About this Research Topic
Even though reactions involving a single electron and/or a proton are simple, it is extremely challenging to study these at an atomistic level. This is due to the very large number of degrees of freedom and complexity of surroundings that involves very diverse molecules such as lipids, proteins, water and ions. Central questions include: how are long-ranged electron-proton coupling achieved in bioenergetic enzymes with high thermodynamic and kinetic efficiency? What are those microscopic gates and valves that prevent unwanted reactions to occur? Structural approaches such as cryo EM and time-resolved spectroscopic experiments are the methods of choice to study such aspects, combined with multiscale computer simulations utilizing high-performance supercomputing platforms. Such interdisciplinary approaches are key to understand the biological energy transduction and its role in human health, as well as bacteria and other bioenergetics systems.
Reviews and Original Research articles are welcome on the topics mentioned below:
• Theory, modeling and experiments of proton-coupled electron transfer (PCET) events, in chemistry and biology
• Modeling and simulations of enzymes catalyzing electron and proton transfer
• Long-ranged proton transfer and role of hydration and conformational dynamics
• Novel multiscale computational approaches (incl. machine learning and molecular kinetics)
• Novel experimental approaches (incl. high resolution and surface enhanced spectroscopies)
Keywords: proton pumping, PCET, multiscale modelling, computer simulations, kinetic experiments
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.