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Editorial on the Research Topic

Metabolism in Alzheimer’s Disease

Alzheimer’s disease (AD) pathology begins decades before clinical onset of dementia. Amyloid beta
(Aβ) generally accumulates first in cognitively normal (CN) individuals, with tau and cognitive
abnormalities following (Jack et al., 2013). AD pathologies have been found to correlate and interact
with metabolic outcomes in studies spanning numerous experimental paradigms (Mosconi et al.,
2009, 2010a,b,c; Mosconi, 2013; Morris et al., 2014a; Wilkins et al., 2014; Swerdlow et al., 2017;
Weidling et al., 2020; Wilkins and Swerdlow, 2021).

Metabolic changes are prominent in AD. Fluorodeoxyglucose positron emission tomography
(FDG-PET) comparing AD and CN individuals reveals lower glucose levels in the brains of AD
patients (Herholz et al., 2002; Mosconi et al., 2010a; Marcus et al., 2014; Suppiah et al., 2019). These
findings have led to overwhelming evidence of metabolic deficiencies in AD. Beyond reductions in
brain glucose metabolism, mitochondrial dysfunction is observed not only within the brain but
also systemically (Parker, 1991; Kish et al., 1992; Cardoso et al., 2004a,b; Morris et al., 2014b;
Fisar et al., 2016; Guo et al., 2017; Swerdlow, 2018; Baloyannis, 2019; Chakravorty et al., 2019).
More recent genome wide association studies (GWAS) identified risk-associated single nucleotide
polymorphisms (SNPs) in genes which function inmitochondrial andmetabolic pathways (Lakatos
et al., 2010; Swerdlow et al., 2020; Harwood et al., 2021; Wightman et al., 2021). Apolipoprotein E
(APOE), the strongest genetic risk factor for sporadic AD, is both central to lipid metabolism and
has been found to interact with inheritedmitochondrial genes to amplify risk for AD (Carrieri et al.,
2001; Andrews et al., 2020; Swerdlow et al., 2020).Moreover, molecular studies of AD brain show an
overall reduction in the number of intact mitochondria and mitochondrial DNA (Swerdlow, 2018;
Wilkins and Swerdlow, 2021). Thus, mitochondrial function/dysfunction plays a role in protein
aggregation, inflammation, and cell death; all events observed in AD. Overall, metabolism and
mitochondrial function/dysfunction are strongly associated with AD.

The goal of this Research Topic was to further understand topics in the AD field that broadly
focus on metabolic changes in AD and the interaction between metabolism, AD risk factors, and
pathologies. These include: the role of genetic risk factors for sporadic AD (such as APOE) in non-
cell autonomous functions, the intersection between metabolism and inflammation, the role of
metabolism in protein aggregation, how current therapies target metabolism, inflammation, and
protein aggregation, the role of novel metabolism/mitochondrial genes identified by GWAS in
pathological mechanisms, the role of metabolism in the communication between neurons and glia
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FIGURE 1 | Metabolism in Alzheimer’s Disease. Research and review articles

discuss the role of hormone response to meals, lifestyle factors on brain

function with respect to mTOR, PPAR, PS1, ABAC7, and APOE. All of which

regulate glycolysis/glucose and lipid metabolism, mitophagy/autophagy, and

mitochondrial function. Created with BioRender.com.

in AD, how we can leverage existing model systems and develop
better models to address questions of brain metabolism in the
context of AD.

The articles of this Research Topic highlight a variety of
reviews and original research which discuss and address topics
of metabolism in AD (Figure 1). Several articles focus on
potential AD therapeutics. These include a thorough review
on the use of pioglitazone for AD treatment. Pioglitazone is
a peroxisome proliferator-activated receptor gamma and alpha
(PPAR-γ; PPAR-α) activator. PPARs are transcription factors
critical for regulation of many pathways implicated in AD
including insulin and glucose metabolism, lipid homeostasis,
inflammation, tau and Aβ homeostasis, and mitochondrial
function. The review by Saunders et al. discusses pre-clinical and
clinical data with longitudinal observational studies revealing
a positive impact of pioglitazone in AD and dementia onset
in those at risk. The authors also discuss the dose-dependent
effects and the caveats revealing future needs for further study
into discrepancies found with placebo controlled blinded studies.
Norowitz and Querfurth discusses mTOR regulation and drug
targeting in AD. The authors focus on nuances for targeting
mTOR in therapies including specificity for disease/region/and
timing, pleiotropy, personalized therapy with relation to the
effects of genetic factors, and the role of lifestyle factors
and interventions.

Several other articles discuss the role of specific metabolic
pathways in AD. Zhang et al. reviewed the role of glycolytic
metabolism in brain resilience in AD. The authors

highlight the correlation between glycolytic flux, Aβ, and
tau accumulation in humans, where decreased glycolytic
function is associated with higher pathologies. In a separate
review article, Kyrtata et al. discuss glucose transport in
AD with particular focus on glucose transporter (GLUT)
deficiencies in AD. The authors discuss the timing of changes
to GLUT expression and glucose uptake in brain through
rodent studies and how this relates to the timing of onset of
Aβ pathology.

An additional review presents the effect of sialometabolism
on brain health and AD. Rawal and Zhao discuss the role
of sialic acids in brain function and neuroinflammation. The
novelty of this pathway in AD is the identification of sialic acid
binding Ig-like lectin 3 (CD33) as a genetic risk factor for AD
through GWAS.

A separate AD genetic risk factor, ATP binding cassette
subfamily A member 7 (ABCA7) was examined. Aikawa et al.
used mice with haplodeficiency of ABCA7 to determine the
response to immune modulation with lipopolysaccharide
(LPS). The authors report that mice deficient in ABCA7
had activated lipid metabolism pathways. This study
again highlights the relationship between metabolism and
neuroinflammation. Morris et al. describes the role of
meal stimulated hormone response through the incretin
pathway in cognitive function and brain volume. The
authors report that in human AD subjects, a higher
meal-stimulated response of insulin, glucose, and peptide
tyrosine was observed. Brain volume significantly correlated
negatively with insulin, C-peptide, and glucose-dependent
insulinotropic polypeptide (GIP). These articles highlight the
role of diverse metabolic pathways in brain health, aging,
and AD.

A focus on genetic risk factors and metabolism was discussed
through a review of APOE in AD by Husain et al. The
authors focused on the role of APOE in lipid transport and
interactions with AD pathologies (such as tau and Aβ). Other
genetic components of AD include mutations in presenilin (PS)
in familial AD, and PS has a role in mitochondrial function.
Contino et al. examined the role of PS deficiency on neurons
and astrocytes derived from mice. Their prior studies showed
mitochondrial deficits in mouse embryonic fibroblasts, but in
the current study no effects were observed on similar endpoints.
This study highlights the importance of model systems used
for study.

Mitophagy and autophagy are implicated in AD
and are the focus of many therapeutic initiatives.
Tran and Reddy discuss deficiencies in autophagy and
mitophagy in AD. The authors focus on metabolic
drivers of autophagy/mitophagy deficiencies, the
influence of aging, and how these pathways influence
AD pathologies.

Collectively, the articles in this Research Topic emphasize
that the field of brain metabolism in AD is emerging
and generating large interest from a therapeutic standpoint.
Progress in filling our gap in knowledge on the role of
metabolism in AD will advance new therapeutic avenues for this
devastating disease.
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The mechanistic target of rapamycin protein complex, mTORC1, has received attention
in recent years for its role in aging and neurodegenerative diseases, such as
Alzheimer’s disease. Numerous excellent reviews have been written on the pathways
and drug targeting of this keystone regulator of metabolism. However, none have
specifically highlighted several important nuances of mTOR regulation as relates
to neurodegeneration. Herein, we focus on six such nuances/open questions: (1)
“Antagonistic pleiotropy” – Should we weigh the beneficial anabolic functions of
mTORC1 against its harmful inhibition of autophagy? (2) “Early/late-stage specificity” –
Does the relative importance of these neuroprotective/neurotoxic actions change as a
disease progresses? (3) “Regional specificity” – Does mTOR signaling respond differently
to the same interventions in different brain regions? (4) “Disease specificity” – Could
the same intervention to inhibit mTORC1 help in one disease and cause harm in
another disease? (5) “Personalized therapy” – Might genetically-informed personalized
therapies that inhibit particular nodes in the mTORC1 regulatory network be more
effective than generalized therapies? (6) “Lifestyle interventions” – Could specific
diets, micronutrients, or exercise alter mTORC1 signaling to prevent or improve the
progression neurodegenerative diseases? This manuscript is devoted to discussing
recent research findings that offer insights into these gaps in the literature, with the
aim of inspiring further inquiry.

Keywords: Alzheimer’s disease, antagonistic pleiotropy, autophagy, insulin/Akt, mTOR, Parkinson’s disease

Abbreviations: Aβ, amyloid-β; AD, Alzheimer’s disease, Akt, protein kinase B; ALS, Amyotrophic Lateral Sclerosis; AMPK,
AMP-activated protein kinase; APN, adiponectin; BAD, Bcl2 associated agonist of cell death; CREB, cAMP response element-
binding protein; C9orf72; chromosome 9 open reading frame 72; Deptor, domain-containing mTOR-interacting protein;
FTD, frontotemporal dementia; HD, Huntington’s disease; IRS, insulin receptor substrate; mGluR5, metabotropic glutamate
receptor type 5; mLST8, mammalian lethal with SEC13 protein 8; MPP+, 1-methyl-4-phenylpyridinium; MS, multiple
sclerosis; mTOR, mechanistic target of rapamycin; PD, Parkinson’s disease; PDK-1, phosphoinositide-dependent kinase-1;
PI3K, phosphoinositide 3-kinase; PPAR; peroxisome proliferator-activated receptor; PRAS40, proline-rich Akt substrate of
40 kDa; PTEN, phosphatase and tensin homolog; p70S6K1, p70 ribosomal S6 protein kinase 1; Raptor, regulatory-associated
protein of mTOR; Rheb, Ras homolog enriched in brain protein; SMCR8, Smith-Magenis syndrome chromosome region 8;
TFEB, transcription factor EB; TSC1/2, Tuberous sclerosis protein-complex; UBQLN2/4, ubiquilin genes; ULK1, Unc-51-like
kinase 1; 4E-BP1, 4E-binding protein-1; 6-OHDA, 6-hydroxydopamine.

Frontiers in Neuroscience | www.frontiersin.org 1 July 2020 | Volume 14 | Article 7758

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00775
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.00775
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00775&domain=pdf&date_stamp=2020-07-29
https://www.frontiersin.org/articles/10.3389/fnins.2020.00775/full
http://loop.frontiersin.org/people/675385/overview
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00775 July 27, 2020 Time: 18:4 # 2

Norwitz and Querfurth mTOR Mysteries

INTRODUCTION

Neurodegenerative diseases are an accelerating pandemic. The
burden of Alzheimer disease (AD) alone is staggering and
climbing at a precipitous rate. 5.8 million Americans over the age
of 65 suffer from AD, a number that is expected to triple to 13.8
million by 2050 (Alzheimer’s Association, 2020). AD is not alone
in its ascent. Parkinson’s disease (PD), the second most common
form of neurodegeneration, is increasing in prevalence at a
similarly alarming rate (Rocca, 2018). As there are currently no
effective long-term treatments for these diseases, new therapies
are desperately needed. One potential molecular target of such
therapies is the mechanistic target of rapamycin complex 1
(mTORC1), a nutrient sensor and metabolic regulator heavily
implicated in the process of aging (Sharp and Strong, 2010;
Papadopoli et al., 2019; Heras-Sandoval et al., 2020).

While this manuscript will be primarily devoted to discussing
and gaps in the literature surrounding mTORC1, a succinct
overview of mTOR signaling and regulation is warranted
as a preface to this discussion and is depicted in Figure 1
[For a more comprehensive overview, Heras-Sandoval et al.
(2020) recently published an excellent review on mTOR
signaling, regulation, and drug-targeting]. mTORC1 is
composed of the proteins mTOR kinase and its regulator
protein, Raptor, as well as mLST8, PRAS40, and Deptor.
Its primary function is to sense intracellular nutrient status
and extracellular trophic factors [including, but not exclusive
to insulin, shown in Figure 1 as an example], integrate
these signals, and ultimately regulate the balance between
cells’ anabolic and catabolic processes. Specifically, mTORC1
is a positive regulator of protein synthesis and negative
regulator of autophagy.

mTORC1 itself is regulated positively by insulin-signaling and
negatively by AMPK. Insulin/Akt signaling inhibits the protein
complex, TSC1/2, which itself prevents the conversion of the
mTORC1 activator, Rheb, into its active GTP-bound form (Inoki
et al., 2002; Hers et al., 2011). Insulin/Akt signaling turns off
TSC1/2, thereby activating Rheb and mTORC1. By contrast,
AMP-activated protein kinase (AMPK) activates TSC1/2 (Inoki
et al., 2003) and directly inhibits mTORC1 by phosphorylating
Raptor (Gwinn et al., 2008). In brief, the respective growth and
preservation functions of insulin and AMPK align with their
respective stimulatory and inhibitory regulations of mTORC1.

mTORC1 promotes protein synthesis by phosphorylating
and activating the downstream targets, 4E-BP1 and p70S6K1,
which directly promote the initiation and elongation phases of
translation (Graber et al., 2013). Critically, mTORC1-mediated
anabolic signaling promotes the development of neuronal
synapses (Dwyer and Duman, 2013, in part, by responding to
established neuronal growth factors like BDNF; Takei et al.,
2004) and inhibits apoptosis (Chen et al., 2010; Chong et al.,
2013). Through these two mechanisms, mTORC1 activity has the
potential to promote learning and memory and protect against
neurodegeneration. Correspondingly, excessive inhibition of
mTORC1 can impair learning and memory and permit neuronal
death (Blundell et al., 2008; Belelovsky et al., 2009; Gafford et al.,
2011; Jobim et al., 2012; Graber et al., 2013).

Despite these potentially positive functions of mTORC1
signaling in the brain, far more attention has been paid
to its negative regulation of autophagy, an intracellular
recycling process essential to maintaining neuronal integrity
and protecting against neurodegenerative diseases (Oddo,
2012; Sarkar, 2013; Heras-Sandoval et al., 2020). mTORC1
inhibits autophagy at multiple levels, including the inhibitory
phosphorylation of ULK1 and transcription factor EB (TFEB),
which respectively initiate autophagy and promote the
lysosomal biogenesis required to break down the contents
of autophagosomes (Kim et al., 2011; Napolitano et al., 2018).

Importantly, multiple independent human post-mortem
studies confirm levels of phosphorylated mTOR and its
downstream targets are elevated in the AD brain as compared
to those of controls (An et al., 2003; Li et al., 2004, 2005;
Griffin et al., 2005). Dysregulated autophagy is also a hallmark
of multiple neurodegenerative conditions (Fujikake et al., 2018),
which is not surprising because autophagy is required to prevent
the accumulation of toxic intracellular protein aggregates that
contribute to neurodegenerative diseases, such as amyloid-β
(Aβ) (Nixon, 2007; Nilsson et al., 2013; Yang et al., 2014),
phospho-tau (Hamano et al., 2008; Kruger et al., 2012; Wang
and Mandelkow, 2012), α-synuclein (Webb et al., 2003; Lee
et al., 2004; Xilouri et al., 2016), and mutant huntingtin (Martin
et al., 2015). Autophagy is also required to recycle mitochondria
and prevent mitochondrial dysfunction (Chakravorty et al.,
2019; Li et al., 2019a), another hallmark of neurodegenerative
diseases, and one which can further lead to the pathologies of
oxidative stress and inflammation (Lopez-Armada et al., 2013;
Norwitz et al., 2019a,b). Given these data and the clinical burden
of neurodegenerative disease, it’s reasonable that translational
research generally focuses on the inhibition of mTOR (and
promotion of autophagy), rather than on its activation.

ANTAGONISTIC PLEIOTROPY

“Antagonistic pleiotropy” is a term typically used to refer to an
evolutionary tradeoff between fitness in an organism’s early life
at the expense of health later in life (Schmeisser and Parker,
2019). An example of antagonistic pleiotropy is the ApoE4 allele,
the leading genetic risk factor of AD (Yamazaki et al., 2019).
This allele sensitizes the immune system and protected ancestral
humans from infections that compromised reproductive fitness
and cognition (Vasunilashorn et al., 2011; Trumble et al.,
2017). Further relevant to modern contexts, ApoE4 is associated
with accelerated neurodevelopment (Wright et al., 2003) and
improved memory during youth (Mondadori et al., 2007).

Another example of possible antagonistic pleiotropy in
neurodegenerative disease is that of adiponectin (APN), a
hormone secreted by adipose tissue. APN has broad beneficial
functions on metabolism, including stimulating neurogenesis,
and is generally thought to be neuroprotective (Zhang et al.,
2011, 2016). On the other hand, APN can induce astrocyte
mediated neuroinflammation (Wan et al., 2014), oxidative
stress (Fujimoto et al., 2010), and plasma levels of APN
are correlated with the severity of cognitive decline and Aβ
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FIGURE 1 | mTORC1 pathway and regulation. mTORC1 is activated by insulin. Insulin/Akt signaling inhibits TSC1/2, thereby permitting the activation of the
GTP-binding protein, Rheb. Rheb is the proximal activator of mTORC1. AMPK inhibits mTORC1 activity through indirect and direct mechanisms, phosphorylating
TSC1/2 and the Raptor regulatory component of mTORC1. (Other trophic factors and pathways beyond insulin/Akt and AMPK, not shown for simplicity, also
regulate mTORC1). mTORC1 downstream targets include proteins involved the mRNA translation, 4E-BP1 and p70S6K1, and those involved in autophagy, such as
the initiator of autophagy, ULK1, and the master regulator of lysosomal biogenesis, TFEB. By regulating the activity of these and other proteins, mTORC1 promotes
protein synthesis, which is required for synaptogenesis, learning, and memory, but can also impair autophagy, leading to mitochondrial dysfunction and neurotoxic
protein aggregation (Aβ, phospho-tau, α-synuclein, etc.). Black arrows and red lines respectively represent positive and negative regulation.

accumulation (Wennberg et al., 2016). [Waragai et al. (2020)
provide a comprehensive overview of antagonistic pleiotropy
with regards to APN].

Hashimoto et al. (2018) have even proposed that
amyloidogenic proteins, including Aβ in AD and α-synuclein
in PD, might exhibit antagonistic pleiotropy. They hypothesize
that the heterogeneity of amyloidogenic aggregates reflects
the heterogeneity of metabolic stressors to which the human
brain is exposed, and that specific amyloidogenic aggregates

may serve to “precondition” the brain against future toxic
exposures (Hashimoto et al., 2018). In effect, Aβ and α-synuclein
could serve, in youth, as adaptive hormetic stressors. [As an
aside, the Aβ/α-synuclein antagonistic pleiotropy hypothesis is
intertwined with the “evolvability hypothesis” of amyloidogenic
proteins, which is beyond the scope of this piece and reviewed
by Hashimoto et al. (2018)].

The moral of these examples – ApoE4, APN, and
Aβ/α-synuclein – is that the trade of better health and
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cognition during youth, at the expense of cognition during non-
reproductive years, was evolutionarily judicious. Furthermore,
each these examples would not have been specifically mentioned
if they did not plausibly involve mTORC1. With respect to ApoE4,
mTORC1 activates pathways that promote synaptogenesis and
neuronal development, which would benefit cognition during
youth at the expense of decreased autophagy and increased risk
of accumulating mitochondrial damage and neurotoxic protein
aggregates over time, as in the case of ApoE4 (Wright et al.,
2003; Mondadori et al., 2007). Indeed, the ApoE4 genotype is
associated with elevated mTOR signaling (Li et al., 2019b). APN
has been shown to induce oxidative stress in an mTORC1-
dependent manner by modulating both insulin and AMPK
signaling (Fujimoto et al., 2010; Figure 1). And, of course,
mTORC1 activity is assumed to be culpable for dysfunctional
autophagy and accumulation of neurotoxic protein aggregates in
neurodegenerative diseases, as noted in the introduction. Thus,
mTORC1 may be a keystone player of antagonistic pleiotropy in
neurodegenerative disease.

Consideration of antagonistic pleiotropy is important for
evaluating the preventative value of inhibiting mTORC1 prior
to the development of symptoms. No doubt, it’s important
to prevent the development of the pathologies underlying
neurodegenerative diseases, which are established decades before
symptoms develop (Braak et al., 2003; Dickson et al., 2010;
Hoglund et al., 2017). But when and by how much? During mid-
life, should one strive for mTORC1 inhibition, or value activating
mTORC1 in a cyclic manner in order to build neural networks
and increase her/his cognitive reserve, thus protecting against
cognitive decline later in life? These are open questions.

EARLY/LATE-STAGE SPECIFICITY

Although inhibiting mTORC1 to increase autophagy (and
therefore clear damaged mitochondria and protein aggregates)
may seem like a prudent intervention for neurodegenerative
diseases, that may not be universally true. What if a disease
progresses past a threshold beyond which the pathology is too
well-established to be meaningfully improved by an upregulation
in autophagy? For instance, the mTORC1 inhibitor, rapamycin,
does not reverse pathology or benefit cognition in late-stage
AD models (Majumder et al., 2011). More importantly, because
mTORC1 can inhibit apoptosis by activating p70S6K, which
itself inhibits the pro-apoptotic protein BAD (Harada et al.,
2001; Castedo et al., 2002), what if inhibiting mTORC1
beyond this hypothetical threshold increases apoptotic cell
death?

Evidence consistent with this hypothesis is provided by
multiple independent cell and rodent models of PD. These
models of established late-stage disease suggest that increasing,
rather that decreasing, mTOR activity could be beneficial
under certain circumstances. In MPP+-treated SH-SY5Y cells,
activation of mTOR with cannabidiol led to protection against
MPP+-induced cell death (Gugliandolo et al., 2020). In genetic
and pharmacologic mouse models, upregulation of mTOR
signaling (through PTEN ablation) is likewise associated with less

cell death and improved symptomology (Domanskyi et al., 2011).
A limitation of these early PD studies is that they do not involve
α-synuclein accumulation, which may better recapitulate the
human form of the disease and relative importance of autophagy
therein. Nevertheless, given the knowledge that mTORC1 can
inhibit apoptosis, and distinct possibility that there may be
a point past which activation of autophagy is insufficient to
improve disease course (Majumder et al., 2011), it’s worth
questioning whether mTORC1 inhibition could actually be
harmful in late-stage neurodegenerative disease.

REGIONAL SPECIFICITY

In addition to considering the temporal dimension (early/late-
stage disease), it’s important to consider the spatial dimension.
As the brain is partitioned into networks, nuclei, and cell types,
a given intervention may impact one region differently than
another. For example, Ramalingam et al. (2019) discovered that
rotenone injections (used to generate murine models of PD)
oppositely impact mTORC1 activity in different regions of mouse
brains, increasing activity in the midbrain and decreasing activity
in the striatum. Lifestyle interventions (more on this below), such
as exercise, may also alter mTOR activity in a region-specific
manner. In mice, wheel running regulates mTORC1 signaling
most strongly in the nucleus accumbens and hippocampus, as
compared to other brain regions (Lloyd et al., 2017). This is
notable because atrophy of nucleus accumbens and hippocampus
is most strongly associated with AD (Nie et al., 2017).

The data are nascent but sufficient to issue caution. What
if a PD patient suffering from substantia nigra atrophy were
treated with an mTORC1 inhibitor based on a rationale from data
collected from hippocampal pathology? What if a frontotemporal
dementia (FTD) patient suffering from primarily temporal lobe
pathologies was treated with an mTORC1-targeting drug based
on frontal lobe data? As there is limited evidence to support that
mTORC1 responds consistently to a wide range of interventions
across brain regions, and some evidence to the contrary, it’s
responsible to not overgeneralize and assume globalized impact
on the brain. More research needs to be conducted on the region-
specific impacts of different mTORC1-directed interventions.

DISEASE SPECIFICITY

While many neurodegenerative diseases share several key
core pathologies, including mitochondrial dysfunction,
protein aggregation, oxidative stress, and inflammation,
it’s also important to consider disease-specific aspects of
neurometabolim that could interact with mTORC1. For
example, Zhuang et al. (2020) recently discovered that TFEB
activity (which stimulates lysosomal biogenesis and promotes
autophagy) is increased in a 6-OHDA-treated SH-5YSY model of
PD, as well as in dopaminergic neurons, and that TFEB activity is
calcium/calcineurin-dependent. This is important because PD is
characterized by loss of substantia nigra pars compacta neurons,
which exhibit a unique form of calcium pacemaking activity
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not seen in most other neurons. This suggests that regulation of
autophagy may be different in the brain region most affected by
PD as compared to brain regions impacted in other diseases.

Another example is Amyotrophic Lateral Sclerosis (ALS),
which can be caused by loss-of-function mutations in the
UBQLN2/4 genes. While the products of these genes, ubiquilin
proteins, are known best as components of the ubiquitin-
proteasome system, they are also important in autophagy.
Specifically, ubiquilins are required to maintain the vacuolar H+-
ATPase function that acidifies lysosomes (Senturk et al., 2019). In
a scenario in which mTORC1 were inhibited to induce autophagy
in ALS, induction of autophagy and lysosomal biogenesis may be
increased (Figure 1), but if lysosomes are not sufficiently acidic
to destroy the contents of the autophagosome, the contents could
accumulate and exacerbate cellular stress. Therefore, inhibiting
mTORC1 to upregulate autophagy could impair autophagic flux,
leading to a back-up of components, and be harmful in such
genetic cases of ALS.

PERSONALIZED THERAPY

There is a need for informed, disease-specific interventions.
In this section, we provide three hypothetical examples of
personalized interventions involving mTORC1. These will
include glutamatergic antagonism for Huntington’s disease (HD)
(Abd-Elrahman and Ferguson, 2019), metformin treatment for
multiple sclerosis (MS) (Sanadgol et al., 2019), and SMCR8-
centered therapy for ALS and FTD (Lan et al., 2019).

Glutamate hyperactivity plays a prominent role in HD
(Andre et al., 2010) and can activate mTORC1 via the mGluR5-
PDK1-Akt-mTORC1 pathway (Abd-Elrahman and Ferguson,
2019). Correspondingly, Abd-Elrahman and Ferguson (2019)
recently demonstrated, in a mouse model of HD, that antagonism
of the mGluR5 metabotropic glutamate receptor can correct
overactive mTORC1 signaling and, consequently, increase
autophagic clearance of mutant huntingtin protein. The authors
of this paper also point out that huntingtin aggregates sequester
the transcription factor, CREB, leading to a down regulation
of neuroprotective BDNF. They show that mGluR5 inhibitors
not only clear pathological aggregates, but also increase BDNF
expression (Abd-Elrahman and Ferguson, 2019). Therefore,
mGluR5 antagonism, by inhibiting hyperactive mTORC1, could
simultaneously promote the clearance of pathological huntingtin
aggregates and increase neurotrophic factor signaling.

MS is characterized by demyelination of nerve cell axons.
As oligodendrocytes are responsible for building myelin sheaths
within the central nervous system, a goal of MS treatments
is to boost oligodendrocyte renewal and remyelination. In
a cuprizone-challenge mouse model of MS, Sanadgol et al.
(2019) recently reported that the diabetes drug, metformin,
did precisely that: it increased oligodendrocyte renewal and
remyelination. These beneficial effects were mediated by a
direct stimulatory interaction between metformin and AMPK,
and subsequent inhibition of mTORC1 (Sanadgol et al., 2019;
Figure 1). Thus, metformin is a candidate for an mTORC1-
targeting therapy for MS.

Mutations in the C9orf72 gene are the leading cause of
inherited ALS and FTD. Only recently was it discovered that
another protein, SMCR8, complexes with the C9orf72 protein to
form a heterodimer that negatively regulates mTORC1 activity
(Lan et al., 2019). Furthermore, a SMCR8-deficient mouse model
recapitulates the C9orf72-deficient phenotype, leads to a decrease
in C9orf72 protein, and is associated with upregulation of
mTORC1 activity and decreased autophagy (Lan et al., 2019).
Future treatments for genetic causes of ALS and FTD might
consider SMCR8 therapy or other interventions that target the
SMCR8-mTORC1-autophagy axis.

These examples were chosen because HD, MS, ALS, and
FTD are lesser studied than AD and PD. However, the same
personalization principle applies to all conditions in which
mTORC1 plays a role. In PD, for example, levodopa-induced
dyskinesia is thought to be induced by D1-receptor-mediated
phosphorylation of mTORC1, a hypothesis supported by the
fact that genetic variability in mTOR pathway components
is associated with PD dyskinesia (Zhu et al., 2019). The
development of useful future interventions for neurodegenerative
disorders would benefit from a deeper consideration of the
interactions between mTORC1 signaling and disease/patient-
specific mechanisms.

LIFESTYLE INTERVENTIONS

Two reasons most neurodegenerative diseases are refractory
to treatment are that interventions may be initiated too
late in the disease process and/or are too specific. These
limitations are a function of the pharmacologic approach to
neurodegenerative disease in which symptomatic patients, who
have usually been afflicted by the underlying disease for years
to decades, are prescribed drugs not available for prevention
during the preclinical stage. Certainly, drugs have their place.
But to quell the neurodegenerative disease pandemic will
require universally accessible preventative measures based on
safe lifestyle interventions, including diet and exercise. Evidence
suggests such interventions could operate, in part, through
mTORC1-mediated mechanisms.

Turmeric is the best-studied nutraceutical for
neurodegenerative diseases. In a genetic mouse model of
AD, turmeric’s active component, curcumin, inhibited mTORC1
to increase autophagy and prevent Aβ accumulation (Wang
et al., 2014a). Correspondingly, curcumin-induced inhibition
of mTORC1 protected against memory impairments in this
model (Wang et al., 2014a). A more specific dietary example
would be the mineral manganese in HD. As manganese
deficiency might contribute to the pathogenesis of HD by
affecting the insulin/Akt/mTORC1 pathway, correcting a
simple micronutrient deficiency could be protective in some
cases of HD (Bryan and Bowman, 2017). A third example
is that of PPARs, a family of transcription factors that can
inhibit mTORC1 and promote autophagy to protect against
neurodegenerative disease (San et al., 2015; Heras-Sandoval
et al., 2020). Many nutrients and their derivates activate PPARs,
including oleoylethanolamide derived from oleic acid in olive
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oil (Rodriguez de Fonseca et al., 2001; Fu et al., 2005) and the
monoterpenes carvacrol and thymol found in mint family plants
(basil, mint, rosemary, sage) (Hotta et al., 2010; Rigano et al.,
2017). Curcumin, manganese, and dietary PPAR activators are
just three examples of nutraceuticals from different classes that,
when combined in a well-formulated diet and with other dietary
mTOR regulators (Wang et al., 2014b; Rigano et al., 2017), could
have a meaningful impact on cognitive longevity.

In addition to nutraceuticals and micronutrients, shifts in
macronutrient intake can also impact mTORC1 activity. The
most evident examples are intermittent fasting and high-fat,
low-carbohydrate ketogenic diets, which can modulate mTORC1
activity through at least three mechanisms. First, fasting and
ketogenic diets diminish insulin-mediated mTORC1 activation.
Second, they activate AMPK (by altering the AMP/ATP ratio
and causing glycogen depletion) to inhibit mTORC1 and induce
autophagy (Alirezaei et al., 2010; Miller et al., 2018). Third, fasting
and ketogenic diets share the common feature of stimulating
hepatic production of the ketone body, β-hydroxybutyrate,
which itself is a signaling molecule that regulates mTORC1
(Li et al., 2017; Newman and Verdin, 2017; Norwitz et al.,
2019a). Interestingly, it has recently been demonstrated that
both short-term ketogenic diets and acute administration
of exogenous β-hydroxybutyrate improve a marker of brain
aging called “brain network stability,” in contrast to standard
Western diets and sugar which decrease network stability
(Mujica-Parodi et al., 2020). Long-term prospective studies will
need to be conducted to determine whether fasting and ketogenic
diets are truly neuroprotective in humans. Nevertheless, these

mechanisms and data coincide with the growing popularity
of intermittent fasting and ketogenic diets as prevention or
treatment strategies for neurodegenerative conditions (Roberts
et al., 2017; Zhang et al., 2017; Shin et al., 2018; Sohn,
2018; Taylor et al., 2018, 2019; Broom et al., 2019; Norwitz
et al., 2019a; Wlodarek, 2019; Mujica-Parodi et al., 2020;
Soto-Mota et al., 2020).

Exercise is another lifestyle intervention that benefits brain
health. Prospective cohort and randomized controlled studies
have found that exercise reduces the risk of developing dementia
by as much as 38% (Larson et al., 2006) and improves
cognitive function in those already living with AD (Groot et al.,
2016; Jia et al., 2019). Kou et al. (2019) recently published
a compelling review arguing that the benefits of exercise on
cognitive function and AD may be mediated by mTORC1
regulation. Even a cursory consideration of this hypothesis
suggests it has merit. Exercise alters nutrient flux, trophic
factor signaling, and can activate AMPK. Exercise can also
correct overactive mTORC1 signaling to increase autophagy
by correcting dysfunctional microRNA expression in a mouse
model of AD (Kou et al., 2017; Chen et al., 2019). These
particular studies focus on microRNA-34a, but there is reason
to believe that exercise can influence mTORC1, autophagy, and
cognitive aging by regulating a wide network of microRNAs
(Kou et al., 2019). In another rodent model of AD, treadmill
exercise decreased phospho-mTOR levels [Ser-2,448, Akt target
residue (Nave et al., 1999)], increased autophagy, and completely
rescued cognitive function on the Morris water maze test
(Kang and Cho, 2015).

FIGURE 2 | mTORC1 mysteries. Six nuances regarding mTORC1 in neurodegenerative disease. The questions and examples below each topic are illustrative, not
comprehensive, of the literature covered in this review. Disease abbreviations: ALS, Amyotrophic Lateral Sclerosis; FTD, frontotemporal dementia; HD, Huntington’s
disease; MS, multiple sclerosis; PD, Parkinson’s disease.
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Dietary micronutrients, fasting and ketogenic diets, and
exercise are but a few illustrative examples of lifestyle
interventions that may interact with mTORC1 to modulate
the course of neurodegenerative diseases. Additional therapies
include probiotics to modulate the gut-brain axis, which has
been heavily implicated in the development of neurodegenerative
diseases (Sampson et al., 2016; Sochocka et al., 2019), and
heat therapy to induce chaperone heat shock proteins [whose
expression is at least partially mediated by mTORC1 (Sun et al.,
2011)] that could promote the proper folding of amyloidogenic
proteins (Singh et al., 2006, 2010; Laukkanen et al., 2017). At the
present time, clinical studies examining the impact of lifestyle
interventions on mTORC1 signaling for cognitive decline are
few (Halikas and Gibas, 2018; Kou et al., 2019) and more
research needs to be conducted in this area to inform holistic
and universally available best practices for the treatment and
prevention of neurodegenerative disease.

CONCLUSION

While references to the most pressing open questions are
scattered throughout the abundant literature on mTOR and

neurodegenerative disease, herein, we have consolidated these
gaps in the literature (Figure 2). How do we balance the beneficial
effects of mTORC1 against its negative effects? How does this
balance shift with disease progression or brain region? How can
we use knowledge of biochemical pathways, specific to diseases
and even individual cases, to inform personalized therapy? And
what universally available lifestyle interventions might help in the
prevention of neurodegeneration? Consideration of these mTOR
mysteries will inform future research.
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Background: Individuals with Alzheimer’s Disease (AD) are often characterized by
systemic markers of insulin resistance; however, the broader effects of AD on other
relevant metabolic hormones, such as incretins that affect insulin secretion and food
intake, remains less clear.

Methods: Here, we leveraged a physiologically relevant meal tolerance test to
assess diagnostic differences in these metabolic responses in cognitively healthy older
adults (CH; n = 32) and AD (n = 23) participants. All individuals also underwent
a comprehensive clinical examination, cognitive evaluation, and structural magnetic
resonance imaging.

Results: The meal-stimulated response of glucose, insulin, and peptide tyrosine
tyrosine (PYY) was significantly greater in individuals with AD as compared to CH. Voxel-
based morphometry revealed negative relationships between brain volume and the
meal-stimulated response of insulin, C-Peptide, and glucose-dependent insulinotropic
polypeptide (GIP) in primarily parietal brain regions.

Conclusion: Our findings are consistent with prior work that shows differences in
metabolic regulation in AD and relationships with cognition and brain structure.

Keywords: insulin, PYY, Alzheimer’s disease, glucose, insulin resistance, neuroimaging, MRI, voxel based
morphometry

INTRODUCTION

Insulin resistance and Type 2 Diabetes (T2D) increase with age, and over 60% of older adults
( > 65 years) in the United States exhibit impaired fasting glucose or T2D (Cowie et al., 2006).
These conditions are also known risk factors for Alzheimer’s Disease (AD) (Leibson et al., 1997; Ott
et al., 1999; Stewart and Liolitsa, 1999; Peila et al., 2002; Arvanitakis et al., 2004; Janson et al., 2004;
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Yaffe et al., 2004; van der Heide et al., 2006a; Luchsinger
et al., 2007; Xu et al., 2009; Profenno et al., 2010; Cheng
et al., 2011). However, insulin resistance is also related to
dysfunction in a broader, integrated network of metabolic
hormones beyond insulin, including peptide tyrosine tyrosine
(PYY), glucagon like peptide-1 (GLP-1), and glucose-dependent
insulinotropic polypeptide (GIP). These peptides are released
by the gastrointestinal tract to stimulate the insulin response
and control blood glucose regulation. Their effects are critically
important because high glucose levels and impaired glucose
regulation are associated with increased AD clinical progression
and markers of AD neuropathology (Morris et al., 2014a,b;
Macauley et al., 2015).

Although PYY, GLP-1 and GIP are secreted peripherally from
the gastrointestinal tract, they cross the blood-brain barrier
(Banks and Kastin, 1998; Kastin et al., 2002; Nonaka et al., 2003;
Dogrukol-Ak et al., 2004) and have receptors in many brain
regions, including those involved in the metabolic response and
affected in AD, such as the hypothalamus, temporal and parietal
cortex, and hippocampus (Martel et al., 1990a; Usdin et al., 1993;
Dumont et al., 1996; Jhamandas et al., 2011).Change in peripheral
metabolic hormone secretion thus has the potential to modulate
both central nervous system (CNS) and peripheral metabolic
function. However, meal-stimulated incretin response has not
been compared between cognitively healthy (CH) older adults
and those diagnosed with AD.

Older adults with T2D have decreased cross-sectional
brain volume (Callisaya et al., 2019), and brain atrophy
in T2D individuals may begin as early as midlife (Fang
et al., 2018). This suggests that factors related to insulin
resistance may be related to brain structure. Given that
metabolic hormones are released with each meal and penetrate
the brain, it is important to understand these responses in
CH older adult and AD populations. The relationship of
these responses to brain-relevant outcomes, such as brain
structure and cognitive performance, has also never been
examined. Thus, the goal of this project was twofold; to
characterize the physiological metabolic response to a small
mixed meal in cognitively healthy aging and AD, and to
determine if these responses track with brain structure and
cognition. We also characterized bioenergetic outcomes in
platelet mitochondria obtained from these individuals, to further
examine differences in energy metabolism. We present here
a novel comparison of the incretin response to a mixed
meal in CH older adults and individuals with AD, and
the relationship of these important metabolic hormones with
disease-relevant brain outcomes.

MATERIALS AND METHODS

Participants
All participants in this study provided informed consent
according to institutional guidelines and in accordance with
the Declaration of Helsinki. Fifty-five participants (n = 32
CH, n = 23 AD) were recruited by the KU Alzheimer’s
Disease Center (KU ADC) recruitment division as previously

described (Vidoni et al., 2018). For this study, all enrolled
individuals were part of the KU ADC Clinical Cohort and
received a comprehensive cognitive and diagnostic evaluation.
All participants were evaluated with the Clinical Dementia Rating
(CDR) (Hughes et al., 1982; Morris, 1993) and a standard
physical and neurological examination using UDS 3.0 Forms
and Scales. The UDS 3.0 neuropsychological test battery was
then administered.

A weekly diagnostic consensus conference attended
by KU ADC clinicians, nurses, neuropsychologists, and
psychometricians was held to classify individuals as cognitively
healthy (CH; CDR = 0 without clinically significant cognitive
impairment evident on testing or evidence of functional
decline), Mild Cognitive Impairment (MCI), or AD by standard
criteria (Albert et al., 2011; McKhann et al., 2011). Individuals
with MCI were further assigned an etiologic diagnosis (i.e.,
probable or possible AD, etc.). First, CDR impairment and
severity staging was reviewed and finalized by consensus
review (without reference to cognitive testing). Available
cognitive testing results were then reviewed and additional
clinical information considered to arrive at consensus on the
classification (CH, MCI, AD) and etiologic diagnosis. For
this study, all participants met criteria for either etiologic
diagnosis of probable AD (any age, CDR 0.5 or 1) or were
CH (60 years and older). Exclusion criteria were neurological
disease or condition other than AD that may affect cognition
(e.g., stroke, major depression, etc.), history of cancer within
the last 5 years (except for non-metastatic basal or squamous
cell carcinoma), history of drug/alcohol abuse (DSM-IV
criteria) within the last 2 years, diagnosed diabetes, and visual
or auditory limitations that will interfere with cognitive
assessment. Our data flow process has been previously
reported (Graves et al., 2015). This study was approved by
the University of Kansas Medical Center’s Institutional Review
Board (IRB # 03492).

Neuropsychometric Assessment
All participants received a cognitive examination consisting
of the Uniform Data Set (UDS) version 2.0 (Weintraub et al.,
2009). Tests were administered by a trained psychometrician
in the non-fasting state within 2 months of their metabolic
visit date. We used the UDS 3.0 normative calculator
(Weintraub et al., 2018) to compute global normative
values for each participant. In addition to the UDS,
participants were also evaluated using the Mini Mental State
Examination (MMSE).

Anthropometric Measures and
Genotyping
Individuals reported for Visit 1 following an overnight fast.
Vital signs were measured after a 5 min rest. We measured
height to the nearest whole cm and total body mass using
a digital scale accurate to 0.1kg (Seca Platform Scale, model
707) and from these values computed body mass index
(BMI). Whole blood was collected for Apolipoprotein epsilon
4 (APOE4) genotyping. To determine APOE genotypes, frozen
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whole blood was assessed using a Taqman single nucleotide
polymorphism (SNP) allelic discrimination assay (Thermo Fisher
Scientific). APOE ε2, ε3, and ε4 alleles were distinguished
using Taqman probes to the two APOE-defining SNPs,
rs429358 (C_3084793_20) and rs7412 (C_904973_10). The term
“Carrier” is used to describe the presence of 1 or 2 APOE
ε4 alleles.

Meal Tolerance Testing
Following an overnight fast, subjects consumed 1 bottle of
Ensure (220 calories, 33g carbohydrates) within 5 min. Blood was
collected at 0, 15, 30, 45, 60, 90, and 120 min post-meal into tubes
containing EDTA (for glucose, insulin, and C-peptide analyses)
or DPP-IV inhibitors (p800 tubes, BD Biosciences) for incretins
(GIP, GLP-1, PYY). Plasma glucose was measured using a glucose
analyzer (YSI 2300, Yellow Springs Instruments). Plasma insulin
and C-Peptide (ALPCO) as well as GIP (IBL) were measured
using ELISA. Both GLP-1 and PYY were analyzed using a
multi-plex electrochemiluminescent (ECL) assay per previously
established methods with commercially available kits (Meso Scale
Discovery, MSD) (O’Bryant et al., 2014, 2016). ECL utilizes a label
that emits light when electronically stimulated, thus improving
sensitivity of detection even at low concentrations. The coefficient
of variation (CV) and lowest level of detection (LLOD) are
reported for the following MSD assays: GLP-1 (CV = 3.75;
LLOD = 0.06 pg/mL) and PPY (CV = 3.39; LLOD = 5.79 pg/mL).

Platelet Mitochondrial Enzyme Activity
Measures
For a subset of subjects [n = 40 (n = 20 HC and n = 20 AD)],
platelet mitochondria were isolated from fasted fresh whole blood
into acid citrate dextrose tubes at fasting and re-suspended into
MSHE buffer. Cytochrome oxidase (COX) and citrate synthase
(CS) Vmax activities were assessed spectrophotometrically.
For the COX Vmax, we followed the conversion of reduced
cytochrome C to oxidized cytochrome c and calculated the
pseudo-first order rate constant (ms−1). For the CS Vmax, we
followed the formation of 5-thio-2-nitrobenzoate (nmol/min).
Both rates were normalized to mg total protein (BCA assay).

Neuroimaging Measures
T1-weighted MPRAGE anatomic images
(TR/TE = 2,000/3.06 ms, flip angle = 8◦, FOV = 192 × 100
mm, matrix = 192 x 192) were collected on 55 subjects using a 3T
Skyra Siemens scanner. Every scan was checked for image and
motion artifacts and gross anatomical abnormalities, resulting in
the removal of 1 subject, as well as 1 subject who did not have
PYY data for analysis, leaving a VBM sample of 53 subjects (31
CH subjects and 22 AD subjects).

For voxel-based morphometry (VBM) analyses and pre-
processing of T1-weighted images we used the Computational
Anatomical Toolbox 12 (CAT12 Version 12.6, C. Gaser,
Structural Brain Mapping Group, Jena University Hospital, Jena,
Germany)1 through Statistical Parametric Mapping version 12

1http://dbm.neuro.uni-jena.de/cat/

(SPM12; Wellcome Trust Centre for Neuroimaging, London,
United Kingdom)2 that operate under Matlab (R2019b) (the
Mathworks, Natick, MA) on Mac. T1 images were corrected for
bias-field inhomogeneities, registered using linear (12-parameter
affine) and non-linear transformations, spatially normalized
using the high-dimensional DARTEL algorithm into MNI space
(O’Bryant et al., 2016), and segmented into gray matter (GM),
white matter (WM), cerebrospinal fluid (CSF) and white matter
hyperintensity (WMH). We calculated total intracranial volume
(TICV) using total gray, white, and CSF volumes. The amount of
volume changes were scaled, in order to retain the original local
volumes (modulating the segmentations) (O’Bryant et al., 2016).
The modulated gray matter segmentations were smoothed using
a 10 × 10 × 10 mm full-width at half-maximum Gaussian kernel
prior to group level analysis uses and images from the internet).

Statistical Analyses
Metabolic, Anthropometric, and Cognitive Outcomes
Diagnostic differences were assessed using ANOVA (for
continuous variables) or chi square analyses (for categorical
variables). Given prior work showing relationships to both
metabolic function and AD, all measures were controlled for age,
sex, body mass index (BMI), and APOE4 (carrier status). Results
were considered significant at p < 0.05.

Neuroimaging
We used a General Linear Model full factorial analysis with post-
hoc t-tests to assess the main effect of diagnosis on smoothed
normalized gray matter images, including the same covariates
as metabolic outcomes, in addition to TICV. In each separate
analysis we included the metabolic biomarker response to a
mixed-meal measured as area under the curve (AUC) [glucose,
insulin, PYY, GIP, GLP1, C-Peptide, and platelet mitochondrial
enzyme function (Citrate synthase Vmax)] as a covariate for
interaction with diagnosis (see Table 2 for variable details).
Post-hoc tests also included a combined-group (ND and AD
combined) regression of the metabolic biomarkers across gray
matter volume with the same covariates as the initial analysis.

For all analyses, voxels are reported with reference to the
MNI standard space within SPM12. To avoid possible edge
effects at the border between GM and WM and to include only
relatively homogeneous voxels, we used an absolute threshold
masking of 0.10 for each analysis. Results for f -tests and t-tests
were considered significant at p < 0.05 after correction for
multiple comparisons (family-wise error, FWE), and results at
p < .001 for t-tests are shown in Supplementary Table 1,
with a minimum cluster size of 100 voxels (k > 100) for all
analyses. After whole brain unmasked analysis, we used a small
volume correction (SVC) to test for associations between the
overall meal response (AUC) variables and two anatomical mask
regions, one encompassing regions involved in eating and reward
behavior (Batterham et al., 2007; Neary and Batterham, 2010;
Weise et al., 2012), and a second combining regions involved
in the default-mode network (DMN), where we have previously
observed relationships between glucose metabolism and amyloid

2http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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neuropathology (Morris et al., 2016b; Taylor et al., 2017). The
mask for food regions included the caudate nucleus, globus
pallidus, thalamus, prefrontal regions, anterior cingulate gyrus
and the cerebellum and was created by combining these regions
into a single anatomical masks using the WFU pickatlas tool
(Maldjian et al., 2003) and the integrated automatic anatomic
labeling (AAL) tool (Tzourio-Mazoyer et al., 2002). The mask for
the DMN network included the hippocampus, parahippocampal
gyrus, amygdala, anterior cingulate gyrus, superior medial frontal
cortex, precuneus, inferior parietal lobe, superior parietal lobe,
and the posterior cingulate (Buckner et al., 2008).

RESULTS

Subject Characteristics
CH and AD diagnosis groups did not differ by age, sex, BMI,
body weight, APOE4 carrier status, education or blood pressure
(Table 1). As expected, individuals with AD were characterized
by lower MMSE scores and higher CDR-Sum of Boxes compared
to CH older adults.

Meal Stimulated Response
Area-Under-the-Curve (AUC)
We characterized diagnostic differences in the mixed-meal
stimulated responses by calculating the AUC for key metabolic
hormones. AD subjects exhibited a higher AUC compared to CH
individuals in response to a mixed meal for PYY (p = 0.001;
Figure 1, insulin (p = 0.036; Figure 2), and glucose (p = 0.035;
Figure 2), with no diagnostic differences observed in the response
of GLP-1, GIP, or C-Peptide.

Early Meal Response
The difference between the fasting and 30 min timepoint
of glucose tolerance tests has been used to determine the
early meal response (Cozma et al., 2005). This early meal

TABLE 1 | Subject characteristics.

Measure CH (n = 32) AD (n = 23) p-value

Age (year) 74.0 (5.4) 76.3 (6.3) 0.161

Sex (#, % male) 14 (42.4) 12 (52.2) 0.470

APOE4 (#, % carrier) 12 (36.4) 12 (54.5) 0.180

BMI 28.1 (4.3) 27.7 (5.4) 0.746

Education (y) 15.9 (2.8) 15.6 (3.0) 0.719

Systolic BP (mm/Hg) 135.7 (16.3) 130.6 (12.2) 0.173

Diastolic BP (mm/Hg) 76.2 (8.3) 73.6 (6.3) 0.136

Global cognition (z-score) 0.186 (0.55) −1.57 (1.1) <0.01*

Weight (kg) 76.8 (14.1) 77.8 (21.3) 0.740

CDR-SB 0 (0) 4.26 (2.4) <0.01*

MMSE 29.1 (0.87) 22.7 (5.1) <0.01*

Groups were well matched based on participant characteristics. As expected, AD
subjects had lower cognitive scores. CH, Cognitively Healthy; AD, Alzheimer’s
Disease; APOE4, Apolipoprotein epsilon 4; BMI, body mass index; BP, blood
pressure; CDR-SB, Clinical Dementia Rating Sum of Boxes; MMSE, mini mental
state examination. *p < 0.05. Bold values indicate significant differences.

response tracks well with first phase insulin secretion, which is
especially important for control of glucose production by the
liver (Luzi and DeFronzo, 1989). We calculated the early meal
response (10–30) values for these same metabolic biomarkers
and identified diagnostic differences for PYY (p < 0.001)
and GLP-1 (p = 0.026), with higher responses in AD
individuals (Table 2).

Neuroimaging
In the overall cohort there was a significant difference in gray
matter volume between diagnosis groups, the AD group had
decreased gray matter volume compared to the ND group in a
large cluster encompassing the left middle temporal gyrus and
right post-central gyrus (Table 3). We identified that Insulin
AUC, GIP AUC and C-Peptide AUC all had significant negative
relationships with gray matter volume in CH and AD subjects,
primarily in the parietal cortices (Figure 3). At a whole brain
level, C-Peptide AUC negatively correlated with the left cuneus
(p < 0.001, Z = 5.51, −12, −87, 8) and another cluster in the
left parietal lobe seen using the DMN network SVC (p < 0.05,
Z = 4.17, −58, −46, 46) (Table 3). Also at a whole brain level,
GIP AUC negatively correlated with the left precuneus (p < 0.05,
Z = 4.57, −3, −50, 62), which also presented significant in
the DMN network SVC. In the DMN network SVC Insulin
AUC was negatively correlated with the Left Inferior Parietal
Lobe (p < 0.05, Z = 4.27, −42, −72, 40). There were no
significant positive relationships with gray matter volume with
the metabolic hormones.

There were no significant interactions of diagnosis with any
of the metabolic hormones at a whole brain level or in the food
region or DMN SVC, however, there were several interactive
effects that reached a trend level of significance (p < 0.001
uncorrected, k > 100) (Supplementary Table 1). There was an
interactive relationship between PYY and diagnosis such that
CH individuals had a more negative relationship between PYY
and right anterior cingulate and inferior frontal gyrus than
individuals with AD (Figure 4). There were also interactive
relationships between Insulin AUC and diagnosis, and similarly
in GLP1 and diagnosis, in superior temporal gyrus as well as
frontal regions (Supplementary Table 1), as well as a negative
relationship between GLP1 AUC and gray matter volume in
the right superior temporal gyrus in both diagnosis groups.
Finally, there was a positive interactive relationship (greater gray
matter volume alongside larger hormone AUC in the AD group
compared to CH) between C-Peptide AUC and diagnosis in the
right angular gyrus and right inferior parietal lobe.

Cognitive Performance
All individuals in this study were administered a cognitive battery
consisting of the Uniform Data Set Version 2.0 (Weintraub et al.,
2009). We computed normative z-scores for each UDS cognitive
test as previously described (Weintraub et al., 2018) and well as
a z-score for global cognition, which is a mean of all z-scores
in the battery (Table 1). In the overall cohort, we observed a
significant negative linear relationship between gAUC and the
global cognition z-score (β = −0.391, p = 0.008). Global cognition
did not track with other metabolic biomarkers.

Frontiers in Neuroscience | www.frontiersin.org 4 November 2020 | Volume 14 | Article 60886221

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-608862 November 24, 2020 Time: 19:43 # 5

Morris et al. Incretins in Aging and Alzheimer’s

FIGURE 1 | (A) PYY response to a mixed meal (AUC 0-120) is significantly higher in AD subjects compared to CH older adults. No significant differences are
observed for GLP-1 and GIP (B,C) *p < 0.05.

Platelet Mitochondrial Function
Generation of ATP in mitochondria is coupled to insulin
exocytosis, (Maechler and Wollheim, 2001) and insulin secretory
granules are in close proximity to mitochondria to promote
coupling of metabolism and insulin secretion (Wollheim, 2000).
Given the potential impact of mitochondrial dysfunction on
insulin dysregulation, we performed functional assessments
to characterize the activity of key mitochondrial enzymes
in blood platelets to evaluate potential diagnostic differences
(Table 1). Cytochrome oxidase activity (maximal velocity; Vmax)
was measured and did not differ between diagnosis groups
(p = 0.583). Citrate synthase (CS) Vmax was also characterized
and did not differ between groups in this study (p = 0.277).
Because the relationship of platelet mitochondrial function and

brain structure has never been examined, we also characterized
the relationship between these measures and brain structure
using VBM. Across diagnosis groups, we observed a positive
relationship between CS Vmax and brain volume in the left and
right frontal gyrus, as well as the left precuneus (Supplementary
Table 1). However, these findings did not hold up to multiple
comparisons corrections.

DISCUSSION

The hormone insulin has been implicated in neurotransmission
and cell survival (Wan et al., 1997; Skeberdis et al., 2001;
Uemura and Greenlee, 2006; van der Heide et al., 2006b;

Frontiers in Neuroscience | www.frontiersin.org 5 November 2020 | Volume 14 | Article 60886222

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-608862 November 24, 2020 Time: 19:43 # 6

Morris et al. Incretins in Aging and Alzheimer’s

FIGURE 2 | Both glucose (A) and insulin (B) responses to a mixed meal were elevated in AD subjects. (C) The C-Peptide response did not differ between diagnosis
groups. *p < 0.05.

Jin et al., 2011), associated with better cognition and less brain
atrophy in AD (Burns et al., 2007), and been shown to
improve memory in AD when administered intranasally (Reger
et al., 2008a,b; Craft et al., 2012). However, insulin-sensitizing

TABLE 2 | Early response to a mixed meal.

Measure Cognitively healthy (n = 32) AD (n = 23) p-value

Glucose (mg/dL) 29.1 (16.0) 35.7 (14.1) 0.250

Insulin (µU/mL) 40.4 (25.3) 50.6 (29.6) 0.147

C-Peptide (ng/mL) 0.59 (0.33) 0.686 (0.33) 0.347

GIP (pmol/L) 54.9 (26.4) 64.3 (27.9) 0.220

Peptide YY 14.9 (15.2) 32.8 (19.3) <0.001*

GLP-1 2.11 (1.9) 3.68 (2.7) 0.026*

Early response (10–30) values for bioenergetic outcomes following a mixed meal.
GIP, Gastric inhibitory polypeptide; Peptide YY, Peptide Tyrosine Tyrosine; GLP-
1, GLP-1, Glucagon-like peptide 1. *p < 0.05. Bold values indicate significant
differences.

agents have not shown cognitive benefit or improved brain
glucose metabolism (Gold et al., 2010; Tzimopoulou et al.,
2010; Harrington et al., 2011). This may be due in part to
inefficient transport of these compounds across the blood-brain
barrier, but also suggests that additional mechanisms associated
with production of insulin rather than just sensitization may
be important. Here, we characterized diagnostic differences in
metabolic biomarkers following a mixed meal and identified
relationships of these biomarkers with brain structure. We
focused on metabolites directly involved in or affected by insulin
secretion, including insulin, GIP, GLP-1, PYY, C-peptide, and
glucose. This is the first study to examine the response of Peptide
YY and revealed striking elevations in AD participants compared
to CH subjects. Elevations in the glucose and insulin AUC,
which have been previously described as related to structural
brain outcomes in other studies of AD subjects (Burns et al.,
2007; Burns et al., 2012), were also observed. Although no group
differences in the meal-stimulated AUC response were observed
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TABLE 3 | Regional imaging relationships.

F-test main effect of diagnosis Peak F Z Cluster (k) Peak p(FWE-corr) Peak p(unc) x,y,z (mm) Regions

Whole brain 47.27 5.52 2052 0.001 0.000 −63, −46, -9 Left middle
temporal gyrus

33.82 4.85 101 0.012 0.000 62, −22. −32 Right post-central
gyrus

T-test direction specific effects Peak T Z cluster (k) Peak p (FWE-corr) Peak p(unc) x,y,z (mm) Regions

Negative regression of insulin AUC and GMV (ND and AD together)

DMN network SVC 4.80 4.27 326 0.026 0.000 −42, −72, 40 Left inferior parietal
lobe

3.97 3.65 286 0.207 0.000 45, −74, 42 Right angular gyrus

3.75 3.46 276 0.336 0.000 12, −51, 30 c

Negative regression of GIP AUC and GMV (ND and AD together)

Whole brain 5.23 4.57 663 0.035 0.000 −3, −50, 62 Left precuneus

4.99 4.41 385 0.066 0.000 −52, −80, 10 Left middle temporal
gyrus

4.08 3.73 229 0.512 0.000 −54, −40, 51 Left Inferior Parietal
Lobe

DMN network SVC 5.21 4.56 250 0.008 0.000 −3, −51, 62 Left precuneus

4.08 3.73 136 0.158 0.000 −54, −40, 51 Left Inferior Parietal
Lobe

Negative regression of C-peptide AUC and GMV (ND and AD together)

Whole brain 6.73 5.51 6581 0.001 0.000 −12, −87, 8 Left cuneus

0.000 −22, −96, 0 Right cuneus
(calcarine)

0.000 −38, −84, 0 Left middle
occipital gyrus

4.68 4.17 259 0.155 0.000 −58, −46, 46 Left Inferior Parietal
Lobe

4.52 4.06 642 0.224 0.000 −39, 46, −2 Left middle frontal
gyrus

4.50 4.04 1604 0.236 0.000 26, −76, 26 Right occipital gyrus

4.37 3.95 172 0.307 0.000 40, 20, 15 Right inferior frontal
gyrus

4.22 3.83 487 0.416 0.000 64, −33, 3 Right superior
temporal gyrus

4.07 3.71 152 0.545 0.000 40, −42, −14 Right fusiform gyrus

3.94 3.62 130 0.65 0.000 −4, −4, 52 Left superior motor
area

3.89 3.57 187 0.698 0.000 −15, 36, 34 Left superior motor
area

3.79 3.49 102 0.778 0.000 0, −14, 75 Medial frontal gyrus

3.76 3.47 116 0.802 0.000 40, −63, −4 Right middle
temporal gyrus

DMN network SVC 4.68 4.17 168 0.037 0.000 −58, −46, 46 Left parietal lobe
(BA 40)

Bold values indicate significant differences.

for either GIP or C-peptide, significant negative relationships
between brain volume and AUC for these hormones, as well
as insulin, were observed in highly metabolic brain regions
such as the precuneus and parietal lobe across groups. Taken
together, our data shows that a variety of diagnostic differences
and relationships with structural outcomes are evident with the
metabolic hormone response in response to a small (220 calorie)
mixed meal. The effects of these peripheral hormone response
differences reach far beyond the tissues of origin (Figure 5).

The observed increase in the early meal response of Peptide
YY and GLP-1 suggests that in AD subjects, compensatory
responses exist to increase insulin levels and maintain

normoglycemia. Although both PYY and GLP-1 are stored
within enteroendocrine cells, they exist within discrete
compartments that allow for differential release (Cho et al.,
2014). This may explain the sustained elevation of PYY
beyond that of GLP-1. PYY is also produced in pancreatic islet
cells, where the full-length peptide can locally inhibit insulin
secretion through effects on Y1 receptors, but cleaved PYY
activates Y2 receptors and is linked to increased circulating
insulin levels, potentially due to simultaneous release of GLP-1
(Persaud and Bewick, 2014). This is worth noting as we did
observe early increases in GLP-1 release in AD subjects, although
again, this was not sustained throughout the MTT. It is known
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FIGURE 3 | GIP AUC (A), Insulin AUC (B), and C-Peptide AUC (C) are significantly negatively correlated with interior left precuneus (A), Left precuneus (B), and Left
Cuneus volume (C) all in the parietal cortex. Extracted volumes plotted post-hoc against hormone AUC in plots on the right.

that plasma PYY levels rise in response to a meal (Adrian
et al., 1985), and PYY can freely cross the blood-brain barrier
(Batterham and Bloom, 2003). PYY inhibits food intake through
actions in the arcuate nucleus of the hypothalamus, but also acts
on receptors present in the temporal cortex and hippocampus

(Martel et al., 1990b; Roder et al., 1996). While PYY receptor
affinity is not altered between AD and CH individuals, PYY
receptor density is lower in the hippocampus in AD (Martel
et al., 1990a). Thus, it is possible that the increase in PYY
release we observed in response to a mixed meal could be a
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FIGURE 4 | Diagnostic interaction effect is evident for PYY in the Anterior Cingulate, with a negative relationship visible in CH individuals that is not evident in AD.
P < 0.001 uncorrected.

compensatory response due to decreased receptor density in
key brain regions. We also observed diagnostic elevations in
the glucose and insulin meal responses. Our observation of an

FIGURE 5 | Schematic representation of hormone action on target tissues.
Gut-secreted hormones can travel through the circulation to the pancreas and
brain. In these tissues, these hormones can potentiate secretion of insulin and
affect regulation of blood glucose levels, as well as activate neuronal
populations involved in responses such as satiety. Figure created with
BioRender.

elevated glucose response in response to increased insulin and
PYY compensation is insufficient to normalize glucose tolerance
in these individuals.

We then investigated whether the meal response of these
metabolically active peptides (AUC value) tracked with brain
structure using VBM. The strongest effects were consistently
in the negative direction across both groups, occurred in the
parietal cortex (Figure 3), and withstood multiple comparisons
correction. Specifically, both insulin and C-Peptide AUC tracked
negatively with brain volume in the left inferior parietal cortex
(Table 3), while GIP and C-peptide AUC tracked negatively with
brain volume in the precuneus and cuneus, respectively (Table 3).
Given the role of GIP as an incretin hormone and C-peptide as
an insulin cleavage product, these relationships in known highly
metabolic brain regions underscore important relationships
between insulin and brain structure. Insulin resistance is linked
to increased atrophy (Benedict et al., 2012; Willette et al., 2013),
and we have shown that prediabetes is related to increased rate
of overall brain atrophy over two years in AD (Morris et al.,
2016b). We have also shown a relationship between insulin
resistance and decreased medial temporal, frontal and occipital
cortical volumes (Morris et al., 2014b). These are consistent with
our finding that increases in GIP, insulin and C-Peptide were
related to decreased volume in regions associated with AD disease
pathology, and a growing amount of data are linking insulin
and insulin-like growth factor, type 1 (IGF-1) deficiencies to the
pathogenesis of AD (de la Monte et al., 2018). It is worth noting
that consistent negative relationships with brain volume were
also observed with the AUC response of glucose, insulin, GIP,
and C-peptide in temporal regions, and although these did not
withstand FWE correction (Supplementary Table 1), they were
in metabolically sensitive regions consistent with our previous
work and will need to be investigated with a larger sample or a
larger meal stimulus.

PYY was the only hormone that showed an interaction effect
between diagnosis groups (Figure 4), which occurred in the right
anterior cingulate and inferior frontal gyrus. In CH older adults,
increased PYY was associated with decreased brain volume, but
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this was not observed in AD subjects. Our findings in CH
individuals correspond with results from a previous study on
PYY concentrations and brain volume in non-diabetic young
adults, where the authors found a relationship with PYY response
and anterior cingulate volumes among others (Weise et al.,
2012). The anterior cingulate bridges brain regions involved in
autonomic function, cognition, and reward processing (Stevens
et al., 2011), and many studies have shown decreased functional
connectivity with this region in AD compared to healthy controls.
This suggests that cognitively healthy individuals who have a
compensatory increase in PYY (potentially due to very early stage
IR) have lower anterior cingulate brain volume. It is possible
that the lack of relationship in AD individuals is due to more
heterogeneity in brain volume in this group, which prior work
has shown to vary based upon the presence of neuropsychiatric
symptoms in AD subjects (Tascone et al., 2017).

Despite the lack of neuroimaging relationships that withstood
multiple comparisons corrections compared to the other
biomarkers examined, gAUC was the only biomarker that tracked
significantly with cognitive performance (global cognition). This
suggests that the effect of insulin and related hormones and
brain volume was stronger, or that the effect of glucose may be
more readily detected using a larger meal stimulus. This finding
also underscores the important relationship between glucose
regulation and cognitive function previously demonstrated in
larger epidemiological studies (Altschul et al., 2018; Zheng et al.,
2018), an effect may occur independently of large changes in
brain structure.

Our findings build upon prior work from our group and
others that suggest insulin dysregulation exists peripherally and
centrally in AD (Burns et al., 2007; Craft et al., 2012; Talbot
et al., 2012; Morris et al., 2016a), and extends these findings
to include additional metabolic-related hormones. Strengths of
this study include the robust clinical characterization of our
diagnosis groups, which were also well-matched in terms of age,
sex, and BMI. An important additional strength is the careful
pre-processing of plasma samples for incretin analysis, which
were collected in tubes containing dipeptidyl peptidase 4 (DPP-
4) inhibitor prior to processing and storage. This is critical for
accurate incretin measurement. A limitation of the study is the
sample size, which may have limited our ability to detect smaller
diagnostic differences in responses, as well as the cross-sectional
nature of the study. Additional considerations should include
the fasting time, caloric content, and type the meal stimulus,
which likely affect the hormone response, as well as potential
effects of APOE4 genotype and sex, which should be explored in
future studies. It is also important to note that it is unclear how
closely our measures of the peripheral hormone response reflect
hormone levels in brain. Nonetheless, we provide evidence for

diagnostic differences in the response of emerging gut hormones
to a small mixed meal. Given that multiple meals and snacks
are consumed throughout the day, these differences may have
important physiological consequences that become evident over
time. Future studies should examine the longitudinal effects of
these changes on brain outcomes.
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Aging is the time-dependent process that all living organisms go through characterized
by declining physiological function due to alterations in metabolic and molecular
pathways. Many decades of research have been devoted to uncovering the cellular
changes and progression of aging and have revealed that not all organisms with
the same chronological age exhibit the same age-related declines in physiological
function. In assessing biological age, factors such as epigenetic changes, telomere
length, oxidative damage, and mitochondrial dysfunction in rescue mechanisms such as
autophagy all play major roles. Recent studies have focused on autophagy dysfunction
in aging, particularly on mitophagy due to its major role in energy generation and reactive
oxidative species generation of mitochondria. Mitophagy has been implicated in playing
a role in the pathogenesis of many age-related diseases, including Alzheimer’s disease
(AD), Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. The purpose of our
article is to highlight the mechanisms of autophagy and mitophagy and how defects in
these pathways contribute to the physiological markers of aging and AD. This article also
discusses how mitochondrial dysfunction, abnormal mitochondrial dynamics, impaired
biogenesis, and defective mitophagy are related to aging and AD progression. This
article highlights recent studies of amyloid beta and phosphorylated tau in relation to
autophagy and mitophagy in AD.

Keywords: Alzheimer’s disease, mitochondria reactive oxygen species, mitophagy, autophagy, aging

Abbreviations: Aβ, Amyloid beta; AD, Alzheimer’s disease; BNIP3, BCL2/adenovirus E1B 19 kDa protein-interacting
protein 3; Drp1, Dynamin-1-like protein; EF, Helix-loop-helix structural domain; ERMCS, ER mitochondria encounter
structures; ETC, Electron transport chain; Fis1, Fission 1 protein; FUNDC1, FUN14 domain containing 1; LC3, Microtubule-
associated protein 1A/1B-light chain 3; LRRK2, Leucine-rich repeat kinase 2; mAPP, Mutant amyloid beta precursor protein;
Mff, Mitochondrial fission factor; Mfn1, Mitofusin-1; Mfn2, Mitofusin-2; Mid49, Mitochondrial dynamics protein MID49;
Mid51, Mitochondrial dynamics protein MID51; Miro, Mitochondrial Rho GTPase; mtDNA, Mitochondrial DNA; NRF1,
Nuclear respiratory factor 1; NRF2, Nuclear respiratory factor 2; NSF, N-ethylmaleimide sensitive factor; OMM, Outer
membrane of mitochondria; Opa1, optic atrophy 1; OPTN, Optineurin; PGC-1α, Peroxisome proliferator-activated receptor
gamma coactivator 1-alpha; PINK1, PTEN-induced kinase 1; ROS, Reactive Oxygen Species; SIAH1, E3 ubiquitin-protein
ligase SIAH1; TBK1, TANK-binding kinase 1; TEM, Transmission electron microscopy; TFAM, transcription factor A,
mitochondrial.
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INTRODUCTION

Aging is generally thought of as the time-dependent
accumulation of cellular damage and decline in physiological
function. Although many events can lead to cellular dysfunction,
several factors have been identified as the defining characteristics
of aging: genomic instability, telomere attrition, epigenetic
alterations, loss of proteostasis, cellular senescence, stem
cell exhaustion, altered intercellular communication, and
mitochondrial dysfunction (Figure 1; Lopez-Otin et al., 2013).
Accumulation of genetic damage is one of the hallmarks of aging,
and the integrity of an organism’s genome is constantly being
challenged (Moskalev et al., 2013). Exogenous threats include
physical, chemical, and biological agents, whereas endogenous
threats include DNA replication errors, spontaneous mutations,
and alterations due to reactive oxygen species (ROS). To help
protect from these threats, most organisms have evolved multiple
forms of protective DNA mechanisms that collectively help
minimize damage and maintain genomic stability.

One such mechanism is the existence of telomeres on the
end of chromosomal DNA, which are DNA repeats that prevent
erosion of coding segments of DNA during replication. Most
DNA polymerases cannot completely replicate the terminal ends
of linear DNA, with telomerase being the only specialized form
capable of doing so. However, most mammalian cells do not
express telomerase, which ultimately leads to the progressive loss
of the protective factor of telomeres (Blackburn et al., 2006).
Telomere shortening limits the proliferative capacity of all cells,
and telomere depletion leads to cell senescence, which arrests
cell cycle progress and halts replication. Epigenetic modifications
are a form of genetic alteration that can be signs of aging.
Epigenetic changes are involved in alterations in the methylation
patterns of DNA, post-translational modification of histones, and
chromatin remodeling, which can alter protein expression (Fraga
and Esteller, 2007). Dysregulation of the epigenetic machinery
is related to aging in invertebrates (Greer et al., 2010; Maegawa
et al., 2010).

The purpose of this article is to critically examine the role
of age-related factors in autophagy and mitophagy in AD
pathogenesis. This article will also highlight how mitochondrial
dysfunction, abnormal mitochondrial dynamics, and impaired
biogenesis are related to aging and AD pathogenesis.

AGING AND CELLULAR SENESCENCE

Aging is a major risk factor for a large number of
neurodegenerative diseases, including Alzheimer’s disease
(AD), Parkinson’s, and amyotrophic lateral sclerosis (ALS)
(Reddy and Reddy, 2011). Aging occurs at different rates in
different species, and interindividual variations exist within a
species and in the different tissues of an individual. Aging is a
progressive deterioration that leads to cell senescence and an
increased risk of developing many diseases.

Cellular senescence is a series of cellular states after an initial
growth arrest in which cells go through phenotypic alterations.
Cellular senescence and aging are two distinct phenomena; aging

is the progressive decline with time, whereas senescence occurs
throughout the lifespan, including during embryogenesis. The
number of senescent cells increases with age, but senescence also
plays an important role during development. These events are
directly associated with autophagy and mitophagy.

Hayflick and Moorhead first characterized senescence as the
phenomenon of irreversible growth arrest linked to telomere
attrition (Hayflick and Moorhead, 1961). Senescence helps guard
against the continual replication of damaged cells and plays a
role in embryonic development, wound healing, tissue repair,
and aging. As cells age out, new cells must take their place,
and eventually, the regenerative potential of tissue decreases as
stem cells become exhausted. Hematopoiesis has been shown
to decline with age resulting in reduced production of adaptive
immune cells and anemia (Shaw et al., 2010). Furthermore,
studies on aged mice have shown that hematopoietic stem cells
go through decreased cell-cycle activity and division compared
with younger mice (Rossi et al., 2007). These decreases in
divisions have been correlated to the accumulation of DNA
damage resulting in overexpression of cell-cycle inhibitory
proteins such as P16INK 4a, which is a known inducer of
cell senescence.

As cells age, DNA damage accumulates not only in
chromosomal DNA but also in mitochondrial DNA leading
to mitochondrial dysfunction. Mitochondria play a key role
in respiratory oxidation for ATP generation, and dysfunction
leads to electron leakage and energy deficits (Green et al.,
2011). Turnover of dysfunctional and damaged mitochondria
is paramount to maintaining healthy cell populations, and
impairment of turnover can lead to greater cell death. The
effects of aging in mitochondrial dysfunction are discussed later
in this paper. Although many factors lead to biological aging
within an organism, one common trend is the accumulation of
defects over time.

AGE-RELATED FACTORS IN DEFECTIVE
AUTOPHAGY

Several lines of research revealed that multiple age-related factors
are implicated in defective autophagy (Cheon et al., 2019). In the
last decade, several groups studied autophagy and mitophagy in
aging and age-related diseases of different species such as flies,
worms, humans, rats, and mice. Studies have also been done
on rodent models of human disease and postmortem brains of
healthy humans and humans with neurodegenerative disorders
(Palikaras et al., 2015, 2018; Schiavi et al., 2015; Harper et al.,
2018; Reddy et al., 2018; Manczak et al., 2018; Andreux et al.,
2019; Castellazzi et al., 2019; Fang et al., 2019a,b; Hou et al., 2019;
Martín-Maestro et al., 2019; Reddy and Oliver, 2019; Oliver and
Reddy, 2019a,b; Wang et al., 2019; Li et al., 2020; Lou et al., 2020;
Chen et al., 2020; Bakula and Scheibye-Knudsen, 2020; Liang and
Gustafsson, 2020; Varghese et al., 2020; Luo et al., 2020; Markaki
and Tavernarakis, 2020; Babbar et al., 2020; Aman et al., 2020; Cai
and Jeong, 2020; Pakpian et al., 2020; Oh et al., 2020; Yang et al.,
2020; Han et al., 2020; Pradeepkiran and Reddy, 2020). These
articles (original and high impact review articles) have provided a
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FIGURE 1 | Normal physiological aging accelerated by factors leading to cellular dysfunction, including reactive oxygen species, organelle dysfunction, and genomic
damage.

large body of useful information about autophagy and mitophagy
in different species of vertebrates and non-vertebrates.

Age-related factors, including oxidative stress, DNA damage,
and telomere shortening, are involved in defective autophagy
(Cheon et al., 2019) in both vertebrates and non-vertebrates. We
briefly discuss these factors below:

Oxidative Stress and Defective
Autophagy
Mitochondria are the powerhouses of cells, providing energy
for several cellular functions, including intracellular calcium
regulation, ATP production, the release of proteins that
activate the caspase family of proteases, and the alteration of
the reduction–oxidation potential of cells and free radical
scavenging. Cellular aging induces mitochondrial ROS
production and disrupts the electron transport chain (ETC).
Disruption of the ETC has been recognized as an early feature
of apoptotic cell death. The ETC involves the reduction of
hydrogen peroxide (H2O2) to H2O and O2 by superoxide
dismutase, catalase, peroxidase, and glutathione accepting
electrons donated by NADH and FADH2, which yields the
energy for the generation of ATP from adenosine diphosphate
and inorganic phosphate (Reddy, 2006, 2008). Mitochondrial
superoxide radical (O•- 2) production occurs primarily at
discrete points in the ETC at complexes 1 and 3 and in
components of tricarboxylic acid, including α-ketoglutarate
dehydrogenase. In addition, mitochondrial O•- 2 are generated
in the outer mitochondrial membrane. Monoamine oxidase,
localized on the outer mitochondrial membrane, catalyzes the
oxidative deamination of primary aromatic amines (Reddy,
2006). This deamination produces a large amount of H2O2 that
contributes to an increase in the steady-state concentrations of
ROS within the mitochondrial matrix and the cytosol. These
released H2O2 and O•- 2 are carried to the cytoplasm via

voltage-dependent anion channels and ultimately lead to the
oxidation of cytoplasmic proteins.

The age-related chronic exposure cells to ROS can result in
oxidative damage to mitochondrial proteins, cellular proteins,
lipids, and nucleic acids, whereas the acute exposure to ROS
can inactivate the tricarboxylic acid-cycle aconitase and the
iron–sulfur centers of ETC at complexes 1, 2, and 3, resulting
in a shutdown of mitochondrial energy production (Reddy,
2008). Therefore, mitochondria undergo morphological and
functional changes with age, including declines in ETC function,
mitochondrial integrity, and mitochondrial quality, which results
in impairments of cellular energy production and activity.

Autophagy plays a key role in the clearance of damaged
cellular organelles, including mitochondria. However, age-
related impairments of autophagy lead to the accumulation of
abnormal mitochondria, which increases oxidative stress. Based
on these studies, it is proposed that mitochondria-targeted
antioxidants, such as MitoQ, and SS31 can be potential drugs
that reduce free radicals, maintain mitochondrial quality and
function, boost autophagy and mitophagy, and clear damaged
mitochondria from cells.

DNA Damage and Defective Autophagy
Oxidative stress, which is caused by an imbalance between the
production of free radicals and the presence of endogenous
antioxidants within a cell, is the major cause of damage to DNA
(Reddy, 2006, 2008). During aging and age-related conditions,
free radicals’ increased production occurs, and this increase of
free radicals damages both nuclear and mitochondrial DNA
(Reddy and Beal, 2008; Oliver and Reddy, 2019a,b). DNA damage
is distinctly different from the germline mutation, but both lead
to errors in DNA. DNA damage is an abnormality in the chemical
structure of DNA, whereas a mutation is a change in the sequence
of standard base pairs. Damage to DNA can cause changes in the
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structure of the genetic material and prevents and/or alters the
replication of DNA (Cheon et al., 2019).

Age-dependent DNA damage plays a large role in defective
autophagy. The generation of free radicals can occur after
several cellular insults, including ultraviolet irradiation damage
of DNA and redox-cycling of quinones (Cheon et al., 2019).
Both mitochondrial damage and nuclear DNA damage occur
in an age-dependent manner. Somatic mitochondrial changes,
including single nucleotide changes and large deletions, have
been extensively reported in both vertebrates and non-vertebrates
(Reddy and Beal, 2005; Oliver and Reddy, 2019a,b). DNA base-
pair repair is defective and increased in an age-dependent
manner. As mentioned earlier, mitochondrial DNA is more
vulnerable to ROS than nuclear DNA because of its lack of
protective shields—histones (Reddy and Beal, 2005; Oliver and
Reddy, 2019a,b). Mutations of mitochondrial DNA (mtDNA)
are usually due to replication errors by mtDNA polymerase
and point mutations/deletions that spontaneously accumulate
during aging. Several DNA repair events are activated in response
to damaged DNA, including homologous recombination repair,
non-homologous end joining, mismatch repair base excision
repair, and nucleotide excision repair (Reddy and Beal, 2005;
Oliver and Reddy, 2019a,b).

Previous studies support that the base excision repair is
mainly involved in the repair of oxidative mtDNA modification
and mitigates mitochondrial impairment. Mismatch repair-
dependent autophagy requires Bcl-2-interacting protein 3
in a mammalian target of rapamycin (mTOR)-dependent
manner (Cheon et al., 2019). Decreased ability to repair
DNA and consequent accumulation of DNA damage may
contribute to cellular senescence. Also, mutations in nuclear and
mitochondrial genes caused by impaired DNA repair have been
associated with aging.

Overall, DNA damage plays a significant role in defective
autophagy and is directly associated with aging and age-related
diseases such as AD, Parkinson’s, and ALS.

Telomere Shortening and Defective
Autophagy
What are telomeres?—these are specific DNA–protein structures
found at both ends of each chromosome that protect the genome
from nucleolytic degradation, unnecessary recombination or
repair, and inter-chromosomal fusion. Telomeres, therefore,
play a vital role in preserving the information in our genome
(Shammas, 2011). As a normal cellular process, a small portion of
telomeric DNA is lost with each cell division. Telomeres become
shorter with aging, influenced by environmental factors and
specific genetic defects in the underlying telomere mechanisms.
When telomere length reaches a critical limit, the cell undergoes
senescence and/or apoptosis. Telomere length, therefore, serves
as a biological clock to determine the lifespan of a cell
and an organism.

Telomerase is a reverse transcriptase enzyme complex capable
of adding DNA sequence repeats (TTAGGG) to the 3′ end
of DNA strands in the telomere regions at the ends of
eukaryotic chromosomes (Harris and Cheng, Nephron 2017).

Telomerase contains two major components in its transcriptase
ribonucleoprotein complex, the RNA-directed DNA polymerase,
TerT, and the RNA template, TerC, which together prevent
telomere shortening by adding telomeric DNA repeats to
chromosome ends. However, telomeric DNA repeats become
defective in aging and age-related conditions.

A gradual loss of telomeric DNA leads to defective autophagy
cellular events. Earlier studies have demonstrated that shortened
telomeres are associated with autophagy (Aoki et al., 2007;
Ali et al., 2016; Nassour et al., 2019). In cells with shortened
telomeres, autophagy-related proteins and cytoplasmic vacuoles
were increased (Nassour et al., 2019). Telomeric 3′ DNA
oligonucleotides can induce autophagosomes and inhibit mTOR
signaling in malignant glioma cells (Aoki et al., 2007). In addition,
in multiple cell lines such as HEK 293T, HepG2, and U-2 OS,
TERT binds to mTORC1 kinase and suppresses its activity,
inducing autophagy. On the other hand, TERT knockdown
increases the components of mTORC1, resulting in autophagy
impairment under basal starvation conditions (Ali et al., 2016).

Overall, the shortening of telomeres impacts autophagy in
aging and age-related diseases. Based on these studies, it has been
proposed that autophagy and mitophagy enhancers are potential
therapeutic targets.

AUTOPHAGY

Autophagy is the lysosome-mediated self-degradative process
that plays a major role in nutrient balancing and housekeeping
by selectively degrading dysfunctional organelles and proteins
(Deter and De Duve, 1967; Glick et al., 2010; Parzych and
Klionsky, 2014; Pradeepkiran and Reddy, 2020). Autophagy
is carried out by a class of proteins called autophagy-
related proteins (Atg), which were discovered in yeast cells.
Atg proteins have been found throughout many different
types of organisms, including mammalian cells, with several
analogs within mammalian cells being identified with similar
mechanisms as Atg proteins within yeast cells. When the
mechanisms underlying autophagy are disrupted, cells become
more prone to accumulating defects leading to reduced cell
viability. If the autophagic pathways are not rescued, the
accumulation of cellular debris can occur and lead to an
acceleration of physiological aging (Rubinsztein et al., 2011).
Conversely, normal aging associated with accumulations of DNA
damage due to oxidative damage can lead to dysregulation of
the autophagy machinery (Vellai, 2009). This leads to a positive-
feedback loop in which normal cellular damage experienced in
aging leads to a decreased ability for cells to protect themselves
from further insult compromising cellular viability.

Autophagy can work in both a non-selective or selective
manner, which targets organelles such as peroxisomes,
mitochondria, or portions of the endoplasmic reticulum for
degradation. Three modes of autophagy have been characterized:
macro-autophagy, micro-autophagy, and chaperone-mediated
autophagy (Figure 2). Although each mode of autophagy is
mechanically distinct, all three ultimately lead to the delivery of
cellular cargo to the lysosome or vacuole for degradation and
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recycling (Parzych and Klionsky, 2014). Many factors can induce
autophagy within a cell, which often center on mitochondria.
Release of cytochrome c, increased ROS production, the opening
of mitochondrial permeability transition pore (mPTP), and
oxidative damage all lead to selective autophagy of damaged
mitochondria deemed mitophagy (Quinsay et al., 2010). When
mitophagic function is overwhelmed, autophagy can be initiated
on a grander scale leading to cell death and apoptosis.

As discussed earlier, autophagy is defective in aging and age-
related diseases, mainly due to reduced clearance of subcellular
organelles/proteins, such as mitochondria, endoplasmic
reticulum, and other cellular debris. We discuss the detailed
events of autophagy later.

Microautophagy
Microautophagy is a process in which a lysosome or vacuole
will engulf cellular material directly in response to states of
starvation (Mijaljica et al., 2011; Oku and Sakai, 2018; Yoo
and Jung, 2018). The mechanisms that regulate microautophagy
are poorly understood, with most microautophagy research
being performed primarily in a yeast cell. These studies
focused primarily on the mechanism by which lysosomes engulf
peroxisomes by altering the environmental carbon source from
methanol to glucose (Sienko et al., 2020). Microautophagy can
be carried out both in a non-selective and selective process that

targets proteins and organelles. In the non-selective form of
microautophagy, the mechanism of absorption is based on the
size of what is being engulfed. For smaller cytosolic contents
such as proteins, tubular invaginations form in the vacuolar
membrane, which then pinch off into autophagic vesicles. The
invaginations are formed through the action of a GTPase and
can occur without the normal proteins of vacuole fusion such as
SNAP receptors and N-ethylmaleimide sensitive factor.

Larger structures like organelles cannot fit in these
invaginations, so the vacuole will form finger-like projections
that can engulf cellular contents and fuse to absorb the contents
into the vacuole. This process is partially dependent on the
target of rapamycin (TOR) and exit from the rapamycin-induced
growth arrest (EGO) complex. The TOR complex is also related
to macroautophagy, and the intersection of these processes
is counterbalanced in such a way that excessive autophagy
does not occur (Oku and Sakai, 2018). Utilizing yeast mutants,
studies have shown that some Atg genes that are involved in
macroautophagy also play as key enzymes in microautophagy
(Dunn et al., 2012). Micropexophagy, the selective autophagy
of peroxisomes, is carried out in a series of steps, including
initiation, target recognition, peroxisome sequestration, and
terminal vacuole enclosure, and it has been shown that all of
these steps are mediated by a series of Atg proteins. It has
also been shown that non-selective microautophagy and other

FIGURE 2 | Overview of various forms of autophagy including, (A) microautophagy in which lysosomal invaginations directly take up cellular substrate, (B)
chaperone-mediated autophagy in which chaperone proteins target specific proteins to lysosomal membrane proteins, and (C) macroautophagy in which
phagophore formation around cellular substrate occurs and is trafficked to the lysosome where it will fuse.
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selective autophagy are reliant on Atg proteins as well (Sienko
et al., 2020). The exact role Atg proteins plays in microautophagy,
and the regulating mechanisms surrounding microautophagy are
poorly understood and warrant further study. One key challenge
in understanding these processes is how it is being studied;
microautophagy induced in vitro does not accurately represent
physiological states in vivo.

Chaperone-Mediated Autophagy
Chaperone-mediated autophagy (CMA) is a form of autophagy
in which specific proteins are targeted by chaperone proteins
and trafficked to lysosomes where they directly enter through
the membrane (Majeski and Dice, 2004; Dice, 2007; Li et al.,
2012). CMA has only been found in higher eukarya and is an
important mechanism for the maintenance and regular turnover
of cellular proteins to help ensure optimal function. Although
CMA is also used in times of energy deficiency, activation of this
pathway is slower than macroautophagy and may play a more
important role in regulating the amounts of specific proteins
in metabolic pathways. The constitutive chaperone, heat shock-
cognate protein of 70 kDa (hsc70), targets a pentameric motif
within proteins for autophagy. In some cases, the motif is not
accessible by hsc70 until the protein becomes unfolded due
to degradation or if post-translational modification by other
proteins alters the charge state of a pentamer to the appropriate
motif. Once the hsc70-protein dimer arrives at the lysosome, it
interfaces with lysosome-associated membrane protein type 2A
(LAMP-2A), forming a complex with other lysosomal membrane
proteins to allow for the translocation of the substrate directly
into the lysosomal lumen for degradation. The maximal rate of
CMA is primarily dependent on the amount of LAMP-2A within
the lysosomal membrane (Li et al., 2012). LAMP-2A transcription
is increased in times of oxidative stress and decreased in times of
prolonged starvation.

Malfunctions in the CMA pathway play a key role in
the pathogenesis of many human disorders, including some
neurodegenerative diseases (Dice, 2007). Decreases in the
CMA pathway compromise a cell’s ability to properly remove
deleterious proteins leading to accumulation within cells. Such
accumulations alter proteostasis and can lead to the deposition
of protein aggregates leading to neuronal demise (Majeski and
Dice, 2004). It has been observed that in normal physiological
aging, CMA decreases. Age-related changes in CMA activity
have been linked to alterations in the lipid composition of
lysosomal membranes, which threatens the integrity of LAMP-
2A proteins (Cuervo and Wong, 2014). CMA function is
imperative in maintaining protein integrity and ensuring proper
cellular function.

Macroautophagy
Macro-autophagy is the most studied and most understood mode
of autophagy. The defining mechanism of macro-autophagy
is the de novo formation of a double-membrane vesicle
termed “autophagosomes,” which engulfs cellular debris. Macro-
autophagy follows five steps for breakdown: (1) induction of the
isolation membrane, (2) elongation of membrane, (3) closure
and autophagosome formation, (4) autophagosome–lysosome

fusion, and (5) lysosomal degradation. In yeast, the formation
of autophagosomes is initiated at the phagophore assembly site,
which is a single site adjacent to the vacuole (Glick et al., 2010).
In eukaryotes, the formation of autophagosomes is initiated
at multiple sites throughout the endoplasmic reticulum called
omegasomes. The initial formation of the double-membrane is
termed the phagophore, which rapidly begins to expand into
the spherical autophagosome. The autophagosome will bend
and engulf its target within its double-membrane and then be
translocated to the lysosome or vacuole. Once at the target site,
the autophagosome will fuse with the lysosome, at which point it
becomes the autolysosome. The acidic contents of the lysosomal
lumen then break down the autophagosomal membrane as well
as its contents, and the breakdown products are exported back
into the cellular cytoplasm for reuse in biosynthetic pathways.
In mammals, autophagosomes can integrate into the endocytic
pathway and fuse with endosomes, which are subsequently
broken down together (Deter and De Duve, 1967).

The mechanisms by which macroautophagy is regulated were
first studied in yeast, and many autophagy-related genes (Atg)
were identified. Many of the Atg proteins are found in other
eukaryotic organisms, including mammals, but some of the
Atg proteins have homologs, such as the Unc-51-like kinase
family, which serves the same role as yeast Atg13 (Parzych and
Klionsky, 2014). The mammalian system of macroautophagy
is more complex than yeast systems and includes many
additional regulatory proteins. Both yeast and mammalian
autophagosomes require proteins that regulate autophagosome
nucleation and elongation.

Several stressors trigger macroautophagy, such as nutrient
deficiency, insulin concentrations, endoplasmic reticulum stress,
and energy levels. Due to the role macroautophagy plays in
cellular recycling, autophagosome formation is tightly regulated
by two major pathways that are sensitive to carbon and nitrogen
balance. The cAMP-dependent protein kinase A (PKA) pathway
regulates macroautophagy by sensing carbon balance within
both yeast and mammalian cells. PKA activation by high
cAMP concentrations signals a nutrient-rich state within the
cell and will inhibit further cellular recycling by autophagy. The
mammalian target of rapamycin complex 1 (MTORC1) is a key
protein in macroautophagy that is sensitive to amino-acid levels
within a cell, which in turn is an indicator of the nitrogen balance
(Kiffin et al., 2007). Some studies have shown that PKA interacts
with MTORC1 and can phosphorylate and activate MTORC1,
suggesting that these pathways are linked. In mammalian cells,
AMP-activated protein kinase (AMPK) is a substrate of PKA and
is a major energy-sensing kinase that responds to cellular AMP
levels, which is a strong indicator of the energy level within a
cell. Yeast has a similar mechanism in which macroautophagy
is regulated by energy-sensing using the Snf1, which works
similarly to AMPK. Endoplasmic reticulum stress can also
precipitate autophagosome formation. Calmodulin-dependent
protein kinase 2, beta (CaMKKβ) activation leads to increased
cytosolic Ca2+ concentrations, which can induce AMPK and
subsequently macroautophagy. The endoplasmic reticulum can
also detect unfolded proteins, which will induce macroautophagy
through similar mechanisms. As macroautophagy is the most
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well-studied of autophagic pathways, we will use the term
autophagy to describe it hereafter.

Proteins of Autophagy
Due to the importance of autophagy in maintaining cellular
integrity and health, many proteins are involved in the induction
and maintenance of these pathways. Although not an exhaustive
list, we will briefly discuss some of the major proteins of
autophagy in the following sections.

Mammalian Target of Rapamycin
Mammalian Target of Rapamycin is a complex of 2 protein
kinases consisting of MTOR1 and MTOR2 that is sensitive
to cellular nutrition levels and plays a role in regulating cell
growth and survival via autophagy (Hale et al., 2012; Lett,
2016). MTOR is integrated into many cell survival pathways
and utilizes nutrition levels to modulate cell growth. In
nutrient-rich conditions, MTOR is activated, leading to the
phosphorylation of key autophagy enzyme Unc-51-like kinase-
1 (ULK1). Phosphorylation of ULK1 suppresses protein activity
and prevents phagosome formation.

Unc-51-Like Kinase-1/ATG13
Unc-51 like kinase-1 is a protein associated with MTOR that
will dissociate in response to nutrient-poor cellular conditions.
ULK1 then acts to phosphorylate both ATG13 and RB1-inducible
coiled-coil 1, which are proteins required to form phagosomes
around cellular content (Khang et al., 2011). ULK1 also acts on
a multitude of proteins involved in autophagy progression and
regulation, including Beclin1 and Ambra1.

Beclin1 and Ambra1
Beclin1 is a key protein of autophagy activated by ULK1. Once
activated, Beclin1 promotes the formation of the Vps34 complex,
which consists of BCL1, Vps34/CIII PI3K, and Vps15 (Lett,
2016). The Vps34 complex is a key regulator of autophagy
initiation and progression. Beclin1 contains three structural
domains, a Bcl-2 homology 3 (BH3) domain, a central coiled-
coil domain, and an evolutionarily conserved domain. Under
normal cellular conditions, the BH3 domain interacts with
Bcl-2 to inhibit autophagy. The coiled-coil domain interacts
with multiple proteins that promote activation of autophagy,
including Ambra1, UV radiation resistance association gene,
and Atg14L (Khang et al., 2011). The evolutionarily conserved
domain allows Beclin1 to modulate autophagy and inhibit
tumorigenesis. As previously noted, Ambra1 is an essential
activator of the Beclin1-dependent pathway of autophagy, but
it also promotes stabilization of ULK1 and kinase activity
(Maria Fimia et al., 2007).

Phagosome Elongation
Phagosome completion around targeted cytosolic content is
accomplished by a series of ATG genes primarily through
2 ubiquitin-like systems. ATG7 is activated in an ATP-
dependent manner, which then activates ATG12. ATG12 then
is complexed to ATG5 by ATG10, an E2-like enzyme, and
forms the first complex, ATG5-ATG12-ATG12L1. This complex

works to elongate the phagophore. The second system starts
with MAP1LC3, the mammalian ATG8 homolog, and ATG4B.
ATG4B cleaves LC3 into LC3-I, which is conjugated to
phosphatidylethanolamine via ATG3 and ATG7 forming LC3II.
LC3II is integrated into the nascent phagosome membrane
and acts as a marker that facilitates phagophore fusion with
lysosomes (Hale et al., 2012). Together, these two systems help
complete phagosome formation and target it to the lysosome
for degradation.

SELECTIVE AUTOPHAGY

Autophagy in response to nutrient imbalances usually occurs as
a non-specific process, but it can also be conducted in a highly
specific manner for cell maintenance by targeting peroxisomes,
mitochondria, and other organelles (He and Klionsky, 2010).
Selective autophagy plays a role in destroying malignant cells,
damaged organelles, invasive pathogens, protein aggregates, and
excess peroxisomes. In selective autophagy, autophagosomes
target specific cargo using the Atg-8 family proteins on the
isolation membrane (Mehrpour et al., 2010). CMA also only
works as a selective process, utilizing Hsc-70 chaperone proteins
to traffic targeted proteins to lysosomal receptors for recycling. In
mammalian cells, Atg8 analogs such as LC3 and GABARAP help
to selectively sequester target substrate within autophagosomes
utilizing cargo-specific receptors (Majeski and Dice, 2004; Dice,
2007; Li et al., 2012). LC3-interaction regions (LIR) have
been shown to not only play a role in autophagy but also
recruit other autophagosomal proteins. Ubiquitin is a well-
known marker targeting proteins for degradation, and it is also
used to mark cellular material for autophagy. Other pathways
exist for specific autophagy independent of ubiquitin as well.
Many selective autophagy pathways have been discovered and
named according to the cellular target, such as mitochondria
(mitophagy), ribosomes (ribophagy), endoplasmic reticulum
(reticulophagy), peroxisomes (pexophagy), and many other
organelle-specific mechanisms. Although selective autophagy
ultimately utilizes many of the same mechanisms underlying
non-selective autophagy, certain proteins and factors are
associated with each organelle that will induct the autophagy
machinery (He and Klionsky, 2010; Zaffagnini and Martens,
2016). Although all forms of specific autophagy play an
important role in cell maintenance and health, we focus on
mitophagy in this paper.

Mitophagy
As previously discussed, mitophagy is the selective autophagy of
mitochondria and has been a focus of research in recent years
for its potential role in many diseases (Lynch-Day and Klionsky,
2010; Youle and Narendra, 2011; Pradeepkiran and Reddy, 2020).
Mechanisms underlying mitophagy are best documented in yeast
studies, and several proteins are essential for mitophagy (Ding
and Yin, 2012). One such protein is Uth1, a SUN-domain protein
essential for mitophagy in yeast (Ashrafi and Schwarz, 2013).
Ancient ubiquitous protein, a phosphatase 2C, plays a role in
facilitating mitophagy in yeast in a stationary phase (Tal et al.,
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2007; Youle and Narendra, 2011). Ancient ubiquitous protein
is not required for non-specific autophagy. Although Atgs are
utilized in all autophagy pathways, a few have been shown to play
a role in the selective uptake of mitochondria. In two studies, it
has been shown that Atg 32 is a mitochondrial receptor capable of
inducing mitophagy in yeast. Atg32 can bind to Atg11, which acts
as an adaptor to Atg8, which is thought to signal mitochondria
absorption into autophagosomes (Kanki et al., 2009; Okamoto
et al., 2009).

Although these proteins are essential in yeast for mitophagy,
no homologs have been found in mammalian cells with their
own pathways for initiating mitophagy. Although mitochondria
play a pivotal role in protecting cells from oxidative stress, they
themselves are not immune to the destructive effects of reactive
species. Proteins involved in mitophagy that are responsible for
the upkeep of healthy mitochondrial populations are encoded
by nuclear DNA and so are subject to the mutative effects
of oxygen species (Sun et al., 2016; D’Amico et al., 2019).
Furthermore, post-translational modifications observed in aging
have been associated with decreased expression of mitophagy
proteins, which accelerates the aging process. Studies have
demonstrated that Pumilio2 (Pumilio homolog 2 is an RNA-
binding protein) regulates synaptic plasticity via translational
repression of synaptic receptors and is activated in aging
leading to suppression of mitochondrial fission factor. This
disrupts mitochondrial dynamics, ultimately leading to decreased
mitochondrial fission and inhibiting mitophagy of abnormal
mitochondria. Both mitochondrial function and the ability of a
cell to conduct mitophagy are expected to decrease in normal
physiological aging; these effects are exacerbated in aging-related
diseases such as AD, which accelerates the decay of mitochondrial
function. Due to the essential role of mitophagy in maintaining
cellular health, several mechanisms for its regulation exist.
Although not an exhaustive list, the two most predominant
pathways are discussed in the next sections.

PTEN-Induced Putative Kinase 1/Parkin
Pathway
One of the most well understood and important regulators of
mitophagy is the PINK1/Parkin pathway (Figure 3). PTEN-
induced putative kinase 1 (PINK1) is a serine/threonine kinase
localized in the inner mitochondrial membrane. In healthy
mitochondria, PINK1 is constantly degraded by mitochondrial
proteins, including matrix processing peptidases and presenilin-
associated rhomboid-like (Youle and Narendra, 2011; Ding and
Yin, 2012; Ashrafi and Schwarz, 2013). Fragmented PINK1
is then translocated to the cytosol and further degraded by
other proteases. In damaged mitochondria, the mitochondrial
membrane becomes depolarized, deactivating matrix processing
peptidases and presenilin-associated rhomboid-like. PINK1 can
then auto-phosphorylate, leading to activation and accumulation
on the outer mitochondrial membrane, where it then can
recruit cytosolic Parkin (Pickrell and Youle, 2015). Parkin,
an E3 ubiquitin ligase, is phosphorylated by PINK1 and
subsequently translocated into the mitochondrial membrane
(Ashrafi and Schwarz, 2013). Once phosphorylated, Parkin

enters the mitochondria, where it is believed to play a
role in the ubiquitylation of mitochondrial proteins and
substrate, marking the mitochondria for autophagy. Once protein
Parkin works on, mitofusin 1, becomes activated, leading to
mitochondrial fission, allowing for easier mitophagy (Pickrell
and Youle, 2015). Ultimately, phosphorylation of Parkin by
PINK1 leads to the initial induction of mitophagy in damaged
or defective mitochondria.

BNIP3/NIX Pathway
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3
and NIX are both transmembrane proteins found in the outer
mitochondrial membrane that share a similar structure and play
a role in mitophagy (Zhang and Ney, 2009; Ney, 2015). These
proteins were initially found to play a role in the selective
exocytosis of mitochondria from nascent red blood cells, and
their presence is required for the final maturation of RBCs.
BNIP3 contains a BH3 domain as well as a carboxyl-terminal
transmembrane domain, which works as a pro-apoptotic factor.
The transmembrane of the domain of BNIP3 is required for
mitochondrial targeting and subsequent pro-apoptotic activity
(Ney, 2015). Expression of BNIP3 and NIX has been shown
to increase in hypoxic cell conditions leading to cytochrome C
release, membrane depolarization, and mitochondrial swelling.
Nix has also been shown to directly interact with LC3 and
GABARAP, which are inducers of the general autophagic
machinery (Ding et al., 2010). Although the exact role of BNIP3
and NIX in the induction of mitophagy is not well understood,
several potential mechanisms have been proposed. The role of
these proteins in membrane depolarization has been shown to
play a role in the induction of general autophagy mechanics,
and Nix may play a role in ROS generation, which leads to
the recruitment of markers for autophagy. A second theory is
that BNIP3 and NIX competitively bind BCL2, liberating Beclin-
1, which can then activate autophagy. The last theory is that
BNIP3 inhibits Rheb, an upstream target of the mTOR, thereby
inducing autophagy (Ney, 2015). Most studies suggest that BNIP3
and NIX do not act through a singular pathway and that they
may work through several pathways to promote mitophagy and
cell death. Although other pathways are theorized to play a role
in mitochondrial autophagy, they are not well understood and
believed to work in mechanisms similar to those outlined earlier.

ALZHEIMER’S DISEASE

Alzheimer’s disease is an insidious neurodegenerative disease
characterized by the presence of senile plaques composed of
amyloid-beta (Aβ) peptides and the formation and accumulation
of hyper-phosphorylated tau into neurofibrillary tangles in the
brain (Selkoe, 2010; Hyman et al., 2012; Reiss et al., 2018; Shefa
et al., 2019). Although the exact pathogenesis of AD is not well
understood, it is believed that both Aβ and neurofibrillary tangles
play a major role in the progression and symptoms present in AD.
AD is one of the most common forms of dementia worldwide
and is believed to be the sixth leading cause of death in the
United States (Reiss et al., 2018). Increases in life expectancy have
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FIGURE 3 | Mechanism by which PINK1/Parkin pathway for autophagy occurs in healthy (A) and damaged mitochondria (B).

greatly increased the number of cases of dementia, driving more
research into the underlying causes and progression of aging and
AD. The defining features of AD include cognitive impairment
due to synaptic dysfunction, increased confusion, and issues with
short-term memory loss, which progressively worsens (Reddy
et al., 2017). Most cases of AD are sporadic and occur late in
life, but genetic components are found in approximately 2% of
cases and are termed “familial” AD with symptoms manifesting
as early as 30–40 years of age. Most cases of familial AD are
associated with genetic alterations in genes coding for proteins
related to the processing of amyloid precursor protein or amyloid
precursor protein itself. In particular, mutations in the presenilin
1 (PS1), a core component of γ-secretase, which plays a role
in APP processing, is a major risk factor for developing early-
onset AD (Goiran et al., 2018). Alterations in the processing
proteins of APP leads to an increased amount of Aβ-42, which
is believed to play a role in AD pathogenesis. Diagnosis of AD
is through cognitive testing supported with imaging techniques
such as magnetic resonance imaging. However, due to the
normal, expected cognitive decline with age, it can be difficult to
diagnose AD in the early stages of the disease.

Amyloid Beta
In AD, accumulation of Aβ into oligomers and fibrils is
implicated as one of the early events in AD development and
progression (Reddy, 2006; Reddy and Oliver, 2019; Murphy
and Levine, 2010; Hamley, 2012). Aβ plaques accumulate in
the hippocampus, amygdala, and associated neocortex, all of
which play roles in memory formation. Aβ is generated as the

breakdown of amyloid precursor protein (APP) by cleavage via
secratases. Although the exact role of APP is not well understood,
the breakdown products, including Aβ, play a role in AD
(Zhang et al., 2011; Lauritzen et al., 2019). APP is processed
via two different pathways, including the non-amyloidogenic
pathway in which APP is cleaved by α-secretase to produce
sAPPα, which is believed to play a role in neuronal survival
and is further processed by γ-secretases to produce p83. The
second pathway, termed the amyloidogenic pathway, involves
APP processing by β-secretases and subsequent processing by
γ-secretases into Aβ. Although the first pathway produces
benign breakdown products of APP, the formation of Aβ

as well as the intermediates of the amyloidogenic pathway
are associated with AD pathogenesis. Although many lines
of research have demonstrated an association between Aβ

and AD, more recent lines of research have suggested that
some of the other breakdown intermediates of APP, namely
C9, may also play a role in AD (Laurtizen et al., 2016).
Cells with impaired lysosomal function show increased levels
of C99, which has been associated with AD. Furthermore,
in studies with mice with increased expression of C99,
neuronal populations displayed significantly reduced long-term
potentiation, suggesting that C99 may play a role in AD
progression. Studies with transgenic mice have demonstrated that
C99 upregulation can lead to AD pathology even in the absence
of Aβ (Laurtizen et al., 2016).

Overall, the accumulation of Aβ leads to mitochondrial
dysfunction, synaptic damage, and defective autophagy
within neuronal cells.
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Abnormal Interactions of Amyloid Beta
With Drp1 and Defective Mitophagy
Abnormal interactions of amyloid beta and phosphorylated
tau with mitochondrial and other cellular proteins have been
reported in AD (Manczak et al., 2011; Manczak and Reddy,
2012a,b; Reddy and Oliver, 2019).

Reddy Lab (Manczak et al., 2011) investigated the molecular
links between increased mitochondrial fission protein Drp1 and
Aβ using co-immunoprecipitation and colocalization studies.
Utilizing postmortem AD brains and brain tissues from APP
mice and Drp1 immunoprecipitation/immunoblotting analysis
of Aβ antibodies 6E10 and A11 revealed that Drp1 interacts
with Aβ monomers and oligomers in AD patients and APP
mice. These abnormal interactions are increased with disease
progression. Their colocalization studies using Drp1 and the
Aβ antibodies revealed the colocalization of Drp1 and Aβ

(Manczak et al., 2011). These findings suggest that increased
production of Aβ and the interaction of Aβ with Drp1 are crucial
factors in mitochondrial fragmentation, abnormal mitochondrial
dynamics, and synaptic damage in AD.

Amyloid Beta Interaction With
Voltage-Dependent Anion Channel 1 and
Defective Mitophagy
To determine the role of mitochondrial outer membrane protein,
voltage-dependent anion channel 1 protein (VDAC1) in AD, the
Reddy group (Manczak and Reddy, 2012b) used brain specimens
from AD patients and control subjects and 6-, 12- and 24-month-
old Aβ precursor protein transgenic mice to assess VDAC1
protein levels. Furthermore, they also studied the interaction
between VDAC1 and Aβ (monomers and oligomers) using
cortical tissues from AD patients, control subjects, APP, APP/PS1,
and 3XTg.AD mice. They also studied age- and VDAC1-
linked, mutant APP/Aβ-induced mitochondrial dysfunction in
APP and non-transgenic wild-type (WT) mice. Progressively
increasing levels of VDAC1 in the cortical tissues from the
brains of patients with AD were observed relative to control
subjects, and significantly increased levels of VDAC1 were
found in the cerebral cortices of 6-, 12- and 24-month-
old APP transgenic mice relative to the age-matched control
WT mice. Co-immunoprecipitation and co-labeling analysis of
postmortem AD brains and brain tissue from APP transgenic
mice revealed that VDAC1 interacted with Aβ in the brains
of AD patients and APP, APP/PS1, and 3XTg.AD mice. They
found progressively increased mitochondrial dysfunction in APP
mice relative to control WT mice. Based on these observations,
they concluded that VDAC1 interacts with Aβ and may in turn
block mitochondrial pores leading to mitochondrial dysfunction
in AD pathogenesis.

Based on these observations, they propose that reduced levels
of VDAC1, Aβ, and phosphorylated tau may reduce the abnormal
interaction between VDAC1 and APP, VDAC1 and Aβ. Reduced
levels of VDAC1 and Aβ may maintain normal mitochondrial
pore opening and pore closure, ultimately leading to normal
mitochondrial function, allowing mitochondria to supply ATP to

nerve terminals and boosting synaptic and cognitive function in
AD (Manczak and Reddy, 2012b).

Phosphorylated Tau
Tau proteins normally play a role in the assembly and
stabilization of microtubules and other cytoskeletal elements
within neurons. However, when tau becomes hyper-
phosphorylated, it loses its activity leading to disruption of
the cytoskeleton, causing synaptic transmission dysfunction
and neuronal death (Alonso et al., 1994; Rajmohan and Reddy,
2015). Hyper-phosphorylated tau (P-tau) will form paired helical
filaments, which will then aggregate to form the neurofibrillary
tangles characteristic of AD. Studies with transgenic mouse
models of AD suggest that Aβ toxicity is mediated by tau.
It has also been shown that Aβ plays a role in triggering the
hyper-phosphorylation of tau, suggesting that generation of
Aβ precedes the accumulation of P-tau (Rapoport et al., 2002).
Oxidative stress from other sources, such as decreased levels
of insulin-like growth factor 1, has also been implicated in the
formation of P-tau, leading to decreased cell viability. Loss of
cytoskeletal integrity and subsequent neuronal death leads to the
symptoms associated with AD.

Phosphorylated Tau Interaction With Drp1 and
Defective Mitophagy
In a previous study, the Reddy lab (Manczak and Reddy, 2012a)
tested whether P-tau interacted with Drp1 and attempted to
elucidate how mitochondria are damaged in the progression of
AD. They also investigated GTPase Drp1 enzymatic activity,
which is critical for mitochondrial division in postmortem brain
tissues from patients with AD as well as brain tissues from
three different lines of transgenic APP, APP/PS1, and 3XTg.AD
mice. Using co-immunoprecipitation and immunofluorescence
analyses, they demonstrated the physical interaction between
P-tau and Drp1 for the first time. Mitochondrial fission-
linked GTPase Drp1 activity was significantly elevated in
the postmortem frontal cortex tissues from AD patients
and cortical tissues from APP, APP/PS1, and 3XTg.AD
mice. Based on these findings, they concluded that Drp1
interacts with P-tau, likely leading to excessive mitochondrial
fragmentation and mitochondrial synaptic deficiencies and
ultimately leading to neuronal damage and cognitive decline
(Manczak and Reddy, 2012a).

Phosphorylated Tau Interaction With
Voltage-Dependent Anion Channel 1 Protein and
Defective Mitophagy
To determine the role of mitochondrial outer membrane protein,
VDAC1 and its interaction with p-tau in AD, the Reddy group
(Manczak and Reddy, 2012b) studied the interaction between
VDAC1 and phosphorylated tau, using cortical tissues from AD
patients, control subjects, APP, APP/PS1, and 3XTg.AD mice.
They found increased levels of VDAC1 in the cortical tissues
from the brains of patients with AD, relative to control subjects.
Co-immunoprecipitation and co-labeling analysis of postmortem
AD brains, brain tissues from tau transgenic mice revealed that
VDAC1 interacted with phosphorylated tau in the brains of
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AD patients and 3XTg.AD mice. They concluded that VDAC1
interacts with phosphorylated tau, which may, in turn, block
mitochondrial pores, leading to mitochondrial dysfunction in
AD pathogenesis.

Based on these observations, they propose that reduced levels
of VDAC1 and phosphorylated tau may reduce the abnormal
interaction between VDAC1 and phosphorylated tau. Reduced
levels of VDAC1 and phosphorylated tau may maintain normal
mitochondrial pore opening and pore closure, ultimately leading
to normal mitochondrial function, mitochondria supplying ATP
to nerve terminals, and boosting synaptic and cognitive function
in AD (Manczak and Reddy, 2012b).

Mitochondrial Dysfunction in Alzheimer’s
Disease
Another common finding in AD postmortem brains is signs of
oxidative damage and mitochondrial dysfunction (Reddy, 2007;
Swerdlow et al., 2010). Mitochondria are responsible for the
majority of ATP generation and produces ATP through the ETC,
a series of complexes found within the inner mitochondrial
membrane. However, many byproducts are produced during
this process, including ROS, superoxide (O2

−), hydroxyl radicals
(OH.), and hydrogen peroxide (H2O2) (Reddy and Oliver, 2019).
ROS production plays a role in the degradation of both
chromosomal and mitochondrial DNA, leading to compromised
production of machinery, which can lead to even further ROS
production and cell death. Both Aβ and P-tau have been
associated with mitochondrial dysfunction in some way as well.

In several studies, it has been shown that microtubule
destabilization from overexpression of tau and hyper-
phosphorylation of tau leads to disruption of cellular trafficking
(Ebneth et al., 1998). Kinesin, the motor protein responsible
for transport to the cell periphery, is preferentially inhibited by
P-tau. In neurons where organelle transportation is important,
it was observed that mitochondria would concentrate in the
cell body and would not be present in neurites (Stamer et al.,
2002). Other organelles would likewise be affected, including
peroxisomes, which help to alleviate oxidative stress. The
increased concentration of organelles in the cell body prevents
further production of organelles leading to a decrease in the
numbers of important organelles, including mitochondria and
peroxisomes. With the deficit of these organelles, neurites are
made vulnerable by the decreased production of energy and
increased susceptibility to oxidative stress. Interruption of
kinesin-driven transport also negatively impacts the ability of
APP to be transported into axons and dendrites (Reddy et al.,
2004). This leads to the accumulation of APP within cell bodies,
which can then be processed into Aβ .

Many lines of research have shown that Aβ and APP play a
more direct role in mitochondrial dysfunction. Research done
on mice at various stages of AD showed that genes regulating
mitochondrial metabolism and regulators of apoptosis were
upregulated (Reddy et al., 2004). These findings suggest that
energy metabolism in the presence of Aβ impairs mitochondrial
energy metabolism and that the upregulation of genes is a
compensatory response. The same study examined mRNA

expression in patients with early AD and definite AD and found
downregulation of mitochondrial genes in complex 1 of the ETC,
whereas genes for complexes III and IV were upregulated in
both populations. Increased expression of complexes III and IV
suggests that greater demand is put on the mitochondria for
energy output. Aβ also directly interfaces with mitochondrial
proteins. In vitro studies show Aβ peptides (25-35) are capable
of blocking the entry of proteins into mitochondria leading to
mitochondrial dysfunction, membrane depolarization, increased
ROS production, and altered mitochondrial morphology (Reddy
and Beal, 2005; Moreira et al., 2007). Increased ROS production
from mitochondria also activates the fission proteins Drp1
and Fis1, causing mitochondrial fragmentation (Barsoum et al.,
2006). Studies have also shown that Aβ and APP can enter
mitochondria, and Aβ is able to form oligomers within
mitochondria (Devi et al., 2006; Manczak et al., 2006). To further
reinforce the role of Aβ, genetic analysis of individuals with
familial AD commonly show defects in amyloid-beta precursor
protein (APP) and presenilin 1 and 2 (Martin-Maestro et al.,
2016). Aberrant APP produces more Aβ-42, the isoform of
Aβ that is implicated in pathology, and presenilin 1 and 2
are essential cofactors for γ-secretase, which is the final step
of processing of APP into Aβ. Overall, the role of Aβ in
mitochondrial disruption is multifaceted, with many different
pathways in which Aβ can both, directly and indirectly, interfere
with normal mitochondrial function.

DYSFUNCTIONAL MITOPHAGY IN
AGING

The major role of mitochondria in energy generation
and ROS regulation makes their integrity paramount
to cell health. Dysfunction in the mitochondrial health
checkpoints and mitophagy machinery has been implicated
in the acceleration of physiological aging and neurological
diseases such as AD (Magrané et al., 2014; Ye et al., 2015;
Rodolfo et al., 2018; Pradeepkiran and Reddy, 2020). The
unique structure of neurons and their high energy demand
makes neurons particularly reliant on proper mitochondrial
function, and loss of mitochondrial integrity can lead to
neuronal population loss and neurodegeneration (Figure 4).
Neurons are also a non-proliferating cell type and so will
accumulate cellular and oxidative stress over long periods
(Bakthavachalam and Shanmugam, 2017).

As previously discussed, impairment of mitophagy can occur
in several ways, but all ultimately lead to improper turnover
of damaged mitochondria, accumulation of mitochondrial
debris, and ultimately cell death (Figure 4). Neurodegenerative
diseases have a complex set of symptoms and causative
events, but most have familial forms that have helped to
elucidate potential mechanisms underlying pathology. Several
aberrant genes identified in these diseases have been linked
to autophagy, implicating the role of autophagy in symptom
genesis and progression. However, due to the complexity of the
autophagic pathways and their regulators, the exact steps leading
to pathology have been obfuscated. Despite the complexity,
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FIGURE 4 | Mitochondrial profile of neurons in (A) healthy neurons, (B) neurons with disrupted microtubule networks, (C) neurons with upregulated mitochondrial
dynamic proteins, and (D) damaged neurons observed in Alzheimer’s disease.

autophagy is generally broken down into a few steps: initiation,
elongation, cargo recognition, and fusion with lysosomes.

DEFECTIVE MITOPHAGY IN
ALZHEIMER’S DISEASE

As previously discussed, both soluble Aβ and abnormally
phosphorylated tau characteristically found in AD directly
interact with mitochondria and impair function. Beyond
the role Aβ plays in mitochondrial function, Aβ impacts
mitochondrial mRNA and protein expression in mice with
increased expression of APP (Reddy et al., 2018). Mitochondrial
structural genes, autophagy genes, and mitophagy-specific
genes have all been shown to change in some way. Of the
mitochondrial structural genes, Drp1 and Fis1, which both
play a role in mitochondrial fission, have increased expression.
Mfn1, Mfn2, and OPA1, proteins of mitochondrial fusion,
were shown to have decreased levels of mRNA expression.
Combined, these alterations in protein expression lead to
increased mitochondrial fission and fragmentation making it
harder for the mitophagy machinery to keep up with the
cellular demand to clean out damaged mitochondria. Other
genes examined in this study included genes for proteins
that regulated autophagy and mitophagy, which were all
downregulated. Of note, PINK1 was observed to have a 2.4-
fold decrease in mRNA expression, and the PINK1/Parkin

pathway has been considered one of the main pathways
in which mitophagy is carried out. These data suggest
that the initiation and cargo recognition component of
mitophagy is greatly inhibited by Aβ. Furthermore, initial Aβ

accumulation and related mitochondrial damage aggressively
induce the PINK1/Parkin pathway of mitophagy (Cai and
Jeong, 2020). As the disease progresses, cytosolic Parkin is
depleted, leading to reduced cellular mitophagy capabilities
over time. Although this phenomenon does not inhibit the
mitophagy pathway, it still decreases the cell’s capability to
recycle damaged mitochondria leading to cellular stress. Studies
have shown that basal levels of mitophagy can be restored
in some cases when Parkin levels are overexpressed in mice
(Martin-Maestro et al., 2016).

Early studies into the effects of abnormal tau on mitochondrial
dynamics have focused primarily on the impairment of cellular
trafficking. The destabilization of microtubule networks and
interruption of organelle migration leads to the accumulation
of damaged organelles within the neuronal soma. It has been
found that tau also plays a role in inducing mitophagy by
modulating membrane potential and Parkin levels (Hu et al.,
2016). In individuals with increased total levels of tau and
AD, increased mtDNA for mitophagy markers was observed,
suggesting a mitophagy deficit within cells. The study also
found that the membrane potential of mitochondria actually
increases in the presence of abnormal tau, leading to decreased
levels of PINK1 within mitochondria and subsequently decreased
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FIGURE 5 | Hypothetical outline of events of the pathogenic steps in the mitochondrial cascade hypothesis leading to death of neurons. Steps outlined in black are
observed in normal physiological aging, whereas steps outlined in red are characteristics of AD that accelerate these processes.

Parkin localization to mitochondria. Tau also directly interacts
with Parkin, which directly interacts with the projection
domain of Tau, leading to the cytosolic sequestration of
Parkin (Cummins et al., 2019). Tau has also been shown
to interact with Drp1, suggesting that tau also plays a role
in the excessive mitochondrial fragmentation observed in
AD (Manczak and Reddy, 2012a). As noted, the effects on
mitochondrial dynamics by tau are widespread and inhibit
mitophagy in multiple ways.

Defective PINK1 and Parkin in
Alzheimer’s Disease
Recently, Ye et al. (2015) studied Parkin-mediated mitophagy
using mutant hAPP neurons and AD patient brains. They found

Parkin-mediated mitophagy is involved in mutant hAPP neurons
and postmortem AD brains. In the absence of 1ψm dissipation
reagents, hAPP neurons exhibit increased recruitment of
cytosolic Parkin to depolarized mitochondria. Under AD-
linked pathophysiological conditions, Parkin translocation
predominantly occurs in the somatodendritic regions leading to
decreased anterograde and increased retrograde mitochondrial
axonal transport. Enhanced mitophagy was further confirmed
in AD brains, accompanied by depletion of cytosolic Parkin
over disease progression. Thus, aberrant accumulation of
dysfunctional mitochondria in AD-affected neurons is likely
attributable to inadequate mitophagy capacity and inability
to clear damaged mitochondria. Altogether, these studies
substantiate AD-linked chronic mitochondrial stress under
in vitro and in vivo pathophysiological conditions.
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Reddy et al. (2018) investigated the toxic effects of
hippocampal mutant APP (mAPP) and Aβ in primary mouse
hippocampal neurons (HT22) that express human APP Swedish
mutation. Using quantitative reverse-transcriptase polymerase
chain reaction, Western blotting and immunofluorescence,
and transmission electron microscopy studies, they assessed
mRNA and protein levels of synaptic, autophagy, mitophagy,
mitochondrial dynamics, and biogenesis of proteins and assessed
mitochondrial changes in mAPP-HT22 cells. Mitochondrial
function was assessed by measuring the levels of hydrogen
peroxide, lipid peroxidation, cytochrome c oxidase activity,
and mitochondrial adenosine triphosphate. Increased levels
of mRNA and protein levels of mitochondrial fission genes
(Drp1 and Fis1) and decreased levels fusion (Mfn1, Mfn2,
and Opa1) biogenesis (PGC1α, NRF1, NRF2, and TFAM),
autophagy (ATG5 and LC3BI, LC3BII), mitophagy (PINK1
and TERT, BCL2 and BNIPBL), synaptic (synaptophysin
and PSD95), and dendritic (MAP2) genes were found in
mAPP-HT22 cells relative to WT-HT22 cells. Cell survival
was significantly reduced by mAPP-HT22 cells. GTPase-
Drp1 enzymatic activity was increased in mAPP-HT22 cells.
Transmission electron microscopy revealed significantly
increased mitochondrial numbers and reduced mitochondrial
length in mAPP-HT22 cells. These findings suggest that
hippocampal accumulation of mAPP and Aβ is responsible for
the abnormal mitochondrial dynamics and defective biogenesis
of MAP2, autophagy, mitophagy, and synaptic proteins as well as
reduced dendritic spines and mitochondrial structural changes
in mAPP hippocampal cells.

Reddy Lab (Manczak et al., 2018) also investigated the
toxic effects of hippocampal mutant APP and Aβ in 12-
month-old APP transgenic mice (Tg2576 strain). Using
rotarod and Morris water maze tests, immunoblotting and
immunofluorescence, Golgi-cox staining, and transmission
electron microscopy, they assessed cognitive behavior, protein
levels of synaptic, autophagy, mitophagy, mitochondrial
dynamics, biogenesis, and dendritic protein MAP2 and
also quantified dendritic spines and mitochondrial number
and length in APP mice that express Swedish mutation.
Mitochondrial function was assessed by measuring the
levels of hydrogen peroxide, lipid peroxidation, cytochrome
c oxidase activity, and mitochondrial ATP. Morris water
maze and rotarod tests revealed that hippocampal and
memory and motor learning and coordination were
impaired in APP mice relative to WT mice. Increased
levels of mitochondrial fission proteins and decreased levels
of fusion, biogenesis, autophagy, mitophagy, synaptic,
and dendritic proteins were found in 12-month-old
APP mice relative to age-matched non-transgenic WT
mice. Golgi-cox staining analysis revealed that dendritic
spines were significantly reduced. Transmission electron
microscopy revealed significantly increased mitochondrial
numbers and reduced mitochondrial length in APP mice.
These findings suggest that hippocampal accumulation
of mutant APP and Aβ is responsible for abnormal
mitochondrial dynamics and defective biogenesis, autophagy,
mitophagy, and synaptic proteins and reduced dendritic

spines and hippocampal-based learning and memory
impairments in APP mice.

Fang et al. (2019b) also studied mitophagy in the progression
of AD in pluripotent stem cell-derived human AD neurons,
in animal AD models, and Aβ and tau Caenorhabditis elegans
models of AD. They also found mitophagy is impaired in the
hippocampus of AD patients, in induced pluripotent stem
cell-derived human AD neurons, and in animal AD models.
In both Aβ and tau C. elegans models of AD, mitophagy
enhancers reversed memory impairment through PINK- 1-,
Parkinson’s disease-related-1; parkin-, or DAF-16/FOXO-
controlled germline-tumor affecting-1-dependent pathways.
Mitophagy diminishes insoluble Aβ1−42 and Aβ1−40 and
prevents cognitive impairment in an APP/PS1 mouse model
through microglial phagocytosis of Aβ and suppression
of neuroinflammation. Mitophagy enhancement abolishes
AD-related tau hyperphosphorylation in human neuronal
cells and reverses memory impairment in transgenic tau
nematodes and mice. Their findings further support the
findings of previous studies of Ye et al. (2015), Reddy
et al. (2018), and Manczak et al. (2018) that defective
mitophagy is a major cellular change in AD progression
and pathogenesis.

Overall, these studies clearly demonstrate that PINK1 and
Parkin pathways are involved in AD. Both mRNA and protein
levels of PINK1 and Parkin and other mitophagy and autophagy
proteins are reduced in human and mouse AD cells and
both APP and tau transgenic mouse models. These reductions
inhibit/reduce mitochondrial function. Furthermore, the ability
to clear damaged mitochondria through mitophagy is also
compromised. The baseline-decrease in mitochondrial function
associated with age initiates events leading to the formation and
accumulation of Aβ, which exacerbates mitochondrial duress
in what is termed the “mitochondrial cascade hypothesis,”
introduced by Swerdlow et al. (2010) in Swerdlow et al.
(2010) (Figure 5). The intricate interplay among Aβ, tau, and
mitochondrial proteins is not completely understood, and further
investigations into the events triggering symptoms of AD still
need to be done.

CONCLUSION AND FUTURE
DIRECTIONS

Mitochondria play a key role in the production of energy and
balance of ROS within cells. Mitophagy, the selective breakdown
and clearance of aberrant and dead mitochondria, is a regulatory
process essential to promoting cellular health and maintaining
healthy mitochondrial populations. As a person age, oxidative
stress and cellular damage accumulate, and autophagic pathways
can become overwhelmed. This is especially true in non-actively
dividing cells such as neurons, and cortical degeneration is
commonly observed in aging populations.

AD, a characteristic illness of aging, is associated with
cognitive deficits, including loss of memory formation and
increased loss of cortical mass. Furthermore, characteristic
conglomerates of Aβ and fibrillary tangles of abnormally
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phosphorylated tau are observed within the brains of AD
patients. Recent research also revealed that phosphorylated tau
and fibrillary tangles are definitive AD features, both clinically
and pathologically. Synaptic damage and defective mitophagy are
early changes in disease progression, and as discussed earlier,
aging plays a key role in synaptic and autophagy and mitophagy
in AD progression and pathogenesis. Improved understanding
of microglial activation and mitochondrial damage in neurons,
particularly at synapses, is urgently needed.

In the past 20 years, the toxicity of these substrates has
been studied extensively, and their role in neuronal death
partially elucidated. The buildup of abnormal mitochondria is
noted in AD neurons. More recently, studies have focused on
the interaction between Aβ and tau on the components of
mitophagy. Although some interactions between Aβ and tau
and also Aβ and tau interactions with mitochondrial proteins
and the components of mitophagy have been noted; the exact
mechanisms and sequence of events leading to the genesis
of AD have yet to be elucidated. Accumulation of damaged
mitochondria, excessive mitochondrial fission, the buildup of
ROS within cells, and compromised cellular health are all noted
within neuronal populations in AD brains.

A major challenge in studies on the pathology of AD is
identifying individuals with early-onset AD as the symptoms

mimic what is normally expected in aging populations.
Identification of the early events of AD within these populations
can help elucidate the development of biomarkers and pathology
in AD and outline the mechanisms by which symptoms occur.
Further research could potentially develop mitophagy-based
therapies to block or even reverse the adverse effects of AD.
Further research is still needed to identify the role of mitophagy
in AD.

AUTHOR CONTRIBUTIONS

PR contributed to the conceptualization and formatting of
the article. MT and PR were responsible for writing, original
draft preparation, and finalization of the manuscript. PR was
responsible for funding acquisition. Both authors contributed to
the article and approved the submitted version.

FUNDING

The research presented in this article was supported by the
National Institutes of Health grants AG042178, AG047812,
NS105473, AG060767, AG069333, and AG066347.

REFERENCES
Ali, M., Devkota, S., Roh, J. I., Lee, J., and Lee, H. W. (2016). Telomerase reverse

transcriptase induces basal and amino acid starvationinduced autophagy
through mTORC1. Biochem. Biophys. Res. Commun. 478, 1198–1204. doi: 10.
1016/j.bbrc.2016.08.094

Alonso, A. C., Zaidi, T., Grundke-Iqbal, I., and Iqbal, K. (1994). Role of
abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer
disease. Proc. Natl. Acad. Sci. U.S.A. 91, 5562–5566. doi: 10.1073/pnas.91.12.
5562

Aman, Y., Frank, J., Lautrup, S. H., Matysek, A., Niu, Z., Yang, G., et al. (2020). The
NAD+-mitophagy axis in healthy longevity and in artificial intelligence-based
clinical applications. Mech. Ageing Dev. 185:111194. doi: 10.1016/j.mad.2019.
111194

Andreux, P. A., Blanco-Bose, W., Ryu, D., Burdet, F., Ibberson, M., Aebischer,
P., et al. (2019). The mitophagy activator urolithin A is safe and induces a
molecular signature of improved mitochondrial and cellular health in humans.
Nat. Metab. 1, 595–603. doi: 10.1038/s42255-019-0073-4

Aoki, H., Iwado, E., Eller, M. S., Kondo, Y., Fujiwara, K., Li, G. Z., et al. (2007).
Telomere 3’ overhang-specific DNA oligonucleotides induce autophagy in
malignant glioma cells. FASEB J. 21, 2918–2930. doi: 10.1096/fj.06-6941com

Ashrafi, G., and Schwarz, T. L. (2013). The pathways of mitophagy for quality
control and clearance of mitochondria. Cell Death Diff. 20, 31–42. doi: 10.1038/
cdd.2012.81

Babbar, M., Basu, S., Yang, B., Croteau, D. L., and Bohr, V. A. (2020). Mitophagy
and DNA damage signaling in human aging. Mech. Ageing Dev. 186:111207.
doi: 10.1016/j.mad.2020.111207

Bakthavachalam, P., and Shanmugam, P. S. T. (2017). Mitochondrial dysfunction –
Silent killer in cerebral ischemia. J. Neurol. Sci. 375, 417–423. doi: 10.1016/j.jns.
2017.02.043

Bakula, D., and Scheibye-Knudsen, M. (2020). Mitophaging: mitophagy in aging
and disease. Front. Cell. Dev. Biol. 15:239. doi: 10.3389/fcell.2020.00239

Barsoum, M. J., Yuan, H., Gerencser, A. A., Liot, G., Kushnareva, Y., Graber,
S., et al. (2006). Nitric oxide-induced mitochondrial fission is regulated by
dynamin-related GTPases in neurons. EMBO J. 25, 3900–3911. doi: 10.1038/
sj.emboj.7601253

Blackburn, E. H., Greider, C. W., and Szostak, J. W. (2006). Telomeres and
telomesrase: the path from maize, Tetrahymena and yeast to human cancer and
aging. Nature 12, 1133–1138. doi: 10.1038/nm1006-1133

Cai, Q., and Jeong, Y. Y. (2020). Mitophagy in Alzheimer’s disease and other
age-related neurodegenerative diseases. Cells 9:150. doi: 10.3390/cells9010150

Castellazzi, M., Patergnani, S., Donadio, M., Giorgi, C., Bonora, M., Bosi, C., et al.
(2019). Autophagy and mitophagy biomarkers are reduced in sera of patients
with Alzheimer’s disease and mild cognitive impairment. Sci. Rep. 9:20009.
doi: 10.1038/s41598-019-56614-5

Chen, G., Kroemer, G., and Kepp, O. (2020). Mitophagy: an emerging role in aging
and age-associated diseases. Front. Cell. Dev. Biol. 26:200. doi: 10.3389/fcell.
2020.00200

Cheon, S. Y., Kim, H., Rubinsztein, D. C., and Lee, J. E. (2019). Autophagy,
cellular aging and age-related human diseases. Exp. Neurobiol. 28, 643–657.
doi: 10.5607/en.2019.28.6.643

Cuervo, A. M., and Wong, E. (2014). Chaperone-mediated autophagy: roles in
disease and aging. Cell Res. 24, 92–104. doi: 10.1038/cr.2013.153

Cummins, N., Tweedie, A., Zuryn, S., Bertran-Gonzalez, J., and Jurgen, G. (2019).
Disease-associated tau impairs mitophagy by inhibiting Parkin translocation to
mitochondria. EMBO J. 38:99360. doi: 10.15252/embj.201899360

D’Amico, D., Mottis, A., Potenza, F., Sorrentino, V., Li, H., Romani, M., et al.
(2019). The RNA-binding protein PUM2 impairs mitochondrial dynamics and
mitophagy during aging. Mol. Cell. 73, 775–787. doi: 10.1016/j.molcel.2018.11.
034

Deter, R. L., and De Duve, C. (1967). Influence of glucagon, an inducer of cellular
autophagy, on some physical properties of rat liver lysosomes. J. Cell. Biol. 33,
437–449. doi: 10.1083/jcb.33.2.437

Devi, L., Prabhu, B. M., Galati, D. F., Avadhani, N. G., and Anadartheerthavarada,
H. K. (2006). Accumulation of amyloid precursor protein in the
mitochondrial import channels of human Alzheimer’s disease brain is
associated with mitochondrial dysfunction. J. Neurosci. 26, 9057–9068.
doi: 10.1523/JNEUROSCI.1469-06.2006

Dice, J. F. (2007). Chaperone-mediated autophagy. Autophagy 3, 295–299. doi:
10.4161/auto.4144

Ding, W., and Yin, X. (2012). Mitophagy: mechanisms, pathophysiological roles,
and analysis. Biol. Chem. 393, 547–564. doi: 10.1515/hsz-2012-0119

Frontiers in Neuroscience | www.frontiersin.org 15 January 2021 | Volume 14 | Article 61275744

https://doi.org/10.1016/j.bbrc.2016.08.094
https://doi.org/10.1016/j.bbrc.2016.08.094
https://doi.org/10.1073/pnas.91.12.5562
https://doi.org/10.1073/pnas.91.12.5562
https://doi.org/10.1016/j.mad.2019.111194
https://doi.org/10.1016/j.mad.2019.111194
https://doi.org/10.1038/s42255-019-0073-4
https://doi.org/10.1096/fj.06-6941com
https://doi.org/10.1038/cdd.2012.81
https://doi.org/10.1038/cdd.2012.81
https://doi.org/10.1016/j.mad.2020.111207
https://doi.org/10.1016/j.jns.2017.02.043
https://doi.org/10.1016/j.jns.2017.02.043
https://doi.org/10.3389/fcell.2020.00239
https://doi.org/10.1038/sj.emboj.7601253
https://doi.org/10.1038/sj.emboj.7601253
https://doi.org/10.1038/nm1006-1133
https://doi.org/10.3390/cells9010150
https://doi.org/10.1038/s41598-019-56614-5
https://doi.org/10.3389/fcell.2020.00200
https://doi.org/10.3389/fcell.2020.00200
https://doi.org/10.5607/en.2019.28.6.643
https://doi.org/10.1038/cr.2013.153
https://doi.org/10.15252/embj.201899360
https://doi.org/10.1016/j.molcel.2018.11.034
https://doi.org/10.1016/j.molcel.2018.11.034
https://doi.org/10.1083/jcb.33.2.437
https://doi.org/10.1523/JNEUROSCI.1469-06.2006
https://doi.org/10.4161/auto.4144
https://doi.org/10.4161/auto.4144
https://doi.org/10.1515/hsz-2012-0119
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-612757 December 26, 2020 Time: 15:21 # 16

Tran and Reddy Autophagy and Mitophagy in Aging/Alzheimer’s Disease

Ding, W. X., Ni, H. M., Li, M., Liao, Y., Chen, X., Stolz, D. B., et al.
(2010). Nix is critical to two dinstinct phases of mitophagy, reactive oxygen
species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated
mitochondrial priming. J. Biol. Chem. 285, 27879–27890. doi: 10.1074/jbc.
M110.119537

Dunn, W. A. Jr., Cregg, J. M., Kiel, J. A. K. W., Ida, J. K., Oku, M., Yasuyoshi, S.,
et al. (2012). Pexophagy: the selective autophagy of peroxisomes. Autophagy 1,
75–83. doi: 10.4161/auto.1.2.1737

Ebneth, A., Godemann, K., Illenberger, S., Trinczek, B., Mandelkow, E. M.,
and Mandelkow, E. (1998). Overexpression of tau protein inhibits kinesin-
dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum:
implications for Alzheimer’s disease. J. Cell. Biol. 143, 777–794. doi: 10.1083/
jcb.143.3.777

Fang, E. F., Hou, Y., Lautrup, S., Jensen, M. B., Yang, B., SenGupta, T., et al.
(2019a). NAD+ augmentation restores mitophagy and limits accelerated aging
in Werner syndrome. Nat. Commun. 10:5284. doi: 10.1038/s41467-019-1
3172-8

Fang, E. F., Hou, Y., Palikaras, K., Adriaanse, B. A., Kerr, J. S., Yang, B.,
et al. (2019b). Mitophagy inhibits amyloid-β and tau pathology and reverses
cognitive deficits in models of Alzheimer’s disease. Nat. Neurosci. 22, 401–412.
doi: 10.1038/s41593-018-0332-9

Fraga, M. F., and Esteller, M. (2007). Epigenetics and aging: the targets and the
marks. Trends Genet. 23, 413–418. doi: 10.1016/j.tig.2007.05.008

Glick, D., Barth, S., and Macleod, K. F. (2010). Autophagy: cellular and molecular
mechanisms. J. Pathol. 221, 3–12. doi: 10.1002/path.2697

Goiran, T., Duplan, E., Rouland, L., Manaa, W., Lauritzen, I., Dunys, J., et al. (2018).
Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional
down-regulation. Cell Death Differ. 25, 873–884. doi: 10.1038/s41418-017-
0016-0

Green, D. R., Galluzzi, L., and Kroemer, G. (2011). Mitochondria and the
autophagy-inflammation-cell death axis in organismal aging. Science 333, 1109–
1112. doi: 10.1126/science.1201940

Greer, E. L., Maures, T. J., Hauswirth, A. G., Green, E. M., Leeman, D. S., Maro,
G. S., et al. (2010). Members of the H3K4 trimethylation complex regulate
lifespan in a germline-dependent manner in C. elegans. Nature 466, 383–387.
doi: 10.1038/nature09195

Hale, A. N., Ledbetter, D. J., Gawriluk, T. R., and Rucker, E. B. III (2012). Autophagy
Regulation and role in development. Autophagy 9, 951–972. doi: 10.4161/auto.
24273

Hamley, I. W. (2012). The amyloid beta peptide: a chemist’s perspective. role
in Alzheimer’s and fibrillization. Chem. Rev. 112, 5147–5192. doi: 10.1021/
cr3000994

Han, S., Jeong, Y. Y., Sheshadri, P., Su, X., and Cai, Q. (2020). Mitophagy regulates
integrity of mitochondria at synapses and is critical for synaptic maintenance.
EMBO Rep. 21:e49801. doi: 10.15252/embr.201949801

Harper, J. W., Ordureau, A., and Heo, J. M. (2018). Building and decoding
ubiquitin chains for mitophagy. Nat. Rev. Mol. Cell. Biol. 19, 93–108. doi:
10.1038/nrm.2017.129

Hayflick, L., and Moorhead, P. S. (1961). The serial cultivation of human diploid
cell strains. Exp. Cell Res. 25, 585–621. doi: 10.1016/0014-4827(61)90192-6

He, C., and Klionsky, D. J. (2010). Regulation mechanisms and signaling pathways
of autophagy. Annu. Rev. Genet. 43, 67–93. doi: 10.1146/annurev-genet-
102808-114910

Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., et al.
(2019). Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol.
15, 565–581. doi: 10.1038/s41582-019-0244-7

Hu, Y., Li, X. C., and Wang, Z. H. (2016). Tau accumulation impairs mitophagy
via increasing mitochondrial membrane potential and reducing mitochondrial
Parkin. Oncotarget 7, 17356–13468. doi: 10.18632/oncotarget.7861

Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C.,
et al. (2012). National Institute on Aging-Alzheimer’s Association guidelines for
the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8,
1–13. doi: 10.1016/j.jalz.2011.10.007

Kanki, T., Wang, K., Cao, Y., Baba, M., and Klionsky, D. J. (2009). Atg32 is a
mitochondrial protein that confers selectivity during mitophagy. Dev. Cell. 17,
98–109. doi: 10.1016/j.devcel.2009.06.014

Khang, R., Zeh, H. J., Lotze, M. T., and Tang, D. (2011). The Beclin 1 network
regulates autophagy and apoptosis. Cell Death Differ. 18, 571–580. doi: 10.1038/
cdd.2010.191

Kiffin, R., Kaushik, S., Zeng, M., Bandyopadhyay, U., Zhang, C., Massey, A. C., et al.
(2007). Altered dynamics of the lysosomal receptor for chaperone-mediated
autophagy with age. J. Cell. Sci. 120, 782–791. doi: 10.1242/jcs.001073

Lauritzen, I., Pardossi-Piquard, R., Bourgeois, A., Becot, A., and Checler, F.
(2019). Does intraneuronal accumulation of carboxyl-terminal fragments of the
amyloid precursor protein trigger early neurotoxicity in Alzheimer’s disease?
Curr. Alzheimer Res. 16, 453–457. doi: 10.2174/1567205016666190325092841

Laurtizen, I., Pardossi-Piquard, R., Bourgeois, A., Pagnotta, S., Biferi, M. G.,
Barkats, M., et al. (2016). Intraneuronal aggregation of the β-CTF fragment
of APP (C99) induces Aβ-independent lysosomal-autophagy pathology. J. Biol.
Chem. 293, 15419–15428. doi: 10.1074/jbc.R118.003999

Lett, O. (2016). Ambra1 in autophagy and apoptosis: implications for cell survival
and chemotherapy resistance. Oncol. Lett. 12, 367–374. doi: 10.3892/ol.2016.
4644

Li, W. W., Li, J., and Bao, J. K. (2012). Microautophagy: lesser-known self-eating.
Cell. Mol. 69, 1125–1136. doi: 10.1007/s00018-011-0865-5

Li, X., Huang, L., Lan, J., Feng, X., Li, P., Wu, L., et al. (2020). Molecular
mechanisms of mitophagy and its roles in neurodegenerative diseases.
Pharmacol. Res. 11:105240. doi: 10.1016/j.phrs.2020.105240

Liang, W. J., and Gustafsson, ÅB. (2020). The aging heart: mitophagy at the center
of rejuvenation. Front. Cardiovasc. Med. 7:18. doi: 10.3389/fcvm.2020.00018

Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2013).
The hallmarks of aging. Cell 153, 1194–1217. doi: 10.1016/j.cell.2013.05.039

Lou, G., Palikaras, K., Lautrup, S., Scheibye-Knudsen, M., Tavernarakis, N., and
Fang, E. F. (2020). Mitophagy and neuroprotection. Trends Mol. Med. 26, 8–20.
doi: 10.1016/j.molmed.2019.07.002

Luo, H., Zhang, R., Krigman, J., McAdams, A., Ozgen, S., and Sun, N. A. (2020).
Healthy heart and a healthy brain: looking at mitophagy. Front. Cell. Dev. Biol.
6:294. doi: 10.3389/fcell.2020.00294

Lynch-Day, M. A., and Klionsky, D. J. (2010). The Cvt pathway as a model for
selective autophagy. FEBS Lett. 584, 1359–1366. doi: 10.1016/j.febslet.2010.02.
013

Maegawa, S., Hinkal, G., Kim, H. S., Shen, L., Zhang, L., Zhang, J., et al. (2010).
Widespread and tissue specific age-related DNA methylation changes in mice.
Genome Res. 20, 332–340. doi: 10.1101/gr.096826.109

Magrané, J., Cortez, C., Gan, W. B., and Manfredi, G. (2014). Abnormal
mitochondrial transport and morphology are common pathological
denominators in SOD1 and TDP43 ALS mouse models. Hum. Mol. Genet. 23,
1413–1424. doi: 10.1093/hmg/ddt528

Majeski, A. E., and Dice, J. F. (2004). Mechanisms of chaperone-mediate
autophagy. Int. J. Biochem. Cell. Biol. 36, 2435–2444. doi: 10.1016/j.biocel.2004.
02.013

Manczak, M., Anekonda, T. S., Henson, E., Park, B. S., Quinn, J., and Reddy,
P. H. (2006). Mitochondria are a direst site of Aβ accumulation in Alzheimer’s
disease neurons: implications for free radical generation and oxidative damage
in disease progression. Hum. Mol. Genet. 15, 1437–1449. doi: 10.1093/hmg/
ddl066

Manczak, M., Calkins, M. J., and Reddy, P. H. (2011). Impaired mitochondrial
dynamics and abnormal interaction of amyloid beta with mitochondrial protein
Drp1 in neurons from patients with Alzheimer’s disease: implications for
neuronal damage. Hum. Mol. Genet. 20, 2495–2509. doi: 10.1093/hmg/ddr139

Manczak, M., Kandimalla, R., Yin, X., and Reddy, P. H. (2018). Hippocampal
mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss,
defective autophagy, mitophagy. Hum. Mol. Genet. 27, 1332–1342. doi: 10.1093/
hmg/ddy042

Manczak, M., and Reddy, P. H. (2012a). Abnormal interaction between
the mitochondrial fission protein Drp1 and hyperphosphorylated tau in
Alzheimer’s disease neurons: implications for mitochondrial dysfunction and
neuronal damage. Hum. Mol. Gen. 21, 2538–2547. doi: 10.1093/hmg/dds072

Manczak, M., and Reddy, P. H. (2012b). Abnormal interaction of VDAC1 with
amyloid beta and phosphorylated tau causes mitochondrial dysfunction in
Alzheimer’s disease. Hum. Mol. Genet. 21, 5131–5146. doi: 10.1093/hmg/
dds360

Frontiers in Neuroscience | www.frontiersin.org 16 January 2021 | Volume 14 | Article 61275745

https://doi.org/10.1074/jbc.M110.119537
https://doi.org/10.1074/jbc.M110.119537
https://doi.org/10.4161/auto.1.2.1737
https://doi.org/10.1083/jcb.143.3.777
https://doi.org/10.1083/jcb.143.3.777
https://doi.org/10.1038/s41467-019-13172-8
https://doi.org/10.1038/s41467-019-13172-8
https://doi.org/10.1038/s41593-018-0332-9
https://doi.org/10.1016/j.tig.2007.05.008
https://doi.org/10.1002/path.2697
https://doi.org/10.1038/s41418-017-0016-0
https://doi.org/10.1038/s41418-017-0016-0
https://doi.org/10.1126/science.1201940
https://doi.org/10.1038/nature09195
https://doi.org/10.4161/auto.24273
https://doi.org/10.4161/auto.24273
https://doi.org/10.1021/cr3000994
https://doi.org/10.1021/cr3000994
https://doi.org/10.15252/embr.201949801
https://doi.org/10.1038/nrm.2017.129
https://doi.org/10.1038/nrm.2017.129
https://doi.org/10.1016/0014-4827(61)90192-6
https://doi.org/10.1146/annurev-genet-102808-114910
https://doi.org/10.1146/annurev-genet-102808-114910
https://doi.org/10.1038/s41582-019-0244-7
https://doi.org/10.18632/oncotarget.7861
https://doi.org/10.1016/j.jalz.2011.10.007
https://doi.org/10.1016/j.devcel.2009.06.014
https://doi.org/10.1038/cdd.2010.191
https://doi.org/10.1038/cdd.2010.191
https://doi.org/10.1242/jcs.001073
https://doi.org/10.2174/1567205016666190325092841
https://doi.org/10.1074/jbc.R118.003999
https://doi.org/10.3892/ol.2016.4644
https://doi.org/10.3892/ol.2016.4644
https://doi.org/10.1007/s00018-011-0865-5
https://doi.org/10.1016/j.phrs.2020.105240
https://doi.org/10.3389/fcvm.2020.00018
https://doi.org/10.1016/j.cell.2013.05.039
https://doi.org/10.1016/j.molmed.2019.07.002
https://doi.org/10.3389/fcell.2020.00294
https://doi.org/10.1016/j.febslet.2010.02.013
https://doi.org/10.1016/j.febslet.2010.02.013
https://doi.org/10.1101/gr.096826.109
https://doi.org/10.1093/hmg/ddt528
https://doi.org/10.1016/j.biocel.2004.02.013
https://doi.org/10.1016/j.biocel.2004.02.013
https://doi.org/10.1093/hmg/ddl066
https://doi.org/10.1093/hmg/ddl066
https://doi.org/10.1093/hmg/ddr139
https://doi.org/10.1093/hmg/ddy042
https://doi.org/10.1093/hmg/ddy042
https://doi.org/10.1093/hmg/dds072
https://doi.org/10.1093/hmg/dds360
https://doi.org/10.1093/hmg/dds360
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-612757 December 26, 2020 Time: 15:21 # 17

Tran and Reddy Autophagy and Mitophagy in Aging/Alzheimer’s Disease

Maria Fimia, G., Stoykova, A., Romagnoli, A., Giunta, L., Di Bartolomeo, S.,
Nardacci, R., et al. (2007). Ambra1 regulates autophagy and development of
the nervous system. Nature 447, 1121–1125. doi: 10.1038/nature05925

Markaki, M., and Tavernarakis, N. (2020). Mitochondrial turnover and
homeostasis in ageing and neurodegeneration. FEBS Lett. 594, 2370–2379. doi:
10.1002/1873-3468.13802

Martín-Maestro, P., Gargini, R., García, E., Simón, D., Avila, J., and García-
Escudero, V. (2019). Mitophagy failure in APP and tau overexpression model of
Alzheimer’s disease. J. Alzheimers Dis. 70, 525–540. doi: 10.3233/JAD-190086

Martin-Maestro, P., Gargini, R., Perry, G., Avila, J., and Garcia-Escudero, V. (2016).
Park2 enhancement is able to compensate mitophagy alterations found in
sporadic Alzheimer’s disease. Hum. Mol. Genet. 25, 792–806. doi: 10.1093/hmg/
ddv616

Mehrpour, M., Esclatine, A., Beau, I., and Codogno, P. (2010). Overview of
macroautophagy regulation in mammalian cells. Cell Res. 20, 748–762. doi:
10.1038/cr.2010.82

Mijaljica, D., Prescott, M., and Devenish, R. J. (2011). Microautophagy in
mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7, 673–682.
doi: 10.4161/auto.7.7.14733

Moreira, P. I., Santos, M. S., and Oliveira, C. R. (2007). Alzheimer’s disease: a
lesson from mitochondrial dysfunction. Antioxid. Redox. Signal. 9, 1621–1630.
doi: 10.1089/ars.2007.1703

Moskalev, A. A., Shaposhnikov, M. V., Plyusnina, E. N., Zhavoronkov, A.,
Budovsky, A., Yanai, H., et al. (2013). The role of DNA damage and repair in
aging through the prism of Koch-like criteria. Ageing Res. Rev. 12, 661–684.
doi: 10.1016/j.arr.2012.02.001

Murphy, M. P., and Levine, H. (2010). Alzheimer’s disease and the β-amyloid
peptide. J. Alzheimers Dis. 19:311. doi: 10.3233/JAD-2010-1221

Nassour, J., Radford, R., Correia, A., Fusté, J. M., Schoell, B., Jauch, A., et al. (2019).
Autophagic cell death restricts chromosomal instability during replicative crisis.
Nature 565, 659–663. doi: 10.1038/s41586-019-0885-0

Ney, P. A. (2015). Mitochondrial autophagy: origins, significance, and role of
BNIP3 and NIX. Biochim. Biophs. Acta 1853, 2775–2783. doi: 10.1016/j.bbamcr.
2015.02.022

Oh, J., Youn, C. K., Jun, Y., Jo, E. R., and Cho, S. I. (2020). Reduced mitophagy in
the cochlea of aged C57BL/6J mice. Exp. Gerontol. 137:110946. doi: 10.1016/j.
exger.2020.110946

Okamoto, K., Kondo-Okamoto, N., and Ohsumi, Y. (2009). Mitochondria-
anchored receptor Atg32 mediates degradation of mitochondria via selective
autophagy. Dev. Cell. 17, 98–109. doi: 10.1016/j.devcel.2009.06.013

Oku, M., and Sakai, Y. (2018). Three distinct types of microautophagy based
on membrane dynamics and molecular machineries. Bioessays 40, 42–48. doi:
10.1002/bies.201800008

Oliver, D. M. A., and Reddy, P. H. (2019a). Dynamics of dynamin-related protein
1 in Alzheimer’s disease and other neurodegenerative diseases. Cells 8:961.
doi: 10.3390/cells8090961

Oliver, D. M. A., and Reddy, P. H. (2019b). Molecular basis of Alzheimer’s disease:
focus on mitochondria. J. Alzheimers Dis. 72, S95–S116. doi: 10.3233/JAD-
190048

Pakpian, N., Phopin, K., Kitidee, K., Govitrapong, P., and Wongchitrat, P. (2020).
Alterations in mitochondrial dynamic-related genes in the peripheral blood of
Alzheimer’s disease patients. Curr. Alzheimer Res. 17, 616–625. doi: 10.2174/
1567205017666201006162538

Palikaras, K., Lionaki, E., and Tavernarakis, N. (2015). Coordination of mitophagy
and mitochondrial biogenesis during ageing in C. elegans. Nature 521, 525–528.
doi: 10.1038/nature14300

Palikaras, K., Lionaki, E., and Tavernarakis, N. (2018). Mechanisms of mitophagy in
cellular homeostasis, physiology and pathology. Nat. Cell. Biol. 20, 1013–1022.
doi: 10.1038/s41556-018-0176-2

Parzych, K. R., and Klionsky, D. J. (2014). An overview of autophagy: morphology,
mechanism, and regulation. Antioxid. Redox Signal. 20, 460–473. doi: 10.1089/
ars.2013.5371

Pickrell, A. M., and Youle, R. J. (2015). The roles of PINK1, PARKIN, and
mitchondrial fidelity in Parkinson’s disease. Neuron 85, 257–273. doi: 10.1016/
j.neuron.2014.12.007

Pradeepkiran, J. A., and Reddy, P. H. (2020). Defective mitophagy in
Alzheimer’s disease. Ageing Res. Rev. 64:101191. doi: 10.1016/j.arr.2020.10
1191

Quinsay, M. N., Thomas, R. L., Lee, Y., and Gustafsson, A. B. (2010). Bnip3-
mediated mitochondrial autophagy is independent of the mitochondrial
permeability transition pore. Autophagy 6, 855–862. doi: 10.4161/auto.6.7.
13005

Rajmohan, R., and Reddy, P. H. (2015). Amyloid-beta and phosphorylated tau
accumulations cause abnormalities at synapses of Alzheimer’s disease neurons.
J. Alzheimers Dis. 57, 975–999. doi: 10.3233/JAD-160612

Rapoport, M., Dawson, H. N., and Ferreira, A. (2002). Tau is essential to β-
amyloid-induced neurotoxicity. Proc. Natl. Acad. Sci. U.S.A. 99, 6364–6369.
doi: 10.1073/pnas.092136199

Reddy, P. H. (2006). Mitochondrial oxidative damage in aging and Alzheimer’s
disease: implications for mitochondrially targeted antioxidant therapeutics.
J. Biolmed. Biotechnol. 3:31372. doi: 10.1155/JBB/2006/31372

Reddy, P. H. (2007). Mitochondrial dysfunction in aging and Alzheimer’s disease:
strategies to protect neurons. Antioxid Redox Signal 9, 1647–1658. doi: 10.1089/
ars.2007.1754

Reddy, P. H. (2008). Mitochondrial medicine for aging and neurodegenerative
diseases. Neuromol. Med. 10, 291–315. doi: 10.1007/s12017-008-8044-z

Reddy, P. H., and Beal, M. F. (2005). Are mitochondria critical in pathogenesis
of Alzheimer’s disease? Brain Res. Rev. 49, 618–632. doi: 10.1016/j.brainresrev.
2005.03.004

Reddy, P. H., and Beal, M. F. (2008). Amyloid beta, mitochondrial dysfunction and
synaptic damage: implications for cognitive decline in aging and Alzheimer’s
disease. Trends Mol. Med. 14, 45–53. doi: 10.1016/j.molmed.2007.12.002

Reddy, P. H., McWeeney, S., Park, B. S., Manczak, M., Gutala, R. V., Partovi,
D., et al. (2004). Gene expression profiles of transcripts in amyloid precursor
protein transgenic mice: up-regulation of mitochondrial metabolism and
apoptotic genes is an early cellular change in Alzheimer’s disease. Hum. Mol.
Genet. 13, 1225–1240. doi: 10.1093/hmg/ddh140

Reddy, P. H., and Oliver, D. M. (2019). Amyloid beta and phosphorylated tau-
induced defective autophagy and mitophagy in Alzheimer’s disease. Cells. 8:488.
doi: 10.3390/cells8050488

Reddy, P. H., and Reddy, T. P. (2011). Mitochondria as a therapeutic target for
aging and neurodegenerative diseases. Curr. Alzheimer Res. 8, 393–409. doi:
10.2174/156720511795745401

Reddy, P. H., Williams, J., Smith, F., Bhatti, J. S., Kumar, S., Vijayan, M., et al.
(2017). MicroRNAs, aging, cellular senescence, and Alzheimer’s disease. Prog.
Mol. Biol. Transl Sci. 146, 127–171. doi: 10.1016/bs.pmbts.2016.12.009

Reddy, P. H., Yin, X., Manczak, M., Kumar, S., Pradeepkiran, J. A., Vijayen, M.,
et al. (2018). Mutant APP and amyloid beta-induced defective autophagy,
mitophagy, mitochondrial structural and functional changes and synaptic
damage in hippocampal neurons from Alzheimer’s disease. Hum. Mol. Gen. 27,
2502–2516. doi: 10.1093/hmg/ddy154

Reiss, A. B., Arain, H. A., Stecker, M. M., Siegart, N. M., and Kasselman, L. J.
(2018). Amyloid toxicity in Alzheimer’s disease. Rev. Neurosci. 29, 613–627.
doi: 10.1515/revneuro-2017-0063

Rodolfo, C., Campello, S., and Cecconi, F. (2018). Mitophagy in neurodegenerative
disease. Neurochem. Int. 117, 156–166. doi: 10.1016/j.neuint.2017.08.004

Rossi, D. J., Bryder, D., Seita, J., Nussenzweig, A., Hoejimakers, J., and Weissman,
I. L. (2007). Deficiencies in DNA damage repair limit the function of
haematopoietic stem cells with age. Nature 447, 725–729. doi: 10.1038/
nature05862

Rubinsztein, D. C., Marino, G., and Kroemer, G. (2011). Autophagy and Aging. Cell
146, 682–695. doi: 10.1016/j.cell.2011.07.030

Schiavi, A., Maglioni, S., Palikaras, K., Shaik, A., Strappazzon, F., Brinkmann, V.,
et al. (2015). Iron-starvation-induced mitophagy mediates lifespan extension
upon mitochondrial stress in C. elegans. Curr. Biol. 25, 1810–1822. doi: 10.1016/
j.cub.2015.05.059

Selkoe, D. J. (2010). Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev.
81, 741–766. doi: 10.1152/physrev.2001.81.2.741

Shammas, M. A. (2011). Telomeres, lifestyle, cancer, and aging. Curr. Opin. Clin.
Nutr. Metab. Care 14, 28–34. doi: 10.1097/MCO.0b013e32834121b1

Shaw, A. C., Joshi, S., Greenwood, H., Panda, A., and Lord, J. M. (2010). Aging of
the innate immune system. Curr. Opin. Immunol. 22, 507–513. doi: 10.1016/j.
coi.2010.05.003

Shefa, U., Jeong, N. Y., Song, I. O., Chung, H. J., Kim, D., Jung, J., et al. (2019).
Mitophagy links oxidative stress conditions and neurodegenerative diseases.
Neural Regen. Res. 14, 749–756. doi: 10.4103/1673-5374.249218

Frontiers in Neuroscience | www.frontiersin.org 17 January 2021 | Volume 14 | Article 61275746

https://doi.org/10.1038/nature05925
https://doi.org/10.1002/1873-3468.13802
https://doi.org/10.1002/1873-3468.13802
https://doi.org/10.3233/JAD-190086
https://doi.org/10.1093/hmg/ddv616
https://doi.org/10.1093/hmg/ddv616
https://doi.org/10.1038/cr.2010.82
https://doi.org/10.1038/cr.2010.82
https://doi.org/10.4161/auto.7.7.14733
https://doi.org/10.1089/ars.2007.1703
https://doi.org/10.1016/j.arr.2012.02.001
https://doi.org/10.3233/JAD-2010-1221
https://doi.org/10.1038/s41586-019-0885-0
https://doi.org/10.1016/j.bbamcr.2015.02.022
https://doi.org/10.1016/j.bbamcr.2015.02.022
https://doi.org/10.1016/j.exger.2020.110946
https://doi.org/10.1016/j.exger.2020.110946
https://doi.org/10.1016/j.devcel.2009.06.013
https://doi.org/10.1002/bies.201800008
https://doi.org/10.1002/bies.201800008
https://doi.org/10.3390/cells8090961
https://doi.org/10.3233/JAD-190048
https://doi.org/10.3233/JAD-190048
https://doi.org/10.2174/1567205017666201006162538
https://doi.org/10.2174/1567205017666201006162538
https://doi.org/10.1038/nature14300
https://doi.org/10.1038/s41556-018-0176-2
https://doi.org/10.1089/ars.2013.5371
https://doi.org/10.1089/ars.2013.5371
https://doi.org/10.1016/j.neuron.2014.12.007
https://doi.org/10.1016/j.neuron.2014.12.007
https://doi.org/10.1016/j.arr.2020.101191
https://doi.org/10.1016/j.arr.2020.101191
https://doi.org/10.4161/auto.6.7.13005
https://doi.org/10.4161/auto.6.7.13005
https://doi.org/10.3233/JAD-160612
https://doi.org/10.1073/pnas.092136199
https://doi.org/10.1155/JBB/2006/31372
https://doi.org/10.1089/ars.2007.1754
https://doi.org/10.1089/ars.2007.1754
https://doi.org/10.1007/s12017-008-8044-z
https://doi.org/10.1016/j.brainresrev.2005.03.004
https://doi.org/10.1016/j.brainresrev.2005.03.004
https://doi.org/10.1016/j.molmed.2007.12.002
https://doi.org/10.1093/hmg/ddh140
https://doi.org/10.3390/cells8050488
https://doi.org/10.2174/156720511795745401
https://doi.org/10.2174/156720511795745401
https://doi.org/10.1016/bs.pmbts.2016.12.009
https://doi.org/10.1093/hmg/ddy154
https://doi.org/10.1515/revneuro-2017-0063
https://doi.org/10.1016/j.neuint.2017.08.004
https://doi.org/10.1038/nature05862
https://doi.org/10.1038/nature05862
https://doi.org/10.1016/j.cell.2011.07.030
https://doi.org/10.1016/j.cub.2015.05.059
https://doi.org/10.1016/j.cub.2015.05.059
https://doi.org/10.1152/physrev.2001.81.2.741
https://doi.org/10.1097/MCO.0b013e32834121b1
https://doi.org/10.1016/j.coi.2010.05.003
https://doi.org/10.1016/j.coi.2010.05.003
https://doi.org/10.4103/1673-5374.249218
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-612757 December 26, 2020 Time: 15:21 # 18

Tran and Reddy Autophagy and Mitophagy in Aging/Alzheimer’s Disease

Sienko, K., Poormassalehgoo, A., Yamada, K., and Goto-Yamada, S. (2020).
Microautophagy in plants: consideration of its molecular mechanism. Cells
9:887. doi: 10.3390/cells9040887

Stamer, K., Thies, E., Mandeljow, E., and Mandelkow, E. M. (2002). Tau
blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and
enhances oxidative stress. J. Cell. Biol. 156, 1051–1063. doi: 10.1083/jcb.20010
8057

Sun, N., Youle, R. J., and Finkel, T. (2016). The mitochondrial basis of aging. Mol.
Cell. 61, 654–666. doi: 10.1016/j.molcel.2016.01.028

Swerdlow, R. H., Burns, J. M., and Khan, S. M. (2010). The Alzheimer’s disease
mitochondrial cascade hypothesis. J. Alzheimers Dis. 20, 265–279. doi: 10.3233/
JAD-2010-100339

Tal, R., Winger, G., Ecker, N., Klionsky, D. J., and Abeliovich, H. (2007). Aup1p,
a yeast mitochondrial protein phosphatase homolog, is required for efficient
stationary phase mitophagy and cell survival. J. Biol. Chem. 282, 5617–5624.
doi: 10.1074/jbc.M605940200

Varghese, N., Werner, S., Grimm, A., and Eckert, A. (2020). Dietary mitophagy
enhancer: a strategy for healthy brain aging? Antioxidants 9:E932. doi: 10.3390/
antiox9100932

Vellai, T. (2009). Autophagy genes and ageing. Cell Death Differ. 16, 94–102.
doi: 10.1038/cdd.2008.126

Wang, Z. T., Lu, M. H., Zhang, Y., Ji, W. L., Lei, L., Wang, W., et al. (2019).
Disrupted-in-schizophrenia-1 protects synaptic plasticity in a transgenic mouse
model of Alzheimer’s disease as a mitophagy receptor. Aging Cell 18:e12860.
doi: 10.1111/acel.12860

Yang, X., Zhang, M., Dai, Y., Sun, Y., Aman, Y., Xu, Y., et al. (2020). Spermidine
inhibits neurodegeneration and delays aging via the PINK1-PDR1-dependent

mitophagy pathway in C. elegans. Aging 12, 16852–16866. doi: 10.18632/aging.
103578

Ye, X., Sun, X., Starovoytov, V., and Cai, Q. (2015). Parkin-mediated mitophagy in
mutant hAPP neurons and Alzheimer’s disease patient brains. Hum. Mol. Genet.
24, 2938–2951. doi: 10.1093/hmg/ddv056

Yoo, S., and Jung, Y. A. (2018). Molecular approach to mitophagy and
mitochondrial dynamics. Mol. Cells 41, 18–26. doi: 10.14348/molcells.2018.
2277

Youle, R. J., and Narendra, D. P. (2011). Mechanisms of mitophagy. Nat. Rev. Mol.
Cell Biol. 12, 9–14. doi: 10.1038/nrm3028

Zaffagnini, G., and Martens, S. (2016). Mechanisms of selective autophagy. J. Mol.
Biol. 428, 1714–1724. doi: 10.1016/j.jmb.2016.02.004

Zhang, J., and Ney, P. A. (2009). Role of BNIP3 and NIX in cell death, autophagy,
and mitophagy. Cell Death Differ. 16, 939–946. doi: 10.1038/cdd.2009.16

Zhang, Y. W., Thompson, R., Zhang, H., and Xu, H. (2011). APP processing in
Alzheimer’s disease. Mol. Brain 4:3. doi: 10.1186/1756-6606-4-3

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Tran and Reddy. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 18 January 2021 | Volume 14 | Article 61275747

https://doi.org/10.3390/cells9040887
https://doi.org/10.1083/jcb.200108057
https://doi.org/10.1083/jcb.200108057
https://doi.org/10.1016/j.molcel.2016.01.028
https://doi.org/10.3233/JAD-2010-100339
https://doi.org/10.3233/JAD-2010-100339
https://doi.org/10.1074/jbc.M605940200
https://doi.org/10.3390/antiox9100932
https://doi.org/10.3390/antiox9100932
https://doi.org/10.1038/cdd.2008.126
https://doi.org/10.1111/acel.12860
https://doi.org/10.18632/aging.103578
https://doi.org/10.18632/aging.103578
https://doi.org/10.1093/hmg/ddv056
https://doi.org/10.14348/molcells.2018.2277
https://doi.org/10.14348/molcells.2018.2277
https://doi.org/10.1038/nrm3028
https://doi.org/10.1016/j.jmb.2016.02.004
https://doi.org/10.1038/cdd.2009.16
https://doi.org/10.1186/1756-6606-4-3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


ORIGINAL RESEARCH
published: 22 January 2021

doi: 10.3389/fnins.2020.586108

Frontiers in Neuroscience | www.frontiersin.org 1 January 2021 | Volume 14 | Article 586108

Edited by:

Levi Wood,

Georgia Institute of Technology,

United States

Reviewed by:

Kirill Kiselyov,

University of Pittsburgh, United States

Heather M. Wilkins,

University of Kansas Medical Center

Research Institute, United States

*Correspondence:

Pascal Kienlen-Campard

pascal.kienlen-campard@uclouvain.be

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neurodegeneration,

a section of the journal

Frontiers in Neuroscience

Received: 22 July 2020

Accepted: 14 December 2020

Published: 22 January 2021

Citation:

Contino S, Suelves N, Vrancx C,

Vadukul DM, Payen VL, Stanga S,

Bertrand L and Kienlen-Campard P

(2021) Presenilin-Deficient Neurons

and Astrocytes Display Normal

Mitochondrial Phenotypes.

Front. Neurosci. 14:586108.

doi: 10.3389/fnins.2020.586108

Presenilin-Deficient Neurons and
Astrocytes Display Normal
Mitochondrial Phenotypes
Sabrina Contino 1, Nuria Suelves 1†, Céline Vrancx 1†, Devkee M. Vadukul 1, Valery L. Payen 2,

Serena Stanga 3, Luc Bertrand 4 and Pascal Kienlen-Campard 1*

1 Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de

Louvain, Brussels, Belgium, 2 Laboratory of Advanced Drug Delivery and Biomaterial (ADDB), Louvain Drug Research

Institute (LDRI), Université Catholique de Louvain, Brussels, Belgium, 3Neuroscience Institute Cavalieri Ottolenghi,
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Presenilin 1 (PS1) and Presenilin 2 (PS2) are predominantly known as the catalytic

subunits of the γ-secretase complex that generates the amyloid-β (Aβ) peptide, the

major constituent of the senile plaques found in the brain of Alzheimer’s disease

(AD) patients. Apart from their role in γ-secretase activity, a growing number of

cellular functions have been recently attributed to PSs. Notably, PSs were found to

be enriched in mitochondria-associated membranes (MAMs) where mitochondria and

endoplasmic reticulum (ER) interact. PS2 was more specifically reported to regulate

calcium shuttling between these two organelles by controlling the formation of functional

MAMs. We have previously demonstrated in mouse embryonic fibroblasts (MEF) an

altered mitochondrial morphology along with reduced mitochondrial respiration and

increased glycolysis in PS2-deficient cells (PS2KO). This phenotype was restored by the

stable re-expression of human PS2. Still, all these results were obtained in immortalized

cells, and one bottom-line question is to know whether these observations hold true

in central nervous system (CNS) cells. To that end, we carried out primary cultures of

PS1 knockdown (KD), PS2KO, and PS1KD/PS2KO (PSdKO) neurons and astrocytes.

They were obtained from the same litter by crossing PS2 heterozygous; PS1 floxed

(PS2+/−; PS1flox/flox) animals. Genetic downregulation of PS1 was achieved by lentiviral

expression of the Cre recombinase in primary cultures. Strikingly, we did not observe

any mitochondrial phenotype in PS1KD, PS2KO, or PSdKO primary cultures in basal

conditions. Mitochondrial respiration and membrane potential were similar in all models,

as were the glycolytic flux and NAD+/NADH ratio. Likewise, mitochondrial morphology

and content was unaltered by PS expression. We further investigated the differences

between results we obtained here in primary nerve cells and those previously reported

in MEF cell lines by analyzing PS2KO primary fibroblasts. We found no mitochondrial

dysfunction in this model, in line with observations in PS2KO primary neurons and

astrocytes. Together, our results indicate that the mitochondrial phenotype observed

in immortalized PS2-deficient cell lines cannot be extrapolated to primary neurons,

astrocytes, and even to primary fibroblasts. The PS-dependent mitochondrial phenotype

reported so far might therefore be the consequence of a cell immortalization process and

should be critically reconsidered regarding its relevance to AD.

Keywords: presenilins, OXPHOS, mitochondria, astrocyte, neuron, Alzheimer’s disease
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INTRODUCTION

Alzheimer’s disease (AD) is the most prevailing age-related
neurodegenerative disease. Its cost and impending rise owed
to societal aging makes it a major social concern and a
critical public health burden. This pathology is characterized
by the progressive spreading of two typical lesions in the
brain: senile plaques and neurofibrillary tangles (NFTs), that
are extracellular deposits of the amyloid-β peptide (Aβ) and
intracellular aggregates of hyperphosphorylated tau protein,
respectively (Serrano-Pozo et al., 2011). The most admitted
comprehensive hypothesis for the onset and development of
AD is the amyloid cascade hypothesis (ACH) (Hardy, 2006).
It postulates that changes in Aβ production, accumulation, or
clearance are triggering events that induce the formation of NFTs
eventually leading to neurodegeneration and clinical symptoms.
Many efforts have been undertaken to better understand the
pathological processes responsible for the altered production of
Aβ. They led to the identification of the Amyloid Precursor
Protein (APP), and the Presenilin proteins (PS1 and PS2) that
are the catalytic subunits of the γ-secretase that releases Aβ

upon amyloidogenic processing of APP (Goate et al., 1991;
Rogaev et al., 1995; Sherrington et al., 1995). However, clinical
trials targeting the amyloid pathology have failed so far to
improve cognitive deficits, even though they reduce the amyloid
load under certain conditions (Ceyzeriat et al., 2020). Amyloid
deposition appears to take place very early in pre-clinical stages
and might be associated to brain dysfunctions that appear prior
to clinical symptoms. Metabolic aspects of the pathology are
widely studied in that context. For instance, the 18F-FDG-PET
scan is an established imaging standard for neuronal dysfunction
in the diagnostic workup of AD-patients (Mosconi et al., 2010;
Herholz, 2012; Shivamurthy et al., 2015). It was used to evidence
that hypometabolism and brain atrophy appear before clinical
symptoms in patients.

Mitochondria play a central role in cellular metabolism, and
mitochondrial function is known to be particularly affected in the
disease (Garcia-Escudero et al., 2013). Several studies have put
forth a “mitochondrial cascade hypothesis” (Swerdlow and Khan,
2004; Stanga et al., 2020), according to which mitochondrial
alterations are capable of initiating compensatory events that
would result in the histopathological sequence of AD, including
an increased production of the amyloid-β (Aβ) peptide, and thus
they can be considered as an upstream event in the development
of the pathology. Alternatively, mitochondrial dysfunction has
also rather been suggested as a consequence of pathological
processes such as amyloid deposition (Pagani and Eckert, 2011;
Swerdlow et al., 2014; Swerdlow, 2018). Despite this controversy,

Abbreviations: 19 , mitochondrial membrane potential; 2R2, PS2

knockout rescued PS2; CI-CV, complexes I-V; Ct, control; DTAB,

dodecyltrimethylammonium bromide; ETC, electron transport chain;

FCCP, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone; GFAP, glial-

fibrillary acidic protein; MAM, mitochondria-associated membranes; MAP-2,

microtubule-associated protein 2; MEF, mouse embryonic fibroblasts; MiNA,

mitochondrial network analysis; OCR, oxygen consumption rate; OXPHOS,

oxidative phosphorylation; PS, presenilin; ROS, reactive oxygen species; TMRM,

tetramethylrhodamine methyl ester.

there is little doubt that mitochondrial dysfunction contributes
to AD pathogenesis, as evidenced in animal models of AD
(Yao et al., 2009; Dixit et al., 2017; Long and Holtzman, 2019)
and samples from AD patients (Wang et al., 2009; Martin-
Maestro et al., 2017; Adav et al., 2019). Major consequences of
mitochondrial dysfunction such as increased Reactive Oxygen
Species (ROS) production (Dixit et al., 2017), impaired balance
of fusion/fission with altered morphology (Wang et al., 2009),
decreased oxidative capacity and decreased motility (Correia
et al., 2016) are described in AD pathogenesis.

Mitochondrial alterations found in AD have been associated
to functional changes of the major AD proteins, namely APP,
Tau, and PSs (Garcia-Escudero et al., 2013). Only Presenilin 1
and 2 (PS1 and PS2) were yet clearly shown to be involved
in mitochondrial function. PS1 and PS2 are encoded by two
homologous genes, PSEN1 and PSEN2, respectively. Mutations
in PSEN genes are responsible for the majority of inherited
AD cases (Hardy, 2006). Apart from their involvement in
Aβ production (as the catalytic subunits of the γ-secretase),
functions attributed to PSs can be divided into two categories: γ-
secretase-dependent or γ-secretase-independent (Vetrivel et al.,
2006; Zhang et al., 2013). The γ-secretase independent functions
of PSs are known to be involved in synaptic transmission,
endosome-lysosome trafficking, Wnt signaling, and calcium
homeostasis. The involvement of PSs in calcium homeostasis
has been particularly investigated. PSs could interact with
Inositol trisphosphate receptor (IP3R) (Cheung et al., 2008),
sarco-/endoplasmic reticulum (ER) Ca2+ ATPase (SERCA), or
Ryanodine receptors (RyR) (Green et al., 2008; Wu et al.,
2013) to regulate intracellular calcium signaling. PSs were also
suggested to directly act as a low-conductance, passive ER
Ca2+ channel (Nelson et al., 2007). Finally, PSs could also
regulate the calcium crosstalk between the mitochondria and
the ER by regulating their apposition through a particular
domain called mitochondria-associated membranes (MAMs)
(Filadi et al., 2016). Indeed, studies have shown that PSs are
enriched in MAMs, which are lipid-raft-like structures. MAMs
are considered as functional compartments (Area-Gomez et al.,
2009) due to their implication in cellular pathways such as
inflammation, mitophagy, and lipid production (Filadi et al.,
2017). PS2 was found to physically interact with Mitofusin 2
to regulate MAMs organization and calcium shuttling in mouse
embryonic fibroblasts (MEF) (Filadi et al., 2016). Disruption
of this interaction and of the consecutive calcium crosstalk
was reported in the SH-SY5Y cell line transfected with siRNA
targeting PS2 (Zampese et al., 2011). Importantly, impaired
calcium influx from the ER to mitochondria is implicated in the
regulation of the oxidative phosphorylation (OXPHOS) and can
lead to mitochondrial defects. Using MEF cell lines, we observed
an altered mitochondrial phenotype related to the absence of
PS2 and not PS1 (Contino et al., 2017). PS2 deficiency results
in defective mitochondrial cristae correlated to an impaired
OXPHOS capacity and a modified redox state (NAD+/NADH
ratio). This was compensated by an increased glycolytic capacity,
sustaining a stable ADP/ATP ratio. Together with other studies
(Wang et al., 2009; Pagani and Eckert, 2011; Correia et al., 2016;
Dixit et al., 2017), this led to the hypothesis that PS-dependent
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mitochondrial dysfunction could represent a major pathway in
AD pathogenesis.

In this context, we investigated for the first timemitochondrial
activity in primary cultures of neurons and astrocytes, which are
more relevant to AD than immortalized cells. We performed
primary cultures of cells expressing both PSs (wild-type,
WT), one of them (PS single-knockdown/knockout, referred
to as PS1KD and PS2KO), or none (combined PS1KD-
PS2KO, referred to as PSdKO). Our aim was to investigate
(i) if mitochondrial-related deficits appear in the absence
of PSs in these cells and, if so, (ii) to identify which PS
is involved in this phenotype and the possible mechanisms
underpinning mitochondrial dysfunction in neurons and/or
astrocytes. Surprisingly, we did not find any metabolic deficit in
the different PS knockdown/knockout primary nerve cells, even
in the absence of both PSs (PSdKO). Likewise, mitochondrial
morphology and content were not altered in PS2KO primary
neurons, contrary to what was observed in PS2-deficient MEF
cell lines (Contino et al., 2017). We further studied the
mitochondrial activity in PS2KO primary MEF and did not
observe any mitochondrial defect. The obtained evidence leads
us to conclude that PS-dependent mitochondrial alterations
observed in immortalized cells may provide information about
PS-dependent cancer processes, but give no straightforward
indication about mitochondrial dysfunction in AD.

MATERIALS AND METHODS

Animal Models
Presenilin 2 knockout (KO) (#005617) (Herreman et al., 1999)
and Presenilin 1 floxed (#004825) (Yu et al., 2000) mice,
both in a C57BL/6 background, were obtained from Jackson
Laboratories (Bar Harbor, USA). All animal procedures and
experiments were approved and performed in agreement with the
UCLouvain animal care committee’s regulations (code number
2016/UCL/MD/016). Animals were housed on a 12 h light/dark
cycle in a standard animal care facility with access to water and
food ad libitum.

For primary cell cultures, generation of the different genotypes
in the same litter was obtained from crossing PS2 heterozygous
and PS1 floxed (PS2+/−; PS1flox/flox) animals followed or not by
viral transduction. Indeed, PSEN1 gene deletion was achieved
by viral transduction of Cre recombinase in floxed PS1 primary
cultures. Lentivirus expressing GFP (mock control) or CRE-
GFP were used for transduction at DIV1 (one day of in
vitro culture) for neurons and DIV17 for astrocytes. Following
genotyping and infection we could obtain in the same litter:
control non-infected Ct (PS2+/+; PS1flox/flox, non-infected),
PS2KO (PS2−/−; PS1flox/flox, non-infected); control infected
named Mock (PS2+/+; PS1flox/flox, infected with GFP); PS1KD
(PS2+/+; PS1flox/flox, infected with CRE-GFP); and PSdKO

(PS2−/−; PS1flox/flox, infected with CRE-GFP).

Primary Neuronal Cultures
Primary cultures of neurons were performed as previously
described (Opsomer et al., 2020) on E17mouse embryos. Cortices
and hippocampi were isolated by dissection on ice cold HBSS

(Thermo Fisher Scientific, Waltham, USA) and meninges were
removed. Tissues were then dissociated by pipetting up and down
15 times with a glass pipette in HBSS glucose 5mM medium.
Dissociation was repeated 10 times with a flame-narrowed
glass pipette. After sedimentation for 5min, the supernatant
containing the neurons was settled on a bed of 4ml of Fetal
Bovine Serum (FBS) and centrifuged at 1,000× g for 10min. The
pellet was resuspended in Neurobasal R© medium enriched with
1mML-glutamine, 5mMglucose, and 2% v/v B-27 R© supplement
medium. Cells were plated at 200,000 cells/cm2 on pre-coated
poly-L-lysine dishes and cultured (37◦C, 5% CO2 and humidified
atmosphere). Half media changes were performed every 2 days
and neurons were cultured for 11 days (DIV11) before being
utilized for experiments. To get PS1KD and PSdKO, neurons
were infected at DIV1 and all media were changed at DIV2.

Primary Astrocyte Cultures
For primary astrocyte cultures, the brains of mouse pups aged
2 days were dissected to isolate cortices on ice cold HBSS.
Tissues were triturated 15 times with a glass pipette and 10 times
with a flame-narrowed glass pipette. Tubes were centrifuged at
1,000 × g for 5min. Pellets were resuspended in HBSS and
centrifuged at 1,700 × g for 20min on a 30% Percoll gradient.
Astrocytes were collected from the interphase, washed in 10ml
of HBSS, and centrifuged for 5min at 1,500 × g. Pellets were
resuspended and plated in DMEM-glutaMAX medium (Thermo
Fisher Scientific, Waltham, USA) supplemented with 10% FBS
(Biowest, Nuaillé, France), 50 mg/ml penicillin–streptomycin,
and 50 mg/ml fungizone. Cells were left to proliferate in flasks for
15 days at 37◦C and 5% CO2, and media were changed every 4–
5 days. After 15 days, astrocytes were plated and further cultured
inDMEM-glutaMAXwith 10% FBS. Two days later, transduction
with lentivirus was achieved when necessary and differentiation
was induced by reducing the concentration of FBS to 3% for 7
days before performing experiments.

Primary and Immortalized Mouse
Embryonic Fibroblasts (MEF)
ImmortalizedMEFwere cultured as previously described (Stanga
et al., 2018). Primary cultures of MEF were performed on E16
embryos. Chest skin was isolated on ice and then grinded into
pieces with a blade. These pieces were dissociated and incubated
twice at 37◦C for 10min in trypsin (Life Technologies, Carlsbad,
USA). DMEM low glucose (5.5mM) (Sigma-Aldrich, St Louis,
USA) enriched with 10% FBS and 1% pen/strep was added for
an incubation of 5min at room temperature (RT). Supernatants
were collected and centrifuged at 1,000 × g for 5min at RT.
Pellets were resuspended in 10ml of DMEM medium and
plated in petri dishes. Once at confluence, cells were plated
for experiments.

Lentiviral Particles
Lentiviral particles expressing CRE recombinase were used
to delete floxed PSEN1. Plasmids pCMV-GFP (Mock) and
pCMV-CRE-GFP for lentiviral production were purchased from
Cellomics Technology (Halethorpe, USA). Amplification and
purification of the different plasmids were performed using
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the Plasmid Midi kit (Qiagen, Hilden, Germany). Lentiviral
production was carried out by transfecting HEK293-T cells
in 10 cm dishes (2 × 106 cells/dish) with CRE-GFP or
GFP vectors, pMD2.G (Addgene#12259), and pCMV-dR8.2
(Addgene#12263). At 48 h after transfection, cells were harvested
by flushing with the medium and centrifuged at 1,500 × g for
10min at 4◦C. The supernatant was filtered with Acrodisc R©

0.45µm filters (Pall, NYC, USA). Then, 1/3 (v/v) of LentiXTM

Concentrator reagent (Clontech, Mountain View, USA) was
added and incubated overnight (o/n). After centrifugation at
1,500 × g for 45min at 4◦C, the pellet was resuspended in 20
µl per dish of DMEM without serum and stored at −80◦C; 10
µl of concentrated virus was used to infect 1,600,000 neurons or
300,000 astrocytes.

Western Blotting (WB)
WB was performed on cell lysates obtained by harvesting cells
with lysis buffer (Tris 125mMpH 6.8, 4% sodium dodecyl sulfate,
20% glycerol) with Complete Protease Inhibitor Cocktail (Roche,
Basel, Switzerland) and sonicating, as previously described
(Stanga et al., 2016). Protein concentration was determined using
the BCA Protein assay kit (Pierce, Rockford, USA). Then, 15
µg of total proteins diluted in lysis buffer with NuPAGE R© LDS
Sample Buffer and 50mM DTT was heated at 70◦C (except for
the detection of OXPHOS subunits, heated at 37◦C). Samples
were loaded and separated onto NuPAGE R© 4–12% Bis-Tris gel
(Life Technologies, Carlsbad, USA) with a NuPAGE R© MES SDS
running buffer (Life Technologies, Carlsbad, USA). Proteins were
then transferred onto an AmershamTM nitrocellulose membrane
(Little Chalfont, UK) with NuPAGE R© transfer buffer (Life
Technologies, Carlsbad, USA) for 2 h at 30V. After blocking
with non-fat dry milk (Darmstadt, Germany) (5% in PBS and
0.05% Tween-20) for a minimum of 30min, the membrane was
incubated o/n with the primary antibody diluted in PBS 0.05%
Tween. Secondary antibody coupled to horse radish peroxidase
was incubated 1 h at RT. Membranes were detected using ECL
PerkinElmer R© (Waltham, USA). ImageJ software was used for
densitometric analysis of the different immunoreactive bands.

Antibodies used and their dilutions are the following: Anti-
Actin (1:3,000; Abcam, Cambridge, United Kingdom); Anti-
APP C-ter (1:2,500; generous gift of N. Sergeant, INSERM
U422, Lille, France); Anti-DRP1 (1:1,000; Cell Signaling,
Danvers, USA); Anti-mouse (1:10,000; GE Healthcare, Little
Chalfont, United Kingdom); Anti-OPA1 (1:1,000; Cell Signaling,
Danvers, USA); Anti-TIM23 (1:500; Santa Cruz, California,
USA); Anti-OXPHOS Cocktail (1:1,000; Abcam, Cambridge,
United Kingdom); Anti-Presenilin 1 (1:1,000; Cell Signaling,
Danvers, USA); Anti-Presenilin 2 (1:1,000; Cell Signaling,
Danvers, USA); Anti-rabbit (1:10,000; GE Healthcare, Little
Chalfont, United Kingdom); Anti-TOM20 (1:1,000; Proteintech,
Rosemont, USA); Anti-Tubulin (1:3,000, Abcam, Cambridge,
United Kingdom).

Immunocytochemistry (ICC)
ICC were performed as previously described (Hage et al.,
2014). Cells were seeded on pre-coated poly-L-lysine
coverslips in 24 well plates at the density of 200,000/well

for neurons or 50,000/well for astrocytes. Cells were fixed with
PBS/paraformaldehyde 4% for 10min and rinsed three times for
5min with PBS. Cells were then permeabilized with a solution
of PBS/Triton 0.3% for 30min and non-specific sites were
blocked with PBS/Triton 0.3%/FBS 5% for 30min. Primary
antibodies diluted in the blocking solution were incubated
o/n at 4◦C. After 3 washes of 10min with PBS, cells were
incubated with DAPI (1:2,000; Sigma-Aldrich, St Louis, USA)
and secondary antibodies diluted in the blocking solution.
Dilutions of the antibodies were as follows: chicken anti-glial-
fibrillary acidic protein (GFAP2; 1:1,1000; Abcam, Cambridge,
United Kingdom); mouse anti-microtubule associated protein
(MAP2; 1:1,000; Sigma-Aldrich, St Louis, USA); rabbit anti-
TOM20 (1:500, Proteintech, Rosemont, USA); Alexa 488
anti-rabbit (1:500; Life Technologies, Carlsbad, USA); Alexa 568
anti-mouse (1:500; Life Technologies, Carlsbad, USA); Alexa 647
anti-chicken (1:500; Life Technologies, Carlsbad, USA).

To characterize neuronal and astrocyte general morphology,
images from MAP2 and GFAP stained-cells were acquired on
EVOS FL Auto microscope (Invitrogen) with RFP (Alexa Fluor
554), and CY5 (Alexa Fluor 647) EVOS LED light cubes and
analyzed with ImageJ software.

To evaluatemitochondrial morphology after TOM20 staining,
samples were examined by confocal microscopy using a confocal
server spinning disc Zeiss platform equipped with a ×100
objective. For each image, z-stacks were taken from the
entire three-dimensional structure and the maximum intensity
projection was obtained in ImageJ.

In silico Analysis of Mitochondrial
Morphology
Morphological analysis of mitochondria was performed in silico
using a plug-in of ImageJ, the toolset MiNA (Mitochondrial
Network Analysis) (Valente et al., 2017). MiNA allows semi-
automated analysis and consists in images’ preprocessing,
to ensure quality, conversion to binary image, and in the
production of the final skeleton for the quantitative analysis, as
previously described (Calabrese et al., 2020). Briefly,
images were opened on ImageJ and processed as follows: 1-
Process/Filters/UnsharpMask; 2-Process/EnhanceLocal Contrast
(CLAHE); 3-Process/Filters/Median; 4-
Process/Binary/MakeBinary; 5-Process/Binary/Skeletonize;
6-Analyze/Skeleton/AnalyzeSkeleton(2D/3D); 7-
Plugins/StuartLab/MiNAScripts/MiNAAnalyzeMorphology.

Mitochondrial Membrane Potential (19)
Fluorescent cationic probe tetramethylrhodamine methyl ester
(TMRM) (Sigma-Aldrich, St. Louis, USA) was used to evaluate
the 19 . As a control, we used the uncoupling agent Carbonyl
cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP) (Sigma-
Aldrich, St. Louis, USA). Cells were plated in 96-well plates
at a density of 60,000/well for neurons or 15,000/well for
astrocytes. Cells were incubated for 30min at 37◦C with TMRM
(30 nM) with or without FCCP (10µM) diluted in KREBS
medium. Cells were then washed with KREBS solution and
fluorescence was read with the plate reader VICTOR R© Multilabel
Plate Reader (PerkinElmer). Data were normalized to the total
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amount of protein measured by the Bradford assay kit (Bio-Rad
Laboratories, California, USA).

Mitochondrial Oxygen Consumption
Oxygen consumption rate (OCR) was measured with the
Seahorse XF96 bioenergetic analyzer (Seahorse Bioscience;
Massachusetts, USA). Cells were seeded in a Seahorse 96-well
plate at different densities (60,000/well for neurons, 15,000/well
for astrocytes, or 20,000/well for MEF). To analyze the effect of
the inhibition of γ-secretase activity on OCR, cells were treated
with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine t-
butyl ester (DAPT) (Calbiochem, Camarillo, CA, USA) 24 h
before performing the experiment. Once differentiation was
completed, the medium was exchanged with the conditional
medium (culture medium without sodium bicarbonate and
FBS) and incubated without CO2 at 37◦C for 1 h. Inhibitors
targeting the different mitochondrial complexes (Cell Mito Stress
Test kit, Seahorse Bioscience) were added automatically and
sequentially to the cells during the experiment to measure the
basal respiration, the coupling, and the spare respiratory capacity.
The sequence of the inhibitors used was: Oligomycin (1µM);
FCCP (0.5µM for neurons and 1µM for astrocytes and MEF);
Rotenone and antimycin A (0.5µM). Results were normalized to
the total amount of protein measured by the Bradford assay kit
(Bio-Rad Laboratories, California, USA).

NAD+/NADH Ratio
NAD+/NADH ratio was measured with the bioluminescent
NAD+/NADH-Glo assay kit (Promega, Wisconsin, USA)
according the manufacturer’s instructions. Cells were seeded
in a 96-well plate at different densities (60,000/well for
neurons, 10,000/well for astrocytes or 20,000/well for MEF).
Once the differentiation was completed, cells were rinsed
with PBS and then lysed with the basis solution 1 %
dodecyltrimethylammonium bromide (DTAB). Samples were
split for a basic or acid treatment and were heated at
60◦C for 15min. The reduced form was decomposed in
the acidic solution and the oxidized form was selectively
decomposed in the basic solution. After neutralization, samples
were mixed with NAD+/NADH-GloTM detection reagent and
incubated for 45min to induce reaction. Luminescence was
read on the GloMax R© 96-well plate luminometer (Promega,
Wisconsin, USA).

Glycolytic Flux
Glycolytic rate was analyzed by the measurement of the
detritiation rate of [3-3H] glucose as previously described
(Contino et al., 2017). Briefly, cells were seeded in a 12-
well plate at density of 800,000/well for neurons, 100,000/well
for astrocytes, or 200,000/well for MEF. Tritiated glucose (0.2
µCi/ml; Perkin-Elmer; Massachusetts, USA) was added to the
medium (including 5.5mM glucose) for 30min. After medium
collection, the tritiated water resulting from detritiated glucose
was separated from the non-transported tritiated glucose by
column chromatography and measured with the Tri Carb
2,810 liquid scintillation analyzer (Perkin Elmer; Massachusetts,
USA) as described previously (Marsin et al., 2002). Data were

normalized to the total amount of protein measured by BCA
assay (Thermo Scientific, Rockford, USA).

ATP Level
ATP level was measured with the bioluminescent ATPlite R© assay
kit (Promega, Wisconsin, USA) according the manufacturer’s
instructions. Cells were seeded in a 96-well plate at a density
of 60,000/well for neurons or 10,000/well for astrocytes. On the
day of the experiment, medium was replaced by 75 µl of fresh
medium for 30min at room temperature. Then, 75 µl of kit’s
solution was added and after 10min of incubation, luminescence
was read on the GloMax R© 96-well plate luminometer (Promega,
Wisconsin, USA).

RT-qPCR Quantification of Mitochondrial
DNA Content
Relative mitochondrial DNA (mtDNA) content was quantified
from isolated total DNA as previously described (Missios
et al., 2014). Briefly, neurons were digested with proteinase
K (100µg/ml) in lysis buffer [100mM NaCl, 100mM
Tris–HCl (pH 8.0), 1mM EDTA, (pH 8.0) and 1% (w/v)
SDS] at 50 ◦C o/n and genomic DNA was purified with
phenol/chloroform method. Real-time quantitative polymerase
chain reaction (RT-qPCR) was performed using different
primer pairs to detect the mitochondrial genes Cyt-b and
Nd1, and the nuclear gene H19. The relative mitochondrial
DNA content was calculated by the 11Ct method. Previously
described primers (Ferrara-Romeo et al., 2020) were used
as follows: CYTB-F 5′-ATTCCTTCATGTCGGACGAG-
3′, CYTB-R 5′-ACTGAGAAGCCCCCTCAAAT-
3′, ND1-F 5′-AATCGCCATAGCCTTCCTAACAT-
3′, ND1-R 5′-GGCGTCTGCAAATGGTTGTAA-3′,
H19-F 5′-GTACCCACCTGTCGTCC-3′, H19-R 5′-
GTCCACGAGACCAATGACTG-3′.

Statistical Analysis
Number of samples are indicated in figure legends with “n =”
and number of independent experiments with “N =.” GraphPad
Prism software (GraphPad Software, La Jolla, CA, USA) was
used to analyze the data and perform the statistical analyses.
Normality was assessed with Shapiro Wilk test (GraphPad
Prism). Parametric test (Student’s t-test, ANOVA and Tukey’s
multiple comparison test) was applied if the data followed normal
distribution. Otherwise, non-parametric test (Mann-Whitney
test, Kruskal-Wallis and Dunn’s multiple comparison test) was
used. Significance is indicated as: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <

0.001, ∗∗∗∗p < 0.0001.

RESULTS

Generation of PS1KD, PS2KO, PSdKO
Primary Nerve Cells and Characterization
of the Primary Cultures
Metabolic analyses were performed on primary neurons and
astrocytes produced at embryonic day 17 (E17) and at postnatal
day 2 (P2), respectively. Neurons were cultured for 1 day
(DIV1) and astrocytes for 17 days (DIV17) prior to lentiviral
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transduction and were further maintained in culture until
DIV11 for neurons and DIV24 for astrocytes. The experimental
workflow is shown in Figure 1A. The different culture times
(DIV) were chosen in order to obtain differentiated and
active primary neurons and astrocytes (Schildge et al., 2013;
Charlesworth et al., 2015). Our previous studies indicated that
under these culture conditions, neurons acquire properties of
differentiated neurons from DIV7 on (Opsomer et al., 2020) and
that the spontaneous calcium oscillation of a functional neuronal
network are readily observed at DIV10 (Santos et al., 2009,
2010). Thus, we can reasonably assume that the primary neurons
in culture studied here were mature and interconnected in a
functional network. Generation of the different genotypes was
obtained in the same litter by crossing PS2 heterozygous and PS1
floxed (PS2+/−; PS1flox/flox) animals, followed when necessary by
viral transduction of the Cre recombinase. This approach has
been used because although PS2 knockout (PS2−/−; PS2KO)
cells can be obtained from the viable PS2 full KO mice
(Herreman et al., 1999), PS1KO and PSdKO mice present a
lethal phenotype at E17 and E12, respectively (Shen et al.,
1997; Donoviel et al., 1999). Therefore, to obtain PS1KO and
PSdKO primary cultures, PSEN1 deletion was achieved by viral
transduction of Cre recombinase in PS1flox/flox primary cultures
(Figure 1A). Lentivirus expressing GFP (mock control) or CRE-
GFP were used at DIV1 (primary neurons) or at DIV17 (primary
astrocytes). Efficiency of infection was monitored by evaluating
GFP fluorescence intensity. Three days after infection, most cells
were GFP positive and GFP expression was maintained until the
day of the analysis. An example of GFP and CRE-GFP infected
neurons is shown in Supplementary Figure 1. We evaluated
the expression level of PS1 and PS2 by WB in neuronal and
astrocyte cultures (Figure 1B). Cre-mediated excision of PSEN1
was very efficient under these conditions, with 90% decrease
in PS1 expression when compared to mock-infected control
(Figure 1B). However, since a residual PS1 expression was still
observed after the infection, we consider the obtained cultures
as a model of PS1 knockdown (PS1KD). Given that APP is
a major substrate of the γ-secretase and critically involved in
AD, we evaluated by WB the accumulation of APP C-terminal
fragments (α-CTFs and β-CTFs) following PSs deletion. CTFs
are the direct substrates of the γ-secretase that accumulate when
γ-secretase activity is blocked. An important accumulation of
the CTFs (likely α-CTFs) was observed in PSdKO neurons and
astrocytes (Figures 1B,C). CTF accumulation is also observed in
PS1KD neuronal cultures, in line with the fact that PS1 is more
expressed in neurons than astrocytes (Lee et al., 1996; Lah et al.,
1997). The accumulation of CTFs is very low in the absence of
PS2 in primary neurons. This is in agreement with the fact that
PS2 only marginally contributes to APP processing when PS1
is present. To further characterize our model, we checked the
overall morphology of the various PS-deficient cells at DIV11
(neurons) and DIV24 (astrocytes) by immunostaining cells with
astrocytic (GFAP) and neuronal (MAP2) markers (Figure 2).
Protoplasmic astrocytes cultures were pure while some activated
astrocytes were present in neuronal cultures (±10%). There
were no apparent differences in terms of morphology or growth
between Ct, mock, PS1KD, PS2KO, and PSdKO cells.

Membrane Potential (19) and OXPHOS
Complexes Expression Are Not Affected in
PS-Deficient Primary Nerve Cells
As a primary indicator of mitochondrial mass (Whitaker-
Menezes et al., 2011), the expression level of the mitochondrial
import receptor subunit TOM20 (Figure 3A) was first evaluated
in cell lysates from primary neurons and astrocytes. No changes
were observed, suggesting that deletion of PSs did not affect the
mitochondrial mass in the cells tested. Mitochondrial membrane
potential (19) is crucial for energy production and it is
the driving force generated by the electron transport chain
(ETC) for ATP synthesis. 19 is known to stay stable since
its decrease is a strong indication signal of cell death (Uechi
et al., 2006). We evaluated the 19 with the TMRM probe
(Figure 3B), using FCCP (an uncoupling agent abolishing 19)
as a positive control. No significant differences in 19 were
observed between controls (Ct and Mock) and PS2KO, PS1KD,
and PSdKO cells, neither in neurons nor in astrocytes. Since ATP
synthase might work in reverse to keep 19 stable (Uechi et al.,
2006), a defect in ETC could still occur without being readily
detectable by mitochondrial membrane potential measurements.
We checked the expression of the ETC subunits by WB using a
cocktail of antibodies targeting representative subunits of the five
mitochondrial complexes (Figure 3C). We found no differences
in the expression of any ETC subunit in PS1KD, PS2KO, or
PSdKO neurons or astrocytes. This was rather unexpected since
we previously reported a defect in oxidative phosphorylation
(OXPHOS) capacity along with expression changes of the ETC
subunits in PS2KOMEF cell lines (Contino et al., 2017).

Mitochondrial Oxidative Phosphorylation
and Bioenergetics Are Not Affected by the
Absence of PS1 and/or PS2 in Primary
Neurons and Astrocytes
The absence of changes in ETC complexes levels is a biochemical
indication that does not rule out the hypothesis that OXPHOS
could be impaired in PS-deficient primary neurons or astrocytes.
Indeed, the cocktail of OXPHOS antibodies used in our study
targets only one subunit of each of the massive ETC complex.
We evaluated the activity of the ETC by measuring the overall
profile of oxygen consumption rate (OCR) and several related
parameters (Figures 4A–C). The parameters measured were
basal respiration, coupling (oxygen consumption devoted to
ATP synthesis under resting conditions), and spare respiratory
capacity (maximal uncoupled rate of respiration minus the
basal rate). The absence of PS2 affected all these parameters in
MEF PS2KO cell lines (Supplementary Figure 2). Strikingly, the
general OCR measured was similar in the presence (Ct, Mock)
or absence of PSs (PS1KD, PS2KO, PSdKO) in primary neurons
and astrocytes (Figures 4A–C). To note, the OCR at basal state
is running near the maximal respiratory capacity in astrocyte
cultures. This could suggest that the cells are stressed. However,
this kind of OCR profile is commonly observed in primary
astrocyte cultures (Damiano et al., 2014; Logan et al., 2018;
Neal et al., 2018). The GFAP staining (Figure 2) indicates that
astrocytes in culture are indeed activated astrocytes (Liddelow
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FIGURE 1 | Experimental workflow and model characterization in PS-defective primary nerve cells. (A) Workflow description of the experiments with specificity for

PSEN1 deletion. Primary neuronal and astrocyte cultures were performed on embryos at day 17 (E17) and postnatal pups at day 2 after birth (P2), respectively.

(Continued)
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FIGURE 1 | Generation of the different genotypes in the same litter were obtained from crossing PS2 heterozygous and PS1 floxed (PS2+/−; PS1flox/flox) animals

followed where necessary by viral transduction. At DIV1 for neurons and DIV17 for astrocytes, cells were either non-infected (Ct and PS2KO) or infected with GFP

(Mock) or CRE-GFP to induce PSEN1 gene deletion (PS1KD and PSdKO). Experiments were performed after 11 days for neurons and 24 days (including 7 days of

differentiation) for astrocytes. Ex2 and Ex3 = PSEN1 exons 2 and 3, respectively. (B,C) Representative WBs showing PS1 and PS2 expression profiles (left panel) and

APP C-terminal fragment (α-CTFs; right panel) in total cell lysates from primary neuronal (B) and astrocyte (C) cultures. Tubulin was used as loading control.

Quantification of PS1 expression (means ± sem) is given as percentage of signal measured in control cells (Mock); ****p < 0.0001; **p < 0.01; Student’s t-test for

neurons results and Mann-Whitney test for astrocytes results (N = 6).

FIGURE 2 | Morphology of PS-defective primary neuronal and astrocyte cultures. On the left side, a primary culture of neurons at DIV11 immuno-stained with

glial-specific protein GFAP (blue) and the neuron-specific protein MAP2 (red) antibodies. On the right side, a primary culture of astrocytes at DIV24 immuno-stained

with GFAP (blue) antibody. Scale bar = 100µm.

and Barres, 2017; Dubovy et al., 2018). This activated astrocyte
profile could explain the similar OCR values measured in
astrocytes at basal state and upon stimulation with FCCP.

The major outcome of genetic deletion of PSs is to down-
regulate or abolish γ-secretase activity in cells. Another way
to address the role of γ-secretase activity in OXPHOS is
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FIGURE 3 | 19 and OXPHOS complexes expression in PS-deficient primary nerve cells. Experiments were performed on primary DIV11 neuronal cultures and

primary DIV24 astrocytes cultures. Cell conditions were Ct vs. PS2KO, Mock (infection control) vs. PS1KD and PSdKO. (A) Representative WBs and quantifications of

TOM20 profile expression; in primary neuronal cell lysates (left panel) and in primary astrocyte cell lysates (right panel). Tubulin was used as a loading control. Results

(mean ± sem) are expressed as percentage of the respective control (ctr = Ct or Mock) (min N = 2). Kruskal–Wallis test and Dunn’s multiple comparison test. (B) 19

was evaluated with the TMRM probe in the presence or absence of FCCP, an uncoupling agent used as control (striped columns). Fluorescence signal was measured

(Continued)
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FIGURE 3 | with a plate reader and results are expressed as the percentage of the relative mean fluorescence of the respective control cells (ctr = Ct or Mock) (min N

= 3). ANOVA and Tukey’s multiple comparison test. ****p < 0.0001. (C) The expression level of representative protein subunits from each of the five mitochondrial

complexes (NDUFB8 for CI; SDHB for CII; UQCRC2 for CIII; MTCO1 for CIV; ATP5A for CV) was evaluated by WB on cell lysates. Actin was used as a loading control.

Dashed lines indicate that proteins were run on the same gel, but lanes are not contiguous. Quantifications of the different WBs (means ± sem) are given as

percentage of signal measured in the respective control cells (Ct or Mock) (min N = 3). ANOVA and Tukey’s multiple comparison test.

to block γ-secretase activity with pharmacological inhibitors.
To that end, we treated primary neurons and astrocytes for
24 h with 10µM of DAPT, a concentration that efficiently
blocks γ-secretase activity (Figure 5A). We measured the OCR
(Figures 5B,C) and observed no changes in DAPT-treated cells
when compared to non-treated cells. This confirms that γ-
secretase activity is not involved in OXPHOS, in agreement
with the results obtained in PS-deficient neurons and astrocytes.
We next measured the NAD+/NADH ratio (Figure 6A) and
glycolytic flux (Figure 6B), parameters related to bioenergetics.
NADH is an electron donor used by the first complex of the
ETC. Glycolysis can either produce intermediates for OXPHOS
or produce ATP and lactate depending on the oxidative status.
These parameters were found to be altered in PS2KO MEF cell
lines (Contino et al., 2017). We did not observe any changes
in these indicators in primary neurons or astrocytes in the
absence of PSs. In agreement, ATP levels were stable in all
cell types (Figure 6C). All these data strongly support that
the mitochondrial activity and related bioenergetics are not
dependent on PSs in neurons and astrocytes, on the contrary
to what was observed in MEF (Contino et al., 2017). Finally,
we checked for possible mitochondrial fusion/fission defects in
PS-deficient cells. Mitochondria are very dynamic entities and
their shape and length can change erratically due to fusion and
fission processes under certain circumstances such as cell division
or especially in response to stress. We evaluated by WB two
key proteins of mitochondrial fusion (OPA1) and fission (DRP1)
as indicators of altered mitochondrial dynamics (Figures 7A,B).
We found only a very small but significant increase in OPA1 in
PS2KO and PSdKO neurons that is not mirrored by the DRP1
profile. Thus, subtle changes in mitochondrial dynamics could
occur in PS2-deficient cells without affecting mitochondrial
OXPHOS and related bioenergetics (Figures 4, 5).

To further investigate the cellular effects of such protein
changes in PS2KO neurons, and since previous results
from our group demonstrated specific alterations in
mitochondrial function and content in immortalized PS2KO
MEF cells (Contino et al., 2017), we decided to evaluate
mitochondrial morphology in WT (Ct) and PS2KO neurons
by immunofluorescent staining against TOM20 (Figure 8A). A
semi-automated and detailed characterization was accomplished
by using the Mitochondrial Network Analysis (MiNA) toolset
in ImageJ, which allows the obtention of parameters to
quantitatively capture the morphology of the mitochondrial
network (Valente et al., 2017). Briefly, confocal images of mature
neurons (positive for MAP2) were processed to enhance their
resolution and converted to binary images, finally producing
the mitochondrial skeleton morphology. In all analyzed cells
mitochondria were interconnected, thus forming an intracellular
network, and no differences were observed when evaluating

the mean number of mitochondria (individuals: unbranched,
punctate organelles) or networks (branched, reticular structure
of fused mitochondria) (Figure 8B). Additionally, no differences
were observed in the mean number of junctions, end-points,
and slab voxels (data not shown), suggesting an unaltered shape
and distribution of the mitochondrial network together with the
same degree of network complexity between genotypes. Finally,
in order to confirm the lack of mitochondrial alterations in
PS2KO neurons, a RT-qPCR-based mtDNA content analysis was
performed in those cells, indicating normal mitochondrial mass
in response to PS2 depletion (Figure 8C).

Metabolic Characterization of PS2
Deficient Primary MEF
Since no metabolic defect was observed in primary neuronal and
astrocyte cells, we hypothesized that the phenotype previously
observed in MEF cells could be exclusively peripheral. Indeed,
the general OCR profile and related parameters were defective
in PS2KO MEF cell lines and restored after stable re-expression
of human PS2 (Supplementary Figure 2). To further investigate
this idea, we decided to generate primary MEF derived from
E16 WT (Ct) or PS2KO mice. We measured the expression
of TOM20 and subunits of OXPHOS complexes (Figure 9A)
and did not observe any differences between Ct and PS2KO
fibroblasts. The activity of the ETC was also stable in the
absence of PS2 as shown with the general OCR profile and
the related parameters (Figure 9B). Finally, NAD+/NADH ratio
and glycolytic flux (Figures 9C,D) were not modified either,
indicating ametabolic stability in primary fibroblasts lacking PS2.
The metabolic phenotype observed in primary fibroblasts is not
consistent with the one reported in immortalizedMEF, and could
reflect deep differences between primary and immortalized cells.

DISCUSSION

PSs play a major role in cell physiology and AD pathology as
catalytic subunits of the γ-secretase complex. The γ-secretase
is a multiprotein membrane complex, involved in regulated
intramembrane proteolysis (RIP). Up to 90 membrane proteins
have been identified as substrates of the γ-secretase (Haapasalo
and Kovacs, 2011). The major substrates are Notch and the
Amyloid Precursor Protein (APP), which respectively play a
critical role during development and in the amyloid pathology
found in AD (Hardy, 2006). PSs have also been implicated in
other cellular functions, including calcium homeostasis, cell-
cell adhesion, membrane trafficking, and Wnt signaling (Otto
et al., 2016). The most reported non-catalytic functions of PSs
are related to calcium homeostasis (Nelson et al., 2007; Cheung
et al., 2008; Wu et al., 2013). PSs contribute to the building
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FIGURE 4 | Assessment of the OXPHOS capacity in primary nerve cultures genetically deleted for PSs. Oxygen consumption rate (OCR) was evaluated by using the

Seahorse XF96 bioenergetic analyzer. Experiments were carried out in primary DIV11 neuronal cultures (left panel) and in primary DIV24 astrocyte cultures (right panel).

(Continued)
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FIGURE 4 | Cell conditions were wild-type non-infected (Ct) vs. PS2KO; control infection (Mock) vs. PS1KD and PSdKO. (A,C,E) General profile of the OCR with

vertical lines indicating the time point at which the different compounds have been added: a. Oligomycin (CV inhibitor) b. FCCP (19 uncoupler) c. Rotenone (CI

inhibitor) and antimycin A (CIII inhibitor). Values (means ± sem) are given in pmol O2/min/µg protein (min N = 3). (B,D,F) The basal respiration, the coupling ratio and

the spare respiratory capacity were calculated according to the Cell Mito Stress Test kit’s recommended protocol. Values (means ± sem) are given as percentage of

signal measured in the respective control cells (Ct or Mock) (min N = 3). ANOVA and Tukey’s multiple comparison test.

FIGURE 5 | Assessment of the OXPHOS capacity in primary nerve cultures treated with DAPT. OCR was evaluated by using the Seahorse XF96 bioenergetic

analyzer. Experiments were performed in primary neurons (DIV11) or primary astrocytes (DIV7) wild-type non-treated (NT or Ct) or treated with DAPT. (A) Accumulation

of α-CTF upon treatment with 10µM of DAPT for 24 h of control primary nerve cultures was evaluated by WB with an antibody targeting the C-terminal region of APP.

Tubulin was used as loading control. (B) General profile of the OCR with vertical lines indicate the time point at which the different compounds have been added: a.

Oligomycin (CV inhibitor) b. FCCP (19 uncoupler) c. Rotenone (CI inhibitor) and antimycin A (CIII inhibitor). Values (means ± sem) are given in pmol O2/min/µg protein

(N = 3). (C) The basal respiration, the coupling ratio, and the spare respiratory capacity were calculated according to the Cell Mito Stress Test kit’s recommended

protocol. Values (means ± sem) are given as percentage of signal measured in control cells (Ct). Student’s t-test for neurons results (N = 3) and Mann-Whitney test for

astrocytes results (N = 2).

of functional ER/mitochondria interfaces called mitochondria-
associated membranes (MAMs) (Area-Gomez et al., 2009;
Brunello et al., 2009; Filadi et al., 2016). MAMs control
calcium shuttling between ER andmitochondria, interconnecting
calcium homeostasis and mitochondrial function. We previously

observed in MEF cell lines that the absence of PS2 led to a
decrease in OXPHOS activity and in the expression of ETC
proteins, along with an increased anaerobic glycolysis that
sustains the ATP production. The effects observed were cell-
autonomous since defects in bioenergetics were rescued by the

Frontiers in Neuroscience | www.frontiersin.org 12 January 2021 | Volume 14 | Article 58610859

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Contino et al. Presenilin-Deficient Mitochondrial Phenotypes

FIGURE 6 | Evaluation of ATP levels, NAD+/NADH ratio, and glycolytic flux in primary nerve cultures. Experiments were performed respectively at DIV11 and DIV24 in

neuronal (left panel) and astrocytes (right panel) cultures. Cell conditions were wild-type non-infected (Ct) vs. PS2KO; Mock (infection control) vs. PS1KD and PSdKO.

(ctr = Ct or Mock). (A) NAD+/NADH ratio was quantified by a bioluminescent kit (min N = 3). (B) Glycolysis rate was determined by the detritiation rate of [3-3H]

glucose after a 30min incubation. Data were normalized to protein content (min N = 3). (C) ATP level was quantified by a bioluminescent kit (min N = 3). ANOVA and

Tukey’s multiple comparison test.

stable expression of human PS2 in PS2KO cells (Contino et al.,
2017). These indications supported the role of presenilins, and
more precisely PS2 in mitochondrial function, in agreement
with other studies carried out in the same model (MEF) or in

neuronal cell lines. PS2 but not PS1 deficiency was reported
to alter mitochondrial respiration (Behbahani et al., 2006).
PS2 was found to modulate calcium shuttling between the ER
and mitochondria, a critical process for OXPHOS stimulation
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FIGURE 7 | Expression of mitochondrial fusion and fission proteins in PS-deficient primary nerve cells. Experiments were performed on primary DIV11 neuronal

cultures and primary DIV24 astrocytes cultures. Cell conditions were Ct vs. PS2KO, Mock (infection control) vs. PS1KD and PSdKO. (A) Representative WBs and

(Continued)
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FIGURE 7 | quantifications of DRP1 profile expression; in primary neuronal cell lysates (left panel) and in primary astrocyte cell lysates (right panel). Tubulin was used

as a loading control. Results (mean ± sem) are expressed as percentage of the respective control (ctr = Ct or Mock) (min N = 2). Kruskal–Wallis test and Dunn’s

multiple comparison test. (B) Representative WBs and quantifications of OPA1 profile expression; in primary neuronal cell lysates (left panel) and in primary astrocyte

cell lysates (right panel). Tubulin was used as a loading control. Results (mean ± sem) are expressed as percentage of the respective control (ctr = Ct or Mock) (min N

= 4). ANOVA and Tukey’s multiple comparison test, *p < 0.05.

and thereby mitochondrial activity (Zampese et al., 2011). In
agreement, a study reported that PSs are enriched in MAMs
(Area-Gomez et al., 2009).

We further investigated in this study the role of PSs in
mitochondrial function by using mouse primary neurons and
astrocytes. Contrary to what was previously observed, we found
that the absence of PS1 or PS2 and even of both (PSdKO)
did not affect mitochondrial ETC and related bioenergetic
parameters in primary nerve cells. Moreover, the morphology
of the mitochondrial network and the quantity of mtDNA were
not changed either in PS2KO neurons. Importantly, we also did
not observe any change in primary PS2-deficient fibroblasts, in
opposition to the results obtained in immortalized fibroblasts
(MEF cell lines). This raises important points about the
interpretation of the role of PSs inmitochondrial functions across
cellular models. First, the PS2KO MEF cell lines, which have
been widely used so far, can genetically derive and acquire clonal
properties, with the inherent risk of artifacts or misinterpretation
of the data (Kaur and Dufour, 2012). Immortalized cell lines
can acquire mutations with subcultures and these mutations
can interfere with the cellular phenotype. However, the rescue
experiments that we performed in a previous study indicated
that the mitochondrial defects observed in PS2KO MEF cell
lines are truly PS2-dependent (Contino et al., 2017). Second,
the immortalization process might be responsible for the PS2-
dependent phenotype observed in MEF. The fact that a PS2-
dependent phenotype is observed only in immortalized cells
can be related to data from the literature. PSs are involved
in different cellular pathways related to cancer, like Notch
and Wnt pathways (Xia et al., 2001; Andersson and Lendahl,
2014; Li et al., 2016). An increase in lung tumor formation
through peroxiredoxin 6 (PRDX6) activation was also reported
in PS2KO mice. The proposed underlying mechanism involves
the PS2-dependent γ-secretase cleavage of PRDX6 that inhibits
its critical activity in cell growth (Yun et al., 2014; Park et al.,
2017). Another study showed that PSs are involved in epidermal
growth and transformation by regulating the epidermal growth
factor receptor (EGFR) signaling (Rocher-Ros et al., 2010). It
is also important to take into account that the immortalization
process used for the generation of MEF cell lines relied on SV40
Antigen T expression (De Strooper et al., 1999), which shows
similarities with tumor development due to the large T antigen
forming complexes with pRB-1 and p53 (Hubbard and Ozer,
1999; Pipas, 2009). In agreement, the inhibition of γ-secretase
activity is suggested as a potential approach for cancer treatment.
Interestingly, PSs have been associated to regulation of proteins
such as Akt, HIFα, or β-catenin (Xia et al., 2001; Kang et al.,
2005; De Gasperi et al., 2010). Those proteins contribute to
the Warburg effect, which states that most cancer cells produce
lactic acid from glucose even under non-hypoxic conditions and

despite functional mitochondria (Koppenol et al., 2011). Many
pieces of evidence relate thus PSs function to cancer processes,
not only to neurodegenerative diseases. Our data clearly indicate
that the absence of PS2 has a different outcome when measured
in primary fibroblast or in immortalized fibroblast. The large
amount of data reported so far inMEF cell lines (Behbahani et al.,
2006; Tu et al., 2006; Brunello et al., 2009; Filadi et al., 2016;
Pera et al., 2017) might be relevant to describe the role of PSs
and γ-secretase activity in cancer models, which are difficult to
transpose to a neurodegenerative context.

To that end, we addressed the role of PSs in mitochondrial
function in primary neurons and astrocytes. Neurons are a prime
target of neurodegeneration, and a major function of astrocytes
is to support neuronal activity. Impairment of the neuronal
network and activity underlies the gradual memory and other
cognitive deficits in AD (Long and Holtzman, 2019). Although
neurons are themost studied nerve cell type, astrocytes also play a
key role in AD pathogenesis (Verkhratsky et al., 2010). Astrocytes
and neurons are known to be metabolically different. Neurons
rely primarily on mitochondrial oxidative phosphorylation for
energetic supply and astrocytes on glycolysis. We did not
observe any metabolic defects in our PS-deficient primary
neuronal cultures. Indeed, the OXPHOS system (activity and
expression) as well as the 19 , glycolysis, and NAD+/NADH
ratio were comparable between control, PS2KO, PS1KD, and
PSdKO cells. Since astrocytes are more glycolytic than neurons
(Kasischke et al., 2004; Castelli et al., 2019), we hypothesized
that astrocytes would be close, in terms of metabolic phenotype,
to the MEF cell line we previously analyzed (Contino et al.,
2017). However, all the metabolic parameters evaluated in
primary astrocytes were not altered by the absence of PSs.
This leads us to conclude that the lack of PSs does not
affect neither the OXPHOS, nor related metabolic aspects,
such as glycolysis and NAD+/NADH ratio in primary nerve
cells. In support of these observations, the analysis of the
morphology and complexity of the mitochondrial network, as
well as its mass, does not show differences between control
and PS-deficient neurons. This result is coherent with all
the data obtained regarding mitochondrial function; indeed,
the preservation of a correct and interconnected network of
mitochondria is crucial to cell function (Chen and Chan,
2004; Lackner, 2014). To note, differences between nerve cells
and peripheral cells have been reported in a metabolic study
comparing primary neurons, astrocytes, and fibroblasts cultures
deficient for the mitochondrial complex I subunit NDUFS4,
a model for the mitochondrial Leigh syndrome, a severe
neurological disease (Bird et al., 2014). The 19 and ATP
synthesis were impaired in the NDUFS4 KO primary MEF, with
an increase in ROS generation and an altered sensitivity to cell
death. In contrast, NDUFS4 KO primary neurons and astrocytes
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FIGURE 8 | Evaluation of mitochondrial morphology and content in PS2KO neurons. (A) Mitochondria from wild-type non-infected (Ct) and PS2KO neurons at DIV11

were stained with an anti-TOM20 antibody (green) and mature neurons were identified with MAP2 (red). Confocal microscope images were acquired and TOM20

images were processed using the MiNA toolset to generate accurate mitochondrial skeletons for further analysis. Scale bar = 20µm. (B) Quantification of individuals

(counts) and networks (counts) are shown in the graphs. Results are presented as mean ± sem. Student’s t-test (n = 55 from N = 3 independent experiments). (C)

RT-qPCR analysis of mitochondrial DNA content (Cyt-b and Nd1 mitochondrial genes) in wild-type non-infected (Ct) and PS2KO neurons at DIV11. Results (mean ±

sem) are expressed as percentage of the respective control (Ct) (min N = 4).

displayed only impaired ATP generation. This underlines the
importance of the cellular model and experimental set-up when
investigating alteration of mitochondrial function related to a
neuronal pathology.

Still, the fact that the absence of PSs does not affect the basal
mitochondrial-related bioenergetics in astrocytes and neurons
is rather intriguing. Considering the expression profiles of the
PSEN1 and PSEN2 genes throughout the body, one could
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FIGURE 9 | Metabolic characterization of PS2 deficient primary MEF. Experiments were carried out in primary MEF derived from E16 WT mice (Ct) or PS2KO mice

(PS2KO). (A) Expression profile of PS2 (left panel, up), TOM20 (left panel, down), and representative protein subunits from each of the five mitochondrial complexes

(right panel; NDUFB8 for CI; SDHB for CII; UQCRC2 for CIII; MTCO1 for CIV; ATP5A for CV), evaluated by WB on cell lysates. Actin was used as a loading control.

Quantifications of the different WBs (means ± sem) are given as percentage of signal measured in control cells (Ct) (min N = 3). Student’s t-test. (B) Left panel:

General OCR profile of primary MEF Ct vs. PS2KO. Values (means ± sem) are given in pmol O2/min/µg protein. Right panel: The basal respiration, the coupling ratio

and the spare respiratory capacity. Values (means ± sem) are given as percentage of signal measured in control cells (Ct) (N = 3). (C) NAD+/NADH ratio was

quantified by a bioluminescent kit (N = 4). (D) Glycolytic rate was determined by the detritiation rate of [3-3H] glucose after a 30min incubation. Data were normalized

to protein content (N = 3). Student’s t-test.

expect to have distinct phenotypes related either to PS1 or PS2
deficiency. PS1 was suggested to be more important in CNS
and PS2 in peripheral organs (Lee et al., 1996). The absence

of mitochondrial defects in PSdKO is even more unexpected,
considering the broad array of functions attributed to PSs (Zhang
et al., 2013; Wolfe, 2019), which process more than 90 membrane
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proteins (Haapasalo and Kovacs, 2011; Wolfe, 2019). Cortical
brain sections from conditional PSdKO mice show several
pathological features such as neurodegeneration, astrogliosis, and
even swollen mitochondria (Saura et al., 2004; Wines-Samuelson
et al., 2010). The experimental set-up and environment should
be taken into consideration to give a precise interpretation to
data obtained across different models. All our experiments were
performed on primary cells that were cultured in low glucose
(5mM) medium, to reflect a more physiological condition.
Neurons and astrocytes were mature and differentiated (DIV11
for neurons and DIV24 for astrocytes), and tested at basal and
resting state. Challenging the cells might be a key point for further
investigations to unravel a deficit that could be masked in basal
conditions. The time of the culture, especially for neurons, is also
an important parameter. Performing the experiments on aged
cultures would be of interest to check if mitochondrial functions
evolves distinctly in PS-deficient cells upon aging. Cultures
could be supplied with different types of cell fuels (pyruvate,
fatty acid. . . ), cells could be challenged with depolarization or
hypoxia to perhaps unravel a PS-dependent phenotype in specific
contexts. Indeed, the brain tissue is much more complex than in
vitro cultures, in which disrupted PS-dependent cell interactions
could account for changes in energy homeostasis (Saura et al.,
2004; Wines-Samuelson et al., 2010).

In conclusion, our study provides evidence for the lack of
mitochondrial alterations in PS1KD, PS2KO, and even PSdKO
neurons and astrocytes, as well as in PS2KO primary MEF.
This is in contradiction with previous observations in neuronal
cell lines and immortalized fibroblasts. Thus, immortalized
cells might provide relevant results regarding the role of PSs
in mitochondrial activity and bioenergetics related to cancer
processes, in which PSs involvement have already been reported.
However, the contribution of PSs to alterations in mitochondrial
activity related to neurodegenerative processes, such as AD, needs
to be critically readdressed and further explored in brain models.
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Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by
extracellular amyloid β (Aβ) and intraneuronal tau protein aggregations. One risk factor
for developing AD is the APOE gene coding for the apolipoprotein E protein (apoE).
Humans have three versions of APOE gene: ε2, ε3, and ε4 allele. Carrying the ε4 allele
is an AD risk factor while carrying the ε2 allele is protective. ApoE is a component of
lipoprotein particles in the plasma at the periphery, as well as in the cerebrospinal fluid
(CSF) and in the interstitial fluid (ISF) of brain parenchyma in the central nervous system
(CNS). ApoE is a major lipid transporter that plays a pivotal role in the development,
maintenance, and repair of the CNS, and that regulates multiple important signaling
pathways. This review will focus on the critical role of apoE in AD pathogenesis and
some of the currently apoE-based therapeutics developed in the treatment of AD.

Keywords: Alzheimer’s disease, APOE, APOE receptors, lipidation, amyloid β, therapeutics

OVERVIEW

Polymorphism in the apolipoprotein E (APOE) gene is a major risk for developing late onset
Alzheimer disease (LOAD), whose symptoms are more frequently appearing after the age of
65 years (Yamazaki et al., 2019). The ε4 allele of APOE gene is the strongest risk factor for LOAD
(Yamazaki et al., 2019). The differences in the structure of apoE isoforms influence their ability to
bind lipids, receptors, and amyloid-β (Aβ), which aggregates in plaques within the brain. Human
and animal studies clearly indicate that apoE isoforms differentially regulate neuroinflammation,
tau hyperphosphorylation, Aβ aggregation and clearance (Tachibana et al., 2019; Kloske and
Wilcock, 2020; Vasilevskaya et al., 2020). ApoE regulates lipid homeostasis by mediating lipid
transport from one tissue or cell type to another (Holtzman et al., 2012; Chernick et al., 2018; Zhao
et al., 2018b). Since lipids such as cholesterol and triglycerides are insoluble in water, they must be
carried in the circulation by hydrophile-lipophile particles named lipoproteins. These lipoproteins
play a major role in the absorption and transport of dietary lipids between the small intestine, liver
and peripheral tissues to the brain where they are essential. In the periphery, it is established how
lipids travel in the blood using the different types of lipoproteins (Holtzman et al., 2012; Chernick
et al., 2018; Zhao et al., 2018b), whereas within the CNS, lipoproteins are often designated as
high-density lipoproteins (HDL)-like, yet their size, shape, and distribution remain unclear. ApoE,
present in the CNS and the periphery, represents a critical link between these two compartments
and could influence Alzheimer’s disease (AD) pathogenesis by disrupting the blood–brain barrier
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(BBB) integrity from both sides (Chernick et al., 2019). In
this review, the possible mechanisms by which apoE exerts its
modulatory effect on AD physiopathology are discussed and
new therapeutic perspectives targeting apoE for AD treatment
are also described.

HUMAN APOE GENE

Gene Polymorphism
All species have one version of APOE gene while humans
have three versions: APOE-ε2 (APOE2), APOE-ε3 (APOE3),
and APOE-ε4 (APOE4) allele (McIntosh et al., 2012). The
human APOE gene comprises of several single-nucleotide
polymorphisms (SNPs) distributed across the gene (Nickerson
et al., 2000). The most common SNPs are categorized as rs429358
(C > T) and rs7412 (C > T) that lead respectively in amino acid
change at position 112 and 158 within the apoE protein (Belloy
et al., 2019). The haplotype combination at the two SNPs results
in three apoE protein isoforms: apoE2 (Cys112, Cys158), apoE3
(Cys112, Arg158), and apoE4 (Arg112, Arg158). In non-human
mammals, APOE genotype is (Thr61/Arg112/Arg158) while all
human APOE alleles have an Arginine in position 61 (Arg61).
Combinations of these specific amino acids modify the protein
structure and functions. The world-wide frequency of human
APOE alleles varies considerably (Figure 1). APOE3 is the most
common among all human populations and its frequency ranges
from 85% (Asia) to 69% (Africa) (Singh et al., 2006). APOE4 allele
frequency varies considerably in native populations of Central
Africa (40%), Oceania (37%), and Australia (26%) (Corbo and
Scacchi, 1999). The distribution across Europe and Asia follows
an apparent gradient from north to south, with low APOE4 allele
frequencies in the Mediterranean or South China and higher
frequencies in northern regions (up to 25%) (Egert et al., 2012).
APOE2 is the least common allele with a global prevalence of
7.3% and is absent in many indigenous people without any clear
regional pattern (Corbo and Scacchi, 1999; Singh et al., 2006).

APOE Allele and Risk of Diseases
The different alleles of APOE confer differential risks of
developing pathologies (Wu et al., 2018). A meta-analysis
of clinical and autopsy-based studies on five ethnic groups
(Caucasian, African American, Hispanic, and Japanese) revealed
that among Caucasian subjects, the risk of developing AD
was increased in individuals with one APOE4 copy compared
to individuals homozygote for APOE3 (Farrer et al., 1997).
Compared to non-carriers of APOE4, the increased risk of AD
is 3–4 fold in heterozygotes and about 9–15 fold in APOE4
homozygotes (Farrer et al., 1997; Neu et al., 2017). The APOE4-
AD correlation was weaker among African–Americans and
Hispanics, and greater in Japanese people compared to Caucasian
cases (Table 1). The risk of AD was however decreased in
people carrying APOE2 compared to those carrying APOE3
(Farrer et al., 1997). According to a population-based cohort
study, lifetime risk of mild cognitive impairment (MCI) or
dementia is 30–35% for APOE4 homozygote individuals, 20–25%
for APOE4 heterozygote individuals (ε3/ε4 and ε2/ε4), and

10–15% for non APOE4 individuals (ε3/ε3, ε3/ε2, and ε2/ε2)
(Qian et al., 2017). With respect to other APOE genotypes,
familial type III hyperlipoproteinemia is associated to those
homozygous for APOE2 (Yang et al., 2007; McIntosh et al., 2012).
Altogether, these APOE-related risks for diseases point toward
differences in the structure and function of the proteins involved
in lipid metabolism.

APOE2, Guardian Angel Against AD?
A study on 38,537 people from six population-based cohorts
showed a survival benefit for APOE2 carriers (Wolters et al.,
2019). They identified 239 APOE2 homozygotes, who have
lived the longest lives. Another group reported that compared
with the ε3/ε3 genotype, individuals with the ε2/ε2 genotype
have larger gray-matter volume in brain areas subjected to AD
(i.e., hippocampi, medial temporal inferior temporal, cortex,
precuneus, superior parietal regions, and temporal pole) and in
areas related to cognitive resilience during aging (i.e., anterior
cingulate and medial prefrontal areas) (Arenaza-Urquijo et al.,
2019). APOE2 homozygotes have a 66% reduction in AD risk
compared to ε2/ε3 carriers, an 87% reduction in AD risk
compared to APOE3 homozygotes, and a 99.6% reduction in
AD risk when compared to APOE4 homozygotes (Reiman
et al., 2020). These recent studies on APOE2-related genotypes
might stimulate research interest for characterizing the molecular
advantages of apoE2 protein over the other isoforms.

APOE PROTEIN

Structure
Human APOE gene is located on the chromosome 19 at position
q13.32 (Figure 2A) and codes for a 299 amino acid protein
(∼36 kDa) whose primary function in the brain is to transport
cholesterol. ApoE contains three main regions: a N terminal
region containing the receptor-binding site and four helices, a
C-terminal region containing the lipid-binding site and three
helices, and an intervening flexible hinge region that links the
N- and C-terminal regions (Figure 2B) (Liu et al., 2013; Flowers
and Rebeck, 2020). ApoE isoforms differ by a unique amino acid
combination at position 112 and 158: apoE2 (Cys112, Cys158),
apoE3 (Cys112, Arg158), and apoE4 (Arg112, Arg158) (Yu et al.,
2014). The genotype-related change of one or two amino acids
within the apoE protein modifies its structure. For instance, Cys-
158 in apoE2 removes a salt-bridge between Arg158 and Asp154,
reduces the positive potential, and consequently changes the
receptor binding region (Wilson et al., 1991). Arg-112 changes
the lipid binding region of apoE4 and shifts the lipid binding
preference from HDL to very-low-density lipoproteins (VLDL)
(Mahley and Rall, 2000). The existing interaction between the
amino acid 61 and 112 influences the lipoprotein binding; it is
the main reason explaining the high affinity of apoE4 to VLDL
while apoE2 and apoE3 bind to HDL (McIntosh et al., 2012). Even
though apoE of the non-human mammals such as chimpanzee
is similar to the human ε4 allele, the presence of a threonine at
position 61 (Thr61) makes it work more like the human ε3 allele
(McIntosh et al., 2012).

Frontiers in Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 63050270

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-630502 February 11, 2021 Time: 18:4 # 3

Husain et al. APOE Genotype and Alzheimer’s Disease

FIGURE 1 | Global distribution of APOE4 allele in Homo sapiens. Frequency of ε4 is low (light red regions) and high (dark red regions). The gray color indicates that
there are no data available for this country. The geographical map of APOE4 frequency was generated using the package, rworldmapR. State estimates were
generated by averaging the frequency of APOE4 allele across the various studies conducted in a specific country.

TABLE 1 | APOE genotypes, allele frequency distribution, and odds ratio for developing AD, stratified by AD patient cases and controls on five ethnic groups
(Farrer et al., 1997).

APOE genotype {(frequency (%) / APOE allele

AD Odds ratio (95 % confidence interval)} frequency (%)

Ethnic groups No E2/E2 E2/E3 E2/E4 E3/E3 E3/E4 E4/E4 E2 E3 E4

CAUCASIAN
CASE PATIENTS

5107 0.2/0.9 4.8/0.6 2.6/1.2 36.4/1.0 41.1/2.7 14.8/12.5 3.9 59.4 36.7

Controls 6262 0.8 12.7 2.6 60.9 21.3 1.8 8.4 77.9 13.7

AFRICAN AMERICAN 235 1.7/2.4 9.8/0.6 2.1/1.8 36.2/1.0 37.9/1.1 12.3/5.7 7.7 59.1 32.2

CASE PATIENTS

Controls 240 0.8 12.9 2.1 50.4 31.8 2.1 8.3 72.7 19.0

HISPANIC 261 0.4/2.6 9.6/0.6 2.3/3.2 54.4/1.0 30.7/2.2 2.7/2.2 6.3 74.5 19.2

CASE PATIENTS

Controls 267 0.4 12.0 0.8 67.4 17.6 1.9 6.7 82.3 11.0

JAPANESE 336 0.3/1.1 3.9/0.9 0.9/2.4 49.1/1.0 36.9/5.6 8.9/33.1 2.7 69.5 27.8

CASE PATIENTS

Controls 1977 0.4 6.9 0.8 75.7 15.5 0.8 4.2 86.9 8.9

Tissue Expression
The human APOE gene is expressed in several organs and in
various cell types. Ninety percent of the circulating apoE is
produced by the liver (Yu et al., 2014) and to a lesser extent
by the adrenal gland and macrophages (Kockx et al., 2008).
Other cells capable of synthesizing apoE include astrocytes,
macrophages, and endocrine cells such as ovarian and adrenal
cells (Huang et al., 2015). In the CNS, apoE secretion is
sustained by astrocytes, oligodendrocytes, pericytes, choroid
plexus and neurons (Kang et al., 2018; Flowers and Rebeck,
2020). ApoE lipoproteins produced by the choroid plexus are

directly secreted into the cerebrospinal fluid (CSF) (Achariyar
et al., 2016). ApoE is also synthesized by glial cells and
associates with lipids to form lipid-transport particles in the CSF
(Koch et al., 2001).

The expression level of apoE varies by genotype. For instance,
individuals carrying APOE2 have higher concentration of apoE
proteins in the CSF whereas APOE4 carriers have lower levels
(Castellano et al., 2011; Cruchaga et al., 2012). The same
observation was made in a mouse model whose APOE gene
was replaced by the human APOE2 (hAPOE2) or hAPOE4
(Ulrich et al., 2013). ApoE levels in the CNS of AD patients
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FIGURE 2 | Schematic illustration of structural and functional regions of apoE protein. (A) Location and structure of the APOE gene on chromosome 19 at position
q13.32. The APOE gene has 4 exons, respectively consisting of 44, 66, 193, and 860 nucleotides, with exon 4 coding for over 80% of the protein. Exon 1 contains
the 5′ untranslated region (5′UTR). The wild-type sequence is apoE3 (Cys112, Arg158). Point mutations in the exon 4 generate two single nucleotide polymorphisms
(SNPs): a T→ C point mutation produces apoE4 (C112R), while C→ T mutation gives apoE2 (R158C). (B) Diagram of human apoE structural domains. The
N-terminal region contains the receptor-binding site (residues 134–150) and four helices (1–4), the C-terminal region contains the lipid-binding region (residues
244–272) and the two domains are joined by a hinge region. The N-terminal region contains the two polymorphic positions (112 and 158) that discriminate the three
apoE isoforms. The lower part of the figure shows the α-helical segment (residues 134–150) that recognizes the LDL receptor. This segment is rich in positively
charged arginine and lysine residues.

are inconsistent with studies reporting either higher (Baker-
Nigh et al., 2016), lower (Cruchaga et al., 2012; Talwar et al.,
2016) or unchanged level of apoE (Martínez-Morillo et al., 2014)
compared to healthy individuals. However, the expression levels
of APOE mRNA in post-mortem AD brain tissues are elevated
compared to controls (Gottschalk et al., 2016), emphasizing the
difficulty to correlate APOE mRNA and protein levels.

APOE RECEPTORS

Affinity for apoE Isoforms and Their
Tissue Expression
ApoE is a ligand for cell surface lipoprotein receptors
belonging to the low-density lipoprotein receptor (LDLR)

family (Holtzman et al., 2012). The LDLR family consists of
eight receptors i.e., LDLR, very-low-density lipoprotein receptor
(VLDLR), apolipoprotein E receptor 2 (apoER2 or LRP8), LRP4,
LDLR-related receptor 1 (LRP1), LRP1b, megalin (LRP2), and
LR11/SorLA (Lane-Donovan and Herz, 2017). All LDLR family
members share structural properties that allow them to interact
with apoE isoforms but with distinct affinities. ApoE3 and apoE4
isoforms bind with high affinity to the LDLR and LRP1 (Ruiz
et al., 2005; Zhao et al., 2018b) whereas apoE2 binding to
LDLR is 50 times weaker than that of apoE3 or apoE4 (Hatters
et al., 2006a). VLDL receptor recognizes all apoE isoforms with
equal affinity (Ruiz et al., 2005). Co-immunoprecipitation assays
revealed differences in the formation of the apoE-LR11 complex
for each isoform (apoE4 > apoE3 > apoE2, apoE4 binding the
most), however the lipidation and oxidation status of apoE was
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not addressed in this study (Yajima et al., 2015). It remains
unclear whether apoE differentially activates apoE receptors.

These receptors are expressed by many tissues. LDLR, is
expressed by neurons and hepatocytes (Goldstein and Brown,
2015). LRP1 is ubiquitously expressed, but more abundantly in
vascular smooth muscle cells (SMCs), hepatocytes, and neurons
(Etique et al., 2013). LRP1 is present on plasma membrane of
various cells including microglia, astrocytes, and neurons. LRP1b
is primarily expressed in the brain, and a differentially spliced
form is present in the adrenal gland and in the testis (Marschang
et al., 2004). VLDLR is expressed by neurons and in tissues
throughout the body while apoER2 is restricted to the brain,
testis, and placenta (Dlugosz and Nimpf, 2018). Megalin is highly
expressed in the proximal tubule of the kidney (Christensen
et al., 1992) and in many other absorptive epithelia, e.g., lung,
retina, yolk sac, inner ear, and brain (Kounnas et al., 1994). LR11
is expressed in neurons of the central and peripheral nervous
system (Kim et al., 2009).

ApoE Receptors and AD
The role in AD pathogenesis for each member of the LDLR family
remains unclear. Overexpression of LDLR in the brain could
lower apoE levels, increase the clearance of Aβ which is one of
the neurological hallmarks of AD, and decrease the deposition
of Aβ (Kim et al., 2009). LRP1 could affect AD pathogenesis
by controlling amyloid precursor protein (APP) processing and
Aβ catabolism (Cam and Bu, 2006). Alterations in APP cellular
trafficking and localization directly impact its processing to Aβ,
and disrupting the interaction between LRP and APP could
decrease Aβ production which in turn affects development of
AD (Cam and Bu, 2006). LRP1b binds to APP and decreases the
processing of APP to Aβ (Cam et al., 2004). Hence, the expression
of LRP1b might also be involved in protecting against the
pathogenesis of AD by decreasing the generation of Aβ proteins
within the CNS (Cam et al., 2004). ApoE isoforms also affect
the endocytosis of receptors. For instance, carrying the APOE4
allele significantly impairs the recycling of apoER2 and VLDLR
compared to APOE3 and APOE2 (Chen et al., 2010). Since
apoER2 interacts with APP and affects APP processing, lower
recycling might increase output of Aβ (He et al., 2007). Unlike
other members of the LDLR family, SorLA expression does not
affect APP endocytosis, but rather mediates APP intracellular
transport processes (Kim et al., 2009). Megalin was thought
to clear Aβ from the brain at the choroid plexus across the
blood-CSF barrier (Spuch et al., 2015). It has been shown that
binding of megalin to Aβ is decreased in the CSF of AD patients,
suggesting that decreased Aβ sequestration in the CSF could be
associated with defective Aβ clearance and increased brain Aβ

levels (Spuch et al., 2015).

METABOLISM AND APOE ISOFORMS

Lipidation of apoE Isoforms
To perform its important functions (i.e., cholesterol
transport, immune modulation, synapse regeneration, and
clearance/degradation of Aβ), apoE must be secreted and

properly lipidated (Kanekiyo et al., 2014; Hu et al., 2015). ApoE
lipidation is facilitated by the cholesterol-efflux protein ATP-
binding cassette A1 (ABCA1). ABCA1 is present in a wide variety
of body cells, including the brain’s astrocytes, neurons, BBB and
in the choroid plexus (Flowers and Rebeck, 2020). ABCA1 is
essential for the proper lipidation of apoE and absence of ABCA1
in knockout mice leads to a decrease in the overall apoE level in
the CNS (Flowers and Rebeck, 2020). ApoE isoforms differ in
their lipid binding and lipoprotein preferences. The C-terminal
domain of apoE (273–299) is critical for the lipoprotein binding
and therefore determines apoE isoform lipidation specificity
and efficiency (Hu et al., 2015). Contrary to apoE2 and apoE3,
apoE4 is poorly lipidated (Kanekiyo et al., 2014). ApoE3 and
apoE2 preferentially bind to small phospholipid-rich HDL while
apoE4 strongly binds to large triglyceride-rich VLDL (Nguyen
et al., 2010). Reduced binding affinity of apoE4 for HDL results
in a greater proportion of unlipidated apoE, hence forming
aggregates (Hatters et al., 2006a). ApoE4 large aggregates are
more toxic for neurons than apoE2 and apoE3 aggregates
(Hatters et al., 2006b). Biophysical studies have shown that
lipid-free apoE appears to aggregate in vitro in an isoform-
dependent manner (apoE4 > apoE3 > apoE2), and lipidation
of apoE impedes aggregates formation (Hubin et al., 2019).
Unlipidated apoE monomers form multimers such as dimers and
tetramers, and apoE can additionally aggregate to form fibrils
(Flowers and Rebeck, 2020). Free cholesterol, phospholipids,
and triglycerides are the main lipids present in apoE-containing
CNS particles (Peng et al., 2003). ApoE4-containing particles
have less cholesterol than those containing ApoE3 (Zhao N.
et al., 2017). APOE genotypes also modify lipidation states in
the periphery. In the homozygous and heterozygous (ε3/ε4)
genotypes, APOE4 is frequently associated with increased
LDL-cholesterol levels in plasma while in homozygous and
heterozygous (ε2/ε3) genotypes, APOE2 is correlated with
mild or low levels (Villeneuve et al., 2015). APOE2 genotype
correlates with higher triglyceride levels compared to APOE3
and APOE4 (Zhao N. et al., 2017). The amino acid substitution
in apoE2 impairs its binding with LDLR and impairs clearance
of triglyceride-rich lipoprotein remnant particles, leading to the
onset of type III hyperlipoproteinaemia (Phillips, 2014).

Lipid Transport Within the CNS
ApoE mediates delivery of cholesterol and other lipids to
neurons and glial cells. Cholesterol cannot not cross the BBB
and the choroid plexus Blood-CSF Barrier (BCSFB), but it
is converted into 24S-hydroxycholesterol by the enzyme 24-
hydroxylase cholesterol, specifically located in neurons and
24S-hydroxycholesterol can bind to apoE and easily cross the
BBB (Russell et al., 2009). It was suggested that apoE4 is
involved in AD pathogenesis by mechanisms linked to the
metabolism of brain lipids (Hauser et al., 2011). In cultured
neurons, apoE4 was less effective than apoE2 and apoE3
to transport brain cholesterol (Rapp et al., 2006). Because
cholesterol and phospholipids transport relies on apoE isoforms
(apoE2 > apoE3 > apoE4) (Hara et al., 2003), the lower efflux of
cholesterol and phospholipids by apoE4 might be involved in the
increased risk of LOAD in APOE4 carriers. Two recent studies on
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human iPSCs-derived astrocytes have shown higher cholesterol
accumulation inside apoE4-expressing astrocytes than inside
apoE3 astrocytes (Lin et al., 2018; Tcw et al., 2019), supporting
that the transport of cholesterol out of the astrocytes might be
deficient in APOE4 carriers. A more recent study using iPSC-
derived astrocytes showed that apoE4 is less lipidated than apoE3,
potentially impacting apoE4 neurotrophic role (Zhao J. et al.,
2017). In the CSF of middle-aged adults (average age 54.5 years)
with no dementia, apoE particles were smaller in both ε3/ε4 and
ε4/ε4 individuals than in ε3/ε3 individuals, but larger in ε2/ε3
individuals (Heinsinger et al., 2016; Nelson and Sen, 2019). The
cholesterol efflux ability of individuals homozygous for APOE4
is reduced in CSF (Yassine et al., 2016). The larger particle size
in APOE4 homozygote AD patients may inhibit particle binding
or endocytosis, thus depriving neurons of enough cholesterol for
repair (Yassine et al., 2016). In the CNS, apoE lipid transport
capability could also be influenced by the quantity of apoE
(Rebeck, 2017). In mice, the amount of apoE in brain parenchyma
(Riddell et al., 2008) and CSF (Ulrich et al., 2013) has an isoform-
dependent gradient (apoE2 > apoE3 > apoE4). In humans, there
was however no isoform-dependent variations in levels of apoE
in the CSF in young control subjects (average 34.5 years) (Baker-
Nigh et al., 2016), cognitively healthy subjects (average 61 years)
and AD patients (average 78 years) (Martínez-Morillo et al.,
2014). In a cohort of Aβ-positive cognitively healthy individuals
as well as with MCI, levels of apoE in CSF were significantly lower
in APOE4 carriers relative to non-carriers (Baker-Nigh et al.,
2016). This indicates that extensive lipid homeostasis studies are
required to unravel a more comprehensive mechanism.

APOE ISOFORMS AND AD
PHYSIOPATHOLOGY

APOE genotypes can affect many cellular functions such as
synaptic integrity, lipid transport, glucose metabolism, Aβ

clearance, BBB integrity or mitochondria regulation (Figure 3).
For instance, recent reviews came to the conclusion that
apoE4 increases the pro-inflammatory response, which in turn
causes the dysfunction of BBB, and leads to cognitive deficits
(Marottoli et al., 2017; Teng et al., 2017; Kloske and Wilcock,
2020). ApoE isoforms also affect the primary neuropathological
markers of AD: neuroinflammation, Aβ plaques and tau protein
aggregations. Studies in humans and transgenic mice showed that
brain Aβ levels and amyloid plaque loads are higher in APOE4
carriers than the other genotypes, with the lowest levels in APOE2
carriers (Huang et al., 2017; Safieh et al., 2019; Tachibana et al.,
2019). The increase in Aβ plaques in APOE4 carriers may be due
to the enhanced ability of apoE4 to bind Aβ but also its inability
to completely remove Aβ from the brain (Kloske and Wilcock,
2020). Other mechanisms involve apoE4 in different pathways
such as interstitial fluid (ISF) drainage, uptake by microglial
phagocytosis (Figure 4), that could contribute to the decrease of
Aβ removal (Castellano et al., 2011; Tarasoff-Conway et al., 2015;
Ma et al., 2018). Tau protein hyperphosphorylation as well as the
formation of tangles differ by APOE genotype. Overexpression
of apoE4 in neurons abnormally increases tau phosphorylation

while apoE3 overexpression has no effects (Cao et al., 2017; Shi
et al., 2017; Wang et al., 2018; Vasilevskaya et al., 2020). ApoE
directly inhibits GSK-3β-mediated phosphorylation of tau (Hoe
et al., 2006). In the next sections we will discuss synergy between
apoE lipidation and sex specificity with LOAD.

Crosstalk Between apoE Lipidation
and AD
Lipidation of apoE and lipid transport within the CNS are
currently under investigation to clarify their roles in the
development of LOAD. ApoE is unique among apolipoproteins
with its minimal intracellular degradation (Yassine and Finch,
2020). Internalized lipids are dissociated from apoE into late
endosomal compartments after intracellular absorption of apoE-
containing lipoprotein particles, followed by recycling of apoE
into early endosomes and its re-secretion within or into HDL
particles (Yassine and Finch, 2020). ApoE4 has lower recycling
capacity due to its greater affinity for lipid binding. This property
reduces the efflux of cholesterol and enriches the cell membrane
with cholesterol (Yassine and Finch, 2020). ApoE recycling
controls the expression of several cell surface proteins, such as
ABCA1 (Rawat et al., 2019), the insulin receptor (IR), or LRP1
(Yassine and Finch, 2020). The reduced apoE4 recycling traps
ABCA1 in endosomes, away from the cell surface. Reduced
activity of ABCA1 hence contributes to lower efflux of cholesterol
to HDL and redistributes cholesterol to cell membranes (Rawat
et al., 2019). Greater cell membrane cholesterol enhances TLR4
signaling in macrophages which in turn, activates NFkB and
induces inflammatory genes response (Singh et al., 2020; Yassine
and Finch, 2020). Lower apoE4 recycling in the brain also
traps insulin receptor (IR) away from cell surface in the
endosome (Zhao N. et al., 2017), hence modifying its preferences
for cellular energy sources. Consequently, it reduces glucose
utilization to generate ATP and encourages oxidation of fatty
acids (Svennerholm et al., 1997). It is reported that the level of
phospholipids (PL) decreases in the brain by 42% between the
age of 20 and 100 years old, and that there is an additional loss of
20% in the AD brain (Mesa-Herrera et al., 2019). In humans, our
group also showed that beta-oxidation of docosahexaenoic acid
(DHA), a polyunsaturated fatty acid that is highly concentrated
in brain membranes, is higher in APOE4 carriers than the
non-carriers (Chouinard-Watkins et al., 2013). Since the brain
largely relies on glucose to fulfill its high energy-demand, the
decrease of glucose uptake through the BBB during aging had
been identified as a risk factor for developing AD (Fernandez
et al., 2019). This is especially true in APOE4 carriers since
it was reported that human astrocytes expressing apoE4 have
half of the glucose uptake capacity compared to apoE3 ones
whereas astrocytes expressing apoE2 have the highest glucose
uptake (Williams et al., 2020). Moreover, apoE4 proteins secreted
from primary astrocytes are poorly lipidated compared to apoE3.
Increasing the activity of ABCA1 could therefore provide a
therapeutic approach to promote the recycling of apoE4 from
endosomes and restore its function at the membrane level
(Yassine and Finch, 2020). A greater distribution of cholesterol
at the neuronal plasma membrane increases the expression of
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FIGURE 3 | Schematic overview of Aβ-independent roles for apoE in Alzheimer’s disease pathology. The isoform-dependent effects of APOE are indicated.
Abbreviations: apoE, apolipoprotein E; NFT, neurofibrillary tangle; BBB, blood brain barrier; IL, interleukin; TNF-α, Tumor necrosis factor-α; ROS, reactive oxygen
species.

BACE1 and APP processing to generate more Aβ (Cui et al.,
2011). In astrocytes and microglia, less efflux of cholesterol
decreases Aβ degradation which in turn might accentuate its
aggregation to form plaques. In astrocytes, LRP1 complexes with
apoE and the reduced plasma membrane recycling of LRP1
decreases the ability of astrocytes to degrade Aβ peptides (Prasad
and Rao, 2018), providing one mechanism for the increased
development of apoE4 associated amyloid plaques. Altogether,
there are emerging evidence that in APOE4 carriers, there are
metabolic shifts in the energy metabolism that could contribute
to LOAD pathogenesis during aging.

One interesting observation in individuals carrying one or
two APOE4 copies have usually “normal” brain functions until
older ages despite having low lipidation of their apoE4 protein.
Therefore, apoE4 lipid transport capabilities to supply neurons
and astrocytes are probably decreased in late stages of life in
APOE4 carriers. Hence, a young brain might have mechanisms

in place to cope with inadequate lipid transport related to apoE4
protein structure (Yassine and Finch, 2020). During aging, there
is a potential loss of these alternative mechanisms while there
is also a decreased production of cholesterol (Boisvert et al.,
2018), and both could lead to neuronal lipid deficits (Fernandez
et al., 2019). Identification of the coping mechanisms that are lost
during aging would highly benefit the field in moving forward
this research area.

Sex-Specificity in LOAD and for apoE4
Lipidation
The risk of developing LOAD is much higher for women than
men (Barnes et al., 2005). Women with a single APOE4 copy
have a significant increase risk of AD compared to men carrying
two APOE4 copies (Farrer et al., 1997). The risk factor for
women with one APOE4 copy is around 4-fold whereas in
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FIGURE 4 | ApoE isoform-dependent effects on Aβ metabolism and clearance. Aβ is mainly produced by neurons via proteolytic cleavage of APP. In the brain, apoE
is primarily produced by astrocytes and microglia, and is then lipidated by ABCA1 to form lipoprotein particles. ApoE accelerates isoform-dependent aggregation
and deposition of Aβ, but also promotes the cellular uptake and clearance of Aβ by astrocytes or microglia by endocytosis of the lipidated APOE-Aβ complex. This
endocytosis is mediated by various receptors, including LDLR and LRP1. ApoE facilitates isoform-dependent extracellular proteolytic degradation of Aβ. At the BBB,
soluble Aβ is mostly transported via LRP1 and P-glycoprotein from the interstitial fluid (ISF) into the bloodstream. ApoE also mediates perivascular drainage of Aβ.
Insufficient Aβ clearance can cause Aβ aggregation in brain parenchyma and can contribute to the formation of Aβ oligomers and amyloid plaques.

men with one APOE4 copy, the risk is 1-fold higher only
(Payami et al., 1994; Altmann et al., 2014). There are also marked
regional variations between men and women in the regulation
of fatty acid metabolism. Triglycerides (TG) are distributed
differently in the adipose tissue of male and females. Moreover,
concentrations of polyunsaturated fatty acids in the adipose
tissue are higher in pre-menopause women compared to men
(Lohner et al., 2013; Lim et al., 2020). Estrogen levels, higher
in women before menopause, play a key role in the transport
of lipids, increasing metabolic enzyme expression, and reducing
α-linolenic acid (ALA) oxidation, an essential polyunsaturated
fatty acid (Palmisano et al., 2018). In post-menopausal women,
the decrease in estrogen levels is associated with increased plasma
TG levels and lower HDL, both of which increase the risk
of cognitive decline (Ancelin et al., 2014; Chew et al., 2020).
Higher rate of cognitive decline was observed with increased

TG content and lower HDL levels (Ancelin et al., 2014). APOE4
allele increases the risk of abnormal Aβ aggregation in men
and women equally, but impacts tau hyperphosphorylation
more prominently in women (Altmann et al., 2014). Women
APOE4 carriers with MCI had higher CSF tau and tau/Aβ

ratios compared to APOE4 males with MCI (Payami et al.,
1994). Likewise, women APOE4 carriers with mild LOAD had
a greater risk of developing both neurofibrillary tangles and
Aβ plaques than APOE4 men with mild LOAD (Corder et al.,
2004). However, women and men carrying two APOE4 copies
have both a 15-fold higher risk of developing LOAD. The sex-
specific differences of APOE4 genotype can also occur at the level
of gene regulation as apoE4 functions as a transcription factor
in the brain, binding to the promoter regions of genes linked
to microtubule disassembly, programmed cell death, synaptic
function, and aging (Theendakara et al., 2016). ApoE4-mediated
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transcriptional activity is sex-specific for genes involved in the
response of the immune system, inflammation, oxidative stress,
aging and estrogen signaling as different patterns of activation
have been observed between female and male ε4-positive brains
(Hsu et al., 2019). Collectively, these findings show that there
are sex differences in the risk of developing LOAD based on
the APOE genotype. Therefore, sex should be considered when
investigating the impact of different therapeutic strategies on the
modulation of lipid metabolic pathways.

APOE-TARGETED THERAPIES FOR
LOAD

Carrying the APOE4 allele is associated with higher deposition
of Aβ in the brain however it remains to be proved that Aβ is
AD-causative (Bu, 2009) since Aβ deposition in human brain
without significant cognitive impairment are frequently observed
(Aizenstein et al., 2008). Moreover, clinical trials reporting
reduction of brain Aβ accumulation do not necessarily show
improvement of cognition supporting that there is no direct
link between Aβ plaque reduction and improved cognition (van
Veluw et al., 2017). As the disease is complex and multifactorial,
it is likely that the current developed drugs target the wrong
pathological substrates, or that a multi-target drug approach
could be required. We describe here apoE-targeted therapies
tested in animals and those in the early phases of clinical trials.
The current therapeutic strategies targeting apoE to treat LOAD
include: (1) targeting apoE structural properties and interaction
with Aβ, (2) modulating apoE level and lipidation, (3) targeting
APOE receptors, and (4) apoE gene therapies.

Targeting apoE Structural Properties and
Interaction With Aβ
Blocking apoE-Aβ interaction with peptide mimics might be
advantageous since the peptide can be very selective due to
its precise target (Cesa et al., 2015). Aβ12-28P, a peptide
corresponding to residues 12–28, reduces Aβ deposition and
insoluble tau accumulation in the brain of mice (Liu et al.,
2014), Treatment with Aβ12-28P reduces accumulation of
Aβ in brain, co-deposition of apoE within Aβ plaques and
neuritic degeneration in APOE2-TR and APOE4-TR Aβ mouse
models (Pankiewicz et al., 2014). 6KApoEp is a peptide that
inhibits apoE binding to the N-terminus of APP (Sawmiller
et al., 2019). Notably, in 5XFAD mouse model, 6KApoEp
injection reduces both Aβ and tau pathologies concomitantly
with improved memory and hippocampal-dependent learning
(Sawmiller et al., 2019). These findings indicate that blockers
of apoE-Aβ interaction may potentially be used to reduce the
therapeutic burden of Aβ and tau in the CNS.

It is possible to control the lipidation and secretion of
apoE using apoE mimic peptides (Osei-Hwedieh et al., 2011).
Mimic peptides correspond to the LDL receptor binding
domain (130–150 residues) of the apoE protein. These peptides
are designed to promote cholesterol trafficking but also
alter APP trafficking and processing, and anti-inflammatory
signaling within macrophages (Yao et al., 2012). ApoE mimetic

peptides, such as 4F, COG112, COG133, and COG1410,
increase apoE lipidation and apoE secretion, decrease Aβ levels
and tau hyperphosphorylation, inhibit neurodegeneration and
neuroinflammation, and improve cognitive functions (Chernick
et al., 2018). A recent study in E4FAD mice showed that transient
treatment with CN-105 decreases Aβ pathology and rescued
memory deficits (Krishnamurthy et al., 2020). Mimic peptide
CN-105 has completed Phase I clinical trial (NCT03168581
and NCT03802396) in patients with intracerebral hemorrhage
(Guptill et al., 2017). This peptide is derived from the receptor
binding region of apoE-α helix and decreases neuronal injury
and neuroinflammation in acute brain injury mouse models
(Laskowitz et al., 2017; Liu et al., 2018). However, in the context
of human apoE isoforms, the effects of these peptides on Aβ

deposition and other LOAD-related pathologies have not been
thoroughly identified. Therefore, this strategy seem to have
gather some success although it still requires to be improved,
tested in specific population and to prove its efficacy on cognition
to become a therapy.

Another therapeutic strategy is to disrupt apoE4 interaction
domain with small molecules, modify apoE4 overall structure
and therefore modulate its adverse effects in LOAD pathogenesis
(Brodbeck et al., 2011). At least three regions (15–30, 116–123,
and 271–279 peptides) vary between apoE isoforms, and targeting
these regions with small molecules to switch apoE4 toward
an apoE2 and apoE3-like structure appears to be a more
direct approach to modulate apoE4 pathobiology (Frieden and
Garai, 2012). Small molecules such as PH-002, GIND-25, and
CB9032258 (a phthalazinone derivative) target the interaction
domain and thus modify the detrimental effects of apoE4 in
human neurons (Lin et al., 2018; Wang et al., 2018). This
approach is currently being further developed to verify whether
it has therapeutic benefits in vivo.

Modulating apoE Level and Its Lipidation
Instead of converting apoE4 structure, another strategy is to use
anti-apoE4 antibodies to neutralize the toxic effects of apoE4
(such as Aβ plaques), like the anti-Aβ-based immunotherapies.
Such antibodies can cross the BBB even though only a small
amount will penetrate the brain effectively (Kim et al., 2012).
Anti-apoE antibodies in mouse models were shown to effectively
prevent deposition of Aβ when added with pre-existing Aβ

deposits (Kim et al., 2012). In a subsequent study, administration
of anti-apoE antibodies directly into the brain prevented
deposition of new Aβ plaques as well as pre-existing plaques that
were cleared. It is very exciting that these anti-apoE antibodies
can interfere with the direct binding of apoE to Aβ deposits,
as this may act synergistically with anti-Aβ immunotherapy
in APOE4 patients to attain a higher degree of Aβ reduction
(Liao et al., 2014). A recent study has shown that the antibody
HAE-4, which preferentially binds the non-lipidated forms of
apoE4/apoE3, is highly effective in reducing the deposition of
Aβ in an APP/APOE4 mouse model when delivered directly
into the brain by intracerebroventricular injection (Liao et al.,
2018). Further testing of this approach are underway to verify the
off-target effect of these antibodies that could also detrimentally
interfere with the physiological functions of apoE.
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Instead of using an antibody to neutralize apoE4, another
strategy is to use antisense oligonucleotides (ASO) which can
target APOE4 mRNA and decrease its expression (Schoch and
Miller, 2017). Reduction of apoE expression by ASO significantly
decreased Aβ pathology during the early stages of plaque
formation in APP/PS1-21 mice homozygous for APOE4 or
APOE3 (Huynh et al., 2017). ASO therapies targeting APOE
receptors have also been tested in AD mouse models and
treatment of AD mouse with an anti-APOER2 oligonucleotide
resulted in increased synaptic function and improved learning
and memory functions (Hinrich et al., 2016). There are only
few ASO-mediated therapies in clinical trials for AD, the most
prominent one being the anti-tau ASO in phase1/2 trial (BIIB080
from Ionis/Biogen/Washington University) (DeVos et al., 2017)
but results are, to our knowledge, not yet published.

ApoE4 is hypolipidated suggesting that the pathological effects
depend on how much apoE4 is lipidated. Since ABCA1 plays
an important role in apoE lipidation, some groups worked
on increasing ABCA1 activity to improve apoE4 lipidation.
Bexarotene and 9-cis retinoic acid are drugs able to regulate
ABCA1 expression (Boehm-Cagan et al., 2016; Tachibana et al.,
2016). In an Aβ mouse model expressing human apoE4 and
apoE3, treatment with bexarotene and 9-cis retinoic acid
increased ABCA1 levels in both mice groups and reversed
Aβ and hyperphosphorylated tau accumulation in hippocampal
neurons, as well as cognitive deficits (Tachibana et al., 2016).
Intraperitoneal injection of CS-6253 injection, an ABCA1 agonist
peptide, increased apoE4 lipidation, decreased Aβ accumulation
and tau hyperphosphorylation as well as reduced cognitive
deficits in APOE4-TR mice (Boehm-Cagan et al., 2016). Taken
together, these studies show that modulating apoE4 lipidation
by increasing ABCA1 expression reduced Aβ accumulation and
thereby cognitive deficits.

Targeting apoE Receptors
Considering that Aβ clearance in the brain is partially mediated
by apoE receptors, especially LRP1, LDLR, and APOER2,
increasing the expression of these receptors is a possible
therapeutic strategy for reducing Aβ pathology. Fluvastatin,
a hydroxymethylglutaryl-CoA reductase inhibitor, decreases
Aβ deposition and enhances Aβ clearance in cultured brain
microvessel endothelial cells, possibly by increasing LRP1
expression (Qosa et al., 2012). Another study found that
increased Aβ clearance in brain endothelial cells and isolated
mice brain microvessels treated with rifampicin or caffeine
(Shinohara et al., 2010). In Aβ mouse models, conditional LRP1
knockout in neurons (Kanekiyo et al., 2013), astrocytes (Liu et al.,
2017), and vascular SMCs (Kanekiyo et al., 2012) resulted in
increased deposition of Aβ. In APOE4-TR mice but not in the
corresponding APOE3 or APOE-deficient (KO) mice, APOER2
levels in hippocampus are also reduced (Gilat-Frenkel et al.,
2014). Regulating expression levels of APOER2 could therefore
be considered as a good anti-AD strategy.

ApoE Gene Therapy
Adeno-associated viruses (AAVs) can mediate gene transfer
directly to the CNS (Ittner et al., 2019). AAVs have become the

most widely used gene therapy vectors for the CNS due of their
safety, nonpathogenic nature, and capability to infect dividing
and quiescent cells in vivo, particularly neurons (Ittner et al.,
2019). An ongoing trial is scheduled to start soon to test the
safety of AAV-APOE2 expression in APOE4 carriers1. Estimated
completion date of this trial is December 2021. Patients will
be injected with AAV-APOE2 in the cisterna magna and then
followed for at least 2 years about their general health. This trial
was made possible because previous studies in animals including
APP/PS1 and Tg2576 mice showed that AAV-APOE2 reduces Aβ

load after intracerebral administration of AAV-APOE4 (Hudry
et al., 2013). Another group performed an intracerebral injection
of AAV-APOE2 to APP/PS1/APOE4 TR mouse and reported that
it reduced Aβ deposition (Zhao L. et al., 2016). More recently,
a group used a non-viral delivery of plasmid encoding apoE2
(pApoE2) in the brain of mice using liposomes and showed a
significant increase of apoE levels in the brain of mice with one
single injection (dos Santos Rodrigues et al., 2019). Together
these studies show that increasing the expression of apoE2, but
not apoE4, could be efficient in reducing Aβ pathology.

While apoE-targeted therapies remain in an early phase of
development, they hold great promises in the fight against
LOAD. Up-regulation of apoE3 is likely to support synapses and
other apoE-related functions, while down-regulation of apoE4
decreases its toxic effects and minimize Aβ deposition. The
isoform-specific targeting approach would be an encouraging
strategy for treating AD due to the differential functions of apoE
isoforms in AD pathogenesis (Zhao et al., 2018a).

Current Challenges and Considerations
in Light of apoE-Targeted Therapies
All the recent phase three clinical trials for AD failed, highlighting
that this challenge always remains a priority. It is likely that
AD has a spectrum of diseases without a common trigger, with
slightly different initiators, accelerators and exacerbators (Suidan
and Ramaswamy, 2019). The mystery and ambiguity around the
cause of AD is primarily what to blame for the lack of successful
current therapeutics. It is highly probably that a cocktail of drugs
for different targets might be required and adapted along with the
disease progression.

One limitation in the recent studies is the small sample size
with regards to the APOE genotype stratification. Two important
questions in the field remain to be addressed: Is there a specific
patient population for which an apoE-directed therapy would
benefit the most? At what stage of the disease this therapy could
be most successful? People with one copy of APOE2 have half
the risk of developing LOAD as opposed to those with the most
common ε3/ε3 genotype. We do not know whether the risk of
ε2/ε2 is substantially lower than that of ε2/ε3 but new studies
specifically focused on APOE2 are likely to reinvigorate interest
among drug manufacturers. While it may be advantageous to
increase apoE2 levels in the brain, long-term expression of
APOE2 could increase the risk of cerebral amyloid angiopathy
(CAA), CAA-associated intracerebral hemorrhagic and possibly
primary tauopathy (Yamazaki et al., 2019).

1https://clinicaltrials.gov/ct2/show/NCT03634007
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Another limitation is the lack of understanding concerning
the relationship between apoE lipidation status and markers of
LOAD progression, such as Aβ ratio, phosphorylated tau, total
tau protein, and cognitive end points. ApoE biology is highly
complex and several factors must be addressed when targeting
this protein in LOAD, in particular the lipidation status of
apoE. It has proven difficult to develop molecules that modify
the conformation of APOE4 to APOE3 or APOE2 because the
variable degree of lipidation of APOE may affect its tertiary
conformation. On the other hand, for APOE4 homozygote
patients, approaches aiming at apoE4 reduction may be sufficient
(Suidan and Ramaswamy, 2019). It is possible that such therapies
slow the rate of cognitive decline in APOE4 carriers, but it is
likely that the neurodegenerative process will not be completely
halted (Safieh et al., 2019). Modulating the quantity of apoE or
peripheral expression of apoE receptors may also increase the risk
of atherosclerosis, hyperlipidaemia, and cardiovascular problems
due to defective lipoprotein metabolism.

While we strive to better understand LOAD and find
successful therapeutics, maintaining a healthy lifestyle
(nutritional guidance, physical exercise, cognitive training, and
management of metabolic and vascular risk factors) improve
memory and cognitive function of older people carrying APOE4
(Solomon et al., 2018) and can assist with the onset of disease and
symptoms. Indeed, not all APOE4 carriers will develop AD hence
supporting that there are potential lifestyle conditions lowering
the expression of the disease in this population.

CONCLUSION

Carrying APOE4 is the major genetic risk factor for developing
LOAD, although not everyone carrying APOE4 develops the
disease. APOE not only impacts lipid metabolism but various
CNS functions in an isoform-dependent manner. In addition of
controlling blood cholesterol levels, apoE proteins also regulate
Aβ deposition, aggregation and clearance. However, the exact

molecular mechanisms behind Aβ regulation observed in human
and animal models remain to be elucidated. It is still unclear
whether APOE4 allele affects LOAD pathogenesis by a gain of
toxic functions or a loss of defensive functions (or a combination
of both). To date, no drugs have been developed to cure/delay
AD or to target apoE4 pathways, and a long list of failures already
pave the road to the discovery of successful LOAD therapies.
This multifactorial disease might require a multi-target treatment
likely to be adapted toward the disease progression. The current
apoE-targeted strategies need to consider apoE lipidation and
global lipid homeostasis in the periphery and into the brain.
Combined therapy of increased lipidation with simultaneously
decreasing lipid-free apoE4 would be an appealing approach to
prevent the progression of AD. Exploring the biology of apoE
isoforms may also provide more promising approaches. Finally,
improving the lifestyle and diet also need to be considered
to minimize the risks associated with the APOE4 isoform.
Therefore, there is a need to generate fundamental knowledge not
specifically oriented on one biomarker such as Aβ but to adopt
an integrative systematic approach to tackle the understanding of
this complex disease.
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Sialic acids refer to a unique family of acidic sugars with a 9-carbon backbone that
are mostly found as terminal residues in glycan structures of glycoconjugates including
both glycoproteins and glycolipids. The highest levels of sialic acids are expressed in
the brain where they regulate neuronal sprouting and plasticity, axon myelination and
myelin stability, as well as remodeling of mature neuronal connections. Moreover, sialic
acids are the sole ligands for microglial Siglecs (sialic acid-binding immunoglobulin-type
lectins), and sialic acid-Siglec interactions have been indicated to play a critical role in the
regulation of microglial homeostasis in a healthy brain. The recent discovery of CD33, a
microglial Siglec, as a novel genetic risk factor for late-onset Alzheimer’s disease (AD),
highlights the potential role of sialic acids in the development of microglial dysfunction
and neuroinflammation in AD. Apart from microglia, sialic acids have been found to be
involved in several other major changes associated with AD. Elevated levels of serum
sialic acids have been reported in AD patients. Alterations in ganglioside (major sialic acid
carrier) metabolism have been demonstrated as an aggravating factor in the formation
of amyloid pathology in AD. Polysialic acids are linear homopolymers of sialic acids and
have been implicated to be an important regulator of neurogenesis that contributes to
neuronal repair and recovery from neurodegeneration such as in AD. In summary, this
article reviews current understanding of neural functions of sialic acids and alterations
of sialometabolism in aging and AD brains. Furthermore, we discuss the possibility of
looking at sialic acids as a promising novel therapeutic target for AD intervention.

Keywords: sialic acid, sialylation, ganglioside, neural cell adhesion molecule, PSA-NCAM, Siglec, CD33, late-
onset Alzheimer’s disease

SIALIC ACID STRUCTURE AND METABOLISM: AN OVERVIEW

Sugars have diverse physiological functions beyond serving as a source of energy via cellular
respiration or as a component of cell wall polysaccharides and the nucleic acid backbone (Gabius
and Roth, 2017). The extent of structural and compositional variability offered by sugars is
unsurpassed in nature. Mono-, oligo-, or polysaccharides attached proteins or lipids are termed
as glycoconjugates. Sugars of the glycoproteins and glycolipids are commonly referred to as glycans
(Taylor and Drickamer, 2011), and they are mostly terminated with sialic acids, an acidic sugar unit
with a 9-carbon backbone (Varki, 2008; Schnaar et al., 2014). The process of covalent addition of
sialic acid to glycoconjugates is termed sialylation (Li and Ding, 2019).

Sialic acid (also known as neuraminic acid) nomenclature originated from its discovery
(Siddiqui et al., 2019). The Swedish chemist Gunnar Blix first isolated it from salivary mucins and
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called it “sialic acid” after the Greek word for saliva. The
same substance was then independently discovered by German
scientist Ernst Klenk in 1941 in brain glycolipids and named
“neuraminic acid” to relate to neural tissue, the source tissue in
which it was found. Structurally, sialic acid or sia refers to any
of the identified 50 members of the family of neuraminic acid
(Neu, 5-amino-3,5-dideoxy-D-glycero-D-galacto-non-2-ulosonic
acid) (Karim and Wang, 2006). Neu represents C-5 free amine
form and is rarely encountered in nature. More prevalent sialic
acids are N-acetyl and N-glycolyl derivatives of Neu commonly
referred to as Neu5Ac and Neu5Gc, respectively (Schnaar et al.,
2014). The term sialic acid is generally used to refer to Neu5Ac,
the most abundant sialic acid in humans (Schauer, 2004).

Cytosolic conversion of a nucleotide sugar UDP-N-
acetylglucosamine (UDP-GlcNAc) to N-acetyl-D-mannosamine
(ManNAc) and subsequently to N-acetyl-D-mannosamine
6-phosphate (ManNAc-6-P) by a bifunctional enzyme GNE
(UDP-GlcNAc 2-epimerase/ManNAc kinase) are the first steps
in the biosynthesis of sialic acid in mammals (Schwarzkopf
et al., 2002; Li and Chen, 2012). Condensation of ManNAc-
6-P with phosphoenolpyruvate (PEP) by N-acetylneuraminic
acid 9-phosphate synthase forms N-acetylneuraminic acid
9-phosphate (Neu5Ac-9P). Neu5Ac-9P dephosphorylation by
N-acetylneuraminic acid-9-phosphate phosphatase gives rise to
free sialic acids in the cytoplasm, mainly Neu5Ac. In the nucleus,
sialic acids are then converted to their activated nucleotide form
(CMP-Sia) by CMP-Sia synthases using cytidine triphosphate
(CTP) as a donor. CMP-Sia then returns to the cytoplasm and
is further translocated into the lumen of Golgi apparatus via an
antiporter in exchange for CMP. Sialylation occurs when a newly
synthesized glycoconjugate is terminated by sialic acid during
its passage through the golgi compartment by sialyltransferase
(ST) (Li and Chen, 2012). The enzyme mediates the attachment
at C-2 carbon of sialic acid via one of the following linkages: α

2–3 or α 2–6 to galactose (Gal), α 2–6 to N-acetylglucosamine
(GlcNAc) or N-acetylgalactosamine (GalNAc), or α 2–8 when
bound to another sialic acid (Harduin-Lepers et al., 2005).
Twenty mammalian STs have been identified and comprise four
groups: ST3Gal, ST6Gal, ST6GalNAc, and ST8Sia based on their
primary substrates, Gal, GalNAc, and Sia, as well as the linkage
generated (α2–3, α 2–6, or α 2–8) (Schnaar et al., 2014).

Removal of sialic acid from a sialoglycan is mediated by
sialidase also known as neuraminidase, which is found in
lysosomes, on the cell surface or in cytoplasm (Varki and Schauer,
2009). The regenerated sialic acids can be further utilized in
the sialylation of glycoconjugates. There are 4 different types
of neuraminidases in humans, NEU1-NEU4 (Giacopuzzi et al.,
2012; Monti and Miyagi, 2012). The most abundant sialidase
is NEU1 expressed in the lysosome, which is responsible for
removing sialic acid from oligosaccharides and glycoproteins
with no action on gangliosides. NEU2 is a cytosolic sialidase
involved in the removal of sialic acid from a wide variety of glycan
structures. NEU3 is localized on the cell plasma membrane and
specifically desialylates gangliosides. NEU4 is primarily found on
intracellular membranes with a broad range of glycan specificity.
Studies have identified and implied various physiological roles
for these neuraminidases. NEU1 gene mutation has been linked

to a congenital lysosomal storage disorder called sialidosis that
affects the nervous system in humans (Seyrantepe et al., 2003).
NEU1 has also been shown to be upregulated and localized
to plasma membrane in activated T-cells (Nan et al., 2007)
and differentiating monocytes (Liang et al., 2006). Furthermore,
NEU1-NEU3 are found to be important for skeletal muscle
differentiation (Fanzani et al., 2012).

SIALIC ACID PHYSIOCHEMICAL AND
BIOLOGICAL PROPERTIES

The location and ubiquitous distribution of sialic acid allows
it to mediate a diverse range of physiological and pathological
processes (Varki, 2008). Sialic acid functions can be categorized
into two types. The first is more of a general role because of
its charge and hydrophilicity. This function primarily affects
physiochemical properties of the underlying glycoconjugates
(Schauer et al., 1995). Negatively charged sialic acid on human
erythrocytes provides charge repulsion and prevents unwanted
cellular interactions in the blood (Born and Palinski, 1985). An
unusually high concentration of sialic acid has also been reported
on the luminal surfaces of vascular endothelia (Varki, 2008). This
results in a mutual repulsion between blood cells and endothelial
surfaces and prevents impediment of circulation. In addition
to its role in the circulatory system, the importance of sialic
acid in the renal system has also been recognized. Sialic acid is
expressed in foot processes of podocytes, a specialized group of
cells in kidney glomerulus. Podocytes prevent entry of plasma
proteins into urinary ultrafiltrate by forming a barrier consisting
of filtration slits. The polyanionic nature of podocyte epithelial
cells that sialic acid offers maintains the slit integrity (Dekan
et al., 1991). Intraperitoneal injection of sialidase to remove sialic
acid was found to cause proteinuria and renal failure in a dose
dependent manner in mice (Gelberg et al., 1996). Therefore,
sialic acid is essential for normal and efficient kidney filtration
function. Sialic acid also lines the epithelial border of airways
and is a primary component of mucins, the building blocks for
mucus (Schauer et al., 1995). Sialic acid contributes to the anionic
and hydrophilic properties of mucins and thus maintains the
required rheological activities of mucus to lubricate airways and
trap pathogens from inhaled air.

The second category of sialic acid functions is more specific
and deals with cellular and molecular recognition (Schauer
et al., 1995). This can either mask or facilitate biological
identification, allowing sialic acid to exert dual and opposite
effects. Binding and uptake of desialylated glycoproteins by
hepatocytes is a well-characterized example of the masking
function (Harford et al., 1984). In the absence of sialic acid,
underlying glycoproteins are recognized by receptors in organs
such as the liver and are rapidly cleared (Weigel and Yik, 2002).
Therefore, sialic acid plays an important role in determining
half-lives of circulating glycoproteins (Raju et al., 2001). For
this reason, therapeutic glycoproteins are increasingly being
synthesized with sialic acid capping to prolong their serum half-
lives (Raju et al., 2001). In addition to increasing molecular life
span, sialic acid can also promote cell survival in a pathological
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condition like cancer. Sialic acid expression is altered during
the period of tumor transformation and malignant progression
(Zhou et al., 2020). Hypersialylation is commonly reported in
different types of cancers such as leukemia, ovarian cancer,
colorectal cancer, and breast cancer. Mounting evidence show
that sialic acid can downregulate host immune activation to
cancer cells (Rodrigues and Macauley, 2018). Sialic acid-binding
immunoglobulin-type lectin (Siglec) is the major mediator
through which inhibitory signals are transmitted from sialic
acid to the immune system. Siglecs are type-1 membrane
proteins containing an extracellular region with Ig-like domains
and a homologous V-set domain responsible for sialic acid
recognition. The V-set domain has an arginine residue that
is critical for forming a salt bridge with negatively charged
sialic acids (Pillai et al., 2012). Cytoplasmic domains of most
of the Siglecs possess several immunoreceptor tyrosine-based
inhibitory motifs (ITIMS) and ITIM-like signaling motifs.
ITIMs are phosphorylated by Src family kinases upon ligand
binding on tyrosine residues. Following phosphorylation, ITIMs
recruit Src homology domain-2 phosphatase-1 (SHP-1) and
SHP-2 (Crocker and Varki, 2001). SHP-1 has been shown to
dephosphorylate a variety of signaling molecules in immune
cells and reduce the release of inflammatory mediators such
as nitric acid (NO), tumor necrosis factor-alpha (TNF-α), and
interleukin-1 beta (IL-1β) (Zhao et al., 2006). The reduction
of inflammatory response may be mediated by inhibiting
MAP kinase activity (Paulson et al., 2012; Pillai et al.,
2012). Thus, sialic acid-Siglec interaction causes the immune
system to switch to an “off” state, resulting in immune
evasion and cancer progression. Strategies for interrupting this
interaction are emerging in the field of cancer therapeutics
(Rodrigues and Macauley, 2018).

Sialic acid recognition can also facilitate many biological
processes (Varki, 2008). It has been well established that influenza
virus hemagglutinin can recognize and bind to sialic acids on
the airway epithelium. Hemagglutinin is a glycoprotein expressed
on the surface of influenza virus. Attachment of hemagglutinin
to sialic acid causes host cell internalization of the virus. Sialic
acid thus plays a critical role in the first step of influenza virus
infection. In addition, sialic acid-mediated recognition is also
well documented in the brain, an organ with the highest levels
of sialic acid in the body (Schnaar et al., 2014). Sialic acid in
the brain is most abundantly expressed in gangliosides (65%),
followed by glycoproteins (32%) and less than 3% in free form
(Proia, 2004). Gangliosides are amphipathic molecules made up
of a ceramide lipid anchor attached to an oligosaccharide chain of
variable length. They are localized on the surface of mammalian
cells and are most abundant on neuronal cell surfaces. Although
a wide variety of ganglioside structures have been detected, four
closely related ganglioside structures, GM1, GD1a, GD1b, and
GT1b, together represent 97% of gangliosides present in an
adult human brain and are referred to as “complex gangliosides”
(Tettamanti et al., 1973). Interactions between sialic acids on
complex gangliosides and Siglecs are crucial for axon myelination
(Weinhold et al., 2005). The mechanism for the interaction
is discussed in detail in section “Sialic Acid and Sialylation
Functions in the Brain” and Figure 1.

Human diseases associated with impaired sialic acid
metabolism can lead to severe neurological defects (Boomkamp
and Butters, 2008). A case study was reported of an infant
suffering from severe mental deficits and ultimately death
3 months after birth (Schnaar et al., 2014). The postmortem
showed a total deficiency of complex gangliosides in the
brain with significantly reduced ganglioside synthase activity.
Furthermore, the brain exhibited diminished myelin structures,
emphasizing the crucial role of gangliosides in axon-myelin
interactions. Salla disease is characterized by impaired lysosomal
sialic acid storage that results in ataxia, hypotonia, delayed motor
development, and seizures (Prolo et al., 2009). In addition,
hypomyelination with thin corpus callosum is also usually
reported. Infantile free sialic acid storage diseases (ISSD) is
another lysosomal sialic acid storage disease with a more severe
and debilitating pathology leading to failure of multiple organs
and premature death (Schnaar et al., 2014). Both Salla disease and
ISSD are caused by mutations in sialin, a lysosomal membrane
exporter of sialic acid. Sialin is encoded by the SLC17A5 gene,
mutation in which causes lysosome to sequester sialic acid. As a
result, free sialic acid fails to be transported out of the lysosomes
into cytoplasm. A decrease in sialin activity is associated with an
increased disease severity. Sialin-KO mouse models exhibited
human disease phenotypes with poor coordination, seizures,
tremors and early death (Prolo et al., 2009). A marked brain
hypomyelination was also observed in these mouse models.
A study aimed to understand the mechanism for this pathology
in sialin-KO mice reported a significantly reduced number of
postmitotic oligodendrocytes, glial cells responsible for axon
myelination (Van Den Bosch, 2017). This decrease was associated
with an increase in cell apoptosis during later stages of myelin
formation. Thus, sialic acid deficiency causes an impaired
maturation and increased apoptosis of oligodendrocytes leading
to myelination defects. Sialin deficiency can also lead to
alterations in ganglioside metabolism, thereby compromising
axon myelination (Pitto et al., 1996).

SIALIC ACID AND SIALYLATION
FUNCTIONS IN THE BRAIN

Axon Myelination
Development of the term “gangliosides” to describe sialic acid-
bound glycosphingolipids in the brain underscores its abundance
(Schnaar, 2004). Complex gangliosides on axons serve as
receptors for myelin-associated glycoprotein (MAG), a founding
member of the Siglec family (Figure 1A; Crocker et al., 1998).
MAG is a transmembrane protein expressed only on myelinating
cells–oligodendrocytes and Schwann cells in the CNS and PNS,
respectively (Kelm et al., 1994). MAG is located in the innermost
wrap of myelin juxtaposed to axonal surface (Schnaar and Lopez,
2009). Because of its location, MAG was first proposed to play
an important role in axon-myelin interactions. Multiple studies
have since confirmed this initial hypothesis (Bartsch et al., 1997;
Kossmann et al., 2007). Sialic acid-MAG interaction is required
for axon myelination, which promotes axon integrity, stability,
and action potential conduction velocity (Kelm et al., 1994;
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FIGURE 1 | Schematic representation of sialic acid functions in the brain. (A) In the process of axon myelination, MAG on oligodendrocyte interacts with sialic acid of
ganglioside on axonal membrane. (B) At resting state, Ca2+ is bound to negatively charged sialic acid on synaptic membrane. In the event of an action potential,
Ca2+ is released from sialic acid and enters presynapse for exocytosis and neurotransmitter release. (C) PSA on NCAM causes stereochemical repulsion that
prevents homophilic contacts of NCAMs on opposing cells. (D) Sialic acid binds to microglial Siglec, which induces phosphorylation of ITIM present on the cytosolic
domain of Siglec. Phosphorylated ITIM recruits SHP-1 and SHP-2 leading to inhibition of MAPK activity and the subsequent inflammatory cascade.
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Schnaar and Lopez, 2009). B4galnt1-null mice are mouse models
of complex gangliosides deficiency (Pan et al., 2005). These mice
exhibited abnormal axon myelination, thinner axon diameters
and progressive axon degeneration. MAG-KO mice exhibited
the same phenotype as B4galnt1-null mice, underlining the
importance of both gangliosides and MAG for axon myelination.
All Siglecs recognize terminal sialic acid residues, however, they
can show variations in sialic acid linkage specificity (Collins et al.,
1999). Studies have shown that MAG preferentially binds to
NeuAc 2–3 Gal 1–3 GalNAc trisaccharide, a terminal sequence
shared by GD1a and GD1b gangliosides. GD1a and GD1b
lacking this terminal structure did not bind to MAG, leading
to a hypothesis that these two gangliosides are crucial partners
of MAG in axon myelination. Despite these important leads,
the detailed mechanism of MAG-sialic acid interaction and the
resulting downstream signaling for axon myelination remains
unknown (Lopez and Báez, 2018).

Complex gangliosides also enable MAG to shield axons from
toxic insults (Schnaar et al., 2014). Vincristine is a neurotoxin that
causes structural and functional damage to axons. Addition of a
soluble MAG to neuronal cultures rescued them from vincristine
mediated damage. However, addition of a mutant form of
MAG failed to show such protective effects. The mutant MAG
lacked the arginine residue shared among all Siglecs for sialic
acid binding. Furthermore, wild-type MAG failed to show the
same protective effect in neuronal culture of B4galnt1-null mice.
Taken together, these observations indicate that gangliosides
are a necessary component of healthy axon-MAG interactions.
Moreover, it has been postulated that interaction of MAG
with sialic acid regulates the expression and phosphorylation
of neurofilaments, the most abundant cytoskeletal proteins in
axons (Dashiell et al., 2002). Phosphorylation of neurofilaments
increases negative charge and induces a side arm repositioning,
allowing a larger neurofilament spacing. Increased neurofilament
phosphorylation thus contributes to a reduced packing density
and increased axon caliber. Axon caliber has a functional
importance because diameter governs conduction velocity of
myelinated nerve fibers (Hoffman et al., 1987). Higher axon
caliber exhibits faster conduction velocity because of lower
electrical resistance and rapid distribution of action potential
(Costa et al., 2018). In summary, axon myelination increases axon
caliber, an increase associated with a higher level of neurofilament
phosphorylation and a lower neurofilament packing density.
Thus, the axonal neurofilament packing density is regulated
by a balance between kinases and phosphatases that catalyze
the phosphorylation and dephosphorylation of neurofilaments,
respectively (Dashiell et al., 2002). MAG is associated with
an elevated level of kinases and increased neurofilament
phosphorylation leading to a higher axon caliber. However, the
role of MAG in phosphatase activity remains to be established
(Naito-Matsui et al., 2017). The interaction between MAG and
sialic acid may not always be beneficial (Schnaar et al., 2014).
MAG has also been shown to inhibit axon regeneration, for which
gangliosides serve as a mediator. Mutations in the sialic acid
binding arginine residue on MAG decreased inhibition strength
(Vinson et al., 2001). MAG binding to gangliosides activates
intracellular GTPase RhoA, a small G-protein that controls

actin and microtubule cytoskeletal assembly and disassembly
(Hall and Lalli, 2010). GTPase RhoA activation regulates
reorganization through growth cone collapse and inhibition of
neurite outgrowth. The growth cone is a large, motile actin-
supported structure located at growing ends of a developing
or regenerating axon (Suter and Forscher, 1998). Crosslinking
anti-ganglioside antibodies have been shown to mimic MAG-
related axon outgrowth inhibition via RhoA pathway (Vinson
et al., 2001). Furthermore, sialidase treatment has been found to
increase axon outgrowth following CNS injury in animal models,
validating the role of sialic acid in the inhibition (Yang et al.,
2006; Mountney et al., 2010). In summary, ranging from axon
myelination to protection to repressing regeneration, MAG’s
functions have been linked to its interaction with sialic acid in
the brain.

Synaptic Development
Cell adhesion molecules are important components of synapses
with well-established roles in forming and maintaining various
synaptic structures during brain development (Benson et al.,
2000). Neural cell adhesion molecule (NCAM) proteins can
interact among themselves via homophilic contacts as well as
form heterophilic contacts with other molecules such as neuron-
glia cell adhesion molecule, fibroblast growth factor receptor and
L1CAM to facilitate cell adhesion (Fiszbein et al., 2015). Addition
of polysialic acid (PSA) is a very important posttranslational
modification of NCAM that occurs during its passage though
the Golgi apparatus (Schnaar et al., 2014). PSA is a large
molecule made of linear homopolymers of α 2–8 linked sialic
acids. PSA represents a major form of sialic acid bound to
proteins in the brain with more than 95% of it bound to
NCAM (Yang et al., 1994). PSA was first discovered for its role
in reducing NCAM-mediated neuronal cell adhesion (Benson
et al., 2000). Although the mechanism by which PSA reduces
NCAM-mediated adhesion is not perfectly understood, it is
postulated to involve steric hindrance. The polyanionic nature
and large degree of hydration provided by PSA can significantly
increase the overall size of a PSA carrier and thereby increase
stereochemical repulsive forces (Figure 1C; Yang et al., 1994;
Nakata and Troy, 2005). PSA-NCAM is the less adhesive form
of NCAM and therefore an appropriate form for allowing
synaptic/structural reorganization during brain development
and under circumstances of synaptic plasticity during maturity
(Cremer et al., 1997). PSA expression increases throughout the
brain during the embryonic and perinatal stages in order to
facilitate various brain development events. Axon pathfinding
is a process of neural development in which neurons send out
their axons to reach their appropriate targets. Axon pathfinding
has cycles of fasciculation in which growing axons can travel,
adhering together to form bundles (fasciculation), and separate
and rearrange (defasciculation). These cycles are a prerequisite
to forming new synaptic contacts and have been unequivocally
demonstrated as a form of synaptic plasticity (Weledji and Assob,
2014). Endoneuraminidase-mediated selective removal of PSA
from growing axons make them incapable of defasciculation
generating pathfinding errors (Yin et al., 1995). Moreover,
endoneuraminidase treatment impairs migrations of neurons in
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the olfactory bulb (Yoshida et al., 1999). Similar effects have
also been observed in NCAM-KO mice (Schnaar et al., 2014).
Adult NCAM, however, has reduced PSA expression associated
with mature synapse formation with the exceptions of areas
characterized by a high degree of modeling of structures such
as the hippocampus, hypothalamus, dentate gyrus, and olfactory
bulb (Cremer et al., 1994; Seki, 2002). Therefore, PSA on
NCAM is necessary for cell migration, axon outgrowth, axon
defasciculation, and target recognition. Long-lasting synaptic
plasticity requires a process for downregulating the expression
of adhesion proteins on neuronal surfaces to promote process
rearrangement (Fiszbein et al., 2015). PSA present on NCAM
serves as the necessary modulator for such rearrangement. Based
on these findings, PSA-NCAM has been recognized as a promoter
of synaptic plasticity in the brain.

Synaptic Transmission
Sialic acids on gangliosides interact with Ca2+ ions via
electrostatic interactions at synapse and facilitate well-regulated
release of neurotransmitters (Rahmann et al., 1976; Rahmann,
1995). At resting state, Ca2+ ions are tightly bound by the
negatively charged sialic acids at synapse and are only released
when an action potential arrives at the presynaptic terminals
(Figure 1B). Arrival of the action potential causes alterations
in ionic concentrations and/or electric field strength, causing
gangliosides to rearrange and thereby release Ca2+. The released
Ca2+ can then enter the nerve terminal through voltage gated
Ca2+ channels (Mochida, 2019). Increased Ca2+ levels at the
presynapse can then trigger release of neurotransmitters from
synaptic vesicles. Following release of the neurotransmitters,
Ca2+ ions re-attach to the gangliosides as the resting potential
is restored via ganglioside-modulated Ca2+-ATPase. Therefore,
sialic acid on gangliosides plays an important role in mediating
neurotransmission.

Microglial Homeostasis
Microglia are brain resident myeloid cells that protect the brain
from pathogenic invasions and maintain brain homeostasis
and plasticity (Long and Holtzman, 2019). Microglial activation
can generate anti-inflammatory and immunosuppressive
signals and exert protective functions. However, it can also
produce pro-inflammatory mediators such as reactive oxygen
species, TNF-α, and NO, leading to neuronal damage and
cytotoxicity (Hansen et al., 2018). In an acute event, a balance
between microglial activation and inflammation is maintained
(Spangenberg and Green, 2017). However, this balance is
disrupted in neurodegenerative diseases such as AD, leading to
chronic neuroinflammation. Therefore, modulation of microglial
activation is crucial for retaining microglial homeostasis and
reducing neuroinflammation. Microglia have been found
to express a number of Siglecs including CD33, Siglec-11, and
Siglec-16 in humans and CD33, Siglec E, F, and G in mice (Griciuc
et al., 2013). Interaction of sialic acid with Siglec allows microglia
to return to an “off” state (section “Sialic Acid Physiochemical
and Biological Properties” and Figure 1D). This is supported
by a study where stimulation of Siglec-11, a CD33-related
Siglec, in murine microglia by cross-linking caused a decrease

in phagocytosis of apoptotic neurons (Wang and Neumann,
2010). The stimulation also prevented lipopolysaccharide (LPS)-
induced transcription of proinflammatory mediators IL-1β

and nitric oxide synthase-2. Moreover, Siglec-11 on microglia
was found to bind to PSA-NCAM in co-cultures of microglia
and neurons and protected neurons from microglia-induced
toxicity. However, this protective effect was not observed when
PSA was removed by endoneuraminidase treatment (Wang
and Neumann, 2010). Siglec E expressed on murine microglia
was also found to inhibit phagocytosis of neuronal debris and
eliminated the resulting oxidative burst and proinflammatory
effects (Siddiqui et al., 2019). This neuroprotective effect of Siglec
E was abolished upon sialidase treatment emphasizing the role
of sialic acid-Siglec interaction in microglial activity regulation.
Mouse Siglec F is a paralog of human Siglec-5 that binds to
sialic acids in neurons (Wielgat and Braszko, 2012). Treatment
of the microglia-neuron co-culture with endoneuraminidase
and α-neuraminidase prevented the binding and promoted
microglial activation and phagocytosis of neurons leading to
increased production of microglial proinflammatory mediators
such as IL-1β and nitric oxide synthase 2 and reduced neurite
and neuronal cell bodies. Furthermore, a pool of PSA-containing
proteins, E-selectin ligand 1 (ESL1), and neuropilin 2 (NRP2),
have been identified in the golgi compartment of stem cell-
derived and primary murine microglia and THP-1 human
macrophages (Werneburg et al., 2016). These proteins were
found to be synthesized in response to injury-induced microglia
activation in adult mice brain slices (Thiesler et al., 2020). In
addition, inflammatory activation by LPS induced the release
of PSA-bound ESL1 and NRP2 from the golgi to extracellular
space in BV2 microglia cells. Based on these observations, it
was hypothesized that the increased secretion of microglia-
intrinsic pool of PSA-containing proteins could serve as a
negative feedback regulator of microglia activation. Consistently,
Siglec E receptor expression was also significantly increased in
LPS-treated BV2 cells while CRISPR/Cas9-mediated Siglec E
removal prevented the protective effect of exogenously added
PSA against LPS (Thiesler et al., 2020). This is further supported
by a finding where LPS-induced microglial inflammation was
found to be exacerbated in ST8SIA4-deficient mice, a model for
impaired production and release of PSA (Werneburg et al., 2015).
Taken together, these studies indicate that sialic acid in general,
whether it is localized on neuronal membrane or released from
microglia itself or added exogenously, provides negative feedback
inhibition of microglia activation and inflammation and protects
neurons under neuroinflammatory conditions.

SIALYLATION IN BRAIN AGING

In light of the crucial role of PSA-NCAM in the formation
of neuronal circuitry (section “Synaptic Development”), follow-
up studies have been done to analyze whether PSA is re-
expressed in mature nervous systems to accommodate structural
reorganization of neuronal connections (Rønn et al., 2000).
Covault and Sanes reported PSA-NCAM reappearance in
denervated skeletal muscles during the process of regeneration
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of lesioned motor neurons (Covault and Sanes, 1985). Consistent
with this study, regenerating fibers were found to re-express
PSA-NCAM in hippocampal organotypic cultures, which allowed
for the formation of functional synaptic contacts between
CA3-CA1 neurons across the sections (Muller et al., 1994).
Furthermore, treating the sections with Endo-N, an enzyme
that causes specific cleavage of PSA from NCAM, led to a
less effective and functionally slower recovery from the lesion.
These findings indicate that regeneration of both the central
and peripheral neuronal fibers involves an increase in the
levels of PSA-NCAM. However, the ability of PSA-NCAM re-
expression and neuromuscular regeneration was found to be
significantly reduced in aged rats as compared to young adult
rats (Daniloff et al., 1986). The lower PSA-NCAM level in the
aging nervous system has been linked to an age-associated decline
in sialyltransferase activity, which ultimately leads to a decline
in regenerative potential (Olsen et al., 1995). More recently, the
effect of reduced sialylation in mice brains heterozygous for
GNE, an essential enzyme for sialic acid biosynthesis (section
“Sialic Acid Structure and Metabolism: An Overview”) was
studied (Klaus et al., 2020). It was found that the GNE ± mice
had hyposialylation in various brain regions along with less
synapses in the hippocampus and lower microglial arborization
at 6 months of age followed by an elevated neuronal loss at
12 months. Interestingly, the neuronal loss observed in these
mice was not accompanied by a pro-inflammatory signature
prototypic of inflammatory neurodegenerative disorders. During
development, the microglial complement receptor 3 and the
complement components C3 and C1q can regulate synaptic
pruning and neuronal network maturation. Cross breeding of
GNE ± mice with C3-deficient mice rescued the synaptic
and neuronal loss along with a significant upregulation of
the microglial marker, Iba1, indicating that the complement
system plays a crucial role in mediating the neuronal loss
in GNE ± hyposialylated mice. It has been postulated that
GNE ± mice could mimic a physiological overall decrease in
sialic acid with aging. This can cause a decline in masking of
glycocalyx by sialic acids and subsequent exposure of underlying
aminophospholipids could increase complement binding and
thereby lead to complement mediated synaptic elimination
and neuronal loss by microglia with age (Klaus et al., 2020).
Furthermore, microglia have been found to be hypo-motile
and chronically produce pro-inflammatory cytokines in an aged
brain suggesting an impaired homeostatic functioning with age
(Pluvinage et al., 2019). In order to elucidate the molecular
mechanism underlying this impairment and to identify an age-
related genetic modifier of microglia phagocytosis, Pluvinage
et al. combined CRISPR-Cas9 screening in BV2 cells with RNA
sequence analysis in mice brains. The study found that the
expression of CD22, a Siglec typically found on B cells, was
significantly increased in aged microglia and CD22-targeted
deletion promoted phagocytosis in BV2 cells. In addition,
CD22 was found to interact with cytidine monophosphate
N-acetylneuraminic acid synthetase (CMAS), an important
enzyme for sialic acid synthesis and PTPN6, a gene that encodes
for SHP-1 for sialic acid-Siglec signaling. Targeted deletion of
CMAS or PTPN6 or sialidase treatment phenocopied CD22

deletion in BV2 cells indicating involvement of sialic acid in
CD22-mediated inhibition of microglial phagocytosis. Although
there are other Siglecs that can also modulate microglial
phagocytosis such as CD33, the study found that CD22 was the
sole mouse Siglec upregulated with age where aged microglia
expressed three times more CD22 than young microglia.
Furthermore, phagocytotic clearance of myelin debris was
upregulated with an anti-CD22 antibody injection compared to
IgG control antibody injected mice. To identify the transcription
functions of CD22 inhibition, aged mice were implanted with
osmotic pumps to deliver anti-CD22 antibody into the CSF for a
month and compared with an IgG control antibody infusion. The
anti-CD22 antibody infusion was found to elevate the expression
of homeostatic microglia genes such as Sall1, Mef2a, Tgfbr1,
Il10ra, and P2ry13 and downregulate activated and disease
related microglial genes such as Ccl3, Tspo, Lgals3, H2-K1, and
Tnfsf13b, thereby restoring the transcriptional hallmarks of aging
associated microglia damage. The study also addressed the effects
of CD22 inhibition on age-associated cognitive dysfunctions.
Aged CD22−/− mice showed improved associative memory and
spatial memory in the contextual fear conditioning and Y-maze
test, respectively, as compared to aged WT mice. The same tests
were also conducted in aged WT mice infused with anti-CD22 or
IgG directly into the brain via an osmotic pump. The anti-CD22
infusions phenocopied the cognitive improvements exhibited by
CD22−/− mice indicating the specificity of CD22 in negatively
affecting cognitive functions in the aging brain. Hence, CD22
is a mediator of anti-phagocytotic activity of sialic acid in the
microglia and inhibition of this interaction reverses the decline
in microglia functions and cognitive performance in aged brain
(Pluvinage et al., 2019).

Furthermore, a gradual loss of learning and memory functions
is one of the earliest and most predominant consequences of
brain aging (Schnaar et al., 2014); however, a definite cause of
the loss is still unclear. Long-term potentiation (LTP) is a form
of neural plasticity affected by aging and has been established
as a cellular correlate for learning and memory (Bergado and
Almaguer, 2002; Barnes, 2003). PSA-NCAM plays a role in LTP in
the hippocampus and significantly declines in the dentate gyrus
with increasing age (Ní Dhúill et al., 1999). Two major types
of N-methyl-D-aspartate (NMDA) receptor subunit, GluN2A
and GluN2B, have been demonstrated to play opposite roles
in LTP (Kochlamazashvili et al., 2010, 2012). An increase in
the activation of GluN2B-containing NMDA receptors and a
decrease in the activation of GluN2A-containing receptors have
been linked to impairment in LTP. PSA-NCAM inhibits the
binding of glutamate to extra synaptic GluN2B due to steric
hindrance. As a result, GluN2A activation prevails and leads
to LTP induction. In the absence of PSA-NCAM, GluN2B is
activated at the expense of GluN2A, which in turn activates
p38MAPK (mitogen-activated protein kinase), a major player
in synaptic depression. This effect, in combination with the
lack of activation of GluN2A, results in impaired LTP in aged
brains (Kochlamazashvili et al., 2010, 2012). Moreover, studies
have looked at ganglioside composition in brains of humans
ranging from 20 to 100 years of age (Chiricozzi et al., 2020).
Ganglioside level progressively reduced with age, reaching about
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30% in centenary compared to 20-year-old subjects. In addition
to the amount, ganglioside expression pattern was found to
be altered as well. An increased level of b-series gangliosides,
such as GD1b, and a decreased level of a-series gangliosides,
including GM1 and GD1a, were reported. Ganglioside sub-series
are defined based on the number of sialic acids linked to the
galactose residue of the glucosylceramide core in gangliosides:
sialic acid number equals 0 is the O-series; 1, the a-series; and
2, the b-series (Kolter, 2012). GM1 and GD1a are thus the major
gangliosides associated with reduced sialic acid content in aging
humans. A study aimed to identify the difference in the response
between young and aged rats upon brain cold injury found an
increase in brain sialic acid levels in young but not aged rats in
response to injury (Uslu et al., 2004). Similarly, aging was found
to affect the response to thermal stimuli where aged rats exhibited
a longer latency in hot plate compared to younger rats which was
reversed upon treatment with GM1 (Goettl et al., 2000). Intra-
peritoneal injection of GM1 was found to increase the count and
size of tyrosine-hydroxylase immunopositive neurons indicative
of higher presynaptic dopaminergic indices in substantia nigra
pars compacta of rats (Toffano et al., 1983). Furthermore, GM1
was shown to promote differentiation, protect against neuronal
excitotoxicity, and facilitate response to neurotrophic factors
(Chiricozzi et al., 2020). In summary, GM1 has been established
as one of the major determinants of neuronal functions and its
reduced biosynthesis is considered as one of the major causes for
neuronal loss in aged brain.

SIALYLATION IN ALZHEIMER’S DISEASE

AD is a progressive neurodegenerative disorder that accounts for
over 60% of the 46.8 million cases of dementia worldwide (Long
and Holtzman, 2019). The nerve cell death causes memory loss
and personality changes and disrupts one’s ability to carry out
daily activities (Sundaram, 2017). The deposition of extracellular
amyloid beta (Aβ) plaques and intraneuronal neurofibrillary
tangles in the brain are the most prominent hallmarks of AD
(Nasr et al., 2018). In addition, research aimed at developing a
biomarker for AD has shown elevated levels of serum sialic acid
in AD (Davis et al., 2009). Studies have also demonstrated various
roles of sialic acid in the development of AD pathologies.

Interaction of Gangliosides With Aβ
Elucidation of the mechanism for conversion of soluble and
non-toxic α-helix-rich Aβ into aggregated and toxic β-sheet–
rich structures would help to understand the early pathogenesis
of AD (Ariga et al., 2011). Studies have shown that Aβ1–40
can bind to gangliosides, particularly GM1, causing changes
in the secondary structure of Aβ (Figure 2A). The rate of
fibril formation of Aβ1–40 was accelerated with an addition of
ganglioside-containing vesicles as compared to vesicles without
gangliosides (Choo-Smith et al., 1997). In addition to GM1, Aβ

1-40 can also bind to several other gangliosides with the following
descending order of binding strength: GQ1bα > GT1aα >
GQ1b > GT1b > GD3 > GD1a = GD1b > LM1 > GM1 >
GM2 = GM3 > GM4 (Ariga et al., 2001). It has been hypothesized

that the ganglioside-bound Aβ self-associates on the surface of
cell membranes and undergoes a conformation change to form
a β-sheet–ordered structure (Chi et al., 2007). This serves as
an initial step in the ganglioside-mediated fibrillation of Aβ.
Although the exact mechanism is not clearly understood, possible
involvement of electrostatic forces between negatively charged
sialic acid and Aβ has been proposed (Ariga et al., 2011).
A study reported a GM1-dependent Aβ fibril binding to murine
endothelioma H-END cells (Bucciantini et al., 2012). The binding
was highly localized to the cell membrane and resulted in an
increase in cell death in a dose-dependent manner. However, cells
pretreated with neuraminidase were unable to bind to Aβ fibrils.
This sialic acid-mediated Aβ fibril binding was associated with
an increase in the activity of caspase-8, an apoptotic mediator.
Furthermore, binding of the Aβ fibril led to an increased
activation of Fas receptors. Fas receptors are death receptors
expressed on cell surfaces and cause apoptosis upon ligand
binding. Similar observations were seen in another study where
treatment of neuroepithelial cells with either GM1 or Aβ1–40
alone did not cause any change in cell viability (Yanagisawa et al.,
2010). However, a significantly reduced viability was observed
in cells cultured with both GM1 and Aβ1–40. The combination
was associated with an increased expression of caspase-3, another
critical mediator of apoptosis. These studies suggest that sialic
acid-mediated Aβ binding and fibrillation causes cytotoxicity
by triggering an apoptotic cascade. Yanagisawa et al. reported
that Aβ1–42, and not Aβ1–40, binds strongly to GM1 in
the AD brain (Yanagisawa et al., 1995). The bound Aβ1–
42, termed ganglioside-bound Aβ (GAβ), could serve as an
endogenous seed for Aβ accumulation. This observation was
further validated in immunoprecipitation experiments using
cerebral cortices from AD patients (Yanagisawa and Ihara, 1998).
The immunoprecipitates obtained with Aβ1–42 N-terminal
fragment monoclonal antibody also showed reactivity for cholera
toxin-B subunit, a ligand highly sensitive and specific for GM1,
suggesting Aβ1–42 and GM1 binding. GAβ exhibits unique
properties such as high aggregation potential and changed
immunoreactivity. These properties allowed GAβ to facilitate Aβ

fibril formation in the brain. The increase in Aβ aggregation
has been found to correlate positively with the increase in GM1
in neuronal membranes (Kurganov et al., 2004). Furthermore,
removal of GM1 from the neuronal membranes was found
to reduce Aβ-mediated cytotoxicity. Remarkably, an antibody
targeting GAβ has been found to suppress Aβ deposition in
the brain in mouse models of AD (Yamamoto et al., 2005;
Yamamoto et al., 2008). In summary, these studies indicate that
gangliosides play a crucial role in Aβ fibrillation and disrupting
the ganglioside–Aβ interaction could significantly decrease Aβ

deposition in AD brains.

Regulation of CD33 by Sialic Acid
Late-onset Alzheimer’s disease (LOAD) is the most prevalent
form of AD generally affecting individuals after the age of
65 (Griciuc et al., 2013; Wu et al., 2018). CD33 has been
identified as one of the highly ranked genetic risk factors for
the development of LOAD, with apolipoprotein (ApoE) ε4 at
the top (Harold et al., 2009; Naj et al., 2011). Two different
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FIGURE 2 | Schematic representation of two different roles of sialic acid in AD pathology along with their therapeutic intervention strategies. (A) Role of sialic acid in
Aβ fibrillation and the associated cytotoxicity. (B) Role of sialic acid in CD33-mediated microglial functions.

single nucleotide polymorphisms (SNPs) in CD33 have been
reported: rs3865444C and rs3865444A. rs3865444C is a common
allele (70% of the general population) and is associated with

an increased expression of CD33 in the brain. Carriers of this
allele had a greater likelihood of Aβ pathology and AD diagnosis
(Griciuc et al., 2013; Malik et al., 2013). In contrast, rs3865444A,
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which is the minor A allele of CD33, is associated with reduced
CD33 expression in the brain and has been found to be protective
against AD (Raj et al., 2014).

CD33, also known as Siglec-3, is an inhibitory Siglec found
to be expressed by microglia, monocytes and macrophages
(Zhao, 2019). Binding of sialic acid-modified glycoproteins and
glycolipids activates CD33 and leads to inhibition of cellular
functions (section “Sialic Acid Physiochemical and Biological
Properties” and Figure 2B). Studies have shown that microglia-
mediated phagocytosis is dependent on the level of CD33
expressed by microglia (Griciuc et al., 2013; Jiang et al., 2014).
Primary microglia cells derived from CD33 KO mice showed
a higher Aβ uptake as compared to wild type (WT) cells
(Griciuc et al., 2013). On the other hand, BV2 microglia
cells that overexpressed CD33 had a significantly impaired Aβ

uptake capacity. Circulating monocytes infiltrate the brain under
pathological conditions, including AD (Jiang et al., 2014). Higher
CD33 expression on the surface of monocytes was found to
be associated with inhibition of Aβ phagocytosis. Overall, these
findings point to an important role of CD33 expression in
modulating Aβ clearance in the brain. To further identity the role
of sialic acid in CD33-modulated Aβ clearance, BV2 microglia
cells were transfected with a mutant CD33 (CD331 V−Ig),
which lacked the sialic acid-interacting V-type immunoglobulin-
like extracellular domain (Griciuc et al., 2013). The mutant
CD331 V−Ig was localized to BV2 cell plasma membrane and
expressed at a level comparable to that of WT CD33. Inhibition
of Aβ clearance by CD33 was eliminated in cells expressing
mutant CD331 V−Ig, indicating that sialic acid interaction is
needed for CD33 to modulate microglial Aβ uptake. These
findings also provide support to a recently proposed hypothesis
that Aβ plaque itself can dodge microglia mediated clearance
with the help of sialic acid–CD33 interaction (Jiang et al.,
2014). Aβ plaque often aggregates with sialic acid-containing
glycoproteins and glycolipids and this aggregated form of Aβ

can directly activate CD33 signaling and downregulate microglia
mediated immune activation (Jiang et al., 2014). Hence, in
addition to immunosuppression of microglia by increased CD33
expression, sialic acid–CD33 interaction can also efficiently mask
microglia recognition and lead to Aβ accumulation in the brain
independent of altered CD33 expression levels.

PSA-NCAM in Adult Neurogenesis
Neurogenesis in an adult brain involves a complete neuronal
development process, from proliferation, differentiation, and
migration to synaptic integration and survival of the newly
formed neurons (Gascon et al., 2010). Although the precise
physiological relevance of adult neurogenesis is unclear, possible
involvement in recovery from injury, learning and memory, as
well as enhanced sensory discrimination of the olfactory bulb,
has been demonstrated (Lledo et al., 2006). The subventricular
zone (SVZ) below the ventricular walls and the subgranule layer
(SGL) of the hippocampal dentate gyrus are the neurogenic
niches of the adult brain (Haughey et al., 2002). These regions
supply new neurons to the hippocampus and neocortex, the
two major brain structures affected by AD. Aβ deposition has
been observed in the SVZ and SGL and was found to disrupt

proliferation and differentiation and induce apoptosis of neural
progenitor cells (Kerokoski et al., 2001). Postnatal neurogenic
niches are characterized by a prominent PSA-NCAM expression,
which indicates that this molecule plays a role in neurogenesis
(Cremer et al., 1994; Gascon et al., 2010). Hippocampal tissue
analysis of AD patients showed an upregulation of PSA-NCAM
with disease severity (Mikkonen et al., 1999, 2001; Jin et al.,
2004). The hippocampal regions with increased PSA expression
were also the regions where Aβ plaques, neurofibrillary tangles
and neuronal loss occur and where neurons undergo remodeling
(Jin et al., 2004). Consistent with this finding, acute injection of
Aβ into rat hippocampus caused an increased PSA expression
(Limón et al., 2011), which suggested an important role of PSA
in neurogenesis-associated AD pathogenesis.

Studies have shown that genetic deletion of NCAM causes 30%
reduction in the size of the olfactory bulb, with the overall brain
size being decreased by 10% (Gascon et al., 2010). These effects
were replicated by an injection of Endo-N, which indicated that
the observed phenotype in NCAM-deficient animals was due to
the absence of PSA-associated NCAM (Ono et al., 1994). Along
with the reduced olfactory bulb size, an upregulated number of
neuronal precursors were also seen in the SVZ-rostral migratory
stream (RMS) in NCAM-deficient animals as compared to their
WT littermates (Chazal et al., 2000). Neural stem cells present in
the SVZ form neuroblasts that first migrate tangentially via RMS
and then radially to the olfactory bulb (Gascon et al., 2010). It
has been postulated that the accumulation of neuronal precursors
in the SVZ-RMS is due to impaired migration to the olfactory
bulb. Several studies have shown that PSA on NCAM are
primarily responsible for the migration: (a) Migrating NCAM-
positive cells have high PSA content (Kiss and Rougon, 1997;
García-Verdugo et al., 1998); (b) functional inhibition of PSA
on NCAM, by either enzyme-mediated removal or neutralizing
antibody, with no changes to the core protein, was adequate
to impair migration (Ono et al., 1994); and (c) deficiency of
polysialyltransferases ST8SiaII and ST8SiaIV, the two enzymes
responsible for PSA synthesis, caused abnormal tangential as well
as radial migration during development (Angata et al., 2007).
As discussed in section “Synaptic Development,” PSA reduces
NCAM-mediated adhesive interaction, which is a property
that has been postulated to allow for cell motility during
neurogenesis (Ono et al., 1994). In addition to migration, PSA-
NCAM has also been found to be important for the survival of
newly formed immature neurons in primary cortical neuronal
cultures (Ono et al., 1994). It has been shown that the Endo-
N-mediated removal of PSA from NCAM drastically reduced
the number of newly generated neurons. Similar effects were
also seen when PSA was inhibited by specific antibodies and
in cultures from NCAM-deficient mice. Although the exact
mechanism by which PSA regulates survival of newly generated
neurons is not clearly understood, but possible involvement of
brain-derived neurotrophic factor (BDNF) signaling has been
considered (Vutskits et al., 2001). BDNF is a member of the
neurotrophin family, a group of secreted proteins that have a
profound role in neuronal differentiation, growth and survival
(Gascon et al., 2007). PSA-NCAM has been shown to increase the
neuronal ability to respond to BDNF by facilitating the binding of
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BDNF to its receptor, tyrosine kinase receptor B (TrkB) (Muller
et al., 2000). Removal of PSA from NCAM has been found
to significantly reduce the level of TrkB phosphorylation and
activation; however, how PSA facilitates BDNF-TrkB–induced
signaling is unclear (Vutskits et al., 2001). Overall, PSA-NCAM
is involved in the regulation of migration and survival of newly
generated neurons and therefore is an important regulator of
neurogenesis. In neurodegenerative conditions, such as AD, the
ability of the brain to retain new neurons provides prospective
cell replacement (Jin et al., 2004). This could result in beneficial
consequences, especially in the brain regions disproportionately
affected by AD, such as the hippocampus. Although there is
no direct evidence in AD pathology, findings from spinal cord
injury studies provide strong support (Mehanna et al., 2010).
Subdural infusions of PSA glycomimetic was found to increase
the number of monoaminergic axons and glutamatergic and
cholinergic nerve terminals in the lumbar region of the spinal
cord. Axon myelination and functional motor recovery were
also found to be improved at areas in proximity to the injury
site due to PSA-NCAM–mediated axonal outgrowth, branching,
and defasciculation (section “Synaptic Development”) (Doherty
et al., 1990; Becker et al., 1996). Although an increase in PSA
in AD patients could be an attempt to compensate for the
neuronal damage, cell loss continues to persist (Jin et al., 2004).
Several hypotheses pointing to a limited restoration capacity of
neurogenesis have been postulated to explain this gap. First, the
extent or rate of cell loss could be too high for quantitatively
significant replacement to occur. Second, the neurons produced
may not convert into mature and fully functional neurons and
thus become incapable of integration into the existing brain
circuit. Third, the brain microenvironment in AD could be
too toxic to facilitate survival of the newly generated neurons
(Rapoport et al., 2002). Nevertheless, strategies aimed to increase
and support neurogenesis could have a therapeutic value in AD.

Alterations in Ganglioside and Sialic Acid
Metabolism
Amyloid precursor protein (APP) processing by membrane-
associated α-, β-, and γ-secretase is strongly dependent on
membrane fluidity (Eckert et al., 2010; Bhattarai et al., 2020).
Aβ has been shown to upregulate APP amyloidogenic processing
by binding and reducing membrane fluidity, which increases
its own production in HEK293 and SH-SY5Y cells, and this
effect was postulated to be mediated by gangliosides due to
their strong affinity to Aβ (Ariga et al., 2011). Multiple studies
have reported altered ganglioside metabolism in AD and this
alteration is predominantly manifested as decreased ganglioside
levels in several brain regions (Brooksbank and McGovern, 1989;
Crino et al., 1989; Kalanj et al., 1991). In addition, the pattern
of alteration varied depending on the age of AD onset (Ariga
et al., 2008). The amount of ganglioside was reduced by 58–
70% compared to controls in gray matter and by 81% in frontal
white matter in the brains of early-onset AD patients. However,
a significant reduction was seen in the temporal cortex, frontal
white matter and hippocampus in the brains of LOAD cases
(Svennerholm and Gottfries, 1994). Similarly, brain analysis of

individuals suffering from dementia of the Alzheimer type (DAT)
also showed significantly reduced gangliosides as compared to
the control group (Crino et al., 1989). The affected brain regions
were the entorhinal and posterior cingulate, prefrontal cortex,
nucleus basalis of Meynert, and visual cortex. Furthermore,
studies have also reported alterations in ganglioside composition
in AD brains where b-series gangliosides, including GD1b and
GT1b, were decreased, whereas GT1a, GM1, GM2, and GD3 were
increased in the frontal cortex (Brooksbank and McGovern, 1989;
Kracun et al., 1992). Consistent with these findings, examination
of cerebrospinal fluid of AD patients revealed that the total
amount of gangliosides was comparable between the control and
“probable AD” group; however, the distribution of ganglioside
species was significantly different between the groups (Blennow
et al., 1992; Kracun et al., 1992). The “probable AD” group
had a higher level of GM1 and GD1a along with lower GT1b
and GD1b levels. Although the mechanism for the observed
changes in ganglioside composition in AD is unclear, these
findings re-emphasize a crucial role of sialic acid-containing
GM1 in forming GAβ and facilitating Aβ-membrane interactions
(section “Interaction of Gangliosides With Aβ”). GM1 has also
been shown to reduce the fluidity of sphingolipid-enriched
membranes, which thereby favors amyloidogensis (Eckert et al.,
2010). Apart from human studies, findings from mouse models
of AD have been controversial. Sawamura et al. (2000) reported
a lack of notable differences in the major brain gangliosides
of mutant presenilin-2 mice, despite their having a remarkably
elevated Aβ1–42 level. Furthermore, Bernardo et al. did not
observe a significant alteration in a- or b-series gangliosides in the
AD mouse model (APP with Swedish mutation and presenilin-1
with exon 9 deletion) as compared to WT (Bernardo et al., 2009).
On the contrary, elevated levels of GM2 and GM3 and reduced
GQ1b, GD1b, GT1a, and GD3 have been reported in the cortices
of mice expressing human presenilin-1 and human APP with
Swedish and London mutations (APPSL) (Barrier et al., 2007).
Significantly increased levels of cortical GM2 and GM3 were
also reported in APPSL transgenic mice co-expressing a point
mutation in presenilin-1 (Ariga et al., 2008). The disparities in
these findings could be attributed to the different mouse models
used for the studies (Grimm et al., 2013). Overall, the findings
from human brains and selective mouse models of AD point
to a prominent role of alteration in ganglioside metabolism in
AD pathogenesis.

Untargeted metabolomics conducted on CSF of patients
with MCI also revealed a higher sialic acid metabolism as
compared to normal controls (Hajjar et al., 2020). Furthermore,
association studies between discriminatory metabolites and
disease phenotype using Spearman’s correlation analyses revealed
that altered sugar metabolism was associated with elevated
levels of tau and phosphorylated tau and reduced cognitive
performance, cortical thickness, and hippocampal volume. This
finding indicates that an impaired sugar regulation including
sialic acid may occur years before AD is clinically manifested.
It has been postulated that the increased sugar metabolism
may in part be explained by a reduced brain glucose uptake,
for instance, secondary to impaired glucose uptake transporter
thereby leading to a higher CSF sugar level. Alternatively,
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central insulin resistance as reported in AD could lead to
higher metabolic byproducts in the CSF (Hajjar et al., 2020).
Based on these findings, another follow-up study hypothesized
that glycan profile could also be altered in AD brains and
therefore analyzed the N-linked glycan profile in the cortex
and hippocampus in control and AD brains (Gaunitz et al.,
2020). Two and four glycans in the cortex and hippocampus,
respectively, showed different levels in AD brains as compared
to controls. Strikingly, all the glycans that differed had similar
structures: complex glycan with one sialic acid, a potential
or confirmed bisecting N-acetylgluocasamine and at least one
fucose. This finding provides support to previous propositions
that N-glycans could serve as a relevant biomarker for AD
and glycosylation is impacted in AD pathology, however, how
this altered glycan profile affects AD pathology remains elusive
(Gaunitz et al., 2020). Impaired neural glycosylation state has
also been previously reported as a potential early event in
neurodegenerative process in 1995, when it was found that the
ST enzyme activity was significantly reduced in postmortem
brain samples of AD patients as compared to age matched
controls (Maguire and Breen, 1995). It was hypothesized that
the altered neural ST activity could affect APP glycosylation
state and the subsequent production of Aβ. This notion has
since been supported by a study conducted by Annunziata
et al. that investigated the functions of NEU1 and lysosomal
exocytosis in amyloidogensis in mouse brains with NEU1-
targeted deletion (Annunziata et al., 2013). As discussed in
section “Sialic Acid Structure and Metabolism: An Overview,”
NEU1 induces sialyglycoconjugates catabolism by eliminating
their terminal sialic acids. NEU1 also regulates lysosomal
exocytosis by limiting the sialic acid content of lysosomal-
associated membrane protein-1 (LAMP1). LAMP1 facilitates
the recruitment of lysosomal pool to the plasma membrane
and the subsequent release of luminal content extracellularly
and without NEU1, hypersialylated LAMP1 increases lysosomal
recruitment and lysosomal exocytosis. NEU1−/−mice was found
to exhibit accumulation of oversialylated APP in endolysosomes,
a novel substrate of NEU1. Furthermore, the endolysosomal
APP was proteolytically cleaved to produce Aβ that was released
extracellularly by exacerbated lysosomal exocytosis. Remarkably,
an intracranial injection of NEU1 to the 5XFAD mouse model
of AD reduced the number of Aβ plaques and Aβ peptide levels.
Therefore, NEU1 was identified as a risk factor for developing
AD-like amyloidosis (Annunziata et al., 2013).

SIALYLATION AS A THERAPEUTIC
TARGET FOR AD

Sialic Acid to Reduce Aβ Toxicity
Binding of Aβ to sialic acid on gangliosides on neuronal
membranes has been shown to promote amyloidosis and induce
cytotoxicity in AD (section “Interaction of Gangliosides With
Aβ” and Figure 2A). Furthermore, inhibition of synthesis or
enzymatic removal of membrane-associated sialic acid was found
to be neuroprotective against Aβ-induced toxicity (Patel et al.,
2006). These findings prompted the development of strategies

to disrupt the cytotoxic interaction between Aβ and sialic acid
and by such strategies to reduce AD pathology (Dhavale and
Henry, 2012). Kakio et al. (2001) reported that the affinity of
Aβ to cell membrane increases when sialic acids are clustered
on the cell surface. This finding led to the hypothesis that a
membrane mimic with similar sialic acid structure could compete
with physiological membrane for Aβ binding (Patel et al., 2006).
In support of this hypothesis, a sialic acid-conjugated dendrimer
was found to bind and sequester Aβ, thus rendering it unavailable
for cell interaction, which led to improved cell viability (Patel
et al., 2007). Furthermore, Yin et al. (2015) synthesized a
selenium nanoparticle modified with sialic acid and alternative-
B6 peptide conjugation (B6-SA-SeNPs). Selenium nanoparticles
are widely used because they exhibit very low toxicity and possess
anti-oxidative properties. B6 peptide allowed the compound to
show high blood-brain barrier permeability (Liu et al., 2013).
More importantly, sialic acid on the nanoparticle inhibited
Aβ fibrillation and reduced Aβ toxicity in a dose-dependent
manner in two different cell models. Moreover, the nanoparticle
caused the preformed Aβ fibrils to disaggregate into non-toxic
oligomers, making it a promising therapeutic agent to reduce
AD pathogenesis. Similarly, inhibition of Aβ-mediated toxicity in
SH-SY5Y cells was obtained by sialic acid-conjugated chitosan,
a polysaccharide containing D-glucosamine and N-acetyl-D-
glucosamine (Dhavale, 2009). Overall, these studies show that a
biomimetic compound containing sialic acid structures similar
to those expressed on neuronal membranes can compete and
prevent cell surface Aβ binding and associated cellular damage,
making it a promising strategy to reduce the development of Aβ

pathology in AD (Figure 2A).

Inhibition of CD33–Sialic Acid Interaction
With failure of drugs targeting Aβ plaques and neurofibrillary
tangles and identification of multiple AD risk genes exclusively
expressed by microglia (Bellenguez et al., 2020), alternative
microglia-based therapies have become a more recent focus
of AD drug discovery (Spangenberg and Green, 2017). Such
therapies, while facilitating phagocytotic clearance of Aβ plaques
and hyperphosphorylated tau, could also restore microglial
phenotype to a healthy and functional state. The protective
CD33 allele (rs3865444A) causes reduced expression of CD33
and is associated with lower AD risk (Zhao, 2019). Consequently,
strategies targeting CD33 have been aimed to reduce CD33
expression and prevent CD33-mediated inhibition of microglial
Aβ phagocytosis (Figure 2B). Gemtuzumab ozagamicin and
lintuzumab are two CD33 antibodies that have been extensively
tested in patients suffering from acute myeloid leukemia (AML)
(Jurcic, 2012). These antibodies were found to reduce the
expression of CD33 on the cell surface of monocytes. Lintuzumab
also reduced the expression of CD33 by 50 and 80% in
non-differentiated U937 cells and differentiated U937 cells,
respectively (Zhang et al., 2016). These studies, along with the
well-established safety profile in clinical trials for AML, have
positioned lintuzumab as one of the top therapeutic candidates
to be repurposed for AD. Antibodies targeting CD33 are able to
reduce cell surface CD33 expression by inducing internalization
and degradation (Malik et al., 2015). It is important to note
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that both of these antibodies act specifically against the domain
encoded by exon 2 that mediates sialic acid binding to CD33
(Jurcic, 2012). Therefore, they work by specifically reducing
the levels of sialic acid-binding CD33 isoforms (Malik et al.,
2015). Alternatively, small molecular inhibitors of sialic acid–
CD33 interaction have also been considered to be a suitable
CD33 intervention strategy (Wes et al., 2016). However, targeting
CD33 with small molecules has posed several challenges (Zhao,
2019). First, the sialic acid-binding region in CD33 is very flat,
with no binding pockets. Second, this region has high polarity
and thus requires a polar small molecule inhibitor (Varki and
Angata, 2006). Polar molecules are very unlikely to permeate the
blood-brain barrier, thus making the inhibition of sialic acid–
CD33 interaction challenging. Therefore, a non-polar allosteric
site that can be approached by small molecules to efficiently
interrupt sialic acid binding to CD33 might be a better target
(Zhao, 2019). Recent discovery of the 3D structure of CD33
and its binding domains will allow for identification of various
allosteric modulators (Miles et al., 2019). In summary, CD33-
based immunotherapy and sialic acid–CD33 small molecule
inhibitors represent two promising avenues in the development
of microglia-based AD therapeutics.

Monocyte-Derived Activating Siglecs
The presence of Aβ plaques in the brain induces microglial
activation and triggers an inflammatory response (Koenigsknecht
and Landreth, 2004). Acutely activated microglia can efficiently
cause Aβ phagocytosis and prevent plaque formation.
However, suppression of such microglial activation inhibits Aβ

phagocytosis and leads to Aβ deposition in the brain. Although
inhibitory Siglecs with ITIM and ITIM-like signaling motifs are
the major form of Siglecs, activating Siglecs also exist (Siddiqui
et al., 2019). Activating Siglecs possess immunoreceptor tyrosine-
based activation motif (ITAM), facilitate MAPK signaling, and
cause immune cell activation. In other words, activating Siglecs
when bound by their ligands can promote microglial phagocytic
functions. Studies have shown that, when transferred to the
brain, the bone marrow-derived monocytes induced efficient Aβ

phagocytosis (Malm et al., 2005; Simard et al., 2006). Monocytes
express several activating Siglecs, such as Siglec 14 (Fong et al.,
2015) and Siglec 15 (Takamiya et al., 2013) in humans. It has
been postulated that, since the majority of microglial Siglecs
are inhibitory, exposure of sialylated plaques to monocytes can
allow sialic acid to bind to monocyte-resident activating Siglecs
(Salminen and Kaarniranta, 2009). This in turn activates the
immune response and induces phagocytosis and clearance of Aβ

plaques. With promising results in mouse models of AD, this
approach has the potential to limit Aβ plaque formation and
deposition in AD.

GM1 as a Peripheral Sequester of Aβ
One of the therapeutic approaches tested for AD treatment is
peripheral administration of anti-Aβ antibodies to reduce Aβ

load in the brain (Matsuoka et al., 2003). These treatments have
been shown to alter Aβ dynamics and lead to Aβ efflux from
the brain to the circulation, a process that is referred to as
the “peripheral sink” effect (DeMattos et al., 2002). However,

due to adverse patient response associated with Aβ-based
immunotherapy, clinical trials were suspended (Matsuoka et al.,
2003). Nonetheless, this concept has encouraged researchers
to identify alternative compounds that can bind to Aβ in the
periphery. As discussed in section “Interaction of Gangliosides
With Aβ,” sialic acid-mediated binding between GM1 and Aβ

forms GAβ and promotes Aβ deposition. Prompted by this
finding, Matsuoka et al. (2003) examined the effects of peripheral
administration of GM1 in APP/PSEN1 mouse model of AD.
The treatment induced a significant decrease in both Aβ1–40
and Aβ1–42 aggregation in the brain with a parallel increase in
plasma Aβ levels. Furthermore, the GM1-bound Aβ could no
longer cross the blood-brain barrier and form plaques centrally.
In summary, peripheral administration of GM1 can potentially
sequester Aβ in the plasma and reduce brain amyloidosis. This
approach has paved the way to develop novel therapeutics
that are not limited by adverse immune response or brain
permeability in AD.

In addition, a monoclonal antibody, 4396C, that targets GAβ

was developed (Hayashi et al., 2004). This antibody was found to
inhibit the aggregation of Aβ1–40 and Aβ1–42 in vitro by binding
to GAβ. Furthermore, peripheral administration of the antibody
was found to significantly reduce Aβ accumulation in the brain of
transgenic mice expressing mutant human APP gene (Yamamoto
et al., 2005). Overall, these findings support the development of
GM-1-based therapeutics to inhibit Aβ aggregation in AD.

CONCLUSION AND FUTURE
PERSPECTIVES

Sialic acids represent a diverse family of sugars that possess a
9-carbon backbone and are mostly found as terminal residues
in glycans of glycoconjugates. Sialic acids have been shown to
play a variety of roles in human physiology and pathophysiology,
ranging from kidney filtration to airway lubrication to cancer
progression. The highest levels of sialic acids are found in the
brain, where they are expressed mainly in gangliosides and PSA-
NCAM. These two sialic acid carriers have been shown to regulate
important brain functions, including axon myelination, synapse
development and transmission, and modulation of microglial
homeostasis. Age-associated loss of sialic acid in the brain
has been demonstrated to negatively affect the regenerative
potential of neuronal fibers, neural plasticity and microglial
phagocytosis. Moreover, a decrease in ganglioside levels has been
linked to increased neuronal loss in aged brains. In addition
to aging, sialic acid has also been indicated to play important
roles in AD pathogenesis. While gangliosides primarily affect
Aβ accumulation and deposition, PSA-NCAM deficiency has
been associated with reduced brain repair capabilities in AD.
Furthermore, the ability of sialic acid itself to serve as a ligand
for Siglec enables it to alter microglial functions and axon
myelination. Although a detailed mechanism for several sialic
acid-mediated functions remains to be known, the existing
knowledge has provided a foundation to develop sialic acid-
based therapeutics in AD. Targeting sialic acid has so far
shown promising results with its ability to downregulate Aβ
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plaque formation. However, AD is a heterogeneous disease
with complicated pathophysiology. Over the past two decades,
extensive efforts have been made to reduce the levels of Aβ and
its aggregation and increase its clearance from the brain (Long
and Holtzman, 2019). Unfortunately, these efforts have failed to
deliver a cognitive improvement in clinical trials. More recently,
the presence of sustained inflammation mediated by microglia
has been recognized as a core pathology in AD, leading to the
focus of microglia-based strategies in AD drug discovery (Kinney
et al., 2018). Despite the importance of Siglecs in mediating
microglial activity and inflammation, the downstream ITIM and
ITAM signaling is not fully understood (Linnartz et al., 2010).
In addition, although the role of a small number of Siglecs has
been defined, overall, the Siglec family remains underexplored
in the context of neuroinflammation (Siddiqui et al., 2019).
Species-specific expression and lack of monoclonal antibodies
against Siglecs have further contributed to this gap. Moreover,
confounding findings have been presented where Siglecs can play
either a preventive or a causative role in AD, warranting further
studies to bring clarity to these inconsistencies. There is also a
pressing need for a better understanding of the neuroimmune
pathways and responsible molecular players involved. Although
research on gangliosides and PSA-NCAM in the brain has
been extensive, approaches to explore novel functions of the
sialo residues are necessary. Furthermore, examination of the
biosynthesis pathway would allow us to understand how sialic
acid levels are altered in different pathologies. Studies using
mouse models with targeted deletion of NCAM or gangliosides
have been crucial to understand the functional role of these
sialoglycans. However, it should be noted that such deletions
can remove both the sialylated and the unsialylated forms of the
molecule, which can result in changes not specific to the sialylated
form but instead caused by entirely wiping off the molecule.
Inconsistent results could also arise with the use of cancer cell
lines for sialic acid studies. As discussed in section “Sialic Acid
Physiochemical and Biological Properties,” cancer cells have a
notorious reputation for utilizing sialic acids to their benefit such
that hypersialylation is used to identify cancer stage and disease
prognosis. Therefore, primary cell culture or tissue preparation
could be better models for studying sialic acid–Siglec interactions.
In addition, there are discrepancies in studies looking at Aβ and
sialic acid binding and aggregation. Some of the studies have
utilized Aβ1–40 peptide, whereas others have utilized Aβ1–42
peptide. Although they differ by only two amino acids, they have
significant differences in metabolism, physiological functions,

toxicities, and mechanism of aggregation (Qiu et al., 2015). This
could be a causal factor for the discrepancy observed when trying
to identify the role of sialic acid binding in neuronal toxicity.

In addition, studies on proteins relevant to AD pathogenesis
could provide an insight into the role of sialylation in AD.
Clusterin (CLU), also known as apolipoprotein J, is the third most
prominent genetic risk factor for LOAD (Herring et al., 2019).
Translation at exon 2 forms mature secreted CLU preprotein
that is targeted to endoplasmic reticulum for glycosylation. CLU
bearing six N-linked glycosylation is then further transported to
Golgi for glycan modification and sialylation. Studies that sought
to identify a novel biomarker for chronic ethanol consumption
found CLU to be highly sialylated (26–28 moles of sialic acid
residues per mole of CLU) as compared to 4 moles of sialic
acid in the classic biomarker, carbohydrate-deficient transferrin
(Torrente et al., 2012). Chronic ethanol exposure reduces the
level of liver dolichol, a crucial mediator in the first step
of N-linked glycosylation (Burda and Aebi, 1999). Reduced
N-linked glycosylation causes CLU to lose its sialic acid and
regain it upon alcohol abstinence (Lakshman et al., 2001; Ghosh
et al., 2002; Javors and Johnson, 2003; Wurst et al., 2012).
Therefore, the presence of sialic acid on CLU has been established
as a reliable biomarker for chronic alcohol consumption. Despite
these findings, the functional role of sialic acid present on
CLU is unknown. In addition, ApoE ε4 and desmoglein-2, two
other known LOAD risk genes, are also sialylated (Xu et al.,
1999; Sugano et al., 2008; Giri et al., 2016; Debus et al., 2019).
Additional studies are needed to understand the functional
role of sialic acid residues on these proteins. Filling in these
gaps would contribute to a better understanding of the role of
sialylation and Siglec in AD. This could also allow us to explore
the clinical potential of modulating sialic acid interactions in
AD intervention.
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The ATP binding cassette subfamily A member 7 (ABCA7) gene is one of the
significant susceptibility loci for Alzheimer’s disease (AD). Furthermore, ABCA7 loss of
function variants resulting from premature termination codon in the gene are associated
with increased risk for AD. ABCA7 belongs to the ABC transporter family, which
mediates the transport of diverse metabolites across the cell membrane. ABCA7 is
also involved in modulating immune responses. Because the immune system and
lipid metabolism causatively engage in the pathogenesis of AD, we investigated
how ABCA7 haplodeficiency modulates the metabolic profile in mouse brains during
acute immune response using a metabolomics approach through LC/Q-TOF-MS.
Peripheral lipopolysaccharide (LPS) stimulation substantially influenced the metabolite
content in the cortex, however, the effect on metabolic profiles in Abca7 heterozygous
knockout mice (Abca7±) was modest compared to that in the control wild-type mice.
Weighted gene co-expression network analysis (WGCNA) of the metabolomics dataset
identified two modules influenced by LPS administration and ABCA7 haplodeficiency,
in which glycerophospholipid metabolism, linoleic acid metabolism, and α-linolenic acid
metabolism were identified as major pathways. Consistent with these findings, we also
found that LPS stimulation increased the brain levels of eicosapentaenoic acid, oleic
acid, and palmitic acid in Abca7± mice, but not control mice. Together, our results
indicate that ABCA7 is involved in the crosstalk between fatty acid metabolism and
inflammation in the brain, and disturbances in these pathways may contribute to the
risk for AD.

Keywords: Alzheimer’s disease, fatty acids, inflammation, lipopolysaccharide, metabolomics, ABCA7

INTRODUCTION

ATP-binding cassette (ABC) transporters regulate the transport of a variety of substances across
membranes as the importers, exporters, and extruders (Rees et al., 2009; Thomas and Tampe, 2018),
thereby mediating various critical pathways to maintain systemic homeostasis (Thomas and Tampe,
2020). In particular, the subfamilies of ABCA, ABCB, ABCC, ABCD, and ABCG are predominantly
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involved in the transport of lipids including cholesterol, bile
acids, phospholipids, and sphingolipids (Tarling et al., 2013;
Neumann et al., 2017). While those transporters are highly
expressed in the brain and mediate lipid metabolism, their
substantial contributions to inflammatory processes have been
also implicated in neurodegenerative diseases (Kim et al., 2008;
Kooij et al., 2012). Since lipid and lipoprotein metabolism
in microglia is affected in pathological conditions such as
Alzheimer’s disease (AD) and multiple sclerosis (Loving and
Bruce, 2020), the significance of defining crosstalk between lipid
metabolism and the immune system in the brain has been
increasingly made apparent.

Of note, accumulating genetic evidence collected through
genome-wide studies (GWASs) has confirmed ABCA7 variants
to be late-onset AD susceptibility loci, which include rs3764650,
rs3752246, and rs115550680 (Hollingworth et al., 2011; Naj
et al., 2011; Guerreiro et al., 2013; Jonsson et al., 2013).
Subsequent whole genome sequencing studies have shown that
carrying one allele of ABCA7 with a premature termination
codon mutation that results in loss of function significantly
increases the risk for AD (Cuyvers et al., 2015; Steinberg et al.,
2015). ABCA7 and ABCA1 are the closest homologs, sharing
54% sequence identity (Kaminski et al., 2000). ABCA7 also
shares functional attributes with ABCA1, such as mediating the
efflux of cellular lipids including cholesterol and phospholipids
(Wang et al., 2000, 2003; Fitzgerald et al., 2002; Abe-Dohmae
et al., 2004; Tomioka et al., 2017). Indeed, lipid metabolism
is substantially involved in AD pathogenesis through multiple
pathways including amyloid precursor protein (APP) processing,
immune responses, and energy balance (Chew et al., 2020).
ABCA7 has been also shown to regulate phagocytosis in
immune cells (Abe-Dohmae and Yokoyama, 2020). Furthermore,
our previous work found that mRNA levels of inflammatory
cytokines in the brain during acute immune responses induced
by lipopolysaccharide (LPS) stimulation are compromised in
both homozygous and heterozygous ABCA7 knockout mice
compared to control mice (Aikawa et al., 2019). Therefore, to
further investigate the crosstalk between inflammation and lipid
metabolism through ABCA7, this study used a metabolomics
approach to explore how ABCA7 haplodeficiency influences
the LPS-induced changes in metabolite profiles in mouse
brains. Our findings demonstrate that ABCA7 contributes
to the metabolism of brain fatty acids during LPS-induced
acute inflammation.

MATERIALS AND METHODS

Animals
All animal experiments were approved by the Mayo Clinic
Institutional Animal Care and Use Committee (IACUC) and
were in accordance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals. Abca7
knockout mice (Abca7−/−) (Kim et al., 2005) were crossbred
with wild-type C57BL/6 inbred mice. Littermate male Abca7+/+

(control) and Abca7 heterozygous knockout mice (Abca7±)
mice were intraperitoneally injected with LPS (5 mg/kg;

Escherichia coli O26:B6; Sigma, L2654) or vehicle at the age
of 2–3 months, and used for the experiments 3.5 h after
the injection.

Qualitative Large-Scale Profiling for
Metabolomics
The non-targeted metabolomics and non-esterified fatty acid
analysis were conducted by the Mayo Clinic Metabolomics
Core. Tissue homogenates were deproteinized with six times the
volume of cold acetonitrile:methanol (1:1 ratio), kept on ice with
intermittent vortexing for 30 min at 4◦C, then centrifuged at
18,000 × g. 13C6-phenylalanine (3 µl at 250 ng/µl) was added
as an internal standard to each sample before deproteinization.
The supernatants were divided into two aliquots and dried down
for analysis on a Quadrupole Time-of-Flight Mass Spectrometer
(Agilent Technologies 6550 Q-TOF) coupled with an Ultra
High-Pressure Liquid Chromatograph (1290 Infinity UHPLC
Agilent Technologies). Profiling data were acquired under both
positive and negative electrospray ionization conditions over
a mass range of 100–1,200 m/z at a resolution of 10,000–
35,000 (separate runs). Metabolite separation was achieved using
two columns of differing polarity, a hydrophilic interaction
column (HILIC, ethylene-bridged hybrid 2.1 mm × 150 mm,
1.7 mm; Waters) and a reversed-phase C18 column (high-
strength silica 2.1 mm × 150 mm, 1.8 mm; Waters). For
each column, the run time was 20 min using a flow rate of
400 µl/min. A total of four runs per sample were performed
to give maximum coverage of metabolites. Samples were
injected in duplicates, and a quality control sample made
up of a subset of samples from the study will be injected
several times during a run. All raw data files obtained were
converted to compound exchange file format using Masshunter
DA reprocessor software (Agilent). Mass Profiler Professional
(Agilent) was used for data alignment and to convert each
metabolite feature (m/z × intensity × time) into a matrix of
detected peaks for compound identification. Each component
was assigned a putative identification (ID) through the Metlin
database or a mass (m/z) value. Mass accuracy of the Q-TOF
method was <5 ppm with retention time precision better
than 0.2%. Fold changes as >1.2 or <−1.2 were detected
with a precision of 4%. Amounts of non-esterified fatty acids
were measured against a standard curve on the Thermo TSQ
Quantum Ultra mass spectrometer (West Palm Beach, FL,
United States) coupled with a Waters Acquity UPLC system
(Milford, MA, United States).

Weighted Gene Co-expression Network
Analysis (WGCNA)
We performed WGCNA of the metabolomics dataset through R
package (Langfelder and Horvath, 2008). To identify metabolites
that are correlated with the 4 sample groups, we used a
power of 5, a minimum module size of 40 metabolites, and
a minimum height for merging modules at 0.25 to build
an unsigned network. To assess the correlation of modules
to the mouse groups, we defined control mice administrated
with LPS as 1, Abca7± mice administrated with LPS as 2,
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control mice without LPS administration as 3, and Abca7±
mice without LPS administration as 4. Metabolites with high
connectivity in their respective modules were considered hub
metabolites. Intramodular metabolite-metabolite connections
were visualized using VisANT. Pathway analysis was conducted
using Kyoto Encyclopedia of Genes and Genomes (KEGG) in
Metaboanalyst 4.0.

Statistics
In the metabolomics profiling, potential metabolic signatures
with a false discovery rate (FDR) < 0.05 were identified. Statistical
significance for the effects of LPS administration on individual
metabolite was determined by Tukey post hoc analysis after
analysis of variance (ANOVA). For the comparison of non-
esterified fatty acid levels, statistical significance for the effects of
LPS administration each fatty acid was determined by unpaired
student-t test. A p-value less than 0.05 was considered as
statistically significant.

RESULTS

ABCA7 Haplodeficiency Impacts the
Metabolomic Changes Induced by LPS
Administration in Mouse Brains
Non-targeted metabolomics was performed on the cortical
samples from control and Abca7± mice administrated with or
without intraperitoneal LPS injection. While a total of 5,593
metabolites were detected, principal component analysis (PCA)
demonstrated the distinct clustering among the four groups
(Figure 1A). The PCA plot showed the separation of samples
with 44.96% variance captured by PC1 and 17.31% variance
captured by PC2. In addition, 253 metabolites with FDR < 0.05
were identified in the 4 groups of mice (Supplementary Data).
Among them, we identified 193 and 74 metabolites differentially
induced by LPS administration in control and Abca7± mice
(raw p-value < 0.05), respectively, with an overlap of 42

metabolites (Figure 1B and Table 1). While 119 metabolites were
increased by LPS administration in control mice, 74 metabolites
were decreased. In Abca7± mice, LPS administration induced
the upregulation of 35 metabolites and the downregulation
of 39 metabolites. Thus, these results indicate that peripheral
LPS injection modulates the metabolome in mouse brains,
in which ABCA7 haplodeficiency diminishes the changes in
metabolic profiles.

Identification of Metabolite Modules
Associated With ABCA7 Haplodeficiency
and LPS Stimulation in Mouse Brains
WGCNA for the brain metabolites identified two modules
that were changed among four mouse groups (control
and Abca7± mice with or without LPS administration):
lightgreen (p = 0.02) and paleturquoise (p = 0.03)
(Figure 2A). In the analysis, the lightgreen module contains
CAY10526, C6 H3 N O4 S, C9 H N S2, C4 H3 N4 O4
S, and C6 H5 N4 S3 as the top 5 ranked hub metabolites
(Figure 2B), although most of them are classified as unknown
metabolites. On the other hand, the paleturquoise module
was relatively enriched with metabolites related to lipid
metabolism, which include PC[20:4(5Z,8Z,11Z,14Z)/22:6(4Z,7Z,
10Z,13Z,16Z,19Z)], Retinol acetate/All-trans-retinyl acetate,
PC[22:6(4Z,7Z,10Z,13Z,16Z,19Z)/ 22:5(7Z,10Z,13Z,16Z,19Z)],
C28 H34 N, and C13 H30 N3 O3 S as the top 5 ranked
hub metabolites (Figure 2C). The KEGG pathway analysis
demonstrated that “Glycerophospholipid metabolism”
was enriched by metabolites in the paleturquoise module
(FDR = 1.02E–02). A few other enriched pathways include
“Linoleic acid metabolism,” “α-Linolenic acid metabolism,” and
“Glycosylphosphatidylinositol (GPI)-anchor biosynthesis” with
nominal significance (raw p < 0.05). Metabolites in the lightgreen
module are suggested to be associated with “Pantothenate and
CoA biosynthesis” with nominal significance (raw p < 0.05)
(Figure 2D). Since glycerophospholipids and GPI are major
components of the cell membrane, these results suggest that

FIGURE 1 | Influence of ABCA7 haplodeficiency on LPS-induced metabolomic changes in mouse brains. Metabolomics was conducted in the cortex of control and
Abca7± mice (N = 6/each) administrated with or without LPS. (A) Principal component analysis (PCA) of metabolites from control and Abca7± mice with or without
LPS administration. (B) Venn diagram of the metabolites differently induced by LPS administration in control and/or Abca7± mice.
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TABLE 1 | Metabolites affected by LPS administration in the mouse brains.

Compound Control Abca7± Ionization mode MS1 composite spectrum (m/z)

FC p-value FC p-value

C24 H9 N11 O4 −1229.987 1.74E–04 −556.729 2.24E–04 HILIC+ (516.0915, 2651.58) (517.0916, 692.18)

Quinacetol 703.429 1.30E–03 144.123 1.90E–02 HILIC+ (188.0709, 1615.56) (205.0975, 1986.9) (206.1013,
176.11)

C21 H43 N4 O4 138.129 9.79E–03 687.350 5.39E–04 HILIC+ (416.3347, 4091.88) (417.3392, 1173.53) (433.3659,
204.09)

His Ala 2.108 8.07E–04 1.985 2.00E–03 HILIC+ (249.0964, 555.13) (227.1139, 44894.72) (228.1171,
4758.09) (229.119, 466.04)

Carnosine 2.012 1.70E–04 1.753 2.79E–04 HILIC− (225.0992, 13183.61) (226.1022, 1362.8)

PE [15:1(9Z)/22:0] −4.176 2.91E–03 −2.244 N.S. C18+ (760.5844, 113759.48) (761.5878, 50487.69)

POV-PC Esi + 12.015995 −3.239 1.15E–03 −1.130 N.S. C18+ (616.3578, 50059.41) (617.3611, 15758.59) (594.3764,
170028.23) (595.3793, 52255.38) (596.3819, 11953.29)

(597.3852, 1868.63) (611.4076, 297.2)

C34 H55 N12 O3 −2.491 2.13E–04 −1.067 N.S. C18+ (702.4314, 4643.8) (703.4354, 1840.41) (680.4592,
6949.51) (681.4605, 3260.07) (682.4631, 882.31)

C32 H51 O10 Esi + 12.411007 −2.027 1.73E–03 −1.121 N.S. C18+ (618.3381, 4348.9) (619.3419, 1693.53) (596.3551,
18953.5) (597.3587, 6100.73) (598.3611, 1816.91)

(599.3599, 222.98)

C31 H49 O9 −2.004 3.21E–03 −1.100 N.S. C18+ (588.3267, 17685.77) (589.3303, 5836.98) (590.3389,
1836.92) (1153.6628, 1279.33) (1154.6656, 840.86)

(566.3452, 135593.83) (567.3482, 40496.61) (568.3516,
8898.48) (569.3551, 1504.54) (1131.6823, 1156.18)

(1132.6847, 661.48)

PE [22:6(4Z,7Z,10Z,13Z,
16Z,19Z)/0:0] Esi + 10.902

−8.687 4.61E–03 1.258 N.S. C18+ (548.2743, 95660.68) (549.2773, 29194.23) (526.2926,
565743.44) (527.2959, 167649.31) (528.2982, 29241.65)

PE [22:6(4Z,7Z,
10Z,13Z,16Z,19Z)/0:0]

−8.597 4.81E–03 1.258 N.S. C18+ (548.2743, 95660.68) (549.2773, 29194.23) (526.2926,
565743.44) (527.2959, 167649.31) (528.2982, 29241.65)

C20 H16 N O6 −2.765 9.37E–04 1.059 N.S. HILIC− (365.0906, 6087.18) (366.094, 981.33)

PC [18:3(6Z,9Z,12Z)/
20:4(8Z,11Z,14Z,17Z)]

139.405 2.04E–02 −13.074 N.S. HILIC+ (826.5427, 424.52) (804.552, 2422.12) (805.556, 1161.39)

PE [19:0/22:6(4Z,7Z,
10Z,13Z,16Z,19Z)]

2.840 1.86E–03 −1.052 N.S. C18+ (828.5514, 124966.67) (829.5544, 61987.04) (830.5574,
16763.68) (831.5606, 3728.36)

Barbituric acid,
5-ethyl-5-(2-hydroxyethyl)-

2.247 1.87E–03 −1.127 N.S. HILIC+ (223.069, 7991.25) (224.0709, 1855.2) (201.0871,
12020.45) (202.091, 1167.57)

PC [17:1(9Z)/
20:5(5Z,8Z,11Z,14Z,17Z)]

2.245 3.26E–03 −1.191 N.S. C18+ (814.5356, 84342.96) (815.5387, 42522.77) (816.542,
11650.13) (817.5466, 2508.01) (1606.0784, 4863.3)

(1607.0813, 5175.72) (1608.085, 2997.93) (1609.0872,
1133.71) (1610.0887, 307.46) (792.5542, 853601.8)

(793.5578, 419070.66) (794.5605, 109935.91) (795.5629,
21364.05) (796.5681, 3906.1) (797.5746, 744.92)

(1584.097, 9308.74) (1585.1006, 9151.15) (1586.1033,
4983.11) (1587.1051, 2043.59) (1588.1064, 571.09)

PC [18:3(9Z,12Z,15Z)/22:4
(7Z,10Z,13Z,16Z)]

2.149 1.91E–03 −1.043 N.S. C18+ (854.5667, 23313.19) (855.5701, 12648.29) (856.5735,
3862.51) (857.578, 946.06) (832.5849, 101901.32)

(833.5881, 51366.33) (834.5911, 15361.98) (835.5943,
3344.88) (836.6016, 790.0)

Ancitabine Esi + 3.470998 543.089 1.69E–04 6.087 N.S. HILIC+ (226.0825, 5276.52) (227.0869, 802.4)

Anibine 286.991 2.55E–03 2.066 N.S. HILIC+ (226.045, 2249.78) (227.0482, 103.85) (429.0144, 412.48)
(204.0632, 922.09)

C24 H19 N19 O4 110.749 5.77E–03 4.714 N.S. HILIC− (636.1795, 2567.15) (637.1818, 682.69)

C25 H13 N6 O3 76.653 1.47E–02 2.014 N.S. HILIC− (444.0975, 2311.36) (445.1024, 561.37)

PC [22:6(4Z,7Z,10Z,13Z,16Z,19Z)/
22:6(4Z,7Z,10Z,13Z,16Z,19Z)]

2.530 4.69E–04 1.157 N.S. C18+ (900.5547, 1268.98) (901.551, 921.35) (902.5487, 329.27)
(878.5694, 15051.85) (879.5725, 8619.16) (880.5738,

3269.69) (881.5759, 1019.28)

PE [22:6(4Z,7Z,10Z,13Z,16Z,19Z)/
22:4(7Z,10Z,13Z,16Z)]

2.206 5.36E–04 1.106 N.S. C18+ (862.5356, 3496.06) (863.5376, 1840.5) (864.5534,
666.24) (840.5538, 14033.28) (841.5571, 7698.2)

(842.5743, 3260.31)

(Continued)
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TABLE 1 | Continued

Compound Control Abca7± Ionization mode MS1 composite spectrum (m/z)

FC p-value FC p-value

PE [22:6(4Z,7Z,10Z,13Z,16Z,19Z)/
22:6(4Z,7Z,10Z,13Z,16Z,19Z)]

2.503 6.34E–04 1.140 N.S. C18+ (858.5046, 3908.22) (859.5076, 2355.39)
(860.5147, 904.48) (861.513, 153.03) (836.5229,

15859.57) (837.5261, 8592.62) (838.5362,
4116.88) (839.5368, 919.5)

Quercetin 3,4′-dimethyl ether
7-glucoside

2.100 2.90E–03 1.303 N.S. HILIC− (491.1188, 9107.03) (492.1217, 2024.41)

C6 H10 N2 Esi + 3.0780017 −1.620 N.S. −2.267 7.90E–03 C18+ (111.0915, 9416.54) (112.0944, 670.02)

C33 H39 N14 O −2.807 N.S. −1.585 1.09E–02 C18+ (670.3348, 81.0) (648.3504, 17316.61) (649.3547,
6659.75) (665.3842, 919.13)

C15 H39 N16 28.361 N.S. 598.849 2.73E–04 HILIC+ (444.3576, 4252.18) (445.3726, 746.13)
(446.3756, 96.88)

C18 H39 N9 −1.073 N.S. 3.925 9.48E–04 HILIC+ (785.6224, 602.19) (382.3266, 5576.34)
(383.3276, 2716.83) (399.3647, 8642.28)
(400.3722, 2169.87) (780.6662, 3471.65)
(781.6672, 1776.56) (764.6397, 5252.95)

Docusate 1.553 N.S. 3.088 1.69E–04 HILIC− (421.2257, 12808.72) (422.2282, 3206.75)
(423.2247, 955.26)

Metabolic signatures with raw p-value ≤ 0.05 and fold change (FC) > 2.0 or <−2.0 induced by LPS administration in control and/or Abca7± mice are listed (N = 6/each).
N.S., not significant.

FIGURE 2 | Impact of ABCA7 haplodeficiency and peripheral LPS stimulation on mouse cortical metabolomes. (A) The correlation between metabolite module
eigengenes and the four groups of mice: (1) control with LPS administration, (2) Abca7± with LPS administration, (3) control with LPS administration, and (4) Abca7±

with LPS administration. Each module is represented with a unique color. The module traits were correlated with the four groups of mice (1–4). The corresponding
correlations and P-values are displayed in each module. (B,C) The interactions of top 30 hub metabolites within the lightgreen (B) and paleturquoise (C) modules
were visualized. (D) Pathway analysis of metabolites using the KEGG database. Pathways in the lightgreen (B) and paleturquoise (C) modules are shown (raw
p-value < 0.05).
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FIGURE 3 | Altered effects of LPS stimulation on brain non-esterified fatty acid levels in heterozygous ABCA7 knockout mice. The amounts of non-esterified fatty
acids (NEFAs) were analyzed through mass spectrometry in the cortex of control (A; white) and Abca7± (B; gray) mice administrated with or without LPS.
Concentration of myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, arachidonic acid, α-linolenic acid, eicosapentaenoic acid (EPA),
and docosahexaenoic acid (DHA) were plotted. All NEFA concentrations were normalized to the protein levels. Horizontal lines, boxes, and whiskers correspond to
median, interquartile range (IQR), and the furthest points within 1.5 × IQR from the box, respectively (N = 6/each). *p < 0.05, **p < 0.01, by student-t test.

ABCA7 is involved in the pathways related to polyunsaturated
fatty acid conversion from membrane phospholipids during
LPS-induced inflammation.

ABCA7 Haplodeficiency Modulates the
Fatty Acid Metabolism in the Brain
During LPS-Induced Inflammation
To further investigate how ABCA7 haplodeficiency influences
the LPS-induced metabolism of polyunsaturated fatty acids in
the brain, amounts of non-esterified fatty acid were measured
by mass spectrometry in the cortex of control (Figure 3A)
and Abca7± (Figure 3B) mice with or without the LPS
administration. Among the 12 major analytes, 10 non-esterified
fatty acids were detectable in the mouse cortical samples,
which include myristic acid 14:0, palmitic acid 16:0, palmitoleic
acid 16:1n7, stearic acid 18:0, oleic acid 18:1n-9, linoleic
acid 18:2n6, α-linolenic acid 18:3n3, arachidonic acid 20:4n6,
eicosapentaenoic acid (EPA) 20:5n3 and docosahexaenoic acid
(DHA) 22:6n3, but not palmitelaidic acid and elaidic acid. The
amount of α-linolenic acid increased upon LPS stimulation in
the cortex of control mice, although there were no significant
effects on other fatty acids (Figure 3A). In contrast, we found
that LPS administration induced the upregulations of EPA,
oleic acid and palmitic acid in addition to α-linolenic acid in
the cortex of Abca7± mice (Figure 3B). These results indicate
that ABCA7 plays a critical role in the brain metabolism
of EPA, oleic acid and palmitic acid during LPS-induced
acute inflammation.

DISCUSSION

ATP-binding cassette transporters play a critical role in
the metabolism of inflammatory lipid mediators including
leukotrienes and prostaglandins (Van De Ven et al., 2009).
Indeed, our results revealed that ABCA7 haplodeficiency
modulates metabolism of EPA, oleic acid and palmitic acid in the
brain upon LPS stimulation. EPA, α-linolenic acid and DHA are
major omega-3 fatty acids, which have strong biological functions
in diverse pathways. Omega-3 and omega-6 polyunsaturated fatty
acids are taken from various foods in the form of triglycerides
and integrated into cellular lipids such as triacylglycerol,
cholesterol esters and phospholipids (Kaur et al., 2014). Of note,
those polyunsaturated fatty acids are abundantly localized in
major immune cells including macrophages, neutrophils and
lymphocytes (Gutierrez et al., 2019). Although proinflammatory
eicosanoids are produced from omega-6 arachidonic acid in the
acute phase of inflammation, omega-3 EPA and DHA mediates
anti-inflammatory functions and are involved in the resolution
phase of inflammation (Serhan, 2014; Astudillo et al., 2019). We
found that brain EPA levels were upregulated in Abca7± mice
3.5 h after the LPS injection, whereas there was no significant
increase observed in control mice. Thus, the compromised acute
immune responses observed in the brain of Abca7±mice (Aikawa
et al., 2019) may be partially due to the increase of EPA as a pro-
resolving lipid mediator. There was no evident difference in the
baseline levels of brain EPA between control and Abca7± mice,
but α-linolenic acid levels were increased by LPS stimulation
in both groups. Thus, ABCA7 haplodeficiency may increase
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EPA production during acute inflammation by accelerating the
interaction of phospholipids containing EPA with phospholipase
A2 on the cell membrane, although further studies are needed
for clarification.

In addition, increases of oleic acid and palmitic acid were also
observed in the brains of Abca7±mice following LPS stimulation,
but not in control mice. Given that phospholipids incorporated
with oleic acid or palmitic acid are major components of the
cell membrane (Lopez et al., 2014), ABCA7 may be involved
in the pathways for the metabolism of those fatty acids in
activated immune cells. Whereas oleic acid has likely both
proinflammatory and anti-inflammatory effects depending on
the cell type, it inhibits LPS-induced NF-κB transactivation in
microglial cells (Oh et al., 2009). Thus, the increase of brain oleic
acid is consistent with the observations of immune suppressive
phenotypes of Abca7± mice. In contrast, palmitic acid has
been shown to rather enhance the inflammatory responses and
induce endoplasmic reticulum (ER) stress (Korbecki and Bajdak-
Rusinek, 2019). The effect of palmitic acid on LPS-induced
acute neuroinflammation may be compromised by other factors.
Nonetheless, we previously found that aged Abca7−/− mice have
higher brain levels of PERK and phosphorylated eIF2α compared
to control mice (Sakae et al., 2016). Thus, ABCA7 deficiency
may alter brain palmitic acid metabolism, which is involved in
exacerbated ER stress under pathological conditions.

In summary, our results demonstrated that ABCA7
haplodeficiency substantially influences the metabolomics
profile of mouse brains after LPS stimulation. Since fatty
acids with anti-inflammatory effects including EPA and oleic
acid were specifically increased in Abca7± mice upon LPS
stimulation, ABCA7 haplodeficiency possibly facilitates the
shift from pro-inflammatory phase to resolution phase during
acute inflammation. Further studies should refine how ABCA7
deficiency influences the brain metabolism of specialized pro-
resolving mediators at different time points after LPS stimulation.
When activations of the immune system are excessively repeated
and/or prolonged, it is possible that ABCA7 loss of function
exacerbates the depletion of resources for anti-inflammatory
fatty acids, thereby increasing the risk of AD due to insufficient
immune resolutions. Indeed, levels of EPA and oleic acids have
been noted to be lower in the inferior temporal gyri of AD
cases compared to cognitively unimpaired subjects as early as
at the asymptomatic stage (Snowden et al., 2017). Prospective
epidemiological studies also show the strong causal association
between low consumption of fish and/or low DHA intake and
AD (Avallone et al., 2019). Therefore, determining the molecular
mechanisms for which ABCA7 loss of function causes the
dysregulation of fatty acid metabolism should provide important

clues to understand the pathogenesis of AD and to develop
novel therapeutic strategies for combatting the disease. Although
some clinical trials involving the administration of omega-3
fatty acids (DHA + EPA) fail to show therapeutic effects in
treating AD (Avallone et al., 2019), early interventions through
nutritional approaches may be a potential strategy to prevent
the development and progression of symptoms in AD patients,
particularly those carrying ABCA7 loss of function variants.
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Alzheimer’s disease (AD) is the most common form of age-related dementia. Despite
decades of research, the etiology and pathogenesis of AD are not well understood.
Brain glucose hypometabolism has long been recognized as a prominent anomaly that
occurs in the preclinical stage of AD. Recent studies suggest that glycolytic metabolism,
the cytoplasmic pathway of the breakdown of glucose, may play a critical role in the
development of AD. Glycolysis is essential for a variety of neural activities in the brain,
including energy production, synaptic transmission, and redox homeostasis. Decreased
glycolytic flux has been shown to correlate with the severity of amyloid and tau pathology
in both preclinical and clinical AD patients. Moreover, increased glucose accumulation
found in the brains of AD patients supports the hypothesis that glycolytic deficit may
be a contributor to the development of this phenotype. Brain hyperglycemia also
provides a plausible explanation for the well-documented link between AD and diabetes.
Humans possess three primary variants of the apolipoprotein E (ApoE) gene – ApoE∗ε2,
ApoE∗ε3, and ApoE∗ε4 – that confer differential susceptibility to AD. Recent findings
indicate that neuronal glycolysis is significantly affected by human ApoE isoforms
and glycolytic robustness may serve as a major mechanism that renders an ApoE2-
bearing brain more resistant against the neurodegenerative risks for AD. In addition
to AD, glycolytic dysfunction has been observed in other neurodegenerative diseases,
including Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis,
strengthening the concept of glycolytic dysfunction as a common pathway leading to
neurodegeneration. Taken together, these advances highlight a promising translational
opportunity that involves targeting glycolysis to bolster brain metabolic resilience and by
such to alter the course of brain aging or disease development to prevent or reduce the
risks for not only AD but also other neurodegenerative diseases.

Keywords: Alzheimer’s disease, glycolysis, bioenergetics, biosynthesis, apolipoprotein E, diabetes, brain
resilience

ALZHEIMER’S AS A METABOLIC DISEASE

The human brain contains an average of more than two hundred billion cells, one quadrillion
connections, 100 km of nerve fibers, and 600 km of blood vessels (Steiner, 2019). Therefore, it
is not surprising that a brain demands an outstanding amount of energy and building blocks to
maintain its highly dynamic homeostasis. An adult brain makes up only 2% of total body weight,
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but it uses about 20% of total body energy (Costantini et al.,
2008). The brain’s significant energy-consuming quality is largely
attributed to the extremely active and complex processes involved
in neuronal transmission. Failures to maintain basal energy levels,
such as those under hypoglycemia or hypoxia, can potentially
induce synaptic loss and cognitive impairment within a few
minutes, thus rendering the brain exceedingly vulnerable to
energy deficit-mediated damage (Fleck et al., 1993; Takata and
Okada, 1995; Yamane et al., 2000).

Accumulating evidence indicates that in the development of
AD, pathophysiological changes can occur up to 20–30 years
before clinical symptoms manifest. Metabolic dysfunction has
been recognized as a prominent anomaly in the brain during
this preclinical stage (Small et al., 1995; de Leon et al., 2001;
Mosconi et al., 2006, 2008b; Langbaum et al., 2009). The cerebral
metabolic rate of glucose (CMRglc) is a critical indicator of
neuronal and synaptic activity (Malonek and Grinvald, 1996;
Attwell and Iadecola, 2002; Rocher et al., 2003; Khatri and Man,
2013). By means of positron emission tomography (PET) imaging
and using 2-[18F]fluoro-2-deoxy-D-glucose (FDG) as the tracer,
studies have shown that nearly all clinical AD symptoms are
accompanied by significant reduction of CMRglc, and the
extent and topography are correlated closely with symptom
severity (Mosconi, 2005). Among individuals with mild cognitive
impairment (MCI), the prodrome of AD, significantly decreased
glucose metabolism has also been observed in AD-vulnerable
brain regions, such as hippocampus, posterior cingulate cortex,
and temporal cortex (Mosconi et al., 2008a,b). This condition
reportedly predicts the progression from MCI to AD with greater
than 80% accuracy. Additionally, individuals carrying an ApoE4
allele without dementia were found to exhibit a mild but definite
reduction in CMRglc comparable to the typical AD pattern when
compared to non-carriers (Small et al., 1995; Reiman et al., 1996,
2001, 2004; Perry et al., 2002; Mosconi et al., 2008a). This cerebral
metabolic deficit substantially predisposes neurons to energy
perturbation and functional crisis (Sims et al., 1980; Lying-Tunell
et al., 1981; Hoyer et al., 1988; Filosto et al., 2007; Esteves et al.,
2008; Vlassenko and Raichle, 2015; An et al., 2018; Vlassenko
et al., 2018).

A great deal of research has sought to understand the
biological basis responsible for the impaired glucose metabolism
observed in the brains of AD patients and high-risk individuals.
Glycolytic deficit has long been suggested as a prominent
metabolic abnormality in the early stage of AD, evidenced by
a much greater decline in cerebral glucose utilization when
compared to the decrease in cerebral blood flow and the cerebral
metabolic rate of oxygen (Hoyer et al., 1991; Fukuyama et al.,
1994). These early findings have been solidified by recent studies,
demonstrating that reduced glycolytic flux correlates closely with
the severity of the disease, with more plaques and tangles found in
the brains of AD patients (An et al., 2018). Moreover, studies have
shown that a number of glycolytic elements, including glycolytic
enzymes, glycolytic metabolites, and amino acids produced
in the glycolytic pathway, are altered in AD. This suggests
that glycolytic impairment associated with AD may cause
both bioenergetic and biosynthetic disturbances that ultimately
disrupt the metabolic and synaptic homeostasis, leading to

abnormal protein deposition and cognitive decline (Sims et al.,
1987; Fisher et al., 1991; Bigl et al., 1999; Hashimoto et al., 2004;
Katsouri et al., 2011; Madeira et al., 2015; Wu et al., 2018). In this
review, we summarize the current understanding of the function
of glycolysis in the maintenance of brain health, and the role of
glycolytic dysfunction as a possible cause of neurodegeneration in
AD and other neurodegenerative conditions. We further discuss
the research evidence that supports the emerging opportunity of
targeting glycolysis as a potential therapeutic strategy aimed to
bolster brain metabolic resilience and by such to alter the course
of brain aging or disease development in the fight against the
neurodegenerative risks for AD.

GLYCOLYSIS OVERVIEW

Bioenergetic Function of Glycolysis
Many tissues can utilize fat or protein as a source of energy.
Others, however, such as the brain, depend primarily on glucose
to maintain normal functions (Maughan, 2009). Glycolysis
is the cytosolic pathway in which one molecule of glucose
is broken down into two molecules of pyruvate, along with
a net production of two molecules of ATP and NADH
(nicotinamide adenine dinucleotide). Pyruvates are then fully
metabolized in mitochondrial respiration. The first five reactions
of glycolysis constitute the preparatory or investment phase,
where ATP is consumed, while the other five reactions form
the payoff phase where ATP is produced (Figure 1a). Three
key rate-limiting enzymes are utilized in glycolysis: hexokinase,
phosphofructokinase-1 (PFK-1), and pyruvate kinase (PK). Each
of them serves as a critical and tightly regulated site. In the initial
step of glycolysis, hexokinase catalyzes the phosphorylation of
glucose by ATP to produce glucose-6-phosphate (G-6-P), in
which an ATP molecule is consumed. Hexokinase is feedback-
inhibited by G-6-P as well as when the function of PFK-1 is
suppressed, thus ensuring less hydrolysis of ATP and glycolytic
intermediates. Notably, hexokinase possesses a low Km (high
affinity, strong binding) for glucose which enables it to function
actively even if the concentration of glucose is very low (Niemeyer
et al., 1975; Massa et al., 2011).

Among the three key glycolytic enzymes, PFK-1 is regarded
as the crucial point of regulation. PFK-1 converts fructose
6-phosphate to fructose 1,6-bisphosphate with consumption
of another ATP molecule. This pathway is considered the
commitment step to glycolysis and is allosterically regulated
by the energy state of the cell. PFK-1 is inhibited by high
levels of ATP and citrate, but activated when the ratio
of ATP/AMP is low (Berg et al., 2007). When the body
experiences acidosis (low pH), PFK-1 will also be suppressed
to avoid excessive lactate production. In addition, fructose 2,6-
bisphosphate acts as a potential activator for PFK-1 by enhancing
its affinity for fructose 6-phosphate and inhibiting fructose-1,6-
bisphosphatase, thus diminishing the inhibitory effect of ATP
(Lunt and Vander Heiden, 2011).

The third, irreversible reaction is catalyzed by PK, which is
also the final step of glycolysis, converting phosphoenolpyruvate
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FIGURE 1 | Bioenergetic and biosynthetic pathways of glycolysis. (a) Glycolysis breaks down glucose into two molecules of pyruvate accompanied by a net
production of two molecules of ATP and 2 NADH + 2 H+. Metabolic intermediates derived from glycolysis serve as precursors in the biosynthesis of non-essential
amino acids including serine, glycine, cysteine, and alanine. (b) The pentose phosphate pathway consists of two phases: oxidative and non-oxidative phases.
Oxidation of G-6-P to pentose phosphates leads to the production of NADPH and five-carbon sugars, which are critical for reductive biosynthesis, antioxidant
defense, and RNA/DNA synthesis. PPP is interconnected by transketolase and transaldolase with glycolysis. (c) Fructose-6-phosphate produced from G-6-P serves
as the starting point that diverts 2–3% glucose to the hexosamine biosynthesis pathway, a branch derived from glycolysis, which generates the “sensing molecule”
UDP-N-Acetylglucosamine (UDP-GlcNAc), the substrate of the enzymes involved in protein N- and O-glycosylation. The rate-limiting enzyme of the pathway is
glutamine: fructose-6-phosphate amidotransferase (GFAT).

to pyruvate and yielding two molecules of ATP. This ATP-
forming reaction occurs by substrate-level phosphorylation and
is highly regulated by the energy state of the cell. When the cell
undergoes a high rate of glycolysis, fructose 1,6-bisphosphate can
activate PK to keep up with the rate of glycolytic flux. Increased
concentrations of downstream, energy-yielding intermediates,
such as ATP or citrate, will inhibit PK and decelerate glycolysis
(Berg et al., 2007). However, when cells are under energy deficit
conditions, such as low blood glucose levels, phosphorylation
of PK reduces its enzymatic activity, thereby limiting the
consumption of glucose by the liver to meet the urgent energy
demand of vital organs such as the brain (Pilkis et al., 1982).

Reducing equivalents, in the form of NADH, produced
by glycolysis, are used to facilitate ATP production in the
mitochondria by donating electrons to the electron transport
chain. Cells normally rely on oxidative phosphorylation as the
main source of energy (Zheng, 2012), however, the rate of ATP
generation in the glycolytic pathway has been observed at a
much higher level than oxidative phosphorylation in a number of
different types of cells and tissues, such as muscle cells, neurons,
astrocytes, microglia, endothelia cells, activated lymphocytes, or
tumor cells (Pfeiffer et al., 2001; Pellerin et al., 2007; Pearce et al.,
2013; Schmitz et al., 2013; Voloboueva et al., 2013; Ghesquiere
et al., 2014). This phenomenon is essential to organisms when

rapid ATP production is needed, such as muscle cells in heavy
exercise or acute initiation of neuronal activities.

Biosynthetic Function of Glycolysis
Producing energy is not the sole purpose of glycolysis. A wide
variety of metabolic intermediates generated in the glycolytic
pathway flow into a range of biosynthetic processes, including
gluconeogenesis, lipid metabolism, the pentose phosphate
pathway (PPP) and the TCA cycle. The Warburg effect has long
been observed in rapidly proliferating cells and firstly described
in cancer, where growing cells use glycolysis as the predominant
pathway for ATP production even when oxygen is abundant
(Warburg, 1956). Studies have demonstrated that induced
chemotherapy-resistant cell lines, such as human LoVo colon
carcinoma cells and HeLa, have elevated aerobic glycolysis (AG),
indicating a mechanistic link between resistance and glycolysis
(Ganapathy-Kanniappan and Geschwind, 2013). The Warburg
effect may also play a role in anti-apoptotic effects in Aβ resistant
neural cell lines via hypoxia inducible factor 1, indicating its
protective role in AD brains (Newington et al., 2011). Thus, the
significance of glycolysis extends beyond rapid energy generation
both to facilitate nutrient assembly into essential precursors of
biosynthesis and to promote cellular homeostasis.
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Several amino acids are directly derived from glycolytic
intermediates and play important roles in maintaining normal
cellular function (Figure 1a). The carbon backbone that
originates from 3-phosphoglycerate serves as the structural unit
in the biosynthesis of serine, glycine, and cysteine, whereas
pyruvic acid functions as the carbon provider for biosynthesis of
alanine. Serine serves as one of the major sources for generation
of nicotinamide adenine dinucleotide phosphate (NADPH) in
the cell via the tetrahydrofolate (THF) cycle, supports cell
proliferation via the regulation of pyruvate kinase, and functions
as a head group when supplied directly to the biosynthesis of
phosphatidylserine, a component of cell membrane in the brain
(Lunt and Vander Heiden, 2011; Ye et al., 2012; Tedeschi et al.,
2013; Fan et al., 2014; Lewis et al., 2014; Maddocks et al., 2014;
Ducker et al., 2016; Gao et al., 2018). Moreover, the production
of D-serine, a co-agonist of NMDA glutamate receptors, has been
shown to be negatively controlled by glycolytic flux in astrocytes,
via the interaction of serine racemase (an enzyme that converts
L-serine to D-serine) and glyceraldehyde 3-phosphate, suggesting
that glycolysis may play an important role in modulating
excitatory neurotransmission in the brain (Suzuki et al., 2015;
Guercio and Panizzutti, 2018). Le Douce et al. (2020) recently
reported that glycolysis-derived L-serine production in astrocytes
is impaired in AD. As the precursor of D-serine, reduced
L-serine can cause D-serine deficiency leading to impaired
NMDA receptor activity and synaptic and cognitive deficits (Le
Douce et al., 2020). Alanine and aspartate play key roles in
body function as well. Alanine transaminase (ALT) catalyzes
the reversible reaction of glutamate and pyruvate into alanine
and α-ketoglutarate, while aspartate transaminase catalyzes
glutamate and oxaloacetate into aspartate and α-ketoglutarate.
The subsequent alanine is then shuttled into the liver and
enters the urea cycle. Aspartate can give rise to asparagine
and the first committed step of pyrimidine biosynthesis by
providing four atoms of the ring. The transamination reaction
can also produce intermediatepyruvate and oxaloacetate, for
gluconeogenesis thereby exerting its important role in both
facilitating nutrient cycling and maintaining energy homeostasis.

A branch of glycolysis that accounts for 2–3% of total
glucose metabolism is the hexosamine biosynthesis pathway
(HBP) (Figure 1c) (Marshall et al., 1991). Fructose 6-phosphate,
together with glutamine, is diverted to generate UDP-N-
acetylglucosamine (UDP-GlcNAc). This end product of HBP
is then used to form glycosaminoglycans, proteoglycans, and
glycolipids (Schleicher and Weigert, 2000; Milewski et al., 2006;
Yang and Qian, 2017). UDP-GlcNAc also functions as the
substrate for O-linked N-acetylglucosamine transferases (OGTs)
in various species involved in protein N- and O-glycosylation
(Wells et al., 2001; Wells and Hart, 2003; McLarty et al.,
2013; Hwang and Rhim, 2018). Glutamine: fructose-6-phosphate
amidotransferase (GFAT) catalyzes the rate-limiting step in HBP
conversion of fructose-6-phospate and glutamine, thus serving
as an important regulatory point (Marshall et al., 1991). The
regulation of GFAT, however, is not fully understood. A previous
study suggests that glucose-6-phosphate dehydrogenase (G6PD)
O-GlcNAcylation promotes the pentose phosphate pathway as
well as cell proliferation and survival through an increased

binding affinity of NADP+ to G6PD (Rao et al., 2015).
O-GlcNAcylation is also reported to play a key role in regulating
pyruvate kinase expression and activity leading to accumulation
of upstream glycolytic metabolites (Chaiyawat et al., 2015; Wang
et al., 2017). Overall, this evidence potentially suggests that
glycolysis is an important mechanism underlying the regulation
of the hexosamine biosynthetic pathway.

In addition to supporting UDP-GlcNAc biosynthesis,
glycolysis also plays an important role in regulating triglyceride
synthesis, by forming Glycerol-3-phosphate (G-3-P) through
the reduction of dihydroxyacetone phosphate (DHAP) via
G-3-P dehydrogenase (Zechner et al., 2012). G-3-P and
fatty acyl CoAs are primary materials for de novo synthesis
of glycerolipids, which are crucial for energy homeostasis,
proper lipid transport, balancing glucose/lipid metabolism, and
generation of metabolic signals (Prentki and Madiraju, 2008;
Zechner et al., 2012). Research also finds that DHAP acts as an
important precursor existing in the membranes of mitochondria
and exhibits an important functional role in mitochondrial
bioenergetics (Schlame et al., 1990, 1993; Paradies et al., 2014).
Additionally, a deficiency of triose-phosphate isomerase (TPI
or TIM), the enzyme catalyzing the rapid interconversion of
DHAP and D-glyceraldehyde 3-phosphate (GAP), will lead to
progressive neurological dysfunction and childhood mortality,
thus highlighting its unique role in the process of glycolysis
(Orosz et al., 2008).

GLYCOLYSIS FUNCTIONS IN THE BRAIN

The human brain depends mostly on glucose as the source of
fuel, rendering it at great risk for neuronal dysfunction when
glucose is in short supply. Apart from glucose, the brain can also
utilize other energy substrates. Ketone bodies can provide energy
(Owen, 2006; Zielke et al., 2009), but its fuel role is considered
minor, except in times of starvation and glucose deprivation.
Studies indicate that neurons predominantly undergo oxidative
phosphorylation, whereas astrocytes are mainly responsible for
lactate production via glycolysis (Hyder et al., 2006; Belanger
et al., 2011). For the past 25 years, a prevalent viewpoint
on neuroenergetics has been presented and developed: the
astrocyte-neuron lactate shuttle (ANLS) (Pellerin and Magistretti,
1994). Upon intensified neuronal activity, glutamate is released
into the synaptic cleft, followed by its action on postsynaptic
receptors and uptake by astrocytes via excitatory amino acid
transporters (EAAT). Glutamate in astrocytes is then converted
by glutamine synthetase into glutamine, which is released by
astrocytes, and taken up by neurons from the extracellular
space. Within neurons, glutamine is converted to glutamate
by glutaminase, packed in synaptic vesicles, and prepared to
be released, thus the neurotransmitter pool of glutamate is
replenished and the glutamate-glutamine cycle is completed
(Mason, 2017). The uptake of glutamate by astrocytes is driven
by a sodium gradient generated by Na+/K+ ATPase, of which
ATP source is primarily from glycolysis (Pellerin and Magistretti,
1996). Theories suggest that neurons take up the extracellular
lactate as the energy substrate from astrocytes in support of ATP
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generation upon the intensified neuronal activity (Magistretti and
Allaman, 2018). The increased demand of energy accompanied
by the glutamate-glutamine cycle induces higher glucose uptake
from the circulation and enhanced lactate release by astrocytes,
which attenuates extracellular prostaglandin E2 uptake, thus
providing a potential mechanism underlying vasodilation and
increased cerebral blood flow (Gordon et al., 2008; Howarth,
2014; MacVicar and Newman, 2015). A few studies have also
indicated a neuroprotective role of an elevated brain lactate level,
as evidenced by its ability in preventing neuronal excitotoxicity
and decreasing lesion size in animal stroke models, possibly
via an ATP- and redox-dependent pathway (Ros et al., 2001;
Berthet et al., 2012; Jourdain et al., 2016; Margineanu et al., 2018).
However, controversies exist showing neurons are capable of
maintaining glutamatergic activity independent of the glutamate-
glutamine cycle (Kam and Nicoll, 2007). Studies also showed
that GABAergic neurons may not necessarily rely on lactate
(Magistretti and Allaman, 2018). In addition, studies have also
shown that, in response to increased neuronal activities, rather
than obtaining lactate from astrocytes, neurons are capable of
increasing glycolysis to produce lactate themselves, underscoring
the role of glycolysis in sustaining neuronal function and
maintaining homeostasis in the brain (Yellen, 2018).

Glycolysis in Membrane Transport
It is a well-known fact that oxidative phosphorylation produces
ATP in a much more efficient manner than does glycolysis.
However, in acute neuronal events, glycolysis has been shown
to become the dominant pathway for ATP generation (Fox
et al., 1988). Proper functions of many ionic pumps such
as Na+/K+-ATPase, H+-ATPase, and Ca2+-ATPase have been
linked to membrane-bound glycolytic enzymes, both in the
central nervous system and in other tissues, indicating that
glycolysis-derived ATP may be an important source of energy for
ion transport, which is critical for the conduct of action potential
and synaptic transmission. V-type H+-ATPase (V-ATPase) is an
ATP-dependent pump that mediates transmembrane transport of
protons, thereby maintaining pH gradients between intracellular
compartments, and V-ATPase is also required for proton
secretion from the plasma membrane of certain specialized cells.
V-ATPase has the highest expression in the brain and is a crucial
constituent of synaptic vesicles. On the membrane of synaptic
vesicles, V-ATPase pumps protons through the membrane into
the synaptic vesicle, creating a proton concentration gradient,
which is then used as an energy source, driving the movement
of neurotransmitters into the vesicle through their respective
transporters. Neurotransmitter concentration in the vesicle is an
essential step preceding neurotransmitter release, underscoring
the extremely essential role of V-ATPase in synaptic transmission
(Moriyama et al., 1992). A number of studies have shown close
interactions of V-ATPase with glycolytic enzymes, including
PFK-1, Pfk2p, aldolase, and hexokinase, indicating the functional
dependence of V-ATPase on glycolysis (Moriyama and Futai,
1990; Lu et al., 2001, 2004; Su et al., 2003; Nakamura, 2004; Kohio
and Adamson, 2013; Chan et al., 2016; Woody et al., 2016).

Moreover, evidence exists that, following synaptic
transmission, glutamate is quickly removed from the synaptic

cleft by astrocytic uptake. This is an extremely efficient process
in part powered by increased glycolysis that further increases the
activity of Na+/K+-ATPase and the Na+-dependent cotransport
uptake system in astrocytes (Pellerin and Magistretti, 1994).
Furthermore, one study shows that when Caenorhabditis
elegans neurons are under energy stress, a compensatory
mechanism mediated by glycolysis maintains enough energy to
support endocytosis and the synaptic vesicle cycle (Jang et al.,
2016). Overall, despite the low yield of ATP produced by the
glycolytic pathway, rapid ATP generation by glycolysis provides
a significant advantage over oxidative phosphorylation, thereby
playing a critical role for neuronal processes such as action
potential, neurotransmitter release and uptake.

Glycolysis in Postsynaptic Activity
A further role of glycolysis has been associated with postsynaptic
density (PSD). PSD is a dense protein complex localized
on the cell surface of post synapses in dendritic spines,
containing receptors for almost all glutamate neurotransmission
at excitatory synapses (Chen et al., 2015). The PSD clusters also
regulate ion flux for Na+, K+, and Ca2+, adhesion proteins,
scaffolding proteins, and protein kinases, including protein
kinase A, protein kinase C, and Ca2+/CaM-activated protein
kinase, along with their substrates. The rapid turnover and the
dynamic property of PSD95 implies a great need for energy
supply, as well as a significant quantity of intermediates for
anabolism in dendritic spines, where, however, mitochondria
are seldom present (Li et al., 2004). Instead, glycolytic enzymes
are abundantly expressed in the PSD, including glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) and phosphoglycerate
kinase (PGK), which may possibly be the source of ATP in the
isolated PSD (Wu et al., 1997). Lactate is the end-product of
anaerobic glycolysis functioning, and acts not only as a substrate
for mitochondria, but also a second messenger to modulate the
activity of neurons and astrocytes in neighboring regions. It
is speculated that during acute neuronal activity, a significant
interstitial lactate transient may be observed in areas where
glutamate is released. However, when neuronal activity occurs,
the diffusion and convection of lactate reaches much further than
glutamate and the active zone, away from the area where glucose
is predominantly consumed. Naïve neurons subsequently receive
multiple signals, including lactate, which potentially augments
inhibitory effects by adjacent GABAergic interneurons. This
increased inhibition gives rise to limited glucose consumption
in remote areas, thus recruiting more glucose to the active zone.
The metabolic role of lactate in the brain is well discussed in a
previous review (Barros, 2013). Monocarboxylate transporter 2
(MCT2), responsible for transporting lactate across the plasma
membrane, has been reported to be present in PSD and co-
localize with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor GluR2/3 (Nusser et al., 1994; Bergersen
et al., 2005; Goncalves et al., 2020). It is suggested that
dysregulation of MCT causes axonal damage, amnesia, and
memory deficits (Barros, 2013). These research findings provide
strong support for the role of glycolysis in the regulation of
postsynaptic activities.
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Glycolysis in Redox Homeostasis
Given that the brain is metabolically vulnerable, proper
metabolic response of neurons is critical in defending the
brain against injury, reactive oxygen species (ROS), and
other neurodegenerative insults (Brand and Hermfisse, 1997;
Rodriguez-Rodriguez et al., 2013; Butterfield and Halliwell, 2019).
The pentose phosphate pathway (PPP) in glucose metabolism is
a central source of pentoses and ribose 5-phosphate for cellular
synthesis of nucleotides, as well as for reducing equivalents
in the form of NADPH (Figure 1b). PPP accounts for about
60% of NADPH produced in a human body and is highly
active in the liver, the adrenal cortex, and in red blood cells.
NADPH is essential for cholesterol and steroid synthesis and
respiratory bursts. In addition, NADPH is used by glutathione
reductase to convert disulfide glutathione to reduced glutathione,
which is in turn oxidized by glutathione peroxidase, coupled
with the reduction of peroxides. Therefore, NADPH plays a
critical role in maintaining the cellular redox state, which is
tightly controlled by the rate-limiting enzyme of PPP, glucose-
6- phosphate dehydrogenase (G6PDH). Coordination between
glycolysis and PPP has been extensively described, including the
rearrangement reactions in PPP that convert ribose-5-phosphate
and xylulose-5-phosphate to fructose-6-P and glyceraldehyde-3-
P under transketolase and transaldolase (Patra and Hay, 2014).
Treatment with NADPH protects neurons against ROS and
apoptosis, leading to increased ATP level, reduced long-term
mortality, and improved functional recovery (Soucek et al., 2003;
Mejías et al., 2006; Ying, 2008; Stanton, 2012; Li et al., 2016;
Huang et al., 2018).

Glycolysis in Brain Development
The PPP is a branch pathway from glycolysis after the first rate-
limiting step catalyzed by hexokinase. Apart from its important
role in antioxidant defense and nucleic acid synthesis, PPP also
provides NADPH for reductive biosynthesis, such as biosynthesis
of fatty acids and sterols (Figure 1b). Ranking as the second
highest in lipid content after adipose tissue, human brain
is particularly enriched with lipid content for maintenance
of brain functions, such as synaptic activity, which in turn,
renders it highly vulnerable to fatty acid and lipid disorders
(Poitelon et al., 2020). In contrast to the peripheral system
where lipids are the major form of energy storage, the lipids in
the brain are primarily used for membrane construction, such
as phospholipids (Hamilton et al., 2007). Synapse formation
and elimination dynamically exist throughout a person’s entire
life. A burst of synaptic formation occurs during early brain
development, a phase known as exuberant synaptogenesis
(Huttenlocher and Dabholkar, 1997). This synaptic dynamic is
critical for normal synaptic connection and plasticity, proper
neuronal network formation, task execution, learning process,
and memory establishment. Moreover, studies show that during
neuron differentiation, PFK-1 protein expression significantly
increases, suggesting that glycolysis is necessary in supporting
biosynthesis for neurite outgrowth and synaptic formation
(Goyal et al., 2014; Agostini et al., 2016). In addition, a human
brain represents only 2% of total body weight but contains 20% of

the body’s cholesterol. Membrane lipids, primarily phospholipids,
together with lipid composition of the myelin, comprise more
than 50% of the brain solid matter, with concentration of
brain phosphoglycerides being age dependent (Svennerholm,
1968). Dysregulation of lipid composition in the brain reportedly
contributes to deterioration of CNS functions and pathological
alteration in AD (Svennerholm, 1968; Söderberg et al., 1991;
Velasco and Tan, 2014; Kao et al., 2020). Therefore, an impaired
glycolytic pathway, such as dysregulated hexokinase, may reduce
the essential intermediates and undermine PPP, thus inhibiting
proper brain function and development.

The energy used by a developing brain is striking. Studies
indicate the newborn’s brain is about 13% of body mass but
consumes up to 60% of total body energy, and this soaring energy
utilization lasts throughout one’s entire childhood. Notably, AG
comprises 30% of glucose metabolism in a developing brain,
compared to about 10% in an adult brain (Magistretti and
Allaman, 2015), indicating an important role of glycolysis in
brain development. Moreover, during pregnancy and infancy,
brain volume and weight sharply increase, with brain size
reaching about 75% of an adult’s brain by 2 years old, compared
to 25% at birth (Steiner, 2019). Since neurogenesis mainly occurs
prenatally—although some regions, such as the cerebellum,
continue to generate after birth—rapid postnatal brain growth
is mostly attributed to axon growth, dendritic morphogenesis,
synaptic proliferation/elimination and axon myelination. This is
a period when a brain meets both its highest energy demand
and highest level of AG (Vlassenko and Raichle, 2015; Silbereis
et al., 2016). Goyal et al. (2014) found that the elevated level
of glycolysis during childhood correlates to the child’s highest
rate of synaptic growth. They also discovered that in adult
brain regions with the highest AG, genes that are responsible
for synapse formation and growth are significantly increased
(Vaishnavi et al., 2010; Goyal et al., 2014). Glycolysis is important
in synaptic plasticity and as a link between glycolytic function and
motor adaptive learning (Shannon et al., 2016). Other research
shows that, in early postnatal mice, the neurite architecture was
significantly impaired when glycolysis was pharmacologically
inhibited (Segarra-Mondejar et al., 2018). Additionally, multiple
researchers have demonstrated that glycolysis has a predominant
role in elevated neuritic and synaptic formation, as well as their
turnover, a role that presumably remains throughout human
lifespan (Marder and Goaillard, 2006; Goyal and Raichle, 2013;
Magistretti, 2014). Taken together, even though there are a
limited number of studies, the developing brain is considered to
be predominantly glycolytic. This is largely due to its dependence
on de novo biosynthesis of lipids, amino and nucleic acids
in support of developmental processes such as synaptogenesis,
which ultimately leads to proper neuronal network that underlies
cognitive function (Bauernfeind et al., 2014; Goyal et al., 2014;
Steiner, 2019).

GLYCOLYSIS IN AD

Before reaching adulthood, brain glucose consumption is slightly
reduced. Overall glycolysis, however, exhibits a much steeper
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decline from representing about 30% of glucose utilization to 8–
10% (Vlassenko and Raichle, 2015; Steiner, 2019). Notably, AG
appears to be spatially varied in the brain and is diminished
topographically during normal aging. Regional variations are
involved with reasoning, cognition, navigation, and executive
motor control (Vaishnavi et al., 2010). Consequently, brain
regions relying on high level of AG in young adults can be
exceptionally vulnerable when approaching middle-age, given
AG’s bioenergetic, biosynthetic, and neuroprotective role in the
brain (Goyal et al., 2017).

Correlation Between Aβ Deposition,
Tauopathy, and Glycolysis
Accumulation of neurotoxic Aβ plaques and
hyperphosphorylation of tau have long been considered the
pathological hallmarks that contribute to synaptic disruption
and neuronal loss in the brains of AD patients (Skovronsky
et al., 2006; Querfurth and LaFerla, 2010; Serrano-Pozo et al.,
2011; Krstic and Knuesel, 2013; Amtul, 2016; Harrison and
Owen, 2016). It is reported that Aβ distributes variably among
brain regions, with more deposition found in areas of high
dependence on glycolysis. In a PET study of 33 neurologically
healthy participants, Vaishnavi et al. (2010) discovered that AG
was significantly elevated in the medial, lateral, and prefrontal
cortices, whereas the cerebellum and medial temporal lobes
exhibited lower glycolysis when compared to the mean value
of the brain. Follow-up studies reported that the regions with
increased glycolysis in the resting state of healthy young adults
closely mirror the later regional pattern where Aβ accumulates
in the brains of AD patients (Vaishnavi et al., 2010; Vlassenko
et al., 2010; Goyal et al., 2020). The correlation observed in these
studies is considered a compensatory mechanism in response
to Aβ toxicity and mitochondrial dysfunction at a very early
stage of AD. Another clinical study of 42 individuals aged
53–88 years at either preclinical or symptomatic stages of AD
revealed close relationships among amyloid burden, AG, and
tau deposition. Data showed that reduced synaptic plasticity
and neuroprotection are related to the loss of AG, which
may promote tauopathy in individuals with amyloid burden
(Vlassenko et al., 2018). Studies using h-tau mice, which express
all human tau isoforms, found that reduced glucose utilization,
possibly via the downregulation of glycolysis, directly triggers
tauopathy leading to synaptic dysfunction and behavior deficits
(Lauretti et al., 2017). These results indicate the important role of
brain glycolysis in the pathogenesis of AD.

Altered Glycolytic Metabolite and
O-GlcNAcylation in AD
A prospective ongoing cohort study that began in 1958 by
the Baltimore Longitudinal Study of Aging (BLSA) investigated
whether AD pathogenesis is correlated with dysfunction of
glucose homeostasis. Glucose concentration and ratios of
glycolytic amino acids (serine, glycine, and alanine) to glucose,
which represent the cerebral glycolytic function, were measured
within the autopsy cohort. The results showed that elevated brain
glucose levels and reduced glycolytic flux are associated with the

severity of AD pathology and expression of AD symptoms. They
concluded that impaired glycolytic function may be intrinsic to
glucose metabolic dysfunction inherent in AD pathogenesis (An
et al., 2018). Another clinical study that analyzed 122 metabolites
in the CSF of AD and non-AD subjects showed that only
intermediates of glycolysis, such as dihydroxyacetone phosphate
(DHAP) and phosphoenolpyruvate (PEP), were significantly
decreased in AD patients. The reduction of these glycolytic
intermediates also exhibited positive correlation with Aβ1−42
and Aβ1−42/Aβ1−40 (Bergau et al., 2019). A very recent study
also reported that astrocytic glycolysis-derived L-serine exhibited
a significant decrease in 3xTg-AD mice indicating a reduced
glycolytic flux that led to impaired synaptic plasticity and
memory (Le Douce et al., 2020).

A number of studies have looked at the roles of key glycolytic
enzymes in glycolytic dysregulation of AD; the results, however,
were mostly obtained from postmortem brain specimens of AD
patients and are inconsistent. Hexokinase activity was reported
to decrease significantly in brains, skin-cultured fibroblasts, and
leukocytes of AD patients (Marcus et al., 1989; Sorbi et al., 1990).
Whereas, in a paper of investigating hexokinase activity in a
large Italian pedigree, the results showed no significant change
of hexokinase activity (Mortilla and Sorbi, 1990). Studies of PFK
showed that inhibition of fructose-2,6-biphosphatase (PFKFB3)
led to Aβ accumulation in astrocytes and a higher risk of Aβ

toxicity in cultures of human fetal astrocytes. In a study involving
autopsy of AD patients, PFK activity was shown to decrease
significantly to approximately 10% of the activity in the control
group (Bowen et al., 1979). In another study, PFK activity in
the frontal and temporal cortex of post-autopsy AD brains was
found to be elevated when compared to age-matched non-AD
individuals (Bigl et al., 1999). Furthermore, Sims et al. (1987)
found no decrease of PFK activity in patients with primary
degenerative dementia who are relatively young and at an early
stage of the disease. The activity of the third key glycolytic
enzyme, pyruvate kinase, is reported to significantly increase
in the frontal and temporal cortex of AD brains (Bigl et al.,
1999). However, other studies found a reduced level of pyruvate
kinase activity in an age-dependent fashion in the frontal cortex
of APP/PS1 mice (Harris et al., 2016). Factors that may have
contributed to these inconsistencies include sample preparation
procedure, age of the patients, AD study models, as well as
the stage of AD.

Another key enzyme that has raised great interest in the past
three decades regarding its role in neurodegenerative disease is
GAPDH, a classic glycolytic enzyme that is primarily considered
as the “housekeeping” protein and predominantly presents in
the cytosol. GAPDH catalyzes the conversion of glyceraldehyde
3-phosphate to 1,3-bisphosphoglycerate in a NAD+-dependent
manner and mediates the production of NADH + H+ and
ATP. In a study measuring GAPDH activity in post-mortem
brains of AD patients, the researchers discovered a ∼19%
decline of GAPDH activity in temporal cortex (Kish et al.,
1998). In line with the previous study, Mazzola and Sirover
(2001) found a 27∼33% decline of GAPDH glycolytic activity
in human skin fibroblast cell strains obtained from AD patients.
However, controversies exist with studies showing that GAPDH
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enzymatic activity exhibited a significant increase in the frontal
cortex lysate of six AD patients compared to an age-matched
healthy group (Soucek et al., 2003). A possible explanation of
the observed elevated GAPDH activity which contradicts the
hypometabolism theory of AD brain could be the small sample
size studied. Moreover, a human microglial cell line, CHME-
5, showed an increased level of GAPDH upon the treatment
of plasma from AD subjects (Jayasena et al., 2015). Increased
glycolysis, however, is considered as a compensatory mechanism
of impaired mitochondrial function following the exposure of
AD plasma and functions as the forerunner of the energy deficit
status in the cell. Furthermore, competing theories suggested that
overexpression and aggregation of GAPDH serve as the pro-
apoptotic regulator in neurodegenerative diseases, which possibly
interacts with a voltage-dependent anion channel and mediating
permeability transition of the mitochondria, a mechanism
recognized as the non-glycolytic function of GAPDH (Ishitani
and Chuang, 1996; Kish et al., 1998; Tarze et al., 2007; Nakajima
et al., 2009; Itakura et al., 2015; Lazarev et al., 2020). Moreover, a
heightened level of the reversible S-glutathionylation of GAPDH
was found in the AD brain compared to age-matched control
groups, which leads to the inactivation of GAPDH. The studies
also showed the impaired enzyme activity can be rescued under
certain reducing conditions, such as glutathione (Newman et al.,
2007). Considering S-glutathionylation is an important post-
translational modification in preventing protein from irreversible
oxidation, a proposed theory points to GAPDH as an oxidative
stress sensor, further implying a correlation between reduced
glycolysis and the disturbed redox state of the cell (Gallogly
and Mieyal, 2007). Additionally, inactivation of GAPDH has
been considered to play a protective role under oxidative stress,
by diverting carbohydrate flux to PPP, thus producing more
reducing power, NADPH, against oxidants (Ralser et al., 2007).
However, inactivated GAPDH also results in reduced energy.
Therefore, in the long term when cells become exhausted by
massive oxidative stress, a disastrous cascade effect that ultimately
leads to cell death will be initiated by the cell’s inability to
sustain energy demand and redox homeostasis. GAPDH was also
found bonded on Inositol 1,4,5-trisphosphate receptors (IP3R)
and proposed to mediate Ca2+ release via NADH (Patterson
et al., 2005). Hence, GAPDH also plays a significant role
in regulation of Ca2+ homeostasis, an important mechanism
underlying AD pathogenesis, further linking perturbed glycolysis
to cell death (Canzoniero and Snider, 2005; Bojarski et al.,
2008).

Another area associated with glycolysis that has been
examined in the context of AD is the HBP, also known as the
nutrient sensing pathway (Zhu et al., 2014). Notably, O-linked
N-acetylglucosamine (O-GlcNAc) is found greatly enriched
in the brain, particularly at neuronal synapses, suggesting
a role of the HBP in synaptic transmission (Zhang and
Bennett, 1996; Vosseller et al., 2006; Skorobogatko et al., 2011;
Trinidad et al., 2012). Moreover, increased O-GlcNAcylation
has been demonstrated to promote neuroprotective outcomes
such as reduced cerebral trauma, improved outcome of
strokes, and alleviated stress (Groves et al., 2013; Gu et al.,
2017). Using a human neuroblastoma cell model, upregulating

O-GlcNAcylation led to an increased level of non-amyloidogenic
sAPP α fragments and reduced Aβ secretion, suggesting
O-GlcNAcylation of APP as an anti-Aβ target for AD (Jacobsen
and Iverfeldt, 2011; Chun et al., 2017). O-GlcNAcylation has
also been observed to inversely correlate with phosphorylation
of tau, as demonstrated by fourfold less expression of O-GlcNAc
in hyperphosphorylated tau than in non-hyperphosphorylated
tau. Of particular note, rodent brains with impaired glucose
metabolism exhibit changes in O-GlcNAcylation and tau
phosphorylation that resemble those in the brains with
inhibited HBP, suggesting the HBP is largely controlled
by glucose metabolism (Liu et al., 2009). In sum, given
that the HBP is a branch of glycolysis and that there
is evidence that a decreased level of O-GlcNAcylation can
result from impaired glucose metabolism, elevation of the
HBP activity via boosting glycolysis may be a promising
therapeutic approach in AD.

Redox State, Glycolysis, and AD
Oxidative stress is a common feature in AD (Perry et al., 2002;
Butterfield and Halliwell, 2019). NAD+ is a cofactor for redox
reactions and plays an essential role in glycolysis to regulate
cellular energy metabolism. Increasing evidence suggests that
NAD+ is also involved in many other biological processes
such as cell death, calcium homeostasis, gene expression,
carcinogenesis, immunological functions, as well as aging (Ying,
2008). The NAD+/NADH ratio is an index of cellular reducing
potential, dysregulation of which has been extensively indicated
in AD. A DNA repair-deficient 3xTgAD/Polβ± mouse model
with exacerbated AD features, including tauopathy, synaptic
dysfunction, neuronal death, and impaired cognitive function,
exhibited a reduced cerebral NAD+/NADH ratio and indicated
impaired energy metabolism. Treatment with nicotinamide
riboside reversed the NAD+/NADH ratio and produced
improved phenotypes, indicating that bolstering NAD+/NADH,
potentially via glycolysis, may contribute to AD treatment (Hou
et al., 2018). Another study using primary neuron culture showed
that exposure to Aβ oligomers significantly reduced the NAD+
level and the decreased NAD+ level was rescued by nicotinamide
treatment (Liu et al., 2013). Similar results were also observed in
3xTgAD mice (Liu et al., 2013). In a clinical study to evaluate
the orally administrated NADH effect, 26 AD patients received
NADH (10 mg/day) or a placebo. After 6 months of treatment,
the NADH-treated group performed significantly better on the
Mattis Dementia Rating Scale (MDRS) and the Mini Mental
State Examination and showed no significant progression of AD
symptoms, indicating the therapeutic value of NADH for AD
(Demarin et al., 2004).

Moreover, the NADPH generated by PPP reacts with oxidized
glutathione to form reduced glutathione (Figure 1b). The
reduced glutathione further converts reactive H2O2 to H2O
by glutathione peroxidase, thus maintaining cellular redox
homeostasis. The role of PPP, a branched pathway directing
from the first key step of glycolysis, in maintaining proper
NADPH level and protecting against oxidative stress is thereby
highlighted. In a study that involved 45 AD patients and 28 age-
matched control subjects, both GSH levels and the GSH/GSSG
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ratio exhibited a profound reduction in the AD group (Bermejo
et al., 2008). Additionally, Ivanov et al. (2014) reported that,
during synaptic stimulation in hippocampal slices, a significant
fraction of NAD(P)H response corresponded to glycolysis,
suggesting that glucose serves as an effective energy substrate for
both neurons and astrocytes in network activity. Considering the
biosynthetic dependence of NADPH on glycolysis and its role in
producing GSH from GSSG, proper function of glycolysis is vital
not only for glucose metabolism, but also for maintaining redox
homeostasis in AD.

ApoE Isoforms Differentially Modulate
Neuronal Glycolysis
As in many other chronic diseases, AD risk can be influenced by
multiple factors, such as age, gender, family history, brain injury,
environment, and lifestyle. Notably, results from postmortem
autopsy showed that about 30% of cognitively normal people
present various signs of AD pathology in the brain (Arenaza-
Urquijo and Vemuri, 2018; Dumitrescu et al., 2020), raising
the question of why some people have AD-like pathology but
remain cognitively intact. Individual differences in overcoming
adverse factors and thus maintaining a better performance can be
a reason. This is referred to as brain resilience. Age-dependent
reduced glycolysis in the brain occurs independent of amyloid
plaques and serves as a biomarker for aging (Goyal et al., 2017).
Given that aging is the greatest risk factor for the development
of AD, enhancing glycolysis can potentially increase neuronal
metabolic strength to sustain a better cognition and slow down
or prevent AD progress. For instance, research has shown that
neuronal cells with a higher level of glycolysis are more resistant
to Aβ toxicity, indicating a neuroprotective effect mediated by
glycolysis (Newington et al., 2011, 2012).

ApoE is the primary cholesterol carrier in the brain and must
be produced locally. It is predominantly synthesized by astrocytes
and to a lesser extent by microglia, vascular smooth muscle cells,
and the choroid plexus (Uchihara et al., 1995; Achariyar et al.,
2016). In addition, studies showed that under normal conditions,
neurons also produce ApoE. This may be responsible for ∼20%
of total ApoE protein levels in the cortex (Xu et al., 2006;
Knoferle et al., 2014). Particularly, the intense induction of ApoE
expression has been observed in injured or stressed neurons,
indicating a critical role of this neuron-specific source of ApoE
expression in cellular repair and maintenance (Boschert et al.,
1999; Aoki et al., 2003). Human ApoE exists in three major alleles
(ε2, ε3, and ε4) and each of them conveys different susceptibility
for development of AD. ApoE2 is considered as neuroprotective,
whereas ApoE4 is the greatest genetic risk for AD. Recent
research led by Tarja Malm showed that human iPSC-derived
microglia carrying ApoE4 exhibited a reduced extracellular
acidification when compared to those carrying ApoE3, indicating
an ApoE4-induced glycolytic deficit (Konttinen et al., 2019).
Studies by Zhao et al. (2017) demonstrated that compared to
ApoE3, ApoE4 secreted by astrocytes failed to induce insulin-
stimulated glycolysis in ApoE−/− neurons. In clinical studies,
ApoE4 has widely been associated with early onset of AD, rapid
progression of the disease, more severe impairment of cognitive

function and altered response to AD treatment (Morris et al.,
1995; Nagy et al., 1995; Wilson et al., 2002; Wu and Zhao,
2016). Moreover, studies showed that ApoE2 carriers without
dementia do not display the typical age-related increase of
an Aβ burden (Grothe et al., 2017). Functional connectivity
in the amygdala and entorhinal cortex tends to be increased
and remain stable in individuals with ApoE2 allele (Gong
et al., 2017). Attenuated hippocampal atrophy and a lower level
of age-related myelin breakdown have also been observed in
individuals carrying ApoE2, compared to non-carriers (Bartzokis
et al., 2006; Chiang et al., 2010). The underlying mechanism of
ApoE2 as a neuroprotective variant, however, remains largely
unknown. Recent studies found that ApoE2-bearing mouse
brains exhibit the most robust bioenergetic profile as evidenced
by the highest levels of hexokinase expression and activity,
glycolytic function, and ATP production when compared to both
ApoE3 and ApoE4 mouse brains (Keeney et al., 2015; Woody
et al., 2016; Wu and Zhao, 2016; Wu et al., 2018). In addition,
ApoE2-mediated glycolytic robustness via the upregulation of
hexokinase appears to directly correlate to a healthier cell
status, which could serve as a major mechanism that allows
ApoE2-bearing brains to be more resilient against AD (Zhang,
2018). In summary, growing evidence supports the idea that
introduction of ApoE2 into the ApoE4 brain, such as by a
gene or protein/peptide therapy, can be a plausible strategy to
rescue the glycolytic deficits, improve cognitive function, and
ameliorate AD-related neurodegeneration, thus helping close the
therapeutic gap for AD patients.

BRAIN HYPERGLYCEMIA AS A
COMMON FEATURE IN DIABETES
AND AD

Diabetes has been well established as a risk factor for AD
(Profenno et al., 2010). A great number of epidemiological
studies revealed that being diabetic results in a higher risk of
developing AD in later life, and such a risk is heightened when
diabetes coexists with other risk factors such as the ApoE4
genotype. For example, in a Taiwanese population-based study of
615,532 diabetic patients and 614,871 non-diabetic individuals,
the diabetic group showed a higher rate for developing AD
over a period of 9 years with a hazard ratio of 1.45 relative
to non-diabetics (Wang et al., 2012). In a longitudinal cohort
study that followed up on 824 individuals older than 55 years,
diabetes was associated with 65% higher incidence of AD
over an average period of 5.5 years (Arvanitakis et al., 2004).
Moreover, the Hisayama study followed up on 11,017 individuals
older than 60 years for an average of 10.9 years and showed
that impaired glucose tolerance and diabetes were respectively
associated with 46 and 94% higher risk for developing AD (Ohara
et al., 2011). In a community-based study whose subjects were
obtained randomly from the Mayo Clinic Alzheimer Disease
Patient Registry, the frequency of type 2 diabetes and impaired
fasting glucose (IFG) was compared in 100 AD patients and
138 non-AD age-matched individuals. Results showed greater
spread within the AD patients. Type 2 diabetes was present in
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34.6% of AD patients vs. 18.1% of non-AD patients, whereas
IFG was present in 46.2% of AD patients vs. 23.8% of non-AD
patients (Janson et al., 2004). This indicates a possible common
pathological link between the two diseases. Furthermore, the
Honolulu-Asia aging study revealed that diabetes elevates the risk
of developing AD in ApoE4 carriers compared to an isolated
effect of ApoE4 without a diabetic condition (5.5 vs. 1.7 folds)
(Peila et al., 2002). In light of the close association between AD
and diabetes, the term “Type 3 Diabetes” has been used by some
researchers as a label for AD (Steen et al., 2005; de la Monte and
Wands, 2008). The underlying molecular mechanism, however,
is not well understood. Research efforts directed toward better
understanding of this relationship can ultimately pave the way
toward better understanding of AD causative factors and thus to
identification of key molecular targets that can be focused upon
in future therapeutics.

Multiple studies have explored the relationship between
blood plasma and brain glucose levels. An approach that has
often been used is to alter plasma glucose levels within a
predetermined range by dextrose injections, which is followed
by measuring the levels of brain glucose that are achieved at
different blood glucose levels. In a study performed on 18 healthy
participants with mean age of 41 years, a linear relationship
for glucose levels was shown between the cerebral and vascular
compartments after stabilizing plasma glucose in a range of 4–
30 mM: brain glucose levels proved to be 20–30% of plasma
levels in the tested range (Gruetter et al., 1998). This plasma-
to-brain glucose ratio and hyperglycemia-associated elevation
of brain glucose are comparable to the data obtained in a
study performed on white Wistar rats under normo- and hyper-
glycemia (Silver and Erecinska, 1994). These findings clearly
indicate that peripheral hyperglycemia induces a corresponding
elevation of brain glucose levels. As hyperglycemia is one of the
well-defined pathologies of diabetes, it has been hypothesized that
the blood-brain barrier might adapt to chronic hyperglycemic
states and thus limit the uptake of glucose into the brain as
a protective mechanism. This hypothesis, however, was refuted
in multiple studies which revealed that brain glucose levels
are elevated in states of chronic diabetic hyperglycemia. For
instance, in a study performed on 14 healthy individuals with
mean age of 37, and 14 poorly controlled diabetic patients with
mean age of 43 (type 1 = 8 patients, type 2 = 6 patients),
hyperglycemia was induced in participants to an approximate
blood glucose level of 300 mg/dL. This level produced brain
glucose levels of 4.7 and 5.3 mM respectively in diabetics and
non-diabetics (Seaquist et al., 2005). Another study performed
on male Sprague Dawley rats showed similar results. Levels of
glucose in brain extracellular fluid (ECF) under a hyperglycemic
condition were compared to chronically hyperglycemic diabetic
rats and non-diabetic rats. High plasma glucose (22 and 28 mM)
led to comparable levels of brain ECF glucose in the two
groups (mean brain ECF glucose: 7.5 and 8.7 mM respectively),
while the mean of control-group normoglycemic rat brains ECF
glucose was 2.1 mM at plasma glucose of 8 mM (Jacob et al.,
2002). These data strongly indicate that diabetic hyperglycemia
can directly result in brain hyperglycemia, regardless of the
state of the disease.

As discussed earlier, a decreased glucose metabolic rate
has been widely established as one of the main features of
AD. However, the actual brain tissue glucose levels did not
receive similar attention and the existence of a correlation
between developing AD and alteration of brain tissue glucose
levels was not explored until recent evidence from BLSA
linked Alzheimer’s with accumulation of glucose in the brain
(An et al., 2018). The study revealed that the brains of
AD and asymptomatic AD patients, as opposed to brains
of healthy participants, had higher levels of glucose—an
alteration particularly prominent in brain regions of the
cerebral cortex that are vulnerable to AD pathogenesis.
Furthermore, brain tissue glucose concentrations were positively
correlated with the severity of AD brain pathology. This
and previous evidence lead to the conclusion that brain
hyperglycemia is a shared feature of both diabetic and
Alzheimer’s brains.

A considerable amount of evidence is available concerning
the pathological impact of diabetes and hyperglycemia on the
brain. Animal models of hyperglycemic diabetes have been
shown to exhibit brain abnormalities that are comparable to
dysfunction of Alzheimer’s brains, such as synaptic impairment
(Malone et al., 2008; Liu et al., 2015), brain atrophy, and
mitochondrial impairment (Carvalho et al., 2015). Furthermore,
animal models having both diabetes and AD manifest an
exacerbated level of brain pathology and cognitive impairment
compared to models having AD only. A study that compared
the effects of diabetes versus AD on the brain showed similar
phenotypes in the brains of both a sucrose-induced mouse
model of diabetes and a triple transgenic AD mouse model
(3xTg-AD), including reduced brain weight, mitochondrial
dysfunction, and reduced levels of synaptic and autophagy-
related proteins when compared to WT animals (Carvalho
et al., 2015). Activity of Na+/K+ ATPase, an essential pump
that maintains neuronal resting membrane potential and its
activity, was shown to be impaired by hyperglycemia in isolated
synaptic terminals of aged Wistar rats’ brains (Torlinska et al.,
2006). In a streptozotocin-induced hyperglycemic rat model
of diabetes, neuronal spine density and dendritic branches
were reduced compared to WT rats. The reduction was
accompanied by memory impairment in the Morris water
maze cognitive test (Malone et al., 2008). Synaptic plasticity
as measured by long-term potentiation (LTP) was decreased
in a high-fat diet-induced hyperglycemic mouse model (Liu
et al., 2015). Animals with both diabetes and AD attained
worse outcomes in the Morris water maze test, LTP, and
mitochondrial respiration and enzymatic activities of complexes
I and IV, when compared to animals with only diabetes or
AD (Wang et al., 2015). In a similar study, comorbidities of
diabetes and AD led to increased formation of Aβ oligomers and
deposition of Aβ plaques, increased tau pathology, exacerbated
neuroinflammation, and worsened performance on the Morris
water maze test when compared to animals having only
diabetes or AD (Guo et al., 2016). Overall, considering the
hyperglycemic phenotype and other associated pathological
features shared in brains of animals having both diabetes
and AD, it is probable that brain hyperglycemia serves as a
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mechanistic link between the two diseases and contributes to
AD development. Glycolytic deficit could be a major cause of
increased glucose accumulation and ultimately hyperglycemia in
non-diabetic AD brains.

GLYCOLYTIC DYSFUNCTION IN OTHER
NEURODEGENERATIVE DISEASES

Glycolytic dysfunction has been associated with other
neurodegenerative diseases, including Parkinson’s disease (PD),
Huntington’s disease (HD), and amyotrophic lateral sclerosis
(ALS). In the glycolytic pathway, phosphoglycerate kinase
(PGK) is a major enzyme that catalyzes the first ATP-generating
step in which a phosphate group in 1,3-biphosphoglycerate
is transferred to ADP, producing 3-phosphoglycerate and
one molecule of ATP. Deficiency of PGK activity caused by
genetic mutations (e.g., c.649G > A) that results in impaired
ATP production had been established as a major cause of
medical conditions such as hemolytic anemia, myopathy, and
neurological deficits (Matsumaru et al., 2017). Multiple studies
have reported that patients suffering from these disorders
exhibited PD-like symptoms, pointing to the role of PGK
deficiency in the development of idiopathic PD (Sotiriou
et al., 2010; Sakaue et al., 2017; Cai et al., 2019; Le Bras,
2019; Shimizu et al., 2020). For example, in one case report,
a child with PGK1 deficiency developed parkinsonism at
9 years of age, whereas the mother, a heterozygous carrier
of the mutation, developed parkinsonism at 36 years of age,
suggesting a gene dose-dependent effect of PGK1 deficiency
in conferring susceptibility to PD (Sakaue et al., 2017).
Similarly, a 25-year-old male carrier of a PGK1 mutation
that caused a marked decrease in PGK activity presented
both exertional myoglobinuria and severe parkinsonism
that was responsive to levodopa treatment (Sotiriou et al.,
2010). These clinical findings have been further validated
in molecular studies conducted in preclinical models. In a
Drosophila model, dopaminergic (DA) neuron-specific PGK
knockdown led to locomotive defects accompanied by significant
reductions in ATP and dopamine levels, and progressive
loss of DA neurons (Shimizu et al., 2020). Furthermore, in
a variety of either toxin-induced or genetic PD models as
well as in iPSC, treatment with terazosin, a PGK agonist,
increased brain ATP and dopamine levels and restored motor
function, providing support for the therapeutic approach of
enhancing PGK and glycolytic activity in the treatment of PD
(Cai et al., 2019).

Altered glycolytic metabolism has been observed in HD
as well, although discrepancies exist. In an iPSC-based model
of the disease, it was found that when compared to control
cells, HD cells had decreased ATP levels, lowered expression
of glycolytic enzymes, and decreased spare glycolytic capacity.
In contrast, both mitochondrial messenger levels and protein
levels, as well as respiratory capacities driven by oxidative
phosphorylation, were largely unchanged. Moreover, ATP
levels in HD cells were restored by treatment with pyruvate
or late glycolytic intermediates, but not earlier glycolytic

metabolites, providing further evidence for glycolytic and not
mitochondrial deficits associated with HD (The HD iPSC
Consortium, 2019). In agreement with these studies, Powers
et al. reported a significant increase in the molar ratio of
cerebral oxygen metabolism to cerebral glucose metabolism
[CMRO(2)/CMRglc] in the striatum of HD patients, and the
group postulated that glycolytic reduction in striatal metabolism
could be involved in the pathogenies of HD (Powers et al.,
2007). On the contrary, in HEK293 cell lines and transgenic
Drosophila expressing polyglutamine (polyQ) in exon 1 of
the huntingtin (HTT) protein, Sameni et al. (2016) observed
an increased glycolytic rate, as indicated by an increased
production of free NADH, in cells and tissues that expressed
the expanded HTT-polyQ, when compared to controls that
expressed unexpanding HTT-polyQ. In another study, it was
found that the WNT/β-catenin pathway was increased in
both HD and ALS, which increased activation of several
glycolytic enzymes, which in turn resulted in increased glycolysis
(Alexandre et al., 2018). An independent investigation conducted
by Manzo et al. (2019) in a Drosophila model of TDP-
43 proteinopathy demonstrated that increased glycolysis may
serve as a compensatory mechanism that neurons attempt
to use to fight against metabolic deficits in ALS. Further
studies are certainly required to resolve these inconsistencies.
Nevertheless, these findings clearly indicate a prominent
involvement of glycolytic metabolism in the development of these
neurodegenerative conditions.

CONCLUSION

Alzheimer’s disease has long been recognized as a metabolic
disease (Drzezga et al., 2003; Chen and Zhong, 2013; de la
Monte and Tong, 2014). In particular, glucose hypometabolism
has been established as a prominent anomaly in the very
early development of the disease (Mosconi et al., 2008c). As
the primary substrate of energy in the brain, glucose is first
metabolized in the cytoplasmic glycolytic pathway, followed
by oxidative phosphorylation in the mitochondria. Beyond its
bioenergetic function, glycolysis plays crucial roles in many
biosynthetic processes, for example, in the production of certain
amino acids, ribose phosphate, and reduced glutathione, as
well as in the glycosylation modification of proteins and lipids.
Specifically, glycolysis has been extensively described for its
essential roles in brain development and fast-occurring neuronal
activities such as ion transport in neurotransmission. Despite its
essential neural functions, glycolysis in the context of AD has not
been explored much until recently (Bergau et al., 2019; Butterfield
and Halliwell, 2019; Theurey et al., 2019; Yan et al., 2020). Several
clinical studies have indicated the involvement of glycolytic
dysfunction in the development of AD pathologies (Vlassenko
et al., 2018). Moreover, increased brain glucose accumulation has
been validated in AD patients, supporting the hypothesis that
glycolytic deficit as an important contributor to the development
of this phenotype (An et al., 2018). Brain hyperglycemia also
provides a plausible explanation for the well-documented link
between AD and diabetes. Human ApoE exists as three isoforms,
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ApoE2, ApoE3, and ApoE4. Carrying ApoE4 is the greatest
genetic risk factor for sporadic AD, whereas ApoE2 carriers are
resistant to AD. Historically, extensive research has focused on
the neurotoxic effect of ApoE4, leaving ApoE2 largely unexplored
(Wu and Zhao, 2016). Recent studies have provided several lines
of evidence supporting the hypothesis that differential regulation
of neuronal glycolysis could serve as one significant mechanism
that underlies the different AD risk of ApoE isoforms (Wu et al.,
2018). Glycolytic robustness, in large part via upregulation of
hexokinase, could play a critical role in conferring ApoE2-bearing
brains their resilience to AD. Besides AD, glycolytic dysfunction
has been observed in other neurodegenerative diseases, including
PD, HD, and ALS, strengthening the concept of glycolytic
dysfunction as a common pathway leading to neurodegeneration.
Taken together, these advances highlight an exciting translational
opportunity not only for the AD field but also for research fields
of other neurodegenerative diseases.
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GLOSSARY

AD, Alzheimer’s disease; ApoE, apolipoprotein E; CMRglc, cerebral metabolic rate of glucose; PET, positron emission tomography;
FDG, 2-[18F]fluoro-2-deoxy-D-glucose; MCI, mild cognitive impairment; ATP, adenosine triphosphate; NAD, nicotinamide adenine
dinucleotide; PFK-1, phosphofructokinase-1; PK, pyruvate kinase; G-6-P, glucose-6-phosphate; AMP, adenosine monophosphate;
PPP, pentose phosphate pathway; TCA cycle, tricarboxylic acid cycle; AG, aerobic glycolysis; Aβ, amyloid beta; NADP, nicotinamide
adenine dinucleotide phosphate; THF, tetrahydrofolate; NMDA, N-methyl-D-aspartate; ALT, alanine transaminase; HBP, hexosamine
biosynthesis pathway; UDP-GlcNAc, UDP-N-acetylglucosamine; OGTs, O-linked N-acetylglucosamine transferases; GFAT,
glutamine: fructose-6-phosphate amidotransferase; G6PD, glucose-6-phosphate dehydrogenase; G-3-P, glycerol-3-phosphate; DHAP,
dihydroxyacetone phosphate; TPI or TIM, triose-phosphate isomerase; ANLS, astrocyte-neuron lactate shuttle; EAAT, excitatory
amino acid transporters; V-ATPase, V-type H+-ATPase; Pfk2p, phosphofructokinase-2 subunit β; PSD, postsynaptic density; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; MCT2, monocarboxylate transporter 2; AMPA, α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; ROS, reactive oxygen species; G6PDH, glucose-6- phosphate dehydrogenase;
BLSA, baltimore longitudinal study of aging; CSF, cerebrospinal fluid; PFKFB3, fructose-2,6-biphosphatase; IP3R, inositol 1,4,5-
trisphosphate receptors; O-GlcNAc, O-linked N-acetylglucosamine; GSH/GSSG, reduced glutathione/oxidized glutathione; iPSC,
induced pluripotent stem cell; IFG, impaired fasting glucose; ECF, extracellular fluid; WT, wild type; LTP, long-term potentiation;
PD, Parkinson’s disease; HD, Huntington’s disease; ALS, amyotrophic lateral sclerosis; DA, dopaminergic; CMRO(2)/CMRglc, ratio
of cerebral oxygen metabolism to cerebral glucose metabolism; polyQ, polyglutamine; HTT, huntingtin.
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Introduction: Alzheimer’s disease (AD) is characterized by cerebral glucose

hypometabolism. Hypometabolism may be partly due to reduced glucose transport

at the blood-brain barrier (BBB) and across astrocytic and neuronal cell membranes.

Glucose transporters (GLUTs) are integral membrane proteins responsible for moving

glucose from the bloodstream to parenchymal cells where it is metabolized, and

evidence indicates vascular and non-vascular GLUTs are altered in AD brains, a process

which could starve the brain of glucose and accelerate cognitive decline. Here we review

the literature on glucose transport alterations in AD from human and rodent studies.

Methods: Literature published between 1st January 1946 and 1st November 2020

within EMBASE and MEDLINE databases was searched for the terms “glucose

transporters” AND “Alzheimer’s disease”. Human and rodent studies were included while

reviews, letters, and in-vitro studies were excluded.

Results: Forty-three studies fitting the inclusion criteria were identified, covering human

(23 studies) and rodent (20 studies). Post-mortem studies showed consistent reductions

in GLUT1 and GLUT3 in the hippocampus and cortex of AD brains, areas of the brain

closely associated with AD pathology. Tracer studies in rodent models of AD and human

AD also exhibit reduced uptake of glucose and glucose-analogs into the brain, supporting

these findings. Longitudinal rodent studies clearly indicate that changes in GLUT1 and

GLUT3 only occur after amyloid-β pathology is present, and several studies indicate

amyloid-β itself may be responsible for GLUT changes. Furthermore, evidence from

human and rodent studies suggest GLUT depletion has severe effects on brain function.

A small number of studies show GLUT2 and GLUT12 are increased in AD. Anti-diabetic

medications improved glucose transport capacity in AD subjects.

Conclusions: GLUT1 and GLUT3 are reduced in hippocampal and cortical regions in

patients and rodent models of AD, andmay be caused by high levels of amyloid-β in these
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regions. GLUT3 reductions appear to precede the onset of clinical symptoms. GLUT2

and GLUT12 appear to increase and may have a compensatory role. Repurposing

anti-diabetic drugs tomodify glucose transport shows promising results in human studies

of AD.

Keywords: GLUT 3, GLUT 1, blood-brain barrier, glucose transporters, Alzheimer’s disease

INTRODUCTION

Background
Alzheimer’s disease (AD) is a chronic neurodegenerative disorder
characterized by the presence of β-amyloid (Aβ) plaques and
neurofibrillary tangles (NFTs) (Grundke-Iqbal et al., 1986;
Scheltens et al., 2016). The majority of AD is sporadic, with <5%
being classified as genetic (Reitz et al., 2011). Several mechanisms
have been proposed for its pathophysiology. According to the
amyloid cascade hypothesis, the Aβ precursor protein (APP)
is abnormally cleaved, leading to an imbalance between Aβ

production and clearance, favoring the accumulation of Aβ. This,
in turn, forms clusters in the brain which induce oxidative stress,
leading to synaptic dysfunction, neuronal death, and subsequent
cerebral atrophy (Chételat et al., 2010). These clusters, called
oligomers, form fibrils, then beta-sheets and eventually develop
into plaques which are considered a hallmark of AD (Grundke-
Iqbal et al., 1986). While Aβ accumulation has a critical role in
AD, it is becoming increasingly recognized that brain Aβ burden
does not correlate with the severity of cognitive impairment
(Games et al., 1995; Price et al., 2009). Aβ accumulation
also occurs in aging individuals without cognitive impairment
(Castello and Soriano, 2014; Morris et al., 2014; Herrup, 2015),
indicating the limitations of the amyloid hypothesis (Kametani
and Hasegawa, 2018). The tau hypothesis conjectures that tau
is the main causative protein for AD (Kosik et al., 1986).
Tau is a protein normally associated with microtubules which
serve to stabilize tubulin assemblies. In AD, tau is abnormally
hyperphosphorylated and forms pathological inclusions known
as NFTs, which are widely identified in AD brains. Tau is
more strongly associated with cognitive impairment than Aβ

(Hanseeuw et al., 2019). However, attempts to stabilize cognitive
function through modification of Aβ and tau in the clinical
setting have been unsuccessful to date (Congdon and Sigurdsson,
2018; Yiannopoulou and Papageorgiou, 2020).

Hypometabolism in AD
In addition to Aβ and tau, AD is considered a metabolic disorder,
which relates to reduced cerebral glucose metabolism, brain
insulin resistance, and age-induced mitochondrial dysfunction
(Van Der Velpen et al., 2019). The conventional view is that
reduced brain metabolism is secondary to brain atrophy and
neuronal loss (Bokde et al., 2001). However, there is accumulating
evidence that hypometabolism occurs before the onset of brain
atrophy and clinical symptoms, indicating that changes in
metabolism may occur prior to reduced glucose demand by
tissues (De Leon et al., 2001; Jagust et al., 2006; Mosconi et al.,
2006, 2008, 2009; Masdeu, 2008).

Abnormal cerebral glucose metabolism was observed using
FDG-PET in 1983 by de Leon et al. (1983), who observed a
17–24% reduction in the regional cerebral metabolic rate of
glucose (CMRglu) in a cohort of 24 AD patients. This correlated
with a reduction in cognitive performance compared to age
matched controls. Later studies confirmed these results, building
support for regional declines in CMRglu as a hallmark of AD,
including in frontal white matter, caudate, thalamus, temporal,
and parietal regions (Small et al., 2000; Mosconi et al., 2004,
2007a). Masdeu (2008) examined seven pre-symptomatic, at-risk
subjects with familial AD using MRI and FDG-PET imaging.
Compared to seven matched healthy controls, the familial AD
subjects showed a reduction in glucose metabolism in most brain
regions examined, including the whole brain, right, and left
inferior parietal lobules, superior temporal gyrus, left entorhinal
cortex, posterior cingulate cortex, and hippocampus. De Leon
et al. (2001), Mosconi et al. (2008), and Jagust et al. (2006)
examined CMRglu in multiple brain regions of healthy elderly
individuals using FDG-PET and MRI scans to differentially
predict cognitive decline from normal aging. In all three studies,
reductions in glucose metabolism predicted cognitive decline in
those participants who went on to develop cognitive impairment
or a clinical diagnosis of AD.

In a longitudinal study, Mosconi et al. (2009) examined four
cognitively normal elderly subjects and three patients with mild
AD. Their pathological diagnosis was verified through post-
mortem studies 6 ± 3 years after the subjects’ last FDG-PET
scan. All participants who were cognitively intact at baseline
developed mild cognitive impairment (MCI) 2–7 years after
their baseline assessment. On post-mortem studies, two of these
subjects had definite AD, one had probable AD and the last
had pathological findings consistent with Parkinson’s disease
with mild AD-related pathology. In all four patients, CMRglu
was reduced in areas involving the hippocampus, up to 7 years
before their diagnosis of MCI. Follow up FDG-PET scans showed
progressive reductions in CMRglu with wider brain involvement
including the temporal and parietal lobes, and to varying degrees
the anterior and posterior cingulate regions. A more recent
study by Ou et al. (2019) examining 551 participants with AD
observed reduced metabolism as measured using FDG-PET as
an independent biomarker for AD. Their findings demonstrate
faster cognitive decline and brain atrophy in participants with
reduced metabolism.

Glucose Transport as the Rate-Limiting
Step in Glucose Metabolism
While these studies included a small number of participants, their
results suggest that hypometabolism precedes a clinical diagnosis
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TABLE 1 | GLUTs expressed in the central nervous system.

Protein (gene) References Insulin sensitive

(Yes/No)

Site expressed in the CNS

GLUT1 (SLC2A1) Kumari and Heese, 2010 No Endothelial cells (55 kDa isoforms), astrocytes (45 kDa

isoforms)

GLUT2 (SLC2A2) Kumari and Heese, 2010 No Astrocytes

GLUT3 (SLC2A3) Kumari and Heese, 2010 No Endothelial cells, astrocytes, hippocampal neurons

GLUT4 (SLC2A4) Leloup et al., 1996; Vannucci et al., 1998;

Reagan, 2002; Kumari and Heese, 2010

Yes Hypothalamic neurons, hippocampal neurons, cerebellar

neurons, sensorimotor cortex, pituitary

GLUT8 (SLC2A8) Kumari and Heese, 2010 Yes Hypothalamic neurons, hippocampal neurons

GLUT12 (SLC2A12) Zhang et al., 2014 (details extracted from

https://www.brainrnaseq.org)

Yes Cortical astrocytes

of AD. Glucose metabolism requires both delivery of glucose to
cells from the bloodstream, and phosphorylation by hexokinase
at the site of mitochondria. One possible explanation for early
changes to glucose metabolism observed via FDG-PET may be
due to abnormal delivery of glucose to the brain. Glucose is
a hydrophilic molecule and requires transporters to cross cell
membranes. Glucose uptake into the brain occurs predominantly
via the sodium-independent facilitative transporters GLUT1
and GLUT3, encoded by the SLC2A1 and SLC2A3 genes,
respectively. GLUT1 is responsible for glucose uptake across the
BBB endothelial cells, where the higher density isoforms are
located (55 kDa), and into astrocytes, where the lower density
isoforms are located (45 kDa). Glucose uptake into the brain
appears to correlate with the number of GLUT1 transporters at
the BBB (Zeller et al., 1997). Neurons do not express GLUT1
(Zlokovic, 2011). The main glucose transporter that facilitates
uptake of glucose into neurons is GLUT3, which is encoded
by the SLC2A3 gene. GLUT3 is also detected at lower levels
on astroglial and endothelial cells (Kumari and Heese, 2010;
Patching, 2017). Low levels of GLUT2, encoded by the SLC2A2
gene, are present on astrocytes (Magistretti and Pellerin, 1999;
Larrabee, 2002). Reduced supply of glucose to the brain via loss
of these major glucose transporters may lead to a brain glucose
deficit, halting metabolism and other processes dependent on
ATP production (Iadecola, 2015).

Several insulin-sensitive transporters are present in the
brain at low levels, including GLUT4, a transporter mainly
present in non-cerebral fat and muscle tissue, GLUT8, which
has been suggested to contribute toward glucose homeostasis
in hippocampal neurons (Piroli et al., 2002), and GLUT12,
a newly discovered glucose transporter found primarily in
insulin-sensitive tissues (Szablewski, 2017). The location of these
transporters within the central nervous system (CNS) and their
presence on different cell types are shown in Table 1, Figure 1.

Detailed descriptions of glucose transporters and their
respective functions are not described here—these aspects
have been reviewed extensively elsewhere by Szablewski
(2017) and Koepsell (2020). Szablewski (2017) also reviewed
glucose transporter alterations in AD with particular focus on
links between AD and insulin resistance, but a systematic
review of human and animal data was not performed.
Furthermore, Szablewski did not cover in detail results

from tracer studies of glucose uptake into the brain, the
effects of AD pathologies such as amyloid-β and tau on
GLUTs, the timing of effects, or how GLUT alterations
affect the brain. Here we perform a systematic review to
capture all human and rodent studies of glucose transport
alterations in AD to date and aim to evaluate the evidence
to support (i) which transporters are affected, if any, (ii) how
glucose uptake into the brain is altered, (iii) which brain
regions are most affected, (iv) when changes occur relative
to other AD pathologies, and (v) how GLUT changes affect
brain function.

METHODS

Literature published between 1st January 1946 and 1st
November 2020 was searched using the PubMed search
engine. Exploded headings were used for “glucose transporters”
and “Alzheimer’s disease” with the Boolean operator “AND.”
Searches were performed in EMBASE and MEDLINE databases
and duplicates were removed. Only studies investigating
cerebral glucose transporters were included. Titles and
abstracts were scanned to identify relevant papers and
articles, and those which did not clearly examine glucose
transport specific to Alzheimer’s disease were discussed
with the research team and excluded if not considered
relevant. Human and rodent studies (post-mortem and
in-vivo) were included and results are summarized in
Tables 2, 3. Reviews, letters and in-vitro studies were
excluded. Figure 2 shows the PRISMA flow chart detailing
the search results.

RESULTS

Twenty-three human studies and twenty rodent studies met the
inclusion criteria. The transporter GLUT1 was most commonly
investigated (n = 23), followed by GLUT3 (n = 13). A total of
10 human studies and 12 rodent studies observed reductions
in GLUT1 expression, primarily in cortical and hippocampal
regions. One study found increased GLUT1 expression. A total
of 5 human studies and 6 rodent studies found reductions to
GLUT3 expression. One study found no change, and one study
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FIGURE 1 | A schematic diagram representing the expression of glucose transporters within CNS cells. Red: GLUT1 55 kDa isoform, pink: GLUT1 45 kDa isoform.

GLUT1 (Kumari and Heese, 2010), GLUT2 (Kumari and Heese, 2010), GLUT3 (Kumari and Heese, 2010), GLUT4 (Leloup et al., 1996; Vannucci et al., 1998; Reagan,

2002; Kumari and Heese, 2010), GLUT8 (Kumari and Heese, 2010), GLUT12 (Zhang et al., 2014) (details extracted from https://www.brainrnaseq.org on 19/04/2021).

found increased GLUT3 expression. There were fewer studies
investigating GLUT2 (n= 2, both showing increased expression),
GLUT4 (n = 6; no changes observed in 4 studies, one study
showing increased GLUT4), GLUT12 (n = 1 showing increased
expression), and GLUT14 (n = 1). Tracer-based methods were
used to measure glucose uptake into brain tissue in 9 studies. All
tracer studies except one reported reduced glucose uptake into
the brain with AD, although in rodent studies reduced uptake
was not observed until later stages of disease. A detailed review
of all studies is given below.

Evidence of Glucose Transporter
Alterations in AD From Post-Mortem
Human and Rodent Studies
Early work by Kalaria and Harik (1989) showed a significant
reduction in hexose transporters, primarily GLUTs, in the
neocortex and hippocampus of post-mortem AD brain tissue. In
a subsequent study, Harik (1992) showed a significant reduction
in the density of GLUT1 in the cerebral microvessels in the
AD brain compared to age-matched controls, with no change
in the density of GLUT1 in erythrocyte membranes. Simpson
et al. (1994) showed that AD patients display reduced density of
vascular and non-vascular forms of glucose transporters, GLUT1
and neuronal GLUT3. After correcting for synaptic loss, which
is a prominent feature of AD (Masliah et al., 1990, 1991; Terry
et al., 1991; Honer et al., 1992), the authors confirmed that

the reduction in GLUT density persisted. Similar results were
shown by Horwood and Davies (1994) who observed GLUT1
reductions in hippocampal tissue of the AD brain. Harik and
Kalaria (1991) observed a decrease of ∼50% in the density of
glucose transporters in cerebral microvessels of patients with AD.
They identified glucose transporters by reversible and irreversible
binding to the ligand [3H] cytochalasin B. The type of glucose
transporter identified using this method was not stated, however,
cytochalasin B is an inhibitor of glucose transport in erythrocytes
(May, 1988; Carruthers and Helgerson, 1991) and is likely to
reflect GLUT1 levels.

Mooradian et al. (1997) observed a reduction in GLUT1 in the
frontal and parietal cortex of AD brain, albeit with unchanged
GLUT1 mRNA concentrations. In a study of hippocampal
microvasculature, Burke et al. (2014) examined GLUT1 as a
marker of capillary density in post mortem brain tissue of
patients with AD, stroke, vascular dementia, and mixed-type
dementia. Contrary to previous studies, they observed increased
GLUT1 density in AD brain tissue compared to controls. By

contrast, a very recent study investigating white matter tissue

from the AD brain demonstrated collapsed string microvessels
along with loss of GLUT1 immunoreactivity in the white matter
of the frontal lobe compared to overlying cortex (Hase et al.,
2019).

Liu et al. (2009) studied AD patients with and without type-
2 diabetes mellitus (T2DM), and patients with T2DM alone.
They showed that GLUT1 was significantly reduced in AD
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TABLE 2 | A summary of results from human post-mortem and tracer studies.

References Methods Findings

Kalaria and Harik,

1989

Immunohistochemistry study of brain tissue obtained from the

frontal and temporal neocortex, hippocampus, putamen,

cerebellum, and cerebral microvessels in AD subjects and controls

to determine levels of hexose transporter (likely GLUT1, although

not specified).

Significant reduction in hexose expression (likely GLUT1)

transporter in brain microvessels, cerebral neocortex and

hippocampus of AD brain.

Kawai et al., 1990 Immunohistochemistry study of the relationship between Aβ

plaques, capillary density (collagen-4), and glucose transporters

(GLUT1).

Collagen-4 and GLUT1 expression was reduced within Aβ plaques

and increased in the immediate surroundings of Aβ plaques

relative to gray matter.

Harik and Kalaria,

1991

Immunohistochemistry study of GLUT1 in cerebral microvessels of

subjects with AD and age matched controls using irreversible

binding to the ligand [3H] cytochalasin B.

GLUT1 expression was decreased by ∼50% in cerebral

microvessels of patients with AD compared to age-matched

controls.

Harik, 1992 Immunohistochemistry study of GLUT1 in AD brain tissue and

controls.

Reduction in the expression of GLUT1 in the cerebral microvessels

in AD brain compared to age-matched controls, with no change in

the density of GLUT1 in the erythrocyte membranes.

Horwood and Davies,

1994

Immunohistochemistry study of AD brain tissue obtained from the

central part of the hippocampal formations (dentate gyrus, cornu

ammonis, and subicular complex) to determine levels of

microvascular GLUT1.

GLUT1 expression was significantly reduced in the microvessel

endothelium in hippocampi of AD subjects compared to controls.

Simpson et al., 1994 Immunoblotting study of brain tissue obtained from AD subjects

and controls.

Reduced glucose metabolism in the temporal and parietal regions

of AD subjects. Reduced expression of GLUT1 and GLUT3 in the

cerebral cortex of AD brains compared to controls, with greater

and more significant reductions in GLUT3.

Harr et al., 1995 Immunohistochemistry study of brain tissue obtained from the

dentate gyrus of AD subjects’ to determine levels of GLUT3.

Significant reduction (49.5%) in GLUT3 expression in the outer

portion of the molecular layer of the dentate gyrus in AD brains.

Mooradian et al., 1997 Western-blot study of GLUT1 in brain tissue from AD subjects and

controls.

GLUT1 expression was reduced in AD but GLUT1 mRNA

concentrations were not significantly different.

Liu et al., 2008 Western-blots and immune-dot-blot study of GLUT1-4 levels in

the frontal cortex of frozen human brain tissue in subjects with AD

and controls.

Decreased expression of GLUT1 and GLUT3 in AD brain tissue

which correlated to hyperphosphorylation of tau and neurofibrillary

tangle density. Downregulation of hypoxia-inducible factor 1

(HIF-1) in AD brain.

Liu et al., 2009 Western-blots and immune-dot-blot study of brain tissue obtained

by autopsy from AD patients, subjects who had T2DM and

subjects who had both AD and T2DM.

GLUT1 expression was significantly lower in AD brains.

GLUT2 expression was significantly higher in AD brain and brain of

subjects with both AD and T2DM.

GLUT3 expression was significantly lower in all three groups with

the lowest levels in T2DM brain.

O-GlcNAcylation of global proteins and tau was downregulated in

T2DM brain and AD brain.

Tau phosphorylation is higher in T2DM brain and AD brain.

Wang et al., 2012 A case-control study was performed in a Chinese population of

597 patients with AD and 605 healthy controls examining the role

of SLC2A14, the gene encoding GLUT14, in developing late-onset

AD. Results were stratified by ApoEε4-carrying status.

The rs10845990 polymorphism within the gene coding for

GLUT14 was significantly associated with late onset AD in

non-ApoEε4 allele carriers (p < 0.001).

Pujol-Gimenez et al.,

2014

Western blot study of brain tissue obtained from the frontal cortex

of AD subjects and age-matched controls measuring the

expression of GLUT12.

GLUT12 expression was significantly increased in AD compared to

age-matched controls.

Burke et al., 2014 Immunohistochemistry study of GLUT1 in patients with AD,

vascular dementia and patients who had suffered from stroke. The

cumulative vessel length and diameter of hippocampal

microvessels was measured using stereological spherical probe

software.

Increases in percentage per area were found in GLUT1 density in

AD cases in the:

• CA1 of the hippocampus compared with post-stroke non-

demented subjects (p = 0.011).

• CA1 of the hippocampus compared with post-stroke demented

subjects (p = 0.037).

• CA2 of the hippocampus compared to vascular dementia

subjects (p = 0.04).

• Entorhinal cortex compared with post-stroke non-demented

subjects (p = 0.004).

Post-stroke demented cases had significantly lower vascular

length than AD (p = 0.016). Post-stroke non-demented cases had

significantly lower vascular length compared with controls

(p = 0.015).

(Continued)
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TABLE 2 | Continued

References Methods Findings

Mullins et al., 2017 Immunohistochemistry study into the relationship between brain

insulin resistance and glucose transporter expression and the

propensity to develop plaques and NFT.

Regional expression of GLUT1 showed a negative correlation with

NFT density.

Regional expression of GLUT4 showed a positive correlation with

NFT density.

Areas with reduced insulin signaling proteins (including IRS-1)

showed higher NFT load.

An et al., 2018 LC-MS/MS study to measure GLUT1 and GLUT3 levels in brain

tissue obtained from the middle frontal gyrus of 14 participants

with AD, 14 controls, and 15 with asymptomatic AD (ASYMAD).

GLUT3 levels were lower in both AD and ASYMAD groups

compared to controls, before and after adjusting sex, age at death

and neuronal nuclear protein levels. Lower levels of GLUT3

correlated with the severity of both Aβ and NFT pathology.

Hase et al., 2019 Immunohistochemistry study of endothelial GLUT1. Microvascular

pathology, capillary width and densities were measured using

histopathological methods in the frontal lobe white matter across

several dementia types including 18 participants with AD.

Collapsed string microvessels along with loss of GLUT1

immunoreactivity was detected in AD frontal lobe white matter

compared to overlying cortex.

Friedland et al., 1989 Dynamic FDG-PET study in patients with probable Alzheimer’s

disease (AD) and healthy age-matched controls.

There was no significant difference in rate constants for glucose

transport (k1 and k2) or phosphorylation (k3).

Jagust et al., 1991 Dynamic FDG-PET study in six subjects with clinical criteria for

probable AD and normal controls.

Decrease in K1 in frontal and temporal cortex in AD subjects

compared to controls, minimal differences in occipital cortex and

white matter and decreased rCMRglc in all cortical regions.

Non-significant decrease in k3 in all brain regions of AD subjects.

Kimura and

Naganawa, 2005

Dynamic FDG-PET study in three subjects; a 45-year-old normal

subject, a 65-year-old subject with mild AD, and a 70-year-old

subject with severe AD.

Glucose transport was globally reduced in both AD cases

compared to the normal subject. Glucose phosphorylation was

diminished in gray matter of the severe case of AD, excluding the

sensory, motor, and visual cortices. In the mild case,

phosphorylation was reduced in the right parieto-temporal area.

Piert et al., 1996 Dynamic FDG-PET study in AD subjects and normal controls. Significant reductions in glucose transport (K1) and

phosphorylation (k3) in patients with AD compared to healthy

age-matched controls in multiple cortical and subcortical regions

of the brain with the greatest significant difference in the parietal

and temporal cortex.

Mosconi et al., 2007b Dynamic FDG-PET study with arterial blood sampling in 7 AD

patients and 6 age matched controls and CMRglc was calculated.

AD patients showed significant CMRglc reductions in the

hippocampus and posterior cingulate cortex.

K1 was reduced in the hippocampus and k3 was reduced in the

hippocampus, PCC and amygdala.

Gejl et al., 2017 FDG-PET study as part of a randomized control trial using 6 month

treatment of GLP-1 analog or placebo in AD subjects, measuring

blood-brain glucose transfer capacity (Tmax) and cerebral

metabolic rate of glucose (CMRglc) in the AD patients and controls.

CMRglc estimates were positively correlated with cognition while

Tmax and CMRglc estimates were inversely correlated with AD

duration.

GLP-1 analog treatment significantly raised Tmax estimates of

cerebral cortex from 0.72 to 1.1 umol/g/min, matching Tmax

estimates in healthy volunteers.

but not significantly reduced in either T2DM or T2DM-AD
groups. GLUT3 was significantly reduced in all three groups
with the lowest levels in T2DM brain. Interestingly, GLUT2 was
significantly increased in the AD brain and brains of subjects with
both AD and T2DM, possibly due to astrocyte overactivation (Liu
et al., 2009). Harr et al. (1995) observed reductions in GLUT3
levels in the outer portion of the molecular layer of the dentate
gyrus in AD brains.

A small number of studies have investigated the link between
glucose transporters and AD pathologies in human tissue.
Kawai et al. (1990) investigated the relationship between Aβ

plaques and capillary glucose transporter density. Capillary
glucose transporter density was reduced within Aβ plaques but
increased in the immediate surroundings of Aβ plaques. Liu
et al. (2008) found decreased levels of GLUT1 and GLUT3 in
hippocampus and entorhinal cortex of AD brain tissue correlated

with hyperphosphorylation of tau and NFT density. A recent
study using participants from the Baltimore Longitudinal Study
of Aging cohort measured GLUT1 and GLUT3 levels in the
middle frontal gyrus of 14 participants with AD, 14 controls,
and 15 with asymptomatic AD pathology, i.e., participants who
exhibited significant AD pathology at post-mortem (including
Aβ plaques, NFTs, and neuropil threads) but without evidence
of cognitive dysfunction as assessed shortly before death. GLUT3
levels were significantly lower in both AD and asymptomatic
AD groups relative to controls, before and after adjusting for
sex, age at death, and neuronal nuclear protein levels. Lower
levels of GLUT3 correlated with the severity of both Aβ and NFT
pathology (An et al., 2018). GLUT1 levels were not significantly
different in any of the groups.

Pujol-Gimenez et al. (2014) and Wang et al. (2012)
investigated glucose transporters other than GLUT1, GLUT2,
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TABLE 3 | A summary of results from rodent post-mortem and tracer studies.

References Methods Findings

Ding et al., 2013 Longitudinal immunohistochemical and imaging study

investigating hippocampal GLUT1, GLUT3, and GLUT4, glucose

transport into the brain in female 3xTgAD mice (aged between 3

and 15 months).

Both 3xTgAD and wild-types underwent significant age-related

reductions in glucose transport as detected using FDG-microPET,

beginning at 6-9 months of age, but mechanisms were different.

Reductions in GLUT1 (55 kDa isoform), increases in GLUT1 (45

kDa) and reductions in GLUT3 were observed in 3xTgAD mice,

and non-monotonic changes in GLUT1 (55 kDa), decreases in

GLUT3, and increases in membrane GLUT4 were observed in

wild-types.

Do et al., 2014 Immunohistochemistry study investigating hippocampal GLUT1

expression in 3xTgAD mice aged between 3 and 18 months and

APP/PS1 mice aged 8 months. Vascular volume fraction and

uptake of D-glucose were measured using radionuclide-based

brain perfusion tracers.

GLUT1 expression and D-glucose uptake were reduced in 18

month old 3xTgAD mice, but no differences were found in glucose

transport or GLUT1 in either strain at 8 months. Reduced vascular

volume fractions were observed at 6 months in 3xTg mice and in 8

month old APP/PS1 mice.

Griffith et al., 2019 Longitudinal analysis of 3xTg mice studied at ages 1–3, 6–8, and

16–18 months. Glucose tolerance was assessed alongside

Western blot analysis of hippocampal insulin pathways PI3K/AKT

and MAPK/ERK, and glucose transporters GLUT3 and GLUT4.

GLUT1 was not studied.

Glucose tolerance and plasma insulin levels were found to be

reduced as early as 1 month, well before detection of plaques (14

months). GLUT3 reductions but not GLUT4 were observed later at

18–20 months.

Hooijmans et al., 2007 Immunohistochemistry study into the causal relationship between

GLUT1 reductions in the hippocampus and cortex and Aβ.

Computer-assisted analysis of capillary density, and Aβ in young (8

months) and old (18 months) APP/PS1 mice. GLUT1 expression

was normalized to capillary density to correct for potential loss of

vascular volume.

At 8 months, GLUT1, capillary density or GLUT1 amount per

capillary density were not different between APP/PS1 and

wild-types. At 18 months, GLUT1 was reduced in the

hippocampus of 18 month APP/PS1 mice relative to wild-types,

while capillary density was not significantly different. The ratio of

GLUT1 amount per capillary density was decreased in the dendate

gyrus only. Aging produced significant reductions in GLUT1 and

capillary density, but the ratio of GLUT1 amount per density was

unchanged with age. No cortical changes were observed.

Kouznetsova et al.,

2006

Immunohistochemistry study of Tg2576 mice aged 4–18 months

to stain cortical GLUT1 and Aβ plaques and to assess impact of

size and load of Aβ plaques on GLUT1 expression.

GLUT1 was reduced in cortical regions with high plaque load was

associated with greater reductions compared to areas with low

plaque load. Around large plaques, the capillary density was lower

than around diffuse smaller plaques.

Kuznetsova and

Schliebs, 2013

Immunohistochemistry study investigating GLUT1 and Aβ in

somatosensory cortex of Tg2576 mice aged between 4 and 18

months.

No changes in GLUT1 at 10 months, when plaque deposition is

beginning, but reductions found in 18 month mice when plaque

load is considerable indicating Aβ may contribute to reductions in

GLUT1.

Gil-Iturbe et al., 2020 Western blot study investigating GLUT1, GLUT3, GLUT4, and

GLUT12 in the frontal cortex of two amyloidogenic mouse models

Tg2576 (16 months old) and APP/PS1 (16 months old). Age

effects assessed in C57/6/SJL wild-type mice aged 2–3 and 18

months old. To assess effects of Aβ directly, Aβ1–42 was injected

intra-cerebroventricularly in 3 month old C47BL/6J mice.

Tg2576 and APP/PS1 mice exhibited decreased GLUT1 and

GLUT3 and increased GLUT12. No changes were found in

GLUT4. No age-dependent effects were found in GLUT1 and

GLUT3 in C57/6/SJL mice. In Aβ1–42 injected mice, the same

patterns in up- and downregulation of GLUTs were observed

indicating a direct link between GLUTs and amyloid toxicity.

Merlini et al., 2011 Immunohistochemistry study into the morphology, biochemistry

and functionality of cortical and hippocampal blood vessels in

arcAβ mice at 6, 9–12, and 16–22 months. GLUT1 and GLUT3

measured by immunoblot, corrected for vascular volume using

CD31. Brain glucose levels dynamically measured following i.v.

administration of glucose using microdialysis.

Reductions in BBB and astrocytic GLUT1, but not GLUT3,

reduced from mid-stage pathology onwards. Glucose uptake as

measured using microdialysis confirmed reduced glucose

transport. IgG extravasation observed at late-stages.

Ahn et al., 2018 Immunohistochemistry study investigating GLUT1 and tight

junction protein ZO-1 expression in 4.5 and 9 month old 5xFAD

mice.

Reductions in GLUT1 and ZO-1 observed in the hippocampus and

cortex at both ages, which got worse with age and correlated with

worsening of astrocyte activation (GFAP) and amyloid deposition.

Shang et al., 2019 Immunohistochemistry study assessing the impact of chronic

cerebral hypo-perfusion (CCH) and AD pathology on cortical

GLUT1 expression in 12 month old APP23 mice.

GLUT1 was reduced in cortex of APP23 mice compared to

wild-types, which was further reduced in APP23 mice subject to

CCH, indicating that AD and cerebrovascular pathologies may

interact to exacerbate GLUT1 changes.

Lee et al., 2013 Western blot study of whole-brain expression of GLUT1, GLUT3,

and GLUT4 and insulin markers in 12 month old NSE/hPS2m

mice.

Reductions in GLUT1 and GLUT3, but not GLUT4 observed.

Blood glucose found to be higher in AD mice.

(Continued)
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TABLE 3 | Continued

References Methods Findings

Chua et al., 2012 Longitudinal western blot study of GLUT3 and GLUT4

AβPPsw/PS11E9 mice

Reduced brain glucose and insulin content in 12 and 15 month

old brains accompanied by increased GLUT3 and GLUT4, which

preceded significant upregulation of Aβ42 in brain. GLUT1 not

measured.

Deng et al., 2009 Western blotting study of insulin signaling and glucose

transporters in intracerebroventricular streptozotocin (STZ) rat

model of AD (6 months old, 21 days after STZ injections).

Reduced GLUT1 and GLUT3 in the cerebrum, and reduced

GLUT3 in the cerebellum. Reduced pERK1 and pPI3K,

pGSK-3β(S9) markers, and increased phosphorylation of tau.

Salkovic-Petrisic et al.,

2014

Study investigating effect of long-term galactose administration on

brain metabolism and glucose transporters via Western blot in

intra-cerebroventricular streptozotocin (STZ) rat model of AD.

Adult rats were used, and galactose administered for 1 month.

STZ rat exhibited significantly reduced GLUT3 expression in the

hippocampus, which was normalized with galactose

administration.

Knezovic et al., 2017 Western blot study investigating expression of GLUT2, insulin

receptor, and neuroinflammatory marker GFAP in the

hippocampus and cortex in intra-cerebroventricular streptozotocin

(STZ) rat model of AD (adult males). Measurements were taken 1 h

after STZ administration.

GLUT2 increased in the hippocampus, but unchanged in cortical

regions. Insulin receptor decreased in parietal and temporal

cortex, but not the hippocampus.

Biswas et al., 2018 Western blot and immunohistochemistry study investigating the

expression of cortical and hippocampal GLUT1 and GLUT3, and

brain glucose levels in intra-cerebroventricular streptozotocin (STZ)

rat model of AD (adult males), and correlation with markers of

endoplasmic reticulum stress, and astrocyte/microglia activation

(Cd11b).

Glucose transporters GLUT1 and GLUT3 and brain glucose

concentration were reduced in STZ rats. These changes were

accompanied by reduced mitochondrial activity, increased

endoplasmic reticulum stress, and increased microglial activation.

FIGURE 2 | PRISMA diagram.

and GLUT3. Pujol-Gimenez et al. (2014) identified that the
expression of GLUT12, a newly discovered glucose transporter
found primarily in insulin-sensitive tissues (Stuart et al., 2009),
was significantly increased in the frontal cortices of AD subjects
compared to age-matched controls. Wang et al. (2012) examined
the role of SLC2A14, the gene encoding GLUT14, in blood
samples of patients with developing late onset AD. They
performed a case-control study in a Chinese population of
597 patients with AD and 605 healthy controls, showing that
SLC2A14 polymorphisms appear to confer increased risk of
developing AD.

Alterations in GLUTs have also been observed in rodent
models of AD. In a longitudinal study of 3xTgAD mice between
3 and 15 months of age, glucose transporters GLUT1 (55 and 45
kDa), and GLUT3 were found to change in both AD and wild-
type animals but with differing temporal trajectories (Ding et al.,
2013). In AD mice, GLUT1 (55 kDa) and GLUT3 were found
to decrease with age, whereas GLUT1 (45 kDa) was found to
increase with age. In wild-types, non-monotonic changes with
age were observed for GLUT1 (55 kDa), whereas GLUT1 (45
kDa) was unchanged. GLUT3 decreased, and GLUT4 increased
with age. Unfortunately, a formal comparison between glucose
transporter expression between 3xTgAD mice and wild-types
was not performed. In another longitudinal study, Do et al.
(2014) studied vascular volume fraction and GLUT1 expression
in the hippocampus of 3xTgAD and APP/PS1 mice and found
no change in GLUT1 compared to wild-types at 8 months, but
significantly reduced GLUT1 expression in 3xTgAD mice at
18 months after substantial amyloid-pathology had developed.
APP/PS1 mice were not studied at this later timepoint. Griffith
et al. (2019) investigated GLUT3 and GLUT4, but not GLUT1,
longitudinally in 3xTg mice. They found similar timing of effects
on GLUT3 as observed for GLUT1 by Do et al. (2014). Young
rats exhibited reduced glucose tolerance (as early as 1 month),
but GLUT3 did not change relative to wild-types until at least
18–20 months. GLUT4 was unaltered at all ages. Similar results
were found in other AD models. Hooijmans et al. (2007) did
not find any changes in GLUT1 expression between APP/PS1
mice and wild-types at 8 months, but found significantly reduced
total GLUT1, reduced capillary density, and reduced GLUT1 per
vascular volume fraction in 18 month old mice. Changes were
found in the hippocampus, but not the cortex. In the Tg2576
model, Kuznetsova and Schliebs (2013) showed that cortical
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GLUT1 was unaltered at 10 months compared to wild-types, but
at 18 months after development of amyloid pathology, AD mice
had significantly lower cortical GLUT1.

A study by Kouznetsova et al. (2006) aimed to investigate if
the degree of GLUT1 changes were related to amyloid load. In
cortical regions with high amyloid load, GLUT1 staining was
reduced compared to regions with low amyloid load. The authors
also showed that GLUT1 staining was reduced nearer large senile
plaques, relative to changes observed near smaller diffuse plaques.
Gil-Iturbe et al. (2020) performed a more thorough investigation
of GLUTs,measuring expression of GLUT1, GLUT3, GLUT4, and
GLUT12 in two amyloidogenic models (Tg2576 and APP/PS1)
aged 16 months old. They also investigated effects of aging
in C57/6/SJL mice and the effects of amyloid on GLUTs via
intracerebral injection of Aβ1−42. The authors found reduced
GLUT1 and GLUT3, and increased GLUT12 in both strains. No
age dependent effects on GLUTs were observed, conflicting with
results from Ding et al. (2013). Injection of Aβ1−42 produced
similar reductions in GLUT1 and GLUT3 as found in the Tg2576
and APP/PS1 mice, indicating a direct link between GLUT1
decreases and amyloid. Merlini et al. (2011) investigated GLUT
changes in the arcAβ model. They observed reductions in BBB
and astrocytic GLUT1 in the cortex and hippocampus from 9
to 12 months onward, which coincided with changes in glucose
uptake as measured using microdialysis. However, GLUT3 was
unaltered. By 16–22 months, IgG extravasation was observed,
indicating loss of BBB integrity. In 5xFAD aged 4.5 and 9months,
reductions in GLUT1 and tight junction protein ZO-1 were
found at both timepoints (Ahn et al., 2018). GLUT3 was not
studied. Another study in 12 month old NSE/hPS2m mice also
showed reductions in GLUT1 and GLUT3, but not GLUT4 (Lee
et al., 2013). A study by Chua et al. (2012) in AβPPsw/PS11E9
mice did not agree with changes observed in other models. Brain
glucose levels were measured to be lower than wildtypes at 12
and 15 months of age, but GLUT3 and GLUT4 were found to
be upregulated, not decreased (Chua et al., 2012). Unfortunately,
changes to GLUT1 were not studied.

Shang et al. (2019) investigated the additional effects of
chronic cerebral hypoperfusion on GLUT1 expression in APP23
mice. In normal APP23 mice, GLUT1 reductions were observed
at 12 months, which were further reduced in APP23 mice with
chronic cerebral hypoperfusion (Shang et al., 2019).

A number of studies have investigated GLUT expression in a
rat model of AD produced by administering streptozotocin via
intracerebroventricular injection. These studies found reduced
expression of GLUT1 (Deng et al., 2009; Biswas et al., 2018),
reduced expression of GLUT3 (Deng et al., 2009; Salkovic-
Petrisic et al., 2014; Biswas et al., 2018), and increased expression
of GLUT2 (Knezovic et al., 2017).

Evidence of Altered Glucose Transport in
AD From in-vivo Tracer Studies
Friedland et al. (1989) used FDG-PET to measure cerebral
transport and phosphorylation rates of glucose in patients with
probable AD and healthy age-matched controls. No difference in
the transport rate constants, K1 and k2, or the utilization rate k3,

were observed between groups. Two later FDG-PET studies in
AD patients showed different results; Jagust et al. (1991) showed
a reduction in the transport rate constant K1 in the frontal and
temporal cortex with minimal differences in occipital cortex and
total brain white matter, and a reduction in regional CMRglu
in all cortical regions compared to controls; Piert et al. (1996)
found significant reductions in K1 and k3 in multiple cortical
and subcortical regions of the brain in people with AD compared
to controls with the most significant reductions being seen in
the parietal and temporal cortices. Kimura and Naganawa (2005)
performed dynamic PET studies in three subjects, a 45-year-
old normal subject, a 65-year-old subject with mild AD, and
a 70-year-old subject with severe AD. Glucose transport was
globally reduced in both AD cases compared to the normal
subject. Glucose phosphorylation was diminished in gray matter
of the severe case of AD, excluding the sensory, motor, and
visual cortices. In the mild case, phosphorylation was reduced
in the right parieto-temporal area. In another dynamic FDG-
PET study of seven patients with mild AD and six normal age-
matched controls, Mosconi et al. (2007b) showed significant
reductions in K1 in the hippocampus in AD compared to
controls, although relative CMRglu was better able to identify
AD from controls, likely due to the additional contribution of
reduced glucose phosphorylation.

A small number of tracer studies have been performed in
rodents, which all support reduced transport of glucose in AD.
Do et al. (2014) perfused brains of 3xTgAD and wild-type
mice with [3H]-D-glucose (0.3 mCi/ml) immediately prior to
decapitation and measurement of tissue radioactivity using a
scintillation counter (Do et al., 2014). No difference in [3H]-D-
glucose uptake was found in 3xTgAD mice compared to wild-
types aged 6 or 8 months, but a significant decrease was found
in 3xTgAD mice at 18 months. The reduced uptake at 18 month
was associated with reduced expression of GLUT1 at the same
timepoint. Ding et al. (2013) used micro-FDG-PET to study
glucose uptake in 3xTgAD mice and wild-types at various ages.
FDG-PET signals were measured at 40min post injection of
FDG, and are likely to reflect both transport and utilization.
Reductions in the FDG-PET signal were found in both AD and
wild-type animals with age, but while no formal comparison
was made, FDG-PET signals did not appear to differ across
genotype. Last, Merlini et al. (2011) performed microdialysis
in arcAβ following intravenous injection of glucose and found
reduced uptake compared to wild-types, despite increases in IgG
extravasation in AD mice.

Effects of GLUT Alterations on Brain
Physiology
The effects of GLUT disruptions on the brain have been studied
in rodent models. Abdul Muneer et al. (2011) induced GLUT1
disruption in a mouse model through the administration of
methamphetamine. This led to a reduction in BBB tight junction
proteins, indicating that GLUTs may play a role in regulating
BBB integrity. Winkler et al. (2015) later demonstrated that
GLUT1 deficient mice overexpressing APP showed changes
characteristic of AD. These included reduced brain capillary
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levels of low-density lipoprotein receptor-related protein 1
(LRP1), a transporter at the BBB which clears Aβ from the brain
(Zlokovic, 2008, 2011), diminished cerebral blood flow, early
BBB breakdown, accelerated Aβ deposition in the hippocampus
and cortex, neuronal dysfunction and cognitive impairment.
They also observed that vascular changes preceded neuronal
dysfunction in these mice. Decreased levels of GLUT1 and
GLUT3 were found in a rat model of sporadic AD, achieved
through the intracerebroventricular injection of streptozotocin,
alongside impaired insulin signaling and abnormalities in
phosphorylation and microtubule binding activity of tau (Deng
et al., 2009).

Effects of severe glucose transporter depletion on early brain
development can be observed in human GLUT1 deficiency
syndrome, a rare genetic disorder characterized by impaired
glucose metabolism due to a deficiency in GLUT1. Clinical
features include intellectual disability, movement disorders and
epileptic seizures refractory to treatment. Late-onset GLUT1
deficiency syndrome affects children at an older age, with
evidence showing mild to moderate intellectual disability (Leen
et al., 2010). A later study by the same group followed
up patients with GLUT1 deficiency syndrome between 18
and 41 years old. Their results showed that while the
prominent feature during childhood is epilepsy, this diminishes
later in life and new movement disorders become apparent
during adolescence. Cognitive function, however, did not
appear to worsen with age (Leen et al., 2014). There is
no evidence of GLUT1 deficiency syndrome manifesting in
late adulthood.

Links Between Insulin Resistance and
GLUT Changes
Deficits in transport and metabolism in AD may result from
impaired insulin signaling, particularly due to alterations in the
function of insulin-sensitive transporters. Mullins et al. (2017)
investigated the relationship between the pathological hallmarks
of AD and genes related to insulin resistance by converting
histological and gene expression data into 3D spatial maps. Their
findings showed that GLUT1 was positively correlated, whereas
GLUT4 was negatively correlated, with insulin signaling proteins
(including IRS-1).

In a mouse model of AD, Chua et al. (2012) found that
insulin signaling molecules were increased, alongside increases
in GLUT3 and GLUT4 expression and decreases in brain
insulin and glucose content, and that these changes occurred
earlier than pathological accumulation of Aβ. In the STZ
rat model of AD, increases in GLUT2 were accompanied
by decreases in insulin receptors (Knezovic et al., 2017).
In the same model, Deng et al. (2009) found decreases in
insulin signaling alongside decreases in GLUT1 and GLUT3
(Deng et al., 2009).

Insulin resistance has been targeted as a means to restore
glucose transport by number of groups. In a small randomized
control trial, Gejl et al. (2017) examined the effects of GLP-
1 analog treatment in patients with a clinical diagnosis of
AD. In their study, 18 participants received liraglutide and 20

received placebo in a 26-week period. Their results showed that
treatment with liraglutide significantly raised the average blood-
brain glucose transport capacity estimate (p < 0.0001) from
0.72 to 1.1 (µmol/g/min) compared to placebo, which positiviely
correlated with measures of cognition. Salkovic-Petrisic et al.
(2014) performed long-term dosing of STZ rats with galactose as
an alternative energy source to glucose and found upregulation of
GLUT3 transporters back to levels observed in healthy rats and
improved cognitive deficit.

DISCUSSION

This systematic review examines the evidence for alterations in
glucose transport in AD and the effect of these alterations on the
brain. The majority of studies investigating GLUT1 and GLUT3
suggest that both transporters are reduced in the hippocampus
and cortex of AD brains. Longitudinal rodent studies did not find
changes at early timepoints, but consistently observed reductions
in transporter expression after Aβ pathology had developed,
indicating that Aβ itself may be responsible.

There were fewer studies investigating other GLUTs including
GLUT2, GLUT4, GLUT12, and GLUT14. A rise in GLUT2 in
AD brain tissue was observed by Liu et al. (2009) and Knezovic
et al. (2017). In the study by Liu et al. (2009), GLUT2 changes
were exacerbated in patients who also had T2DM. It is possible
that GLUT2 increases to serve as a compensatory mechanism of
GLUT1 and GLUT3 loss. The role of GLUT2, therefore, requires
further investigation. No changes in GLUT4, an insulin sensitive
transporter, were found in aged NSE/hPS2m (Lee et al., 2013)
or 3xTg mice (Griffith et al., 2019), whereas Chua et al. (2012)
found increases in AβPPsw/PS11E9 mice. Pujol-Gimenez et al.
(2014) showed GLUT12, also an insulin-sensitive transporter,
was increased in AD brain tissue. A study by Purcell et al.
(2011) showed that overexpression of GLUT12 in healthy mice
improved whole-body insulin sensitivity, indicating GLUT12
may play a compensatory role when insulin resistance develops in
AD. The findings by Wang et al. (2012) on GLUT14 demonstrate
that SLC2A14 polymorphisms may increase susceptibility to
late-onset AD. Further work is required to determine the
role of these lesser-studied GLUTs in AD and gauge their
therapeutic potential.

The cause of glucose transporter expression in AD remains
unclear. One suggestion for the reduction of GLUT1 in the
AD brain is an abnormality in the translation process of the
transporter. Brains of AD patients have been found to express
low levels of transcription factor hypoxia-inducible factor 1α, a
protein complex which regulates GLUT1 and GLUT3 expression
(Liu et al., 2008; Cohen et al., 2014). However, Mooradian
et al. (1997) did not observe any changes in GLUT1 mRNA
concentrations, which suggests a post-translational abnormality.
Another study proposed that the activation of calpain I, a
calcium sensitive protease, is a potential cause of GLUT3
under-expression (Jin et al., 2013) due to its damaging effect
through proteolysis of GLUT3 promoters. Calpain I has also
been associated with downregulation of protective mechanisms
against tau phosphorylation (Gu et al., 2018).
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AD pathologies such as Aβ or tau may directly reduce
GLUT expression. The low capillary density found within Aβ

plaques in the study by Kawai et al. (1990) may suggest that
Aβ plaques lead to the degeneration of capillaries, which may
in turn affect GLUT expression. Findings by An et al. (2018)
suggest that a reduction of GLUT3 but not GLUT1 is more
closely correlated with Aβ and NFT abnormalities. Studies using
amyloidogenic mouse models support a link between spatial
proximity of Aβ to glucose transporter alterations (Kouznetsova
et al., 2006; Kuznetsova and Schliebs, 2013), and indicate
that GLUT changes occur after development of Aβ pathology
(Hooijmans et al., 2007; Kuznetsova and Schliebs, 2013; Do
et al., 2014; Griffith et al., 2019). Injection of Aβ1−42 into the
brain of healthy mice produced very similar effects on GLUT
expression as observed in AD mice, indicating Aβ plays a direct
role in modulating GLUT expression (Gil-Iturbe et al., 2020).
Mark et al. (1997) examined the relationship between Aβ and
glucose transport, by examining cultured rat hippocampal and
cortical neurons. Their results demonstrate that Aβ deposition
impairs glucose transport through a mechanism involving
membrane lipid peroxidation. The authors suggest that this
mechanism may further lead to neurodegeneration in AD.
In a drosophila study, Niccoli et al. (2016) demonstrated a
protective effect against Aβ toxicity by genetically upregulating
glucose transporters. Similar results were demonstrated when
using metformin, an anti-diabetic drug designed to stimulate
glucose uptake into cells. Human studies are yet to confirm
these findings.

Without measuring glucose uptake into brain tissue, it is
difficult to know how changes in GLUTs affect glucose availability
in parenchymal cells. Tracer studies that measure uptake of
glucose and glucose-analogs into brain are therefore crucial
for determining the impact of GLUT changes on glucose
transport. Uptake of glucose can be measured using a range
of methods from invasive perfusion-based approaches, to non-
invasive imaging techniques such as FDG-PET. Generally, tracer-
based studies performed to date show that transport of glucose
into the brains of AD patients and rodent models of AD is
reduced. Unfortunately, these studies cannot distinguish between
glucose transport through the BBB or through cell membranes.
The affinity of glucose for GLUT3 (Kt = 1.4mM, measured using
2DG) is much higher than that of GLUT1 (Kt = 6.9mM, also
measured using 2DG; lower Kt values relate to higher affinity),
and therefore glucose transport across the BBB is likely to be
rate limiting under most conditions (Simpson et al., 2008).
Furthermore, Lund-Andersen (1979) and Pardridge (1994) argue
that because the total surface area and mass of GLUTs on
parenchymal cells far exceeds that of endothelial cells, glucose
uptake into the intracellular space is limited by GLUT1 at the
BBB, not by astrocyte GLUT1 or neuronal GLUT3. Therefore,
it is likely that reductions in uptake of glucose or glucose-
analogs into brain tissue reflect mainly reductions to GLUT1
at the BBB.

GLUT1 and GLUT3 are considered insulin-independent
glucose transporters, and therefore are assumed not to be
affected by insulin or insulin-like growth factors. It is therefore
expected that insulin-resistance does not alter uptake of glucose

through these transporters. However, there is some evidence
that GLUT1 and GLUT3 may be moderately affected by
insulin. Hernandez-Garzón et al. (2016) observed that astrocytic
insulin-like growth factor receptor modulates the expression
of GLUT1, but the authors did not determine if this affected
uptake of glucose. Muhič et al. (2015) did not observe any
effects of insulin or insulin growth factor on glucose uptake
into astrocytes, suggesting that GLUT1, and even the insulin-
sensitive transporter GLUT4 present on astrocytes, are not
particularly sensitive to insulin. The effects of insulin on
endothelial GLUT1 has not been studied. Hypoglycemia is
known to cause upregulation of BBB GLUT1 and neuronal
GLUT3, an adaptive mechanism to ensure sufficient glucose is
delivered to the brain (Kumagai et al., 1995; Simpson et al.,
1999; Yun et al., 2018). It is possible these changes occur
due to hyperinsulinemia—a study in man showed that insulin
increases uptake of glucose across the BBB, however the dose
of insulin required to detect an effect was non-physiological.
It is likely the dominant driver of GLUT1 changes at the BBB
is glucose itself; in-vitro studies show hyperglycemia increases
GLUT1 and glucose uptake in the absence of insulin (Takakura
et al., 1991; Sajja et al., 2014). Despite this, the studies of
Deng et al. (2009), Chua et al. (2012), and Mullins et al.
(2017) support an association between insulin resistance and
altered expression of insulin-insensitive transporters GLUT1
and GLUT3.

It is possible the link between insulin resistance and alterations
to insulin-insensitive GLUTs occurs via a joint relationship with
AD pathologies Aβ and tau. Mullins et al. (2017) found areas
exhibiting lower expression of glucose transporters and insulin
signaling genes had higher levels of Aβ and tau pathology.
Insulin is known to promote Aβ clearance (Watson et al., 2003)
while insulin resistance promotes the formation of Aβ oligomers
(Yamamoto et al., 2012). It is suggested that a positive feedback
loop subsequently occurs as Aβ oligomers lead to increased
phosphorylation of insulin signaling proteins (Yoon et al., 2012)
which, in turn, leads to further insulin resistance. The results
from the randomized controlled trial on the use of liraglutide in
AD provides further insight into the possible link between insulin
resistance, glucose transporters and AD (Gejl et al., 2016). Their
results show an improvement in glucose transport capacity with
liraglutide. It is not clear whether this improvement reflects an
increase in glucose transporters or an increase in postprandial
insulin levels, however, as liraglutide does not cross the BBB, it
is possible that it causes a direct effect on the BBB itself.

CLINICAL SIGNIFICANCE AND FUTURE
PERSPECTIVE

Altered glucose metabolism occurs several years before evidence
of cognitive impairment in AD (Chen and Zhong, 2013).
Altered glucose transport has also been observed in mild
cognitive impairment (MCI) (Mosconi et al., 2013), and deletion
of glucose transporters has been shown to cause substantial
neurodegenerative effects in animal models (Nicholson et al.,
2010; Ding et al., 2013; Winkler et al., 2015). This suggests that
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drugs targeting the restoration of normal GLUT expression may
be highly effective at reducing cognitive decline and transition
from MCI to AD. Only a small proportion of drugs are able
to cross the BBB, mainly due to the characteristic properties
of desolvation, lipophilicity, molecular volume and dipole
moment required for molecules to cross the BBB (Fong, 2015).
Additionally, the BBB has tight control over what molecules
leave the brain, making drug development in neurodegenerative
disease more challenging (Pardridge, 2009). GLUT1 therefore
becomes a highly attractive therapeutic target since it is present
on the BBB itself.

GLUTs play a significant role in AD pathology with
substantial evidence suggesting that GLUT1 and GLUT3
reductions occur following amyloid accumulation, but may
precede the onset of clinical symptoms, while GLUT2 and
GLUT12 appear to increase and may have a compensatory
role. FDG-PET imaging could provide a means to detect
reduced glucose transport in a clinical setting. Repurposing
anti-diabetic drugs shows promising results in human studies
of AD (Gejl et al., 2016, 2017). With evidence suggesting that
metabolic changes can accurately predict subsequent cognitive
decline (De Leon et al., 2001; Jagust et al., 2006; Mosconi
et al., 2008), therapeutic strategies aiming to modify glucose
transport could have a significant impact in clinical management
of AD.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

NK, BD, HE, LP, and OS contributed to the conception and
design of the study. NKwrote the first draft of themanuscript. All
authors contributed to manuscript revision, read, and approved
the submitted version.

FUNDING

The work was funded by the Medical Research Council
Confidence in Concept Funding [Round 6,MC_PC_17172]
(Manchester) and the Northwest Foundation School for funding
NK’s academic training post.

ACKNOWLEDGMENTS

We would like to thank all contributors to this systematic
literature review, our funders, and the University of Manchester
for the facilities provided to NK.

REFERENCES

Abdul Muneer, P. M., Alikunju, S., Szlachetka, A. M., Murrin, L. C., and

Haorah, J. (2011). Impairment of brain endothelial glucose transporter by

methamphetamine causes blood-brain barrier dysfunction.Mol. Neurodegener.

6:23. doi: 10.1186/1750-1326-6-23

Ahn, K. C., Learman, C. R., Dunbar, G. L., Maiti, P., Jang, W. C., Cha,

H. C., et al. (2018). Characterization of impaired cerebrovascular

structure in APP/PS1 mouse brains. Neuroscience 385, 246–254.

doi: 10.1016/j.neuroscience.2018.05.002

An, Y., Varma, V. R., Varma, S., Casanova, R., Dammer, E., Pletnikova, O.,

et al. (2018). Evidence for brain glucose dysregulation in Alzheimer’s disease.

Alzheimer’s Dement. 14, 318–329. doi: 10.1016/j.jalz.2017.09.011

Biswas, J., Gupta, S., Verma, D. K., Gupta, P., Singh, A., Tiwari, S., et al. (2018).

Involvement of glucose related energy crisis and endoplasmic reticulum stress:

Insinuation of streptozotocin induced Alzheimer’s like pathology. Cell. Signal

42, 211–226. doi: 10.1016/j.cellsig.2017.10.018

Bokde, A. L. W., Pietrini, P., Ibáñez, V., Furey, M. L., Alexander, G. E.,

Graff-Radford, N. R., et al. (2001). The effect of brain atrophy on cerebral

hypometabolism in the visual variant of Alzheimer disease. Arch. Neurol. 58,

480–486. doi: 10.1001/archneur.58.3.480

Burke,M. J. C., Nelson, L., Slade, J. Y., Oakley, A. E., Khundakar, A. A., and Kalaria,

R. N. (2014). Morphometry of the hippocampal microvasculature in post-

stroke and age-related dementias. Neuropathol. Appl. Neurobiol. 40, 284–295.

doi: 10.1111/nan.12085

Carruthers, A., and Helgerson, A. L. (1991). Inhibitions of sugar transport

produced by ligands binding at opposite sides of the membrane. evidence

for simultaneous occupation of the carrier by maltose and cytochalasin B.

Biochemistry 30, 3907–3915. doi: 10.1021/bi00230a015

Castello, M. A., and Soriano, S. (2014). On the origin of Alzheimer’s disease.

trials and tribulations of the amyloid hypothesis. Ageing Res. Rev. 13, 10–12.

doi: 10.1016/j.arr.2013.10.001

Chen, Z., and Zhong, C. (2013). Decoding Alzheimer’s disease from perturbed

cerebral glucose metabolism: Implications for diagnostic and therapeutic

strategies. Prog. Neurobiol. 108, 21–43. doi: 10.1016/j.pneurobio.2013.06.004

Chételat, G., Villemagne, V. L., Bourgeat, P., Pike, K. E., Jones, G., Ames, D., et al.

(2010). Relationship between atrophy and β-amyloid deposition in Alzheimer

disease. Ann. Neurol. 67, 317–324. doi: 10.1002/ana.21955

Chua, L. M., Lim, M. L., Chong, P. R., Hu, Z. P., Cheung, N. S., and

Wong, B. S. (2012). Impaired neuronal insulin signaling precedes Aβ42

accumulation in female AβPPsw/PS11E9Mice. J. Alzheimer’s Dis. 29, 783–791.

doi: 10.3233/JAD-2012-111880

Cohen, S. S., Powers, B. R., Lerch-Gaggl, A., Teng, R.-J., and Konduri,

G. G. (2014). Impaired cerebral angiogenesis in the fetal lamb model

of persistent pulmonary hypertension. Int. J. Dev. Neurosci. 38, 113–118.

doi: 10.1016/j.ijdevneu.2014.08.003

Congdon, E. E., and Sigurdsson, E. M. (2018). Tau-targeting

therapies for Alzheimer disease. Nat. Rev. Neurol. 14, 399–415.

doi: 10.1038/s41582-018-0013-z

De Leon, M. J., Convit, A., Wolf, O. T., Tarshish, C. Y., DeSanti, S., Rusinek, H.,

et al. (2001). Prediction of cognitive decline in normal elderly subjects with 2-

[(18)F]fluoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET).

Proc. Natl. Acad. Sci. U.S.A. 98, 10966–10971. doi: 10.1073/pnas.191044198

de Leon, M. J., Ferris, S. H., George, A. E., Christman, D. R., Fowler, J. S., Gentes,

C., et al. (1983). Positron emission tomographic studies of aging and Alzheimer

disease. AJNR. Am. J. Neuroradiol. 4, 568–571.

Deng, Y., Li, B., Liu, Y., Iqbal, K., Grundke-Iqbal, I., and Gong, C.

X. (2009). Dysregulation of insulin signaling, glucose transporters, O-

GlcNAcylation, and phosphorylation of tau and neurofilaments in the

brain: implication for Alzheimer’s disease. Am. J. Pathol. 175, 2089–2098.

doi: 10.2353/ajpath.2009.090157

Ding, F., Yao, J., Rettberg, J. R., Chen, S., and Brinton, R. D. (2013). Early decline in

glucose transport and metabolism precedes shift to ketogenic system in female

aging and Alzheimer’s mouse brain: Implication for bioenergetic intervention.

PLoS ONE 8:e79977. doi: 10.1371/journal.pone.0079977

Do, T. M., Alata, W., Dodacki, A., Traversy, M. T., Chacun, H., Pradier, L.,

et al. (2014). Altered cerebral vascular volumes and solute transport at

the blood-brain barriers of two transgenic mouse models of Alzheimer’s

disease. Neuropharmacology 81, 311–317. doi: 10.1016/j.neuropharm.2014.

02.010

Frontiers in Neuroscience | www.frontiersin.org 12 May 2021 | Volume 15 | Article 626636141

https://doi.org/10.1186/1750-1326-6-23
https://doi.org/10.1016/j.neuroscience.2018.05.002
https://doi.org/10.1016/j.jalz.2017.09.011
https://doi.org/10.1016/j.cellsig.2017.10.018
https://doi.org/10.1001/archneur.58.3.480
https://doi.org/10.1111/nan.12085
https://doi.org/10.1021/bi00230a015
https://doi.org/10.1016/j.arr.2013.10.001
https://doi.org/10.1016/j.pneurobio.2013.06.004
https://doi.org/10.1002/ana.21955
https://doi.org/10.3233/JAD-2012-111880
https://doi.org/10.1016/j.ijdevneu.2014.08.003
https://doi.org/10.1038/s41582-018-0013-z
https://doi.org/10.1073/pnas.191044198
https://doi.org/10.2353/ajpath.2009.090157
https://doi.org/10.1371/journal.pone.0079977
https://doi.org/10.1016/j.neuropharm.2014.02.010
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kyrtata et al. Glucose Transport Alterations in AD

Fong, C.W. (2015). Permeability of the blood–brain barrier: molecular mechanism

of transport of drugs and physiologically important compounds. J. Membr. Biol.

248, 651–669. doi: 10.1007/s00232-015-9778-9

Friedland, R. P., Jagust, W. J., Huesman, R. H., Koss, E., Knittel, B., Mathis, C. A.,

et al. (1989). Regional cerebral glucose transport and utilization in Alzheimer’s

disease. Neurology 39, 1427–1434. doi: 10.1212/WNL.39.11.1427

Games, D., Adams, D., Alessandrini, R., Barbour, R., Borthelette, P., Blackwell,

C., et al. (1995). Alzheimer-type neuropathology in transgenic mice

overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527.

doi: 10.1038/373523a0

Gejl, M., Brock, B., Egefjord, L., Vang, K., Rungby, J., and Gjedde, A. (2017). Blood-

brain glucose transfer in Alzheimer’s disease: effect of GLP-1 analog treatment.

Sci. Rep. 7:17490. doi: 10.1038/s41598-017-17718-y

Gejl, M., Gjedde, A., Egefjord, L., Møller, A., Hansen, S., Vang, K., et al. (2016). In

Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline

of brain glucose metabolism: randomized, placebo-controlled, double-blind

clinical trial. Front. Aging Neurosci. 8:108. doi: 10.3389/fnagi.2016.00108

Gil-Iturbe, E., Solas, M., Cuadrado-Tejedo, M., García-Osta, A., Escoté,

X., Ramírez, M. J., et al. (2020). GLUT12 expression in brain of

mouse models of Alzheimer’s Disease. Mol. Neurobiol. 57, 798–805.

doi: 10.1007/s12035-019-01743-1

Griffith, C. M., MacKlin, L. N., Cai, Y., Sharp, A. A., Yan, X. X., Reagan, L. P.,

et al. (2019). Impaired glucose tolerance and reduced plasma insulin precede

decreased AKT phosphorylation and GLUT3 translocation in the hippocampus

of Old 3xTg-ADMice. J. Alzheimer’s Dis. 68, 809–837. doi: 10.3233/JAD-180707

Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., and

Binder, L. I. (1986). Abnormal phosphorylation of the microtubule-associated

protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci.

U.S.A. 83, 4913–4917. doi: 10.1073/pnas.83.13.4913

Gu, J., Jin, N., Ma, D., Chu, D., Iqbal, K., Gong, C. X., et al. (2018).

Calpain I activation causes GLUT3 proteolysis and downregulation of O-

GlcNAcylation in Alzheimer’s disease brain. J. Alzheimer’s Dis. 62, 1737–1746.

doi: 10.3233/JAD-171047

Hanseeuw, B. J., Betensky, R. A., Jacobs, H. I. L., Schultz, A. P., Sepulcre,

J., Becker, J. A., et al. (2019). Association of amyloid and tau with

cognition in preclinical Alzheimer disease. JAMA Neurol. 76, 915–924.

doi: 10.1001/jamaneurol.2019.1424

Harik, S. I. (1992). Changes in the glucose transporter of brain capillaries. Can. J.

Physiol. Pharmacol. 70, S113–S117. doi: 10.1139/y92-252

Harik, S. I., and Kalaria, R. N. (1991). Blood-brain barrier abnormalities

in Alzheimer’s diseasea. Ann. N. Y. Acad. Sci. 640, 47–52.

doi: 10.1111/j.1749-6632.1991.tb00189.x

Harr, S. D., Simonian, N. A., and Hyman, B. T. (1995). Functional alterations

in Alzheimer’s disease: decreased glucose transporter 3 immunoreactivity in

the perforant pathway terminal zone. J. Neuropathol. Exp. Neurol. 54, 38–41.

doi: 10.1097/00005072-199501000-00005

Hase, Y., Ding, R., Harrison, G., Hawthorne, E., King, A., Gettings, S., et al. (2019).

White matter capillaries in vascular and neurodegenerative dementias. Acta

Neuropathol. Commun. 7:16. doi: 10.1186/s40478-019-0666-x

Hernandez-Garzón, E., Fernandez, A. M., Perez-Alvarez, A., Genis, L., Bascuñana,

P., Fernandez de la Rosa, R., et al. (2016). The insulin-like growth factor

I receptor regulates glucose transport by astrocytes. Glia 64, 1962–1971.

doi: 10.1002/glia.23035

Herrup, K. (2015). The case for rejecting the amyloid cascade hypothesis. Nat.

Neurosci. 18, 794–799. doi: 10.1038/nn.4017

Honer, W. G., Dickson, D. W., Gleeson, J., and Davies, P. (1992). Regional

synaptic pathology in Alzheimer’s disease. Neurobiol. Aging 13, 375–382.

doi: 10.1016/0197-4580(92)90111-A

Hooijmans, C. R., Graven, C., Dederen, P. J., Tanila, H., van Groen, T., and

Kiliaan, A. J. (2007). Amyloid beta deposition is related to decreased glucose

transporter-1 levels and hippocampal atrophy in brains of aged APP/PS1 mice.

Brain Res. 1181, 93–103. doi: 10.1016/j.brainres.2007.08.063

Horwood, N., and Davies, D. C. (1994). Immunolabelling of hippocampal

microvessel glucose transporter protein is reduced in Alzheimer’s disease.

Virchows Arch. 425, 69–72. doi: 10.1007/BF00193951

Iadecola, C. (2015). Sugar and Alzheimer’s disease: a bittersweet truth. Nat.

Neurosci. 18, 477–478. doi: 10.1038/nn.3986

Jagust, W., Gitcho, A., Sun, F., Kuczynski, B., Mungas, D., and Haan, M. (2006).

Brain imaging evidence of preclinical Alzheimer’s disease in normal aging.Ann.

Neurol. 59, 673–681. doi: 10.1002/ana.20799

Jagust, W. J., Seab, P. J., Huesman, R. H., Valk, P. E., Mathis, C. A., Reed, B. R.,

et al. (1991). Diminished glucose transport in Alzheimer’s disease: dynamic PET

studies. J. Cereb. Blood Flow Metab. 11, 323–330. doi: 10.1038/jcbfm.1991.65

Jin, N., Qian, W., Yin, X., Zhang, L., Iqbal, K., Grundke-Iqbal, I., et al. (2013).

CREB regulates the expression of neuronal glucose transporter 3: a possible

mechanism related to impaired brain glucose uptake in Alzheimer’s disease.

Nucleic Acids Res. 41, 3240–3256. doi: 10.1093/nar/gks1227

Kalaria, R. N., and Harik, S. I. (1989). Abnormalities of the glucose transporter at

the blood-brain barrier and in brain in Alzheimer’s disease. Prog. Clin. Biol. Res.

317, 415–421.

Kametani, F., and Hasegawa, M. (2018). Reconsideration of amyloid

hypothesis and tau hypothesis in Alzheimer’s disease. Front. Neurosci.

12:25. doi: 10.3389/fnins.2018.00025

Kawai, M., Kalaria, R. N., Harik, S. I., and Perry, G. (1990). The relationship of

amyloid plaques to cerebral capillaries in Alzheimer’s disease. Am. J. Pathol.

137, 1435–1446.

Kimura, Y., and Naganawa, M. (2005). “Imaging detailed glucose metabolism in

the brain using MAP estimation in positron emission tomography,” in Annual

International Conference of the IEEE Engineering in Medicine and Biology -

Proceedings (Shanghai: Institute of Electrical and Electronics Engineers Inc.),

4477–4479. doi: 10.1109/IEMBS.2005.1615461

Knezovic, A., Loncar, A., Homolak, J., Smailovic, U., Osmanovic Barilar, J.,

Ganoci, L., et al. (2017). Rat brain glucose transporter-2, insulin receptor

and glial expression are acute targets of intracerebroventricular streptozotocin:

risk factors for sporadic Alzheimer’s disease? J. Neural Transm. 124, 695–708.

doi: 10.1007/s00702-017-1727-6

Koepsell, H. (2020). Glucose transporters in brain in health and disease. Pflugers

Arch. Eur. J. Physiol. 472, 1299–1343. doi: 10.1007/s00424-020-02441-x

Kosik, K. S., Joachim, C. L., and Selkoe, D. J. (1986). Microtubule-associated

protein tau (tau) is a major antigenic component of paired helical

filaments in Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 83, 4044–4048.

doi: 10.1073/pnas.83.11.4044

Kouznetsova, E., Klingner, M., Sorger, D., Sabri, O., Großmann, U., Steinbach, J.,

et al. (2006). Developmental and amyloid plaque-related changes in cerebral

cortical capillaries in transgenic Tg2576 Alzheimer mice. Int. J. Dev. Neurosci.

24, 187–193. doi: 10.1016/j.ijdevneu.2005.11.011

Kumagai, A. K., Kang, Y. S., Boado, R. J., and Pardridge, W. M. (1995).

Upregulation of blood-brain barrier GLUT1 glucose transporter protein

and mRNA in experimental chronic hypoglycemia. Diabetes 44, 1399–1404.

doi: 10.2337/diab.44.12.1399

Kumari, U., and Heese, K. (2010). Cardiovascular dementia - a different

perspective. Open Biochem. J. 4, 29–52. doi: 10.2174/1874091X01004010029

Kuznetsova, E., and Schliebs, R. (2013). β-Amyloid, cholinergic transmission,

and cerebrovascular system - a developmental study in a mouse

model of Alzheimer’s disease. Curr. Pharm. Des. 19, 6749–6765.

doi: 10.2174/13816128113199990711

Larrabee, M. G. (2002). Lactate metabolism and its effects on glucose

metabolism in an excised neural tissue. J. Neurochem. 64, 1734–1741.

doi: 10.1046/j.1471-4159.1995.64041734.x

Lee, Y. J., Kim, J. E., Hwang, I. S., Kwak, M. H., Lee, J. H., Jung, Y. J.,

et al. (2013). Alzheimer’s phenotypes induced by overexpression of human

presenilin 2 mutant proteins stimulate significant changes in key factors

of glucose metabolism. Mol. Med. Rep. 7, 1571–1578. doi: 10.3892/mmr.20

13.1404

Leen, W. G., Klepper, J., Verbeek, M. M., Leferink, M., Hofste, T., van Engelen,

B. G., et al. (2010). Glucose transporter-1 deficiency syndrome: the expanding

clinical and genetic spectrum of a treatable disorder. Brain J. Neurol. 133,

655–670. doi: 10.1093/brain/awp336

Leen, W. G., Taher, M., Verbeek, M. M., Kamsteeg, E. J., van de Warrenburg, B. P.,

and Willemsen, M. A. (2014). GLUT1 deficiency syndrome into adulthood: a

follow-up study. J. Neurol. 261, 589–599. doi: 10.1007/s00415-014-7240-z

Leloup, C., Arluison, M., Kassis, N., Lepetit, N., Cartier, N., Ferré, P., et al. (1996).

Discrete brain areas express the insulin-responsive glucose transporter GLUT4.

Mol. Brain Res. 38, 45–53. doi: 10.1016/0169-328X(95)00306-D

Frontiers in Neuroscience | www.frontiersin.org 13 May 2021 | Volume 15 | Article 626636142

https://doi.org/10.1007/s00232-015-9778-9
https://doi.org/10.1212/WNL.39.11.1427
https://doi.org/10.1038/373523a0
https://doi.org/10.1038/s41598-017-17718-y
https://doi.org/10.3389/fnagi.2016.00108
https://doi.org/10.1007/s12035-019-01743-1
https://doi.org/10.3233/JAD-180707
https://doi.org/10.1073/pnas.83.13.4913
https://doi.org/10.3233/JAD-171047
https://doi.org/10.1001/jamaneurol.2019.1424
https://doi.org/10.1139/y92-252
https://doi.org/10.1111/j.1749-6632.1991.tb00189.x
https://doi.org/10.1097/00005072-199501000-00005
https://doi.org/10.1186/s40478-019-0666-x
https://doi.org/10.1002/glia.23035
https://doi.org/10.1038/nn.4017
https://doi.org/10.1016/0197-4580(92)90111-A
https://doi.org/10.1016/j.brainres.2007.08.063
https://doi.org/10.1007/BF00193951
https://doi.org/10.1038/nn.3986
https://doi.org/10.1002/ana.20799
https://doi.org/10.1038/jcbfm.1991.65
https://doi.org/10.1093/nar/gks1227
https://doi.org/10.3389/fnins.2018.00025
https://doi.org/10.1109/IEMBS.2005.1615461
https://doi.org/10.1007/s00702-017-1727-6
https://doi.org/10.1007/s00424-020-02441-x
https://doi.org/10.1073/pnas.83.11.4044
https://doi.org/10.1016/j.ijdevneu.2005.11.011
https://doi.org/10.2337/diab.44.12.1399
https://doi.org/10.2174/1874091X01004010029
https://doi.org/10.2174/13816128113199990711
https://doi.org/10.1046/j.1471-4159.1995.64041734.x
https://doi.org/10.3892/mmr.2013.1404
https://doi.org/10.1093/brain/awp336
https://doi.org/10.1007/s00415-014-7240-z
https://doi.org/10.1016/0169-328X(95)00306-D
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kyrtata et al. Glucose Transport Alterations in AD

Liu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K., and Gong, C.-X. (2009).

Brain glucose transporters, O-GlcNAcylation and phosphorylation of

tau in diabetes and Alzheimer’s disease. J. Neurochem. 111, 242–249.

doi: 10.1111/j.1471-4159.2009.06320.x

Liu, Y., Liu, F., Iqbal, K., Grundke-Iqbal, I., and Gong, C. X. (2008). Decreased

glucose transporters correlate to abnormal hyperphosphorylation of tau in

Alzheimer disease. FEBS Lett. 582, 359–364. doi: 10.1016/j.febslet.2007.12.035

Lund-Andersen, H. (1979). Transport of glucose from blood to brain. Physiol. Rev.

59, 305–352. doi: 10.1152/physrev.1979.59.2.305

Magistretti, P. J., and Pellerin, L. (1999). Cellular mechanisms of brain energy

metabolism and their relevance to functional brain imaging. Philos. Trans. R.

Soc. Lond. B. Biol. Sci. 354, 1155–1163. doi: 10.1098/rstb.1999.0471

Mark, R. J., Pang, Z., Geddes, J.W., Uchida, K., andMattson,M. P. (1997). Amyloid

β-peptide impairs glucose transport in hippocampal and cortical neurons:

involvement of membrane lipid peroxidation. J. Neurosci. 17, 1046–1054.

doi: 10.1523/JNEUROSCI.17-03-01046.1997

Masdeu, J. C. (2008). Neuroimaging of disorders leading to

dementia. Contin. Lifelong Learn. Neurol. 14, 144–163.

doi: 10.1212/01.CON.0000333204.72795.ed

Masliah, E., Hansen, L., Albright, T., Mallory, M., and Terry, R. D. (1991).

Immunoelectron microscopic study of synaptic pathology in Alzheimer’s

disease. Acta Neuropathol. 81, 428–433. doi: 10.1007/BF00293464

Masliah, E., Terry, R. D., Alford, M., and DeTeresa, R. (1990). Quantitative

immunohistochemistry of synaptophysin in human neocortex: an alternative

method to estimate density of presynaptic terminals in paraffin sections. J.

Histochem. Cytochem. 38, 837–844. doi: 10.1177/38.6.2110586

May, J. M. (1988). Inhibition of hexose transport by adenosine derivatives in

human erythrocytes. J. Cell. Physiol. 135, 332–338. doi: 10.1002/jcp.1041350222

Merlini, M., Meyer, E. P., Ulmann-Schuler, A., and Nitsch, R. M. (2011). Vascular

β-amyloid and early astrocyte alterations impair cerebrovascular function and

cerebral metabolism in transgenic arcAβmice.Acta Neuropathol. 122, 293–311.

doi: 10.1007/s00401-011-0834-y

Mooradian, A. D., Chung, H. C., and Shah, G. N. (1997). GLUT-1 expression in

the cerebra of patients with Alzheimer’s disease. Neurobiol. Aging 18, 469–474.

doi: 10.1016/S0197-4580(97)00111-5

Morris, G. P., Clark, I. A., and Vissel, B. (2014). Inconsistencies and controversies

surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol.

Commun. 2:135. doi: 10.1186/s40478-014-0135-5

Mosconi, L., Andrews, R. D., and Matthews, D. C. (2013). Comparing brain

amyloid deposition, glucose metabolism, and atrophy in mild cognitive

impairment with and without a family history of dementia. J. Alzheimer’s Dis.

35, 509–524. doi: 10.3233/JAD-121867

Mosconi, L., Brys, M., Glodzik-Sobanska, L., De Santi, S., Rusinek, H., and de Leon,

M. J. (2007a). Early detection of Alzheimer’s disease using neuroimaging. Exp.

Gerontol. 42, 129–138. doi: 10.1016/j.exger.2006.05.016

Mosconi, L., De Santi, S., Li, J., Tsui, W. H., Li, Y., Boppana, M., et al. (2008).

Hippocampal hypometabolism predicts cognitive decline from normal aging.

Neurobiol. Aging 29, 676–692. doi: 10.1016/j.neurobiolaging.2006.12.008

Mosconi, L., De Santi, S., Rusinek, H., Convit, A., and de Leon, M. J.

(2004). Magnetic resonance and PET studies in the early diagnosis of

Alzheimer’s disease. Expert Rev. Neurother. 4, 831–849. doi: 10.1586/14737175.

4.5.831

Mosconi, L., Mistur, R., Switalski, R., Tsui, W. H., Glodzik, L., Li, Y., et al. (2009).

FDG-PET changes in brain glucose metabolism from normal cognition to

pathologically verified Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 36,

811–822. doi: 10.1007/s00259-008-1039-z

Mosconi, L., Sorbi, S., De Leon, M. J., Li, Y., Nacmias, B., Myoung, P. S.,

et al. (2006). Hypometabolism exceeds atrophy in presymptomatic early-onset

familial Alzheimer’s disease. J. Nucl. Med. 47, 1778–1786.

Mosconi, L., Tsui, W. H., Rusinek, H., De Santi, S., Li, Y., Wang, G. J., et al.

(2007b). Quantitation, regional vulnerability, and kinetic modeling of brain

glucosemetabolism inmild Alzheimer’s disease. Eur. J. Nucl. Med.Mol. Imaging

34, 1467–1479. doi: 10.1007/s00259-007-0406-5
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Alzheimer’s disease is a quintessential ‘unmet medical need’, accounting for ∼65%
of progressive cognitive impairment among the elderly, and 700,000 deaths in the
United States in 2020. In 2019, the cost of caring for Alzheimer’s sufferers was $244B,
not including the emotional and physical toll on caregivers. In spite of this dismal reality,
no treatments are available that reduce the risk of developing AD or that offer prolonged
mitiagation of its most devestating symptoms. This review summarizes key aspects
of the biology and genetics of Alzheimer’s disease, and we describe how pioglitazone
improves many of the patholophysiological determinants of AD. We also summarize the
results of pre-clinical experiments, longitudinal observational studies, and clinical trials.
The results of animal testing suggest that pioglitazone can be corrective as well as
protective, and that its efficacy is enhanced in a time- and dose-dependent manner,
but the dose-effect relations are not monotonic or sigmoid. Longitudinal cohort studies
suggests that it delays the onset of dementia in individuals with pre-existing type 2
diabetes mellitus, which small scale, unblinded pilot studies seem to confirm. However,
the results of placebo-controlled, blinded clinical trials have not borne this out, and we
discuss possible explanations for these discrepancies.

Keywords: Alzheimer’s disease, pioglitazone, preclinical models, observational studies, clinical trials

ALZHEIMER’S DISEASE AND DEFINING THE NEED

Alzheimer’s disease is a progressive, irreversible neurodegenerative disease whose most fearsome
clinical manifestation, and the target of most treatment-oriented human clinical trials, is dementia.
Dementia does not respect ethnicities or socioeconomic groups, and the fear of descending into
mindlessness is a haunting prospect.

Alzheimer’s disease is, by any definition, an unmet medical need. It is the most common cause
of dementia and currently is the third leading cause of death, behind cancer and heart disease.
Between 2000 and 2018, the number of deaths attributable to Alzheimer’s disease increased by more
than 145%, while the number of deaths attributable to heart disease declined by nearly 8% (Longhe,
2020). In 2018, an excess of 33 million people worldwide lived with AD. Without the development
of preventative treatments, this number will soar to 132 million people globally by 2050 (Patterson,
2018). The global annual burden of caring for patients is∼ 1 trillion USD currently, and is forecast
to double by 2030 (Patterson, 2018).

Given this reality, even a small change in the pathophysiological trajectory of an individual with
AD would substantially affect both the individual and society. A 1-year delay in the onset of AD
could reduce the economic impact in 2030 by $113 billion. By 2050, that 1-year delay would save
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$219 billion, and 3- and 5-year delays would result in savings of
$415 billion and $599 billion, respectively (Zissimopoulos et al.,
2015). Because of the high failure rate of treatment studies over
the past decade, and in line with the FDA guidelines, the focus of
AD clinical research has shifted to early intervention, during the
asymptomatic phase of Alzheimer’s disease, rather than initiating
treatments after symptoms have emerged (Sperling et al., 2014).

CHALLENGES TO DRUG DISCOVERY
FOR ALZHEIMER’S DISEASE

Alzheimer’s disease is a heterogeneous disorder that develops
over an extended preclinical phase (Sperling et al., 2011; Beason-
Held et al., 2013; Thambisetty et al., 2013; Neff et al., 2021).
An ‘early onset’ form (EOAD) typically appears before the
age of ∼65 years, and is associated with more severe clinical
manifestations than the ‘late-onset’ form typically associated
with aging. Roughly half of the early onset cases are due to
dominantly inherited mutations in any of three genes, presenilin
1 (PSEN1), presenilin 2 (PSEN2), or amyloid precursor protein
(APP). PSEN1 and PSEN2 modulate the activity of γ-secretase,
which processes APP. Defects in all three genes result in the
accumulation of extracellular deposits of β-amyloid peptides,
which are proteolytic products of APP.

Late-onset (or sporadic) Alzheimer’s disease (LOAD) usually
appears after the age of 65, and is not associated with the
dominant inheritance of any single gene. A number of risk
factors, including several genetic risk factors, predispose for
Alzheimer’s disease. The most important genetic risk factor is
allelic variation in the apolipoprotein E (APOE) gene, followed
by the rs75932628 (R47H) variant in the Triggering Receptor
Expressed in Myeloid cell 2 (TREM2) gene. Trem2 is a myeloid
cell receptor that binds both ApoE and β-amyloid peptides,
and regulates microglial activation. A number of non-genetic
determinants also predispose for Alzheimer’s disease, including
lack of early life education, hypertension, smoking, obesity,
alcohol consumption, and diabetes (Zhang et al., 2021). Biological
sex at birth is a significant risk factor for all cause dementia, and
women are at greater risk of developing AD than men. Recent
genetics findings, including that APOE is a risk factor for EOAD
(Genin et al., 2011), belie the underlying similarities between
EOAD and Alzheimer’s disease (Jansen et al., 2019; Kunkle et al.,
2019; Neuner et al., 2020). In the remainder of this review, we
will use the term AD to denote late Alzheimer’s disease, and
distinguish between EOAD and LOAD when the situation calls.

Multiple hallmarks characterize AD. In addition to
extracellular β-amyloid deposits, which is not detected in
all cases (Terry et al., 1999; Monsell et al., 2015; Jack et al., 2019;
Sperling et al., 2020), and intracellular neurofibrillary tangles
(NFT, insoluble deposits of misfolded, hyperphosphorylated tau),
AD is characterized by neuronal oxidative stress (Nunomura
et al., 2001), neuroinflammation (Heneka et al., 2015a),
cerebral insulin resistance (Talbot et al., 2012), and glucose
hypometabolism (Mosconi et al., 2008a), calcium overload
(Alzheimer’s Association Calcium Hypothesis Workgroup,
2017), mitochondrial malfunction (Swerdlow, 2018) and

redistribution (Flannery and Trushina, 2019), synaptic loss
(Price et al., 2001), and brain atrophy (Jack et al., 2018).
The extent to which any of these factors contributes to
AD risk or to manifestations of disease reflects individual
variations in biological flexibility and susceptibility to stressors
(Neff et al., 2021).

As of 2019, the failure rate of AD drug trials exceeded 99%
(Cummings et al., 2014), including the highly ‘validated’ targets
amyloid and BACE. These failures reflect knowledge gaps about
processes that promote and sustain AD, and how susceptibility
to pathogenic determinants varies among individuals. Pan-omics
approaches could stratify patient subpopulations according to
their underlying pathologies and/or their responses to specific
therapies, and identify potential safety issues regarding particular
drugs (Roses, 2008). Cancer already uses ‘precision medicine’
approaches (Begum, 2019), and initiatives are underway for
other complex diseases (Loscalzo, 2019; Prasad and Groop, 2019;
Aletaha, 2020). O’Bryant et al. used similar tools to identify AD
subjects who respond to NASID therapy (O’Bryant et al., 2018),
but otherwise this approach is not in wide use by the AD clinical
research community. Identification of the molecular basis for
the heterogeneous nature of AD (Neff et al., 2021), may provide
conceptual impetus for adopting it.

The complex pathophysiology of AD means the most
successful strategies for lowering AD risk likely will require
simultaneous pursuit of multiple targets, as for other
multifactorial diseases (American Diabetes Association, 2020;
Heidenreich et al., 2020; Unger et al., 2020). However, there
are well-known drawbacks to typical polypharmacological
approaches, including the appearance of new side effects not
seen with the individual drugs, or additive side effects, or
diminished efficacy. Adherence to multiple drug regimens may
be challenging for prodromal patients and patients with mild
or moderate dementia. An alternative approach is to develop
a single drug entity that targets multiple disease determinants.
PPARγ agonists fulfill this desideratum (Figure 1). After
providing an overview of PPAR biology, we will describe AD risk
factors and pathophysiological determinants contributing to AD,
and the salutary effects of PPARγ agonists. Other agents, such
as GLP-1 agonists, also may affect multiple targets in the AD
pathogenic pathway. These are outside the scope of the current
review, but have been discussed elsewhere (Grieco et al., 2019;
Cheng et al., 2020; Yoon et al., 2020).

PPARγ AS A DRUG TARGET FOR AD

The PPARγ receptor is widely distributed the brain (Braissant
et al., 1996; Moreno et al., 2004; Gofflot et al., 2007; Sarruf
et al., 2009; Morales-Garcia et al., 2011) and is crucial for
learning (He et al., 2009; Jahrling et al., 2014). Activation of the
receptor enhances astrocyte/neuron metabolic coupling (Dello
Russo et al., 2003; Izawa et al., 2009; Cowley et al., 2012),
promotes formation of dendritic spines (Brodbeck et al., 2008),
repairs synaptic failure (Chen et al., 2015; Moosecker et al., 2019),
corrects LTP impairment (Cowley et al., 2012; Chen et al., 2015),
and overcomes the pro-inflammatory, pro-oxidant milieu in the
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FIGURE 1 | PPARγ regulates many pathways that contribute to AD risk.

CNS that is central to the pathogenesis of AD. This topic has been
reviewed previously (Galimberti and Scarpini, 2017; Cai et al.,
2018; Villapol, 2018; Khan et al., 2019).

PPARs constitute a family of three ligand-dependent
transcription factors, PPARα, PPARδ and PPARγ, encoded by
separate genes and displaying wide, but subtype specific, tissue
distribution. PPARs have broad metabolic and anti-inflammatory
activities, and are attractive pharmacological targets for treating
dyslipidemias (PPARα, Gemfibrozil), type 2 diabetes (PPARγ,
pioglitazone, rosiglitazone), and obesity (PPARδ). Pioglitazone
and rosiglitazone are high affinity ligands for both PPARγ and
PPARα, but are distinguishable in that rosiglitazone is more
selective for PPARγ, each agonist regulates bespoke down-stream
genes (Verschuren et al., 2014), and pioglitazone enters the brain
(Maeshiba et al., 1997; Grommes et al., 2013) to a greater extent
than rosiglitazone (Festuccia et al., 2008).

PPARs recruit and/or enhance the activity of the general
transcription machinery of target genes, or repress the expression
of others. The PPAR family members share similar structural and
mechanistic features (Figure 2). The N-terminal domain contains
a ligand-independent transcriptional activation function, AF-
1, which is the main determinant of PPAR subtype-selective
gene expression. The DNA-binding domain (DBD) binds the
receptor to the Peroxisome Proliferator Response Elements
(PPRE) of the target genes. It contains the two zinc fingers, which
distinguish PPARs from other DNA-binding proteins. PPREs are
located either in the gene promoter or in the proximal sequence
and contain one or two copies of the consensus sequence
5′-AGAACA-3′. Adjacent to the DBD are the transcriptional
cofactor-binding domain (the D site), and the ligand-binding
domain (LBD), which mediates binding of the receptor to
the PPRE. All three PPARs form obligate heterodimers with
RXR receptors. The PPAR and RXR partners bind to the
5′ and 3′ halves of direct repeats of the consensus binding
sequence in the PPRE.

PPARγ signaling is non-linear and the net effect depends on
fluctuations of PPARγ ligands, on the temporal sequences and
durations of post-translational modifications (Figure 2), and on
the nature of downstream gene expression networks that interact
with the PPARγ transcriptional programs.

PPARγ AND AD-RELATED RISK
FACTORS

Introductory Comments
The most significant risk factors for developing Alzheimer’s
dementia are potentially non-modifiable and include age,
biological sex, a history of AD in first-degree relatives and
genetics (Gaugler et al., 2019). The risk for developing AD
increases with age (Qiu et al., 2009), and females are at greater
risk of developing AD than males (Plassman et al., 2007).
Approximately 30 genetic risk loci have been identified (Jansen
et al., 2019; Kunkle et al., 2019), which account for only about
65% of the over-all population attributable risk (Livingston
et al., 2017). The remainder of the risk is associated with co-
morbidities that potentially are modifiable (Livingston et al.,
2020). Not surprisingly, there is an underlying connection
between biological sex and genetic risk factors for AD. In the first
instance, APOE ε4 affects females more severely than men (Farrer
et al., 1997; Altmann et al., 2014; Neu et al., 2017). Secondly,
recent investigations revealed sex-specific autosomal genetic
effects (Zhou et al., 2019; Fan C.C. et al., 2020; Prokopenko et al.,
2020). In several instances, risk genes for one sex are not risk
genes for the other. For example, the risk haplotype of PVRL2
was significantly associated with AD in females but not males
(Zhou et al., 2019), and ZBTB7Z, which encodes a zinc-finger
transcription factor, is a risk gene in females but is protective in
males (Prokopenko et al., 2020).

Genetic Risk Factors
The genetic landscape of AD consists of about 30 genomic loci
(Lambert et al., 2013; Jansen et al., 2019; Kunkle et al., 2019).
PPARγ might be considered a ‘master regulator’ of this genetic
landscape because it regulates the expression of at least seven of
these genes (Barrera et al., 2018).

Early-Onset AD
The histopathological hallmarks of amyloid deposits and NFTs
characterize both the ‘Early’ and ‘Late’ onset forms of AD.
Causal mutations in three genes, APP, PSEN1 and PSEN2
contribute to amyloid deposits in the early-onset form (Neuner
et al., 2020). APP is a cell-surface molecule that is widely
distributed throughout the body, and is the precursor molecule
of Aβ peptides in the CNS. APP knockout mice do not
exhibit a phenotype and its exact role is unknown (O’Brien
and Wong, 2011). PSEN1 and PSEN2 are catalytic components
of the γ-secretase complex, which cooperate with BACE1 (β-
site amyloid precursor protein cleaving enzyme) to process
amyloid precursor protein and generate the aggregation-prone
Aβ peptides found in plaques.

Pioglitazone regulates BACE1–mediated production of Aβ

peptides at several levels. The BACE1 gene contains a
PPRE and PPARγ controls BACE1 expression. Additionally,
CDK5 regulates BACE1 at both the transcriptional and
post-transcriptional levels by increasing BACE1 expression
(Wen et al., 2008), and regulating β-secretase activity via
phosphorylation (Song et al., 2015). Through mechanisms
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FIGURE 2 | PPARγ covalent modifications.

described below, pioglitazone inhibits these CDK5 effects. In
both cell-based and in vivo models, PPARγ, but not PPARα

or PPARδ (Camacho et al., 2004), blocked the generation and
release of Aβ peptides (Sastre et al., 2003, 2006; Liu et al.,
2013; Gad et al., 2016; Quan et al., 2019b) by blocking BACE1
mRNA and protein expression, and promoting Aβ peptide
clearance (Camacho et al., 2004). In vivo, PPARγ activation
resulted in significantly reduced β-amyloid plaques (Heneka
et al., 2005; Escribano et al., 2010; O’Reilly and Lynch, 2012;
Searcy et al., 2012; Liu et al., 2013; Quan et al., 2019b). In vitro,
the RXR ligand cis-retinoic acid alone was as effective as PPARγ

agonists alone, including pioglitazone (Camacho et al., 2004).
In the cell culture, PPARγ agonists blocked increased BACE1
expression and synthesis and release of Aβ peptides elicited
by pro-inflammatory cytokines (Sastre et al., 2003). Conversely,
PPARγ knock-down increased BACE1 expression (Sastre et al.,
2006). Aβ peptides and fibrils are pro-inflammatory and increase
CDK5 activation (Quan et al., 2019a), and astrogliosis, microglial
damage and neuronal apoptosis (Sastre et al., 2003). Pioglitazone
down-regulated CDK5 expression and PPARγ phosphorylation,
and increased PPARγ expression, inhibiting BACE1 expression
and Aβ production. The PPARγ antagonist GW9662 blocked
these pioglitazone effects (Quan et al., 2019b), affirming they were
mediated by the PPARγ receptor.

PPARγ effects are dependent on the co-activator PGC-1α.
Over-expression of PGC-1α in a cell line stably expressing
APP inhibited Aβ production, concomitantly with decreasing
BACE1 expression (Katsouri et al., 2011). Knocking out
PPARγ expression abrogated the PGC-1α effect (Katsouri
et al., 2011). The levels of both PPARγ and PGC-1α are
reduced in brain extracts from Alzheimer’s cases compared with
cognitively normal controls (Sastre et al., 2006; Qin et al., 2009;
Katsouri et al., 2011). This is associated with reduced PPARγ

binding to the BACE1 PPRE, and elevated Aβ production.
By over-coming counter-regulatory effects of CDK5 and other
signaling kinases, PPARγ agonist pioglitazone increases PPARγ

expression, inhibiting BACE1 expression and blocking amyloid
plaque formation.

We discuss NFTs here because of their ubiquitous association
with amyloid plaques. Neurofibrillary tangles are correlated
with neuronal dysfunction and brain atrophy more directly
than are amyloid deposits (Brion, 1998; Jack et al., 2018).
Pioglitazone inhibited tau phosphorylation (Cho et al., 2013;
Hamano et al., 2016; Moosecker et al., 2019) and oligomerization
(Hamano et al., 2016) in cell-based tauopathy models, and in
pre-clinical mouse models (Escribano et al., 2010; Searcy et al.,
2012). It also blocked misrouting of tau to dendritic spines
in vitro (Moosecker et al., 2019). The PPARγ-specific antagonist
GW9662 blocked these effects, confirming they were PPARγ

receptor-dependent. Rosiglitazone was similarly effective in mice
(Escribano et al., 2010). PPARγ preserves synapses, which may
be due to the correction of tau’s mis-sorting (Moosecker et al.,
2019). Pioglitazone also reduced tau phosphorylation in the
3xTg mouse AD model (Searcy et al., 2012). The effects on
tau phosphorylation and aggregation may be a consequence
of pioglitazone-mediated direct inhibition of CDK5 (Hanger
et al., 1998). Additionally, PPARγ may regulate CDK5 indirectly
through its effects on the inflammatory response. p35 is a
regulatory protein that activates CDK5, and calpain-catalyzed
cleavage of p35 in response to elevated cytosolic Ca2+ that
occurs in neurons during the pathogenesis of AD cleaves p35
to form p25, which hyperactivates CDK5 and causes increased
tau phosphorylation (Kimura et al., 2014; Seo et al., 2017). IL-6
enhances CDK5 activity (Quintanilla et al., 2004) by promoting
the p35 – to – p25 conversion, and PPARγ suppresses IL-6 release
(Jiang et al., 1998).

Late-Onset AD
Roughly 50% of the genes associated with late-onset Alzheimer’s
encode proteins involved in the innate immune system, and
many of the remaining genes encode proteins involved in lipid
metabolism (Jones et al., 2010). Both Apolipoprotein E ε4 (APOE
ε4), which is the most significant and highly replicated genetic
risk factor for AD (Corder et al., 1993; Saunders et al., 1993;
Lambert et al., 2013), and the TREM2 R47H polymorphism,
which has the second largest effect size (Guerreiro et al., 2013;
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Jonsson et al., 2013), affect innate immunity and lipid metabolism
(Shi and Holtzman, 2018; Nugent et al., 2020). Metabolomics
studies consistently point to pronounced alteration of lipid
metabolism as an early marker of AD (Han, 2005, 2010).

APOE is one of a cluster of genes in the Chr 19q13.32
genomic region that affect AD risk, that also includes PVRL2,
TOMM40, and APOC1. There are three common forms of APOE,
distinguishable by the identity of amino acids at positions 112
and 158 that are determined by two closely linked SNPs in the
APOE gene: rs429358 and rs7412, that result in the expression
of three alternative protein isoforms: APOE ε2, which possesses
cysteine residues at both positions, APOE ε3, which possess
cysteine-112 and arginine-158, and APOE ε4, which possesses
arginine residues at both positions. APOE ε4 increases the risk for
developing AD dose-dependently and also decreases the age of
disease onset (Corder et al., 1993; Roses, 1994; Frisoni et al., 1995;
Farrer et al., 1997). By contrast, APOE ε2 is protective against
AD, and APOE ε3 has intermediate risk (Corder et al., 1994;
Farrer et al., 1997). The brain produces all of its ApoE locally;
the liver and macrophages produce peripheral ApoE. Glial cells
account for most of the ApoE production in the brain. It mediates
cholesterol and phospholipid transfer between astrocytes and
microglia and neurons, on HDL-like lipoprotein particles. It is the
main lipoprotein component of these particles, which are taken
up by members of the low-density lipoprotein receptor family
(Holtzman et al., 2012). Under conditions of stress, neurons
also express APOE (Han et al., 1994a,b). Since the association
between APOE ε4 and LOAD was first reported (Saunders
et al., 1993), a variety of potential mechanisms underlying the
contribution of APOE ε4 to the pathogenesis of LOAD have been
uncovered, from impaired neurite outgrowth (Holtzman et al.,
1995), plasticity (Weeber et al., 2002) and repair (Ignatius et al.,
1987), to defective Aβ clearance (Verghese et al., 2013; Kanekiyo
et al., 2014; Mouchard et al., 2019), to mitochondrial dysfunction
(Chen et al., 2011) and impaired endosome-lysosome trafficking
(Nuriel et al., 2017; Zhao et al., 2017).

Although APOE is the most significant genetic risk factor
for AD, it does not fully explain the risk attributable to the chr
19q13.32 genomic region. At least three additional genes in close
proximity to APOE, PVLR2, APOC1, TOMM40 (Takei et al., 2009;
Roses, 2010; Zhou et al., 2019; Bussies et al., 2020; Fan K.H. et al.,
2020; Squillario et al., 2020), make independent contributions.

TOMM40 encodes the mitochondrial protein import
channel, and is indispensable for maintaining mitochondrial
homeostasis (Baker et al., 1990; Taylor et al., 2003) and for life
(Zeh, 2013). Multiple SNPs in TOMM40 are associated with
AD risk independently of the APOE gene., including rs7259620
(Takei et al., 2009; Nazarian et al., 2019), rs760136 (Marioni
et al., 2018), rs2075650 (He et al., 2016; Huang et al., 2016;
Bussies et al., 2020; Soyal et al., 2020; Squillario et al., 2020), and
rs10524523 (Roses, 2010; Li et al., 2013; Yu et al., 2017a,b). Both
APOC1 and PVRL2 fit the pattern of being lipid- or immune-
related. ApoC1 interferes with ApoE-mediated cholesterol
and phospholipid uptake in the CNS by blocking the binding
of ApoE-enriched lipoprotein particles to the low-density
lipoprotein receptor (Kowal et al., 1990; Weisgraber et al., 1990;
Sehayek and Eisenberg, 1991), and it blocks binding of APOE

ε3- and APOE ε4-enriched particles equally well (Kowal et al.,
1990). The APOC1 risk haplotype was associated with plasma
levels of Aβ40 (Zhou et al., 2019). PVRL2 mediates the uptake of
herpesvirus (Warner et al., 1998). There is enduring speculation
that Herpes virus contributes to the etiology of AD (Itzhaki et al.,
2016; Readhead et al., 2018), but this theory is controversial
(Rizzo, 2020). The risk haplotype of PCRL2 was associated
with worsening cognitive performance, reduced total brain and
hippocampal volume, and total serum Aβ42 (Zhou et al., 2019).
Additionally, PVRL2, APOE and APOC1 have regulatory roles
on the expression of genes in this linkage disequilibrium region:
APOE ε4 suppresses the transcription of TOMM40, APOE
and APOC1 in the brain, while risk haplotypes of PVRL2 and
APOC1 increase brain APOE expression, regardless of APOE
genotype (Zhou et al., 2019). Methylation of the TOMM40
promoter decreases expression of TOMM40 and increases APOE
expression (Shao et al., 2018). Together, these studies indicate
that four genes in linkage disequilibrium on chromosome 19,
PVRL2, TOMM40, APOE and APOC1 independently affect
brain structure, neuroenergetics and cognitive performance, and
the risk for AD.

The chr 19q13.32 genomic region is enriched in PPARγ

binding sites (Subramanian et al., 2017), which is not surprising
since most endogenous PPAR ligands are lipids or lipid
derivatives and the region is enriched in lipoproteins or proteins
that interact with them (Zhou et al., 2019). PPARγ agonists
affect the expression of three of the four genes in the region:
TOMM40, APOE and APOC1; their effects on PVRL2 expression
have not been studied to date. Pioglitazone increases APOE
expression in macrophages (reviewed in Ricote et al., 2004),
and in the brain (Mandrekar-Colucci et al., 2012). By contrast,
Subramanian et al. showed that reducing PPARγ expression
in the human hepatoma line HepG2 paradoxically increased
TOMM40, APOE and APOC1 expression. Consistent with these
results, low (nM) concentrations of pioglitazone suppressed
expression of both APOE and APOC1, without detectable
effects TOMM40 expression. Other workers reported that high
(µM)concentrations of the PPARγ agonists ciglitazone and 15d-
PGJ2, elicited a robust increase in APOE expression and a
modest suppression of APOC1 expression (Dahabreh and Medh,
2012). These contrasting results may reflect the respective drug
concentrations used, since bi-phasic PPARγ dose-effect curves
have been reported (Wada et al., 2006; Miglio et al., 2009; Moon
et al., 2012). Using the SKNMC cell line that is more pertinent
to AD, we found that pioglitazone increased Tom40 protein
expression (Charalambous et al., 2016; Figure 3).

Lipid Metabolism
The pathology of AD is interwoven with extensive alterations
in lipid metabolism (Foley, 2010), which are detectable in the
CSF and plasma as well as the brain (Wood, 2012; Trushina
et al., 2013; Varma et al., 2018). This topic has been reviewed
recently (Penke et al., 2018; Kao et al., 2020), and we will limit
our discussion to selected topics.

Ethanolamine plasmalogen (PIsEtn), comprises between
60 and 90 mol% of the total phospholipids of neuronal
cell membrane fraction in human gray and white matter,
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FIGURE 3 | PIO-elicited TOM40 expression in SKNMC neuroblastoma cells.
*P < 0.05; **P < 0.01; ***P < 0.001.

respectively (Han, 2010), and over 60 mol% of all
phosphatidylethanolamine in synaptic vesicles (Han, 2010).
Plasmalogens are glycerophospholipids in which the substituent
at the sn-1 position is a vinyl ether fatty alcohol (-O-CH = CH-R).
They are protective against oxidative damage to polyunsaturated
diacylphospholipids (Reiss et al., 1997), and they facilitate
membrane fusion (Glaser and Gross, 1994). Plasmalogen
deficiency is detectable at early stages of AD (Han et al., 2001).
It is not detected in Huntington’s disease or Parkinson’s disease
(Ginsberg et al., 1995; Farooqui et al., 1997). Although the
deficiency is detected in both gray and white matter, it only
worsens as AD pathology progresses in white matter (Han
et al., 2001). Circulating levels of PIsEtn positively correlate
with the extent of functional state deterioration (Wood et al.,
2010). Very long chain fatty acids increase in late stages of
AD, causing lipotoxicity (Schönfeld and Reiser, 2016) and
exacerbating neuronal damage. Peroxisomes host both the
synthesis of PIsEtn and the oxidation of very long-chain fatty
acids, but they are deficient or dysfunctional in AD (Grimm
et al., 2011; Kou et al., 2011). Pioglitazone corrects these
defects, through several different mechanisms. As a partial
PPARα agonist (Sakamoto et al., 2000; Orasanu et al., 2008),
it promote peroxisome biosynthesis (Hoivik et al., 2004) and
related lipid metabolism (Kersten, 2014). Pioglitazone also
enhances PIsEtn synthesis by facilitating uptake of precursor
fatty acids, including docosahexaenoic acid via fatty acid
binding protein 5 (Pan et al., 2015). FABP5 knock-out mice
exhibit impaired working memory and short-term memory
(Pan et al., 2016), and pioglitazone increases FABP5 expression
(Low et al., 2020). Pioglitazone also enhances PIsEtn synthesis
through by inhibiting amyloidogenic processing of APP.
The APP intracellular domain promotes expression of alkyl-
dihydroxyacetone phosphate synthase (Grimm et al., 2011), the
rate-limiting enzyme in PIsEtn synthesis. This fails when APP
processing is diverted to the Aβ pathway, but pioglitazone blocks
this and rescues PlsEtn synthesis.

Sphingolipids are major components of the myelin sheath,
and MRI shows that demyelination occurs during the MCI phase
(Bouhrara et al., 2018). Similarly, at early stages of pathogenesis,

sulfatide sphingolipid levels are reduced by ∼ 92 mol% in gray
matter, regardless of brain region, by 35 mol% in the cerebellum,
and by 58 mol% in the temporal cortex. Rosiglitazone reversed
myelin structural damage in a rodent model (Cowley et al., 2012).

Ceramide levels are ∼ 3-fold higher in white matter across
all brain regions in MCI subjects vs. age-matched controls. The
expression of an extensive gene network underlying ceramide
synthesis also is increased at early stages of AD (Katsel et al.,
2007). Increased availability of ceramides contributes to the
pathogenesis of AD by causing mitochondrial damage and
increasing apoptosis (Yu et al., 2000), and contributes to
the depletion of PIsEtn via the stimulation of PIsEtn-PLA2
(Farooqui, 2010; Ong et al., 2010). Sphingosine-1-phosphates
(S-1-P), metabolic products of ceramides, generally counteract
ceramide effects (see Wang and Bieberich (2018) and Czubowicz
et al. (2019) for excellent reviews). PPARγ (Parham et al.,
2015) is one of several surface and intracellular receptors that
mediate S-1-P effects and maintains the homeostatic phenotype
in T-lymphocytes; this role has not been investigated in microglia.

INNATE IMMUNITY

In significant measure, AD is a disease of the innate immune
system (Zhang et al., 2013; Jones et al., 2015; Kan et al., 2015).
Most (ca. 60%) of the AD GWAS at-risk genetic polymorphisms
are in Sims et al. (2017) or near genes or their regulatory
elements, that are enriched in microglia (Tansey et al., 2018;
Jansen et al., 2019; Kunkle et al., 2019; Nott et al., 2019).
APOE ε4 expression and the expression of immune regulatory
genes are positively correlated (Keren-Shaul et al., 2017; Mathys
et al., 2019). Moreover, a haplotype associated with reduced
expression of PU.1, a pivotal gene for microglial development
(Turkistany and DeKoter, 2011), delays the age of onset of AD
(Huang et al., 2017).

Microglia are the CNS’ resident innate immune system cells
(Ginhoux et al., 2010; Schulz C. et al., 2012). Their primary
function is to insure the health and connectivity of the neurons
[Streit and Kincaid-Colton (1995) and Nayak et al. (2014)
and references therein]. In their ‘quiescent’ state, microglia
survey their local environments, including direct communication
with neighboring neurons and astrocytes, through ramified
extensions. Detection of specific signals generated by injury
to the surrounding cells triggers activation of microglia,
involving morphological transformations and triggering specific
biochemical and genetic programs. To sustain the activated
state, bioenergetic metabolism is switched from reliance on
oxidative phosphorylation to glycolysis, which supplies not
only ATP but also important metabolic intermediates including
NADPH and other intermediates of the pentose phosphate shunt
(Lauro and Limatola, 2020).

Microglia are exquisitely sensitive to deviations in their
local environments and changes in microglial transcriptomics,
morphology or behavior (phagocytosis) are often the first signs
of pathology (Boza-Serrano et al., 2018). Their programmed
transcriptional responses are bespoke for different stimuli, and
support increased phagocytosis, the production of interferon
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and cytotoxic cytokines, chemokines, extracellular proteases
and reactive oxygen species, as well as anti-inflammatory
cytokines and factors that promote tissue repair and remodeling
of the extracellular matrix (Porcheray et al., 2005; Stout
et al., 2005). These inflammatory and immunosuppressive
phenotypes represent the extremes of a spectrum of responses
(Colton et al., 2006; Colton, 2009; Gray et al., 2020).
Longitudinal gene transcription profiles of microglia isolated
from mouse AD models reveal there are multiple discrete
populations of activated microglia in the AD brain, reflecting
interferon-related, proliferation-related and neurodegeneration-
related phenotypes (Keren-Shaul et al., 2017; Friedman et al.,
2018; Mathys et al., 2019).

Activated microglia play two distinct roles in amyloid
metabolism. On the one hand, they promote the generation
of Aβ peptides via interferon-mediated induction of IFITM3
(interferon-induced transmembrane protein 3). IFITM3, which
previously had been recognized for its antiviral activity (Bailey
et al., 2014), associates with the γ-secretase complex and
promotes amyloidogenic APP processing (Hur et al., 2020).
This role is consistent with the theory that Aβ peptides are
part of the innate immune system’s anti-infection repertoire
(Eimer et al., 2018). Activated microglia also participate in the
clearance of amyloid deposits, forming clusters adjacent to –
and sometimes surrounding – β-amyloid plaques (Condello
et al., 2015). Some microglia associated with plaques become
dysmorphic as the disease advances, through exhaustion or via
collateral damage from unrestrained proinflammatory activity of
adjacent microglia, and the plaques engulf some (Streit et al.,
2009, 2018).

Increased expression of inflammation-associated genes,
including APOE, and reduced expression of homeostatic genes
characterize activated microglia. APOE may be required for
the activation response (Ulrich et al., 2018). APOE expression
is higher nearer the plaque (Krasemann et al., 2017), but the
gradient signal is not known. ApoE suppresses expression
of genes related to homeostatic microglia and reinforces
proinflammatory gene expression (Krasemann et al., 2017) by
activating NF-κB signaling (Ophir et al., 2005; Maezawa et al.,
2006). NF-κB is a master regulator of the innate immune system
and the inflammatory response (Liu T. et al., 2017). APOE ε4
exacerbates these effects (Brown et al., 2002; Vitek et al., 2009;
Zhu et al., 2012), perhaps by blocking differentiation to the
immunosuppressive phase.

TREM2 is part of the microglial surveillance system for
monitoring changes in the environment, and regulating microglia
responses to those changes, including proliferation, migration
and activation. Variants of TREM2 increase the genetic risk
for late-onset AD 2 – 4X, which is second only to the
effect size of APOE ε4 (Jonsson et al., 2013; Guerreiro and
Hardy, 2014). TREM2 is a single-pass receptor that binds
damage associated molecular signatures (DAMPS) (Daws et al.,
2003), lipoproteins and lipoprotein particles, anionic lipids and
sphingomyelins exposed by cellular damage, β-amyloid peptides
(Wang et al., 2015; Yeh et al., 2016; Song W. et al., 2017). Ligand
binding promotes association between the TREM2 receptor with
the adaptor protein DAP12 (TYROBP), which associate via

electrostatic interactions, and activates an intracellular signaling
cascade mediating the effects of ligand binding on survival and
proliferation, phagocytosis and inflammation (Wang et al., 2015).
In mouse AD models, TREM2 mediated clustering of microglia
around β-amyloid plaques and activation of phagocytosis and
the ‘proinflammatory’ response (Jay et al., 2015; Wang et al.,
2015; Ulrich et al., 2018; Zhao et al., 2018; Zhong et al., 2018),
and was required for the full expression of the response to
Aβ pathology across all microglial modules (Friedman et al.,
2018). APOE and TREM2 likely operate on the same molecular
pathway because APOE is a ligand for TREM2 (Atagi et al., 2015;
Bailey et al., 2015; Jendresen et al., 2017), TREM2 modulates the
expression of almost all the genes in the core neurodegeneration
bin except APOE (Friedman et al., 2018), and Trem2−/− and
Apoe−/− mice are phenocopies (Ulland et al., 2017; Ulrich et al.,
2018).

A R47H switch in the TREM2 protein is the most common
TREM2 variant connected with AD. It is associated with
increased total tau in the CSF, but does not affect the CSF
Aβ peptide levels (Lill et al., 2015). In vitro, APOE bound to
this TREM2 variant with a lower affinity than to the wild-
type receptor (without distinction between the APOE isoforms)
(Atagi et al., 2015), and the R47H variant decreased the uptake
of Aβ-lipoprotein complexes by monocyte-derived macrophages
(Yeh et al., 2016).

Chemical dissection has shed additional light on the roles
of microglia in AD and related tauopathies. TGF-1β and CSF-
1 signaling sustain microglia, and CSFR1 antagonists or cFMS
inhibitors (Dagher et al., 2015; Spangenberg et al., 2016, 2019;
Sosna et al., 2018), which deplete resident microglia from
the brain, have been used as molecular scalpels. Contrary to
expectations, eliminating microglia blocked the development of
β-amyloid plaques and accumulation of intraneuronal amyloid,
and it prevented the loss of neurons and synapses, and improved
memory and learning. These salutary effects occurred whether
the inhibitors were added early and maintained for long periods
(Sosna et al., 2018; Spangenberg et al., 2019), or were added after
plaque formation had reached advanced stages (Spangenberg
et al., 2016). Blocking microglial proliferation with an inhibitor of
the cFMS kinase, that autophosphorylates and activates the CSFR,
similarly prevented the formation of amyloid plaques, improved
memory and behavior and shifted the brain environment to an
immunosuppressive phase (Olmos-Alonso et al., 2016). Hence,
and contrary to expectations, microglia evidently are required
for formation of amyloid plaques. Moreover, the absence of
microglia or impaired microglia function is not detrimental
for learning or memory. Shi et al. used the same strategy to
learn the role of microglia in tau-mediated neurodegeneration.
They demonstrated that microglial-mediated damage, and not
tau-mediated toxicities, is responsible for neurodegeneration
in a mouse tauopathy model (Shi et al., 2019). Therefore,
it appears that microglial proliferation and/or activation is
responsible for the neurodegeneration commonly associated
with the two major pathologic hallmarks of Alzheimer’s disease,
neurofibrillary tangles and β-amyloid plaques. It is possible
that the microglial-mediated proinflammatory response, or
the failure of the microglial immunosuppressive response,
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causes the damage leading to cognitive decline and dementia.
Microglia are being targeted for neurodegenerative diseases
(Dong et al., 2019).

PPARγ and Innate Immunity
PPARγ agonists prime myeloid cells to respond to
immunosuppressive stimuli and enhance the differentiation
of myeloid cells into an immunosuppressive state (Bouhlel et al.,
2007). PPARγ is widely distributed in mouse and human brain
(Warden et al., 2016), including in microglia (Bernardo and
Minghetti, 2006, 2008), and activation of myeloid cells with a
proinflammatory stimulus increases PPARγ mRNA and protein
expression (Fakhfouri et al., 2012; Song J. et al., 2017). PPARγ

activators also increase PPARγ mRNA and protein expression.
In myeloid cells, the PPARγ binding sites are adjacent to PU.1
sites on macrophage/microglia-specific targets (Lefterova et al.,
2010) and control the expression of PU.1-responsive genes
(Lefterova et al., 2010). In addition to regulating the cytokines
and cytokine receptors directly involved in the inflammation
response, PU.1 regulates expression of factors required for
myeloid and lymphoid cell development (Turkistany and
DeKoter, 2011), including M-CSF (Macrophage-specific CSF)
(Zhang et al., 1994). PPARγ blocks M-CSF expression (Bonfield
et al., 2008), and inhibits the transcription factors AP-1, STAT3
and NF-kB (Ricote et al., 1998). Together with its effects
on PU.1, the net result is suppression of pro-inflammatory
activation and sensitization of microglia for differentiation into
the immunosuppressive phenotype. Pioglitazone blocks the
synthesis of pro-inflammatory molecules, including IL-1, TNFα,
IL-6, iNOS, COX2, MMP9, and Caspase 3 (Kapadia et al., 2008)
and promotes the synthesis of immunosuppression-related
molecules, including Arg1, IL-4, IL-10, TGFb, catalase, SOD, and
related genes (Bouhlel et al., 2007).

In vitro studies confirmed that PPARγ controls the cellular
response to AD-related pathogenic triggers, including Aβ

and LPS (Combs et al., 2000; Heneka et al., 2000; Hunter
et al., 2008). These effects go beyond simply regulating
expression of pro- and anti-inflammatory molecules. PPARγ

overcomes pathogenesis-related developmental blocks that
prevent transitioning of microglia to the immunosuppressive
phenotype. iPSC-derived microglia that are heterozygous
for the pathogenic TREM2 R47H mutation have a shortfall
in glycolytic capacity and cannot execute the metabolic
switch that underpins differentiation of microglia to the
immunosuppressive phenotype (Piers et al., 2020); consequently,
they are deficient in phagocytosis. Pioglitazone corrected the
glycolysis deficit, reversed blockade of the metabolic shift, and
restored phagocytosis of Aβ42 (Piers et al., 2020). Pioglitazone
achieved this by increasing phosphorylation and activation
of p38-MAPK, which phosphorylated and activated MAPK2,
which, in turn, phosphorylated and activated 6-phosphofructo-2-
kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key regulatory
step in glycolysis.

Pioglitazone’s salutary effects on the innate immune system
also correlated with a shift toward the immunosuppressive state
in pre-clinical models of traumatic brain injury (Deng et al.,
2020), depression (Zhao et al., 2016), axonal injury (Wen et al.,

2018), neuroinflammation (Kielian and Drew, 2003) and stroke
(Tureyen et al., 2007; Cai et al., 2018), and Parkinson’s disease
(Swanson et al., 2011; Carta and Pisanu, 2013).

CEREBRAL GLUCOSE HOMEOSTASIS

The brain is dependent almost entirely on glucose for its
energetics needs and consumes 25% of the body’s daily glucose
load. In addition to energy production, glucose contributes
to the synthesis of neurotransmitters, including acetylcholine,
aspartate, glutamate, and GABA. In the fed state, neurons
consume glucose directly, and glial cells, mostly astrocytes,
store glucose as glycogen. Under oxidative stress, mitochondrial
bioenergetics is compromised and neurons divert acetyl-CoA
into fatty acids, which astrocytes take up and store as lipid
droplets in an APOE-dependent process (Liu et al., 2015; Liu T.
et al., 2017). These droplets are essential for neuronal health
since defective transfer of lipids from neurons to astrocytes
causes neurodegeneration (Liu L. et al., 2017). The droplets may
represent essential energy reserves. During periods of normal
fasting, astrocytes convert stored glycogen via glycogenolysis and
glycolysis to lactate, which is consumed by neurons (Calì et al.,
2019). Similarly, astrocytes may convert fatty acids stored in the
lipid droplets to ketone bodies, for consumption by neurons.
Under glucose insufficiency, neurons consume ketone bodies
(Ding et al., 2013). Gene expression analysis of human AD
subjects and mouse AD models reveal increasing reliance on lipid
metabolism with disease progression as glucose consumption
decreased (Yao et al., 2011; Demarest et al., 2020). Alternatively,
the stored triglycerides may be used to synthesize membranes
in support of phagocytosis, or in response to stress (Martínez
et al., 2020). Finally, intracellular lipid droplets may be centers
for coordinating glial-based responses to infectious agents, by
attracting pathogenic microbes and acting as reservoirs for
antimicrobial peptides and nucleation sites for other immune
proteins, including RSAD2 (Bosch et al., 2020). Nor are these
mutually exclusive options. [See Welte and Gould (2017) for a
recent review of lipid droplets].

Glucose hypometabolism is a characteristic feature
of Alzheimer’s disease. It is routinely measured by 18F-
deoxyglucose-positron emission tomography (FDG-PET)
(Minoshima et al., 1995, 1997; Herholz, 2010), or regional blood
flow, measured by 15O-PET (Beason-Held et al., 2013), which are
highly correlated. The sodium-insensitive GLUT1 and GLUT3
transporters account for most of the glucose extraction from the
blood, and in persons with AD, the levels of these transporters
in the brain begin to decline decades before the onset of AD
symptoms (Simpson et al., 1994; Patching, 2017). GLUT1 is
the predominant glucose transporter in the blood-brain barrier
(BBB) and in astrocytes, and is responsible for the uptake from
the systemic circulation of all of the glucose consumed by the
brain. The high affinity, high capacity GLUT3 transporters
are responsible for neuronal glucose uptake. The brain also
expresses low levels of the insulin-sensitive GLUT4 transporter,
in the cerebellum, cortex, hippocampus and hypothalamus,
regions where the insulin receptor is also highly expressed
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(McEwen and Reagan, 2004; Alquier et al., 2006). Pioglitazone
enhances nerve stimulation-coupled cerebral glucose uptake.

Reduced cerebral glucose utilization in AD is associated with
reduced CSF levels of glycolytic intermediates (Bergau et al.,
2019)reflecting impaired glycolysis and post-glycolytic pathways
(An et al., 2018). It is independent of Aβ42 and Aβ40 levels
(Venzi et al., 2017), or brain atrophy (Smith et al., 1992; Ibáñez
et al., 1998) or other changes in brain structure (Small et al.,
1995, 2000; Minoshima et al., 1997; Reiman et al., 2004; Samuraki
et al., 2007; Beason-Held et al., 2013), and emerges decades before
the appearance of clinical symptoms (Cutler, 1986; Kennedy
et al., 1995; Small et al., 1995; Reiman et al., 1996, 2004; Beason-
Held et al., 2013). It is associated with altered expression of
energy metabolism genes in brain regions most vulnerable to
AD pathology (Xu et al., 2006; Brooks et al., 2007; Wang et al.,
2007, 2010; Liang et al., 2008a,b; Bossers et al., 2010), including
the emergence of focal temporoparietal hypometabolism, which
is distinct from normal aging (Kuhl et al., 1982; de Leon et al.,
1983; Duara et al., 1984). Cerebral hypometabolism leads to
increased tau phosphorylation (Planel et al., 2004) and amyloid
accumulation (Gabuzda et al., 1994). Conversely, re-establishing
homeostatic myeloid cell glucose metabolism by inhibition of the
EP2 receptor reversed age-associated cognitive decline (Minhas
et al., 2021). Thus, defective brain glucose metabolism is an early,
consistent, and specific marker for neurodegeneration in AD that
is consequential for and precedes AD pathology.

Pioglitazone and Cerebral Glucose
Metabolism
In vivo, pioglitazone improves cerebral blood flow and cerebral
glucose uptake and disposal (Nicolakakis et al., 2008; Sato et al.,
2011; Papadopoulos et al., 2013), in part via enhancing expression
of the GLUT4 transporters (Sandouk et al., 1993; Olefsky and
Saltiel, 2000), and in part by improving mitochondrial function
and biogenesis. Pioglitazone also normalizes glucose metabolism
by suppressing PGE2 synthesis and inhibiting PKA signaling that
is triggered by EP2 (Subbaramaiah et al., 2012).

CEREBRAL INSULIN RESISTANCE

Insulin resistance (Craft, 2005; Benedict et al., 2012; Willette et al.,
2013, 2015a; Ferreira et al., 2018) and type 2 diabetes mellitus
(DM2) (Chatterjee and Mudher, 2018; Barbiellini Amidei et al.,
2021) are related but independent risk factors for AD. Both
DM2 and cognitive impairment share gene expression networks
that are enriched in genes involved in inflammation and PI3K-
Akt signaling (Potashkin et al., 2019), and direct analysis of
post-mortem brain samples revealed impaired insulin- and IGF1-
triggered signaling in human and mouse AD brain samples
(Bomfim et al., 2012; Talbot et al., 2012).

Insulin, insulin-like growth factor 1 and their respective
mRNAs are found throughout the brain (Blázquez et al.,
2014). The insulin receptor has been mapped to all cell types
throughout the brain, with particularly high concentrations in
the hippocampus and hypothalamus, and its roles in processes
as diverse as systemic energy homeostasis (Chen et al., 2017),

balance and movement (Zhao et al., 2004), and memory
formation and consolidation (McNay et al., 2010; McNay and
Recknagel, 2011; Kullmann et al., 2016) are well established.

The same gene encodes the brain and the peripheral insulin
receptors (IR). However, the brain and peripheral receptors differ
in three key ways. The brain receptor arises by alternate splicing
of the IR gene and is smaller than the peripheral IR. Unlike the
peripheral IR, insulin binding to the brain IR does not promote its
internalization. Finally, the brain IR forms hybrid receptors with
IGF1 receptors (IGF1R) more readily than the peripheral IR does.
The IR and IGF1R receptors belong to the same receptor-tyrosine
kinase family. Both are α2β2 heterotetramers, composed of two
extracellular ligand-binding α-chains that are disulfide-linked
to membrane-spanning β-subunits that possess tyrosine kinase
activity. The α-chains are also disulfide-linked to each other.
In general, the IR signal elicits metabolic responses, including
the translocation of transporters from internal depots to the cell
surface, and therefore stimulates glucose and amino acid uptake
and metabolism, while the IGF1R predominantly affects protein
synthesis and cellular growth. Activation of both receptors trigger
changes in gene expression. Hybrid IR-IGF1R receptors are more
abundant in the brain than in the periphery. As of this writing,
the specific roles of these three receptor types in the CNS have
not been resolved.

In the periphery, insulin primarily promotes glucose and lipid
homeostasis. A key step is insulin-stimulated translocation of
GLUT4 glucose transporters from intracellular pools to surface
membranes in adipocyte and muscle, mediated by a cascade
of signaling adaptor proteins and kinases that, via a chain
of phosphorylations, connect successive kinases with target
functional proteins that mediate vesicle translocation, protein
synthesis, and activation of metabolic pathways. Ligand binding
activates auto-phosphorylation of the receptor on tyrosine
residues, creating binding sites for the adaptor proteins, IRS
(IR, predominantly) or Shc (IGF1R, predominately), which,
themselves, are tyrosine phosphorylated. These form the hubs
for signaling cascades. Two cascades stem from the IRS hub:
the PI3K-Akt pathway promotes the translocation of transporters
from intracellular depots to the cell surface and is responsible for
the metabolic effects of insulin. The MAPK pathway, which both
IRS and Shc control, mediates insulin’s (and IGF1’s) effects on
gene expression. Both pathways cooperate in regulating cellular
growth, differentiation and repair (Boucher et al., 2014).

In the brain, the insulin transduction pathway not only
promotes trafficking of GLUT4, but also of the high affinity
choline transporter and the AMPA, NMDA and GABA receptors
(Zhao et al., 2004; Fishwick and Rylett, 2015; Spinelli et al.,
2019). In addition to these post-synaptic effects, insulin promotes
dendritic spine and synapse formation (Lee et al., 2011). Insulin
does not regulate most of the brain’s glucose consumption,
because GLUT1, the main glucose transporter of the BBB,
and GLUT3, the main glucose transporter within the brain,
are not insulin responsive (Simpson et al., 2008). However,
insulin does stimulate glucose utilization in the hippocampus,
one of the few brain regions that express GLUT4 transporters.
To meet the high energy demands associated with memory
formation and retrieval, translocation of the GLUT4 transporters
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is also mediated by AMPK under the control of the membrane
potential (Ashrafi et al., 2017). Both the IR and GLUT4 are
concentrated in the synapses, and insulin-stimulated, GLUT4-
mediated glucose uptake supports sustained synaptic vesicle
recycling (Ashrafi et al., 2017), and is essential for memory
formation (Pearson-Leary and McNay, 2016; Pearson-Leary
et al., 2018). Post-translational modification of mitochondria by
the glucose sensor N-acetylglucosamine O-transferase localize
the mitochondria within the same cellular regions as the IR
and GLUT4 (Pekkurnaz et al., 2014). O-GlcNAcylation is also
required for full activity of the mitochondrial ATP synthase (Cha
et al., 2015). The co-localization of insulin receptors with GLUT4
transporters and mitochondria underscore the importance of
insulin regulated glucose uptake and metabolism for supporting
the energetic requirements of synaptic vesicle trafficking and the
action potential. Tau is also O-GlcNAcylated under homeostatic
conditions, but insulin resistance perturbs O-GlcNAc cycling and
contributes to tau hyperphosphorylation (Liu et al., 2009, 2011;
Bourré et al., 2018).

It is clear that, from facilitating the synthesis of acetylcholine
at two levels (acetyl-CoA generation via the sequential action
of glycolysis and pyruvate dehydrogenase, and choline uptake),
to manipulating neurotransmitter release and uptake, to
supporting neuritogenesis and repair, and regulating tau
phosphorylation, insulin has profound effects on the processes
that support cognition.

Given the important role insulin plays in brain physiology,
it is not surprising that cerebral hypoinsulinemia, caused by
peripheral insulin resistance, or cerebral insulin resistance per
se are an important risk factors for neurodegenerative diseases,
including Alzheimer’s disease (Baura et al., 1996; Matsuzaki et al.,
2010; Willette et al., 2015b,c; Ekblad et al., 2017; Kong et al.,
2018). Insulin resistance in mid-life predicts dementia in late
life (Ekblad et al., 2017, 2018; Lutski et al., 2017; Tortelli et al.,
2017; Kong et al., 2018). Increasing metabolic control with (Ryan
et al., 2006) or without pharmacological intervention (Naor
et al., 1997) improves working memory. DM2, which reflects
systemic insulin resistance coupled with pancreatic insufficiency,
is a risk factor for AD (Ott et al., 1999; Schrijvers et al., 2010;
Livingston et al., 2020). The Metabolic Syndrome, reflecting
systemic insulin resistance in conjunction with lipid and cardiac
co-morbidities, also is associated with AD, independently of the
APOE genotype (Kuusisto et al., 1997). While these relationships
reflect systemic insulin resistance, it is critical to note that brain
tissue itself is insulin resistant in AD in subjects who, at the time
of death, were without other co-morbidities that feature insulin
resistance, such as DM2, obesity or the metabolic syndrome.
AD-associated brain insulin resistance is detectable early in life,
in high-risk individuals who were not cognitively impaired at
death. Reductions in insulin and IGF-1 signaling are detectable by
inhibitory phosphorylation of insulin signaling-related proteins
in situ, by the reduced activities of kinases in the insulin-signaling
cascade, by impaired activation of the insulin-signaling cascade
ex vivo (Steen et al., 2005; Bomfim et al., 2012; Talbot et al., 2012),
and by dysregulated expression of genes encoding members of the
insulin/IGF1 signaling pathways (Katsel et al., 2018). Deficiencies
in insulin signaling are additive and were greater in individuals

who suffered from both AD and DM2 (Liu et al., 2011). Mouse
EOAD models also exhibit defective insulin signaling (Takeda
et al., 2010; Bomfim et al., 2012). For excellent recent reviews
of the association of brain insulin resistance with Alzheimer’s
disease, see Ferreira et al. (2018), de la Monte (2019).

Many of the determinants contributing to AD trigger and
sustain brain insulin resistance. Proinflammatory cytokines,
including IL-1β and TNFα (Geng et al., 1996; Morrison et al.,
2010; Bomfim et al., 2012; Kitanaka et al., 2019) activate ‘counter
regulatory’ kinases such as ERK2, JNK and PKCζ/λ(20), which
disrupt insulin/IGF1 – PI3K – Akt signaling. They phosphorylate
proteins in the IR/IGFR signaling cascade at sites that interfere
with normal docking or kinase activity. β-amyloid fibrils and
oxidative stress consequent to mitochondrial dysfunction also
activate these kinases (Okazawa and Estus, 2002; Persiyantseva
et al., 2013). Inflammation and oxidative stress similarly account
for systemic insulin resistance (Czech, 2017).

Pioglitazone Overcomes Cerebral Insulin
Resistance
One-significant way pioglitazone reduces the risk for AD is by
overcoming cerebral insulin resistance and enhancing blood flow
and glucose uptake/utilization. It overcomes each of the drivers
behind brain insulin resistance: It restores normal expression
of genes of the insulin signaling pathway (Katsel et al., 2018)
and promotes glucose uptake in vulnerable neurons, it reduces
inflammation and promotes immunosuppression (Zhang et al.,
2008; Haraguchi et al., 2008; Swanson et al., 2011; Kaplan et al.,
2014), it ameliorates oxidative stress (Gumieniczek, 2003; Wang
et al., 2014; Paciello et al., 2018), and blocks the synthesis of
Aβ peptides (Liu et al., 2013; Quan et al., 2019b) and promotes
their rapid clearance from the brain (Mandrekar-Colucci et al.,
2012). By overcoming systemic insulin resistance, including in
subjects who are not diabetic, pioglitazone also relieves cerebral
hypoinsulinemia (Baura et al., 1996; Miyazaki et al., 2002; Kernan
et al., 2003).

MITOCHONDRIAL DYSFUNCTION

Bioenergetics
Mitochondrial dysfunction is a major contributing factor to
defective cerebral energy metabolism in AD. Oxidative damage
and mitochondrial stress rank among the earliest detectable
events in human AD (Hirai et al., 2001; Nunomura et al.,
2001; Sultana and Butterfield, 2009), and mouse models
(Yao et al., 2009). Altered mitochondrial morphology is evident
in dendritic profiles, spines and synaptic terminals, and in
astrocytes throughout the brain (Baloyannis, 2011), and belies
bioenergetic defects (Parker et al., 1994a; Valla et al., 2001,
2010; Yao et al., 2009), due in part to reduced expression
of nuclear-encoded mitochondrial genes and faulty repair of
mtDNA defects (Lovell et al., 2000; Weissman et al., 2007;
Sykora et al., 2015), and impaired dynamics (Manczak et al.,
2011), and proteostasis (Alikhani et al., 2011; Westerlund et al.,
2011). Inhibition of mitochondrial energy production elicits
amyloidogenic processing of APP (Gabuzda et al., 1994) that,
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in turn, worsens mitochondrial function (Manczak et al., 2006;
Cenini et al., 2016). Swerdlow (2018); Wang et al. (2020) and
others (Lin and Beal, 2006; Reddy and Beal, 2008; Gibson
et al., 2010; Moreira et al., 2010; Swerdlow et al., 2010, 2014)
have thoroughly reviewed the contribution of mitochondrial
damage to the pathogenesis of Alzheimer’s, and we note the
highlights here.

Although mitochondria possess their own genomes, they
encode only 13 of the ∼1500 mitochondrial proteins. The
remainder are encoded by the nuclear genome, and the
expression of many of these nuclear-encoded mitochondrial
genes is dysregulated in early AD. The pattern of disruption
roughly parallels the gradient of brain regions that exhibit
hypometabolism (Liang et al., 2008b), from the posterior
cingulate cortex (PCC), which is severely affected, to the
middle temporal gyrus, the hippocampus, the entorhinal cortex,
the visual cortex, and the superior frontal gyrus which is
relatively spared from metabolic abnormalities (Minoshima et al.,
1997; Mosconi et al., 2008b; Herholz, 2010). In addition to
mitochondrial genes, glycolytic and TCA pathway genes also are
down-regulated in AD (Brooks et al., 2007).

TOMM and TIMM encode components of the outer and
inner mitochondrial membrane complexes, respectively, that
catalyze import of nuclear-encoded mitochondrial proteins
(Wiedemann et al., 2004). In addition to their importance
for mitochondrial health (Zeh, 2013), they are critical
for controlling cytosolic proteostasis (Liu W. et al., 2018)
because blocked importation leads to excessive cytosolic
accumulation of misfolded proteins. Mitochondrial protein
import is dysregulated in AD (Anandatheerthavarada et al., 2003;
Devi and Anandatheerthavarada, 2010; Devi and Ohno, 2012;
Cenini et al., 2016; Sorrentino et al., 2017), and this dysregulation
follows the same regional pattern as for OXPHOS genes. In AD,
50% of TOM complex proteins and 27% of the TIM proteins
were under-expressed in the posterior cingulate cortex, but their
expression was reduced by only 17% and 0%, respectively, in the
visual cortex (Liang et al., 2008b).

The expression of subunits of each of the five complexes
comprising the OXPHOS system is also inhibited in AD,
and the extent of under expression in each brain region
was consistent with the expression patterns of the respective
mRNAs. These studies compliment earlier reports of reduced
activity in AD brain of COX (Parker et al., 1994a; Gonzalez-
Lima et al., 1997; Bosetti et al., 2002), α-ketoglutaric acid
dehydrogenase (Gibson et al., 1988; Bubber et al., 2005) and
pyruvate dehydrogenase (Sorbi et al., 1983; Rex Sheu et al., 1985).
COX activity also is reduced in blood platelets in AD (Parker
et al., 1994b; Bosetti et al., 2002; Valla et al., 2006), suggesting
that mitochondrial-related AD pathophysiological determinants
are not restricted to the brain.

While these data provide a biochemical rationale for AD-
related cerebral hypometabolism, it is possible the observed
mitochondrial deficits resulted from AD-related damage. Valla
et al. tested this hypothesis in expired young adult APOE ε4
carriers, who were at risk for developing AD, and in age-
matched controls lacking APOE ε4 (Valla et al., 2010). There
were no histologic β-amyloid deposits, neurofibrillary tangles,
or soluble Aβ42 in either group, and they were matched for

insoluble Aβ42 and soluble Aβ40. None-the-less, the activity
and protein levels of COX were lower in the at-risk population,
confirming mitochondrial damage occurs prior to detectable
pathological signs of AD.

The data summarizing mitochondrial dysfunction in AD
and the conceptual picture it has engendered are based on
autopsy specimens because it has not been possible to probe
mitochondria in living subjects. Rather, mitochondrial function
in living subjects has been inferred from FDG-PET analysis,
which measures glycolysis directly. Tsukada’s group have now
introduced a PET ligand that binds to the rotenone-inhibitable
site on the mitochondrial OXPHOS complex I, and provides
a direct measure of complex I availability in the living brain
(Harada et al., 2013; Terada et al., 2020). They discovered the loss
of complex I precedes FDG-PET-detectable hypometabolism in
the parahippocampus in AD (Terada et al., 2020), confirming that
mitochondrial dysfunction is an early event in AD pathogenesis.
Mitochondria-related markers in the CSF offer additional tools
for directly probing brain mitochondrial health. Podlesniy et al.
showed that mtDNA levels in CSF are lower in asymptomatic
subjects who are at risk for developing AD and in AD
patients relative to cognitively normal, age-matched controls
(Podlesniy et al., 2013). This defect was not observed in
subjects with frontotemporal lobar degeneration (FTLD), which
is nosogenically related to Alzheimer’s (Podlesniy et al., 2013).
Previously, reductions in mtDNA in AD brain were detected by
immunohistochemistry of whole brain (Hirai et al., 2001), and
qPCR in single cells isolated by laser capture microdissection
(Rice et al., 2014). These post mortem data support the use
of CSF mtDNA quantification as an in vivo measure of
mitochondrial health.

Mitochondrial Dynamics
Synaptic loss is evident early in AD pathogenesis and is highly
correlated with the severity of AD-related cognitive defects
(DeKosky and Scheff, 1990; Terry et al., 1991). Mitochondria
are highly dynamic organelles, and are continually redistributing
within cells to meet specific regional needs, and undergoing shape
changes and continuous and simultaneous rounds of fission
and fusion necessary for maintaining functional mitochondria.
In healthy neurons, mitochondria are uniformly distributed
throughout the neuron, in both the cell body and in synapses, and
support synaptogenesis and synapse function via their roles in
signal transduction (Werner and Werb, 2002; Yang et al., 2009),
ATP production (Rangaraju et al., 2014; Sobieski et al., 2017)
and Ca2+ -buffering (Contreras et al., 2010; Tarasov et al.,
2012). By contrast, in neurons from AD subjects, mitochondria
are largely restricted to the cell bodies (Baloyannis et al.,
2004; Wang et al., 2009; Pickett et al., 2018). Both APP and
tau contribute to disrupted mitochondrial distribution. Axonal
trafficking of mitochondria was retarded in APP/PS1 neurons,
and neurons from PS1 and Tg2576 APP mice (Calkins et al.,
2011; Trushina et al., 2012). Exposing neurons isolated from APP
over-expressing mice to Aβ42 in culture inhibited mitochondrial
trafficking and reduced axonal mitochondrial density (Du
et al., 2010). Exposing hippocampal neurons from control
C57Bl/6 mice to the Aβ25-32 peptide produced similar results
(Calkins and Reddy, 2011). Disease-associated tau mutations,
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including hyperphosphorylated tau and the P301L mutation,
disrupt interactions between microtubules and cargo, including
mitochondria, and impede normal trafficking (Kopeikina et al.,
2011; Schulz K.L. et al., 2012; Shahpasand et al., 2012; Rodríguez-
Martín et al., 2016). Depletion of tau protects against Aβ-elicited
mitochondrial trafficking deficits (Vossel et al., 2010). This may
contribute to the mitigation of neuronal dysfunction observed
in tau knock-down APP mice (Roberson Scearce-Levie et al.,
2007; Ittner et al., 2010). Insulin resistance and inhibition of
O-GlcNAc synthesis, which is necessary for the synaptic tethering
of mitochondria (Pekkurnaz et al., 2014), may also disrupt the
distribution of mitochondria in neurons.

Impaired mitochondrial dynamics also contributes to
mitochondrial functional defects. It is associated with defective
expression of the mitochondrial fission genes DRP1 and FIS1,
and the mitochondrial fusion genes MFN1, MFN2 and OPA1
(Wang et al., 2009; Manczak et al., 2011). FIS1 expression is
enhanced, and MFN1, MFN2 and OPA1 expression is suppressed
in brain samples from human AD subjects compared with
cognitively normal, age-matched controls. However, while
Manczak et al. (2011) reported elevated DRP1 expression in
AD samples, Wang et al. reported decreased Drpt protein
expression in AD without a change in its mRNA expression
(Wang et al., 2009). These differences could reflect differences
in the AD samples (including Braak stage and APOE status)
used by these investigative teams. The distribution of the fission
and fusion proteins matched that of mitochondria in brains
from healthy vs AD cases, respectively (Wang et al., 2009).
The GTPase activity of Drp1 is enhanced by phosphorylation
on S616 (Taguchi et al., 2007). Western blot analysis revealed
greater Drp1 S616 phosphorylation in both the mitochondrial
and cytosolic fractions from AD subjects than from age-matched,
cognitively normal controls (Wang et al., 2009); thus, even
though Wang et al. observed lower levels of total Drp1 protein
in AD, they detected higher levels of phosphorylated, and
presumably activated, Drp1. Amyloid peptides or oligomers
may activate Drp1. By co-immunoprecipitation and IHC,
Manczak et al. showed monomeric and oligomeric Aβ physically
associated with Drp1, which increased with increasing severity
of disease. Over-expression of the APPswe mutation in
neuroblastoma cells or in primary cultured neurons increased
mitochondrial fragmentation and a perinuclear distribution
of mitochondria, which was reversed by a BACE inhibitor
reversed (Wang et al., 2008). Wang et al. subsequently showed
that exposure of cultured neuroblastoma cells to oligomeric
Aβ increased Drp1 phosphorylation and accumulation in the
mitochondrial fraction, and mitochondrial fragmentation (Wang
et al., 2009). Tau also interacts physically with Drp1, in a way
that may increase Drp1 GTPase activity. This association has
been detected in human AD frontal cortex, but not in controls,
and was confirmed in cortical samples from APP, APP/PS1
and 3 x Tg mice, but not in age-matched littermate controls
(Manczak and Reddy, 2012).

These results suggest Drp1 activity, or its association with
amyloid and/or tau, might be attractive targets for delaying or
treating AD. Kuruva et al. used molecular docking simulations
to design DDQ, that blocks binding of Drp1 with amyloid

(Kuruva et al., 2017). In cultured neuroblastoma cells, DDQ
blocked association of Aβ with Drp1, prevented mitochondrial
fragmentation and oxidative stress, and enhanced mitochondrial
biogenesis and synaptogenesis (Kuruva et al., 2017). We propose
that pioglitazone also checks Aβ- and tau-mediated Drp1
activation, by virtue of its effects on Aβ production and tau
phosphorylation.

Cells use a series of integrated pathways involving crosstalk
among all the major organelles to control the synthesis,
folding and trafficking of proteins. Dysfunction of any branch
in any compartment has system-wide repercussions. Many
cytosolic proteins that are prone to aggregation are imported
into mitochondria and degraded (Ruan et al., 2017). Aβ

peptides can be imported into mitochondria via the TOM
complex (Hansson Petersen et al., 2008), using TOMM20 as
the importation ‘receptor’(Hu et al., 2018). Overwhelming the
mitochondrial proteostasis system with Aβ peptides leads to a
number of adverse consequences, including: increased oxidative
stress via the generation of ROS that is produced following
inhibition of a fatty acid short chain dehydrogenase/reductase
(Lustbader et al., 2004) and of OXPHOS complex I (Bobba
et al., 2013), inhibition of mitochondrial trafficking and
reduced axonal mitochondrial density (Du et al., 2010; Calkins
and Reddy, 2011), and increased mitochondrial fragmentation
(Baloyannis, 2006). If intramitochondrial degradation of Aβ

is impaired (Lautenschläger et al., 2020), or if importation
into mitochondria is blocked (Liu Y. et al., 2018), cytosolic
proteostasis becomes blocked, leading to protein accumulation
and aggregation in the cytosol (reviewed in Lautenschäger
and Schierle, 2019). The fact that two proteases involved
in mitochondrial protein homeostasis, PreP (Alikhani et al.,
2011) and Htr2 (Westerlund et al., 2011), are reduced in
AD, and the suggestive evidence that polymorphisms in
Htr2 are associated with AD (Westerlund et al., 2011), are
consistent with this model. However, the relationship between
mitochondrial Aβ accumulation and extramitochondrial protein
aggregation is non-linear because Aβ-mediated inhibition of
bioenergetics and the processing of APP are related by a feedback
cycle, wherein Aβ-mediated inhibition of bioenergetics stalls
APP processing and the generation of additional β-amyloid
(Wilkins and Swerdlow, 2017). Nonetheless, the intracellular
accumulation and mitochondrial localization of both β-amyloid
and phospho-tau, contribute to mitochondrial dysfunction and
aberrant trafficking and dynamics that characterizes Alzheimer’s
disease. By inhibiting the generation of Aβ peptides and the
phosphorylation of tau, pioglitazone blocks these effects.

Mitochondrial and Cellular Calcium
Dysregulation
Calcium homeostasis is perturbed in AD (Khachaturian, 1994),
which may contribute to both early and late (Bezprozvanny
and Mattson, 2008; Calvo-Rodriguez et al., 2020) phases of the
disease. Calcium is essential for multiple neuronal activities in
addition to mitochondrial function, including neuritogenesis and
synapse formation, synaptic transmission and synaptic plasticity.
Altered calcium homeostasis is a cardinal feature of Alzheimer’s

Frontiers in Neuroscience | www.frontiersin.org 12 June 2021 | Volume 15 | Article 666958156

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-666958 June 14, 2021 Time: 15:17 # 13

Saunders et al. Pioglitazone and Alzheimer’s Disease Risk

and other neurodegenerative diseases (Mattson, 2007; Tong et al.,
2018), due, in part, to extrinsic factors, such as β-amyloid
accumulation (Bezprozvanny and Mattson, 2008), but also to
intrinsic factors. Increased influx through the voltage gated
calcium channel and exaggerated calcium release from the ER,
coupled with blunted reuptake (Popugaeva and Bezprozvanny,
2013), elevates cytosolic calcium (Thibault et al., 2007). These
contribute to mitochondrial calcium overload (Calvo-Rodriguez
et al., 2020), contributing to excess ROS production and impaired
mitochondrial energy production and apoptosis (Cenini and
Voos, 2019). Elevated cytosolic Ca2+ also activates CDK5 via
calpain, leading to generation of the hyperactive p25 regulatory
subunit (Kimura et al., 2014; Seo et al., 2017). The breakdown
of neuronal calcium homeostasis extends to expression of genes
important in calcium regulation (Emilsson et al., 2006). Oxidative
stress and lipid peroxidation (Mattson, 1998), perturbations in
the mitochondrial-ER membrane (MAM) (Hedskog et al., 2013;
Area-Gomez et al., 2018) and the accumulation of β-amyloid
peptides (Mattson et al., 1992) contribute to altered calcium
homeostasis in AD.

Taken together, morphological analysis and gene expression,
proteomic and functional data all support the conclusion that
mitochondrial dysfunction is present early, before the detectible
stages of AD pathology, including the accumulation of Aβ

plaques or tau tangles, and contributes to AD pathogenesis.

Pioglitazone and Mitochondrial
Dysfunction
PPARγ agonists ameliorate AD-related mitochondrial
dysfunction by inhibiting Aβ peptide production, discussed
above, by eliciting mitobiogenesis (Strum et al., 2007; Miglio
et al., 2009), and improving mitochondrial membrane potential
(Wang et al., 2002; Pipatpiboon et al., 2012). They also limit
oxidative stress damage, by inhibiting ROS generation by
complex I (Brunmair et al., 2004; Ghosh et al., 2007) and by
increasing expression of glutathione and the antioxidants SOD
and catalase (Collino et al., 2006; Aleshin and Reiser, 2013).
PPARγ agonists exert additional positive effects on neuronal
energy balance by stimulating GLUT3 expression (Garcia-
Bueno et al., 2006; Wang et al., 2012), which is decreased in
AD (Simpson et al., 1994), by stimulating GLUT4-mediated
glucose uptake and by promoting neuronal lactate oxidation
(Izawa et al., 2009) and pyruvate flux (Rossi et al., 2020) via
enhancing insulin-stimulated Akt activation (Karwi et al., 2020)
and inhibiting PDH kinase activity (Way et al., 2001).

PRECLINICAL EFFICACY OF
PIOGLITAZONE AND ROSIGLITAZONE

Table 1 summarizes representative pre-clinical studies involving
the PPARg agonists rosiglitazone or pioglitazone. This is not
meant to be an exhaustive list, but the studies were selected
to illustrate several points. First, both drugs exhibit in vivo
efficacy on at least some AD-related phenotypes, but not all
study results could be replicated. Generally, PPARγ agonists
protected against oxidative damage, promoted synapse recovery
and improved learning and memory, enhanced cerebral blood

flow and glucose uptake, reduced corticosterone levels and
amyloid deposits, Aβ peptide levels and reactive astrocytes and
microglia, and promoted microglial phagocytosis. Two important
generalizations can be drawn from these studies, that are
important for considering the appropriate design of human trials.

The first is that the timing and length of treatment are critical
variables that that are unique for each disease-related phenotype.
The time of treatment in the natural history of the disease can
be crucial. Some parameters, such as stimulus-coupled cerebral
blood flow and glucose uptake, were normalized in both adult
(6 months old at initiation of treatment, before visible signs of
plaque pathology or significant deficits in learning and memory)
and aged (15 – 18 months old at initiation of treatment) mice,
while others, such as reversal learning, were improved in the adult
mice, but not in aged mice (Papadopoulos et al., 2013). Other
traits, such as spatial learning, were only improved when young
mice were treated for extended periods (Badhwar et al., 2013).
Second, some parameters respond to short-term treatment, while
others do not. Cerebral blood flow was normalized after a short (3
day) drug exposure, but improvements in learning did not occur
in that time frame (Badhwar et al., 2013). Third, efficacy becomes
more pronounced with time of treatment (Escribano et al., 2010;
Chen et al., 2015).

The second lesson is that dose matters. These representative
studies employed a wide range of drug concentrations. For
pioglitazone, they ranged from 80 to 0.04 mg/kg/day, which, after
allometric scaling, represent 390 mg/day, down to 0.8 mg/day for
a 60 kg human. For comparison, the recommended starting dose
of pioglitazone for treating DM2 is 15 – 30 mg/day. The mode
is around 20 mg/kg/day/mouse, equivalent to ∼97mg/day for a
60 kg human. The recommended starting dose for rosiglitazone
is 4 mg, but the human equivalent doses used for in vivo AD-
related studies range from 29 to 58 mg/animal/day. PD/PK-
type experiments don’t appear to have been done that would
justify the selection of these doses, and, in addition to the
dangers of off-target effects, the use of such high doses is
problematic because we don’t fully understand the dose-response
characteristics of many (if any) of the read-outs. For instance,
both human (Knodt et al., 2019) and rat (Crenshaw et al., 2015)
studies revealed inverse-U-shaped fMRI BOLD pioglitazone dose
response curves. Additionally, Seok et al. found that 2 mg/kg/day
pioglitazone was associated with statistically significant improved
learning and memory in the Morris water maze test, and reduced
IHC-detectable and soluble hippocampal Aβ40 deposits in 9-
month-old SAMP8 mice, but the effect on all of these parameters
was less at 5 mg/kg/day (Seok et al., 2019). The results of
the rat BOLD study also suggest that lower doses were as, if
not more, efficacious as higher doses (Crenshaw et al., 2015).
These results are reminiscent of cell culture experiments on
mitochondrial biogenesis and Aβ clearance (e.g., Miglio et al.,
2009; Moon et al., 2012). There is not an agreed-upon explanation
for this dose-response pattern, nor can we predict which disease
phenotype will respond to PPARγ agonists in this way. Therefore,
any evaluation of PPARγ agonists for treating or delaying the
onset of AD needs to take into consideration the effect of drug
concentration on the parameters being measured.

The lack of PD/PK studies relevant to Alzheimer’s disease,
in pre-clinical models or humans, including measurements of
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TABLE 1 | Summary of PPARγ agonist effects on pre-clinical models of Alzheimer’s disease.

Model/references Dosing Human
Equivalent
Dosea

Comments Results

Treatment
paradigm

Tg2576 (Pedersen
et al., 2006)

Rosiglitazone, 4 mg/kg, po
(chow), vs vehicle control, 4
months.

19.51 mg/d Male, 9 months old at initiation of
treatment; amyloid deposits, hippocampal
dendrite spine loss, and defective spatial
learning evident when treatment initiated.

Rosiglitazone was statistically associated with
improved memory, reduced learning deficits (radial
arm maze); reduced insoluble Aβ42 levels; reduced
corticosterone levels.

Tg2576, Nenov
2014, 2015 (Nenov
et al., 2014, 2015)

Rosiglitazone, 30 mg/kg,
po (chow), vs vehicle
control, for 30 days.

146.35 mg/d Equal numbers of males and females, 8
months old at initiation of treatment.

Learning, memory improvements correlated with
improved spontaneous synaptic activity and
short-term plasticity; engagement of the ERK
pathway and expression of synaptic proteins,
restoration of mature: immature DG granule cell
ratio, normalized Nav-mediated currents.

APP (V717I),
(Heneka et al.,
2005)

Pioglitazone, 40 mg/kg/d;
po (chow), vs vehicle
control, 7 days

195.12 mg/d Equal numbers of males and females; 10
months old at initiation of treatment;
amyloid pathology present.

Decreased BACE1, amyloid plaque deposits,
soluble Aβ42 levels, reactive microglia.

APP (Swe/PS1)19,
(Mandrekar-Colucci
et al., 2012;
Skerrett et al.,
2015)

Pioglitazone, 80 mg/kd/d,
po (gavage) vs vehicle
control, 9 days

390.24 mg/d Equal numbers of males and females;
similar results for mice that were 6 or 12
months-old at initiation of treatment and
that exhibited differing pathological loads.

Improved memory retention. Decreased amyloid
plaque deposits, reduced soluble and insoluble
Aβ40 and Aβ42 in 6-month-old mice; reduced
insoluble Aβ42 and Aβ40 and soluble Aβ40 in
12-month-old mice; reduced reactive microglia and
astrocytes and enhanced microglial phagocytosis;
increased IL-1β, TNFα, Tm1, Fizz1, Arg1
expression;

APP/PSI (Chen
et al., 2015)

Pioglitazone, 10 mg/kg/d,
ip, vs. vehicle control, 7 and
10 days.

48.78 mg/d Equal numbers of males and females; 12
months old at initiation of treatment;
pathology present.

Improved LTP after 7 days treatment & water maze
performance after 10 days. Reduced CDK5
expression and activity as tau phosphorylation
surrogate.

APP (Swe/PS1)19
(Toba et al., 2016)

Pioglitazone, 80 mg/kg/d,
po (chow), vs vehicle
control, 9 days.

390.25 mg/d Equal numbers of male and female mice,
5 – 6 months old at initiation of treatment,
emergent stages of pathology.

Increased motor coordination, LTP; decreased
CDK5 regulatory protein (p25 & p35) expression.

J20 (V717F under
PDGF promoter)
(Escribano et al.,
2010)

Rosiglitazone, 5 mg/kg/d,
po (gavage) vs vehicle
control, treated for 1 month
and 4 months.

24.39 mg/d Equal numbers of males and females; 10
months old at initiation of treatment.

Improved object recognition after one month and
progressively improved spatial memory (Morris
Water Maze); reduced amyloid plaque and insoluble
Aβ42 and Aβ40 levels, and phosphorylated tau,
and promoted anti-inflammatory, pro-phagocytic
microglial phenotype.

J20 (Nicolakakis
et al., 2008)

Pioglitazone, 20 mg/kg/d,
po (chow), vs vehicle
control, for 1.5 – 2 months.

97.56 mg/d Equal numbers of males and females; 14
months old at initiation of treatment;
amyloidosis, neuronal loss well established.

No effect on water maze performance, amyloid
deposits or levels of soluble or insoluble Aβ42 or
Aβ40. Improved cerebral blood flow and glucose
uptake; restored cerebrovascular function; trend
toward improved cortical cholinergic stimulation;
reduced astrogliosis; reversed cerebral oxidative
stress.

3xTg, Search
(Searcy et al., 2012)

Pioglitazone, 18 mg/kg, po
(chow), vs vehicle control,
for 3.5 months

87.81 mg/d Female mice, 11 – 12 months of age when
treatment initiated; amyloid deposits
well-established, tau aggregates present.

Improved learning on the active avoidance task;
enhanced LTP; reduced amyloid deposits and
hyperphosphorylated tau in CA1.

Prevention
paradigm

J20 (Escribano
et al., 2009)

Rosiglitazone, 5 mg/kg/d,
po (gavage) vs vehicle
control.

24.39 mg/d Prevention vs. rescue study. Equal numbers
of 1.5-month-old males and females were
treated for 2.5 months (prevention), and
equal numbers of 9-month-old mice were
treated for 1 month (rescue).

Improved object recognition in both cohorts. In
older mice, reduced corticosterone levels and
blocked glucocorticoid receptor down-regulation.

J20 (Badhwar
et al., 2013)

Pioglitazone, 20 mg/kg/day,
po (chow) vs. control

97.56 mg/d Treatment initiated with 3-month-old mice
for 14 weeks; small cohort for 3 days.

14-week treatment that was initiated in young mice
was statistically associated with improved spatial
learning, with trend toward improved memory.
Three-day treatment rescued cerebral blood flow;
effect persisted in the longer-term treated mice.

(Continued)
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TABLE 1 | Continued

Model/references Dosing Human
Equivalent
Dosea

Comments Results

Tg2576
(Rodriguez-Rivera
et al., 2011)

Rosiglitazone, 30 mg/kg,
po(chow), vs vehicle
control, for 4, 8 or 12
months

146.16 mg/d Equal numbers of males and females, 1
month old at initiation of treatment.

Reversed associative learning and memory deficits
in 9-month old animals (fed for 8 months), but not 5
(fed for 4 months) or 13 (fed for 12 months)
month-old mice.

SCAMP8 (Seok
et al., 2019)
SCAMP8 is a
spontaneous
‘Alzheimer’s-like’
mouse model that
exhibits amyloid
and tau pathology,
neuron and
dendrite spine loss,
and CNS oxidative
stress (Armbrecht
et al., 2014; Cheng
et al., 2014)

Pioglitazone, 2 or
5 mg/kg/d, po (gavage)
versus vehicle control, for 7
weeks.

9.76 or
24.39 mg/d

Equal numbers of male and female mice, 9
months old at initiation of treatment.

Improved water maze performance, reduced
amyloid deposits and soluble Aβ40; increased
LRP1 expression. All responses were attenuated at
5 mg/kg/d vs 2 mg/kg/d.

Cerebrovascular
model
J20/TGFβ1
(Papadopoulos
et al., 2013)

Pioglitazone, 20 mg/kg/d,
po (chow), vs vehicle
control, 6 months

97.56 mg/d Also a ‘treatment vs prevention study.’
Equal numbers of males and females. Two
cohorts, 6 and 12 months of age at
beginning of treatment. Adult mice treated
for 6 months; aged mice treated for 3
months.

No effect on spatial learning or memory; improved
reversal learning in adult but not aged mice. In both
adult and aged cohorts, improved cerebral blood
flow, cerebral glucose uptake; suppressed
astrogliosis in cortex but not in hippocampus;
suppressed microglial activation in hippocampus.
No effect in either cohort on amyloid pathology, or
on cerebrovascular reactivity.

TGFβ1 (Lacombe
et al., 2004)

Pioglitazone, 18 mg/kg/d,
po (chow), vs vehicle
control, 2 months.

87.81 mg/d Equal numbers of male and female mice, 2
months old at initiation of treatment.

Decreased Aβ42 levels and glia activation, and
increased hydrocephalus.

TGFβ1 (Galea et al.,
2006)

Pioglitazone, 18 mg/kg/d,
po (chow), vs vehicle
control, 2 months.

87.81 mg/d Equal numbers of male and female mice, 2
months old at initiation of treatment.

Pioglitazone inhibited cerebral glucose uptake in
control (non-transgenic littermate) mice and failed
to reverse TGF1b-mediated inhibition in transgenic
mice.

Diabetes models
ICR mice (Jiang
et al., 2012)
The ICR strain is a
general-purpose
mouse line.
Diabetes was
induced by feeding
a high fat diet (60%
fat, 20%
carbohydrate, 20%
protein) for 1 month
to 10-week-old
mice to elicit
peripheral insulin
resistance and
hyperglycemia,
followed by
injection with
streptozotocin
(100 mg/kg), to
cause insulin
deficiency and
cerebral
hypoinsulinemia.

Pioglitazone, 18 mg/kg/d,
po (chow) or 9 mg/kg/d vs
vehicle control, for 6 weeks.

87.81 mg/d or
43.9 mg/d

Equal numbers of male and female mice,
16 – 18 weeks old at the initiation of
treatment, with similar body weights and
degree of hyperglycemia were randomly
assigned to equally sized treatment groups.
Non-diabetic controls were similarly divided
into treatment groups.

HFD/strep-diabetes was associated with memory
impairments; pioglitazone treatment improved
learning and memory, and reduced soluble Aβ42
and Aβ40, BACE1, NF-κB and RAGE.

(Continued)
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TABLE 1 | Continued

Model/references Dosing Human
Equivalent
Dosea

Comments Results

Sprague-Dawley rats
(Gao et al., 2017)
12-week-old rats
were fed 60% fat diet
for 20 weeks, then
injected with
streptozotocin
(27 mg/kg).

Pioglitazone, 10 mg/kg/d,
po (chow) vs vehicle
control, for 10 weeks.

48.78 mg/d Equal numbers of 20-week-old male and
female mice were divided into treatment
groups, as described for the ICR mice.

HFD/strep rats exhibited memory impairments
versus the control and diabetes+pioglitazone
groups, which did not differ from each other.
Pioglitazone corrected impaired ERK1/2 mRNA and
protein expression caused by hyperglycemia.

APOE Model

APOE TR mice (To
et al., 2011)
3-month-old male
mice fed 60% fat diet
for 32 weeks.

Pioglitazone, 20 mg/k/d, po
(gavage) vs vehicle control,
for 3 weeks.

97.56 mg/d 40-week-old male HF or LF mice were
divided into control and pioglitazone
treatment groups and dosed for 3 weeks.

HF diet elicited insulin resistance and impaired
glucose tolerance; reduced all phospho-tau
epitopes in all mice. Neither diet nor pioglitazone
affected APP metabolism. In HF mice, pioglitazone
was associated with reduced AT8 p-tau in APOE ε3
mice and increased AT8 p-tau in APOE ε4 mice.

Aging-associated
neuropathology

Reversal of aging
effects in Wistar rats
(Cowley et al., 2012)

Rosiglitazone, 3 mg/k/g, po
(chow), vs vehicle control,
56 days.

14.63 mg/d Equal numbers of male and female rats, 22
months old vs 3 months old (control) at the
initiation of treatment.

Rosiglitazone improved T1 relaxation times,
improved post-synaptic component of LTP,
decreased astrogliosis and RANTES expression,
mediated by rosiglitazone-enhanced endothelial
cell-astrocyte interactions. No effect on microglial
activation.

Prevention of aging
effects in Wistar rats
(Wang et al., 2012)

Rosiglitazone, 6 mg/kg/d,
po (chow), vs vehicle
control, 40 days.

29.27 mg/d Equal numbers of male and female rats,
12 – 14 months old (middle aged) vs
1-month-old controls at the initiation of
treatment.

Rosiglitazone improved water maze learning,
enhanced synaptic plasticity, place cell activity,
improved post-synaptic component of LTP, and
restored hippocampal GLUT3 expression.

BOLD imaging
Pharmacodynamics

Young adult Wistar
Rats (Crenshaw
et al., 2015)

Pioglitazone, 0.04, 0.08,
0.16, 0.32 mg/kg/d, po
(gavage) versus vehicle
control, for 2 and 7 days.

0.195, 0.39,
0.78 or
1.56 mg/d

Doses were chosen to bracket the dose
used in NCT02284906
(TOMMORROW)
(0.8 mg/day), after allometric scaling. Study
underpowered for the large number of
comparisons.

Resting state functional connectivity increased
between two regions after two days of
0.08 mg/kg/day; after seven days 17 connections
were changed vs. baseline across all 5 dose
groups. On day 7, connectivity between CA1 and
ventral thalamus was increased in all pioglitazone
doses but was weakest at 0.32 mg/kg/day.

ahttps://www.fda.gov/regulatory-information/search-fda-guidance-documents/estimating-maximum-safe-starting-dose-initial-clinical-trials-therapeutics-adult-
healthy-volunteers.

target engagement in the brain, contributes to difficulties in
planning reliable human studies, and hinders the development
of testable theories of drug mechanisms of action on the
observed responses. In fact, none of the studies summarized in
Table 1 confirmed that, under these treatment regimens, the
drugs entered the rodent brain. Rosiglitazone has essentially
no BBB penetrance (GSK, unpublished), and pioglitazone has
low BBB penetrance (Maeshiba et al., 1997). Yet, pioglitazone
ranging from 0.04 to 0.32 mg/kg/d increased functional
connectivity between the CA1 region and the ventral thalamus
in young adult Wistar rats, but the connectivity fell off at
the highest dose (Crenshaw et al., 2015). It appears that
either (Longhe, 2020) high pioglitazone concentrations are
unnecessary, at least for some responses; or (Patterson, 2018)
that some processes are responsive to small amounts that
penetrate the BBB and large doses are necessary to overcome
the transport barrier (by mass action); or (Zissimopoulos

et al., 2015) that some processes respond to actions of
the drug outside the BBB. One investigation concluded that
rosiglitazone modulates astrocyte behavior in vivo indirectly,
via regulating interactions between BBB endothelial cells and
astrocytes (Cowley et al., 2012). To the best of our knowledge,
these observations have not been followed-up. Given the
potential for cross-talk between astrocytes and microglia (Clark
et al., 2021), such an indirect pathway might also contribute
to PPARγ agonist-mediated in vivo regulation of microglial
function.

In designing in vivo efficacy and MOA studies, and
to provide guidance for human clinical trials, doses
and treatment times should be optimized through
implementation of detailed PD/PK studies that include
quantification of drug substance and target engagement
in the brain and the BBB, as well as in relevant
peripheral cells.
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HUMAN STUDIES

Observational Cohort Studies
Several longitudinal observational cohort studies have shown
that pioglitazone reduces the risk and delays the onset of
dementia in the context of type 2 diabetes mellitus. These
studies were performed using data extracted from national health
insurance records, on subjects who were diagnosed with type 2
diabetes mellitus (DM2) and without dementia (as coded by the
International Classification of Diseases, Ninth (ICD-9) or Tenth
(ICD-10) editions) on the index date. The index date was the date
of first prescription of the drug. In most cases, observations ended
after 5 years or when subjects were diagnosed with dementia.
Rosiglitazone had a neutral effect (Tseng, 2019). Meta-analysis of
these observational studies have been published (Ye et al., 2016;
Zhou et al., 2020).

Miller et al. used Department of Veterans Affairs (VA) records
to conduct an analysis of US veterans with diabetes but without
a recorded diagnosis of AD for two years prior (Miller et al.,
2011). Their analysis included subjects prescribed with either
rosiglitazone or pioglitazone. The study population was heavily
white (79%) and male (98%) type 2 diabetics, who were followed
from the time of drug initiation until the first AD diagnosis,
which was made using the ICD-9 codes. In this population, the
hazard ratio (HR) of thiazolidinedione (TZD) only vs. insulin
only was 0.81 (95% CI, 0.73 – 0.89). When insulin and TZD use
were combined to improve glycemia control, the HR for insulin
followed by TZD was 0.63 (95% CI, 0.53 – 0.74), and for TZD
followed by insulin was 0.72 (95% CI, 0.61. – 0.84).

Using German public health insurance company records,
Heneka et al. considered only subjects who did not receive
insulin and who were dementia-free for two years prior to the
index date, which was the date of first pioglitazone use, and
they followed subjects for 5 years (Heneka et al., 2015b). The
populations they followed were: ≥ 60 years old, free of dementia
at the beginning of the study, diabetics not taking pioglitazone,
diabetics taking pioglitazone (broken down by length of time on
drug), and non-diabetics. Long-term pioglitazone use (receiving
pioglitazone prescriptions > 8 quarters) was associated with
lower risk for dementia relative to non-diabetics [Relative Risk
(RR), 0.53 (95% CI, 0.301 – 0.936, P = 0.029)], while short-
term users (<8 quarters) had an RR ∼ nondiabetics (RR, 1.16,
P = 0.317). For diabetics without a pioglitazone prescription, the
relative risk was 1.23 (P < 0.0001). Neither rosiglitazone nor
metformin use altered the risk in this dataset. The RR for insulin
use was 1.608 (95% CI, 1.459 – 1.773, P < 0.001).

Chou et al. confirmed that pioglitazone reduced the risk
of dementia in patients with DM2, among Taiwanese (Chou
et al., 2017). They extracted data from the Longitudinal Health
Insurance Database subset of Taiwan’s National Health Insurance
Research Database (NHI), for ‘ever pioglitazone’ vs ‘never users’.
The cohort were dementia free at the index date, and they
incorporated a 5-year follow-up period. The pioglitazone cohort
had a higher prevalence of stroke and hypertension than the
comparison cohort, which was matched to the pioglitazone
cohort by age, sex and index date. They used a ‘defined daily

dose’ (DDD, 30 mg/day), as recommended by the World Health
Organization, to quantify the daily pioglitazone use. Overall,
the risk for dementia was 23% lower in the pioglitazone use
group versus in the comparison group; HR = 0.77 (95% CI,
0.62 – 0.95, P = 0.015). The pioglitazone effect was time- and
dose-dependent. The hazard ratios were 0.50 (95% CI, 0.34 –
0.75, P = 0.001) in the high cumulative user group (>444
defined daily dose), 0.53 (95% CI, 0.36 – 0.77, P < 0.001)
in the long-term user group (>536 days), and 0.66 (95% CI,
0.49 – 0.90, P = 0.009) in the high-mean daily dose user group
(>mean daily dose).

Tseng also followed subjects in Taiwan’s NHI, but restricted
his analysis to a 2 year follow-up period (Tseng, 2018). Unlike
Chou et al., Tseng matched the pioglitazone- and comparison-
cohorts for comorbidities, including hypertension, dyslipidemia,
ischemic heart disease, peripheral arterial disease, Parkinson’s
disease, statin use and other glycemic control agents. Analysis
of the unmatched and the matched cohorts confirmed that
pioglitazone use was associated with significantly lower risk for
dementia. Metformin was also found to be protective in this
study, but pioglitazone’s protective effects were independent of
metformin. The effect of pioglitazone was largest in patients
who had never taken metformin and among those who had
taken pioglitazone for > 20 months. In the matched cohort,
among patients who had never used metformin, the hazard ratios
for ever vs never pioglitazone were: < 11 months: 0.588 (95%
CI, 0.272 – 1.273, P = 0.1778), 11 – 19.6 months: 0.690 (95%
CI, 0.338 – 1.409, P = 0.3084), > 19.6 months: 0.265 (95%
CI, 0.102 – 0.688, P = 0.0064). By contrast, for all patients,
the hazard ratio for ever pioglitazone vs never users was 0.716
(95% CI, 0.545 – 0.940, P = 0.163), and the hazard ratios
for < 110 months use, 11 – 19.6 months and > 19.6 months
use were 0.806 (95% CI, 0.544 – 1.193, P = 0.2809), 0.654 (95%
CI, 0.430 – 0.994, P = 0.0467), and 0.694 (95% CI, 0.469 –
1.026, P = 0.067).

Tseng’s findings that metformin was protective are at odds
with Heneka et al., who observed no benefits for metformin
users. Interestingly, Bohlken et al. also reported that metformin
use did not reduce incidence of dementia in a German cohort
(Bohlken et al., 2018). Their study relied on the German Disease
Analyzer database (IQVIA), representative of General Practices
(as opposed to all sources of health case, including Neurology),
and involved a disease cohort that was dementia-free for at
least one year prior to the index date. The ‘ever’ and ‘never’
drug cohorts were matched for age, sex and comorbidities. The
odds ratio of developing dementia for those taking glitazones
(pioglitazone or rosiglitazone) was 0.80 (95% CI, 0.68 – 0.95,
P = 0.011) and the odds ratio for metformin was 0.96 (95% CI,
0.88 – 1.04, P = 0.153). The discordance between the German and
Taiwanese metformin results could reflect differences in dementia
subtypes (Neff et al., 2021), other genetic background differences
of the ethnic groups represented in the respective databases,
comorbidities of the ‘ever’ and ‘never’ groups in the respective
studies, the severity of diabetes, or methodological differences in
data collection and analysis.

Numerous observational studies of other hypoglycemic
agents, including insulin, glycosidase inhibitors, metformin,
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sulfonylureas and DPP-4 inhibitors have been conducted, and
the results have been examined and summarized in two meta-
analysis (Ye et al., 2016; Zhou et al., 2020). Generally, the DPP-4
inhibitors were associated with the lowest risk of dementia,
followed by metformin and the thiazolidinediones, which lumped
pioglitazone and rosiglitazone together (Zhou et al., 2020).
Another study has shown that no hypoglycemic agents, including
thiazolidinediones or metformin, delayed the onset of AD
(Imfeld et al., 2012). Because the effects of rosiglitazone are
neutral (Tseng, 2019), lumping it together with pioglitazone
produces confounding results in these meta-analyses. DPP-4
inhibitors block the degradation of the incretin hormones (GIP,
GLP-1), which regulate microglial function (Spielman et al.,
2017). Because incretins trigger PPARγ expression (Svegliati-
Baroni et al., 2011; Onuma et al., 2014), it is not possible to
disentangle the PPARγ and incretin contributions to the DPP-4
effects evident in these data.

Overall, the longitudinal cohort studies demonstrate
pioglitazone use is associated with a reduced risk for dementia
in populations of adult-onset diabetics, and the effect is time and
dose dependent. These results are in line with the pilot clinical
studies conducted using DM2 cases (Hanyu et al., 2009, 2010;
Sato et al., 2011). The strength of the ‘never vs ever’ longitudinal
cohort studies is they approximated placebo controlled, clinical
trials that matched subjects for age, sex and co-morbidities and
had realistic follow-up periods (2 – 5 years). However, they all
relied on ICD diagnostic codes to define dementia and often
there was a lag between onset of dementia and diagnosis. Heneka
et al. attempted to overcome that shortcoming by adopting a
multi-layer approach to diagnosis. Additionally, none of these
studies accounted for APOE or other genetic risk factors, life-
style factors, or the severity of diabetes and the degree of insulin
resistance and glycemic control. To overcome the difficulties of
these observational studies and of the small-scale pilot clinical
studies with DM2 (section 10.2), a large-scale blinded, placebo
controlled clinical trial in populations with adult-onset diabetes,
that are at increased risk of developing Alzheimer’s disease,
seems warranted.

Clinical Studies
Table 2 summarizes twelve clinical trials that reported data
evaluating thiazolidinedione PPARγ agonists as therapeutics for
Alzheimer’s disease. We will focus on those studies that highlight
important points. We include two pharmacodynamics studies
using measures of brain energetics as readouts, two small studies
that included measures of drug effects on Aβ peptide levels, two
that correlated drug effects on insulin-lowering, and three small
studies evaluating the efficacy of pioglitazone in volunteers with
pre-existing DM2; we did not include in the table an additional
study reporting similar outcomes by this group, but we do discuss
it below. Aside from the studies in DM2 patients, all of the studies
excluded individuals with a history of diabetes or who were
taking medications to control glucose. Two of the studies were
prevention trials with participants who were free of dementia
at the time of enrollment, that reflected one of the important
lessons from the pre-clinical studies, that beginning treatment
before the onset of AD-related pathology preserved learning and

memory (Badhwar et al., 2013). The rest were treatment studies
that involved subjects with mild-to-moderate Alzheimer’s disease
or mild cognitive impairment at the outset. With the exception
of NCT00348309, NCT00348140 and NCT01931566, all of the
studies may have been underpowered or conducted for too short
a duration relative to the conversion rate in the controls from
normal cognition to MCI or mild-AD.

Several small pilot studies evaluated the efficacy of
rosiglitazone and pioglitazone in the context of the metabolic risk
factors insulin resistance and type 2 diabetes mellitus (Luchsinger
et al., 2004; Biessels et al., 2006; Muller et al., 2007; Xu et al., 2009;
Willette et al., 2015a,b; Wu et al., 2016). Watson et al. enrolled
volunteers with early AD and amnestic MCI for a 24-week
trial with rosiglitazone (Watson et al., 2005). These volunteers
were also mildly insulin resistant, based on the HOMA-IR
scores calculated from the reported average baseline insulin and
glucose values (calculated 2.0; scores > 1.9 are mildly insulin
resistant) (Matthews et al., 1985). In addition to changes from
baseline cognitive scores, these authors they quantified plasma
insulin and, unlike most of the other studies that we located,
the plasma biomarkers Aβ42 and Aβ40. Over the course of the
6-month trial, rosiglitazone preserved delayed memory scores
and selective attention, while memory deteriorated in the control
group (Watson et al., 2005). The Aβ42/Aβ40 ratio fell in the
placebo group but was stabilized by rosiglitazone. Rosiglitazone
also elicited a small but statistically significant drop in peripheral
insulin, and the degree of memory preservation and error rates
on the interference test were inversely related to changes in
plasma insulin levels. Risner et al. also found suggestive evidence
of an interaction between changes in insulin levels and cognition
(Risner et al., 2006). This effect may be related to the correction
of central hypoinsulinemia, which peripheral hyperinsulinemia
causes (Baura et al., 1996). Glucose levels rose, but the change
did not attain statistical significance.

APOE ε4 is the most significant genetic risk factor for
developing late-onset Alzheimer’s disease, and several studies
investigated whether there was an interaction of APOE ε4 carriage
with rosiglitazone or pioglitazone effects on cognition. Risner
et al. conduced a small, 24-week, dose-response study (average
N = 128) (Risner et al., 2006). Overall, rosiglitazone did not
have a significant effect on cognition, but tests for interaction
between ADAS-Cog score and APOE status were significant.
Cognition improved at the highest rosiglitazone dose (8 mg) in
APOE ε4 negative subjects. Notably, APOE ε4 negative subjects
also experienced a greater drop in plasma insulin elicited by 8 mg
rosiglitazone than subjects who carried at least one APOE ε4
allele. The relationship between insulin lowering and cognitive
improvement is reminiscent of Watson et al. (2005), but unlike in
the latter study, the interaction was not formally analyzed here.

GlaxoSmithKline studied the interaction between APOE status
and rosiglitazone efficacy further in two larger-scale, dose-
response trials, which compared the efficacy of low (2 mg)
versus high (8 mg) rosiglitazone in test populations that were
stratified by APOE status, as adjunctive therapy to AChEIs (Gold
et al., 2010; Harrington et al., 2011). NCT00428090 ran for
24 weeks, with average N = 124 subjects (Gold et al., 2010),
and the NCT00348309 and NCT00348140 studies ran for 48
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TABLE 2 | Summary of PPARγ agonist clinical trial results for Alzheimer’s disease.

Study Treatment Study Design Population Results

A. Rosiglitazone
A.1. Phase 2
Intervention
Preserved cognition in
patients with early
Alzheimer disease and
amnestic mild cognitive
impairment during
treatment with
rosiglitazone (Watson
et al., 2005)

Rosiglitazone
4 mg daily, vs
placebo.

24-week, placebo-controlled,
double blind, parallel-group study in
subjects with early AD and
Amnestic MCI.
Outcome measures: cognition,
plasma insulin, plasma Aβ.

Placebo, N = 10, rosiglitazone, N = 20.
Average age, 73 years, 70% F, 100%
White. Baseline insulin, 8.1 µU/mL; MMSE
mean baseline, 23. Subjects taking
medications to control glucose were
excluded.

Rosiglitazone was statistically
associated with
better delayed recall at 4 and 6 months,
selective attention at 6 months, stable
plasma Aβ42, Aβ40, and Aβ42/Aβ40
ratio.

Efficacy of rosiglitazone
in a genetically defined
population with
mild-to-moderate
Alzheimer’s disease
(Risner et al., 2006)

Rosiglitazone 2,
4 or 8 mg daily
vs placebo.

24-week, placebo-controlled,
double blind, parallel-group pilot
study in subjects with
mild-to-moderate AD (phase 2).
Outcome measures: ADAS-Cog,
CIBIC+

Average N = 128, average age, 70.7 years,
60% F, 100% White. Balanced for APOE
ε4. Baseline insulin, 14.2 µU/mL. MMSE
mean baseline, 21.3. Subjects with history
of T1DM or T2DM, or with fasting
glucose ≥ 7mM or HbA1c ≥ 8.5% were
excluded.

Overall: no statistically significant effect
of rosiglitazone on outcome measures.
In APOE ε4 non-carriers, treatment with
8 mg rosiglitazone was statistically
associated with improved ADAS-Cog.

NCT00265148
Effects of rosiglitazone
on cognition and
cerebral glucose
utilization in subjects
with mild to moderate
Alzheimer’s disease
(Tzimopoulou et al.,
2010)

Rosiglitazone
4 mg daily for
one month,
increasing to
8 mg daily for
the remainder
of the study, vs
placebo.

52-week parallel group, double
blind, phase 2 study.
Outcome measures: 12-month
cerebral glucose metabolic rate
change,
brain volume, ADAS-Cog, CIBIC+

Average N = 31 completed the study,
average age, 71.25 years, 46.2% F, 94.9%
White. Balanced for APOE ε4. Subjects
with history of T1DM or T2DM or taking
medications* to control glucose were
excluded.

No sustained
treatment effect on total or regional
glucose metabolic
rate or brain volume;
no effect on
ADAS-Cog or CIBIC+.

A.2. Phase 2 –
Diabetes
Rosiglitazone and
cognitive stability in
older individuals with
type 2 diabetes and
MCI (Abbatecola et al.,
2010)

Rosiglitazone
4 mg daily, vs
metformin,
500 mg daily,
vs. rosiglitazone
+ metformin
vs. diet.

36-week, prospective, randomized,
open-controlled study in subjects
with mild-to-moderate AD in
association with T2DM.
Outcome measures: changes in
neuropsychological test scores and
metabolic control parameters (FIRI,
FPG, HbA1C).

Average N = 32.2, average age, 76 years,
45% F; FPG mean baseline, 8.44 mmol/L;
FIRI, 148 pmol/L; mean baseline HbA1C,
7.5%; MMSE mean baseline, 24; TMT-A
mean baseline, 67.6; TMT-B mean
baseline, 161.1; DIFFBA mean base line,
101.2; RAVLT mean baseline, 24.5.

Metformin/rosiglitazone combination
stabilized all neuropsychological tests.
Metformin stabilized MMSE, TMT-A,
TMT-B; diet stabilized MMSE, TMT-A. In
linear-fixed effects model, FIRI x time
correlated with metformin/rosiglitazone
RAVLT.

A.3. Phase 3
Intervention
NCT00428090
Rosiglitazone
(Extended Release
Tablets) as
monotherapy in
subjects with mild to
moderate Alzheimer’s
disease (Gold et al.,
2010)

Rosiglitazone 2
or 8 mg
extended
release, daily vs
placebo
(REFLECT-1).

24-week, double blind, double
dummy, randomized, parallel group
phase 3 study, stratified for APOE
ε4 status in subjects with
mild-to-moderate AD.
Outcome measures: ADAS-Cog,
CIBIC+

Average N = 159, average age, 72.3 years,
37% F, 72% White, balanced for APOE ε4.
ADAS-Cog mean baseline, 19.1. Subjects
with history of T1DM or T2DM or taking
medications* to control glucose were
excluded.

No statistically or clinically significant
effect of either
rosiglitazone dose in full population; no
significant evidence of interaction
between treatment with rosiglitazone
and APOE genotype.

NCT00348309/
NCT00348140
Rosiglitazone
(Extended Release
Tablets) As Adjunctive
Therapy For Subjects
With Mild To Moderate
Alzheimer’s Disease
(Harrington et al., 2011)

Rosiglitazone 2
or 8 mg
extended
release, as
adjunctive to
donepezil
(REFLECT-2),
or adjunctive to
any AChEIs
(REFLECT-3).

48-week, double blind,
randomized, placebo-controlled,
parallel group, phase 3 studies,
stratified for APOE ε4 status in
subjects with mild-to-moderate
probable AD.
Outcome measures: ADAS-Cog,
CDR-SB.

NCT00348309 (REFLECT-2): Average
N = 464, average age, 74.1 years, 60% F,
90.67% White, balanced for APOE ε4.
ADAS-Cog mean baseline, 25.3; MMSE
mean baseline, 19.46.
NCT00348140 (REFLECT-3):
Average N = 476.3, average, 73.9 years
old, 55.6% F, 91.76% White, balanced for
APOE ε4. ADAS-Cog mean baseline, 24.1;
MMSE mean baseline, 19.7.
Subjects with history of T1DM or subjects
with T2DM taking medications* to control
glucose were excluded.

No statistically or clinically significant
effect of either
rosiglitazone dose in full population; no
significant evidence of interaction
between treatment with rosiglitazone
and APOE genotype
in either REFLECT-2 or REFLECT-3.

(Continued)
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TABLE 2 | Continued

Study Treatment Study Design Population Results

B. Pioglitazone
B.1. Phase 1 -
Dose-ranging
NCT01456117
Study to assess the
effects of daily
administration of
pioglitazone on brain
hemodynamics in
cognitively healthy
elderly subjects (Knodt
et al., 2019)

Pioglitazone, 0.6 mg,
2.1 mg, 3.9 mg, 6.0 mg
daily, vs. placebo

A 2-week, multiple-dose,
single-blind, randomized, parallel
design, placebo-controlled, phase
1 dose-ranging study.
Outcome measure: episodic
memory-related hippocampal
activity, measured via blood oxygen
level-dependent (BOLD) functional
magnetic resonance imaging.

Average N = 11, average
age = 66.08 years, 71% F, 85.45%
White. CERAD-WLM mean
baseline, 8.02, TMT-B mean
baseline, 97.58.
Diabetic subjects taking
medications to control blood
glucose*, or with HbA1C > 6%
were excluded.

Statistical association of 0.6 mg/day
pioglitazone with increased right
hippocampal activation during
encoding of novel face-name pairs at
day 7 and day 14, relative to baseline.
No statistically significant improvement
at 2.1, 3.9 or 6.0 mg/day.

B.2. Pilot - Diabetes
Role of tumor necrosis
factor-alpha in cognitive
improvement after
peroxisome proliferator
activator receptor
gamma agonist
pioglitazone treatment
in Alzheimer’s disease
(Hanyu et al., 2010)

Pioglitazone, 15 mg
daily vs. none.

24-week, prospective, randomized,
open-controlled study, in subjects
with mild-to-moderate Alzheimer’s
disease in association with T2DM.
Outcome measures: ADAS-JCog,
MMSE, TNFα, IL-6, C-reactive
protein.

N = 17 for both groups, average
age 78.7 years, 50% F, 100%
White, balanced for APOE ε4 and
donepezil use; MMSE mean
baseline, 21.85; ADAS-JCog mean
baseline, 15.65; TNFα mean
baseline, 1.38 pg/mL; IL-6 mean
baseline, 2.62 pg/mL; C-reactive
protein mean baseline, 0.08 mg/dL.

Pioglitazone was statistically associated
with improved ADAS-JCog and TNFα,
and changes in ADAS-JCog were
correlated with changes in TNFα.

Efficacy of PPARγ

agonist pioglitazone in
mild Alzheimer disease
(Sato et al., 2011)

Pioglitazone, 15 or
30 mg daily vs. none.

24-week prospective randomized,
open-controlled study in subjects
with mild-to-moderate Alzheimer
disease in association with T2DM.
Outcome measures: ADAS-JCog,
MMSE, WMS-R, rCBF, plasma
Aβ40 and Aβ42, HOMA-R, HbA1c,
FIRI.

N = 21 for both groups, average
age, 77.5 years, 52% F, 100%
White, balanced for APOE ε4;
balanced for other hypoglycemic
agents, donepezil.

Pioglitazone was statistically associated
with improved MMSE, ADAS-JCog and
WMS-R, with improved blood flow in
the parietal lobe, and with improved
metabolic factors. The plasma
Aβ40/Aβ42 ratio did not change in the
pioglitazone group and increased in the
control group. ADAS-JCog significantly
worsened in the control group.

B.3. Phase 2
Intervention
NCT00982202
Pioglitazone in
Alzheimer’s disease
safety trial (Geldmacher
et al., 2011)

Pioglitazone, 15 mg
daily, escalating weekly
to 45 mg daily, vs.
placebo.

72-week, double-blind,
randomized, placebo-controlled,
group comparison study of
mild-to-moderate probable
Alzheimer’s disease
Outcome measures (collected at
3-month intervals): (Longhe, 2020).
Measures of cognition, including
ADAS-Cog, CDR-SB.
(Patterson, 2018). Estimate for
effect size calculations.

Average N = 14.5, average age,
70.95 years, 62% F; MMSE mean
baseline, 21; ADAS-Cog mean
baseline, 21; CDR-SB mean
baseline, 5.8.

Pioglitazone was not statistically
associated with any improved measure
of cognition; the adjusted mean for
ADAS-Cog per month was lower in the
pioglitazone group, but not statistically
significant.
For α = 0.05 and power = 0.80, sample
sizes of 340 (170 pio, 170 placebo) and
155
(78 pio, 77 placebo) subjects would be
required for their estimated regression
coefficients of the pioglitazone effect on
ADAS-Cog (-0.746) and CDR-SB
(-0.354), respectively, to be significant.

NCT00736996
Pioglitazone and
exercise effects on
older adults with MCI
and metabolic
syndrome (POEM)
(Hildreth et al., 2015)

Pioglitazone, 15 mg
daily escalating to
45 mg daily after one
month, versus placebo;
or 45-75 minutes
exercise training
3X/week, vs. status
quo exercise.
Exercise regimen
initiated at 50-60% HR
max, escalated to
80-85% HR max over
the course of the study.

24-week double-blind, randomized,
placebo-controlled pilot study in
sedentary adults with MCI and
central obesity.
Outcome measures: Change in
baseline for cognition, insulin
clamp, body composition,
metabolic and inflammatory
markers.

Average N = 22, average age 65.6
years, 51.8% F, 87.8% White,
balanced for APOE ε4; average
compliance, pioglitazone, 76%,
placebo, 89%; glucose mean
baseline, 101 mg/dL; insulin mean
baseline, 16.1 µU/mL; C-reactive
protein mean baseline, 3 mg/L; IL-6
mean baseline, 1.7 pg/mL; TNFα

mean baseline, 1.56 pg/mL; MMSE
mean baseline, 28.6; ADAS-Cog
mean baseline, 6.

Pioglitazone was not statistically
associated with any improved measure
of cognition; performance on the Visual
Reproduction Test; scores worsened in
the pioglitazone group vs. placebo;
ADAS-Cog improved with exercise
(-1.3 EX vs. -0.3 CON; P = 0.05). No
statistically significant correlations
between glucose disposal rates and
cognitive performance.

(Continued)
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TABLE 2 | Continued

Study Treatment Study Design Population Results

B.4. Phase 3
Prevention

NCT01931566
A study to
simultaneously qualify a
biomarker algorithm for
prognosis of risk of
developing MCI Due to
AD and to test the
safety and efficacy of
pioglitazone to delay
the onset of MCI due to
AD in cognitively normal
subjects (Alexander
et al., 2019; Burns
et al., 2019)
NOTE: The full
publication describing
this study was under
review when the current
paper was submitted.

Pioglitazone,
0.8 mg
extended
release daily, vs
placebo.

Event-driven (anticipated 5 yr.),
double-blind, randomized, parallel
group placebo-controlled Phase 3
prevention study in cognitively
normal adults susceptible for AD
(APOE, TOMM40 genotypes and
age).
Outcome measures: Delay onset of
MCI in normal participants who are
at increased risk due to age and
genetic risk factors.

N = 433 low-risk placebo, 1516 high-risk
placebo, 1545 high risk pioglitazone.
Average age, 73.1 years, 56.16% F, 96.6%
White; average APOE ε4 carriage in the
high-risk groups, 92.45%; MMSE mean
baseline, 28.56.
Outcome measure: Time to diagnosis of
MCI due to AD for pioglitazone-treated
subjects vs placebo in high-risk stratum.
Pre-specified futility threshold, 30%
conditional probability that a 40% treatment
difference would be detected.

Study terminated due to futility analysis.
After 1278 days, total events in
placebo, 46; total events with
pioglitazone, 39. Pioglitazone risk ratio
vs placebo was 0.8 (95% CI, 0.45 –
1.4), P = 0.307; post-hoc subgroup
analysis suggests possible
benefit of pioglitazone for males.

ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale; ADAS-JCog, Japanese version of the ADAS-Cog; ATP III, Adult treatment panel III criteria for
central obesity; rCBF, regional cerebral blood flow; CDR-SB, Clinical Dementia Rating scale-Sum of Boxes; CIBIC+, Clinician’s interview-based impression of change with
caregiver input; DIFFBA, TMT-A minus TMT-B – a measure of cognitive efficiency; FIRI, fasting immunoreactive insulin; FPG, fasting plasma glucose; HOMA-R, homeostatic
model assessment for insulin resistance; MCI, mild cognitive impairment; MMSE, Mini-mental state examination; RAVLT, Rey Auditory-verbal learning test; T1DM, type 1
diabetes mellitus; T2DM, type 2 diabetes mellitus; TNFα, tumor necrosis factor-alpha; TMT-A, TMT-B, Trail marking test A and Trail marking test-B, respectively.
*Insulin, sulfonylureas, PPARγ agonists or glitinides.

weeks with average N = 464 subjects (Harrington et al., 2011).
Rosiglitazone did not have a statistically significant effect on
cognition in either APOE ε4+ or APOE ε4- subjects at either
dose, in either trial. There was essentially no difference in HbA1c
values between the two rosiglitazone concentrations in Gold et al.
(2010) and increased with increasing dose of rosiglitazone in
Harrington et al. (2011). The authors did not report any statistical
interaction between these changes and scores for cognition.
Fasting glucose and fasting insulin values were not measured in
any of these studies.

As demonstrated in volunteers with DM2 (Sato et al.,
2011) as well as in mouse models of AD (Nicolakakis et al.,
2008; Papadopoulos et al., 2013), PPARγ agonists promote
central glucose metabolism. Tzimopoulou et al. measured
cerebral glucose metabolic rates (CMRglu) and brain atrophy
as pharmacodynamics markers, of central rosiglitazone action.
The volunteers for this study had mild-to-moderate Alzheimer’s
disease, and were age- and sex-matched with cognitively
normal controls for a 52-week trial (Tzimopoulou et al., 2010).
Rosiglitazone (8 mg extended release/day) was statistically
associated with a modest (1.5%) increase in glucose utilization,
compared with a 4.7% decrease for the placebo over the
first month of treatment. However, this immediate increase
was not robust and the mean CMRglu rates decreased in
both groups over the remaining 11 months of the trial.
Although the rate of decline of CMRglu was lower in the
rosiglitazone group than in the placebo, the trend was only
suggestive, and there was no evidence that rosiglitazone affected
changes in brain volume or cognition. APOE ε4 carriage

did not affect any outcome. As above for the REFLECT
studies, no fasting insulin or glucose values were recorded,
so it was not possible to assess interaction between changes
in insulin level or insulin resistance and cognition or these
pharmacodynamics markers.

In a series of small pilot studies with DM2 cases,
Hanyu’s group reported that pioglitazone (15 – 30 mg/day)
improved cognitive measures in type 2 diabetics after
6 months; ADAS-JCog scores improved in DM2 cases
taking the drug, but worsened in the control diabetics
who did not (Hanyu et al., 2009, 2010; Sato et al.,
2011). Regional cerebral blood flow also improved
with pioglitazone (Sato et al., 2011), as did peripheral
TNFα levels (Hanyu et al., 2010). Pioglitazone stabilized
the Ab42/Ab40 ratio, which decreased in the controls
(Sato et al., 2011).

While Hanyu’s group monitored cases with pre-existing DM2
to evaluate pioglitazone’s effectiveness in delaying cognitive
decline, Abbatecola et al. took a different tack, to learn if a PPARγ

agonist could ameliorate pre-existing MCI. Another difference
was they studied the combination therapy of rosiglitazone
added to metformin, vs monotherapy of metformin alone or
diet alone to control glycemia. Combining rosiglitazone with
metformin was superior to metformin alone and diet alone
in slowing cognitive decline (Abbatecola et al., 2010). These
data are consistent with the longitudinal cohort study, showing
a trend toward increased protection in metformin users in
the first 12 months following the addition of rosiglitazone
(Tseng, 2019).
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Of the remaining three studies, one was a pharmacodynamics
study and two were prevention studies. Hildreth et al. directly
investigated the role of a metabolic risk factor, insulin resistance,
on cognitive impairment in genetically low-risk populations,
using a high pharmacological dose of pioglitazone. The
TOMMORROW study measured (NCT01931566) the efficacy
of pioglitazone to delay the onset of cognitive impairment in
a population that was metabolically robust but genetically at
risk for developing late-onset Alzheimer’s disease; it involved
a very low pioglitazone dose established with the help
of the PD study.

Knodt et al. used BOLD fMRI as a pharmacodynamics
tool, to determine pioglitazone’s effect on the hippocampal
function and as a tool to inform dose selection for the
TOMMORROW study (NCT01931566) (Knodt et al., 2019).
Healthy, cognitively normal volunteers received daily for 14
days vehicle (placebo), or 0.6 mg, 2.1 mg, 3.9 mg or 6.0 mg
pioglitazone. For perspective, the starting dose, and smallest
tablet size, for treating DM2 is 15 mg, and these doses
ranged from 0.4 to 40% of that dose. Overall, reaction
times for correctly recalled face-name pairs were negatively
correlated with activity in both the right and left hippocampus
during encoding. 0.6 mg pioglitazone was associated with
increased right hippocampal activation from baseline to day
7 and from baseline to day 14. The placebo group exhibited
decreased right hippocampal activation from day 7 to day
14. These data support that pioglitazone has an effect in
conscious humans on brain function, and moreover suggest
a hormetic dose-response effect on hippocampal function,
similar to what was observed in the rat BOLD study for
interactions between the CA1 region and hypothalamus and
ventral thalamus (Crenshaw et al., 2015). Together with the
findings from Hanyu’s group summarized above and the
observational cohort studies, that involved clinical levels of
pioglitazone (Heneka et al., 2015b; Chou et al., 2017; Tseng,
2018), these results suggest the overall salutary effect of
pioglitazone on risk of dementia may be mediated through
multiple targets, each responsive to a unique pioglitazone
concentration range.

The POEM study evaluated and compared the efficacies of
exercise and pioglitazone on changes in cognition scores and
on metabolic parameters (Hildreth et al., 2015). Additionally,
they measured circulating markers of inflammation (CRP, IL-
6 and TNFα). As in Watson et al. (2005), the participants
in this study were insulin resistant at baseline (HOMA-IR
score, 4.0), but unlike Watson et al. they were cognitively
normal (mean baseline MMSE, 28.6). Neither pioglitazone
nor exercise affected circulating inflammatory markers. Fasting
insulin and insulin resistance, as measured by euglycemic-
hyperinsulinemic clamp, improved in the pioglitazone group, but
neither exercise nor pioglitazone affected cognitive performance,
and there was no interaction between improved glucose disposal
rate and any domain of cognitive performance. Cognitive
performance did improve in APOE ε4-negative participants,
but the change was not statistically significant. As Hildreth
et al. pointed out, if there was any cognitive impairment
among the participants at baseline, it was very mild. With

only an average of 22 subjects, followed for only 6 months,
likely there would have been too few conversions from normal
cognition to MCI in the placebo group to detect possible effects
of pioglitazone.

The TOMMOROW study (NCT01931566) was designed
to determine if low dose (0.8 mg/day, extended release)
pioglitazone would delay-of-onset of mild clinical impairment
due to Alzheimer’s disease, in cognitively and metabolically
normal subjects who, due to genetic risk factors, are at
high risk of developing MDI due to AD within 5 years.
It involved 3500 participants; aged 65 – 83. Subjects were
assigned as either low or high risk to develop MCI due
to AD in the subsequent 5 years, stratifying risk by age
at entry and genotypes at APOE and TOMM40 ‘523 loci.
High-risk subjects, most of whom carried at least one
APOE ε4 allele, were assigned to either the placebo or
treatment arm (average N = 1530). The baseline average
MMSE score was 28.56, and volunteers with a history of
diabetes or who were taking drugs that affected glycemia
were excluded. The study outcome was the delay of onset
of MCI, and it was sufficiently powered to detect a 30%
difference in change from base line over the anticipated
running time of 5 years had there been one. However,
after the study was initiated the futility criteria was changed
to 40% difference, and futility analysis led to an early
termination of the trial, when the majority of subject had
less than 3 years’ drug exposure. Pioglitazone in high-
risk non-Hispanic/Latino Caucasian subjects did not have a
statistically significant effect different from placebo (39/1430
[2·7%] vs 46/1406 [3·3%]; HR 0·80; 99% CI, 0·45 – 1·40;
p = 0·307). Although not statistically significant, a pre-specified
sex subgroup analysis revealed potential differences in male
subjects (pioglitazone HR 0·56; 95% CI, 0·30–1·06; p = 0·074)
(Alexander et al., 2019). No pharmacodynamic measures were
collected, including plasma Aβ peptide levels. No metabolic
parameters aside from HbA1c were collected, and analysis of
possible interactions between changes in performance on the
cognitive battery and changes in fasting insulin or insulin
resistance is not possible.

In addition to the clinical studies summarized in
Table 2 for PPARγ agonists, a dual PPARδ/PPARγ

agonist currently is being evaluated for its effects on
the risk of developing dementia in subjects with mild
to moderate AD. T3D-959 is 15X more potent against
PPARδ than PPARγ. PPARδ agonists are hypothesized
to reduce risk for AD because they regulate glucose
and fatty acid utilization and enhance anti-oxidant and
anti-inflammatory signaling (Liu Y. et al., 2018). In an
exploratory phase IIb study, T3D-959 increased cerebral
glucose utilization, and provided suggestive improvement
in cognitive assessments (Chamberlain et al., 2020).
A double-blind placebo-controlled phase 2 dose-ranging
study is currently underway. Its primary outcomes are
effects on cognition and global function, and exploratory
measures include plasma Aβ 42/40 ratio, Nfl and tau, and
cerebral glucose utilization (Clinicaltrials.gov NCT04251182)
(Didsbury et al., 2020).
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Overall, pioglitazone and rosiglitazone were ineffective in
restoring cognitive function or in delaying the onset of MCI
due to Alzheimer’s disease in non-DM2 volunteers. However,
several caveats should be considered before we can consider this
a settled issue. First, most of these studies were insufficiently
powered or were not conducted long enough to detect changes
with statistical confidence (Watson et al., 2005; Hanyu et al.,
2009, 2010; Abbatecola et al., 2010; Tzimopoulou et al., 2010;
Geldmacher et al., 2011; Sato et al., 2011; Hildreth et al., 2015;
Knodt et al., 2019). For instance, Geldmacher et al. conducted an
18-month, Phase 2 pioglitazone (15 mg/day initially, escalating
to 45 mg/day after one month) safety study in volunteers with
Alzheimer’s disease, that also permitted effect-size calculations
(Geldmacher et al., 2011). They enrolled an average of 14.5
volunteers in each cohort, with average MMSE baseline scores
of 21. They administered five separate cognitive tests every 6
months, and calculated the regression coefficients for a multilevel
model for each test. The ADAS-Cog parameter they obtained
(−0.746) was not significant, nor were the ones for any other
of the tests they ran. From their data, Geldmacher et al.
estimated the average cohort size would have to be ∼170 for
the observed ADAS-Cog parameter to have been significant,
with α = 0.05 and power = 0.8. We cannot directly compare
this study with any of the others, it begs the question of what
the results would be if similar calculations were applied to
the other studies.

Second, both Watson et al. and Risner et al. showed that
rosiglitazone had a positive effect on cognitive decline after
taking changes in fasting insulin into account, and Risner
et al. also found that changes in fasting insulin were more
extensive in individuals without an APOE ε4 allele. Peripheral
hyperinsulinemia causes central hypoinsulinemia (Baura et al.,
1996), which underlies this effect. Several groups (Watson et al.,
2005; Gold et al., 2010; Tzimopoulou et al., 2010; Harrington
et al., 2011) measured fasting glucose and/or HbA1c, but
these measurements were not useful. Insulin itself is a better
covariate than glucose or its surrogates for use in clinical
trials of PPARγ action. Yet most of the studies subsequent
to Risner et al. (2006) failed to take drug effects on fasting
insulin into account.

Third, the concordance of rosiglitazone’s effects on cognition
and the Aβ42/Aβ40 ratio in Watson et al. (2005) and Sato
et al. (2011) suggests that Aβ peptides are useful biomarkers
for monitoring PPARγ - mediated effects in clinical trials
of this sort, especially since the mechanism underlying the
PPARγ effect on APP processing and Aβ release is well-
understood, and standardized blood tests are available for
clinical use. PPARγ agonists also inhibit tau phosphorylation,
and because plasma p-tau 181 is associated with the metabolic
and cognitive deficits associated with AD (Lussier et al., 2021),
incorporation of a standardized, sensitive test for p-tau 181
(Karikari et al., 2020) would also be useful. The attempt to use
cerebral glucose metabolism as a pharmacodynamics marker
for PPARγ agonist efficacy in AD (Tzimopoulou et al., 2010)
was unsuccessful due to study limitations. While Tzimopoulou
et al. revealed a sustained protective effect of rosiglitazone on
glucose metabolism (Tzimopoulou et al., 2010), the study did

not run long enough for statistically or clinically meaningful
conclusions to be drawn. BOLD fMRI as a PD marker also
has theoretical justifications summarized in Knodt et al. (2019),
but only one pre-clinical study has been published related
to pioglitazone’s effects on BOLD signaling (Crenshaw et al.,
2015), and its suitability vis a vis more established biomarkers
has not been established. In light of the difficulties with these
PD biomarkers, and the informativeness of alternations in
Aβ levels, it is disappointing that plasma Aβ42 and Aβ40
measurements were not incorporated more widely in clinical
trials testing the efficacy of PPARγ agonists to delay the onset of
dementia due to AD.

It would be informative to both our understanding of
the underlying pathophysiology of Alzheimer’s disease and
for drug development purposes to learn if the relationships
between changes in cognitive scores and changed fasting plasma
insulin, and changed Aβ42 and Aβ40 peptide levels recorded
in the Pilot and Phase 2 trials, were simply type I errors.
As we’ve shown in this review, the relationship between each
of these parameters and PPARγ MOA is empirically justified,
and we recommend that future large-scale AD drug trials of
PPARγ agonists or of the PPARγ/δ dual agonist T3D-959,
incorporate measurements of fasting insulin, Aβ peptides and
p-tau 181 as covariates.

CONCLUSION

Pioglitazone represents ‘polypharmacy in a pill’, and
improves multiple etiopathologic determinants of Alzheimer’s
disease, including inflammation and oxidative stress,
microglial defects, the development of amyloid plaques
and neurofibrillary tangles, impaired cerebral glucose
consumption and mitochondrial dysfunction, involving
suppressed bioenergetics and disrupted dynamics. Pre-
clinical studies have shown pioglitazone improves learning
and memory, which correlate with improved synaptic
activity and reduced amyloid and tau pathology, and better
effects are seen when treatment is initiated before the
onset of AD pathology. Longitudinal cohort studies have
shown that pioglitazone is a time- and dose-dependent
protective factor in individuals with DM2. These results
are consistent with small scale, pilot studies in DM2 cases
that showed pioglitazone increased cerebral blood flow as
well as delayed the onset of dementia. Most of the clinical
studies that have been conducted to date have been small and
underpowered, or have not run long enough to be decisive.
However, they are suggestive that pioglitazone’s effects on
cognition interacts with its effects on insulin lowering, even in
cases without DM2.
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