the new owner. Remarkably, the spider web 
silk can vary within the same species depending on 
environmental factors, and protein-deprived spiders produce 
silk that is more efficient at capturing preys than that produced 
by protein-fed members of the same species (conspecifics; 
Blamires et  al., 2017, 2018), resulting in “silk performance 
landscapes across nutrient space” (Blamires et  al., 2016). In 
another example, a bird’s nest shape impact on its thermal 
profile, which in turn, has been shown to influence offspring 
fitness (Olson et  al., 2006; Martin et  al., 2017). Thus, using 
an extended phenotype built by others may have greater 
advantage than simply reducing the costs associated to building 
the phenotype. However, the fitness effects of such biological 
plasticity mechanisms and their impact on individual and 
group selection are not fully understood.

The basis of the EFH is the fact that individuals can use 
extended phenotypes built by conspecifics. Thus, extended 
phenotypes possess indirect genetic effects in individuals who 
can use them. Group selection emerges naturally as a 
consequence of such shared use of extended phenotypes by 
members of the same species/group. As discussed by de Souza 
(2013), there are several examples of the use of available 
extended phenotypes by conspecifics, including cases with 
spiders (Schuck-Paim and Alonso, 2001), cichlids (Schaedelin 
and Taborsky, 2009), and wasps (Brockmann et  al., 1979). 
For instance, a beaver’s dam may cause a significant 
environmental change that goes beyond the immediate ecosystem 
(Gurnell, 1998; Rosell et al., 2005). More recently, Fisher et al. 
(2019) showed that food hoards, identified as extended 
phenotypes, built by red squirrels outlived the individuals 
who built them and were subsequently used by conspecifics. 
More interestingly, different features of the food hoards, like 
size, affected the fitness of the subsequent owner. While the 
data from Fisher et  al. (2019) fit predictions made by EFH, 
such empirical models are hard to find and study. One 
alternative is the use of computer simulations to either compare 
distinct evolutionary scenarios or to study the role of a given 
parameter, in this case extended phenotypes, in the 
evolutionary process.

This led us to develop a computer simulation framework 
to test some premises of the EFH. Here, we show that extended 
phenotypes can, per se, increase the fitness of individuals who 
produce them. More importantly, however, populations that 

produce and share extended phenotypes outrun populations 
that only produce them. A mathematical treatment allowed 
us to derive variables that can be  evaluated regarding their 
role in the fitness of the tested populations. A bonus linked 
to the shared use of extended phenotypes is strongly associated 
with winning populations in our simulations. All these findings 
support the view that the shared use of extended phenotypes 
is an important contributor to selection at population level. 
We  made our simulation platform available at https://github.
com/guilherme-araujo/gsop-dist.

MATERIALS AND METHODS

Simulation Steps
The simulation protocol consists of three steps: graph generation, 
main simulation, and plot/analysis. At the graph generation 
step, the type of graph, the number of nodes, and the density 
of the graph are defined (Steger and Wormwald, 1999). The 
generated graph is then read by the main simulation program, 
which accepts parameters related to the bonuses, maximum 
number of cycles, and number of samples and states in which 
each node type can transition into. Finally, the output is 
processed and the plots generated using the scripts available 
at the corresponding folder of the public repository of this 
simulation platform. All simulations were run in the High-
Performance Computing Unit of the Federal University of Rio 
Grande do Norte, consisting of 64 blade computational nodes, 
each with two 16-core Intel Xeon E5-2698v3 processors and 
128GB DDR4 RAM.

Graph Generation
Graphs were generated using the newtworkx (Hagberg et  al., 
2008) package for the Python programming language. All graphs 
in the simulation described in this paper were generated with 
the barabasi_albert_graph function of this package, with 
parameters n  =  500 and m  =  4.

Main Simulation
The algorithm for the first simulation is described as a pseudocode 
in Figure  1B. The first simulation implements the framework 
described in Figure 1A, and generates data for plotting Figure 2. 
The algorithm for the second simulation is described as a 
pseudocode in Figure  3B. The second simulation implements 
the framework described in Figure  3A, and generates data 
for plotting Figure  4.

For the first algorithm, two sets of data were generated, 
the first for the simulation where B individuals do not generate 
any extended phenotype, and the second where both types 
generate extended phenotypes, but only type A individuals 
can reuse them. These two sets of data resulted in the plots 
seen in Figure  2. The second algorithm was used to generate 
another two sets of data, which resulted in the data seen 
in Figure  4.

In the first pseudocode (Figure  3B), the nodes are first 
(line 1) load from the graph generated in the first simulation 
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step, described in “Graph generation.” In lines 2–6, nodes 
are initialized with type A or B. In lines 7–9, the extended 
phenotypes are initialized, and 50% of all individuals start 
with an extended phenotype. The verification at line 8 is 

related to the difference between the simulations that generated 
Figures 2A,B, since in the first set of data type B individuals 
do not generate extended phenotypes. Next, for each cycle 
(line 10) at each death/birth event (line 11), a random 

A

B

FIGURE 1 | Schematic view of the simulation framework and respective pseudocode. (A) All steps (1–8) of a cycle of the framework are depicted. After the initial 
setup of the network (1), random individuals are selected to die (like the gray node in 2). Its associated extended phenotype becomes available (3) and one of the 
neighbors of the same type (in this case, type A) and without an associated extended phenotype is selected to gain the available extended phenotype (4). Selection 
of a node to duplicate and occupy the position of the dead node is based on a weight matrix (5, 6), as described in the text. A new node has a chance to generate 
an extended phenotype attached to itself (7). Each extended phenotype has an expiration time (t) represented by the number in the respective squares (7, 8). Step 8 
represents the step 1 of the new cycle. For clarity, only the central node is represented with all its connections. (B) Pseudocode for the simulation framework 
described above (A).
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neighbor of the dying individual is chosen weighted according 
to its relative fitness (lines 12–13). The new individual is 
created having the same type of the chosen neighbor (lines 
14–15), and if it belongs to a type which generates extended 
phenotypes – only A in the first, and both types in the 
second simulation – it occupies the extended phenotype 
(lines 16–17). If the dying individual had an extended 
phenotype, an attempt is made to assign it to one of  
the other neighbors or a random individual in the  
population (lines 18 and 20–24). The dying individual is 
then replaced by the new one (line 19) and finally the 
extended phenotype timers are decreased and those who 
expired are removed (lines 25–26).

The second algorithm starts like the previous one (lines 
1–6), then initializes the states according to parameters defined 
by the user (lines 7–8). Then, for each death/birth event at 
each cycle (lines 9–11), a random neighbor of the dying 
individual is chosen weighted according to its relative fitness 
(lines 12–13) and a new node is created, always at the searching 

state, with no extended phenotype attached (lines 14–18).  
If the dying individual had an extended phenotype, an attempt 
is made to assign it to one of the other neighbors or a random 
individual in the population (lines 19 and 21–27). This individual 
will be  transitioned to the “using other” state (lines 23 and 
27). The dying individual is then replaced by the new one 
(line 19). Finally, all states and extended phenotype time counters 
are updated, its states transitioned and expired extended 
phenotypes removed (lines 28–37).

All simulations are provided only with the random graphs 
generated in the previous step and the parameters described 
in section “Simulation parameters.” For each of the four sets 
of data described previously, 1,000 graphs were generated, and 
5,000 samples were generated with each of the 1,000 graphs, 
resulting in 5,000,000 total samples for each x-axis data point 
of each set of data.

The sets of data for the first and second simulation, which 
generated data for Figure  2, had 15 subsets of data each, 
varying the α value for A from 0.0 to 0.15  in both simulations, 

A B

C D

FIGURE 2 | Dynamics of populations A and B according to 5 million simulations for different values of α. The blue and orange lines in (A,B) show how many 
simulations ended with the fixation of types A and B, respectively. The green line in (A,B) shows how many simulations ended without the fixation of either type, that 
is, undefined simulations. Proportions of type A and B individuals in the undefined simulations are shown in (C,D). (A) Only population A is able to produce and 
share extended phenotypes. (B) Both populations can produce extended phenotypes but only population A is able to share extended phenotypes. (C) Proportions 
of type A and B individuals for the simulations represented by the green curve shown in (A). (D) Proportion of type A and B individuals for the simulations 
represented by the green curve shown in (B).

46

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


de Araújo et al. Testing the Extended Fitness Hypothesis

Frontiers in Genetics | www.frontiersin.org 5 February 2021 | Volume 12 | Article 617915

and for B in the second simulation. In the first simulation, 
the α value of B is fixed at 0.0. Every subset consists of 
5,000,000 samples, generated in the previously described way, 

with the intention of removing any influence a particular 
characteristic of a randomly generated graph could have had 
on the final result.

A

B

FIGURE 3 | Schematic view of the modified simulation framework and respective pseudocode. (A) Nodes of types A and B can search, produce, and use its own 
or use other extended phenotypes. After the initial setup of the network (1), random individuals are selected to die (2). The associated extended phenotype becomes 
available, and one of the neighboring nodes in the Searching state is selected to gain the available extended phenotype (3, 4). Selection of a node to duplicate and 
occupy the position of the dead node is based on a weight matrix (5, 6), according to the state of each node. Node state transition and expiration time counters (t) 
are updated, and states and extended phenotypes are adjusted accordingly (7, 8). Step 8 represents step 1 of the new cycle. (B) Pseudocode for the simulation 
framework described above (A).

47

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


de Araújo et al. Testing the Extended Fitness Hypothesis

Frontiers in Genetics | www.frontiersin.org 6 February 2021 | Volume 12 | Article 617915

The third set of data, which resulted in Figure  4A, varied 
the values of α and γ for A, in order to change the values 
of ω for the population of type A individuals, such that ωA 
divided by ωB varies from 0.25 to 4, resulting in the plotted 
log values seen on the x-axis of Figure  4A. The 13 subsets 
of data generated each point in the x-axis scale of this figure.

The fourth set of data resulted in Figure  4B. The α and γ 
values for A and B were set between 0.01 and 0.09, as seen 
on the label of the x-axis of Figure 4B in all five subsets of data.

Plot and Analysis
The plots were generated using the data sets previously described. 
Figures  2A–D, were generated from the data produced by the 
first and second simulations, respectively, both based on the 
first simulation framework. Figures 4A,B depict the data generated 
from the latter data sets, produced by the simulation configured 
according to the second simulation framework. All plots were 

generated using the matplotlib (Hunter, 2007) package for the 
Python programming language.

Simulation Parameters
Parameters for each simulation and the scripts used to generate 
them – those who resulted in Figures  2, 4 – are available at 
the public repository of this simulation platform. Below there 
is a brief description of each parameter from the main 
simulation program.

 1. Samples – number of full simulations to be  run with the 
currently loaded graph. The used value was 5,000 for 
all simulations.

 2. Cycles – Simulation cycle limit. The simulation is considered 
undefined if it ends without fixation of either type A or B.

 3. α values for types A and B.

A

B

FIGURE 4 | Association between ω and winning populations. Y axis in both graphs represents the average fixation % in the corresponding simulations. 

(A) Association between ω and winning populations (those with higher fixation rate). For this simulation, 0.03b =  and 0.02g =  for both populations. (B) In this 

simulation, both α and γ are changed under the restriction that A Bw w=  Populations with g a>  are winners in situations where .A Bw w=  Values in the first line in 

the X axis correspond to Aa  and Bg . Values in the second line of the X axis correspond to Ba  and Ag .
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 4. β values for types A and B. If set to −1, this node type 
will not transition into “producing” state. The values are 
set to −1  in the simulations based on the first framework.

 5. γ values for types A and B. If set to −1, this node type 
will not reuse abandoned extended phenotypes. This is the 
case for type B individuals on the sets of simulations based 
on the first framework.

 6. Percentage of nodes at each state at the beginning of the 
simulation. For the simulations based on the framework 
described by Figure  1, only “with” or “without” extended 
phenotype states are available. This is achieved by setting 
percentages for “producing” and “using other” to zero.

 7. Extended phenotype time. After generation, an extended 
phenotype will last a number of cycles before it expires. 
This time counter continues even after the extended phenotype 
is reused. If it has, for example, 10  cycles remaining when 
its original occupier dies, it will still have 10  cycles left 
whether it is reused or not. All simulations in this work 
had this parameter set to 30  cycles.

 8. State time. For the simulations based on the framework 
described by Figure  3, states “searching” and “producing” 
last for a certain number of cycles before transitioning. The 
other two states, “using” and “using shared,” depend on 
the extended phenotype time. All simulations based on the 
second framework had it set to 30  cycles.

 9. Extended phenotype birth generation chance. This parameter 
is relevant for simulations based on the framework described 
by Figure  1. It defines the chance of a new node having 
an extended phenotype attached to it, and was set to 50% 
on those simulations. On simulations based on the framework 
described by Figure  3, it is set to zero, since in these 
simulations, the extended phenotypes are generated by nodes 
transitioning from the “producing” state, instead of at birth.

See Supplementary Material for a more detailed description 
of the values passed to each parameter at each simulation set.

RESULTS

Simulation Framework
An established approach for modeling the evolution of 
populations is the Moran Process (Moran, 1958). It is a simple 
stochastic model used to describe finite populations and can 
be  used to simulate events, such as mutation and genetic drift 
by describing the probabilistic dynamics in a population 
containing two alleles, one of which can ultimately dominate 
the population. More recently, random scale-free graphs have 
been used to adapt the Moran Process to a more friendly 
simulation framework (Lieberman et  al., 2005). These graphs 
share many characteristics of naturally occurring populations, 
such as in natural and artificial networks of relationships 
(Barabási and Albert, 1999). Therefore, it is suitable for modeling 
a generic population providing the conditions to test the EFH.

Thus, a population of individuals was modeled under the 
Barabási-Albert network model. This model generates a random 
graph that follows a power-law distribution of node degree, 

favoring the formation of clusters of highly connected nodes. 
The network grows according to preferential attachment, where 
new edges are more likely to be  linked to nodes with higher 
degrees. In the original Moran Process adapted by Lieberman 
et al. (2005), all nodes begin with the same status. An individual 
of a different status is introduced into this population and by 
neutral drift or selection all other individuals can become 
bearers of the second status. This is achieved by a death-birth 
process, where an individual is randomly chosen to die, and 
in its place, a new individual is born. This individual is chosen 
based on a probability matrix calculated according to the 
neighbors of the dead node, weighted by their relative fitness, 
which translates into a numerical value representing its ability 
to reproduce. Regular nodes have relative fitness r  =  1, and 
the “mutant” individuals have a relative fitness r  =  1  +  α, 
where α is the bonus/penalty provided by the mutation.

Here, a similar model was used to evaluate the effect of 
the shared use of extended phenotypes in the fitness of a 
population (see Figure 1A for a schematic view of our simulation 
framework). We  started by generating a network with 500 
nodes (individuals) with a parameter m  =  4, which is the 
minimum number of edges for any given node. One modification 
of the Moran process implemented in the present model is 
that nodes are classified either as a type A (250 nodes) or B 
(250 nodes) since the start of the simulation. Our framework 
was designed to compare two populations composed of either 
type A or type B individuals. Here, the death-birth process 
was adapted for the extended fitness context by taking into 
consideration the production and use of extended phenotypes. 
For each set of parameters, we run 5 million simulations (first, 
1,000 random Barabási-Albert networks were designed and 
then for each one of them 5,000 simulations were run). A 
pseudocode for this first algorithm is presented as Figure  1B 
and detailed in Methods (section Main simulation).

Extended Phenotypes Increase the Fitness 
of Populations
In our first experiment, type A individuals were modeled as 
individuals who can produce and use their own extended 
phenotypes, and reuse extended phenotypes left behind by 
dead conspecifics. Type B individuals do not produce or use 
extended phenotypes. The initial setup for all executed simulations 
comprised a start ratio of 1:1 for type A and B individuals 
and a renewal rate of 4%, where at each generation 4% of 
all nodes are selected to die, and new nodes are placed in 
their locations in the graph according to the probability matrix 
explained in the previous section. The α value represents the 
bonus, the adaptive advantage of the extended phenotype, and 
was set between 0.0 and 0.15 (0.01 step) for each batch 
of simulations.

As illustrated in Figure  1, individuals of type A start with 
a 50% probability of having an extended phenotype already 
attached. Only individuals with attached extended phenotypes 
are given the bonus value in their relative fitness. Newborn 
individuals of type A have also a 50% chance of generating 
new extended phenotypes attached to themselves. When type 
A individuals leave behind an extended phenotype after death, 
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this can be  occupied by one of their type A neighbors chosen 
at random with equal chance, as long as it is not already 
occupying an extended phenotype. If there is no neighbor of 
type A or all of them already have their own extended phenotype, 
a random individual of type A with an unattached extended 
phenotype is chosen anywhere in the graph, in case such an 
individual exists. Otherwise, the extended phenotype vanishes.

Figure  2A shows the results for all 5  million simulations 
for each bonus value (see Supplementary Material for details). 
With α  =  0, both populations reach fixation at the same rate, 
as expected, with a higher number of simulations undefined. 
A simulation is classified as undefined when no fixation of 
either node type is achieved. As α increases, a higher number 
of fixations of type A occurs until almost the totality of 
experiments ends with the fixation of type A individuals. A 
plateau, close to the upper limit of 5  million simulations, is 
reached around α = 0.08. The number of undefined simulations 
also decreases, and it is also possible to observe that even in 
those simulations, there is a larger number of type A individuals 
as the bonus increases (Figure  2C). For example, at α  =  0.04, 
75% of all undefined simulations had a higher proportion of 
type A individuals.

The Reuse of Extended Phenotypes 
Increases the Fitness of Populations
While the data in Figure  2A show that production and use 
of extended phenotypes increase the fitness of populations (See 
also Supplementary Figure 2), predictions of the EFH remained 
untested, namely that selection would favor groups where 
extended phenotypes are shared between conspecifics. Some 
of the simulation parameters were thus modified to perform 
such tests. Now, both types produce extended phenotypes but 
only type A individuals are able to reuse a given extended 
phenotype when it becomes available.

As before, individuals of types A and B start with a 50% 
probability of having an extended phenotype already attached, 
and newborn individuals of both types also have a chance of 
50% of generating new extended phenotypes attached to 
themselves. The major difference between individuals of type 
A and B happens at death: type A individuals can leave behind 
an existing extended phenotype, which can be  preferentially 
occupied by one of their type A neighbors as described in 
the previous simulation. On the other hand, the death of type 
B individuals causes the vanishing of the corresponding associated 
extended phenotypes and no reuse ever happens in this case. 
To eliminate the saturation effect, the extended phenotype 
half-life is the same for both individual types.

Figure  2B shows the results with this second proposed 
simulation. The number of simulations ending with the 
fixation of A still grows with rising α values, but at a slower 
pace, given that now type B individuals also produce and 
benefit from extended phenotypes. However, the observed 
advantage of type A individuals is still dramatic, even when 
both types generate extended phenotypes with the same 
bonus values. The major difference between the two simulation 
sets seems to be the number of undefined simulations, which 
is slightly higher in the second set of simulations (Figure 2B), 

where both populations produce extended phenotypes but 
only type A individuals are able to share them. For example, 
with α  =  0.05 only 10% of all simulations in Figure  2A are 
classified as undefined while the same number is 25% in 
Figure  2B. Like in Figure  2C, the proportion of type A 
individuals in the undefined simulations shows a positive 
association with α (Figure  2D). The occupancy rate of type 
A individuals with extended phenotypes also increases, since 
now the ones abandoned by dead individuals can be occupied 
by them. This effect can be  seen in more detail in 
Supplementary Figure  2.

The Bonus Gained for Sharing Extended 
Phenotypes Has a Higher Impact in the 
Fitness of the Population
The previous simulations only considered a fitness bonus (α) 
for individuals that occupy an extended phenotype. This first, 
simple simulation can be  enhanced to include parameters 
that reflect broader effects of extended phenotypes in both 
individual and group selection: (i) the benefit of using an 
extended phenotype built by yourself (α); (ii) the cost of 
building an extended phenotype (β), and (iii) the benefit of 
using an extended phenotype built by another individual (γ). 
One could think of a cost for searching for an extended 
phenotype previously built by someone else and now available, 
but there is no evidence that such behavior exists, and these 
encounters seem fortuitous. Based on the above, it is reasonable 
to think that the shared use of extended phenotypes will 
be  favored when:
 

γ
α β−

>1
                    

[1]

However, when comparing two populations (A and B in 
our simulations), a more appropriate equation is:
                

ω α β γi i i i= −( )+
                         

[2]

where wi  is the absolute fitness of population A or B. Although 
selection parameters in equation [2] are described from the 
perspective of the individual, they are considered here at the 
population level. They represent average effects across the whole 
population. In that sense, after defining wi ,  one could estimate 
the abundance of a given phenotype using an equation like 3:
                

n g n gi+( )= ( )1 w
                          

[3]

where n(g) is the abundance of the phenotype in generation g. 
For the sake of simplicity, we  will focus on equation 2 for the 
remaining simulations.

A new simulation (schematically viewed in Figure  3A) was 
modeled to test equation [2]. The four behaviors previously 
described were translated into four states: “searching” (searching 
for an extended phenotype), “producing” (producing an extended 
phenotype), “using own” (using your own extended phenotype), 
and “using other” (using an existing extended phenotype built 
by someone else). Each of these states has a different associated 
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relative fitness value at each simulation step. The “searching” 
state describes the default behavior. The individual is neither 
using nor producing an extended phenotype and if by chance, 
it encounters an unused one, it will occupy it. This state is 
the baseline behavior, with relative fitness r = 1. If the individual 
stays in the “searching” state for a specific amount of time (a 
specific number of cycles in the simulation – see Methods), 
it will transition into a “producing” state, meaning it searched 
for some time for an unoccupied extended phenotype and 
now started producing its own. Its relative fitness will 
be  negatively affected by a β modifier since that individual 
will be  spending time and resources building its own extended 
phenotype. After a certain amount of time, a producing node 
will transition into a “using own” state. It receives an α bonus 
for occupying an extended phenotype, as in previous simulations. 
After its extended phenotype time expires, the individual returns 
to a “searching” state. The “using other” state is set to individuals 
who, similarly to the previous simulations, are using extended 
phenotypes abandoned by dead individuals. The individuals 
in the “using other” state will receive a γ bonus. A pseudocode 
for this second algorithm is presented as Figure 3B and detailed 
in Methods (section Main simulation).

We first had to evaluate whether simulation data fit equation 
(2). By varying both ωA and ωB in different simulations (by 
changing the corresponding α bonus for each population 
while keeping β and γ fixed), we  observed that there is 
indeed a strong positive association between ω and the 
winning population (the population with higher fixation rate), 
as can be  seen in Figure  4A. Although there is a strong 
association between the value of ω and the winning population, 
there are also winning populations when ω for both populations 
have the same value ( w wA B/ )=1 . This suggests that other 
parameters may have an impact on the simulation output. 
Thus, we  decided to test the effect of each variable in the 
outcome of the simulations by exploring different values for 
each variable but always keeping w wA B= . This allowed us 
to evaluate the impact of each individual parameter, especially 
α and γ. Table  1 shows all parameter values for each set 
of simulations. Our data show that β does not seem to 
affect the outcome of the simulations in terms of proportions 
of A and B (Supplementary Figure  1). This is probably 
due to the fact that the value of β is the same for both 
populations. On the other hand, the values of α and γ are 
critical in defining which population dominates the simulation. 
In all simulated scenarios, the population with a higher γ 

wins, as shown in Figure  4B, suggesting that the fitness 
gained for using an existing extended phenotype has a more 
significant impact than the fitness for using your own 
extended phenotype.

DISCUSSION

Extended phenotypes have received significant interest since 
the original concept emerged in the early 80’s (Dawkins, 1982), 
especially their indirect effects in other individuals or 
environments (Dawkins, 2004; Bailey, 2012; de Souza, 2013; 
Blamires et  al., 2018; Fisher et  al., 2019). Research in the field 
has been limited by the paucity of empirical models in which 
extended phenotypes can be  manipulated and different 
evolutionary models be compared. We have, therefore, generated 
a computer simulation platform to evaluate the effects of the 
production and shared use of extended phenotypes on the 
fitness of simulated populations. We were particularly interested 
in testing the EFH as proposed by de Souza (2013).

The platform is flexible and can be  easily adapted to study 
different real biosystems. For example, population interaction 
is structured with graphs, whose topology can be reconfigured 
to accommodate different ecological networks. Also, evolutionary 
dynamics can be  manipulated by changing the probabilities 
of encounter, interaction, production and reuse of extended 
phenotypes, and the bonus/penalty associated with each behavior. 
This flexible architecture can thus be  used to study, formulate, 
and test hypotheses in diverse areas, from plant-soil-microbial 
communities (Terhorst and Zee, 2016) to cancer evolution 
(Ewald and Swain Ewald, 2013). In fact, the extended phenotype 
hypothesis has been linked to a myriad of phenomena and 
has recently sparked interest (Hunter, 2018), partly due to 
novel computer simulations and data processing techniques. 
In this way, we  believe that our work, more than testing 
aspects of the EFH, expands the toolbox to unveil 
evolutionary dynamics.

Nevertheless, there are several issues regarding extended 
phenotypes that could be explored using our simulation platform. 
Extended phenotype plasticity and its effect on the fitness of 
individuals and populations (Blamires, 2010; Bailey, 2012; Katz 
et  al., 2017; Blamires et  al., 2018) is an example that could 
be  explored in our computational framework. Furthermore, 
the interplay between extended phenotype plasticity and other 
features, like for example dietary conditions, as observed by 
Blamires et  al. (2018) and Katz et  al. (2017) could likewise 
be  studied in the computational setup presented here.

We show that the shared use of extended phenotypes has 
a significant contribution to the absolute fitness of a given 
population. This gives support to the EFH. One interesting 
aspect of the EFH is the fact that it does not advocate mutually 
exclusive fundamental evolutionary processes. As discussed by 
de Souza (2013), the effect of EFH at the group level is a 
natural consequence of the shared use of extended phenotypes 
by conspecifics. Furthermore, this shared use of extended 
phenotypes does not involve cooperation since the two  
parties likely never met, as discussed by Fisher et  al. (2019). 

TABLE 1 | Values of ω for different values of α, β, and γ.

αA, γB; αB, γA β = 0.01 β = 0.03 β = 0.05 β = 0.07 β = 0.09

0.01; 0.08 0.08 0.06 0.04 0.02 0.00
0.02; 0.07 0.08 0.06 0.04 0.02 0.00
0.03; 0.06 0.08 0.06 0.04 0.02 0.00
0.04; 0.05 0.08 0.06 0.04 0.02 0.00
0.05; 0.04 0.08 0.06 0.04 0.02 0.00
0.06; 0.03 0.08 0.06 0.04 0.02 0.00
0.07; 0.02 0.08 0.06 0.04 0.02 0.00
0.08; 0.01 0.08 0.06 0.04 0.02 0.00
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The mathematical treatment provided here, although simple, 
allowed us to evaluate quantitatively the influence of different 
parameters in the fitness of the respective populations. In all 
scenarios tested, the shared use of extended phenotypes 
(quantified by the parameter γ) had a stronger influence on 
the fitness of the respective populations.

It is important to emphasize the assumptions and limitations 
of the strategy used in this report. There are, of course, intrinsic 
limitations derived from the simulated nature of the data. 
The different types of extended phenotypes (ranging from 
different physical structures to behaviors) bring also some 
challenges for an approach based on computational simulations. 
For example, the type of network used here (the Barabasi-
Albert graph) may be  more appropriate for some types of 
extended phenotype (like a web or a nest), while a regular 
network (where all nodes have the same degree) may be more 
appropriate for the study of the effect of a biofilm on the 
fitness of a bacterial population. Furthermore, few assumptions 
made in our simulations have the potential to affect our 
conclusions. First, no cost for searching for an existing extended 
phenotype was set in our simulations. This is a reasonable 
assumption since, to our knowledge, no such behavior has 
been described so far, and it is likely that the encounters are 
fortuitous. Furthermore, we  have not taken into consideration 
the emergence of cheaters in our system (i.e., genetic variants 
that stop producing their own extended phenotypes and only 
use extended phenotypes of other individuals), which could 
also affect the evolutionary dynamics of the corresponding 
population. de Souza (2013) has discussed this issue but a 
formal evaluation through computer simulations needs to 
be  done. Another interesting possibility, not explored here, 
is the modification of an existing extended phenotype by the 
individual who occupied it. These issues should be  explored 
in the future.
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Identification of driver genes frommass non-functional passenger genes in cancers is still

a critical challenge. Here, an effective and no parameter algorithm, named DriverSubNet,

is presented for detecting driver genes by effectively mining the mutation and gene

expression information based on subnetwork enrichment analysis. Compared with the

existing classic methods, DriverSubNet can rank driver genes and filter out passenger

genes more efficiently in terms of precision, recall, and F1 score, as indicated by the

analysis of four cancer datasets. The method recovered about 50% more known cancer

driver genes in the top 100 detected genes than those found in other algorithms.

Intriguingly, DriverSubNet was able to find these unknown cancer driver genes which

could act as potential therapeutic targets and useful prognostic biomarkers for cancer

patients. Therefore, DriverSubNet may act as a useful tool for the identification of driver

genes by subnetwork enrichment analysis.

Keywords: cancer, driver gene, multi-omics data, neighbor network, TCGA

INTRODUCTION

Cancer is a globally prevalent threat to the overall survival of patients, and is driven by a few
important cancer genes, viz., driver genes (Dinstag and Shamir, 2019). Oncogenic mutations on
driver genes contribute to abnormal cell proliferation and tumor development. Most other genes
undergoing mutations due to genomic instability caused by driver genes, termed passenger genes,
are neutral, and do not lead to any cancerous growth (Di Zhang et al., 2016; Yue et al., 2018). Thus,
increasing efforts are being made to recognize these driver genes for developing a better elucidation
regarding cancer initiation and progression. There are some systemic cancer genomics research
projects, such as The Cancer Genome Atlas (TCGA), which is a public free platform and provides
data on 33 cancer types for cancer research.

Computational patterns have been developed to screen driver genes by distinguishing them from
passenger genes through mutation frequency. For instance, MuSiC adopts a statistical approach to
detect driver genes with significantly high mutative rates (Dees et al., 2012). DeepDriver employs
deep learning to identify driver genes by estimating the functional impact of mutations (Luo et al.,
2019). However, these methods are based on mutation frequency, and do not uncover driver genes
which carry few variants. Recently, researchers realize that genes cooperate with each other in
cancer progression through biological pathways, and detection of driver genes by pathway- or
network-based pipelines is emerging with a high speed (Hou et al., 2018). These studies revealed
that functional networks could be available for identifying driver genes without consideration of
mutation frequency. They concentrate on uncovering cancer associated core modules consisting
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of gene-sets rather than a single gene critical to tumor
progression. The lack of prioritization in this approach is
a shortcoming from the considerations of clinical treatment,
particularly when the predicted driver gene set contains more
than one gene.

To solve this situation, many algorithms have been developed
to rank the candidate genes (Hou and Ma, 2014; Dinstag and
Shamir, 2019; Hristov et al., 2020). For instance, HotNet2
identifies rare mutations across pathways and protein-protein
interaction (PPI) networks using the heat-diffusion theory
(Leiserson et al., 2015). DriverNet also consolidates PPI and
gene expression data to uncover driver genes (Bashashati
et al., 2012). DawnRank method adopts Google’s PageRank
algorithm and ranks an individual’s mutated gene profile by
means of measuring the effect of each mutated gene on the
differentially expressed genes (DEGs) (Hou and Ma, 2014).
MUFFINN algorithm evaluates the significance of mutations
on neighboring genes in the specific network, demonstrating
excellent predictive performance in a large number of patients
(Cho et al., 2016). MaxMIF tries to find driver genes by evaluating
the impact of single nucleotide variants on transcriptional
networks (Hou et al., 2018). Nevertheless, the false positive rates
of the current existing computational algorithms need to be
further reduced.

Here, we have designed an effective algorithm, called
DriverSubNet, which has the ability of prioritizing driver genes.
In this approach, the driver genes were scored by combining
their influence on DEGs in each neighbor subnetwork and their
mutation frequency. These pipelines are based on enrichment of
subnetworks, where each subnetwork may reflect the situation
of dysregulated biological process in tumor. Thus, the extent to
which a given driver gene explains multiple functional biological
process deregulations serves as a proxy for the likelihood that
this gene is indeed the driver. Our algorithm views that driver
genes affect the deregulations of other genes in the functional
biological processes. Besides, mutation recurrence makes a vital
contribution on detecting high frequency mutated drivers. In
fact, the true cancer drivers have good connectivity to these
functional biological processes, and our algorithm aims to
measure such connections directly via subnetwork enrichment
and the impact of mutations.

MATERIALS AND METHODS

Data Collection
For four cancer types, including thyroid carcinoma (THCA),
kidney renal clear cell carcinoma (KIRC), and breast cancer
(BRCA) and Head-Neck Squamous Carcinoma (HNSC), somatic
mutations, somatic copy number alterations (SCNAs), and
RNA-seq expression data belong to the TCGA (Weinstein
et al., 2013) platform, downloaded from the UCSC data portal

Abbreviations:TCGA, The Cancer GenomeAtlas; SCNAs, Somatic CopyNumber

Alterations; THCA, Thyroid Carcinoma; KIRC, Clear Cell Kidney Carcinoma;

BRCA, Breast Cancer; HNSC, Head-Neck Squamous Carcinoma; CGC, Cancer

Gene Census; FG, Functional Set; DEGs, Differentially Expressed Genes; PPI,

Protein-Protein Interaction.

(http://xena.ucsc.edu/) (Rosenbloom et al., 2015). Undirected
interaction network information was collected from the Human
Protein Reference Database (HPRD) release 9 (Keshava Prasad
et al., 2009). HPRD is a comprehensive resource for studying the
human proteome, and the proteins have been manually extracted
from the literature by expert biologists. In the mutation matrix,
where a row denotes a gene, and a column denotes a patient, if
a gene exists the mutations (e.g., SCNAs, small insertions, and
small deletions), which was marked as one, otherwise marked
as zero. Gene expression profiles from control samples were
also used for differential expression analysis. The details of the
data can be seen in Supplementary Table 1. To evaluate the
performance of our results, we obtained the set of all 723 entries
from the Cancer Gene Census (CGC, Accessed on: 01/30/2020)
(Tate et al., 2019). Functional gene sets were collected from
literature (Ge et al., 2018; Malta et al., 2018; Sanchezvega
et al., 2018) and the Atlas of Cancer Signaling Network website
(https://acsn.curie.fr/ACSN2/ACSN2.html), which includes data
for various pathways including ubiquitin pathway, DNA repair
pathway, TGF-beta signaling, and oncogenic signaling pathway.
Finally, we used the Functional Set (FG) with 3,681 functional
genes to represent the functional biological processes.

Evaluation Criteria
The performance of algorithms for prioritizing candidate genes
was widely adopted the following criteria: precision, recall,
and the F1 score (Bashashati et al., 2012; Hou and Ma,
2014). MUFFINN, Dawnrank, and DriverNet were the state of
art methods to be compared with other algorithms. We use
MUFFINN algorithm based on NDmax and HumanNet. One
hundred top-ranked candidate genes were selected to compare
the state-of-art methods (Hui et al., 2019). The following
evaluation criteria were used to assess the ability of a method to
identify real driver genes from the top-ranked candidates.

Precision =
(# Genes in CGC) ∩ (#Genes found in our method)

(#Genes found in our method)

Recall =
(#Genes in CGC) ∩ (#Genes found in our method)

(#Genes in CGC)

F1 sore = 2×
Precision× Recall

Precision+ Recall

Scoring Scheme of DriverSubNet
A schematic diagram of our DriverSubNet pipeline consists of
four steps (Figure 1). Firstly, differential expression analysis was
carried out statistical analysis by using the DEseq2 package in R
(version 3.6). All genes with adjusted p < 0.05 were considered
as DEGs. Secondly, DEGs and mutated genes were mapped to
HPRD interaction network. For each mutated gene in HPRD
network, mutated gene and its directly connected neighbor genes
consist of the adjacent neighbor subnetwork, and the central gene
is mutated gene in subnetwork. Thirdly, for each subnetwork,
we want to evaluate whether the subnetwork have an impact on
vital biological process. For DEGs in subnetwork, we measure
whether these DEGs were enriched the FG. If these DEGs were
significantly enriched FG, it represents that the subnetwork
tends to play a crucial role in cancer progression. In our result,
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FIGURE 1 | The pipeline of DriverSubNet. Differential expression analysis was performed using the DESeq2 package. All genes with adjusted p < 0.05 were

considered as DEGs. DEGs and mutated genes were mapped to the network. We extract a neighbor subnetwork from the protein interaction network for each

mutated gene, where a gene and its neighbor genes together consisted of an adjacent neighbor subnetwork. We then evaluate whether the subnetwork is deregulated

subnetwork by enrichment analysis. An enrichment score ESg was obtained by evaluating the functional significance of the central gene in each neighbor subnetwork.

Each center gene with an enrichment score ESg was calculated. Finally, candidate genes were ranked according to their overall mutational influence scores and ESg.

enrichment p-value of DEGs was set as 5E-6 across four datasets
and the recall value of recognizing known cancer genes in the
top 100 genes achieved high. If the enrichment p-value of DEGs
<5E-6 and the subnetwork consist of more than two genes,
the subnetwork was regarded as a deregulated subnetwork. To
assess the impact of mutated gene in the deregulated subnetwork,
we calculated the mutated impact score ESg. We performed
the enrichment analysis using the fisher.test function in R
(version 3.6), and then transformed it using -log function. It was
computed as follows:

ESg = −log









1−
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∑
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M
i

) (
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)

(
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n

)









where N represents the total genes in each subnetwork,
n represents the number of DEGs in the subnetwork, M
represents the overlap with DEGs and functional gene set in
each subnetwork, and i represents the overlap with DEGs and
functional gene set.

Then, in view of combing the effect of gene expression and
gene mutations can improve the performance of algorithms
(Hou and Ma, 2014), and mutation recurrence makes a vital
contribution on detecting high frequency mutated drivers, we
also considered mutation frequency in our approach to uncover
the most functional drivers in a large number of patients.
We evaluated the significance of mutated genes based on the
mutation frequency. We calculate the number of mutations
according to the mutation matrix, then we normalized the
number of mutations, then the value is range 0–1. Finally, we
computed a score for every candidate gene by averaging the
normalized ESg gene score in the deregulated subnetwork and
the normalized gene mutational scores. Candidate genes were

ranked according to their overall scores. The score of candidate
driver gene score was calculated as follows:

Score = (
ESg − µESg

σESg
+

dMF − µMF

σMF
)/2

where µESg is the expected mean of ESg, and σESg is the standard
deviation of ESg, dMF is the number of patients with mutated
genes, µMF is the expected mean of dMF , and σMF is the standard
deviation of dMF .

Functional Enrichment Analysis
To understand the features detected in our results, we used the
R package and found significant enrichment of these uncovered
top 100 genes in terms of biological process. Briefly, biological
process termswere annotated according to statistical significance.
Enrichment was calculated through the hypergeometric test with
p< 0.05, and following which top 100 most significant categories
were selected.

Survival and Drug Analysis
We used the online tool for analyzing patient survival via
its standard processing pipeline GEPIA (Zefang et al., 2017).
The drug information for genes was obtained from the Drug
Gene Interaction database (DGIdb) (Cotto et al., 2018). DGIdb
is comprehensive catalog of druggable genes (i.e., genes with
directed pharmacotherapy) and drug-gene interactions database,
which integrates existing 30 sources (DrugBank, PharmGKB,
Chembl, Drug Target Commons, TTD, and others) and collects
56,309 drug-gene interactions. Drug-gene interactions represents
that genes or gene products are known or predicted to interact
with drugs, and the genemight be targeted therapeutically. In our
study, we use DGIdb to analyze whether these identified genes are
clinically relevant genes.
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FIGURE 2 | Performance comparison with CGC in terms of precision, F1 score, and recall of Dawnrank and DriverNet methods on (A) BRCA, (B) HNSC, (C) KIRC,

and (D) THCA datasets.

RESULTS

Performance Evaluation for Known
Cancer-Related Genes
Here, we adopt a subnetwork analysis with PPI information. The
core of algorithm is a local subnetwork model, which views that
a driver gene can be detected by aggregating its involvement in
functional biological process from a central gene and its direct
neighbor DEGs. We applied DriverSubNet to four datasets from
BRCA, THCA, KIRC, and HNSC, respectively, which the cancer
type is randomly chose. Then, we evaluate the effectiveness of our
method, MUFFINN, Dawnrank, and DriverNet algorithms.

The performances of DriverSubNet, MUFFINN, Dawnrank,
and DriverNet methods were compared on the basis of
precision, recall, and F1 scores for the top 100 genes. In
general, DriverSubNet outperformed MUFFINN, Dawnrank,
and DriverNet methods in all four cancer datasets with
gold standard CGC dataset (Figure 2). Especially the most of
candidate genes were overlapped with CGC in the top 100 driver
genes using the DriverSubNet method across four datasets. It
suggests that DriverSubNet is robust and has an excellent ability
of identifying driver genes. Although the Dawnrank method
performed better ability than other algorithms in ranking the
top 12 genes in THCA, it had a poorer ability in KIRC. The
reason for this phenomenonmay be the different number of gene
mutations and the variety of gene expression levels across the

four cancer types. DriverSubNet is easier to evade the number of
mutation noise and expression than other methods. For example,
DriverSubNet was able to recover most of known cancer driver
genes in the top 100 detected genes across four datasets, while the
percentage of known cancer driver genes in the top 100 detected
genes using Dawnrank and DriverNet is sensitive to cancer
type. This may lead to Dawnrank have a good performance
in THCA, while bad performance in KIRC. In KIRC, although
some known drivers were found by these three methods,
DriverSubNet uncovered significant famous driver genes, such as
EGFR, which was ranked the 16th, and it were not detected by
either Dawnrank or DriverNet or MUFFINN method as the top
ranking drivers.

Novel Candidate Genes Predicted by
DriverSubNet
To evaluate the performance of algorithm, precision, recall, and
F1 score are widely used to analyze the top 100 genes. In our
result, we identified some genes that were not known cancer
driver genes. It is essential to explore whether these genes have a
potential relationship with cancer. Previous study has suggested
that high-ranking unknown cancer driver genes have a potential
to be novel driver genes (Hou and Ma, 2014). In our study, we
used the top 10 genes to detect some unknown cancer driver
genes which have a potential to be novel driver genes.
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FIGURE 3 | Prognostic value of six genes in cancer patients. (A) PTK2 in BRCA. (B) GNB2L1 in KIRC. (C) PRKCD in KIRC. (D) FYN in KIRC. (E) NR3C1 in KIRC.

(F) GRB2 in KIRC.

For the BRCA dataset, 48 genes overlapped with CGC for the
top 100 candidate driver genes (Supplementary Table 2). Among
the top 10 ranking genes in BRCA, CREBBP, EP300, MYC, SRC,
and TP53 overlapped with the cancer genes in CGC, whereas the
other five genes, (CDK1, GRB2, YWHAZ, SHC1, and PTK2) did
not include in CGC. These five genes were differentially expressed
in BRCA. To investigate whether these five genes were involved in
BRCA, we explored the correction between these five genes and
overall survival in BRCA. Through Kaplan-Meier analysis using
an online GEPIA, PTK2 showed high expression was corrected
with a shorter overall survival in BRCA patients (Figure 3A).
CDK1, GRB2, and PTK2 were the druggable genes in DGIdb. We
concluded that CDK1, GRB2, and PTK2 were more likely to be
involved in pathogenesis of BRCA, simultaneously, which have a
great potential to be therapeutic targets. Through analysis, PTK2
can be applied to predict survival of BRCA patients.

For the HNSC dataset, 51 genes overlapped with the
genes in CGC for the top 100 candidate driver genes
(Supplementary Table 2). Among the top 10 ranking genes in
HNSC, CREBBP, CTNNB1, EGFR, EP300, MAPK1, SMAD2,
SMAD3, SRC, and TP53 overlapped with the genes in CGC,
whereas the other one GRB2 did not. To investigate whether
GRB2was involved inHNSC, we explored the correction between
GRB2 and overall survival in HNSC. Through Kaplan-Meier
analysis, GRB2 was not corrected with shorter overall survival

in HNSC patients. GRB2 was the druggable gene in DGIdb and
more likely to be involved in the pathogenesis of HNSC.

For the KIRC dataset, 48 genes overlapped with CGC for
the top 100 candidate driver genes (Supplementary Table 2).
Among the top 10 ranking genes in KIRC, CTNNB1, EP300,
SRC, and TP53 were found in CGC. Other six genes (PRKCA,
PRKCD, GNB2L1, FYN, NR3C1, and GRB2) did not present in
CGC. To investigate whether these genes were involved in KIRC,
we explored the correction between these six genes and overall
survival in KIRC. Through Kaplan-Meier analysis, five out of the
six genes (PRKCD, GNB2L1, FYN, NR3C1, and GRB2) showed
high expression were corrected with shorter overall survival
in KIRC patients (Figures 3B–F). It was concluded that these
five genes had a great ability to participate in pathogenesis of
KIRC, and were possible therapeutic targets. Besides, through the
analysis, these five genes can be applied to predict the overall
survival of KIRC patients.

For the THCA dataset, 48 genes overlapped with the genes in
CGC for the top 100 candidate driver genes. The top 10 ranking
genes in THCA were accessed in the Supplementary Table 2.
Among these genes, BRAF, CREBBP, EGFR, EP300, MAPK1,
SMAD3, SRC, andTP53 overlappedwith the genes in CGC. These
eight genes were known to participate in cancer progression. The
other two genes (FYN and GRB2) did not match with the CGC
database. GRB2 belongs to druggable genes according to DGIdb.
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FIGURE 4 | The top 10 gene ontology (GO) terms enrichment of (A) BRCA, (B) HNSC, (C) KIRC, and (D) THCA by significant genes with p < 0.05 in DriverSubNet.

We concluded that GRB2 had a great ability to participate in the
pathogenesis of THCA, and was a possible therapeutic target.

Enrichment Analysis
KEGG and GO enrichment analysis displayed that the top 100
uncovered genes of cancers were significantly enriched in vital
KEGG and GO terms, as shown in Supplementary Figure 1,
Figure 4, respectively.

In BRCA, the most significantly enriched KEGG term
was “Proteoglycans in cancer” (Supplementary Figure 1).
Proteoglycans are implicated in regulating cellular growth and
differentiation (Filmus et al., 2008). Other enriched terms (e.g.,
Viral carcinogenesis, ErbB signaling pathway, chronic myeloid
leukemia, and prostate cancer) are also related to cancer. The top
ranked significantly enriched GO term was peptide associated
(Figure 4A). Peptide hormone can negatively regulate iron
efflux and is crucial for modulating the growth of breast tumors
(Blanchette-Farra et al., 2018). Other enriched terms (e.g., Fc
receptor signaling pathway, adhesion) are also related to cancer.

Fc receptor can be acted as an indicator for prognosis in many
cancers, such as colorectal and lung cancer (Cadena Castaneda
et al., 2020). The roles of Fc receptor signaling pathway in BRCA
brings forward the need for further studies.

In HNSC, the significantly enriched KEGG term was cancer

related, such as proteoglycans in cancer, viral carcinogenesis,

and pancreatic cancer. In Figure 4B, “Response to reactive
oxygen species” was the enrichment GO term, which can
induce oxidative stress (Ma, 2013). Increased reactive oxygen
species production involved in multiple cancers through various
mechanisms, for example, they can express pro-tumorigenic
signaling, and lead to tumor abnormal survival and proliferation,
and avail to DNA damage and genetic instability (Moloney
and Cotter, 2017). Oxidative stress can contribute to the
maintenance of genomic instability during the progression
phase of cancer (Hassani et al., 2019) remove. This suggests
that oxidative stress has a clinical significance in cancer
remove. Moreover, the cellular response to oxidative stress
plays crucial roles in cellular adaptation to hypoxic stress
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remove. Other terms including immune response-activating
cell surface receptor signaling pathway, phosphatidylinositol-
mediated signaling, Fc receptor signaling pathway, and so on.
Moreover, Fc receptor plays a crucial role in NK cell maturation
and tumor immunosurveillance (Cadena Castaneda et al., 2020).
Immune system play a vital role in HNSC (Mirza et al., 2019).
Thus, the top 100 genes in HNSC that we identified were
significantly related to cancer.

In KIRC, KEGG pathway annotation indicated that the
pathways most enriched in chemokine signaling pathway,
neurotrophin signaling pathway, ErbB signaling pathway
(Supplementary Figure 1). The top ranked GO term in KIRC
was “immune response-activating cell surface (Figure 4C). The
top 100 genes identified in KIRC were significantly related to
cancer. Other terms including regulation of apoptotic signaling
pathway, and Fc receptor signaling pathway, regulation of MAP
kinase activity, positive regulation of protein serine/threonine
kinase activity were also recorded. Deregulation in apoptotic is
a hallmark of cancer (Pistritto et al., 2016). Apoptosis alteration
is responsible for tumor development and progression (Pistritto
et al., 2016). Other terms, such as response to oxidative stress,
cell-cell adhesion, and Fc-gamma receptor signaling pathway,
were involved in cancer progression. Through above analysis,
these top 100 genes identified in KIRC were related to cancer.

In THCA, KEGG pathway analysis revealed that the
top 100 genes were linked with proteoglycans in cancer,
chemokine signaling pathway, ErbB signaling pathway, and so
on (Supplementary Figure 1). The most significantly enriched
GO term was “immune response-activating cell surface receptor
signaling pathway” (Figure 4D). This means that the top 100
genes in THCAmake a contribution tomodulate immune system
in cancer. Other enriched terms, such as regulation of cell-cell
adhesion and Fc receptor signaling pathway, regulation of MAP
kinase activity are associated with cancer progression. Thus,
the top 100 genes that we identified were significantly related
to cancer.

Actionable Druggable Genes
DriverSubNet’s rankings can guide scientists to decide on drug
development and clinical treatment. The top 100 driver genes for
BRCA, HNSC, KIRC, and THCA, respectively, were looked-up
in DGIdb. Genes with target drug information were considered
as druggable driver genes, and the others as undruggable driver
genes. The results (Figure 5) indicated that most of the identified
driver genes were druggable driver genes. In Figure 5, it was
obvious that the proportions of druggable genes increased
substantially when the number of genes were increased. Hence,
DriverSubNet has the ability of uncovering potential therapeutic
targets, tailored to the clinical treatment.

DISCUSSION

Many methods have been designed to screen driver genes by
distinguishing them from passenger genes, but almost all of
them have limited sensitivity and specificity. To solve this
shortcoming, we constructed the DriverSubNet, which effectively
mined the mutation and expression information in PPI network.

The algorithm takes into effect of central gene on neighboring
DEGs, and mutated frequency. Comparing DriverSubNet with
Dawnrank and DriverNet on the four cancer datasets, our
results reveal that DriverSubNet achieves better performance
than Dawnrank and DriverNet methods in the top 100 gene set.
DriverSubNet was able to find well-known genes, such as EGFR.
In addition, DriverSubNet could also found functional driver
genes which have a low mutation rate.

Indeed, to explore the non-CGC candidate genes in the top
100 candidate driver genes by DriverSubNet, we performed
literature search, and found that most of non-CGC candidate
genes with experimental evidence revealing their relation with
cancer. Among the top 10 driver genes identified in BRCA,
HNSC, KIRC, and THCA (Supplementary Table 2), overall,
seven unique genes (CDK1, GRB2, YWHAG, SHC1 and PTK2,
FYN, and TRAF2) were detected as non-CGC genes. YWHAG
is critical for maintaining several canonical pathways. miRNAs
can directly target YWHAG, which has been reported as a
tumor suppressor, and participates in the progression in breast
cancer, glioblastoma, and lung cancer (Yoo et al., 2016; Wang
et al., 2017a,b). GRB2 encodes protein can activate cell surface
receptors in signaling transduction (Giubellino et al., 2008).
GRB2 signaling is associated with cell motility, angiogenesis, and
vasculogenesis (Giubellino et al., 2008). These functions make
GRB2 a potential target biomarker to hinder tumor metastasis
and local invasion (Giubellino et al., 2008). SHC1 encoding
protein is recruited to tyrosine kinases, which is essential for
breast cancer initiation, progression, and metastasis (Ahn et al.,
2017). It has implicated that SHC1 mediate several key signaling
pathways in breast cancer (Wright et al., 2019). PTK2 is a highly
phosphorylated kinases in breast cancer (Mertins et al., 2016).
Substantial evidence has shown that activated PTK2 expression
level links to tumor progression (Fan et al., 2019). In our
result, PTK2 is highly expressed (Fold Change = 1.39) in BRCA
samples, which suggests that high PTK2 expression leads to
BRCA growth and metastasis. FYN is differentially expressed in
multiple cancers, and has a correction with cancer progression
by controlling cellular motility, cell growth, and death (Elias
and Ditzel, 2015). FYN is a promising candidate therapeutic
marker and may be applied to Fyn-targeted therapy (Elias
and Ditzel, 2015). TRAF2 is reported as an NF-κB-activating
oncogene (Shen et al., 2015). CDK1 can regulate cell cycle
progression by executing the G2/M phase transition (Asghar
et al., 2015). CDK1 is the central regulator of cell proliferation
and a promising therapeutic target for BRCA (Galindomoreno
et al., 2017). Knockout of CDK1 in mouse experiments revealed
thatCDK1 contributed to cellular proliferation (Santamaría et al.,
2007). DLG1 expression associates with the progress of cervical
disease (Cavatorta et al., 2017). Through the above analysis, we
may find that cancer is heterogeneity that the same driver gene
has differential function across cancers, for example, GRB2 is
identified driver gene in four dataset, and GRB2 expression has a
significant survival rate in KIRC, while not in other three cancer
types. The findings from this analysis indicate that six genes
(Figure 3) which are not in CGC or the independent predictor
of poor survival or therapeutic target genes, may contribute to
cancer through other mechanisms. Namely, DriverSubNet was
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FIGURE 5 | Distribution of top 100 candidate-driver genes from the four cancer gene databases in druggable genes databases. (A) BRCA, (B) HNSC, (C) KIRC, and

(D) THCA.

able to find these unknown cancer driver genes which could act
as potential therapeutic targets and useful prognostic biomarkers
for overall survival of patients.

Through performing the KEGG and GO enrichment of these
top 100 ranked genes in BRCA, HNSC, KIRC, and THCA,
respectively, these drivers were involved in oxidative stress,
immune response-regulating cell surface receptor signaling
pathway, apoptotic signaling pathway, and immune response-
activating cell surface receptor signaling pathway. All of the
KEGG and GO terms play important roles in the response
to cancer.

Although the present study shows various positive results, it
has certain limitations as well. Future validation using multiple
cancer types is warranted. In addition, the present study did not
attempt to use the synonymous mutations (Wen et al., 2016) and
indels (insertions and deletions) (Yue et al., 2019), which have
been found to regulate tumorigenesis via various mechanisms
(Yue et al., 2019; Zhang and Xia, 2020). We will attempt to
integrate these somatic mutation data in our future work.

In conclusion, we have designed an effective and no parameter
algorithm, termed DriverSubNet, for prioritizing cancer driver
genes by integrating somatic mutational, expression, and PPI
network. As indicated by the evaluation of four cancer
datasets, DriverSubNet consistently outperformed Dawnrank

and DriverNet methods in terms of precision, recall, and F1
score. Further, it was able to identify potential driver genes that
have not been documented, but might be important driver genes.
Thus, DriverSubNet acted as a useful tool for the identification
of driver genes by subnetwork enrichment analysis. However,
studies with larger multiple cancer types and by including
synonymous mutations and indels will be helpful in further
development of this method.
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With the progress of medical technology, biomedical field ushered in the era of big data,
based on which and driven by artificial intelligence technology, computational medicine
has emerged. People need to extract the effective information contained in these big
biomedical data to promote the development of precision medicine. Traditionally, the
machine learning methods are used to dig out biomedical data to find the features from
data, which generally rely on feature engineering and domain knowledge of experts,
requiring tremendous time and human resources. Different from traditional approaches,
deep learning, as a cutting-edge machine learning branch, can automatically learn
complex and robust feature from raw data without the need for feature engineering. The
applications of deep learning in medical image, electronic health record, genomics, and
drug development are studied, where the suggestion is that deep learning has obvious
advantage in making full use of biomedical data and improving medical health level.
Deep learning plays an increasingly important role in the field of medical health and has
a broad prospect of application. However, the problems and challenges of deep learning
in computational medical health still exist, including insufficient data, interpretability,
data privacy, and heterogeneity. Analysis and discussion on these problems provide
a reference to improve the application of deep learning in medical health.

Keywords: deep learning, computational medicine, health care, medical imaging, genomics, electronic health
records, drug development

INTRODUCTION

In recent years, with the explosive growth of biomedical data and the rapid development of
medical technology and computer technology, the field of medical health ushered in the era of
big data (Miotto et al., 2018). In this context, computational medicine began to appear as a new
subject. Based on big biomedical data and computer technology, computational medicine is an
interdisciplinary subject combining medicine, computer science, biology, mathematics, etc. It uses
the method of artificial intelligence to intelligently understand the principle and physiological
mechanism of human diseases by analyzing big data and provides useful information and guidance
for disease prediction, clinical diagnosis, and medical services. Taking the pharmaceutical industry
as an example, traditionally, new drug research suffers from long periods, considerable investment,
and high failure rate. In contrast, the research based on computational medicine can complete the
preclinical drug research and development in an average of 1–2 years, with high success rate and
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low resource consumption indicating that the field of
medical health is gradually entering the era of intelligence
and digitization.

However, biomedical datasets are high-dimensional, jumbled,
noisy, and sparse, making it difficult to mine the rich information
behind these datasets effectively. Therefore, an appropriate
approach is needed to process large amounts of biomedical data
to obtain efficient information. At present, in the community of
machine learning, deep learning is a bright pearl in the field of
artificial intelligence. As a branch of machine learning, it has been
proved that deep learning is an effective method and surpasses
the traditional machine learning in areas such as computer vision
(He et al., 2016), natural language processing (Lan et al., 2020),
and speech recognition (Abdel-Hamid et al., 2014). The key step
of the machine learning method, called feature engineering, is to
artificially use expert and domain knowledge to distill features
from data and further analyze the features by machine learning
models (such as support vector machine, random forest, etc.).
In the era of big data, the manual extraction is insufficient and
biased such that it cannot establish a high-performance model
for specific tasks.

Unlike traditional machine learning approaches, deep learning
spares the need to extract features manually, which improves
time and resource efficiency. Deep learning is implemented by
neural networks consisting of neurons. Each layer of neural
networks is composed of a large number of neurons, and the
output of the upper layer is regarded as the input of the next
layer. Through the connection between layers and the nonlinear
processing method, the neural network can convert the original
input to the output. More importantly, the high-level network
can automatically learn more abstract and generalized features
from the data, which overcomes the shortcoming that machine
learning needs to extract features manually.

As the most advanced artificial intelligence method, deep
learning provides a method for computational medicine, so it
is a trend to apply deep learning method to biomedical data
analysis. Figure 1 is a schematic diagram of deep learning in
computational medicine. However, biomedical data are not as
clean, easy to process, and easy to obtain as data in other fields, so
it is a challenge to give a full play to the role of deep learning in
computational medicine.

In this article, we first introduce several popular deep learning
frameworks. Second, we survey the application of deep learning
in clinical imaging, electronic health records, genomics, and
drug development. Finally, we point out that the application of
deep learning in the field of medical and health faces challenges
such as insufficient data, model interpretability, data privacy,
and heterogeneity.

INTRODUCTION TO DEEP LEARNING

Deep learning is a part of machine learning, which is inspired by
neurons in the human brain: there are tens of millions of neurons
in the human brain, and there are more than 100,000 connections
between them. The deep learning method is called artificial neural
network. As shown in Figure 2, the neural network is composed
of the input layer, hidden layer, and output layer. Each layer is
composed of several neurons, and the hidden layer may consist of
many layers. According to different task types, there are different
numbers of neurons in the output layer of the neural networks.
For example, there are three neurons in the output layer in
the three-classification problem, and each neuron represents the
probability of belonging to a certain category.

We take a neuron in the hidden layer as an example to
illustrate the calculation method of the neuron. As shown in
Figure 3, the calculation of the neuron is as follows:

The equation of the calculation of the neuron is as follows:

y = f (
∑

j

wij
∗xj) (1)

where xj is the jth input of the neuron, y is the output of the
neuron, wij is the weight of the ith neuron and the jth input,
bi is the bias of the ith neuron, and f is the activation function
to perform a nonlinear transformation on the output of the
neuron. The common activation functions are sigmoid, ReLU,
tanh, softmax, etc.

The training of the neural network depends on forward
propagation algorithm and back-propagation algorithm.
Forward propagation refers to the whole process of data
propagation from the input layer to the output layer, where the
neural network calculates intermediate variables of each neuron

FIGURE 1 | Application of deep learning models in computational medicine.
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FIGURE 2 | Illustration of neural network architecture.

in turn. Back propagation refers to the parameter optimization
process of the neural network. According to the intermediate
variables calculated by forward propagation, the parameters
of the neural network are updated by gradient descent. The
common gradient descent algorithms include random gradient
descent, Adam (Kingma and Ba, 2015), RMSprop, Adadelta
(Zeiler, 2012), Adagrad (Duchi et al., 2011), etc.

According to the connection and calculation methods, there
are different types of the neural networks. Here, we discuss only
the most common and basic neural networks, which constitute
the basic deep learning methods. Table 1 lists a summary of the
neural networks.

Fully Connected Neural Network
As the name implies, a fully connected neural network means that
the neurons in the layers of the neural networks are completely
connected, as shown in Figure 4. The fully connected neural

FIGURE 3 | Schematic diagram of neural network calculation.

network consists of the input layer, the hidden layer, and the
output layer. The input layer is responsible for receiving input
data. The hidden layer is composed of many neural network
layers for feature extraction. The output layer outputs the final
prediction result.

Assume that the input is X∈Rn∗d , where the number of
samples is n, and each sample consists of d features. Assume
that the first hidden layer Hidden layer 1 contains h neurons,
that is, the Hidden layer 1 contains h outputs, and then the
weight matrix of the first hidden layer is denoted as W1∈Rd∗h ,
the bias is denoted as b1∈R1∗h , and the calculation of output
Output1 is Output1=f (XW1 +b1).

After that, the output Output1 of Hidden layer 1 is used as
the input of Hidden layer 2, and so on, until the output layer of
the fully connected network outputs the final calculation result.
The fully connected neural network is the most basic neural
network. Combined with other neural networks, it is widely used
to integrate high-level features and output prediction results.
Depending on the task type, the final output can be either a
probability distribution or a task-related value.

Convolutional Neural Network
In recent years, the convolutional neural network has
made remarkable achievements in image recognition. The
convolutional neural networks adopt the method of local
connection and weight sharing, which reduces the complexity
of the network and enables the network to directly use the
image as input. The convolution neural network has two
important characteristics: first, the features learned from the
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TABLE 1 | A summary of the neural networks.

Neural networks Advantages Disadvantages Biomedical tasks

Fully connected neural
network

It is widely used at the end of the other
neural network models to integrate
features and make predictions

It is not easy to process
high-dimensional data

Combined with other neural networks, it is widely
used in many fields

Convolutional neural
network

It can extract highly abstract and
complex features from images

It has too many parameters, and the
training speed is slow

It is suitable for processing imaging-related tasks,
such as clinical imaging

Recurrent neural
network

It has a memory function and can
effectively process data about sequence
and time

Training procedure is difficult and
computationally intensive

It is suitable for processing sequence related
biomedical data, such as DNA sequence, protein
sequence, electronic health records

Autoencoder It can perform unsupervised learning
without using labeled data

It needs a pretraining phase It is suitable for feature dimensionality reduction or
learning effective features from data, such as
clinical imaging and genomics

Deep belief network It can be used for both supervised
learning and unsupervised learning

The training process is
computationally intensive

It is suitable for automatic feature extraction
tasks, such as genomics and drug development

FIGURE 4 | Fully connected neural network.

image are translational and nondeformable; second, the higher
the convolution layer, the more abstract and complex the features
extracted. The convolution neural network is composed of the
convolution layer, the pooling layer, and the fully connected
layer. The convolution layer is composed of filters. Each filter
is equivalent to a small window. These small windows move on
the image to learn features from the image. Then, the learned
features are subsampled by pooling operation to extract more
representative features and improve the robustness and accuracy
of the model. Finally, the fully connected layer outputs the
prediction result. A convolutional neural network framework for
lung pattern recognition (Anthimopoulos et al., 2016) is shown
in Figure 5.

Recurrent Neural Network
Another common neural network is called the recurrent neural
network, which is very suitable for processing sequential data,
such as time-dependent data.

In the fully connected neural networks and the convolutional
neural networks, their inputs are independent. In contrast, in the

recurrent neural network, the former input and the latter input
are dependent and have sequence relation. Just like analyzing a
sentence, because the current word depends on the front and
back words, it means that analyzing each independent word will
not produce good results. The structure of the recurrent neural
network is shown in Figure 6. At time t, the input of the neural
network is xt . The output of the neural network is yt , which
is calculated from the hidden layer state st that depends not
only on the input xt at the current time t, but also on the state
st−1 at the time t-1, which makes the recurrent neural network
have memory, and the state of the last moment can affect the
effectiveness of the current time.

The variants of recurrent neural networks include Gated
Recurrent Unit (GRU) (Chung et al., 2014) and Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997), and so on.

Autoencoder
The fourth deep learning framework is called the autoencoder,
which is often used in unsupervised learning.
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FIGURE 5 | Convolutional neural network.

The autoencoder can be used to reduce dimension and learn
feature. The structure of the autoencoder is shown in Figure 7.
The autoencoder is composed of an encoder and a decoder.
Encoders and decoders can be any neural networks models. In
general, the number of neurons in the middle-hidden layer is
less than that in the input layer and the output layer, which
is useful for compressing data and learning effective features
from data. The number of neurons in the input layer and the
output layer in the autoencoder is the same. Specifically, the
encoder reduces the dimension of the original data to get a new
representation. Then, the decoder restores the input data through
this new representation.

The deformation of autoencoder includes stacked
autoencoder (Bengio et al., 2006), denoising autoencoder
(Vincent et al., 2008), variational autoencoder, etc. The stacked
autoencoder is a hierarchical deep neural network structure
composed of multilayer autoencoders. It has deeper depth
and stronger learning ability. The denoising autoencoder adds
random noise to the input data and then uses the data with noise
to train the autoencoder. The autoencoder trained in this way is
stronger and has better antinoise ability. Variational autoencoder
adds some restrictions in the encoding process, which makes the
generated vectors follow the standard normal distribution. The
encoding method makes the automatic encoder more effective.

FIGURE 6 | Illustration of recurrent neural network.

Deep Belief Network
Deep belief network (Hinton et al., 2006) is a probability
generation model based on the restricted Boltzmann
machine, which establishes a joint probability distribution
between data and label.

As shown in Figure 8, the restricted Boltzmann machine
has only two layers: the visible layer composed of visible
units and the hidden layer composed of hidden units. The
visible layer is used for the input of training data, whereas
the hidden layer is used as a feature detector. Each layer can
be represented as a vector, each dimension by each neuron.
Neurons are independent of each other. The advantage of

FIGURE 7 | Illustration of autoencoder.
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FIGURE 8 | Illustration of restricted Boltzmann machine.

this is that given the values of all the explicit elements,
the values of each implicit element are independent of each
other. The trained restricted Boltzmann machine can extract
the features of the explicit layer more accurately or restore
the explicit layer according to the features represented by
the implicit layer.

As shown in Figure 9, several restricted Boltzmann
machines are connected to form a deep belief network
in which the hidden layer of the previously restricted
Boltzmann machine is the visible layer of the next restricted
Boltzmann machine. It means that the output of the previously
restricted Boltzmann machine is the input of the next
restricted Boltzmann machine. In the training process, it is
necessary to fully train the restricted Boltzmann machine
in the upper layer before training the restricted Boltzmann
machine in the current layer. The procedure continues
until the last layer.

Software/Hardware Support
Owing to the explosion of data and the support of GPU
hardware acceleration technology, deep learning has developed
rapidly in recent years. At present, there are many deep
learning libraries such as PyTorch, Keras, TensorFlow,
Theano, Caffe, and so on. Table 2 lists the representative
libraries and packages that provide a convenient and
efficient tool for researchers who need to develop deep
learning programs and greatly promote the application and
development of deep learning in various fields (including
computational medicine).

FIGURE 9 | Illustration of deep belief network.

TABLE 2 | Some frequently used deep learning packages.

Name Interface URL

Keras Python https://keras.io/

PyTorch Python https://pytorch.org/

TensorFlow Python https://www.tensorflow.org/

Caffe C++/Python/MATLAB https://caffe.berkeleyvision.org/

Theano Python http://deeplearning.net/software/theano/

Torch LuaJIT/C http://torch.ch/

APPLICATION OF DEEP LEARNING IN
COMPUTATIONAL MEDICINE

Search Strategy and Selection Criteria
Because Google Scholar provides researchers with a convenient
and quick way to search the literature, we searched Google
Scholar for published researches from 2015 to 2020 that
contained the keyword “deep learning,” which combines the
terms of corresponding fields for deep learning in each
different application field until September 2020. All searched
researches are published in English. Specifically, for the
application of deep learning in the clinical imaging, the
combination of “deep learning” and “medical image” was
used to search. For the application of deep learning in the
field of the electronic medical records, the combination of
“deep learning” and “electronic health record” or “electronic
medical record” was used to search. For the research of deep
learning in genomics, the combination of “deep learning”
and “genomics” or “gene” was used to search. For the
research of deep learning in drug development, we used
the combination of “deep learning” and “drug development”
or “drug repositioning” or “drug repurposing.” For the
literature found, we also conducted manual screening to check
whether the content of the article is about the application of
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deep learning in computational medicine. Finally, this review
includes 107 articles.

Medical Image
The medical image plays a key role in medical diagnosis and
treatment providing an important basis for understanding a
patient’s disease and helping physicians make decisions. As
medical devices become more advanced, and the career of
medical health is rapidly growing, more and more medical
image data are generated, such as magnetic resonance imaging,
computed tomography (CT), and so on. Huge amounts of
medical imaging data require much more time if experts
analyzed the data alone. And the analysis of medical image
data may produce erroneous or biased results due to varying
degrees of experience, knowledge, and other factors that
the experts themselves have. Machine learning algorithms
are, to some extent, able to assist specialists in automated
analysis, but may not have the ability to process and
achieve high accuracy when faced with such vast data and
complex problems.

Deep learning has been successful in the field of image
processing: it carries out tasks such as image classification,
target recognition, and target segmentation by analyzing images.
Therefore, the application of deep learning in the task of medical
image analysis has become a trend in medical research in recent
years. Researchers used the artificial intelligence methods to
help physicians make accurate diagnoses and decisions. Many
aspects are involved in these tasks, such as detecting retinopathy,
bone age, skin cancer identification, etc. Deep learning achieves
expert level in these tasks. The convolutional neural network
is a powerful deep learning method. The convolutional neural
networks follow the principle of translational invariance and
parameter sharing, which is very suitable for automatically
extracting image features from the original image.

Figure 10 shows a convolutional neural network structure for
detecting pneumonia with chest X-ray images. The convolution
neural network is composed of the convolution layer, the pooling
layer, and the fully connected layer. First, the filtering window
in a convolution layer will move step by step in the image to
learn local features from the image. Second, the pooling layer
will sample the learned features to reduce the parameters and
overfitting to improve the performance of the network. Finally,

these features will output the final results through the fully
connected layer.

In a convolution neural network, there are usually multiple
convolution layers such that the convolution layer at the bottom
can learn the local features in the image, and the high-
level convolution layer can integrate these local features and
learn the overall features. Usually, for the same symptom, the
location and shape of lesions or tumors are different in different
pictures, making it very difficult to analyze. The advantage of
the convolutional neural network is that it can automatically
learn local features from images and integrate them into global
features. Therefore, the convolutional neural network is very
suitable for clinical image processing.

Researchers have analyzed the effects of different structural
convolutional neural network applications on clinical images.
Shin et al. (2016) pointed out that even if the available training
dataset is limited, a convolutional neural network architecture
with a depth of 8 or even 22 layers may be useful. They
also proved that it was beneficial to migrate models trained
from large-scale annotated natural image datasets (ImageNet)
(Russakovsky et al., 2015) to computer-aided diagnosis problems
in experiments. It can be seen that the convolutional neural
network with few layers can obtain satisfactory results in limited
datasets and has great potential in clinical imaging.

Many researchers have used convolutional neural networks on
the task of the fundus image and achieved good results (Grinsven
et al., 2016; Gulshan et al., 2016; Dai et al., 2018). Poplin et al.
(2018) predicted cardiovascular risk factors from retinal fundus
images. In order to better understand how neural network models
can predict, a deep learning technology called “soft attention” is
used, which can identify the parts that affect the prediction of the
model. Kermany et al. (2018) developed a deep learning system
to effectively classify the images of macular degeneration and
diabetic retinopathy. Fauw et al. (2018) used a three-dimensional
U-Net (Ronneberger et al., 2015; Çiçek et al., 2016) architecture to
segment the original optical coherence tomography images into
15 types of tissue maps. Experimental results showed that the
proposed method achieved and even surpassed the performance
of experts in referral decision-making and disease prediction.

Other researchers used convolutional neural networks to
detect or classify diseases on chest X-ray datasets. For example,
Cao et al. (2016) used the convolutional neural network to X-ray

FIGURE 10 | Convolutional neural network structure for detecting pneumonia with chest X-ray images.
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images collected from mobile devices to diagnose tuberculosis.
The accuracy of the binary classification task reached 89.6%,
which proved the learning ability of the convolutional neural
network in the medical field. Cicero et al. (2017) used
convolutional neural networks to detect and classify chest
abnormalities. Yuan et al. (2019) conducted an experiment with
collaborative deep learning on chest X-ray images. Through
collaborative deep learning, the accuracy was improved by
approximately 19%. Liu et al. (2019) proposed a deep fusion
network based on segmentation to obtain the features of the
whole chest X-ray image and local lung region image from
the image. Kleesiek et al. (2016) used convolutional neural
networks to analyze the brain from magnetic resonance imaging.
The method could deal with any number of patterns, which
proved the feasibility of the convolution neural network in large-
scale research.

In other clinical image tasks, the convolution neural network
also achieved the performance of doctors including skin cancer
diagnosis, knee osteoarthritis diagnosis, bone age assessment, etc.
(Esteva et al., 2017; Haenssle et al., 2018; Iglovikov et al., 2018;
Rakhlin et al., 2018; Tiulpin et al., 2018).

In addition to tasks of routine disease detection, the
convolution neural network can also be used to evaluate the
operation of doctors to help doctors improve the operation
effect. Jin et al. (2018) used a convolutional neural network to
automatically evaluate the performance of surgeons by tracking
and analyzing tool movements in surgical videos. Shvets et al.
(2018) introduced a method of robot instrument segmentation
from surgical images based on deep learning. They used
four different deep learning frameworks: a modified U-Net,
two modified TernausNet (Iglovikov and Shvets, 2018), and
a modified LinkNet (Chaurasia and Culurciello, 2017). The
modified TernausNet performed best in binary segmentation
experiments and partial segmentation experiments.

Some researchers also use data augmentation technology to
solve the problem of data sparsity to prevent model overfitting
(Anthimopoulos et al., 2016; Avendi et al., 2016; Kooi et al., 2017).
Data augmentation refers to using some methods such as flipping,
rotation, translation, clipping, changing contrast to transform the
original image to generate more training data from the existing
training samples, solving the problem of insufficient data, and
improving the ability of the model.

In addition to the convolution neural networks, other neural
networks methods such as the autoencoder, the deformation
model of autoencoder, and the recurrent neural network are also
used in medical imaging research. For example, Hu et al. (2016)
constructed an autoencoder architecture to classify patients and
predict Alzheimer disease. Compared with the support vector
machine, the prediction accuracy is improved by approximately
25%. Cheng J. Z. et al., 2016) used the stacked denoising
autoencoder structure for the differential diagnosis of breast
lesions in ultrasound images and pulmonary nodules. Mansoor
et al. (2016) used the stacked autoencoder to locate anterior visual
pathway segmentation and to create a model to capture local
appearance features of anterior visual pathway segmentation.
Ortiz et al. (2016) used the set of deep belief networks for
early detection of Alzheimer disease. Andermatt et al. (2016)

proposed multidimensional GRU for brain segmentation, which
could accurately segment three-dimensional data.

In conclusion, in the field of clinical imaging, the most
used deep learning network is convolutional neural networks,
other neural networks such as recurrent neural networks and
autoencoder have also been used. To make the models capture
the patterns and features, some measures have also been taken
by researchers, such as regularization, dropout, and expansion of
the dataset methods. Among them, the most common approach
for expanding dataset is data augmentation techniques, which
play an important role in improving the performance of models.
These experiments demonstrate that deep learning performs
better than traditional machine learning on clinical imaging
tasks. Deep learning provides doctors with automated technology
to analyze pictures, videos, etc., to help biomedical careers
develop rapidly.

Although the effect of deep learning on medical imaging is
better than that of machine learning, and deep learning achieves
human-level performance, there are still some limitations:

(1) It is difficult to collect sufficient labeled data. Training
a convolutional neural network with good performance
requires a large number of parameters and samples.
Sometimes it is difficult to collect sufficient and labeled
training data. In addition to the differences in features,
patterns, colors, values, and shapes in real medical image
data, it is difficult to train a suitable network.
There are two ways to deal with the problem. The first
way is the strategy of data augmentation, which is a very
powerful technology to reduce overfitting. It generates a
new image through a series of transformations (such as
translation, flipping, changing contrast) of the original
images to expand the dataset, so that the model has better
generalization ability. The other is to use transfer learning,
which uses a model trained in other training data in
advance and then transfers the model to the medical image
data to fine-tune the model, so as to get a model with strong
generalization ability.

(2) Convolution neural networks cannot explain the
hierarchical and positional relationship between features
extracted from images. For example, neurons can capture
the dataset feature, but neurons cannot well capture the
spatial relationship between these features. For this reason,
Sabour et al. (2017) proposed the Capsules Network. In
this structure, the input and output of the capsules are not
a scalar, but a vector instead of a traditional neuron. The
length of the vector means the probability of the existence
of instances, while the value of the vector can represent the
relationship between features.
At present, there are few types of research on the
Capsules Network in medical imaging. Jiménez-Sánchez
et al. (2018) have studied the application of Capsules
Network in clinical imaging. The experimental results
showed that Capsules Network could be trained with fewer
data to obtain the same or better performance, and it
was more robust for unbalanced class distribution. This
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result undoubtedly brought new ideas and directions to the
application of deep learning in medical imaging.

(3) Convolutional neural networks are suitable for processing
two-dimensional image data, but the images produced
by magnetic resonance imaging or CT image have the
inherent three-dimensional structure. If the convolutional
neural network is used to process these medical images, key
information will be lost.

Electronic Health Record
One-dimensional convolutional neural network, recurrent neural
network, LSTM, GRU, and other neural networks in deep
learning have been widely used in the natural language processing
community and have achieved great success. These networks
are very suitable for processing sequence-related data, such as
sentence, voice, time series, and so on. Similarly, natural language
processing technology is also used in the field of computational
medicine, which uses these neural networks to process electronic
medical records.

In recent years, electronic health record has received
more and more attention. Electronic health record stores
the treatment information of patients in electronic form.
The information includes structured demographic information,
diagnosis information, drug information, operation process
information, experimental test results, and unstructured clinical
text (Jensen et al., 2012). Mining electronic health records can
improve the efficiency and quality of diagnosis and promote
medical development. For example, it provides timely treatment
for patients by mining the data in the electronic health record to
predict the disease, or it analyzes the hidden relationship between
diseases and diseases, diseases and drugs, and drugs and drugs
in the electronic health records to provide help for doctors in
decision-making.

In short, for patients, the use of electronic health records
can better help patients understand their physical condition and
disease status; for the medical staff, the use of electronic health
records can help them better analyze problems and provide
effective solutions.

Traditionally, machine learning is used to analyze electronic
health record data. Usually, we need to extract the features
manually and then input them into the model. This feature
extraction method often depends on the professional domain
knowledge of the extractor, and it may be difficult to find the
hidden relationship in the data. Therefore, the quality of the
model prediction results is affected by the quality of the manually
extracted features. Moreover, this method causes huge human
and time loss and affects the research efficiency.

Deep learning overcomes the disadvantage of traditional
machine learning, which needs manual feature extraction.
However, because of the particularity and complexity of
electronic health record data, there are some problems when
using deep learning method to deal with them. There are many
clinical concepts in the electronic health records, which contain
rich information. These concepts are recorded in the form of
coding, such as diagnostic coding, disease coding, drug coding,
etc. Different medical ontologies formulate the rules of coding

and the meanings they represent. At the same time, doctors
record these clinical concepts in chronological order. However,
it is difficult to find and explore the relationship between these
concepts simply by coding the patient’s condition.

The traditional method is one hot coding whose dimension
represents the number of medical concepts. The coding method
does not reflect the relationship between concepts. Thus,
researchers put forward representation learning, which studies
how to map the clinical concepts represented by coding in
electronic health records into low dimensional space and
transform them into low dimensional features (embedding) for
representation. At the same time, these low-dimensional features
reflect the relationship between different concepts. After getting
the representation of clinical concepts, researchers can find out
the relationship between them through analysis, such as the
relationship between diseases, or diseases and clinical events, or
use these concepts in further tasks to provide useful information
for doctors and help doctors make decisions. These studies
included analysis of mortality, prediction of rehospitalization,
prediction of disease, etc. As shown in Figure 11, the electronic
health record can be transformed into patient representation by
using the deep learning method (Miotto et al., 2016).

Most of the researches using deep learning to represent the
clinical concept of electronic health records use the skip-gram
structure of the word2vec model (Mikolov et al., 2013). The skip-
gram approach assumes that the meaning of a concept depends
on its context (or neighbors). Therefore, given the sequence
of a concept, the skip-gram method predicts the context of a
target concept when it selects it. After getting the representation
of clinical concepts, researchers can find out the relationship
between them through analysis, such as the relationship between
diseases, or diseases and clinical events. Researchers can also use
these concepts in further tasks to provide useful information for
doctors and help doctors make decisions (Choi Y. et al., 2016;
Choi et al., 2016a,b,c).

Attention mechanisms are also used in the analysis of
electronic medical records. The mechanism of attention enables
deep learning models to focus from the multitude of information
to more critical and important information that is more closely
connected to the task. Using the attention mechanisms, it is
possible to know what information in the data contributes to the
model’s predictions. Zhang J. et al., 2018 established a framework
by using recurrent neural networks and attention mechanisms to
learn the representation of patients from the temporal electronic
health record data. Then, they applied the model to the risk
prediction task of future hospitalization. The experimental results
showed that deep learning model can achieve a more accurate
prediction effect.

Several works have shown that using the combination of
different neural networks or different methods can improve the
accuracy and efficiency of models. For example, Miotto et al.
(2016) used an unsupervised deep learning method to learn
the patient’s representation from the electronic health records.
They used a three-layer stacked denoising autoencoder to capture
the hierarchical relationship and dependence between the data.
Ma et al. (2018) proposed a deep learning framework, which is
composed of recurrent neural networks and convolutional neural
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FIGURE 11 | An unsupervised deep learning framework that converts the raw electronic health record into a deep representation of the patient.

FIGURE 12 | Diagram of deep learning model to predict enhancer–promoter interactions (Chen Y. et al., 2016).

networks to extract patient information patterns. Rajkomar et al.
(2018) used LSTM, the attention mechanism, and the single-layer
decision tree to learn information from the dataset. In all tasks,
the performance of the deep learning model is better than that of
the traditional clinical prediction model.

In addition to using deep learning to represent clinical
concepts in electronic health records, researchers also use deep
learning to carry out disease prediction tasks. Disease prediction
refers to predicting whether a patient will suffer from a certain
disease or find out the factors related to the disease according
to the patient’s electronic health record information. Because the
electronic health record contains a wealth of patient information,
some indicators and characteristics in the information can
be used as a reference to predict whether the patient has a
disease. Nickerson et al. (2016) explored two neural networks
architectures to deal with issues related to postoperative pain
management. Pham et al. (2016) introduced a deep dynamic
neural network for tasks such as predicting the next stage
of illness. The results are competitive compared with other
excellent methods at present. Nguyen et al. (2017) introduced a
deep learning system to learn how to extract features from the

electronic health record and automatically predict future disease
risk. Compared with the traditional technology, the system
can detect meaningful clinical patterns and reveal the potential
structure of the disease and intervention space.

To deal with the missing values in medical records, Che et al.
(2017) developed a model that was based on the GRU. The model
captures the observations and their dependence by applying
masking and time interval methods to the input and network
state. Cheng Y. et al., 2016 used convolutional neural networks
to extract phenotypes. They verified the validity of the proposed
model on real and virtual electronic health records.

It can be seen that as the electronic health record is sequential,
recurrent neural networks such as LSTM and GRU have a very
wide range of applications in the field of electronic medical
records. Recurrent neural networks are well suited for processing
electronic medical records and achieve better results than
traditional methods. When using deep learning method to mine
the information of the electronic health records, most of the
methods are the supervised learning methods; that is, the data
are labeled. Some researchers use unsupervised learning to study
electronic health records. With the deep learning methods, the
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patterns in the electronic health record are analyzed. Then the
learned patterns are used in disease prediction, event prediction,
incidence prediction, and other tasks, which is undoubtedly the
trend of the application of deep learning in the field of the
electronic medical record.

Many studies have proven the effectiveness of deep learning
in the electronic health record. However, there are still some
challenges that hinder the further application of deep learning in
the electronic health record:

(1) There are many types of data in the electronic health
record, which are heterogeneous such that it is difficult
to use the data in electronic health records in medical
applications. There are five types of electronic health
record data types: numerical type, such as body mass index;
date–time object type, such as patient admission date;
category type, such as race and international disease code;
text type of natural languages, such as patient discharge
summary; and time-series type, such as patient history
(Shickel et al., 2018). In addition, the electronic health
record also has the characteristics of high dimension, noise,
complexity, and sparsity. How to use a suitable model
for different types of the electronic health record is a big
challenge when using deep learning methods to process
electronic health record data.

(2) The coding in the electronic health record is different
because of the difference in medical ontology in reality,
which also brings challenges to applying of deep learning
in the electronic health record. For example, medical
ontology has the Unified Medical Language System
(Unified Medical Language System, 2031), International
Classification of Diseases, Ninth Revision (ICD-9) (ICD9,
2032), ICD-10 (ICD10, 2033), National Drug Code, and
other codes. In the specific implementation, different
regions or different hospitals do not strictly abide by
the coding rules of the medical oncology, so there
are nonstandard records. And sometimes, the same
disease phenotype can be represented by different medical
ontology. For example, in the electronic health record,
patients diagnosed with “type 2 diabetes mellitus” can be
identified by the laboratory value of hemoglobin A1c > 7.0,
the code of 250.00 in ICD-9, and the writing method of
“type 2 diabetes mellitus” in the clinical text (Miotto et al.,
2018). The above problems increase the difficulty of data
processing. In addition, the mapping between these codes
also brings difficulties to researchers.

(3) The information in electronic health records may have
a long-time range, which makes the application of deep
learning more difficult. It is very difficult to find a wide
range of patients in electronic medical records. For such
a long time series of information, it is very difficult to
confirm the mapping relationship between symptoms and
seizures.

Genomics
Genomics studies the function, structure, editing, and
performance of genes. Because of its powerful ability to process

data and automatic feature extraction, many researchers have
applied it to the field of genomics to discover deeper patterns.

Compared with traditional machine learning methods, the
deep learning methods can extract the higher dimensional
features, richer information, and more complex structure from
biological data. In recent years, deep learning has been widely
used in genomics, such as gene expression, gene slicing, RNA
measurement, and other tasks. Deep learning brings new
methods to bioinformatics and helps to understand the principles
of human diseases further.

In genomics, deep learning can effectively understand the
cause and development process of diseases from the molecular
level, and the interaction between genes and environment, and
understand the factors leading to disease. The deep learning
method can capture the relationship between disease and
gene from the high-throughput biological dataset. Doctors can
understand the disease more comprehensively, make accurate
decisions, and provide patients with more appropriate treatment
and diagnosis. The application of deep learning in genomics
has greatly promoted the development of personalized therapy
and precision medicine. A model predicting enhancer-promoter
interactions is shown in Figure 12.

Several studies have demonstrated the effectiveness of deep
learning applications on genomics tasks better than traditional
machine learning methods. Many researchers have researched
the task of gene expression using the deep learning method. For
example, Singh et al. (2016) proposed a deep learning model
to automatically extract complex histone modifications between
essential functions to classify gene expression. Chen Y. et al.,
2016 proposed a multitask multilayer neural network to infer the
expression of the target gene from the expression of the marker
gene. In terms of the average absolute error of all genes, deep
learning is better than linear regression, and the performance is
improved by 15.33%. Tan et al. (2016) used the gene expression
denoising autoencoder to integrate various gene expression data
and capture patterns corresponding to biological states. Singh
et al. (2017) proposed a deep learning method to discover
the interaction between each chromatin marker signal. Badsha
et al. (2020) developed the method to understand the dependent
structures between genes stored in parameter estimates. Kong
and Yu (2018) integrated the external relationship information
of gene expression features into the deep neural network. The
application of real data proved the practicability of the new
model in classification and biological feature selection. Mostavi
et al. (2020) proposed three unique convolutional neural network
architectures for different data formats. These architectures used
high-dimensional gene expression inputs and predicted cancer
types while considering their origin tissues.

In addition, other researchers also used deep learning for
other genomic tasks, such as predicting the binding sites of
RNA-binding proteins (Zhang et al., 2016), predicting DNA
methylation status (Angermueller et al., 2017), predicting
enhancer–promoter interactions (Singh et al., 2019), and
predicting mRNA abundance (Washburn et al., 2019; Agarwal
and Shendure, 2020). Besides, Kelley et al. (2016) used the
convolutional neural networks to understand the functional
activity of DNA sequences from genomic data. Qin and Feng
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(2017) developed the model to predict cell-specific transcription
factor binding based on the available ChIP-seq data. Compared
with the existing methods, the model can achieve considerable
accuracy in the combination of transcription factors and cell
lines with ChIP-seq data. Jha et al. (2017) used an autoencoder
to integrate other types of experimental data into the spliced
code model for selective splicing. Chen Y. et al. (2016) used an
autoencoder to more than 1,000 yeast microarrays to understand
the coding system of the yeast transcriptome mechanism and the
hierarchical organization of the yeast transcriptome mechanism.
Zhou et al. (2018) proposed a deep convolution neural network
model that predicts tissue-specific transcriptional effects of
mutations, including rare or undetected mutations.

Researchers also used natural language processing technology
to represent gene sequence information. Zou et al. (2019) used
word embedding technology to represent mRNA subsequences.
Then, they used the convolutional neural networks to predict N6-
methyladenosine from mRNA sequence.

Some researchers also use the convolutional neural networks
for other tasks. Gao et al. (2020) used convolutional neural
networks to analyze the global activity of splicing modified
compounds and identify new therapeutic targets. Experiments
have shown that the deep learning methods could recognize the
sequence features and predict the response to drug regulation.
Yuan and Bar-Joseph (2019) proposed the convolutional neural
network model to infer the relationship between the different
expression levels encoded in the genes. In many aspects of
performance, convolutional neural network was better than the
previous methods.

Researchers have also used several deep learning networks
such as convolutional neural networks, recurrent neural
networks, autoencoders, and deep belief networks in genomics.
For example, in tasks involving DNA sequences and protein
sequences, one-dimensional convolutional neural networks
and recurrent neural networks are the two most commonly
used networks. The one-dimensional convolutional neural
network extracts high-level features from the genome sequence
data through the movement of the convolution window. The
recurrent neural networks can effectively process the information
about the sequence and discover specific patterns from the
genome sequence data through its memory characteristics.
Also, the methods used in natural language processing are also
applied to the field of genomics, which provides innovative
ideas and methods for the study of genomic data. To make
full use of the information in the data, multimodal learning
using different data sources is also one of the methods used by
researchers. In conclusion, deep learning offers the possibility
of mining features from genomic data to help develop a deeper
understanding of the disease.

Although deep learning has made impressive achievements
in genomics, some problems still exist. The problems of deep
learning in genomics are as follows:

(1) Deep learning training usually requires a large number
of datasets, and the quality of these datasets is required
to be high so that the deep learning model can learn
distinguishing features and patterns from the data.

However, data insufficiency still exists in genomics, so
the model cannot learn from sufficient data and cannot
provide key information for researchers or doctors.
There are many parameters in the deep learning model,
and there are a lot of deep learning frameworks. If the
amount of data is not enough, it is difficult for researchers
to find a deep learning model suitable for the current task.
It is easy to see that the model has poor performance
in the dataset. Because the deep learning model only
remembers the characteristics and patterns of the data in
the training set but does not learn the deep relationship
between them from the data.
Generally speaking, there are three measures to solve
the problem of insufficient data: The first measure is to
expand the dataset from the data layer, such as using
data enhancement technology to increase the sample size;
the second measure is to use regularization and dropout
methods to improve the performance of the deep learning
model and increase the generalization ability of the model;
the third measure is to use the transfer learning technology
to train the model on an unrelated but large number of
datasets, and then the trained model is used in the task of
their concern, and the parameters of the model are adjusted
to get the suitable model. In the above studies, we can see
that some researchers have used these techniques to solve
the problem of insufficient data in the field of genomics,
thus improving the model effect.

(2) Biomedical data are complex and need professional
domain knowledge to analyze. Unlike other fields, in
genomics, the structure and function of the genome
are a very complex model, which puts forward higher
requirements for the interpretability of the deep learning
model. In recent years, the multimodal learning has
become an attempt to improve the interpretability and
accuracy of the model. The so-called multimodal learning
refers to the combination of data from different input
sources and the establishment of different types of deep
learning models for different types of data to make full
use of the relationship and characteristics of different types
of data, so the model can make a more comprehensive
and accurate prediction. Many researchers have begun to
combine different types of data, such as gene sequences
with other types of data such as electronic health records
and medical imaging, to expand the field of knowledge and
provide more insights for doctors.

Drug Development
In recent years, with the rapid growth of biomedical data,
deep learning technology has become a new method in drug
development. The application of deep learning in the field of
drug development can help researchers effectively carry out drug
development and disease treatment research and greatly promote
the development of precision medicine.

Drug development is a complex process. Traditionally, it takes
at least 10 years from the development of a new drug to its
marketing, which is a very long and resource-consuming process.
Traditional drug development is divided into two methods: one
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FIGURE 13 | Diagram of deep learning model to predict the binding affinity
scores of drugs–targets.

is the experimental method, which not only consumes time and
efficiency but also causes huge cost; the other is the computational
method, which can save time and reduce loss.

In drug development and design, identifying the interaction
between drug and target is an important step. This step can
save resources and accelerate the time from drug development
to market. In recent years, the biomedical data have increased
significantly, which provides a data basis for applying deep
learning in drug development. Many researchers have begun to
apply deep learning to explore the relationship between drugs
and targets. Figure 13 shows a diagram of a deep learning model
predicting the binding affinity scores of drug–targets.

Many researchers have begun to apply deep learning to
explore the relationship between drugs and targets. They have
achieved good results, demonstrating the great ability of deep
learning in the field of drug development. For example, Wen
et al. (2017) used deep belief networks to predict the interaction

between drugs and targets. The model automatically extracted
the characteristics of drugs and targets from the simple chemical
substructure and sequence information in an unsupervised
way. Wang et al. (2017) predicted potential unknown drug–
target interactions from drug molecular structures and protein
sequences. They used a stacked autoencoder to learn useful
information of protein sequences automatically. Öztürk et al.
(2018) used two convolutional neural network frameworks to
learn features from protein sequences and compounds’ SMILES
strings and then combined the learned features into a fully
connected layer to predict the interaction between drugs and
targets binding affinity. Zong et al. (2019) used the deep
learning methods to calculate the vertex similarity and then
input the similarity into two rule-based inference methods.
Hu S. et al., 2019 represented each drug target pair by connecting
the coding vector of the target descriptor and the drug descriptor.
Then, they inputted the representations into the convolutional
neural network. They evaluated the ability of the model on the
DrugBank dataset, with an accuracy of 0.88 and an area under
the curve value of 0.95. The results show that the model can be
used to distinguish drug and target interactions.

Other investigators have also made efforts to understand
drug–target interaction. Hu P. et al., 2019 used the autoencoder
with a cascade structure to obtain the deep expression of
the fusion network and identify the drug–target interaction.
Wang et al. (2020) combined evolutionary characteristics of
proteins with drug molecular structure fingerprints to form
the feature vector of drug–target pairs. Then, they used LSTM
on the feature space to predict the interaction between drug
and target. Zeng et al. (2020) developed a deep learning
model for target recognition and drug reuse by learning
low dimensional vector representations of drugs and targets.
Zhao et al. (2020) used two generative adversarial networks
to calculate binding affinity between drug and target in an
unsupervised way. Then, a convolution neural network is used
for prediction. The experimental results show that the proposed
method can make full use of the unlabeled data and obtain
competitive performance.

In addition to using the deep learning method to predict
the interaction between drugs and targets, some researchers also
use deep learning to design molecules from scratch, predict the
pharmacological properties and synergistic effects of drugs, etc.
For example, Aliper et al. (2016) proposed the deep learning
model to map transcriptome data to therapeutic categories.
In the experiments, the model achieved high classification
accuracy and is better than the support vector machine model.
Gupta et al. (2018) used the deep learning method to design
molecular weight, which captured the semantics of molecular
representation and carried out a virtual compound design.
Preuer et al. (2018) proposed DeepSynergy to predict the
synergistic effect of anticancer drugs. Experiments showed that
the model can explore the synergistic effect of drugs and novel
combinations in cell line space with high precision. Zhang X.
et al., 2018 learned the representation of each molecule in
an unsupervised way. Zeng et al. (2019) developed a model
that learns advanced features of drugs from different networks
through a multimode autoencoder.
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Representation learning techniques also have applications in
drug development. By combining unsupervised representation
learning with deep learning techniques, Wan et al. (2019) used
the word2vec to learn the low dimensional representation of
compounds and proteins to predict the interaction between
unstructured compounds and proteins. Zhang et al. (2020) used
deep learning methods to represent molecules as vectors to
identify potential drugs, peptides, or small ligands targeting
protein targets in the 2019-nCoV virus. The model had high
speed and high accuracy, which was suitable for screening
thousands of drugs in a short time in some emergencies. Karimi
et al. (2020) developed the deep generation model for drug
combination design. They used hierarchical variational graph
autoencoders to jointly embed gene–gene, gene–disease, and
disease–disease networks.

As one of the state-of-the-art methods in artificial intelligence,
deep learning provides an important opportunity for drug
development. It not only saves drug development time and
human resources but also enables the efficient mining of
information that is difficult for people. Although modern medical
careers progress rapidly nowadays, there are still diseases for
which it is still difficult to find drugs to treat them. The deep
learning method for drug development has provided a possible
breakthrough in finding drugs to treat these diseases. It can be
seen that in drug development, researchers used convolutional
neural networks, recurrent neural networks, autoencoders, and
fully connected neural networks. To deal with the small labeled
datasets, there are also studies using unsupervised learning
methods for application in the field of drug development. For
example, several researches use unsupervised methods to predict
the interaction of drug targets and predict the binding affinity
of drug targets. In unsupervised learning, autoencoders and
their variants, generative adversarial networks, and deep belief
networks are commonly used neural networks. They can recover
data well or find advanced features from the data for the
deeper application.

Although deep learning has broad prospects in drug
development, limitations still exist:

(1) It is known that deep learning requires a lot of labeled
data. But in the field of drug development, the labeled
data are limited. At present, many researchers use
semisupervised learning or unsupervised learning to find
key information from unlabeled biomedical data. However,
even if semisupervised learning or unsupervised learning
is used, it is difficult to find useful information in
these unlabeled data.

(2) For deep learning, it is difficult to scientifically explain
the reasons for making predictions because the occurrence
and process of disease are a very complex biomedical field.
Deep learning is considered as a “black box” method. If
deep learning cannot provide a good explanation, it will
be difficult for doctors to believe the prediction results
given by deep learning, so they cannot make decisions. It
is possible to integrate other types of data and information
into drug development to solve the problem of model
interpretability.

Deep Learning Research on Longitudinal
Datasets
In this section, we introduce the application of deep learning
in longitudinal datasets. Longitudinal data track and record
the patient’s long-term condition. Using longitudinal datasets,
we can perform tasks such as predicting disease-related risks,
predicting the trajectory of relevant biomarkers at different
disease development stages, or conducting survival analysis.
Some longitudinal data studies, such as Framingham Heart
Study (Araki et al., 2016) or the UK Cystic Fibrosis Registry
(Taylor-Robinson et al., 2018), provide useful datasets for
longitudinal data research.

The patient’s medical history may contain some information
about the future disease, so it is very useful to study the
history and infer the future disease development from the past
information. It requires doctors to make a prediction as soon as
possible so that doctors can take measures to prevent the trend of
disease onset or deterioration. However, the use of longitudinal
data for research will also have difficulties. For example, for
predicting disease trajectory, for a patient, his disease status
may develop slowly, which increases the difficulty of related
research. For example, a patient with a chronic disease such as
diabetes may have different conditions over time. How to apply
appropriate deep learning to longitudinal datasets has become a
research direction.

Because of its memory function and ability to remember the
information of data, recurrent neural networks such as LSTM
and GRU have become the main methods to process longitudinal
datasets. In general, some researchers use joint models to predict
disease trajectories over time using longitudinal and time–event
datasets. However, it can also reduce the accuracy of the model
by applying it to large datasets. To solve this problem, Lim
and van der Schaar (2018) developed a joint framework using
recurrent neural networks to capture the relationship between
disease trajectories using shared representations. Lee et al.
(2020) combined recurrent neural networks with the attention
mechanism to learn the complex relationship between the
trajectory and survival probability and learn the distribution of
time–event without making any assumptions about the stochastic
models of longitudinal and time–event processes. Beaulieu-Jones
et al. (2018) used autoencoder to represent patient care events in
low dimensional vector space. They then used LSTM to predict
survival rates from the sequence of nursing events learned. Lee
et al. (2019) used various types of data related to Alzheimer
disease to predict mild cognitive impairment. They proposed a
model that used the deep learning method to learn task-related
feature representation from data.

Table 3 shows some deep learning models used in
computational medicine.

PROBLEMS AND CHALLENGES

Although deep learning has achieved better results than machine
learning in the medical and health field, there are still some
challenges and problems. Here, we highlight the following
problems and challenges and explore some solutions to them.
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TABLE 3 | Some deep learning models used in computational medicine.

Domain Model Brief introduction URL

Breast cancer type classification
(Rakhlin et al., 2018)

A simple and effective method for the
classification of hematoxylin and
eosin–stained histological breast cancer
images

https://github.com/alexander-rakhlin/ICIAR2018

Clinical image DeepKnee (Tiulpin et al., 2018) An automatic pipeline for osteoarthritis
severity assessment from plain radiographs

https://github.com/MIPT-Oulu/DeepKnee

Robotic instrument
segmentation (Shvets et al.,
2018)

A robotic instrument segmentation
approach based on the deep learning
network architecture

https://github.com/ternaus/robot-surgery-segmentation

Segmentation of the left
ventricle (Avendi et al., 2016)

An automatic segmentation approach of the
left ventricle using deep learning and
deformable model

https://github.com/alexattia/Medical-Image-Analysis

Electronic health record Embeddings (Choi Y. et al.,
2016)

A deep learning method that learns
low-dimensional representations of
concepts in medicine

https://github.com/clinicalml/embeddings

Med2Vec (Choi Y. et al., 2016c) A representation learning model for learning
code representations and visit
representations

https://github.com/mp2893/med2vec

Doctor AI (Choi Y. et al., 2016b) An automatic diagnosis machine that
predicts medical codes

https://github.com/pckuo/doctorai

Patient2Vec (Zhang X. et al.,
2018a)

A deep learning method that learns an
interpretable deep representation of
longitudinal electronic health records data

https://github.com/BarnesLab/Patient2Vec

DeepCare (Pham et al., 2016) A deep learning model that reads electronic
health record data and infers disease
progression and predicts future outcome

https://github.com/trangptm/DeepCare

GRU-D (Che et al., 2017) Captures the informative missingness https://github.com/fteufel/PyTorch-GRU-D

Genomics DeepChrome (Singh et al.,
2016)

A deep learning framework that learns
combinatorial interactions among histone
modification marks to predict the gene
expression

https://github.com/QData/DeepChrome

D-GEX (Chen Y. et al., 2016b) A deep learning method that infers the
expression of the target gene from the
expression of the marker gene

https://github.com/uci-cbcl/D-GEX

ADAGE (Tan et al., 2016) Analysis using Denoising Autoencoders for
Gene Expression

https://github.com/greenelab/adage

AttentiveChrome (Singh et al.,
2017)

A unified architecture that models and
interprets dependencies among chromatin
factors for controlling gene regulation

https://github.com/QData/AttentiveChrome

GEDFN (Kong and Yu, 2018) A deep learning classifier embedding
feature graph information

https://github.com/yunchuankong/GEDFN

CancerTypePrediction (Mostavi
et al., 2020)

A model that uses gene expression inputs
and predicts cancer types

https://github.com/chenlabgccri/CancerTypePrediction

Deepnet-RBQ (Zhang et al.,
2016)

A multimodal deep belief network that
predicts the target sites of RNA-binding
proteins

https://github.com/thucombio/deepnet-rbp

DeepCpG (Angermueller et al.,
2017)

A model for predicting the methylation state
of CpG dinucleotides in multiple cells

https://github.com/PMBio/deepcpg

SPEID (Singh et al., 2019) A deep neural network for predicting
enhancer–promoter interactions from
sequence data

https://github.com/ma-compbio/SPEID

Xpresso (Agarwal and
Shendure, 2020)

Deep learning models for predicting gene
expression levels from genomic sequence

https://github.com/vagarwal87/Xpresso

Basset (Kelley et al., 2016) A tool for learning highly accurate models of
DNA sequence activity

https://github.com/davek44/Basset

Integrative deep models for
alternative splicing (Jha et al.,
2017)

Deep learning models for alternative splicing https://majiq.biociphers.org/jha_et_al_2017/

ExPecto (Zhou et al., 2018) A deep learning framework for predicting
expression effects of human genome
variants ab initio from sequence

https://github.com/FunctionLab/ExPecto

Gene2vec (Zou et al., 2019) A deep learning neural embedding for
prediction of mammalian
N6-methyladenosine sites

http://server.malab.cn/Gene2vec/

(Continued)
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TABLE 3 | Continued

Domain Model Brief introduction URL

CNNC (Yuan and Bar-Joseph,
2019)

A deep learning method for inferring gene
relationships from single-cell expression data

https://github.com/xiaoyeye/CNNC

Drug development DeepDTIs (Wen et al., 2017) A deep belief network for predicting the
interaction between drugs and targets

https://github.com/Bjoux2/DeepDTIs

DeepDTA (Öztürk et al., 2018) The convolutional neural networks for predicting
the binding affinity value of drug–target pairs

https://github.com/hkmztrk/DeepDTA

deepDTnet (Zeng et al., 2020) A deep learning method for predicting
drug–target interactions.

https://github.com/ChengF-Lab/deepDTnet

MLP (Aliper et al., 2016) A deep learning model that predicts
pharmacological properties of drugs and drug
repurposing

https://github.com/alvarouc/mlp

DeepSynergy (Preuer et al.,
2018)

A deep learning approach for predicting the
synergy of drug combinations

http://www.bioinf.jku.at/software/DeepSynergy/

deepDR (Zeng et al., 2019) A deep learning approach for inferring new
drug–disease relationships for in silicon drug
repurposing

https://github.com/ChengF-Lab/deepDR

DeepCPI (Wan et al., 2019) A deep learning framework for large-scale in silico
drug screening

https://github.com/FangpingWan/DeepCPI

Drug-Combo-Generator (Karimi
et al., 2020)

Deep generative models for drug combination
generation

https://github.com/Shen-Lab/Drug-Combo-Generator

Data Insufficiency
Deep learning is a data-driven approach. Generally, there are
many parameters in the neural networks, which need to be
learned, updated, and optimized from the data. With the advent
of the era of big data, sufficient data provide a data basis for
the development of deep learning. Therefore, deep learning
has achieved great success in many data fields, such as image
recognition, natural language processing, and computer vision.
However, in the field of health care, medical datasets are usually
limited and biased. Because the number of health samples is far
more than the number of disease cases, or the number of images
in each category is uneven, the application of deep learning in this
field is difficult.

Insufficient data will limit the parameter optimization of
deep learning and lead to the problem of overfitting. The
performance of the learned model on the training set is good,
but the performance on the data that have never been seen
is very poor. The generalization ability of the model is poor.
Usually, dropout and regularization are two common methods
to solve overfitting. Besides, an increasing dataset is also a
common means to suppress overfitting. In clinical imaging,
data enhancement is a method to expand datasets. The data
enhancement is to use translation, rotation, clipping, scaling,
changing contrast, and other methods to generate new images.
For example, Rakhlin et al. (2018) used data enhancement on
a small breast cancer histological image dataset to improve the
robustness of the model.

Transfer learning is also an effective way to solve the problem
of insufficient data. Transfer learning means that the model first
learns on a task with sufficient data and then applies the learned
model to another related task and then fine-tunes the model
parameters. For example, it can transfer the neural network
model trained on a large number of natural images to the task
of small sample medical images. Many experiments have proven
that transfer learning is an effective method. For example, Shin
et al. (2016) have proven that the transfer learning using datasets

from large-scale annotated natural image datasets (ImageNet) to
computer-aided diagnosis datasets is beneficial in experiments.

In recent years, multimodal learning has become a trend to
solve this problem. Multimodal learning can learn different types
of data simultaneously, which uses different types of data as
input, such as electronic health records, medical images, and
genomic data. According to the characteristics of different types
of data, different models are developed. Finally, the information
is integrated to provide the model ability. For example, Dai et al.
(2018) integrated clinical reports with fundus images to detect
retinal microaneurysms. Combining expert domain knowledge
and image information solves the problem of training neural
networks under extremely unbalanced data distribution.

Model Interpretability
Deep learning is often considered as a “black box” because
of its lack of explaining ability. In some areas, such as image
recognition, the lack of interpretability may not be a big problem.
Still, in the field of health care, the interpretability of models
is very important. Because if a model can provide sufficient
and reliable information, doctors will trust the results of the
model and make correct and appropriate decisions; at the same
time, an interpretable model can also provide a comprehensive
understanding for patients.

Some researchers have been exploring the interpretive
problems of neural networks. Lanchantin et al. (2016) proposed
an optimization strategy to extract features or patterns to
visualize gene sequence classification. In the form of statistical
physics, Finnegan and Song (2017) extracted and interpreted the
features of sequences learned by the network. Choi E. et al., 2016
used the attention model to detect the part of electronic health
records that affected the predictive ability of the model.

Privacy and Ethical Issues
Data privacy is an important aspect in the medical and health
field. The improper use, misuse, and even abuse of patient data
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will bring disastrous consequences. As we know, deep learning
training requires a large number of representative datasets. These
datasets are very valuable, but they can be very sensitive.

At present, in computational medicine, many researchers have
developed and publicly shared their deep learning models for
others to use. There are many parameters in the deep learning
model, which may contain sensitive information of data. Some
people with ulterior motives may design some ways carefully to
attack deep learning models. They can infer these parameters
from the deep learning model and even infer the sensitive
information in the dataset, thus violating the privacy of the
model and patients. Phong et al. (2018) pointed out that even
a small part of the gradient stored on cloud services can cause
information leakage of local data. So, they use a homomorphic
encryption mechanism to solve the problem of information
leakage. Hitaj et al. (2017) pointed out that the generation
of countermeasures network can recover the information in
the data. Shokri and Shmatikov (2015) pointed out that the
parameters of neural networks might leak the information of the
training set when training neural networks.

In recent years, some researchers have explored the safety
of deep learning. For example, Abadi et al. (2016) proposed
a differential privacy random gradient descent algorithm by
combining deep learning with differential privacy. By developing
new technologies, they improved the computational efficiency of
differential privacy in deep learning. These technologies include
an efficient gradient algorithm, a differential privacy projection
in the input layer, and so on. Their method is universal and can
be applied to many classical optimization algorithms to solve the
privacy problem in deep learning. Lecuyer et al. (2019) proposed
PixelDP, which is the first certified defense and can be extended
to large networks and datasets and widely applied to any type
of deep learning model. They did a quantitative analysis for the
robustness of the deep neural network to counter samples and
achieved a good defense effect.

Due to the explosive growth of data, some users will put their
data on the cloud, which brings challenges for deep learning to
cloud computing the data provided by different data owners. In
order to solve the privacy problem of collaborative deep learning
in cloud computing, Li et al. (2017) provided two schemes to
protect the privacy of deep learning. One is the basic scheme,
which is based on multi-key fully homomorphic encryption; the
other is the advanced scheme, which combines double decryption
mechanism with fully homomorphic encryption. They have
proven that the two schemes are secure in maintaining multi-
key privacy on encrypted data. Yuan et al. (2019) used the
differential privacy method to add Gaussian noise to the shared
parameters to solve the problem of privacy leakage caused by
shared parameters.

Patient data contains very sensitive information, which brings
challenges to the application and development of deep learning
in the field of computational medicine, resulting in a vicious
circle. A hospital or researcher has a huge amount of patient
privacy information, once the information is leaked, it will
cause incalculable loss and bad influence. On the contrary,
hospitals and researchers are unwilling to disclose their patient
information and data because they are worried about the risk of

data leakage, which will lead to the problem that deep learning
cannot take advantage of large-scale data.

Because of the privacy of patients’ data, the sharing of medical
data has become a very complex and difficult problem. It involves
not only moral and legal issues but also technical issues. Some
countries have adopted laws and regulations to regulate the use of
user sensitive information by organizations. For example, on May
25, 2018, the European Union(EU) issued a very strict privacy
protection regulation, the General Data Protection Regulation
(GDPR). The application scope of the regulation is very wide.
Any organization dealing with the data of EU users must comply
with the regulation. Anyone who violates the regulation will face
a great degree of punishment. GDPR defines user data as personal
identifier information. As long as the data can locate users, it
is considered as personal identifier information, and this data
must be strictly protected. The promulgation of GDPR is a start.
With the increasing importance of personal privacy today, other
countries or regions will also issue similar policies to protect
people’s privacy. These policies will bring a profound impact on
the field of artificial intelligence driven by big data.

How to make full use of the advantages of big data to promote
the development of deep learning under the premise of protecting
patients’ privacy data is a problem that must be considered in the
application of deep learning, that is, artificial intelligence in the
field of computational medicine.

Heterogeneity
The data in the field of health care are full of heterogeneity. There
are both unstructured data and structured data. In addition,
the data in the field of health care are noisy, high-dimensional,
and of low quality.

Because of the existence of these heterogeneous data, it
is difficult to find a suitable deep learning model. We know
that the input data of neural networks must be processed and
converted into a numerical value. How to properly preprocess
the structured and unstructured biomedical data is a problem
that researchers should first consider when training the neural
networks. Therefore, processing these data is also one of the
challenges faced by applying deep learning in the medical
field. Some researchers have explored the processing of medical
imaging datasets. For example, Li et al. (2020) intensively
annotated medical images based on anatomical and pathological
features. Their research expanded the label of the dataset and
effectively solved the problem of small data sample size. The
results show that the algorithms trained on the densely annotated
medical imaging datasets they used have significantly higher
diagnostic accuracy.

CONCLUSION

We surveyed the application of deep learning in computational
medicine such as clinical imaging, electronic health record,
genomics, and drug development. Using deep learning to process
big biomedical data can mine the information in the data to
better provide guidance for doctors and improve the level of
medical health. At the same time, this article also points out
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the problems and challenges in the application of deep learning
in computational medicine. It provides a reference and way to
improve the application of deep learning in the medical and
health field in the future.
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Targeted therapy has been widely adopted as an effective treatment strategy to battle
against cancer. However, cancers are not single disease entities, but comprising
multiple molecularly distinct subtypes, and the heterogeneity nature prevents precise
selection of patients for optimized therapy. Dissecting cancer subtype-specific signaling
pathways is crucial to pinpointing dysregulated genes for the prioritization of novel
therapeutic targets. Nested effects models (NEMs) are a group of graphical models that
encode subset relations between observed downstream effects under perturbations
to upstream signaling genes, providing a prototype for mapping the inner workings
of the cell. In this study, we developed NEM-Tar, which extends the original NEMs to
predict drug targets by incorporating causal information of (epi)genetic aberrations for
signaling pathway inference. An information theory-based score, weighted information
gain (WIG), was proposed to assess the impact of signaling genes on a specific
downstream biological process of interest. Subsequently, we conducted simulation
studies to compare three inference methods and found that the greedy hill-climbing
algorithm demonstrated the highest accuracy and robustness to noise. Furthermore,
two case studies were conducted using multi-omics data for colorectal cancer (CRC)
and gastric cancer (GC) in the TCGA database. Using NEM-Tar, we inferred signaling
networks driving the poor-prognosis subtypes of CRC and GC, respectively. Our model
prioritized not only potential individual drug targets such as HER2, for which FDA-
approved inhibitors are available but also the combinations of multiple targets potentially
useful for the design of combination therapies.

Keywords: nested effects model, molecular subtype, regulatory network, drug targets, combination therapy,
cancer

INTRODUCTION

Cancers are always discovered with diverse molecular properties and heterogeneous clinical
outcomes, even when occurring in the same tissues or organs. The last decade has witnessed
tremendous progress in the emerging field of precision medicine for more accurate patient
stratification for more optimized therapeutic treatment. However, it remains challenging to
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dissect the mechanism underlying cancer heterogeneity to
identify novel drug targets for further development of targeted
therapies. Targeted cancer therapy has been accepted as an
effective weapon to conquer cancer (Green, 2004; Polyak and
Garber, 2011), aiming to inhibit or reverse the activation patterns
of particular cancer signaling pathways. Unfortunately, pathway
redundancies, complex feedback, and crosstalk present in cancer
cells often result in drug resistance, leading to treatment failure
(Bernards, 2012; Yamaguchi et al., 2014). Therefore, a key task of
precision medicine is excavating the causally wired relationship
among the regulatory elements contributing to specific cancer
molecular subtypes.

The identification of cancer therapeutic targets has long
been based on biological knowledge and experience, which
lacks a global functional overview and efficiency. Mathematical
modeling could be established to predict potential drug targets
in a more systematic and efficient way (Supplementary Table 1).
Studies like iODA (Yu et al., 2020) integrated basic bioinformatic
analysis and statistical methods to prioritize consistent molecular
signatures at the pathway level for further investigation of
cancer pathogenesis. Methods such as MiRNA-BD (Lin et al.,
2018) focused on the discovery of novel miRNA biomarkers in
diseases such as cancers without training or prior knowledge.
Graphical models (e.g., Mezlini and Goldenberg, 2017; Manatakis
et al., 2018; Kotiang and Eslami, 2020) were also proposed
to infer the regulatory relationship and key driver genes,
but the networks mainly encode gene expression associations,
without support of multi-omics input. Other methods such
as the miRNA-TF-mRNA network (Pham et al., 2019) and
bipartite graphs (Bashashati et al., 2012) employed complex
structures and multi-omics data to identify cancer driver genes
as potential therapeutic targets. Furthermore, computational
models were also proposed for the personalized prediction of
potential target genes (Hou and Ma, 2014; Guo et al., 2018).
All the previous methods have demonstrated their usefulness in
various applications, very few of them infer causal regulatory
relationships. To study the dysregulation of pathways and
discover causal regulation relationships, typical approaches are
Bayesian Networks, which encode conditional independence
between genes on edges [e.g., (Sachs et al., 2005)]. However, the
major limitation of Bayesian networks lies in their requirement of
direct observations (e.g., protein activities) of perturbation effects
on other pathway components, which are often not available.
Besides, these methods require a large sample size to distinguish
signal from noise and only capture parts of biologically relevant
networks (Markowetz and Spang, 2007). Nested effects models
(NEMs) (Markowetz et al., 2005, 2007) are specifically tailored
to reconstruct signaling networks from indirect observations of
experimental interventions. In each experiment, one component
(e.g., kinase, transcription factor) in the pathway is perturbed,
and multi-dimensional downstream effects are observed (e.g.,
gene expression or cell imaging data) (Siebourg-Polster et al.,
2015). Different from other graphical models, NEMs encode
subset relations between the observed downstream effects
reporter genes under perturbations to signaling genes.

Nested effects models have been successfully applied to various
biological scenarios to infer the causal network of signaling

components (Markowetz et al., 2005; Fröhlich et al., 2009;
MacNeil et al., 2015). Several extensions of NEMs have been
proposed to adapt to different experimental designs or data types.
For instance, Boolean NEMs (Pirkl et al., 2016) creatively model
the data observed from arbitrary experimental combinations
(excitation or inhibition) to infer a full Boolean network and
further integrate the information from the literature. Epistatic
NEMs (Pirkl et al., 2017) infer epistasis from phenotyping screens
of double knock-downs systematically to test the hypothesis that
complex relationships between a gene pair can be explained
by the action of a third gene that modulates the interaction.
Dynamic NEMs (Anchang et al., 2009; Fröhlich et al., 2011)
infer the rate of the signal flow within the network from time-
series data, while Hidden Markov NEMs (Wang et al., 2014)
model the evolution of the network itself over time. Motivated
by a recent experiment investigating epithelial-mesenchymal
transition (EMT) in murine mammary gland cells, a method for
mapping a non-interventional time series onto a static NEM has
been proposed (Cardner et al., 2019). Furthermore, with the rapid
development of single-cell sequencing technologies, a mixture of
NEMs (M&NEM) tailored explicitly for single-cell data has been
proposed (Pirkl and Beerenwinkel, 2018), which is capable of
identifying different cellular subpopulations and inferring their
corresponding causal networks simultaneously.

To prioritize potential therapeutic targets based on
tissue-derived multi-omics profiles from cancer patients,
we extended the classic NEMs to model the causal effects
of genetic and epigenetic aberrations of various regulatory
components (kinases, transcriptional factors, and miRNAs)
on downstream genes. Importantly, the computational
evaluation was conducted on the regulatory components
(mainly on kinases) to prioritize potential therapeutic targets.
Figure 1 illustrated the framework and major steps of NEM-
Tar, which is featured with the following highlights: (1)
Different from pre-existing NEMs developed for phenotyping
screens derived from experimental perturbations, NEM-Tar
integrates natural perturbations (e.g., somatic mutations, DNA
hyper- or hypo-methylation, copy number alterations) at
multiple levels of gene regulations for cancer-related signaling
network inference; (2) We proposed a scoring method based
on information theory, named weighted information gain
(WIG), which could prioritize not only individual therapeutic
targets but also evaluate potential combination therapies; (3)
NEM-Tar is a versatile framework for dissecting the cancer
molecular heterogeneity by inferring cancer subtype-specific
signaling network. In our case studies, we specifically focused
on the ‘EMT’ subtype in gastric cancer and the CMS4-
mesenchymal subtype in colorectal cancer (Cristescu et al.,
2015; Guinney et al., 2015), which are associated with a
higher risk of recurrence and poor prognosis. Potential drug
targets are evaluated specifically on the epithelial-mesenchymal
transition (EMT) pathway, which is directly associated with
cancer metastasis.

In the ‘Methods and Materials’ section, we introduce the
design of NEM-Tar and the inference strategies in detail.
Subsequently, we test the effectiveness of NEM-Tar in a
simulation study (‘Results on Simulated Data’) and demonstrate
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FIGURE 1 | The workflow of NEM-Tar for cancer regulatory network inference and potential drug targets prioritization. Observations of the states of S-genes and
E-genes could be obtained after the preprocessing of multi-omics data. The signaling network regulating a specific cancer subtype will subsequently be inferred.
Finally, based on quantification of the causal impact and specificity to downstream genes using WIG, potential drug targets could be prioritized for single and double
perturbations.

its potential by real case studies on colorectal cancer and gastric
cancer (‘Results on Case Studies’).

MATERIALS AND METHODS

The Original Nested Effects Model (NEM)
We first review the original nested effect model (NEM), before
we explain in detail how we extend the original model design to
fit multi-omics high-throughput profiles of cancer samples.

The structure of a NEM is illustrated in Figure 2A. The goal
is to infer a signaling network G, represented as a directed acyclic
graph involving the regulators, also referred to as signaling genes
(S-genes), denoted Sj for j∈{1,2,....,m}. In the initial phenotypic
screening experiments, the S-genes are individually perturbed
during RNAi experiments, but their effects are indirectly
measured by the expression level of effect reporter genes (E-
genes) denoted Ei for i∈{1,2,....,n}. The attachment of E-genes
to S-genes is denoted by 2, within which θij = 1, if E-gene i is
attached to S-gene j. The initial NEMs assumed that each E-gene
can be attached to at most one S-gene, but this constraint has
been relaxed thereafter. Tresch and Markowetz have proposed
to add a null S-gene, which predicts no effects to account for
uninformative features (Tresch and Markowetz, 2008). Due to
the nested effects, it is assumed that the signaling network G
is transitively closed; for instance, in Figure 2A, the signaling
information flow is S2→S3→S4, then S2→S4 also exists.

We calculate the expected E-gene profiles for a given model
(G;2) as the matrix product with Eij the predicted state of
E-gene i under knock-down of S-gene j, namely Eexp = G2. In
practice, we cannot neglect potential noise in the data, which
requires probabilistic modeling to infer an optimal G to interpret
the observation of E-genes. Suppose that we have a candidate
network structure G, which is a directed acyclic graph (DAG) of
S-genes. What matters ultimately is the posterior probability of
the model:

P(G|E) =
P(E|G)P(G)

P(E)
(1)

where the denominator does not depend on G and cannot be
taken into consideration for model comparison. Since almost
nothing is known about the signaling network without reliable
knowledge, we use a uniform prior P(G). Thus, we focus entirely
on the likelihood P(E|G). It can be computed by marginalizing
over E-gene attachments 2, or by employing the maximum a
posteriori (MAP) estimate of 2 (Tresch and Markowetz, 2008).
The former choice is more intuitive, and the marginal likelihood
can be deduced as:

P(G|E) =

∫
P(E|G, 2)P(2, G)d2

=
1

mn

n∏
i=1

m∑
j=1

l∏
k=1

P(eik|G, θi = j) (2)
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FIGURE 2 | Illustration of the nested effects model and NEM-Tar for real cancer samples. (A) The S-genes are modeled as hidden variables, and their signaling
interaction graph G (solid arrows) is the target to infer. In experiments with perturbations to individual S-genes, differential expression of downstream genes could be
observed and considered as effect reporter genes (E-genes). Assuming that each E-gene is directly regulated by at most one S-gene in G, the maximum a posteriori
attachment 2 (dashed arrows) of effect genes to S-genes could be computed. The goal is to search for the signaling graph G, which yields the most likely
probabilistic nested effects. (B) For an extra observational dimension (the real patients), the necessary adjustment should be conducted on the design and inference
strategies of classic NEM. However, the information that needs to be inferred is also the hidden interaction between S-genes and the attachment relationship of
E-genes to S-genes.

The term P(eik|G, θi = j) in Eq. 2 reflects the noise rate of the
real binary observation eik. The distribution of eik is determined
by the network structure G and the error probabilities α and
β. For all E-genes and targets of perturbation, the conditional
probability of the E-gene state eik given the network structure G
can then be written as:

P(eik|G, θi = j) =

eik=1 eik=0{
α 1− α

1− β β

(3)

Equation 3 means that if Ei is not an influenced target of the
S-gene perturbed in experiment k, the probability of observing
eik = 1 is α (probability of false alarm, type-I error); the probability
to miss an effect and observe eik = 0 even though Ei is an
influenced target is β (type-II error).

NEM-Tar for Multi-Omics Data
Figure 1 illustrated the NEM-Tar framework and the major
steps involved to infer a signaling network using a toy example,
and a comparison was made with a classic NEM in observation
(Figure 2B). We model copy number variations or mutations

(e.g., copy number gain/mutation in kinase A/B, mutation
in transcription factor TF1), hyper/hypo methylation (e.g.,
hypermethylation of miRx) as ‘natural’ perturbations in tumors,
which are different from experimental perturbations such as
RNA interference and CRISPR-Cas9 knockout modeled in the
classic NEMs. Regulators considered in the network are master
regulators (TFs and miRNAs) and modulators (kinases) resulting
from the reported literature (Fessler et al., 2016; Kiyozumi et al.,
2018; Xie et al., 2020) and our prioritized candidates. Let S∗ = [skj]
denote the state matrix of regulators, where skj represents whether
regulator j is aberrant in sample k or not. Let G represent
the signaling network of interactions between kinases, TFs, and
miRNAs, and 2 be the set of interactions between regulators and
their target genes. Let D = [eki] be the observed data, where eki
denotes whether the E-gene i is differentially expressed in patient
k (eki = 1) or not (eki = 0). Our goal is to infer the optimal G that
maximizes the following marginal likelihood:

arg max
G

P(D|G, S∗) = arg max
G

∫
P(DE|G, S∗, 2)P(2|G, S∗)d2

(4)
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It should be noted that Eq 4 is similar to the original likelihood
function of NEMs (Eq. 2), except the state matrix of regulators
(S-genes) in our model.

When the optimal S-genes structure G∗ is determined, we
could compute the posterior probability for the edge between Sj
and Ei.

P(θi = j|G
∗

, S∗, D) =
1
Z

l∏
k=1

P(eki|G∗, S∗, θi = j) (5)

where Z is a constant and does not rely on G∗.
When using NEM-Tar in real-world applications, we

recommend the following criteria to select E-genes and S-genes.
E-genes can be prioritized based on genes that are significantly
upregulated (log2FC > 1, FDR < 0.01) in a specific cancer
subtype of interest. If the selected E-genes are too few (e.g.,
only 238 E-genes for the EMT subtype of GC based on the
above criteria), the cutoff on log2FC may be relaxed to 0.5.
The prioritization of S-genes can be based on the following
criteria. First, subtype-specific miRNAs and TFs can be
prioritized based on differentially expressed genes. By default,
we recommend selecting TFs that are significantly upregulated
(log2FC > 1 and FDR < 0.01) and miRNAs that are significantly
downregulated (log2FC < −1 and FDR < 0.01). However,
due to the heterogeneity between different cancer subtypes,
the number of candidate miRNAs or TFs may be limited. In
the situation, the cutoff on log2FC may also be relaxed to 0.5.
Second, the selection of S-genes should also satisfy the following
perturbation criteria: (1) Mutation: the cutoff on mutation
frequency in kinases/TFs should be >5%. When the overall
mutation frequency of candidate S-genes is lower than 5%, the
cutoff might also be relaxed appropriately. (2) copy number
variations (CNVs): kinases and membrane proteins with >5%
frequency of copy number gains. (3) DNA methylation: miRNAs
with significant hypermethylation (delta-beta >0.1, BH-adjusted
P < 0.001).

Inference Methods of NEM-Tar
The original NEM performs an exhaustive search over all
transitively closed graphs to identify the optimal graph by
the maximum likelihood estimation (Markowetz et al., 2005).
Since the number of candidate network structure G grows
exponentially with the number of nodes, an exhaustive
enumeration is not feasible for signaling networks with more
than five S-genes. In real applications, it is always necessary to
search for a larger network, where heuristics are more appropriate
to explore the network space. Many heuristic inference methods
have been proposed, with respective advantages as well as
limitations. To determine the optimal inference strategy for
NEM-Tar, we investigated the triple relations, greedy hill-
climbing, and MCMC sampling methods.

Instead of scoring the whole network, the model could be
learned using a pairwise method (Markowetz et al., 2007). For
a pair of genes A and B, their relationship could be determined
by maximum a posteriori (MAP) from four possible models:
A·B (unconnected), A→B (effects of A are a superset of effects
of B), A ← B (subset), and A ↔ B (undistinguishable effects).

However, the pairwise learning assumes independence of edges,
which is not true in transitively closed graphs. Hence, the natural
extension of pairwise learning is the inference from the triples of
nodes (Markowetz et al., 2007), which comprises two steps. First,
for each triple (x,y,z) in the graph with n nodes, all 29 possible
quasi-orders are scored, and the MAP model is selected. Edgewise
model averaging was subsequently employed to combine all
models into the final graph.

Greedy hill-climbing is a more straightforward optimization
strategy known from the literature (Russell and Norvig, 2016).
Given an initial network hypothesis (usually an empty graph), a
local maximum of the likelihood function could be reached by
successively adding an edge. This procedure is continued until
no improving edge can be found anymore. We also evaluated the
performance of greedy hill-climbing for the benchmark in our
simulation study.

Furthermore, Markov chain Monte Carlo (MCMC) methods
are a class of algorithms for sampling from a probability
distribution. Niederberger et al. (2012) proposed an inference
method by combining MCMC sampling with an Expectation-
Maximization (EM) algorithm. For reconstructing evolving
signaling networks, MCMC sampling was also an important
procedure in HM-NEM (Wang et al., 2014). In our simulation
study, we also examined MCMC sampling, and the detailed
pseudocode is in Supplementary Figure 1.

Weighted Information Gain (WIG) for
Evaluation of the Causal Impact of
S-Genes on Downstream Reporter
Genes
Given the inferred optimal network G∗ and interactions between
regulators and target genes 2∗, we sought to quantify the causal
impact that a regulator has on downstream reporter genes,
especially signature genes for a particular biological process of
interest such as epithelial–mesenchymal transition (or EMT)
(Nieto et al., 2016; Lambert et al., 2017). The fundamental
assumptions of the assessment criteria for the impact should
satisfy: (1) The more E-genes related to a particular pathway are
affected by an S-gene, the more significant the influence is; (2)
The more likely a particular E-gene is attached to an S-gene,
the higher the global influence of the S-gene is. On the basis
of the above assumptions, we defined a score called Weighted
Information Gain (WIG) on every E-gene within the regulons
of S-genes based on KL divergence (Kullback and Leibler, 1951)
in information theory, which measures the information gain after
network inference.

WIG(Sj) =
∑r

i=1 WIG(Sj → Ei)

=
∑r

i=1 P(Sj → Ei) log[(m+ 1)P(Sj → Ei)]
(6)

As shown in Figure 3, before the network inference, for every
E-gene, we assume that the probability of an E-gene attached
to an S-gene is uniformly distributed, which could be denoted
asP(θi = j|G) = 1/m+ 1, if we set a ‘null’ S-gene and no
particular prior knowledge is involved. While after the inference,
the posterior distribution of nested effect positions of E-genes
changes intoP(Sj → Ei) = p(θi = j|G∗, S∗, D). According to the
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original definition of KL divergence, the increase of the
information of the attachment of an E-gene could be computed,
like the highlighted WIG(S3→E3) and WIG(S3→E14). As for
an S-gene, the global causal impact over all the E-genes or
some signature genes of key pathways could be obtained by
summing up the WIG of related E-genes, as shown in Eq. 6. The
statistical significance for the specificity of WIG on key pathways
could be estimated by the bootstrap of the same number as the
pathway signature genes of arbitrary E-genes within the regulon
of a S-gene.

Ultimately, kinases/TFs/miRNAs with top causal WIG and/or
enough significance will be prioritized as potential drug targets.
For more convenient drug design, kinases, or membrane
proteins are preferred.

Data Source
In our case studies, we analyzed multi-omics data for colorectal
cancer (CRC) and gastric cancer (GC) patients from TCGA,
including the following data types: (1) whole-genome gene
expression data for 382 CRC and 415 GC patients based on RNA
sequencing platform; (2) copy number variation data (scores on
gene level) for 374 CRC patients and 268 GC patients; (3) somatic
mutations profiles for 423 CRC patients and 433 GC patients;
(4) miRNA expression data for 297 CRC and 446 gastric tumors
based on Illumina sequencing platform; (5) DNA methylation
data for 396 CRC and 395 GC tumor samples based on Infinium
Methylation 450K platform.

RESULTS

Results on Simulated Data
Generation of in silico Data
The simulations evaluating the inference strategies of NEM-Tar
were performed on datasets generated with varying network sizes
and noise levels. The generation of simulated data is described in
detail as follows.

(1) S-gene graph generation: We first randomly generated
a graph of m S-genes, m∈ {6,8,10,12,15,20,30}. These graphs of
S-genes were transformed to transitively closed graphs.

(2) S-gene state generation: For each S-gene graph generated,
we simulated patient samples with a random fraction of S-genes
perturbed according to the real proportions of S-genes with
genetic and epigenetic alterations in the gastric cancer case study.
An S-gene state matrix was subsequently generated according to
the S-gene graph and simulated perturbations.

(3) Attachment of E-genes to S-genes: In each S-gene graph
simulated, we attached effect reporter genes (or E-genes) to each
S-gene, and the number of E-genes per S-gene was roughly
equivalent to the average number of E-genes in the gastric
cancer case study.

(4) Generation of E-gene observations: For each simulated
graph, with the corresponding S-gene state matrix and E-gene
attachment, we next generated the corresponding E-gene
observation matrix. For E-genes without downstream effects
expected, observations were sampled from a null distribution, or
otherwise from an alternative distribution. In the simplest case,

we only sampled binary data, where 1 indicated an effect and 0 no
effect, according to the Type-I error αsim (FP) and Type-II error
βsim (FN).

Using the simulation strategy, we generated data to test the
performance of NEM-Tar:

(1) Scalability. Fix αsim = βsim = 0.05 and vary the number
of S-genes from 6 to 30, representing the size of a typical
signaling pathway. For each number of S-genes, 200 different
random S-gene networks were generated, and the simulated
S-gene network structures were inferred using MCMC sampling,
triple relations, and greedy hill-climbing, respectively;

(2) Robustness to noise. Fix βsim = 0.05 and the number of
S-genes m = 12 (medium size) and vary αsim from 0.05 to 0.5. For
the inference of S-gene network, we set α = 0.2, β = 0.1, which
were arbitrarily chosen and different from the αsim and βsim used
for the generation of E-gene data. The evaluation criteria of their
performance were TPR = TP/(TP+ FN), TNR = TN/(TN+ FP),
Accuracy = (TP + TN)/(TP + FN + TN + FP) and
Precision = TP/(TP+ FP).

Benchmark the Performance of Inference Methods
The simulation results are shown in Figure 4. Using MCMC
sampling (Figure 4A), although the performance showed a
decreasing trend due to the increase of the size of the network,
the magnitude of decrease was quite significant (e.g., the averaged
TPR of 200 networks decreased from 0.867 to 0.136). Especially,
the most concerned measure ‘Precision’ was unacceptable in real
applications, no matter for smaller networks (S-genes ≤ 10)
or larger networks (S-genes > 10). Even for smaller networks
with only six S-genes the instability of MCMC was evident,
as the median of Precision (0.845) was much larger than the
mean (0.770). For relatively large networks (e.g., 20 S-genes),
the averaged Precision was too low (0.328) to accept. Using
the triple relations inference, the result was slightly better
than MCMC sampling (Figure 4B), but a dramatic decrease
of Precision was also observed for networks with ≥ 10 S-
genes. A special observation on the triple relations is that
the performance on the networks with a medium size (10-15)
showed fluctuating TPR, TNR, and Accuracy rather than a steady
decrease, suggesting that the inference based on triple relations
was also unstable.

Compared to MCMC sampling and triple relations methods,
greedy hill-climbing showed much higher performance
(Figure 4C-D). For small and medium networks (6-15 S-
genes), the median of all the evaluation metrics were close to 1.
Even for relatively large networks, the TPR and Precision were
still reliable. Though, in essence, the greedy hill-climbing is likely
to be trapped in a local optimum, at least for the graphs with
less than 30 S-genes, the performance is reasonably good. The
robustness for the inference with varying αsim based on greedy
hill-climbing is also stable and acceptable. Even for the very noisy
condition (αsim = 0.5), the averaged TPR and Precision could
still reach 0.947 and 0.766, respectively. Furthermore, compared
to the other two methods, the greedy hill-climbing algorithm
was not only superior in the performance, but also less time
consuming (Supplementary Table 2).
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FIGURE 3 | Illustration for the definition of Weighted Information Gain (WIG) using a toy example. (A) A toy network containing four S-genes with their corresponding
E-gene attachment. Note that the hierarchies of S1 and S2 genes cannot be distinguished. (B) Posterior effect positions obtained after network inference;
(C) Uniformly distributed effect positions before inference. Suppose that the attached E-genes to a S-gene are all signature genes related to a pathway of interest
(e.g., EMT), it could be easily calculated that S4 has the highest causal impact on the particular downstream pathway, and S1 and S2 have the same impact. As an
example, we illustrated the calculation of WIG(S3).

Therefore, based on the simulation study, we employed
greedy hill-climbing as the inference method for the
following case studies.

Results on Case Studies
To exemplify NEM-Tar for inference of cancer subtype-
specific signaling network and prioritization of potential
therapeutic targets, we did two case studies using multi-
omics data in gastric cancer and colorectal cancer,
respectively.

Inferring the Signaling Network Driving the EMT
Subtype of Gastric Cancer and Prioritization of
Potential Drug Targets
Gastric cancer (GC), a leading cause of cancer-related deaths,
is known to be a heterogeneous disease. The presence of
molecular heterogeneity in GC has been shown through
the existence of subtypes with distinct genetic/epigenetic
aberrations associated with clinical outcomes. Based on
300 primary gastric cancer tumor specimens, the Asian
Cancer Research Group (ACRG) identified four molecular
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FIGURE 4 | A comparison of the performance of three representative network inference strategies. (A–C) The performance of NEM-Tar based on (A) MCMC
sampling, (B) triple relations, and (C) greedy hill-climbing, respectively, on simulated data for varying numbers of S-genes. For each method, we generated 200
random signaling networks and inferred their structures using NEM-Tar from the simulated E-gene data. (D) The performance of NEM-Tar based on greedy
hill-climbing testing its robustness to simulated data with different levels of noise.

subtypes with distinct patterns of molecular alterations and
clinical outcomes (Cristescu et al., 2015). Among these four
subtypes, patients classified to the MSS/EMT (in short, EMT)
subtype showed the worst prognosis. Despite the extensive
subtyping studies published, the regulatory mechanism
underlying specific molecular subtypes has not been fully
explored explicitly. Here, we employed NEM-Tar to infer
the signaling network driving the EMT gastric cancer and
quantitatively evaluate single and double perturbations to
prioritize potential drug targets.

For the choice of the regulatory elements, we focused
on the signature genes of the MAP-kinase pathway (KRAS,
BRAF), frequently mutated kinases/TFs (TP53, ARID1A, CDH1,
and ERBB2) (Gastric Adenocarcinoma - My Cancer Genome)
and significantly upregulated TFs (log2FC > 0.5, BH-adjusted
P < 0.01) as well as downregulated miRNAs (log2FC < −1,
BH-adjusted P < 0.01) in the EMT subtype. The regulatory
elements were filtered through the integration with the somatic
mutation profiles. More specifically, we kept the kinases and TFs

with mutation frequency > 5% and ZEB2 (Dai et al., 2012) and
KRAS (Yoon et al., 2019), which were well characterized before
for their roles in EMT regulation. As a result, we included nine
kinases/TFs in 177 patient samples for the following analysis. The
perturbations to miRNAs were measured by DNA methylation
in the promoters, and six miRNAs were selected with highly
significant hypermethylation (delta-beta > 0.1, BH-adjusted
P < 0.001) in the samples of the EMT subtype. Since copy
number variations (CNVs) were frequently found in kinases and
membrane proteins in many cancer types, we also incorporated
copy number gains as a type of perturbation in the case study.
Furthermore, 1194 genes significantly upregulated in the EMT
subtype (log2FC > 0.5, BH-adjusted P < 0.01) were selected as
E-genes for the following analysis.

In the classic NEMs, E-genes’ states are the production
of individually perturbed S-genes, while for NEM-Tar
E-genes’ states can be the production of multiple S-genes
with genetic and/or epigenetic perturbations in a tumor sample.
Therefore, the concepts of positive and negative controls
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for the discretization of E-genes’ states should be revised
accordingly. A positive control referred to the patients belonging
to a particular subtype (e.g., EMT subtype) but without any
(epi)genetic aberrations in the S-genes. In contrast, a negative
control referred to patients not assigned to a particular subtype
(e.g., Non-EMT subtypes) and had no aberrations in any
S-genes. Using the strategy, we transformed the continuous
gene expression data into binary observations. Denote Cik as the
continuous expression level of Ei of patient k. Let µi

+ be the
mean of positive controls for Ei, and µi

− the mean of negative
controls. To derive binary data Eik, we defined individual cutoffs
for every gene Ei by:

Eik =

{
1 if Cik<σ · µ+i + (1− σ) · µ−i
0 else

(7)

Based on the method introduced in Markowetz et al. (2005), to
make a balance between Type-I and Type-II errors, we set σ = 0.5
for the discretization. As a result, we obtained the estimated error
rates α = 0.07, β = 0.08.

Using the discretized E-gene data, we inferred the S-gene
network regulating the EMT subtype of GC using NEM-Tar
(Figure 5A). Interestingly, CDH1, ERBB2 (HER2), and KRAS
were predicted to be sitting at the top hierarchies in the signaling
network. Indeed, Trastuzumab, a monoclonal antibody for
human epidermal growth factor receptor 2 (HER2), has already
been established with chemotherapy as a first-line treatment for
HER2-positive metastatic advanced GC patients (Bang et al.,
2010). Besides, CDH1, coding for the E-cadherin protein, was
reported to be linked to GC susceptibility and tumor invasion,
and preliminary studies indicated the potential clinical value to
employ CDH1 haplotypes in metastatic GC to stratify patients
that will benefit from Trastuzumab-based treatments (Caggiari
et al., 2017). NEM-Tar further supports the important discovery

by computationally predicting and statistically evaluating the
potential drug targets. Summarizing the single and double S-gene
perturbations (to kinases only) with top WIGs, we found that
both CDH1 and HER2 had a strong causal impact on the
signature genes of epithelial-mesenchymal transition (EMT)
(Zhao et al., 2019). More importantly, the causal effect was
statistically significant and specific to the EMT pathway only
(Table 1), as quantified by permutation tests, i.e., random
sampling of E-genes with the same number of EMT signature
genes in the regulon of a S-gene, and calculating the frequency
of observing a same or higher WIG from the sampled E-gene
sequences. Moreover, the combinatorial perturbations (Table 2)
to CDH1 and ERBB2, CDH1 and KRAS or CDH1 and BRAF
had the strongest and specific causal effect on the EMT pathway
among all possible combinations.

Inferring the Signaling Network Driving the
CMS4-Mesenchymal Subtype of Colorectal Cancer
and Prioritization of Potential Drug Targets
Similar to gastric cancer, colorectal cancer (CRC) is also
a heterogeneous disease posing a challenge for accurate
classification and treatment of this malignancy. Recently, CRC
patients have been categorized using unsupervised classification
of gene expression profiling, which resulted in distinct CRC
subtypes. In order to generate unified subtyping of CRC,
based on a large panel of CRC patients (n = 4151), the
CRC Subtyping Consortium identified four consensus molecular
subtypes (CMSs) (Guinney et al., 2015). Linking the subtypes to
disease outcomes revealed that the mesenchymal subtype CMS4
displayed a worse prognosis, highlighting the clinical relevance of
the CMS taxonomy. As another case study, we employed NEM-
Tar to infer the signaling network driving the CMS4 CRC and

FIGURE 5 | The case studies of NEM-Tar on gastric cancer and colorectal cancer. (A) Reconstructed signaling network for the EMT subtype of gastric cancer.
(B) Reconstructed signaling network for the CMS4 subtype of colorectal cancer.
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TABLE 1 | WIGs assessing the impact of single perturbations (kinase only) on EMT in GC.

S-genes Total No. of
downstream E-genes within the regulon

No. of E-genes
(EMT related) within the regulon

WIG Significance of WIG (100,000
sampling, BH-adjusted P)

CDH1 591 57 66.15 <1e-05

ERBB2 491 44 51.65 <1e-05

KRAS 229 20 20.05 <1e-05

BRAF 14 1 2.71 3.21e-01

TABLE 2 | Double perturbations (kinase only) with top WIGs in GC.

S-genes Total No. of
downstream E-genes within the regulon

No. of E-genes
(EMT related) within the regulon

WIG Significance of WIG
(50,000 sampling, BH-adjusted P)

CDH1/ERBB2 591 57 66.15 <5e-04

CDH1/KRAS 591 57 66.15 <5e-04

BRAF/CDH1 591 57 66.15 <5e-04

KRAS/ERBB2 558 51 59.12 <5e-04

BRAF/ERBB2 505 45 54.36 <5e-04

KRAS/BRAF 229 20 20.05 <5e-04

calculated WIGs for single and double perturbations to signaling
elements in order to prioritize potential drug targets.

To select regulatory elements, we incorporated the signature
genes of the MAP-kinase pathway (KRAS, BRAF, PIK3CA),
and the TFs significantly upregulated in CMS4 (log2FC > 1,
BH-adjusted P < 0.01) as well as the miRNAs significantly
downregulated in CMS4 (log2FC <−0.5, BH-adjusted P < 0.01).
The regulatory elements were filtered through the integration
with the somatic mutation profiles. More specifically, the kinases
and TFs with the mutation frequency > 5% were left, resulting
in 11 kinases/TFs in 212 patient samples for analysis. The
perturbations to miRNAs were measured by DNA methylation
in the promoters, and two miRNAs were selected with highly
significant hypermethylation (delta-beta > 0.1, BH-adjusted
P < 0.001) in the samples of the CMS4 subtype. The copy
number variations (CNVs) profiles were also preprocessed, but
the frequency of copy number gain was too low (less than
5%) to integrate. Finally, after integration with downstream
E-genes (log2FC = 1, BH-adjusted P = 0.01) that are differentially
expressed between CMS4 and non-CMS4 samples, we obtained a
212× 1337 E-gene observation matrix for the following analysis.

The whole discretization analysis of E-genes is similar to
what we did in gastric cancer. In CRC, the positive controls are
patients belonging to the CMS4 subtype without any aberrations
in any S-genes, while the negative controls are patients assigned
to Non-CMS4 subtypes without aberrations in any S-genes.
We set σ = 0.6 for the discretization, and the estimated error
rates were α = 0.22 and β = 0.18. Using the discretized E-gene
data, we inferred the S-genes network regulating the CMS4
subtype of CRC (Figure 5B). Based on the WIG calculation
(Table 3, 4), we found that the perturbation on KRAS has the
highest impact on the EMT pathway, though the influence is
not specific to EMT, which is reasonable as KRAS is a frequently
mutated oncogene in cancer. Currently, a variety of methods to
inhibit KRAS for the treatment of metastatic CRC have been
proposed (Porru et al., 2018). Besides, CTNNB1, which encodes

β-catenin, has the second highest impact on the EMT pathway.
CTNNB1 is involved in the Wnt-β-catenin signaling pathway,
which often drives a transcriptional program that is reminiscent
of EMT (Anastas and Moon, 2013). Particularly, the role of Wnt-
β-catenin signaling in CRC and its potential as a therapeutic
target for CRC has been extensively explored. Existing drugs
targeting β-catenin, such as Aspirin, are already available, and
several small molecules are under clinical trials (Cheng et al.,
2019). Furthermore, the combinatorial perturbations to KRAS
and CTNNB1, as well as KRAS and TGFBR2, enhanced the
causal impact on the EMT pathway compared to their single
perturbations, suggesting potential combination therapies for the
specific CMS4 subtype of CRC.

DISCUSSION

Although quite a few computational approaches have been
developed for the identification of cancer therapeutic targets, they
differ in the types of input data, the design of models/algorithms,
the output of the results and the angles of biological
interpretations. The unique strength of our NEM-Tar lies in its
capability to prioritize not only individual therapeutic targets
but also combinational therapies, which has not been realized
before as far as we know. As a result, it is very difficult
to quantitatively compare NEM-Tar with other computational
approaches directly. However, we tried to make a rough
comparison with two widely used methods, DawnRank (Hou
and Ma, 2014) and DriverNet (Bashashati et al., 2012), which
were proposed to discover cancer driver genes. Using DawnRank,
we found that for the CMS4 subtype in CRC, AR, and GLI2,
two TFs in our regulatory network, were also ranked among the
top 5% (Supplementary Table 3). More excitingly, CDH1 and
TP53 were ranked as the top two drivers for the EMT subtype
in GC (Supplementary Table 3). When it comes to the result of
DriverNet, only CDH1 and TP53 were prioritized as the 2nd and
3rd for EMT subtype in GC (Supplementary Table 4). However,
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TABLE 3 | WIGs assessing the impact of single perturbations (kinase only) on EMT in CRC.

S-genes Total No. of
downstream E-genes within the regulon

No. of E-genes
(EMT related) within the regulon

WIG Significance of WIG (100,000
sampling, BH-adjusted P)

KRAS 525 49 38.61 1.48e-01

CTNNB1 151 14 23.26 < 1e-05

TGFBR2 85 10 16.67 < 1e-05

PIK3CA 26 3 5.98 3.14e-02

BRAF 15 2 3.94 5.21e-01

ERBB4 23 2 2.95 5.25e-01

TABLE 4 | Double perturbations (kinase only) with top WIGs in CRC.

S-genes Total No. of
downstream E-genes within the regulon

No. of E-genes
(EMT related) within the regulon

WIG Significance of WIG (50,000
sampling, BH-adjusted P)

KRAS/CTNNB1 650 60 55.88 <5e-04

KRAS/TGFBR2 584 56 49.29 2.73e-04

KRAS/ERBB4 548 51 41.56 1.06e-01

KRAS/BRAF 525 49 38.61 2.62e-01

KRAS/PIK3CA 525 49 38.61 1.71e-01

BRAF/CTNNB1 151 14 23.26 <5e-04

PIK3CA/CTNNB1 151 14 23.26 <5e-04

TGFBR2/CTNNB1 151 14 23.26 <5e-04

ERBB4/CTNNB1 151 14 23.26 < 5e-04

TGFBR2/ERBB4 108 12 19.62 4.20e-05

no driver genes were found consistent between NEM-Tar and
DriverNet for the CMS4 subtype of CRC (Supplementary
Table 5). It should be noted that DawnRank and DriverNet
could dissect the driver genes only based on the modeling
of association networks, which lack the inference of causal
relationships and cannot measure double or multiple therapeutic
targets. Furthermore, neither DriverNet nor DawnRank were
designed to distinguish TFs and kinases and could not
incorporate perturbation information at other levels of gene
expression regulations except for gene mutations. Instead, NEM-
Tar was developed to prioritize potential therapeutic targets using
regulatory network inference based on nested effects models.

The hierarchical causal relationship between signaling
components is not only central for understanding the regulatory
mechanism of cancers but also critical for developing potential
drug targets to overcome the pervasive genetic redundancies.
Inspired by NEMs encoding subset relations between observed
downstream effects of experimental perturbations in signaling
genes, we proposed NEM-Tar to infer signaling networks from
various genetic and epigenetic perturbations to regulatory
elements such as kinases, transcriptional factors, and miRNAs.
The marginal likelihood function of NEM-Tar is similar to
the original likelihood function of NEM, except the state
matrix of regulators (S-genes) in our model. Based on
NEM-Tar, a new score named weighted information gain
(WIG) was defined to assess the causal impact of S-genes on
downstream reporter genes.

Colorectal cancer and GC are two major malignancies of
the gastrointestinal tract, for which molecular subtyping has
been well studied. To exemplify the usefulness of NEM-Tar, we

performed two case studies to infer signaling networks that drive
the poor prognosis subtypes of GC and CRC, respectively. In
GC, we found that among the top significant signaling genes
with high WIGs, CDH1, and ERBB2 are particularly attractive.
Indeed, the FDA-approved drug Trastuzumab targeting ERBB2
has already been established with chemotherapy as a first-line
treatment for HER2-positive metastatic advanced GC patients.
Our further evaluation of combinatorial perturbations suggested
that simultaneous inhibition of CDH1 and ERBB2/KRAS/BRAF,
ERBB2, and KRAS/BRAF, as well as KRAS and BRAF may be
potential combination therapies. For CMS4 CRC, except for
KRAS, a representative oncogene employed as a therapeutic
target, the kinase CTNNB1 with the second highest WIG
may be a potential alternative therapeutic target to CRC, and
combinatorial inhibition of KRAS and CTNNB1 may provide a
potential combination therapy.

Within the inferred signaling networks, we noticed many
interesting interactions between the S-gene regulators. First, in
the signaling network inferred for the EMT subtype in GC
(Figure 5A), CDH1 and ERBB2 were prioritized as potential
therapeutic targets (Table 1). A signal flow was inferred between
them, which could be explained by the direct interaction
(PPI) between them (Guo et al., 2014) or their PPIs via
β-catenin (CTNNB1) (Schroeder et al., 2002; Tang et al.,
2008). The signal flow miR-200a→ZEB2 could be strongly
supported by the previous finding that miR-200a can regulate
the expression of ZEB2 by directly binding the 3′UTR (Cong
et al., 2013). Furthermore, the signal flow KRAS→miR-200a
was also supported by the previous finding that oncogenic
KRAS activation can suppress the expression of miR-200s
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(Zhong et al., 2016), and TP53→ZEB2 could be verified
by their interactions with the miR-200 family (Rokavec
et al., 2014). Second, in the signaling network inferred for
the CMS4 subtype in CRC (Figure 5B), the advantages of
our work were demonstrated more explicitly. The signal
flow KRAS→PIK3CA→BRAF, supported by the MAP-kinase
pathway (Dhillon et al., 2007), i.e., the PPIs between KRAS
and PIK3CA (Hart et al., 2015) and between PIK3CA and
BRAF (Shen et al., 2017), which is known as a typical signaling
pathway driving EMT. The interaction between TGFBR2 and
SMAD4 is involved in the TGFβ signaling pathway (Zhang et al.,
1996). The signal flow CTNNB1→TGFBR2 is involved in the
crosstalk between Wnt/β-catenin and TGFβ signaling pathways
(Tian and Phillips, 2002). Together, the literature supports the
effectiveness of NEM-Tar in predicting the regulatory hierarchy
involving multiple redundant pathways driving EMT. Moreover,
we also found signal flows between miRNAs, like the links miR-
200a→miR-425, miR-141→miR-135b (Figure 5A) and miR-
200a→miR-141 (Figure 5B), which are interesting but have
not been previously reported yet. The miRNAs may interact
indirectly via intermediate regulators, which were not included
in the regulatory network inference based on our criteria for
the selection of S-genes. The crosstalk between the miRNAs
might also indicate their synergistic relationship on co-regulating
downstream targets, which is frequently reported in the literature
[reviewed in Xu et al. (2016)]. Integrating the computational
prediction with experimental validation will be more convincing
in revealing the crosstalks between the miRNAs, which will be an
interesting direction to explore in our future work.

NEM-Tar can be improved in multiple ways in our
future work. First, known signaling pathway structures can be
incorporated into the model as prior knowledge to strengthen the
accuracy of inference. Second, NEM-Tar proposed in this article
is designed for binary effects and treats E-genes as independent
random variables. However, we can possibly model log odds
ratios like the methods in Tresch and Markowetz (2008), where
alternative and null distribution are both normal, to decrease the
information loss. Third, in this work, we focused on the S-genes
with subtype-specificity or with functional relations reported to
key pathways (e.g., MAP-kinase) or biological processes (e.g.,
EMT), and therefore the number of S-genes was limited. The
limitation of scalability to a larger perturbation scale could be one
future direction to improve our method. In our simulation study,
greedy hill-climbing demonstrated high and robust performance
in signaling networks with up to 30 S-genes, which meets the
regular need for signaling network inference and drug targets
prioritization. Many techniques may improve the performance
of MCMC sampling (Andrieu et al., 2003), which warrants
further exploration in our future work. Last but not least,

we can also change the modeling framework radically using
graph embedding based methods (Yue et al., 2020), as the
observation of S-genes and E-genes are all high-dimensional
vectors. However, the question of how to preserve the assumption
of nested subset structures in the embedding space needs to be
conquered tactfully.

In conclusion, NEM-Tar presents a useful computational
framework for dissecting the regulatory architecture
underlying specific cancer subtypes and prioritizing
potential drug targets. With the explosive increase of high-
throughput sequencing data, NEM-Tar warrants further
evaluation using large-scale multi-omics data cohorts
in the future.
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Background: The claudin family is a group of transmembrane proteins related to
tight junctions. While their involvement in cancer has been studied extensively, their
relationship with the tumor immune microenvironment remains poorly understood. In
this research, we focused on genes related to the prognosis of ovarian cancer and
explored their relationship with the tumor immune microenvironment.

Methods: The cBioPortal for Cancer Genomics database was used to obtain the
genetic variation pattern of the claudin family in ovarian cancer. The ONCOMINE and
Gene Expression Profiling Interactive Analysis (GEPIA) databases were used to explore
the mRNA expression of claudins in cancers. The prognostic potential of these genes
was examined via the Kaplan-Meier plotter. The enrichment of immunological signatures
was determined by gene set enrichment analysis (GSEA). The correlations between
claudins and the tumor immune microenvironment in ovarian cancer were investigated
via the Tumor Immune Estimation Resource (TIMER).

Results: Claudin genes were altered in 363 (62%) of queried patients/samples.
Abnormal expression levels of claudins were observed in various cancers. Among
them, CLDN3, CLDN4, CLDN6, CLDN10, CLDN15, and CLDN16 were significantly
correlated with overall survival in patients with ovarian cancer. GSEA revealed that
CLDN6 and CLDN10 were significantly enriched in immunological signatures of B
cell, CD4 T cell, and CD8 T cell. Furthermore, CLDN6 and CLDN10 were negatively
correlated and positively correlated, respectively, with immune cell infiltration in
ovarian cancer. The expression levels of CLDN6 and CLDN10 were also negatively
correlated and positively correlated, respectively, with various gene markers of
immune cells in ovarian cancer. Thus, CLDN6 and CLDN10 may participate in
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immune cell infiltration in ovarian cancer, and these mechanisms may be the reason
for poor prognosis.

Conclusion: Our study showed that CLDN6 and CLDN10 were prognostic biomarkers
correlated with the immune microenvironment in ovarian cancer. These results reveal
new roles for CLDN6 and CLDN10 as potential therapeutic targets in the treatment
of ovarian cancer.

Keywords: ovarian cancer, CLDN6, CLDN10, prognosis, immune microenvironment

INTRODUCTION

Ovarian cancer is the most lethal gynecological cancer among
women (Siegel et al., 2020). Although surgical techniques and
combined chemotherapy applications have progressed since the
1970s, the 5 year survival rate of advanced ovarian cancer is only
40–45% (Henderson et al., 2018). Therefore, improved treatment
of ovarian cancer remains an urgent issue. Immunotherapy is
an emerging treatment for several solid tumors, which shows
improved outcomes in patients. With the application of various
immune-based interventions in ovarian cancer, immunotherapy
has been proven useful in advanced disease (Bogani et al., 2020).

The claudin (CLDN) family consists of more than 20
transmembrane proteins, which are major components of tight
junctions. They serve as a physical barrier to prevent molecules
from passing freely through the paracellular space between
epithelial or endothelial cell sheets and also play critical roles
in maintaining cell polarity and signal transductions (Weinstein
et al., 1976; Wodarz, 2000; Tsukita et al., 2001; Kirschner et al.,
2013). Previous research has recognized various claudin gene
expression patterns and identified several genes dysregulated
in cancers (Hewitt et al., 2006). These genes play roles in the
tumorigenesis of solid tumors (Swisshelm et al., 2005; Hagen,
2019) and represent promising targets for cancer detection,
prognosis, and therapy (Morin, 2005). However, the relationship
between claudins and the tumor immune microenvironment
has not yet been elucidated. This study comprehensively
analyzed claudin expression in ovarian cancer and further
explored the relationship between claudins and the immune
microenvironment.

MATERIALS AND METHODS

cBioPortal
The cBioPortal database1 (Cerami et al., 2012; Gao et al., 2013)
is an open platform for cancer genomics analysis. In total,
585 samples of ovarian serous cystadenocarcinoma (The Cancer

Abbreviations: GEPIA, Gene Expression Profiling Interactive Analysis; TIMER,
Tumor Immune Estimation Resource; GSEA, gene set enrichment analyses;
TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; EGA,
European Genome-Phenome Archive; FPKM, Fragments per kilobase per million;
TPM, transcripts per million; TILs, tumor-infiltrating lymphocytes; NK, natural
killer cells; Tregs, regulatory T cells; CAFs, cancer associated fibroblasts; TAMs,
Tumor-associated macrophages; CPE, clostridium perfringens enterotoxin. OS,
overall survival; PFS, progression free survival; PPS, post progression survival.
1https://www.cbioportal.org/

Genome Atlas (TCGA), Pan-Cancer Atlas) were used for genetic
variation analyses through the cBioPortal.

ONCOMINE Database Analysis
Claudin expression levels in various cancers were analyzed via
the ONCOMINE database2 (Rhodes et al., 2007), which includes
more than 35 types of cancer and normal samples.

Gene Expression Profiling Interactive
Analysis (GEPIA)
GEPIA v23 (Tang et al., 2017) is used to analyze the RNA
sequencing expression data of 9736 tumors and 8587 normal
samples from the TCGA and GTEx projects using a standard
processing pipeline. The expression profile of the claudins in
ovarian cancer was explored via GEPIA v2. The p-value cutoff
was 0.05 and | log2FC| cutoff was 1.5.

Kaplan-Meier Plotter Database Analysis
The Kaplan-Meier plotter4 (Gyorffy et al., 2012) assesses the
effects of 54,000 genes on survival in 21 cancer types. The largest
datasets include breast (n = 6234), ovarian (n = 2190), lung
(n = 3452), and gastric (n = 1440) cancer. The system includes
gene chip and RNA-seq data-sources from the Gene Expression
Omnibus (GEO), European Genome-Phenome Archive (EGA),
and TCGA databases. The prognostic significance of claudins in
ovarian cancer was analyzed via the online database.

Tumor Immune Estimation Resource
(TIMER)
TIMER5 (Li et al., 2017) allows comprehensive analysis of
tumor-infiltrating immune cells. The correlation between claudin
expression and immune cell infiltration was analyzed using
this database. TIMER v2, an updated and enhanced version
of TIMER, was used to analyze immune infiltration across
diverse cancer types.

Statistical Analyses
The expression levels of claudins are presented as
mean ± standard deviation (SD). Kaplan-Meier survival
curves were established based on the log-rank test. The hazard

2https://www.ONCOMINE.org/resource/login.html
3http://gepia2.cancer-pku.cn/
4http://kmplot.com/analysis/index.php?p=background
5https://cistrome.shinyapps.io/timer/

Frontiers in Genetics | www.frontiersin.org 2 June 2021 | Volume 12 | Article 595436100

https://www.cbioportal.org/
https://www.ONCOMINE.org/resource/login.html
http://gepia2.cancer-pku.cn/
http://kmplot.com/analysis/index.php?p=background
https://cistrome.shinyapps.io/timer/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-595436 June 17, 2021 Time: 18:57 # 3

Gao et al. A Study of Claudin Family

ratio (HR) was determined using the Cox model. Spearman
correlation was used for correlation analysis. A p-value of < 0.05
was considered to be significant.

RESULTS

Gene Variation of Claudins in Ovarian
Cancer
Twenty-four reviewed proteins of the claudin family were
obtained from the UniProt Knowledgebase (UniProtKB)6

(Table 1) [an additional file shows this in more detail (see
Table 1)]. Firstly, we investigated the genetic variation of the
claudin family in ovarian cancer using the cBioPortal for Cancer
Genomics. Twenty-four genes were queried in 585 samples of
ovarian serous cystadenocarcinoma (TCGA, Pan-Cancer Atlas).
Figure 1A shows the alteration frequency of genetic variation
in serous ovarian cancer. As shown in Figure 1B, the queried
genes were altered in 363 (62%) queried patients/samples. The
top three gene variations were CLDN11 (24%), CLDN16 (22%),
and CLDN1 (16%). Differences in overall survival (OS) between
the altered and unaltered groups were compared using the
Kruskal-Wallis test. We found that OS was reduced in the
altered group compared to the unaltered group (p = 7.981e-3)
(Figure 1C). Previous studies have shown that the claudin
family is dysregulated in a variety of tumors and is involved
in diagnosis, tumorigenesis, and prognosis (Zhang et al., 2013;

6https://www.uniprot.org/

Barros-Filho et al., 2015; Zhou et al., 2018). Thus, the claudin
family is worthy of further research in ovarian cancer.

Expression of Claudins Is Dysregulated
in Various Cancers
To explore the mRNA expression of the claudin family, we
investigated the expression profiles of claudins in various cancers
via the ONCOMINE database. The thresholds were: p-value of
0.05, fold change of 1.5, and gene rank of all. Significant analyses
are shown in Supplementary Figure 1 (those with < 3 significant
analyses were not considered). Results showed that most claudins
were dysregulated in various cancers. To verify the expression of
claudins in ovarian cancer, GEPIA2 was used to analyze mRNA
expression in TCGA and GTEx samples. The | Log2FC| cutoff
was set to 1.5 and the p-value cutoff was set to 0.05. As shown
in Figure 2, eight genes were overexpressed in ovarian cancer
samples compared with normal tissue samples and included
CLDN1, CLDN3, CLDN4, CLDN6, CLDN7, CLDN9, CLDN10,
and CLDN16. Furthermore, three genes showed low expression
in the ovarian cancer samples compared with normal tissue
samples and included CLDN5, CLDN11, and CLDN15.

Correlation of Claudin Expression With
Ovarian Cancer Prognosis
To identify genes with clinical significance, we studied the
relationship between differentially expressed genes (DEGs)
and ovarian cancer patient prognosis using the Kaplan-Meier
plotter. As shown in Figure 3, overexpressed genes CLDN3,
CLDN4, CLDN6, and CLDN16 were significantly correlated

TABLE 1 | Twenty-four reviewed proteins of claudin family from the UniProtKB.

Entry Status Gene names Protein names Organism

O95832 Reviewed CLDN1 Claudin-1 (Senescence-associated epithelial membrane protein) Homo sapiens

P78369 Reviewed CLDN10 Claudin-10 (Oligodendrocyte-specific protein-like) (OSP-like) Homo sapiens

O75508 Reviewed CLDN11 Claudin-11 (Oligodendrocyte-specific protein) Homo sapiens

P56749 Reviewed CLDN12 Claudin-12 Homo sapiens

O95500 Reviewed CLDN14 Claudin-14 Homo sapiens

P56746 Reviewed CLDN15 Claudin-15 Homo sapiens

Q9Y5I7 Reviewed CLDN16 Claudin-16 (Paracellin-1) (PCLN-1) Homo sapiens

P56750 Reviewed CLDN17 Claudin-17 Homo sapiens

P56856 Reviewed CLDN18 Claudin-18 Homo sapiens

Q8N6F1 Reviewed CLDN19 Claudin-19 Homo sapiens

P57739 Reviewed CLDN2 Claudin-2 (SP82) Homo sapiens

P56880 Reviewed CLDN20 Claudin-20 Homo sapiens

Q8N7P3 Reviewed CLDN22 Claudin-22 Homo sapiens

Q96B33 Reviewed CLDN23 Claudin-23 Homo sapiens

A6NM45 Reviewed CLDN24/CLDN21 Putative claudin-24 (Claudin-21) Homo sapiens

C9JDP6 Reviewed CLDN25 Putative claudin-25 Homo sapiens

O15551 Reviewed CLDN3 Claudin-3 (CPE-receptor 2) Homo sapiens

H7C241 Reviewed CLDN34 Claudin-34 Homo sapiens

O14493 Reviewed CLDN4 Claudin-4 (CPE-receptor) Homo sapiens

O00501 Reviewed CLDN5 Claudin-5 (Transmembrane protein deleted in VCFS) (TMDVCF) Homo sapiens

P56747 Reviewed CLDN6 Claudin-6 (Skullin) Homo sapiens

O95471 Reviewed CLDN7 Claudin-7 Homo sapiens

P56748 Reviewed CLDN8 Claudin-8 Homo sapiens

O95484 Reviewed CLDN9 Claudin-9 Homo sapiens
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FIGURE 1 | The genetic variation of the claudin family in ovarian cancer through the cBioPortal. (A) The alteration frequency of the claudin family in serous ovarian
cancer. (B) The oncoprint of the claudin family in serous ovarian cancer. (C) The overall survival difference of serous ovarian cancer between the altered and
unaltered group (**p < 0.01).

FIGURE 2 | The mRNA expression of claudins in TCGA samples and the GTEx normal samples via GEPIA2. (*p < 0.01).
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FIGURE 3 | The relationship between claudin expression and the prognosis of ovarian cancer patients through Kaplan-Meier plotter. The overexpression of CLDN3,
CLDN4, CLDN6, and CLDN16 were significantly correlated with poor OS (A) and PFS (B). (C) The overexpression of CLDN10 predicted good OS, PFS, and PPS.
(D) The low expression of CLDN15 predicted poor OS in ovarian cancer. OS, overall survival; PFS, progression free survival; PPS, post progression survival.

with poor OS (Figure 3A) and progression free survival (PFS)
(Figure 3B). In addition, high expression of CLDN10 and
CLDN15 were predictive of a good prognosis in ovarian
cancer patients (Figures 3C,D). Surprisingly, CLDN10 was
overexpressed in cancer, but patients with high expression of
CLDN10 showed good OS (HR = 0.73, logrank P = 1.6e-06),
PFS (HR = 0.83, logrank P = 0.0067), and post progression
survival (PPS, HR = 0.73, logrank P = 0.00029). These results
are somewhat counterintuitive, and the underlying mechanism
requires further exploration.

TCGA projects have identified four molecular subtypes
of high-grade serous ovarian carcinoma (HGSOC) (Cancer
Genome Atlas Research Network, 2011): (i) the differentiated
subtype; (ii) the immunoreactive subtype; (iii) the mesenchymal
subtype; and (iv) the proliferative subtype. Among them, T-cell
chemokine ligands, CXCL11 and CXCL10, and the receptor,
CXCR3, characterized the immunoreactive subtype. Then,
Thorsson et al. (2018) developed a global immune classification
of solid tumors based on the transcriptomic profiles of 33
cancer types. They identified six distinct immune subtypes: C1
(Wound healing); C2 (IFN-γ dominant); C3 (Inflammatory);
C4 (Lymphocyte depleted); C5 (Immunologically quiet); C6
(TGF-β dominant). These six categories represent features
of the tumor microenvironment (Charoentong et al., 2017).
In this research, we explored the relationships between the

expression of differentially expressed genes related to prognosis
and molecular subtypes or immune subtypes of ovarian
cancer via the TISIDB (Ru et al., 2019). The Kruskal-
Wallis test was used. As Supplementary Figure 2 shows,
claudins including CLDN3, CLDN6, CLDN10, and CLDN15
are differentially expressed in different immune subtypes. And,
claudins including CLDN3, CLDN4, CLDN6, CLDN10, and
CLDN16 are differentially expressed in different molecular
subtypes (Supplementary Figure 3). Among them, CLDN6
is relatively low expression, and CLDN10 is relatively high
expression in the immunoreactive subtype.

GSEA of Immunological Signature Gene
Sets
To characterize the potential function of claudins, GSEA was
performed using gene expression data from TCGA ovarian
cancer patients. Immunological signature gene sets were used.
As shown in Figure 4, CLDN6 and CLDN10 were related to the
effector differentiation of B cell, CD4 T cell, and CD8 T cell.

Correlation Analyses Between Claudins
and Tumor Immune Microenvironment
To understand the role of claudins in immunity, we downloaded
379 RNA-seq FPKM (Fragments per kilobase per million) data
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FIGURE 4 | Gene set enrichment analysis (GSEA) of c7 (immunologic signatures) for CLDN6 and CLDN10. CLDN6 (A) and CLDN10 (B) were related to effector
differentiation of B cell, CD8 T cell, and CD4 T cell.

of ovarian cancer from TCGA. Subsequently, the FPKM was
converted to TPM (transcripts per million) (Li et al., 2010). The
ESTIMATE algorithm (Yoshihara et al., 2013) was used to predict
tumor purity based on TCGA ovarian cancer samples. Then,
the relationship between claudin expression and the immune
microenvironment was explored. As shown in Figure 5A, a
significant negative correlation between CLDN6 expression and
the immune score was observed (Spearman correlation = −0.23,
p < 0.001). A significant positive correlation between CLDN10
expression and immune score (spearman correlation = 0.21,
p < 0.001) was observed (Figure 5B). However, the expression
levels of CLDN6 and CLDN10 were not correlated with
the stromal score.

We next examined the relationship between immune cell
infiltration and claudin expression. RNA-seq TPM data (n = 379)
from TCGA ovarian cancer were used to assess 22 immune
cells subtype concentrations with the CIBERSORT algorithm
(Newman et al., 2019). TCGA samples were grouped by the
median values of CLDN6 and CLDN10, respectively. Activated
dendritic cells differed significantly between the CLDN6_high
and CLDN6_low groups. Several cell types were significantly
different between the CLDN10_high and CLDN10_low group,
including naïve B cells, memory B cells, naïve CD4 T cells,
CD4 memory-activated T cells, monocytes, M1 macrophages,
and activated dendritic cells (Figure 5C).

The microarray expression values of ovarian cancer were used
to calculate the abundances of six immune infiltrates (B cells,
CD4+ T cells, CD8+ T cells, Neutrophils, Macrophages, and
Dendritic cells) via the TIMER algorithm (Yoshihara et al., 2013).
The gene expression levels correlated with tumor purity are
displayed in the left-most panel (Figures 6A,B). Results showed
that CLDN6 expression was negatively correlated with infiltration
of B cell (partial correlation = −0.284, p = 2.21e-10), CD8+ T
cells (partial correlation = −0.254, p = 1.64e-08), neutrophils
(partial correlation = −0.152, p = 8.29e-04), and dendritic cells

(partial correlation = −0.182, p = 6.31e-05) (Figure 6A). In
contrast, there was a small but significant positive correlation
between CLDN10 expression and infiltration of neutrophils
(partial correlation = 0.185, p = 4.66e-05), and dendritic cells
(partial correlation = 0.153, p = 7.74e-04) (Figure 6B).

To more accurately describe the relationship between
gene expression and immune cell infiltration, we used the
TIMER, CIBERSORT, quanTIseq, xCell, MCP-counter, and
EPIC algorithms to assess the immune infiltration in tumor
tissue (Sturm et al., 2019). TIMER2 provides a platform to
analyze immune infiltrates across diverse cancer types based
on available TCGA RNA-seq data (Li et al., 2016; Li T.
et al., 2020). The correlations between claudin expression
(CLDN6 and CLDN10) and immune cell infiltration in
ovarian cancer are shown in Table 2. As seen in Figure 6C,
CLDN6 was negatively correlated with immune cell infiltration,
including that of B cells, CD8+ T cells, effector memory
CD4+ T cells, M1 macrophages, and myeloid dendritic cells.
In contrast, CLDN10 was positively correlated with immune
cell infiltration, including that of B cells, CD8+ T cells,
effector memory CD4+ T cells, M1 macrophages, and myeloid
dendritic cells (Figure 6D). Relevant evidence suggests that
cancer-associated fibroblasts (CAFs) play an important role in
the progression of ovarian cancer (Mhawech-Fauceglia et al.,
2014; Leung et al., 2018). Interestingly, here, CAFs also
showed a positive correlation with CLDN6 expression, but
a negative correlation with CLDN10 expression. In ovarian
cancer, increased infiltration of tumor-infiltrating lymphocytes
(TILs), and more specifically CD8+ T cells, have been
proven to be associated with improved clinical outcomes (Sato
et al., 2005; Hamanishi et al., 2007; Ovarian Tumor Tissue
Analysis et al., 2017). These results suggest that CLDN6
and CLDN10 may participate in immune cell infiltration in
ovarian cancer, and these mechanisms may be the reason for
poor prognosis.
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FIGURE 5 | Relationship between claudins expression and tumor immune microenvironment. (A) The expression of CLDN6 has a negative correlation with immune
score and ESTIMATE score. (B) The expression of CLDN10 has a positive correlation with immune score and ESTIMATE score. (C) The difference of 22 immune
cells between the claudin-high group and claudin-low group (*p < 0.05, **p < 0.01).

Relationship Between Claudin
Expression and Gene Markers of
Immune Cells
To further illustrate the correlation between claudins and
the immune microenvironment, we analyzed the relationship

between CLDN6 and CLDN10 expression and gene markers
of various immune cells in ovarian cancer (TIMER2 database),
including B cells, T cells (general), CD8+ T cells, macrophages,
dendritic cells, neutrophils, monocytes, natural killer (NK)
cells, and regulatory T cells (Tregs) (Table 3). Purity-adjusted
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FIGURE 6 | The relationship between immune cell infiltration and claudin expression. Correlation analysis of immune cell infiltration and CLDN6 expression (A), and
CLDN10 expression (B) based on the microarray expression values of ovarian cancer through TIMER. Correlation analysis of immune cell infiltration and CLDN6
expression (C), and CLDN10 expression (D) based on available TCGA RNA-seq data of ovarian cancer via TIMER2.

correlation heatmaps are shown in Supplementary Figure 4.
After correlation adjustment by purity, CLDN6 expression was
negatively correlated with most gene markers of dendritic cells,
M1 macrophages, monocytes, NK cells, and tumor-associated
macrophages (TAMs) in ovarian cancer. In contrast, CLDN10
expression was positively correlated with gene markers of
dendritic cells, T cells (general), and TAMs in ovarian cancer.

Studies have shown that the tumor-infiltrating immune cells
mentioned above are related to the tumor immunotherapy
response (Rodriguez et al., 2018). Immune cell-based
immunotherapy (Baci et al., 2020), including NK Cells (Nersesian
et al., 2019) and dendritic cells (Stiff et al., 2013), play important
roles in the treatment of ovarian cancer. Taken together, these
analyses and our research indicate that CLDN6 and CLDN10
may play important roles in immunotherapy in the future.

DISCUSSION

CLDN6 and CLDN10 are important components of the claudin
family related to tight junctions. Claudins were considered
promising targets for diagnosis and therapy since they were
involved in uncontrolled cancer growth and metastasis (Martin
and Jiang, 2001; Morin, 2005; Bose and Mukhopadhyay,
2010). Moreover, studies have shown that they not only

play a vital role in tumorigenesis (Swisshelm et al., 2005;
Arabzadeh et al., 2007; Hagen, 2019), but also drug resistance
(Gao et al., 2017).

CLDN6 had been demonstrated abnormal expression and
can be a prognostic marker in cancers including ovarian cancer
(Wang et al., 2013), endometrial cancer (Kojima et al., 2020),
gastric cancer (Kohmoto et al., 2020), breast carcinoma (Liu
et al., 2016; Jia et al., 2019), and lung cancer (Micke et al., 2014).
Bioinformatic analysis has revealed that CLDN6 is regulated
by a diverse set of transcription factors and promotes cancer
cell behavior via the ASK1-p38/JNK MAPK secretory signaling
pathway (Lin et al., 2017). A study revealed that CLDN6 may
be a novel targeted therapy for ovarian cancer as a receptor
for clostridium perfringens enterotoxin (Lal-Nag et al., 2012).
In addition, 6PHU3, a T-cell-engaging bispecific single chain
antibody with anti-CD3/anti-CLDN6 specificities, upregulated
the cytotoxicity of T cells and made T cells acquire an effector
phenotype (Stadler et al., 2016). Another recent study showed
that CLDN6 as a chimeric antigen receptor target in solid tumors
can be a strategy to overcome inefficient CAR-T cell stimulation
in vivo (Reinhard et al., 2020). These studies suggested that
CLDN6 has important research value in the treatment of cancer.

CLDN10, a glandular epithelial marker in epithelial ovarian
cancer (Seo et al., 2010), was reported to be a key immune-related
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TABLE 2 | Correlation analysis between claudins and immune infiltration in ovarian cancer via TIMER2.0.

CLDN6 CLDN10

Cancer Infiltrates rho p adj.p rho p adj.p

OV (n = 303) B cell memory_CIBERSORT −0.018 0.777 0.9214 −0.1938 ** *
OV (n = 303) B cell memory_CIBERSORT-ABS −0.0185 0.7713 0.9214 −0.1795 ** *

OV (n = 303) B cell memory_XCELL −0.0386 0.5446 0.7855 0.091 0.1521 0.3381

OV (n = 303) B cell naive_CIBERSORT 0.0053 0.9343 0.9895 0.255 *** ***

OV (n = 303) B cell naive_CIBERSORT-ABS −0.0058 0.9272 0.9895 0.2577 *** ***
OV (n = 303) B cell naive_XCELL 0.0915 0.15 0.4803 −0.142 * 0.0952
OV (n = 303) B cell plasma_CIBERSORT 0.1164 0.0666 0.3075 −0.0337 0.5963 0.7755
OV (n = 303) B cell plasma_CIBERSORT-ABS 0.0741 0.2443 0.5768 0.0036 0.9552 0.9837
OV (n = 303) B cell plasma_XCELL 0.04 0.5302 0.7759 −0.12 0.0587 0.1821
OV (n = 303) B cell_EPIC 0.045 0.4801 0.7541 −0.149 * 0.0782
OV (n = 303) B cell_MCPCOUNTER 0.2482 *** ** −0.0836 0.1888 0.3814
OV (n = 303) B cell_QUANTISEQ 0.1153 0.0694 0.3139 −0.1177 0.0636 0.1866

OV (n = 303) B cell_TIMER −0.3021 *** *** 0.2164 *** **
OV (n = 303) B cell_XCELL −0.1283 * 0.2616 0.0756 0.2345 0.4401

OV (n = 303) Cancer associated fibroblast_EPIC 0.1377 * 0.1353 −0.0907 0.1537 0.4081

OV (n = 303) Cancer associated fibroblast_MCPCOUNTER 0.1594 * 0.0746 −0.0955 0.133 0.3766

OV (n = 303) Cancer associated fibroblast_TIDE 0.197 ** * −0.178 ** *

OV (n = 303) Cancer associated fibroblast_XCELL 0.1913 ** * −0.1201 0.0585 0.2122

OV (n = 303) Class-switched memory B cell_XCELL −0.1073 0.091 0.3747 0.1094 0.085 0.2267

OV (n = 303) Common lymphoid progenitor_XCELL −0.0628 0.3235 0.6596 0.0795 0.2112 0.4607

OV (n = 303) Common myeloid progenitor_XCELL −0.1444 * 0.139 0.0333 0.6009 0.8165

OV (n = 303) Endothelial cell_EPIC 0.092 0.1478 0.4554 −0.1135 0.0738 0.2627

OV (n = 303) Endothelial cell_MCPCOUNTER 0.15 * 0.1218 −0.1109 0.0807 0.2771

OV (n = 303) Endothelial cell_XCELL 0.0923 0.1466 0.4554 −0.0893 0.16 0.403

OV (n = 303) Eosinophil_CIBERSORT 0.1312 * 0.1921 −0.006 0.9255 0.9687

OV (n = 303) Eosinophil_CIBERSORT-ABS 0.1299 * 0.1983 −0.0054 0.9323 0.9707

OV (n = 303) Eosinophil_XCELL 0.0472 0.4588 0.7698 −0.0908 0.1531 0.3919

OV (n = 303) Granulocyte-monocyte progenitor_XCELL 0.0423 0.5061 0.7873 0.0061 0.9236 0.9687

OV (n = 303) Hematopoietic stem cell_XCELL 0.0704 0.2685 0.6192 −0.1648 ** 0.0568

OV (n = 303) Macrophage M0_CIBERSORT 0.12 0.0586 0.2045 −0.1693 ** *

OV (n = 303) Macrophage M0_CIBERSORT-ABS 0.0854 0.1791 0.431 −0.1219 0.0546 0.168

OV (n = 303) Macrophage M1_CIBERSORT −0.1565 * 0.0812 0.1868 ** *

OV (n = 303) Macrophage M1_CIBERSORT-ABS −0.1201 0.0585 0.2045 0.1764 ** *

OV (n = 303) Macrophage M1_QUANTISEQ −0.1115 0.0792 0.2541 0.1631 ** *

OV (n = 303) Macrophage M1_XCELL −0.2436 *** ** 0.2096 *** **

OV (n = 303) Macrophage M2_CIBERSORT −0.1332 * 0.1481 0.0946 0.1366 0.3176

OV (n = 303) Macrophage M2_CIBERSORT-ABS −0.1201 0.0585 0.2045 0.1292 * 0.1388

OV (n = 303) Macrophage M2_QUANTISEQ −0.0632 0.3207 0.6029 0.1233 0.0521 0.1619

OV (n = 303) Macrophage M2_TIDE 0.3074 *** *** −0.2819 *** ***

OV (n = 303) Macrophage M2_XCELL −0.2827 *** *** 0.0992 0.1183 0.2886

OV (n = 303) Macrophage/Monocyte_MCPCOUNTER −0.1563 * 0.0812 0.0675 0.2884 0.5842

OV (n = 303) Macrophage/Monocyte_MCPCOUNTER −0.1563 * 0.1115 0.0675 0.2884 0.5244

OV (n = 303) Macrophage_EPIC −0.1983 ** * 0.1515 * 0.0698

OV (n = 303) Macrophage_TIMER 0.0371 0.5602 0.7984 −0.1785 ** *

OV (n = 303) Macrophage_XCELL −0.2767 *** *** 0.1879 ** *

OV (n = 303) Mast cell activated_CIBERSORT 0.0135 0.8325 0.9299 −0.0271 0.6699 0.8355

OV (n = 303) Mast cell activated_CIBERSORT-ABS 0.0118 0.8527 0.9352 −0.0284 0.6555 0.8323

OV (n = 303) Mast cell resting_CIBERSORT −0.0645 0.3106 0.65 0.0765 0.2289 0.4775

OV (n = 303) Mast cell resting_CIBERSORT-ABS −0.0775 0.223 0.5626 0.0979 0.1233 0.3433

OV (n = 303) Mast cell_XCELL −0.1516 * 0.1157 −0.0698 0.2723 0.5282

OV (n = 303) MDSC_TIDE 0.3588 *** *** −0.1393 * 0.1339

OV (n = 303) Monocyte_CIBERSORT 0.0449 0.481 0.7776 0.0739 0.2454 0.5578

OV (n = 303) Monocyte_CIBERSORT-ABS −0.0003 0.9966 0.9966 0.124 0.0507 0.2355

OV (n = 303) Monocyte_MCPCOUNTER −0.1563 * 0.1115 0.0675 0.2884 0.5842

OV (n = 303) Monocyte_QUANTISEQ −0.3974 *** *** 0.1651 ** 0.0626

(Continued)
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TABLE 2 | Continued

CLDN6 CLDN10

Cancer Infiltrates rho p adj.p rho p adj.p

OV (n = 303) Monocyte_XCELL −0.1109 0.0807 0.3318 0.0824 0.195 0.5043
OV (n = 303) Myeloid dendritic cell activated_CIBERSORT −0.1643 ** 0.0559 0.1554 * 0.069
OV (n = 303) Myeloid dendritic cell activated_CIBERSORT-ABS −0.1626 * 0.0573 0.1618 * 0.0564
OV (n = 303) Myeloid dendritic cell activated_XCELL −0.2327 *** ** 0.1691 ** *
OV (n = 303) Myeloid dendritic cell resting_CIBERSORT −0.0371 0.5605 0.7955 −0.0546 0.3908 0.635
OV (n = 303) Myeloid dendritic cell resting_CIBERSORT-ABS −0.0367 0.5642 0.7962 −0.0475 0.4551 0.6843
OV (n = 303) Myeloid dendritic cell_MCPCOUNTER −0.1032 0.1044 0.2989 0.0276 0.6652 0.8057
OV (n = 303) Myeloid dendritic cell_QUANTISEQ 0.363 *** *** −0.1552 * 0.0693
OV (n = 303) Myeloid dendritic cell_TIMER −0.3143 *** *** 0.2908 *** ***
OV (n = 303) Myeloid dendritic cell_XCELL −0.1196 0.0595 0.2138 0.1565 * 0.0675
OV (n = 303) Neutrophil_CIBERSORT −0.1029 0.1053 0.4127 0.1114 0.0793 0.2453
OV (n = 303) Neutrophil_CIBERSORT-ABS −0.0951 0.1345 0.4605 0.1072 0.0913 0.2681
OV (n = 303) Neutrophil_MCPCOUNTER −0.0017 0.9786 0.9929 −0.0367 0.5639 0.7514
OV (n = 303) Neutrophil_QUANTISEQ 0.1785 ** 0.0595 −0.0207 0.7447 0.863
OV (n = 303) Neutrophil_TIMER −0.0724 0.2552 0.61 0.0614 0.3348 0.5858
OV (n = 303) Neutrophil_XCELL −0.0869 0.1714 0.5122 0.0842 0.1851 0.418
OV (n = 303) NK cell activated_CIBERSORT −0.0263 0.6796 0.8663 0.0296 0.6423 0.8424
OV (n = 303) NK cell activated_CIBERSORT-ABS −0.0404 0.5256 0.7786 0.12 0.0587 0.2122
OV (n = 303) NK cell resting_CIBERSORT −0.1009 0.1124 0.3225 −0.0246 0.6989 0.8788
OV (n = 303) NK cell resting_CIBERSORT-ABS −0.1109 0.0808 0.266 −0.0226 0.7224 0.8908
OV (n = 303) NK cell_EPIC −0.1815 ** * 0.1149 0.0703 0.2474
OV (n = 303) NK cell_MCPCOUNTER −0.1553 * 0.0848 0.1402 * 0.12
OV (n = 303) NK cell_QUANTISEQ −0.0556 0.3821 0.6781 0.0411 0.519 0.7789
OV (n = 303) NK cell_XCELL −0.0824 0.1951 0.4491 0.0799 0.2087 0.4765
OV (n = 303) Plasmacytoid dendritic cell_XCELL −0.208 *** * 0.2213 *** **
OV (n = 303) T cell CD4+ (non-regulatory)_QUANTISEQ −0.0536 0.3998 0.7259 −0.0638 0.3156 0.5912
OV (n = 303) T cell CD4+ (non-regulatory)_XCELL 0.0077 0.9032 0.9663 −0.0723 0.2555 0.5347
OV (n = 303) T cell CD4+ central memory_XCELL 0.0456 0.4736 0.7811 0.0344 0.5892 0.8122
OV (n = 303) T cell CD4+ effector memory_XCELL −0.1513 * 0.1109 0.1302 * 0.1625
OV (n = 303) T cell CD4+ memory activated_CIBERSORT −0.0047 0.9411 0.9798 0.0538 0.3982 0.6743
OV (n = 303) T cell CD4+ memory activated_CIBERSORT-ABS −0.0041 0.9485 0.9798 0.0526 0.409 0.6835
OV (n = 303) T cell CD4+ memory resting_CIBERSORT 0.1047 0.0994 0.329 0.015 0.8141 0.9242
OV (n = 303) T cell CD4+ memory resting_CIBERSORT-ABS 0.0014 0.9827 0.992 0.0943 0.1378 0.3757
OV (n = 303) T cell CD4+ memory_XCELL 0.0253 0.6916 0.897 0.0693 0.2762 0.5595
OV (n = 303) T cell CD4+ naive_CIBERSORT 0.1349 * 0.1741 −0.1428 * 0.1147
OV (n = 303) T cell CD4+ naive_CIBERSORT-ABS 0.1349 * 0.1741 −0.1428 * 0.1147
OV (n = 303) T cell CD4+ naive_XCELL −0.1611 * 0.0828 0.1101 0.083 0.2652
OV (n = 303) T cell CD4+ Th1_XCELL −0.1385 * 0.1608 0.0499 0.4328 0.7009
OV (n = 303) T cell CD4+ Th2_XCELL 0.0625 0.3263 0.6506 0.0766 0.2287 0.522
OV (n = 303) T cell CD4+ _EPIC 0.0428 0.5014 0.8099 −0.0148 0.8168 0.9242
OV (n = 303) T cell CD4+ _TIMER 0.1149 0.0703 0.2735 −0.0058 0.9273 0.9753
OV (n = 303) T cell CD8+ central memory_XCELL −0.1749 ** * 0.1568 * 0.0801
OV (n = 303) T cell CD8+ effector memory_XCELL 0.0858 0.177 0.4688 0.0796 0.2107 0.4441
OV (n = 303) T cell CD8+ naive_XCELL 0.1924 ** * −0.1191 0.0606 0.2145
OV (n = 303) T cell CD8+ _CIBERSORT −0.0534 0.4012 0.6829 0.0301 0.6366 0.8318
OV (n = 303) T cell CD8+ _CIBERSORT-ABS −0.0453 0.4765 0.7086 0.0702 0.2695 0.5033
OV (n = 303) T cell CD8+ _EPIC 0.0434 0.4951 0.7166 −0.0542 0.3944 0.6552
OV (n = 303) T cell CD8+ _MCPCOUNTER −0.0322 0.613 0.7909 0.0925 0.1455 0.3528
OV (n = 303) T cell CD8+ _QUANTISEQ −0.2023 ** * 0.1851 ** *
OV (n = 303) T cell CD8+ _TIMER −0.1707 ** * 0.1363 * 0.139
OV (n = 303) T cell CD8+ _XCELL −0.0544 0.3923 0.6765 −0.0078 0.9028 0.9629
OV (n = 303) T cell follicular helper_CIBERSORT −0.036 0.5716 0.8255 0.0032 0.9605 0.9889
OV (n = 303) T cell follicular helper_CIBERSORT-ABS −0.0618 0.3316 0.7046 0.058 0.3618 0.6466
OV (n = 303) T cell gamma delta_CIBERSORT −0.0281 0.6591 0.8771 −0.0738 0.2458 0.5578
OV (n = 303) T cell gamma delta_CIBERSORT-ABS −0.0276 0.6642 0.8771 −0.0735 0.2481 0.5578
OV (n = 303) T cell gamma delta_XCELL −0.0545 0.3918 0.7431 0.03 0.6374 0.8533
OV (n = 303) T cell NK_XCELL −0.1745 ** 0.064 −0.001 0.9869 0.9937
OV (n = 303) T cell regulatory (Tregs)_CIBERSORT −0.0056 0.9299 0.9886 −0.0417 0.5123 0.7769
OV (n = 303) T cell regulatory (Tregs)_CIBERSORT-ABS −0.0278 0.6622 0.8546 −0.006 0.9248 0.971
OV (n = 303) T cell regulatory (Tregs)_QUANTISEQ −0.001 0.9873 0.9998 0.1678 ** *
OV (n = 303) T cell regulatory (Tregs)_XCELL 0.0683 0.283 0.575 0.0402 0.5276 0.783

*P < 0.05;**P < 0.01;***P < 0.001.
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TABLE 3 | Correlation analysis between claudins and markers of immune cells in ovarian cancer via TIMER2.0.

CLDN6 CLDN10

Cancer Immune cells Gene markers rho p adj.p rho p adj.p

OV (n = 303) B cell CD19 0.122 0.052 0.189 −0.075 0.268 0.477

OV (n = 303) B cell CD79A 0.022 0.692 0.853 −0.063 0.307 0.521

OV (n = 303) CD8+ T cell CD8A −0.103 0.103 0.305 0.0977 0.121 0.298

OV (n = 303) CD8+ T cell CD8B −0.032 0.613 0.798 0.0925 0.145 0.336

OV (n = 303) DC CD1C −0.158 * 0.098 0.0864 0.172 0.467

OV (n = 303) DC HLA-DPA1 −0.253 *** ** 0.2298 *** **

OV (n = 303) DC HLA-DPB1 −0.3 *** *** 0.2535 *** ***

OV (n = 303) DC HLA-DQB1 −0.224 *** ** 0.2259 *** **

OV (n = 303) DC HLA-DRA −0.325 *** *** 0.2428 *** **

OV (n = 303) DC ITGAX −0.182 ** * 0.0859 0.178 0.469

OV (n = 303) DC NRP1 0.1252 * 0.235 −0.004 0.996 0.997

OV (n = 303) M1 Macrophage IRF5 −0.186 ** * 0.0896 0.157 0.342

OV (n = 303) M1 Macrophage NOS2 0.1436 * 0.106 −0.033 0.545 0.757

OV (n = 303) M1 Macrophage PTGS2 0.0961 0.135 0.347 0.0093 0.886 0.942

OV (n = 303) M2 Macrophage CD163 −0.106 0.096 0.289 0.0646 0.31 0.529

OV (n = 303) M2 Macrophage MS4A4A −0.112 0.072 0.238 0.1147 0.077 0.206

OV (n = 303) M2 Macrophage VSIG4 −0.152 * 0.086 0.0768 0.224 0.433

OV (n = 303) Monocyte CD86 −0.222 *** ** 0.1457 * 0.084

OV (n = 303) Monocyte CSF1R −0.196 ** * 0.0717 0.256 0.473

OV (n = 303) NK cell KIR2DL1 −0.001 0.924 0.986 0.0991 0.117 0.388

OV (n = 303) NK cell KIR2DL3 −0.226 *** ** 0.1527 * 0.096

OV (n = 303) NK cell KIR2DL4 −0.258 *** ** 0.1563 * 0.08

OV (n = 303) NK cell KIR2DS4 −0.097 0.121 0.391 0.0847 0.185 0.475

OV (n = 303) NK cell KIR3DL1 0.019 0.764 0.936 0.1037 0.105 0.348

OV (n = 303) NK cell KIR3DL2 −0.063 0.318 0.631 0.1495 * 0.107

OV (n = 303) NK cell KIR3DL3 −0.044 0.466 0.751 0.0571 0.368 0.682

OV (n = 303) Neutrophil CCR7 −0.068 0.324 0.633 0.0943 0.138 0.421

OV (n = 303) Neutrophil CEACAM8 −0.065 0.344 0.658 −0.034 0.619 0.839

OV (n = 303) Neutrophil ITGAM −0.185 ** * 0.0575 0.367 0.682

OV (n = 303) T cell (general) CD2 −0.157 * 0.065 0.1651 ** *

OV (n = 303) T cell (general) CD3D −0.142 * 0.106 0.1524 * 0.077

OV (n = 303) T cell (general) CD3E −0.126 * 0.175 0.1581 * 0.051

OV (n = 303) TAM CCL2 −0.171 ** * 0.1709 ** *

OV (n = 303) TAM CD68 −0.203 ** * 0.105 0.093 0.258

OV (n = 303) TAM IL10 0.046 0.432 0.707 −0.007 0.948 0.979

OV (n = 303) Tfh IL21 −0.128 * 0.164 −0.016 0.844 0.934

OV (n = 303) Tfh BCL6 −0.195 ** * 0.1285 * 0.158

OV (n = 303) Th1 IFNG −0.088 0.186 0.438 0.1323 * 0.146

OV (n = 303) Th1 STAT1 −0.077 0.229 0.489 0.0894 0.158 0.384

OV (n = 303) Th1 STAT4 −0.009 0.873 0.959 0.0768 0.225 0.468

OV (n = 303) Th1 TBX21 −0.159 * 0.078 0.1587 * 0.063

OV (n = 303) Th1 TNF −0.038 0.568 0.778 0.02 0.759 0.882

OV (n = 303) Th17 IL17A −0.073 0.265 0.528 0.0043 0.943 0.981

OV (n = 303) Th17 STAT3 −0.042 0.488 0.731 0.0117 0.857 0.938

OV (n = 303) Th2 GATA3 −0.061 0.305 0.562 −0.084 0.206 0.436

OV (n = 303) Th2 IL13 −0.017 0.761 0.893 0.0647 0.303 0.575

OV (n = 303) Th2 STAT5A −0.115 0.062 0.215 −0.051 0.423 0.681

OV (n = 303) Th2 STAT6 −0.046 0.458 0.711 0.0869 0.176 0.396

OV (n = 303) Treg CCR8 −0.004 0.893 0.968 0.0211 0.741 0.882

OV (n = 303) Treg FOXP3 −0.059 0.415 0.675 0.0635 0.317 0.588

OV (n = 303) Treg STAT5B 0.152 * 0.081 −0.1677 ** *

OV (n = 303) Treg TGFB1 −0.127 0.052 0.181 0.0153 0.815 0.924

DC, Dendritic cell; NK cel, Natural killer cell; TAM, Tumor-associated macrophage; Tfh, Follicular helper T cell; Treg, Regulatory T cell; *P < 0.05; **P < 0.01; ***P < 0.001.
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gene in clear cell renal cell carcinoma (Yang et al., 2021) and
papillary thyroid carcinoma (Xiang et al., 2020). Furthermore,
CLDN10 expression has proved to be a prognostic marker for
ovarian cancer (Li Z. et al., 2020).

The present study combined and analyzed the prognostic
potential of CLDN6 and CLDN10 with the tumor immune
microenvironment. Consistent with previous reports, both
CLDN6 and CLDN10 showed high expression in ovarian cancer.
Prognostic analysis showed that the overexpression of CLDN6
was related to a poor prognosis for patients with ovarian cancer.
However, CLDN10 overexpression predicted a better prognosis
compared to the low CLDN10 expression group. We also found
that CLDN6 overexpression was negatively related to immune
cell infiltration, whereas CLDN10 overexpression was positively
correlated with immune cell infiltration. Moreover, we found that
CLDN6 and CLDN10 were related to gene markers of dendritic
cells, NK cells, and TAMs. These results may explain why
the overexpression of CLDN6 and low expression of CLDN10
predict poor OS in ovarian cancer. This study revealed that the
prognostic potential of CLDN6 and CLDN10 is related to the
tumor immune microenvironment in ovarian cancer.

Relevant evidence has emerged that immune-related gene
expression and TILs are related to the prognosis, recurrence
(Ojalvo et al., 2018), and chemotherapeutic response (Choi et al.,
2020) of ovarian cancer. Furthermore, the presence of TILs may
improve clinical outcomes in ovarian cancer patients (Odunsi,
2017). Immune cell-based immunotherapy (Baci et al., 2020),
including NK Cells (Nersesian et al., 2019) and dendritic cells
(Stiff et al., 2013), play an important role in the treatment of
ovarian cancer. Previous studies and our analyses suggest that
CLDN6 may be involved in immune evasion and that they could
be an ideal candidate for immunotherapy in ovarian cancer.
Future studies on the combined application of claudin-based
molecular targeted therapy and immunotherapy are necessary.

CONCLUSION

CLDN6 and CLDN10 were identified as potential prognostic
biomarkers and were correlated with immune cell infiltration in
ovarian cancer. Our results revealed new roles for CLDN6 and
CLDN10 in ovarian cancer and their potential as therapeutic
targets in cancer treatment.
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It is now clear that major malignancies are heterogeneous diseases associated with
diverse molecular properties and clinical outcomes, posing a great challenge for more
individualized therapy. In the last decade, cancer molecular subtyping studies were
mostly based on transcriptomic profiles, ignoring heterogeneity at other (epi-)genetic
levels of gene regulation. Integrating multiple types of (epi)genomic data generates a
more comprehensive landscape of biological processes, providing an opportunity to
better dissect cancer heterogeneity. Here, we propose sparse canonical correlation
analysis for cancer classification (SCCA-CC), which projects each type of single-omics
data onto a unified space for data fusion, followed by clustering and classification
analysis. Without loss of generality, as case studies, we integrated two types of omics
data, mRNA and miRNA profiles, for molecular classification of ovarian cancer (n = 462),
and breast cancer (n = 451). The two types of omics data were projected onto a
unified space using SCCA, followed by data fusion to identify cancer subtypes. The
subtypes we identified recapitulated subtypes previously recognized by other groups
(all P- values < 0.001), but display more significant clinical associations. Especially in
ovarian cancer, the four subtypes we identified were significantly associated with overall
survival, while the taxonomy previously established by TCGA did not (P- values: 0.039
vs. 0.12). The multi-omics classifiers we established can not only classify individual
types of data but also demonstrated higher accuracies on the fused data. Compared
with iCluster, SCCA-CC demonstrated its superiority by identifying subtypes of higher
coherence, clinical relevance, and time efficiency. In conclusion, we developed an
integrated bioinformatic framework SCCA-CC for cancer molecular subtyping. Using
two case studies in breast and ovarian cancer, we demonstrated its effectiveness in
identifying biologically meaningful and clinically relevant subtypes. SCCA-CC presented
a unique advantage in its ability to classify both single-omics data and multi-omics data,
which significantly extends the applicability to various data types, and making more
efficient use of published omics resources.

Keywords: multi-omics, data fusion, cancer subtyping, canonical correlation analysis, ovarian cancer, breast
cancer
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INTRODUCTION

It has been recognized that cancers are heterogeneous diseases
comprising multiple subtypes with distinct molecular properties
associated with discrepant clinical outcomes. In the last decade,
tremendous efforts have been made in identifying cancer
molecular subgroups (Zhao et al., 2019). Unlike traditional
cancer classification based on histopathological characteristics
or individual mutations, these studies employed unsupervised
classification to identify biologically coherent subgroups.
However, the pre-existing studies were mostly based on
single-omics data, especially transcriptomic data, ignoring
molecular heterogeneity occurring at other (epi-)genetic
levels of gene regulation such as copy number variation, and
DNA methylation. Recent advances in high-throughput
biotechnologies, especially next-generation sequencing
technologies, made it possible to generate (epi)genomic
profiles at a significantly reduced cost, providing an opportunity
for integrative analysis of multiple types of omics data. Genome-
wide, multi-omics profiles of tissue samples from large-scale
patient cohorts enabled a more comprehensive dissection
of cancer molecular heterogeneity. International consortia
such as the cancer genome atlas (TCGA) have assembled
multiple cancer data types from 1,000 patients, making
integrative methods essential for a better understanding of
cancer biology. However, due to the difference in data scale,
the complexity of dimensionality, effective integration of multi-
omics data for cancer subtyping remains a significant challenge
(Bersanelli et al., 2016).

To address the challenge, several computational models have
been proposed, which showed promising performance. For
instance, non-negative matrix factor (NMF) can be used to
project multi-omics data onto dimension-reduced space for
integration based on non-negative matrix decomposition (Zhang
et al., 2011, 2012). However, the prerequisite of non-negative
matrices needs to be satisfied, and proper normalization of the
input data is crucial. Joint and individual variation explained (or
JIVE) can also be used for integrative analysis of multi-omics data
by quantifying the joint variation between data types followed
by decomposition to reduce the dimensionality. The application
of JIVE to glioblastoma showed better characterizations of
different subtypes, but the robustness remains a concern due to
potential outliers affecting the factorization based on principal
component analysis (PCA) (Lock et al., 2013). iCluster (Shen
et al., 2009) and its extensions iClusterPlus (Kirk et al., 2012)
learned a joint latent variable model for integrative clustering
on multiple types of data. Despite the widely demonstrated
usefulness, the scalability of iCluster and its related methods
to a genome-wide scale was questionable (Shen et al., 2009).
Wang et al. (2014) developed a novel bioinformatic approach
named “similarity network fusion (SNF)”, which iteratively
fused similarity networks constructed from each type of
single-omics data into a similarity network by a nonlinear
combination method. SNF showed better performance than
single-omics methods in cancer subtyping, as demonstrated
in multiple case studies (Wang et al., 2014). However,
iCluster and SNF do not provide a classification framework,

and they both rely on a complete dataset of multi-omics
profiles for the clustering of new samples, which is often not
available, and significantly limiting their general applicability
(Wang et al., 2014).

To overcome the above-mentioned challenges, we propose to
fuse different types of omics data for clustering and classification
of tumor samples by canonical correlation analysis (CCA)
(Hotelling, 1936), a classical statistical analysis method used
in multi-views biometric identification. The CCA algorithm
measured the correlation between two sets of multi-dimensional
data and projected onto a unified space in which the
transformed vectors are maximally correlated. However, the
classical CCA could not be easily applied to analyze high-
throughput data in which the number of variables is much
larger than the number of samples. PCA was commonly used
to reduce dimensions but may discard important information
of correlation and discrimination for 1,000 of variables (Witten
et al., 2009). Sparse CCA solved the problem by employing
singular value decomposition, seeking sparsity in both sets of
variables simultaneously (Witten et al., 2009). The efficiency
of SCCA (Sparse CCA) had been demonstrated in simulated
genomic data in previous studies (Witten et al., 2009),
providing a rationale for us to employ SCCA for cancer
subtyping analysis.

In this study, we propose to project single-omics data
onto a unified space by SCCA for data fusion, followed by
clustering analysis on the fused data to identify cancer subtypes
(Figure 1A). The trained projection matrices, combined with a
trained classifier, can be subsequently used to either single-omics
or multi-omics classifications (Figure 1B). Using two case
studies in ovarian cancer and breast cancer, we demonstrated
the usefulness of sparse canonical correlation analysis for
cancer classification (SCCA-CC) in cancer classification
using multi-omics profiles in the TCGA database1 as well
as single-omics datasets from other independent datasets.
Furthermore, we demonstrated that SCCA-CC is superior
to other popular methods such as iCluster in the coherence
and clinical relevance of identified cancer subtypes, and the
running time consumed.

MATERIALS AND METHODS

Data Collection and Curation
We collected mRNA and miRNA expression profiles for 462
ovarian cancer patients and 451 breast cancer patients from
the TCGA database. Single-omics (mRNA or miRNA) datasets
were collected from gene expression omnibus (GEO). More
specifically, we downloaded one mRNA dataset (Tothill dataset,
GSE9891, and n = 285) (Tothill et al., 2008), and three miRNA
datasets: OC133 (GSE73582, n = 133), OC179 (GSE73581,
n = 179), and Bagnoli (GSE25204, n = 130) datasets (Bagnoli
et al., 2016) in the ovarian cancer case study. In the breast cancer
study, we downloaded the GSE22220 series (Buffa et al., 2011),
which includes a mRNA dataset (GSE22219, n = 216) and a

1https://cancergenome.nih.gov/
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FIGURE 1 | Cancer subtyping and classification using SCCA-CC. (A) A schematic figure illustrating the three major steps for multi-omics cancer subtyping. A toy
example is used to illustrate the projection of mRNA and miRNA expression data of the same set of patient samples onto lower-dimensional unified space by sparse
canonical correlation analysis (SCCA), followed by data fusion and unsupervised classification. (B) A schematic figure illustrating the versatile classifier can not only
classify fused multi-omics data, but also individual single-omics data.

miRNA dataset (GSE22216, n = 210), of which 207 samples have
both types of data.

Penalized Canonical Correlation Analysis
and Data Fusion
Canonical correlation analysis was proposed in 1936, which
was aimed to use fewer combinatorial variables to reflect
the correlation between the original two variable groups

(Hotelling, 1936). The measurement of the correlation between
the two groups of variables makes it possible to fuse different
biometrics. CCA projected the two groups of variables onto a
unified space in which the transformed vectors were maximally
correlated. As the classical CCA could not handle high-
dimensional data with small sample size, sparse CCA introduced
convex penalty functions to overcome the challenge (Witten
et al., 2009). Given two sets of zero-mean random vectors, A =
[a1, a2, ..., an] ∈ RDa×n, B = [b1, b2, ..., bn] ∈ RDb×n, we can
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obtain the objective projection matrices Pa ∈ RDa×m and Pb ∈
RDb×m corresponding to A and B, respectively by SCCA to
maximize the correlation coefficient ρ:

ρ =
PTaAB

TPb√
(PTaAATPa)(PTb BB

TPb)

Feature-level fusion meant the aggregation of features obtained
from various methods of feature extraction. As the features were
compressed and extracted to some extent compared with the raw
data, the complexity is much lower, and the computation is much
more efficient. Much more importantly, feature-level fusion
is more tolerant to specific data types, enabling the effective
fusion of various omics data. Sparse CCA was implemented
using the “CCA” function in R package “PMA”, which performs
sparse CCA using the penalized matrix decomposition. Lasso
penalty was used to obtain the corresponding canonical vector
to enforce sparsity by setting the parameters “typex” and “typez”
to “standard”. The sparsity was determined by the penalties
applied to the input matrix. The penalties were set to the default
value of 0.3 in the analyses. The number of canonical vectors
was determined by the lower number of dimensions of the
preprocessed mRNA and miRNA data as mentioned in Methods
by the parameter “K”. The other parameters were kept by default
in the function.

After projecting two types of omics data to the same space,
AP
= PTaA, AP

∈ Rm×n and BP = PTb B,BP ∈ Rm×n, we can
subsequently fuse them by a weighted averaging strategy:

Z = αAP
+ (1− α)BP = αPTaA+ (1− α)PTb B

where, α ∈ [0, 1] represents the fusion coefficient. In our case
studies, we set an equal weight (fusion coefficient) for each type
of omics data, and the fused data Z is used for the following
consensus clustering analysis.

Clustering and Classification Analysis
To identify molecular subtypes, we performed unsupervised
classification on the fused TCGA data in the unified space.
To ensure robustness, we employed the widely adopted
consensus clustering method (Monti et al., 2003), with 500
iterations and 0.9 subsampling ratio, to assess the clustering
stability. The consensus clustering was implemented by
the “ConsensusClusterPlus” function of the R package
“ConsensusClusterPlus” with k-means clustering algorithm
using Euclidean distance (Monti et al., 2003). The fused
TCGA data, together with the subtyping labels, were used
to train a classifier. More specifically, we explored various
classification methods such as random forests (RF) (R package
“randomForest”) (Breiman, 2001), support vector machine
(SVM) (R package “e1071”) (Cortes and Vapnik, 1995), k-nearest
neighbors algorithm (KNN) (R package “class”) (Venables and
Ripley, 2021), minimum distance algorithm (Min-Dis), and
Bayesian classifier (R package “e1071”) (Cortes and Vapnik,
1995), and selected the one yielding the lowest error rate for
the following analysis. More specifically, in the RF classification
analysis of ovarian cancer, the number of trees was set to 1,000

and the other parameters were set by default. In the SVM
classification analysis of breast carcinoma (BRCA), we used the
radial basis kernel and set the cost of constraints violation to 10.

Statistical Analysis
Statistical analysis was conducted with R software (version
3.6.12). SigClust (Huang et al., 2015), a statistical method for
testing the significance of clustering results, was used to evaluate
the subtypes we identified. Differential gene expression analysis
was performed by comparing each subtype with the others
using the R package “limma” (Ritchie et al., 2015). Biological
characterizations of cancer subtypes were based on gene set
enrichment analysis (GSEA) using R package “HTSanalyzeR2”
(Wang et al., 2011). Cox regression analyses were performed by
R package “survival”3. A p- value of less than 0.05 was considered
statistically significant in all tests.

RESULTS

Molecular Subtyping of Ovarian Cancer
Using SCCA-CC
Ovarian cancer is one of the most lethal malignancies in women.
Although most ovarian cancer patients can be cured during the
early stage, more than 80% of ovarian cancers are diagnosed at
advanced stages. Similar to other major malignancies, ovarian
cancer has been recognized as a molecularly heterogeneous
disease underlying the diverse clinical outcomes. Recently,
Tothill et al. (2008) performed unsupervised classification of
gene expression profiles for 285 high-grade serous ovarian
cancer (HGSOC) samples, resulting in the identification of four
distinct subtypes: immunoreactive, differentiated, proliferative,
and mesenchymal subgroups. TCGA network recapitulated these
subtypes based on transcriptomic profiles of more than 500
OvCa cases (Cancer Genome Atlas Research Network, 2011).
More recently, it was found that compared to other subtypes,
the mesenchymal subtype displayed higher invasiveness and
was associated with poor overall survival (Konecny et al.,
2014). Despite the well-established taxonomy, the subtyping
studies were based on transcriptomic profiles, ignoring potential
heterogeneity at other levels of gene regulations. Furthermore,
the classifiers based on gene expression signatures cannot be
applied to other types of omics data, greatly limiting the
applicability of these classification systems.

Unsupervised Classification of the Fused Multi-Omics
Data Identified More Clinically Relevant Subtypes
In total, we obtained matched mRNA and miRNA expression
profiles from 462 ovarian cancer samples in the TCGA cohort.
To eliminate the impacts of magnitude scale and ensure the
comparability of data, within each type of omics data we
performed z-score normalization and filtered out genes or
miRNAs with low between-sample variations (median absolute
deviation, or MAD < 0.75). The preprocessed mRNA and

2http://www.Rproject.org
3https://github.com/therneau/survival
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FIGURE 2 | Multi-omics subtyping of ovarian cancer using sparse canonical correlation analysis for cancer classification (SCCA-CC). (A) A heatmap showing the
statistical significance of the differences between the identified OC subtypes. The color depth is proportionate to the -log10(P- values) derived from SigClust. (B) A
heatmap illustrating the association between ovarian cancer subtypes identified by SCCA-CC and the cancer genome atlas (TCGA). The heatmap is colored in
proportion to the -log10(P- values) derived from hypergeometric tests. (C,D) Kaplan-Meier plots showing the association of the subtypes identified by panel
(C) TCGA and (D) SCCA-CC, respectively. P- values were calculated based on log–rank tests. (E–H) GSEA plots illustrating the representative pathways
dysregulated in each molecular subtype identified by SCCA-CC. (I) A bar plot comparing the classification performance of the five classifiers on mRNA data, miRNA
data, and the fused data, respectively. P- values were calculated based on Wilcoxon signed–rank tests. *** indicates P < 0.001. (J,K) Kaplan-Meier plots illustrating
the association between the four subtypes identified by SCCA-CC with overall survival in this panel (J) the Tothill mRNA dataset and (K) the merged miRNA data. P-
values were calculated based on log–rank tests.

miRNA data were subsequently projected onto a unified space
using SCCA, followed by data fusion based on a weighted
averaging strategy (α = 0.5) (Figure 1A). Using the fused data, we
performed consensus clustering and observed that subdivision
into four clusters generated the most robust classification
(Supplementary Figure 1), suggesting the existence of four

major ovarian cancer subtypes (OC1-4). Using SigClust (Huang
et al., 2015), a statistical method for testing the significance
of clustering results, and we found that indeed the differences
between subtypes were statistically significant (all P < 0.001,
Figure 2A). To interpret the four OC subtypes we identified,
we compared our clustering result with the TCGA taxonomy
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(Cancer Genome Atlas Research Network, 2011; Supplementary
Figure 2). Interestingly, we found that each OC subtype identified
by SCCA-CC was significantly associated with one of the subtypes
identified by TCGA (Figure 2B, all P < 0.001, hypergeometric
tests; P < 0.001, McNemar–Bowker test), suggesting that SCCA-
CC recapitulated the four subtypes previously defined, i.e.,
proliferative, immunoreactive, differentiated, and mesenchymal
(Tothill et al., 2008). Notably, the four OC subtypes we identified
are significantly associated with overall survival (Figure 2D,
P = 0.039, log–rank test), while the four TCGA subtypes did not
(Figure 2C, P = 0.12, log–rank test), supporting our hypothesis
that incorporating different types of omics data may identify
more clinically relevant subtypes than single-omics approaches.

To further elucidate the OC subtypes, we performed
differential gene expression analysis by comparing each
subtype with the others and then identified subtype-specific
biological functions based on GSEA (Supplementary Table 1).
We confirmed that OC1 is differentiated-like, featured with
dysregulated cell differentiation signatures; OC2 is mesenchymal-
like, displaying upregulated epithelial-to-mesenchymal
transition (Jechlinger et al., 2003); OC3 is immunoreactive-
like, characterized by activated immune responses; and OC4 is
proliferative-like, characterized by upregulated DNA replication,
which were all consistent with previous studies (Jechlinger et al.,
2003; Verhaak et al., 2013; Wang et al., 2017; Figures 2E–H).

The Multi-Omics Classifier Was Able to Classify Both
Single-Omics and Multi-Omics Data
A unique advantage of a multi-omics classifier lies in its
ability to handle both single-omics data and multi-omics data,
making more efficient use of different types of data potentially
(Figure 1B). In our study, using the mRNA-miRNA fused
data obtained by the projection and fusion from randomly
selected 200 TCGA samples, we constructed multiple classifiers
based on RF, SVM, KNN, Min-Dis, and Bayesian classifier.
Using the clustering labels as the reference, we evaluated the
performance of these classifiers on the fused mRNA-miRNA
data, the mRNA and the miRNA data alone for the other 262
TCGA samples, respectively. To obtain a stable and robust
estimation of the performance, we repeated the tests 100 times.
Compared to miRNA-based classification results, all classifiers
demonstrated higher accuracies on the mRNA data (Figure 2I,
all P < 0.001, Wilcoxon Signed–rank tests), and, remarkably,
achieved even higher accuracies on the fused data (Figure 2I, all
P < 0.001, Wilcoxon Signed–rank tests). The results supported
our hypothesis that SCCA-CC achieved higher classification
performance when more information is incorporated.

Independent Validations Verified the General
Applicability of Multi-Omics Classification
Among the various classifiers, RF showed relatively higher
accuracy and lower volatility (standard deviation): 91.6% using
the fused data, 83.0% using only the mRNA data, and 74.8%
using only the miRNA data (Figure 2I). Therefore, we trained
a multi-omics classifier based on RF using all the 462 TCGA
samples. To evaluate the general applicability of the classifier
to other independent datasets, we tested the Tothill mRNA

dataset (Tothill et al., 2008) (n = 279) and a miRNA dataset
(n = 442) merged from GSE73581, GSE73582, and Bagnoli
miRNA (Bagnoli et al., 2015) datasets. In both datasets,
the predicted OC subtypes showed a significant association
with survival (Figures 2J,K, both P < 0.01, log–rank tests).
More specifically, patients classified to OC2 (mesenchymal-
like) had the worst overall survival, while those classified to
OC3 (immunoreactive-like) had the best outcome, which was
consistent with previous studies (Jechlinger et al., 2003; Verhaak
et al., 2013; Wang et al., 2017). These results demonstrated the
multi-omics classifier’s potential to classify other independent
datasets with different types of omics data. Notably, it was the first
time ever that the three miRNA datasets (GSE73581, GSE73582,
and Bagnoli) could be classified, since the previous classification
method developed by TCGA only takes mRNA data as input
(Cancer Genome Atlas Research Network, 2011).

Molecular Subtyping of Breast Cancer
Using SCCA-CC
Breast carcinoma is the most common type of gynecological
cancer, as it alone accounts for 24.2% of all new cancer incidences
in women in 2018 (Bray et al., 2018). Over the past two decades,
breast cancer mortality has been reduced remarkably since
1989 (Siegel et al., 2020), mainly attributed to population-wide
screening based on mammography and improved therapeutics.
However, since breast cancer is also a heterogeneous disease,
a significant proportion of patients eventually died due to
limited benefit from chemotherapy (Jemal et al., 2017). The
intrinsic subtypes of breast cancer, including luminal A, luminal
B, basal-like, Her2-enriched, and normal-like have been well
characterized and widely adopted (Perou et al., 2000; Sorlie et al.,
2001). Importantly, the five intrinsic subtypes are characterized
by distinct molecular properties, associate with different clinical
outcomes. In particular, patients classified to the Her2-positive
subtype showed poor survival, while those assigned to the luminal
A subtype displayed more favorable outcome (Sorlie et al., 2001,
2003; Yersal and Barutca, 2014; Dai et al., 2015). For breast cancer
subtype prediction, PAM50 is the most popular classifier (Parker
et al., 2009), but since the classification system was established
based on transcriptomic profiles, it cannot be applied to other
types of omics data.

Unsupervised Classification of the Fused
Multi-Omics Data Recapitulated the Five Intrinsic
Subtypes of Breast Cancer
Like our case study in ovarian cancer, we performed unsupervised
classification on 451 patient samples of breast cancer with
matched mRNA and miRNA expression profiles in the TCGA
cohort. Z-score normalization was applied to each type of
omics data, followed by the filtering of genes or miRNAs with
low between-sample variations (MAD < 0.5). We projected
the preprocessed data onto a lower-dimensional space by
SCCA for data fusion using the weighted averaging method
(α = 0.5) subsequently. Based on consensus clustering of
the fused data, we determined the optimal five breast cancer
subtypes (Supplementary Figure 3). Pairwise comparisons
between the subtypes showed significant differences, suggesting
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FIGURE 3 | Multi-omics subtyping of breast cancer using sparse canonical correlation analysis for cancer classification (SCCA-CC). (A) A heatmap showing the
statistical significance of the differences between the identified breast cancer subtypes. The color depth is proportionate to the -log10(P- values) derived from
SigClust. (B) A heatmap illustrating the association between the subtypes identified by SCCA-CC and PAM50. The heatmap is colored in proportion to the -log10(P-
values) derived from hypergeometric tests. (C) A bar plot comparing the classification performance of the five classifiers on mRNA data, miRNA data and the fused
data, respectively. P- values were calculated based on Wilcoxon signed–rank tests. *** indicates P < 0.001. (D–G) GSEA plots illustrating the representative
pathways dysregulated in the Class 1 (Basal-like), Class 2 (Luminal A-like), Class 3 (Luminal B-like), and Class 4 (Her2+-like) subtypes identified by SCCA-CC. (H–J)
Kaplan-Meier plots showing the association of the subtypes identified by SCCA-CC using (H) the GSE22219 mRNA dataset, (I) the GSE22216 miRNA dataset and
(J) the fused mRNA and miRNA dataset with disease-free survival. (K) Kaplan-Meier plot showing the association of the subtypes identified by PAM50 with
disease-free survival. P- values were calculated by log–rank tests.

the significance of the clustering (all P < 0.001, Figure 3A).
Similar to the ovarian cancer study, each breast cancer subtype
we identified was significantly associated with an intrinsic
subtype classified by PAM50 (Figure 3B and Supplementary
Figure 4, all P < 0.001, hypergeometric tests; P < 0.001,

McNemar–Bowker test). To further elucidate the biological
properties associated with identified subtypes, we performed
differential gene expression analysis by comparing each subtype
with the others, followed by GSEA to detect subtype-specific
biological functions. The GSEA results (Supplementary Table 1)
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suggested that Class 1, Class 2, Class 3, and Class 4 were enriched
for the gene expression signatures representative of the basal,
luminal A, luminal B, and Her2+ (ERBB2) subtypes, respectively
(Figures 3D–G; Smid et al., 2008). Since Class 5 recapitulated
the normal-like subtype, and therefore we did not notice any
particular biological process representative of this subtype.

The Multi-Omics Classifier Was Able to Classify Both
Single-Omics and Multi-Omics Data
For breast cancer, we also employed the five classification
algorithms: RF, SVM, KNN, Min-Dis, and Bayesian classifier
to build the classifiers. Using the labels obtained from the
consensus clustering as the reference, we randomly selected
200 breast cancer samples from the TCGA cohort to construct
classifiers based on the mRNA-miRNA fused data and evaluated
the performance on other 251 samples. We repeated the tests
100 times and compared the results of all types of omics data
for each classifier. Similar to the ovarian cancer case study, we
also found that all the classifiers demonstrated higher accuracies
on the mRNA data than on the miRNA data (Figure 3C, all
P < 0.001, Wilcoxon Signed–rank tests), and they achieved even
higher accuracies on the mRNA-miRNA fused data (Figure 3C,
all P < 0.001, Wilcoxon Signed–rank tests). Consistent with
ovarian cancer, our results in breast cancer further demonstrated
the improved classification performance of SCCA-CC on multi-
omics data.

Independent Validations Verified the General
Applicability of Multi-Omics Classification
In this case study, SVM demonstrated the best performance
and relatively low volatility: 94.8% using the fused data, 88.74%
using only the mRNA data, and 80.4% using only the miRNA
data. Therefore, we trained a multi-omics classifier based on
SVM using all the 451 TCGA samples and evaluated the general
applicability of the classifier to other independent datasets. The
GSE22220 series, including a mRNA dataset (n = 216), a miRNA
dataset (n = 210), of which 207 samples have both types of data,
were used for validations (Buffa et al., 2011). Using either the
mRNA or miRNA dataset alone, we found that the predicted
subtypes by the multi-omics classifier showed a significant
association with survival (Figures 3H,I, both P < 0.01, log–rank
tests). More interestingly, a higher significance of prognosis was
observed using the predicted subtypes based on the fused data
(Figure 3J, P < 0.001, log–rank test). Regardless of single-omics
or multi-omics classifications, the predicted Class 4 (Her2+ like)
subtype always displayed the worst overall survival, while the
Class 2 (Luminal A like) subtype showed more favorable clinical
outcome. These results about clinical associations were consistent
with previous studies, demonstrating the general applicability of
the multi-omics classifier (Sorlie et al., 2001, 2003; Yersal and
Barutca, 2014; Dai et al., 2015). Compared with the PAM50
classification on the same dataset, the SCCA-CC classification
was more significantly associated with survival (Figures 3J,K,
P = 3.5e-5 and 6.8e-5 for SCCA-CC and PAM50 classifications,
respectively). Together, our case study suggested that SCCA-CC
was able to identify subtypes that are more clinically relevant,
and again supported our hypothesis that incorporating different

types of omics data may capture more comprehensive intrinsic
characteristics of breast cancer than a single data type.

Benchmark Study
In order to demonstrate the superiority, we directly compared
SCCA-CC with iCluster on the datasets we analyzed in the case
studies based on three commonly used measures: (i) P- values
derived from log–rank tests in the Kaplan-Meier analysis to show
the association between subtypes and survival; (ii) Silhouette
score evaluating the cluster coherence. A higher Silhouette
score indicates that samples are more similar within subtypes;
and (iii) The algorithm running time evaluating computational
complexity. Using varying numbers of genes preselected based
on MAD, we performed subtyping analysis using SCCA-CC
and iCluster, respectively. As a result, we found SCCA-CC
outperformed iCluster based on the three different clustering
performance measures in almost all the different scenarios
(Figures 4A,B). The algorithm running time is acceptable when a
small number of genes were used for both methods, but the time
iCluster spent increased exponentially with the number of genes,
suggesting better scalability of SCCA-CC (Figure 4C).

To further compare SCCA-CC with other cancer taxonomies
and clinical risk factors, we performed Cox regression analyses
in ovarian cancer (TCGA dataset) and breast cancer (GSE22220),
respectively. For both cancer types, we first employed iCluster to
identify the subtypes with default parameters and evaluated the
associations between the identified subtypes with the reference
subtyping results based on TCGA or PAM50 (Supplementary
Figures 5, 6). In ovarian cancer, we found that the SCCA-
CC taxonomy showed higher statistical association with patient
survival than the classifications based on iCluster and TCGA in
the univariate analysis (Table 1). After adjusting for other clinical
factors such as age and stage, the SCCA-CC classification did
not show significant prognostic power. The lack of significance
in the survival difference is not surprising, since the TCGA
cohort includes HGSOC patients only, who showed very poor
overall survival in general. HGSOC patients are diagnosed
at advanced stages, and the 5-year overall survival rate (20–
30%) has not significantly improved over the last 20–30 years
(Davidson et al., 2014; Konstantinopoulos et al., 2015). These
patients were difficult to stratify by other pre-existing classifiers
such as the TCGA taxonomy itself (Figure 2C). Even with
our SCCA-CC classifier, the survival difference is marginally
significant (P = 0.031, Univariate Cox regression in Table 1;
P = 0.0387, and log–rank test in Figure 2D) in the TCGA
cohort. However, the independent validation dataset, with only
miRNA expression profiles for ovarian cancer, includes not
only high-grade serous tumors but also other ovarian cancer
histotypes that are less aggressive. Therefore, in the miRNA
cohort, the overall survival of the patients showed much
higher diversity (Figures 2J,K). Based on the univariate and
multivariate analysis, we found the SCCA-CC classification
showed significant prognostic power, even after adjusting for age
and stage information (Supplementary Table 3). Furthermore, in
breast cancer SCCA-CC also outperformed iCluster classification
and the PAM classification, and the prognostic power remains
after adjusting age and grade factors (Table 2). Together, using
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FIGURE 4 | A comparison of sparse canonical correlation analysis for cancer classification (SCCA-CC) with iCluster. Using varying numbers of genes preselected
based on MAD, we compared the classification performance between SCCA-CC and iCluster based on (A) P- values indicative of association with survival
calculated by log–rank tests, (B) Silhouette score representing the coherence of clusters, and (C) the algorithm running time evaluating the computational complexity.

both the ovarian and breast cancer case studies, we demonstrated
the better performance of SCCA-CC in identifying molecular
subtypes that are more coherent and clinically relevant.

Interpretations of the Canonical Variate
Pairs
Sparse CCA provides sets of variables with sparse loadings, which
is consistent with the belief that only a small number of genes
are expressed under specific conditions (Parkhomenko et al.,
2007). Previous studies have used sparse CCA to investigate
the associations between different types of omics data, e.g.,
identification of sets of genes that are correlated with sets of SNPs

and copy number variations (Parkhomenko et al., 2007, 2009;
Waaijenborg et al., 2008). For better understanding the biology
underlying the CCA we further analyzed the pairwise correlations
of mRNAs and miRNAs, and build miRNA-mRNA regulatory
networks in our case studies.

In ovarian cancer, we checked the first canonical variate
pair of mRNAs and miRNAs and found 105 non-zero
mRNA variables and 12 non-zero miRNA variables. Pairwise
correlation coefficients (n = 1260) were calculated between
these variables using their original expression data. Interestingly,
we found apparent correlation (negative or positive) between
the expression levels of mRNAs and miRNAs, suggesting
their potential interactions (Figure 5A). As a comparison, we
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TABLE 1 | Univariate and multivariate Cox regression analyses in ovarian cancer
using the TCGA dataset.

Univariate Multivariate

HR (95% CI) P- value HR (95% CI) P- value

Age (≥65 vs. < 65) 1.37 (1.07–1.76) 0.014 1.32 (1.02–1.71) 0.034

Stage (Late vs. Early) 2.33 (1.10∼4.94) 0.028 2.21 (1.04–4.70) 0.039

SCCA-CC
(multinomial)

1.04 (0.85–1.08) 0.466

TCGA labels
(multinomial)

0.94 (0.95–1.19) 0.279

SCCA-CC (OC2 vs.
OC1/3/4)

1.33 (1.03∼1.73) 0.031 1.21 (0.93–1.58) 0.161

iCluster (iCluster 1 vs.
iCluster 2–4)

1.25 (0.94∼1.67) 0.12

TCGA labels
(Mesenchymal vs.
Others)

0.82 (0.91∼1.63) 0.18

TABLE 2 | Univariate and multivariate Cox regression analyses in breast cancer
using the GSE22220 series dataset.

Univariate Multivariate

HR (95% CI) P- value HR (95% CI) P- value

Age (≥65 vs. < 65) 2.28 (1.42∼3.68) 0.0007 1.81 (1.09–2.99) 0.021

Grade (2–3 vs. 1) 1.82 (1.06∼3.11) 0.030 1.55 (0.89–2.68) 0.118

ER status (1 vs. 0) 0.80 (0.51∼1.26) 0.33

SCCA-CC
(multinomial)

0.86 (0.96–1.39) 0.127

PAM50 (multinomial) 1.06 (0.78–1.15) 0.575

SCCA-CC
(Class 4 vs. Classes
1–3, 5)

2.95 (1.73∼5.02) < 0.0001 1.95 (1.07–3.55) 0.030

iCluster
(iCluster 5 vs. iCluster
1–4)

2.49 (1.54∼4.02) 0.0002 1.68 (0.97–2.91) 0.063

PAM50
(Her2+ vs. others)

1.77 (0.93∼3.35) 0.08

generated a background distribution of correlation coefficients
based on random sampling of 1260 pairs of mRNAs and miRNAs
from all the input data, repeating for 1,000 times. As a result,
the randomly selected mRNAs and miRNAs showed lack of
association (Figure 5A), suggesting the functional relevance of
the non-zero mRNAs and miRNAs variables. Based on the
interesting correlation observed, we hypothesize that physical
interactions may underlie the expression associations between
these mRNAs and miRNAs selected by sparse CCA. To test
the hypothesis, we built a miRNA-mRNA regulatory network
by collecting both experimentally validated miRNA-target
interactions (from miRecords (Xiao et al., 2009), miRTarBase
(Huang et al., 2020), and TarBase (Karagkouni et al., 2018)
and predicted miRNA-target interactions with evolutionary
conservation (from TargetScan (Agarwal et al., 2015), PITA
(Kertesz et al., 2007) and miRanda (Enright et al., 2003). As
expected, most of the mRNAs (99 out of the total 105) and all the

miRNAs are interconnected (Figure 5C), suggesting that these
miRNAs have intense physical interactions with the mRNAs. As
an example, CDR2L, with the second largest weight, is the target
of hsa-miR-125b, hsa-miR-142-3p, hsa-miR-142-5p and hsa-
miR-222 based on targetScan, and/or PITA predictions (Kertesz
et al., 2007; Agarwal et al., 2015; Supplementary Table 2).
Similarly, MMD, with the third largest weight, is the target
of hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-223, hsa-miR-224,
and hsa-miR-335 (Kertesz et al., 2007; Agarwal et al., 2015;
Supplementary Table 2).

Similarly, in BRCA we checked the first canonical variate
pair of genes and miRNAs dataset and found 204 non-zero
mRNA variables and 57 non-zero miRNA variables. Pairwise
correlation coefficients (n = 11628) were calculated between
these variables using their original expression data. As a result,
we also found strong correlation (negative or positive) between
the expression levels of mRNAs and miRNAs (Figure 5B).
A background distribution of correlation coefficients based on
random sampling of 11,628 pairs of mRNAs and miRNAs from
all the input data, repeating for 1,000 times. As expected, the
randomly selected mRNAs and miRNAs also showed lack of
association (Figure 5B). We further built a miRNA-mRNA
regulatory network to investigate whether physical interactions
may also underlie the expression associations of mRNAs and
miRNAs selected by sparse CCA in BRCA. Indeed, most of
the genes (195 out of the total 204) and the miRNAs (52 out
of the total 57) are interconnected (Figure 5D), suggesting
that these miRNAs have intense physical interactions with the
mRNAs. For instance, Gene UBE2T with the highest weight is
the target of hsa-mir-96, hsa-mir-200c, has-miR-182 based on
targetScan, and/or PITA predictions (Kertesz et al., 2007; Agarwal
et al., 2015; Supplementary Table 2). Gene CKS2, with the
second highest weight, is the target of hsa-mir-200c, has-miR-
429, and has-miR-33b (Kertesz et al., 2007; Agarwal et al., 2015;
Supplementary Table 2).

Together, these results provide compelling evidence that the
sparse CCA selected biologically relevant genes and miRNAs,
which explains their strong expression correlation enabling
multi-omic data fusion in the projected space.

DISCUSSION

Cancer molecular heterogeneity hampers the selection of patients
for more optimized clinical management and the design of
targeted agents. During the last decade, tremendous efforts
have been made to dissecting the inter-tumor heterogeneity
in an overwhelming number of studies based on unsupervised
classification of high-throughput omics profiles. These studies
gained novel insights into cancer biology with important
clinical implications, which laid a solid foundation for precision
medicine. However, most of these studies were based on single-
omics data, especially transcriptomic data, which ignored other
genetic and epigenetic levels of gene regulation, and resulting
in only partial understanding of cancer heterogeneity. Recent
studies have seen a growing interest in integrating multiple types
of omics data for more comprehensive cancer subtyping, but few
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FIGURE 5 | Interpretations of the canonical variate pairs. (A,B) The distributions of observed pairwise correlation coefficients between non-zero mRNA variables and
miRNA variables in the first canonical variates, compared to the corresponding background distributions in this panel (A) ovarian cancer and (B) breast carcinoma
(BRCA), respectively. The gray area represents 95% confidence intervals. (C,D) MiRNA-mRNA regulatory networks constructed based on non-zero mRNA and
miRNA variables selected by sparse CCA in this panel (C) ovarian cancer and (D) breast carcinoma, respectively. Triangles and circles represent miRNAs and
mRNAs, respectively. Edges represent the interactions between miRNAs and mRNAs experimentally validated and/or predicted by databases including miRecords,
miRTarBase, TarBase, TargetScan, PITA, and miRanda. Nodes are colored in proportion to the averaged log2 transformed expression levels of mRNAs/miRNAs
across all TCGA samples, and edges are colored based on Pearson correlation coefficients between the expression levels of miRNAs and mRNAs.

existing methods can classify both single-omics and multi-omics
data. In this study, we developed SCCA-CC, a robust and efficient
framework for cancer subtyping and classifications based on data
fusion using sparse CCA followed by unsupervised classification.
Using two case studies on multiple independent cohorts, we
demonstrated that SCCA-CC was able to identify biologically
meaningful and clinically more relevant taxonomies.

Conventional CCA may suffered from the high dimensionality
of genomic data where the number of observations greatly
exceeds the number of samples, leading to high risk of potential
collinearity and unstable estimates (Waaijenborg et al., 2008;
Parkhomenko et al., 2009; Boutte and Liu, 2010). PCA is a
powerful dimension reduction method, which has been used
prior to CCA in some applications. However, in our study,
we did not perform PCA prior to CCA due to the following
considerations: (1) We employed sparse CCA but not the
conventional CCA in our study. In the sparse CCA (Witten et al.,

2009), a penalized matrix decomposition is introduced using a
LASSO penalty to compute a rank-K approximation of a matrix
(Witten et al., 2009; Lin et al., 2013). This is inspired by several
penalization methods presented in the regression context (Zou
et al., 2006; Wright et al., 2009; Wu et al., 2009). As reported
before, the problem of multicollinearity can be mitigated by the
use of sparse loadings in the CCA algorithm (Waaijenborg and
Zwinderman, 2009; Witten et al., 2009; Boutte and Liu, 2010;
Lin et al., 2013). (2) Cross-platform applicability. In practice,
the strategy to perform PCA before CCA may be difficult to
be applied to other datasets based on different gene expression
profiling platforms. For instance, a lot of newly identified genes
in RNA-seq data were often missing in early gene expression
microarrays published many years ago. (3) After performing PCA
prior to CCA, the generalized eigenvector problem is changed
into the eigen-system computation of a nonsymmetric matrix
which is unstable as previously reported (Swets and Weng, 1996).
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(4) Performing PCA prior to CCA may discard dimensions that
contain important discriminative information (Xing et al., 2016).

For both ovarian and breast cancers, the subtypes identified by
SCCA-CC recapitulated the taxonomies previously established,
as suggested by the pairwise statistical tests and GSEA.
However, SCCA-CC derived subtypes showed a more significant
association with clinical outcomes. Notably, ovarian cancer
subtypes identified by SCCA-CC were significantly associated
with overall survival in the TCGA cohort, while the four subtypes
previously defined by TCGA did not show any significant
clinical association. On independent mRNA, miRNA, and fused
datasets, SCCA-CC demonstrated consistent clinical associations
in both our ovarian and breast cancer studies. These results
demonstrated that SCCA-CC is able to detect the biologically
coherent subgroups in different types of single-omics data, and
incorporating multiple types of omics data can further improve
the prediction performance.

More importantly, a number of published studies with only
miRNA expression profiles cannot be classified using existing
subtyping systems based on mRNA expression signatures. SCCA-
CC presented a unique advantage in its ability to classify both
single-omics data and multi-omics data, which significantly
extends the general applicability to make efficient use of
public resources. More specifically, we constructed multi-omics
classifiers using the fused data with the consensus clustering
labels as the reference and evaluated the robustness of the
classification performance by iterative testing. The validity of
multi-omics classifiers was verified by the observed significant
prognostic power on both the mRNA dataset and the miRNA
dataset. Notably, it was the first time ever that the miRNA datasets
could be classified since the previous classification assays only
take mRNA data as input.

In a benchmark study against iCluster, SCCA-CC also
demonstrated its superiority in the higher coherence and clinical
relevance of identified cancer subtypes, and lower computational
complexity. Furthermore, the strength of SCCA-CC also lies
in the biological interpretability. The non-zero mRNAs and
miRNAs selected by sparse CCA had strong correlation in their
expression levels, which can be explained by their intense physical
interactions. These results provide compelling evidence that the
sparse CCA selected biologically relevant genes and miRNAs.

Despite the demonstrated usefulness, the major limitation of
SCCA-CC lies in the limited types of omics data we used in the
study. Only mRNA and miRNA data were fused for classification,
likely missing heterogeneity occurring at other omics levels.
Thus, our future work will focus on integrating more types of
omics data to dissect the heterogeneity more comprehensively.
Considering the differences in the dimensionalities and data
scales between various types of omics data, how to properly
preprocess the data for effective data fusion remains a
significant challenge.
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Supplementary Figure 1 | Consensus clustering based on the fused data in
ovarian cancer. (A) Heatmap illustrating the consensus matrices for k = 4, 5, and
6. (B) Consensus cumulative distribution function (CDF) plot for k varying from 2 to
6. (C) Delta area plot shows the relative change in the area under the consensus
cumulative distribution function (CDF) curve comparing k and k–1. At k = 4, there
is no appreciable increase (Delta area < 0.1). (D) Gap statistic suggesting the
optimal number of clusters is four in the TCGA dataset. Error bars indicate SEM.

Supplementary Figure 2 | A heatmap illustrating the pairwise comparison
between the subtypes identified by SCCA-CC and those defined by the cancer
genome atlas (TCGA) in the TCGA ovarian cancer dataset.

Supplementary Figure 3 | Consensus clustering based on the fused data in
breast cancer. (A) Heatmap illustrating the consensus matrices for k = 5, 6, and 7.
(B) Consensus cumulative distribution function (CDF) plot for k varying from 2 to 7.
(C) Delta area plot shows the relative change in the area under the consensus
cumulative distribution function (CDF) curve comparing k and k–1. At k = 5, there
is no appreciable increase (Delta area < 0.1). (D) Gap statistic suggesting the
optimal number of clusters is five in the TCGA dataset. Error bars indicate SEM.

Supplementary Figure 4 | A heatmap illustrating the pairwise comparison
between the subtypes identified by SCCA-CC and those defined by PAM50 in the
TCGA breast cancer dataset.

Supplementary Figure 5 | Heatmaps showing the pairwise comparison between
the subtypes identified by iCluster and the cancer genome atlas (TCGA) in the
TCGA ovarian cancer dataset. (A) The statistical significance of association
quantified by hypergeometric tests. (B) The detailed confusion matrix.

Supplementary Figure 6 | Heatmaps showing the pairwise comparison between
the subtypes identified by iCluster and PAM50 in the GSE22219 breast cancer
dataset. (A) The statistical significance of association quantified by
hypergeometric tests. (B) The detailed confusion matrix.

Supplementary Table 1 | The result of gene set enrichment analysis (xlsx).

Supplementary Table 2 | The weights of canonical variates (xlsx).

Supplementary Table 3 | Univariate and multivariate Cox regression analyses in
the independent miRNA validation datasets (xlsx).
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