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Editorial on the Research Topic

The role of epigenetics in infectious diseases
Host genetics contribute to variations in the acquisition, disease manifestation, and

outcomes of pathogenic infections across individuals. One of the factors influencing the

variability in infection and pathogenesis is epigenetics. Epigenetic factors such as DNA

methylation, histone modifications, and non-coding RNAs (ncRNAs) are instrumental in

host-pathogen interactions. These factors regulate pathogen and host genes without

altering their genetic sequences. For instance, viruses may modify host-specific histones

to make the host genome more accessible for viral replication. In contrast, the host may

silence the integrated viral genome through DNA methylation, inhibiting viral

replication. Thus, the series of contributions gathered in this Research Topic explores

intriguing epigenetic factors that influence host-pathogen interactions. This research will

drive our understanding of the role of epigenetics in immunology, pathogenesis, and

possible clinical intervention of infectious diseases.

Pathogen-associated molecular patterns (PAMP) from bacteria, fungi, viruses, and

protozoa may alter the epigenetic landscape of host immune cells involved in pathogen

recognition. Ramendra et al. (2021) demonstrate that the potent fungal PAMP, 1,3-b- d –
glucan (BDG), alters monocyte chromatin accessibility and epigenetic landscape. The

changes in histone modifications in monocytes match the accessibility of the chromatin

on a global scale. The changes in the epigenetic landscape prompts glutathione synthesis

and metabolism, which promotes the acute functional response of monocytes to

infections. The hepatitis B viral HBx protein can dysregulate host microRNA

(miRNA) profiles which, in turn, modulates its viral load and enhances persistence.

Sartorius et al. (2021) reviews the literature on the influence HBx has on the host and

viral epigenome. The authors further attempt to link HBx dysregulated epigenetic

pathways in hepatitis B virus-induced hepatocellular carcinomas.
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Although our understanding of epigenetic mechanisms in

infectious diseases has recently improved, its therapeutic use is

still in the developmental stages. Much research has been

undertaken to develop epigenetic modifying drugs for various

cancers. Repurposing drugs for other diseases is an effective tool

to speed up drug discovery. The histone deacetylase inhibitors

(HDACi), belinostat and vorinostat, have been FDA-approved

to treat various cancers. Barman et al. (2021) findings suggest

that these two HDACi are effective against the Theileria annulate

parasite in an in vitro model. These parasite-specific HDACi

induces apoptosis in the parasite-infected cells via the caspase-

dependent pathway while having low host cytotoxicity.

Singh et al. (2021) also repurpose an anti-cancer drug

regulating DNA methylation against infectious disease, in this

case, HIV. DNA methylation regulates the expression of the

anti-viral restriction factor BST-2. The authors findings suggest

that individuals with higher DNA methylation levels near the

transcription start site of BST2 had lower BST2 expression and

worse HIV disease outcomes. A significant negative correlation

between BST2-methylation and BST2 expression exists in HIV

patients. Higher BST2 expression and lower DNA methylation

inhibits HIV replication in an in vitro HIV replication model.

Treatment with a DNA-demethylating drug 5-Aza-2 –

deoxycytidine increases BST2 expression, which was associated

with a lower HIV viral load.

Arumugam et al. (2021) delves further into the role of DNA

methylation in the context of HIV. The authors provide a

comprehensive discussion on the effect DNA methylation has

on both viral and host genes. The authors also provide a detailed

list of HIV-associated host genes with evidence of methylation in

other disease models that should be further studied in the

context of HIV. In addition, the potential use of DNA

methylation as both a biomarker and therapeutic strategy

against HIV is critically explored in this review.

DNA methylation not only plays a role in the pathogenesis

of viral infection but also regulates the host’s immune response

to bacterial infections. The changes in host methylation profiles

may be brought about, in part, by the bacteria. The review by

Qin et al. (2021) provides an in-depth discussion on factors

regulating DNA methylation and recent insights into the

regulation of host DNA methylation during bacterial infection.

NcRNAs, which include miRNAs, long non-coding RNAs

(lncRNAs), and circular RNA (circRNA), are significant

regulators of genes involved in the immune response. The

expression of ncRNAs can differ in different physiological or

disease states. Bacteria, viruses, or fungi can significantly change

the pathogen and host’s ncRNA profiles in sepsis. Thus, over the

past decade, more attention has been given to understanding the

role of ncRNAs in disease etiology. Ghafouri-Fard et al. (2021)

provide an extensive list of lncRNAs, miRNAs, and circRNAs

involved in the initiation and progression of sepsis. In sepsis,

these ncRNA generally interact to regulate inflammatory

signaling pathways such as NF‐kB, PI3K/AKT, and JAK/STAT
Frontiers in Immunology 02
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pathways. Sepsis often leads to multi-organ failure; however,

septic cardiomyopathy may be reversible. Recent research has

focused on preventing and reducing mitochondrial dysfunction,

which is involved in the pathogenesis of septic cardiomyopathy.

Liu and Chong (2021) summarize recent studies on the

role of lncRNA in the mitochondrial dysfunction of

septic cardiomyopathy.

Tamgue et al. (2021) discusses the function of ncRNAs in the

etiology and control of major human tropical diseases, including

tuberculosis, HIV/AIDS, and malaria, and neglected tropical

diseases including leishmaniasis, African trypanosomiasis, and

leprosy. The authors highlight several ncRNAs involved at

different stages of these diseases. The authors describe several

ncRNAs that have potential as biomarkers for disease diagnosis.

They further identify and discuss knowledge gaps that warrant

further investigation, such as potentially targeting ncRNAs for

adjunctive therapy and vaccine development.

Exposure of the cornea to pathogens results in an

inflammatory cascade, eventually leading to keratitis. Verma

et al. (2021) summarize the clinical perspective of infectious

keratitis, the role of epigenetics in infectious keratitis, and the

potential of epigenetic modifiers in treating infectious keratitis.

Epigenetic factors may explain the heterogeneity of COVID-

19 disease severity. Kgatle et al. (2021) highlight the role

epigenetics play in regulating viral entry points and

immunoregulatory genes during SARS-CoV-2 infection and

the potential of epigenetic drug treatments against COVID-19.

Roy et al. (2021) further elaborate by providing their opinion on

how ncRNAs regulate macrophage plasticity during the

pathogenesis of COVID-19 disease. The authors consider a

pool of miRNAs and LncRNAs that regulate the expression of

the SARS-CoV-2 receptor ACE2 as potential direct targets for

therapeutic manipulation. They also reason that macrophage

overactivation in the lung and uncontrolled systemic

inflammatory responses can be lowered by existing drugs such

as the p38MAPK specific inhibitor simvastatinin and the toll-

like receptor (TLR) antagonist Tocilizumab.

Evidence from animal models and in vitro studies suggests

that chronic and severe infections alter the epigenetic landscape

of immune cells, often leading to long-lasting immune

suppression. Infection-induced epigenetic changes cause

exhaustion, tolerance, and anergy in the immune cells making

the surviving host susceptible to secondary infections. Epigenetic

drugs can directly reverse drug-induced immune suppression.

Abhimanyu et al. (2021) discuss studies demonstrating the

reversal of infection-induced epigenetic-mediated immune

suppression and postulate how these approaches could become

clinically relevant to decrease post-infectious morbidity

and mortality.

This Research Topic brings together contributions

highlighting the importance of epigenetic processes involved in

the pathogenesis of infectious diseases. Findings from novel

research studies found in the Research Topic provide evidence
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of the dynamic interaction between the host epigenome and

pathogen. Furthermore, the use of epigenome-modifying drugs

are shown to be effective against pathogens in in vitro settings.

The review articles and opinion pieces found in the Research

Topic help to drive forward our understanding of the role of

epigenetics in immunology, pathogenesis, and possible clinical

intervention of infectious diseases. These articles also provide

suggestions on what future research regarding the epigenetics of

infectious diseases should hold. Thus, we hope that this Research

Topic sparks new ideas in researchers who want to further

explore both basic and translational aspects of epigenetic

mechanisms in infectious diseases.
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Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC) pathogenesis is
fueled by persistent HBV infection that stealthily maintains a delicate balance between viral
replication and evasion of the host immune system. HBV is remarkably adept at using a
combination of both its own, as well as host machinery to ensure its own replication and
survival. A key tool in its arsenal, is the HBx protein which can manipulate the epigenetic
landscape to decrease its own viral load and enhance persistence, as well as manage
host genome epigenetic responses to the presence of viral infection. The HBx protein can
initiate epigenetic modifications to dysregulate miRNA expression which, in turn, can
regulate downstream epigenetic changes in HBV-HCC pathogenesis. We attempt to link
the HBx andmiRNA induced epigenetic modulations that influence both the HBV and host
genome expression in HBV-HCC pathogenesis. In particular, the review investigates the
interplay between CHB infection, the silencing role of miRNA, epigenetic change, immune
system expression and HBV-HCC pathogenesis. The review demonstrates exactly how
HBx-dysregulated miRNA in HBV-HCC pathogenesis influence and are influenced by
epigenetic changes to modulate both viral and host genome expression. In particular,
the review identifies a specific subset of HBx induced epigenetic miRNA pathways in
org April 2021 | Volume 12 | Article 66120418
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HBV-HCC pathogenesis demonstrating the complex interplay between HBV infection,
epigenetic change, disease and immune response. The wide-ranging influence of
epigenetic change and miRNA modulation offers considerable potential as a therapeutic
option in HBV-HCC.
Keywords: hepatitis B virus-associated hepatocellular carcinoma, epigenetic modulation, HBx,
microRNA, immunology
INTRODUCTION

In the Globocan 2018 report, 841 080 new liver cancer cases were
diagnosed with hepatocellular carcinoma (HCC) (1). Chronic
hepatitis B virus (HBV) infection, which has been etiologically
implicated in 43% to 80% of total HCC incidence (1–3) remains a
primary risk factor and high HBsAg seroprevalence (>5%) levels
currently persist in Western Pacific, Africa, East Mediterranean,
and East Asia (2). The downstream effect of widespread HBV
infection could precipitate 5 million deaths by 2030 from
HBV-HCC (3). HBV-HCC pathogenesis is fueled by persistent
HBV infection that stealthily ensures a careful balance between
replication and the need to remain under the “radar” of the host
immune system. HBV is remarkably adept at using a
combination of both its own, as well as host machinery to
manage viral load and enhance persistence (4, 5). A key tool in
this regard, is the manipulation of the epigenetic landscape to
modulate the silencing role microRNA (miRNA). The role of
HBV dysregulated miRNA at each stage of the HBV-HCC
continuum has been well documented from the onset of HBV
infection to fibrosis/cirrhosis and the onset of HBV-HCC (6).
The regulatory role of HBV dysregulated miRNA has also been
extended to specifically examine the interplay between HCC and
immune pathways (7).

This review examines the epigenetic role of HBx dysregulated
miRNA in HBV-HCC pathogenesis. HBx is a 17 kDa
transactivating protein expressed from the X open reading
frame of HBV, with little sequence homology to any known
genes, hence the name “X”. HBx can modulate several hepatocyte
signaling cascades and factors associated with mechanisms that
induce cel lular transformation. Unlike mammalian
hepadnaviruses (HBVs), avian HBVs do not express HBx and
do not develop HCC leading to the postulation that the HBx
protein has oncogenic potential (8, 9). HBx, can initiate a wide
range of epigenetic changes implicated in hepatocarcinogenesis
including DNA methylation, histone modifications, chromatin
remodeling and microRNA (miRNA) dysregulation (10). One of
these epigenetic factors, namely, miRNA are themselves
influenced by epigenetic modulation often forming feedback
loops that modulate epigenetic change (11, 12).

We attempt to link the epigenetic role of HBx dysregulated
miRNA in HBV-HCC pathogenesis in both the HCC and
immune pathways. The review commences by describing how
the HBx viral protein can modulate both the host, as well as HBV
genome expression by influencing the epigenetic landscape. Next
a comprehensive list of HBx dysregulated miRNA are presented
in Table 1, which are influenced by upstream epigenetic changes,
org 29
and/or their downstream epigenetic targets. This table also
identifies host gene targets in both the HBV-HCC cancer and
immune pathways. Four comprehensive examples of
epigenetically modified miRNA are then outlined in the next
section to demonstrate the complex interplay between viral
infection, HBV-HCC pathogenesis and immune system
response. The review then examines the potential therapeutic
role of miRNA that has yet to be deployed outside of the
laboratory setting.
HBV-HCC PATHOGENESIS:
ROLE OF MIRNA

Persistent HBV infection remains a global risk factor that can
promote the development of fibrosis/cirrhosis and ultimately the
onset of HBV-HCC (120). A significant component of HBV-
HCC pathogenesis involves the integration of HBV DNA into
the host genome that results in the oncogenic disruption of
cellular genes (121). HBV DNA integration can cause host cell
deletions, cis/trans-activation, translocations, the increased
production of fusion transcripts, aberrant epigenetic changes
and generalized genomic instability (122). These changes take
place in the form of chronic inflammation and tissue damage
that result in the continuous destruction of well differentiated
hepatocytes and organized extracellular matrix (ECM). Over
time the depletion of hepatocytes and well organized ECM
results in their replacement with undifferentiated liver stem
cells and poorly organized fibrotic tissue (120) that display
changing patterns of apoptosis, regeneration, senescence and
survival (123). HBV-HCC pathogenesis involves the
deregulation of many cellular signaling pathways including the
Wingless-related integration site/Beta-Catenin (WNT/b-CAT),
in the Retinoblastoma-Tumor Protein 53 (RB1-TP53)
suppressor networks, the Phosphoinositide 3-kinase/mitogen-
activated protein kinase (PI3K/MAPK), the Janus kinase/signal
transducer (JAK/STAT) pathways and the insulin receptor
substrate-1/insulin growth factor (IRS1/IGF) pathways
(124–126).

MicroRNA (miRNA) are a subsidiary subset of epigenetic
factors that act as post-transcriptional gene silencers in the HBV-
HCC pathways. miRNA collectively attempt to repress target
mRNA expression in order to ensure homeostasis and their
fluctuating role is explained by the inherently stochastic nature of
gene transcription and environmental fluctuations (127). In the
HBV-HCC continuum, from asymptomatic HBV infection
leading to HCC, an increasing number of miRNA are
April 2021 | Volume 12 | Article 661204
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TABLE 1 | HBx-dysregulated epi-miRNA and their targets in HBV-HCC.

HBx-epi-
regulator

miRNA Epi target HBV-HCC gene target Immune gene target Epi-
Ref

HCC
Reference

HMT/EZH2
LIN28/
tet1/EED/
SUZ12

Let-7c SUZ12/EED/
EZH1/2

CNKD1/PRICKLE/SFRP5/B-CAT/STAT3/RAS/HMGA2/
MYC/ IL-6/IL-10/TLR-4/COL1A2/NGF/BCL-XL/BCL-2/
MCL-1z

MYC/STAT3/IFN-b/RAS/TLR4 BCL-XL/SMAD2/
SMAD4/NFZ APC2/WNT1/HMGA2/PLZF/IFN/
IL-4/IL-17/LIN28B/IGF2BP1

(13–
15)

(16–19)

DNMT miR-1 HDAC4 EDN1/PI3K/AKT/METFOXP1 E2F5/HSP60/HSP70/KCNJ2/GJA1 (20–
22)

(20, 21,
23)

HMT/
EZH2/
EED/C-
MYC/
SUZ12

miR-
101

DNMT3A/
EZH2/EED/
SUZ12/

GSTP1/FOS/MCL-1/RASSF1A/PRDM2/CNKD1/
PRICKLE/SFRP5/B-CAT/AP1/DUSP1/MCL-1/ROCK2/
ATG4D/MTOR/SOX9/COX2/RAB5A/STMN1/DNMT3A/
FOS/RAP1B/VEGF

ICOS (naïve T-cells)/MCL-1 (13,
14, 24)

(25) (14,
24, 26–28)

DNMT/
PPARa

miR-
122

CTNNB1/CCNG1 modulated p53/GLD2/NDRG3/
GALNT10/CCNG1/PTTG1/PBF/ADAM10/CCNG1/
Igf1R/ADAM 17/BCL-W/NDRG3

SOCS3/IFN/IP-10/BCL-W (29,
30)

(31–34)

DNMT1 miR-
124

EZH2/BMI1 STAT3/PIK3CA/ROCK2/STAT3/Cyclin D/CDK6, VIM,
SMYD3, E2F6, IQGAP1

STAT3/TRAF6/CYCLIND3/BM11 (14,
35, 36)

(37)

miR-
125a

SIRT7 MMP11/VEGF-A/ERBB2/HBsAg NF-a/BCL-2/KLF13/BMF (38,
39)

(40–42)

EZH1/2/
HMT/
SUZI2/
EED/p53

miR-
125b

SIRT7/SUZI2
SUV39H1/
EED/EZH1/
EZH2/

SMAD2/4/Sirtuin7/SUV39H1/LIN28 B/PIGF/BCL-2/
MCL-1/CNKD1/PRICKLE/SRFRP5/B-CAT/PIGF/MMP2/
MMP9

PRDM1/IRF4/TNF_/BCL-2/MCL-1/LIN28/IRF4/
KLF13/BMF/BCL-2/SMAD2/SMAD4 APC2/
WNT1//KLF13/TRP5 3INPI/LIN28A/IRF4/
BLIMP1 IRF4/BMF

(13,
36, 43,
44)

(45, 46)

DNMT3 miR-
132

p300 AKT/GSK3/WNT-BCAT p300/IRAK4/FOXO3/SOX4/ (47,
48)

(48)

HMT/EED/
SUZ12/
EZH2

miR-
139-5p

EED/SUZ12/
EZH1/2

ZEB1/2/CNKD1/PRICKLE/SFRP5/B-CAT IL-4/IFN-g (13,
14)

(45, 49,
50)

miR-
140

DNMT1 NF-kB/TGFbRI/FIF9/Pin1 (51)

miR-
145

HDAC2 MAP3K/CUL5/ADAM17 IFN-b/TIRAP/TRAF6 (52–
54)

(55–57)

DNMT1/
p53C-
MYC

miR-
148a

DNMT1 HPIP/AKT/ERK/FOXO4/ATF5/ERBB3/BCL-2/IRS-1/
MTOR/MET/ACVR1/SNAIL/IGF-IR/MIG6/CAND1/
CDC25B

CaMKIIa/KIT/MET/SIPI/BACH/PTEN/BIM/
GADD45

(58,
59)

(45, 60–
62)

miR-
152

DNMT1/
DNMT3A

GSTP/CDH1/KIT CaMKII/KIT (22,
47, 63)

(42, 63–
65)

HDAC-I/
EZH2

miR-
155

PRC2/Phf19/
p300/CBP

PTEN/SOX6/ZHX2/SOCS1 AID/Blimp-1/PRDM1/IFN/SHIP1/SOCSI/
BMAL1/PU.1/BACH1/CSFIR/CEBP/ETS1/Th2
induction3/SOCS1/C/EBP/AID/FOXP3

(43,
66, 67)

(66, 68,
69)

HDAC-I
SAHA/ C-
MYC

miR-
17-92
family

DNMT E2F1, Cyclin G1/PTEN/p21/p27/p57/cccDNA TNFSF9/CCL-5/IKBKE/c-MAF/AMLI/TP53INPI
c-MAF/IFN/CD69/PTEN/TGFBR11/p27/p21/
E2F/PHLPP2/BIM/CREB1

(70,
71)

(72–74)

HMT miR-
199a/b

CHC CD19+ (75) (76)

DNMT/p53 miR-
200a

HDAC4 ZEB1/2/HNF-3b Rho/ROCK/ASB4 (77,
78)

(45, 79)

EED/
SUZ12/
EZH1/2

miR-
200b

EED/SUZ12/
EZH1/2

CNKD1/PRICKLE/SFRP5/B-CAT (13,
78)

(45, 79)

EZH2/
BMI1

miR-
203

RAP1A SMAD1/BCL11B/RARB/PRKCA/PRKCB1/
FMRP

(80) (81)

DNMT miR-
205

ACSL4/E2F1/ZEB1/2 (82) (45, 82,
83)

DNMT miR-
221

HDAC6 ERa/DDIT4/BMF/p27 p57/PTEN/p21/SOCS3 PTEN/SOCS3/p57/KIT/p27 (84,
85)

(86–88)

DNMT Mir-
222

P27kip 1/PTEN/PPP2R2A/p57/p21 p27 kip 1/PTEN/KIT (85) (55, 88–
90)

HAT/
HDAC1/3/
EP300/
p50/p65

miR-
224

PAK4/MMP9 inhibitor-5/SMAD4 AP15/SMAD4 (91,
92)

(93–95)

(Continued)
Frontiers in Im
munolog
y | www.frontie
rsin.org 310
 April 2021 | Volum
e 12 | Art
icle 661204

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sartorius et al. Epigenetic miRNA Pathways in HBV-HCC
dysregulated due to the need to respond to viral infection,
epigenetic changes (35), inflammation (128), fibrosis (129),
cirrhosis (123) and finally, the onset of HCC. One of the most
documented HBV tools to modulate both its own, as well as host
genome expression is the HBx protein which has been shown to
dysregulate multiple miRNA species in key HCC cancer and
immune pathways (7).
HBX INDUCED EPIGENETIC CHANGES IN
HBV-HCC PATHOGENESIS

HBV DNA and its proteins influence own and host genome
expression by employing a range of epigenetic modifications in
HBV-HCC pathogenesis, as well as modulating signal
transduction, transactivation and transcription to regulate
immune response, cell cycle, apoptosis and DNA repair (130).
In particular, the HBx protein influences DNA methylation
(131), histone modifications (132), chromatin remodeling
(133) and miRNA dysregulation (6) which is the central focus
of this review (Figure 1).

Regulation of cccDNA Activity
The HBV covalently closed circular DNA (cccDNA), a stable
mini-chromosome that is classified as nuclear episomal DNA,
serves as the template for viral RNA transcription. In order to
enhance the efficiency of HBV replication, this virus co-opts host
transcription machinery like HNF1/2/3, C/EBP, CREB and
CRTC1 to trigger cccDNA transcription (4). The HBx protein
appears to be co-opted to influence its own transcription by
triggering histone modifications including histone acetylation
and deacetylation (HAT/HDAC), histone methylation and
demethylation (HMT/HDMT), DNA methylation (DNMT)
and ubiquitination (5). An example in this respect, is when
cccDNA transcription is increased the HBx protein co-opts
Frontiers in Immunology | www.frontiersin.org 411
DDB1 and Cul4 to create a ubiquitination complex to repress
SMC5/6 which maintains the structure of chromosomes. The
repression of SMC5/6, therefore, promotes DNA relaxation to
increase the transcription of cccDNA (131, 134) (Figure 1A).
The HBx protein can also increase cccDNA transcription by
recruiting CBP/p300 (pCAF) to transactivate HATs (H3K9ac)
that leads to hyperacetylation (131, 135) (Figure 1B).

DNA Methylation
DNA methylation, the addition of a methyl group by the
enzymes DNMT1/2/3A/3B, can silence target gene promoters
or enhance target gene expression by silencing transcription
regulators in both the HBV and host genome (4, 5). In
percentage terms, common host genes targeted for DNA
methylation in HBV-HCC include WT1 (54%), SOCS1 (43-
65%), SEMA3B (83%), RASSF1A (59-75%), p300 (65%), p27
(48%), p21 (63%), p16 (16-83%), GSTP1 (41-76%), E-cadherin
(33-67%), E2F1 (70%), CPS1 (80%) and APC (53-81%) (10). In
many cases these epigenetic changes silence tumor suppressor or
activate oncogenic proteins and the HBx protein influences
DNMT expression to subdue the host immune response, as
well as manage its own expression to promote a balance
between survival and replication (4). The HBx protein, for
example, often promotes DNMT1/3A/3B expression to silence
tumor suppressor genes like SOCS1/RASSF1A in HBV-HCC
pathogenesis (4, 10) (Figure 1C). It can also use this machinery
to suppress cccDNA expression in order to evade the host
immune system (136).

Histone Modifications
Histone modifications are post translation modifications to
histone proteins that include HAT/HDAC, HMT/HDMT,
phosphorylation and ubiquitylation. These post translational
modifications primarily occur at the N-terminal of the histone
tails and have a fundamental impact on chromatin remodeling
which essentially alters the structure of host and HBV DNA in
TABLE 1 | Continued

HBx-epi-
regulator

miRNA Epi target HBV-HCC gene target Immune gene target Epi-
Ref

HCC
Reference

miR-
26a

EZH2 IL-6/IFN_/ER_/Cyclin D2/Cyclin E2/c-JUN/CDK4/6 IFN-b CDK4/6/MALT1 (96–
98)

(99–101)

miR-
29c

DNMT3B/
SIRT1

BCL-2/MCL-1/TNFA1P3 TCL-1/MCL-1/IFN- (102–
104)

(105, 106)

H3K4ac miR-
29a/b

DNMT1/
DNMT3A/B/
SETDB1/
H3K9/SIRT1

PTEN/PI3K/AKT/MMP-2 IFNARI/IFN/T-Bet/EOMES/PTEN/MCL-1/IFN-/
SLFN4/CDC42/HBP1/TCL1

(22,
102,
103,
107,
108)

(55, 109)

HBx/P53/
DNMT1/
3A/3B

miR-
34a

SIRTI CCL22/MAP4K4/SIRT1/CCND1/CDK4/6/MET/C-JUN/
CDK2

IFN-b/FOXP1/CDK2/4/6/CCL22/FOXPN (110) (111–115)

HDAC miR-
373

HDAC/SIRT1 SNAIL-1/CDH1 MTOR/SIRT1/RELA (116) (116)

miR-
548a

HDAC4 HBXIP, IFN-l1 IFN-l1 (117) (118, 119)
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HBV-HCC pathogenesis. For example, the HBx protein can
promote HAT by recruiting trans-activator proteins like CBP/
p300 complex to induce H3K9ac (135) Conversely, the HBx
protein can induce HDAC to promote cell proliferation in HBV-
HCC by repressing tumor suppressors like p21/p27 that are
important regulators of cell cycle control (132) (see Figure 1F)
and promote epithelial-mesenchymal transition (EMT) by
repressing CDH1 (137). The HBx protein can also use HDAC
to modulate the viral genome expression by recruiting HDAC1/2
to cccDNA to suppress its expression (4, 5). In addition, HBx
also induces HMT by upregulation of the SMYD3 gene, which
encodes a histone H3-K4-specific methyltransferase to trigger
oncogene expression (138). The HBx protein can also induce
histone methylation transferases and it has been demonstrated
that HBx induced upregulation of SMYD3, that encodes for
histone H3-K4-specific methyltransferase (HMT), is linked to
the upregulation of the oncogene C-MYC in HCC (138, 139)
(Figure 1E). Conversely, the HBx protein can reverse the
repressive effect of histone methylation (H3K9me3) on
cccDNA by initiating a histone demethylation (HDMT)
agent (140).

Polycomb Proteins
The Polycomb repressive complex (PcG) proteins, namely,
Polycomb repressive complex 1 (PRC1) and 2 (PRC2) form part
of the histone modification machinery that epigenetically regulate
chromatin remodeling. PRC2 participates in histone methylation
(H3K27me3) and, following histone H2AK119 mono-
ubiquitination by PRC1, collaboratively represses target gene
Frontiers in Immunology | www.frontiersin.org 512
transcription (141). In the HBV-HCC continuum, the HBx
protein can co-opt the proteins of these two complexes to
influence epigenetic changes. For example, HBx upregulates the
proto-oncogene PLK1, an enzyme that can block the repressive
effect of the PRC2 complex (SUZ12/EED/EZH1/EZH2) to down-
regulate WNT antagonists (CNDK1/PRICKLE/SFRP5). The
repression of these WNT antagonists leads to increased
b-catenin transcription and hepatocarcinogenesis (13, 142)
(Figure 1D).
HBx DYSREGULATED miRNA IN HBV-
HCC AND EPIGENETIC CHANGE

In the HBV-HCC continuum, the HBx protein can influence
epigenetic changes like DNA methylation, histone modifications
and other non-coding RNA that dysregulate a specific subset of
miRNA (called epi-miRNA) that forms the central focus of this
review (Table 1). In addition, the HBx protein can dysregulate
host genes that modulate miRNA biosynthesis, transcription and
translation (47). Simultaneously, miRNA expression modulates
downstream epigenetic modulation by targeting epigenetic
modifiers suggesting epigenetic feedback loops that directly
influence both miRNA and their downstream epigenetic
targets (4, 10, 45). In the HBV-HCC continuum, HBx-
dysregulated miRNA, therefore, are epigenetic regulators that
are themselves epigenetically modulated. In Table 1 we show the
HBV-HCC specific gene targets of miRNA identified in the
literature, as well as their specific immune targets in HCC.
A

B

D

E

F

C

FIGURE 1 | HBx induced epigenetic expression in HBV-HCC. (A) HBx recruits the CUL4/DDB1 ubiquitination complex to repress SMC5/6 and promote DNA
relaxation and cccDNA transcription. (B) HBx recruits CBP/p300 (pCAF) to transactivate HAT (H3K9ac) to promote cccDNA expression. (C) HBx promotes DNMT to
repress SOCS1/RASSF1A tumor suppressors that fail to modulate HCC pathogenesis. (D) HBx promotes PLK1 to block HMTs (EZH1/2/EED/SUZ12) that then fail
to modulate B-CATENIN induced hepatocarcinogenesis. (E) HBx initiates HMTs (SMYD3) to promote C-MYC induced HCC. (F) HBx promotes HDAC to silence cell
cycle controls like p21/p26 and promote HCC.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sartorius et al. Epigenetic miRNA Pathways in HBV-HCC
It should be borne in mind that these are dynamic pathways and
that the proposed regulatory effect of miRNA is also dynamic.

The HBx protein can upregulate or downregulate specific
miRNA expression using specific epigenetic regulation (Table 1).
These mechanisms, for instance, include DNA methylation of
miR-1/-122/-124/-132/-/148/-200/-205 genes to downregulate
miRNA expression (24, 48), histone acetylation or HDAC
inhibitors to upregulate miR-224/-29/-155/-17-92 and histone
methylation to downregulate Let-7c/miR-101/-125b/-139-5p
(45). The HBx protein can also target upstream transcription
factors essential for miRNA expression like p53 suppression of
miR-23a/-34/-125b/-148a/-192/-200 (143) and C-MYC
upregulation of miR-15a/-16/-26a/-101/-148a/-363 (144). This
protein also targets p50/65 upregulation of miR-143/-224 (93)
and NF-KB upregulation of miR-143/-146a, as well as
dysregulating miRNA expression by repressing miRNA
biosynthesis machinery like DROSHA (145, 146).
HBx-DYSREGULATED miRNA IN HBV-
HCC PATHWAYS

In the HBV-HCC continuum, upregulated miRNA often reduce
tumor suppressor expression in the four key HCC cancer
pathways, namely, the P13K/MAPK, WNT/b-Catenin, TP53
and JAK/STAT pathways (125). In this section we seek to
Frontiers in Immunology | www.frontiersin.org 613
demonstrate the complexity of the interlocking roles of viral
infection, selected epigenetic changes of miRNA in HBV-HCC
pathogenesis and the resulting modulation of the host immune
system. We illustrate some of the proven epigenetic pathways in
HBV-HCC pathogenesis by using four well researched miRNA
(miR-29a/b, miR-155, miR-148/152 and miR-101). Two of these
miRNA are downregulated (blue) and two are upregulated (red)
(see Figures 2–5). These four miRNA are all HBx epigenetically
dysregulated in various HBV-HCC pathways, as well as exercise
diverse roles in both the innate and adaptive immune pathways.
In many cases, the same miRNA plays a significant regulatory
role in many other cancers like those of the breast, lung and
colon (147). It is important to highlight that the illustrated
hypothetical pathways in Figures 2–5 occur in a dynamic
context and that the degree of influence of any single path is
non constant. It is also important to keep in mind that the HBx
protein can modulate miRNA via non epigenetic pathways (e.g.
C-MYC/p53) and that in HBV-HCC pathogenesis multiple other
factors (e.g. somatic mutations) also influence miRNA
expression (45).

HBx-Dysregulated Epi-miR-101
HBV-HCC Pathogenesis
In HBV-HCC and many other cancers, the tumor suppressor
miR-101 is regarded as a key miRNA in epigenetic systems (147)
(see Figure 2). This HBx-dysregulated miRNA involves both
upstream and downstream epigenetic systems and has been
FIGURE 2 | Epi-miR-101 in HBV-HCC and immune pathways. HDAC-Histone deacetylation, HAT-histone acetylation, HMT-Histone methylation, DNMT-DNA
methylation (pathways in dark red involve identified direct upstream or downstream epigenetic proteins/enzymes). HBx protein can downregulate or initiate HDAC/
HAT/DNMT/HMT to repress miR-101 modulation in various HBV-HCC pathways including WNT-B-CATENIN, TP53, and P13K/AKT to influence HCC pathogenesis.
HBx epigenetically downregulated miR-101 also regulates macrophage and DC expression in the innate immune system, as well as T-cell and B-cell expression in
the adaptive immune system.
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widely reported as downregulated in HBV-HCC (147). The HBx
protein can recruit the Polycomb protein EZH2 (148) to
downregulate miR-101 but a feedback loop exists because this
miRNA also targets EZH2 (149). In HBV-HCC pathogenesis a
demonstrated EZH2 downregulated miR-101 pathway promotes
HCC progression as a result of failing to modulate COX-2
activated AKT signaling (14, 150). This downregulated miRNA
also fails to block the oncogenic MYCN, a member of the MYC
family of proteins that are widely cited in many cancers including
HCC. The MYC family can directly promote proliferation by
promoting CDK/CYC expression (14, 149, 150) as well as
promote angiogenesis via promoting VEGFA expression (151).
In HBV-HCC pathogenesis, a direct epigenetic target of this
miRNA is DNMT3A which targets a range of tumor suppressors.
It has been demonstrated that HBx-downregulated miR-101 fails
to modulate DNMT3A expression in HBV-HCC and this can
contribute to the silencing of tumor suppressor genes like SF1/
PRDM2/GSTP1/RUNX3/APC/CDKN2A/STMN1 (24, 149).
The silencing of cell cycle inhibitors like CDKN2A in the TP53
pathway, for example promotes cell proliferation in HCC while
silencing of the APC tumor suppressor promotes b-catenin
expression and the development of EMT (152, 153) HBx
(EZH2) downregulated miR-101 can also fail to modulate
Frontiers in Immunology | www.frontiersin.org 714
MCL-1, a key anti-apoptotic member of the BCL-2 family,
thus promoting survival in HCC cells as a result of suppressing
caspase driven apoptosis (152, 154). This downregulated miRNA
also fails to repress the proto-oncogene c-FOS which regulates
transcription activity and results in increased invasiveness in
HCC pathogenesis (26). EZH2 downregulated miR-101 also fails
to modulate CCDC88A that codes for the oncogenic protein
GIRDIN which regulates many signal transduction pathways
such as AKT/PKB, GAI/S, EGFR and is linked to increased
migration and invasiveness in HCC (155). Conversely,
downregulated miR-101 also targets the tumor suppressor
PTEN in the P13/MAPK pathway that contributes to the
activation of this pathway and HBV-HCC pathogenesis (156).

Innate Immune System
Downregulated miR-101 can downregulate the activation of LPS-
stimulated macrophages by failing to modulate MKP-1 which de-
activates p38 and JUN induction of pro-inflammatory cytokines
like TNF-a (157, 158). In another pathway in the innate immune
system, LPS-stimulated macrophages are reduced by HBx
repressed miR-101 as a result of its failure to modulate DUSP1
which, in turn downregulates ERK1/2/p38/JNK promotion of
pro-inflammatory cytokines like TGF-b (159). Reduced DUSP1
FIGURE 3 | Epi-miR-29 in HBV-HCC and immune pathways. HDAC-Histone deacetylation, HAT-histone acetylation, DNMT-DNA methylation, PRC1/2-
Polycomb Repressive Complex, SETDB1-SET Domain Bifurcated Histone Lysine Methyltransferase, TET1-Ten-eleven translocation methylcytosine dioxygenase
1 (pathways in dark red involve identified direct upstream or downstream epigenetic proteins/enzymes). HBx protein can downregulate or initiate HDAC/HAT/
DNMT/HMT to upregulate miR-29 modulation in various HBV-HCC pathways including AKT/MTOR, TP53, and JAK/STAT to influence HCC pathogenesis. HBx
epigenetically upregulated miR-29 also regulates macrophage and DC/NK expression in the innate immune system, as well as T-cell and B-cell expression in the
adaptive immune system.
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is often noted in HCC, however, and it has been demonstrated that
it plays a protective role in HCC by lowering the ERK cascade and
thus repressing cell proliferation (160). TGF- b plays a major role
in the regulation of inflammatory processes that influence
immune cell development (159). Alternatively, miR-101 can play
a role macrophage expression via activating the NF-KB signally as
a result of the upregulation of the KPNB1 transport protein (161–
163) which is commonly reported inmany cancers including HCC
(164). In the innate immune system the activation of dendritic
cells (DCs) and neutrophils is also directly influenced by NF-KB
signaling suggesting that miR-101 can potentially play a wider role
in the activation of leucocytes (165).

Adaptive Immune System
The differential expression of miR-101 has been implicated in
modulating T-cell activation. A direct target of miR-101 is the
Inducible T-cell co-stimulator (ICOS) mRNA that acts in concert
with interaction between T cell receptor(TCR) and MHC class 1
and 2 peptides (166, 167). T-cell function is highly dependent on
miR-101 modulation of ICOS mRNA and a reduction in miR-
101 mediated regulation can increase ICOS expression on naïve
T-cells increases, causing an effector T-cell-like phenotype and
that results in autoimmunity (166). HBx-induced stimulation of
EZH2 suppresses miR-101 in HBV-HCC (14, 24) and this effect
could lead to ICOS upregulation that influences T-cell activation
(166). HBx-downregulated miR-101 in HBV-HCC results in a
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failure to modulate the anti-apoptotic protein MCL-1 thus
promoting cell survival (152). Acting alongside this
relationship, MCL-1 expression influences an increase in CD8+
T-cell activity (168). A further hypothetical pathway, supported
by various studies indicates that miR-101 can initiate T-cell
expression, T-cell differentiation and memory T-cells via
activating NF-KB signaling by promoting the expression of the
KPNB1 transport protein. KPNB1 is often reported as
upregulated in many cancers including HCC (161, 162, 169).

B-Cells
HBx-downregulated miR-101 can also influence B-cell
development via the regulation of MCL-1 which is regarded as
a crucial input to B-cell synthesis (170).

HBx-Dysregulated miRNA-29 Family
HBV-HCC Pathogenesis
HBx upregulated miR-29a/b plays a key epigenetic role in
modulating aberrant DNA methylation which is often a key
feature of HBV-HCC pathogenesis (171) (Figure 3). HBx-
upregulated miR-29 can repress DNMT3A/3B in HBV-HCC
(102) acting as a feedback mechanism to modulate DNA
methylation. This can influence a range of downstream effects
because DNMT3A/3B often targets cell cycle controls in HBV-
HCC including CDKN2A, p16(INK4A) and p15(INK4B) (171). By
repressing DNMT3A/3B, HBx-upregulated expression of
FIGURE 4 | Epi-miR-148/152 in HBV-HCC and immune pathways. HDAC-Histone deacetylation, HAT-histone acetylation, DNMT-DNA methylation, HMT-Histone
methylation (pathways in dark red involve identified direct upstream or downstream epigenetic proteins/enzymes). HBx protein can downregulate or initiate HDAC/
HAT/DNMT/HMT to repress miR-148/152 modulation in various HBV-HCC pathways including WNT-B-CATENIN, TP53, and AKT/mTOR to influence HCC
pathogenesis. HBx epigenetically downregulated miR-148/152 also regulates DC expression in the innate immune system, as well as T-cell and B-cell expression in
the adaptive immune system.
April 2021 | Volume 12 | Article 661204

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sartorius et al. Epigenetic miRNA Pathways in HBV-HCC
miR-29 acts in support of host cell cycle controls. DNMT3A/3B
also silences many tumor suppressors in HBV-HCC pathways
like RASSF1/PRDM2/GSTP1/RUNX3/APC therefore, miR-29
induced DNMT3A/3B repression contributes to a secondary
support system for tumor suppressor expression to slow HCC
progression (172). HBx-upregulated miR-29 family members
could increase cell survival by targeting BCL-2 proteins (MCL-
1) that retard apoptosis by contributing to the down regulation
Caspase 9/3 driven apoptosis in the TP53 cancer pathway (105,
173, 174). The upregulation of the histone methyltransferase
(HMT) SETDB1/SIRT1 is a common feature in HCC. HBx-
upregulated miR-29, therefore, acts as a tumor suppressor to
modulate the histone methylation transferase SETDB1/SIRT1
leading to a reduction in hepatocarcinogenesis possibly because
of a reduction in AKT signaling and/or an increase in pro-
apoptotic expression (107, 175). The upregulation of miR-29b
has been demonstrated to increase HCC carcinogenesis by
repressing SOCS1 expression in the JAK/STAT pathway via
directly targeting the TET1 DNA demethylation enzyme
(176, 177).

Innate Immune System
HBx-upregulated miR-29 upregulates LPS induced macrophage
activation by repressing AKT1 suppression of a pro-
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inflammatory response resulting in increased IL-6, IL-1b and
NF-KB signaling (178, 179). In addition, the upregulation of
miR-29 can repress Il-12/Il-23 activation of mature DCs (180)
and can influence NK production via targeting TBX21/EOMES
promotion of IFN-g (181).

Adaptive Immune System
The miR-29a/b cluster plays a crucial role in the thymic
production of T-cells, T-cell differentiation and B-cell
oncogenic transformation (182, 183) and miR-29 has been
cited as a repressor of the immune system because it directly
targets IFN-l in IFN producing immune cells (184). It has also
been demonstrated that miR-29 targets IFNAR1 to promote T-
cell production (185). In the presence of infection, type 1 IFN
signaling and T-BET/EOMES expression modulate Th1:Th2
differentiation. In turn, miR-29a/b directly targets type 1 IFN/
T-BET/EOMES thus playing an important role in Th1:Th2
differentiation. Upregulated miR-29a/b blocks type 1 IFN/T-
BET/EOMES to promote Th2 expression and reduce Th1
expression. In the HBV-HCC continuum, miR-29a/b is
upregulated by the HBx protein suggesting a viral intervention
to promote modulate Th1:Th2 differentiation (182). A similar
role is played by miR-29a/b when this miRNA is downregulated
by intracellular bacteria and fails to modulate type 1 IFN
FIGURE 5 | Epi-miR-155 and HBV-HCC and immune pathways. HDAC-Histone deacetylation, HAT-histone acetylation, DNMT-DNA methylation, PRC1/2-
Polycomb Repressive Complex 1 and 2 (pathways in dark red involve identified direct upstream or downstream epigenetic proteins/enzymes). HMT-Histone
methylation. HBx protein can downregulate or initiate HDAC/HAT/DNMT/HMT to upregulate miR-155 modulation in various HBV-HCC pathways including AKT/
MTOR, TP53, and JAK/STAT to influence HCC pathogenesis. HBx epigenetically upregulated miR-155 also regulates germinal matrix (GM) population and NF-kB
expression in the innate immune system, as well as T-cell and B-cell expression in the adaptive immune system.
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resulting in an imbalance of the production of CD8+ T-cell (182,
183). The upregulation of miR-29 therefore tilts the Th1:Th2
ratio in favor of Th2 expression that also influences B-cell
production (184). In addition, the upregulation of miR-29 can
repress Il-12/Il-23 activation of Th17 cells (180).

HBx Epigenetically Dysregulated miR-148/
152 Family
HBV-HCC Pathogenesis
HBx downregulation of miR-148/152 has a downstream
influence on multiple HBV-HCC pathways (Figure 4). HBx-
downregulated miR-152 influences DNMT1 to silence both the
CDH1 and GSTP1 tumor suppressors to promote
carcinogenesis. The downregulation of CDH1 increases B-
CATENIN in the WNT/B-CATENIN pathway and the
downregulation of GSTP1 increases cell proliferation (63).
Interestingly HBx activation of DNMT1 also represses cell
cycle controls like p16INK4A to promote cell proliferation (186)
thus further widening the downstream epigenetic change in
HBV-HCC pathways. HBx- downregulated miR-148a fails to
suppress HPIP induced upregulation of the mTOR pathway
contributing to EMT and increased hepatocarcinogenesis (60).
The progression of EMT is also less modulated as a result of this
downregulated miRNA failing to repress expression in the MET/
SNAIL/EMT pathway contributed to progression of HBV-HCC
(61). This downregulated family also fails to regulate the
production of B-catenin as a result of the reduced repression
of WNT1 signaling (187). HBx-downregulated miR-148a
increases SMAD pathway expression by failing to directly
regulate TGF-B signaling and by failing to repress USP4
induced TGF-B signaling (188, 189).

Innate and Adaptive Immune Pathways
The miR-148/152 family play an especially important role
modulating the adaptive immune system. In the adaptive immune
system this family targets many genes that influence B and T
lymphocyte function. This HBx-downregulated miRNA in HBV-
HCC targets BCL2L11/TWIST to influence T-cell differentiation
and BACH2/MITF to influence B-cell differentiation (190, 191).
This family also plays a role in B-cell tolerance and elevated levels of
miR-148a which have been noted in autoimmune disorders. In
particular, miR-148a targets GADD45, BIM and PTEN that
suppress B-cell tolerance (192). This family also targets
CAMK11a to suppress MHC class II levels in antigen stimulated
DCs that promote T-cell activation. It can thus be hypothesized that
if the HBx protein epigenetically downregulates miR-148/152 then
this would result in reduced suppression of MHC class II levels in
DC activation of T-cells (193). This family, therefore, plays an
important role in the innate system as a result of its ability to
modulate antigen presenting (APC) DCs which are regarded as the
most important class of APC in the innate immune system. DCs,
therefore, link the innate and adaptive immune systems (194). This
family also modulates IL-6, TNF-a and IFN-b to repress TLR
induced DC activation and it can be hypothesized that
downregulated miR-148/152 would fail to repress IL-6/TNF-a/
IFN-b induced DC expression (194).
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HBx Epigenetically Dysregulated miR-155
HBV-HCC Pathogenesis
HBx-upregulated miR-155 is a key epi-miRNA that targets both
the HBV-HCC immune and cancer pathways (Figure 5). HBx
dysregulation of miR-155 can occur due to histone modifications
like histone deacetylase inhibitors (HDAC-I) or the repression of
polycomb proteins (EZH2) can contribute to upregulated miR-
155 expression in HBV-HCC pathways (43, 66, 67). This well
researched miRNA is cited as an epigenetic modulator in many
cancers including those of the breast, lung and colon (195–197),
as well as playing multiple different roles in both the innate and
adaptive immune system response (7). In HBV-HCC
pathogenesis, upregulated miR-155 typically represses PTEN
modulation of AKT/MTOR signaling in the P13K/MAPK
pathway that promotes epithelial to mesenchymal transition
(EMT) (68, 198). In addition, this miRNA can promote b-
catenin expression in the WNT/b-Catenin pathway by
repressing the APC/GSK3 destruction complex to thus
promoting the transcription of oncogenic proteins like C-MYC
(45, 199). This miRNA also represses the SOCS1 tumor
suppressor in the JAK/STAT pathway to induce the
transcription of CCND1 and c-MYC thus promoting HCC cell
proliferation (200, 201). In the TP53 pathway, this key HBx
epigenetically upregulated miRNA can repress SOX6 to negate
its promotion of p21/Waf1/cip1 modulation of cell cycle controls
directly promoting HCC proliferation (6, 69). In a strategy to
possibly evade immune system response, this HBx upregulated
miR-155 can also subdue HBV replication by blocking the
CCAAT/enhancer-binding protein (C/EBP) protein that binds
and activates the HBV Enhancer 11/core promoter (199).

Innate Immune System
Epigenetically upregulated miR-155 is a key modulator of pro-
and anti-inflammatory responses in the innate immune system
(202, 203). It is a particularly important miRNA in the
modulation of NF-KB driven induced myelopoiesis as a result
of targeting IRAK1/TRAF6 and SHIP1/SOCS1 respectively
(204–206) and also targets CSFR to influence myeloid
differentiation (207).

Macrophages
SHIP1, an important regulator of the innate system, is a primary
target of miR-155 and its repression influences an increase in
granulocyte/monocyte cell populations and a reduction in
lymphocyte numbers (208, 209) and reduced levels of SHIP1
appears to induce myeloproliferative disorders (208).
Interestingly, SHIP-1 is classified as a tumor suppressor in
HBV-HCC and reduced levels of SHIP-1 are associated with a
poorer prognosis (210). Upregulated mIR-155 in viral infection
can induce type 1 IFN induced macrophages via by activating the
TLR4/MyD88/JNK/NF-KB dependent pathway. In order to
upregulate TLR4 signaling, upregulated miR-155 can suppress
both SHIP1 and SOCSI to block their regulation of downstream
TLR signaling directly contributing to increased inflammatory
signaling and macrophage activation (208). Furthermore, SOCS1
which regulates type I IFN signaling, is targeted by miR-155 in
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macrophages (211, 212) and the loss of function of SOCS-1 is a
common feature in HCC clearly supporting a hypothesis that
HBx-upregulated miR-155 promotes the progression of HBV-
HCC (200, 201). Finally, it has been demonstrated that AKT
signaling can repress miR-155 in macrophages thus indicating a
negative feedback loop to fine-tune TLR signaling (213).

Dendritic Cells (DC)
Upregulated-miR-155 modulates the TLR/IL-1 (interleukin-1)
inflammation signaling pathway to regulate human monocyte-
derived DCs in order to ensure excess damage does not occur
(214). TLR/TNF/IFN upregulated miR-155 via AP1/BIC plays a
significant homeostatic role in monocytepoiesis by repressing
PU.1 which activates DC-SIGN, a C-type lectin receptor to
increase pathogen cell surface uptake on DCs (207, 215).
Decreased DC-SIGN expression in HCC is related to poor
prognosis and PU.I has been identified as a metastasis
suppressor possibly relating to the impairment of the antigen
presenting capabilities of APCs (216).

Adaptive Immune System: B-Cells
In the adaptive immune system the epigenetically modulated
miR-155 can influence B-cell expression by triggering
downstream epigenetic changes. Epigenetically upregulated
miR-155 (HDAC-I/EZH2) can repress the expression of an
important epigenetic regulator like activation induced cytidine
de-aminase (AID) which acts as a HDAC inhibitor that binds to
specific immunoglobin genes in the nucleus to induce CSR/
SHM/antibody diversification (43). The repression of AID by
upregulated miR-155 thus leads to a reduction in CSR/SHM/
Plasma B cell diversification thus contributing to reduced ability
to synthesize pathogen specific antibodies (217, 218).
Interestingly, different studies indicate AID is upregulated in
both HBV and HCV induced hepatocarcinogenesis (219, 220).
This upregulated miRNA also influences B-cell synthesis by
targeting Ship-1 which plays an important role in the
regulation of immune cell activation in both the innate and
adaptive pathways (221). Epigenetically upregulated miR-155
targets PU-1, a critical transcription factor, to block GC B-cell to
Plasma cell transition thereby modulating germinal cell B-cell
differentiation into memory cells or plasma cells (222).

T-Cells
Epigenetically upregulated miR-155 can target Ship-1 to
promote histone building capacity (Phf19) to promote PRC2
expression that promotes histone modifications to repress T-cell
senescence and promote CD8+ T-cell expression (67). This
miRNA can also modulate IFNg expression by repressing
SHIP1to play a critical role in the reciprocal regulation of
CD4+ and CD8+ leukopoiesis (223). MiR-155 also has a role
in the generation of exhausted dysfunctional T cells and Fosl2
antagonism of miR-155 can reduce T cell exhaustion during
chronic viral infection (224). This upregulated miRNA
modulates T helper cell differentiation and the germinal center
reaction to synthesize T-cell dependent antibody response. In
order to do this, upregulated miR-155 can repress SOCSI to
maintain Foxp3+ regulatory T-cell (Treg) generation in order to
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regulate an autoimmune response (225, 226). It can also enhance
Treg and Th17 cells differentiation and IL-17A production by
targeting SOCS1 (206). A supporting meta study also confirms
that the elevated expression of Tregs can be associated with HCC
pathogenesis and Treg upregulation is a feature of the HCC
tumor microenvironment (227). Conversely, Tregs can also
target miR-155 to provide a negative feedback loop to control
Treg expression (228). In the Th1/2 differentiation stage
upregulated miR-155 can promote Th1 differentiation as a
result of targeting C-MAF (229, 230) and an elevated Th17 to
Th1 ratio has been associated with tumor progression in HBV-
HCC (231). MiR-155 in Th17 cells can also trigger autoimmune
inflammation through a signaling network by targeting the Ets1/
IL-23/IL-23R pathway (205).
CLINICAL THERAPEUTIC OPTIONS

The five-year survival rate of advanced HCC remains dismally
low and the treatment of advanced stages is limited by a paucity
of targeted options despite the fact that HCC cancer pathways
and their targeted genes have been well documented. Since the
introduction of the multi-kinase inhibitor sorafenib, very little
progress has been made in treatment of advanced HCC (232).
Novel targeted therapies developed for a range of cancers include
the development of immune checkpoint inhibitors like anti-
CTLA4 or anti-PD-1/PD-L1 antibodies has introduced new
opportunities in clinical oncology (233, 234). Chronic CHB,
inflammation and the development of cirrhosis are all
hallmarks of HBV-HCC pathogenesis. The question remains as
to how miRNA-regulated epigenetic expression can prompt an
appropriate immune response.

Our review demonstrates that multiple miRNA can influence
epigenetic changes in multiple pathways in HBV-HCC
pathogenesis by regulating histone modifications, DNA
Methylation and chromatin modelling. For example, we show
that HBx- downregulated miR-101 fails to modulate DNMT3A
silencing of multiple tumor suppressors in HBV-HCC (24) while
simultaneously modulating the expression of macrophages
(157), DCs (165), T-cells (166) and B-cells (170). The question
remains, however, as to the in vivo clinical potential of deploying
miR-101 replacement therapy in HBV-HCC. Current trials using
HDAC inhibitors to inhibit cell cycle in HCC have been
disappointing (235) and to date there has been no attempt to
modulate HDAC expression using miRNA in HCC. In a breast
cancer study, for instance, HDAC inhibitors reduced
tumorigenesis and apoptosis via microRNA miR-125a-5p in
vivo and in vitro (236). Epigenetic targeting of EZH2, a
histone-lysine-N-methyltransferase and DNMT1 inhibitor
reactivated transcriptionally repressed chemokine genes and
augmented T cell response in HCC (237). Our review shows
that 29 dysregulated miRNA in HBV-HCC (Table 1) are both
regulated and regulate epigenetic changes offering numerous
hypotheses to be tested in vitro. In the case of our four HBV-
HCC pathways, miR-101 influences PRC2 and DNMT3A
silencing, miR-148/152influenced DNMT1/3A silencing,
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miR-155 repressed PRC2 silencing and miR-29a/b repressed
DNMT1/3A silencing in parallel with affecting immune
expression in both the innate and adaptive immune systems.

The use of miRNA-led therapeutics is still a work in progress
and most likely these therapeutic options would be used as an
ancillary form of treatment in support of current options. In
theory miRNA-led therapeutics attempt to repress or restore
oncogenic and tumor suppressor expression respectively.
Currently, miRNA replacement therapy has started
investigating whether this could be an adjuvant therapy in
support of chemotherapy and radiation (238, 239). This
approach relies on the use of synthetic miRNA or miRNA
inhibitors to upregulate or downregulate miRNA expression
respectively (240). However, this approach has yet to capture
the synergistic response generated by multiple miRNA, nor its
dynamic homeostatic shifts and this is the puzzle yet to be solved.
CONCLUSION

This review attempts to link the epigenetic modifications that
influence HBV and host genome expression in HBV-HCC
pathogenesis in both the hepatocyte and immune pathways.
We examine the interplay between CHB infection, the
silencing role of miRNA, epigenetic change, immune system
expression and HBV-HCC pathogenesis. In particular, we
demonstrate how HBx dysregulated miRNA in HBV-HCC
pathogenesis influence and are influenced by epigenetic
changes to modulate both the HBV and host genome
expression. The paper provides useful insights and potential
hypotheses of the complex interplay between host gene targets
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in the principal cancer and immune pathways as a result of
HBx dysregulated miRNA, epigenetic change, HBV-HCC
pathogenesis and immune response.

This review paper tries to provide a platform for a wide range
of evidence-based hypotheses rather than an (exactly) correct
snapshot of the role of miRNA in HBV-HCC pathways. Even
though HBV-HCC is a specific sub-type of HCC, there are
multiple different classes and stages in which the hypothesized
figures would operate to greater or lesser degree. This review
should contribute to the point of view that our understanding of
miRNA-based pathogenesis is far superior to our current ability
to translate this knowledge to improve clinical outcomes.
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HIV-1 must overcome host antiviral restriction factors for efficient replication. We
hypothesized that elevated levels of bone marrow stromal cell antigen 2 (BST-2), a
potent host restriction factor that interferes with HIV-1 particle release in some human cells
and is antagonized by the viral protein Vpu, may associate with viral control. Using
cryopreserved samples, from HIV-1 seronegative and seropositive Black women, we
measured in vitro expression levels of BST-2 mRNA using a real-time PCR assay and
protein levels were validated by Western blotting. The expression level of BST-2 showed
an association with viral control within two independent cohorts of Black HIV infected
females (r=-0.53, p=0.015, [n =21]; and r=-0.62, p=0.0006, [n=28]). DNA methylation
was identified as a mechanism regulating BST-2 levels, where increased BST-2
methylation results in lower expression levels and associates with worse HIV disease
outcome. We further demonstrate the ability to regulate BST-2 levels using a DNA
hypomethylation drug. Our results suggest BST-2 as a factor for potential therapeutic
intervention against HIV and other diseases known to involve BST-2.

Keywords: BST-2, HIV-1, DNA methylation, epigenetic regulation, expression
INTRODUCTION

To establish infection and replicate efficiently, HIV-1 must overcome host antiviral restriction
factors. Host restriction factors that inhibit HIV-1 replication are an important component of the
innate immune system that forms the first line of defense before adaptive immune responses are
mobilized and established (1–4). BST-2 (also termed Tetherin/CD317/HM1.24) was discovered as an
anti-HIV host factor responsible for the prevention of virus release (5). Subsequently, additional
mechanisms of HIV inhibition by BST-2 have been reported (6) and studies have associated BST-2
org May 2021 | Volume 12 | Article 669241127
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expression levels with HIV viral control (6–8). Downregulation
of BST-2 expression correlated with Vpu expression and elevated
BST-2 induced a requirement for Vpu to facilitate HIV particle
release in some cells (5, 9). Vpu promotes intracellular down-
regulation of BST-2 (10, 11). However, BST-2 is an interferon-
induced protein, which gets activated upon HIV infection (7, 12).
Factors regulating the expression levels of the BST-2 gene have
not been fully resolved.

The “tethering” effect mediated by BST-2 on HIV has
subsequently been shown to restrict the replication of a diverse
array of other enveloped viruses including other retroviruses,
rhabdoviruses, alphaviruses, arenaviruses, filoviruses,
herpesviruses , paramyxoviruses , orthomyxoviruses ,
orthohepadnaviruses and flaviviruses (12–21). In addition,
BST-2 expression levels are elevated in several cancers such as
head and neck, breast, cervical, lung, endometrial, myelomas,
and glioblastomas (22–29) as well as lupus erythematosus (SLE)
an autoimmune disease (30), suggesting that BST-2 could be an
immunotherapeutic target for several diseases. If BST-2 is
directly affecting these conditions, then identifying the factors
regulating BST-2 expression could develop strategies against an
array of diseases. DNA methylation has been linked with the
regulation of BST-2 expression particularly in cancer cells (24),
and in lupus (30). A few human genes implicated in HIV control
are known to be regulated by DNA methyla t ion .
Hypermethylation of FOXP3, EPB41L3, IL-2, CCR5 and HLA-
A at gene regulatory sites, are associated with reduced gene
expression and worse HIV outcome, whereas reduced
methylation corresponds with increased expression of these
genes and improved disease outcome (31–36). This highlights
the potential importance of this epigenetic mode of gene
regulation in HIV disease pathogenesis.

In this study, we found that increased BST-2 levels associated
with HIV control. We further show DNA methylation as one of
the regulatory mechanisms responsible for BST-2 expression
variation within HIV infected individuals. Furthermore, BST-2
methylation levels correlate with HIV outcomes in both ex vivo
and in vitro experiments, and experimental manipulation of
BST-2 methylation altered its expression levels. Together, these
data suggest that manipulation of BST-2 expression levels could
be used as a therapeutic target for viral control.
MATERIALS AND METHODS

Study Design
A chronic HIV infection cohort, Sinikithemba (SK; n=21) (37),
was compared to the HIV negative arm of the acute infection
cohort from the Females Rising through Education, Support, and
Health (FRESH; n=65) study (38, 39) in a cross sectional
analysis. We further studied a longitudinal HIV acute infection
cohort, CAPRISA 002 (n=55) (40, 41), from pre-infection to >36
months of follow-up post HIV infection. All the samples used in
this study were from South African females of Black ancestry.
The study was approved by the Biomedical Research Ethics
Committee of the University of KwaZulu-Natal.
Frontiers in Immunology | www.frontiersin.org 228
Sample Processing, Viral Load
Quantification and CD4 Cell Enumeration
Peripheral blood mononuclear cells (PBMCs) were isolated
within 6 hours of blood collection, and frozen in liquid
nitrogen until use. Viral load was determined using the
automated COBAS AMPLICOR HIV-1 Monitor Test v1.5
(Roche Diagnostics, Mannheim, Germany). CD4+ T cells were
enumerated using the Multitest kit (CD4/CD3/CD8/CD45) on a
four-parameter FACSCalibur flow cytometer (Becton Dickinson,
San Jose, CA, USA).

Real Time PCR Quantitation
RNA was extracted from 2 x 106 PBMCs using the TRIzol LS
Reagent (Invitrogen, Carlsbad, CA, USA). RNA from each
sample was reversed transcribed using the iScript cDNA
synthesis kit (Bio-Rad, California, United States of America).
PCR primer and cycling conditions for BST-2 and GAPDH
(housekeeping gene) are available on request. GAPDH was
used as reference gene (42). PCR-product amplification
specificity was confirmed via melting curve analysis and
agarose gel electrophoresis.

Western Blotting
Cell lysates were boiled for 10 minutes in 4X Laemmli sample
buffer (Bio-Rad), then separated by SDS-PAGE on 4 to 15% gels
(Bio-Rad, California, United States of America) and transferred
onto nitrocellulose membrane following standard methods. The
membrane was then incubated with the primary antibody (rabbit
monoclonal anti-BST-2 [cat. no. ab243229, Abcam, Cambridge,
United Kingdom], and mouse polyclonal anti-alpha-tubulin [cat.
no. ab7291, Abcam, Cambridge, United Kingdom]), diluted in
5% bovine serum albumin (BSA) (Roche, Basel, Switzerland) in
tris-buffered saline and Tween 20 at a 1:100 or 1:5000 dilution
overnight, followed by three washes in tris-buffered saline (TBS)
and Tween 20 (TBST) for 10 minutes. The membrane was
incubated with the secondary antibody (anti-rabbit, or anti-
mouse) at a 1:20,000 dilution in 5% BSA in TBST for 1 hour
on a rocker, followed by three washes in TBST for 10 minutes.
Antibody-antigen complexes were detected via enhanced
chemiluminescence reagents (SuperSignal West Dura
extended-duration substrate, Thermo Scientific, Pierce Protein
Research, United States of America). Proteins were visualized
using the ChemiDoc XRS+ system with Image Lab software (Bio-
Rad, California, United States of America).

In Vitro HIV Infection
HIV-1 replication in vitro was assessed on PBMCs from 22
donors selected from the 65 healthy HIV uninfected individuals
from the FRESH cohort. Individuals with the highest (n =11) and
lowest (n=11) BST-2 mRNA levels were included. PBMCs
(2×106/mL) were stimulated for 48 hours in R10 buffer
[Roswell Park Memorial Institute (RPMI)-1640 medium
(Grand Island, NY, USA) supplemented with 10% fetal calf
serum (Hyclone Inc., Logan, UT, USA), gentamicin (Gibco-Brl,
Gaithersburg, MD, USA) (100 mg/mL)] containing 5 mg/mL
phytohemagglutinin (PHA) (Roche, Basel, Switzerland) and
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5 mg/mL interleukin-2 (IL-2) (Roche, Basel, Switzerland).
Following stimulation with PHA/IL-2, cells were washed with
R10 buffer and then infected with HIV IIIB (NIH AIDS Reagent
Repository) at 0.1 multiplicity of infection (MOI) by
spinoculation (2 hours, 300 x g at 37°C). Infection was
performed in a 24-well plate. Virus was subsequently removed
by washing the cells, followed by cell culture for 7 days. BST-2
mRNA expression levels and DNAmethylation were analyzed by
real-time PCR and pyrosequencing. Supernatants from days 2, 4
and 7 were harvested and analyzed by p24 antigen capture
enzyme-linked immunosorbent assay (ELISA [Biomérieux,
Marcy-l’Étoile, France]).

DNA Methylation by Sequencing
Primer design for the detection of methylation within the BST-2
promoter region was performed using MethPrimer online
software, default settings (43) (Forward meth primer 1
GGTTAGTTTTTGTTGTAGGAGATGG; Reverse meth primer
1 AACTATTACAAAATACCCATAAAAAAC; Forward meth
primer 2 TTGATGGTGAAGATAATTAAGGGTATT; Reverse
meth primer 2 AAAAACTACTAATCAAAACACTTC
CTAAAA). Sodium bisulphite conversion was performed on
genomic DNA extracted from PBMCs using the EZ DNA
methylation™ kit (Zymo Research, Irvine, USA). Using the
BST-2 specific primers on the bisulphite converted DNA, a
PCR was run using the following conditions (95°C for 15
minutes, 45 cycles of 95°C for 30 seconds, 60°C for 45 seconds,
72°C for 30 seconds and one cycle of 72°C for 10 minutes). The
level of methylation at specific sites within the BST-2 promoter
was measured using pyrosequencing (Roche, Basel, Switzerland).

5’-aza-2-deoxycytidine Treatment
Treatment of cells with the DNA hypomethylation drug, 5’-aza-
2-deoxycytidine (5’-Aza-CdR), was performed as previously
described (32). Briefly, PBMCs from healthy donors (n=40)
were treated with 10 µM 5’-Aza-CdR (Sigma, St. Louis, United
States America) or with dimethyl sulfoxide (DMSO; treatment
control) for 24 hours at 37°C. BST-2 mRNA levels from 5’-Aza-
CdR treated cells were compared to DMSO treated and then
plotted against the untreated mRNA levels.

Statistical Analysis
Statistical analyses were conducted using Instat Graphpad Prism
V.5 and SAS version 9.4. All expression data was log10
transformed to ensure normality (44, 45). Gene expression
levels between HIV negative and HV infected donors were
compared using an unpaired t-test. BST-2 mRNA expression
levels for HIV positive donors prior to infection and at three
months post-infection were compared using paired t-test.
Furthermore, we calculated the Pearson correlation coefficient
to measure the strength of an association between BST-2 mRNA
expression levels and methylation at each time-point.

Univariable linear mixed model with autoregressive order one
covariance structure were fitted to determine if there was an
association between BST-2 gene expression and viral load. In this
model, we included a random effect for the participant or subject.
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RESULTS

BST-2 mRNA Expression Level Associates
With HIV Viral Control
We investigated the effect of HIV infection on BST-2 mRNA
expression levels in PBMCs ex vivo. We found significantly
higher levels of BST-2 in HIV negative individuals (n=32,
FRESH cohort, black dots) compared to HIV infected late
stage antiretroviral (ARV)-naïve individuals (n=21, SK cohort,
red dots; p < 0.0001; Figure 1A). To validate these findings for
consistency of mRNA expression with protein levels, we
randomly selected donors, based on sample availability, from 5
HIV negative donors and 4 HIV infected donors, which formed
subsets of the FRESH and SK cohorts, respectively. Western blot
assays showed consistent BST-2 protein expression levels relative
to mRNA expression levels, with protein expression higher in
HIV- compared to HIV+ donors (Figure 1B). We next explored
the relationship between BST-2 mRNA expression levels and
HIV-1 viral load. A negative correlation was observed in both SK
(r=-0.53, p=0.015; Figure 1C), and CAPRISA 002 cohorts (n=28,
r=-0.62, p=0.0006; Figure 1D), all individuals analysed cross-
sectionally were past 36 months post infection in both cohorts.

BST-2 mRNA levels and viral load were also tested
longitudinally at three timepoints (3, 12 and >36 months) in
the CAPRISA 002 cohort. The results of the generalized
estimating equation (GEE) model revealed consistent results to
the cross-sectional data where higher mRNA levels associated
with decreased viral load (Effect = -0.022; Standard error =
0.009; p=0.0003).

Effect of BST-2 DNA Methylation on BST-2
Expression and HIV Disease
The inverse effect of DNA methylation on BST-2 expression has
been shown previously in the context of cancer and autoimmune
studies (24, 30). Here, we examined the effect DNA methylation
on BST-2 expression levels within an HIV setting. Nine CpG sites
located within 200 bp of the transcription start site were
evaluated for methylation levels (Figure 2A) in HIV positive
and negative individuals (SK vs. FRESH cohort respectively). All
sites showed significantly higher methylation levels within the
HIV infected group (Figures 2B–J), suggesting that increased
BST-2 methylation levels in chronic HIV infection results in
decreased expression level of the gene as observed in Figure 1.

The average methylation across the nine CpG sites was
compared to BST-2 mRNA expression levels in samples with
four different HIV serostatus or disease stages, i.e. pre-infection,
3, 12- and >36-months’ post-infection using n=27 matched
ARV-naïve samples, based on sample availability. An inverse
correlation was observed at all time points; pre-infection (r=-
0.52, p=0.0056; Figure 3A), 3 months (r=-0.50, p=0.0097;
Figure 3B), 12 months (r=-0.44, p=0.02; Figure 3C) and >36
months (r=-0.46, p=0.0178; Figure 3D). These data strongly
point to methylation as a major contributor in regulation of BST-
2 expression levels.

Comparison of BST-2 DNA methylation pattern with mRNA
expression levels indicate distinctions at the four timepoints.
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At the pre-infection time point, BST-2 expression levels are
relatively low, with modest methylation of the gene. Three
months after HIV infection, BST-2 expression levels increase
with a concomitant decrease in methylation, perhaps as a result
Frontiers in Immunology | www.frontiersin.org 430
of the immune response in acute infection, including IFN-I
production, which is known to enhance BST-2 production (3)
(Figure 4). Methylation begins to increase at 12 months’ post
infection, and by 36 months post infection, the mean expression
A B

DC

FIGURE 1 | BST-2 mRNA and protein expression levels within HIV-negative and positive individuals. (A) Comparison of BST-2 mRNA expression levels measured in HIV
negative and positive donors from the FRESH, (black dots), and SK, (red dots) cohorts, respectively. Significantly elevated BST-2 levels are found within HIV negative donors
vs. positives (p<0.0001). These represent unmatched donors from two separate cohorts. The HIV positive donors are ARV naïve chronically infected. (B) Protein levels of BST-
2 were measured on 5 HIV negative donors and 4 HIV infected donors from the FRESH and SK cohorts, respectively. BST-2 protein levels were assessed using a Western
blot assay. The levels of HIV infected donors are lower than the HIV negative. (C) BST-2 mRNA expression levels were correlated with log viral load within the SK cohort.
Higher mRNA levels correlated with lower log viral load levels (r=-0.53, p=0.0150). (D) A negative correlation was also observed when examining the effect of BST-2 mRNA
expression levels and viral load using the CAPRISA 002 cohort at the >36 month time point (r=-0.62, p=0.0006).
A

B D E F

G IH J

C

FIGURE 2 | Examining DNA methylation levels across unmatched HIV uninfected and infected donors. (A) Location of nine CpG sites within the BST-2 promoter
region 200bp upstream of the TSS. (B-J) Using HIV negative (FRESH) and HIV positive (SK) cohorts the percentage methylation, using pyrosequencing of bisulfite
converted DNA, was calculated for each of the nine sites.
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of BST-2 dips to pre-infection levels while methylation
is considerably higher than that at pre-infection timepoint
(Figure 4). Overall, these results suggest that DNA methylation
is not the sole contributor to BST-2 expression variation.
Frontiers in Immunology | www.frontiersin.org 531
In Vitro HIV Infection and 5’-Aza-
CdR Treatment
We next examined the impact of BST-2 mRNA expression
levels on HIV replication in vitro. HIV replication was
assessed by the amount of p24 released into tissue culture
supernatant following infection of PBMCs from HIV negative
individuals either having the highest (n=11) or lowest (n=11)
BST-2 mRNA expression levels screened from a cohort of 65
HIV negative donors. p24 measurements, taken at days 2, 4
and 7, showed that individuals with higher BST-2 expression
(dotted line, Figure 5A) significantly associated with lower
viral replication, at days 4 and 7 post infection, compared to
lower BST-2 expression individuals (solid line, Figure 5A;
ANOVA, p<0.001). Further, a negative correlation between
HIV replication and BST-2 mRNA expression levels was
observed at day 7 (r=-0.63, p=0.0019, Figure 5B). These
data support a model in which higher BST-2 levels diminish
HIV replication.

Next, we tested whether DNA methylation correlated with
BST-2 mRNA expression levels in an in vitro HIV infection
assay. Individuals with high BST-2 expression levels (red
dotted line, Figure 5C) possessed low methylation levels
(blue dotted line) measured at days 0, 2, 4 and 7 days post
HIV infection. Conversely, low BST-2 mRNA expression
donors (red solid line, Figure 5C) associated with high
methylation levels (blue solid line) throughout the time
course. Further, the overall difference between the
methylation levels within donors either possessing high or
low BST-2 expression levels was significant (Figure 5C;
ANOVA, p<0.001). Thus, BST-2 mRNA expression levels
associate with the level of BST-2 DNA methylation, even
within an in vitro time course of HIV infection.

5’-Aza-CdR induces hypomethylation due to its ability to
inhibit DNA methyltransferases, the enzymes responsible for
methylation. As manipulation of BST-2 expression could be
considered as a therapeutic intervention in HIV disease, we
tested whether 5’-Aza-CdR enhanced BST-2 expression
differentially among donors as a function of the intrinsic
expression level of BST-2. BST-2 levels were measured from
HIV negative healthy donor PBMCs (n=40) treated with
either 5’-Aza-CdR or DMSO (to measure baseline potential
for stimulation in each subject). BST-2 ratios of 5’-Aza-CdR/
DMSO treated mRNA levels were then plotted against
the BST-2 levels measured in corresponding untreated
PBMCs (Figure 5D). A negative correlation between levels
of BST-2 mRNA expression in untreated and Aza-CdR
treated PBMC (R=-0.46, p=0.0027; Figure 5D) was
observed. Donors with the lowest intrinsic (i.e. untreated)
BST-2 mRNA expression levels had the greatest increase in
mRNA expression following 5’-Aza-CdR treatment. These
data point directly to DNA methylation as a primary factor in
regulating BST-2 gene expression. Increasing BST-2 gene
expression by demethylation may therefore enhance resistance
to HIV, given the observation that higher BST-2 expression
associates with HIV control.
A B

DC

FIGURE 3 | Correlation of DNA methylation and BST-2 mRNA expression
levels across HIV disease. Average methylation was calculated as the
average methylation level across nine sites within 200bp upstream of the
transcription start site. A strong negative correlation was observed at
each of the time points examined for a set of n=27 matched samples at
varying time points across disease progression. (A) pre-infection
(r=-0.52, p=0.0056), (B) 3 months’ post infection (r=-0.50, p=0.0097),
(C) 12 months’ post infection (r=-0.44, p=0.02) and (D) >36 months
(r=-0.46, p=0.0178).
FIGURE 4 | DNA methylation levels dictate BST-2 mRNA levels during HIV
disease. Baseline levels of 27 matched samples at varying time points across
disease progression show at the pre-infection higher methylation (Black) and
low BST-2 expression (Red), while at acute infection (3-month post infection)
methylation and expression levels are at similar level, due to IFN induction.
The BST-2 expression and methylation levels invert at 12 months’ post
infection. The most dramatic difference is observed at the >36 months
timepoint, these individuals are at a chronic phase of infection, at this time
point we observe the lowest expression and highest methylation.
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DISCUSSION

Here we show that expression levels of BST-2, a potent antiviral
cellular protein are negatively associated with viral loads in an
antiretroviral-naive cohort of women followed longitudinally from
acute HIV-1 infection. Similar results were obtained from an
ART-naive chronically infected cohort of participants with
unknown time of infection. BST-2 levels are lower in chronically
infected HIV individuals compared to uninfected persons,
however in longitudinally followed matched samples, BST-2
levels first increase significantly over baseline and then decline
slowly. We showed BST-2 expression and DNAmethylation levels
within the gene promoter region are negatively correlated. These
findings are consistent in HIV infected subjects in studies
performed ex vivo and in vitro. Moreover, we pharmacologically
altered BST-2 expression levels by manipulating methylation levels
with 5’-Aza-CdR, leading to an increase in BST-2 mRNA
expression, especially within cells with lower intrinsic BST-2 levels.

BST-2 levels have been shown to inhibit the production of
HIV-1 particles by hindering the release of virion progeny (5, 46).
However, HIV-1 has developed the ability to counteract this
mechanism through the accessory viral protein, Vpu. BST-2 is
trafficked from the viral budding sites on the cell surface by a Vpu-
mediated mechanism, which thereafter sequesters the host protein
to a perinuclear compartment (47). Vpu-null or defective viruses
are most prone to BST-2-mediated inhibition. Previous studies
have demonstrated that BST-2 surface levels are elevated during
Frontiers in Immunology | www.frontiersin.org 632
acute infection and then progressively decrease throughout the
stages of infection, even after initiation of ART (7, 8). In line with
these findings, we observed an elevation in mRNA expression of
BST-2 during acute infection both ex vivo and in vitro, with a
subsequent decrease observed by 36 months post HIV-infection.
The plasticity of BST-2 methylation observed suggests that
methylation levels are a strong regulator of BST-2 expression
even within a disease setting, although the mechanism
regulating the methylation levels requires investigation.

Due to sample availability, we used bulk PBMCs to measure
BST-2mRNA expression, rather than CD4+ T cells specifically. A
previous study measuring cell surface BST-2 showed no
differences in expression patterns between individual cells types,
PBMCs, mononuclear leukocytes, including CD4-positive, CD8-
positive T lymphocytes, B cells, across stages of HIV infection (7).
Although the level of mRNA expression does not always reflect
protein expression levels, our Western blot assay in a small
number of participants suggested a fair correlation. Sample
limitations prevented us from examining the correlation
between BST-2 mRNA levels and cellular surface expression,
however, previous studies have demonstrated the correlation
between these subsets (24, 48, 49). These studies have shown
that BST-2 mRNA and protein levels correlate in mice, monkeys
and humans. Furthermore, the studies also show specific tissues
and cell types have strong correlations. The effect is observed
across diseases (cancer, SIV, and Mouse mammary tumor virus)
and healthy human controls (24, 48, 49).
A B

DC

FIGURE 5 | BST-2 mRNA expression and methylation levels correlate in an in vitro viral replication assay, and treatment with a DNA hypo-methylation drug
increases BST-2 mRNA expression levels. (A) Individuals were pre-selected based on BST-2 expression levels for a HIV replication assay. PBMCs from HIV negative
donors (n=22) were infected with HIV IIIB viral strain, the amount of virus present was determined by measuring the p24 antigen using an ELISA assay.
Measurements of p24 for both high and low BST-2 donors were taken at days 2, 4 and 7. Donors with higher BST-2 levels (dotted line) had lower level of p24, while
donors with lower BST-2 levels (solid line) had significantly higher p24 levels (p<0.001). (B) A negative correlation was observed when comparing the HIV replication
levels against the BST-2 mRNA levels at day 7 from the in vitro HIV infection assay (r=-0.63, p=0.0019). (C) mRNA and DNA were used to measure BST-2
expression (red) and methylation levels (blue), respectively, from high and low BST-2 donors (n=22) at four time points during the viral replication assay, days 0, 2, 4
and 7. Within high BST-2 donors, we find high expression (red dotted line) associated with lower methylation (blue dotted line) and vice versa for low BST-2 levels,
where low expression (red solid line) associated with higher methylation (blue solid line). (D) PBMCs from HIV negative donors (n=40) were split into three subsets;
the first subset was treated with a DNA methyltransferase inhibitor that causes hypomethylation (5’-Aza-CdR), while the second subset was treated with DMSO.
Both subsets were incubated for 24 hours. BST-2 mRNA expression from 5’-Aza-CdR and DMSO treated cells were compared and plotted as a fold change against
BST-2 mRNA from an untreated time point (third subset), a significant correlation was observed (R=-0.46, p=0.0027).
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It is plausible that other human HIV restriction factors could
be regulated through DNA methylation. Each factor contributing
toward the overall HIV disease outcome. Whole genome
methylation analysis on a pair of monozygotic twins with
discordant HIV status found several distinct differential
methylation regions in the HIV infected twins (50, 51).
Furthermore genome-wide methylation analysis of 85 unrelated
individuals with varying HIV statuses showed differential genome-
wide patterns which was associated with their ability to control
HIV replication (52). Future studies should focus on larger cohorts
of monozygotic twins or consider longitudinal studies such that
the changes in DNA methylation profiles may be followed up at
the different time points of HIV infection.

DNA methylation is just one of the mechanisms
contributing to the variation in BST-2 expression levels.
Another mechanism identified is a proposed regulatory
variant, rs12609479, located in the BST-2 promoter region,
which associated with decreased risk of acquiring HIV-1. The
rs12609479-A allele associated with increased BST-2 expression
and decreased risk of acquiring HIV-1 (53, 54). The 9 CpG sites
that were examined in this study did not contain any
polymorphisms and rs12609479 was not located in a CpG
site. Despite rs12609479 not being affected by methylation,
previous studies have shown diverse changes with respect to
minor allele frequency across various ethnic groups (55, 56).
Future studies are required to fully understand all the
contributing factors responsible for BST-2 expression
variation including methylation status across various ethnic
groups. Despite these limitations, we found a reproducible
association of BST-2 mRNA expression levels with HIV
control. Our results were further validated with in vitro data.

In conclusion, we reproducibly demonstrate BST-2
expression levels associate with HIV viral control within a
high disease burden setting. DNA methylation was shown to
regulate BST-2 levels and observed to associate with HIV
disease. The use of the demethylating drug 5’-Aza-CdR in
vitro resulted in increased BST-2 expression levels among
donors with low baseline expression levels. Thus, HIV control
through higher BST-2 expression levels, as determined in part
by decreased methylation, may suggest strategic mechanisms
for HIV cure therapy.
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The immune response must balance the pro-inflammatory, cell-mediated cytotoxicity with
the anti-inflammatory and wound repair response. Epigenetic mechanisms mediate this
balance and limit host immunity from inducing exuberant collateral damage to host tissue
after severe and chronic infections. However, following treatment for these infections,
including sepsis, pneumonia, hepatitis B, hepatitis C, HIV, tuberculosis (TB) or
schistosomiasis, detrimental epigenetic scars persist, and result in long-lasting immune
suppression. This is hypothesized to be one of the contributing mechanisms explaining
why survivors of infection have increased all-cause mortality and increased rates of
unrelated secondary infections. The mechanisms that induce epigenetic-mediated
immune suppression have been demonstrated in-vitro and in animal models.
Modulation of the AMP-activated protein kinase (AMPK)-mammalian target of
rapamycin (mTOR), nuclear factor of activated T cells (NFAT) or nuclear receptor
(NR4A) pathways is able to block or reverse the development of detrimental epigenetic
scars. Similarly, drugs that directly modify epigenetic enzymes, such as those that inhibit
histone deacetylases (HDAC) inhibitors, DNA hypomethylating agents or modifiers of the
Nucleosome Remodeling and DNA methylation (NuRD) complex or Polycomb Repressive
Complex (PRC) have demonstrated capacity to restore host immunity in the setting of
cancer-, LCMV- or murine sepsis-induced epigenetic-mediated immune suppression. A
third clinically feasible strategy for reversing detrimental epigenetic scars includes
bioengineering approaches to either directly reverse the detrimental epigenetic marks or
to modify the epigenetic enzymes or transcription factors that induce detrimental
epigenetic scars. Each of these approaches, alone or in combination, have ablated or
reversed detrimental epigenetic marks in in-vitro or in animal models; translational studies
are now required to evaluate clinical applicability.
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INTRODUCTION

Epigenetic mechanisms guide gene expression to maintain
homeostasis by balancing the nature of expressed and non-
expressed genes. This balance can be perturbed either by
pathogen- induced epigenetic changes, such as through Rv1998
antigen secreted by Mycobacterium tuberculosis (Mtb) (1) or by
chronic and severe stimulation of the immune system as in case
of LCMV (2), HCV (3), sepsis (4), Schistosomiasis (5) and TB
(6). Long-lasting immune suppression that follows severe or
chronic infections increases the risk for secondary infections.
This was recognized in 1909 when German researchers noted
that TB recurrence occurred after measles (7). In the 1950s,
clinicians reported an increased risk for histoplasmosis
reactivation among patients recovering from TB (8). Similarly,
after surviving sepsis, host immunity remains in a suppressed
state that increases the risk for secondary bacterial infections and
doubles mortality risk (9, 10). Survivors of pneumonia have
increased risk of death with the severity of pneumonia correlated
with mortality risk (11). TB survivors also have increased risk of
mortality, not only from secondary infections and recurrent TB,
but from increased risk of cardiovascular disease and cancer
(12, 13). Although epigenetic immune suppression is needed
acutely to temper exuberant immunity (14) , these
immunosuppressive epigenetic marks are long-lived and are
thought to be a major contributing factor for increased
secondary infections long after resolution of the first insult (12,
15–17). Proper epidemiological studies matched with
translational studies need to be conducted, but epigenetic-
mediated post-infectious myeloid and lymphoid immune
suppression is a suspected explanation for why individuals
retain increased mortality risks even after successful treatment
for pneumonia, TB or sepsis (11, 13, 15).

After chronic and severe infections, CD4+ T cells are
characterized as being anergic and CD8+ cells as being
exhausted (18, 19). Functionally, anergic CD4+ T cells fail to
recognize and respond to foreign antigen, as measured by
decreased antigen-induced cellular proliferation and cytokine
production (18). Similarly, CD8+ T cell immune exhaustion is
defined by decreased antigen-induced proliferation, cytokine
production and an increase in immune checkpoint inhibitors
(19). Myeloid cell immune tolerance is defined by a decreased
responsiveness, usually measured by decreased phagocytic
capacity, killing capacity and cytokine production, e.g., TNF,
IL-6 and IL-1b (10, 20–22). Animal models have demonstrated
that post-infectious immune suppression is epigenetically
mediated and that the detrimental epigenetic marks induced
by chronic infections overlap with those induced by cancer (5, 6,
23–30). There are many studies demonstrating how cancer
induced epigenetic-mediated immune suppression can be
reversed. Herein, we review the growing literature of in-vitro
and animal model studies demonstrating how to block or
reverse infection induced epigenetic-mediated immune
suppression and postulate how these approaches could become
clinically relevant to decrease post-infectious morbidity
and mortality.
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EPIGENETIC MECHANISMS AND
GENE EXPRESSION

Epigenetic mechanisms are one major means of regulating gene
expression. This regulation comes from nucleosomal scaffolding
of the negatively charged DNA around positively charged
proteins, called histones, present as two functional copies
apiece of the type H2A, H2B, H3 and H4. Each nucleosome is
further condensed in a higher-order structure, the chromatin.
Both nucleosome and chromatin can guide accessibility of
molecular factors to the DNA, thus resulting in differential
gene expression (31). Cells can either circumvent or reinforce
these barriers, depending on the context, by dynamically
modifying DNA and histones at specific nucleotide or amino
acid residues, transiently creating regions of the genome
differentially accessible to gene expression machinery. Histones
are modified on their free N-terminal tails, or their globular
domains that physically interact with the DNA, through
chemical modifications including acetylation, methylation,
phosphorylation, ubiquitylation, acylation, hydroxylation,
glycation, serotonylation, glycosylation, sumoylation and ADP-
ribosylation (32). DNA is methylated at cytosine and adenine
residues. Epigenetic marks other than acetylation and
methylation are not as well studied and are less understood.
The gene expression implications of certain epigenetic marks are
well established. DNA methylation directly interferes with the
binding of DNA and transcription factors, or it can attract
proteins that bind specifically to modify DNA, thereby
blocking other transcription factors from binding the site (33).
Acetylation of histones H3 and H4 relaxes the nucleosome
compactness and leads to partial de-condensation of chromatin
locally, making the DNA more accessible. Such accessibility is
referred to as “permissive” and the loss of accessibility and
increased compactness referred to as “restrictive” (34). Histone
modifications can be either permissive or restrictive. For
example, trimethylation of histone 3 at lysine 4 (H3K4me1,
H3K4me3) promotes open chromatin, while trimethylation of
histone 3 at lysine 27 (H3K27me3) and at lysine 9 (H3K9me3)
promotes restrictive heterochromatin (35).
SIGNALING PATHWAYS THAT INDUCE
T CELL IMMUNE EXHAUSTION

Broadly, T-cell activation involves tightly controlled signaling
pathways and cascades, that when perturbed lead to transcription
factor (TF) imbalances that then drive epigenetic-mediated gene
expression inhibition. Activation of the T-cell receptor (TCR) by
MHC-antigen complexes assembles the “TCR signalosome” that
results in downstream phosphorylation events and activation of
secondary signaling molecules (18, 36–40). Downstream of the
TCR, key events include phosphorylation of tyrosine kinases and
phospholipase C (PLC)1 (41–43). Activated PLCg1 cleaves
phosphatidylinositol 4,5-bisphosphate (PIP2) to diacylglycerol
(DAG) and inositol 1,4,5-triphosphate (IP3), the former being
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critical for proper activation of activator protein-1 (AP-1) complex,
a heterodimer of c-Fos and c-Jun (Figure 1) (44–47). IP3 plays a
central role in calcium signaling by releasing intracellular calcium
stores from the endoplasmic reticulum (ER) (48) and thereby
dephosphorylating NFAT proteins which translocate to the
nucleus, and bind with their transcriptional partners, such as AP-
1, to activate distinct ranscriptional programs (Figure 1) (49).
NFAT/AP-1 transcriptional complexes bind to the promoters of
various cytokine genes, including Il2, leading to their active
transcription. In the absence of co-stimulation, impaired AP-1
activation results in NFAT homodimerization inducing
transcriptional and epigenetic changes that yield anergic and
exhausted T cells (Figure 1) (18, 44, 50, 51).

Activation of the TCR and CD28 co-stimulatory induces a
flux of intracellular Ca2+ and activation of the PI3K-AMPK-
mTOR signaling pathway. Activated mTOR engages several
downstream effector pathways, including promoting
metabolism by activating gene expression of the TFs hypoxia-
inducible factor 1a (HIF1a), MYC and sterol regulatory
element-binding protein (SREBP). Upregulation of inhibitory
receptor signaling recruits Src homology 2 domain-containing
tyrosine phosphatase 2 (SHP2) phosphatase which interferes
with CD28 costimulatory signaling by blocking PKC-q (52)
and PLCg1 (53). Increased programmed death protein 1 (PD-1)
inhibits AKT and mTOR pathways (54), activates Basic leucine
transcription factor (BATF) to repress T-cell proliferation and
cytokine secretion in HIV-specific CD8+ T cells (55), and inhibits
IL-2 production to limit T-cell proliferation (52). NFAT1 in the
absence of AP-1 interaction promotes the expression of Pdcd1
(PD-1 encoding gene) (56). Inactivation of the AKT/mTOR
pathway promotes FOXO1 retention in the nucleus to enable
continued inhibitory receptor Pdcd1 gene transactivation (57).
PD-1 signaling through SHP2 activates AMPK, which is an
inhibitor of mTOR signaling (already abrogated by inactivation
of PI3K and AKT), leading to downregulation of HIF-1a and
MYC, which in turn governs the transcription of the glycolytic
enzymes such as GLUT1, thereby decreasing cellular metabolism.
TRANSCRIPTION FACTORS DRIVING
T CELL IMMUNE EXHAUSTION

NFAT homodimers play a critical role in induction of the T cell
anergy transcriptional program (44). NFAT1 homodimers bind
to specific NFAT binding sites on T cell anergy-associated gene
promoters. For example, NFAT homodimer consensus binding
sites are present in the promoter of Grail, a T cell anergy-
associated gene (50). Expression of the early growth response
gene 2 (Egr2) and Egr3 is NFAT-dependent, and these TFs are
associated with regulation of gene expression of the Casitas B-
lineage lymphoma b (Cbl-b) E3 ubiquitin ligase in anergic T cells
(58). Downstream of NFAT signaling, the TF Ikaros, binds to the
IL2 gene locus, and recruits the NuRD complex, including
histone deacetylases (HDACs), thereby facilitating epigenetic
remodeling, specifically histone deacetylation, of the Il2
promoter, thus effectively silencing gene expression (59, 60).
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Highlighting the critical importance of a balanced NFAT
response, a bioengineered constitutively active form of NFAT,
termed CA-RIT-NFAT1, closes chromatin conformation
inducing epigenetic-mediated immune exhaustion, including
decreased microbial killing capacity in CD8+ T cells (56, 61).
Constitutively active NFAT1 leads to the enrichment of genes
belonging to the nuclear receptor (NR) family of genes,
specifically members of the NR4A family. In particular,
NR4A2 (NURR1) and NR4A3 (NOR1) exhibit high
enrichment upon CA-RIT-NFAT1 expression. NR4A family
member genes exhibit greater chromatin accessibility in
exhausted tumor infiltrating lymphocytes (62). Using a
chimeric antigen receptor T cell (CAR T cell) model, a NR4A
triple knockout reversed detrimental chromatin accessibility, and
promoted tumor regression and prolonged survival of tumor-
bearing mice, thus illustrating the epigenetic and functional
relevance of the NR4A family in T cell exhaustion. NR4A is
also important for PD-1 and TIM3 expression, markers of T cell
exhaustion (62).

NFAT homodimers also induce the thymocyte selection-
associated high mobility group box (TOX) proteins which
mediate the expression of inhibitory receptors such as PD-1
and TIM3, leading to the T cell exhaustion phenotype. Increased
TOX expression occurs in chronic infection models such as
LCMV and chronic hepatitis C (HCV) infection (51, 63).
Removal of the nuclear localization sequence (NLS) and part
of the DNA-binding domain from TOX via deletion of exon 5
resulted in decreased PD-1 expression and impaired generation
of the T cell exhaustion phenotype. In addition, TOX exon 5
deletion resulted in differential expression of genes associated
with T cell exhaustion such as Id3, Helios (Ikzf2), Nr4a1, Nr4a2,
Pdcd1, and Klrg1. Conversely, over-expressing TOX in healthy T
cells increases PD-1 expression, demonstrating a role in inducing
the T cell exhaustion phenotype (63). Deletion of TOX exon 5
leads to decreased chromatin accessibility of the Pdcd1 gene
locus, which encodes PD-1, and increased chromatin
accessibility to Tnf (63). Knocking out Tox in CD8+ CAR
tumor infiltrating lymphocytes (TILs) increase cytolytic activity
further supporting the notion that TOX specifically attenuates
CD8+ T cell effector function (Figure 1).

These studies provide evidence for the importance of the
NFAT, TOX and NR4A TFs in driving epigenetic-mediated
immune exhaustion, and also suggest strategies to alter their
activation could be therapeutically pivotal (Figure 1). For
example, Cyclosporin A (CsA), a calcineurin inhibitor, inhibits
NFAT activation, thereby inhibiting TOX, NR4A1, NR4A2 and
NR4A3 and the subsequent detrimental chromatin conformation
changes that leads to immune exhaustion (51). Tacrolimus
(binding to FK506) inhibits calcineurin by a different
mechanism, but similarly decreases NFAT and TOX, blocking
the chromatin confirmation changes that upregulate PD-1 and
LAG3, thereby preserving capacity to produce TNF and IFN (64–
66). Discussed in more detail below, bioengineered upregulation
of c-Jun rescues NFAT-AP-1 imbalance, thereby restoring
immune function. Therefore, while tacrolimus and CsA are
considered immune suppressants, they can prevent detrimental
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FIGURE 1 | Signaling cascade and transcription factors that mediate epigenetic changes that inhibit host immunity. In T cells, protein kinase Lck and ZAP-70 initiate
a signaling cascade that result in activation of PLCg1 and production of InsP3 (IP3), a second messenger, binding to the InSP3 receptor on the ER leading to release
of Ca2+ from the ER. The reduction of Ca2+ activates STIM, which recruits SOCE such as ORAI in the plasma membrane. Opening of ORAI channels in the plasma
membrane results in sustained Ca2+ influx and activation of several Ca2+ regulated enzymes such as serine/threonine phosphatase calcineurin, which
dephosphorylates NFAT enabling its translocation to the nucleus where it binds to promoters of effector genes including Il2. NFAT requires AP-1 generated through
another second messenger DAG activation of PKCF and RAS/MAPK/ERK1 pathways. Lck also mediates activation of PI3K activating AKT and mTOR, which
govern the phosphorylation of FOXO1. Phosphorylated FOXO1 is transported out of the nucleus and exists in complex with 14-3-3 in the cytoplasm. In exhausted T
cells, either through activation of inhibitory receptors such as PD-1, CTL4, a dephosphorylating protein SHP1/2 is activated, which dephosphorylates Lck and
ZAP70, suppressing the subsequent signaling cascades. SHP2 inhibits among others RAS, AKT, PI3K and even the TCR-MHCII microcluster, thus weakening or
abrogating the effector signals at multiple levels (red inhibition arrows). This leads to widespread change in the cellular TF landscape. SHP1/2 activate BATF3, a TF,
due to non-availability of AP-1 to partner with NFAT. Partnerless NFAT, alone leads to transcription of inhibitory genes and receptors including pdcd1, which is also
transcribed by increased nuclear retention of unphosphorylated FOXO1 in the nucleus, in absence of a PI3K/AKT/mTOR activation. Unpartnered NFAT transcribes,
Nr4A and TOX1/2, which further contribute to inhibitory signaling by increasing transcription of Pdcd1. NFAT homodimer transcribes inhibitory genes Grail3/Erg3.
TOX leads to transcription of genes such as Id3, Nr4a1, Klrg1, Helios. Many of these genes and TF lead to epigenetic modifications, which further contribute to
exhausted phenotype. TF, Ikaros (Helios family) can directly bind to the Il2 promoter and recruit NuRD, which has HDAC and deacetylates Il2 leading to its
transcriptional repression. Deacetylation is usually followed by recruitment of PRC, which through EZH2 can further add to closing of chromatin by adding
methylation marks at H3K27, as seen at the Ifng locus. Another, NAD: NADH+ dependent deacetylase, SIRT can directly deacetylate NF-kB to decreases IL1
transcription. Lck, LCK proto-oncogene, Src family tyrosine kinase; ZAP-70, zeta chain of T cell receptor associated protein kinase 70; PLC, Phospholipase C; IP3/
InsP3, inositol 1,4,5-trisphosphate; ER, Endoplasmic reticulum; STIM, stromal interaction molecule 1; SOCE, Store-operated calcium entry; ORAI, ORAI calcium
release-activated calcium modulator; NFAT, Nuclear factor of activated T-cells; IL, Interleukin; AP-1, Activator protein1; DAG, Di-Acyl Glycerol; PKCF, Protein kinase
C; MAPK, Mitogen-Activated Protein Kinase; FOXO1, Forkhead box protein O1; 14-3-3, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein
theta (encoded by YWHAQ); PD-1/Pdcd, programmed cell death 1; CTL4, Cytotoxic T-Lymphocyte Associated Protein 4; SHP, Src homology 2 domain-containing
tyrosine phosphatase 2; PI3K, phosphatidylinositol 3-kinase; AKT, Protein kinase B; mTOR, mammalian target of rapamycin; MHC, Major Histocompatibility
complex; TF, Transcription factors; BATF, Basic Leucine Zipper ATF-Like Transcription Factor; Nr4A, Nuclear Receptor Subfamily 4 Group A Member 1; TOX,
Thymocyte Selection Associated High Mobility Group Box; Erg, ETS transcription factor ERG; Id3, Inhibitor Of DNA Binding 3; Klrg1, Killer Cell Lectin Like Receptor
G1; NuRD, Nucleosome and DNA Remodeling complex; PRC, Polycomb Repressive Complex; EZH2, Enhancer Of Zeste 2 Polycomb Repressive Complex 2
Subunit; H3K27me3, H3 lysine 27 trimethylation; Ac, Acetylation; Me, Methylation. Created with BioRender.com.
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chromatin conformation that leads to immune exhaustion,
thereby preserving host immunity. Studies are needed to
evaluate if these agents could be of benefit in humans following
pneumonia, sepsis or TB.
SIGNALING PATHWAYS THAT INDUCE
MYELOID IMMUNE TOLERANCE

For myeloid cells, the best studied model for immune tolerance
is LPS challenge or sepsis. The exact myeloid tolerance
mechanism(s) has not yet been elucidated for other infections.
Thus, we discuss LPS/sepsis as a central theme for the signaling
pa thways induc ing mye lo id to l e rance . Fo l l ow ing
overstimulation, myeloid cells, including monocytes and
macrophages, develop tolerance, a state of cell refractoriness
defined by an inability to mount an inflammatory response to a
secondary stimulation (67). Pathogen- or danger-associated
molecular patterns (PAMPs/DAMPs) such as LPS are sensed
via pattern recognition receptors (PRR), e.g., toll-like receptors
(TLR). LPS is recognized by TLR4, mediating signaling through
two distinct adaptor pathways, myeloid differentiation factor 88
(MyD88) and TIR-domain containing adapter-inducing
interferon (TRIF). The MyD88 pathway employs interleukin-1
receptor-associated kinase (IRAK)1 and 4 kinases and TNF
receptor-associated factor (TRAF) 6 to activate NFkB and AP-
1 signaling, promoting transcription of pro-inflammatory
cytokines. Activation of TRIF pathway leads to janus kinase
(JAK)/signal transducer and activator of transcription (STAT)1
Frontiers in Immunology | www.frontiersin.org 540
and type I interferon activation and increases the expression of
interferon-inducible genes such as TNFA, IFNB, IL1B, IL6, and
COX2 (68, 69). PI3K interacts with MYD88 and also influences
TLR4 signaling (70). LPS-induced myeloid tolerance involves
downregulation of TLR4 expression, decreased recruitment of
MyD88 or TRIF to TLR4, decreased activation of IRAK1/4 and
diminished canonical NFkB signaling (p65/p50 heterodimer) via
formation of inactive p50 homodimers (67, 71), decreased AP-1,
reduced expression of TNFA, IL1B, IL6 and IL12B, and increased
expression of IL10 and TGFB1 (Figure 2).

LPS-tolerized myeloid cells are also characterized by negative
regulatory molecules IRAK-M, A20, SH2 domain-containing
inositol phosphatase 1 (SHIP1) (72), Pellino-3 (73),
suppression of tumorigenicity 2 (ST2) (74), suppression of
cytokine signaling (SOCS)1 and SOCS3 that inhibit TLR
signaling (67, 69) (Figure 2). PI3K pathway, activated in LPS
tolerance, also contributes to production of anti-inflammatory
cytokines such as sIL-1RA (75) and its inhibition with
wortmannin mitigates tolerance and increases TNF production
(76). NFkB upregulates HDACs that remove histone acetyl
marks and recruit the NuRD complex with the net result of a
“repressome” such that euchromatin marks (e.g., histone
acetylation) are removed and heterochromatin marks (e.g.,
DNA methylation and H3K9 and H3K27me) are induced
(Figure 2) (20, 77–79). MyD88 activation, via non-coding
RNAs, also contributes to decreased chromatin accessibility
changes thereby inducing tolerance (80, 81). Acutely, tolerance
is beneficial as studies have demonstrated that inhibiting post-
sepsis epigenetic-mediated immune suppression too early
exacerbates immune pathology (14).
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FIGURE 2 | Signaling cascade and transcription factors that mediate epigenetic changes that inhibit host immunity in myeloid cells. TLR4 recognizes LPS, and
engages the MyD88-TRIF pathway to induce the TFs: NF-kB, AP-1, IRF3, IRF5 which leads to the induction of pro-inflammatory genes such as TNFA, IL1B, IL6,
COX2 etc. IRF3 induces the production of IFNb and TGFb, which adds to the IFN signaling and induces STAT1 leading to transcription of CCL5, CXCL10 and IRF7.
Overwhelming LPS stimulation as seen in sepsis, leads to lesser production and engagement of TLR4 and its pathway components, with over-inflammation leading
to production of inhibitory molecules such as IRAK-M, A20, Pellino-3, SHIP, which inhibit various parts of the LPS-TLR4 signaling cascade, leading to a tolerized
phenotype. Epigenetically, multiple mechanisms have been shown to lead to and maintenance of the tolerized phenotype. Guided by TFs such as NF-kB and its
isoform RelB, which can recruit HDACs (SIRT included) either alone or in a repressome complex, usually with a chromatin modifier such as SWI/SNF results in
deacetylation of histones, followed by addition of repressive methylation (H3K9, H3K3) by DNMT such as SMYD5 (in the NCOR-HDAC3 repressome), or KMT such
as G9a bound to HMGB1 (can recruit H1 and HP1) to close the chromatin and suppress gene expression. Lineage TFs such as PU.1 provide good example of this
assembly of the SWI/SNF complex containing BRG1 which can recruit HAT (p300) to acetylate H4K, HMT (MLL1/2/3) to add permissive H3K4 and demethylase
such as JMJD3 to remove repressive H3K27 to activate inflammatory genes upon LPS stimulation. The same PU.1 when bound to co-repressor BCL6 can induce
tolerance by losing the SWI/SNF complex and recruitment of NuRD, which recruits HDAC3 to remove acetylation and induce de novo methylation via DNMT1/3B to
close the chromatin and thus shutting down inflammatory gene transcription in tolerance. Created with BioRender.com. TLR4, Toll-like receptor 4; LPS, Bacterial
Lipopolysaccharide; MyD88, myeloid differentiation factor 88; TRIF, TIR-domain containing adapter-inducing interferon; TF, Transcription factor; STAT1, signal
transducer and activator of transcription; IRAK, interleukin-1 receptor-associated kinase; TRAF6, TNF Receptor Associated Factor 6; SHIP; SH2 domain-containing
inositol phosphatase 1; IKK, Ikappa B Kinase; TBK, TANK-binding kinase 1; MAPK, Mitogen-Activated Protein Kinase; I-KB, nuclear factor of kappa light polypeptide
gene enhancer in B-cells inhibitor; IRF, Interferon regulatory factors; SWI/SNF, SWItch/Sucrose Non-Fermentable; BRG1, Brahma-related gene-1; HDAC, Histone
deacetylase; H1, H1.1 Linker Histone; HP1,Heterochromatin protein-1; HMGB1, High Mobility Group Box 1; DNMT, DNA methyltransferase; MLL, mixed lineage
leukemia (lysine methyl transferase); JMJD, Jumonji domain containing protein; BCL6, B-cell lymphoma 6; MBD3, Methyl-CpG Binding Domain Protein 3.
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TRANSCRIPTION FACTORS DRIVING
MYELOID IMMUNE TOLERANCE

Similar to the situation with immune exhaustion, myeloid cell
immune tolerance is mediated by TFs that recruit co-activator
and corepressor complexes that modify chromatin
accessibility through post-translational modifications
(Figure 2). The myeloid lineage defining transcription factor
PU.1 facilitates chromatin opening with an increase in
H3K4me3 at promoters and H3K4me1 at enhancers.
However, in resting macrophages, corepressors such as B-
cell lymphoma 6 (BCL-6) associate with PU.1 and recruit
HDACs and histone demethylase resulting in repression of
many LPS-inducible genes (82). In an analysis of LPS-induced
tolerant and non-tolerant genes, NF-kB and MAPK were
downregulated in tolerant macrophages (83). NFkB family
TF isoform, RelB, mediates epigenetic silencing via facilitating
the direct deposition of repressive histone marks by the H3
lysine methyltransferase (KMT) G9a at the IL1B promoter
(78). Similarly, binding of high-mobility group box-1 protein
(HMGB1) and histone H1 linker at the promoters of TNF and
IL1B genes leads to transcription silencing by promoting
assembly of RelB, which results in deposition of H3K9me2
mediated by the KMT G9a. Depletion of HMGB1 by siRNA
results in dissociation of RelB from the promoter and partially
restores TNF transcription (84).

Tolerized myeloid cells exhibit decreased chromatin
accessibility due to decreased TLR-induced recruitment of
the BRG1-containing SWI/SNF nucleosome remodeling
complex and changes in histone acetylation and methylation
(83). The NCoR-Hdac3-p50 repressome contains histone
deacetylase and SET histone methyltransferases (SMYD5)
that result in H3K9/14 deacetylation (77) and H4K20
methylation (85) respectively, both contributing to
heterochromatin and repression of tolerizeable genes, thereby
inhibiting the expression of genes downstream of TLR4
activation. Genetic disruption of the NcoR-Hdac3 interaction
abolishes TLR4 tolerance (83). Interestingly, IFN-g prevents
Frontiers in Immunology | www.frontiersin.org 742
tolerance by preserving expression of the receptor-interacting
protein 140 (RIP140) coactivator and promoting TLR-induced
chromatin accessibility upon secondary TLR challenge (86). In
contrast, non-tolerized genes maintain an open chromatin
state and exhibit more H4 acetylation and maintain
H3K4me3 after re-stimulation (83). Interestingly, the NuRD
complex acts antagonistically, and in a SWI/SNF-BRG1
dependent manner in LPS stimulated macrophages showing
that these complexes exhibit concerted action to guide gene
expression in myeloid cells (87) (Figure 2).

In summary, PU.1 facilitates myeloid gene transcription,
while tolerance is associated with binding of co-repressor BCL-
6 to PU.1, disruption of the NFkB active heterodimer and
epigenetic silencing via HMGB1, RelB, NCoR-HDAC3-p50
repressome (Figure 2) , increased SMYD5 and G9a
methyltransferase and decreased chromatin accessibility due to
reduced recruitment of BRG1-NRC. BET inhibitors (that bind to
the bromodomain in the BRG1-NRC) such as IBET151, rescue
tolerance in a preventative way when administered along with
LPS, and not post LPS exposure (88).

Thus, HDAC inhibitors and G9a inhibitors if given after the
resolution of acute infection, could potentially mitigate aspects of
long-lived myeloid cell tolerance, while BET inhibitors act in a
more preventative way (88).
METABOLIC MECHANISMS LEADING TO
IMMUNE EXHAUSTION AND TOLERANCE

Upon immune activation via mTOR and NFAT signaling, shifts
in cellular metabolism increase glycolysis, the tricarboxylic acid
cycle (TCA, also known as the Krebs cycle) and electron
transport chain (ETC), not only to meet high energy demands
for proliferation and effector function, but also to produce the
intermediate metabolites that fuel the biosynthesis of effector
protein functions (10, 89–91). While initially beneficial, in severe
or chronic infection, these metabolic shifts contribute to
epigenetic changes that induce immune suppression (35, 89,
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90, 92–95). In both lymphoid and myeloid cells, these metabolic
shifts are mediated by the PI3K-Akt-mTOR pathway (96) and if
the infection persists, the associated signaling cascades are
downregulated and epigenetic mechanisms suppress host
immunity, with loss of accessible chromatin that allows for
expression of cytokines such as Tnf and Ifng and gain of
chromatin accessible regions in inhibitory loci such as Pdcd1
(97, 98), thereby placing cells into an immune suppressed state
(97). The described metabolic shifts induce epigenetic changes
due to alteration in metabolic precursors required for epigenetic
marks. At least three overlapping metabolic-epigenetic rheostats
(Figure 3) have been identified that regulate host immunity
(99–101).

Histone acetylation, an epigenetic mark characteristic of
euchromatin is regulated by the availability of nicotinamide
adenine dinucleotide (NAD+). High NAD+ levels and NAD+/
NADH ratios induce the NAD-dependent deacetylase sirtuins
(SIRTs) which deacetylate both histone and non-histone
proteins. High dose LPS exposure, via upregulation of IDO1-
induced de novo synthesis of NAD+, activates SIRT1, leading to
histone deacetylation and gene silencing of proinflammatory
genes such as Tnf and Il1b (102, 103). SIRT1 deacetylates p65
lysine of RelA (NF-kB) and nucleosomal H4K16 to terminate
NF-kB dependent transcription and remains bound to
assembled RelB and recruited transcriptional repressor
complex (including heterochromatin linker H1) generating
tolerance (102). NAD levels are regulated by CD38 and IDO1.
CD38 levels correlate with T cell exhaustion (104, 105) and are
elevated in patients with Cytomegalovirus (CMV) (106),
Epstein-Barr-virus (EBV) (107), mycobacteria (108) and HIV,
and are associated with poor prognosis (109). CD38, an
extracellular and intracellular NADase, converts NAD+

molecules to a single cyclic ADP ribose thereby drastically
shifting NAD+/NADH ratios, and activating sirtuin-mediated
epigenetic mediated immune suppression (104). IDO, another
mediator of immune suppression, is the rate limiting enzyme
step in de novo NAD synthesis, converting tryptophan to
kyneurine. IDO, elevated in sepsis and TB, inhibits host
immunity by decreasing nuclear NAD+ concentrations, and
initiating sirtuin activation (103, 110). Sirtuins regulate post-
infectious immune suppression in both lymphoid and myeloid
cells (102, 111), with inhibitors of CD38, IDO1 or SIRT1 able to
restore host immunity and prevent mortality in animal models
(104, 110, 112).

The second metabolic-epigenetic immune rheostat
mechanism is guided by the balance of a-ketoglutarate (a-
KG) and succinate. DNA methyltransferases (DNMT), lysine
demethylase (KDM), jumonji domain-containing protein
D3 (JMJD3) and Ten-eleven translocase (TET), require a-
KG (also known as known as 2-oxoglutarate-2OG) as a co-
substrate (113). Therefore, these epigenetic enzymes are
known as a-KG or 2OG dependent dioxygenases (a-KG-
DD) (113). Succinate, the end product of these chemical
reactions, acts as a negative feedback loop to inhibit their
function (114). In addition to succinate, other late-stage TCA
metabolites including fumarate, malate, itaconate and 2-
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hydroxyglutarate (2HG) inhibit the a-KG-DD epigenetic
enzymes (115–120). The importance of TCA metabolites in
epigenetic regulation was first described in cancer where
mutations in IDH, succinate dehydrogenase (SDH) or
fumarate hydratase were found to induce global epigenetic
disturbances (121, 122). These mutations lead to TCA
metabolite imbalances that drive global DNA and histone
hyper-methylation and immune tolerance (123–126). While
originally described in cancer, studies in wild type mouse and
human healthy T cells demonstrate that, upon immune
activation, 2HG is increased via Von Hippel-Lindau (VHL)-
HIF1a (120). Initially, 2HG increases T cell IL-2 production,
but when 2HG elevations persist, there are global increases in
the inhibitory epigenetic mark H3K27me3 with suppression of
T cell cytotoxic function (120). Dimethyl fumarate (DMF), an
immune suppressive therapy for multiple sclerosis, induces
DNA methylation and heterochromatin in monocytes and T
cells to suppress exuberant immunity (127, 128).The timing
and duration of TCA metabolite shifts need to be further
explored as short term shifts induce immune beneficial
immunity, while others are immune suppressive (118, 120,
129, 130).

The known metabolic-epigenetic immune rheostats are
overlapping and redundant, as demonstrated by the third
known metabolic-epigenetic rheostat. SDH is unique in that it
is both part of the TCA cycle and the ETC. Upon immune
activation, the increase in glycolysis fuels the ETC and when
persistent, electrons leak out of the inner mitochondrial space
(Figure 3), increasing reactive oxygen species (ROS) in the
mitochondrial matrix. This increase in ROS triggers
phosphatase of activated cells 1 (PAC1, encoded by DUSP2,
dual specificity protein phosphatase 2) and nuclear factor
erythroid 2-related factor (NRF2, encoded by NFE2L2) to
activate the NuRD complex (131, 132). The NuRD induces
histone deacetylation and DNA hypermethylation (via MBD2/3)
and is instrumental in limiting exuberant immune pathology in
macrophages after sepsis and preventing T cell autoimmunity (133).
Mice with tumor-induced immune exhaustion demonstrate
elevated mitochondrial ROS that correlates with detrimental
epigenetic marks (DNA hypermethylation and closed chromatin
conformation) and immune suppression (134). Inhibiting
mitochondrial ROS accumulation ablates immune suppression
(92, 135), however to date, the direct link via the NuRD has not
been demonstrated.

The immune inhibitory effects due to itaconate further
demonstrate the overlap of mechanisms by which metabolism
acts as an immune rheostat. The direct epigenetic effect of
itaconate has not yet been described. Itaconate is produced by
diverting cis-aconitate in the TCA cycle by the enzyme cis-
aconitate decarboxylase. Itaconate inhibits SDH, leading to
succinate accumulation (Figure 3). Therefore, it is presumed
but not proven that itaconate induces epigenetic changes akin to
succinate. Itaconate acts as a negative feedback to limit exuberant
immune pathology, inducing NRF2 nuclear translocation and
downregulation of IL1b and IL-6 (93). UponMtb infection, mice
with knockdown of Irg1 (gene that codes for CAD, the enzyme
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FIGURE 3 | Metabolic intermediates of the TCA cycle guide epigenetic changes that inhibit host immunity. The TCA cycle metabolites act as co-factor for major
epigenetic enzymes that shape the epigenomic landscape post infection via three overlapping and redundant major metabolic-epigenetic rheostats (RST). RST1:
NAD+: NADH-SIRT: Dependent on the level of NAD+ in the cell, Sirtuins, which are histone deacetylases, can remove acetyl groups and lead to immune
suppression; RST2: Succinate-aKG-aKGDD: Dependent on the levels of a−ketoglutarate and succinate (which along with fumarate, malate and Itaconate acts as
inhibitors of KGDDs), leads to the activation/inhibition of a family of enzyme dioxygenases which regulate the DNA methylation levels by methylating (via DNMTs) and
demethylate (via KDM, JMJD and TET) the DNA; RST3: ROS-PAC1-NuRD: guided by the activation of the ETC, which leads to electron leak and induction of ROS
and activation of NuRD, which is multiprotein complex guiding DNA methylation and chromatin accessibility. The main enzymes of the TCA cycle and the ETC are
shown, along with the drugs that can be used to block specific enzymes and help with reversing epigenetic mediated Immune suppression. NAD, Nicotinamide
adenine dinucleotide; SIRT, Sirtuins; aKGDD, a−ketoglutarate-dependent-dioxygenases; DNMT, DNA methyl transferase; KDM, Histone demethylase; JMJD,
Jumonji domain containing protein; ROS, reactive oxygen species; PAC1, Phosphatase of activated cells 1; NuRD, Nucleosome Remodeling and DNA methylation
complex; TCA, Tri-carboxylic acid cycle; ETC, Electron transport chain. Created with BioRender.com.
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that converts citrate to itaconate) have increased proinflammatory
cytokine production (IL1b, IL-6, IFN-y, IL12) and fatal exuberant
pulmonary infiltration of innate immune cells (94, 95).

As noted earlier, most epigenetic marks depend upon
metabolic precursors which, when altered, influence the
epigenetic landscape. For example, S-adenosylmethionine
(SAM)-mediated one-carbon metabolism supplies methyl
groups for histone and DNMT. Chronic antigenic stimulation,
as occurs in chronic LCMV infection, induces cellular
metabolism from glycolysis and glutaminolysis, decreasing
amino acid metabolic pathways feeding into the one-carbon
metabolism such that reduced threonine, reduces SAM, leading
to decreased H3K4me3 levels and impaired cytokine production
(136, 137). SAM supplementation increased H4 arginine 31
methylation of STAT1 by Arginine methyl transferase
(PRMT1), which is inhibited by HBV and is functionally
essential for STAT1 function, improved antiviral effects of
IFN-a in HBV infection (138) and HCV (139).

Current knowledge of the metabolic-epigenetic immune
rheostat axes indicates functional roles in inhibiting acute
exuberant immune pathology at the cost of long-lasting
epigenetic marks and long-lasting immune suppression. To
date, mechanistic studies have identified inhibitors of
glycolysis, glutaminolysis and mTOR as well as transient
glucose (140) restriction as possible means to block metabolic-
epigenetic immune suppression. However, studies are needed to
evaluate the clinical applicability of these mechanisms in severe
and chronic infections.
EPIGENETIC DRUGS TO RESTORE
IMMUNE RESPONSE

Epigenetic drugs have been developed predominantly for cancer
therapeutics, however some, such as valproic acid and
hydralazine are routinely used as antiepileptics and
antihypertensives. Currently approved or in-development
epigenetic modifying drugs include DNA hypomethylating
agents (HMAs), HDAC inhibitors, lysine methyltransferase
inhibitors (targeting EZH2, G9a, DOTL), and BET
bromodomain (BRD) inhibitors. Several studies, most in
cancer but a growing number in infectious diseases, have
demonstrated that epigenetic drugs can reverse epigenetic-
mediated immune suppression. Animal models, especially
those for sepsis and chronic LCMV, have documented the
mechanisms by which epigenetic drugs are able to restore
host immunity.

Infection with clone 13 LCMV, the prototypical model for
inducing CD8+ T cell immune exhaustion induces global DNA
methylation changes associated with immune exhaustion (2, 25,
141). Applying either a conditional knock of DNMT3a or the
hypomethylating drug decitabine was able to restore CD8+ T cell
effector function (25). Humans with sepsis upregulate DNMT1,
DNMT3a and DNMT3b, resulting in global DNA methylation
differences, 82.6% of which are suppressive hypermethylated
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marks (142). In a cecal ligation model of murine sepsis,
decitabine restored immune function and decreased mortality
(142). Similarly, application of the hypomethylating drug
azacytidine or decitabine to cancer cell lines increased
interferon responsiveness and antigen presentation (143–145).

DNA methylation changes occur in parallel to other
epigenetic modifications to inhibit host immunity. Co-
immunoprecipitation studies demonstrated that DNMT
associates with EZH2, the catalytic unit of the PRC (146).
EZH2 methylates H3K27, inhibiting gene expression (146) and
the combination of EZH2 inhibition (RNAi EZH2) and
azacytidine can restore gene expression (146). EZH2 acts as an
anchor point for multiple epigenetic mechanisms to suppress
gene expression (Table 1). In ovarian cancer cell lines, inhibition
of EZH2 using DZNep (inhibitor of SAM dependent enzymes),
EPZ6438 and GSK126 (selective inhibitor of EZH2) and DNMT
(azacytadine) synergistically increase IFN-g responsiveness, and
CXCL9 and CXCL10 expression, while shrinking tumor size
(165). In melanoma, prostate cancer, hepatocellular cancer and
colon cancer, EZH2-induced epigenetic marks inhibit Th1
polarization and IFN-g-JAK-STAT signaling, with EZH2
knockdown or pharmacologic inhibition using DZNep or
GSK126, restoring IFN-g-induced gene expression (157–160).
In-vitro, EZH2 regulates both Th1 and Th2 polarization, and
inhibiting EZH2 genetically or by using EZH2 inhibitor DZNep,
results in reduction of the suppressive histone mark H3K27me3,
thereby augmenting both Th1 and Th2 polarization and effector
cytokine production (166). In exhausted CD8 T cells, GSK126, a
specific EZH2 inhibitor, restores CD8 cell cytotoxicity (164). In a
CLP model of sepsis, H3K27me3, the repressive epigenetic mark
induced by EZH2, persists to inhibit IL12 immunity at least 6
weeks after the initial septic insult (155). In clinical studies of
sepsis, EZH2 expression increases proportional to disease
severity and correlates with poor clinical outcomes (156). In
TB, EZH2 is expressed early (161), with EZH2 inhibition
decreasing Ifng and Tnf H3K27me2 and increasing TNF and
IFN-g production (162).

The PRC, which includes the HMT EZH2, interacts with
DNMTs and also the NuRD complex. Therefore, these three
suppressive epigenetic marks, H3K27 deacetylation, H3K27
methylation, and DNA methylation, often occur together,
resulting in heterochromatin, thereby silencing gene expression
(167). Chronic LCMV infection results in global decreased
histone acetylation that limits both LCMV-specific and non-
specific CD8 T cell effector function (147). Chronic LCMV
infection also non-specifically decreases effector responses to
influenza peptides, and decreases salmonella and listeria killing
capacity (147, 168). Valproic acid, an HDAC inhibitor, was able
to restore LCMV-specific and non-specific CD8 T cell effector
function, including non-specific listeria killing capacity (147).
Several studies indicate that HDAC inhibitors can restore host
immunity when applied to chronic infections. Entinostat (MS-
275), an inhibitor of HDAC1 and HDAC3, increases host anti-
tumor immunity (152). Considering the long-term increased
mortality that persists following a bout of sepsis, it would seem
prudent to conduct a clinical trial to evaluate the efficacy of an
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TABLE 1 | Drugs targeting epigenetic enzymes restore Immunity and Reverse Epigenetic-mediated Immune suppression.

Epigenetic post
translational
modification

Target
enzyme/
Action

Drugs Drug Mechanisms
of Action

Evidence for Causing
disease

Evidence for improving
Infection outcome

Evidence for improving
outcome Cancer

Histone
Acetylation

Histone
Deacetylases
(HDAC)

Valproic acid;
Sodium or
phenyl butyrate;
Trichostatin-A
(TSA)

Reduces histone
deacetylation.

Histone deacetylation
limits acute immunity
during chronic viral
infection (147).
Mtb suppress critical
immune genes, such
as IL12, by
upregulating HDAC1,
leading to deacetylation
of histone H3 (148).

Valproic acid, restores CD8
T cell effector function and
listeria killing capacity in
LCMV (147).
TSA and sodium butyrate
restore host immunity,
cytokine production
restoring Mtb killing
capacity (148).
Sodium or phenyl butyrate,
restores IFN-g downstream
responsiveness (149, 150),
as well as inflammasome
and IL1 pathway gene
expression (151).

Entinostat Increases host anti-
tumor immunity (152).

(HDAC1, 3) Entinostat (MS-
275)

Entinostat,
preferentially
reduces histone
deacetylation
HDAC1 and
HDAC3.

Sirtuins
(SIRT), NAD+
dependent
deacetylators
of proteins,
including
histones

EX-527 Elective Sirt1
inhibitor prevents
histone
deacetylation

LPS induced immune
tolerance characterized
by deacetylation and
silencing of TNF, IL1b
and NFkB by Sirt in a
NAD dependent
manner (20, 102).
In T cells, Mtb-induced
upregulation of SIRT2
deacetylates NFkB to
suppress immunity and
Mtb killing capacity in
mouse models (153).
Increased SIRT1
confers
chemoresistance (154).

When used in the acute
phase of sepsis, it
increases morbidity. When
used in the immune
hyporesponsive phase of
sepsis, it is able to reduce
post-sepsis mortality (112).
SIRT2 inhibition improves
both myeloid and lymphoid
immunity and Mtb killing
capacity in mouse models
(153).

EX-527, increases
chemosensitivity in cancer (154).

DNA Methylation DNA methyl
Transferase
(DNMT)3A

Decitabine;
Azacytidine

Demethylation/
Hypomethylation

Upregulated DNMT1,
DNMT3a and
DNMT3b, resulting in
global DNA
hypermethylation
methylation in sepsis
(142).

Knock out DNMT3a, or
Decabitine Restore CD8 +
T cell effector function (25).
Decabitine restore immune
function and decreases
mortality in sepsis (142).

Azacytidine, increases interferon
responsiveness and antigen
presentation in cancer (143–
145).

Histone
Methylation

EZH2/
increases the
methylation

3-
deazaneplanocin
(DZNeP).

DZNep (Inhibitor of
SAM dependent
enzymes),
decreases
methylation

H3K27me3, the
repressive epigenetic
mark induced by
EZH2, persists to
inhibit IL12 immunity at
least 6 weeks after the
initial septic insult (155).
EZH2 expression
increases proportional
to disease severity and
correlates with poor
clinical outcomes in
sepsis (156).
In multiple cancers
EZH2 induced
epigenetic mark inhibit
IFN-g-JAK-STAT
signaling (157–160).
In TB, EZH2 is
expressed early (161),
with EZH2 inhibition
decreasing Ifng and Tnf
H3K27me2 and
increasing TNF and
IFN-g production (162).

Inhibition of EZH2 with
DZNep improved acute
septic morbidity and
mortality, lessen cytokine
levels and bacterial burden
in mice (163).
EZH2 inhibition in TB
decreases Ifng and Tnf
H3K27me2 resulting in
increased TNF and IFN-g
production (162).

GSK126, restores CD8 cell
cytotoxicity (164).
Combination of EZH2 and DNMT
inhibitors synergistically
increased IFN-g responsiveness
and CXCL9 and CXCL10
expression and shrinks tumor
size during immunotherapy in
ovarian cancer cell lines (165).
EZH2 knockdown or
pharmacologic inhibition
restoring IFN-g-induced gene
expression in various cancers
(157–160).

GSK126 GSK126 (Selective
inhibitor blocking
EZH2), decrease
methylation
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HDAC inhibitor in reversing long-term sepsis-induced immune
suppression (9).

Sirtuins, a class of HDACs, recognize the NAD+: NADH ratio
and then deacetylate and silence NFĸB, TNF and IL1b after LPS-
induced immune tolerance (20, 102). EX-527, a Sirt1 inhibitor
restored myeloid cell IL1B and TNF production when
administered after sepsis. Reinforcing the importance of
timing, administering EX-527 early during sepsis increases
mortality, however if given later during the immune
hyporesponsive phase of sepsis, it reduces post-sepsis mortality
in mice (112).

TB is the archetypical chronic infection. Macrophages
infected with Mtb upregulate HDAC and undergo deacetylation
of critical immune genes, such as IL12. Inhibition of HDAC restores
immune function including cytokine production and Mtb killing
capacity (148). In T cells, Mtb-induced upregulation of SIRT2
deacetylates NFĸB (p65) with SIRT2 inhibition improving both
myeloid and lymphoid immunity, and Mtb killing capacity in
mouse models (153). Sodium or phenyl butyrate, an HDAC
inhibitor, restores IFN-g downstream responsiveness (149, 150) as
well as inflammasome and IL1 pathway gene expression (151). In a
clinical trial that did not evaluate epigenetic or immunologic
outcomes, the combination of Vitamin D3 and phenylbutyrate
did not change time to sputum conversion but did ameliorate TB
disease severity (151). Like sepsis, survivors of TB retain detrimental
epigenetic scars (6, 22) and have increased all-cause mortality (12,
13). Large clinical trials should evaluate if reversing these
detrimental epigenetic marks are able to reverse the post-
infectious morbidity and mortality risk due to TB.
BIOENGINEERING APPROACHES TO
REVERSE EPIGENETIC-MEDIATED
IMMUNE EXHAUSTION & SUPPRESSION

Systemic means to reverse immune suppression, such as immune
checkpoint inhibitor blockade (e.g., anti-PD-1 and anti-LAG-3),
have short and long-term toxicities (169). Newer technology
such as the CRISPR/Cas9 system holds promise as a precise and
controlled bioengineering tool (170–175) to reverse immune
suppression. Typically, the CRISPR/Cas9 system includes a
guide RNA (gRNA) complexed with the Cas9 protein to
specifically edit a unique genomic address (170). For example,
in vitro gene editing of the PD-1 and LAG-3 genes using CRISPR-
Cas9 in CAR-T cells has improved their anti-tumor function
(169, 176).

A catalytically inactive version of the Cas9 protein called
dead, or deactivated, Cas9 (dCas9) (177) repurposes the
CRISPR-Cas9 platform for precision edited of the epigenome
or gene expression machinery (173–175, 177). A diverse
spectrum of epigenetic effectors has been tethered to dCas9 to
deliver epigenetic payloads to specific sites across the genome,
giving rise to a continually expanding epigenome editing toolkit
(173, 178). The Krüppel-associated box (KRAB) is a repressive
domain that is a component of several zinc-finger transcription
factors (179). A fusion protein between the KRAB domain and
Frontiers in Immunology | www.frontiersin.org 1247
dCas9 (dCas9-KRAB) has been shown to promote highly specific
gene silencing when targeted to mammalian genes (180) and to
distal regulatory elements such as enhancers (181). A version of
dCas9-KRAB with a linker for activation of T cells (LAT-dCas9-
KRAB) was recently shown to silence the PD-1 gene when
targeted to its transcription start site (176).

Targeting the transcriptional start sites and promoters with
dCas9 coupled with the de novo methyltransferases DNMT3A
and its homolog DNMT3L (dCas9-DNMT3A/3L) has been
described to produce widespread DNA methylation of CpG
islands at the targeted loci for up to 1200 bp (182). In
addition, tethering the catalytic domain of the DNA
demethylase TET1 to dCas9 (dCas9-TET1) to promoters
previously silenced by engineered transcriptional repressors
can generate a stable, long-term reactivation of the silenced
gene by demethylation of targeted CpG islands (183). Previous
work has also shown that a fusion protein consisting of the
catalytic core of the human acetyltransferase p300 and dCas9
(dCas9-p300) can achieve robust genetic transcriptional
activation by targeting either promoters, proximal enhancers
or distal enhancers (184).

The epigenome editing tools dCas9-TET1 and dCas9-p300
were recently employed to elucidate the epigenetic landscape of
the Foxp3 locus, an important transcription factor in T cells.
Demethylation of the enhancer region of the Foxp3 locus was
achieved in mouse primary T cells, although without strong
Foxp3 gene expression. In contrast, targeting dCas9-p300 to the
Foxp3 promoter stabilized Foxp3 expression under both normal
and inflammatory culture conditions in vitro (185). This
technical approach provides new opportunities to revert
anomalous post-infectious epigenetic modifications in other
immunologically relevant genes using dCas9-based epigenome editing.

Robust targeted transcriptional activation has also been
achieved by using CRISPR activation (CRISPRa) tools. dCas9
fused to an engineered tripartie activation domain consisting of
VP64, p65 and Rta, (dCas9-VPR) has proven to be a potent
synthetic CRISPR/Cas9-based transcriptional activator. For
example, dCas9-VPR is able to induce gene activation of some
target genes up to 320-fold compared to the original, conventional
dCas9-VP64 activator (186).

Another method to increase transcriptional activation is by
recruiting several copies of the regulatory proteins at once to the
target gene. This can be achieved by fusing dCas9 to the SunTag,
an array of a repeated short peptide sequence with strong affinity
for a single-chain variable fragment (scFv) antibody fused to the
activation domain. The SunTag can recruit up to 24 copies of the
antibody-fused protein and has been used to recruit multiple
copies of the transcriptional activation domain VP64, increasing
gene expression of the targeted locus (187).

RNA aptamers that interact with transcriptional activation
domains have been inserted into gRNAs, and these systems have
been used to recruit transcriptional regulatory domains via
dCas9 (188, 189). For example, the synergistic activation
mediator consists of an MS2 bacteriophage coat protein-
binding aptamer that is placed in the gRNA loops, which
enables a fusion between MS2 p65 and Heat Shock Factor 1
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(HSF1) to be successfully recruited to targeted genomic loci
(188). Recently the SAM system was used to increase the
expression of key endogenous genes related to immunological
exhaustion in the context of boosting anticancer immunotherapy.
Multiplexed gene activation of Cd70, Cd80, Cd86, Ifna4, Ifnb1, and
Ifng was achieved in mice using a CRISPRa gRNA library
improving immunogenicity of the transduced cells and leading to
tumor rejection in vivo (190).

Finally, Proteolysis Targeting Chimeras (PROTACs) are small
molecules which induce the targeted degradation of a protein by
linking it to an E3 ubiquitin ligase. The ubiquitinated protein is then
recognized and degraded by the 26S proteasome (191). Recently, Si
et al. demonstrated that a hematopoietic progenitor kinase has a key
role in T cell exhaustion and could be targeted by employing
PROTACs and CRISPR/Cas9 technology. Increased gene
expression of the MAP4K1 gene has been correlated with
increased T cell exhaustion due to dysregulation of the NFkB
signaling pathway. Knocking out this gene using a CRISPR/Cas9
system in CAR-T cells improved their persistence and functionality
in vivo. Similarly, developing a small molecule PROTAC that
selectively degrades the HPK1 protein encoded by the MAP4K1
gene in CAR-T cells improves their efficacy as well (192).

A major challenge in reducing T cell exhaustion is the
enduring epigenetic changes that differ from their normal state
(25). The CRISPR/dCas9-based protein fusions to epigenetic
writers and erasers are a potential tool to robustly and
precisely modulate the epigenome of exhausted T cells,
reverting them to their pre-infected functional state.

As previously discussed, T cell function requires balanced
AP-1 and NFAT heterodimerization. CAR T cells experience
tonic activation that induces characteristic features of exhaustion
(193). By manipulating HA-28z CAR T cells to over-express c-
Jun, AP-1-NFAT balance was restored, increasing IL-2
production (193). Recent studies have shown that the HDAC
SIRT1 functions to deacetylate c-Jun, inactivating it, and thus
effectively preventing the formation of the NFAT/AP-1
complexes required to induce Il-2 expression in activated T
cells. In this way SIRT1 acts as an epigenetic promoter of
immune exhaustion (18, 194). In a follow-up CAR T study, the
incorporation of a titratable FK506 binding protein 12 (FKBP)
destabilizing domain (DD) emphasized the importance of timing
and rest (195). Simply put, this engineered CAR T cell model
demonstrated that interrupting tonic T cell activation, either
through the titratable FK506 DD or through dasatinib, a tyrosine
kinase inhibitor, could block epigenetic-mediated immune exhaustion.
Frontiers in Immunology | www.frontiersin.org 1348
CONCLUSION

Increasing evidence from in-vitro studies and animal models has
demonstrated the signaling pathways, TFs, metabolic
intermediates and epigenetic enzymes that remodel chromatin
in order to suppress gene expression and limit exuberant
immune pathology. Although acutely, this suppression helps
regulate an overly exuberant immune response, it makes
individuals more susceptible to secondary infections and
cancers leading to increased long-term morbidity and
mortality. Other fields have harnessed drugs to manipulate
epigenetic enzymes, metabolic pathways, TFs and signaling
pathways to improve clinical outcomes. Similar studies need to
evaluate which strategy limits off-target adverse effects in order to
restore host immunity. For example, theoretically, upstream
moderation of the three-metabolic-epigenetic-immune
rheostats might better block detrimental epigenetic marks than
a specific epigenetic modifying drug. Considering the significant
long-term mortality that exists after pneumonia, sepsis and TB,
translational studies using emerging immunologic approaches
and bioengineering tools are needed to evaluate if modulating
these pathways improve clinical outcomes.
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Host cells undergo complex transcriptional reprogramming upon infection. Epigenetic
changes play a key role in the immune response to bacteria, among which DNA
modifications that include methylation have received much attention in recent years.
The extent of DNA methylation is well known to regulate gene expression. Whilst
historically DNA methylation was considered to be a stable epigenetic modification,
accumulating evidence indicates that DNA methylation patterns can be altered rapidly
upon exposure of cells to changing environments and pathogens. Furthermore, the action
of proteins regulating DNA methylation, particularly DNA methyltransferases and ten-
eleven translocation methylcytosine dioxygenases, may be modulated, at least in part, by
bacteria. This review discusses the principles of DNA methylation, and recent insights
about the regulation of host DNA methylation during bacterial infection.

Keywords: DNA methylation, immune response, bacteria, infection, mechanism, review
INTRODUCTION

DNA methylation refers to the addition of a methyl group to the DNA cytosine residues at the fifth
carbon position (5mC), which is a common epigenetic mark in many eukaryotes and often found in
the sequence context CpG (i.e., regions in the DNA where a cytosine nucleotide is followed by a
guanine nucleotide along the 5’ to 3’ direction) (1). The methylation process is promoted by the
DNA methyltransferases (DNMTs), of which DNMT3A and DNMT3B mediate de novo DNA
methylation, establishing a pattern of methylation that is then sustained by the maintenance
methyltransferase, DNMT1 (2). DNMT2 is not involved in DNA methylation, but rather mediates
methylation of RNA (3), and therefore is further not discussed in this review. The process of DNA
methylation can be reversed passively through cell division or actively catalyzed by ten-eleven
translocation (TET) methylcytosine dioxygenases family proteins, and a subsequent nucleotide
excision and repair process, called DNA demethylation (4). There are three members in the TET
family, namely TET1, TET2 and TET3, all sharing a conserved catalytic domain in their C terminus
(5). DNA methylation is generally associated with transcriptional silencing, although this paradigm
has been challenged by recent studies showing that DNA methylation can both positively and
negatively regulate gene expression depending on the position where it occurred (6).
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Both innate and adaptive immune responses contribute to
protection of the host against bacterial pathogens (7). The innate
immune system functions as the first line of defense against
invading pathogens and is composed of innate immune cells
(including basophils, dendritic cells, eosinophils, Langerhans
cells, mast cells, monocytes, macrophages, neutrophils and
natural killer cells) and some stromal cells, such as epithelial
cells that sense bacteria by their surface or endosomal pathogen
recognition receptors (PRRs). Toll-like receptors (TLRs), RIG-I-
like receptors, NOD-like receptors and C-type lectin receptors
are among the large array of PPRs that are able to detect
pathogens by recognizing microbial components known as
pathogen-associated molecular patterns, among which
lipopolysaccharide (LPS), flagellin and lipoteichoic acid (8, 9).
Upon recognition of bacteria or bacterial components, innate
immune cells initiate intracellular signaling cascades to induce
functional changes and to elicit the production of immune
effectors, such as cytokines, chemokines and antimicrobial
peptides, that directly or indirectly contribute to host
antibacterial defense and inflammatory responses. When
bacterial pathogens evade host innate immunity, adaptive
immune responses can contribute to defense mechanisms. T
and B cells are dominant players in adaptive immunity, activated
through presentation of bacterial antigens by antigen-presenting
cells. Innate and adaptive immune responses do not act
independently, but coordinated actions of these two systems
are required for efficient elimination of bacterial invaders.
Furthermore, in order to prevent collateral damage both innate
and adaptive immune responses need to be tightly regulated at
different levels (10). Modification of DNA methylation in host
cells, induced by infectious agents, has been implicated in the
induction and regulation of the immune response to bacteria.

DNA methylation has been considered to be relatively stable
when compared with other epigenetic modifications, such as
those involving histones, but recent findings have documented
Frontiers in Immunology | www.frontiersin.org 256
that DNA methylation can occur faster than previously thought,
particularly when cells are exposed to changing environments,
including contact with pathogens during infection (11).
Importantly, accumulating evidence indicates that pathogens
can alter DNA methylation and/or regulate the expression and
function of DNA methylation modifiers such as TETs and
DNMTs, resulting in altered expression of important host
genes involved in immune responses (11). These alterations in
DNA methylation or its related factors can either contribute to
protective host immunity to eliminate pathogens or benefit
pathogens to evade immune responses for persistence within
the host. This review summarizes current understanding of the
effects of DNA methylation on host immune responses and
pathogen elimination during infection.
DNA METHYLATION

Two families of proteins directly contribute to the DNA
methylation pathway: the DNMTs promote and maintain
DNA methylation, while the TETs catalyze demethylation via
multiple steps (Figure 1). DNA methylation is established by the
de novo methyltransferases DNMT3A and DNMT3A with the
help of catalytically inactive DNMT3L in mammals, whilst
the maintenance of DNA methylation is mediated by DNMT1
and its obligate partner ubiquitin-like plant homeodomain and
RING finger domain 1 (UHRF1), which preferentially recognizes
hemimethylated CpGs during cell division (12).

Although DNA methylation is reported to be stable, DNA
demethylation has been widely observed during development
and activation of mammalian cells. Possible mechanisms
underlying DNA demethylation have been reviewed by other
researchers (13–16); we here only briefly introduce the broadly
recognized passive and active routes. Passive demethylation
occurs in the absence of the DNA methylation maintenance
FIGURE 1 | DNA methylation cycle. DNMTs catalyze the addition of a methyl group to the fifth carbon position of cytosine to generate methylated cytosine (5mC),
which is maintained by DNMT1 (green arrow); 5mC is oxidized to 5-hydroxymethylcytosine (5hmC), which can be further oxidized to 5-formylcytosine (5fC)
and 5-carboxylcytosine (5caC) by TETs. The higher oxidized cytosine bases 5fC and 5caC can then be converted back to their unmodified state directly by thymine
DNA glycosylase (TDG) and subsequently base excision repair (BER) processing; these oxidative steps contribute to active demethylation (red arrow). Passive
demethylation removes 5mC from all forms of methylcytosine due to absence or reduction in DNMT levels and function (blue arrow).
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machinery (DNMT1/UHRF1) during DNA replication, which
leads to dilution of 5mC, or removal of 5mC due to absence or
reduction in DNMT levels and function (17). Active
demethylation is mostly dependent on the oxidation of 5mC
by TETs, that oxidize 5mC to 5-hydroxymethylcytosine (5hmC),
which can be further oxidized to 5-formylcytosine (5fC) and 5-
carboxylcytosine (5caC). These oxidized cytosine bases (5hmC/
5fC/5caC) may facilitate DNA demethylation by impairing the
binding and/or activity of enzymes regulating the maintenance
methylation machinery (DNMT1/UHRF1) which impairs
remethylation during DNA replication (13). The higher
oxidized cytosine bases (5fC/5caC) can be efficiently excised by
thymine DNA glycosylase (TDG), followed by the base-excision-
repair (BER) pathway, which accounts for the major DNA
demethylation mechanism. Interestingly, TETs might not
decrease methylation levels, but specifically prevent aberrant
methylation spreading into CpG islands (CGIs) (18), and
DNMTs might also contribute to active DNA demethylation in
conditions of low methyl group sources (19).
REGULATION OF DNMTs

DNMT proteins are recruited to certain locations in the genome
where they catalyze the transfer of methyl groups from
S-adenosyl-L-methionine (SAM) to the C5 of cytosine to
establish 5mC. During this process, the activity of DNMTs can
be regulated at the following levels (Figure 2).

First, by the Abundance of DNMTs
The expression and stability of DNMTs can be regulated by
transcriptional regulation and post-translational modifications
(PTMs), respectively. Numerous pathways have been shown to
induce or inhibit expression of DNMTs, and the extent of their
expression can be further regulated by multiple epigenetic
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regulatory mechanisms (20). Proteolytic degradation of DNMT
proteins can be promoted or inhibited by PTMs. Acetylation and
ubiquitination of DNMT1 either protect from or promote
proteolytic degradation (21, 22). Phosphorylation of Ser143
stabilizes DNMT1 (23), whilst methylation of Lys142 and
Lys1096 promotes its proteolytic degradation (24, 25).

Second, Through the Function/Activity
of DNMTs
DNA methylation by DNMTs is dependent on their catalytic
activity, which is largely regulated by PTMs or isoform variation
of DNMTs. SUMOylation of DNMT1 increases the catalytic
activity of this enzyme on genomic DNA (26); SUMOylation of
DNMT3A, however, abolishes its capacity to interact with histone
deacetylases (HDACs) (27). DNMT1 is an auto-inhibitory
protein that is activated upon binding to unmethylated
cytosines (28, 29). The same auto-inhibitory characteristic was
also found for DNMT3A, the activation of which is induced by
histone H3 (30); this is might be the reason why the histone H3
N-terminal tail with an unmethylated Lys4 (H3K4) is required for
de novo DNA methylation (31). In addition, the activity of
DNMTs can be affected by isoform variation (32, 33), and other
regulatory proteins, such as the microprocessor component
DROSHA that interacts with DNMT1 to ensure its full
methyltransferase activity (34).

Third, Through Recruitment of DNMTs to
the Genome
To successfully perform DNA methylation, DNMTs are first
recruited to the targeted DNA motif, and this recruitment is
affected by both the features of the target DNA motif and factors
that influence DNMT recruitment to the genome. DNMTs can be
specifically recruited to DNA marked with unmethylated H3K4
via interacting with the ADD domain of DNMTs (35),
while methylated H3K4 repulses the binding of de novo
A B

FIGURE 2 | Factors that regulate the function of DNMTs and TETs. The function of DNMTs can be influenced at four levels: their abundance, their recruitment to
DNA, their catalytic activity, and the methyl group source (A). The function of TETs is regulated at three levels: their abundance, their recruitment to DNA and their
catalytic activity (B). For details see text. DNMTs, DNA methyltransferases; TETs, ten-eleven translocation methylcytosine dioxygenases; PTMs, post-translational
modifications; CGI, CpG islands; SAM, S-adenosyl-L-methionine.
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methyltransferases resulting in maintaining the hypomethylated
state of CGIs (36). CGIs marked by H3K27me3 are more
susceptible to de novo DNA methylation during differentiation
and in disease states such as cancer (37, 38). Gene body enriched
with H3K9me3 or H3K36 tri-methylation (H3K36me3) is also
reported to be favorable for DNMT3B recruitment, leading to
hypermethylation at these regions that functionally relate to gene
transcription initiation, proper splicing and compact chromatin at
active genes (37, 39, 40). The affinity of DNMT3A and DNMT3B
for DNA can be further enhanced by DNMT3L through the
formation of heterotetrametric complexes with either DNMT3A
or DNMT3B, resulting in more efficient DNA methylation (41,
42). A large class of proteins, including polycomb group protein
enhancer of zeste homolog 2 (EZH2) (43), Zinc-fingers and
homeoboxes 1 (ZHX1) (44), ubiquitin-like protein modifier
NEDD8 (45), zinc-finger protein ZBTB24, transcription factor
E2F6 and PU.1, and Sirtuins 1 and 2 (SIRT1/2), were reported
to recruit DNMTs to genes targeted for DNA methylation
mediated gene silencing (46–49). The binding of DNMT1 to
hemimethylated cytosines is selectively promoted by UHRF1
(50), but this binding is prevented by a DNA aptamer named
Apt. #9 that competes with the hemiDNA for binding to DNMT1
(51). Besides protein molecules discussed above, some RNAs were
also reported to affect the recruitment of DNMTs (52–54).

Fourth, the Methyl Group Donors
Determine the Direction of the DNA
Methylation Pathway
SAM is the major source of methyl groups for DNA methylation.
The addition of folate/folic acid to provide methyl groups was
reported to maintain DNAmethylation and/or prevent the loss of
global DNA methylation in health and disease (55, 56). However,
factors that lead to less SAM decreases the transfer of methyl
groups to DNA and RNA (57). In the absence of SAM, DNMT3a
and DNMT3b can exhibit DNA dehydryoxymethylase activity, by
directly converting 5hmC and 5caC, but not 5fC, to unmodified
cytosines (58, 59). In some cases, DNMT1 is able to mediate
oxidation of cytosine with formaldehyde, forming 5hmC (60),
which further can participate in the DNA methylation cycle.
REGULATION OF TETs

The presence and catalytic activity of TETs are necessary for
DNA demethylation, but their function is affected by multiple
regulatory mechanisms that (amongst others) modulate
substrate accessibility, enzymatic activity, expression levels and
genomic targeting of TETs. Factors that are of importance for the
regulation of activity of TETs are the following.

First, the Abundance of TETs Can Be
Regulated at Transcriptional and
Post-Transcriptional Levels
The expression of TETs can be induced by multiple signaling
pathways, such as hydrogen sulfide (61), Myd88 signaling (62),
NF-kB signaling (63) and Forkhead box A1 (FOXA1) (64), and
frequently regulated at transcriptional level. IDAX (also known
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as CXXC4) and lysine demethylase KDM2A (65) negatively
regulate whilst transcription factors Oct4 and CEBPa
positively regulate TET2 protein expression (66–68). TET3 can
be negatively regulated by nuclear receptor TLX (69). More
recently, TETs were shown to be regulated by epigenetic
modifications involving long non-coding RNA ’s or
microRNA’s (70–73). The abundance of TETs can also be
regulated at protein level. TETs can be directly cleaved by
caspases (68) and calpains (74) or degraded through PTMs.
For instance, all three TET proteins can be monoubiquitinated
by the VprBP-DDB1-CUL4-ROC1 E3 ubiquitin ligase
(CRL4VprBP) (75), whilst MAPK-mediated phosphorylation at
Serine-99 of TET2 stabilizes this enzyme (76, 77). Moreover, the
14-3-3 proteins bind phosphorylated TET2 and protect Serine-
99 phosphorylation (78). Other modifications like (de)
acetylation of TETs have also been reported; for example,
acetylation of TET2 by p300 stabilizes this enzyme by
inhibiting ubiquitination (79), whilst deacetylation of TET2 by
the deacetylase SIRT1 promotes its ubiquitination degradation as
well as enhances its catalytic activity (80, 81).
Second, the Binding of TETs to Genomic
DNA Sequences Can Be Modulated
Similar to DNMTs, TET proteins also need to be recruited to the
genome for implementing their functions. TET1 and TET3 can be
recruited to genomic target sites through direct binding of their
respective CXXC domains to DNA (82). This binding process can
be influenced by several proteins. For instance, Lin28A recruits
TET1 to common genomic loci to regulate DNA methylation and
gene expression (83), thyroid hormone receptors stabilize the
association of TET3 to chromatin depending on the catalytic
activity of TET3 (84). In contrast to TET1 and TET3, TET2 is
recruited to genomic DNA by a distinct CXXC domain-
independent mechanism since TET2 does not have any
discernable domains that bind directly to DNA. Indeed,
numerous proteins have been discovered that promote or inhibit
binding of TET2 to DNA. IDAX/CXXC4, originally encoded
within an ancestral TET2 gene but separated from TET2 during
evolution, recruits TET2 to DNA sequences containing
unmethylated CpG dinucleotides located at promoters and CGIs
in genomic DNA (68, 85). Other molecules such as Wilms tumor
protein 1 (WT1) (86), early B-cell factor 1 (EBF1) (87), PRDM14
(88), RUNX1 (89), retinoic acid receptor (RAR) (90), SNIP1 (91),
Smad3 and Stat5 (61), TET2 interacting long noncoding RNA
(TETILA) (92) and transcription factors C/EBPa, Klf4, and
Tfcp2l1 (93) can interact with TETs and enhance the
recruitment of TETs to target loci. In addition, some proteins
like Methyl-CpG binding domain protein 3-like 2 (MBD3L2) (94),
DNMT1 (79), CXXC5 (95) and SALL4A (96) can further
strengthen or stabilize the binding between TETs and
methylated DNA targets. Besides factors modifying the
recruitment of TETs, the character of target DNA sequences can
also affect the binding of TETs. For example, low-methylated
regions (LMRs) of CpG-poor distal regulatory regions that are
occupied with DNA-binding factors are favorable for TET binding,
thereby maintaining low methylation levels in these regions (97).
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Third, Dioxygenase Activity of TETs Is
Tightly Regulated
The dioxygenase activity of TETs is largely dependent on their
catalytic domain and any mutation or modification within this
region is likely to lead to a change in their function. Enzymatic
reactionsmediated by TETs highly rely on the cofactors oxygen, Fe
(II), and a-ketoglutarate (a-KG) (98). Therefore, any modification
in theproductionoractivityof these cofactors is expected to lead toa
functional change of TETs. Mutations in the genes encoding the
metabolic enzymes isocitrate dehydrogenases 1 and 2 (IDH1/2),
succinate dehydrogenase, and fumarate hydratase, result in
aberrant accumulation of metabolites such as 2-hydroxyglutarate
(2-HG), succinate and fumarate, respectively, which act as
competitors of a-KG to broadly inhibit the a-KG-dependent
enzymatic activity of TETs (99–101). Hypoxia, such as frequently
occurs in tumor tissues, leads to loss of TET activity (102). On the
otherhand, additionofascorbic acid (vitaminC),which isneeded to
reduce the oxidized iron species, enhances the catalytic activity of
TETs (103–105). Additionally, TETs activity has also suggested to
be affected by PTMs. Acetylation enhances TET2 function (79) and
phosphorylation of TET3 at the highly conserved Serine-1310 and
-1379 residues within its catalytic domain by cyclin-dependent
kinase 5 (cdk5) is required for its dioxygenase activity (106).
Moreover, the phosphorylation of TETs can be suppressed via O-
GlcNAcylation by the glycosyltransferase OGT (107).
DNA METHYLATION AND
GENE EXPRESSION

DNA Methylation, DNA Demethylation and
Gene Expression
DNA methylation plays a critical role in the regulation of many
cellular processes, including X chromosome inactivation,
genomic imprinting, stem cell differentiation, chromosomal
conformation, chromatin structure, developmental stages and
transcriptional activation/repression of genes (108). DNA
methylation in the genome is not uniformly distributed: both
promoter and CGIs typically are hypomethylated, whereas the
extent of methylation in gene bodies is higher than that in
intergenic regions (2). While early studies suggested that DNA
methylation represses gene expression, a growing body of
evidence has indicated that DNA methylation has a dual role,
both inhibitory and permissive, depending on the genomic
region at which DNA methylation occurs (2). DNA
methylation of CpGs at promoters and enhancers that usually
remain unmethylated is mainly coupled with transcriptional
silencing (108, 109), but DNA methylation at the gene body
has been associated with enhanced gene transcription or
elongation (39, 110). DNA methylation can also indirectly
regulate gene expression by altering the chromatin accessibility
for transcription factors or by recruiting repressive proteins with
methyl-binding domains (111). For instance, DNA methylation
changes the accessibility of B cell enhancers for transcription
factors E2A and PU.1 and blocks the binding of transcription
factor erythroblastosis 1 (ETS1) at Ets binding site during B cells
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development (112, 113). In addition, DNA methylation closely
cooperates with other regulatory machineries to modify gene
expression, especially with histone modifications, which can
partially be mediated through methylcytosine-binding proteins,
such as MECP2 or MBD2, that are capable of recruiting histone
deacetylases or transcriptional repressors to methylated regions
(111, 114). DNA demethylation, on the other hand, is normally
positively correlated with gene transcription (13). However, the
precise relationship between DNA (de)methylation and gene
expression is complex and requires further investigation. For
instance, it is reported that microbe-induced changes in the
expression of some genes can occur prior to modification of
DNA methylation at their sites (11, 115) and that elevated DNA
methylation outside of gene promoters has been shown to
facilitate gene transcription to a larger extent than promoter
DNA methylation (116, 117).

DNMT Related Gene Expression
DNMTs can repress gene expression by increasing DNA
methylation at promoters and enhancers, resulting in reduced
binding of transcriptional factors to these positions or inducing
changes in the chromatin structure to make it less accessible for
transcription (2, 111). For instance, DNMT3B mediated DNA
methylation at the promoter regions of NF-kB responsive genes
decreases NF-kB recruitment to the promoters, suppressing the
expression of downstream genes (33). H3k6me3 selectively
recruits DNMT3B to gene bodies of actively transcribed genes,
thereby promoting DNA methylation and gene expression (37,
39, 110, 118). DNMTs can regulate gene expression not only via
directly modifying DNA methylation, but also through
mechanisms that are unrelated to DNA methylation but
achieved by cooperating with other regulatory machineries. All
three DNMTs (DNMT1, 3A and 3B) have been reported to
repress gene transcription through interacting with HDACs
independent of their catalytic activity (27, 119). DNMT3A-
mediated DNA methylation increases HDAC9 transcription by
repressing the inhibitory histone mark H3K27me3 at its distal
promoter (116). DNMTs work together with polycomb group
proteins for repression of their common target loci (43). The
tricarboxylic acid cycle metabolites succinate and fumarate
determine the catalytic activity of DNMTs; in turn, DNMT3B
has been reported to modulate mitochondrial metabolism for
maintaining articular cartilage homeostasis (120).

TET Related Gene Expression
TETs regulate gene expression directly by demethylation,
dependent on their catalytic activity, or indirectly through
interaction with other regulatory mechanisms, mostly
independent of their catalytic activity. All three TETs contribute
to dynamic demethylation during development, activation and
oncologic transformation, linked with wide transcription
reprogramming in cells during these processes (5, 121). In recent
years, more and more DNAmethylation independent functions of
TETs have been discovered, indicating that TETs closely work
togetherwith other epigenetic regulatorymechanisms in the setting
of infection. TET2 and TET3 have been shown to inhibit
proinflammatory cytokine expression by recruiting HDAC1/2 to
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the promoters of cytokine encoding genes during bacterial and viral
infection, respectively (122–124). TET2 also mediated
transcriptional repression by facilitating the recruitment of the
polycomb Repressive Complex 2 to CpG dinucleotide-rich gene
promoters (125). TET1 can be incorporated in the SIN3A co-
repressor complex, resulting in transcriptional effects independent
of 5hmC (126), and this might be the underlying mechanisms of
TET1 mediated inhibition of IL1B transcription (127). The same
mechanismapplies toTET3regulated inhibitionof type I interferon
production during viral infection or poly(I:C) stimulation (124).
TET2 and TET3 facilitate OGT-dependent histone O-
GlcNAcylation by interacting with the enzyme O-linked b-N-
acetylglucosamine (O-GlcNAc) transferase (OGT) (128, 129).
Beyond oxidation of methylated cytosine in DNA, TET2 has also
been reported to promote mRNA oxidation during infection
derived sepsis, thereby destabilizing target mRNA (130); TET2
can suppress expression of endogenous retroviruses through a
similar mechanism (131).
MODIFICATION OF DNA METHYLATION
ASSOCIATED WITH INFECTION

The host response to an infection involves transcriptional
changes in different types of immune cells, which can affect
Frontiers in Immunology | www.frontiersin.org 660
their function to either promote host defense against invading
pathogens or benefit pathogen persistence. The transcriptional
reprogramming during infection is highly regulated and
epigenetic regulatory mechanisms are involved herein (132,
133) (Figure 3). Until recently, the extent of DNA methylation
was thought to be stable and resistant to environmental
stimulation. However, it is now well recognized that DNA
methylation can be altered in a brief time frame in response to
inflammation or infection and that these modifications in DNA
methylation can influence immune cell responsiveness (11). Two
possible mechanisms underlie infection induced alterations in
DNA methylation: infection can directly alter DNA methylation
by inducing or repressing DNA methylation enzymes (DNMTs
and TETs), and/or indirectly through inflammatory mediators
induced by the infection (134). Modification of host DNA
methylation associated with bacterial infection and the
consequent effects on immune responses were summarized in
Table 1 and detailed below.

Gut Microbiota and Intestinal Pathogens
Commensal bacteria contribute to the maintenance of intestinal
symbiosis by shaping host gene expression via epigenetic
modificat ion (187) . Gut microbiota-dependent and
-independent processes act together to form the postnatal
development of the transcriptome and DNA methylation
FIGURE 3 | Regulation of host DNA methylation of immune responses during infection. Figure representing a general overview of how infection can affect DNA
methylation. Note: not all infection modify DNA methylation; an overview of changes induced by specific pathogens is provided in the table. ① Infection induces DNA
(de)methylation at target genes; ② Infection alters the transcription of DNA methylation modifiers TETs and DNMTs; ③ Loss of DNMTs promotes infection induced
DNA demethylation at target genes; ④ TET proteins promote infection induced DNA demethylation at target genes; ⑤ TET proteins recruit HDACs for histone
modification at IL1B and IL6 promoters; ⑥ TET proteins oxidize 5-methylcytosine (5-mC) on SOCS3 messenger RNA (mRNA); ⑦ Infection alter metabolic products
that regulate the activity of TET proteins. “arrow” symbol represents promotion, “bar-headed arrow” symbol represents inhibition. DNMTs, DNA methyltransferases;
TETs, ten-eleven translocation methylcytosine dioxygenases; HDACs, Histone deacetylases; TFs, transcription factors; IL, interleukin; SOCS3, Suppressor of cytokine
signaling 3; ATP, Adenosine triphosphate; a-KG, a-ketoglutarate.
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TABLE 1 | Modification of DNA methylation induced by bacteria and its effects on immune responses.

Bacteria Effect on DNA methylation Impact on immune response References

Gut microbiota Altered DNA methylation in IECs Changed expression of genes related to immunity and
metabolism in IECs

(135–137)

Hypermethylation of TLR4 in IECs Suppressed response to LPS and commensal
microbiota, maintaining intestinal homeostasis

(138, 139)

Demethylation in IECs mediated by TET2/
TET3

Maintained intestinal homeostasis and inhibition of acute
inflammation in experimental colitis

(137, 140)

Polymicrobial Altered DNA methylation in whole blood
leukocytes

Changed gene expression in whole blood leukocytes of
septic patients

(141, 142)

Altered DNA methylation in monocytes Increased IL-10 and IL-6 levels and organ dysfunction in
septic patients

(143)

Altered expression of DNMTs and TETs Increased disease severity in septic patients or
experimental septic mice

(130, 144,
145)

Helicobacter pylori Aberrant DNA methylation in gastric
mucosae caused by infection induced
inflammation

Increased risk of gastric cancer (134, 146–
149)

Aberrant DNMT activity in gastric tissues Increased susceptibility to infection (55, 150)
Mycobacterium tuberculosis Altered DNA methylation in dendritic cells

and macrophages in vitro and in vivo
Altered transcription of genes involved in immune
response

(11, 151,
152)

Aberrant DNA methylation in monocytes Increased disease severity (153–155)
Demethylation at the promoter region of
Nlrp3 in macrophages

Increased NLRP3 inflammasome activation and
downstream release of IL-1b and IL-18

(156)

Aberrant methylation at the TLR2 promoter
in human blood leukocytes

Negatively regulated TLR2 expression; increased
bacterial burden and disease severity

(154)

Escherichia coli Aberrant DNA methylation by altered DNMT
activity in T cells

Dysregulation of immune responses to bacterial infection
induced lung injury

(157, 158)

Increased DNMT1 activity in uroepithelial
cells

Downregulation of CDKN2A (tumor suppressor gene)
and increased risk of bladder cancer consequently

(159, 160)

Decreased DNMT3A activity in porcine
mammary epithelial cells

Enhanced immune response (161)

Downregulation of TET1 in THP1
macrophages

Reduced NF-kB signaling pathway and inhibition of
macrophage M1 polarization

(162)

Salmonella Altered DNA methylation in chicken cecum
and blood leukocytes

Changed expression of immune and metabolic genes (163, 164)

Enhanced DNA methylation at the
promoters of TLR4, TLR21 and TLR2-1 in
chicken blood leukocytes

Reduced MyD88 signaling and increased susceptibility
to Salmonella enterica

(165, 166)

Pseudomonas aeruginosa Altered DNA methylation at NODAL in
bronchial epithelial cells

Changed airway homeostasis (167)

Aberrant function of DNMT3B Increased susceptibility to infection (168, 169)
Methicillin-resistant Staphylococcus aureus Reduced DNMT3A in macrophage and

neutrophils
Reduced IL-10 production and increased inflammatory
responses in patients; Increased susceptibility and
mortality in murine models

(170)

Modified DNA methylation signatures in
circulating immune cells

Increased disease severity in patients (171)

Campylobacter rectus Hypermethylation of Igf2 in mouse placenta Down-regulation of Igf2 and aberrant placental growth (172)
Porphyromonas gingivalis Decreased DNMT1 expression in gingival

epithelial cells
Increased antibacterial responses by promoting b-
defensin 2 and CC chemokine ligand 20 expression

(173)

Anaplasma phagocytophilum DNA hypermethylation in neutrophils
potentially by promoting DNMT3A
expression

Reduced neutrophil antibacterial functions (174)

Bacterial products Effect on DNA methylation Impact on immune response References
LPS Aberrant DNA methylation at TLRs,

inflammatory cytokines (IL6, TNF)
Dysregulation of cellular responses to LPS stimulation (175–178)

Increased DNMT1 activity in macrophages Enhanced inflammatory responses by hypermethylation
of anti-inflammatory factors such as KLF4, miR-145 and
SOCS3

(178–180)

Downregulation of TET1 in macrophages Inhibition of NF-kB signaling and decreased
inflammatory responses

(162)

Increased Tet2 expression in myeloid cells Decreased IL-6 production and reduced inflammation in
vivo

(63, 122)

Staphylococcal enterotoxin B Modified DNA methylation of some genes
with important roles in immunity in nasal
polyp explants

Potentially altered immune responses related to T-cell
maturation/activation

(181)

(Continued)
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signatures of intestinal epithelial cells (IECs) early after birth.
The formation of microbiota related “functional” methylation
sites might impact long-term gene expression signatures in IECs
(135, 136). Furthermore, some intestinal genes, related to innate
immunity, phagocytosis, endothelial homeostasis and tissue
metabolism are influenced by microbiota through DNA
methylation (136). For instance, exposure of colonic epithelial
cells to commensal bacteria results in Toll-like receptor (TLR)4
gene hypermethylation and transcriptional downregulation,
thereby suppressing responsiveness to LPS (138, 139). More
importantly, TET2/3 in IECs contribute to enhanced
demethylation induced by microbiota under homeostasis and
during acute inflammation (137). Besides IECs, the development
and function of immune cells at nonmucosal sites, such as the
bone marrow, peripheral lymph nodes and spleen, are also
suggested to be regulated by microbiota via DNA methylation
(188). On the other hand, TET2 deficiency in hematopoietic cells
can lead to a microbiota-dependent impairment of gut
barrier (140).

Many intestinal pathogenic bacteria have been suggested to
cause aberrant DNA methylation in host cells. In this context.
Helicobacter (H.) pylori is one of the most investigated enteric
pathogens. H. pylori is able to change DNA methylation directly.
High levels of aberrant DNA methylation in H. pylori–infected
gastric mucosae have been associated with gastric cancer risk
(146). Indeed, several tumor suppressing genes were found
downregulated in gastric mucosae through H. pylori–infection
induced hypermethylation. DNA methylation at the promoter
region of trefoil factors, which regulate mucosal repair and
suppress tumor formation in the stomach, was found increased
early after H. pylori infection and throughout gastric tumor
progression (189). Similarly, hypermethylation of DNA repair
protein O6-methylguanine DNA methyltransferase (MGMT)
and reduced levels of MGMT were common in the gastric
epithelium of H. pylori infected patients, increasing mutagenesis
in H. pylori-infected gastric mucosa (190). Other important genes
like CX32 and CX43 were also repressed by H. pylori induced
hypermethylation (191). DNA hypermethylation in the context of
H. pylori infection was partially reversible after eradication of this
bacterium or administration of a DNA demethylating agent,
5-aza-2-deoxycytidine, resulting in decreased the incidence of
Frontiers in Immunology | www.frontiersin.org 862
gastric cancers induced by H. pylori infection (190, 192). Single
nucleotide polymorphisms in DNMT1 were reported to be
genotypic markers for predicting genetic susceptibility to H.
pylori infection (150), whilst the addition of folic acid to
promote the activity of DNMTs was able to counteract H. pylori
induced DNA demethylation (55), suggesting a direct role for
methylation related factors herein. More recent evidence suggests
that H. pylori induced inflammatory responses rather than the
bacteria itself cause aberrant DNA methylation in the gastric
mucosa (147). DNA hypermethylation induced by H. pylori
infection was associated with down-regulation of genes involved
in cell cycle progression control and DNA repair, thereby
increasing the risk for gastric cancer (148). Mechanisms
implicated in DNA hypermethylation during H. pylori infection
include inflammation associated with the infection (134, 149) and
altered expression or activity of DNAmethylation related enzymes
(62); as an example, IL-1b is able to induce TET2 expression in
macrophages via IL-1R-Myd88 signaling (62).

Polymicrobial Infection and Sepsis
Sepsis is defined as life-threatening organ dysfunction resulting
from a dysregulated host response to infection (193) and one of
the leading causes of death globally (194). Sepsis is associated
with changes in DNA methylation patterns in blood leukocytes
of critically ill patients, and the majority of the differentially
methylated region-associated genes were differentially expressed
(141). Functional analysis showed that these sepsis related
alterations in DNA methylation involved inflammatory
pathways participating in both the innate and adaptive
immune response, as well as in cell adhesion and cell junctions
(141, 195). Likewise, the altered DNA methylation profiles in
monocytes of septic patients correlated with increased IL-10 and
IL-6 levels, as well as with organ dysfunction (143). Analysis of
the CpG methylation status in blood cells of neonates with sepsis
showed differential methylation of several CpGs located in
functionally important genes including a group of PCDHB
genes that play vital roles in leukocyte cell adhesion and the
Wnt signaling pathway when compared to health (142). Another
investigation indicated that the DNA methylation pattern of
CpG sites in the promoter region of the calcitonin-related
polypeptide a (CALCA) gene might be used as an epigenetic
TABLE 1 | Continued

Bacteria Effect on DNA methylation Impact on immune response References

Peptidoglycan and lipoteichoic acid Suppressed DNMT activity and
hypomethylation of global DNA

Enhanced inflammatory responses (182)

Rv2966c from Mycobacterium tuberculosis;
Mhy1, Mhy2, and Mhy3 produced by
Mycoplasma hyorhinis

Hypermethylation of host genes by acting
as DNA methyltransferase

Interference with host immune response (183–185,
212)

Extracellular vesicles secreted by P.
aeruginosa

Modified DNA methylation at enhancers of
immune-related genes in human lung
macrophages

Abnormal innate immune response (203)

Bacterial metabolite folate Increased DNMT activity with altered DNA
methylation in host cells

Unknown (186)
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SOCS3, Suppressor of cytokine signaling 3; IL, interleukin; TNF, tumor necrosis factor.
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biomarker for bacterial sepsis in preterm newborns (196). Sepsis
associated DNA methylation signatures in either specific genes
or at genome-wide level have potential as diagnostic tools for
predicting sepsis outcome or distinguishing sepsis subtypes. For
instance, methylation of the NF-kB binding site in the
Aquaporin5 (AQP5) promoter diminishes the binding of
NF-kB and increased the expression of AQP5 in blood cells of
septic patients is associated with substantially greater 30-day
mortality (197). Similarly, DNA methylation signatures in
critically ill adults can distinguish septic and nonseptic
patients, and can associate with clinical traits including severity
of illness, need for vasopressors, and length of stay (141). These
changes in DNA methylation likely at least in part are caused by
sepsis-induced changes in the levels of enzymes mediating DNA
methylation, as indicated by decreased DNMT1 and increased
TET2 mRNA levels in blood leukocytes of sepsis patients (144).
However, de novo DNMT mRNAs (DNMT3A and DNMT3B) in
extracellular vesicles in blood were much higher than in healthy
controls and strongly correlated with disease severity; DNMT
mRNA levels were higher in septic shock patients than in sepsis
patients without shock (145). In sepsis models, the inhibition of
DNA methyltransferases by Decitabine attenuated NF-kB
activation, downregulated inflammatory cytokine levels,
inhibited the progression of sepsis and improved survival in
mice with severe sepsis induced by cecal ligation and puncture
(198). The presence of TET2 impaired survival in mice with
sepsis by promoting emergency myelopoiesis and a cytokine
storm through oxidation of 5-mC in Socs3 mRNA resulting in
destabilization of this mRNA (130). Collectively, DNA
methylation could be a potential diagnostic tool or biomarker
for sepsis, and manipulation of DNA methylation enzymes
might be a novel strategy in the treatment of sepsis.

Specific Pathogens
Mycobacterium tuberculosis
Mycobacterium tuberculosis (MTB) infection has been reported
to change DNA methylation at global level and at specific target
CpGs both in vivo and in vitro. An in vitro study showed that
MTB infection can lead to rapid changes in DNA methylation in
non-proliferating cells, in parallel with the transcriptional
response (11). Altered DNA methylation in macrophages was
predominantly found at non-CpG dinucleotide sites during MTB
infection (151), and the mycobacterial protein Rv2966c might be
responsible for this type of DNA methylation change (183).
Macrophages isolated from MTB infected patients also showed
altered DNA methylation profiles of the promoter sequences of
many cytokines and their receptors (152). For instance,
demethylation at the promoter region of NLRP3 by MTB
infection activates the NLRP3 inflammasome and increases IL-
1b and IL-18 release (156). Peripheral blood mononuclear cells
from TB patients are characterized by DNA hyper-methylation
of genes critical to mycobacterial immunity resulting in
decreased mycobacteria-specific and non-specific immune
responsiveness (153). Aberrant methylation of certain CpG
sites over the TLR2 promoter negatively regulated TLR2
expression in NK cells/monocytes of patients with active
pulmonary TB and correlated with the bacterial burden and
Frontiers in Immunology | www.frontiersin.org 963
disease severity (154); likewise, increased DNA methylation in
monocytes from tuberculosis patients was suggested to reflect
disease severity (155). Collectively, these results suggest that
DNA methylation profiles of leukocyte subsets might be used
as clinically prognostic tools for TB.

Escherichia coli
Escherichia (E.) coli is a Gram-negative and common causative
pathogen in gastroenteritis, urinary tract infection, neonatal
meningitis, hemorrhagic colitis, peritonitis and pneumonia.
Several studies have documented modifications of DNA
methylation in host cells during E.coli infection. DNA methylation
within the promoters of a core set of CD4+ T-cell pathway genes
attenuated neonatal immune responses to pneumonia-induced
injury (157). Yet, DNMT inhibition by 5-aza-2-deoxycytidine
(DAC) augmented the number and function of regulatory T cells
thereby accelerating the repair of experimental lung injury (158),
suggesting that the altered DNAmethylationmight be caused by the
changes in the abundance or activity of regulatory enzymes during
E.coli infection. Moreover, E. coli induced alterations in DNA
methylation are frequently accompanied by changes in the
expression of genes encoding proteins that are required for
controlling bacterial infection. Uropathogenic E. coli infection
induces de novo methyltransferase activity and DNMT1
expression causing increased methylation of CDKN2A exon 1 and
downregulation of this tumor suppressor gene in uroepithelial cells,
which may increase the risk of bladder cancer (159, 160). However,
downregulation of de novo methyltransferase DNMT3A by E. coli
was accompanied by hypomethylation of some immune response
genes in porcine mammary epithelial cells (161). Additionally,
knockdown of TET1 in THP1 macrophages downregulated the
activity of the NF-kB signaling pathway activated by E. coli, thus
inhibiting macrophage M1 polarization (162). Avian pathogenic E.
coli infection led to changes of DNA methylation at gene body
regions in the spleen, which negatively correlated with the
expression of genes involved in the host inflammatory response
and other networks and pathways related to injury/survival (199).

Salmonella
Salmonella is the most frequently detected causative agent in
foodborne outbreaks worldwide. Salmonella (S.) typhimurium
and S. enteritidis are the most common serotypes associated with
foodborne diseases (200). The domestic chicken is an important
host of S. enterica, and some studies showed that S. enterica
infection alters DNA methylation in immune and metabolism
related genes in chicken cecum and blood leukocytes (163, 164).
Furthermore, enhanced DNA methylation levels at the
promoters of Tlr4, Tlr21 and Tlr2-1 of blood leukocytes is
related to reduced expression of genes in the MyD88 signaling
pathway and increased susceptibility to S. enterica infection (165,
166). Notably, although Salmonella is an important pathogen in
humans, knowledge of its capacity to modify DNA methylation
in human cells is lacking.

Pseudomonas aeruginosa
P. aeruginosa is one of the main causative pathogens in hospital-
acquired pneumonia and chronic airway infection associated
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with cystic fibrosis (201). Bronchial epithelial cells (BECs) are
activated by and required for host defense against P. aeruginosa
infection (202). Recently P. aeruginosa was shown to inhibit
NODAL expression in BECs through methylation modification of
its promoter. Nodal is vital for regulating proliferation of BECs and
BEC-induced differentiation of T helper (Th) cells fromTh1 to Th2
and Th17, thus regulating the immunological balance of the airway
microenvironment (167). DNA methylation in human lung
macrophages can be modified by P. aeruginosa secreted
extracellular vesicles; DNA methylation modifications particularly
occurred at distal DNA regulatory elements, including enhancer
regions and DNase hypersensitive sites, and some CpGs associated
with cytokines such as CSF3 displayed strong negative correlations
between DNA methylation and gene expression (203). DNA
methylation enzymes are important for regulating host immune
responses against this bacterium infection, as indicated by the
association between genetic variants of DNMT3B and P.
aeruginosa infection in children (168). We recently identified a
role for DNMT3B in bronchial epithelial cells during P. aeruginosa
pneumonia (169). DNMT3B deficient human bronchial epithelial
cells produced more CXCL1 and related chemokines than control
cells when stimulated with P. aeruginosa. Mechanistically,
DNMT3B deficiency reduced DNA methylation at exon 1 of
CXCL1 and increased NF-ĸB p65 binding to the CXCL1
promoter. These in vitro findings were corroborated by studies in
mice with bronchial epithelial Dntm3b deficiency infected with
viable P. aeruginosa via the airways, which showed increasedCxcl1
expression in bronchial epithelium and CXCL1 protein release
together with enhanced neutrophil recruitment and accelerated
bacterial clearance. Additional studies using purified flagellin (an
important virulent factor expressed by Pseudomonas) and a
flagellin-deficient P. aeruginosa strain demonstrated that
bronchial epithelial DNMT3b impaired host defense during
Pseudomonas induced pneumonia at least in part by diminishing
mucosal responses to flagellin (169). In separate investigations we
showed that the DNA methylation eraser TET2 maintains
epithelium barrier function during acute P. aeruginosa infection
in mice (204).

Burkholderia pseudomallei
B. pseudomallei is an intracellular Gram-negative pathogen
causing melioidosis, a common cause of sepsis in Southeast
Asia and Australia. B. pseudomallei induced changes in DNA
methylation of human macrophage-like U937 cells in vitro,
particularly in the vicinity of genes involved in inflammatory
responses, intracellular signaling and apoptosis (205).

Methicillin-Resistant Staphylococcus aureus (MRSA)
MRSA infection significantly decreased DNMT3A in blood
leukocytes in vivo and in macrophage and neutrophils in vitro.
DNMT3A knockdown increased S. aureus induced IL-10
production by macrophages in vitro and pretreatment with DAC
increasedmortality in a S. aureusmurine sepsis model. However, a
DNMT3A polymorphism increased the capacity to resolve MRSA
bacteremia, potentially by reducing IL-10 production though a
DNAmethylation dependent mechanism (170). Indeed, persistent
and resolving MRSA bacteremia were associated with different
Frontiers in Immunology | www.frontiersin.org 1064
DNA methylation signatures in circulating immune cells of
patients, particularly in neutrophils, and this distinct DNA
methylation patterns were able to predict persistent MRSA
bacteremia (171).

Campylobacter rectus
Placental and fetal infection with C. rectus in mice caused
hypermethylation in the promoter region of Igf2 in the
placenta, resulting in down-regulation of Igf2, which affects the
growth of the fetus by controlling both the placental supply of,
and the genetic demand for, maternal nutrients to the fetus (172).

Porphyromonas gingivalis
P. gingivalis, the major pathogen in chronic periodontits, modifies
DNMT1 expression and changes methylation at the promoter
region of several genes implicated in the innate immune response
against bacteria and during tissue remodeling, whilst the DNMTs
inhibitor DAC restores the expression of these genes in infected
gingival epithelial cells (173).

Anaplasma phagocytophilum
A. phagocytophilum is a Gram-negative bacterium with a strong
tropism for neutrophils that causes human granulocytic
anaplasmosis, a zoonosis transmitted by ticks. A. phagocytophilum
infection induces genome-wide hypermethylation in neutrophils
potentially by promoting DNMT3A expression (174). Furthermore,
inhibition of DNMTs by 5-azacytidine resulted in a partially
recovery of neutrophil antibacterial functions and decreased
bacterial growth (174).

Bacterial Products
DNAmethylation of immune cells can affect their responsiveness
to microbial products, as illustrated by strong correlations
between DNA methylation in human peripheral blood
mononuclear cells and IL-6 production elicited by various TLR
agonists (206). LPS is one of the major virulence factors of Gram-
negative bacteria and the most used molecule for studying
mechanisms underlying cellular immune responses. Recent
evidence has indicated that changes in DNA methylation
regulate LPS-induced immune responses and that modifying
DNMT activity influences cellular responses to LPS (175). One
way by which DNA methylation might influence LPS
responsiveness is by affecting the expression of TLR4, the LPS
receptor, as has been documented in intestinal epithelial cells (207).
However, themost frequently reportedmechanismsbywhichDNA
methylation regulates LPS induced responses are associated with
the function of DNAmethylation modifiers. Increasing the methyl
donor for DNA methylation by adding the S-adenosylmethionine
(SAM) precursor methionine attenuated LPS-induced
inflammatory responses in macrophages, whilst the DNMTs
inhibitor DAC partially suppressed inflammatory responses
induced by LPS in macrophages and other cell types (208, 209).
Furthermore, DAC reduced lung inflammation and injury by
inhibiting M1 macrophage activation in vivo (210). DNMTs were
altered in bovine endometrial cells and microglia upon LPS
stimulation and the expression of some inflammatory cytokines
such as IL-1b, IL-6 and IL-8 were negatively regulated by
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methylation at their promoters (176, 177). Similarly, DNMT3Bwas
reported to inhibit pro-inflammatory cytokine production by
hypermethylation at their promoters or by downregulation of
PPARg expression (33, 211). Conversely, DNMTs mediated
hypermethylation at promoters of anti-inflammatory factors,
such as SOCS1, KLF4 and miR-145 – and as a consequence
thereof – their downregulation, exacerbates inflammatory
responses either in vivo or in vitro (178–180). The role of TET
proteins in LPS induced activation of immune cells was intensively
studied, revealing both inhibitory and stimulatory functions. TET1
is able to interfere with the NF-kB signaling pathway and
knockdown of TET1 resulted in decreased production of
proinflammatory markers by LPS/IFN-g-induced M1
macrophages (162). TET2 functions downstream of the NF-kB
signaling pathway by recruiting HDACs to the IL6 promoter
resulting in reduced IL6 expression in macrophages and
attenuation of inflammatory responses in murine endotoxemia
model (63, 122). Besides LPS, there are few other bacterial
compounds reported to affect DNA methylation in host cells.
Staphylococcus aureus enterotoxin B altered the DNA
methylation pattern in nasal polyp explants, most notably in
IKBKB and STAT5B, genes encoding proteins with important
roles in immunity (181). Likewise, peptidoglycan and lipoteichoic
acid from this bacterium are able to suppress DNMT activity,
resulting in enhanced inflammatory responses in bovinemammary
epithelial cells (182). While the majority of bacterial compounds
alter host DNA methylation by modifying the expression and
activity of DNA methylation enzymes, mycobacterial protein
Rv2966c by itself acts as a DNA methyltransferase that binds to
host specific DNA sequences and methylates cytosines
predominantly in a non-CpG context (183). Likewise, the swine
pneumonia pathogen Mycoplasma hyorhinis produces Mhy1,
Mhy2 and Mhy3, which can serve as mammalian DNMTs able to
modify host DNA methylation (184, 185, 212). Besides bacterial
components, bacterial metabolites might also affect host cell DNA
methylation after uptake by these cells. For instance, folate produced
by the commensal bacteria Bifidobacterium and Lactobacillus
contributes to the generation of SAM resulting in increased DNMT
activity and altered DNAmethylation in host cells (186).
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CONCLUSION AND PERSPECTIVES

Bacterial infection can alter the DNAmethylation pattern of host
cells, which may represent a strategy of pathogens to modify host
gene expression to avoid clearance and facilitate colonization
(213, 214). Changes in DNA methylation may also contribute to
short-term memory in innate immune cells (215). Most of our
current understanding of DNA methylation is derived from
research fields outside infection immunity, in particular cancer
and developmental immunology. Whilst awareness of the crucial
role of DNA methylation and the proteins involved herein in
regulating host immune defense against bacterial infection has
increased, much remains to be learned about the mechanisms by
which bacterial infection alters host DNA methylation and how
this interferes with immune responses. Additionally, compared
to a broad spectrum of bacteria that can modify host DNA
methylation, thus far only few bacterial components or products
have been reported to alter host DNA methylation, through
mechanisms that are incompletely understood. Therefore,
further research is warranted to reveal which bacterial effectors
and mechanisms are involved in modification of host DNA
methylation in bacterial infection. Expanding our knowledge of
the role of variations in the methylation of DNA in host immune
cells may not only enhance our understanding of host defense
and the pathogenesis of bacterial infection, but also may provide
clues for the development of novel therapeutics.
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43. Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The
Polycomb Group Protein EZH2 Directly Controls DNA Methylation.
Nature (2006) 439(7078):871–4. doi: 10.1038/nature04431

44. Kim SH, Park J, Choi MC, Kim HP, Park JH, Jung Y, et al. Zinc-Fingers and
Homeoboxes 1 (ZHX1) Binds DNA Methyltransferase (DNMT) 3B to
Enhance DNMT3B-mediated Transcriptional Repression. Biochem
Biophys Res Commun (2007) 355(2):318–23. doi: 10.1016/j.bbrc.2007.01.187

45. Shamay M, Greenway M, Liao G, Ambinder RF, Hayward SD. De Novo
DNA Methyltransferase DNMT3b Interacts With NEDD8-modified
Proteins. J Biol Chem (2010) 285(47):36377–86. doi: 10.1074/
jbc.M110.155721
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et al. Transcription Factors Drive Tet2-Mediated Enhancer Demethylation
to Reprogram Cell Fate. Cell Stem Cell (2018) 23(5):727–41.e9. doi: 10.1016/
j.stem.2018.08.016

94. Peng L, Li Y, Xi Y, Li W, Li J, Lv R, et al. MBD3L2 Promotes Tet2 Enzymatic
Activity for Mediating 5-Methylcytosine Oxidation. J Cell Sci (2016) 129
(5):1059–71. doi: 10.1242/jcs.179044

95. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic Regulator
CXXC5 Recruits DNA Demethylase Tet2 to Regulate TLR7/9-elicited IFN
Response in Pdcs. J Exp Med (2017) 214(5):1471–91. doi: 10.1084/
jem.20161149

96. Xiong J, Zhang Z, Chen J, Huang H, Xu Y, Ding X, et al. Cooperative Action
Between SALL4A and TET Proteins in Stepwise Oxidation of 5-
Methylcytosine. Mol Cell (2016) 64(5):913–25. doi: 10.1016/j.molcel.
2016.10.013

97. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, et al. DNA-
Binding Factors Shape the Mouse Methylome at Distal Regulatory Regions.
Nature (2011) 480(7378):490–5. doi: 10.1038/nature10716

98. Moen EL, Mariani CJ, Zullow H, Jeff-Eke M, Litwin E, Nikitas JN, et al. New
Themes in the Biological Functions of 5-Methylcytosine and 5-
Hydroxymethylcytosine. Immunol Rev (2015) 263(1):36–49. doi: 10.1111/
imr.12242

99. Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of a-KG-
dependent Histone and DNA Demethylases by Fumarate and Succinate
That are Accumulated in Mutations of FH and SDH Tumor Suppressors.
Genes Dev (2012) 26(12):1326–38. doi: 10.1101/gad.191056.112

100. Figueroa ME, Abdel-Wahab O, Lu C,Ward PS, Patel J, Shih A, et al. Leukemic
IDH1 and IDH2Mutations Result in a Hypermethylation Phenotype, Disrupt
TET2 Function, and Impair Hematopoietic Differentiation. Cancer Cell (2010)
18(6):553–67. doi: 10.1016/j.ccr.2010.11.015

101. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, et al.
The Common Feature of Leukemia-Associated IDH1 and IDH2Mutations is
a Neomorphic Enzyme Activity Converting Alpha-Ketoglutarate to 2-
Hydroxyglutarate. Cancer Cell (2010) 17(3):225–34. doi: 10.1016/
j.ccr.2010.01.020

102. Thienpont B, Steinbacher J, Zhao H, D’Anna F, Kuchnio A, Ploumakis A,
et al. Tumour Hypoxia Causes DNA Hypermethylation by Reducing TET
Activity. Nature (2016) 537(7618):63–8. doi: 10.1038/nature19081

103. Minor EA, Court BL, Young JI, Wang G. Ascorbate Induces Ten-Eleven
Translocation (Tet) Methylcytosine Dioxygenase-Mediated Generation of 5-
Hydroxymethylcytosine. J Biol Chem (2013) 288(19):13669–74. doi: 10.1074/
jbc.C113.464800

104. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martı ́nez JA, Goyal P,
Mahapatra S, et al . Vitamin C Induces Tet-dependent DNA
Demethylation and a Blastocyst-Like State in ES Cells. Nature (2013) 500
(7461):222–6. doi: 10.1038/nature12362

105. Shenoy N, Bhagat TD, Cheville J, Lohse C, Bhattacharyya S, Tischer A, et al.
Ascorb ic Ac id- Induced TET Act ivat ion Mit iga te s Adverse
Frontiers in Immunology | www.frontiersin.org 1468
Hydroxymethylcytosine Loss in Renal Cell Carcinoma. J Clin Invest (2019)
130:1612–25. doi: 10.1172/JCI98747

106. Rao VK, Swarnaseetha A, Tham GH, Lin WQ, Han BB, Benoukraf T, et al.
Phosphorylation of Tet3 by Cdk5 is Critical for Robust Activation of BRN2
During Neuronal Differentiation. Nucleic Acids Res (2020) 48(3):1225–38.
doi: 10.1093/nar/gkz1144

107. Bauer C, Göbel K, Nagaraj N, Colantuoni C, Wang M, Müller U, et al.
Phosphorylation of TET Proteins is Regulated Via O-GlcNAcylation by the
O-linked N-Acetylglucosamine Transferase (OGT). J Biol Chem (2015) 290
(8):4801–12. doi: 10.1074/jbc.M114.605881

108. Schübeler D. Function and Information Content of DNA Methylation.
Nature (2015) 517(7534):321–6. doi: 10.1038/nature14192

109. Anastasiadi D, Esteve-Codina A, Piferrer F. Consistent Inverse Correlation
Between DNA Methylation of the First Intron and Gene Expression Across
Tissues and Species. Epigenet Chromatin (2018) 11(1):37. doi: 10.1186/
s13072-018-0205-1

110. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene Body
Methylation can Alter Gene Expression and is a Therapeutic Target in
Cancer. Cancer Cell (2014) 26(4):577–90. doi: 10.1016/j.ccr.2014.07.028

111. Cedar H, Bergman Y. Linking DNA Methylation and Histone Modification:
Patterns and Paradigms. Nat Rev Genet (2009) 10(5):295–304. doi: 10.1038/
nrg2540
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INTRODUCTION

The current coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has the worst affected the entire population on the earth (1,
2). This is currently a major concern for the global health care system, as declared by the World
Health Organization (WHO). Ample pieces of evidences suggested the idiopathic association of the
SARS-CoV-2 with many diseases in COVID-19 cases. Given the aberrant immunopathology of
COVID-19, a single approach may not be sufficient to control the disease effectively. Severely
infected patients displaying acute respiratory distress syndrome (ARDS) need additional modalities
for their management (3). This could be due to the host’s epigenetic programming of infected
macrophages, which may be responsible for negative prognosis and inadequate response to the
current therapeutic regimen for controlling disease manifestation.

SARS-CoV-2 enters the host cells via ACE-II receptor and triggers the secretion of the copious
amount of IL-6;promote pulmonary fibrosis and Th2/17 programming of lungs, leading to severe
lung infection in COVID-19 patients. SARS-CoV-2 interacts and tweaks all kind of cells like
epithelium, macrophages, dendritic cells, and T cells and exploit them in a way that supports its
replication for progression of the disease.

Out of these, uncontrolled activation of macrophages (also known as double edge component of
immunity) leads to Macrophage activation syndrome which is responsible for acute respiratory
distress syndrome (ARDS) and subsequent death of COVID-19 patients (4, 5). This is mainly
characterized by the increased infiltration of committed FN

C1
+ macrophages and their Th2/Th17

programming leading to mortality. Once derailed, hyperactive macrophages secrete high levels of
IFN‐g, IP-10 (IP‐10), IL-6, IL-17, TNF-a along with TGF-b and IL-10/23, leading to the Th2/Th17
programming in the infected lungsof severe cases of COVID-19 (6).

At molecular levels, this is accompanied by the activation of inflammasome pathways which are
important forTh17 programming of tissue. Activated CD14+ monocytes phagocytose dead
neutrophils and promotes NETosis in the lung. This promotes Th2 bias, decreases lymphocyte/
neutrophils ratio and increases the risk of COVID-19 patients for death. Given this, in situ
reprogramming Th2/Th17 programmed macrophages towards their M1 phenotype is expected to
afford protective immunity in COVID-19 cases (4) as shown in Figure 1.
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Committed macrophages rely upon Toll-like Receptors (TLRs)
and associated pathways, the guardian for Th1/2/17 effector
responsesduring any infection, including SARS-CoV-2 (7). Among
various TLRs on macrophages, TLR-4, 5, 3, 7,and 9 actively sense
spike proteins (N, S or G) ormRNAofNSP-10, S2, and E proteins of
SARS-CoV-2 and promote M1 polarization of macrophages (8).
Apart from ACE-2, the spike protein of SARS-CoV-2 uses TLR-2, 4
and 5 signaling pathways also viaMyD88 and triggers Th1 effector
response through NF-kB and ERK signaling cascade (9). Given this,
tweaking TLR signaling like TLR5 can restore or promote Th1
response in derailed macrophages in COVID-19 patients. Indeed, a
recent report suggests that conjunction therapy with antivirals and
TLR-7 agonists may benefit patients (7) who are believed to harbor
Th2/17 programmed macrophage. Similarly, the application of
Tocilizumab and TLR-4 antagonists is expected to promote M1 re-
polarization of derailed macrophage in patients with severe disease
displaying ARDS.

Several intracellular pathways like nk-kb/STAT/and p38MAPK
are essential for the immune polarization of macrophages during
infection and cancer. p38MAPK pathway is one of the host factors
implicated in lung and heart injury in COVID-19 patients (10, 11).
P38MPAK landscape is decisive for sterile inflammatory responses,
desmoplastic reactions, T cell exhaustion, and epigenetic
programming of severely infected COVID-19 cases. P38 MAPK
Frontiers in Immunology | www.frontiersin.org 273
controls macrophage plasticity via promoting ER stress, unfolded
protein responses, and glucose intolerance which are associated
with energy imbalance in the infected host. Since SARS-CoV-2
directly up-regulates p38 activity for promoting its replication in
epithelium and macrophages (12), we presume that hyper-
activation of p38MAPK may contribute to Th2 bias in these
macrophages and aberrant inflammation in the lung.

SARS-CoV-2 regulates P38MAPK signaling inmultiple ways to
support its replication, one of the prominent mechanisms is
downregulation of ACE2 activity, which negatively regulate
expression of ICAM-1 (intercellular adhesion molecule-1),
VCAM-1 (vascular cell adhesion molecule-1) (13) and NF-KB
activation (14) leading to Th2 bias in the host. Loss of ACE2
function leads to enhanced concentration of intracellular
Angiotensin 2, which directly activates P38MAPK (10) in the
host, leading to Th17 response in the host (15). This progress to
ARDS (acute respiratory distress syndrome) and myocarditis are
primary reasons for death in critically infected patients (16). Several
studies with severely infected patients suggested that SARS-CoV-2
promotes degradation of DUSPs (dual-specificity phosphatase)
transcripts, this promotes P38MAPK hyperactivation (17) in the
host. Besides ACE2 and DUSPs, SARS-CoV-2 also triggers TAB1
(TGF-b activated kinase 1 (MAP3K7)-bindingprotein 1) mediated
P38A auto-phosphorylation and P38MAPK hyper-activation,
FIGURE 1 | Non-coding RNAs regulates macrophage plasticity during the pathogenesis of Covid 19 disease. 1. N/S/G spike proteins bind to ACE2 receptors on lung cells
and determine the entry of the SARS-CoV-2 virus. 2. miRNA can be direct targets since they can regulate the expression of ACE2 in various organs. 3. Infection produces an
copius amount of IL-6, which drives the fate of CD14 monocytes/macrophages towards M2 phenotype viaMAPK signaling, which promotes viral replication. 4. In view of
this virus eliminating inflammatory niche could be achievd by promting M1 phenotype in TLR depenedent MYD88/ERK/NF-Kb pathway. 5. This could be fosterd by
application of MAPK inhibitors like simvastatin in conjuction of TLR antagonist which can help immune cells to curb SARS-CoV-2 in the host effectively.
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adding to the reason for increased MAPK activity in the infected
cells. Studies with several MAPK inhibitors like SB203580 (18),
Losmapimod (19) and Dilmapimod (20) have shown promising
results in mitigating pathogenic inflammation in COPD patients
and advocated their potential application in hashing SARS-CoV-2
burden. Therefore targeting p38MAPKcould be of direct interest in
controlling viral burden andM1 retuning of infected macrophages
viz-a-vizmitigating T- cell exhaustion in patients.

Apart from activating several cytoplasmic signaling pathways,
p38MAPK also activate the expression of various transcription
factors. Recent studies have provided compelling evidence that
activated MAPK influence the expression of differentially
expressed mi/lncRNAs,which are important for sterile
inflammation and M2/Th2 polarization of macrophages. Most
intriguingly, the lncRNA landscape is proposed as a prognostic
factor responsible for the severity of COVID-19 cases (21).
Among pool of miRNAs; miR-15b-5p, miR-15a-5p, miR-548c-
5p, miR-548d-3p, miR-409-3p, miR-30b-5p and miR-505 have
been validated as potent targets for controlling SARS-CoV-2
infection (22). These miRNAs regulate the expression of ACE-2
in various organs, including the kidney, heart, blood vessels, and
lungs which are important for COVID-19 pathophysiology (23).
Other than this, several LncRNA like WAKMAR2, EGOT,
EPB41L4A-AS1, ENSG00000271646, MALAT1 and NEAT1 are
known to contribute to skewing the immune response against
SARS-CoV-2 infection (24, 25).

Overexpression of NEAT1 stabilizes the mature caspase-1 to
promote interleukin-1b production and modulate inflammasome
activation (26), which is associated with Th2/17 programming of
immune cells like macrophages. MALAT1 promotes Th1 effector
responses and apoptosis in airway epithelial cells conditioned DCs
and cardiac cells (6, 27) via miR-125b and p38MAPK/NF-kB
pathways (7). This loop is potentially involved in the maturation
and pro-inflammatory programming of CD14+/Gr-1-/iNOs+ M1
macrophages, which is essential for the adaptive immunity of
the host.
MAJOR PERSPECTIVE

Lowering p38MAPK with specific inhibitors like simvastatinin
conjunction with TLR antagonist and Tocilizumab is anticipated
to be a prudent approach for augmenting immunity of COVID-
19 infected cases. The uncontrolled systemic inflammatory
response and cytokine storm is the main mechanism of ARDS
Frontiers in Immunology | www.frontiersin.org 374
caused by the excessive release of interferon, interleukins, TNF-a
and chemokines. Thus, it was proposed that statins (28), which
are well known for their anti-inflammatory effects,could treat
MERS-CoV infection and perhaps COVID-19 patients (29) as
well. However, statins in COVID-19 patients sometimes increase
the risk and severity of myopathies and acute kidney injury (29).
On the other hand, statin therapy increases liver enzymes,
leading to severe complications in the COVID-19 patients (30).
Thus, guideline-directed statin therapy in COVID-19 patients
is necessary.

It was proposed that early intervention with interleukin-6
receptor blockade by Tocilizumab could effectively control the
progression to hypoxemic respiratory failure or death of severe
COVID-19 patients (31). There are conflicting results obtained for
tocilizumab in COVID-19 patients. Several treatment lines suggest
that using a monoclonal antibody against IL-6 is an attractive
strategy to manage severe COVID-19 as Tocilizumab has the
potential to reduce mortality and the need for mechanical
ventilation (32, 33). However, a clinical trial on 243 patients
revealed that tocilizumab was not effective for preventing death in
moderately ill hospitalized COVID-19 patients (34). In a recent
studyonthehospitalizedCOVID-19patients, although tocilizumab
reduced the progression to the composite outcome of mechanical
ventilation, however could not improve their survival (35). Besides,
this targeting miRNA which modulates the expression of ACE2
receptor activities, can also be of significant value to currently
explored therapeutics/interventions. This conjuction approach is
expected to enhance the sensitivity of infected host cells for
currently employed drugs. Taken together, above interventions
would help in curbing the SARS-CoV-2 virus for the effective
management of COVID-19 disease.
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The progression of coronavirus disease 2019 (COVID-19), resulting from a severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, may be influenced by both
genetic and environmental factors. Several viruses hijack the host genome machinery for
their own advantage and survival, and similar phenomena might occur upon SARS-CoV-2
infection. Severe cases of COVID-19 may be driven by metabolic and epigenetic driven
mechanisms, including DNA methylation and histone/chromatin alterations. These
epigenetic phenomena may respond to enhanced viral replication and mediate persistent
long-term infection and clinical phenotypes associated with severe COVID-19 cases and
fatalities. Understanding the epigenetic events involved, and their clinical significance, may
provide novel insights valuable for the therapeutic control and management of the COVID-
19 pandemic. This review highlights different epigenetic marks potentially associated with
COVID-19 development, clinical manifestation, and progression.

Keywords: ACE2, COVID-19, cytokine storm, epigenetics, multi-organ, pro-inflammatory cytokines,
SARS-CoV-2, TMPRSS2
MAIN BACKGROUND

Epigenetics is a branch of biology arising from inheritable gene transcription alterations in response
to environmental cues, such as pollutants, chemicals, radiation, diet, stress, and pathogenic
organisms (1). Epigenetic phenomena do not cause any genetic alterations or mutations.
However, as the new phenotypes that are somatically heritable, epigenetic tags alter gene
org October 2021 | Volume 12 | Article 752380176
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transcription and normal functions. Epigenetic marks are either
suppressive or active and include DNA methylation, histone
modification/chromatin remodelling, non-coding RNA, and
RNA modification (Figure 1). These marks are implicated in
activating or suppressing gene promoters, bodies, or
transposable elements in normal processes such as ageing,
genomic imprinting, and X-chromosome inactivation (2).
DNA methylation is the best-studied stable epigenetic mark
that occurs within CpG island promoter regions enriched with
>70% of CpG (cytosine phosphate guanine) sites in the genome
(3). It involves tagging or deposition of the methyl group of 5-
methylcytosine to the DNA molecule through catalysis by DNA
Frontiers in Immunology | www.frontiersin.org 277
methyltransferases (DNMTs), which can be reversed by another
family of enzymes called ten-eleven translocation (Tet 1-3)
methyldioxygenases (4). DNMTs are regarded as writers of
DNA methylation, recognised or read by methyl-CpG binding
domains (MBDs) and then erased by TETs (Figure 1).

Eukaryotic cell DNA is packaged into chromatin wrapped
around an octamer of four core histone proteins (5). Histones
can be post-translationally modified by repressive or active
histone marks that impact the interaction of histones with
DNA or the occupancy of transcriptional machineries for
gene expression (Figure 1). They dictate the chromatin
transcriptional state of the local genomic regions via histone
A

B

FIGURE 1 | Chromatin structure. (A) A 147bp DNA wraps around the histone octamer with two copies of each of the histones H2A, H2B, H3, and H4. Various
epigenetic mechanisms that modify chromatin, such as DNA methylation and histone modifications, are highlighted. DNA and histone methylation collaborate with
different modifying enzymes and creates a tightly packed chromatin and suppress gene transcription by preventing the transcription machinery from binding DNA.
Histone acetylation perturbs structural electrostatic interactions between the DNA and histones, resulting in the less compact structure of chromatin structure. This
allows DNA access by transcription factors that promote gene transcription. (B) Writing, erasing, and reading chromatin methylation markers are highlighted. These
mark various sites on the tail and globular domains of histones. Writers and erasers are methyltransferases and demethylases, respectively. These are recognised by
distinct effector proteins called readers. (Created with BioRender.com) ac, Acetylation; DNMT, DNA methyltransferase; GLP, G9a-like protein; GNATs, Gcn5-related
N-acetyltransferases; HATs, Histone acetyltransferases; HDACs, Histone deacetylases; JmjC, Jumonji C; KDM, Histone lysine demethylases; LSD, Lysine-specific
demethylases; MBDs, Methyl-CpG binding domains; me, Methylation; MLL, Mixed-lineage leukaemia; PHD - Plant homeodomain; PRC2, Polycomb repressive
complex 2; p300/CBP, p300 and cyclic AMP response element-binding protein; SET1, Suppressor of variegation 3–9, Enhancer of Zeste, Trithorax 1; SIRT, sirtuins;
TET, Ten-eleven translocation; UTX1, Ubiquitously transcribed tetratricopeptide repeat, X chromosome 1.
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methylation, acetylation, ubiquitination, and phosphorylation.
Chromatin forms a higher-order structure classified as
euchromatin and heterochromatin (6). Euchromatin is a
loosely packed or open form of chromatin enriched with DNA
accessible to regulatory transcription complexes and promotes
active gene transcription. Excessive acetylation of histone lysine
residues is a common feature of euchromatin (7). It correlates
with COMPASS-like proteins as binding partners and
methylation of lysine 4 of histone 3 (H3K4), H3K36, and
H3K79 that mark transcriptional activation of enhancers, gene
promoters, and transcribed genes in gene bodies, respectively (8–
10). Lysine can be mono-(me1), di- (me2), or tri-methylation
(me3), providing unique functionality to each methylation site
(9, 11). A tight or closed form of chromatin is called
heterochromatin, protecting the DNA from being accessible to
repressive transcriptional marks that restrict gene expression.
Heterochromatin is further categorized into constitutive and
facultative heterochromatins that are enriched in hypoacetylated
or hypomethylated histones (9). The former is a stable form of
heterochromatin comprised of repetitive DNA sequences (called
DNA satellites) located at the transposon elements, centromere,
and telomere. It is characterised by a repressive H3K9 epigenetic
mark and heterochromatin protein 1 (HP1) chromodomain
binding partner (8, 9, 12–14). Facultative heterochromatin is
enriched with long interspersed nucleotide elements (LINE)-type
sequences, repressive H3K27me2/3 epigenetic mark and its
binding partner, polycomb repressive complex 2 (PRC2)-
enhancer of zeste homolog 2 (EHZ2) (15, 16).

Writers, readers, and erasures of DNA methylation and
histone modifications are listed in Figure 1. This review will
discuss the role of epigenetics in COVID-19 infection,
susceptibility to infection, and clinical markers established
systemically during COVID-19 and may be associated with
various epigenetic alterations.
MECHANISMS OF SARS-COV-2 VIRAL
INFECTION AND MULTI-ORGAN
SYSTEM INVASION

ACE2 and TMPRSS2: Viral Entry
and Regulation
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is the aetiological agent of the current pandemic, coronavirus
disease 2019 (COVID-19) (17). This pathogen is enabled by the
angiotensin-converting enzyme 2 (ACE2) (18). Mechanistically,
SARS-CoV-2 penetrates and enters the host cell by binding to the
ACE2 receptor as the primary target. This is facilitated by
proteolytic priming by the cellular transmembrane serine
protease 2 (TMPRSS2) (19). In the proposed model of
respiratory failure, SARS-CoV-2 downregulates ACE2 through
the SARS-CoV spike (SARS-S) protein, explaining the renin-
angiotensin-aldosterone systems (RAAS) dysregulation and
cardiotoxicity in severe COVID-19 infection (20). Suppression
of ACE2 also induces tumour necrosis factor alpha (TNF-a)
converting enzyme (TACE) that antagonises ACE2 shedding of
Frontiers in Immunology | www.frontiersin.org 378
the SARS-S (19). Modulation of TACE activity by SARS-S
protein was found to depend on the cytoplasmic domain of
ACE2 as ACE2 mutants devoid of the carboxyl-terminal region
could not induce ACE2 shedding or TNF-a production (21).
Moreover, deletion of the cytoplasmic tail of ACE2 or knock-
down of TACE expression significantly attenuates viral infection
(21). It has been shown that Ang II induces ACE2 shedding by
promoting TACE activity as a positive feedback mechanism,
suggesting that SARS-CoV mediated ACE2 down-regulation will
promote Ang II accumulation and HIF-1a activation, which
positively activates disintegrin and metalloproteinase domain-
containing protein 17 (ADAM17) activity, thus perpetuating
membrane shedding of ACE2, RAAS overactivation, and
inflammation (22–26). This mechanism, however, is not
universal to all coronaviruses because the spike protein of
HNL63-CoV (NL63-S), a coronavirus that also utilizes ACE2
and is known to cause common influenza, did not produce
similar cellular responses (21).

Lung as the Primary Target for SARS-CoV-2 Infection
SARS-CoV-2 infection is primarily a respiratory infection that
targets type II alveolar epithelial cells (83%) in the lungs (27, 28).
Upregulation of ACE2 in various cells usually disrupts ACE2
normal function from cleaving and converting angiotensin II to
angiotensin 1-7 for tissue protection (29). SARS-CoV-2-infected
type II alveolar epithelial cells leads to inflammation and severe
damage in the lung tissue that is clinically manifested by elevated
levels of ferritin and D-dimer, and association with oxygen
desaturation, chest pain, and disease progression as indicated
by computed tomography (CT) pulmonary angiography (30, 31).
Elevated levels of macrophage/monocyte colony-stimulating
factor (M-CSF, also known as colony-stimulating factor 1
receptor), granulocyte-monocyte colony-stimulating factor
(GM-CSF), and interleukin (IL)-6 have also been reported in
the later stages of COVID-19 (32–34). This correlates with
pneumonia and acute respiratory distress syndrome (ARDS)
that may lead to organ failure as observed in severe or critical
cases of COVID-19 (31, 33, 35–37).

Most recently, the study of Ferreira-Gomes et al. (38) has
shown that cells isolated from bronchoalveolar lavage of
intensive care unit (ICU) patients with severe COVID-19 cases
were enriched with tumour growth factor-beta 1 (TGF-b1)-
expressing Th17, regulatory T cells, and CD14-positive cells,
immune cells that are usually recruited to fight the infection.
TGF-b1 is a master regulator of immune reaction and
pulmonary fibrosis in COVID-19 patients (39). Its expression
was associated with SARS-CoV-2 spike protein-specific IgM, IgG
(IgG1 and IgG2), and IgA (IgA1 and IgA2) antibodies that
protect systemic organs and mucosal surfaces, respectively (38,
40). SARS-CoV-2 spike protein-specific antibodies were also an
indication of ongoing immune reaction and damage in
secondary organs from the spread of viral infection (41). In the
early days of ICU admission, IgG antibodies are predominantly
generated by IL-10/21 specific to SARS-CoV-2 proteins (42).
As a result of clonal expansion, later these antibodies become
somatically mutated, virus non-specific, and undergo switching
as instructed by TGF-b1 (38, 43). Ferreira-Gomes and co-
October 2021 | Volume 12 | Article 752380

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kgatle et al. COVID-19 Epigenetic and Clinical Marks
authors have demonstrated that TGF-b1 induces chronic
immune reaction by regulating antibody switching from IgG to
IgA and this correlates with prolonged ICU stays of more than
seven days (38).

Overall, systemic COVID-19 infection is characterised by
various immunoregulatory and pro-inflammatory cytokines such
as IL-1b, IL-2, IL-6, IL-7, IL-10, IL-18, D-Dimer, C-reactive protein
(CRP), GM-CSF, interferon gamma-induced protein 10 (IP10),
macrophage inflammatory protein 1 alpha (MIP1a), chemokine
(C-C motif) ligand 2 (CCL2, also known as MCP1), interferon
gamma (IFN-g), and tumour necrosis factor alpha (TNF-a), which
are mainly observed in ICU patients rather than in non-ICU
patients (33, 44–49). This signifies a cytokine storm characterised
by an abnormal overreaction of the body’s immune system that
causes a loss of communication between the infected cells and the
host immune defence mechanism. Cytokine storm triggers severe
inflammation and infiltration of neutrophils, macrophages, and
T cells that may damage several tissues leading to multi-organ
failure (50). Carveli et al. (51) demonstrated an association between
COVID-19 mediated inflammation and activation of the C5
complement factor with its receptor called complement
component C51 receptor (C5AR1). C5AR1 or C5a is a G-protein
coupled receptor that modulates inflammatory response by
activating neutrophils and monocytes to the site of damage.

Invasion of SARS-CoV-2 in Secondary Organs
ACE2 iswidely expressed inaheterogeneouspopulationof systemic
cells (Figure 2), making it possible for SARS-CoV-2 to damage
several systemic tissues leading to various clinical phenotypes that
result inmulti-organdysfunction (Figure2) (52–61).Ahigh level of
ACE2 in nasal epithelial cells correlates with increased viral load,
especially in the early stages of SARS-CoV-2 infection (62). This
may explain the accuracy of nasal and nasopharynx aspirates for
SARS-CoV-2 diagnosis (62). The highest viral load was reported in
the olfactory epithelium, suggesting damage in the supporting cells
(61, 63–66). AlthoughACE2 level is low in the capillary endothelial
cells of the cerebral circulation, circumstantial evidence suggests
that SARS-CoV-2mayaccess these cells bycrossing theblood-brain
barrier, as demonstrated by in vitro studies. This may involve
unknown indirect mechanisms that may be responsible for
clinical manifestation (examples are anosmia, ageusia, and altered
mental status) and neurological complications that have been
observed in critical cases of COVID-19 infections (Figure 2)
(67–73).

ACE2 and TMPRSS2 are also expressed in cardiomyocytes,
cholangiocytes, hepatocytes, and enterocytes, suggesting potential
targets for SARS-CoV-2 infection (60, 74–76). ACE2 synergises with
the RAAS to regulate angiotensin to balance the normal function of
the cardiovascular system (77, 78). Upon SARS-CoV-2 infection,
ACE2 is suppressed and fails to counteract the vasoconstrictive and
pro-inflammatory function of the RAAS to balance the system. This
may lead to increased vascular permeability, tissue oedema/damage,
and systemic microcirculatory dysfunction associated with
cardiovascular-related disease (79). Approximately 50% of
COVID-19 hospitalised patients exhibit abnormal levels of alanine
transaminase (ALT) and aspartic transaminase (AST), slightly
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elevated level of bilirubin, higher alveolar-arterial oxygen
gradient (A-aDO2)/gamma-glutamyl transferase (GGT), and
hypoalbuminemia that suggests hepatic damage (80–82). Elevated
levelsofALT(7590U/L) andAST(1445U/L)werealmostdoubled in
severe/critical cases as relative to mild/moderate cases, and correlate
with nausea, vomiting, and anorexia (83–85). In addition, a sub-
group of COVID-19 patients present with darkened faces and
pigmentation (86, 87). This may suggest abnormal liver function
probably from failing to metabolise oestrogen, increased iron level,
and melanin secretion as well as adrenocortical hypofunction
associated with hepatic injury (88–91).

Zhao et al. (92), demonstrated that SARS-CoV-2 infection
triggers direct cholangiocytes damage by perturbing the barrier
and bile acid transporting functions of cholangiocytes via abnormal
regulationof solute carrier family 10-member 2 (SLC10A2) gene and
cystic fibrosis transmembrane conductance regulator (CFTR) gene,
resulting in bile acid accumulation and consequent hepatic injury
aggravation. Mechanisms associated with COVID-19-related
hypoxia, antiviral drugs/incorrect drug dosage, and use of herbs
or traditional medicines to counteract COVID-19 effects may also
participate in liver injury (93–99). Numerous studies have reported
successful isolation of SARS-COV-2 from faecal/stool samples of
COVID-19 patients with and without inflammatory bowel disease
(IBD) (100–103). Interestingly, in someCOVID-19 cases, the faecal
viral load was even higher (107 copies/g) than in pharyngeal swabs
(101, 104).Thisobservationdisputes thepharyngeal infection as the
source of faecal viral RNA and supports the theory of enteric
infection of SARS-CoV-2 (101, 104). An elevated level of faecal
calprotectin, largely expressed by neutrophils and a reliable faecal
biomarker of intestinal inflammation, has been reported in
COVID-19 patients with diarrhoea as compared to patients
without diarrhoea (105).

It has been demonstrated that nephrons, undifferentiated
spermatogonia, testicular Sertoli, and Leydig cells express a
considerable abundance of ACE2 receptor expression, making the
kidney and testes further potential SARS-CoV-2 reservoirs (106,
107). Renal damage in cases with no underlying renal conditions
suggested SARS-CoV-2 as the underlying cause, and thiswasmarked
by abnormal bloodwork and increased levels of proteins in the urine.
Lengthy hospitalisation stays, acute kidney injury (AKI), and
increased mortality were the most common consequences of severe
or critical cases of COVID-19 (107–113). COVID-19 causes severe
physiologic and neurological stress, which may release increased
stress hormone and alter testosterone levels. Testes play an important
role in regulating the hypothalamic-pituitary-testicular (HPT) axis,
which governs the male reproductive hormonal cascade (114). HPT
axis endocrinologically links testes to the brain by gonadotropins
(luteinising hormone-LH and follicle-stimulating hormone-FSH)
and testosterone. LH and FSH that normally activate Leydig and
Sertoli cells, respectively, are altered inCOVID-19patients, and this is
hypothesised to be due to imbalances in testosterone production
(115–118). Levels of LH seem to increase inmale patientswith severe
COVID-19 leading to abnormal FSH/LH ratios (115, 116).

A recent case report of semen analysis for in vitro fertilization
procedure revealed that mild COVID-19 infection in men could
result in long-term alterations in sperm morphology and sperm
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DNA integrity that may ultimately lead to male infertility (119).
It was previously thought that the sperm parameters would take
70 – 90 days to return to their basal state after recovering from
the infection. However, this published case has shown that this
can take a much longer time of >4 months (119). Although these
findings are based largely on case studies and lack further
validation, it is plausible to hypothesize that increased risk of
infertility as a COVID-19 long-term complication, especially in
young men, will be observed after the pandemic. Therefore, more
studies are needed to determine the negative impact of COVID-
19 in a large cohort of infected males with varying severity of
disease during infection and after recovery.
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THE ROLE OF EPIGENETICS IN
INFECTION SUSCEPTIBILITY: X-
CHROMOSOME INACTIVATION
AND COVID-19

In terms of Betacoronavirus (SARS-CoV-2, severe acute
respiratory syndrome coronavirus/SARS-CoV and Middle East
respiratory coronavirus/MERS), men usually experience severe
infections complicated with poorer clinical outcomes than
women (120–124). It was observed that SARS-CoV-1 infected
males had a significantly (21.9%, p < 0.0001) higher case fatality
rate than females (13.2%) with a relative risk of 1.66
FIGURE 2 | Potential underlying mechanisms of SARS-CoV2 invasion and multi-organ induced damage. Inflammation mediated by SARS-CoV-2 infection and
its primary receptor ACE2 drive multi-organ failure in severe COVID-19 cases. ACE2 is widely expressed in multiple organs, and its suppression may aggravate
COVID-19 severity and negatively impacts multiple organs via regulation of RAS. Moreover, this leads to severe cases of COVID-19 that are often associated
with ARDS and increased mortality rate, partially mediated by the overproduction of pro-inflammatory cytokines (cytokine storm). Cytokine storm results from
increased levels of inflammatory mediators, endothelial dysfunction, coagulation abnormalities, and infiltration of inflammatory cells into the organs. This may be
characterised by elevated levels of interleukin-6 (IL-6), nuclear factor kappa B (NFkB), and tumour necrosis factor-alpha (TNFa) released from SARS-CoV-2-
infected macrophages and monocytes. The involvement of different organs in severe patients is characterised by multi-organ failure and a broad spectrum of
haematological abnormalities and neurological disorders that lengthen the hospitalisation duration and increase mortality. The most important mechanisms are
related to the direct and indirect pathogenic features of SARS-CoV2 infection. (Created with BioRender.com). ACE2, Angiotensin I-converting enzyme-2;
AoDO2, First alveolar-arterial oxygen gradient; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; IFN-g, Interferon-gamma; IL-1b, Interleukin- 1b;
IL-4/6/10, Interleukin- 4/6/10; TNF-a, Tumour necrosis factor-alpha; MCP-1, Monocyte chemoattractant protein-1.
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(95% confidence interval (CI): 1.35, 2.05) before age adjustment
and 1.62 (95% CI: 1.21, 2.16) after adjustment (120). Peckham
et al. (123), demonstrated through a meta-analysis of 3,111,714
reported global COVID-19 cases that males have almost three
times the odds of requiring ICU admission (OR = 2.84; 95%
CI = 2.06, 3.92) and higher odds of fatality (OR = 1.39; 95%
CI = 1.31, 1.47) compared to females. X-chromosome
inactivation (XCI) may explain some of the disparities in
infection susceptibility (Figure 3). As an epigenetic hallmark of
normal human development, XCI is regulated by a progressive
and stepwise epigenetic phenomenon that ensures an equal
dosage compensation of the X-chromosome encoded genes
expression level between females and males (125, 126). XCI is
regulated by the X-inactivation centre (XIC) and established by
long non-coding X inactive specific transcript (Xist) RNA
through several heterochromatin changes as largely
demonstrated by seminal work conducted by the Brockdorff
lab (127, 128). The suppression of X-linked genes through
recruitment of the PRCs is a common XCI feature (129).
Acquisition of histone deacetylase 3 (HDAC3) and H2A by
adding a single ubiquitin group to lysine-119 (H2AK119) are
the earliest repressive epigenetic marks required for efficient XCI.
H3K27me3, a transcriptional silence mark that is catalysed by
PRC2-EZH2 for inactive heterochromatin, is enriched and later
spread at the promoters of silenced X-linked genes for long-term
stable XCI maintenance (129, 130).

Notably, for counteracting invading pathogens, the X-
chromosome is enriched with many immune-related genes and
regulatory elements that activate host immune defence
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mechanisms (131). While this may increase women ’s
susceptibility to autoimmune disease, it may also provide them
with immunological and survival advantages against pathogen
insults (132). Females have two copies of X-chromosome (XX),
and one becomes randomly and permanently silenced during
embryogenesis through XCI (125, 126). An inactivated
chromosome is called a Barr body or sex chromatin
(Figure 3). Some genes located in the silenced X-chromosome
may escape XCI and remain expressed to perform their normal
activities (133). Fortunately for women, these XCI skewing
genes/escapees may lead to an elevated level and high immune
responsiveness of such genes (134). Subsequently, this results in
double and exclusive protection for women against defective X-
linked genes and infections relative to men (Figure 3). As a result
of having a single copy of X-chromosome (XY), males are at high
risk of X-linked or sex-linked disorders (134), and this may
explain why males tend to suffer more severe cases of COVID-
19/other infections and fatal complications than females. Sex
different effects in COVID-19 may be attributable to various
external risk factors that are more prevalent in men versus
women (135–140). Comorbidities such as cancer, heart failure,
hypertension, diabetes, obesity and chronic obstructive
pulmonary disease coupled with behavioural factors including
smoking and alcohol consumption are generally increased in
males than females, and these have been shown to correlate with
poor clinical outcomes, increased risk of ICU admission and
fatalities in COVID-19 infected patients (135–138, 140, 141).
Men have been shown to have an increased level of circulating
plasma ACE2 receptor, the primary receptor that enables SARS-
FIGURE 3 | Overview of sex-based differences in the immune response to COVID-19. The diagram shows how X-chromosome inactivation escapee genes may
underlie sex bias differences in COVID-infection, severity, and mortality. Sex-bias differences in COVID-19 may be linked to ACE2, the primary receptor that enables
SARS-CoV-2 infection. Having double X-chromosomes protects women against increased susceptibility to COVID-19 infection and associated severe complications
as compared to men who have just a single X-chromosome. ACE2 is an X-chromosome-linked gene that escapes X-inactivation, a phenomenon that suppresses
gene transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. This means
that women have twice more genetic instructions to transcribe ACE2 and many more X-chromosome-linked immunoregulatory genes that protect women from
increased COVID-19 susceptibility and associated severe complications. (Created with BioRender.com). ACE2, Angiotensin I-converting enzyme-2; COVID -19,
Coronavirus disease 2019; SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2; XCI, X-chromosome inactivation; XIST, X-inactive specific transcript.
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CoV-2 attachment and infection (138, 139, 142). Using a high-
throughput multiplex immunoassay based on a proprietary
proximity extension assay (PEA) technology, Sama et al. (141)
measured the ACE2 concentration in index cohort of 1485 males
and 537 females with COVID-19 and heart failure, and found
that the mean plasma concentration of ACE2 was higher by 5.38
in males compared with females (5.09, P < 0.001). This was also
supported by a validation cohort that exhibited increased 5.46
ACE2 plasma concentration in males compared with 5.16 in
females patients (P < 0.001) (141). A separate single center
population-based study of 5457 Icelanders demonstrated altered
serum levels of ACE2 in males, smokers and diabetes or obese
patients, and this was associated with productive SARS-CoV-2
infection and severe clinical outcome (142). The expression levels
of ACE2 receptor was found to be enhanced in the lungs in response
to active smoking, diabetes and hypertension, explaining an
increased susceptibility and severity to COVID-19 infection (138,
139, 142).

Gene expression regulation of ACE2 and other X-chromosome
linked genes, including Toll-like receptors (TLRs), CD40 ligand
(CD40L), and Forkhead box P3 (FOXP3)/Scurfin, expressed upon
SARS-CoV-2 infection, may play a critical role in COVID-19
pathogenesis and severity. Following viral entry, SARS-CoV-2
triggers the activation of the RNA-based pathogen sensors such
as TLR3, TLR4, TLR7, and retinoic acid-inducible gene-I-like
receptors (RIG-I), which complex with a melanoma-
differentiation associated 5 (MDA-5) to establish a frontline
defence mechanism (143). This complex is epigenetically
subverted to induce abnormally elevated levels of interferons
(IFNs) and pro-inflammatory cytokines, such as tumour necrosis
factor alpha (TNF-a) and interleukins (ILs), associated with
critically ill and ICU admission of COVID-19 patients (131, 144).

Dai et al. (145), through integrated bioinformatics analysis
revealed an upregulation of structural maintenance of
chromosomes flexible hinge domain containing 1 (SMCHD1)
in COVID-19 patients, suggesting that it may be involved in the
epigenetic control of ACE2 receptor, and thus COVID-19
pathogenesis. It is not surprising that SMCHD1 is linked to
ACE2 receptor regulation, as it is an essential protein in XCI.
Mouse studies have demonstrated that homozygous nonsense
mutations in the Smchd1 gene cause XCI defect that leads to
female-specific embryonic lethality (146, 147). Gendrel et al.
(125), demonstrated that a late step Smchd1 gene recruitment to
XCI in female XX embryonic stem cells establishes DNA
methylation of CpG islands, preferably via Dnmt3b gene and
histone mark H3K27me3 for long-term maintenance of gene
silencing. An SMCHD1-dependent pathway may explain the
data of Mudersbach et al. (148), demonstrating that TNF-a
suppresses ACE2 mRNA and its protein expression in
endothelial cells via hypermethylation by DNMTs, including
DNMT3b. It has been suggested that suppression of TNF-a
mediated ACE2 mRNA via epigenetic inhibitors may reduce
SARS-CoV-2 viral replication, leading to anti-inflammatory
effects associated with quicker healing and resolution of
COVID-19-related complications (148). SARS-CoV-2 genome
encodes mRNA Cap 2´-O-Methyltransferase (2-O-MTase),
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another epigenetic phenomenon that deposits a methyl group
at the 2´-O position of the first nucleotide adjacent to the cap
structure at the 5’ end of the RNA (149–152). RNA-based viruses
often use this mechanism to their advantage to escape immune
surveillance. It might be tempting to speculate that drugs
targeting these epigenetic marks and preventing immune
evasion may also be important in fighting COVID-19 infection.
POSSIBLE EPIGENETIC DYNAMICS IN
COVID-19 INFECTION

Li et al. (153) have demonstrated in a murine mouse model with
the human ACE2 (hACE2) transgene that SARS-CoV-2 induces
epigenetic-mediated metabolic reprogramming and alterations
in both local and systemic sites of infection. These alterations are
associated with systemic lethality that mirrors human COVID-
19 clinical phenotypes, suggesting an epigenetic role in COVID-
19 pathogenesis. Below, we discuss epigenetic marks and
alterations that we hypothesize may play a role in ACE2
receptor regulation and COVID-19 pathogenesis/treatment.

Writing of DNA Methylation and
Role of DNMTs
DNMT1, DNMT3A, DNMT3B, and DNMT3L are family of
DNMTs that write or deposit methylation on DNA leading to
hypermethylation, read by MBDs to mainly suppress gene
transcription (Figure 1) (4, 154). DNMT1 binds to and
methylates hemi-methylated CpG sites to ensure stable
maintenance of DNA methylation (4). DNMT 3A and 3B are
de novo methyltransferases that mainly lead to transcriptional
repression through the establishment of non-CpG methylation,
an emerging epigenetic mark that defines brain tissue-specific
patterns of gene transcription (155–159). DNMT3L is
catalytically inactive and serves as a cofactor for DNMT 3A
and 3B (160, 161).

Although DNA methylation patterns are erased and deposited
through successive normal developmental stages and cell
differentiation, they also occur in the form of epigenetic memory
in stem cells, and in communicable and non-communicable
diseases, reviewed in (162). Most importantly, various epigenetic
phenomena triggered in response to raging viral replication are
usually hijacked by the same targeted virus to alter the protective
immunoregulatory mechanisms for survival and propagation,
reviewed in (163). For instance, during infection with hepatitis B
virus (HBV), DNMTs are upregulated in response to productive
viral replication mediated by the host-viral interaction as part of
host immune defence mechanisms, also reviewed in (164). In the
long run, the same DNA methylation machineries may start
hypermethylating CpG island promoters that overlap with
host-viral integration sites leading to alteration in the
transcription of genes, including immunoregulators and tumour
suppressors that are critical to carcinogenesis (164). COVID-19
related airborne respiratory infections such as the Middle East
respiratory syndrome-CoV (MERS-CoV) and avian influenza
(H5N1) have also been shown to exploit DNA methylators and
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histone modifiers to suppress immunoregulators such as type 1
IFN-g-responsive genes. These genes include class II, major
histocompatibility complex, transactivator (CTIIA), antigen
peptide transporter 2 (TAP2), and protein disulfide-isomerase A3
(PDIA3) (165). Abnormal regulation of these genes impedes the
host immune system to fight infections effectively (166). This
suggests that various epigenetic reprogramming phenomena may
also occur during COVID-19 infection (167).

Mice transfected with hACE2 and subsequently infected with
SARS-CoV-2 have been used to gain insights into epigenetic
changes that drive cardiac injury in COVID-19 patients (153,
168). Li and colleagues identified 172 differentially methylated
CpG sites in the hearts of SARS-CoV-2-infected mice compared
with controls (153). Two genes, paternally expressed gene 10
(Peg10) and endothelin-converting enzyme 1 (ECE1), show high
levels of differential methylation in SARS-CoV-2 mice bearing
hACE2 compared with controls. For the Peg10 gene, a
hypomethylation pattern consistent with higher expression of
the Peg10 gene in hearts was seen. The loss of function of the
Peg10 gene is known to result in early embryonic death (169).
Peg10 gene also regulates cellular proliferation and viral replication
through binding to the viral transcription regulators (170). SARS-
CoV-2 infection was associated with increased methylation of the
ECE1 gene, the product that regulates proteolysis of endothelin
precursors to form biologically active peptides (171). Loss of
function of the ECE1 gene is associated with cardiac defects,
generalized oedema, and autonomic dysfunction (172). In
another study, blood samples from acute SARS-CoV-2 infection
versus healthy controls blood samples exhibited 28% of
hypermethylated regions (173). Hypermethylated regions
comprised of more than 5 consecutive differentially methylated
CpG sites. It is not surprising that studies with SARS-CoV-1 and
MERS also detected differentially methylated CpG sites, and found
to be located in the promoter regions encoding genes involved in
interferon and antigen presenting cells stimulation (174). This
supported a recent study that identified >40 CpG sites encoding
genes serving similar purposes, suggesting the role of DNA
methylation influencing COVID-19 progression and target for
epigenetic therapy (175).

Activation of the immunoregulatory cytoplasmic transcription
factor aryl hydrocarbon receptor (AHR) may also result in
hypermethylation that contributes to COVID-19 pathogenesis.
The AHR has been identified as a host factor for Zika and
Dengue viruses, and its inhibition was associated with
significantly reduced viral replication and amelioration in the
disease pathology (176–178).

It has been shown that the AHR becomes activated upon
SARS-CoV-2 infection (178), and that it impacts SARS-CoV2
antiviral immunity and pathogenesis, promoting a pro-
inflammatory response and participating in the severity of
COVID-19 (178). Furthermore, it has been postulated that
AHR activation may be the culprit behind the COVID-19-
mediated cytokine storm (145, 178, 179). RNA-Seq analysis of
CoV-infected cells unveils an upregulation of the AHR and its
target genes, including AHRR and CYP1A1 (177). Kynurenic
acid, a product of normal metabolism of L-tryptophan, and a
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potent endogenous AHR ligand, has also been shown to be
elevated in response to COVID-19 (139, 180). This correlated
with cytokine storm, age and low levels of T-cell responses,
especially in males as compared to female patients, hinting for a
sex-specific link to immune response and COVID-19 clinical
outcome (139). Curiously, activation of the AHR has been
associated with hypermethylation in acute lymphoblastic
leukaemia (ALL) in vitro. When demethylated by methylation
inhibitor zebularine, AHR-related methylation inhibition
restored normal cells phenotype and prevented tumorigenesis
(181). In another study, AHR activation resulted in epigenetic
alteration of Foxp3 and IL-17 expression and consequently
attenuated colitis (182). Recently, Jiadi et al. (183), have shown
that macaques infected with SARS-CoV-2 modulation of the
AHR upregulates the expression of ACE2 by binding to its
promoter regions, and this is accompanied by aggressive
disease. Consequently, if the AHR becomes hypermethylated,
as shown in other pathologies, the level of ACE2 may also be
silenced through the same methylation. This may disrupt the
inhibitory mechanisms regulated by ACE inhibitors or other
RAAS blockers leading to the aggressiveness of underlying
cardiovascular diseases (e.g., hypertension) that have been
reported in severe/critical cases of COVID-19 infection.

Interestingly, the AHR also regulates the expression of NOD-,
LRR- and pyrin domain-containing protein 3 (NLRP3), that may
also be epigenetically regulated (184, 185). Castro de Moura
et al., revealed a strong correlation between COVID-19 clinical
severity and DNA methylation of 44 CpG sites with >50% of
these located in 20 promoters of annotated coding genes
including Absent in Melanoma 2 (AIM2) and major
histocompatibility class 1C (HLAC) (175). AIM2, similarly to
the NLRP3, is part of the inflammasome complex (186). The
inflammasome is involved in caspase-1 cleavage, trigger of
gasdermin D-mediated pyroptotic cell death and release of
pro-inflammatory cytokines IL-1b and IL-18 in response to
pathogens’ insult, reviewed in (187, 188). Altered levels of IL-
1b and IL-18 cytokines were observed in COVID-19, as it does in
several male infertility-related disorders such as varicocele (49,
111, 189), suggesting that NLRP3 may also be activated upon
COVID-19 infection. This notion is supported by the study of Su
et al. (190), that demonstrated that upregulation of calcium-
sensing receptor (CaSR) activates the NLRP3 pathway in
testicular macrophages and impairs testosterone synthesis in a
uropathogenic Escherichia Coli (UPEC) rat orchitis model.

Chronic infections such as HBV, hepatitis C virus (HCV),
and human immunodeficiency virus (HIV) have been
demonstrated to infect sperm cells and trigger oxidative stress.
Subsequently, this activates histone modifications leading to
long-term effects on male fertility parameters such as sperm
integrity, count, motility, and morphology. During normal
differentiation, sperm cells’ genome undergoes successive
rounds of epigenetics marks to ensure proper spermatogenesis
and spermiogenesis (191). More than 85% of human mature
sperm cells’ DNA is bound to protamines. Protamines are
sperm-specific basic nuclear proteins that take over the
histones’ position and function to package the sperm DNA for
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compaction necessary for sperm motility (192). In the late stages
of spermatogenesis, sperm cells’ genome becomes dramatically
reorganised and globally hyperacetylated to remove and replace
histones with protamines. This phenomenon essentially erases
the epigenetic modifiers laid out through histone modifications.
It preserves the paternal genome by protecting it from
extracellular stressors and harmful effects of the oocyte during
fertilisation (192). An altered protamine ratio or histone content
or distribution in sperm is a sign of aberrant chromatin
packaging, associated with increased susceptibility to DNA
damage or abnormal epigenetic marking that may lead to male
infertility. Ma et al. (108), have detected SARS-CoV-2 in the
testis’ biopsies of COVID-19 patients. Immunohistochemistry
analysis revealed a significant increase in spermatogenic
epithelial shedding in the deceased patients with critical cases
of COVID-19, which was accompanied by thinning of
seminiferous tubules (193). Inflammation of the epididymis
and/or testicle was associated with old age (>80yrs) and severe
or critical cases of COVID-19 (P = .037) (107). More than 20% of
recovered patients who previously had children through natural
birth exhibited autoimmune orchitis. This was indicated by
observed oligospermia, leukocytospermia, elevated sperm
phagocytic CD3+/CD68+ immune responses in testes/
epididymis and apoptotic cells relative to age-matched control
males (193). In some cases, tocilizumab was administered in
response to a progressive worsening of oxygenation, and blood
biochemistry tests revealed an elevation of lactate dehydrogenase
to 1213 U/l, D-dimer to 1150 ng/ml, and CRP to 23.80 mg/dl.
Impaired spermatogenesis and increased apoptotic cells may be
attributable to COVID-19-induced histone modifications
associated with elevated CRP and fever that perturbed the
optimum testicular temperature (2 – 4 ⁰C below the average
body temperature) (194). Moreover, extensive germ cell
destruction, as demonstrated by the TUNEL assay, may have
also been a contributing factor.

Erasing of DNA Methylation: Role of TETs
TETs are regarded as erasers of DNA methylation, reviewed in
(195). They actively or passively demethylate DNA methylation
by removing the 5-methylcytosine mark. TETs oxidise 5-
methylcytosine to generate 5-hydroxymethylcytosine (5-hmc),
5-formylcytosine (5-fc), and 5-carboxycytosine (196–198). 5-
hmc is a stable epigenetic mark that is highly abundant in the
brain, liver, and stem cells, and it is crucial for neurogenesis and
hepatocellular carcinoma (HCC) (199, 200). TETs are prominent
regulators of immune cells. For example, Tet-2 mediates T-cell
differentiation and synergises with Tet-3 to modulate the
expression of Foxp3, a transcription factor responsible for T-
cells development (201). Tet-deficient mice CD4-T cells
exhibited impaired Th1/2/17 differentiation and cytokine
production in lymphocytic choriomeningitis virus infection,
supporting a critical role of Tet-2 in infections (202). In other
studies, loss of Tet2/3 resulted in an antigen-driven expansion of
various immune cells and rapidly developed aggressive disease
phenotype (203, 204). Moreover, combined deletion of Tet2/3
in mice exhibited impaired Treg cell differentiation. This was
accompanied by DNA hypermethylation of various Treg-specific
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demethylated regions (TSDRs) within the Foxp3 locus that
resulted in aberrant Foxp3 expression (205, 206). TNFs and
ILs, important cytokine storm elevated markers observed in
severe or critical cases of COVID-19, are known to induce
DNA demethylation via TETs (207–210). IL-1b and TNF-a
modulate the global hydroxymethylation by activating TETs
and iso-citrate dehydrogenases in the genomic DNA and
specific locus in matrix metalloproteinase (MMP) promoter
region in human OA chondrocytes (211).

In severe COVID-19 pneumonia cases, abnormal upregulation
of T-cell proliferation, activation, and cytotoxicity was noted at the
late phase of infection, suggesting an underlying perturbation
resulting in the loss of an inhibitory role Tregs (212). Mohebbi
et al. (210), have shown that CD4+ FoxP3+ CD25+ T cells
expression level is significantly suppressed in hospitalised
COVID-19 patients and led to an elevated level of IL-6. Given
this evidence, it is intriguing to suggest this aberranthyperactivation
of cytotoxic cells in COVID-19 may be attributable to Tet-2/3-
mediated epigenetic regulationofTregs. Cell division occurring as a
resultof antigenandcytokine stimulation in response toCOVID-19
infection may be the underlying mechanism for this epigenetic
reprogramming. This may result in aberrant gene transcription,
fatal inflammatory response, disease aggressiveness, and multi-
organ disease phenotypes observed in severe and critical cases of
COVID-19.

Abnormal production of the IFN and IFN-g correlate with
slowly resolved COVID-19, and enhanced viral replication was
also observed, as previously reported in other studies (213–215).
Thismay also correlate with genetic variation of heat shock protein
70 (HSP70) or A1L (HSPA1L), which has been demonstrated to
result in significantly higher plasma concentrations of TNF-a and
IL-6 and poor clinical outcomes after severe tissue injury from
pathogens (216). Elevated levels of TNF-a and IL-6 are associated
with severe cases of COVID-19 and systemic inflammation, as well
asHSPA1L gene upregulation via hypomethylation of its promoter
regions in response to increased SARS-CoV-2 viral replication
(217). HSPA1L hypomethylation is catalysed by the dramatically
reducedDNAmethyltransferases (DNMT 1 - 3), possibly viaTETs
and postulated to enable viral cell entry and protein synthesis
(217, 218).

Writing Histone Modification: Role
of HATs and HMTs
Histone lysine acetylation is catalysed by conserved histone
acetyltransferases (HATs) and plays a crucial role in viral
infections (219, 220). It facilitates the transfer of an acetyl
functional group from acetyl coenzyme A to the e-amino
group of the lysine residue at one end of the histone molecule
on the chromatin. HATs alter the charge of various lysine
residues within either H3 (histone acetylation at lysine 9, 14,
18, and 23, denoted as H3K9/14/18/23ac) or H4 (H4K5/8/12/
16ac), reviewed in (221–223). A positive charge from lysine
becomes neutralised by a negative charge from a transferred
molecule, reducing the binding affinity between histones and
DNA. This alters the chromatin architecture by opening the
chromatin and making it accessible to the transcription factors
for active gene expression (221–223). MYST writes histone
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acetylation, adenoviral E1A-associated protein of 300 kDa/
CREB-binding protein (p300/CBP) and general control non-
derepressible 5 (GCN5)-related N-acetyltransferases (GNATs)
and read by bromodomains (BRD) and extra-terminal (BET)
family of proteins (221, 222).

Histone H3 and H4 form a significant component of the host
immune defence mechanism against pathogen insults and other
hostile environments. In vitro studies with retroviral infected
mouse embryonic fibroblasts have shown that histones are
loaded rapidly on unintegrated retroviral DNA soon after
infection (219, 220). Unintegrated retroviral DNA is typically
weakly expressed, but in response to interaction with loaded
histones, their expression may become dramatically increased by
chromatin modifiers and promote persistent infection (219, 220).
Several studies have shown that histones can be released into
blood circulation during an infection as damage-associated
molecular patterns (DAMPs) from apoptotic and damaged
cells, eliciting an inflammatory stimulus (224–226). DAMPS
interact with TLRs, and trigger TLR/myeloid differentiation
factor 88 (MyD88)/NLRP3 pathways leading to activation of
macrophages (227). This, in turn, can cause an accumulation of
neutrophil infiltration and subsequent production of neutrophil
extracellular traps (NETs) and reactive oxygen species (ROS)
(227). Activation of TLR/MyD88/NLRP3 pathways has been
upregulated in obese patients that are at high risk of severe
COVID-19 infection (228). This suggests that activating these
pathways by the DAMPs and histones loaded on viral proteins
may be the mechanism underlying an excessive tissue
inflammation and injury that correlates with multiple organ
failure and increased mortality in COVID-19 infection.

Histones can also bind to complement component 5a (C5a) and
CRP, which are proteins expressed by the liver in response to
systemic inflammation (229–231). CRP is a regulatory factor for
angiogenesis and thrombosis associatedwith cardiovascular disease
(CVD), which is a risk factor for COVID-19 severe cases (232). An
elevated level of C5a and CRP in COVID-19 infection is an
indication of excessive inflammatory response in endothelial cells
and tissue damage that correlates with aggravated disease or poor
prognosis. Neutrophils play an important role in the early or later
stages of severe cases of influenza A virus (IAV), and COVID-19
infection cases,where circulating cell-free histones are enriched and
highly pro-inflammatory (233). Hsieh et al. (233) have shown that
binding of histones H4 to CRP in neutrophils models infected with
IAV blocks the H4-mediated neutrophil activation and potentiates
neutrophil inflammatory responseduring infection (233).This data
suggests that H4 may be part of the host protective mechanism
during excessive pro-inflammatory response.However, in response
to interaction with circulating virus throughmolecules such as C5a
and CRP, this mechanism may be hijacked by the virus for its
replication advantage leading to tissue damage and fatal sequelae
observed in COVID-19.

A case study of four unrelated young men who were critically ill
with COVID-19 infection, and subjected to mechanical ventilation
in the ICU, revealed nonsense andmissense X-chromosomal TLR7
variants using whole-exome sequencing (213). This TLR7 variant
mutation resulted in a unique loss of function from aberrant
Frontiers in Immunology | www.frontiersin.org 1085
alteration of TLR7 mRNA expression and its downstream target
genes. Interferons regulatory factor 7 (IRF7), interferon beta 1
(IFNB1), and interferon stimulated gene 15 (ISG15) are examples
of genes associated with this TLR7 variantmutation. IRF7 becomes
acetylated by HATs p300/CBP-associated factor (PCAF) and
GCN5, and this usually impairs its binding activities leading to
reduced IRF7 activity. PCAF acetylase complex and GCN5 are
required for viral integration, and they have also been shown to be
activated in influenza A virus to negatively regulates the viral
polymerase activity (234, 235). PCAF is also known as lysine
acetyltransferase 2B (KAT2B), a master regulator of TGF-b
signalling pathway that triggers CVD development when altered.
The SARS-CoV-2 virus induces an aberrant and excessive TGF-b-
mediated chronic immune reaction creating a switching from IgM
to IgA1 and IgA2 immunoglobulins (38, 236). This, in turn, causes
an increased pro-inflammatory response and severe disease activity
that correlates with prolonged ICU COVID-19 cases and fatalities
(38, 236). It is important to investigate the possible roles of PCAF
and GCN5 activities in regulating TGF-b and TLR7 signalling
pathways in severe COVID-19 for novel treatments to ameliorate
the severity and prevent COVID-19 fatalities.

Unlike histone acetylation, histone methylation does not
modify any histone protein charge but deposits one or a set of
methyl groups from S-adenosyl methionine (SAM) on the side
chains of either H3 or H4 lysines or arginine (237). Histone
methylation is catalysed by histone methyltransferases (HMTs)
with various methylation sites (238). One of these HMTs is
SET1B with H3K4me3 occupancy on open chromatin, and this
recruits transcription factors for epigenetic transcriptional
activation (239). This epigenetic tag has been shown to induce
hypoxia, one of the emerging key drivers of COVID-19
pathogenesis and related fatalities. COVID-19 related-hypoxia
manifests insufficient levels of oxygen supply in various tissues.
SET1B activation is oxygen-dependent and facilitates hypoxia
responses via site-specific histone methylation (240). In response
to hypoxia, SET1B is recruited to the hypoxia-inducible
transcription factor (HIF) promoter via HIF1a and facilitates
the expression of genes involved in angiogenesis (240), one of the
clinical features of COVID-19 severity. HIF-related genes will be
described further in a later section of histone demethylation.

Erasing Histone Modification: Role of
HDACs and LSDs/KDMs
Histone acetylation andmethylation are erased byHATs and lysine
demethylases (KDMs)/lysine-specific demethylases (LSDs),
respectively. The former result in a more condensed, closed, and
transcriptionally silenced chromatin structure that is not accessible
to transcription machineries (6–10). The latter blocks the
recruitment or occupancy of transcriptional factors on the
chromatin sites (9). The process is called histone lysine
deacetylation or demethylation, and it associates with the
repression of gene transcription. HDACs are grouped into four
classes, including class I (HDACs 1 - 3 & 8), class II (HDACs 4 -7, 9
& 10), class III (Sirtuin 1 - 7) class IV (HDAC11), reviewed in (241,
242). KDMs/LSDs include KDMs/LSDs 1 – 6 with several families
that act on different substrates for various cellular processes.
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Histone repression marks are common phenotypical features
in viral infections and other diseases, such as cancer (243). Virus-
induced cancers from HBV, HPV, and EBV hijack histone
acetylation marks for viral survival and propagation, and
various HDACs inhibitors have been shown to circumvent
these effects and alleviate the disease (244–247). Sirtuin 1
(SIRT1) is a key epigenetic regulator of CVD, metabolic and
age-related disease through interaction with nuclear transcription
factor-kB (NF-kB), a master regulator of inflammation activated
by a signal transducer and activation of transcription 3 (STAT3)
(248, 249). STAT3 becomes hyperactivated and impairs immune
defence machineries that promote exacerbated inflammation and
lymphocytopenia, leading to lung fibrosis and thrombosis, as
demonstrated in severe COVID-19 cases (249). SIRT1 was also
shown to interact with and modulate p53 activities to regulate
viral replication in MERS-CoV and SARS-CoV infections (250,
251). Takahashi et al. (252), have recently shown that
panobinostat, an inhibitor that counteracts HDACs effects,
silenced the transcription of ACE2 receptor and ABO gene
(gene encoding three blood group alleles) in cultured epithelial
cell lines. This suggested a potential preventative drug against
COVID-19 infection (252, 253). ACE2 is the primary host
receptor for viral entry, whereas the ABO blood group system
has been suspected to increase susceptibility for severe COVID-19
cases (252, 253). Related to this, Zhao et al. (254), have shown that
blood group A individuals may be susceptible to COVID-19
infection, owing to the enrichment of group A antigen in
respiratory cells (254).

Upregulation of HDACs by hypoxia was shown to be activated
in response to a silence in hypoxia-responsive tumour suppressor
genes (255, 256). These genes include HIF-1a and vascular
endothelial growth factor (VEGF), and their epigenetic-mediated
alteration correlates with a dramatic increase of intussusceptive
angiogenic features (255). A similar clinical phenotype was
observed in the lungs of deceased COVID-19 patients, exhibiting
distinctive pulmonary vascular pathophysiologic features in a
background of perivascular inflammation and injury, as relative
to those of influenza (257). VEGF is a prominent mediator of
angiogenesis and is usually involved inwound healing (257). VEGF
exerts its activities through VEGFR 1–3, which are targeted and
negatively regulated by epigenetics alterations (258). VEGFR3
receptor has two ligands, VEGF-C and VEGF-D, which stimulate
angiogenesis. Interestingly, serum levels of VEGF-D were found to
be significantly elevated in ICUCOVID-19 patients as compared to
non-ICU patients, a novel biomarker to trace the progression of
disease (258). Current research shows that VEGF and its associated
receptors undergo histone deacetylation, suggesting them as
potential epigenotherapy targets. It has previously been shown
that histone deacetylase 4 (HDAC4) remodels neuronal
morphology by altering the transcription signature of
VEGF-D (259). Activation of HDAC2 suppresses inflammatory
cytokines (e.g., IL-17, Figure 4) in pulmonary disease, and this with
the disease onset and sometimes with prognosis (260–262). On
another note, Ahmad et al. demonstrated that endothelial TLR/
MyD88 signalling is regulated by histone deacetylase 6 (HDAC6),
contributing to alveolar remodelling architecture and pulmonary
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inflammation (263). Upregulation of TLR/MyD88 signalling
pathway in association with elevated TNF-a and IL-6 was
reported in overweight and obese individuals as compared to lean
individuals (263). In referral to this observation, Cuevas and co-
authors have recently published a brief communication postulating
and probing for a research study that upregulation of TLR/MyD88
signalling pathway may contribute to excessive and fatal pro-
inflammatory cytokine storm especially in SARS-CoV-2
vulnerable obesity individuals (228). MyD88 was shown to
establish and promote CD4 T-cells responses to control viral
spread to the central nervous system (CNS) in coronavirus-
induced encephalomyelitis (228). Any abnormal regulation of
MyD88 signalling already existing in obese individuals and other
co-morbidities may impact COVID-19 disease progression leading
to more fatalities (228).

The widespread methylation of genes in SARS-CoV-2 infection
is associated with the downregulation of genes involved in the
regulation of the tricarboxylic acid (TCA) and mitochondrion
electron transport chain (153). SARS-CoV-2-induced epigenetic
alterations interfere with metabolic processes that are core to
generating energy for the myocardium (153). The perturbed
metabolic processes restrict the energy required for uncontrolled
systemic inflammatory response leading to myocardial injury.
Transcriptome analysis studies conducted from patients with
hypertension and DM associated with severe COVID-19 cases
revealed that ACE2 expression was potentially regulated
synergistically by various histone marks such as histone
acetyltransferase 1 (HAT1), HDAC2, and lysine demethylase 5B
(KDM5B) (264).KDM5B is a histoneH3K4me2/3 demethylase that
is associated with therapeutic resistance in cancer (264).
Hinohara et al. (264), demonstrated that inhibition of KDM5B
increases sensitivity to endocrine therapy by modulating
oestrogen receptor, suggesting the therapeutic potential of this
epigenetic demethylating mark. Concerning viral infections,
KDM5B was shown to suppress stimulator of interferon genes
(STING), a cytosolic DNA sensor that activates downstream
transcription factors signal transducer and activator of
transcription 6 (STAT6), and interferon regulatory
factor (IRF3) through TANK-binding kinase 1 (TBK1) (265).
This, in turn, protects the host cells by eliciting an antiviral
response and innate immune defence against intracellular
pathogens and cancer (265). SARS-CoV proteins were shown
to interact with STING and activate the STING-TRAF3-TBK1
complex leading to abnormal alteration and inhibition of type 1
IFN activities that may be associated with severe disease (266).
3C-like (3CL), themain protease and regulator of viral replication
for SARS-CoV-2, was shown to inhibit the activation of immune
defence machinery by perturbing both RIG-I-like receptors
(RLR) and cGAMP binds to stimulator of interferon genes (C-
GAS-STING) pathways in human lung cells, suggesting a
mechanism that will enable the virus to replicate more
efficiently during infection (267). Upregulation of STING and
aberrant activities usually correlate with cytokine storm in older
people and those who suffer frommetabolic disorders (268–271).
This may explain the increased COVID-19 severe cases in
patients who are older, diabetic, and hypertensive.
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POTENTIAL OF EPIGENETIC DRUG
TREATMENT IN COVID-19 INFECTION

Given the above evidence, it is of great interest to determine the
impact of various epigenetic marks in COVID-19-related
severity and progression for their exploitation for future
COVID-19 epigenetic therapy. Although other molecules and
pathways (e.g. nuclear factor erythroid 2–related factor 2/Nrf2
and NLRP3) could also be interesting to be mentioned and
included in this section (184, 185, 272), we decided to focus on
the AHR due to its prominent roles in diverse diseases, including
COVID-19. The AHR is a ligand-activating transcription factor
that may be activated in response to infection. Its activation has
been postulated many times as part of the mechanism behind the
cytokine storm and poor clinical outcomes including increased
fatalities associated with COVID-19 (145, 178, 179, 273, 274).
While cytokines protect against viral infections, they can also be
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aberrantly regulated and produced excessively. This may
unintentionally induce indoleamine 2,3-dioxygenase (IDO),
most excessively in male COVID-19 patients, leading to
abnormal accumulation of kynurenine that activates the AHR.
The AhR is widely expressed in various tissues and thus
transcriptionally upregulates the expression of ACE2 receptor
in macaques infected with SARS-CoV-2 (273). This enhances
SARS-CoV-2 infection resulting in cytopathic effects in various
cells and impaired antiviral response, thereby leading to systemic
tissue damage and organ failure.

Furthermore, the AHR activation has also been shown to be
differentially regulated in comorbidities (e.g. smoking, age,
obesity, hypertension, and diabetes) that are strongly linked to
poor clinical outcomes of COVID-19 (275–278). Different
epigenetic regulation of AHR (181, 181, 279–282) could
explain epigenetic regulation of ACE2 receptor, differentially
methylated CpG sites observed in COVID-19 and poor clinical
FIGURE 4 | Potential COVID-19 related epigenetic alterations and clinical implications. Like many other viruses, SARS-CoV-2 may trigger various epigenetic alterations such
as global DNA methylation and histone modifications, which synergistically cooperate in influencing and driving the course of COVID-19 and sex-bias differences. In response to
increased viral replication, the infected host cells may set off an epigenetic signature to antagonise the virus as part of innate immune defence machinery. Part of this epigenetic
landscape may be subverted to benefit the virus and its propagation, leading to enhanced and systemic COVID-19 infection that promotes severe complications. (Created with
BioRender.com). cGAS, Cyclic GMP–AMP synthase; CIITA, The major histocompatibility class (MHC) II transactivator; DNMTs, DNA methyltransferases; ECE1, endothelin
Converting Enzyme 1; FOXP3, Forkhead box protein P3; GCN5, General control non-repressed 5 protein; HATs, Histone acetyltransferase; HDAC, Histone deacetylase; HIF-
1a, Hypoxia-inducible factor-1a; HSPA1L, Heat shock protein family A (Hsp70) member 1-like; IFN-g, Interferon gamma; IFN-b, Interferon-b; IL-6, Interleukin- 6; IRF2, Interferon
regulatory factor 2; IRF3, Interferon regulatory factor 3; ISG15, Interferon-stimulated gene 15; JmjC, Jumonji C; KDM, Histone lysine demethylases; LSD, Lysine-specific
demethylases; MBDs, Methyl-CpG binding domains; MyD88, Myeloid differentiation factor 88; MLL, Mixed-lineage leukaemia; NF-kB, Nuclear factor kappa B; NLRP3, NOD-,
LRR- and pyrin domain-containing protein 3; PDIA3, Protein disulfide isomerase family A member 3; PEG10, Paternally expressed gene 10; PHD, Plant homeodomain; PRC,
Polycomb repressive complex; p300/CBP, p300 and cyclic AMP response element-binding protein; STAT-3, Signal transducer and activator of transcription-3; STAT-6, Signal
transducer and activator of transcription-6; SET1, Suppressor of variegation 3–9, enhancer of zeste, trithorax 1; SIRT, Sirtuins; STING, Stimulator of interferon genes; TAP2,
Transporter 2, ATP Binding Cassette Subfamily B Member; TBK1, Tank binding kinase 1; TET, Ten-eleven translocation; TLR, Toll-like receptors; TNF-a, Tumour necrosis
factor-alpha; UTX1, Ubiquitously transcribed tetratricopeptide repeat, X chromosome 1; VEGF-D, Vascular endothelial growth factor D.
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outcomes of COVID-19 in some individuals. For instance,
activation of the AHR is also associated with reversible
hypermethylation in human malignancy including acute
lymphoblastic leukaemia (ALL) in in vitro studies (181). When
demethylated by methylation inhibitor zebularine, AHR-related
methylation inhibition restored normal cells phenotype and
prevented tumorigenesis (181), suggesting it as a suitable and
promising candidate/s for epigenetic therapy.

Likewise, various clinically approved drugs, such as
dexamethasone, that are currently used/tested to ameliorate the
COVID-19, have been shown to impact the activity of the AHR
and to be involved in resistance to therapy, not only in infectious
diseases (e.g. tuberculosis) but also in cancer (e.g. melanoma) (279,
280, 283–287). Curcumin and dexamethasone and are 2 classical
examples of epigenetics reprogramming drugs and may be helpful
to treat COVID-19 toxicity by counteracting the effects of
molecules such as the AHR (279, 280). Of note, curcumin can
modulate AHR activity (281, 288). Curcumin is a turmeric herb
that exerts its potent anti-inflammatory and antioxidant
properties by inducing epigenetic reprogramming via regulation
of DNMTs, HATs, HDACs, and miRNA, reviewed in ref (282)..
Various in vitro and in vivo studies in liver-related diseases have
demonstrated that the use of curcumin is associated with
suppressed cell growth and reduced liver injury (289, 290). It
has been shown that curcumin exerts its activities by inhibiting
HDAC activated by the nuclear factor kappa B (NF-kB) pathway
(290). It is important to note that this pathway is known to interact
with AHR and thus contributing to the regulation of COVID-19-
mediated cytokine storm (274). Dexamethasone is a potent anti-
oedema/fibrotic corticosteroid agent, and it was shown to
accelerate AHR degradation and suppress the expression of its
downstream target genes in vitro studies (291). Proper dosage of
dexamethasone reduced the likelihood of progression of the
disease, leading to shorter hospitalisation and reduced fatalities
by approximately one third in COVID-19 patients requiring
ventilation and by one fifth in those requiring oxygen (280). The
use of dexamethasone in cholestatic rats was associated with
decreased hepatic inflammation and oxidative stress (292).
Investigating epigenetic reprogramming by various receptors
and drugs may provide novel therapeutic opportunities to
control the current pandemic.
FUTURE PERSPECTIVES AND DIRECTIONS

SARS-CoV-2 may trigger epigenetic alterations affecting the
expression of ACE2 and various immunoregulatory genes that
Frontiers in Immunology | www.frontiersin.org 1388
play a key role in both immune defence machinery and metabolic
pathways on different cells (167, 173–175). This may promote
tissue damage and augmenting multi-organ pathology in SARS-
CoV-2-infected tissues. Given the evidence above, differentially
methylated CpG sites of a wide variety of promoters encoding
immunoregulatory genes and ACE2 gene may be the primary
COVID-19 epigenetic signature that are set off in response to
increased viral infections as part of host immune responses as
commonly observed in viral infections. Differential epigenetic
regulation associated with ACE2 receptor and AHR (153, 169,
217) may favour viral entry and regulation of ACE2 expression
by modulating different epigenetic marks, including DNMTs,
H3K27me, KDM5B and SIRT1. These epigenetic marks control
metabolic and immunoregulatory pathways, thereby promoting
immune evasion and cytokine storm, leading to severe clinical
pathologies such as ARDS and widespread tissue damage
associated with multi-organ failure (52–61, 175). Detection of
epigenetic signatures established in COVID-19 and their
dynamics during viral entry and throughout infection (e.g.
from asymptomatic to mild symptomatic, severe infection and
long persistent symptoms) may be valuable for timely diagnosis
and to help designing therapies that may curb the severity of
COVID-19 and related fatalities. Type II diabetes mellitus,
hypertension and CVD are significant metabolic complications
that contribute to the mortality of patients COVID-19.
Discovering epigenetic markers linked to these comorbidities
and how they impact the severity of COVID-19 may also be
valuable for prompting treatment to prevent progression to
sequelae that promote COVID-19-associated fatalities mortality.
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Control of Foxp3 Stability Through Modulation of TET Activity. J Exp Med
(2016) 213:377–97. doi: 10.1084/jem.20151438

202. Carty SA, Gohil M, Banks LB, Cotton RM, JohnsonME, Stelekati E, et al. The
Loss of TET2 Promotes CD8(+) T Cell Memory Differentiation. J Immunol
(2018) 200:82–91. doi: 10.4049/jimmunol.1700559[doi
October 2021 | Volume 12 | Article 752380

https://doi.org/10.1155/2017/3179421
https://doi.org/10.1155/2017/3179421
https://doi.org/10.1073/pnas.1706928115
https://doi.org/10.1016/S0092-8674(05)80090-X
https://doi.org/10.1016/j.clim.2020.108410
https://doi.org/10.1161/CIRCRESAHA.109.200774
https://doi.org/10.1038/ng1699
https://doi.org/10.1038/ng1699
https://doi.org/10.1016/j.celrep.2015.07.012
https://doi.org/10.1006/bbrc.1995.1258
https://doi.org/10.1242/dev.125.5.825
https://doi.org/10.1186/s13148-021-01102-9
https://doi.org/10.1128/mBio.01174-14
https://doi.org/10.1016/j.ebiom.2021.103339
https://doi.org/10.1016/j.ebiom.2021.103339
https://doi.org/10.21203/rs.3.rs-25639/v1
https://doi.org/10.21203/rs.3.rs-25639/v1
https://doi.org/10.1038/s41593-020-0664-0
https://doi.org/10.1038/s41422-020-00447-9
https://doi.org/10.1038/s41422-020-00447-9
https://doi.org/10.1186/s12967-019-2054-5
https://doi.org/10.1093/toxsci/kfq024
https://doi.org/10.1093/toxsci/kfq024
https://doi.org/10.1097/CAD.0000000000000028
https://doi.org/10.1371/journal.pone.0023522
https://doi.org/10.1038/s41423-021-00672-1
https://doi.org/10.1016/j.jacbts.2018.06.004
https://doi.org/10.1038/ncomms5738
https://doi.org/10.1038/ncomms5738
https://doi.org/10.1038/cdd.2013.37
https://doi.org/10.1038/cdd.2013.37
https://doi.org/10.1038/s41419-019-1413-8
https://doi.org/10.1038/s41586-021-03478-3
https://doi.org/10.22074/ijfs.2020.5734[doi
https://doi.org/10.3389/fimmu.2020.570872
https://doi.org/10.1016/j.fertnstert.2011.12.036
https://doi.org/10.1093/humupd/dml009
https://doi.org/10.1016/j.eclinm.2020.100604
https://doi.org/10.1111/j.1365-2605.1995.tb00408.x
https://doi.org/10.1111/j.1365-2605.1995.tb00408.x
https://doi.org/10.1038/nature12750
https://doi.org/10.1126/science.1169786[doi
https://doi.org/10.1126/science.1210597[doi
https://doi.org/10.1126/science.1210944[doi
https://doi.org/10.1016/j.celrep.2013.01.011
https://doi.org/10.1038/s41598-020-64700-2
https://doi.org/10.1038/s41598-020-64700-2
https://doi.org/10.1084/jem.20151438
https://doi.org/10.4049/jimmunol.1700559[doi
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kgatle et al. COVID-19 Epigenetic and Clinical Marks
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Non-coding RNAs (ncRNAs) including microRNAs (miRs) and long non-coding RNAs
(lncRNAs) have emerged as key regulators of gene expression in immune cells
development and function. Their expression is altered in different physiological and
disease conditions, hence making them attractive targets for the understanding of
disease etiology and the development of adjunctive control strategies, especially within
the current context of mitigated success of control measures deployed to eradicate these
diseases. In this review, we summarize our current understanding of the role of ncRNAs in
the etiology and control of major human tropical diseases including tuberculosis, HIV/AIDS
and malaria, as well as neglected tropical diseases including leishmaniasis, African
trypanosomiasis and leprosy. We highlight that several ncRNAs are involved at different
stages of development of these diseases, for example miR-26-5p, miR-132-3p, miR-155-
5p, miR-29-3p, miR-21-5p, miR-27b-3p, miR-99b-5p, miR-125-5p, miR-146a-5p,
miR-223-3p, miR-20b-5p, miR-142-3p, miR-27a-5p, miR-144-5p, miR-889-5p and
miR-582-5p in tuberculosis; miR-873, MALAT1, HEAL, LINC01426, LINC00173,
NEAT1, NRON, GAS5 and lincRNA-p21 in HIV/AIDS; miR-451a, miR-let-7b and miR-
106b in malaria; miR-210, miR-30A-5P, miR-294, miR-721 and lncRNA 7SL RNA in
leishmaniasis; and miR-21, miR-181a, miR-146a in leprosy. We further report that several
ncRNAs were investigated as diseases biomarkers and a number of them showed good
potential for disease diagnosis, including miR-769-5p, miR-320a, miR-22-3p, miR-423-
5p, miR-17-5p, miR-20b-5p and lncRNA LOC152742 in tuberculosis; miR-146b-5p,
miR-223, miR-150, miR-16, miR-191 and lncRNA NEAT1 in HIV/AIDS; miR-451 and miR-
16 in malaria; miR-361-3p, miR-193b, miR-671, lncRNA 7SL in leishmaniasis; miR-101,
miR-196b, miR-27b and miR-29c in leprosy. Furthermore, some ncRNAs have emerged
as potential therapeutic targets, some of which include lncRNAs NEAT1, NEAT2 and
lnr6RNA, 152742 in tuberculosis; MALAT1, HEAL, SAF, lincRNA-p21, NEAT1, GAS5,
NRON, LINC00173 in HIV/AIDS; miRNA-146a in malaria. Finally, miR-135 and miR-126
were proposed as potential targets for the development of therapeutic vaccine against
leishmaniasis. We also identify and discuss knowledge gaps that warrant for increased
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research work. These include investigation of the role of ncRNAs in the etiology of African
trypanosomiasis and the assessment of the diagnostic potential of ncRNAs for malaria,
and African trypanosomiasis. The potential targeting of ncRNAs for adjunctive therapy
against tuberculosis, leishmaniasis, African trypanosomiasis and leprosy, as well as their
targeting in vaccine development against tuberculosis, HIV/AIDS, malaria, African
trypanosomiasis and leprosy are also new avenues to explore.
Keywords: non-coding RNAs, tuberculosis, HIV/AIDS, malaria, leishmaniasis, African trypanosomiasis, leprosy
INTRODUCTION

Non-translated or non-coding RNAs (ncRNAs) are the
transcripts of the genome that are not meant to be translated
into proteins (1). They represent about 98% of total RNAs
content within the human cells (2, 3) and were initially
thought to be byproducts of transcription, therefore referred to
as “Junk RNAs”. However, a growing body of evidence have
unveiled the role of certain ncRNAs including microRNAs
(miRNAs) and long non-coding RNAs (lncRNAs) as key
regulators of gene expression, that is they can alter genes
expression in a reversible, transmissible, and adaptative way,
without modifying the DNA sequence (4). MicroRNAs are an
abundant class of highly conserved small (18-25 nucleotides
long) RNA species that generally downregulate the expression
of their target genes at the post-transcriptional level.
Mechanically, miRNAs bind in a sequence-specific manner to
complementary regions in the 3’ untranslated region (3’UTR) of
their target mRNAs, thereby triggering mRNA degradation or
translation inhibition. In this way, a single miRNA can control
the expression of several genes and a single gene expression can
be controlled by several different miRNAs (5). Contrary to
miRNAs, lncRNAs (at least 200 nucleotides long) are less
studied, display poor sequence conservation and regulate the
expression of their nearby proximal genes (Cis regulation) as well
as distant genes (Trans regulation) at the chromatin,
transcription and translation levels (6–8).

Several miRNAs and lncRNAs are emerging as key regulators
of immune cells differentiation, activation, and function,
including macrophages, dendritic cells and T lymphocytes (6).
Some have been associated with specific disease conditions such
as Cancer, cardiovascular, developmental (1, 9–12),
neurodegenerative (13) and major infectious diseases such as
tuberculosis and HIV/AIDS (14–16). There are however few or
no studies addressing the role of ncRNAs in the etiology,
diagnosis, treatment, or vaccine development for neglected
human tropical diseases (NTDs) which are a group of less
investigated infectious diseases especially common in tropical
areas such as Africa and Southeast Asia where people do not have
proper access to clean water and adequate means to discard their
waste. In this review, we summarize most recent findings on the
role of miRNAs and lncRNAs on major human tropical diseases
including tuberculosis, HIV/AIDS and malaria. We also provide
a first-time summary of our current understanding of the role of
these ncRNAs in the etiology and control of neglected tropical
diseases including leishmaniasis, African trypanosomiasis and
org 298
leprosy. We also identify and discuss knowledge gaps that
warrant for increased research effort.
TUBERCULOSIS

Tuberculosis (TB) is an infectious disease caused by
Mycobacterium tuberculosis (Mtb) which has topped HIV as
the deadliest infectious agent worldwide since 2017. Developing
countries are highly burdened by this disease and further
threatened by the emergence of multi-drug resistant and
extensively drug resistant Mtb strains. Accurate diagnosis and
effective treatment are the key elements to interrupt TB
transmission (17). Several studies have linked miRNAs and
lncRNAs to the onset and progression of TB, and some of
those ncRNAs were identified as biomarkers for TB diagnosis
or treatment (Table 1).

Non-Coding RNAs in the Etiology
of Tuberculosis
To fight a bacterial infection, host innate and/or adaptive
immunity has to be activated. Mycobacterium tuberculosis like
many other successful pathogens has evolved mechanisms to
avoid the host immune system and ensure its intracellular
survival and persistence. This is possible through the
subversion of key ncRNAs that control the cellular and
humoral processes enacted in host innate and adaptive
immune response against Mtb (Figure 1).

The induction of a robust yet controlled inflammatory
response plays a key role in the containment and eradication
of the infection at an early stage. It was found that Mtb
suppresses inflammation via the upregulation of miR-21-5p,
miR-27b-3p, miR-99b-5p, miR-125-5p, miR-146a-5p, miR-
223-3p, and the downregulation of let-7f, miR-20b-5p and
miR-142-3p (18). Mtb HN878 infection of monocyte-derived
macrophages (MDMs) induces the expression of the pro-
inflammatory lncRNA-PACER (also known as lncRNA-Cox-2)
which is a positive regulator of its proximal pro-inflammatory
gene Ptgs-2 (Also known as Cox-2) (25).

Macrophage and other phagocytes are the first immune cells
to encounter Mtb in the lungs and make use of their phagocytic
activity to engulf and destroy the invading Mtb using different
cell death mechanisms. Mtb has developed several strategies to
avoid killing within phagocytes. Mtb inhibits the phagosome
maturation and autophagy via upregulation of miR-33 locus (18,
26), miR-27a-5p (18, 20), miR-144-5p and miR-889-5p.Mtb also
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evades the host defense by Inhibiting macrophage apoptosis (27)
via the upregulation of miR-582-5p (28). It was also observed
that Mtb HN878 infection of MDMs induces the expression of
lincRNA-p21, a positive regulator of p53-dependent cell cycle
arrest and apoptosis in numerous cell types (25, 29–32).

Much research is warranted to understand the contribution of
lncRNA-PACER and lincRNA-p21 to the onset and progression
of TB. Also there are growing body of evidence suggesting that
Mtb-derived ncRNAs may be delivered to the host immune cells
and affect their function. The contribution of such mechanisms
to host immune evasion needs in-depth investigation.

Non-Coding RNAs in the Diagnosis
of Tuberculosis
Several miRNAs are decreased in the plasma of Mycobacterium
tuberculosis infected patients compared to healthy individuals
and are described as biomarkers for the diagnosis of tuberculosis
(33). Amongst those miRNAs, miR-769-5p, miR-320a and miR-
22-3p subsequently showed higher specificity (4, 33) at 90%
sensitivity (92%), AUC (95%) and lower heterogeneity (I= 0%) in
ethological-confirmation validation sets (17). Also, miR-423-5p,
miR-17-5p, and miR-20b-5p were reported to be significantly
increased in the serum of patients with tuberculosis and had the
potential to be used to diagnose TB with an accuracy of 78.18%
(21). The level of long noncoding RNA LOC152742 was found to
Frontiers in Immunology | www.frontiersin.org 399
be high in sputum and plasma of infected patients, hence could
serve as novel biomarker for the diagnosis of active
tuberculosis (22).

Sputum-negative pulmonary tuberculosis cases showing no
clinical or microbial evidence contribute to the development and
spread of active tuberculosis (34). Accurate diagnosis of sputum
smear-negative cases of pulmonary TB remains very challenging.
It was found that lncRNAs ENST00000429730.1 and
MSTRG.93125.4 were upregulated in lung tissue samples
collected from patients with sputum-negative pulmonary TB
with high metabolic activity as compared to low metabolic
activity according to FDG-PET/CT(Positron emission
tomography with computed tomography (PET/CT) using
fluorine-18-fluoro-deoxyglucose (FDG)) classification. Hence
these lncRNAs might be potential biological indicators of
metabolic activity in tuberculosis lesions for sputum-negative
tuberculosis (24).

The emergence of multidrug-resistant strains of Mtb has
further complicated the control and eradication of this disease.
It was found that the plasma levels of miR-320a were decreased
in drug-resistant TB patients as compared to pan-susceptible TB
patients (33). Therefore, this miR-320a may serve as a biomarker
for drug-resistant TB. Also, lncRNAs CTD-2331D11.3 and
AC079779.5 were found to be increased in the Peripheral
Blood Monocytic Cells (PBMCs) from patients infected with
TABLE 1 | Non-coding RNAs in the etiology and control of tuberculosis.

Role in
tuberculosis

Non-coding RNA Action Reference

Etiology miR-26-5p Inhibition of innate immunity (18)
miR-132-3p (18)
miR-155-5p (18, 19)
miR-29-3p (18)
miR-21-5p Suppression of inflammation (18)
miR-27b-3p (18)
miR-99b-5p (18)
miR-125-5p (18)
miR-146a-5p (18)
miR-223-3p (18)
let-7f (18)
miR-20b-5p (18)
miR-142-3p (18)
miR-33 locus Inhibition of phagosome maturation and autophagy (18)
miR-27a-5p (18, 20)
miR-144-5p (18)
miR-889-5p (18)
miR-155-5p Apoptosis inhibition (18)
miR–582-5p (18)

Diagnosis miR-769-5p Downregulation in TB patients (8)
miR-320a
miR-22-3p
miR-423-5p Upregulation in TB patients (21)
miR-17-5p
miR-20b-5p
lncRNA LOC152742 (22)

Therapeutic
targets

lncRNAs NEAT1 Downregulation during drug treatment, association with disease improvement (23)
lncRNAs NEAT2 (23)
lnrRNA 152742 (22)
lncRNAENST00000429730.1 Downregulation during drug treatment, associated with complete inactivation of tuberculosis lesions from

sputum negative patients
(24)

lncRNA MSTRG.93125.4 (24)
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Multi-drug resistant Mtb strains (MDR-TB) when compared to
patients infected with drug-sensitive strains, indicating this
lncRNAs may be potential biomarkers for multi-drug resistant
TB (35).

Non-Coding RNAs as Therapeutic
Biomarkers of Tuberculosis
The role of ncRNAs as potential host-directed therapeutical
targets has been reviewed before (36). As a complement to that
review article, recent studies have reported an increase in the
expression of lncRNAs NEAT1 and NEAT2 in macrophages
Frontiers in Immunology | www.frontiersin.org 4100
during Mtb infection. Their expression level was decreased
during drug treatment, which was associated with
improvement of the disease (23). The same observation was
made with lnr6RNA 152742 which was upregulated in the
plasma and sputum of patients and gradually downregulated in
the course of the treatment (22).

Successful treatment of pulmonary tuberculosis is generally
declared after absence of Mtb in sputum smear under
microscopy and under culture. However, pulmonary TB
lesions may still be harboring persisting slow growing,
metabolically active but non-culturable bacilli that are less
FIGURE 1 | The role of non-coding RNAs in the etiology of tuberculosis. Several ncRNAs enhance host effector killing functions against mycobacterium tuberculosis
and favor the bacterium survival and persistence within the infected host. There is knowledge gap about 1- host ncRNAs that regulate the bacterium engulfment
within phagosomes and release in extracellular vesicles such as exosomes; 2- the role of Mtb-derived ncRNAs on the outcome of Mtb-macrophage interaction.
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sensitive to chemotherapy agent and may cause TB relapse (37,
38) lncRNAs ENST00000429730.1 and MSTRG.93125.4
described as indicators of metabolic activity in tuberculosis
lesions for sputum-negative tuberculosis (24), hence are
potential biomarkers of complete inactivation of tuberculosis
lesions, thus of complete cure of tuberculosis (24).
MALARIA

Malaria is a mosquito-borne disease caused by parasites of the
genus Plasmodium. It is transmitted through the bites of infected
female Anophelesmosquitoes. Five parasite species cause malaria
in humans: P. knowlesi, P.malariae, P.ovale, P. vivax and P.
falciparum1. The two last pose the greatest threat2. In 2019,
around 229 million cases of malaria were recorded in the world
with approximately 409 000 deaths3. Symptoms of malaria
comprise fever, shaking chills, headache, muscle aches, and
tiredness. Nausea, vomiting, and diarrhea may also be
involved4. Due to the non-specificity of its symptoms, it is
difficult to distinguish malaria from other acute febrile
illnesses. Non-coding RNAs, which are specific, can be of great
help in resolving this problem.

Non-Coding RNAs in the Etiology
of Malaria
Despite the growing recognition of the contribution of ncRNAs in
the etiology of infectious diseases, only a handful studies have
specifically associated ncRNAs with the onset or progression of any
clinical form of malaria, be it uncomplicated or cerebral (Figure 2).

The clinical outcome of persons infected with Plasmodium
falciparum parasites depends on many factors including parasite
sequestration in tissues, host systemic inflammatory responses,
and vascular dysfunction. It was found that Plasmodium
falciparum-infected red blood cells release extracellular vesicles
(EV) loaded with functional host miR-451a, miR-let-7b and miR-
106b. These miRNAs-loaded EVs are internalized by endothelial
cells within which they induce the production of surface receptor
vascular cell adhesion protein 1 (VCAM-1) and proinflammatory
cytokines such as interleukin-6 (IL-6) and interleukin-1 (IL-1).
This will lead to the promotion of endothelial activation, leakage
and parasite sequestration as well as vascular dysfunction and
pathology during malaria infection (39). Contrary to the
abovementioned microRNAs that promote malaria pathology, it
was found that erythrocytes-derived miR-197-5p and miR-150-3p
reduced the parasite growth, invasion and micronemal secretion
via a mechanism involving the inhibition of the expression of
apicortin, a Plasmodium falciparum’s protein with putative
microtubule-stabilizing properties (40). In addition, the
resistance of sickle cell erythrocytes (carrying the HbS
hemoglobin allele variant in either the heterozygous or the
homozygous form) to infection by Plasmodium falciparum was
1https://www.cdc.gov/malaria/about/biology/index.html
2https://www.who.int/news-room/fact-sheets/detail/malaria
3https://www.who.int/news-room/fact-sheets/detail/malaria
4https://www.cdc.gov/malaria/about/faqs.html
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associated to the expression of miR-451, miR- let-7i and miR-223
which were translocated into the parasite during its
intraerythrocytic life cycle and negatively regulated the parasite
growth (41). The mRNA targets of those microRNAs were
however not investigated, neither was their contribution to the
onset and maintenance of epigenetic marks such as DNA
methylation and histone post-translational modifications on the
promoter of possible target genes.

It was shown that knocking-out/down miR-155 led to
reduced endothelial activation, reduced microvascular leak and
preservation of blood-brain-barrier, reduced disease severity and
improved survival in an experimental mouse model of cerebral
malaria and an engineered human endothelialized microvessel
system (42). Similarly, It was found that miR-19a-3p, miR-19b-
3p, miR-540-5p, miR-142-3p and miR-223-3p were significantly
upregulated in the brain of mice displaying cerebral malaria
(infected with Plasmodium berghei ANKA) as compared to those
with severe but non-cerebral malaria (infected with Plasmodium
yoelii). These miRNA are involved in the control of TGF-b and
endocytosis pathways which are known to be relevant to cerebral
malaria (43). These works on gene-deficient mice models need to
be repeated using humanized mice models and in-vitro human
infection models for those data to have any translational value.
Lastly, a mutation in the miRNA−146a was reported to be linked
with increased odds for P. falciparum infection in first-time
pregnant women, thus providing an indirect evidence of
miRNA-146a protective role against P. falciparum infection (44).

Although no host lncRNA has been associated with malaria
etiology to date, however, high throughput analysis of
Plasmodium falciparum transcriptome have uncovered several
lncRNAs including lncRNA-TARE (45, 46) and lncRNA var-AS
(47, 48) that play important role in the development and
virulence of the parasite. Research is warranted to investigate
the role of these lncRNAs in the parasite immune evasion, host
cell invasion and development within the human host.

Non-Coding RNAs in the Diagnosis
of Malaria
The patients infected with P. falciparum manifest malaria of
differing severities and clinical outcomes, such as uncomplicated
malaria (UM), severe malaria, and cerebral malaria (CM). To
date, few research have focused on investigating ncRNAs as
biomarkers for the diagnosis of malaria. It was found that the
plasma level of miR-451 and miR-16 were significantly lower in
malaria patients compared to uninfected individuals, thus
suggesting that plasma miR-451 and miR-16 are potentially
relevant biomarkers for malaria infection (49).

Many miRNAs including miR-3135b, miR-6780b-5p, miR-
1246, miR-6126, miR-3613-5p, miR-4532 and miR-6068 are
upregulated in humans during the blood phase of P.
falciparum infection as compared to negative controls. This
upregulation was as the result of activation of host innate
immunity (50). These miRNAs could be further investigated as
potential blood biomarkers of the immunopathological state,
thus helping in the early diagnosis of the disease. To date no
lncRNA has been investigated as potential biomarker for the
diagnosis of malaria.
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ncRNAs as Therapeutic Biomarkers
of Malaria
MiRNA-146a is involved in innate immune response through a
negative feedback loop comprising two key molecules
downstream of the TLR machinery: the kinase associated with
the interleukin -1 receptor (IRAK) -1 and the factor associated
with the receptor of TNF (TRAF) -6. Recent studies have shown
the potential of using miRNA-146a as a biopharmaceutical
agent; The results of a current study suggest that miRNA-146a
is involved in innate immunity against malaria, demonstrating
its potency as a biopharmaceutical target (44).
HIV/AIDS

HIV remains a major global public health issue despite the
increasing access to effective HIV prevention, diagnosis,
treatment, and care, including for opportunistic infections.
Approximately 38.0 million people were living with HIV at the
end of 20195. The Human Immunodeficiency Virus (HIV)
targets the immune system and weakens people’s defense
against many infections and some types of cancer. As the virus
destroys and impairs the function of immune cells,
immunodeficiency gradually sets in the infected individual.
The most advanced stage of HIV infection is Acquired
Immunodeficiency Syndrome (AIDS), which can take many
years to develop if not treated, depending on the individual.
With the introduction of Highly Active Antiretroviral Therapy
(HAART), HIV infection has become a manageable chronic
health condition. There is still no cure or vaccine against HIV
infection, which has been known for about forty years to date
and for which research is restless (51). Many studies reported
ncRNAs as novel targets for new drugs (Table 2). These ncRNAs
influence the replication cycle of the virus.

Non-Coding RNAs in the Etiology of
HIV Infection
It is known that HIV interacts with the host in order to complete
its replication cycle, escape immune response and persist within
infected hosts. Such interactions involve both host ncRNAs and
HIV-produced ncRNAs amongst other factors (Figure 3).

HIV hijacks host ncRNAs to promote its replication within the
host. Indeed, it was observed that at the peak of HIV-1 replication,
the virus downregulates the expression of miR-29a and miR-29b
in CD4(+) CD8 (–) PBMCs (67). These two miRNAs were
previously reported to inhibit viral replication through direct
targeting of a conserved site within the viral nef gene (68, 69).
Also, miR-873 was shown to promote HIV-1 replication in an in-
vitro infection model of Jurkat and 293T cells. miR-873 promotes
the production of HIV-1 gag, pol and p24 proteins through yet
undefined mechanisms (52). HIV also upregulates the expression
of host miRNAs let-7c, miR-34a, and miR-124a to promote its
propagation. Let-7c post-transcriptionally inhibits the expression
5https://www.who.int/news-room/fact-sheets/detail/hiv-aids
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of p21 which is a known negative regulator of viral integration and
RNA expression within the infected host cell (70). miR-34a and
miR-124a decrease the mRNA level of TASK1 (70), which is a
mammalian potassium channel known to counteract the viral Vpu
-induced release of HIV virions (71).

Besides miRNAs, HIV also hijacks numbers of lncRNAs to its
advantage, including Metastasis-Associated Lung Adenocarcinoma
Transcript 1 (MALAT1), HIV-1 enhanced lncRNA (HEAL),
LINC01426, lincRNA-p21 and Nuclear-Enriched Abundant
Target 1 (NEAT1).

Indeed, induction of MALAT1 expression in T lymphocytes
contributes to initial viral replication and to disease progression.
Mechanistically, MALAT1 sequesters EZH2, the Histone H3K27
trimethylase of the polycomb repressive complex 2, hence
releasing the epigenetic inhibition of the HIV-1 LTR promoter
responsible for the latency (54).

HIV-1 infection-induced upregulation of lncRNA HEAL
promotes the transcription of HIV-1 in both Monocytes-
derived macrophages and in primary CD4+ T cells. Indeed,
acting as a scaffold, HEAL recruits fused in sarcoma (FUS) RNA-
binding protein to the promoter of CDK2 and HIV-1 LTR
Which are known as activators of multiple proteins essential
for HIV-1 transcription (55).

HIV1 infection-induced LINC01426 enhances HIV-1
replication thanks to its interaction with both the host
RUNX1a transcription factor and viral Tat1 factors that
mediate the lncRNA binding to the 5′ LTR of HIV-1 (56).

HIV-1 induces the complexation of the apoptosis-promoting
lincRNA-p21 with the host protein human antigen R (HuR) and
its subsequent degradation. This will lead to apoptosis inhibition
and enhanced HIV survival within infected macrophages but not
lymphocytes (62). It was observed that HIV-1 infection
downregulates the expression of NEAT1 lncRNA leading to
the reduction of the number of host-protective paraspeckle
bodies, hence increased HIV-1 expression within CD4+ T
lymphocytes (58). NEAT1 is also downregulated during viral
reactivation from a resting state in CD4(+) T cells through an
unknown mechanism leading to the promotion of HIV-1
transcription, and potentially HIV-1 dissemination (58, 59).

Contrary to the above-mentioned ncRNAs, some host
ncRNAs were reported to repress the replication of HIV. These
include miR-29a, miR-133b, miR-138, miR-149 and miR-326,
NEAT1, noncoding repressor of Nuclear Factor of Activated T
cells (NFAT or NRON), growth arrest-specific transcript 5
(GAS5), lincRNA-p21, 7SK and NEAT1.

Indeed, miR-29a is highly induced in HIV-1-infected Jurkat
cells where it represses HIV replication through direct targeting
of the HIV-1 nef 3’ UTR region. However, the expression of this
miR-29a is significantly downregulated at the peak of HIV-1
replication as already mentioned, thus highlighting its host-
protective effect against HIV-1 infection (68, 69). In addition
to miR-29a, it was found that overexpression of in-silico
predicted miR-133b, miR-138, miR-149 and miR-326 decrease
HIV replication in various primary T cells and T cell lines. It was
further shown that miR-326 acts by direct targeting of a sequence
within HIV-1 (72).
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As mentioned above, HIV-1 infection downregulates the
expression of NEAT1 which would otherwise restrict HIV-1
replication through sequestration of unspliced viral RNA into
paraspeckles (58).
Frontiers in Immunology | www.frontiersin.org 7103
The Noncoding Repressor of Nuclear Factor of Activated T cells
(NFAT, or NRON) was shown to inhibit HIV-1 transcription and
induce HIV-1 latency via induction of a proteasome-mediated
HIV-1 Tat degradation, and in an NFAT-independent manner
FIGURE 2 | The role of non-coding RNAs in the etiology of malaria. Very few ncRNAs known to involve in the etiology of Malaria. There is knowledge gap about 1-
host ncRNAs that regulate the uptake/entry of plasmodium within erythrocytes; 2- host-detrimental ncRNAs and their mechanisms of action; and 3- the role of
plasmodium-derived ncRNAs on the outcome of plasmodium-erythrocyte interaction.
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(60). This findings corroborate the previous observation that NRON
is highly expressed in resting CD4(+) T lymphocytes and HIV-
proteins Nef and Vpu downregulate NRON expression, hence
increase HIV-1 transcription via mechanisms that involved
NFAT transcription factor but are still not fully understood (61).

The lncRNA Growth Arrest-Specific Transcript 5 (GAS5) inhibits
HIV-1 replication by acting as a competing endogenous RNA
(ceRNA), suppressing the effects of the host-detrimental miR-873 (52).

It is now recognized that there are ncRNAs originating from
virus genomes. For instance, the antisense transcript originating
from the Nef region in the HIV-1 genome (73, 74) which plays
important role in the transcriptional control of HIV-1, notably
via epigenetics mechanisms (75). There is currently no studies
investigating the role of HIV-1-originating ncRNAs in the
regulation of the outcome of host-virus interaction.

Non-Coding RNAs in the Diagnosis
of HIV Infection
miR-146b-5p, miR-223, miR-150, miR-16, and miR-191 were
found to be down regulated during HIV infection and
plentifully expressed in B and T-lymphocytes, confirming a
positive disease status (64, 65). Furthermore, some authors
suggested that the presence of NEAT1 in plasma is a potential
biomarker of HIV-1 infection (76).

Non-Coding RNAs as Therapeutic
Targets of HIV Infection
Some ncRNAs have been associated to the treatment of HIV
infection. miR-29a can be used as an indicator for the on-
treatment disease evolution CD4 count or zenith HIV viral
load (77). Its expression is associated to markers of HIV
infection in long-term survivors, treatment-experienced
patients (77). 7SK, by its pseudouridylation, can inhibit HIV
Frontiers in Immunology | www.frontiersin.org 8104
transcription and escape from latency, suggesting it may be a
new target for eliminating latent viral reservoirs (63, 78).

Many lncRNAs can be related to therapeutic research of HIV
infection. MALAT1, as a promoter of HIV transcription, is a
potential therapeutic target (54, 63). uc002yug.2, by activating
latent HIV and HIV replication, can be a potential therapeutic
target (56, 63). HEAL may be an attractive therapeutic target to
inhibit HIV-1 latency, particularly considering that it is only
upregulated in infected CD4+ and macrophages (53, 55, 63). SAF,
involved in the resistance of HIV-1–infected macrophages to
activation of apoptotic caspases, is a potential therapeutic target
specifically intended for HIV cellular reservoirs (63, 66). lincRNA-
p21 can constitute a novel therapeutic intervention strategy for HIV
infection in macrophages (62, 63). NEAT1 is a feasible target for HIV
treatment that involves the reactivation of latent HIV (58, 59, 63).
GAS5, by suppressing miR-873, may be a novel biomarker for
antiviral drugs and potential target for HIV treatment (52, 63).
NRON, as an actor of HIV-1 latency, may be a novel target for
reversing viral latency (60, 61, 63). TAR-gag, as an “RNAmachine” of
HIV genetic regulation, is a novel therapeutic target to reverse viral
latency (63, 79). HIV-encoded lncRNA, as an epigenetic brake to
regulate viral transcription, is a novel therapeutic target to inhibit the
emergence of viral latency (51, 63, 75). LINC00173, which regulates
cytokine levels in T cells, is a new therapeutic target for
immunotherapy (57, 63).
LEISHMANIASIS

Leishmaniasis is a neglected tropical disease caused by infection with
Leishmania parasites, which are spread by the bite of phlebotomine
sand flies. There are different forms of leishmaniasis in people and the
most common are Cutaneous Leishmaniasis (CL), which causes skin
TABLE 2 | Non-coding RNAs in the etiology and control of HIV/AIDS.

Role in HIV Infection Non-coding RNA Action Reference

Etiology miR-873 Activation of HIV transcription (52, 53)
MALAT1 (53, 54)
HEAL (53, 55)
LINC01426 (53, 56)
LINC00173 (57)
NEAT1 Inhibition of HIV transcription (53, 58, 59)
NRON (60, 61)
GAS5 (52)
lincRNA-p21 (62, 63)

Diagnosis miR-146b-5p Downregulation in B and T-lymphocytes (64, 65)
miR-223
miR-150
miR-16
miR-191
lncRNA NEAT1 Presence in the plasma

Therapeutic targets MALAT1 Promotion of HIV transcription, (63)
HEAL Action in HIV-1 latency (53)
SAF Resistance of HIV-1–infected macrophages to activation of apoptotic caspases (66)
lincRNA-p21 HIV-1–infected macrophages (62)
NEAT1 Dissemination of HIV-1 (58, 59)
GAS5 Suppression of miR-873 (52)
NRON HIV-1 latency (60, 61)
LINC00173 Regulation of cytokine levels in T cells (57)
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sores, and Visceral Leishmaniasis (VL), which affects several internal
organs (generally spleen, liver, and bone marrow)6.

Leishmaniasis is prevalent on every continent except
Australia and Antarctica. It is difficult to estimate the number
of new cases that may vary over time. For CL, estimates of the
number of new cases per year have ranged from approximately
700,000 to 1.2 million or more. For VL, the estimated number of
new cases per year may have decreased to <100,000, but previous
estimates ranged up to 400,000 or more cases7. If not treated,
severe cases of visceral leishmaniasis typically are fatal.
6https://www.cdc.gov/parasites/leishmaniasis/index.html
7https://www.cdc.gov/parasites/leishmaniasis/epi.html
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Before considering treatment of leishmaniasis, it is
essential to make sure the diagnosis is correct. It can be
done by detecting Leishmania parasites (or DNA) in tissue
specimens from skin lesions (CL) or bone marrow (VL). This
tissue sampling is an invasive method. Conversely, the
diagnosis of disease with the help of a biomarker is a non-
invasive tool that has shown to have an important function in
early diagnosis of infection. There is no cure for leishmaniasis
and chemotherapy is threatened by limited efficacy coupled
with the development of resistance and other side effects (80).
Leishmania parasites elude the host defensive. Some ncRNAs
have been reported as biomarkers for the diagnosis and the
treatment of leishmaniasis (Table 3).
FIGURE 3 | The role of non-coding RNAs in the etiology of HIV/AIDS. ncRNAs control several steps of HIV life cycle including viral RNA retro-transcription, cDNA
integration, transcription and viral particles production. More research needed to identify 1- host ncRNAs that regulate viral particles release from the host and 2- the
role of HIV-derived ncRNAs on the outcome of HIV-T lymphocyte interaction.
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9https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-
african-(sleeping-sickness
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Non-Coding RNAs in the Etiology of
Leishmaniasis
Like many sophisticated intracellular pathogens, Leishmania has
evolved mechanisms to modify the host responses to ensure their
intracellular differentiation and multiplication. The parasite does
so through the manipulation of the host factors including several
miRNAs (Figure 4).

For instance, Leishmania donovani infection creates hypoxic
conditions leading to HIF-1a-mediated induction of miR-210 in
infected macrophages (81, 86). This miR-210 was shown to
promote the survival of the parasite within the host by targeting
the NFkb subunit p50 and subsequently downregulating the
expression of pro-inflammatory cytokines TNF-a and IL-12
while upregulating the anti-inflammatory cytokine IL-10 within
the infected macrophage (81). Also, L. donovani interferes with
host autophagy by inducing the expression of host miR-30A-5P
which in turn will downregulate the expression of the pro-
autophagic BECN1 protein, hence the increased survival of the
parasite within the infected macrophage (87). Leishmania
amazonensis promotes its survival within the infected host by
upregulating miR-294 and miR-721. These miRNAs target the
nitric oxide synthase 2 (NOS2) mRNA at the post-transcriptional
level, then leading to decreased nitric oxide production and
increased arginase activity within the infected macrophage (88).
miR-21 and miR-146b-5p are significantly downregulated in
monocytes-derived dendritic cells following L. donovani and L.
major infection. In-silico prediction have identified SMAD7 and
TRAF6, two members of the TGF-b signaling pathway as targets
for these two miRNAs (89). It was found that L. major infection
led to the down-regulation of miR-10a in Foxp3+ Treg cells. This
miR-10a decreased IFNg and enhanced the suppressive function of
Treg cells (90).

Leishmania promastigotes and amastigotes infection represses
the expression of the lncRNA 7SL RNA, an important component of
the signal recognition particle in macrophages. This will convert
these cells into permissible hosts favorable to the establishment and
hiding of the parasite within the macrophages’ phagolysosomes (91).

It is still unknown whether and which host ncRNAs control
leishmania parasites entry, engulfment within phagosomes and
fusion of phagosomes with lysosomes.

An investigation on Leishmania major genome revealed that
there are 1884 uniquely expressed ncRNAs in that parasite, some
of which were recently shown to possess protein coding potential
(92). The contribution of these parasite-derived ncRNA to the
outcome of parasite-host interaction still need investigation.
Frontiers in Immunology | www.frontiersin.org 10106
Non-Coding RNAs in the Diagnosis
of Leishmaniasis
The 7SL RNA gene can be used for diagnosis of human
leishmaniasis (93). Diagnosis with the help of 7SL RNA is
rapid, sensitive, specific, and simple (93).

Non-Coding RNAs in the Treatment
of Leishmaniasis
Some authors suggested that miR-361-3p is a prognostic biomarker
in cutaneous leishmaniasis lesions caused by Leishmania braziliensis
(82). miR-193b and miR-671 were associated with a good response
to treatment of Human localized cutaneous leishmaniasis caused by
Leishmania braziliensis (83). Targeting of let-7a with Locked
Nucleic Acid (LNA) Antisense Oligonucleotides (ASOs) was
shown to increase L. major-infected MDMs apoptosis and
necrosis, therefore, targeting let-7a was suggested as a potential
therapeutic approach (94).

Non-Coding RNAs in Vaccine
Development Against Leishmaniasis
miRNA21 has been recently shown to negatively associate with IL-
12 production and priming of protective Th1 response, suggesting
declining levels of miRNA-21 as a potential biomarker of safety and
immunogenicity in anti-leishmanial vaccines (84, 95).

Therapeutic vaccines may be developed by targeting miRNA-
135 and−126 that bias the Th2 response toward protective Th1
type (84, 85).
AFRICAN TRYPANOSOMIASIS

Also known as sleeping sickness, Human African Trypanosomiasis
(HAT) is a neglected tropical disease caused by microscopic
parasites of the species Trypanosoma brucei whose vector is an
insect of the genus Glossina: the tsetse fly8. Two subspecies of
Trypanosoma brucei are responsible of human disease: T. b.
gambiense in 24 countries in west and central Africa, and T. b.
rhodesiense in 13 countries in eastern and southern Africa9.

HAT is curable with medication but is fatal if left untreated.
Diagnosis must be made as early as possible to avoid progressing
to the neurological stage in order to prevent complicated and
TABLE 3 | Non-coding RNAs in the etiology and control of leishmaniasis.

Role in
Leishmaniasis

Non-coding
RNA

Action Reference

Etiology miR-210 Downregulation of NF-kB mediated pro-inflammatory immune responses (81)
Therapeutic targets miR-361-3p Its high expression in cutaneous leishmaniasis lesions (82)

miR-193b Influence in the expression of genes related to the inflammatory response observed in localized cutaneous
leishmaniasis

(83)
miR-671

Diagnosis lncRNA 7SL It makes the difference between Leishmania species infections
Vaccine
development

miR-135 Biasing the Th2 response toward protective Th1 type (84, 85)
miR-126
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risky treatment procedures (95). Diagnosis is made clinically or
by light microscopy; which are both insensitive and require
certain skills10. The use of biomarkers such as ncRNAs could
enhance sensitivity.

Non-Coding RNAs in the Etiology
of African Trypanosomiasis
The alteration of nine miRNAs Including miR-193b, miR-338
(upregulated), miR-199a-3p, miR-27b and miR-126*
10https://www.cdc.gov/parasites/sleepingsickness/diagnosis.html
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(downregulated) has been identified in the peripheral blood of
HAT patients (96). They were non-specific and some of themwere
previously reported changed during other infectious diseases or
cancer. They might be a mirror lymphocyte activation or
inflammation observed in HAT (96). However, the mechanisms
of action of these microRNAs are still to be investigated.

ncRNAs as Diagnostic Biomarkers of
African Trypanosomiasis
The SL-RNA was described as an attractive molecular target of the
sleeping sickness (97). Later, the small RNA derived from the non-
FIGURE 4 | The role of non-coding RNAs in the etiology of leishmaniasis. Most studies have identified ncRNAs that enhance host effector killing functions against
leishmania parasites as well as those that favor parasite survival and persistence within the infected host. There is knowledge gap about 1- host ncRNAs that
regulate the parasite entry within the host, its engulfment within phagosome and the fusion between phagosome and lysosomes; 2- the role of Leishmania-derived
ncRNAs on the outcome of leishmania-macrophage interaction.
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coding 7SL RNA was detected at high levels in the serum of infected
cattle (98). This ncRNA is highly sensitive and can be detected
before the onset of parasitemia as well as during periods where there
is subpatent parasitemia by microscopy (98). It can also make the
difference between infections with Trypanosoma brucei,
Trypanosoma congolense and Trypanosoma vivax; providing the
basis for the development of a cheap, non-invasive and highly
effective diagnostic test for trypanosomiasis (98).

ncRNAs as Therapeutic Biomarkers of
African Trypanosomiasis
The therapy of trypanosomiasis is currently based on anti-
trypanosome drugs. No therapeutic field with ncRNAs has yet
been investigated. Research should investigate this domain and
see if ncRNAs might be useful for monitoring the treatment of
this disease.
LEPROSY

Also called Hansen’s disease, leprosy is a chronic infectious
disease caused by Mycobacterium leprae. This slow-growing,
obligate intracellular bacterium is the only known bacterium
that infects Schwann cells of peripheral nerves. In addition, M.
leprae infects macrophages and dendritic cells (99). M leprae
mainly affects the skin, the peripheral nerves, mucosa of the
upper respiratory tract, and the eyes11 12. According to official
figures from 159 countries from the 6 WHO Regions, 208 619
new leprosy cases were globally registered in 201813.

Leprosy presents in many clinical forms with the two
extremes being the Tuberculoid and the Lepromatous forms.
In the tuberculoid forms (TT and BT), bacilli are absent or
rarely found in neural branches, macrophages, or mononuclear
cells of the papillary dermis. the disease is self-limited. On the
other hand, in lepromatous forms (BL and LL), the bacilli are
abundant and can parasitize practically all tissues, hence the
disease is disseminated. These clinical forms can be recognized
with the naked eye. To confirm the diagnosis, a sample of skin
or nerve can be examined under the microscope and tests may
also be done to differentiate it from other skin diseases14. These
sampling techniques are invasive. Alternatively, to diagnose an
infection early, biomarkers are useful and non-invasive. Some
ncRNAs have been reported as biomarkers for the diagnosis of
leprosy (Table 4).

Non-Coding RNAs in the Etiology and
Occurrence of Leprosy
It is now recognized that ncRNAs play important roles in the
deregulation of the immune response in the varied and
polymorphic cells targeted in the leprosy skin lesions onset
(99, 104, 105). Specific miRNAs regulated during infection
11https://www.cdc.gov/leprosy/index.html
12https://www.who.int/news-room/fact-sheets/detail/leprosy
13https://www.who.int/news-room/fact-sheets/detail/leprosy
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either stimulate the immune response or facilitate immune
evasion by pathogens (Figure 5).

For instance, miR-21 is upregulated in M. leprae- infected
monocytes in which it downregulates the expression of genes
encoding 2 vitamin D-dependent antimicrobial peptides CAMP
and DEFB4A, hence used by the mycobacterium to evade the
vitamin D-antimicrobial pathway (102). Also, miR-21 involves
in the indirect upregulation of IL-10 and is differentially
expressed in humans with progressive lepromatosis.

miR-146a expression is upregulated in hosts infected with live
M. leprae. miR-146a bears a single nucleotide polymorphism
associated with the risk of developing leprosy, hence the
expression of this miR is dependent on the host genotype
(101). Carriers of the miR-146a C allele have been shown to
express high levels of mature miR-146a coupled to a reduced
expression of TNF (Tumor Necrosis Factor) with a susceptibility
to leprosy; suggesting that miR-146a negatively influences the
secretion of TNF by controlling its level of expression.

miR-181a expression is downregulated in M leprae-infected T
lymphocytes. This downregulation correlates with the increased
expression of miR-181a target SHP2, a phosphatase involved in the
inhibition of T cell receptor signaling (106). Indeed, higher miR-
181a expression correlates with greater T cell sensitivity in immature
T cells (107) suggesting that the downregulation of miR-181a
expression in M. leprae-infected T lymphocytes involves in the
prevailing T cell hyporesponsiveness during leprosy progression.

Recent studies have identified differentially expressed
piwiRNAs (piRNAs) in leprosy skin lesions from tuberculoid
tissue, lepromatous tissue, and healthy subject tissues (108). This
class of small ncRNAs is closely related to miRNAs and its study
will provide additional clues on the contribution of ncRNAs to
the onset, development, and progression of leprosy.
The contribution of M. leprae-derived ncRNAs also need to
be explored.

ncRNAs as Diagnostic Biomarkers
of Leprosy
Early diagnosis of leprosy is very important to control the disease
and put in place preventive measures. Currently, the diagnosis of
leprosy is based on clinical examination and skin biopsy.
Techniques based on PCR and serological analysis have been
developed but have not made it possible to diagnose leprosy with
acceptable specificity and sensitivity given the different clinical
forms and/or the bacterial load. However, the identification of
biomarkers allows the diagnosis of leprosy with greater
sensitivity and specificity. Due to the influence of the host’s
genetic makeup on the development of leprosy and the genetic
variants associated with it. The expression profile of ncRNAs and
more precisely miRNAs is a key element exploited in the
development of reliable diagnostic and prognostic biomarkers.
miR-101, miR-196b, miR-27b and miR-29c have been
differentially expressed in different cell types: macrophages, LT,
epithelial cells, dendritic cells, mast cells with establishment of an
immune/inflammatory microenvironment in M. leprea
14https://www.cdc.gov/leprosy/index.html
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FIGURE 5 | The role of non-coding RNAs in the etiology of leprosy. Several ncRNAs are found to be instrumental in the induction or inhibition of the host effector killing
functions against Mycobacterium leprae. More research needed to identify 1- host ncRNAs that regulate the parasite entry within the host, its engulfment within phagosome
and the fusion between phagosome and lysosomes; 2- the role of M. leprae-derived ncRNAs on the outcome of mycobacterium-macrophage interaction.
TABLE 4 | Non-coding RNAs in the etiology and control of leprosy.

Role in leprosy Non-coding RNA Action Reference

Etiology miR-181a Rheostat of intrinsic antigen sensitivity during LT development (100)
miR-146a Reduction of the TNF expression (101)
miR-21 Downregulation of host defense genes to evade vitamin D antimicrobial pathway (102)

Diagnosis miR-101 Modulation of the host immune response in leprosy (103)
miR-196b
miR-27b
miR-29c
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infection. These miRNAs are linked to immune genetic targets
and could modulate the host immune response in leprosy
influencing its outcome. Thus, miR-101, miR-196b, miR-27b
and miR-29c were identified as good discriminators in the polar
forms of leprosy (LL: lepromatous leprosy and TT: tuberculoid
tuberculoids) and between physiological state and pathological
state (103) with high levels of sensitivity and specificity.

ncRNAs as Therapeutic Biomarkers of
Leprosy
Although drug treatment has been successful, leprosy still affects
people all over the world. The treatment of leprosy is based
mainly on polychemotherapy, which has so far remained the
only strategy for the treatment and elimination of leprosy (109).
hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-146b-5p, hsa-miR-
342-3p, hsa-miR-361-3p, hsa-miR-3653 hsa-miR-484 and hsa-
miR-1290 were reported deregulated in leprosy and could serve
as therapeutic markers (7, 110).

Non-Coding RNAs in Vaccine
Development Against Leprosy
No ncRNA-based vaccine has been developed so far against
leprosy. Researchers can explore this new research avenue.
CONCLUSION

There is a growing interest in the role of host miRNAs and lncRNAs
in the etiology of major human tropical diseases and the prospect of
targeting these ncRNAs species as biomarkers for the early diagnosis,
treatment response and vaccine development against these diseases.
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Although most research have shed light on the involvement of these
ncRNAs in the onset and development of TB, HIV/AIDS and
Malaria, but few have yet attempted to assess the potential of these
ncRNAs as diagnosis biomarkers, adjunctive therapeutic targets and
vaccine candidates. There is also a lack of information about the
contribution of pathogen-released ncRNAs to host immune evasion
and disease onset. There is a knowledge gap on the role of host
miRNAs and lncRNAs in the etiology, diagnosis and vaccine
development against neglected human tropical diseases. Especially,
more research is warranted to understand the role of these ncRNAs in
the etiology of African trypanosomiasis and the assessment of the
diagnostic potential of ncRNAs for African trypanosomiasis. The
potential targeting of ncRNAs for adjunctive therapy and vaccine
development against leishmaniasis, African trypanosomiasis and
leprosy are also new avenues to explore.
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(1!3)-b-D-Glucan (BDG) represents a potent pathogen-associated molecular pattern
(PAMP) in triggering the host response to fungal and some bacterial infections. Monocytes
play a key role in recognizing BDG and governing the acute host response to infections.
However, the mechanisms regulating monocyte’s acute response to BDG are poorly
understood. We sought to investigate the response of monocytes to BDG at the
epigenetic, transcriptomic, and molecular levels. Response of human monocytes to 1,
4, and 24 hours of BDG exposure was investigated using RNA-seq, ATAC-seq, H3K27ac
and H3K4me1 ChIP-seq. We show that pathways including glutathione metabolism,
pentose phosphate pathway, and citric acid cycle were upregulated at the epigenetic and
transcriptomic levels in response to BDG exposure. Strikingly, unlike bacterial
lipopolysaccharides, BDG induced intracellular glutathione synthesis. BDG exposure
also induced NADP synthesis, increased NADPH/NADP ratio, and increased
expression of genes involved in the pentose phosphate pathway in a GSH-dependent
manner. By inhibiting GSH synthesis with L-buthionine sulfoximine (BSO) before BDG
exposure we show that the GSH pathway promotes cell survival and regulates
monocyte’s effector functions including NO production, phagocytosis, and cytokine
production. In summary, our work demonstrates that BDG induces glutathione
synthesis and metabolism in monocytes, which is a major promoter of the acute
functional response of monocytes to infections.

Keywords: B-glucan, glutathione, immunometabolism, innate immunity, host response
Abbreviations: UT, untreated; BDG, (1!3)-b-D-Glucan; BSO, L-buthionine sulfoximine; GSH, reduced glutathione.
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INTRODUCTION

(1!3)-b-D-Glucan (BDG) represents one of the most abundant
components of the fungal and some bacterial cell walls and is a
potent pathogen-associated molecular pattern (PAMP) in
triggering the host response to infections (1). For example,
invasive fungal infections (IFIs) represent a rising cause of
human disease with increased use of immunosuppressive
therapies, broad-spectrum antibiotics, and invasive medical
devices. Such infections are a common complication for a wide
spectrum of immunocompromised patients including people
living with HIV, cancer, solid organ transplant, systemic lupus
erythematosus, and other predisposing conditions like diabetes
and pregnancy (2). BDG assays are now widely used as
diagnostic tools for identifying mycosis in clinical settings (3–
5). Recent studies have shown that circulating BDG levels are
linked to immune activation and inflammation in people living
with chronic conditions that induce epithelial gut damage and
subsequent microbial translocation such as CMV and HIV
infections (6–9). A growing body of literature has highlighted
the capacity of BDG to induce long-term epigenetic
reprogramming in innate immune cells, termed trained
immunity, which leads to an adjusted response to a subsequent
challenge and to some metabolic changes, including a switch
from oxidative phosphorylation to aerobic glycolysis (10, 11).
Similarly, BDG has been shown to be able to reverse LPS-
induced tolerization in monocytes/macrophages and confer
protection against infectious diseases including leishmaniasis
and tuberculosis (12–14).

Circulating monocytes serve as an integral part of the host
response to infections by detecting PAMPs, phagocytosing/
presenting antigens, and producing pro-inflammatory
cytokines/chemokines to help recruit a larger wave of diverse
leukocytes to the site of infection. In humans, monocytes can
recognize BDG using the C-type lectin receptor Dectin-1 and
complement receptor 3 (CD11b/CD18 heterodimer) (15).
Dectin-1 deficiency has been shown to be associated with
increased susceptibility and significantly impaired immune
response to Candidiasis by monocytes/macrophages in both
mice and humans (16, 17). While the acute recognition and
response of monocytes to BDG is widely recognized as a critical
component of the host’s response to various infections, the
mechanistic pathways implicated in this response remain to be
fully understood.

Herein, we exploited previously published epigenetic and
transcriptomic data on monocytes exposed to BDG (12) to
unveil novel components of the host response to BDG. We
confirmed that BDG induces increased expression of genes
involved in glucose metabolism, including pentose phosphate
and cholesterol metabolism. We expand such knowledge by
revealing for the first time that BDG stimulation induces
epigenetic and transcriptomic changes in monocytes associated
with increased glutathione synthesis and metabolism.
Interestingly, intracellular glutathione levels were crucial in the
regulation of several of the monocyte’s antifungal functions
including resilience to oxidative stress, immunometabolism,
nitric oxide production, phagocytosis, and cytokine production.
Frontiers in Immunology | www.frontiersin.org 2115
MATERIALS AND METHODS

Monocytes from Healthy Donors
All primary cells for in vitro experiments were obtained from
healthy donors who gave written informed consent (Chronic
Viral Illness Service, at McGill University Health Centre
(MUHC) Montreal, QC, Canada) and approved by the REB
(2019–5170) of MUHC. Peripheral blood mononuclear cells
(PBMC) were isolated by leukapheresis and stored in liquid
nitrogen. Cells were rapidly thawed and rested for 1 hour at 37°C.
Monocytes were purified from PBMC using a negative selection
Human Monocyte Isolation Kit (StemCell Easy Sep). Successful
isolation of monocytes was confirmed with flow cytometry (BD
Fortessa) using VivaFix Viability Assay (BioRad), a cocktail of
antibodies from BioLegend: anti-CD3 PE (300456), anti-CD14
BV650 (301835), anti-CD19 PerCP-Cy5.5 (302229), and anti-
CD56 APC (318309). The gating strategy for the live single-cell
CD3- CD19- CD56- CD14+ population is presented in
Supplementary Figure 1. The purity of the isolated monocytes
can be found in (Supplementary Table 1).

Our monocyte isolation protocol is similar to Novakovic et al.
where they have enriched monocytes from healthy volunteers to
generate the functional genomics datasets reanalyzed herein (12).
Briefly, they isolated peripheral blood mononuclear cells
(PBMC) using centrifugation in Ficoll-Paque (GE Healthcare),
followed by an additional Percoll gradient to remove T cells.
Monocytes were then purified using negative selection in an LD
column magnet separator (Miltenyi Biotech) and monocytes
purity was assessed using flow cytometry.

Cell Culture
Monocytes were cultured in complete media consisting of
Dulbecco’s Modified Eagle Medium containing high glucose
and sodium pyruvate (ThermoFisher Scientific) with 10% heat-
inactivated fetal bovine serum (Wisent BioProducts) and 100U/
mL penicillin/streptomycin (Corning). NGS datasets produced
by Novakovic et al. were produced using 5ug/mL of (1!3)-b-D-
glucan from heat killed Candida albicans for 24 hours, as
previously described (12). Cells in our in vitro experiments
were stimulated with 5mg/mL of (1!3)-B-D-glucan from
Alcal igenes faecal i s (S igma-Aldrich) , 100ng/mL of
lipopolysaccharide (LPS) from Escherichia coli O127:B8
(Sigma-Aldrich), 120mM L-buthionine sulfoximine (Sigma-
Aldrich), and/or 1mg/mL of reduced glutathione (Sigma-
Aldrich) for 24 hours unless otherwise stated in figure legends.

ATAC-Seq Peak Finding Analysis
The following published ATAC-seq datasets were analyzed:
untreated, BDG 1h, BDG 4h, and BDG 24h stimulated
monocytes (GEO: GSE85246) (12). Sequence reads were
downloaded using fastq-dump from the SRA Toolkit with the
setting –split-files and mapped to the human hg19 reference
genome assembly with Bowtie 2.4.0 (18). The files containing
mapped reads were converted from SAM to BAM format using
samtools 0.1.18 (19) and then Tag directories were generated for
further analysis using the Homer toolkit (20). To identify
accessible genome regions, we processed the mapped reads
November 2021 | Volume 12 | Article 694152
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with MACS 1.4.1 (21) with a p-value cutoff of 1E-8. Significant
peaks that were less than 100bp apart were merged using
MergePeaks and subsequently annotated using AnnotatePeaks
from the Homer toolkit (20). 55,971 regions were identified to
have accessible chromatin in one or more of the four conditions
and read densities were queried at each location (+/- 100bp of the
peak center) in all four conditions using the AnnotatePeaks
function (20). 34,572 differentially accessible regions (DARs)
between conditions were then identified using a fold-change
threshold of ≥ |2| when compared to the untreated condition
(Supplementary Table 2A). These regions were clustered based
on their dynamics relative to the untreated condition and the
heatmap (Figure 1A) was generated using Java TreeView (22).
Sequence read density profiles (bigwigs) were generated from
BAM files using bamCoverage from the deepTools 3.1.1
toolkit (23).

Transcription Factor Binding Motifs
Analyses
Known and de novo transcription factor binding motifs were
identified in the ATAC-seq DAR clusters using the
findMotifsGenome tool from Homer using the settings: -size
200 -mask. The motifs found to be enriched in one of the clusters
were then queried to find their relative frequency within each
cluster vs randomly generated sets of background sequences
using the Homer toolkit (20). Potential transcriptional
regulatory networks were identified by querying the list of
dysregulated genes from RNA-seq against a database of TF
cistromes using TRRUST (24).

ATAC-Seq Gene Ontology Analyses
Genomic coordinates for each DAR cluster ATAC-seq peaks
were submitted to the GREAT 2.0.2 tool to determine if specific
biological functions were enriched with differentially accessible
regions at different times (25). We used 500kb as the maximum
absolute distance to the nearest transcriptional start site and q-
values less than 1E-10 as statistically significant. Representative
Gene Ontology (GO) biological process categories were selected
to remove redundancy and reported alongside the ATAC-seq
DAR clusters; the full list of enriched GO categories can be found
in (Supplementary Table 2B).

ChIP-Seq Peak Finding Analyses
H3K27ac and H3K4me1 ChIP-seq datasets for untreated, BDG
1h, BDG 4h, and BDG 24h stimulated monocytes were
downloaded using fastq-dump from the SRA toolkit (GEO:
GSE85246) (12). Sequence reads were aligned to the human
hg19 reference genome using Bowtie 2.4.0 (18). The files
containing mapped reads were converted from SAM to BAM
format using samtools 0.1.18 (19) and formatted into Tag
directories for further analysis using the Homer toolkit (20).
Bigwigs were generated from BAM files using bamCoverage
from the deepTools 3.1.1 toolkit (23).

ATAC-Seq and ChIP-Seq Density Profiles
AnnotatePeaks from the Homer toolkit (20) was used to query
the read density at the genomic coordinates of the DAR clusters
Frontiers in Immunology | www.frontiersin.org 3116
in the ATAC-seq, H3K27ac ChIP-seq, and H3K4me1 ChIP-seq
datasets ±1kb centered around the ATAC-seq peak. Data was
visualized in Microsoft Excel 2010 comparing ATAC-seq and
ChIP-seq signals in each cluster after varying durations of
BDG exposure.

RNA-Seq Analyses
Biological duplicates of RNA-seq on humanmonocytes untreated or
stimulated with BDG for 1 hour, 4 hours, or 24 hours were
downloaded using the SRA toolkit using –fastq-dump (GEO:
GSE85246). The quality of sequence reads was confirmed using
FastQC (Babraham Bioinformatics) and low-quality reads and bases
were trimmed using Trimmomatic v.0.3 (26). Reads weremapped to
the human hg19 assembly using HISAT2 (27). Resulting SAM files
were then converted toBAMformatusing samtools 0.1.18 (19).Gene
expression was quantified by counting the number of uniquely
mapped reads to exons with featureCounts (28). Normalization
and differential gene expression analysis was conducted using the
edgeR Bioconductor package (29). Genes with at least three counts
per million reads in at least two samples were retained for pairwise
differential gene expression analyses comparing BDG exposed and
unexposed monocytes. Genes with differential expression > |2| and
FDR(p-value correctedusingBenjamini-Hochbergmethod)<1x10-3

were considered significant and clustered based on differential
expression compared to untreated monocytes (Supplementary
Table 3A). Clusters were visualized using Java TreeView (22).
Bigwigs were made using genomeCoverageBed from bedtools
2.17.0 and wigToBigWig from the UCSC toolkit after scaling per
10 million reads mapping onto exons (30, 31). Gene ontology
enrichment analyses was conducted on differentially expressed
gene clusters by submitting gene sets to EnrichR (Supplementary
Table 3B) (32).

RNA Extraction, cDNA Synthesis, and
Real-Time qPCR
RNA was extracted using EasyPure RNA Extraction Kit
(Transgen Biotech) and cDNA was synthesized using the
TransScript One-Step gDNA Removal and cDNA Synthesis kit
(Transgen Biotech). RT-qPCR was performed with the Luna
Universal qPCR Master Mix (New England BioLabs) using the
primers listed in (Supplementary Table 4). Data was analyzed
using CFX Maestro Software for Real-Time PCR (BioRad) and
normalized to ACTB gene expression.

Monocyte Function
Cell viability was assessed using Trypan blue and counted using a
hemocytometer. Intracellular reduced and oxidized glutathione
levels were measured and normalized per 1 million cells as
previously described (33). NADP and NADPH levels were
measured using an NADP/NADPH Assay (Abcam) and
normalized by cell count. Nitric oxide production was assessed by
a Griess assay on the culture supernatant (34). Phagocytic capacity
of monocytes was assessed by exposing the monocytes to the
pHrodo Green E. coli BioParticles Conjugate for Phagocytosis
(ThermoFisher Scientific) for 30 minutes and the endpoint signal
wasmeasured using a spectrophotometer at OD495nm. IL-6, IL-8,
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and IL10 levels were measured in culture supernatant using
Quantikine Human ELISA kits (R&D Systems).
RESULTS

Epigenetic Landscape of Monocytes
Exposed to BDG
To investigate the functional changes driven by acute exposure of
human monocytes to BDG, we have reanalyzed available
functional genomics datasets (12). We first assessed acute
changes in chromatin accessibility before and after exposure to
BDG for 1, 4, and 24 hours. As expected, BDG induced
significant changes in chromatin accessibility with a total of
34,572 differentially accessible regions (DARs) before and after
different durations of BDG exposure. We grouped these regions
based on (1) early, (2) intermediate, and (3) late chromatin
opening, as well as (4) early, (5) intermediate, and (6) late
chromatin closing (Figure 1A and Supplementary Table 2A).
21,870 regions had increased accessibility after BDG exposure
(groups A-C) whereas 12,702 regions had decreased accessibility
(groups D-F). GO analysis was then conducted to identify
biological processes associated with these groups (Figure 1B
and Supplementary Table 2B). DAR groups associated with
increased chromatin accessibility (A-C) were proximal to genes
involved in myeloid leukocyte activation, metabolic processes,
antigen receptor signaling, organelle assembly, vesicle-mediated
transport, and antigen presentation. Regions with decreased
accessibility were associated with apoptotic processes, plasma
membrane invagination, protein metabolism, cell adhesion,
response to LPS, and cytokine signaling.

We next evaluated the levels of H3K27ac, a mark of active cis-
regulatory regions, and H3K4me1, mark of active and primed
enhancers, in monocytes before and after 1, 4, and 24 hours of
BDG exposure. Groups A-C were associated with significantly
increased H3K27ac and H3K4me1 signals around the ATAC-seq
peak and groups D-F were associated with significantly
decreased signals (Figure 1C and Supplementary Figure 2).
Globally, the timing of these changes in histone modifications
matched changes observed in ATAC-seq signal.

Transcriptomic Changes in Monocytes
Exposed to BDG
To further characterize the acute response ofmonocytes toBDGwe
assessed transcriptomic changes using RNA-seq. Principal
component analysis clearly demonstrates that duration of BDG
exposure (PC1) has a major effect on monocyte gene expression
(Figure 2A). Moreover, monocytes exposed to BDG for 4 hours
have a different transcriptomic program compared to resting
monocytes and monocytes exposed to BDG for 1 hour and 24
hours (PC2). After 24 hours of BDG exposure, we identified 3,852
genes with significantly dysregulated expression compared to
resting monocytes (FC≥|2| and FDR ≤ 0.001) (Figure 2B). Genes
that were significantly dysregulated after BDG exposure were
clustered as (1) early and stable upregulation, (2) transient
upregulation at 4 hours, (3) intermediate and stable upregulation,
(4) late upregulation, (5) early and stable downregulation, (6)
Frontiers in Immunology | www.frontiersin.org 4117
transient downregulation at 4 hours, (7) intermediate and stable
downregulation, and (8) late downregulation (Figure 2C and
Supplementary Table 3A). There is a high degree of correlation
between the ATAC-seq groups and RNA-seq clusters in both
direction and timing of differential chromatin accessibility and
gene expression (Figure 2D), showing that the BDG-induced
changes in chromatin accessibility are associated with
transcriptional changes of proximal genes. Gene ontology
enrichment analyses were performed to identify biological
processes enriched in these RNA-seq clusters (Figure 2E and
Supplementary Table 3B). As previously described, the classical
proinflammatory categories (i.e., TLR, MAPK, LPS, and IFNg
signaling) were enriched in the downregulated clusters (12, 35).
Genes linked to cytokine signaling and transcriptional regulation
were enriched in both up and down regulated gene sets.
Interestingly, the categories enriched in the upregulated clusters
are related to phagosome maturation, RNA and translation, but
importantly multiple metabolism pathways including citric acid
cycle, cholesterolmetabolism, pentose phosphatepathway, electron
transport chain, and glutathione metabolism.
Transcriptional Regulation of Monocytes
Exposed to BDG
As the “transcriptional regulation” GO category was enriched in
both up and downregulated genes clusters (Figure 2E), we
further used the ATAC-seq and RNA-seq datasets to gain
insight in the transcriptional regulation of the monocytes’
response to BDG. Using Homer (20), we search for
enrichment of various transcription factors (TFs) binding
motifs in the ATAC-seq groups (Figure 3A). As expected, the
motif of pioneer TFs (PU.1, CEBP, and AP-1) as well as
architectural TF CTCF were enriched in all clusters. EGR and
MITF binding motifs, previously shown to be enriched after
BDG exposure in this dataset (12), were enriched in all ATAC-
seq groups with increased DARs. The E-box and KLF motifs,
were enriched in groups linked to increased but not decreased
chromatin accessibility. The NRF motif, associated with the
antioxidant response in myeloid cells (36), was enriched in all
the groups with the highest levels of enrichment in clusters with
increased chromatin accessibility (A-C) and cluster F. We then
extracted the differentially expressed TF expression using the
same clustering from Figure 2C (Figure 3B and Supplementary
Table 3C). CTCF, CEBP, EGR, E-box, AP-1, MITF, and NRF
motifs had enrichment in the ATAC-seq groups and the
expression of genes encoding TF of these families were
significantly upregulated (i.e. CTCF, CEBPB, EGR2, CLOCK,
JUN, MITF and NFE2L1-2, respectively), while IRF, NFkB and
RUNX family members were downregulated. Using TRRUST
(24) we queried differentially up and down regulated genes in
response to BDG exposure against a database of TF cistromes
based on ChIP-chip and ChIP-seq datasets (Figure 3C and
Supplementary Table 5A). Interestingly, the NRF2 cistrome
was significantly enriched amongst the genes upregulated after
BDG exposure. Gene ontology of genes in the NRF2 cistrome
that were also upregulated by BDG exposure were enriched for
the biological processes: response to oxidative stress, cell-cell
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adhesion, cytokine signaling, and glutathione metabolism
(Figure 3D and Supplementary Table 5B).
BDG Induces Glutathione Synthesis and
Metabolism in Human Monocytes
Given that glutathione metabolism was enriched in the gene
ontology of upregulated genes and that glutathione synthesis/
Frontiers in Immunology | www.frontiersin.org 5118
metabolism are regulated by NRF2, a TF whose gene expression
is increased after BDG exposure and motif is enriched in all the
ATAC-seq groups, we sought to investigate the effect of BDG
on this pathway in human monocytes (Figure 4A). Strikingly,
the expression of the genes encoding the enzymes catalyzing
GSH synthesis and metabolism GCLC, GSS, and GSR were
increased after 24 hours of BDG exposure as assessed by RT-
qPCR and RNA-seq (Figures 4B, C). At the epigenetic level, 24
A B

C

FIGURE 1 | Changes in the epigenetic landscape of monocytes after BDG exposure. (A) Heatmap of differentially accessible regions (DARs) after BDG exposure
identified using ATAC-seq; fold change ≥ |2|. Regions were clustered (groups A-F) based on increase or decrease of chromatin accessibility after 1h, 4h, and 24h of
BDG exposure. (B) Gene ontology enrichment analysis for each DAR group defined in panel A; the nearest gene to each DAR with a maximum distance of 500kb
were used for the analysis. The top three categories are shown; see Supplementary Table 2B for complete list. (C) Density profiles of ATAC-seq, H3K27ac and
H3K4me1 ChIP-seq at the DAR clusters. Signal is measured in 50bp bins ( ± 1kb) centered on the ATAC-seq peaks.
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hours of BDG exposure was not associated with strong changes
in ATAC-seq signal but H3K27ac was increased at the GCLC
and GSR loci. To verify if the increased expression of GCLC,
GSS, and GSR had a functional impact on the activity of the
GSH pathway, we measured total intracellular glutathione
Frontiers in Immunology | www.frontiersin.org 6119
levels and ratio of reduced (GSH) to oxidized (GSSG)
glutathione after 24 hours of BDG exposure (Figure 4D). In
contrast to LPS stimulation, known to increase intracellular
ROS and thus increase the intracellular GSH/GSSG ratio
without changing total glutathione levels (Supplementary
A B

C

E

D

FIGURE 2 | Differential gene expression of monocytes after exposure to BDG. (A) Principal component analysis of RNA-seq data from untreated monocytes (UT) or
monocytes exposed to BDG for 1h, 4h, and 24h. (B) Volcano plot of differentially expressed genes after 24h of BDG exposure compared to resting monocytes.
False discovery rates (FDR) are calculated using Fisher’s exact test with correction using the Benjamini and Hochberg method. (C) Heatmap identifying groups of
genes that are differentially expressed after 1, 4, and 24 hours of BDG exposure. Genes are grouped (1–8) based on a cutoff of fold-change > 2 (upregulated) or <
0.5 (downregulated) and FDR < 0.001. (D) Bubble histogram showing the association between groups of differentially accessible regions and clusters of differentially
expressed genes after BDG exposure. The color gradient reflects the ratio in the number of regions in each cluster associated with differentially expressed gene
groups compared to control sets of randomly selected genes. Bubble size indicates the strength of the –log10 Fisher’s exact test p-value for the association
between DARs and differentially expressed genes compared to randomly selected control genes. (E) GO category enrichment analysis for groups of differentially
expressed genes (white to blue gradient represents degree of enrichment, grey – not enriched).
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Figure 3) (37), BDG exposure increases both the GSH/GSSG
ratio and the total amount of intracellular GSH (Figure 4D).
Intracellular GSH Is a Regulator of BDG-
Induced NADP Synthesis and Pentose
Phosphate Pathway Metabolism
To determine the role of the GSH induction by BDG on
monocyte function, we evaluated the impact of blocking GSH
synthesis using L-buthionine sulfoximine (BSO), an inhibitor of
g-glutamylcysteine synthetase (GCLC) (38). Pretreating culture
medium with 120mM of BSO was sufficient to inhibit glutathione
synthesis after 48 hours (Figures 5A, B). Conversely, as the
plasma membrane has transport proteins which can move
glutathione between the intra and extracellular environments
Frontiers in Immunology | www.frontiersin.org 7120
(39), adding GSH to the culture media increased intracellular
levels of GSH (Figures 5A, B). Interestingly, while GSH
supplementation or BSO pre-treatment alone did not have any
effect on monocyte survival, BSO treatment followed by BDG
exposure caused significant cell death (Figure 5C), indicating a
protective effect of the elevated GSH pathway activity during
BDG exposure.

The pentose phosphate pathway (PPP) was enriched amongst
genes significantly upregulated after BDG exposure and one of its
products, NADPH, is required for glutathione metabolism
(Figures 6A). Hence, we sought to investigate the relationship
between BDG exposure, glutathione metabolism, and the PPP.
Total intracellular levels of NADP+NADPH and NADPH/
NADP ratio were increased after BDG exposure (Figures 6B,
C). Such elevation was abrogated with BSO pre-treatment and
A B

C D

FIGURE 3 | Changes in motif enrichment and transcription factor expression in monocytes after BDG exposure. (A) Enriched motifs using Homer de novo motif
analysis on the DAR clusters identified in Figure 1A. Color gradient indicates ratio of motif enrichment amongst regions in that cluster compared to randomly
selected regions across the human genome with similar GC-content. Grey boxes indicate fold enrichment less than 1. (B) Heatmap of 342 differentially expressed
transcription factors (TFs) after BDG exposure in the groups defined in Figure 2C. (C) TRRUST query of genes significantly dysregulated by 24h BDG exposure vs
random sets of genes against a database of all known cistromes. Red represents cistromes enriched in genes significantly upregulated by BDG exposure, blue
represents cistromes enriched amongst genes significantly downregulated by BDG exposure (p < 10-7). (D) Biological process gene ontology enrichment analysis of
genes significantly upregulated by BDG exposure and enriched in the NRF2 cistrome (p < 0.01).
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replicable with adding GSH to culture media. At the
transcriptome level, genes encoding enzymes involved in the
pentose phosphate pathway, NADK, NADK2, G6PD, PGLS,
PGD, and TALDO1 were up-regulated with BDG exposure in a
GSH-dependent manner (Figures 6D–I and Supplementary
Figure 4). To some extent, glutathione exposure alone was
sufficient to induce increased expression of these genes in vitro.

Intracellular GSH Is a Regulator of BDG-
Induced NO Secretion, Phagocytosis, and
Cytokine Production
As metabolism of myeloid cells is closely linked to their effector
functions and intracellular GSH levels regulated BDG-induced
metabolic changes, we wanted to investigate if GSH could also
Frontiers in Immunology | www.frontiersin.org 8121
regulate monocyte’s effector functions in response to BDG.
While BDG did not induce increased expression of NOS2, we
observed that BDG induced production of nitric oxide (NO)
(Figures 7A, B). Inhibiting glutathione synthesis with BSO
increased NO production while exposing monocytes to GSH
did not induce any NO. Phagocytic capacity of monocytes was
assessed using pH-sensitive rhodopsin labelled E. coli that
fluoresces in the acidic environment of the phagolysosome.
BDG induced increased phagocytic capacity of human
monocytes in a GSH-dependent manner (Figure 7C). BDG
also induced the upregulation of IL6, CXCL8, and IL10 gene
expression as well as production of IL-6, IL-8, and IL-10 in a
GSH-dependent manner, GSH supplementation alone induced a
similar response (Figures 7D–I).
A D

B

C

FIGURE 4 | Glutathione synthesis and metabolism are induced by BDG stimulation. (A) Schema of glutathione metabolic pathway with genes that are significantly
upregulated from the RNA-seq in green. (B) Expression of GCLC, GSS, and GSR were evaluated with RT-qPCR. Data are presented as median ± standard
deviation of n = 5 biologically independent experiments. (C) ATAC-seq, ChIP-seq, and RNA-seq read density profiles at the GCLC, GSS, and GSR loci.
(D) Monocytes were stimulated with BDG for 24 hours and assessed for total intracellular glutathione levels and GSH/GSSG using calorimetry. Data are presented
as median ± standard deviation of n = 5 biologically independent experiments. P-values were calculated using paired student’s t-test. **P < 0.01; ***P < 0.001.
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DISCUSSION

The objective of this study was to better understand the acute
inflammatory response of monocytes to the PAMP BDG. Using
functional genomicsdata (ATAC-seq,ChIP-seq, andRNA-seq) (12),
we identified that BDG exposure induces changes in the
immunometabolic and effector programs of human monocytes. It
was previously demonstrated that BDG induces the expression of
genes involved in glycolysis, cholesterol synthesis and the pentose
phosphate pathways (11) and metabolomics confirmed increased
activity of these pathways (40). Herein, we identified that BDG
induces glutathione synthesis and metabolism at the epigenetic and
transcriptomic levels. In vitro, we validated this increased gene
expression via RT-qPCR and observed that BDG increases the
global intracellular concentration of glutathione as well as the level
of the oxidized glutathione (GSSG) form. While inhibiting
glutathione synthesis with BSO had no effect on survival on its
own, BSOpre-treatment followedbyBDGexposure had a significant
Frontiers in Immunology | www.frontiersin.org 9122
impact on monocyte survival and function. We observed that
intracellular glutathione was a regulator of BDG-induced
immunometabolic changes by increasing NADP synthesis and the
activity of the pentose phosphate pathway. Interestingly, BDG-
induced effector functions of monocytes such as NO production,
phagocytosis, and cytokine production were also regulated by
intracellular levels of glutathione. These results further elucidate the
acute response of monocytes to BDG and establish a novel role for
glutathione metabolism in monocyte biology.

Monocytes play an important role in clearing infections by
detecting PAMPs, phagocytosing/presenting antigens, and
producing pro-inflammatory cytokines/chemokines to help
recruit other leukocytes to the site of infection. b-glucans are b-
D-glucose polysaccharides with different physicochemical
properties and found in the cell wall of multiple organisms
including fungi, bacteria, yeast, algae, and some cereals. The
pathogen-associated b-glucans are insoluble chains of D-glucose
linkedby1!3 glycosidic bonds, with some 1!6 branching inyeast
A B

C

FIGURE 5 | Intracellular glutathione contributes to monocyte survival after BDG exposure. Monocytes were stimulated with BDG for 24 hours, pre-treated with BSO
for 24 hours and then stimulated with BDG for 24 hours, or stimulated with GSH for 24 hours and then assessed for (A) Intracellular GSH+GSSG (total intracellular
glutathione concentration), (B) GSH/GSSG (reduced to oxidized glutathione ratio), and (C) cell survival. Data are presented as median ± standard deviation of n≥3
biologically independent experiments. P-values were calculated using paired one-way ANOVA with multiple comparisons. ns, not significant; *P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001.
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and fungi. Recognition of BDG by innate immune cells is required
for effective recruitment of other leukocytes and subsequent
clearance of the infection (41). Mice deficient for Dectin-1, the
myeloid cell receptor for BDG, rendered them susceptible to
Candida infection. In fact, these mice had substantially increased
fungal burdens and enhanced fungal disseminationdue to impaired
phagocytosis, antigen presentation, and cytokine/ROS production
Frontiers in Immunology | www.frontiersin.org 10123
of their monocytes (16). In this study, we have used BDG from the
gram negative bacterium Alcaligenes faecalis for our in vitro
experiments while the RNA-seq datasets were generated using
heat killed Candida albicans (7). Despite their different origin and
that fungi BDG harbor 1!6 branching, we believe that these two
reagents can be used interchangeably as we have validated the
transcriptional regulationof genes inducedby fungiBDGusingRT-
A B
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C

FIGURE 6 | BDG induces NADP synthesis and upregulation of the pentose phosphate pathway (PPP) in a glutathione dependent manner. (A) Schema representing
PPP with genes that are significantly upregulated after BDG exposure as assessed by RNA-seq in green and genes that are not differentially expressed in grey.
(B–I) Monocytes were stimulated with BDG for 24 hours, pre-treated with BSO for 24 hours and then stimulated with BDG for 24 hours, or stimulated with GSH for 24
hours and (B) total NADP+NADPH levels as well as (C) NADPH/NADP+ were measured using calorimetry. The relative expression of (D) NADK, (E) NADK2,
(F) G6PD, (G) PGLS, (H) PGD, and (I) TALDO1 were quantified using RT-qPCR. Data are presented as median ± standard deviation of n = 5 biologically independent
experiments. P-values were calculated using paired one-way ANOVA with multiple comparisons. ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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qPCR on monocyte treated with bacterial BDG. Moreover, two
recent reports show that BDG from gram negative bacterium
(Alcaligenes faecalis), zymosan (fungi), and yeast-derived BDG
induce a similar pro-inflammatory phenotype in primary human
monocyte-derived macrophages and primary human monocytes
(42, 43). From clinical applications, we know that BDG from A.
faecalis is extremely similar to fungal BDG, as the clinical BDG test
for diagnosing IFIs has false positives in patients with colonization
and/or infection with this bacterium (4). Here, while we don’t
investigate the precise signaling pathway,we show that intracellular
glutathione is required for survival andcomplete effector functionof
monocytes in response to BDG. Thus, glutathione may be an
important molecule in antifungal immunity and future studies
should address its role in clearing fungal infections.

Beyond mycoses, BDG has been shown to induce long-term
epigenetic reprogramming, reverse LPS-induced tolerization in
Frontiers in Immunology | www.frontiersin.org 11124
monocytes/macrophages, and confer protection from infectious
diseases including leishmaniasis and tuberculosis (12–14).
Changes in the epigenetic landscape of monocytes leading to
BDG-induced trained immunity are mediated by the activation
of mechanistic target of rapamycin (mTOR) and hypoxia-
inducible factor 1a (HIF-1a). In fact, blocking this pathway in
several studies has consistently abrogated BDG-induced trained
immunity (11, 44). Interestingly, Mak et al. investigated the
molecular targets downstream of intracellular GSH in T cells. As
ROS are a known inhibitor of mTOR activation, they showed
that intracellular GSH was able to buffer ROS leading to mTOR
activation, metabolic reprogramming, and resultant
inflammatory response of T cells in vitro and in vivo (45). In
our study, we observed that BDG increased glutathione levels in
monocytes and that intracellular GSH was able to reduce ROS
production post-translationally. Hence, future studies should
A
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FIGURE 7 | Intracellular glutathione levels modulate monocyte’s inflammatory response to BDG stimulation. (A–C) Human monocytes were untreated, stimulated
with BDG for 24h, pre-treated with BSO for 24h then stimulated with BDG for 24h, or stimulated with reduced glutathione (GSH) for 24h and assessed for (A) NOS2
expression, (B) Nitrite production, and (C) phagocytic capacity. (D–F) Human monocytes were untreated, stimulated with BDG for 1h, 4h, or 24h, pre-treated with
BSO for 24h then stimulated with BDG for 1h, 4h, or 24h, or stimulated with GSH for 24h and then evaluated for expression of the (D) IL-6, (E) CXCL8, and (F) IL-
10 loci using RT-qPCR. (G–I) Human monocytes were untreated, stimulated with BDG for 24h, pre-treated with BSO for 24h then stimulated with BDG for 24h, or
stimulated with reduced glutathione (GSH) for 24h and assessed for production of (G) IL-6, (H) IL-8, (I) IL-10 using ELISA. Data are presented as median ± standard
deviation of n = 5 biologically independent experiments. P-values were calculated using paired one-way ANOVA with multiple comparisons. ns, not significant;
*P < 0.05; **P < 0.01; ***P < 0.001.
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investigate whether ROS buffering by intracellular GSH allows
BDG-induced trained immunity in monocytes.

Previous studies have also addressed the role of glutathione in
monocyte/macrophage biology. Kerstholt et al. demonstrated that
Borrelia burgdorferi infection of human monocytes increased
glutathione synthesis and GSH/GSSG ratio. Moreover, they saw
that intracellular glutathione was required for production of acute
pro-inflammatory cytokines in response to this bacteria (46). In
RAW264.7 macrophages, BSO pre-treatment was previously shown
to partially abrogate the LPS-induced pro-inflammatory response
(37). Another study investigated the role of glutathione in regulating
macrophage mediated killing ofMycobacterium tuberculosis. While
LPS/IFNg exposure induced intracellular killing of BCG in J774.1
macrophages, this responsewasdiminishedwithBSOpre-treatment.
To investigate whether this was due to the ability of GSH to buffer
ROS, they repeated this experiment with peritoneal macrophages
from iNOS knockout mice. Treatment of BCG-infected iNOS-/-

macrophages with LPS/IFNg, induced killing of about 75% of
intracellular BCG after 72 hours. In contrast, pre-treating these
macrophages with BSO before LPS/IFNg stimulation completely
abrogated this killing and resulted in BCG multiplying after 72
hours (47). Thus, there is evidence that GSH promotes intracellular
killing of BCG in a ROS-independent manner. In our study, we
observed that intracellular glutathione was a regulator of monocyte’s
effector functions including phagocytosis and cytokine production.
As previously reported in the RAW264.7 macrophage cell line,
we also saw that exogenous GSH was sufficient to elicit
cytokine production and increased phagocytic capacity, but the
mechanism is poorly understood (48). Taken together, there is
converging evidence that suggests a critical role of intracellular
glutathione in regulating the acute inflammatory response of
monocytes/macrophages.

While there are different models to study glutathione
metabolism, in this study we used BSO as it is a specific and
potent chemical inhibitor of the rate limiting enzyme GCLC (38).
Transient Gclc knockdown using siRNA has been successfully use
in the mouse hepatocyte cell line FL83B to study the role of
glutathione in vitamin D metabolism and other pathways (49, 50).
Importantly, the authors have also demonstrated that inhibition of
glutathione synthesis using BSO and Gclc siRNA knockdown were
similarly decreasing cellular GSH levels, increasing oxidative stress
and affecting the vitamin D metabolism (50). While future studies
can use either GCLC knockdown or BSO pretreatment to further
investigate the relationship between BDG response and the
glutathione pathway, we have chosen chemical inhibition given
efficient transient gene knockdown is technically challenging
human primary monocytes. Moreover, we have further validated
our findings by using exogenous GSH as a positive control. Our in
vitro experiments on human primary monocytes show that the
glutathione metabolism is involved in the regulation of the acute
response to BDG at the transcriptomic and molecular levels, yet
further studies are required to evaluate the functional impact of
this phenomenon in vivo. Previous studies have attempted to
create Gclc knockout mice, however these mice died in utero by
gestation day 13. Although heterozygous mice were viable and
fertile, they only had a 20% reduction in GSH levels making it an
Frontiers in Immunology | www.frontiersin.org 12125
unideal model to study glutathione metabolism (51). While in vivo
models of Gclc knockout mice have had limited success, future
studies could investigate this relationship with either Gclc
heterozygous mice or wild type mice treated on the one hand
with BSO to pharmacologically block GCLC and on the other
hand with exogenous glutathione.

Overall, we investigated the acute response of monocytes to a
major PAMP, BDG. We showed that BDG induces glutathione
synthesis and metabolism at the epigenetic, transcriptional, and
molecular levels. Eliminating intracellular GSH with BSO reduced
cell survival inBDGstimulatedbutnot restingmonocytes, suggesting
a critical role of intracellular GSH in cell survival after an infectious
challenge. Moreover, intracellular GSH buffered NO production at
the post-translational level and participates in protecting monocytes
from their own oxidative stress without abrogating NO production
and endosome acidification. BDG was shown to be a regulator of
immunometabolism and effector functions of monocytes. We now
demonstrate this regulation to be dependent in part on GSH, since
BSO pre-treatment abrogated BDG-induced phagocytosis and
cytokine production. Overall, our findings demonstrate an
important role for GSH in immunity and outline a better
understanding of the acute response of monocytes to infections.
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Supplementary Figure 1 | Gating strategy to validate isolation of human
monocytes from PBMC.
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Supplementary Figure 2 | Longitudinal changes in epigenetic marks in
monocytes after BDG exposure. (A, B) Clusters of differentially accessible regions
identified in Figure 1A were queried for (A) H3K27ac and (B) H3K4me1 ChIP-seq
signal in human monocytes after 0h, 1h, 4h, and 24h of BDG exposure. Data are
presented as box and whisker plots with box representing median + interquartile
range and whiskers representing 5th and 95th percentile marks. Red horizontal line
denotes median tag count in 1kb of a specific epigenetic mark at 0h after BDG
exposure. P-values were calculated using paired one-way ANOVA with multiple
comparisons. ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Supplementary Figure 3 | Glutathione synthesis and metabolism in human
monocytes before and after 24h stimulation. (A) Total intracellular glutathione levels in
human monocytes at rest and after 24h of LPS or BDG exposure. (B) Intracellular GSH/
GSSG ratio in humanmonocytes at rest and after 24h of LPS or BDGexposure. Data are
presented as median ± standard deviation of n=3 biologically independent experiments.
P-values were calculated using paired one-way ANOVA with multiple comparisons. ns,
not significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Supplementary Figure 4 | ATAC-seq, ChIP-seq, and RNA-seq read density
profiles at the NADK, NADK2, G6PD, PGLS, PGD, and TALDO1 loci.

Supplementary Table 1 | Purity of monocyte isolations from PBMC using
StemCell CD14+ monocyte negative selection kit.

Supplementary Table 2 | List of clusters of differentially accessible regions after
BDG exposure and gene ontology enrichment analysis of these clusters.

Supplementary Table 3 | Groups of differential gene expression after 1h, 4h, 24h
of BDG exposure and gene ontology enrichment analysis of these groups.

Supplementary Table 4 | List of primers used for RT-qPCR validations.

Supplementary Table 5 | TRUUST analysis of differentially expressed genes after
24 hours of BDG exposure in human monocytes.
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The apicomplexan parasite, Theileria annulata, is the most prevalent hemoprotozoan
in livestock, causing significant economic losses worldwide. It is essential to develop
new and improved therapeutics, as current control measures are compromised by the
development of resistance against the only available antitheilerial drug, buparvaquone
(BPQ). Histone deacetylase inhibitors (HDACi) were shown to treat cancer effectively
and revealed in vitro antiparasitic activity against apicomplexan parasites such as
Plasmodium and Toxoplasma. In this study, we investigated the antitheilerial activity
of the four anti-cancer HDACi (vorinostat, romidepsin, belinostat, and panobinostat)
against the schizont stage of T. annulata parasites. All four HDACi showed potent
activity and increased hyperacetylation of the histone-4 protein. However, based on
the low host cell cytotoxicity and IC50 values, vorinostat (0.103 µM) and belinostat
(0.069 µM) were the most effective showing antiparasitic activity. The parasite-specific
activities of the HDACi (vorinostat and belinostat) were evaluated by western blotting
using parasite-specific antibodies and in silico analysis. Both vorinostat and belinostat
reduced the Theileria infected cell viability by downregulating anti-apoptotic proteins and
mitochondrial dysfunction, leading to caspase-dependent cell apoptosis. The HDACi
caused irreversible and antiproliferative effects on the Theileria infected cell lines. Our
results collectively showed that vorinostat and belinostat could be used as an alternative
therapy for treating Theileria parasites.

Keywords: drug repurposing, HDACi, Theileria annulata, anticancer, molecular docking

INTRODUCTION

Bovine Theileriosis (BT), caused by Theileria parasites, is an economically significant parasitic
disease (Brown, 1990). BT is prevalent in tropical and subtropical countries affecting millions of
livestock worldwide (Nene and Morrison, 2016). In India, it is caused by the parasite Theileria
annulata and Theileria orientalis (George et al., 2015a,b), mostly affecting crossbreed animals.
In India, BT infections caused by T. annulata parasites are life-threatening, leading to the dairy
industry’s production and economic loss of $1,295 million/annum (Narladkar, 2018). In the last
decade, because of the increase in the number of crossbreed animals, there has been a significant rise
in the number of reported cases of T. annulata infected animals from India (Kundave et al., 2015;
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Kumar et al., 2016; Larcombe et al., 2019). The single vaccine
and drug buparvaquone (BPQ) are the only hope for fighting
against this deadly parasite. The current schizont stage attenuated
vaccine (Rakshavac-T) used in India has associated drawbacks
like the infrastructure of vaccine production, its distribution, and
cold chain maintenance; therefore, it is not commonly used in
the field (Jeyabal et al., 2012). This leads to almost complete
dependency on chemotherapy for BT treatment. In countries like
Tunisia, Iran, and Sudan, BPQ resistance is reported from the
field. However, in the published studies, the level of resistance
or the prevalence of BPQ resistant Theileria parasites have not
been done (Mhadhbi et al., 2010, 2015; Sharifiyazdi et al., 2012;
Chatanga et al., 2019). Hence, there is an urgent need to discover
new antitheilerial drugs/compounds to control the disease.

As new drug discovery takes a long time, drug repurposing is
one approach that has helped researchers discover the unknown
potential of the clinically approved drugs (Ashburn and Thor,
2004; Nwaka and Hudson, 2006). Identifying drugs that inhibit
the parasite genes involved in transcriptional regulation,
posttranslational modifications, or epigenetic regulation seems
a good strategy for searching for new antiparasitic drugs
(Andrews et al., 2014). In eukaryotes, HDACs have been
shown to regulate multiple essential pathways, and abnormal
alterations in these enzymes can lead to apoptosis or cancerous
growth in cells (Gallinari et al., 2007; Li and Seto, 2016). HDAC
inhibitors (HDACi) like vorinostat, romidepsin, belinostat,
and panobinostat are FDA approved to treat different cancers
(Grant et al., 2007; Prince and Dickinson, 2012; Thompson,
2014; Garnock-Jones, 2015). The in vitro antiparasitic activity
of these four inhibitors has been previously investigated in
protozoa parasites like Plasmodium, Trypanosoma, Leishmania,
and Schistosoma (Engel et al., 2015; Chua et al., 2017).
In P. falciparum and P. knowlesi parasites, all four HDACi
have shown potent antiplasmodial activity. Because of
differences between the human and parasitic HDACs, these
enzymes seem promising targets for developing new generation
antitheilerial drugs.

Keeping in mind the unavailability of backup drugs for
treating BT infections, we planned to test known drugs to
find their ability to target unique or unexplored pathways
specific to the parasite. In this study, we tested antitheilerial
activity of the four HDACi: vorinostat, romidepsin, belinostat,
and panobinostat against the T. annulata parasites. These
HDACi have never been targeted before for their antitheilerial
activity and can be a new addition as an alternative therapy
against T. annulata parasites. We have also investigated the
hyperacetylation profiles of the Theileria infected cells after
treatment with the compounds. Additionally, we have done
molecular docking studies for showing the binding of HDACi to
the Theileria specific proteins using in silico studies.

MATERIALS AND METHODS

Compounds
Buparvaquone (Cat No. B4725), belinostat (Cat no. A4096), and
panobinostat (Cat no. 13280) were purchased from Apex Bio.

Vorinostat (SAHA) was purchased from EpiGentek (M41000-
2), and romidepsin (17130) was purchased from Cayman.
All HDACi were prepared as 10–20 mM stock solutions in
phosphate-buffered saline (PBS). BPQ was prepared as a 10 mM
stock solution in 100% DMSO.

Theileria annulata Growth Inhibition
Assays
Theileria annulata infected bovine cells were derived previously
from the clinically infected cattle and cultured in the RPMI
1640 medium (Sigma Aldrich) supplemented with 10% heat-
inactivated fetal bovine serum and 100 µg/mL Penicillin-
Streptomycin at 37◦C in a CO2 incubator (George et al., 2015b;
Roy et al., 2019). Antitheilerial activity of the compounds was
analyzed by incubating different concentrations of compounds
to T. annulata infected cells. Briefly, 5× 103 T. annulata infected
cells were seeded per well in 96 well plates in 200 µL medium at
37◦C for 4 h. All four HDACi were serially diluted and added to
the cells in the 96 well plate for 48 h. After 48 h, 30 µL resazurin
dye (1.5 mM) was added to each well, and the fluorescence
intensity of the cells was measured at 570 nm for accessing the
viability of the cells based on the previously published method
(Kulshrestha et al., 2013). BPQ was used as a positive control
in all the assays. Each experiment was performed at least thrice
independently in triplicates. The cytotoxicity profiles of the
compounds were evaluated in BOMAC (Bovine macrophage cell
Line) cell line using the standard protocol.

Protein Hyperacetylation Assay
Hyperacetylation assays were carried out using the protein
lysate of the T. annulata infected bovine cells. Briefly, 1 × 105

cells were incubated for 3 h with IC50 concentration of test
compounds (1X and 5X), and untreated cells were included as
a control. BPQ treated cells were used as a negative control.
T. annulata infected cells were then pelleted and washed thrice
with 1X PBS before resuspending the cells for lysis in RIPA
(Radio-Immunoprecipitation Assay) buffer. After sonication
and centrifugation of the lysed cells, proteins were quantified
using the BCA protein assay kit. SDS-PAGE loading dye was
added to the sample, followed by denaturation (97◦C, 5 min)
and separation on SDS-PAGE. Proteins were then transferred
to polyvinylidene difluoride (PVDF) membrane, and western
blotting was done using anti-tetra acetyl histone H4 antibody
(1:2,000, Sigma-Aldrich, 05-1355) and goat anti-mouse IgG
secondary antibody (1:2,000) using chemiluminescent reagent
(Takara). Histone H3 (1:2,000, CST, 9715S) was taken as the
loading control. Membranes were imaged using the Biorad
ChemiDoc Imaging system. Western blot images were processed
in Image J software for protein quantification using the relative
density method. Band intensities of the H3 (loading control)
and anti-tetra acetyl histone H4 [the protein of interest (POI)]
were quantified by taking the area of interest. Intensities were
normalized by dividing the respective value with one of the
samples for loading control and POI. Relative expression was
calculated by dividing the normalized intensity of POI by its
respective loading control.
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Immunofluorescence Assay
5 × 104 T. annulata infected cells were incubated with IC50
concentration of HDAC compounds (vorinostat, romidepsin,
and belinostat) with untreated cells as control. BPQ treated cells
were used as the negative control. Cells were pelleted down after
3 h of incubation and washed thrice with 1X PBS. Next, the cells
were fixed using 4% paraformaldehyde (37◦C, 10 min) followed
by 1X PBS washing and permeabilization by 0.1% Triton X-
100. Permeabilized cells were incubated for 1 h with blocking
buffer (2% BSA in 1X PBS) at room temperature. Cells were then
incubated with anti-acetyl histone H4 (1:250, Sigma-Aldrich, 05-
1355) antibody overnight at 4◦C. The primary antibody was then
discarded, and the slide was washed three times in PBS, followed
by incubation with goat anti-mouse Cruz Fluor 555 secondary
antibody (1:250, Santacruz) for 1 h at room temperature. Cells
were further washed with 1X PBS, and gold antifade mountant
with DAPI (1 µg/mL) was used to stain the nucleus. Images
were recorded in the Airyscan microscope (Zeiss), and ZEN Blue
software was used for analysis.

Western Blotting and Mitochondrial
Membrane Potential
For western blot analysis, total proteins from the T. annulata
infected cells were fractioned on 8% polyacrylamide gels
before and after 48 h treatment of vorinostat and belinostat
compounds. For checking the parasite-specific effect of these
compounds, blotting was done for detection of TaSP (Theileria
annulata surface protein) using rabbit anti-TaSP peptide
antibody (1:3,000) and mouse anti-β-actin (1:1,000) as a loading
control. The primary antibody was then discarded, and the
membrane was washed thrice in PBS, followed by incubation
with horseradish peroxidase-conjugated IgG secondary antibody
(1:1,000; Thermo Fisher Scientific) for 1 h at room temperature.
The membrane was imaged using the chemiluminescent reagent
(Takara) on the Biorad ChemiDoc Imaging system.

For mitochondrial membrane potential analysis, T. annulata
infected cells treated with and without belinostat and vorinostat
drugs were incubated with a JC-1 probe. BPQ treated cells were
used as a control in the experiment. After 48 h of drug treatment,
cells were incubated with 2.5 µL of JC-1 dye for 20 min in the
dark at 37◦C. After washing, cells were resuspended in 500 µL
of cell staining buffer. Data acquisition was made on the BD
LSR Fortessa, followed by analysis using the Flow Jo software
(Tree Star Inc., Ashland, OR). Mitochondrial depolarization
was quantified by taking the ratio of red to green fluorescence
emission intensity. All the fluorescence assays were carried out in
two independent experiments.

Analysis of Cell Death Using Flow
Cytometry
Annexin V-FITC and propidium iodide (PI) staining was done
to investigate the cell death mechanism using flow cytometry.
Briefly, 1 × 105 cells/well were incubated with 1X IC50 of test
compounds (vorinostat and belinostat) with or without z-VAD-
fmk (2 µM) for 48 h. Staurosporine (1 µM) with or without
z-VAD-fmk (2 µM) was taken as the positive control. After

48 h, cells were washed with PBS and incubated with annexin
V binding buffer (500 µL/tube) containing 5 µL annexin V and
10 µL PI for 15 min at 37◦C. Data acquisition was made on the
BD LSR Fortessa, followed by analysis using the Flow Jo software
(Tree Star Inc., Ashland, OR) for detecting the % of apoptosis
or necrosis in cells. Assays were performed in duplicate in three
independent experiments.

Reverse Transcriptase-Polymerase
Chain Reaction
HDACi (vorinostat and belinostat) treated and untreated cells
were collected, total RNA was extracted using Trizol reagent,
and 5◦µg of total RNA was reverse transcribed for cDNA
synthesis using a Primescript cDNA synthesis Kit (Takara)
according to the manufacturer’s protocol (Dandasena et al.,
2018). The mRNA expression of matrix metalloproteinase 9
(MMP9) and B-cell lymphoma 2 (Bcl-2) gene was detected
by real-time PCR using a BioRad CFX96 Touch System
(Biorad). Relative target gene expression was calculated using
the 2−11CT method. Primer sequences used are as follows:
MMP9: Forward-5′ CCCATTAGCACGCACGACAT-3′, Reverse
5′-TCACGTAGCCCACATAGTCCA-3′; HRPT1: Forward-5′-
TGTGGCCAGCTTAATAG-3′, Reverse5′- GGCTCGTAGTGCA
AATGAAG-3′, Bcl-2: Forward-5′- GATGACCGAGTACCT
GAACC -3′, Reverse 5′- AGCCAGGAGAAATCAAACAGG-3′.

Homology Modeling and Molecular
Docking
Since no crystal structure is available for the TaHDAC1 putative
protein, we used its amino acid sequence (TA12690) for searching
its homologous proteins with available crystal structure in the
Protein Data Bank (PDB). Human HDAC2 (PDB accession No.
5IWGA) was found to be a suitable template for modeling
with 62.91% similarity to the TaHDAC1 protein at a resolution
of 1.66 Å (Figure 4). Homology modeling of putative histone
deacetylase of T. annulata (TA12690) was carried out using
SWISS-MODEL Homology Modeling server.1 Ramachandran
plot, QMEAN score plot, and Local quality estimates assessed
the quality of the modeled protein. The Ramachandran plot
was generated using the PROCHECK program in Structure
Analysis and Verification Server (SAVES) (Laskowski et al.,
1996). The protein’s ligand-binding site was determined using
the 3DLigandSite prediction server and the previously published
literature (Marks and Breslow, 2007; Wass et al., 2010). The
modeled protein was saved in PDB format and docked using
Schrodinger Maestro (version 12.2).

The grid generation module did the catalytic binding site’s
visualization and characterization. The ligands structure file
was downloaded from the PubChem database [vorinostat (ID-
5311), panobinostat (ID- 6918837), belinostat (ID-6918638),
romidepsin (ID-5352062)] and prepared for docking to the
modeled protein. The ligands were optimized using the OPLS3e
force field in the Ligprep module, followed by docking into the
generated receptor grid using the sitemap option in Schrodinger

1https://swissmodel.expasy.org/
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Maestro. The ligand conformation having the lowest binding
energy was considered for all the inhibitors.

Reversibility of Growth Inhibition After
Treatment With Histone Deacetylase
Inhibitor
Theileria infected cells were treated with IC50 concentration of
vorinostat and belinostat compounds for 48 h to check the effect
on parasite growth. After 48 h, drug pressure was removed,
and parasites were grown in a traditional medium without the
HDACi. The proliferation of the T. annulata cells was monitored
by trypan blue assay for the next 12 days for assessing the effect
of drug treatment.

RESULTS

Histone Deacetylase Inhibitors Showed
Antitheilerial Activity Against Theileria
annulata Parasites
For assessing the antitheilerial activity of the HDACi
(vorinostat, belinostat, romidepsin, and panobinostat), in-
vitro cultured T. annulata parasites were challenged with
different concentrations of the compounds. BPQ was included
as a control in the study. Except for panobinostat, all the other
inhibitors showed potent antiparasitic activity based on the
observed IC50 values (Figure 1). The values of vorinostat,
belinostat, romidepsin (<0.3 µM) were at least 20 times
lower than that of the panobinostat (20 µM) compound
(Table 1). These four HDACi were previously reported to
be effective (IC50 ≤ 0.1 µM) against P. falciparum and
P. knowlesi strains (Engel et al., 2015). A comparison was
made for the effectiveness of the HDACi based on the IC50
values between the Theileria and Plasmodium parasites. The

vorinostat, belinostat, and romidepsin values in T. annulata
were similar to previously published data in Plasmodium
parasites (IC50 ≤ 0.2 µM) (Engel et al., 2015). However,
panobinostat behaved differently, showing antiparasitic activity
at significantly higher drug concentrations in T. annulata
cells compared to Plasmodium parasites (IC50 ≤ 0.03 µM)
(Engel et al., 2015).

In vitro Cytotoxicity of Histone
Deacetylase Inhibitors
Since only three HDACi (vorinostat, belinostat, and romidepsin)
had potent in-vitro activity (IC50 ≤ 0.3 µM), we decided to
focus on these compounds for further studies. The in vitro
cytotoxicity was assessed for the three HDACi against the
BOMAC cells using a resazurin dye-based assay. Vorinostat and
belinostat were non-toxic based on the IC50 values of the assay
(Table 1). In contrast, romidepsin was equally toxic (>0.2 µM)
on mammalian cells compared to T. annulata infected cells. The
SI values of vorinostat and belinostat in T. annulata compared
to mammalian cells (SI 140 and 195, respectively; Table 1) were
higher than previously published data for Plasmodium parasites
(SI 140 and 195, respectively) indicating greater selectivity for
Theileria parasites. Our results with romidepsin were in sync
with the previously published cytotoxicity results in Plasmodium
species (Engel et al., 2015).

Histone Deacetylase Inhibitors Leads to
Hyperacetylation of Theileria annulata
Infected Cells
For checking hyperacetylation of proteins in Theileria infected
cells, cell lysate was prepared after 3 h of treatment with
HDACi (vorinostat, belinostat, and romidepsin). For quantitative
assessment, T. annulata infected cells were treated with 1X
and 5X concentrations of the IC50 values of the inhibitors.

FIGURE 1 | In vitro antitheilerial activity of histone deacetylase (HDAC) inhibitors. Dose-response curves against the four HDACi in T. annulata infected cells. IC50

was calculated using a resazurin dye-based assay. The IC50 values of vorinostat, belinostat, romidepsin, and panobinostat was 0.103 (±0.005) µM, 0.069
(±0.004) µM, 0.20 (±0.006) µM, and 20.80 (±3.11) µM, respectively. IC50 values are represented as the negative log of IC50 in Molar referred to as pIC50 (ranged
from 7.31 to 4.60 referring to IC50 concentration from 0.097 to 25 µM). The graph represents the mean % survival at different concentrations of HDACi. ±
represents the standard deviation (SD) from the three independent experiments. All the experiments were done in triplicates.
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TABLE 1 | In vitro antitheilerial activity of histone deacetylase (HDAC) inhibitors against T. annulata infected cells.

Compound Structure PubChem CID T. annulata IC50 (µM) Mammalian cell IC50 (µM) SI

Vorinostat 5311 0.103 (±0.005) >25 >140

Belinostat 6918638 0.069 (±0.004) 9.875 (±3.712) 195

Romidepsin 5352062 0.200 (±0.006) 0.296 (±0.029) 1.451

Panobinostat 6918837 20.800 (±3.110) nd nd

Buparvaquone 71768 0.153(±0.011) >1.500 10.239

Nd, not determined. SI, (Mammalian cells IC50)/(T. annulata parasite IC50); larger values = greater parasite selectivity.

FIGURE 2 | Acetylation profiles of T. annulata infected cells after 3 h of treatment with histone deacetylase (HDAC) inhibitors. (A) Western blot analysis of the
T. annulata infected cells treated with 1× IC50 and 5× IC50 concentrations of different HDACi (vorinostat, belinostat, and romidepsin) and controls (without treatment
and with BPQ treatment) using mouse anti- acetyl histone H4 antibody. Histone H3 was taken as the loading control. (B) The graph shows the relative quantification
of the H4 as detected in the western blot. (C) Immunofluorescence staining of T. annulata infected cells with 1× IC50 HDACi (vorinostat, belinostat, and romidepsin)
after 3 h of treatment. BPQ was taken as control.

Vorinostat, belinostat, and romidepsin treatment clearly showed
increased acetylation of H4-proteins (∼13–17 KDa) compared to
untreated control and BPQ treated cells using pan acetyl histone
antibody in western blot (Figures 2A,B). We next checked the
hyperacetylation using IFA with the same antibody with cells
treated with 1X concentration (IC50) of the three inhibitors.
The fluorescence microscopy images confirmed the increased
hyperacetylation in the T. annulata infected cells compared to
control, and BPQ treated cells (Figure 2C).

We also investigated whether the increase in hyperacetylation
due to HDACi treatment affects the virulence of the parasite.
MMP9 gene expression was analyzed in the HDACi treated and
untreated samples to quantify the effect on virulence. Decreased
expression of host MMP9 gene has been previously linked to
attenuation or decrease in the virulence of the T. annulata
parasites (Echebli et al., 2014). Bcl-2 gene, a well-known marker
for apoptosis, was also included in the study. The quantitative
SYBR green-based PCR analysis showed a twofold increase in the
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MMP9 gene expression after treatment with belinostat. However,
no differential expression was found in the MMP9 gene after
treatment with vorinostat. Anti-apoptotic gene Bcl-2 was found
to be downregulated in both the vorinostat and belinostat treated
samples (Supplementary Figure 1).

Histone Deacetylase Inhibitors Kills the
Parasite Explicitly in an Irreversible
Manner and Damages the Mitochondrial
Potential of Theileria annulata Infected
Cells
Theileria annulata infected cells were incubated with belinostat
(0.069 µM) and vorinostat (0.103 µM) for 48 h. After treatment,
the cells were labeled with anti-TaSP (parasite-specific) and anti-
β-actin (host-specific) antibodies, followed by western blotting.
There was a significant decrease in the TaSP protein levels after
48 h treatment with both the compounds (Figure 3A). However,
the intensity of the β-actin band was similar in the treated and
untreated samples. BPQ treated samples used as a positive control
also showed a decrease in the band intensity of the TaSP protein.

We also investigated whether the antiparasitic effect of HDACi
is reversible after the removal of the drug pressure. Treatment
of T. annulata infected cells with belinostat and vorinostat
for 48 h resulted in the complete and irreversible suppression
of the parasite growth even after drug pressure withdrawal
(Figure 3B). There was no recovery till 12 days after drug
withdrawal of the parasite.

The mitochondrial membrane potential of the T. annulata
infected cells treated with HDACi (belinostat and vorinostat)
was measured using JC1 dye to analyze their effect on

the mitochondrial function. The membrane potential was
measured by calculating the mean red fluorescence intensity
(JC1-Aggregate) to mean green fluorescence intensity (JC1-
Monomer). The flow cytometer-based analysis identified a
significant decrease in the ratio of red to green fluorescence
intensity in the treated cells as compared to the untreated cells
(Figures 3C,D).

Histone Deacetylase Inhibitors Induces
Caspase-Dependent Apoptosis in the
Theileria Infected Cells
Flow cytometry analysis was performed to analyze whether
belinostat and vorinostat-induced cell death is associated
with apoptosis. Staurosporine (apoptosis-inducing agent)
and z-VAD-fmk (pan-caspase inhibitor) were used as a
control to examine the caspase-dependent apoptosis in
HDACi treated Theileria infected cells (Belmokhtar et al.,
2001). After 48 h of treatment, belinostat and vorinostat
significantly promote caspase-dependent apoptosis in the
infected cells (Figures 4A,B). Belinostat and vorinostat-
induced apoptosis was completely blocked by the broad
caspase inhibitor z-VAD-fmk, demonstrating that caspases
were involved in the death process (Figures 4A,B). Figure 4A
shows that belinostat and vorinostat significantly promote
cell apoptosis, the percentages of apoptotic cells were as
follows: control: 6.88 ± 0.63%, z-VAD-fmk: 7.37 ± 0.20%,
staurosporine: 34.59 ± 0.13%, staurosporine + z-VAD-
fmk: 9.07 ± 0.71%, belinostat: 34.26 ± 0.97, vorinostat:
49.37 ± 1.18%, belinostat + z-VAD-fmk: 15.66 ± 0.99%,
vorinostat+ z-VAD-fmk: 10.21± 0.19%.

FIGURE 3 | Effect of Belinostat and Vorinostat on the parasite and its mitochondrial membrane potential: (A) Western blot analysis of the T. annulata infected cells
treated with IC50 concentrations of vorinostat and belinostat (after 48 h) and controls [without drug treatment and buparvaquone (BPQ) treatment] using mouse
anti-TaSP antibody and mouse anti-β-actin as a loading control. (B) Reversibility of growth inhibition after treatment with histone deacetylase (HDAC) inhibitor. After
48 h, HDACi and BPQ drug pressure were removed, and parasite growth was monitored for 12 days in the traditional medium. The experiment was repeated thrice.
(C) Flow cytometry analysis using JC1 dye to analyze vorinostat and belinostat effect on the mitochondrial membrane potential of T. annulata infected cells.
Mitochondria depolarization was quantified by taking the ratio of red to green fluorescence emission intensity. The JC1-aggregate and the JC1-monomer are
represented by red and green color, respectively, in the dot-plot. (D) The graph shows the ratio of JC1-aggregate and the JC1-monomer from the flow cytometer
analysis.
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FIGURE 4 | Histone deacetylase inhibitors (HDACi) treatment induces caspase-dependent apoptosis in the Theileria infected cells. (A) The percentage of apoptosis
was quantified by flow cytometry analysis using annexin V and PI staining. (B) Quantitative analysis of the apoptotic cells based on an average of three independent
experiments (mean ± SD).

In silico Studies Predict TaHDAC1 to Be
the Target of Histone Deacetylase
Inhibitors
Vorinostat and belinostat hinder HDAC enzyme activity
leading to hyperacetylation of proteins and parasite death in
P. falciparum and P. knowlesi parasites (Sumanadasa et al.,
2012; Chua et al., 2017). In Plasmodium, five different HDAC
enzymes are reported, which can have a role in the acetylation
and deacetylation of histones. We found homologs of all the
five plasmodial genes in T. annulata genome (Supplementary
Table 1). The antiplasmodial activity of the four HDACi used
in this study was previously linked to inhibition of PfHDAC1
(PlasmoDB—gene ID PF3D7_0925700) and PkHDAC1 gene
in P. falciparum and P. knowlesi, respectively (Engel et al.,
2015). We searched for the homolog of the PfHDAC1 and
PkHDAC1 genes in the T. annulata database (PiroplasmaDB).
The homology analysis identified the Ta12690 gene (TaHDAC1,
putative) as the Plasmodium species closest match. As the
crystal structure of both Plasmodium and Theileria HDAC is not
available, we used TaHDAC1 as a template and found human
HDAC2 (PDB No. 5IWGA) to be very similar to the Theileria
protein (Supplementary Figure 2). Using the crystal structure
of the human HDAC2, we draw a three-dimensional homology
structural model of TaHDAC1 to examine the predicted binding
mode of these ligands in the Theileria. The model’s quality
assessment was done based on the QMEAN score (–0.89) and
GMQE (0.70) values; our structure was found to be within the
allowed limits of modeling. The local quality estimates for the 3D
model showed two regions with a score below 0.6, but the ligand
binding/active site have scored above 0.6. The Ramachandran

plot showed 91.4 and 8.6% of residues from the model located in
the most favored or allowed regions (Supplementary Figure 3).
We next docked the ligands to find the possible binding sites in
the TaHDAC1. Based on the 3DLigandSite prediction tool, the
expected binding of ligands was near the residues His136, His137,
Asp172, Val173, His174, Asp260, Gly296, Gly297, Gly298, and
Try299 of TaHDAC1. The docking of TaHDAC1 revealed
hydroxamate binding of the ligands (vorinostat and belinostat)
to the zinc ion in the active site (Figure 5). The vorinostat and
belinostat made hydrogen bonds (His136, His174, Try299, and
Gly145) and pi-pi (Phe200 and His174, Phe146) interactions near
the active site residues in TaHDAC1 (Figure 5). The docked
ligands showed a high docking score of –5.233 and –8.202,
respectively. Since panobinostat was previously reported to be
the most potent inhibitor of the P. falciparum and P. knowlesi
parasites, we compared differences in its binding to Plasmodium
and Theileria HDAC1. Although panobinostat showed binding
to zinc ion in the catalytic site, there was no interaction with the
active site residues in TaHDAC1 (data not shown). Thus binding
of hydroxamic acid-based compounds (vorinostat and belinostat)
in the active site pocket might inhibit TaHDAC1 activity resulting
in hyperacetylation of the proteins and ultimately parasite death.

DISCUSSION

Theileria annulata is the most common hemoprotozoan parasite
infection in livestock, causing high mortality and production
losses. The disease control efforts are badly affected due to
BPQ resistance, the only available drug used for treating the
parasites (Mhadhbi et al., 2010, 2015; Sharifiyazdi et al., 2012;
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FIGURE 5 | TaHDAC1 homology model structure with docked ligands. The first figure shows the secondary structure representation of the homology model of
TaHDAC1. The second part of the figure shows the 2D interaction between the inhibitor and the modeled protein amino acid residue. The docking poses are shown
for ligands (vorinostat) and (belinostat) in TaHDAC1. Critical interactions with zinc atom (gray line), π− π interactions (green line), and hydrogen bonds (pink line) are
shown.

Chatanga et al., 2019). It is essential to find new therapeutic
options by identifying new targets or by repurposing drugs for
combatting the deadly parasite. Drug repurposing has emerged
as a very effective tool to bypass the traditional method of
drug discovery. Some of the common repurposed drugs include
thalidomide and metformin for cancer and antibacterials such as
azithromycin, tetracyclines, sulfonamides, and clindamycin for
parasitic diseases (Nzila et al., 2011; Zhang et al., 2020). This
study utilized the repurposing strategy by targeting epigenetic
regulatory enzymes to find new treatment options against
T. annulata parasites.

Four HDACi (vorinostat, belinostat, panobinostat, and
romidepsin) that have been clinically approved for treating
various cancer forms were evaluated for their antitheilerial
activity. These HDACi are also well-studied in other protozoan
parasites like Plasmodium, Trypanosoma, Leishmania, and
Schizostoma. In Plasmodium, these compounds are shown to
be a potential target for the treatment of P. falciparum,
P. knowlesi, P. berghei, and P. vivax parasites (Andrews
et al., 2008; Agbor-Enoh et al., 2009; Chaal et al., 2010;

Marfurt et al., 2011; Chua et al., 2017). Vorinostat, belinostat,
and panobinostat are hydroxamic acids like compounds shown
to inhibit the pan-HDACs, while romidepsin is a cyclic peptide
inhibiting class 1 HDACs (Mottamal et al., 2015). With an
IC50 of <0.3 µM, belinostat, vorinostat, and romidepsin
showed potent activity against the clinical isolates of the
T. annulata parasites. Although effective in killing the parasites,
the panobinostat had a significantly higher IC50 (20 µM) than
other HDACi. Romidepsin showed high host cell cytotoxicity,
which was in line with other previously reported studies where
despite its effectiveness in killing Plasmodium and Trypanosoma
parasites, it was not considered as a promising target (Engel
et al., 2015). In previous reports, belinostat, vorinostat, and
panobinostat have been shown to have potent and selective
activity against the Plasmodium parasites, with panobinostat
being the most effective (Engel et al., 2015). It was surprising
that panobinostat was the least effective against the Theileria
parasites, which might be due to changes in the gene sequence
or the different life cycles of the two parasites. Vorinostat has
also been recently reported to be equally effective in killing

Frontiers in Microbiology | www.frontiersin.org 8 November 2021 | Volume 12 | Article 759817135

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-759817 November 18, 2021 Time: 13:23 # 9

Barman et al. Profiling the Antiparasitic Activity of HDAC Inhibitors

Toxoplasma gondi parasites (Araujo-Silva et al., 2021). The
compounds (belinostat and vorinostat) completely and
irreversibly halted T. annulata proliferation even after removing
the drug pressure.

Furthermore, we also revealed that treatment with belinostat
and vorinostat downregulates anti-apoptotic proteins and
mitochondrial dysfunction, leading to cell apoptosis. Our flow
cytometry data based on the annexin V and PI labeling showed
that belinostat and vorinostat inhibit the growth of the Theileria
infected cells mainly by inducing apoptosis while necrosis was
observed in a minimal number of cells. We also confirmed that
apoptosis induced by the two HDACi was completely blocked
by incubation with the caspase inhibitor, z-VAD-fmk, suggesting
caspase-dependent cell death. Belinostat and vorinostat have
previously been reported to induce similar cell death mechanisms
in different cancer cells (Petruccelli et al., 2011; Sarfstein et al.,
2011; Ong et al., 2016; Tuncer, 2021). Our data indicate belinostat
and vorinostat to be promising leads for developing future
parasite selective therapy based on the low host cell cytotoxicity
and potent antiparasitic activity.

The HDACi are known to regulate gene expression by
hyperacetylation of the histone proteins (H3 and H4), which
is used as a marker in P. falciparum for confirming their
parasite-specific inhibitory activity (Darkin-Rattray et al., 1996;
Andrews et al., 2008; Chaal et al., 2010; Chua et al., 2017).
Since Plasmodium and Theileria are apicomplexan parasites,
we next checked for the hyperacetylation profiles of histone-4
protein after exposure to compounds (belinostat and vorinostat)
in T. annulata infected cells. Hyperacetylation was observed in
T. annulata infected cells treated with belinostat and vorinostat
compared to untreated cell lines. The hyperacetylation profiles
were similar to the previous studies in Plasmodium (Chua
et al., 2017). As belinostat and vorinostat are not cytotoxic
to host cells, these drugs may inhibit parasite HDACs, similar
to what is shown for the other apicomplexan parasites. We
confirmed this parasite-specific effect after treating these two
compounds by quantifying parasite-specific protein (TaSP) using
western blotting. The activity of the Plasmodium HDAC1
enzyme is previously shown to be inhibited by these inhibitors.
In the absence of the recombinant HDAC1 of T. annulata,
we did in silico studies to identify whether these HDACi
target parasite-specific enzymes. The docking studies confirmed
the binding of belinostat and vorinostat in the active site
of the TaHDAC1 enzyme, which is in line with what was
reported for the PfHDAC1 and PkHDAC1 (Engel et al., 2015;
Chua et al., 2017).

In summary, this is the first study showing the antiparasitic
activity and mechanism of action of HDACi in the T. annulata
parasites. Our data clearly shows that drugs belinostat and

vorinostat have potent activity against the Theileria infected
cells. In the future, we will also like to check the activity
and pharmacokinetics of these compounds in the in vivo
experiments. We also plan to make parasite-specific analogs
of these inhibitors, which can develop alternative therapies for
treating Theileria parasites.
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Sepsis is an abnormal systemic inflammatory response of the host immune system to
infection and can lead to fatal multiorgan dysfunction syndrome. Epidemiological studies
have shown that approximately 10-70% of sepsis cases can lead to septic
cardiomyopathy. Since the pathogenesis of septic cardiomyopathy is not clear, it is
difficult for medical doctors to treat the disease. Therefore, finding effective interventions to
prevent and reduce myocardial damage in septic cardiomyopathy is clinically significant.
Epigenetics is the study of stable genetic phenotype inheritance that does not involve
changing gene sequences. Epigenetic inheritance is affected by both gene and
environmental regulation. Epigenetic studies focus on the modification and influence of
chromatin structure, mainly including chromatin remodelling, DNA methylation, histone
modification and noncoding RNA (ncRNA)-related mechanisms. Recently, long ncRNA
(lncRNA)-related mechanisms have been the focus of epigenetic studies. LncRNAs are
expected to become important targets to prevent, diagnose and treat human diseases.
As the energy metabolism centre of cells, mitochondria are important targets in septic
cardiomyopathy. Intervention measures to prevent and treat mitochondrial damage are of
great significance for improving the prognosis of septic cardiomyopathy. LncRNAs play
important roles in life activities. Recently, studies have focused on the involvement of
lncRNAs in regulating mitochondrial dysfunction. However, few studies have revealed the
involvement of lncRNAs in regulating mitochondrial dysfunction in septic cardiomyopathy.
In this article, we briefly review recent research in this area.

Keywords: lncRNA, epigenetics, sepsis, septic cardiomyopathy, mitochondrial dysfunction
SEPSIS AND SEPTIC CARDIOMYOPATHY

Sepsis is an abnormal systemic inflammatory response of the host immune system to infection and
can lead to fatal multiorgan dysfunction syndrome (1, 2). In severe cases, sepsis is considered a cause
of death (3). Millions of human beings suffer from sepsis every year, and more than one-quarter of
them lose their lives (4). According to statistics, the hospitalization rate and mortality of patients
with severe sepsis increase by 8.2% and 5.6%, respectively, every year (5). Parker et al. first proposed
in a 1984 study that sepsis-induced cardiac dysfunction is reversible (6). Since then, research on
septic cardiomyopathy has attracted increasing attention. Epidemiological studies have shown that
10-70% of sepsis cases can lead to septic cardiomyopathy (7, 8). The mortality of patients with septic
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cardiomyopathy is 70%-90%, which is 2-3-fold higher than that
of patients with sepsis that does not affect the heart (9, 10).
Current ly , there is no formal definit ion of sept ic
cardiomyopathy. It is generally recognized that septic
cardiomyopathy is transient cardiac dysfunction caused by
sepsis and that it manifests as heart enlargement, ventricular
systolic dysfunction, hypoperfusion without ventricular systolic
dysfunction, poor response to fluid resuscitation and
catecholamines, and so on (11–14).

It has been revealed that the specific septic cardiomyopathy
pathogenesis may include an imbalance of pro- and anti-
inflammatory cytokine expression, abnormal expression of Toll-
like receptors and related downstream pathways, release of nitric
oxide (NO) and reactive oxygen species (ROS), complement
activation, abnormal calcium processing, downregulation of the
adrenergic pathway, cardiomyocyte apoptosis, autonomic nervous
system dysfunction, coronary microvascular disturbance,
mitochondrial dysfunction, and downregulation of sarcomere
and mitochondrial proteins (15–18) (Figures 1, 2).
MECHANISMS OF MITOCHONDRIAL
DYSFUNCTION IN SEPTIC
CARDIOMYOPATHY

Recently, researchers have focused on preventing and reducing
myocardial damage in septic cardiomyopathy. Among the septic
cardiomyopathy pathogenesis, mitochondrial dysfunction
deserves to be a focus and further studied (19, 20) (Figure 3).
Cardiomyocytes are rich in mitochondria, especially in the areas
between sarcomeres and the subsarcolemma (21). As the energy
metabolism centres of cells (22), mitochondria function to
generate energy through oxidative phosphorylation (OXPHOS)
(23). Of the important mechanisms of septic cardiomyopathy,
the specific mechanism of mitochondrial dysfunction is under
debate. Studies have shown that in the pathogenesis of septic
cardiomyopathy, mitochondria undergo relevant changes that
Frontiers in Immunology | www.frontiersin.org 2140
lead not only to mitochondrial dysfunction but also to the
mitochondrial adaptive response (24, 25).
MITOCHONDRIAL ULTRASTRUCTURAL
DAMAGE AND DECREASED
ATP PRODUCTION

In 1994, morphological damage of myocardial mitochondria in
septic cardiomyopathy was first described in an animal model
(26). Studies have shown that the ultra-microstructural
abnormalities of myocardial mitochondria in septic
cardiomyopathy include swelling, ridge loss, matrix clearance,
rupture of internal vesicles, and damage to internal and external
membranes (27, 28), which are closely related to mitochondrial
dysfunction (29). Specifically , ultra-microstructural
abnormalities lead to the destruction of the OXPHOS process
and further reduce adenosine triphosphate (ATP) production.
Mitochondria are critical for synthesizing more than 90% of the
ATP required by the body (30). The role of the respiratory chain
represents the basic function of mitochondria. The respiratory
chain is mainly composed of complexes I, II, III and IV (31), and
F0F1 ATPase (32). Fatty acid b-oxidation supplies nicotinamide
adenine dinucleotide (NADH) and flavin adenine dinucleotide
(FADH2), which respectively transport electrons for OXPHOS
through complexes I and II. Subsequently, electrons are
transported to complex III, and then to complex IV, leading to
the reduction of O2 to H2O. Finally, ATP is generated under the
effection of F0F1 ATPase in the mitochondrial inner membrane
(33–35).
NO PRODUCTION AND
OXIDATIVE STRESS

Sepsis is accompanied by the excessive production of NO, ROS
and inflammatory cytokines (36), leading to mitochondrial
FIGURE 1 | Septic cardiomyopathy pathogenesis.
November 2021 | Volume 12 | Article 802085
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dysfunction (37). Mitochondria produce NO through
mitochondria NOS (mtNOS), which inhibits cytochrome c
oxidase to regulate mitochondrial respiration (38). NO and O2·

−

produce ONOO− through diffusion-controlled reactions (39).
ONOO− is a strong oxidant that can lead to direct oxidation or
nitrosation damage, inhibit the OXPHOS complex and reduce O2

consumption (40, 41). Studies have shown that knockout of
inducible NOS (iNOS) can attenuate injury induced by oxidative
stress, impaired OXPHOS or reduced ATP synthesis, revealing the
vital role of ONOO− in regulating mitochondrial dysfunction in
septic cardiomyopathy (42). The increase in ROS production,
especially O2·

−, leads to excessive endogenous antioxidant capacity
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in the body (43). In turn, the excessive production of O2·
− leads to

further production of ROS in mitochondria, creating a vicious
cycle of oxidative stress (44, 45). Excessive ROS induce protein
denaturation and directly cause oxidative damage to DNA (46),
which is particularly serious because mitochondrial DNA is
related to the electron transport chain (ETC) (47). Furthermore,
metalloproteinases and other proteases are activated, causing
further functional deterioration of a variety of proteins,
including antioxidant enzymes (48).
CALCIUM OVERLOAD AND CHANGES
IN MITOCHONDRIAL MEMBRANE
PERMEABILITY

Cytoplasmic calcium homeostasis is impaired in cardiomyocytes in
septic cardiomyopathy, and Ca2+ enters mitochondria through
unidirectional transporters (49). In addition, the rapid oscillation
of Ca2+ between mitochondria and endoplasmic reticulum also
leads to mitochondrial Ca2+ overload, which further initiates the
opening of mitochondrial permeability transition pore (mPTP)
(50). The outer mitochondrial membrane is highly permeable,
substances with molecular weights less than 1500 kDa can pass
through it, while the inner mitochondrial membrane allows only
substances with molecular weights less than 1.5 kDa to pass through
it (51). Proton pumps in the inner mitochondrial membrane pump
protons from mitochondrial matrix to outer chamber, forming a
potential difference between inside and outside mitochondria,
which is called the mitochondrial membrane potential (DYm)
(52). The mPTP opens intermittently in physiological state, and
protons or positive ions in the outer chamber enter the inner
chamber because of the potential difference, preventing the
excessive accumulation of positive ions in the outer chamber (53).
With Ca2+ overload, persistent oxidative stress, adenosine
deficiency, increased phosphate concentration and mitochondrial
depolarization occur, and then, the mPTP is in a mostly irreversibly
opened state (54). The DYM decreases rapidly, leading to ion
imbalance, mitochondrial swelling and ATP depletion (55).
FIGURE 2 | Potential targets of protective intervention in septic cardiomyopathy.
FIGURE 3 | Mechanisms of mitochondrial dysfunction in septic cardiomyopathy.
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Moreover, mPTP opening leads to the release of cytochrome c into
the cytoplasm, which participates in forming apoptotic bodies with
APAF-1 and the precursors of caspase-9. Apoptotic bodies activate
caspase-9 facilitated by deoxy-ATP (dATP), and caspase-9 then
enzymatically cleaves caspase-3 to activate it, which starts the
caspase-induced apoptosis cascade of reactions that ultimately
leads to cell apoptosis (56, 57). In addition, electrons produced by
the mitochondrial ETC can no longer be transported to oxygen
molecules, resulting in the termination of OXPHOS and the
inhibition of ATP synthesis (58). To maintain the DYm,
mitochondria then negatively regulate F0F1 ATP synthase,
leading to hydrolysis of the remaining ATP (59).
MITOCHONDRIAL BIOGENESIS
AND MITOPHAGY

The levels of NO, ROS and the ratio of adenosine monophosphate
(AMP)/ATP increase during septic cardiomyopathy. These changes
trigger mitochondrial biogenesis (60). The main mechanism of
mitochondrial biogenesis is the activation of the PGC family,
especially PGC-1 a. PGC-1 a is synergistically activated, and its
expression leads to the increasing expression of transcription factors,
mediating the expression of nuclear proteins required for the
transcription and replication of nucleus- and mitochondria-
encoded OXPHOS subunits and mitochondrial DNA,
transcription of OXPHOS assembly factor and mitochondrial
protein import components (61). Mitochondrial biogenesis stands
for the growth and division of mitochondria (62). The recovery of
cardiac function in septic cardiomyopathy depends partly on
mitochondrial biogenesis (63). The mechanism of mitochondrial
biogenesis is debated. Some studies have shown that the clearance of
damaged mitochondria in sepsis can be compensated by
mitochondrial biogenesis rate, producing new mitochondria.
However, other studies have shown that mitochondrial biogenesis,
even as a compensatory mechanism of mitochondrial dysfunction,
may lead to greater mitochondrial dysfunction by disrupting the
complicated processes of gene transcription and mitochondrial
dynamics. In any case, mitochondrial biogenesis in septic
cardiomyopathy is insufficient to compensate for mitochondrial
dysfunction (64, 65). The process opposing mitochondrial
biogenesis is mitochondrial autophagy (66). Mitochondrial
autophagy is a mechanism by which mitochondria eliminate
dysfunctional mitochondria (67). However, it is unclear whether
mitochondria clear dysfunctional mitochondria only through
autophagic mechanisms and/or whether autophagy is involved in
programmed cell death in septic cardiomyopathy. Recent research
has not clarified the relationship between mitochondrial biogenesis
and mitochondrial autophagy.

The recovery of mitochondrial function is closely related to
the reversal of cardiac pump function; therefore, an increasing
number of in-depth targeted intervention studies are needed to
prevent or even reverse mitochondrial dysfunction. Guidelines
for systematic evaluation of sepsis can improve prognosis and
reduce mortality. However, there is no specific treatment for
sepsis complicated with damage to some organs, including the
heart. Further studies on the mechanisms of mitochondrial
Frontiers in Immunology | www.frontiersin.org 4142
dysfunction in septic cardiomyopathy may supply a novel
strategy to supplement the treatment options.
EPIGENETICS AND LncRNAs

Epigenetics is the study of stable genetic phenotype inheritance that
does not intervene the gene sequence (68). Epigenetic modifications
regulate many biological processes, including development and cell
differentiation and proliferation (69). Currently, epigenetic
mechanisms include the modification of DNA and proteins closely
related to DNA. That is, epigenetic studies focus on themodification
and influence of chromatin structure, mainly including chromatin
remodelling (including advanced folding of chromatin and
connections with the nuclear matrix), DNA methylation, histone
modification and noncodingRNA-relatedmechanisms (70, 71). The
reversibility of epigenetic regulation provides a targeted treatment
strategy for epigenetically modified components and new ideas for
innovative clinical treatment methods.

LncRNAsare endogenousRNAswith transcript lengths ofmore
than200nucleotides,whichdonot possess the functionof encoding
protein. NcRNAs account for 98% of the human genome, and
lncRNAs account for 80-90% of all ncRNAs (72, 73). LncRNAs are
currently considered to be key epigenetic regulators (74). With
increasing and in-depth researchonwhole-genome sequencing and
function, the structure and function of lncRNAshave been found to
be particularly complex (75).Although there is no consensus on the
functional classification of lncRNAs, four main types are currently
recognized: signals, decoys, guides and scaffolds (76). As signals or
decoys, lncRNAs participate in the activation or inhibition of gene.
As guides, they enlist chromatin-modifying enzymes to regulate
gene expression in a cis/trans manner. As scaffolds, they enlist a
variety of proteins to synthesize ribonucleoprotein complexes that
regulate chromatin or histones (77). According to the classification
of gene structure, lncRNAs aremainly divided into sense lncRNAs,
antisense lncRNAs, intronic lncRNAs, long intergenic lncRNAs (or
lincRNAs), enhancer RNAs (or erRNAs), and circular RNAs (or
circRNAs) (78). LncRNAs interact with various molecules to form
RNA-RNA, RNA-DNA and RNA-protein complexes, which play
important roles in chromatin modification (79).

LncRNAs AND CARDIOVASCULAR
DISEASES

Mutation or abnormal expression of lncRNAs is closely relevant to
cardiovascular diseases (80, 81). Published research results mainly
refer to MIAT, ANRIL, LIPCAR, and Braveheart. As early as 2006,
scholars explored the relationship between MIAT and myocardial
infarction. MIAT single-nucleotide polymorphisms can cause
changes in the expression of myocardial infarction-related
proteins (82). Overexpression of ANRIL can change sites of
chromosome 9p21 that are closely relevant to the pathogenesis of
coronary atherosclerosis (83). Further studies showed that ANRIL
expression was positively related to the severity of coronary
atherosclerosis (84). It was discovered that LIPCAR expression
was upregulated during the early stage of heart failure and
downregulated during the late stage, and therefore, changes in
November 2021 | Volume 12 | Article 802085

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu and Chong LncRNAs in Septic Cardiomyopathy
LIPCAR expression can be used to predict the risk of late
cardiovascular events (85). It has been confirmed that Braveheart
is closely relevant to the differentiation of mouse cardiomyocytes.
Studies have shown that PRC2 can inhibit the genes necessary for
the differentiation and development of cardiac cells, such as the
MesP1 gene, and Braveheart can interact with SUZ12 in the PRC2
complex to further control the expression of MesP1. When the
expression of Braveheart is lower than normal, mouse embryonic
stem cells did not differentiate into normal cardiomyocytes, which
limited heart development (86).
EFFECTS OF REGULATED LncRNA
EXPRESSION ON MITOCHONDRIAL
FUNCTION

Mitochondria are important multifunctional organelles
participating in various basic biological processes (87). The
integrality of mitochondrial structure and function is significant
tomaintain the stabilityof the intracellular environment.Currently,
it is generally believed that the stability of the intracellular
environment depends on various mitochondrial pathways
regulating energy conversion and ATP production, involving
ETC and tricarboxylic acid cycle (TCA) (88). Mitochondria have
genetic system independent of the nucleus, and the mitochondrial
genome has a complete expression mechanism (89). However, the
scale of the mitochondrial genome is small (90). The biological
function of mitochondria does not solely depend on the
mitochondrial genome; it also depends on nucleus-encoded
proteins, which are synthesized in the cytoplasm and transported
into mitochondria through specific mechanisms. In other words,
mitochondrial energy metabolism and intracellular environment
stability depend on the simultaneously coordinated regulation and
expression of the nuclear genome andmitochondrial genome (91).
Increasing evidence has shown that lncRNAs can act asmessengers
between nucleus andmitochondria, and participate in regulating of
diverse pathways (92). However, the potential regulatory
mechanisms may be very complex, and relevant research
is ongoing.

LncRNAs can regulate mitochondrial function and dynamics at
different levels (93). Abnormal regulation of lncRNAs leads to
abnormal synthesis of ATP and ROS, thus contributing to the
pathological development of many diseases. Currently, research on
lncRNA regulation of mitochondrial function mainly focuses on
cardiovascular diseases, neurodegenerative diseases and tumour
diseases (94–96). As mentioned above, cardiomyocytes are
enriched with many mitochondria, and mitochondrial dysfunction
is closely relevant to the pathogenesis of cardiovascular diseases.
EFFECTS OF LncRNA REGULATION ON
MITOCHONDRIAL DYSFUNCTION IN
SEPTIC CARDIOMYOPATHY

As previously mentioned, various mechanisms of mitochondrial
dysfunction in septic cardiomyopathy have been reported.
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According to the literature, recent research on lncRNAs
participating in the regulation of mitochondrial dysfunction in
septic cardiomyopathy has mainly focused on decreases in ATP
production, mitochondrial NO production and oxidative stress.
Additionally, studies have shown that lipopolysaccharide (LPS)
can induce an increase in ROS, a decrease in DYm, the release of
cytochrome c, and the upregulation of caspase-9 and caspase-3
in the cytoplasm, ultimately leading to cardiomyocyte
apoptosis (97).

Cheng Xing Peng et al. explored the regulatory role of MIAT
in septic myocardial injury. They found that MIAT knockdown
significantly inhibited the production of mitochondrial ROS in
LPS-treated HL-1 cells. In addition, the ratio of reduced
glutathione to oxidized glutathione (GSH/GSSH) decreased
with increasing malondialdehyde (MDA) content. This result
suggested that MIAT aggravated myocardial damage by
promoting oxidative stress. It was confirmed that MIAT acted
on miR-330-5p directly to upregulate the TRAF6/NF-kB
pathway, promoting inflammation and oxidative stress in LPS-
induced cardiomyopathy (98).

RMRP inhibits the posttranscriptional regulatory effect of
miR-1-5p on HSPA4 in LPS-induced mitochondrial damage.
Overexpression of RMRP can significantly inhibit the decline in
DYm, the level of intracellular ROS, and the expression of
cytoplasmic cytochrome c, caspase-9 and caspase-3, thereby
inhibiting cardiomyocyte apoptosis (99). Bin Shan et al.
discussed H19 regulation in septic cardiomyopathy. H19 can
reduce mitochondrial inner membrane damage by regulating
mitochondrial membrane potential by regulating miR-93-5p/
SORBS2 pathway, thereby inhibiting mitochondrial apoptosis.
Inflammatory factors, involving TNF-a, IL-1b and IL-6, were
markedly downregulated in LPS-induced cardiomyocytes
overexpressing H19. The expression of cytochrome c in
mitochondria was upregulated, while that in cytoplasm was
downregulated. This result indicated that the overexpression of
H19 alleviated inflammation and mitochondrial apoptosis in
LPS-induced cardiomyocytes (100). Studies have also pointed
out that knocking down SOX2OT can significantly enhance
cardiac function, inhibit the decline in DYm, and reduce the
production of mitochondrial ROS in mice with septic
cardiomyopathy, while upregulating SOX2OT can reverse all of
these effects. Through further research on the regulatory
mechanism, it was ultimately concluded that SOX2OT
aggravated mitochondrial dysfunction by downregulating the
expression of SOX2, thereby affecting the prognosis of septic
cardiomyopathy (101).

Studies on the involvement of lncRNAs regulating
mitochondrial energy metabolism in septic cardiomyopathy are
also ongoing. Dongshi Liang et al. found that the increased
expression of Xist is related to the decreased level of both PGC-
1a and ATP, which suggested that inhibiting the expression of
Xist enhanced the production of ATP, reducing sepsis-induced
myocardial injury (102).

Although the aforementioned lncRNAs have been confirmed
to participate in septic cardiomyopathy by regulating
mitochondrial function and apoptosis, it is still unclear whether
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other lncRNAs are involved in regulatingmitochondrial functions,
and the specific regulatory mechanisms of participating lncRNAs
are also unknown. To date, using gene chip hybridization
technology, researchers at Zhejiang University identified 471
upregulated lncRNAs and 804 downregulated lncRNAs in
myocardial tissues of septic mice. Ultimately, this group found
that partial lncRNAs are mainly enriched in inflammation,
immunity, energy metabolism and cell death, and predicted that
certain lncRNAs may participate in mitochondrial dysfunction
(103). All these results provide strong theoretical support for the
continuing study of the involvement of lncRNAs in mitochondrial
dysfunction in septic cardiomyopathy.
CONCLUSION AND PERSPECTIVE

LncRNAs will increasingly become targets for the intervention and
treatment of septic cardiomyopathy, and the mechanism to target
is closely related to lncRNA involvement in mitochondrial
dysfunction. Finding intervention measures to prevent and treat
mitochondrial damage is significant to improved treatment and
prognosis of patients with septic cardiomyopathy. Although
Frontiers in Immunology | www.frontiersin.org 6144
research on biomarkers for use in assessing the severity and
prognosis of septic cardiomyopathy is ongoing, no clear markers
with both sufficient sensitivity and specificity have been identified
to date. Recent research has found that CitH3 may be recognized
as a reliable blood biomarker for diagnosis and prognosis of sepsis
(104). LncRNAs may be potential biomarkers for evaluating the
severity and prognosis of septic cardiomyopathy, and they will also
be the focus of the next phase of our research.
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Epigenetic mechanisms modulate gene expression and function without altering the base
sequence of DNA. These reversible, heritable, and environment-influenced mechanisms
generate various cell types during development and orchestrate the cellular responses to
external stimuli by regulating the expression of genome. Also, the epigenetic modifications
influence common pathological and physiological responses including inflammation,
ischemia, neoplasia, aging and neurodegeneration etc. In recent past, the field of
epigenetics has gained momentum and become an increasingly important area of
biomedical research As far as eye is concerned, epigenetic mechanisms may play an
important role in many complex diseases such as corneal dystrophy, cataract, glaucoma,
diabetic retinopathy, ocular neoplasia, uveitis, and age-related macular degeneration.
Focusing on the epigenetic mechanisms in ocular diseases may provide new
understanding and insights into the pathogenesis of complex eye diseases and thus
can aid in the development of novel treatments for these diseases. In the present review,
we summarize the clinical perspective of infectious keratitis, role of epigenetics in
infectious keratit is, therapeutic potential of epigenetic modifiers and the
future perspective.

Keywords: keratitis, epigenetics, methylation, histone modifications, infectious
INTRODUCTION

While the base sequence of the gene remains same, epigenetic mechanisms alter its expression and
thus its function. This can happen via altered methylation of DNA, post-translational modifications
of histones, introduction of non-coding RNAs, remodeling of the chromatin etc. Epigenetic
mechanisms are known to play an important role in several pathophysiological conditions,
including those of the ocular surface. Exposure of cornea to pathogens, leading to inflammation
and keratitis, has previously shown to involve epigenetic mechanisms (1, 2).

Though our understanding of epigenetic mechanisms in keratitis has advanced to some extent in
recent past, the clinical implications in terms of therapeutics and treatments are yet to be explored.
Some of the examples of how the mechanistic understanding of epigenetics can potentially aid drug
discovery in eye diseases can be: 1) Latent infection of HSV1 (Herpes Simplex Virus 1) in corneal
org November 2021 | Volume 12 | Article 7658901147

https://www.frontiersin.org/articles/10.3389/fimmu.2021.765890/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.765890/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:anil.tiwari@sceh.net
mailto:tuhin@pandorumtechnologies.in
https://doi.org/10.3389/fimmu.2021.765890
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.765890
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.765890&domain=pdf&date_stamp=2021-11-30


Verma et al. Infectious Keratitis and Epigenetics
cells can lead to persistent recurrence of keratitis (3). Knowing
how to epigenetically reactivate the virus from its protective
latent state could help in combating it via anti-HSV treatment.
Knowing how to keep the virus in its latent state irrespective of
epigenetic triggers could help in keeping the virus in a senile
latent state without acute infection. 2) Fungal pathogens are
known to vary their histone modifications to garner virulence
and drug resistance. Down regulation of histone acetylation leads
to increased inflammatory response in fungal keratitis, and
histone deacetylase inhibitors could emerge as promising
treatment (4). 3) In case of degenerative Keratoconus, the non-
coding RNAs have potential to affect the expression of about
1000 genes (5).

Hence, understanding the epigenetic networks and
interactions can possibly help in the early detection of diseases
of the ocular surface and also lead to the development of novel
therapeutic approaches (6). In the present review, we briefly
summarize the role of epigenetics in ocular diseases followed by
specifically focusing the infectious keratitis and epigenetic
changes from a diagnostic and therapeutic perspective which
can be possibly translated into novel therapies in the near future.
EPIGENETICS AND IT’S ROLE IN
OCULAR DISEASES

‘Epigenetics’ refers to the heritable, reversible and environment-
influenced mechanisms that affect the gene expression without
altering the underlying DNA sequences (1, 7, 8). The term was
initially used to refer to the complex interactions between the
genome and the environment, involved in the development and
differentiation of distinct cell lineages in higher organisms (9,
10). The epigenetic mechanisms that potentially mediate this
dynamic interaction between the genes and the environment
comprise of DNA methylation, chromatin remodeling, histone
variants, post-translational modifications of histone and
deployment of non-coding RNAs (11). Various factors
contribute in the acquisition, maintenance and inheritance of
diverse epigenetic modifications.

The modification of DNA and histone tails regulates the
structure of chromatin and accessibility of DNA to
transcriptional machinery. The principal epigenetic modification
found in DNA is covalent attachment of methyl group by DNA
methyl-transferase (DNMTs) enzymes at C5 position of cytosine
residues in CpG dinucleotide sequence, which is a mark for
transcriptional repression (12). On the other hand, histones can
restructure the chromatin in transcriptionally permissive or
restrictive states by undergoing diverse post-translational
modifications such as acetylation, methylation, phosphorylation,
ubiquitination etc. (13). These modifications are written, read and
erased by a variety of histone modifying enzymes. The type, site,
combination and the extent of histone modification adds the
complexity of histone code (13–15). Besides modifications of
DNA and histones, long non-coding RNAs (IncRNAs), micro
RNAs (miRNAs), small inhibitory RNAs (siRNAs) and piwi
interacting RNA (piRNAs) can also mediate transcriptional
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silencing as reviewed by Wei et al. (2017) (16). Also, the
temporal and spatial regulation of transcription is regulated by
ATP-dependent chromatin remodelers that re-configure the
nucleosomes in response to environmental and developmental
cues (17). These chromatin remodeling enzymes have been
classified in subfamilies i.e. Switch/sucrose non-fermentable
(SWI/SNF), imitation switch (ISWI), chromodomain helicase
DNA-binding (CHD) and INO80 (18). Additionally, the
replacement of canonical histones with the variants also leads to
diversity of nucleosomes’ structure and function. The histone
variants, their chaperones/remodeler machineries and linkage to
various diseases have been extensively reviewed recently (19, 20).

The human epigenome gets influenced by various factors
such as diet, age, environmental factors, smoking and the
infections. Evidences are growing that natural infections alter
the epigenome by modulating the immune response and
longitudinal disease risk. Most of the studies in infection-
induced epigenetic changes have been done with respect to
carcinogenic microbes and very less is known about epigenetic
effects of non-carcinogenic microbial infections (21). Even less is
known about the role of epigenetics in ocular infections and
diseases. In this section, we briefly summarize the reported
literature on involvement of different epigenetic mechanisms in
ocular diseases (Figure 1). Some of the common eye disorders
where role of epigenetic mechanism have been revealed, include
retinoblastoma, diabetic retinopathy, age-related macular
degeneration (AMD), glaucoma, cataract, keratoconus, corneal
dystrophies, pterygium, keratitis etc. (2, 6, 22, 23), which affect
different parts of the eye as shown in Figure 1. From the point of
view of type of epigenetic mechanism involved, a large number of
genes have been reported to undergo hyper- or hypo-methylation
in different eye diseases such as: MMP-2/CD24 and TGM-2 in
Pterygium; GSTP1, OGG1, ERCC6 and CRYAA in cataract;
TGFBIp in corneal dystrophies; GSTM1, GSTM5 and IL17RC in
AMD, MSH6, CD44, PAX5, GATA5, TP53,VHL, GSTP1, MGMT,
RB1 and CDKN2 in retinoblastoma; RAC1 in diabetic retinopathy;
LOXL1 in pseudo-exfoliation syndrome; TGF-b1 in glaucoma;
RASSF1A and telomerase reverse transcriptase gene in uveal
melanoma etc. The level of various micro-RNAs has also been
reported to be altered in different eye diseases such as up-
regulation of hsa-miR-143-3p, hsa-miR-181a-2-3p, hsa-miR-
377-5p and hsa-miR-411a in Pterygium; up-regulation of hsa-
mir-494, hsa-let-7e, hsa-mir-513a-1, hsa-mir-518c, hasmiR-129,
hsa-mir-198, hsa-mir-492, hsa-mir-498, hsa-mir-320, mir-503,
and hsa-miR-373 in retinoblastoma; and down-regulation of
hsa-mir-29b1 and 200b in diabetic retinopathy etc. Besides
these, histone modifications also seem to play important role as
revealed by H3K9 deacetylation in ERCC6 in cataract; global
histone acetylation in uveal melanoma etc.

These studies definitely attract our attention towards possible
involvement of different epigenetic mechanism in induction,
execution and promotion of various eye disorders with an
opportunity to explore this area for better diagnostic and
therapeutic targets. Having convinced with that, we next focus
on infectious keratitis as another important eye disease of global
concern and the epigenetic mechanisms involved in it.
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INFECTIOUS KERATITIS – TYPES,
CLINICAL FEATURES, AND
MANAGEMENT

Keratitis refers to inflammation of cornea i.e. clear tissue in the
front of eye covering pupil and iris. Depending on the causative
agent, keratitis is broadly classified as non-infectious or
infectious. The non-infectious keratitis results due to injury,
exposure to intense sunlight, dry eyes, weak immunity etc. The
infectious one on the other hand is caused by variety of microbes
i.e. bacteria, viruses, fungi, parasites etc. (Figure 2). The cornea,
which remains protected anatomically by the eyelids, a healthy
tear film & its protective factors, an active lacrimal drainage
system and a tenacious epithelial cover gets inflamed if any of
these protective factors is breached by microbial invasion.
Infectious keratitis or corneal ulceration is traditionally
described as a defect in the corneal epithelium, accompanied
with infiltration and inflammation. Active keratitis and its
sequelae in the form of corneal perforation or scarring can
cause significant morbidity and even complete vision loss (24).

• Infectious keratitis is the most common cause of corneal
blindness in both developing and developed world (25).
Estimated incidence of infectious keratitis is reported to be
ranging from 2.5 to 799 per 100,000 population-year,
depending on the study design and geographical location
Frontiers in Immunology | www.frontiersin.org 3149
(26). A higher rate of infectious keratitis in under-resourced
countries and a wide variation in prevalence of causative
organisms and thus, the frequency of microbial keratitis has
been reported from different parts of the world (26, 27)).
These variations have been widely attributed to poor
environmental and personal hygiene, lack of awareness and
healthcare, agriculture and work-related trauma etc. But
variations are also expected to exist in terms of diets and
metabolites in different geographical & socio-economical
regions. Thus, the gut microbiome-host immune
interactions along with ocular surfaces microbiota also vary
which in turn indicate the involvement of epigenetics in
varied induction and promotion of infectious keratitis.
Dysbiosis i.e. imbalance in gut microbiome has already been
reported to be associated with bacterial keratitis (28).

• Bacterial keratitis is the commonest form of infectious keratitis
globally with incidence ranging from 50 to 60% (29). The potential
risk factors for bacterial keratitis include contact lenses, aqueous
tear deficiencies, trauma, decreased immunologic defenses, eyelid
alterations or malposition, neurotrophic keratopathy, topical
corticoid medications and surgery (30). The common corneal
ulcers causing bacteria are Staphylococcus spp., Streptococcus spp.,
Enterobacteriaceae (including Serratia, Klebsiella, Enterobacter
and Proteus) and Pseudomonas spp. Fungal keratitis on the
other hand is seen in 6-30% of cases and mainly caused by
Aspergillus and Fusarium species (31). Incidence of HSV (Viral
FIGURE 1 | Key epigenetic modifications in common ocular diseases: Diverse epigenetic modifications are associated with the common ocular diseases occurring
in different parts of the eye. MMP2, matrix metalloproteinase 2; CD24, CD24 molecule; TGM2, transglutaminase 2; hsa-miR, human microRNA; GSTP1, pi-class
glutathione-S-transferase; OGG1, 8-oxoguanine DNA glycosylase 1; ERCC6, excision repair 6 chromatin remodeling factor; CRYAA, crystalline Alpha-A; TGFBIp,
transforming growth factor b- induced; GSTM1/5, glutathione S-transferase isoform mu1/mu5; IL17RC, interleukin-17 receptor C; MSH6, mutS homolog 6; CD44,
cluster of differentiation 44; PAX5, paired box 5; GATA5, GATA binding protein 5; TP53, tumor protein 53; VHL, Von Hippel-Lindau gene; GSTP1, glutathione S-
transferase pi-1; MGMT, methylguanine methyltransferase; RB1, retinoblastoma 1; CDKN2, cyclin-dependent kinase inhibitor 2; 5hmC, 5-hydroxymethyl cytosine;
RAC1, rac family small GTPase 1; LOXL1, lysyl oxidase-like 1; TGF-b1, transforming growth factor-b1; RASSF1A, RAS association domain family 1A gene; TM,
trabecular meshwork; LC, the lamina cribrosa.
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keratitis) and Acanthamoeba keratitis are 15-40% and 0-5%
respectively (32). Also, mixed infections comprising of infliction
by more than one organism is also seen in 2-15% of patients (29).

Clinically, the patient presents with complaints of redness,
pain, watering, diminished vision and intolerance to light referred
to as photophobia. As far as diagnosis is concerned, distinguishing
features such as - feathery borders and fixed hypopyon in fungal
keratitis, diminished corneal sensations in viral keratitis and ring
infiltration in acanthamoeba keratitis are used for clinical
diagnosis (29) (Figure 2). Confirmatory diagnosis of infective
keratitis is made conventionally on microbiological examination
which includes smear examination, culture and polymerase chain
reaction (PCR) evaluation (33). Acanthamoeba cysts have
additionally been reported to be detected on confocal
microscopy (34). However, culture negative keratitis poses
significant problem to clinicians. Next generation sequencing
(NGS) can help in diagnostic accuracy of infectious keratitis
especially in culture-negative cases. Tian et al. (35) have
analyzed differentially expressed genes (DEGs) in bacterial and
fungal keratitis. A total of 148 DEGs were found only in bacterial
keratitis and 50 DEGs only in fungal keratitis. Besides, they also
identified 117 co-expressed gene pairs among bacterial keratitis
DEGs and 87 pairs among fungal keratitis DEGs. Also, a total of
nine biological pathways and seven KEGG pathways were
screened and found that TLR4 is the representative DEG
specific to bacterial keratitis, and SOD2 is the representative
DEG specific to fungal keratitis, and hence can be used as
promising candidate genes to distinguish between bacterial and
fungal keratitis. Thus, at molecular level, genes can be quantified
for identifying the causative agent for specific therapeutic
outcomes. Though NGS can undoubtedly provide better insights
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about the ocular surface microbiome in pathophysiological
circumstances, but it is not clear whether these can be effectively
used to determine etiology of infection or antibiotic sensitivity. As
far as management of keratitis is concerned, antimicrobial agents
(36–39) besides collagen crosslinking (40–42) have been the
mainstay for therapy. But, in the light of differential gene
expression, specific pathways involved and eye-microbiota-
immune interaction; it will be interesting to explore the
epigenetic mechanisms involved so that specific epidrugs can be
identified for treating infectious keratitis caused by particular type
of microbe.
EPIGENETICS OF INFECTIOUS KERATITIS

Bacterial keratitis or often referred as ‘corneal ulcer’, is the most
common form of infectious keratitis. Bacteria can induce
inflammatory cascade through the interaction of pathogen
associated molecular patterns (PAMP) with Toll-like receptors
(TLR) expressed on corneal and conjunctival epithelial cells and
subsequently activate the mitogen-activated protein kinases
(MAPK) cascade and NF-kB, leading to increased production of
inflammatory cytokines. Importantly, the production of
inflammatory cytokines is under the control of epigenetic factors
like histone acetylation/deacetylation (43). However, very little is
known about epigenetic mechanisms in bacterial keratitis.
Nonetheless we might be able to learn from pathogenesis of
bacterial infections in other systems where the role of epigenetic
factors has been investigated and can be extrapolated in the field of
bacterial keratitis. In cardiomyocytes, lipopolysaccharide (LPS), a
component of the bacterial cell wall, was found to increase histone
FIGURE 2 | Infectious keratitis caused by different agents: (A) Bacterial keratitis (B) Fungal keratitis (C) Herpes necrotizing stromal keratitis (D) Early Acanthamoeba
keratitis (E) Late Acanthamoeba keratitis. Adopted from https://www.intechopen.com/chapters/69696 under Creative Commons Attribution 3.0 License.
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deacetylase (HDAC) activity. Since HDAC3 regulates TNF
production, its inhibition decreases LPS-stimulated tumor
necrosis factor (TNF) expression caused by the accumulation of
nuclear factor kappa-B (NF-kB)/p65 at the TNF promoter
(44, 45).

Herpetic keratitis is another common infectious corneal
disease, caused by Herpes simplex virus 1 (HSV1). HSV1 infects
corneal epithelial cells and sensory neurons thereby establishing
latent infection, leading to recurrence of HSV1 in the cornea upon
activation of virus under the influence of various stimulatory
factors. Only the latency associated transcript (LAT) remains
persistently expressed and lytic genes remain transcriptionally
repressed, thereby maintaining the latency phase. Therefore, in
order to understand and treat HSV infection, it is critical to
understand the mechanism by which HSV1 is maintained in
latent phase and how HSV1 is activated. The division of active
and inactive genome has been shown to have epigenetic control.
Histone modification for active transcription i.e. di-methylation of
H3K4 and acetylation of H3K9 and H3K14 in LAT region and for
inactive transcription i.e. trimethylation of H3K27 along with
macro H2A histone variant have been reported to execute this.
Moreover, chromatin insulators seem to separate the epigenetic
domains of LAT and lytic genes. Abrogation of these insulators
and CTCF (the protein that binds vertebrate insulators) binding
possibly pave the way for transition from lytic to lysogenic phase
(3, 46). Additionally, in neuronal cells, HDAC inhibitors
(trichostatin-A) have been reported to reactivate the HSV1
infection in LAT-independent manner too (47).

Neurotrophic keratitis, also known as neurotrophic
keratopathy, is a degenerative corneal disease caused by damage
of trigeminal innervation. This damage to corneal innervation
(from the trigeminal nucleus to the corneal nerve endings at
different levels on the fifth cranial nerve) can be caused by various
ocular surface disease, systemic diseases and central or peripheral
nervous damages (48, 49). Though neurotrophic keratitis does not
come under infectious keratitis directly but is most commonly
induced by HSV (herpetic keratitis), the neurotrophic virus (50).
With reactivation of latency by various stimulatory factors, virus
travels back to the corneal epithelium along the axon and causes
damage to corneal nerve with a severe reduction of sub-basal nerve
plexus density with resultant diminished corneal sensation or
corneal anesthesia (51). Thus, the epigenetic mechanisms
involved in herpetic keratitis can be extrapolated to understand
and manage neurotrophic keratitis too.

The pathogenesis of fungal keratitis remains poorly understood
and therefore, its treatment is also yet to be explored more,
especially from epigenetic perspective. However, Xiaohua Li
et al. (4), have recently reported the attenuation of fungal
keratitis in mice by histone deacetylase inhibitor, suberoylanilide
hydroxamic acid (SAHA). It implies histone acetylation-
deacetylation as potentially important target for understanding
the fungal keratitis and expedite research in this area for better
diagnosis and therapeutics. Additionally, a comprehensive human
corneal miRNA expression profile and associated regulatory role
in fungal keratitis has been reported (52) which again indicate the
possible role of epigenetics in fungal keratitis as well.
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Acanthamoeba keratitis, caused by Acanthamoeba castellanii
remains a challenge to treat because of encystation. Even a single
cyst in the tissue can cause re-infection and therefore, an effective
strategy must inhibit cyst formation as well besides killing the
pathogen. Epigenetic modification of the genes and proteins
involved in initiation & maintenance of cyst and transition from
cyst to active form can thus be a potential target for the same.
Expression of encystation-mediating cyst-specific cysteine
proteinase (CCSP) gene is regulated by DNA methylation (53).
Similarly, silent-information regulator 2 like protein (SIR-2), which
is a nicotinamide adenine dinucleotide-dependent deacetylase plays
role in growth and encystation of Acanthamoeba (54). Though
there are no direct reports available for involvement of epigenetics
in Acanthamoeba keratitis, these reports suggest that epigenetic
mechanisms play vital roles in Acanthamoeba physiology and
pathology and thus, can be explored for medical purposes.
EPIGENETICS MODIFIERS AS A
POTENTIAL THERAPEUTIC MOLECULE

Dysregulated epigenetics is involved in a wide range of diseases like
cancer, blood disorders, neurological and neurodegenerative
disorders, and respiratory disorders (55). The ability to reverse the
epigenetic modifications makes them an attractive druggable target
(56). The changes in epigenetic landscape can be used as diagnostic
markers as well as therapeutic targets in both invasive and non-
invasive samples (57). Besides pharmacokinetic effects of epigenetic-
based drugs, one can also consider the pharmacodynamics effects of
epigenetics. The pharmacoepigenetics, the study of the epigenetic
basis for variations in drug response is a growing field which
highlights that the genes encoding drug-metabolizing enzymes,
nuclear receptors, drug transporters etc. are under epigenetic
control and thus, can affect the pharmacodynamics of drugs (58).

The epigenetic modifiers fall into three main categories i.e.
writers (ones that mark DNA and histones with chemical
groups), readers (which read those marks) and erasers (which
remove these marks). All three have been targeted for developing
epigenetic-based drugs. Besides having precise knowledge about
molecular targets and the mechanism of action involved, the
demonstration of efficacy is what ultimately matters for drug.
The epigenetic-based drugs are a reality now, but we need to be
aware that it’s a recent development and there are concerns
about specificity, adversity, best schedule, ideal dosing,
downstream effectors etc. Nevertheless, there are many epi-
drugs which are either already approved by the U.S. Food and
Drug Administration (FDA) or they are at advanced stages of
approval. But most of them are for cancers. Presently, epi-drugs
in three epigenetic target classes (i.e. DNMT, HDAC and EZH2
inhibitors) have been approved for the treatment of diverse
malignancies (59). So far, there is no approved epigenetic-
based biomarker and drug by the U.S. FDA for ocular diseases,
particularly keratitis.

However, some of the recent studies have demonstrated
promising therapeutic potential of epigenetics in infectious
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keratitis, which develops our hope that we might have epi-drugs
for ocular diseases soon as well. For example, Sivakarthik
Varanasi et al. (60), have shown that 5-azacytidine (Aza; a
cytosine analog), a DNA methyltransferase inhibitor, inhibits
the progression of herpatic keratitis and limits the HSV-1-
induced ocular inflammatory lesions by enhancing regulatory
T-cell function. Similarly, attenuation of fungal keratitis in mice
by histone deacetylase inhibitor, suberoylanilide hydroxamic
acid (SAHA) has been recently reported by Xiaohua Li et al.
(4),. Also, Hae-Ahm Lee et al. (61) have recently shown that
histone deacetylase inhibitors MPK472 and KSK64 can be
potential therapeutic targets for Acanthamoeba keratitis, which
otherwise is difficult to treat because of cyst formation. These
HDACs inhibit the encystation of Acanthamoeba and have low
cytopathic effects on human corneal epithelial cells, and
therefore can be promising epidrugs for Acanthamoeba
induced keratitis.

Using combinations of epigenetic modifiers can also be an
important strategy in reducing inflammation and/or disease, for
example, a single dose of combinatorial administration of as 5-
Aza-2-deoxycytidine (Aza) and trichostatin A (TSA) (Aza+TSA)
after the onset of acute lung injury (ALI) has been found to be an
effective method to attenuate lung vascular hyper permeability
and inflammatory lung injury (62).

In context of viral diseases, epigenetic modifiers in the latency
period of infection can be controlled in two steps i) Shock and
kill strategy-using epigenetic modifiers to revoke the expression
of virus and use anti-viral drugs to decrease viral load and ii)
block and lock strategy- using epigenetic modifiers permanently
silencing the latent virus (63). Similar strategy could be potential
used in case of ocular inflammatory disorders and infectious
keratitis complications (64).
CONCLUSIONS AND
FUTURE PERSPECTIVE

Disease’s state represents an accelerated situation of tissue
damage and aging. The role of epigenetics in maintaining
normal development and function is reflected by the facts that
many diseases develop when aberrant type of epigenetic
footprints are introduced or are added at the wrong time or at
the wrong place. DNA methylation, histone modifications and
nucleosome positioning are generally used as a biomarker of
tissue aging, it is not just marking time like a clock on the wall
but “actually controlling the time-speed within cells” (65).

Age-associated DNA damage drives erroneous distribution of
proteins at various cellular compartments. In case of epigenomic
machinery it may cause unwanted genes to switch on/off
associated with various diseases/degenerated state. In ocular
context, epigenetic reprogramming has shown promising results
in promoting optic nerve regeneration, reversal of vision loss in
glaucoma, and reversal of vision loss in aging animals.

Corneal keratitis specifically neurotrophic keratitis is a
condition of nerve degeneration. Manipulating epigenetic clock,
thereby promoting nerve innervations could be one of the
strategies to induce diseases clearance and healing. One
Frontiers in Immunology | www.frontiersin.org 6152
approach will be to rewire the epigenetic memory rather than
totally erasing it, by either controlling the dose, time exposure or
different permutation and combinations modulating of Yamanaka
factors. The reversal state can be driven by changing landscape of
the tissue associated with earlier time stamp, thereby triggering
local tissue regeneration (66–69). With the evolution of
therapeutics, we have moved from small molecule drugs like
aspirin to large molecule biologist such as insulin now moving
into multicomponent system therapeutics, which may enable
epigenetic reprogramming to induce targeted regeneration in the
tissue of interest. Degeneration changes in a tissue associated with
disease or aging are often linked with system level changes in
functional gene clusters such as inflammation, fibrosis,
neurodegeneration and vascular defects. Regeneration can be
often looked at reversal of cell state with projections along these
functional axes and changing the epigenetic state and effective
time stamp and potential therapeutics using multiple factors

It is very essential to understand the epigenetic machinery
and diseases specific function of its component to design and
develop targeted epigenetic therapy. Importantly, it is critical to
know the specific inhibitors other than the widely used pan
inhibitors in clinical trials and further explore their roles in
regulating specific gene expression in a more defined fashion
during infection development and progression.

In the recent years, epigenetic studies advancement has
provided novel insights and has significantly increased our
knowledge about the interactions between pathogens, cellular
factors, histones, and nonhistones modifying enzymes. As most
of the epigenetics modifications are reversible, rewiring this
complex machinery could be critical in determining the
infection and also subsequent recovery. In case of viral keratitis,
it is important to permanently maintain the virus in latency by
erasing its reactivation epigenetic memory, so that the reactivation
could be bypassed. Alternatively, using the epigenetic modifiers
that targets the host rather than the pathogens could be helpful in
tackling the complications of drug induced resistance in bacteria
and viruses. In addition, addressing the role of the less studied
post-translational modifications such as phosphorylation or
sumoylation can shed light on new aspects of the dynamic host-
pathogen interplay in case of infectious keratitis. Altogether, new
therapeutic approaches are actively needed to treat infectious
keratitis especially for viral infections and understanding the
epigenetics of infectious keratitis and thereby repurposing drugs
targeting epigenetic players could lead to major therapeutic
breakthroughs in the treatment of ocular keratitis.

There are few important considerations to be taken into
account, it is important to decrease the risk of epigenetic
instability and abnormalities that could result due to continuous
use of wide spectrum inhibitors over long-term. Therefore, it is
very important to focus our research on identifying diseases
specific inhibitors rather than global nonspecific inhibitors.
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With approximately 38 million people living with HIV/AIDS globally, and a further 1.5 million
new global infections per year, it is imperative that we advance our understanding of all
factors contributing to HIV infection. While most studies have focused on the influence of
host genetic factors on HIV pathogenesis, epigenetic factors are gaining attention.
Epigenetics involves alterations in gene expression without altering the DNA sequence.
DNA methylation is a critical epigenetic mechanism that influences both viral and host
factors. This review has five focal points, which examines (i) fluctuations in the expression
of methylation modifying factors upon HIV infection (ii) the effect of DNAmethylation on HIV
viral genes and (iii) host genome (iv) inferences from other infectious and non-
communicable diseases, we provide a list of HIV-associated host genes that are
regulated by methylation in other disease models (v) the potential of DNA methylation
as an epi-therapeutic strategy and biomarker. DNA methylation has also been shown to
serve as a robust therapeutic strategy and precision medicine biomarker against diseases
such as cancer and autoimmune conditions. Despite new drugs being discovered for HIV,
drug resistance is a problem in high disease burden settings such as Sub-Saharan Africa.
Furthermore, genetic therapies that are under investigation are irreversible and may have
off target effects. Alternative therapies that are nongenetic are essential. In this review, we
discuss the potential role of DNA methylation as a novel therapeutic intervention
against HIV.

Keywords: HIV, epigenetic regulation, DNA methylation, epigenome-wide methylation, epi-therapeutics
INTRODUCTION

In the nuclei of eukaryotes, the chromatin is subject to intense epigenetic events resulting in either
condensed repressive heterochromatin or transcriptionally permissive euchromatin (1). These
epigenetic events include posttranslational modifications to histones and methylation of DNA (1).
DNA methylation involves the covalent addition of methyl groups to the fifth carbon in the
nitrogenous base of cytosine (5mC) bases that are usually followed by guanine bases (CpG site) in
DNA (2–5). Methylation of CpG sites found in the cis-regulatory regions of genes is generally
associated with silencing genes (5–7). Methylation can also occur in intergenic regions, where it
org December 2021 | Volume 12 | Article 7951211155
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prevents the expression of potentially harmful genetic elements
(4) as well as within the gene body, where a positive correlation
with gene expression occurs (8–10).

DNA methylation is strongly involved in the physiological
control of gene expression (4). It plays a key role in normal
development (11), compaction of chromatin (12), genomic
imprinting (13), X chromosome inactivation (14) and the bulk
silencing of viral and transposable elements (15). However,
aberrant methylation patterns are associated with a multitude
of diseases [reviewed in (16–19)]. Several studies have shown
that viral infections can induce aberrant methylation patterns
within the host genome (20–22). On the other hand, the
integrated proviral genome is also influenced by the epigenetic
environment of the host (20, 23, 24). Thus virus-host interaction
induces an altered epigenetic environment that affects both the
virus and the infected host cell.

The human immune deficiency virus (HIV) is no exception to
this phenomenon. The effect of HIV infection on DNA
methylation has been characterised in HIV positive individuals
(25). These effects have been associated with accelerated aging
and abnormalities in gene expression, especially in immune
regulating genes (25–30). Furthermore, methylation of HIV
provirus by the host’s methylation machinery can control
HIV-1 transcription, replication, and persistence (31–35).

We review the current literature on viral and human genes
affected by methylation as well as address gaps in knowledge that
are yet to be explored with regards to DNA methylation and
HIV. This review will focus on five aspects: (i) the fluctuations of
host DNA methylation modifying factors post HIV infection,
(ii) the contribution of methylation on viral genes, (iii) the
contribution of human genomic methylation on HIV disease,
(iv) the influence of methylation on host genes observed in other
diseases and models, and (v) the potential of DNA methylation
as an epi-therapeutic strategy and precision medicine biomarker.
DNA METHYLATION MODIFYING
FACTORS POST HIV INFECTION

DNA methylation is not a random event. Several proteins
are involved in establishing, removing, and recognising
methylation marks at specific CpG sites within the eukaryotic
genome (4). DNA methylation is established by a family of
DNA methyltransferases (DNMTs – DNMT1, DNMT3a and
DNMT3b). DNMT1 is responsible for maintaining methylation
patterns following DNA replication (36), while DNMT3a and
DNMT3b regulate de novo methylation (37). Therefore,
alternations in DNMT expression usually leads to changes in
DNA methylation levels within cells. Previous studies have
highlighted the increase in expression of DNMTs in HIV
infected CD4+ T cells (38–41). HIV-1 was shown to induce the
expression of DNMT1 in a non-specific tissue manner, and that
overexpression of the viral genes: nef, tat and rev, induced
DNMT1 promoter activity (40, 42, 43). In regulatory T cells,
the effect of X4-tropic HIV infection demonstrated no significant
change in the expression of DNMT1 and DNMT3a, while there
Frontiers in Immunology | www.frontiersin.org 2156
was a substantial increase in expression of DNMT3b (41);
however, increased expression of DNMT1, DNMT3a and
DNMT3b was observed in CEM*174 T cells with significantly
higher expression of DNMT3b (44). Similarly, HIV-1 replication
enhanced DNMT3b levels in patients receiving antiretroviral
therapy (ART) (45). The expression of DNMT3b was directly
correlated to patient HIV viral load, while an inverse relation was
observed for DNMT1 (45). Furthermore, proteomic analysis of
primary oral epithelial cells revealed significantly lower DNMT1
and DNMT3a levels in HIV patients on ART. Additionally,
DNMT activity and global DNA methylation illustrated a direct
correlation (46).

The effect of HIV on DNMTs has incited interest in its effect
on DNA demethylase enzymes. Conversion of the methyl group
from 5-methyl-cytosine are mediated by a group of ten-eleven
translocation methylcytosine dioxygenase (TET) enzymes to
generate 5-hydroxymethyl-cytosine. 5-hydroxymethyl-cytosine
can undergo further modifications such as deamination by
apolipoprotein B mRNA Editing Catalytic Polypeptide-like
(APOBEC) proteins. The expression of DNMT1 and TET1 was
found to be increased in HIV-1 infected individuals without
ART (47). Recently, the HIV-1 Vpr, which increases HIV-1
replication in macrophages, was shown to target TET2 for
degradation, exacerbating HIV-1 infection (48, 49). The status
of other TET enzymes (such as TET2 and TET3) has not been
explored in an HIV setting.

Interestingly, recent studies have highlighted the importance
of TET2 and TET3 for regulatory T cell stability and immune
homeostasis (50). The loss of TET3 gene expression may be a
pivotal contributor to locus hypermethylation (51). The effect of
the TET family in an HIV setting is vastly unexplored; thus, the
future investigation may unearth potential mechanisms of
action, as seen in non-communicable diseases (52–54).
However, much interest has been given to the cytidine
deamination functioning of APOBEC (especially APOBEC3G
and APOBEC3F). They have been shown to extensively
deaminate viral cytosine to uracil resulting in the potent
inhibition of HIV-1 infections (55, 56).

Another key multifunctional epigenetic regulator associated
with HIV is methyl CpG-binding protein-2 (MeCP2), which
recognizes methylated CpG sites and modulates transcription
and chromatin structure (57, 58). The HIV gene tat is known to
induce miR-132 expression, which subsequently down-regulates
the expression of MeCP2 (59). However, Periyasamy et al. (60)
discovered that the HIV-1 tat protein downregulated miR-124,
which increased MeCP2 and its phosphorylated (Ser80) analogue
in microglial cells. Interestingly, phosphorylated MeCP2 (Ser80)
blocks miRNA biogenesis machinery, subsequently down
regulating miR-124. These contradictory observations suggest
that the effect of HIV-1 on host genes desires more
attention (60).

DNA methylation is also known to be recognized by methyl-
CpG binding domains (MBDs) and Ubiquitin Like with PHD
and Ring Finger Domains 1 (UHRF1), which recruits DNA
methylation modifying enzymes to chromatin (61, 62).
Evidence from Kauder et al. (31) showed that HIV latency is
December 2021 | Volume 12 | Article 795121

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Arumugam et al. DNA Methylation in HIV Infection
regulated epigenetically via methylation of proviral DNA by
DNMTs and its recognition by MBD2 (31). UHRF1 was also
shown to facilitate latency as it was recruited to the HIV-1 5’LTR
in a methylation/integration dependent fashion, where UHRF1
mediates the repression of HIV-1 gene expression (63).
CONTRIBUTION OF METHYLATION ON
VIRAL GENES

Methylation of both the HIV-1 proviral genome and host
genome facilitates the integration, replication, and latency of
HIV-1. The integration of proviral DNA into the host
chromosome is not random as it is preferentially inserted into
the euchromatin or actively transcribing regions of the host (64–
66). Once integrated, it becomes indistinguishable from the host
genome and exploits host cellular machinery for the
transcription of its genes (67). However, this also puts proviral
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DNA at risk for epigenetic silencing events such as DNA
methylation. In most cases, presence of methylation within the
viral DNA, which has been integrated into the host genome,
results in the reduction of new viral particles. In contrast, when
integrated viral DNA is not methylated, viral transcription and
viral production proceeds as usual (Figure 1).

The association of proviral methylation and the transcriptional
inactivation of HIV-1 was introduced as early as 1990 (68, 69).
Since then, several in vitro studies have reported that methylation
of CpG sites found within the proximal proviral promoter, located
in 5’ long terminal repeat (5’LTR), silences transcription of HIV-1
genes resulting in latency. This allows HIV to evade host immune
responses and ART (31–35). However, in vivo analysis of
methylation patterns in the 5’LTR with regards to latency is
conflicting. High methylation patterns were found in the 5’ LTR
of memory CD4+ T cells isolated from aviraemic HIV positive
individuals on long term ART therapy (32). However, in a
subsequent study, CpG sites were poorly methylated in resting
FIGURE 1 | Epigenetic silencing of HIV transcription via methylation of integrated provirus. HIV binds to host receptors, entering the cell. HIV viral RNA is converted
to single-stranded viral DNA and integrates into the host genome. HIV uses the host’s machinery to create new HIV copies (Pathway 1). However, methylation of
integrated provirus results in the downregulation of HIV viral transcription, resulting in latency (Pathway 2).
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CD4+ cells from HIV infected individuals (70). Trejbalova et al.
(33) also observed low methylation levels in the 5’LTR of resting
CD4+ cells isolated from individuals on effective ART; however,
methylation levels appeared to increase with prolonged ART use
(33). A comparison of methylation levels in the 5’LTR of long
term non-progressors/elite controllers and virally suppressed
individuals on ART found that methylation was virtually absent
in individuals in the latter groups compared to the non-
progressor/elite controller groups (71). These observations
suggest that latency and ART-induced suppression might have
different methylation patterns. The apparent difference in
methylation patterns between in vivo and in vitro studies can be
attributed to the pressure of “natural” selection in HIV-1-infected
individuals. In contrast, under in vitro cell culture conditions,
HIV-1 proviral genomes are not subject to the selective pressure
exerted by host immune defence (72).

5’LTR methylation levels were also shown to associate with
the expression of HIV-1 genes. Decreasing levels of methylation
in the 5’LTR corresponded with increasing expression of HIV-1
gag in HIV-1 infected spermatozoa. Furthermore, gag protein
was expressed in 2 cell embryos transfected with infected
spermatozoa suggesting that 5’LTR methylation regulates the
expression of HIV-1 gag in the vertical transmission from sperm
to embryo (73).

Regarding methylation patterns outside the LTR, Weber et al.
(72) found that CpG sites remain in a predominantly
unmethylated state in the 5’LTR, 3’LTR and portions of HIV-1
gag, env, nef and tat genes. They also observed slight variations in
the methylation state of the HIV-1 genome in one long term
non-progressor over 11 years, although viral load and CD4+

levels remained stable (72). A recent study examined
methylation of intragenic regions of the proviral genome
across four groups of HIV infected individuals [i.e. long term
non-progressors, early combination ART (cART) treated, late
cART treated and cART naïve, acutely infected] (74). As a whole,
methylation of promoter regions was reduced in all four groups,
while high levels of methylation were observed in the intragenic
env region. In the ART naïve acutely infected group, a distinct
increase in 5’LTR and a decrease in intragenic env methylation
was observed (74). Taken together, these observations suggest
that intragenic methylation could be a late event during infection
as well as intragenic methylation was positively associated with
CD4+ counts and viral loads (74).

It is important to take into consideration the high mutation
rates of HIV (75). Based on levels of mononucleotide C and Gs,
the frequency of CpG sites within the HIV-1 genome is much
lower than one would expect. The methylation of viral CpG sites
may result in the spontaneous deamination of cytosine to
thymine which increases the mutation rate of HIV (76).
Moreover, coding regions such as the env region are highly
variable (75). It would be interesting if future studies would
evaluate whether CpG sites within these regions are lost,
retained, or gained over a period of time and whether these
mutations are beneficial or harmful to the virus.

Thus far, all studies on HIV DNA methylation have focused
only on CpG methylation; however, non-CpG methylation was
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reported in other retroviral infections (77, 78). The lack of
appropriate techniques that include non-CpG methylation may
be why it has not been evaluated, as most of the studies discussed
used nested PCR-based methods that exclude most non-CpG
methylation (79).

The variability in existing data may be due to several factors.
For instance, the integrated HIV provirus is subject to its
immediate chromatin environment; thus, different integration
sites may influence methylation status accordingly (79). Several
pitfalls arise from the amplification of HIV from bisulphite-
converted DNA: (i) the high mutation rates of actively
replicating HIV hinders designing PCR primers that can
amplify all HIV targets, (ii) longer primers are needed for
bisulphite converted DNA which can worsen the biased
amplification of variable sequences, (iii) multiple rounds of
amplification of multiple variants can introduce stochastic bias
and variable results are obtained from different methods even
when the same conditions are applied (79). There is a significant
need for an approach in which HIV amplification of the provirus
is reproducible across different primer sets and experiments.
Furthermore, attempts to establish and measure latency are
unconvincing. It has previously been shown that cell lines
harbouring viruses are not genuinely latent but are instead in
an incapacitated state (80). Thus, in vitro studies are not an
accurate measurement of methylation or latency. The
development of appropriate methods for specific assessment of
the replication-competent HIV reservoir in clinical samples and
techniques of studying DNA methylation in the context of HIV
may be helpful. Furthermore, the examination of non-CpG
methylation of the provirus should be undertaken (79).
THE CONTRIBUTION HUMAN GENOMIC
METHYLATION ON HIV PATHOGENESIS

While DNA methylation may influence the replication of HIV
and transcription of crucial HIV genes, the integration of HIV-1
DNA into the host genome is also associated with aberrant
methylation of host genes. Altered DNA methylation across the
host genome has been shown to contribute to HIV disease.
Previous studies have identified this via two different
mechanisms. The first mechanism is a non-hypothesis driven
approach which characterizes epigenome-wide methylation
patterns. The second method is a hypothesis driven approach
which measures methylation of specific/candidate genes. We will
discuss each approach more thoroughly in the two sections
which follows.

Assessing the Epigenome-Wide
Methylation Patterns of the Host
Given that methylation of specific CpG sites found in either the
promoter or gene body may impact gene expression, the use of
epigenome-wide characterisation of DNA methylation provides
a powerful approach in identifying epigenetic variations
associated with disease acquisition, severity, and predictive
outcomes (81, 82). Several high-throughput methods have been
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established for the genome-wide profiling of methylation at
single-nucleotide resolution. These methods usually require the
treatment of genomic DNA with sodium bisulphite, which
deaminates unmethylated cysteine residues to uracil, leaving
methylated cysteine residues unaffected (83). The most used
techniques include whole genome-wide bisulphite sequencing
and microarrays. Whole genome-wide bisulphite sequencing
involves PCR amplification of bisulphite converted DNA
coupled with next-generation sequencing, which allows for the
methylation profiling of every cytosine in the genome (84).
Methylation arrays such as Illumina’s Infinium arrays involves
amplifying bisulphite converted DNA followed by its
hybridisation to arrays containing probes that distinguish
methylated and unmethylated cytosine and covers CpG
islands, shores, and shelves (85). Other methods include
methylated DNA immunoprecipitation, comprehensive high-
throughput arrays for relative methylation and reduced-
representation bisulphite sequencing. Most of the studies
pertaining to genome-wide methylation profiling in HIV
infected hosts use either methylation arrays or whole genome-
wide bisulphite sequencing.

The first large scale study to characterise altered DNA
methylation patterns of the host genome associated with HIV
infection was conducted on DNA extracted from whole blood
collected from 261 HIV infected and 117 uninfected individuals
(30). The epigenome-wide association study (EWAS) identified 20
CpG sites to be significantly associated with HIV infection.
Among them, 14 CpG sites were found to be hypomethylated,
and six were found hypermethylated in HIV-infected individuals.
These 20 CpG sites that were significantly associated with HIV
infection were found within genes involved in immune activation
(30). The most significant was 2 CpG sites located in the promoter
region of NOD-like receptor family CARD domain containing 5
(NLRC5), an important transcriptional regulator of the Human
Leucocyte Antigen (HLA) class-I genes and genes related to HLA
class I antigen presentation and processing, such as TAP1 b2M,
and LMP2 (86). Hypomethylation of the 2 CpG sites (cg16411857
and cg07839457) within the promoter region of the NLRC5
inversely correlated with viral load implying that DNA
methylation of NLRC5 is associated with HIV disease outcome
(30). In a recent study, similar results were observed in HIV
infected and uninfected individuals who are injectable drug users
during 6-month abstinence from drug injections. HIV infection
was associated with 49 differentially methylated (DM) CpG sites.
The top CpG sites identified were associated with immune and
viral response pathways that are associated with HIV
pathogenesis, with NRLC5 being the top-ranked gene associated
with HIV status (87). Strong evidence of differential methylation
within the MHC region (HLA-F, PSORS1C2, PSORS1C3 and
Notch4) and NLRC5 region was also observed in children with
perinatally acquired HIV. HIV was also shown to stunt B cell
development and maturation via hypermethylation of EBF4,
FOXP1 and DLL1 in perinatally infected children (29).

While studies on adult populations found that most DM CpG
sites were hypomethylated in HIV infected individuals (30, 87),
97% of DM CpG sites tend to be hypermethylated in perinatally
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infected children. These differences suggest childhood
acquisition of HIV alters the epigenome differently than
acquisition as an adult (29). Differential methylation also
occurs between perinatally infected and uninfected children
(44, 88). Seeing as genetic and environmental factors influence
the methylome, studies comparing the epigenetic profile of the
general population is less than ideal. The use of discordant
monozygotic twins with perfectly matched genetic profiles and
similar lifestyles eliminates potential genetic confounders when
unrelated individuals are used. Thus, variations in the
methylome could be accurately attributed to exogenous factors
such as viral infection (89). In a study conducted on a pair of 15-
year-old monozygotic twins with discordant HIV statuses,
significantly higher levels of methylated differentially
methylated regions (DMRs) were observed in the infected twin
compared to the uninfected sibling, further suggesting that HIV
infection would cause the increase of global methylation level in
perinatally infected children (44, 88). DMRs were located in
chromosomes 17, 19 and 22, which are known HIV integration
sites as they contain actively transcribing genes (44, 90, 91). It is
possible that hypermethylation of regions in these chromosomes
may be a mechanism employed by the host to suppress viral
propagation. Twenty-five hyper-methylated genes in the HIV
infected twin were validated at the transcriptional level. The
expression of 72% of genes were downregulated by more than
50% in the HIV infected twin with IGFBP6 and SATB2 being the
most significantly reduced genes. However, information on the
role of IGFBP6 and SATB2 in HIV pathogenesis is limited (44).
The use of HIV discordant monozygotic twins by Zhang et al.
(44, 88) was an admirable attempt to account for the influence of
genetic factors; however, it failed to account for environmental
effects (44, 88). Further, only a single pair of twins were used in
the study and the twins were recruited seven years after the
acquisition of HIV infection. Thus, methylation changes cannot
be used to distinguish between cause and consequence (44, 88).

While most studies have focused on variations in global DNA
methylation among uninfected and infected individuals, the
disparity has also been established in individuals with variable
levels of HIV-1 viral load. Oriol-Tordera et al. (92) evaluated
host genome methylation patterns of chronically HIV-1 infected
individuals with high (>50,000 HIV-1-RNA copies/ml) and low
(<10,000 HIV-1-RNA copies/ml) viral loads. Fifty-five DMRs
were found to differentiate individuals with high viral load from
those with low viral loads (92). Functional analysis showed genes
involved in anti-viral activity and type I interferon g (IFNg)
signalling to be hypermethylated in HIV infected individuals
with low viral loads. Of particular interest, DMRs associated with
IFNg signalling included: PARP9/DTX3L, MX1, USP18, IFI44L
and PLSCR1. In contrast, genes involved in general immune
activation, such as T cell activation and differentiation, were
found to be hypomethylated compared to individuals with a high
HIV viral load (92). Thus, the epigenetic repression of IFNg
stimulating genes may assist in achieving control of HIV.

The studies described thus far provide valuable information
on the association of aberrant methylation patterns and HIV
infection at an epigenome-wide level; however, the use of whole
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blood, which consists of various cell types, has been used in these
studies tend to be problematic. DNA methylation profiles differ
strongly by cell type; therefore, variations in cell-type
composition and proportions between samples can confound
analysis (93). Furthermore, HIV mainly affects CD4 T cells
which represents a small proportion of the tissue sampled;
thus, the variation may not be detected. HIV further destroys
CD4+ T cells levels; hence, measured epigenetic differences
between cases and controls may only reflect differences in cell
type composition and not true epigenetic differences (94). The
use of homogeneous cell populations may provide a more
accurate estimation of epigenome-wide methylation patterns
and associated differential gene expression profiles between
HIV infected and uninfected cells. CD4+ T lymphocytes are
significant targets of HIV, with their progressive death
culminating in acquired immune deficiency syndrome (AIDS).
The use of the DNMT inhibitor, 5-azacytidine (5-azaC), can
reverse T cell depletion, suggesting that DNA methylation may
impact T cell apoptosis during HIV infection (95). Zeng et al.
(96) transfected two T-cell lines (MT-2 and Jurkat cells lines)
with the T-cell-tropic HIV strain, HIV-1 pNL4-3. Whole-
genome methylation analysis found 1,428 hypermethylated and
1,227 hypomethylated DMRs in HIV infected MT-2 cell line
compared with the uninfected controls as well as 1,231
hypermethylated and 1,833 hypomethylated DMRs in HIV
infected Jurkat cells compared to uninfected control cells (96).
Hypermethylated DMRs were significantly enriched in promoter
and enhancer regions, suggesting that methylation changes are
prone to occur in coding and transcriptional regulatory regions
during HIV-1 infection (96). Hypomethylation of DMRs in 147
transcription factor binding motifs occurred in HIV infected
Jurkat cells, 94 of which overlapped with the hypomethylated
DMRs in the MT-2 cell line (96). HIV infected MT-2 cell lines,
and Jurkat cell lines contained 83 and 53 transcription factor
binding motifs found in hypermethylated DMRs. In the MT-2
cell line, five hypermethylated transcription factor binding
motifs (WT1, HIF1A, EGR1, IRF1, and MEF2C) were
associated with transcription factors that have been previously
associated in HIV-1 induced apoptosis (96). These results
suggest that the depletion of T cells during HIV infection
results from aberrant DNA methylation at the binding sites of
apoptosis-related transcription factors (96). Differences in
epigenome-wide methylation were observed in CD4+ T cells
isolated from individuals with varying degrees of control,
suggesting that methylation status differs according to the
progression of diseases state and control of infection.
Furthermore, hypermethylation of TNF was characteristic in
viremic individuals while TRIM69 and ITTGB2 were found to be
hypomethylated in elite controllers (97). While the use of a
homogenous in vitro models may provide more accurate
methylation patterns, in vitro studies are not accurate
representation of cells systems and are unable to account for
ethnic differences.

Epigenome-wide characterisation reveals that global
hypomethylation is prominent in HIV infected adults (30, 87),
whereas global hypermethylation is prominent in HIV infected
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children compared to uninfected children (29, 88). Top hits
include genes associated with anti-viral responses, immune
defence, immune cell development and apoptosis (29, 30, 87,
96). However, the use of PBMCs and the comparison between
unrelated, unmatched infected and uninfected individuals
confounds results and thus, it is imperative to account for
these factors. More studies should evaluate epigenetic events in
monozygotic twins with discordant statuses, or a more desirable
approach would be the longitudinal analysis of individuals pre-
and post-HIV infection.

Candidate Host Gene Methylation
While EWAS characterisation provides a holistic view of
methylation patterns during HIV infection, it is not feasible.
Thus, many researchers opt for a targeted approach by analysing
the epigenetic regulation of specific genes. The four most
common techniques used to determine the methylation status
of specific CpG sites includes: (i) methylation-specific restriction
endonucleases (MSRE) followed by qPCR using primers
surrounding the sequence of interest, (ii) pyrosequencing,
(iii) methylation-specific high-resolution DNA melting analysis
and (iv) quantitative methylation-specific polymerase chain
reaction (98). Several studies have investigated the effect of
HIV infection on specific HIV associated genes.

The surface expression of C-C chemokine receptor type 5
(CCR5) influences HIV-1 acquisition and disease progression by
facilitating HIV-1 viral entry into T cells (99, 100). A common
determinant of CCR5 expression is specific polymorphisms in
open reading frames and cis-regulatory regions of CCR5 (101).
One such polymorphism is a 32 base pair deletion in the open
reading frame of CCR5 (CCR5-D32). Individuals homozygous
for the CCR5-D32 mutation cannot produce complete CCR5
proteins; thus, their T cells surface is devoid of the receptor,
providing them with protection against HIV (102, 103).
However, polymorphisms do not account for the variation in
CCR5 expression between subsets of T cells and altered
expression upon T cell activation (104–106). In vivo and ex
vivo analysis by Gornalusse et al. (107) showed that methylation
levels within the CCR5 gene might account for these variations
(107). Sorted T cells with highermethylation contentwithin the cis-
region ofCCR-5 correlated with lowCCR5 surface levels. CpG sites
in the regulatory region ofCCR5weremostlymethylated in naïve T
cells, whereas hypomethylation was prevalent in memory T cells
(107). In vitro activation of naïve T cells was associated with
demethylation of CCR5 and concomitant increase in CCR5
expression. These results were confirmed in a cohort of
individuals with primary HIV infection and two cohorts of
individuals with untreated chronic infection. However, viral load
suppressionduringARTwas associatedwith increasedmethylation
in CCR5-cis regions and low CCR5 levels during primary infection
(107). Furthermore, the authors demonstrated that specific CCR5
haplotypes contain polymorphism, which may remove CpG sites,
resulting in cis-regions resistant to undergoing activation-induced
demethylation and are thus constitutively expressed. Therefore,
CCR5 surface levels andHIV susceptibility depend on both genetic
and epigenetic mechanisms (107).
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Genetic variations in the HLA region are known to influence
host control of HIV infection (108, 109). HLA molecules present
intracellularly derived peptides to immune cells, which elicits
immune response upon recognising pathogenic peptides (110).
Several previously discussed EWAS have identified differential
methylation within the HLA loci in HIV positive individuals (29,
86). The elevated levels of the class I HLA-A molecules are
associated with higher HIV viral load and poor HIV control. In
contrast, low expression of HLA-A is associated with improved
control of viremia and slower progression to AIDS (111).
Methylation of the HLA-A promoter results in the reduced
expression of HLA-A (112). Moreover, allelic lineage-specific
methylation patterns within the HLA-A promoter region are
inversely related to HLA expression. Increased DNAmethylation
levels correlated significantly with reduced HLA-A expression
levels (112). Gross et al. (26) found that an entire HLA locus had
notably reduced methylation levels in HIV infected individuals
compared to uninfected individuals (26). Furthermore, several
differentially methylated markers were found surrounding a
single nucleotide polymorphism (SNP), rs2395029, within the
HLA region (26). This variant is predictive for the presence of
HLA-B*5701 and is common in HIV positive non-progressors.
Further examination of this locus in neutrophils and CD4+ T
cells found that the gene body of HLA Complex P5 (HCP5) was
differentially methylated in neutrophils, and the methylation
level of HCP5 correlated with CD4+:CD8+ T cell ratio (26).
Thus, methylation dynamics plays a critical role in HIV control
through its regulation of the HLA system (26, 111, 112).

A specialised subset of CD4 T lymphocytes known as
regulatory T cells or Tregs plays an essential role in suppressing
hyperactive immune responses that may occur during the course
of HIV infection (113). However, Tregs are also susceptible to
HIV infection as they contain receptors that participate in viral
entry (114, 115). The maintenance of Treg functioning is heavily
dependent on the surface expression of Forkhead Box Protein 3
(FOXP3) (116). In vitro transfection of Tregs with HIV-1 was
shown to impair Treg functioning through the methylation of
CpG sites found in FOX3P regulatory regions (41). However, in
vivo analysis of FOXP3 promoters from Tregs isolated from
PBMCs and colon mucosa of chronic HIV infected patients
was demethylated, resulting in the increased expression of
FOX3P (117). In both studies, FOX3P promoter methylation
was associated with altered levels of DNAmethylation regulating
enzymes (41). High levels of DNMT3B were associated with the
elevated methylation in the in vitro study while a significant
reduction in DNMT1, DMAP1, METTL7B, and METTL1 was
responsible for the reduced methylation in the in vivo
study (117).

DNMTs were also shown to influence interferon-gamma
(IFNg) levels (38). INFg, a cytokine produced by type 1 T
helper cells, CD8+ cytotoxic T cells and natural killer cells,
facilitates inflammation and regulates antigen presentation and
macrophage differentiation upon viral infections (80). High
levels of DNMTs in HIV infected T helper cells were shown to
induce methylation at the SnaBI site in INFg promoters resulting
in low levels on IFNg (38) The aberrant expression is due to
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methylation silencing and may play a role in the gradual loss of
type 1 helper cell response seen in AIDS patients.

HIV positive women have an increased risk of developing
cervical cancer and precursor lesions [cervical intraepithelial
neoplasia (CIN)] (118–120). Hypermethylation and subsequent
silencing of tumour suppressor genes result in gene silencing and
represents an essential step for cervical cancer development (121,
122). Methylation levels of the tumour suppressor EPB41L3 were
significantly higher in HIV seropositive women with moderate
grade neoplasia compared to HIV seronegative women (123).
Methylation levels of microRNA-124–2 (miR-124–2), was
significantly associated with HIV positive women with low,
moderate and severe grade neoplasia compared to HIV
negative women (124); however, no association was found
between the methylation content of the tumour suppressor
genes CADM1, MAL RARB, DAPK1 and PAX1 in HIV (124,
125). The methylation of ASCL1, LHX8 and ST6GALNAC5 was
significantly higher in HIV seropositive women with low to
moderate grade neoplasia than HIV seronegative women.
However, methylation levels were comparable between HIV
seropositive and HIV seronegative women with high-grade
neoplasia (126).

Most recently, Singh et al. (127) found that methylation levels
within the gene promoter of the host anti-viral restriction factor,
bone marrow stromal cell antigen 2 (BST2 or tetherin) was
associated with BST2 expression and HIV disease state.
Methylation levels were significantly elevated in all nine CpG
sites within HIV infected individuals compared to the uninfected
group. Within the HIV positive group, CpG promoter
methylation of BST2 was further evaluated across four different
time points (pre-infection, 3-months. 12-months and 36-months
post-infection). An inverse correlation between BST2
methylation and expression was observed at all time points.
Furthermore, in an in vitroHIV replication assay, treatment with
the DNA hypomethylation drug, 5’-Aza-CdR corresponded with
an increased expression of BST2 and lower viral load, suggesting
that controlling regulation may be an important strategy in
controlling HIV infection (127).

While DNA methylation is an epigenetic modification,
candidate gene methylation may be influenced by variations in
the DNA sequence. Several studies have mapped the interactions
between genetic differences and variations in DNA methylation
across numerous tissue and cell types (128–131). The
methylation quantitative trait loci showed that up to 48% of
inter-individual variation in DNA methylation was related to
CpG sites that were associated with nearby single nucleotide
polymorphisms (SNPs) found in cis regulatory regions (132,
133). SNPs located near or in CpG sites found in the promoter
region of genes can either produce or remove CpG site
methylation, leading to an alteration in the expression of the
genes (Figure 2A). DNA methylation can also differ among
alleles of a given gene. This is referred to allele-specific
methylation (Figure 2B). For example, the promoter region of
HLA-A*24 (highest HLA-A expressing lineage) and -A*03
(lowest HLA-A expressing linage) contain a similar number of
CpG sites; however, only one CpG site was found methylated in
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the promoter of the HLA-A*24 lineage, while most CpG sites
were found to be methylated in the HLA-A*03 linage (112). The
influence of genetic variation on promoter methylation of
specific host genes in relation to HIV pathogenesis has yet to
be investigated. As discussed in this section, we, however, do
know that increased promoter methylation generally lowers
mRNA expression of specific genes affecting HIV disease
progression (Figure 2C).
METHYLATION CONTROLLED HOST
GENES OBSERVED IN OTHER DISEASES
AND MODELS

With only a few studies evaluating the influence of HIV on the
methylation of specific host genes, further examination is
essential (26, 38, 41, 107, 117, 123, 125, 126). Henceforth, we
discuss potential host genes whose methylation status should be
investigated with regard to HIV. These genes have been
previously shown to associate with HIV disease and were
shown to be controlled by DNA methylation in conditions
other than HIV. Based on the principle that these genes have
been regulated by DNA methylation for a particular disease
association, we assume that they may also be regulated similarly
in an HIV setting.

For instance, the co-receptor C-X-C chemokine receptor type
4 (CXCR4), like CCR5, mediates the entry of HIV into host cells.
Frontiers in Immunology | www.frontiersin.org 8162
Low surface expression of CXCR4 confers with reduced viral
entry, while increased expression is associated with the elevated
viral entry. Therefore alternations of CXCR4 expression has a
significant influence on HIV progression (134, 135). DNA
methylation has been shown to regulate CXCR4 expression in
pancreatic cancer (136), sporadic breast cancer (137), and
primary myelofibrosis (138).

Another example is the host restriction factor, sterile alpha
motif and histidine/aspartic acid domain-containing protein 1
(SAMHD1) which limits HIV reverse transcription by depleting
the intracellular pool of deoxynucleotide triphosphates (139,
140). De Silva et al. (141) used CD4+ T cell lines as a model to
identify mechanisms that regulate SAMHD1 gene expression.
The results indicated that the SAMHD1 promoter contains a
CpG island proximal to the initiation codon of the SAMHD1
gene, which, upon DNA methylation, leads to transcriptional
repression in certain CD4+ T cell lines (142). Regarding disease
association, reduced levels of SAMHD1 expression corresponded
with SAMHD1 promoter methylation in lung cancer (143) and
patients with Sezary syndrome (141).

The tumour suppressor, p53 and its downstream gene, p21,
were shown to hinder early-stage replication of HIV-1 (144).
p21, a cyclin dependant kinase, promotes cell cycle arrest by
downregulating G1/S transition (144, 145). p21 is also shown to
regulate SAMHD1 in HIV-1 infection (145). Epigenetic
alterations, including promoter DNA methylation and histone
deacetylation, have long been established as crucial mechanisms
of carcinogenesis (146–148). p53 promoter methylation leads to
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FIGURE 2 | Factors that contribute to human genomic methylation on HIV disease. (A) SNPs found in regulatory gene regions can create or abolish CPG sites,
which in turn may affect methylation and gene expression. In the genomic sequence, if C is followed by a G, the C can be methylated; however, when the SNP is
mutated from a G to a T, it removes the CpG site and methylation cannot occur (B) DNA methylation can also differ among alleles of a given gene. The number of
methylated CpG sites on each allele can affect expression accordingly (C) Increased promoter methylation generally results in decreased mRNA gene expression,
which is specifically observed within the HIV setting for the following genes CCR5, BST2, HLA-A, FOX3P and IFNa. Since expression variability of these genes are
directly linked to HIV pathogenesis, a change in methylation levels have shown to alter HIV disease progression. Higher levels of methylation for CCR5 and HLA-A
results in slower HIV disease progression, however, higher levels of methylation for BST2, FOX3P and IFNa results in faster disease progression.
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downregulation of p53 in several cancers (149–151). Loss of p21
has been shown to occur in colorectal cancer (152). Additionally,
the p21 gene is frequently methylated and is an essential factor in
predicting the clinical outcome of acute lymphoblastic leukaemia
patients (153). The loss of p21 expression was commonly
observed in lung cancer and malignant pleural mesothelioma,
and aberrant methylation was one of the mechanisms of
suppression of p21 (154).

Methylation of several other host factors such as CCR2,
CCL2, CXCR6, CCL5, TSG101, PD-1, PD-L1, TIM3, LAG-3,
CTLA-4, TRIM22, DC-SIGN (CD209), IL-10, IL-32, IRF1,
Perforin, ICAM-1, and PCSK9 could potentially play a role in
HIV disease. Table 1 provides a list of host factors associated
with HIV pathogenesis which should be examined in future
methylation studies. Although these disease-methylation
associations have been shown in other diseases, it is yet to be
proven in HIV disease. Based on the principle that these genes
have been regulated by DNA methylation for a particular disease
association, we assume that they may also be regulated similarly
in an HIV setting. These listed genes may be potential host gene
targets that may provide an alternative approach towards
precision medicine or personalised therapeutic interventions
against HIV and other diseases.
DNA METHYLATION: A VALUABLE TOOL
FOR EPI-THERAPEUTICS AND
PRECISION MEDICINE

‘The Berlin patient’ and ‘the London patient’ were the first two
individuals reportedly “cured” of HIV. They both received a stem
cell transplant containing the CCR5 D-32 mutation to treat their
leukaemia which consequentially eliminated the virus from their
bodies (221, 222). Such cases provided proof that HIV-1 can be
eradicated in those already living with the virus. Given that this
approach is not feasible for most people living with HIV, other
therapeutic strategies are essential. Furthermore, recent studies
have shown that early treatment with ART, is ineffective against
returning the altered DNA methylation profile of HIV positive
individuals during acute infection (223). Therefore, there is a
need for epigenetic strategies for the treatment of HIV.

Recently, Shrivastava et al. (224) developed a zinc finger
protein (ZFP-362) that specifically targeted the HIV-1
promoter region. The ZFP-362 fuses to active domains of
DNMT3A and induces a long-term stable epigenetic repression
of HIV-1. This suppression was found to be driven by DNA
methylation (224). Like ART, this intervention may repress viral
transcription and control viral replication in HIV positive
individuals; however, it is ineffective against latent HIV
reservoirs. Thus, efforts have mainly been focused on targeting
the latent HIV-1 reservoir responsible for viral persistence and
strengthening immunological defences against HIV. Many
researchers are adopting the “shock and kill” approach to
targeting HIV. This strategy involves the forced reversal of
HIV latency (shock) followed by the robust elimination of
infected cells by viral or host immune-mediated cytolysis (kill).
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Therefore novel approaches for the development of latency-
reversing agents (LRA) are needed (225). Much interest has
been given to the development of epi-LRA – agents that disrupt
latency by interfering with the epigenetic silencing mechanism of
the 5’LTR (226). In the instance of methylation of 5’LTR, the use
of DNMT inhibitors have been considered (31).

Bouchat et al. (227) found that the DNMT inhibitor, 5‐AzaC,
combined with histone deacetylase inhibitors panobinostat or
romidepsin, was potent in reducing HIV-1 latent reservoirs in
ART-treated patients (227). The 5-AzaC analogue, 5-aza-2′
deoxycytidine (5‐AzadC), alone and in combination with
TNFa and prostratin, significantly increased HIV gene
expression through altered methylation levels (31, 227). Both
5-AzaC and 5-AzadC, commercially known as Vidaza® and
Dacogen®, respectively, have been approved by the FDA to
treat myelodysplastic syndrome and in phase II clinical trials
for chronic myelomonocytic leukaemia (227–229). Treatment
with either 5-AzaC or 5-AzadC was shown to increase the overall
survival of patients with higher-risk myelodysplastic syndromes
and prolong time to leukaemia transformation and death
compared to conventional care regimens (230–232). According
to clinicaltrials.gov, 389 clinical trials are actively investigating 5-
AzaC and 5-AzadC as interventions for various cancers and
conditions. These include: ependymoma, breast cancers,
lymphomas, osteosarcoma, and pancreatic cancer, as well as
other conditions such as immune thrombocytopenia, sickle cell
disease, myelofibrosis, and COVID-19. Therefore, the inclusion
of DNMT inhibitors with ART could represent a significant step
towards the elimination of the latent HIV-1 reservoir and
clearance of virus from infected patients.

Other novel technologies, such as Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR), have great
potential in eradicating viral genomes from infected individuals
by editing genes as well as the methylation levels associated with
HIV. Ebina et al. (233) successfully excised the latently integrated
provirus from the host genome and restricted transcriptionally
active provirus using the CRISPR/Cas9 approach (233). CRISPR-
Cas9 editing of the host genome has also been investigated as an
intervention against HIV. Silencing of CCR5 and CXCR4 genes by
CRISPR have already been shown as effective towards a functional
cure for HIV-1 infection (234–236). While the conventional
CRISPR approach may have revolutionised genetic therapies, it
permanently switches off host genes and may have unwanted
consequences such as off-target gene mutations (237, 238).
Therefore, approaches that edit the epigenome rather than the
genome may be a more suitable and safer strategy. CRISPR-based
epigenome technologies involve the fusion of inactivated Cas9
(dCas9) with DNA methyltransferase or demethylase enzymes,
allowing for manipulating methylation levels at specific CpG sites.
Because this approach targets the epigenome and uses inactivated
Cas9, it will enable reversible editing and prevents the formation of
double-strand breaks (239–241). Therefore, this approach may be
ideal in prospective studies that evaluate host gene regulation as a
treatment strategy against HIV (240).

As the medical field rapidly moves towards precision medicine
and theragnostic approaches, DNA methylation profiling can play
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a tremendous role in these strategies. DNAmethylations can serve
as biomarkers for diagnosis, prognosis, monitoring and predicting
treatment response and disease outcome (242). Due to its dynamic
and stable nature, it is more reliable and suitable than genetic and
protein-based biomarkers. Methylation levels can be easily
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measured in circulating cell-free DNA, which is the preferable
method in clinical settings as it is minimally invasive (243). Several
DNA methylation-based in vitro diagnostic tests have been
developed and commercialised for profiling DNA methylation
(241). Tests may be specific for a disease such as Epi proColon® 2.0
TABLE 1 | HIV-associated host genes that are regulated by methylation in other diseases or in vitro models.

Gene Role in HIV-1 pathogenesis Citation Disease or in vitro models in which DNA
methylation is established

Citation

Viral entry
CXCR4 Facilitates viral entry (134,

135)
Pancreatic cancer, Sporadic breast cancer,
and primary myelofibrosis

(136–
138)

CCR2 Minor HIV co-receptor which mediates viral entry (155,
156)

Human monocytic cells (157)

CCL2 A ligand of CCR2 which upregulates CXCR4 expression on CD4+ T cells, thus
facilitating viral entry. Facilitates transmigration of HIV infected leukocytes across the
blood-brain barrier

(158,
159)

Gout, Small cell lung cancer, Raw264.7
macrophages

(160–
162)

CXCR6 HIV co-receptor which mediates viral entry (163,
164)

Hepatosplenic T–cell lymphoma, and Systemic
Sclerosis

(165,
166)

CCL5
(RANTES)

Ligand for CCR5. It suppresses infection of R5 strains of HIV-1 by blocking CCR5 (167,
168)

Ageing and childhood obesity-associated
asthma

(169,
170)

HIV restriction factor
SAMHD1 Restricts HIV replication (139,

140)
Lung cancer and Sezary syndrome (142,

143)
P53 Restricts HIV replication (144) Ovarian cancer, breast cancer, hepatocellular

carcinoma and colon cancer
(149–
151)

p21 Restricts HIV replication (144,
145)

Colorectal cancer, lung cancer and malignant
pleural mesothelioma and acute lymphoblastic
leukemia

(152–
154)

TSG101 Inhibits HIV budding (171) Cervical cancer (172)
Immune checkpoint molecules
PD-1 Immune checkpoint molecule expressed on exhausted T cells, inhibit productive HIV

infection, thereby facilitating the establishment of latent HIV infection.
(173,
174)

Colorectal cancer, breast cancer, head and
neck squamous cell carcinoma,
myelodysplastic syndrome and prostate
cancer

(175–
179)

PD-L1 Ligand for PD-1. Immune checkpoint molecule expressed on exhausted T cells,
inhibit productive HIV infection, thereby facilitating the establishment of latent HIV
infection.

(180) Colorectal cancer, Non-small-cell lung
carcinoma, and acute myeloid leukaemia

(175,
181, 182)

TIM3 Suppress effector functions of activated T cells in chronic uncontrolled viral infection
with HIV-1.

(183) Colorectal cancer, breast cancer and gastric
cancer

(175,
179, 184)

LAG-3 Immune checkpoint molecule, induces immune exhaustion and facilitates HIV
latency

(185,
186)

Colorectal cancer, breast cancer, clear cell
renal cell carcinoma, melanoma

(175,
179, 187,

188)
CTLA-4 Downregulates T cell functioning and associated with HIV disease progression (189) Colorectal cancer, breast cancer, rheumatoid

arthritis, myasthenia gravis, head and neck
squamous cell carcinomas

(175,
179,

190–192)
Other
TRIM22 Inhibits HIV transcription and promotes HIV latency (193) Hepatitis B virus, Systemic lupus

erythematosus
(194,
195)

DC-SIGN
(CD209)

Recpetor found on dendritic cells which binds to gp120 of HIV and facilitate the
dissemination of HIV

(196,
197)

Dendritic cells (198)

IL-10 Increases post-HIV infection by inhibiting HIV-1 specific T-cell responses (199) Rheumathoid arthritis, Behçet’s disease (200,
201)

IL-32 Induces hostile cytokine environment that hinders HIV fusion and replication (202,
203)

Hek293 (in vitro), Juvenile idiopathic arthritis,
Influenza A

(204–
206)

IRF1 activating the transcription of HIV genome during the early stage of HIV replication (207,
208)

Paediatric obstructive sleep apnea (209)

Perforin Associated with slow HIV progression. Mediates the killing of HIV-infected cells by
CD8+ T-cells

(210,
211)

CD4 and CD8 T cells, systemic lupus
erythematosus, chronic fatigue syndrome,
multiple sclerosis

(18,
212–214)

ICAM-1 promotes HIV-mediated syncytia formation and viral spread. (215) Autoimmune thyroid diseases, and primary
bladder carcinoma.

(216,
217)

PCSK9 Mediates HIV-Associated Dyslipidemia Coronary artery disease, Congenital Aortic
Valve Stenosis Type 2 Diabetes and Metabolic
Syndrome

(218–
220)
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CE, which detects methylated Septin9 to diagnose colon cancer and
Bladder EpiCheck®, which measures changes in methylation of 15
genes associated with bladder cancer (244, 245). The utilisation of
the EpiSign assay has been well established in clinical diagnostic
laboratories and uses genome-wide methylation patterns to
diagnose up to 42 rare neurodevelopmental Mendelian
syndromes (246, 247). Many of the commercialised clinical
DNA methylation assays implement practical and cost-effective
assays such as qPCR and microarrays. The use of DNA
methylation-based biomarkers for precision medicine has been
extensively studied with regards to cancer; however, its application
has great potential in other diseases, including HIV. For instance,
DNA methylation has been shown to be a potentially effective
prognostic biomarker for predicting risk and type of HIV-
associated lymphomas and HIV associated cognitive
impairment; however, these results are yet to be translated to a
clinical setting (94, 248). There is still a lot to be investigated
regarding the epigenetic signature of HIV for precision medicine.
Future studies should focus on using well-characterised clinical
cohorts to evaluate methylation profiling as a biomarker for
predicting HIV disease course, development of HIV associated
comorbidities, monitoring patient response to ARVs and
personalised therapy.

The Epi-therapeutic interventions, either through LRA or
CRISPR technologies and DNA methylation in precision
medicine and theragnostics, provides a novel and powerful
approach against HIV. However, there is much-needed research
to be done to translate these approaches into a clinical setting.
CONCLUSION AND FUTURE
PERSPECTIVES

Since the beginning of the HIV epidemic, the impact of host
genetic variations on HIV susceptibility and disease outcomes
has attracted a vast amount of attention, while epigenetic
changes have long been neglected. This review provided a
comprehensive overview of the intricate interplay between
DNA methylation and viral and host genome. Once integrated,
the HIV viral genome is subject to the intense epigenetic
environment of the host genome. This includes silencing of
HIV transcription via DNA methylation. Integration of the
proviral genome also induces aberrant methylation of the host
genome, influencing HIV disease progression. Several host
genes involved in viral entry, anti-viral responses and
immune defences are altered by DNA methylation in HIV
infected individuals.

However, many of the studies discussed are limited by the
study designs used. Many of the studies discussed failed to account
for the influence of genetic and/or environmental factors on
promoter methylation. Another drawback of most studies
reviewed is the type of sample that was used. The type of
sample selected for a study involving DNA methylation is
crucial as methylation patterns differ substantially according to
cell type (93). Studies using mixed cell samples such as whole
blood or PBMCs need to account for cell type composition and
Frontiers in Immunology | www.frontiersin.org 11165
variation in the methylation patterns of different cells. Some
studies have tried to account for account for cell type
heterogeneity by transfecting homogenous T cell lines (95–97).
However in vitro studies are not accurate representation of cells
systems and are unable to account for ethnic differences. Increased
susceptibility to HIV and varying responses to ARVs have been
noted amongst different ethnic groups [extensively reviewed in
(249)]. Disparities regarding DNA methylation have also been
observed between diverse ethnic populations, including
Caucasians, Hispanics, Middle Eastern, and African populations
and may serve as a biomarker for underlying ethnic health
disparities between human populations (250). Thus far, very
little is known about the contribution of DNA methylation on
ethnic differences to HIV acquisition, disease and treatment
outcomes. Seeing that aberrant methylation patterns have been
associated with HIV and that the rate of incidence differs amongst
different ethnic groups, it is vital ethnic differences are taken into
consideration when conducting studies and clinical trials therefore
researchers should also take ethnicity into consideration (249,
250). The results of trials on one ethnic group may not necessarily
be applicable to another ethnic, therefore researchers should also
take ethnicity into consideration. We believe that the ideal model
for epigenetic studies related to HIV disease are sorted PBMCs or
CD4+ T cells that are isolated form a prospectively obtained
longitudinal cohort consisting of different ethnic groups.
Admittedly, it will be challenging to recruit and maintain such a
cohort, nonetheless, more accurate and useful information can be
gained from such a study design.

There is still a lot of gaps in knowledge regarding the
relationship between methylation and HIV. But once we have
a complete picture, the knowledge gained will contribute
substantially to understanding HIV disease. Moreover, the use
of epigenetic interventions such as DNMTs inhibitors as LRA,
CRISPR editing, and methylation biomarkers may revolutionise
our fight against HIV and the AIDS pandemic.
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Sepsis is resulted from a systemic inflammatory response to bacterial, viral, or fungal
agents. The induced inflammatory response by these microorganisms can lead to multiple
organ system failure with devastating consequences. Recent studies have shown altered
expressions of several non-coding RNAs such as long non-coding RNAs (lncRNAs),
microRNAs (miRNAs) and circular RNAs (circRNAs) during sepsis. These transcripts have
also been found to participate in the pathogenesis of multiple organ system failure through
different mechanisms. NEAT1, MALAT1, THRIL, XIST, MIAT and TUG1 are among
lncRNAs that participate in the pathoetiology of sepsis-related complications. miR-21,
miR-155, miR-15a-5p, miR-494-3p, miR-218, miR-122, miR-208a-5p, miR-328 and
miR-218 are examples of miRNAs participating in these complications. Finally, tens of
circRNAs such as circC3P1, hsa_circRNA_104484, hsa_circRNA_104670 and
circVMA21 and circ-PRKCI have been found to affect pathogenesis of sepsis. In the
current review, we describe the role of these three classes of noncoding RNAs in the
pathoetiology of sepsis-related complications.

Keywords: lncRNA, miRNA, sepsis, expression, biomarker
INTRODUCTION

Sepsis is a systemic inflammatory response to different infections, namely bacterial, viral, or fungal
agents. This condition is the principal source of mortality in intensive care units (1). These
infectious microorganisms can stimulate inflammatory reactions through induction of cytokines
release. These reactions lead to multiple organ system failure. Other factors that contribute in this
org December 2021 | Volume 12 | Article 7987131173
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devastating condition during sepsis are systemic hypotension
and abnormal perfusion of the microcirculatory system (2). No
specific treatment modality has been suggested for prevention of
multiple organ system failure during sepsis (2). Thus,
identification of sepsis-related changes at cellular and
biochemical levels is important. Currently, there is no effective
pharmacological therapy for sepsis. Thus, early diagnosis,
resuscitation and instant administration of suitable antibiotics
are essential steps in decreasing the burden of this condition
{Thompson, 2019 #562}.

Lipopolysaccharide (LPS) as the main constituent of the cell
wall of Gram-negative bacteria has been found to stimulate
apoptotic pathways in tubular epithelial cells of kidney (3).
Moreover, it can prompt acute inflammatory responses
through activation of NF-kB during the course of acute kidney
injury (4). This molecular pathway is an important axis in
mediation of immune-related organ damage.

Recent studies have shown altered expressions of several
non-coding RNAs such as long non-coding RNAs (lncRNAs),
microRNAs (miRNAs) and circular RNAs (circRNAs) during
sepsis. These transcripts have also been found to participate in
the pathogenesis of multiple organ system failure through
different mechanisms. In the current review, we describe the
role of these three classes of noncoding RNAs in the
pathoetiology of sepsis-related complications.
LNCRNAS AND SEPSIS

LncRNAs are transcripts with sizes larger than 200
nucleotides. These transcripts regulate gene expression
through modulation of chromatin configuration, regulation
of splicing events, serving as decoys for other transcripts and
making structures for recruitment of regulatory proteins (5).
These transcripts participate in the regulation of immune
reactions and pathoetiology of several immune-related
disorders (6).

Experiments in animal model of acute lung injury have shown
down-regulation of TUG1 and induction of apoptosis and
inflammation. Up-regulation of TUG1 in these animals could
ameliorate sepsis-associated lung injury, apoptosis and
inflammatory reactions. TUG1 could also protect lung
microvascular endothelial cells from deteriorative effects of
LPS. In fact, TUG1 inhibits cell apoptosis and inflammatory
reactions in LPS-stimulated microvascular endothelial cells
through sponging miR-34b-5p and releasing GAB1 from its
inhibitory effects. Cumulatively, TUG1 ameliorates sepsis-
associated inflammation and apoptosis through miR-34b-5p/
GAB1 axis (7). Another study has demonstrated down-
regulation of TUG1 while up-regulation of miR-223 in the
plasma samples of sepsis patients. They have also reported a
negative correlation between expressions of TUG1 and miR-223
in sepsis patients. Besides, expression levels of TUG1 have been
negatively correlated with respiratory infection, serum
creatinine, white blood cell, C-reactive protein, APACHE II
Frontiers in Immunology | www.frontiersin.org 2174
score, and SOFA score. Based on these results, TUG1 has been
suggested as a biomarker for prediction of course and prognosis
of sepsis (8). TUG1 has also been shown to interact with miR-
27a. Over-expression of TUG1 has resulted in down-regulation
of TNF-a, while up-regulation of miR-27a has enhanced
expression of TNF-a in cardiomyocytes. TNF-a and miR-27a
up-regulation could enhance LPS-induced apoptosis of
cardiomyocytes. On the other hand, TUG1 up-regulation has
exerted opposite effects (9).

MALAT1 is another lncRNA that affects immune responses
of rats with LPS-induced sepsis through influencing the miR-
146a/NF-kB P65 axis (10). Moreover, MALAT1 could increase
apoptosis skeletal muscle cells and sepsis-associated immune
responses through down-regulating BRCA1 levels via
recruitment of EZH2 (11). The miR-150-5p/NF-kB axis is
another axis that mediates the effects of MALAT1 in sepsis-
associated cardiac inflammation (12). In addition, the protective
effects of Ulinastatin against LPS-associated dysfunction of heart
microvascular endothelial cells have been shown to be exerted
through down-regulation of MALAT1 (13). Most notably,
MALAT1/miR-125a axis has been shown to discriminate sepsis
patients based on their severity of diseases, organ damage, levels
of inflammatory responses and mortality (14). Figure 1 depicts
function of MALAT1 in sepsis-related events.

NEAT1 is another lncRNA whose participation in the
pathophysiology of sepsis has been vastly investigated. This
lncRNA could promote inflammatory responses and aggravate
sepsis-associated hepatic damage through the Let-7a/TLR4 axis
(15). Moreover, NEAT1 can accelerate progression of sepsis via
miR-370-3p/TSP-1 axis (16). This lncRNA could also promote
LPS-induced inflammatory responses in macrophages through
regulation of miR-17-5p/TLR4 axis (17). NEAT1 silencing could
suppress immune responses during sepsis through miR‐125/
MCEMP1 axis (18). Figure 2 shows the function of NEAT1 in
sepsis-related events. Several other lncRNAs have also been
found to influence course of sepsis through modulation of
immune responses (Table 1).
miRNAs AND SEPSIS

miRNAs have sizes about 22 nucleotides and regulate
expression of genes through binding with different regions of
target mRNAs, particularly their 3’ UTR. They can either
degrade target mRNA or suppress its translation. Several
miRNAs have been found to influence course of sepsis.
Altered expression of these small-sized transcripts has been
reported in sepsis by numerous research groups. For instance,
plasma levels of miR-494-3p have been shown to be decreased
in sepsis patients compared with healthy controls in correlation
with up-regulation of TLR6. Expression level of miR-494-3p
has been decreased in LPS-induced RAW264.7 cells, parallel
with up-regulation of TLR6 and TNF-a. Forced over-expression
of miR-494-3p in RAW264.7 cells could reduce TNF-a level
and suppress translocation of NF-kB p65 to the nucleus.
December 2021 | Volume 12 | Article 798713
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FIGURE 2 | Function of NEAT1 in sepsis-related events. Several other lncRNAs have also been found to influence course of sepsis through modulation of immune
responses (Table 1).
FIGURE 1 | Function of MALAT1 in sepsis-related events.
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TLR6 has been shown to be targeted by miR-494-3p.
Taken together, miR-494-3p could attenuate sepsis-associated
inflammatory responses through influencing expression of TLR6
(132). miR-218 is another miRNA which participates in the
pathoetiology of sepsis. This miRNA could reduce inflammatory
responses in the sepsis through decreasing expression of VOPP1
via JAK/STAT axis (133).

miR-122 is another important miRNA in the sepsis which has
superior diagnostic power compared with CRP and total
leucocytes count for distinguishing sepsis from wound
infection. miR-122 has also been found to be a prognostic
marker for sepsis, albeit with poor specificity and accuracy
values (134).

In the mice model of sepsis, decreased levels of miR-208a-5p
and increased levels of SOCS2 has been associated with enhanced
activity of SOD, while reduction in LDH and MDA activities.
Moreover, down-regulation of miR-208a-5p has been associated
with low levels TNF-a, IL-6, NF-kB p65 and HIF-1a in this
animal model. miR-208a-5p silencing could decrease the extent
of mitochondria swell ing, and inhibit apoptosis of
cardiomyocytes in animal model of sepsis. Taken together,
miR-208a-5p suppression has been suggested as a modality to
attenuate sepsis-related myocardial damage. This function is
mediated through NF-kB/HIF-1a axis (135).

miR-21 is another miRNA whose role in sepsis has been
investigated by several groups. Down-regulation of miR-21 has
been shown to inhibit inflammasome activation, ASC pyroptosome,
LPS-induced pyroptosis and septic shock in one study (136). On the
other hand, another study in animal models of sepsis has shown
that up-regulation of miR-21 reduced inflammation and apoptosis
(137). Similarly, bMSCs-derived exosomes have been shown to
reduce symptoms in septic mice and improve their survival rate
through up-regulation of miR-21 (138).

miR-328 is another miRNA which is dysregulated in sepsis
patients as well as animal models of sepsis. Serum levels of this
miRNA could properly differentiate sepsis from normal
conditions. Thus, miR-328 has been suggested as a diagnostic
biomarker for sepsis. Moreover, down-regulation of miR-328
could amend sepsis-related heart dysfunction and inflammatory
responses in this tissue (139). miR-452 is another miRNA with
diagnostic applications in sepsis. Notably, serum and urinary
levels of this miRNA have been suggested as possible markers for
early diagnosis of sepsis-associated acute kidney injury, since
expression of this miRNA has been higher in sepsis patients with
acute kidney injury compared with those without this condition
(140) (Table 2). Figure 3 depicts miRNAs that are down-
regulated in sepsis.
CircRNAs AND SEPSIS

CircRNAs are a recently appreciated group of non-coding RNAs
with enclosed circular configuration formed by covalent bonds
between two ends of linear transcripts. However, some of these
Frontiers in Immunology | www.frontiersin.org 4176
transcripts have been shown to produce proteins. They mostly
exert regulatory functions in the transcriptome. Impact of
circRNAs in the sepsis has been assessed by several groups
(303). For instance, circC3P1 has been shown to attenuate
production of inflammatory cytokines and decrease cell
apoptosis in sepsis-associated acute lung injury via influencing
expression of miR‐21 (304).

A microarray-based has shown differential expression of
132 circRNAs between sepsis patients and healthy controls
among them have been hsa_c i rcRNA_104484 and
hsa_circRNA_104670 whose up-regulation in sepsis serum
exosomes has been verified been RT-PCR. Expression levels of
these two circRNAs have been suggested as diagnostic
biomarkers for sepsis (305).

CircVMA21 is another circRNA that has been shown to
ameliorate sepsis‐related acute kidney injury through
modulation of oxidative stress and inflammatory responses via
miR‐9‐3p/SMG1 axis (306). Circ_0114428/miR-495-3p/CRBN
axis is another molecular axis which is involved in the
pathoetiology of sepsis‐related acute kidney injury (307).
Moreover, expression levels of circPRKCI have been correlated
with sepsis risk, severity of sepsis and mortality during a period
of 28 days (308). Table 3 summarizes the role of circRNAs
in sepsis.
DISCUSSION

A vast body of literature points to the involvement of lncRNAs,
miRNAs and circRNAs in the pathoetiology of sepsis-related
complications. NEAT1, MALAT1, MEG3, THRIL, XIST,
CRNDE, ZFAS1, HULC, MIAT and TUG1 are among
lncRNAs with the strongest evidence for their participation in
this process. NEAT1 as the mostly assessed lncRNA in this
regard has been shown to act as a molecular sponge for let-7a,
let-7b-5p, miR-370-3p, miR-124, miR-125, miR-17-5p, miR-16-
5p, miR-93-5p, miR-370-3p, miR-144-3p, miR-944, miR495-3p,
miR-22-3p, miR-31-5p and miR-590-3p. Through sequestering
these miRNAs, NEAT1 can affect several molecular pathways in
the course of sepsis. It can enhance immune responses and the
related injury in target organs, thus participating in sepsis-related
multiple organ damage.

Similar to lncRNAs, circRNAs influence course of sepsis
mainly through acting as molecular sponges for miRNAs.
circC3P1/miR-21, circVMA21/miR-9, circVMA21/miR-199a-
5p , c i rc-PRKCI/miR-545, c i rcPRKCI/miR-106b-5p,
circDNMT3B/miR-20b-5p, circ_0114428/miR-495-3p,
circ_Ttc3/miR-148a, circPRKCI/miR-454, circ-Fryl/miR-490-
3p, c irc_0091702/miR-182, c ircTLK1/miR-106a-5p,
c i rcFADS2/miR-15a-5p , c i rc_0091702/miR-545-3p ,
hsa_circ_0068,888/miR-21-5p, circPTK2/miR-181c-5p, circ-
FANCA/miR-93-5p and circANKRD36/miR-330 are among
c i r cRNA/miRNA axes which are invo lved in the
pathophysiology of sepsis-related conditions.
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TABLE 1 | LncRNAs and Sepsis.

lncRNA Expression
Pattern

Clinical Samples/
Animal Model

Assessed
Cell Lines

Targets /
Regulators

Signaling
Pathways

Description Reference

TUG1 ↓ 35 ARDS patients
and 68 HCs, male
C57BL/6 mice

PMVECs ↑ miR-34b-
5p, GAB1 ↓

_ TUG1 reduces sepsis-induced pulmonary injury,
apoptosis and inflammation in ALI.

(7)

TUG1 ↓ 122 patients with
sepsis and 122 HCs

_ ↑ miR-223 _ Low levels of TUG1 was correlated with respiratory
infection. TUG1 expression was negatively
associated with Scr, WBC, SOFA score, and CRP
levels and 28‐day deaths, but positively associated
with albumin levels.

(8)

TUG1 ↓ _ HUVECs ↑ miR-27a-
3p, ↓ SLIT2

_ Up-regulation of TUG1 reduced apoptosis,
autophagy, and inflammatory response.

(19)

TUG1 ↓ 70 patients with
sepsis and 70 HCs

AC16 miR-27a, ↑
TNF-a

_ Up-regulation of TUG1 reduced apoptosis. (9)

MALAT1 ↑ rats with and without
LPS-induced sepsis

U937 ↓ miR-
146a, ↑
P65

↑ NF-kB
signaling
pathway

Downregulation of MALAT1 decreased the number
of TNF-a and iNOS positive cells.

(10)

MALAT1 ↑ BALB/c male mice HSMKMC
3500

↓ BRCA1,
EZH2

_ Downregulation of MALAT1 reduced inflammatory
responses, neutrophil migration, skeletal muscle cell
apoptosis, and AKT-1 phosphorylation.

(11)

MALAT1 ↑ _ H9c2 ↓ miR-150-
5p,

↑ NF-kB
signaling
pathway

Downregulation of MALAT1 reduced inflammatory
response and downregulated NF-kB signaling
pathway.

(12)

MALAT1 ↑ male SD rats CMVECs ↑ EZH2 _ MALAT1 significantly inhibited levels of EZH2 target
genes, DAB2IP and Brachyury. Up-regulation of
CRNDE increased permeability and apoptosis.
Ulinastatin suppressed levels of MALAT1 and EZH2.

(13)

MALAT1 ↑ 196 patients with
sepsis and 196 HCs,

_ ↓ miR‐125a _ MALAT1 expression was positively correlated with
APACHE II score, SOFA score, serum creatinine,
CRP, TNF‐a, IL‐1b, IL‐6, 28‐day deaths, and
negatively with albumin.

(14)

MALAT1 ↑ sepsis mice _ ↓ miR-23a,
↑ MCEMP1

_ Downregulation of MALAT1 suppressed expression
of MPO, IL-6, IL-10, TNF-a, and IL-1b, and reduced
inflammation.

(20)

MALAT1 ↑ male C57 mice ↑ p38 ↑ p38
MAPK/
p65 NF-
kB
signaling
pathway

Downregulation of MALAT1 reduced MPO and
inflammatory responses.

(21)

MALAT1 ↑ _ a lung injury
inflammatory
cell model

↓ miR-149,
↑ MyD88

↑ NF-kB
pathway

Downregulation of MALAT1 reduced the levels of
MyD88, TNF-a, IL-1b, and IL-6, and prevented the
NF-kB pathway.

(22)

MALAT1 ↑ CLP-induced septic
mice

HUVECs,
PAECs

↓ miR-150 ↑ NF-kB
pathway

Downregulation of MALAT1 reduced apoptosis, ER
stress and inflammation.

(23)

MALAT1 ↑ in ARDS
group

152 patients with
sepsis (41 ARDS and
111 Non-ARDS
patients)

_ _ _ MALAT1 expression was association with APACHE
II score, SOFA score, inflammatory factors levels,
and high mortality.

(24)

MALAT1 ↑ GEO dataset
(GSE3140), male
C57B6/L mice

HL-1 ↑ IL-6, ↑ ↑
TNF-a,
SAA3

_ Downregulation of MALAT1 Protected
Cardiomyocytes from LPS-induced Apoptosis.

(25)

MALAT1 ↑ 190 patients with
sepsis and 190 HCs

_ ↓ miR‐125b _ MALAT1 expression was associated with Scr, WBC,
CRP, PCT, TNF‐a, IL‐8, IL‐17, APACHE II score,
SOFA score, and 28‐day deaths.

(26)

MALAT1 ↑ 120 patients with
sepsis and 60 HCs

_ _ _ Expression of MALAT1 was found to be an
independent risk factor for sepsis, poor prognosis
and septic shock.

(27)

MALAT1 ↑ female C57BL/6 mice THP-1 ↓ miR-214,
↑ TLR5

_ Downregulation of MALAT1 attenuated the burn
injury and post-burn sepsis-induced inflammatory
reaction.

(28)

KCNQ1OT1 ↓ male SD rats H9c2 ↑ miR-192-
5p, ↓ XIAP

_ Up-regulation of KCNQ1OT1 ameliorated
proliferation and impeded apoptosis in sepsis-
induced myocardial injury.

(29)

(Continued)
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TABLE 1 | Continued

lncRNA Expression
Pattern

Clinical Samples/
Animal Model

Assessed
Cell Lines

Targets /
Regulators

Signaling
Pathways

Description Reference

CYTOR ↓ male SD rats H9c2 ↑ miR-24, ↓
XIAP

_ Up-regulation of CYTOR ameliorated viability and
inhibited apoptosis in sepsis-induced myocardial
injury.

(30)

lncRNA-5657 ↑ 15 patients with
sepsis-induced ARDS
and 15 non-septic
and non-ARDS
patients, SD rats

NR8383 ↑ Spns2 _ Downregulation of lncRNA-5657 7 prevented
sepsis-induced lung injury and LPS-induced
inflammation.

(31)

RMRP ↓ male C57BL/6 mice HL-1 ↑ miR-1-5p,
↓ HSPA4

↑ NF-kB
Pathway

Up-regulation of RMRP reduced LPS-induced
damage, apoptosis and mitochondrial damage and
LPS-induced sepsis.

(32)

NEAT1 ↑ 15 patients with
sepsis-induced liver
injury and 15 HCs

Kupffer,
Raw264.7

↓ Let-7a, ↑
TLR4

_ Downregulation of NEAT1 reduced expression of
inflammatory factors in sepsis-induced liver injury.

(15)

NEAT1 ↑ 25 Sepsis patients
and 25 HCs

RAW 264.7 ↓ miR-370-
3p, ↑ TSP-
1

_ Downregulation of NEAT1 prevented LPS-mediated
inflammation and apoptosis and ameliorated
proliferation.

(16)

NEAT1 ↑ male pathogen-free
C57BL/6 mice

_ ↓ miR-125,
↑ MCEMP1

_ Downregulation of NEAT1 suppressed inflammation
and T lymphocyte apoptosis.

(18)

NEAT1 ↑ 68 patients with
sepsis and 32 HCs

THP-1
macrophages

↓ miR-17-
5p, ↑ TLR4

_ Downregulation of NEAT1 prevented LPS-induced
inflammatory responses in macrophages.

(17)

NEAT1 ↑ mouse with sepsis-
induced lung injury

_ ↓ miR-16-
5p, ↑ BRD4

_ Downregulation of NEAT1 inhibited inflammation,
apoptosis, pulmonary edema, MPO activity,
pathological changes, promoted viability.

(33)

NEAT1 ↑ male C57 mice _ _ ↑ TLR2/
NF-kB
signaling
pathway

Downregulation of NEAT1 reduced LPS-induced
myocardial pathological injury, apoptosis, oxidative
stress, inflammatory responses.

(34)

NEAT1 ↑ male C57BL/6 mice A549 _ ↑ HMGB1/
RAGE
signaling

Downregulation of NEAT1 increased viability
attenuated LPS-induced apoptosis and suppressed
inflammation.

(35)

NEAT1 ↑ 30 patients with
sepsis and 30 HCs

HK-2 ↓ let-7b-5p,
TRAF6

_ Downregulation of NEAT1 increased proliferation
and inhibited apoptosis and inflammation.

(36)

NEAT1 ↑ _ RAW264.7 ↓ miR-
125a-5p, ↑
TRAF6, ↑
P-TAK1

_ Downregulation of NEAT1 decreased inflammation
by promoting macrophage M2 polarization.

(37)

NEAT1 ↑ _patients with sepsis HK2 ↓ miR-93-
5p, ↑
TXNIP

_ Downregulation of NEAT1 inhibited apoptosis,
inflammation and oxidative stress.

(38)

NEAT1 ↑ _ sepsis tissues
and ANCTs

AW 264.7
and HL-1

↓ miR-370-
3p, ↑ Irak2

_ Downregulation of NEAT1 ameliorated viability,
prevented apoptosis and the expression of
inflammatory cytokines.

(39)

NEAT1 ↑ _ HL-1 ↓ miR-144-
3p

NF-kB
signaling
pathway

Downregulation of NEAT1 ameliorated viability,
prevented apoptosis and inflammatory response in
LPS-induced myocardial cell injury.

(40)

NEAT1 ↑ 152 patients with
sepsis and 150

_ _ _ Up-regulation of NEAT1 was positively associated
with Acute Physiology and Chronic Health Evaluation
II score, inflammatory responses, while negatively
associated with IL-10.

(41)

NEAT1 ↑ C57BL/6 mice WI-38 ↓ miR-944,
↑ TRIM37

_ Downregulation of NEAT1 inhibited inflammatory
responses and apoptosis. Overexpression of
TRIM37 rescued influence of downregulation of
NEAT1 on cell s.

(42)

NEAT1 ↑ 59 patients with
sepsis, 52 patients
with noninfectious
SIRS, and 56 HCs

PBMCs _ _ Levels of NEAT1 could be considered as a good
predictor for the diagnosis of sepsis.

(43)

NEAT1 ↑ 127 patients with
sepsis and 50 HCs

_ ↑ Th1, ↑
Th17

_ Overexpression of NEAT1 was associated with
chronic health evaluation II score, CRP level, acute
physiology, and SOFA score.

(44)
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NEAT1 ↑ male C57BL/6 mice RAW264.7 ↓ miR495-
3p,
↑STAT3, ↓
miR-211

↑ PI3K/
AKT
signaling

Overexpression of NEAT1 was associated with
inflammatory responses.

(45)

NEAT1 ↑ 102 patients with
sepsis and 100 HCs

_ ↓ miR‐125a _ High levels of NEAT1 was associated with SOFA
score, APACHE II score, 28‐day deaths, and high
ARDS risk.

(46)

NEAT1 ↑ Septic Mice _ ↑ NF-kB _ Downregulation of NEAT1 increased activity of nerve
cells and reduced apoptosis.

(47)

NEAT1 ↑ 82 patients with
sepsis and 82 HCs

_ ↓ miR-124 _ NEAT1 showed a good predictive value for
increased sepsis risk.
NEAT1 expression was positively associated with
disease severity, CRP, PCT, TNF-a, and IL-1b, 28-
day deaths.

(48)

NEAT1 ↑ 18 patients with
sepsis-induced AKI
and 18 HCs

HK-2 ↓ miR-22-
3p

↑ NF-kB
pathway

Downregulation of NEAT1 reduced levels of
autophagy factors and inflammatory responses.

(49)

NEAT1 ↑ _ RAW264.7 ↓ miR-31-
5p, ↑
POU2F1

_ Downregulation of NEAT1 reduced inflammatory
response and apoptosis, and increased proliferation.

(50)

NEAT1 ↑ 22 patients with
sepsis and 22 HCs,

H9c2 ↓ miR-590-
3p

NF-kB
signaling
pathway

Downregulation of NEAT1 reduced apoptosis and
inflammatory responses in LPS-induced sepsis.

(51)

H19 ↓ 69 patients with
sepsis and HCs, male
BALB/c mice

_ ↑ miR-874,
↓ AQP1

_ Downregulation of H19 contributed to inflammatory
responses. Up-regulation of H19 ameliorated the
impairment of sepsis companied myocardial
dysfunction.

(52)

H19 ↓ _ H9C2 ↑ miR-93-
5p, ↓
SORBS2

_ Up-regulation of H19 suppressed inflammatory
responses in sepsis-induced myocardial injury.

(53)

H19 ↓ 104 patients with
sepsis, and 92 HCs

_ _ _ Expression of H19 was negatively associated with
28-day deaths and inflammatory response markers.

(54)

CASC9 ↓ rats HSAECs ↑ miR-195-
5p, ↓ PDK4

_ Up-regulation of CASC9 promoted viability in sepsis-
induced
ALI.

(55)

LUADT1 ↓ 60 patients with
sepsis and 60 HCs

HCAECs miR-195, ↓
Pim-1

_ Up-regulation of LUADT1 reduced apoptosis. (56)

MIAT ↑ male SD rats NRK-52E ↓ miR-29a _ Up-regulation of MIAT promoted apoptosis in
sepsis-related kidney injury.

(57)

MIAT ↑ male BALB/c mice HL-1 ↓ miR-330-
5p, ↑
TRAF6

↑ NF-kB
signaling

Downregulation of MIAT restrained inflammation and
oxidative stress in Sepsis-Induced Cardiac Injury.

(58)

THRIL ↑ 66 patients with
sepsis and 66 HCs

HBEpCs ↓ miR-19a,
↑ TNF-a

_ Up-regulation of THRIL promoted apoptosis. (59)

THRIL ↑ C57BL/6 mice MPVECs ↓ miR-424,
↑ ROCK2

_ Downregulation of THRIL prevented inflammatory
responses, and apoptosis in septic-induced acute
lung injury.

(60)

THRIL ↑ in ARDS
group

32 sepsis patients
with ARDS and 77
without ARDS

_ _ _ THRIL independently predicted increased risk of
ARDS.
THRIL was positively associated with APACHE II
score, SOFA score, CRP, PCT, TNF-a, and IL-1b
levels, and mortality rates.

(61)

XIST ↓ male SD rats HSAECs,
HEK-293T

miR-16-5p _ Up-regulation of XIST increased viability and
inhibited inflammatory response and apoptosis in
sepsis-induced ALI.

(62)

XIST ↓ CLP-induced AKI
mice

HK-2,
TCMK-1

↑ miR-155-
5p, ↓
WWC1

_ Up-regulation of XIST decreased sepsis-induced
AKI.

(63)

XIST ↑ 30 patients and 10
HCs, male SD rats

Kupffer ↑ BRD4 _ Downregulation of XIST reduced inflammation,
oxidative stress, and apoptosis in sepsis-induced
acute liver injury.

(64)
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XIST ↑ GEO database:
GSE94717 ( 6
patients with sepsis-
induced AKI and 6
HCs)

MPC5 ↓ miR-15a-
5p, ↑ CUL3

_ Up-regulation of XIST enhanced apoptosis in sepsis-
induced AKI.

(65)

xist ↑ _ MCM ↓ PGC-1a,
↓ Tfam

_ Downregulation of xist inhibited apoptosis and
induced proliferation.

(66)

GAS5 ↓ 60 patients with
sepsis and 60 HCs

AC16 ↓ miR-214 _ Downregulation of GAS5 restrained apoptosis of
cardiomyocytes induced by LPS. GAS5 could
regulate miR-214 through methylation pathway.

(67)

CRNDE ↓ male specific-
pathogen-free Wistar
rats

_ ↑ miR-29a,
↓ SIRT1

↑ NF-kB/
PARP1
signaling

Up-regulation of CRNDE reduced apoptosis,
oxidative stress and inflammatory response.

(68)

CRNDE ↑ 136 patients with
sepsis and 151 HCs

THP-1 ↓ miR-
181a-5p, ↑
TLR4

_ Up-regulation of CRNDE was correlated with poorer
OS and was a significant predictor in patients with
sepsis. Downregulation of CRNDE reduced sepsis-
related inflammatory pathogenesis.

(69)

CRNDE ↑ male C57 mice _ ↑ p65 ↑ TLR3/
NF-kB
pathway

Downregulation of CRNDE reduced edema, necrosis
and apoptosis in sepsis-induced AKI.

(70)

CRNDE ↑ _ HK-2 ↓ miR-146a ↑ TLR4/
NF-kB
signaling
pathway

Up-regulation of CRNDE enhanced cell injuries,
inflammatory responses and apoptosis in sepsis-
induced AKI.

(71)

CRNDE ↓ rats HK-2,
HEK293

↑ miR-
181a-5p, ↓
PPARa

_ Downregulation of CRNDE increased the urea
nitrogen and serum creatinine, and reduced
proliferation and promoted apoptosis.

(72)

CRNDE ↓ male SD rats L02 ↑ miR-126-
5p, ↓
BCL2L2

_ Up-regulation of CRNDE increased
viability and repressed apoptosis in sepsis-induced
liver injury.

(73)

HOTAIR ↓ male SD rats HK-2 ↑ miR-34a,
↓ Bcl-2

_ Up-regulation of HOTAIR reduced apoptosis in
sepsis-induced AKI.

(74)

HULC ↑ 110 patients with
sepsis and 100 HCs

HMEC-1,
CRL-3243

↓ miR-128-
3p, ↑ RAC1

_ Downregulation of HULC restrained apoptosis and
inflammation, and protected HMEC-1 cells from
LPS-induced injury.

(75)

HULC ↑ 174 patients with
sepsis and 100 HCs

_ _ _ Expression of HULC was correlated with APACHE II,
SOFA score, and 28‐day deaths. It was also
positively associated with Scr, WBC, and CRP, but
negatively correlated with albumin.

(76)

HULC ↑ 56 patients with
sepsis and 56 HCs

HUVECs ↓ miR-204-
5p, ↑
TRPM7

_ Downregulation of HULC promoted viability and
reduced apoptosis, inflammatory responses and
oxidative stress.

(77)

HULC ↑ C57BL/6 mice HMECs ↑ IL6, ↑
ICAM1, ↑
VCAM1

_ Downregulation of HULC reduced levels of pro-
inflammatory factors.

(78)

TapSAKI ↑ SD rats HK-2 ↓ miR-22 ↑ TLR4/
NF-kB
pathway

Downregulation of TapSAKI decreased inflammatory
factors and renal function indicators, so decreased
kidney injury.

(79)

ITSN1‐2 ↑ 309 patients with
intensive care unit
(ICU)‐treated sepsis
and 300 HCs

_ _ _ High levels of ITSN1‐2 were correlated with elevated
disease severity, inflammation, and poor prognosis
in sepsis patients.

(80)

LincRNA-p21 ↑ sepsis-induced ALI
rat model

BEAS-2B c _ _ Downregulation of LincRNA-p21 restrained
apoptosis, inflammatory responses and oxidative
stress in sepsis-induced ALI.

(81)

TCONS_
00016233

↑ 15 patients with
septic AKI and non-
AKI, and 15 HCs,
C57BL/6J mice

HK-2 miR-22-3p,
↑ AIFM1

TLR4/
p38MAPK
axis.

Downregulation of TCONS_00016233 restrained
LPS-induced apoptosis.
Up-regulation of TCONS_00016233 induced LPS-
induced apoptosis and inflammatory responses.

(82)

UCA1 ↑ C57BL/6 mice HMECs ↑ IL6, ↑
ICAM1, ↑
VCAM1

_ Downregulation of UCA1 reduced inflammatory
responses.

(78)
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NR024118 ↓ 82 patients with
sepsis without MD,
35 patients with
sepsis and MD and
82 HCs

AC16 ↑ IL-6 NF-kB
signaling
pathway

Up-regulation of NR024118 reduced the secretion
of IL-6 and apoptosis, and improved LPS-induced
myocardial APD duration and cell injury.

(83)

MIR155HG ↑ 28 patients with
sepsis and 28 without
sepsis

HL-1, RAW
264.7

↓ miR-194-
5p, ↑
MEF2A

_ Downregulation of MIR155HG increased viability and
decreased apoptosis and inflammatory responses.

(84)

LUCAT1 ↑ GEO dataset:
GSE101639

H9C2 ↓ miR-
642a, ↑
ROCK1

_ Downregulation of LUCAT1 decreased inflammatory
responses.

(85)

SOX2OT ↑ male C57B6/L mice H9c2 ↑ SOX2 _ Downregulation of SOX2OT reduced mitochondrial
dysfunction in septic cardiomyopathy.
Overexpression of SOX2OT aggravated
mitochondrial dysfunction in septic cardiomyopathy

(86)

MEG3 ↑ male C57BL/6 mice TECs ↓ miR-18a-
3P

_ Downregulation of MEG3 reduced number of
pyroptotic cells, secretion of LDH, IL-1b, and IL-18,
and expression of GSDMD in LPS-induced AKI.

(87)

MEG3 ↑ 82 patients with
sepsis and 54 HCs

Human
primary renal
mixed
epithelial cells
, AC16

_ _ Patients with high levels of MEG3 showed higher
mortality rate, and downregulation of it inhibited
apoptosis induced by LPS.

(88)

MEG3 ↑ 112 patients with
sepsis and 100 HCs

_ _ _ High levels of MEG3 were associated with 28‐day
deaths and it was found to be a predictor of higher
ARDS risk.

(89)

MEG3 ↑ 219 patients with
sepsis and 219 HCs,
male C57BL/6 J mice

_ ↓ miR‐21 _ Lnc‐MEG3 expression was positively correlated with
cardiomyopathy, APACHE II score, SOFA score,
Scr, TNF‐a, IL‐1b, IL‐6, and IL‐17, 28‐day deaths,
while negatively correlated with albumin.

(90)

MEG3 ↓ male C57/BL mice Caco2 ↑ miR-129-
5p, ↓ SP-D

_ Overexpression of MEG3 reduced villus length and
apoptosis, inhibited intestinal injury and enhanced
proliferation.

(91)

GAS5 ↓ _ conditional
immortalized
podocyte line

↓ PTEN ↑ PI3K/
AKT
pathway

Downregulation of GAS5 elevated the Podocyte
Injury.

(92)

LINC00472 ↑ male SD rats THLE-3 ↓ miR-373-
3p, ↑
TRIM8

_ Downregulation of LINC00472 enhanced viability
and suppressed apoptosis.

(93)

HOTAIR ↑ male e C57B6/L mice HL-1 ↑ p-p65, ↑
NF-kB

NF-kB
pathway

Downregulation of HOTAIR restrained LPS-induced
myocardial dysfunction in septic mic. HOTAIR was
involved in p65 phosphorylation and NF-kB
activation, leading to 15 TNF-a production.

(94)

HOTAIR ↑ male SD rats HK-2 ↓ miR-22, ↑
HMGB1

_ Downregulation of HOTAIR reduced renal function
indicators (blood urea nitrogen and serum
creatinine).

(95)

Hotairm1 ↑ male C57BL/6 mice MDSCs ↑ S100A9
localization

_ Downregulation of Hotairm1 restrained the
suppressive functions of late sepsis Gr1+CD11b+
MDSCs. Hotairm1 Was involved in shuttling S100A9
protein to the nucleus.

(96)

NKILA ↑ _ HK2 ↓ miR-140-
5p, ↑
CLDN2

_ Downregulation of NKILA restrained apoptosis,
autophagy and inflammation and promoted viability
in sepsis-induced AKI.

(97)

HOXA‐AS2 ↓ 44 patients with
sepsis and 44 HCs,
adults clean Kunming
mice

HK‐2 ↑ miR‐
106b‐5p

↑ Wnt/b‐
catenin
and
NF‐kB
pathways

Up-regulation of HOXA‐AS2 increased viability and
repressed apoptosis and protect cells to resist LPS‐
induced damage in sepsis-induced AKI.

(98)

SNHG14 ↑ _ HK-2 miR-93,
↑IL-6R,
↑IRAK4

TLR4/NF-
kB
pathway,
↑ NF-kB

Up-regulation of SNHG14 promoted oxidative
stress, inflammation, and apoptosis.
TLR4/NF-kB pathway induced upregulation of
SNHG14.

(99)
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and
STAT3
signaling

lncRNA-CCL2 ↑ male C57BL/6 mice _ ↓ SIRT1 _ Expression of lncRNA-CCL2 was inhibited by SIRT1
through maintaining a more repressive chromatin
state in lncRNA-CCL2 locus.
Downregulation of SIRT1 induced inflammatory
response.

(100)

DLX6-AS1 ↑ patients with septic
AKI

HK-2 ↓ miR-223-
3p, ↑
NLRP3

_ Downregulation of DLX6-AS1 suppressed LPS-
induced cytotoxicity and pyroptosis.
Expression of DLX6-AS1 was positively correlated
with levels of creatinine in the serum of patients.

(101)

CASC2 ↓ _ patients with sepsis
and HCs

HK-2 ↑ miR-155 ↑ NF-kB
signaling
pathway

The levels of CASC2 were negatively correlated with
the severity of AKI.
CASC2 expression induced cell viability and inhibited
inflammatory response, apoptosis and oxidative
stress.

(102)

CASC2 ↓ patients with sepsis
and HCs

HPAEpiC ↑ miR-152-
3p, ↓ PDK4

_ Up-regulation of CASC2 increased viability and
restrained apoptosis, inflammatory and oxidative
damages.

(103)

ZFAS1 ↓ 202 patients with
sepsis and 200 HCs

_ _ _ Expression of ZFAS1
was negatively associated with APACHE II, level of
CRP, TNF-a, IL-6 and positively with IL-10.

(104)

ZFAS1 ↓ male SD rats H9C2 ↑ miR-34b-
5p, ↓ SIRT1

_ Up-regulation of ZFAS1 decreased inflammatory
responses and apoptosis.

(105)

ZFAS1 ↑ male C57BL/6 mice _ ↓ miR-590-
3p, SP1

AMPK/
mTOR
signaling

Downregulation of ZFAS1 reduced LPS-induced
pyroptosis and enhanced LPS-suppressed
autophagy in sepsis-induced cardiac dysfunction.

(106)

ZFAS1 ↓ 22 patients with SIMI
and 24 HCs, rats
treated by LPS

H9C2 ↑ miR-138–
5p, ↓
SESN2

_ Up-regulation of ZFAS1 attenuated myocardial injury
and inflammatory response.

(107)

Mirt2 ↓ male SD rats _ ↑ MiR-101 ↓ PI3K/
AKT
Signaling
Pathway

Up-regulation of Mirt2 inhibited inflammatory
responses and improved cardiac function.

(108)

Mirt2 ↓ 40 patients with
sepsis, 40 patients
with sepsis‐ALI, 40
HCs

HBEpCs ↓ miR‐1246 _ Up-regulation of Mirt2 inhibited LPS‐induced
inflammatory response, apoptosis, and promoted
miR‐1246 expression but reduced its gene
methylation.

(109)

TCONS_00016406 ↓ male C57BL/6 mice PTEC ↑ miR-687,
↓ PTEN

_ Up-regulation of lncRNA 6406 inhibited inflammatory
responses, apoptosis and oxidative stress in LPS-
induced AKI.

(110)

NORAD ↑ in NS
patients

88 patients with late-
onset NS and 86
patients with
pneumonia neonates

RAW264.7 ↓ miR-410-
3p

_ Expression of NORAD was closely correlated with
WBC, PCT, IL-6, IL-8, and TNF-a.

(111)

GAS5 ↑ _ THP-1 ↓ miR-23a-
3p, ↑ TLR4

_ Downregulation of GAS5 inhibited inflammation and
apoptosis.

(112)

lnc‐ANRIL ↑ 126 patients with
sepsis and 125 HCs

_ ↓ miR‐125a _ lnc‐ANRIL showed good predictive values for sepsis
risk.
lnc‐ANRIL was positively associated with CRP and
PCT levels, disease severity scale scores, and pro‐
inflammatory cytokine levels, 28‐day deaths in
sepsis patients,

(113)

PVT1 ↑ 109 patients with
sepsis and 100 HCs

_ _ _ PVT1 was found to be an independent risk factor for
sepsis ARDS. And PVT1 expression positively
associated with disease severity and 28-day deaths.

(114)

PVT1 ↑ _ THP-1 _ ↑ p38
MAPK
signaling
pathway

Downregulation of PVT1 reduced levels of IL-1b and
TNF-a mRNA and inhibited the p38 MAPK signaling
pathway,

(115)
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NF‐kB, PI3K/AKT, JAK/STAT and Wnt/b‐catenin pathways
are the most important pathways being regulated by lncRNAs,
circRNAs and miRNAs in the context of sepsis. These
transcripts, particularly miRNAs can be used as diagnostic or
prognostic markers in sepsis. Expression levels of these
regulatory transcripts might be used for diagnosis of organ
specific damages during the course of sepsis.

In general, the pathophysiology of sepsis is considered as an
initial hyperinflammatory phase (“cytokine storm”) followed by
Frontiers in Immunology | www.frontiersin.org 11183
a protracted immunosuppressive phase. Since no data is available
about the differential expression of non-coding RNAs during
these two distinct phases, future studies are needed to evaluate
expression patterns of non-coding RNAs in these two phases. It
is possible that some of the non-coding RNAs that suppress the
immune response could be used as biomarkers to indicate the
immunoparalysis in sepsis.

From a therapeutic point of view, several in vitro and in vivo
studies have shown that up-regulation/silencing of circRNAs,
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PVT1 ↑ sepsis model mice HK-2 ↓ miR-20a-
5p, ↑
NLRP3

_ Downregulation of PVT1 inhibited pyroptosis in
septic AKI.

(116)

PVT1 ↑ Mice model with
sepsis

_ ↓ miR-29a,
↑ HMGB1

_ Downregulation of PVT1 reduced LPS-induced
myocardial injury and alleviated M1 macrophage
polarization.

(117)

HOTAIR ↑ C57BL/6 mice Monocytes ↓ miR-211 _ Overexpression of HOTAIR suppressed proliferation
and promoted apoptosis.

(118)

HOTAIR ↑ LPS-induced septic
cardiomyopathy mice

H9C2 ↑ PDCD4,
Lin28

_ Downregulation of HOTAIR inhibited inflammatory
responses and apoptosis.

(119)

DILC ↓ 18 patients with
sepsis and 18 HCs

PBMCs,
THP-1

↑ IL-6 _ DILC suppressed the transcription of IL-6,
DILC decreased levels of STAT3, p-STAT3, TLR4,
TNF-a, CCL5, E-selectin and CXCR1.

(120)

RMRP ↑ C57BL/6 mice HK-2 ↓ miR-206,
↑ DDX5

_ Downregulation of RMRP inhibited inflammatory
response and apoptosis in sepsis-induced AKI.

(121)

GAS5 ↑ C57BL/6 mice _ ↓ miR-
449b, ↑
HMGB1

↑ HMGB1/
NF-kB
pathway

Downregulation of GAS5 inhibited pro-inflammatory
reaction and alleviated
myocardial injury.

(122)

TapSAKI ↑ _ HK-2 ↓ miR-205,
↑ IRF3

_ Downregulation of TapSAKI alleviated LPS-induced
damage.

(123)

SNHG16 ↑ male SD rats BEAS-2B ↓ miR-128-
3p, ↑
HMGB3

_ Downregulation of SNHG16 reduced the apoptosis
and inflammation in sepsis-induced ALI.

(124)

DANCR ↓ 20 patients with
sepsis-induced AKI
and 20 HCs

HK-2 ↑ miR-214,
↑ KLF6

_ Up-regulation of DANCR promoted viability and
suppressed cell apoptosis and inflammatory
responses.

(125)

CASC2 ↓ _ HK2,
HEK293

↑ miR-545-
3p to
regulate, ↓
PPARA

_ Up-regulation of CASC2 increased viability and
inhibited apoptosis, migration, epithelial-
mesenchymal transition and oxidative stress.

(126)

SNHG1 ↓ _ H9c2 ↑ miR-
181a-5p, ↓
XIAP

_ Up-regulation of SNHG1 increased viability and
inhibited inflammatory responses and oxidative
stress.

(127)

SNHG14 ↑ _patients with sepsis HK-2 ↓ miR-495-
3p, ↑
HIPK1

_ SNHG14 is upregulated in patients. SNHG14
prevented proliferation and autophagy and boosted
apoptosis and inflammatory responses.

(128)

Linc-KIAA1737–2 ↑ _ HK-2 ↓ MiR-27a-
3p

_ Downregulation of Linc-KIAA1737–2 reduced
apoptosis.

(129)

PlncRNA-1 ↓ 6 patients with septic
AKI and 6 HCs

NRK-52E ↓ BCL2 _ Up-regulation of PlncRNA-1 meliorated proliferation
and prevented apoptosis and autophagy.

(130)

CDKN2B-AS1 ↑ sepsis patients 47
and 55 HCs

BEAS-2B ↓ miR-140-
5p , ↑
TGFBR2

↑
TGFBR2/
smad3
pathway

Downregulation of CDKN2B-AS1 promoted viability
reduced apoptosis and inflammation.

(131)
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TABLE 2 | Lists the function of miRNAs in the course of sepsis.
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miR-
15a-5p

↑ GEO database: GSE94717
(6 patients with sepsis-
induced AKI and 6 HCs)

MPC5 ↓ XIST, ↓
CUL3

_ Downregulation of miR-15a-5p reduced apoptosis in
sepsis-induced AKI.

(65)

miR-
494-3p

↓ _Patients with sepsis and
HCs

RAW264.7 ↑ TLR6 _ Upregulation of microRNA-494-3p reduced
inflammation, TNF-a level, and prevented nuclear
translocation of NF-kB p65.

(132)

miR-
218

↓ 53 Patients with sepsis and
20 HCs, septic mouse model

PBMCs ↑ VOPP1 ↑ JAK/STAT
pathway

Upregulation of microRNA-494-3p reduced
inflammation.

(133)

miR-
218

↓ male S SD rats RAW264.7 ↑ RUNX2 Up-regulation of miR-218 inhibited inflammatory
response.

(141)

miR-
122

↑ 25 patients with sepsis and
25 patients with local wound
infections as a control group

_ _ _ miR-122 showed higher AUC in comparison with
CRP and TLC which had 66.6% sensitivity, 50%
specificity, and 56.0% accuracy as a prognostic
biomarker for sepsis.

(134)

miR-
208a-
5p

↑ septic mouse model _ ↓ SOCS2 ↑NF-kB/
HIF-1a
pathway

Downregulation of miR-208a-5p decreased reduced
degree of mitochondria swelling, and inhibited
apoptosis.

(135)

miR-
328

↑ 110 Patients with sepsis
and 89 HCs, male SD rats

_ _ _ miR-328 expression was positively associated with
Scr, WBC, CRP, PTC, APACHE II score, and SOFA
score. miR-328 was found to be a good diagnostic
value for sepsis. Downregulation of miR-328 reduced
inflammatory response.

(139)

miR-
452

↑ 47 sepsis patients with AKI,
50 patients without AKI, and
10 HCs

BUMPT NF-KB _ Serum and urinary miR-452 could be a potential
biomarker for early detection of septic AKI. It was
upregulated in sepsis patients with AKI compared with
without AKI. miR-452 had high diagnostic value for AKI.

(140)

miR‐21 ↓ 219 Patients with sepsis
and 219 HCs

_ _ _ miR‐21 was found to be a good value in predicting
sepsis risk. miR‐21 expression was negatively correlated
with APACHE II, SOFA score, and 28‐day mortality risk.

(142)

miR‐
126

↑ 208 Patients with sepsis
and 210 HCs

_ _ _ miR‐126 expression was positively correlated with
APACHE II, serum creatinine, CRP, TNF‐a, IL‐6, IL‐8,
mortality rate, but negatively with IL‐10.

(143)

mir-
103

↓ 196 Patients with sepsis
and 196 HCs

_ _ _ mir-103 predicted high ARDS risk. Mir-103 and was
negatively associated with APACHE II score, SOFA
score, serum creatinine, CRP, TNF, IL- 1b, IL-6, IL-8,
28-day deaths, but positively correlated with albumin.

(144)

mir-
107

↓ 196 Patients with sepsis
and 196 HCs

_ _ _ mir-107 predicted high ARDS risk. mir-107 and was
negatively associated with APACHE II score, SOFA
score, serum creatinine, CRP, TNF, IL- 1b, IL-6, IL-8,
28-day deaths, but positively correlated with albumin

miR-
92a

↑ in sepsis-
induced
ARDS

53 sepsis patients (36
patients with sepsis-induced
ARDS)

HPMEC,
A549

_ ↓ Akt/mTOR
signaling
pathway

Downregulation of mir-92a reduced apoptosis and
inflammatory response, and enhanced migration

(145)

miR-98 ↓ male C57BL/6 mice _ ↑ HMGA2 ↑ NF-kB
pathway

Upregulation of miR-98 prevented HMGA2, NF-kB,
TNF-a, IL-6, Bcl-2 and augmented IL-10, Cleaved
caspase-3 and Bax expression, it reduced LVEDP,
CTn-I, BNP, ALT, AST, TBIL, LDH, and PaCO2 but
elevated +dp/dt max, -dp/dt max, pH and PaO2.

(146)

miR‐
125a

↑ 150 Patients with sepsis
and 150 HCs

_ _ _ miR‐125a expression was positively associated with
Scr, APACHE II score, SOFA score.

(147)

miR‐
125b

↑ 150 Patients with sepsis
and 150 HCs

_ _ _ miR‐125b was correlated with Scr, CRP, APACHE II
score, SOFA score, and chronic obstructive
pulmonary disease , and 28-day deaths.

miR-
199a

↑ male C57BL/6 mice _ ↓ SIRT1 _ Downregulation of miR-199a reduced apoptosis and
inflammatory response.

(148)

miR-
495

↓ 105 Patients with sepsis
and 100 HCs, rats

_ _ _ miR-495 was negatively correlated with Scr, WBC, CRP,
PCT, APACHE II score and SOFA score. CLP rats showed
worse LVSP, LVEDP, ±dp/dtmax, and exhibited an
increase in serum CTn-I, CK-MB, TNF-a, IL-6 and IL-1b.

(149)

miR-
106a

↑ 50 patients with sepsis and
30 HCs, clean Kunming
mice

TCMK-1 ↓ THBS2 _ Downregulation of miR-106a reduced apoptosis and
inflammatory response.

(150)
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miR‐
146a

_ male C57BL/6 mice MSCs IL‐1b – IL‐1b stimulation resulted in packaging miR‐146a into
exosomes. The exosomal miR‐146a was transferred to
macrophages, yielded to M2 polarization, and finally led
to high survival in septic mice.

(151)

miR-
574

↓ CLP-treated mice HBE ↑ C3 _ Upregulation of mir-574 increased viability, inhibited
apoptosis, and reduced sepsis-induced ERS.

(152)

miR-
195

_ wistar rats with sepsis _ TGF-b1/
Smads
signaling
pathway,

MicroRNA-195 could promote cardiac remodeling by
up-regulating the nanoantibiotics signaling pathway in
sepsis rats.

(153)

miR-
133a

↑ septic mouse model RAW264.7 ↓ SIRT1 _ Downregulation of miR-133a prevented inflammatory
response, sepsis-induced lung, liver and kidney injuries.

(154)

miR-
191-5p

↓ female Wistar rats _ ↑ OXSR1 ↑ p38
MAPK/NF-
kB signaling
pathway

Upregulation of miR-191-5p prevented inflammatory
response and apoptosis in

(155)

miR-
146a

↑ 180 patients with sepsis and
180 HCs

_ _ _ MiR-146a was of good value in predicting high sepsis
risk and 28-day mortality risk. MiR-146a was
positively associated with biochemical indices,
inflammatory cytokines, overall disease severity.

(156)

miR-
146b

↑ 180 patients with sepsis and
180 HCs

_ _ _ miR-146b was of good value in predicting high
sepsis risk and 28-day mortality risk. MiR-146a was
positively associated with biochemical indices,
inflammatory cytokines, and overall disease severity.
.

miR-
126

↓ 20 patients with sepsis and
30 patients with general
infection

_ _ _ miR-126 was negatively associated with the levels of
caspase-3, APACHE II score, and positively with 28-
day cumulative survival rate. AUC for predicting the
prognosis by miR-126 was 0.823.

(157)

miR-
223

_ C57BL/6 mice RAW264.7 _ _ Upregulation of mir-223 impelled M2 macrophage
through lower activity of glycolysis Pathway. the
Implementation of
miR-223 over-expressed macrophages with IL-4 pre-
conditioning alleviated sepsis severity.

(158)

miR-
146b

↓ septic mouse model HK-2 ↑ IRAK1 ↑ NF-kB
pathway

Treatment with hucMSC-Ex improved survival in mice
with sepsis by reducing levels of IRAK1, increasing of
miR-146b level, and inhibition of NF-kB activity.

(159)

miR-1-
3p

↑ male SD rats HUVECs ↓ SERP1 _ miR-1-3p decreased proliferation, and increased apoptosis,
and permeability and HUVECs membrane injury.

(160)

miR-25 ↓ 70 patients with sepsis and
30 patients with SIRS

_ _ _ Levels of miR-25 was negatively associated with the
severity of sepsis, SOFA score, CRP and PCT level, 28-
day deaths, and levels of oxidative stress indicators.

(161)

miR-
370-3p

↑ in SAE 12 patients with sepsis
without encephalopathy, 17
patients with SAE, 20
patients with severe uremia
and 12 HCs , male C57BL/6
mice

_ _ _ miR-370-3p was associated with TNF-a and
increased brain apoptosis in SAE mice.

(162)

miR-21 ↑ GEO database: GSE26440
(88 children with septic shock
and 26 HCs), C57BL/6 mice

_ ↓ A20, ↑
NLRP3

↑ NF-kB
pathway

Downregulation of miR-21 inhibited inflammasome
activation, ASC pyroptosome, LPS-induced
pyroptosis and septic shock.

(136)

miR-21 ↓ CLP mouse model _ ↑ PDCD4, ↑
PTEN

PDCD4/NF-
kB and
PTEN/AKT
pathways

rIPC protected kidneys from injury by miR-21. miR-
21 was transported from ischemic limbs to the
kidneys by exosomes.

(163)

miR-21 ↓ septic mouse model MTEC ↑ PDCD4 ↑ NF-kB
pathway

Upregulation of miR-21 reduced inflammation and
apoptosis.

(137)

miR-21 _ septic mice _ _ _ Hyperoside decreased miR-21 levels so reduced
inflammatory responses and increased viability.

(164)

miR-21 ↓ _ MSCs ↑ PDCD4 _ bMSCs-derived exosomes reduced symptoms in
septic mice and improved their survival rate through
miR-21 upregulation.

(138)
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miR-21 ↑ septic C57BL/6J mice _ ↓ PGE2,
↓ IL-10

_ Downregulation of miR-21 reduced bacterial growth,
systemic inflammation, organ damage, macrophage
glycolysis, and increased animal survival.

(165)

miR-
21-3p

↑ SD rats TECs ↓ AKT,
↓ CDK2,
↑ FOXO1

– miR-21-3p regulated lipid metabolism and increased
cell cycle arrest and apoptosis.

(166)

miR-34 ↑ male C57BL/6 mice (15
control group and 15 sepsis
model group)

_ ↓ KLF4 _ Plasma miR-34a was positively associated with SCr
and BUN.

(167)

miR-
483-5p

↑ CLP-treated mice PMVECs ↓ PIAS1 _ Downregulation of miR-483-5p reduced inflammation
and apoptosis and improved lung injury in mice with
sepsis-induced ALI.

(168)

miR-
181-5p

↓ CLP- treated mice _ ↑ HMGB1 _ Upregulation of miR-181-5p reduced inflammatory
response, and sepsis-induced renal and hepatic
dysfunction.

(169)

miR-
20a

_ SD rats _ _ _ miR-20a could deteriorated AKI via activating
autophagy in sepsis rats.

(170)

hsa-
miR-
92a-3p

↓ in sepsis-
induced
coagulopathy
group

116 patients with sepsis _ _ _ AUC of hsa-mir-92a-3p was 0.660. Levels of plasma
hsa-mir-92a-3p were related to plasma lipocalin-2
level, activated partial thromboplastin time, and
prothrombin activity.

(171)

miR-
93-5p

↓ septic mouse model HK2 ↑ KDM6B, ↓
H3K27me3

_ Extracellular vesicles containing miR-93-5p reduced
inflammation, apoptosis, multiple organ injury, and
vascular leakage in septic mice.

(172)

miR-
223

↓ 143 patients with sepsis and
44 HCs

_ _ _ Expression of miR-223 was negatively correlated with
SOFA scores and positively with survival rate.
Upregulation of miR-223 decreased apoptosis and
increased proliferation and G1/S transition.

(173)

miR-
34a

↑ male C57BL/6 mice _ ↓ SIRT1, ↓
ATG4B

_ Downregulation of miR-34a reduced inflammatory
response and pyroptosis, apoptosis and enhanced
autophagy.

(174)

miR-
30a

↑ septic rats _ ↓ SOCS-1 ↑ JAK/
STAT
signaling
pathway

Upregulation of miR-30a promoted apoptosis and
inhibited proliferation.

(175)

miR-
150-5p

↓ rat septic shock model H9C2 ↑ Akt2 _ Upregulation of miR-150-5p inhibited apoptosis. (176)

miR-
140

↓ SPF male BALB/c mice _ _ ↑ WNT
signaling
pathway

Upregulation of miR-140 inhibited apoptosis and
inflammation, skeletal muscle glycolysis and atrophy.

(177)

miR-
22-3p

↓ male SD rats HK-2 ↑ HMGB1, ↑
PTEN

_ Upregulation of miR-22-3p inhibited apoptosis and
inflammatory response

(178)

miR-
205-5b

↑ BALB/c mice RAW264.7 HMGB1 _ Down regulation of miR-205-5b increased HMGB1
expression in LPS-induced sepsis.

(179)

miR-
526b

↓ BALB/c mice HK2 ↑ ATG7 _ Upregulation of miR-526b increased viability by
inhibiting autophagy.

(180)

miR-
145a

↓ septic mouse model _ ↑ Fli-1 ↑ NF-kB
signaling

Upregulation of miR-526b reduced levels of
proinflammatory cytokines.

(181)

miR‐
125a

↑ 150 patients with sepsis and
150 HCs

_ _ _ AUC of miR‐125a: 0.749
miR‐125a was positively correlated with APACHE II
score and SOFA score.

(182)

miR‐
125b

↑ 150 patients with sepsis and
150 HCs

_ _ _ AUC of miR‐125b: 0.839
miR‐125b was positively correlated with APACHE II
score, SOFA score CRP, TNF‐a, IL‐6, IL‐17, IL‐23,
and 28‐day mortality risk.

miR-
122

↑ 108 patients with sepsis and
20 patients with infections
without sepsis as controls

_ _ _ AUC of miR-122: 0.760
miR-122 was found as independent prognostic factor
for 30-day mortality.

(183)

miR-
135a

↑ _patients with sepsis and
HCs, BALB/c mice

_ _ ↑ p38
MAPK/NF-
kB pathway

Upregulation of
miR-135a exacerbated inflammation and myocardial
dysfunction.

(184)

miR-
133a

↓ _ TCMK-1 ↑ BNIP3L ↑ NF-kB
pathway

Upregulation of miR-133a reduced inflammation and
apoptosis.

(185)
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miR-
223

_ male C57BL/6 mice _ _ _ In multiple models of experimental sepsis, miR-223
showed the complex role in the pathogenesis of
septic kidney injury.

(186)

miR-
155

↑ 44 patients with severe
sepsis, 102 patients with
sepsis, and 19 HCs

↑ ↑ ↑ AUC of miR-155: 0.782 (for predicting 30-day
mortality in ALI)

(187)

miR-
146a

↑ 44 patients with severe
sepsis, 102 patients with
sepsis, and 19 HCs

↑ ↑ ↑ AUC of miR-146a: 0.733
(for predicting 30-day mortality in ALI),
CC genotype of rs2910164 in miR-146a was
correlated with worse treatment result.

miR-
194

↑ _ H9c2 ↓ Slc7a5 ↑ Wnt/b-
catenin
pathway

Upregulation of
miR-194 increased apoptosis.

(188)

miR-
30a

↑ male C57BL/6 mice RAW 264.7 ↓ ADAR1, ↓
SOCS3

_ Upregulation of ADAR1 (a target of miR-30a) reduced
inflammation and organ damage.

(189)

miR-
27b

↓ male C57BL/6 mice BMMSCs ↑ JMJD3 ↑ NF-kB
signaling
pathway

Upregulation of miR-27b MSC-derived exosomes
reduced pro-inflammatory cytokines.

(190)

miR-
155

↑ BALB/c mice _ ↓ SOCS1 ↑ JAK/
STAT
signaling

Downregulation of miR-155 alleviated LPS-induced
mortality and liver injury

(191)

miR-
155

↓ C57BL/6 mice _ ↑ Arrb2 ↑ JNK
signaling
pathway

Upregulation of miR-155 ameliorated late sepsis
survival and its cardiac dysfunction, and reduced pro-
inflammatory responses.

(192)

miR-
155

↑ _patients with sepsis and
HCs, mouse septic shock
model

_ ↓ CD47 _ Downregulation of microRNA-155 reduced sepsis-
associated cardiovascular dysfunction and mortality.

(193)

miR-
155

↑ 60 patients with sepsis and
20 HCs

_ ↑ Foxp3 _ Expression of miR-155 was correlated with APACHEII
score, it was significantly higher in non-survival group.

(194)

miR-
155

↑ in sepsis
and ALI/
ARDS than
sepsis but no
ALI/ARDS

156 patients with sepsis (41
with ALI and 32 with ARDS)

_ _ _ AUC of miR-155: 0.87,
miR-155 was positively associated with IL-1b, TNF-a
levels, and ALI/ARDS score, but negatively with
PaO2/FiO2.

(195)

miR-
29c-3p

↑ 86 patients with sepsis and
85 HCs, male SD rats

_ _ _ AUC of miR-29c-3p: 0.872
miR-29c-3p expression was positively correlated with
APACHE II score, SOFA score, levels of CRP and
PCT.
miR-29c-3p was found to be an independent factor
in the occurrence of cardiac dysfunction.

(196)

miR-
125b

↓ 40 patients with sepsis and
HCs, female and male
C57BL/6 mice

_ ↓ PTEN, ↑
MyD88

_ PTEN increased miR125 production through
associating with the nuclear localization of Drosha-
Dgcr8.
Downregulation of PTEN resulted in cytokine
production, MyD88 abundance and mortality.

(197)

miR-
203b

↓ 40 patients with sepsis and
HCs, female and male
C57BL/6 mice

_ ↓ PTEN, ↑
MyD88

_ PTEN increased miR203b production through
associating with the nuclear localization of Drosha-
Dgcr8.
Downregulation of PTEN resulted in cytokine
production, MyD88 abundance and mortality.

miR-
146

↓ _ EA. hy926 _ ↑ NF-kB
signaling
pathway

Upregulation of reduced levels inflammatory
cytokines.

(198)

miR-
140-5p

↓ male SPF rats MLE-12 ↑ TLR4, ↑
MyD88

↑ NF-kB
signaling
pathway

Shikonin could alleviated sepsis- induced ALI by
increasing the levels of miRA-140-5p and decreasing
the levels of TLR4.

(199)

miR-
125b

↓ male C57BL/6 mice HUVECs ↑ ICAM-1, ↑
VCAM-1, ↑
TRAF6

↑ NF-kB
signaling
pathway

Upregulation of miR-125b alleviated
sepsis-induced cardiac dysfunction and ameliorated
survival.

(200)

miR-
494

↑ ARDS rat models _ _ ↓ Nrf2
signaling
pathway

Upregulation of miR-494 increased inflammatory
response, oxidative stress and ALI.

(201)
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miR-
146a

↓ male C57BL/6 mice H9C2, J774 ↑ IRAK,
↑ TRAF6

↑ NF-kB
signaling
pathway

Upregulation of miR-146 reduced levels of
inflammatory cytokines and sepsis-induced cardiac
dysfunction

(202)

miR-
223

_ 221 patients with sepsis and
75 HCs, male C57Bl/6 mice

_ _ _ Levels of serum miR-223 did not differ between
critically ill patients and HCs, but ICU patients with
APACHE-II score had moderately decreased
circulating miR-223.

(203)

miR-
300

↓ septic mouse model _ ↑ NAMPT ↓ AMPK/
mTOR
signaling
pathway

Upregulation of miR-300 increased autophagy, cell
cycle entry and reduced apoptosis and inflammatory
response.

(204)

miR-
126

↓ male C57BL/6 mice _ ↓ HSPA12B _ Upregulation of HSPA12B increased levels of miR-
126, upregulation of miR-126 reduced levels of
dhesion molecules and improved sepsis–induced
cardiac dysfunction.

(205)

miR-
10a

↓ 62 patients with sepsis and
20 HCs

_ ↑ MAP3K7 ↑ NF-kB
pathway

miR-10a expression was negatively association with
disease severity scores, levels of c-reactive protein,
procalcitonin, and 28-day death.

(206)

miR-
146a

↓ mice _ ↑ Notch1 ↑ NF-kB
signaling

Upregulation of miR-146a reduced inflammatory
responses of macrophages and protected mice from
organ damage

(207)

miR-
19a

↓ CLP mice RAW 264.7 ↑ Fn14 _ Upregulation of miR-19a reduced LPS-Induced
Tubular Damage, it was found to protected mice
from sepsis-induced AKI.

(208)

miR-
214

_ male Kunming mice _ _ _ Upregulation of miR-214 reduced apoptosis,
inflammatory response, myocardial injury, and
improved cardiac function in SIMI.

(209)

miR-
539-5p

↓ male C57BL/6 mice MPVECs ↑ ROCK1 _ Upregulation of miR-539-5p reduced apoptosis,
inflammatory response, sepsis-induced pulmonary
injury.

(210)

miR-
155

↑ 60 patients with sepsis and
30 HCs

_ _ _ miR-155 was positively correlated with a higher
SOFA score and a greater severity. AUC of miR-155
for 28-day survival was 0.763. miR-155 derived
immunosuppression through CD39(+) Tregs.

(211)

miR-
146a

↑ in sepsis
group
compared to
shame group

male BALB/C mice _ _ _ Up-regulation of miR-146a reduced levels of
inflammatory cytokine TNF-a and mitigated
inflammatory reaction and lung tissue injury in sepsis-
induced ALI.

(212)

miR-
7110-
5p

↑ 52 patients with pneumonia,
44 patients with sepsis and
21 HCs

_ _ _ The sensitivity and specificity of miR-7110-5p were
84.2 and 90.5% respectively. (sepsis vs HCs)

(213)

miR-
223-3p

↑ 52 patients with pneumonia,
44 patients with sepsis and
21 HCs

_ _ _ The sensitivity and specificity of miR-223-3p were
82.9 and 100% respectively. (sepsis vs HCs)

miR-
19a

↑ patients with sepsis B cells from
patients with
sepsis

CD22 _ Expression of CD22 initially increased but
subsequently reduced. Upregulation of miR-19a
resulted in an increased BCR signaling, while
overexpression of CD22 reduced the effect of miR-
19a and promoted its expression.

(214)

miR-
206

↑ 63 patients with sepsis, 30
patients with septic shock
and HCs

_ _ _ miR-206 was positively associated with SOFA sore
and APACHE-II score. It was observed an activated
partial thromboplastin time and notably longer
prothrombin time.

(215)

miR-
146a

↓ male C57BL/6 mice RAW264.7 _ ↑ NF-kB
signaling

Up-regulation of miR-146a reduced apoptosis,
inflammatory response, and weakened organ injury in
splenic macrophages.

(216)

miR-
19b-3p

↓ 103 patients with sepsis and
98 HCs

HUVECs _ _ Up-regulation of miR-19b-3p reduced inflammatory
response. miR-19b-3p was found to be an
independent prognostic factor for 28-day survival.

(217)

miR-
129-5p

↓ CLP mice MLE-12 ↑ HMGB1 _ Up-regulation of miR-129-5p reduced apoptosis,
inflammatory response, , lung wet/dry weight ratio,
and myeloperoxidase activity.

(218)
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miR-
23b

↓ 30 patients with sepsis and
30 HCs

THP-1 ↑ ADAM10 _ Up-regulation of miR-23b reduced apoptosis and
inflammatory response.

(219)

miR-
150

↓ 140 patients multiple trauma
and 10 HCs

MDSCs ↑ ARG1 _ Up-regulation of miR-150 reduced IL-6, TGF-b and
IL-10.

(220)

miR-
375

↓ _ patients with sepsis,
septic mice

MDSCs ↑ miR-21 ↑ JAK2/
STAT3
pathway

Up-regulation of miR-375 reduced the number of
sepsis Gr1+CD11b+ MDSCs in mice.

(221)

miR-31 ↑ male SD rats CACO-2 ↓ HMOX1 ↑ NF-kB/
HIF-1a
pathway

Downregulation of miR-31 reduced intestinal barrier
function, intestinal mucosal permeability, oxidative
damage and inflammation level.

(222)

miR-21
and
miR-
181b

↑ (in early
sepsis)
sustained (in
late sepsis)

male BALB/c mice MDSCs ↑ NFI-A _ Down regulation of miR-21 and miR-181b
decreased, immunosuppression, reprograming
myeloid cells, late-sepsis mortality, and improved
bacterial clearance.

(223)

miR-
150

↓ slightly 223 critically ill patients
(including 138 fulfilled sepsis
criteria) and 76 HCs

_ _ _ serum levels of miR-150 were associated with
hepatic or renal dysfunction. Low levels were
correlated with an unfavorable prognosis of patients.
serum levels of miR-150 were not suitable for
predicting of sepsis.

(224)

miR-
10a

↑ SD rats _ _ ↑ TGF-b1/
Smad
pathway

Up-regulation of miR-10a increased ROS, TNF-a, IL-
6, and MPO, and downregulation reduced sepsis-
induced liver injury.

(225)

miR-
145

↓ septic mice HUVECs ↑ TGFBR2,
↑ SMAD2, ↑
DNMT1

_ Up-regulation of miR-145 reduced LPS-induced
sepsis and improved the overall survival of septic
mice.

(226)

miR-
150

↓ 17 patients with sepsis and
32 HCs

_ _ _ Levels of miR-150 were negatively correlated with the
level of disease severity, TNF-a, IL-10, and IL-18.

(227)

miR‐
103a‐
3p

↑ 30 patients with sepsis and
30 HCs, male C57 BL/6
mice

AML12, LO2 ↓ FBXW7 _ Downregulation of miR‐103a‐3p reduced apoptosis,
and inflammatory response.

(228)

miR-
143

↑ 103 patients with sepsis, 95
patients with SIRS and 16
HCs

_ _ _ miR-143 was positively correlated with SOFA score
and APACHE II score in patients with sepsis. For
distinguishing between sepsis and SIRS, miR-143
showed a sensitivity of 78.6% and specificity of
91.6%.

(229)

miR-
145

↓ 33 patients with sepsis and
22 HCs, septic mice

BEAS-2B ↑ TGFBR2 _ Up-regulation of miR-145 reduced inflammatory
response and improved the overall survival of septic
mice.

(230)

miR-
150

↓ C57Blk/6J mice HPAECs ↑ Ang2 _ Downregulation of miR-150 damaged adherens
junctions reannealing after injury, which caused an
irreversible increase in vascular permeability. Up-
regulation of miR-150 reduced vascular injury and
mortality.

(231)

miR-
34b-3p

↓ CLP mice RMCs ↑ UBL4A ↑ NF-kB
signaling

Up-regulation of MiR-34b-3p reduced inflammatory
response and AKI in sepsis mice

(232)

miR-
21-3p

↑ _patients with sepsis,
C57BL/6 mice

_ ↓ SORBS2 _ Downregulation of miR-21-3p induced mitochondria
ultrastructural damage and autophagy in LPS-treated
mice. Levels of miR-21-3p increased in patients with
cardiac dysfunction than without cardiac dysfunction.

(233)

miR-
199a-
5p

↑ C57BL/6 mice HEK-293T ↓ SP-D ↑ NF-kB
signaling

Down regulation of miR-199a-5p reduced D-lactic
acid, DAO, FD-40, oxidative damage and
inflammation.

(234)

miR-17 ↓ mice BMSCs,
RAW264.7

↑ BDR4, ↑
EZH2, ↑
TRAIL

_ MiR-17 carried by BMSC-EVs reduced inflammation
and apoptosis.

(235)

miR-
125b

↑ 120 patients with sepsis and
120 HCs

_ _ _ AUC of miR-125b: 0.658
MiR-125b was positively associated with APACHE II
score, SOFA score, Scr, CRP, PCT, TNF-a, and IL-6
levels.
miR-125b Was found to be an independent risk
factor for mortality risk.

(236)
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miR-
30e

↓ septic rats _ ↑ FOSL2 ↑ JAK/STAT
signaling

Up-regulation of miR-30e increased proliferation and
reduced apoptosis.

(237)

miR-
20b-5p

↑ SD rats HEK-293T ↓
circDMNT3B

_ Downregulation of miR-20b-5p reduced level of d-
lactic acid, FD-40, MDA, diamine oxidase, IL-10, IL-6,
oxidative damage and inflammatory factors level.

(238)

miR-
146b

↓ CLP mice _ ↑ Notch1 _ Up-regulation of miR-146b reduced apoptosis and
inflammatory response.

(239)

miR-25 ↓ SD rats H9C2 ↑ PTEN, ↑
TLR4

↑ NF-kB
signaling

Up-regulation of miR-25 reduced apoptosis and
enhanced survival rate.

(240)

miR-21
and
miR-
181b

↑ septic mice MDSCs, Gr1
+CD11b
+ cells

↑ C/EBPb, ↑
Stat3

_ Stat3 and C/EBPb increased miR-21 and miR-181b
expression by binding to their promoters during
sepsis.

(241)

miR-
17-5p

↓ septic mice LPS-induced
macrophages

↑ TLR4 _ Sch B increased miR-17-5p expression and reduced
inflammation.

(242)

miR-
200a-
3p

↑ male C57BL/6J mice HBMECs ↑ NLRP3,
↓ Keap1,
↓ Nrf2,
↓ HO-1

_ Up-regulation of miR-200a-3p induced inflammatory
response in sepsis-induced brain injury.

(243)

miR-
26b

↓ 14 patients with sepsis and
7 patients with septic shock
and 21 HCs

MEG-01 ↑ SELP,
↓ Dicer1

_ Low levels of miR-26b was correlated with the
severity and mortality of sepsis.

(244)

miR-
96-5p

↓ _ RAW264.7 ↑ NAMPT ↑ NF-kB
pathway

Up-regulation of miR-96-5p reduced inflammatory
response.

(245)

miR-
27a

↑ septic mice _ _ ↑ NF-kB
pathway

Downregulation of miR-27a reduced inflammatory
response and promoted survival of septic mice.

(246)

miR-
21a-3p

↑ specific pathogen-free SD
rats

NRK52E ↑ Ago2, ↑
Nrp-1

_ miR-21a-3p was found to be internalized by TECs via
Nrp-1 and Ago2.

(247)

miR-
574-5p

↑ 118 patients with sepsis _ _ _ miR-574-5p was associated with the death of sepsis
patients.

(248)

miR-
181b

↓ 26 patients with sepsis, 36
patients with sepsis plus
sepsis/ARDS and 16 HCs,
male C57BL/6 mice

THP-1,
HUVECs

↑ importin-
a3

↑ NF-kB
signaling
pathway

Up-regulation of miR-181b reduced mortality rate,
inflammation response, LPS-induced EC activation,
leukocyte accumulation.

(249)

miR-
182-5p

↑ pneumonia mice models _ _ _ Downregulation of miR-182-5p reduced apoptosis,
inflammation response and promoted viability and
proliferation.

(250)

miR-
195

↑ C57BL/6 mice endothelial
cells

↓ BCL-2, ↓
Sirt1, ↓ Pim-
1

_ Downregulation of miR-182-5p reduced apoptosis,
and improved survival.

(251)

miR-
205

↓ male SD rats _ _ ↑ HMGB1-
PTEN
signaling
pathway

Up-regulation of miR-205 reduced apoptosis and
renal injury.

(252)

miR-
21-3p

↑ in AKI
group

49 patients with sepsis-
induced AKI and 93 sepsis
patients with non-AKI

_ ↑ Scr,
↑ Cys-C,
↑ KIM-1

_ Levels of miR-21-3p was positively associated with
Scr, Cys-C, and KIM-1 in the AKI group.

(253)

miR-
181a-
2-3p

↓ GSE46955 data set, CLP
mouse model

TCMK-1 ↑ GJB2 _ Up-regulation of miR-181a-2-3p reduced apoptosis
and inflammatory response.

(254)

miR-21 ↓ female Wistar rats HK-2 ↑ PTEN, ↓
PI3K, ↓ AKT

_ Up-regulation of miR-21 suppressed apoptosis and
kidney injury.

(255)

miR-
146a

↓ female ICR mice Raw264.7 ↑ JMJD3,
NF-kB p65

_ GSKJ4 reduced inflammatory response by increasing
miR-146a levels.
Transcription of miR-146a was negatively regulated
by JMJD3 through epigenetic mechanism.

(256)

miR-
294

_ _ RAW264.7 TREM-1 _ miR-294 reduced TNF-a and IL-6 secretion. (257)

miR-
128-3p

↑ CLP mouse model TCMK-1 ↓ NRP1 _ Up-regulation of miR-128-3p promoted apoptosis
and inflammatory response and reduced viability.

(258)
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miR-
146a

↓ _ H9C2 ↓ ErbB4,
↑ TRAF6,
↑ IRAK1

_ Up-regulation of miR-146a reduced apoptosis and
inflammatory response and promoted viability.

(259)

miR-
511

↑ in S mice C57BL/6J (B) mice, SPRET/
Ei (S) mice,

_ Low protein
expression
of TNFR1 in
S mice

_ miR-511 was induced by glucocorticoids. miR-511
inhibited endotoxemia and experimental hepatitis.

(260)

miR-
376b

↓ in sepsis
with AKI
group

20 Patients with sepsis with
AKI, 20 patients with sepsis
without AKI and 10 HCs,
male C57BL/6 mice

BUMPT NF-kB,
NFKBIZ

_ miR-376b inhibited NF-kB inhibitor z (NFKBIZ)
expression and NF-kB inhibited miR-376b expression
so they created a negative feedback loop.

(261)

miR-
155

↑ female BALB/c mice _ _ _ DXM treatment
suppressed the expression of miRNA-155.

(262)

miR-
133a

↑ 223 patients with sepsis and
76 HCs, C57Bl/6 mice

_ _ _ High levels of miR-133a was correlated with disease
severity, inflammatory response, bacterial infection,
and organ failure and predicted an unfavorable
outcome of patients.

(263)

miR-
203

↓ clean grade Kunming mice HEK-293T ↑ VNN1 ↓ AKT
signaling
pathway

Up-regulation of miR-203 reduced apoptosis,
inflammatory response, MDA, ALT, and AST in lung
tissues, PMN and PAM levels in BALF and increased
SOD activity.

(264)

miR-
223

↑ 187 patients with sepsis and
186 HCs

_ _ _ AUC for miR-223: 0.754,
Plasma miR-223 was associated with disease
severity and inflammatory factor levels. miR-223 was
found to predict sepsis risk independently.

(265)

miR-
146a

↓ patients with sepsis and
HCs

Human
primary T
cells

↑ PRKCϵ _ Reduced levels of miR-146a contributes to the
pathogenesis of sepsis.

(266)

miR-
146-a

↓ 55 patients with sepsis and
60 HCs

_ _ _ AUC for miR-146-a: 0.803
Serum levels of miR-146-a was negatively correlated
with C-reactive protein, pro-calcitonin, IL-6 and TNF-
a.

(267)

miR-
34a

↑ CLP-induced suckling rats U937 _ ↑ STAT3
pathway

Up-regulation of miR-34a promoted iNOS secretion
from pulmonary macrophages.

(268)

hsa-
miR-
346

↓ _ RAW264.7 ↑ lncRNA
MALAT1, ↑
SMAD3

_ Up-regulation of hsa-miR-346 promoted proliferation. (269)

miR-
214

↓ male Kunming mice _ ↑ PTEN ↓ AKT/
mTOR
pathway

Up-regulation of miR-214 reduced oxidative stress
and autophagy, so ameliorated CLP-induced AKI.

(270)

miR-
27a

↑ LPS induced sepsis mice
model

H9C2 ↓ rhTNFR:
Fc, ↓ Nrf2

_ rhTNFR:Fc elevated viability and reduced apoptosis
by increasing Nrf2 levels and reducing miR-27a
levels.

(271)

miR-
150

↓ in non-
survival group

48 patients with septic
shock (23 survival patients
and 25 non-survival
patients)

_ _ _ MiR-150 level was positively associated with cardiac
index and negatively with EVLWI and PVPI.

(272)

miR-
148a-
3p

↑ male adult wild-type mice
and myeloid-specific RBP-J-
deficient mice

RAW264.7 _ Notch
signaling
and NF-kB
pathway

Up-regulation of miR-148a-3p increased
proinflammatory cytokines and decreased protective
effect of EVs in LPS induced sepsis.

(273)

miR-
218-5p

↑ male ICR mice GMCs ↓ HO-1 _ miR-218-5p was reduced in honokiol-treated septic
mice, so the survival rate was increased.

(274)

miR-
425-5p

↓ C57BL/6 mice hepatocytes ↑ RIP1 _ Up-regulation of miR-425-5p reduced inflammatory
response and sepsis-related liver damage.

(275)

miR-
122

↑ in CA group 168 patients with sepsis (CA
group and CN group)

_ _ _ Serum levels of miR-122 were associated with APTT
ratios, FIB and antithrombin III levels.

(275)

miR-
101-3p

↑ 27 patients with SIC and 15
HCs, male SD rats

H9C2 ↓ DUSP1 ↑ MAPK
p38 and
NF-kB
pathways.

Downregulation of reduced apoptosis and
inflammatory response.

(276)
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miR-
124

↓ mouse model of ALI _ ↑ MAPK14 ↑ MAPK
signaling
pathway

Up-regulation of miR-124 reduced apoptosis and
inflammatory response and promoted proliferation.

(277)

miR-
942-5p

↓ _ HK-2 ↑ FOXO3 _ Up-regulation of miR-942-5p reduced apoptosis and
inflammatory response and promoted viability.

(278)

miR-
23a-5p

↑ SD rats NR8383 _ _ _ (279)

miR-
1298-
5p

↑ _ BEAS-2B ↓ SOCS6,
↑ STAT3

_ Up-regulation of miR-1298-5p induced cell
permeability and inflammatory response and reduced
proliferation.

(280)

miR-
290-5p

↓ male C57BL/6J mice MPC5 ↑ CCL-2 _ Propofol increased levels of miR-290-5p and
decreased CCL-2 and inflammatory response.

(281)

miR-
146a

↓ C57BL/6 mice BMDMs _ _ Rg6 increased IL-10 and miR-146a levels so inhibited
inflammatory responses.

(282)

miR-
223

_ C57BL/6 mice MSCs Sema3A,
Stat3

_ WT-exosomes encased high miR-223 levels induced
cardio-protection in sepsis.

(283)

miR-
608

_ _ U937,
HEK293T

ELANE _ miR-608 played an important role in
posttranscriptional regulation of ELANE expression
and upregulation of miR-608 reduced inflammation.

(284)

miR-
124

↓ BALB/c and C57BL/6 mice RAW264.7 ↓ a7nAChR,
↑ STAT3

_ miR-124 was found to be a critical mediator for the
cholinergic anti-inflammatory effect.

(285)

miR-
26b

↑ in AKI
group

155 patients with sepsis (68
AKI and 87 non-AKI ) and
57 patients with non-
infectious SIRS

_ _ _ Urinary miR-26b levels showed an elevated mortality
rate and was correlated with the severity of the
disease.

(286)

miR-
146a

_ Rat model of SAKI _ _ _ DEX pretreatment could increase the expression level
of miR-146a and reduce oxidative stress and
inflammatory responses.

(287)

miR-
29a

↑ in AKI
group

74 patients with AKI and 41
without AKI

_ _ _ AUC for miR-29a: 0.82
miR-29a was found to be an independent risk factor
for mortality in the septic patients.

(288)

miR-
10a-5p

↑ in AKI
group

74 patients with AKI and 41
without AKI

_ _ _ AUC for miR-10a-5p: 0.75
miR-10a-5p was found to be an independent risk
factor for mortality in the septic patients.

miR-
155

↑ septic mice NCM460 _ ↑ NF-kB
signaling

Up-regulation of miR-155 increased
hyperpermeability to FITC-dextran, TNF-a and IL-6
levels, and decreased ZO-1 and Occludin expression.

(289)

miR-
155

↑ male C57BL/6 mice Raw264.7,
THP-1

_ ↑ PI3K/AKT
signalling
pathways

Curcumin inhibited inflammatory responses and miR-
155 expression.

(290)

miR-
497

↑ in
myocardial
injury group

148 patients with sepsis (58
myocardial injury group and
90 non-myocardial injury
group)

_ _ _ Plasma miRNA-497 was correlated with cTnI in
patients with myocardial injury.

(291)

miR-
497-5p

↑ GEO database, male
C57BL/6 mice

BEAS-2B ↓ IL2RB _ Downregulation of miR-497-5p reduced apoptosis
and inflammatory responses.

(292)

miR-
30a

↓ _ monocytes ↑ STAT1, ↑
MD-2

_ miR-30a could inhibit STAT1-MD-2 in monocytes of
sepsis.

(293)

miR-
150

↓ C57BL/6 mice HUVECs ↑ NF-kB1 _ miR-150 increased survival in patients and inhibited
apoptosis and inflammatory responses.

(294)

miR-
146a

_ _ THP-1 RBM4,
Ago2, p38

_ Up-regulation of miR-146a inhibited p38 activation
and increased Ago2-RBM4 protein interaction, so
reduced inflammatory responses.

(295)

miR-
146a

_ C57BL/6 mice HEK293TN,
J774.1

_ _ Up-regulation of miR-146a reduced morphine
mediated hyper-inflammation.

(296)

miR-
27a

↓ septic mice _ ↑ TAB3 ↑ NF-kB
signaling
pathway

Paclitaxel pretreatment increased miR-27a levels, so
decreased inflammatory responses.

(297)

miR-
146a

↓ in septic
patients than
SIRS and
HCs groups

50 patients with sepsis, 30
patients with SIRS and 20
HCs

_ _ _ AUC for miR-146a: 0.858 (298)
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miR-
223

↓ in septic
patients than
SIRS and
HCs groups

50 patients with sepsis, 30
patients with SIRS and 20
HCs

_ _ _ AUC for miR-223: 0.804

miR-
339-5p

↓ septic mice RAW264.7 ↑ HMGB1, ↑
IKK-b

_ Paeonol could reduce inflammatory responses by
upregulating miR-339-5p expression.

(299)

miR-
99b

↑ male C57BL/6 J mice RAW264.7 ↓ MFG-E8 _ Spherical nucleic acid increased migration by
inhibiting miR-99b.

(300)

miR-
215-5p

↓ _ H9c2 ↑ LRRFIP1,
↑ ILF3

_ miR-215-5p reduced inflammatory responses. (301)

miR-
15a

↑ in sepsis
and SIRS
than HCs

166 patients with sepsis, 32
patients with SIRS, and 24
HCs

_ _ _ miR-15a could distinguish sepsis/SIRS from HCs. (302)

miR-16 ↑ in sepsis
and SIRS
than HCs

166 patients with sepsis, 32
patients with SIRS, and 24
HCs

_ _ _ miR-16 could distinguish sepsis/SIRS from HCs.
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miRNAs and Sepsis. AKI, Acute kidney injury; HCs, healthy controls; AUC, significant higher area under curve; CRP, C-reactive protein; TLC, total leucocytes count; SD,
Sprague-Dawley; SOFA, sequential organ failure assessment; Scr, serum creatinine; WBC, white blood cell; PCT, procalcitonin; APACHE, physiology and chronic health
evaluation; CLP, cecal ligation and puncture; ERS, endoplasmic reticulum stress; AUC, area under the ROC curve; SAE, sepsis-associated encephalopathy; BUN, blood urine
nitrogen; rIPC, remote ischemic preconditioning; SPF, specific pathogen-free; GEO, Gene Expression Omnibus; SIMI, sepsis-induced myocardial injury; Tregs, regulatory T-
cells; Sch B, Schisandrin B; DXM, dexamethasone; MDA, malondialdehyde; ALT, aminotransferase; AST, aspartate aminotransferase; PAM; pulmonary alveolar macrophages;
PMN, polymorphonuclear neutrophils; BALF, bronchoalveolar lavage fluid; SOD, superoxide dismutase; CA, coagulation abnormal; CN, coagulation normal; APTT, serum
activated partial thromboplastin time; FIB, fibrinogen; SIC, sepsis-induced cardiomyopathy; SIRS, systemic inflammatory response syndrome; DEX, dexmedetomidine; SAKI,
sepsis-induced acute kidney injury).
FIGURE 3 | Down-regulated miRNAs in sepsis.
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circC3P1 ↓ male C57BL/6
mice

MPVECs ↑ miR-21 _ Upregulation of circC3P1 reduced pulmonary
injury, inflammatory responses and apoptosis.

(304)

hsa_circRNA_104484 ↑ 25 patients
with sepsis
and 22 HCs

_ _ _ Hsa_circRNA_104484 showed the potential to be
used as diagnostic marker for sepsis.

(305)

hsa_circRNA_104670 ↑ 25 patients
with sepsis
and 22 HCs

_ _ _ Hsa_circRNA_104670 showed the potential to be
used as diagnostic marker for sepsis.

circVMA21 ↓ CLP rats HK-2, WI-38 ↑ miR-9-39, ↓
SMG1

– CircVMA21 reduced apoptosis, inflammatory
responses and oxidative stress.

(306)

circ-PRKCI ↓ 121 patients
with sepsis
and 60 HCs

_ ↑ miR-545 _ Low levels of circ-PRKCI were correlated with
sepsis risk, clinical disease severity and 28-day
mortality risk.

(308)

circDNMT3B ↓ male SD rats Caco2 ↑ miR-20b-5p,
↓ SOD

_ Downregulation of circDNMT3B decreased cell
survival and increased apoptosis, inflammatory
responses and oxidative damage.

(238)

circ_0114428 ↑ _ HK2 ↓ miR-495-3p,
↑ CRBN

_ Downregulation of circ_0114428 decreased
apoptosis, inflammatory responses, oxidative
stress, and ER stress.

(307)

circ_0001105 ↓ septic rats _ ↑ YAP1 _ Up-regulation of circ_0001105 decreased
apoptosis, inflammatory responses and oxidative
damage .

(309)

circ_Ttc3 ↓ CLP rats _ ↑ miR-148a, ↓
Rcan2

_ Up-regulation of circ_Ttc3 decreased
inflammatory responses and oxidative stress in
AKI rats.

(310)

circPRKCI ↓ patients with
sepsis and
HCs

HK2 ↑ miR-545, ↓
ZEB2

NF-kB
pathway

Up-regulation of circPRKCI reduced LPS-induced
cell injury and inflammatory responses.

(311)

circ_0003420 ↑ _patients with
sepsis and
HCs

Kupffer cells ↓ NPAS4 _ Up-regulation of circ_0003420 increased
apoptosis, inflammatory responses and
decreased proliferation.

(312)

circ-Fryl ↑ in ADSC
exosomes

septic mouse
model

ADSCs, LPS-
induced AEC
damage model

miR-490-3p, ↑
SIRT3 in ADSC
exosomes

SIRT3/
AMPK
signaling

Up-regulation of circ-Fryl increased autophagy
and decreased apoptosis and inflammatory
responses.

(313)

circ_0091702 ↓ _ HK2 ↑ miR-182, ↓
PDE7A

_ Up-regulation of circ_0091702 reduced LPS-
induced cell injury.

(314)

circVMA21 ↓ _ THP-1 ↑ miR-199a-5p,
↓ NRP1

_ Up-regulation of circVMA21 reduced apoptosis,
inflammatory responses and oxidative stress.

(315)

circTLK1 ↑ wistar rats HK-2, 293T ↓ miR-106a-5p,
↑ HMGB1

_ Downregulation of circTLK1 reduced apoptosis,
inflammatory responses and oxidative stress.

(316)

circFADS2 ↑ 50 patients
with sepsis
and 50 HCs

HBEpCs ↓ mature miR-
15a-5p

_ Up-regulation of circFADS2 reduced miR-15a-5p
overexpression-induced apoptosis.

(317)

circ_0091702 ↓ _ HK2 ↑ miR-545-3p,
↓ THBS2.

_ Up-regulation of circ_0091702 reduced LPS-
induced HK2 cell injury.

(318)

hsa_circ_0068,888 ↓ _ HK-2 ↑ miR-21-5p _ Up-regulation of hsa_circ_0068,888 reduced
inflammatory response and oxidative stress and
increased viability.

(319)

circPTK2 ↑ C57BL/6 mice BV2 microglia ↓ miR-181c-5p,
↑ HMGB1

_ Downregulation of circPTK2 reduced apoptosis,
inflammatory responses.

(320)

circ-FANCA ↑ 19 patients
with sepsis
and 19 HCs

HK2 ↓ miR-93-5p, ↑
OXSR1

_ Downregulation of circ-FANCA reduced
apoptosis, inflammatory responses and oxidative
stress and increased proliferation.

(321)

circANKRD36 ↑ 60 patients
with sepsis-
induced ARDS

RAW264.7 ↓ miR-330, ↑
ROCK1

_ Downregulation of circANKRD36 reduced viability
and migration and alleviated inflammatory
responses.

(322)

circPRKCI ↓ _ HK2 ↑ miR-106b-5p,
↓ GAB1

_ Up-regulation of circPRKCI reduced apoptosis,
inflammatory responses and oxidative stress and
increased viability.

(323)
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lncRNAs and miRNAs can ameliorate the pathologic events in
the target organs, particularly heart and kidney during sepsis.
Yet, this field is still in its infancy needing verification in
additional animal models and cell lines. Moreover, since sepsis
is an emergency situation, any therapeutic option should be
verified in terms of bioavailability, efficiency and instant
amelioration of pathological events.

Since the pathoetiology of sepsis-related complications is not
completely understood, high throughput sequencing strategies
focusing on different classes of non-coding as well coding RNAs
Frontiers in Immunology | www.frontiersin.org 23195
are necessary to find the complicated networks between these
transcripts in the context of sepsis.
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