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Editorial on the Research Topic

Genetic Architecture and Evolution of Complex Traits and Diseases in Diverse Human
Populations

The research topic “Genetic architecture and evolution of complex traits and diseases in diverse
human populations” presents six review articles and three research studies. Our Research Topic
reflects data generation and research performed in Germany, Brazil, United States, Denmark,
Estonia, Mexico, United Kingdom and Singapore, spanning countries across the global income
spectrum. We present reviews on methodologies to aid complex trait studies in diverse populations,
reviews on complex trait studies in locally and globally understudied groups, reviews on studying the
evolution and maintenance of genetic variation influencing complex traits using theory and ancient
DNA, and new research studies providing resources or insights to understand the genetic
architecture of complex traits in Latin America.

With respect to methodologies that aid complex trait studies in diverse populations, Simonin-
Wilmer et al. present an overview of strategies for detecting genotype-phenotype associations across
diverse populations. With increased interest and movement towards multi-ethnic association
studies that promise to improve detection power and prediction accuracy, this review provides a
primer for researchers on assessment and control of confounders related to genetic ancestry to help
identify true genotype-phenotype associations. Sticca et al. review the recent methodological
developments in detecting identity-by-descent (IBD) segments in the genome. These
developments enable IBD detection in large biobank-scale datasets and the authors argue for
the need to incorporate IBD-based analyses into genetic studies to improve imputation accuracy, the
power to detect rare causal variants, and to gain insights into the demographic history of causal
variants.

Two articles in our Research Topic reflect on progress conducting complex trait genetics research
in groups that have been historically understudied. In his perspective, Charleston Chiang discusses
his work on Native Hawaiians as a motivating example to review the parameters of ethical
community engagement, along with the challenges and opportunities of conducting genetic
studies in minority populations. He reviews how the complex peopling of the Hawaiian islands
over several millennia has shaped patterns of genetic variation there, and the hypothesis that the high
rates of metabolic disease observed among Native Hawaiians and related Polynesian populations
may be linked to ancient genetic adaptations. In their article, Sun et al. review studies of obesity in
samples with ancestry from East Asia. Due to several 100 generations of partially independent
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evolution, genetic studies in east Asian samples are well
positioned to discover variants that are at low frequencies or
are poorly tagged in European samples. Additionally,
inconsistencies between GWAS of obesity in European and
east Asian samples point to genetic architectures that only
partly overlap, suggesting that the environment may be
interacting with genetic effects in different ways in different
samples.

Koch and Sunyaev review classical and modern population
genetic theory on the maintenance, evolution and distribution of
genetic variation for complex traits. There is now strong evidence that
trait-associated genetic variation is both highly pleiotropic and
shaped by natural selection. While population geneticists have
been keenly interested in both of these phenomena for decades,
the existing theory is not well suited to the rich but complex data that
the field nowhas access to. Koch and Sunyaev highlightmore recently
developed theory aimed at bridging this gap, as well as the
shortcomings of existing statistical tools and challenges for
theoreticians going forward. Further, Irving-Pease et al. discuss
what particular insights on the evolution of complex traits can be
extracted from the analysis of ancient DNAdata. The authors analyze
how ancient DNA has been used to study the evolution of traits such
as height or skin pigmentation, and also assess the potential to predict
phenotypes in archaic hominins. The authors review the prospects of
using ancient DNA to detect events of polygenic adaptation, how the
degraded ancient DNA data can hinder phenotype studies in ancient
individuals and point to strategies to improve complex trait studies
using ancient DNA.

This Research Topic also contains three papers that provide
new insights on complex traits in Latin American populations.
First, Secolin et al. analyze a region on chromosome 8 associated
with obesity. A study from Brazilian individuals of the BIPMed
cohort, sampled in Campinas, showed that this region is under
positive selection and has a high proportion of Native American
ancestry compared to the rest of the genome. The authors analyze
this region in individuals collected in the cities of Barretos,
Ribeirao Preto and Belo Horizonte and find the same
overrepresentation of Native American ancestry. Second,
Kaibara et al. find that 48 SNPs associated with genetic
generalized epilepsies (GGE) in non-Brazilian cohorts do not
retain an association with GGE in Brazilian patients using
genotype data from 87 Brazilian patients with GGE and 340
Brazilian controls. However, they find that nine SNPs in the
imputed flanking 1 Mb region surrounding the 48 SNPs retain an
association suggesting that there are some shared variants that
impact the risk for GGE in Brazilians and individuals from other
cohorts around the world. Finally, Jimenez-Kaufmann et al. show
that the inclusion of more genomes from Mexican individuals
with a high proportion of Native American ancestry in reference
imputation panels improves genotype imputation accuracy for
rare variants in admixed Mexican individuals. This result, along
with other observations from this study, suggest that
improvements in genotype imputation accuracy in Latin

American individuals from particular regions will require local
sequencing efforts to include more individuals with a high
proportion of Native American ancestry in imputation
reference panels.

The lofty goal of this research topic was to identify and present
state-of-the-art research themes in the genetic architecture and
evolution of complex traits and diseases in diverse human
populations. The major conceptual and practical research
directions and challenges that this Research Topic has helped
identify that need to be addressed are 1) Theoretical and
conceptual advances to understand trait evolution with clear
expectations and assumptions regarding shared and variable
genetic architecture across human diversity. 2) The
clarification and contextualization of the use of ancestry and
populations as sampling and analysis variables in research
studies. 3) Methodological advances with transparent
assumptions to appropriately analyze complex traits using
genetic and environmental data across diverse groups. 4) The
construction of local scientific capacity globally to allow for fair
and inclusive strategies of data collection, analysis and
dissemination of results. 5) Large enough sample sizes across
human diversity to allow for meaningful inference. 6)
Frameworks incorporating equitable reciprocity for
communication with study participants especially those that
have been historically marginalized and discriminated against
across the globe. In this Research Topic, we present
considerations to work towards meeting these challenges. By
presenting voices and research done across countries and
ethnicities, we show the possibilities of a globally well
distributed scientific practice, which we believe is an important
precedent for widely representative studies of complex traits and
disease.
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Genetics of Obesity in East Asians
Chang Sun, Peter Kovacs* and Esther Guiu-Jurado

Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany

Obesity has become a public health problem worldwide. Compared with Europe, people
in Asia tend to suffer from type 2 diabetes with a lower body mass index (BMI).
Genome-wide association studies (GWASs) have identified over 750 loci associated
with obesity. Although the majority of GWAS results were conducted in individuals
of European ancestry, a recent GWAS in individuals of Asian ancestry has made a
significant contribution to the identification of obesity susceptibility loci. Indeed, owing
to the multifactorial character of obesity with a strong environmental component, the
revealed loci may have distinct contributions in different ancestral genetic backgrounds
and in different environments as presented through diet and exercise among other
factors. Uncovering novel, yet unrevealed genes in non-European ancestries may further
contribute to explaining the missing heritability for BMI. In this review, we aimed to
summarize recent advances in obesity genetics in individuals of Asian ancestry. We
therefore compared proposed mechanisms underlying susceptibility loci for obesity
associated with individuals of European and Asian ancestries and discussed whether
known genetic variants might explain ethnic differences in obesity risk. We further
acknowledged that GWAS implemented in individuals of Asian ancestries have not only
validated the potential role of previously specified obesity susceptibility loci but also
exposed novel ones, which have been missed in the initial genetic studies in individuals
of European ancestries. Thus, multi-ethnic studies have a great potential not only to
contribute to a better understanding of the complex etiology of human obesity but also
potentially of ethnic differences in the prevalence of obesity, which may ultimately pave
new avenues in more targeted and personalized obesity treatments.

Keywords: genetics, GWAS, obesity, BMI, East Asians

INTRODUCTION

Obesity has become a public health problem throughout the world, whether in developing or
developed countries (Ng et al., 2014), and is well recognized as a risk factor for a wide variety of
health problems such as diabetes, dyslipidemia, hypertension, and cardiovascular diseases (Van
Gaal et al., 2006). Along with the generally acknowledged role of environmental factors such as
sedentary lifestyle combined with the intake of energy-dense nutrition and insufficient energy
expenditure, development of obesity likely also has a genetic component as demonstrated by both
monogenic and common polygenic forms of obesity. Early data from white male twins (Stunkard,
1986), Quebec inhabitants (Bouchard et al., 1990), French family (Pérusse et al., 1996), and Danish
adoption studies (Stunkard et al., 1986) showed that obesity and fat distribution have a strong
genetic susceptibility, with heritability estimates ranging from 40 to 70% for obesity risk and from
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36 to 61% for waist-to-hip ratio (WHR) (Stunkard, 1986;
Bouchard et al., 1990). It is important to note that the measured
heritability depends on the environmental variance in the study
population, which if low, can overestimate heritability. Recent
research efforts in ethnically diverse individuals highlighted the
genetic contribution even for changes in body weight after
interventions such as metabolic surgeries (Fesinmeyer et al.,
2013; Parikh et al., 2013). Although body mass index (BMI) is
a standard measure of obesity, WHR reflecting central body fat
distribution is the main predictor of obesity-related metabolic
sequelae such as type 2 diabetes (T2D) or cardiovascular diseases
(Manolopoulos et al., 2010). Being aware of the significant
health burden associated with obesity, a better understanding of
its complex pathophysiology including the genetic component
remains a major challenge of the current obesity research.

Recent advances in high-throughput genotyping technologies
allowed the development of powerful analytical tools like
genome-wide association studies (GWASs) to explore novel
genes and loci contributing to the genetic susceptibility of
complex diseases. In the past decade, large-scale GWASs
uncovered hundreds of genetic risk loci for BMI and WHR
in European populations, making remarkable progress in our
understanding of the genetics of these complex polygenic traits.
A large meta-analysis of GWAS for BMI in ∼700,000 European
individuals revealed over 750 BMI-associated single-nucleotide
polymorphisms (SNPs), although only explaining 6.0% of the
BMI variance (Yengo et al., 2018). The vast majority of BMI and
obesity loci map to the non-coding genome; therefore, GWASs
for the vast majority of cases do not usually identify specific
genes but only susceptibility regions in the genome. Converting
genetic risk loci into effector transcripts and function has been
slow and has become a field of research in itself. Also, imperfect
correlation between effect sizes measured from a population-
based approach such as GWAS and effect sizes measured from
a sibling approach suggests potentially a significant amount of
indirect genetic effects (genetic nurture) captured in GWAS
“direct” effects for a trait like BMI (Young et al., 2020). It is also
noteworthy that currently established methods such as Genome-
wide Polygenic Score (GPS), which estimates heritability of
human complex traits in unrelated individuals using whole-
genome sequencing data, further evidenced a missing heritability
in BMI compared with assumptions based on earlier studies
(Khera et al., 2019). Based on the fact that most of the
previously reported GWAS were done in individuals of European
ancestry, non-European ancestries may provide an attractive
and very promising source for upcoming genetic studies aimed
at identification of novel proposed mechanisms underlying
the associations of genetic loci with obesity. Although these
studies may contribute to a better understanding of the genetics
of obesity and to decreasing the proportion of the missing
heritability, there are several specific features which have to
be considered in multi-ethnic genetic analyses. Due to the
fact that the multifactorial character of obesity includes both
genetics and a strong environmental component, the specified
loci may have distinct contributions in different ancestral genetic
backgrounds and different environments as presented through
diet and exercise among other factors. An epidemiological survey

found that people in Asia have lower obesity rates compared with
people in Europe and the United States, but type 2 diabetes is
more prevalent in Asia even with lower BMI (Yoon et al., 2006).

In the case of the United States, obesity rates also vary by
ethnic groups or social classifications of race. Only 4.8% of
Asian Americans (including Chinese, Japanese, Korean, Asian
Indian, Vietnamese, Filipino, and others) over the age of 30
had obesity between 2001 and 2002. The prevalence was lower
than in other ethnic groups (21.8% of European Americans,
34.8% of African Americans) living in the United States (Wang
and Beydoun, 2007). The National Center for Health Statistics
reported that the prevalence of obesity was lowest among non-
Hispanic Asian adults (11.7%) and youth (8.6%), followed by
non-Hispanic white (34.5%, 14.7%), Hispanic (42.5%, 21.9%),
and non-Hispanic black (48.1%, 19.5%) in the United States
between 2011 and 2014 (Ogden et al., 2015). A recent study
by Commodore-Mensah et al. (2018), also confirmed the
lowest prevalence of overweight/obesity in Asians, even after
adjusting for WHO-recommended Asian-specific BMI cutoffs
(overweight: 23–27.4 kg/m2; obesity: ≥27.5 kg/m2) in the
United States between 2010 and 2016. The reason for these
disparities are multifactorial including lifestyle, health care,
income status, experience of discrimination, and changes in
diet after migration to the United States; however, these data
may also implicate the role of genetics and interactions between
genetics and the environment in creating variation in obesity
rates. Even though highly challenging, investigations of the
genetic and environmental factors underlying variation in the
pathophysiology of obesity are highly desirable as they could
ultimately lead to improved knowledge of the causal mechanistic
chains underlying the pathophysiology of this disease and its
related metabolic sequelae.

Currently, there is increasing evidence indicating the potential
role of genetic ancestry in variable predisposition to obesity in
different environments. This review provides a comprehensive
overview of recent advances in obesity genetics in individuals of
Asian ancestry. In particular, we compared obesity susceptibility
loci discovered in individuals of European and Asian ancestries
and addressed the potential role of genetic variants in variation
in obesity risk.

It has to be acknowledged that the information on ancestry
variables in GWASs is commonly based on self-reported
questionnaires. This practical way to adjust for ancestry in
genetic association studies has been previously certificated to
be sufficiently accurate for assessing population stratification in
genetic association studies (Rosenberg et al., 2002). However,
it may be misleading in comparisons of complex traits across
populations and may overestimate polygenic adaptation due
to residual population stratification (Sohail et al., 2019).
Despite strong associations reaching p-values with genome-
wide statistical significance, these analyses may be all subtly
affected by population structure, leading to partly incorrect effect
estimations (Sohail et al., 2019). Differences in genetic structure
among populations are mostly due to genetic drift, natural
selection, de novo mutations, and admixture.

Although this review focuses on East Asian populations,
no ancestry (geographic) region can be considered in isolation
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in terms of human population history because migrations
between Asians and Europeans have had a substantial impact
on current genetic structure. For instance, the ancient DNA
studies showed that most present-day Europeans derive from
at least three highly differentiated populations: west European
hunter-gatherers, ancient north Eurasians from the Steppe,
and early farmers from Anatolia, and that there are varying
proportions of these different ancestries across Europe. In early
Bronze Age pastoralists, West Eurasian ancestry and East Asian
ancestry have already undergone genomic mixture through the
Eurasian steppes (Mathieson et al., 2015; Damgaard et al.,
2018). There is still a controversy about the genetic gradients
in present-day Asians, where the ancestry variables may be
more complicated and diverse. There are at least three genetic
gradients in the South Asian region: Anatolian/Iranian farmer-
related ancestry, Ancestral North Indians, and Ancestral South
Indians who were mixed with northwestern and southeastern
groups with Steppe ancestry (Narasimhan et al., 2019); at
least four ancient populations in Southeast Asia: mainland
Hoabinhians, Andamanese onge, Malaysian jehai, and ancient
Japanese Ikawazu Jomon (Mccoll et al., 2018); and at least three
ancient populations in East Asia (e.g., Japanese): Hondo, Ryukyu,
and Ainu (Takeuchi et al., 2017).

We have to admit that although these aspects are not
addressed in our review, the readers should be aware of them.
Also, we do not address the diversity among South Asians,
Southeast Asians, and East Asians, which is based on the
following two points: (1) in 13 BMI-related genetic Asian studies
(Table 1), only two studies included South Asians and South
East Asians. In addition, the sample size was strongly limited as
compared with East Asians (totally: East Asian: 483,795; South
Asian and South East Asian: 12,033), which did not allow a valid
comparison and drawing competent and robust conclusions; (2)
although South Asians may appear closer to Europeans than
East Asians from the genetic point of view [e.g., there are no
observed systematic differences in risk allele frequencies of WHR-
related loci between South Asians and Europeans (Scott et al.,
2016)], the BMI and the degree of abdominal obesity and the
risk of diabetes in South Asians are comparable with East Asians
(Nanditha et al., 2016).

GENETIC STUDIES OF OBESITY
BEFORE THE GWAS ERA

In the last two decades of the past century, physiologic
(candidate) gene association studies and genome-wide linkage
studies represented the major analytical tools employed in the
identification of genetic determinants of complex polygenic
traits. The success of these strategies was mostly limited by
poor statistical power due to the small sample sizes of the
studied cohorts. Whereas linkage studies turned out to be
powerful in the identification of genes responsible for monogenic
Mendelian traits and diseases, their impact on polygenic traits
was rather moderate. In 1999, the 825 T polymorphism in the
G Protein Subunit Beta 3 gene (GNB3) was found as one of
the first BMI-related variants in Asian ancestry individuals and

replicated afterward in cohorts of European and African ancestry
(Siffert et al., 1999) (Table 1). Although GNB3 polymorphisms
were not associated with BMI in a Japanese cohort (Ohshiro
et al., 2001), a recent large-scale multi-population meta-analysis
disclosed associations of genetic variants in GNB3 with being
overweight/obese (Li et al., 2016). In 2005, a meta-analysis
containing five genome-wide linkage scan studies provided
significant evidence for the association of genetic variation in
the lipoprotein lipase (LPL) and adrenoceptor beta 3 (ADRB3)
with BMI (Johnson et al., 2005). Subsequently, in 2007, a
larger well-powered genome scan meta-analysis summarized
previous genome-wide linkage scans in individuals of European
ancestry (Saunders et al., 2007). Although it has not explicitly
shown specific loci associated with BMI or obesity, one of the
strongest candidates was the FTO alpha-ketoglutarate dependent
dioxygenase (FTO) locus along with uncoupling protein 1
(UCP1), leptin (LEP), insulin-like growth factor 1 (IGF-I),
scavenger receptor class B member 1 (SCARB1), and insulin
receptor substrate 2 (IRS2). It should be mentioned that
associations of genetic variants in UCP1 and LEP with obesity
have further been replicated in cohorts of Asian ancestry (Nakano
et al., 2006; Wang et al., 2006).

GWAS FOR BMI IN ASIAN POPULATIONS

Within the last decade, GWAS has emerged as a powerful tool to
identify loci associated with complex polygenic diseases such as
obesity. As yet, GWAS contributed to the identification of more
than 750 loci reaching associations with BMI at the genome-
wide significance level (p < 10−8) (Yengo et al., 2018). Whereas
most of the GWASs have been performed in cohorts of European
ancestry (Loos et al., 2008; Thorleifsson et al., 2009; Speliotes
et al., 2010; Pei et al., 2014; Locke et al., 2015; Winkler et al.,
2015; Wood et al., 2016; Graff et al., 2017; Hoffmann et al.,
2018; Riveros-Mckay et al., 2019), similar studies in cohorts of
Asian ancestry were rather scarce. Table 2 summarizes current
obesity susceptibility loci exclusively associated with cohorts
of Asian ancestry.

In 2009, Cho et al. (2009) reported the first large-scale two-
stage GWAS for quantitative traits such as BMI and height
in cohorts of East Asian ancestry. The study showed that the
FTO gene locus, which has been well acknowledged as the
major contributor to polygenic obesity in European populations
(Frayling et al., 2007), also provided the most prominent
association signal in East Asian cohorts. Further support came
from Hotta et al. (2008) who found FTO variant rs1558902
significantly associated with obesity in a Japanese cohort as
well. It should be pointed out that FTO variants have not
been related to obesity and being overweight only in European
and Asian but also in African (Monda et al., 2013), Hispanic
(Villalobos-Comparán et al., 2008; Dong et al., 2011), and Native
American populations (Rong et al., 2009), in both adults and
children (Dina et al., 2007; Frayling et al., 2007), implicating
the global impact of FTO polymorphisms on obesity. FTO is
encoding FTO alpha-ketoglutarate-dependent dioxygenase and
is widely expressed in multiple tissues throughout the body,
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TABLE 1 | Studies conducted in cohorts of Asian ancestry.

Study type Publication
year

Sample size Male/female Cohort
age Mean

(SD)

Criteria for
discoveryc

Number of
variantsd

(discovery
stage)

Criteria for
replicatione

Number of
variantsf

(replication
stage)

Number of
variants

replicated
fromh

Number of
variants

successfully
replicated

fromh

References

Candidate gene
association study

1999 2056 East Asian 2056/0 24 (6) NA NA p < 5.0E−2 NA 1 1 Siffert et al.
(1999)

Candidate gene
association study

2001 208 East Asian 118/90 50.2 (1.2) NA NA p < 5.0E−2 NA 1 1 Ohshiro
et al. (2001)

Candidate gene
association study

2006 251 East Asian 251/0 25.5 (3.5) NA NA p < 5.0E−2 NA 1 1 Nakano
et al. (2006)

Candidate gene
association study

2006 408 East Asian 135/273 59.4 (13.2) NA NA p < 5.0E−2 NA 2 1 Wang et al.
(2006)

GWAS 2009 16,703 (Disa: 8842 East Asian;
Repb: 7861 East Asian)

7397/9306 54.4 (8.4) p < 1.0E−5 2 p < 5.0E−2 1 NA NA Cho et al.
(2009)

Fine mapping FTO
study

2008 2427 East Asian 1077/1350 48.7 (15.4) MAF > 10% 90 p < 1.7E−4 15 NA NA Hotta et al.
(2008)

Replication study 2009 2865 East Asian 1420/1445 49 (14.7) NA NA p < 5.0E−2 NA 27 11 Hotta et al.
(2009)

Replication study 2010 7705 East Asian 3511/4194 49 (11.9) NA NA p < 5.0E−2 NA 14 4 Ng et al.
(2010)

Meta-analysis-
GWAS

2012 83,048 (Dis: 22,762 East Asian,
4953 South and East Asian;
Rep: 2118 South East Asian,
53,215 East Asian)

34,906/48,142 55.2 (9.9) p < 1.0E−4 848 p < 5.0E−7 7 NA NA Wen et al.
(2012)

GWAS 2012 10,391 (2431 South East Asian,
5429 East Asian, 2531 South
Asian); 1006 (1006 Chinese)

5185/5297;
512/492

57.3 (10.6);
9

p < 5.0E−2 31 p < 5.0E−2 13 NA NA Dorajoo
et al. (2012)

GWAS 2012 62,245 (Disa: 26,620 East
Asian Repb: 35,625 East Asian)

35,870/26,375 58 (12.1) p < 5.0E−5 36 p < 5.0E−8 7 NA NA Okada
et al. (2012)

Meta-analysis-
GWAS

2014 134,091 (Disa: 86,739 East
Asian, 4301 South East Asian;
Repb: 47,352 East Asian)

60,628/73,463 55.4 (9.8) p < 7.59E−6 8 p < 5.0E−2 4 55 26g Wen et al.
(2014)

GWAS 2017 173,430 (Disa: 158,284 East
Asian; Repb: 15,146 East
Asian, 322,154 European)

90,992/82,438 59.1 (11) p < 5.0E−8;
p < 1.0E−6

72; 134 p < 5.0E−8 85 (51
novel)

163 66 Akiyama
et al. (2017)

aDiscovery stage sample. bReplication stage sample. cCriteria for discovery stage. dNumber of variants found in the discovery stage by c criteria. eCriteria for replication in Asian study (also as a criteria for
other type studies). f Number of variants found in the replication stage by e criteria. g26 variants replicated by p < 1E−3 from 55 variants which were identified in previous European GWASs. hEuropean GWAS
(Frayling et al., 2007; Loos et al., 2008; Thorleifsson et al., 2009; Willer et al., 2009; Speliotes et al., 2010; Wen et al., 2012; Berndt et al., 2003; Guo et al., 2013; Locke et al., 2015; Shungin et al., 2015; Winkler et al.,
2015). NA, not applicable.
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TABLE 2 | Obesity susceptibility loci identified (p < 5.0E−8) in cohorts of Asian ancestry.

SNP Candidate
gene(s)a

Chr.b Allelec

ALT/REFd
RAFe,f Beta-estimatesc

(SE)e
p-value References Explained

variance (%)f

rs2237892 KCNQ1 11 T/C 0.355 0.0298 (0.0042) 9.29E−13 Wen et al. (2014) 0.041

rs671 ALDH2 12 A/G 0.267 −0.0378 (0.0057) 3.40E−13 Wen et al. (2014) 0.056

rs12229654 MYL2 12 G/T 0.224 −0.0341 (0.0058) 4.56E−09 Wen et al. (2014) 0.040

rs2076463 FGR,IFI6 1 G/A 0.343 −0.023 (0.004) 1.68E−08 Akiyama et al. (2017) 0.024

rs77489951 LOC101929596,HNRNPLL 2 T/C 0.06 0.044 (0.008) 9.39E−09 Akiyama et al. (2017) 0.022

rs8192473 CCK 3 T/C 0.109 −0.035 (0.006) 3.58E−09 Akiyama et al. (2017) 0.024

rs4308481 PRDM6,CEP120 5 C/T 0.398 0.021 (0.008) 1.00E−18 Akiyama et al. (2017) 0.021

rs183975233 HLA-DRA,HLA-
DRB5

6 T/A 0.689 −0.031 (0.004) 7.51E−16 Akiyama et al. (2017) 0.041

rs148546399 EYS 6 A/G 0.01 0.050 (0.008) 1.13E−09 Akiyama et al. (2017) 0.005

rs143665886 LINC01392,TFEC 7 C/T 0.4 0.022 (0.004) 9.46E−09 Akiyama et al. (2017) 0.023

rs10868215 SLC28A3,NTRK2 9 C/T 0.299 −0.021 (0.004) 1.34E−08 Akiyama et al. (2017) 0.018

rs10795945 CDC123,CAMK1D 10 C/T 0.461 0.021 (0.003) 1.10E−09 Akiyama et al. (2017) 0.022

rs80117551 HERC4 10 C/T 0.679 −0.022 (0.004) 1.57E−08 Akiyama et al. (2017) 0.021

rs12569457 FRAT2,RRP12 10 T/C 0.122 0.025 (0.004) 6.67E−09 Akiyama et al. (2017) 0.013

rs1907240 MIR5694,FGFR2 10 G/A 0.393 −0.024 (0.004) 3.47E−11 Akiyama et al. (2017) 0.027

rs80234489 FAM60A 12 A/C 0.812 −0.031 (0.005) 1.05E−11 Akiyama et al. (2017) 0.029

rs75766425 NID2 14 C/G 0.105 0.034 (0.005) 1.28E−10 Akiyama et al. (2017) 0.022

rs4788694 ZFHX3 16 C/G 0.179 −0.021 (0.004) 2.54E−08 Akiyama et al. (2017) 0.013

rs180950758 SUZ12P1 17 T/A 0.11 0.027 (0.005) 2.63E−08 Akiyama et al. (2017) 0.014

rs1379871 DMD X C/G 0.68 0.018 (0.003) 1.05E−08 Akiyama et al. (2017) 0.014

rs6529684 HSD17B10,HUWE1 X G/A 0.54 0.016 (0.003) 2.78E−08 Akiyama et al. (2017) 0.013

rs3121672 IL13RA1 X C/T 0.43 0.024 (0.003) 2.90E−17 Akiyama et al. (2017) 0.028

rs1190736 GPR101 X C/A 0.65 −0.017 (0.003) 1.31E−08 Akiyama et al. (2017) 0.013

rs5945324 FAM58A,DUSP9 X C/G 0.4 0.022 (0.003) 1.33E−11 Akiyama et al. (2017) 0.023

rs2206271 TFAP2B 6 A/T 0.365 0.031 (0.008) 3.00E−18 Akiyama et al. (2017) 0.045

rs2495707 HIF1AN,PAX2 10 A/G 0.549 0.025 (0.008) 1.00E−09 Akiyama et al. (2017) 0.031

rs60808706 KCNQ1 11 A/G 0.369 0.046 (0.004) 1.24E−38 Akiyama et al. (2017) 0.099

rs3205718 FAIM2 12 T/C 0.231 0.023 (0.008) 4.62E−10 Akiyama et al. (2017) 0.019

rs7305242 ALDH2,MAPKAPK5-
AS1

12 C/T 0.576 −0.021 (0.004) 2.21E−08 Akiyama et al. (2017) 0.022

rs2540034 ADCY9 16 T/C 0.312 0.028 (0.004) 2.97E−12 Akiyama et al. (2017) 0.034

rs35560038 GIPR,QPCTL 21 A/T 0.532 0.054 (0.008) 3.00E−52 Akiyama et al. (2017) 0.145

aPredicted gene reported in reference studies. bChromosomes based on NCBI Build154 (GRCh38). cAlternative alleles were treated as effective allele. dThe allele
frequency based on genome Aggregation Database (gnomAD). e“Standard error” according to reference studies reported. f“Explained variance” is the variance explained
by each reported variant using the formula which uses the allele frequency (f) estimated in GWAS and estimates of the additive effect (β) in meta-analysis: explained
variance β2 (1− f) 2f (Akiyama et al., 2017). To estimate the additive explained variance of 31 newly identified BMI loci in Asian population, the explained variance of each
individual variant were summed up and resulted in a total of 0.926%.

in particular, in the thalamic arcuate nucleus with the central
role in body weight regulation (Gerken et al., 2007). It should
be recognized that the mechanistic basis for the FTO-related
association with obesity has been finally explained in 2015 by
Claussnitzer et al. (2015). The authors showed that the functional
FTO variant disrupted an evolutionarily conserved motif of
AT-Rich Interaction Domain 5B (ARID5B) repressor, which
leads to the loss of binding, releases of a potent preadipocyte
super-enhancer, and activation of downstream targets Iroquois
Homeobox 3 and 5 (IRX3 and IRX5) (Claussnitzer et al., 2015).
This results in alterations of mechanisms controlling the shift
from white adipocyte browning to lipid-storage gene expression
programs, repression of basal mitochondrial respiration, decrease

in thermogenesis in response to stimulus, and increase in
adipocyte size, which ultimately results in human obesity
(Claussnitzer et al., 2015).

Hotta et al. (2009) reported the first Japanese study aimed
to replicate the association signals from BMI GWAS in
individuals of European descent. The study indicated that SEC16
homolog B (SEC16B), transmembrane protein 18 (TMEM18),
glucosamine-6-phosphate deaminase 2 (GNPDA2), brain-
derived neurotrophic factor (BDNF), fas apoptotic inhibitory
molecule 2 (FAIM2), and melanocortin 4 receptor (MC4R)
loci are not only associated with BMI in European ancestry
individuals but also with obesity in Japanese ancestry individuals.
On the other hand, 16 obesity-related SNPs could not be

Frontiers in Genetics | www.frontiersin.org 5 October 2020 | Volume 11 | Article 57504910

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-575049 October 15, 2020 Time: 10:9 # 6

Sun et al. Genetics of Obesity in Asians

replicated in this study, supporting the heterogeneity of genetic
susceptibility to obesity among various genetic ancestries.
For instance, in contrast to the European cohorts, genes such
as phosphotriesterase related (PTER) and secretogranin III
(SCG3) were monomorphic for the respective variants in the
studied Asian cohort. One of the genes whose polymorphisms
were replicated in this study was SEC16B. SEC16B encodes
long (Sec16L) and short (Sec16S) proteins required for
mammalian cells to deliver intracellular substances from
the endoplasmic reticulum to the Golgi apparatus (Watson et al.,
2006; Bhattacharyya et al., 2007). Although Schmid et al. (2012)
showed that Sec16b has the highest expression in subcutaneous
adipose tissue and the lowest expression in the hypothalamus,
Hotta et al. (2009) proposed that Sec16b expressed in the
hypothalamus might be affecting energy regulation. SEC16B
is not only an obesity susceptibility locus in individuals of
Asian and European ancestry but also is related to BMI in
individuals of African ancestry (Sahibdeen et al., 2018). Also,
the polymorphism of Tmem18, which is highly expressed in the
hypothalamus (Schmid et al., 2012), is one of the BMI-related
loci being robustly replicated in individuals of Asian ancestry.
A study focusing on Tmem18 expression in the hypothalamic
nucleus showed that Tmem18-deficient mice gain body weight
compared with a control mouse, especially in males under a strict
high-fat diet (Larder et al., 2017). Overexpression of Tmem18 in
hypothalamic paraganglia may affect food intake, increase energy
expenditure, and reduce systemic fat and body weight.

Another gene highly expressed in the hypothalamus is
GNPDA2. Genetic variants in or near GNPDA2 have been shown
to be associated with obesity in Asians (Hong et al., 2013),
Pima Indians (Muller et al., 2019), and Europeans (Willer et al.,
2009). In contrast, there are controversial data in childhood
obesity; it has been shown that the GNPDA2 locus is associated
with BMI in a cohort from Mexico (León-Mimila et al., 2013),
but not in an Asian cohort (Wang et al., 2012). MC4R is
also a centrally acting gene known to be the most common
cause of monogenic obesity in extreme childhood obesity.
It is well recognized that hypothalamic pro-opiomelanocortin
neurons regulate feeding behavior through the production of
melanocortins and beta-endorphin from these neurons. MC4R is
a major melanocortin receptor involved in regulating food intake
and energy expenditure (Nogueiras et al., 2007). The MC4R has
been reported as a risk gene associated with extreme obesity
in adolescence and adulthood (Chambers et al., 2008; Hotta
et al., 2009; Tenesa et al., 2009; Thorleifsson et al., 2009). Short-
term administration of an MC4R agonist RM-493 increased
individual resting energy expenditure and limited fat oxidation
in obese individuals (Chen et al., 2015). However, two other
clinical studies using MC4R agonists did not show any effects of
regulating body weight (Krishna et al., 2009; Royalty et al., 2014).
Further studies are needed in other to clarify the controversial
findings reported.

In 2010, Ng et al. (2010) carried out a replication study of
12 BMI-associated loci from a European ancestry GWAS in a
Chinese cohort. Five loci located at or near GNPDA2, BCDIN3
domain containing RNA methyltransferase (BCDIN3D), SH2B
adaptor protein 1 (SH2B1), FTO, and potassium channel

tetramerization domain containing 15 (KCTD15) seem to be
related to BMI in Chinese individuals. Two of them, SH2B1
and KCTD15 polymorphism (rs7498665 and rs29941), were
replicated for the first time in an Asian cohort. SH2B1
encodes SH2B adaptor protein 1, a member of the SH2-domain
containing mediators family. It is expressed in both central
and peripheral tissues (Ren et al., 2007). A study showed that
central Sh2b1 controls glucose homeostasis and insulin sensitivity
(Duan et al., 2004) as well as hypothalamic leptin sensitivity (Ren
et al., 2007). Peripheral Sh2b1 regulates insulin sensitivity and
glucose metabolism (Ren et al., 2007) whereas hepatic Sh2b1
regulates lipid metabolism, particularly triacylglycerol and very-
low-density lipoprotein content in the liver (Sheng et al., 2013).

The function of the KCTD15 is still unknown. However,
it has been shown that Kctd15 deficiency resulted in a slow-
growth/small size phenotype in zebrafish (Heffer et al., 2017).
Particularly, the Kctd15 likely acts through interaction with
adipocyte protein 2 (AP-2) (Liu et al., 2013), which is a critical
regulator in adipogenesis (Shan et al., 2013), suggesting a
possible molecular basis for the observed associations of KCTD15
variants with obesity.

In 2012, Dorajoo et al. (2012) performed a BMI GWAS
meta-analysis in Asian ancestry individuals (Singaporean, Malay,
and Asian-Indian) and, among others, confirmed the relevance
of the FTO locus. The authors replicated 13 loci which have
been previously reported in European ancestry cohorts and
found three novel variants (rs2287019, rs2241423, rs516175)
associated with BMI in their Asian cohort. Interestingly, 16
loci previously found in the European ancestry GWAS were
not associated with BMI in this study, possibly due to the
genetic heterogeneity between present-day Asian and European
ancestries. Rs2287019 variant maps in the vicinity of the GIPR,
the gene encoding a G protein-coupled receptor for a gastric
inhibitory polypeptide, which is strongly expressed in pancreatic
beta cells (Saxena et al., 2010). It is involved in the incretin
effect and in early pathophysiologic pathways that could lead to
impaired glucose tolerance and T2D in humans. Gipr-deficient
mice are more resistant to obesity after a high-fat diet (Miyawaki
et al., 2002), which is likely due to the interplay of enhanced
insulin sensitivity and inhibition of GIP signaling pathways in
adipose tissue (Joo et al., 2017). MAP2K5, mitogen-activated
protein kinase kinase 5, which is the closest gene to the BMI-
related loci (rs2241423), plays a crucial role in the MAPK
signaling pathway. Chen et al. (2014) showed that MAP2K5
is regulated by mir-143 and affects lipogenesis. Methionine
sulfoxide reductase A, MSRA, located near the previously
mentioned variant rs516175, regulates glucose metabolism and
insulin response in mitochondria and has protective effects on
insulin sensitivity in obese mice (Hunnicut et al., 2015). It
is also a target of miR-193b which stimulates reactive oxygen
species signal transduction and regulates lip sarcoma cell survival
and adipose tissue–derived stromal/stem cells cell differentiation
(Mazzu et al., 2017).

In 2012, a two-stage GWAS (Okada et al., 2012) in an
East Asian cohort discovered two novel loci, nearby CDK5
regulatory subunit associated protein 1 like 1 (CDKAL) and
kruppel like factor 9 (KLF9), which were associated with BMI.
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The study clearly implicated ancestry-specific effects of the KLF9
locus, which was not found in previous analyses in European
individuals (Speliotes et al., 2010), despite the sufficient statistical
power to detect the locus based on the assumption of the same
effect size and allele frequencies (MAFEur = 0.5, MAFAsi = 0.4).
A three-stage meta-analysis of eight BMI GWAS was performed,
with the second phase being computer replication and the third
phase being a de novo replication study (Wen et al., 2012). The
analysis resulted in 10 loci reaching associations at genome-wide
significance (p < 10−8). Seven of the ten loci are at the FTO,
SEC16B, MC4R, GIPR/glutaminyl-peptide cyclotransferase like
(QPCTL), adenylate cyclase 3 (ADCY3), BNDF, and MAP2K5,
which have been previously shown to be associated with BMI
in European ancestry individuals. Three novel loci in or near
cyclin-dependent kinase 5 (CDKAL1), proprotein convertase
subtilisin/kexin type 1 (PCSK1), and glycoprotein 2 (GP2)
associated with BMI in an East Asian cohort. Kim et al. (2013)
identified the prospero homeobox 1 (PROX1) locus in a GWAS
for BMI in a cohort from Mongolia and replicated it in a cohort
from Korea. However, the associations only reached suggestive
significance with p < 10−7. The limited statistical power was
likely attributed to the relatively small sample size (n = 1301).
Albeit not statistically significant at the genome-wide level, the
study also suggested protein tyrosine phosphatase receptor type
D (PPTRD) and reelin (RELN) to be potential candidate genes
that may have a role in the development of obesity.

In 2014, a two-stage GWAS (Wen et al., 2014) including
82,438 East Asian and 4301 South-East Asian individuals in the
discovery and 47,352 East Asian individuals in the replication
stage indicated four novel BMI-related loci reaching a significant
level of genome-wide association: these loci in or near potassium
voltage-gated channel subfamily Q member 1 (KCNQ1), aldehyde
dehydrogenase 2 family member (ALDH2), inter-alpha-trypsin
inhibitor heavy chain 4 (ITIH4), and 5′-nucleotidase cytosolic II
(NT5C2).

KCNQ1 variant (rs2237892) was initially reported in GWAS
of T2D in Asian cohorts (Unoki et al., 2008; Yasuda et al., 2008),
followed by replication reports in European cohorts (Unoki et al.,
2008; Voight et al., 2010). Moreover, KCNQ1 locus has been
shown to be associated with waist circumference (WC adjusted
for BMI) in an Asian cohort (Graff et al., 2017). KCNQ1 is
expressed in islet cells and has been implicated in the regulation
of insulin secretion (Ullrich et al., 2005).

ALDH2 polymorphism rs671 is not only related to obesity
but also to multiple complex traits such as drinking behavior
(Jorgenson et al., 2017), triglycerides (Tan et al., 2012), and
blood pressure (Feitosa et al., 2018). As suggested by Akiyama
et al. (2017), the ADH-ALDH gene family may have a
greater significant impact on BMI in East Asian individuals.
Recent studies (Yu et al., 2016) suggested that ALDH2 is
a positive regulator of adipocyte differentiation through the
interaction with its upstream regulatory factor protein kinase C
mediated by peroxisome proliferator-activated receptor gamma
transcriptional activity. ITIH4 is widely distributed in the
blood and liver (Cai et al., 1998). The gene locus has been
associated with schizophrenia (Goes et al., 2015) and blood
serum protein levels in several GWAS (Emilsson et al., 2018).

Early studies (Fujita et al., 2004) suggested that ITIH4 locus
is also associated with hypercholesterolemia in a Japanese
cohort. NT5C2 encodes a downstream cytosolic hydrolase that
plays a considerable role in cellular purine metabolism by
acting primarily on inosine 5′-monophosphate and other purine
nucleotides (Novarino et al., 2014).

In 2017, Akiyama et al. (2017) implemented, so far, the largest
imputation-based GWAS in 158,284 East Asians. They reported
112 BMI loci, 61 of which were novel, and pointed out that BMI-
related loci are most likely shared among different ancestries;
however, the effects of particular loci on BMI may vary among
genetic ancestries.

COMPARISON OF BMI SUSCEPTIBILITY
LOCI BETWEEN EUROPEAN AND ASIAN
ANCESTRIES

Most BMI-associated loci initially uncovered in studies with
individuals of European ancestry have been widely replicated in
Asian individuals (Frayling et al., 2007; Hotta et al., 2008; Cho
et al., 2009; Yajnik et al., 2009; Dong et al., 2011; Moore et al.,
2012; Vasan et al., 2012; Monda et al., 2013).

By reviewing all current BMI-related studies in Asian cohorts
(Table 1), we found 92 loci (Supplementary Table S1) and
compared them with GWAS in European cohorts. Forty-two of
92 BMI-related loci have been previously reported in European
cohorts with p < 5 × 10−8 and had a consistent direction
of effect on BMI. For the remaining 50 BMI-related loci, we
observed no compelling evidence of replication (Supplementary
Table S1). According to our defined criteria (p < 5 × 10−8 for
GWAS, p < 0.05 for replication), the replications failed in the
following cases: (1) 6 of 50 SNPs reached the genome significant
p-value (p < 5 × 10−8) in Asian cohorts but not in European
cohorts. Because it is unlikely that limited statistical power due
to small sample size and minor allele frequencies would be
a crucial factor (see Supplementary Table S1) explaining the
failed replications, other reasons such as genetic heterogeneity
or distinct phenotypic expression in different genetic ancestries
may be considered. Exemplarily, East Asians showed a lower
mean BMI (22.7 ± 3.59 kg/m2) (Okada et al., 2012) than
European cohorts (27.24± 3.9 kg/m2) (Speliotes et al., 2010). (2)
Twenty-three of 50 SNPs had a genome-wide significant p-value
(p < 5 × 10−8) in Europeans, but no significant associations
(p > 0.05) in Asian populations. Eighteen of these 23 variants
were only directionally consistent but not significantly associated
with BMI, and the remaining five SNPs were neither directionally
consistent nor statistically significantly associated with BMI
(p > 0.05) in Asian individuals. Limited statistical power could
be a likely explanation for this observation. Compared with
some large-scale studies in European cohorts with sample sizes
ranging from 100,000 to 700,000, these Asian studies that failed
to replicate the 23 variants were relatively small (1000 to 10,000).
Two of the 23 loci non-replicated variants may have been due
to marked differences in MAF between European and Asian
individuals, as the MAF of rs17381664 and rs925946 were 0.002
and 0.06, respectively, in Asian individuals, and 0.37 and 0.29
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in Europeans. Another possibility to be taken into account
could be different causal variants between Asian and European
individuals, resulting in a weak LD pattern in the Asian cohort,
consequently leading to a weaker correlation between causal
variants and marker SNPs. (3) For the remaining 21 SNPs, there
was no convincing evidence for association with BMI in any of
the two populations.

In summary, the majority of BMI-associated loci overlap
between studies in Asian and European cohorts with regard
to the respective risk alleles, although their frequencies may
slightly vary. We found 82 BMI susceptibility loci (results
not shown) by screening associations with a p-value < 10−8

in individuals from Asia, after pruning by checking linkage
disequilibrium (LD) through LD proxy module in a public LD
online database from the National Institutes of Health (Division
of Cancer Epidemiology & Genetics, 2020). We finally found
31 BMI loci that have only been associated with Asian cohorts
(Figure 1 and Table 2). Of these 31 loci, two of them were
monomorphic in European subjects (eyes shut homolog (EYS)—
rs148546399 and nidogen 2 (NID2)—rs75766425) and eight
were rare mutations [FGR proto-oncogene (FGR)—rs2076463,
heterogeneous nuclear ribonucleoprotein L like (HNRNPLL)—
rs77489951, cholecystokinin (CCK)—rs8192473, transcription
factor EC (TFEC)—rs143665886, LOC102724612—rs77636220,
FRAT regulator of WNT signaling pathway 2 (FRAT2)/ribosomal
RNA processing 12 homolog (RRP12)—rs12569457, fibroblast
growth factor receptor 2 (FGFR2)—rs1907240, and ALDH2—
rs7305242]. NID2, FGFR2, and ALDH2 had already been reported
in the latest T2D GWAS in an East Asian cohort (Spracklen et al.,
2020). On the other hand, five loci were monomorphic or rare
in Asian cohorts [FTO—rs9930333, LDL receptor related protein
1B (LRP1B)—rs2890652, cell adhesion molecule 2 (CADM2)—
rs13078807, solute carrier family 39 member 8 (SLC39A8)—
rs1310735, and protein kinase D1 (PRKD1)—rs11847697]. These
variants of the 31 loci associated with GWAS in Asian cohorts
explained only 0.926% of the phenotypic variance (Table 2).

We also integrated four GWAS works (Kang et al., 2010;
Ng et al., 2012; Salinas et al., 2016; Chen et al., 2017)
(Supplementary Table S2) conducted in African ancestry
individuals (including African American and Afro-Caribbean
and sub-Saharan African). Only one novel SNP (rs80068415)
reached a GWAS significant threshold and five novel loci
showed suggestive association with BMI at p < 1 × 10−5 in
the studied African cohorts (Supplementary Table S3). The
variant (rs80068415) identified in this GWAS only explained
0.065% of the variance (Supplementary Table S3). Because of LD
patterns, six loci contained two SNPs in high LD with previously
identified index SNP related to BMI with p < 5 × 10−8 in
a European cohort. The variant (rs2033195) was in high LD
with rs10055843 (r2 = 0.96) which are associated with BMI at
p = 7.2 × 10−18 in European individuals. The variants rs815611
and rs1346482 were in high LD (r2 = 0.92), and the latter was
associated with BMI (p = 2 × 10−19) in European cohorts.
The underlying susceptibility locus of potentially African-specific
rs80068415 is located in the region of semaphoring-4D (SEMA-
4D). The proposed mechanism behind SEMA-4D on obesity
is likely complex and may be mediated through regulatory

multiple biological processes. Obesity usually follows a chronic
inflammatory condition and T-cell accumulation has a positive
correlation with adiposity. SEMA-4D seems to be a key player
in the activation and differentiation of T cells and SEMA-4A
could promote T helper 1 (Th1) cell differentiation (Worzfeld
and Offermanns, 2014). This novel variant (rs80068415) seems
to be highly specific to Africans as it is monomorphic in
other populations.

The FTO locus manifests the strongest association signal with
obesity in both Asian and European populations. Although the
effect direction is consistent, the number of genetic variants
varies between the populations. Nineteen FTO variants reached
a genome-wide significance level for association with BMI
in Europeans, whereas only four variants were associated
with Asians. For instance, the top BMI-associated FTO signal
found in GWAS in European individuals was rs1558902
(p = 4.8 × 10−120), whereas rs11642015 (p = 2.04 × 10−81)
was the prominent hit in the Asian population. It is evident
that differences in genetic architecture (e.g., rs9930333 with
p = 10−103 is the only polymorphism in Europeans) and
evolutionary selective pressure (Liu et al., 2015) may at least
partially explain the observed differences in associations at the
variants level. However, it is worth mentioning that GWAS in
Asian cohorts have emerged recently and genetic association
studies have mostly focused on replication of previously reported
signals from other GWAS. Furthermore, the reported studies
in Asian cohorts are limited by a relatively small sample size
compared with studies in European cohorts. Nevertheless, there
is an enormous potential for large-scale genome-wide studies in
cohorts of Asian ancestry, which may lead to the identification of
novel players in the genetic architecture of human obesity.

Although most of the BMI associated loci showed consistent
effect directions between Asians and Europeans (Figure 2), the
sample effect sizes differ substantially. The frequency of risk
alleles varies from 1 to 40% between the genetic ancestries. For
instance, the allele frequency of the FTO-rs12149832 obesity
risk alleles differs by 40%, whereas the effect size on BMI is
comparable. In contrast, the frequency of variants in MC4R
(rs571312) or ADCY3/DNAJC27 (rs713586) in the European
populations is similar to that in the East Asian populations based
on genome Aggregation Database (gnomAD), but the difference
in effect size on BMI accounted for about 20% (Figure 3 and
Supplementary Table S1).

COPY NUMBER VARIATIONS IN
OBESITY IN ASIAN COHORTS

Along with the SNPs, copy number variations (CNVs), which
are not only abundant in the human genome (Tuzun et al.,
2005) but also have a vital influence on gene expression (Stranger
et al., 2007), have emerged as another critical genetic label
continuously attracting researchers’ attention in the field of
complex polygenic traits. Their “gene dosage” effect mediates
the risk or protection against human diseases such as obesity
(Jacquemont et al., 2011). One of the important CNVs related
to BMI in the Asian population was reported on 10q11.22 (Sha
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FIGURE 1 | Overlap of reported loci associated with BMI in European and Asian cohorts based on p-value < 10−8.

et al., 2009). Pancreatic polypeptide Y receptor Y4 (PPYR1)
located under this CNV area appears to be a plausible gene
eventually related to obesity, and Shebanits et al. (2018) have
also found similar findings in a Swedish cohort which suggested
an association of PPYR1 (NPY4R) with WC in women. PPYR1
is one of the receptors of pancreatic polypeptide (PP), and
several studies demonstrated that PP regulates the food intake via
PPYR1 (Batterham et al., 2003). Yang et al. (2013) confirmed the
association of a CNV on 16p12.3 with obesity-related phenotypes
in a European but not in Asian cohort and suggested G protein-
coupled receptor class C group 5 member B (GPRC5B) as a
candidate obesity gene mapping within this chromosomal region.
The authors emphasized the necessity of considering various
ancestries in genetic association studies, particularly CNVs,
which are characteristic for their considerable variation across
genetic ancestries. Sun et al. (2013) tested eight CNVs (2p11.2,
10q11.22, 11q13.4, 16p11.2, 5p15.33, 15q11.2, 8q24.3) in young
Chinese subjects, but proved only CNV 8q24.3 being associated
with obesity, whereas no significant association was found for the
other seven CNV candidates. BAI1, brain-specific angiogenesis
inhibitor 1, which is located within the CNV 8q24.3, is postulated
to be a member of the secretin receptor family and is the only
member in its family transcriptionally regulated by p53 (Van
Meir et al., 1994). Zhang et al. (2015) replicated three obesity-
related loci 10q11.22, 4q25, and 11q11 in Han Chinese children
and noted the strong cumulative effect of these loci on the risk of
obesity. Furthermore, they also pointed out a significant interplay
between CNVs (10q11.22) and dietary behaviors (meat-based).
On the other hand, the salivary amylase gene (AMY1), whose

copy number has been positively correlated with salivary amylase
protein level (Perry et al., 2007), has delivered rather inconsistent
findings concerning obesity. Perry et al. (2007) suggested that
more AMY1 copies exist in populations with high-starch diets
than in those with traditionally low-starch diets. This points to
a restricted selection of AMY1 copies through a dietary shift early
during human evolutionary history, especially in some ethnic
groups such as East Asians known to prefer high-starch diets.
However, a recent study failed to support the association of
AMY1 and AMY2A CNVs with obesity in two East Asian cohorts
(Yong et al., 2016). A similar conclusion was drawn by Usher
et al. (2015) who did not find any association of AMY1 CNVs
with obesity or BMI in a study including three European cohorts.
Nevertheless, despite lacking evidence of an association between
AMY CNVs and obesity, these studies inspired and promoted a
novel perspective for future genetic association studies for obesity
whereby variation in diet or environment exposures and their
interaction with our genomes need to be considered.

FUTURE PERSPECTIVES

Gene × Environment Interaction
Obesity is a complex disease affected by both environment
and genes. Because of increasing globalization, urbanization,
and improved economic status, human diet structure and life
habits have changed in Asia. Precisely, it has been observed that
increased availability of food, better transport facilities, better
healthcare facilities, reduced physical activity by mechanization,
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FIGURE 2 | A visual representation of all replicated and non-replicated loci at p-value < 10−8 in GWAS conducted in individuals of European and Asian ancestries.
Replicated loci are coded with the same color.

preference of viewing TV and videos (sedentary style), and
increased use of automobiles and these changes in their life
habits are associated with increased obesity prevalence in urban
and rural populations, particularly in developing countries.
Moreover, it is important to emphasize that there are also
changes in their diet structure, such as a tendency to eat
more finely processed carbohydrates (such as rice) and fat-
rich items (Ramachandran et al., 2012). While the societal
scale environment could cause the obesity epidemic, it is also
known that genetic differences underlie the variation in BMI
between individuals and that gene × environment interactions
may be important in this context. A recent study concluded that
nutrition has the strongest environmental effect on obesity risk
at the FTO locus. Using genetic, anthropometric, and lifestyle
variables collected as part of the UK Biobank, they assessed
gene-by-environment interactions and how they modify the
effect of FTO variants on BMI. The authors reported significant

interactions between rs1421085 and a number of lifestyles and
environmental factors, including alcohol, consumption, and
mean sleep duration, with overall diet having the strongest
effect on modifying FTO risk (Young et al., 2016). There is no
doubt that gene–environment interactions are necessary to be
understood to explain the underlying pathophysiology of obesity
as a complex disease across the genetic diversity present in
contemporary individuals across the globe.

Rare Genetic Variants
The loci associated with obesity remain to be further investigated,
as the currently known loci only explain a small fraction of
the variation in obesity and its measures such as BMI. Whereas
common polymorphisms have been the main target of the
majority of large-scale genetic studies so far, rare genetic (low
frequency) variants with significant effects may substantially
contribute to our understanding of the genetic heterogeneity
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FIGURE 3 | Risk allele frequency and effect size of top ranked obesity susceptibility loci which reached genome association significant p-value in European and
Asian cohorts. BMI-related loci shown in this figure with p < 5 × 10−8 in both cohorts. p-values and effect size are according to reference studies reported
(Supplementary Table S1). The allele frequency is based on genome Aggregation Database (gnomAD).

of obesity and fat distribution. In this regard, further intensive
research is inevitable in the cohorts of Asian ancestry to identify
novel obesity loci either specific in Asian ancestry or common
for various ancestries and thus provide new insights into the
mechanisms underlying obesity.

Understanding the Functional
Consequences of Obesity-Associated
Variants
The function of most of the genes within obesity-associated
loci remains to be clarified. Although numerous polymorphisms
associated with obesity have been revealed so far in studies
including various ethnicities, identification of the respective
target genes of these variants remains challenging. This is mostly
attributed to the variety of regulatory mechanisms SNP may be

involved in, which makes it difficult to predict the most likely
target gene. While in most cases, these genes map in close vicinity
of their functional variant, they may also be positioned hundreds
of kilobases upstream or downstream of the genes.

In line with this, it has to be noted that most of the genes
reported in this review are based on the “closest” gene approach,
which admittedly is not a highly accurate approach. Although it
may be true for some obesity loci (e.g., FTO), for most of the
currently known obesity susceptibility loci, no target genes of the
associated genetic variants have been robustly validated. Instead,
the closest or nearby genes are being reported and proposed as
potential candidate genes explaining the observed associations.

Measures of Obesity
The classical and mostly applied measure of obesity is BMI.
However, because of differences in phenotypes and body
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composition in Asian and European populations, BMI may
not be the most appropriate measure to assess the degree of
obesity globally. This phenomenon may cause GWAS to miss
important genetic variants in specific populations or subgroups.
At the same time, inaccuracy in the measured phenotypes
may result in false-positive association signals. Establishing
new tools/measures including whole-body MRI scan and body
composition techniques to easily and quickly assess obesity will
be inevitable to refine and make the search for obesity-related
genes more efficient.

Fine Mapping in
Multi-Ethnic/Trans-Ethnic Studies
A growing number of multi-ethnic/trans-ethnic studies have
been completed in populations of non-European ancestry in
addition to replication studies in recent years. The potential
ability to use trans-ethnic studies is identifying common genetic
variants shared across different ancestries, as well as ancestry-
specific disease predisposing variants, and interactions between
genetic variants and the environment that can be shared or
ancestry specific as well. Moreover, the diversity of LD patterns
across various genetic ancestries can be leveraged to indicate
causal variants. Moving beyond GWAS, also other approaches
such as fine mapping studies are a valuable attempt to apply to
multi-ethnic cohorts to get a better understanding of the role of
novel loci implicated in obesity.

Fine-mapping strategies typically follow the GWAS findings
aiming at prioritization of variants within susceptibility regions
in the genome. Although the original GWAS can suggest a region
that is likely to include a causal variant, additional strategies
(fine mapping, whole-exome, and whole-genome sequencing)
are necessary to distinguish most likely functional variants
from only correlated causal variants. A major challenge in
identifying underlying causal SNPs are the presence of LD,
which can lead to highly correlated association results and
multiple significant SNPs at a locus of interest. Most of the
GWAS performance so far assume association analyses in
relatively homogenous populations with consistent patterns of
LD; this is straightforward for discovering associated variants.
However, it can be challenging in multi-ethnic studies, where
distinguishing multiple nearly equivalent variants may need
hundreds of thousands of individual samples. Fine mapping
in different ancestries is a method of lessening the barrier of
LD and aids this process by selecting and prioritizing variants
most likely responsible for complex traits. In addition, trans-
ethnic fine mapping is a powerful approach for both narrowing
the underlying causal variants in known loci as well as in
discovering novel variants for complex traits (Zaitlen et al.,
2010). Fine mapping in populations with relatively limited LD
patterns like in individuals of African (Guo et al., 2013) or
Asian (Hotta et al., 2008) ancestry may be helpful in the
dissection of genetic architecture within a population and in
pinpointing the causal variant. In the future, more trans-
ethnic fine mapping studies will be inevitable in dissecting
the genetic architecture of complex traits such as obesity.
Considering that many complex traits are driven by large

numbers of variants of small effects, which likely interact with
the environment in complex ways, detailed mapping of genetic
architecture regulatory networks and G × E effects will be an
essential task for fully understanding human disease biology
(Boyle et al., 2017).

CONCLUSION

In summary, GWAS has exhibited a large number of BMI-
associated loci over the past decade, providing an effective way
to understand better obesity mechanisms which are essential
on our way to improve the treatment of obesity. Although
the pioneering large-scale GWAS were mostly conducted on
individuals of European ancestry, there has been remarkable
progress, which is now closing the gap between our knowledge
of obesity genetics in European versus Asian ancestries. It
should be noted that GWAS executed in Asian cohorts have
not only affirmed the potential role of previously associated
obesity loci but also displayed novel ones, which have been
missed in the initial genetic studies in individuals of European
ancestries. In addition, follow-up GWAS research strategies in
multi-ethnic/trans-ethnic studies are worthwhile to conduct. At
last, despite a large number of currently known obesity risk loci,
the molecular mechanisms underlying this complex disease are
not fully explained yet, and neither is the variation across human
diversity in terms of obesity.
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We recently reported a deviation of local ancestry on the chromosome (ch) 8p23.1,
which led to positive selection signals in a Brazilian population sample. The deviation
suggested that the genetic variability of candidate genes located on ch 8p23.1 may
have been evolutionarily advantageous in the early stages of the admixture process.
In the present work, we aim to extend the previous work by studying additional
Brazilian admixed individuals and examining DNA sequencing data from the ch 8p23.1
candidate region. Thus, we inferred the local ancestry of 125 exomes from individuals
born in five towns within the Southeast region of Brazil (São Paulo, Campinas,
Barretos, and Ribeirão Preto located in the state of São Paulo and Belo Horizonte,
the capital of the state of Minas Gerais), and compared to data from two public
Brazilian reference genomic databases, BIPMed and ABraOM, and with information
from the 1000 Genomes Project phase 3 and gnomAD databases. Our results revealed
that ancestry is similar among individuals born in the five Brazilian towns assessed;
however, an increased proportion of sub-Saharan African ancestry was observed in
individuals from Belo Horizonte. In addition, individuals from the five towns considered,
as well as those from the ABRAOM dataset, had the same overrepresentation of
Native-American ancestry on the ch 8p23.1 locus that was previously reported for the
BIPMed reference sample. Sequencing analysis of ch 8p23.1 revealed the presence
of 442 non-synonymous variants, including frameshift, inframe deletion, start loss,
stop gain, stop loss, and splicing site variants, which occurred in 24 genes. Among
these genes, 13 were associated with obesity, type II diabetes, lipid levels, and waist
circumference (PRAG1, MFHAS1, PPP1R3B, TNKS, MSRA, PRSS55, RP1L1, PINX1,
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MTMR9, FAM167A, BLK, GATA4, and CTSB). These results strengthen the hypothesis
that a set of variants located on ch 8p23.1 that result from positive selection during
early admixture events may influence obesity-related disease predisposition in admixed
individuals of the Brazilian population. Furthermore, we present evidence that the
exploration of local ancestry deviation in admixed individuals may provide information
with the potential to be translated into health care improvement.

Keywords: population genomics, Latin American populations, complex diseases, risk stratification, genomic
medicine, precision medicine

INTRODUCTION

Admixture between different continental populations generates
mosaic chromosomes comprised of genomic segments with
different ancestry, which is defined as local ancestry (Seldin et al.,
2011). As a result, admixed populations may present marked
differences in local ancestry patterns (Browning et al., 2016;
Deng et al., 2016; Martin et al., 2017; Secolin et al., 2019).
These differences may impact disease incidence and genetic risk
prediction across populations (Myles et al., 2008; Moonesinghe
et al., 2012; Martin et al., 2017). Thus, enhancing our knowledge
of the effect of local ancestry is crucial for the development
of adequate precision health programs in admixed populations
(Aronson and Rehm, 2015; Hindorff et al., 2018).

The Brazilian population was formed via an admixture
process comprised mostly of European, sub-Saharan African,
and Native-American population ancestry. In terms of global
ancestry inference, studies have shown a predominance of
European ancestry, followed by sub-Saharan African and Native-
American (Kehdy et al., 2015; Lima-Costa et al., 2015; Rodrigues
de Moura et al., 2015). Furthermore, a recent study about
local ancestry inferences reported that the Native-American
component predominated on the chromosome (ch) 8p23.1
due to positive selection (Secolin et al., 2019) (3). Ch 8p23.1
has undergone inversion events stratified across continental
populations (Salm et al., 2012), which may influence the
recombination landscape (Alves et al., 2014).

Interestingly, the ch 8p23.1 region found to be under positive
selection in the Brazilian population has been reported to
contain genes previously associated with type 2 diabetes and
overweight/obesity in admixed Americans (Dunn et al., 2006;
Flores et al., 2016). Indeed, studies taking admixture into account
have shown that type 2 diabetes, insulin secretion, body mass
index, obesity, and adiposity are the main clinical phenotypes
associated with metabolic disorders (Dunn et al., 2006; Hayes
et al., 2013; Goetz et al., 2014; Flores et al., 2016; Mehta et al.,
2017). Thus, we hypothesize that variants in candidate genes
located on ch 8p23.1 could have provided an evolutionary
advantage in a restrictive diet environment in the early stages of
the Brazilian admixture. However, in the present high caloric diet
environment, this genetic variability can result in an increased
number of obesity-related traits in admixed Brazilian individuals.

Therefore, our objective was to expand our knowledge of the
effects of admixture by describing the genetic variability of ch
8p23.1 from admixed Brazilian exomes compared with global
populations. To achieve our aim, we first extended our study

to additional admixed exomes from other southeastern Brazil
towns. Second, we identified and analyzed sequencing variants
identified in the candidate region of ch 8p23.1.

MATERIALS AND METHODS

Subjects
We evaluated 257 individuals from BIPMed (Rocha et al., 2020),
609 from ABraOM (Naslavsky et al., 2017), and 88 additional
exomes from individuals born in the following towns within
southeastern Brazil: Barretos (N = 30); Ribeirão Preto (N = 30),
located in the state of São Paulo; and Belo Horizonte (N = 28), the
capital of the state of Minas Gerais (Supplementary Figure 1).
Among individuals included in BIPMed, the birthplace of 193
individuals were included; thus, we were able to extract 21
individuals born in São Paulo city and 37 from Campinas to
increase the power of regional comparisons. No information
regarding place of birth was obtained from the ABraOM dataset.
Permission to use raw, anonymized data from BIPMed and
ABraOM public databases and raw, anonymized data associated
with the 88 exomes of individuals from Barretos, Ribeirão Preto,
and Belo Horizonte was obtained. This study was approved
by the University of Campinas’s Research Ethics Committee
(UNICAMP, Campinas, São Paulo, Brazil). All methods were
performed following relevant guidelines and regulations.

Exome Processing
Exome data were stored in variant call format (VCF) files
created using the GRCh37 assembly. We used PLINK 1.9 (Purcell
et al., 2007) software to convert VCF to PLINK files, variant
and individual filtering, and data merging (Anderson et al.,
2010). First, we removed ambiguous variants (with G/C or A/T
alleles) from VCFs associated with each town, BIPMed, and
ABraOM. Next, we merged all Brazilian VCFs, maintaining
only biallelic variants, autosomal variants, variants in Hardy–
Weinberg equilibrium (Anderson et al., 2010), and removal of
missing data (> 10%). These filters were used only to analyze
population structure and local ancestry and were removed in the
analysis to identify variants in the candidate region at ch 8p23.1.

We evaluated the heterozygosity rate of each individual
to search for inbreeding (low heterozygosity rate) or sample
contamination (high heterozygosity rate) (Anderson et al.,
2010), and individuals with a heterozygosity rate higher or
lower than three standard deviations (SDs) from the mean
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were removed. We also removed individuals with genomic
relatedness matrix estimations higher than 0.125, which is the
expected genomic relatedness of third-degree relatives (Anderson
et al., 2010). The genomic relatedness matrix estimation used a
greedy algorithm implemented using the PLINK 1.9 software to
maximize the sample size.

After genotype and individual filtering, a total of 893 exomes
and 661,617 variants remained in the Brazilian datasets analyzed.
We merged this dataset with the 1000 Genome project data phase
3 (1KGP) (1000 Genomes Project Consortium et al., 2015) and
removed SNPs with a minor allele frequency (MAF) < 0.01. As a
result, 225,997 variants for local ancestry inference were used. We
also removed variants in linkage disequilibrium (LD) from the
MAF-filtered dataset (parameters: window size = 50 SNPs; shift
step = 5 SNPs; and r2 = 0.5) (Anderson et al., 2010), which left
127,172 SNPs for an investigation of population structure.

Population Structure
To evaluate whether our Brazilian sample (BRS) presents a
geographical substructure based on birthplace, we performed the
analysis of molecular variance (AMOVA) using the poppr.amova
package in R software (Excoffier et al., 1992), which compares
the genetic distance among birthplace/town groups based on a
set of 10,000 random SNPs across the genome. In addition, we
compared the BRS data classified by birthplace to the 1KGP
dataset via principal component analysis (PCA) using PLINK
v1.9 software to evaluate the presence of population-based
outliers in the BRS dataset.

Local Ancestry Inference and Positive
Selection Test
We phased SNPs without LD pruning using the SHAPEIT2
v2.r387 software with default parameters (O’Connell et al., 2014).
After phasing, we converted the output data from SHAPEIT2
to input files required by RFMix v.1.5.4 software (Maples et al.,
2013) using a pipeline previously reported1 (Martin et al., 2017).

Previous studies showed that using Peruvian individuals from
the 1KGP with a high degree of Native-American ancestry
as a Native-American reference produced the same result as
using Native-American indigenous individuals (Secolin et al.,
2019). Therefore, we inferred the local ancestry of 23 Peruvian
individuals who possessed a > 0.95 proportion of Native-
American ancestry (NAT) (Secolin et al., 2019), 23 random
Europeans (EUR), and 23 random sub-Saharan Africans from
the 1KGP (AFR). The size sample of ancestry references was
selected based on the 23 NAT to avoid biases due to unbalanced
reference panel sizes of ancestry references, according to the
RFMix v.1.5.4. Manual (Maples et al., 2013). We ran RFMix
in PopPhased mode with a minimum window size of 0.2 cM,
using one EM iteration and node size 5. The reference panel was
maintained after the initial inference step, and forward-backward
probabilities were saved. We analyzed the proportion of EUR,
AFR, and NAT ancestry in the BRS dataset for each variant
across the genome using in-house-developed R scripts (Secolin
et al., 2019), and results were plotted using the man package

1https://github.com/armartin/ancestry_pipeline

in R software (Turner, 2014). In order to evaluate the presence
of ch 8p32.1 inversions, we performed an inversion inference
using the invClust package in R software (Cáceres and González,
2015), as performed in our previous work (Secolin et al., 2019).
Since we have individuals that overlap the previous paper, we
decided to compare the inversion inference between the SNP
array data (Secolin et al., 2019) and the exome data from the same
individuals to evaluate whether the inversion analysis generated
a perfect match.

We tested our exome sample for positive selection by the
same approach used previously (Patin et al., 2017). Briefly,
this approach combines the results of five neutrality statistics
(intrapopulation absolute integrated haplotype scores (| iHS|, |
1iHH|) (Voight et al., 2006; Sabeti et al., 2007), interpopulation
integrated haplotype score (| 1iHHderived|) (Grossman et al.,
2010), interpopulation extended haplotype homozygosity (XP-
EHH) (Sabeti et al., 2007), and population branch statistics (PBS)
(Yi et al., 2010) based on Hudson’s Fst (Bhatia et al., 2013) in
a single Fisher combined score (FCS) (Deschamps et al., 2016).
The variants with values of FCS higher than 99% of the SNP FCS
values across the genome (i.e., the 1% highest FCS values) were
defined as outliers. Then, we split the genome into 100-variants
blocks. Finally, we estimated the proportion of outliers within
each block. If a block presents a proportion of outliers higher than
the 99.5th percentile (the highest 0.5%), it was defined as a region
under positive selection.

Analysis of Chromosome 8p23.1
We extracted the ch 8p23.1 region (8092025–11859740 bp)
(Secolin et al., 2019) from the VCF file of each sample using
vcftools (Danecek et al., 2011). Variant consequences from
each gene region were annotated using the ANNOVAR
software (version 2019Oct24) (Wang et al., 2010) with
the following flags: -other info (to include our sample
AF); -one transcript; -buildver hg19; -remove; -protocol
refGene,gnomad211_exome,ALL.sites.2015_08,EUR.sites.2015_
08,AFR.sites.2015_08,AMR.sites.2015_08,EAS.sites.2015_08,SAS.
sites.2015_08,dbnsfp35a; -operation g,f,f,f,f,f,f,f,f; and -nastring.

We included the allele frequency (AF) information from
African/African-American (AFR/AFA), Latino/admixed
American (LAT/AMR), East Asian (EAS), non-Finish
European (NFE), and South Asian (SAS) populations from
the gnomAD exome dataset (Karczewski et al., 2020); sub-
Saharan African (AFR), Europeans (EUR), admixed Americans
(AMR), East Asians (EAS), and South Asians (SAS) from 1KGP,
which are publicly available in ANNOVAR resource data.
In addition, we annotated variants that were not identified
via ANNOVAR using the Variant Effect Prediction (VEP)
algorithm (McLaren et al., 2016) with the following parameters: a
buffer_size 500; –canonical; –distance 5000; –regulatory; –species
homo_sapiens; –symbol.

To predict the impact of non-synonymous variants identified
on protein function, we analyzed the information provided by the
use of 12 algorithms, which included PolyPhen2 (Adzhubei et al.,
2013), Sort Intolerant from Tolerant (SIFT) (Sim et al., 2012),
MutationTaster (Schwarz et al., 2010), PROVEAN (Choi et al.,
2012), Combined Annotation Dependent Depletion (CADD)
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(Rentzsch et al., 2019), MutPred2. Functional Analysis through
Hidden Markov Models (FATHMM) (Shihab et al., 2015),
PhD-SNPg (Capriotti and Fariselli, 2017), Condel (González-
Pérez and López-Bigas, 2011), PANTHER (Mi et al., 2013),
Align Grantham Variation/Grantham Difference score (GVGD)
(Tavtigian et al., 2006), and SNPs&GO (Calabrese et al., 2009).
For Align-GVGD, variants graded higher than C35 were classified
as deleterious. For MutPred2, variants with a score higher than
0.5 were considered pathogenic. For all other algorithms, we used
default classifications.

Associated trait information for genes located on ch 8p23.1
was accessed from the NHGRI-EBI GWAS Catalog (Buniello
et al., 2019) on October 30, 2020, and results were complemented
by a search of the PubMed R© database.

RESULTS

Population Structure
AMOVA results obtained using 10,000 random SNPs showed that
99.21% of observed variation occurred within groups and 0.79%
occurred among groups (total ϕ-statistics = 0.0079; p = 0.0001),
indicating the absence of a population substructure, which is
consistent with the lack of clusters observed in the PCA of the
BRS sample that was based on birthplace (Figure 1). In addition,
the global PCA of the 1KGP dataset (Supplementary Figure 2)
showed that our sample consisted of a mixture of European, sub-
Saharan African, and Native-American/East Asian individuals,
similar to other admixed American populations. However, the
population was distributed mainly between Europeans and sub-
Saharans rather than Native-Americans, consistent with previous
studies (Ruiz-Linares et al., 2014; Kehdy et al., 2015; Secolin et al.,
2019; Rocha et al., 2020).

2http://mutpred.mutdb.org

FIGURE 1 | PCA plot of the BRS sample. The x-axis and y-axis show the first
and second principal components (PC1 and PC2) and their respective
percentage variability. Each point represents one individual, and each shape
and color indicate a birthplace or database. Only information from individuals
with a known place of birth was included.

Local Ancestry Inference
The proportion of the BRS sample, which included individuals
born in the different towns and two public datasets, had
an average local ancestry proportion for its EUR component
of 74.6% (SD = 1.4%). The proportion of the sample that
comprised the AFR component was 16.0% (SD = 1.1%), and
the NAT component was 9.4% (SD = 1.1%) (Figure 2A and
Supplementary Figure 3). We observed differences in EUR
and AFR ancestry proportions among towns, with the Belo
Horizonte population containing the lowest EUR component
(mean = 66.8%; SD = 6.0%), and the highest AFR component
(mean = 26.9%; SD = 5.6%). São Paulo, in contrast, had the
greatest proportion of EUR ancestry (mean = 87.8%; SD = 5.7%)
and the lowest AFR proportion (mean = 6.2%; SD = 4.1%).
The NAT component of the sample remained constant among
individuals from the different towns and the two public Brazilian
databases, ranging from a mean of 4.6% (SD = 2.8%) in Barretos
to 8.2% (SD = 1.3%) in the BIPMed sample (Figure 2A). Our
assessment revealed a decreased EUR component on ch 8p23.1,
and an elevated NAT in individuals born in Campinas, São Paulo,
Barretos, and Belo Horizonte, as well as in those included in the
ABraOM dataset (Figure 2B and Supplementary Figures 3–9).

We inferred the inversion events on ch 8p23.1 from the
exome data by the same approach used in our previous
report (Secolin et al., 2019), with the invClust package in R
(Cáceres and González, 2015). The results showed that 48.9%
of the inferred inversions in the exome data matched the
results previously obtained with the SNP-array dataset of the
BIPMed sample used in our previous work (Secolin et al., 2019;
Supplementary Table 1).

We tested for positive selection in the exome dataset using the
Fisher combined scores (FCS). FCS, which includes PBS tests in
the calculation, this is the same approach used in our previous
work (Secolin et al., 2019). However, the results did not recapture
the same positive selection signal on ch 8p23.1 previously
observed (Secolin et al., 2019) (Supplementary Figures 3–10).

Analysis of Chromosome 8p23.1
We found 17,536 variants within ch 8p23.1. We focused on the
following variants with the potential to impact gene function:
414 non-synonymous variants, ten frameshifts, eight inframe
deletions, one start loss, five stop gains, one stop loss, and
five splicing sites. The variants affected 24 genes and two
open reading frames (Supplementary Data Sheet 1). Among
these variants, 355 were also found in gnomAD and/or 1KGP
databases, and 44 such variants were determined to be common
with an alternative allele frequency (AAF) > 0.01 in the BRS
dataset but rare (AAF < 0.01) in gnomAD and 1KGP (Table 1).
Also, we identified nine common variants (AAF > 0.01) among
the 89 variants exclusive to the Brazilian population. The AF
comparison of these 89 variants separated by Brazilian cities and
datasets showed that the RP1L1 gene in the ABraOM database
contained the largest number of exclusive Brazilian variants
(Supplementary Figure 11).

We observed that 374 of the 414 non-synonymous
variants, in genes located at ch 8p23.1, were classified as
deleterious via in silico prediction of at least one algorithm
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FIGURE 2 | Barplot of the mean proportion of local ancestry haplotypes. Each bar represents one Brazilian sample. (A) Mean local ancestry haplotypes across all
exomes. (B) Mean local ancestry haplotypes on chr8p23.1. EUR, European ancestry component; AFR, African ancestry component; NAT, Native-American ancestry
component.

(Supplementary Data Sheet 2), and 19 of these were predicted
to be pathogenic with an 80% concordance among the
different algorithms; these were present in five genes PRSS55,
RP1L1, SOX7, GATA4, and CTSB. As shown in Figure 3 and
Supplementary Table 2, we found 167 non-synonymous
variants predicted to be benign by at least one algorithm;
these were present in 16 different genes. Also, there were 309

TABLE 1 | Distribution of genetic variants found in the candidate region of ch
8p23.1, classified according to allele frequencies (AF) observed in the different
datasets studied.

AF distribution
(p = 2.2e−16)*

Common in the
Brazilian sample

Rare in the
Brazilin sample

Total

Common in gnomAD
and/or 1KGP

69 (19.4%) 3 (0.9%) 72 (20.3%)

Rare in gnomAD and/or
1KGP

44 (12.4%) 239 (67.3%) 283 (79.7%)

Total 113 (31.8%) 242 (68.2%) 355 (100%)

*Calculated using Fisher’s exact test. 1KGP, 1000 Genome Project phase 3.

variants predicted to be deleterious and 50 variants predicted
to be benign when considering less than 20% concordance
among the algorithms.

Interestingly, 140 of the variants predicted to be benign
by at least one algorithm (140/167) were found in 13 genes,
which were previously associated with metabolic phenotypes
such as type 1 diabetes mellitus (T1DM), type 2 diabetes
mellitus (T2DM), obesity, insulin resistance, body mass index
(BMI), body fat distribution, waist circumference, and diet
measurement (MFHAS1, ERI1, TNKS, PRSS55, RP1L1, PINX1,
XKR6, FAM167A, BLK, GATA4, and CTSB genes), Table 2. Also,
45 of these variants were located in the following eight genes
with an AAF > 0.01, considering the BRSs and gnomAD/1KGP
databases: MFHAS1, ERI1, PRSS55, RP1L1, PINX1, FAM167A,
GATA4, and CTSB (Supplementary Data Sheet 2).

DISCUSSION

The sequencing analysis of ch 8p23.1 performed in the current
study revealed the presence of 442 non-synonymous variants,
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FIGURE 3 | Barplot of predictive algorithm concordance between benign versus deleterious variant predictions. On the x-axis, we show the percentage of
concordance among the different algorithms. On the y-axis, we show the number of predicted variants. For example, the second bar represents the number of
variants predicted with low concordance among different algorithms (∼12.5%), and we observe that the number predicted to be deleterious is higher than that
predicted to be benign. In contrast, the tenth bar shows predictions with high concordance among algorithms (∼87.5%), and we observe that the number of
predicted benign variants is higher than predicted deleterious variants.

including frameshift, inframe deletion, start loss, stop gain, stop
loss, and splicing site variants, which occurred in 24 genes and
two open reading frames. Among the genes, 13 were associated
with obesity, type II diabetes, lipid levels, and waist circumference
(PRAG1, MFHAS1, PPP1R3B, TNKS, MSRA, PRSS55, RP1L1,
PINX1, MTMR9, FAM167A, BLK, GATA4, and CTSB).

The inversion event on ch 8p23.1 generated a large
haplotype, which was able to be traced through continental
populations globally (Salm et al., 2012). It presented us with
an opportunity to investigate how admixture events and
evolutionary processes have affected variability within non-
inverted and inverted haplotypes in admixed populations.
Previously, two independent studies reported local ancestry
deviation on ch 8p23.1 in admixed American populations,
likely due to inversion events (Guan, 2014; Secolin et al.,
2019). Furthermore, our own work using SNP-array data
demonstrated that the proportion of non-inverted haplotypes
inherited from Native-Americans is higher than those
inherited from Europeans in admixed Brazilian individuals
(Secolin et al., 2019). Here, we replicated these findings
using exome datasets in populations originating from an
extended geographic region in the southeastern region of
Brazil. Besides, since we evaluated individuals with unknown
information regarding the presence of obesity-related disorders,
our study is not biased toward a specific phenotype, and it
is suitable to assess the genetic variability of the candidate
region on ch 8p23.1.

We observed that the results from the inversion inference
on ch 8p23.1 obtained in the present work, using the exome
data, did not completely match that resulted from the analysis
using the SNP-array dataset (Secolin et al., 2019). However, it
is noteworthy that the invClust package was developed to be
used with SNP-array data, and to our knowledge, there is no
reference to its use with exome datasets. Thus, it is possible

that inferences of chromosomal inversions using exome data
may not be accurate with the invClust package. As pointed
out in our previous work (Secolin et al., 2019), it is not likely
that inversion bias would influence the high NAT proportions
observed in the sample. However, we agree that this is a limitation
of our current work. Further analysis, in which inverted and
non-inverted genotypes are unequivocally identified, would help
evaluate the distribution of the inflation in NAT ancestry in
inverted and non-inverted genotypes.

There is evidence that the deviation towards Native-
American ancestry on ch 8p23.1 could be due to positive
selection events after the Brazilian admixture (Secolin et al.,
2019). Indeed, previous studies suggested that Native-American
ancestry was admixed early in the European colonization in
Brazil (approximately 18 to 16 generations ago) and was
followed by the posterior depletion of NAT (Kehdy et al.,
2015). This early admixture could have catalyzed positive
selection events among the first admixed Brazilian individuals.
Although environmental causes that drove this positive selection
remain unknown, studies had identified variants associated
with type 2 diabetes mellitus, insulin secretion, body mass
index, obesity, and adiposity, when admixture was considered
(Dunn et al., 2006; Hayes et al., 2013; Goetz et al., 2014;
Flores et al., 2016; Mehta et al., 2017). Therefore, the
large number of genes located on ch 8p23.1 related to
diet and metabolic traits suggest that positive selection may
have occurred due to the restrictive diet environment and
severe famine periods in early admixed Brazilian individuals
(Davis, 2001).

In the present work, our results did not recapture the same
positive selection signal detected previously (Secolin et al.,
2019) (Supplementary Figures 3–10). However, since FCS has
only been used with whole-genome sequencing (Deschamps
et al., 2016; Patin et al., 2017) and SNP-array datasets
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TABLE 2 | Genes associated with obesity-related traits that localize to the candidate region on ch 8p23.1 and are found to contain genetic variants in the Brazilian
datasets analyzed in the present work.

Gene Variant count Associated trait Population analyzed References

Benign Deleterious

CLDN23 3 – – – –

MFHAS1 4 – T2DM; cooked vegetable consumption;
fish- and plant-related diet

European; African American; Hispanic;
Asians; East Asian; South Asian;

Niarchou et al., 2020; Vujkovic et al.,
2020

ERI1 1 – Obesity; BMI; body fat distribution European; Asian; Hispanic;
Native-American; Oceanian

Pulit et al., 2019; Rask-Andersen et al.,
2019; Schlauch et al., 2020

TNKS 2 – T2DM; BMI; Early-onset extreme obesity European; French and German groups Scherag et al., 2010; Xue et al., 2018;
Wang et al., 2019

PRSS55 9 3 Waist circumference Hispanic obesity children Comuzzie et al., 2012

RP1L1 107 2 Waist circumference Waist circumference Comuzzie et al., 2012

C8orf74 7 – – – –

SOX7 – 2 – – –

PINX1 8 – T2DM; Lipid levels European, South Asian, East Asian,
African

Willer et al., 2013; Xue et al., 2018;
Wang et al., 2019

XKR6 1 – T2DM; BMI; body fat distribution; raw
vegetable consumption; processed meat
consumption; fish- and plant-related diet

European Mahajan et al., 2018; Pulit et al., 2019;
Rask-Andersen et al., 2019; Niarchou
et al., 2020

SLC35G5 13 – – – –

FAM167A 4 – T2DM African American; Caribbean Divers et al., 2017

BLK 1 – T2DM European Borowiec et al., 2009

GATA4 1 2 T1DM; Neonatal and Childhood-Onset
diabetes; fruit consumption, processed
meat consumption

European Sartori et al., 2014; Shaw-Smith et al.,
2014; Niarchou et al., 2020

NEIL2 2 – – – –

CTSB 2 1 Obesity; visceral obesity in T2DM;
non-alcoholic fatty liver disease

Danes; Finnish; European Peltola et al., 2006; Andreasen et al.,
2009; Chalasani et al., 2010

DEFB136 2 - - - -

T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus; BMI, body mass index.

(Secolin et al., 2019), we believe that the decrease in genetic
variability present in exome data may render FCS less suitable for
this type of analysis.

Increasing fat and glucose storage could increase body
fat, glucose storage, and obesity-related diseases in individuals
who eat a fat and glucose-rich diet today; findings consistent
with previous association studies (Pulit et al., 2019; Rask-
Andersen et al., 2019; Schlauch et al., 2020). Indeed, we
identified 89 variants with the potential to impact gene function
that were found exclusively in the admixed Brazilian sample.
Unfortunately, we cannot define the correct phase for the
allele variants and the ancestry block by the RFMix algorithm.
However, we know that the 89 variants are in the region,
presenting 60.69% of EUR ancestry proportion, followed by
15.47% of AFR and 23.83% of NAT ancestry proportions. The
comparison of these proportions with the average EUR ancestry
proportion among Brazilian genomes genomes (74.6%), AFR
(16.0%), and NAT (9.4%) suggests that these variants present
exclusively in the Brazilian samples could, most likely, be the
main contributors to the signals of selection identified, and
are possibly influencing obesity-related phenotypes. Therefore,
we consider the region of ch 8p23.1 a hotspot for genetic
variants that predispose individuals to obesity disorders. It may
be useful, as a first strategy, to concentrate efforts on studying

effects of non-synonymous variants identified within the 13
candidate genes of the region, PRAG1, MFHAS1, PPP1R3B,
TNKS, MSRA, PRSS55, RP1L1, PINX1, MTMR9, FAM167A, BLK,
GATA4, and CTSB. It may also be useful to expand genetic
studies to include patients with obesity-related phenotypes and
studying the expression levels of candidate genes in relevant
tissue may also give additional clues regarding their roles in
disease-related phenotypes.

In Table 2, we present the list of 17 genes that have been linked
to diet patterns in large association studies and are located in
the candidate region on ch 8p23.1. Seven of these large studies
included Hispanic, Native-American, and Caribbean populations
(Comuzzie et al., 2012; Divers et al., 2017; Pulit et al., 2019; Rask-
Andersen et al., 2019; Niarchou et al., 2020; Schlauch et al., 2020;
Vujkovic et al., 2020), and three contained association signals
in the ERI1 gene (Pulit et al., 2019; Rask-Andersen et al., 2019;
Schlauch et al., 2020), which is located within the region and was
determined to possess the greatest degree of positive selection in
admixed Brazilians in our previous work (Secolin et al., 2019).

Finally, it is also important to study the non-synonymous
variants identified in the candidate genes on ch 8p23 and
predicted to be benign. These variants were identified in 11 of the
candidate genes listed in Table 2. Currently, we cannot exclude
the possibility that even though these variants are not predicted to
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affect protein function individually, they may contribute to a
polygenic phenotype.

Furthermore, when considering a polygenic phenotype, one
aspect that we should take into account is the presence of
epistatic interactions. Thus, we could argue that an increase
in the frequency of the genes of NAT ancestry on ch 8p23.1
could be due to the breakup of negative epistatic interactions
among genes on other regions from NAT genomes and the
genes on ch 8p23.1, which are currently coupled with AFR
and EUR ancestry tracts, and could lead to increased fitness.
We count the number of AFR-NAT-AFR, EUR-NAT-EUR, and
NAT-NAT-NAT haplotypes, including ch 8p23.1 and adjacent
regions (approximately 3.7Mb upstream and downstream ch
8p23.1). However, we did not observe an overrepresentation of
AFR-NAT-AFR (n = 32) or EUR-NAT-EUR (n = 98) ancestry
haplotypes compared to NAT-NAT-NAT haplotypes (n = 118).
Therefore, our results suggest that interactions among EUR or
AFR ancestry genes in adjacent regions on ch 8p23.1 with the
NAT ancestry core seems not to be enough to boost negative
or positive selection in our sample. However, gene interactions
can occur among genes on ch 8p23.1 and genes on other regions
of the genome, and further studies should be performed to
clarify this issue.

CONCLUSION

We successfully replicated previous results that identified local
ancestry deviation on ch 8p23.1, which seems to have occurred
in populations from the southeastern region of Brazil, including
the states of São Paulo and Minas Gerais. Thus, the candidate
region on ch 8p23.1 emerges as a hotspot for obesity-related
genes in admixed Brazilians, which should be further explored.
In particular, the information presented here could be used in the
future to support risk stratification and implement personalized
public health policies and preventive medical treatments.
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Genetic generalized epilepsies (GGEs) include well-established epilepsy syndromes with
generalized onset seizures: childhood absence epilepsy, juvenile myoclonic epilepsy
(JME), juvenile absence epilepsy (JAE), myoclonic absence epilepsy, epilepsy with eyelid
myoclonia (Jeavons syndrome), generalized tonic–clonic seizures, and generalized
tonic–clonic seizures alone. Genome-wide association studies (GWASs) and exome
sequencing have identified 48 single-nucleotide polymorphisms (SNPs) associated with
GGE. However, these studies were mainly based on non-admixed, European, and
Asian populations. Thus, it remains unclear whether these results apply to patients
of other origins. This study aims to evaluate whether these previous results could
be replicated in a cohort of admixed Brazilian patients with GGE. We obtained
SNP-array data from 87 patients with GGE, compared with 340 controls from the
BIPMed public dataset. We could directly access genotypes of 17 candidate SNPs,
available in the SNP array, and the remaining 31 SNPs were imputed using the
BEAGLE v5.1 software. We performed an association test by logistic regression
analysis, including the first five principal components as covariates. Furthermore, to
expand the analysis of the candidate regions, we also interrogated 14,047 SNPs that
flank the candidate SNPs (1 Mb). The statistical power was evaluated in terms of
odds ratio and minor allele frequency (MAF) by the genpwr package. Differences in
SNP frequencies between Brazilian and Europeans, sub-Saharan African, and Native
Americans were evaluated by a two-proportion Z-test. We identified nine flanking
SNPs, located on eight candidate regions, which presented association signals that
passed the Bonferroni correction (rs12726617; rs9428842; rs1915992; rs1464634;
rs6459526; rs2510087; rs9551042; rs9888879; and rs8133217; p-values <3.55e−06).
In addition, the two-proportion Z-test indicates that the lack of association of the
remaining candidate SNPs could be due to different genomic backgrounds observed
in admixed Brazilians. This is the first time that candidate SNPs for GGE are analyzed in

Frontiers in Genetics | www.frontiersin.org 1 July 2021 | Volume 12 | Article 67230432

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.672304
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.672304
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.672304&domain=pdf&date_stamp=2021-07-08
https://www.frontiersin.org/articles/10.3389/fgene.2021.672304/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-672304 July 3, 2021 Time: 17:17 # 2

Kaibara et al. Association Analysis in GGE

an admixed Brazilian population, and we could successfully replicate the association
signals in eight candidate regions. In addition, our results provide new insights on
how we can account for population structure to improve risk stratification estimation
in admixed individuals.

Keywords: neurology, genetic generalized epilepsies, population genomics, admixed population, association
studies

INTRODUCTION

Genetic generalized epilepsies (GGEs) are a group of epilepsy
syndromes in which the main feature is the recurrence of
generalized onset seizures with no known or suspected etiology
other than possible genetic predisposition (Berg et al., 2010;
Scheffer et al., 2017). GGEs are among the most common
types of epilepsy, with an estimated prevalence of 190 per
100,000 individuals (Aaberg et al., 2017). They include well-
established syndromes: childhood absence epilepsy, juvenile
myoclonic epilepsy (JME), juvenile absence epilepsy (JAE),
myoclonic absence epilepsy (a rare form of GGE), epilepsy
with eyelid myoclonia (Jeavons syndrome), generalized tonic–
clonic seizures, and generalized tonic–clonic seizures alone
(Berg et al., 2010). These different GGE syndromes share most
genetic susceptibility factors, suggesting an important correlation
among the clinical subtypes (International League Against
Epilepsy Consortium on Complex Epilepsies (ILAE Consortium
on Complex Epilepsies)., 2018). The diagnosis of GGE relies
mainly on clinical information and electroencephalographic
examination (Scheffer et al., 2017).

Previous genome-wide association studies (GWASs) and
exome sequencing analyses have identified 48 single-nucleotide
polymorphisms (SNPs) putatively associated with susceptibility
to the GGEs (EPICURE Consortium et al., 2012a,b; International
League Against Epilepsy Consortium on Complex Epilepsies
(ILAE Consortium on Complex Epilepsies), 2014; International
League Against Epilepsy Consortium on Complex Epilepsies
(ILAE Consortium on Complex Epilepsies)., 2018; Zhang et al.,
2014; Wang et al., 2019). These SNPs are located in or near
several genes encoding ion channels and synaptic vesicles,
making them plausible candidates for the susceptibility to
epilepsy (International League Against Epilepsy Consortium on
Complex Epilepsies (ILAE Consortium on Complex Epilepsies).,
2018). However, most of these studies evaluated non-admixed
populations, including five studies based on Europeans, three
based on Asian populations, mainly Chinese, and two based
on African populations (EPICURE Consortium et al., 2012a,b;
International League Against Epilepsy Consortium on Complex
Epilepsies (ILAE Consortium on Complex Epilepsies), 2014;
International League Against Epilepsy Consortium on Complex
Epilepsies (ILAE Consortium on Complex Epilepsies)., 2018;
Zhang et al., 2014; Wang et al., 2019). It is well known that
admixed American populations are underrepresented in GWASs,
decreasing the accuracy of replicating, predicting, and estimating
polygenic risks for complex disorders in these populations
(Martin et al., 2017, 2019).

Therefore, this work aims to investigate if a genetic association
exists between previously reported candidate SNPs and GGEs in

a cohort of admixed Brazilians. To accomplish this goal, we first
investigated the population structure of Brazilian patients with
GGE. Subsequently, we performed an association study using the
48 previously reported candidate SNPs and their flanking regions.

MATERIALS AND METHODS

Subjects
We evaluated a total of 87 patients with GGE who were followed
up prospectively in the outpatient epilepsy clinic of the University
of Campinas (UNICAMP) hospital. All patients had the diagnosis
of GGE according to criteria established by the International
League Against Epilepsy (ILAE) (Berg et al., 2010; Fisher et al.,
2014). Patients were compared with a group of 340 individuals
without any neurological disorder from the BIPMed database
(Rocha et al., 2020). Both samples are predominantly from the
Southeastern region in Brazil. Among the patients with GGE, we
found 63 with JME, 10 with JAE, four generalized tonic–clonic
seizures alone, two with Jeavons syndrome, one with myoclonic
absence epilepsy, one with epilepsy with generalized tonic–clonic
seizures, and six patients in whom a specific GGE syndrome
could not be determined. All research participants signed an
informed consent form previously approved by our Institutional
Research Ethics Committee (IRB # 12112913.3.0000.5404).

Single-Nucleotide Polymorphism Quality
Control and Population Structure
Analysis
We extracted the genotypes for the 48 candidate SNPs (Table 1)
from the SNP-array data generated by the Genome-Wide Human
SNP Array 6.0 (Affymetrix Inc., Thermo Fisher Scientific,
Waltham, MA, United States). These SNP-array data contain
905,171 available SNPs (GRCh37 build). To obtain an unbiased
estimation of the population structure of our samples, we
processed the SNP-array dataset of the 87 patients with GGE
and the 340 BIPMed controls according to previous processing
recommendations and pipelines (Anderson et al., 2010; Secolin
et al., 2019). First, we removed ambiguous variants (with G/C or
A/T alleles) from each dataset. Next, we merged the two datasets
into one larger admixed Brazilian dataset (N = 427), maintaining
only biallelic SNPs, autosomal SNPs, SNPs without Hardy–
Weinberg disequilibrium (p-value <0.000001), and missing data
<10%. Then, we estimated the heterozygosity rate for each
sample and removed individuals with heterozygosity rates higher
or lower than three standard deviations from the mean to
avoid individuals with high inbreeding (low heterozygosity
rates) or sample contamination (high heterozygosity rates). We
also removed pairs of individuals who presented a proportion
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TABLE 1 | Descriptive statistics and logistic regression analysis of the candidate SNPs and the nine flanking SNPs that passed the most stringent Bonferroni correction
(p-value = 3.55e−06; in bold).

Chr Position (BP) dbSNP A1/A2 Reference (PMID) Reference effect sizes MAF (A1) HWE p-value OR (95% CI) (A1) Nominal p-value

1 10046460 rs12136213* G/A 22242659 – 0.268 0.7882 0.76 (0.49–1.19) 0.2285

1 239970097 rs12059546 G/A 25271899; 22949513 1.42 (1.26–1.61) 0.236 0.0562 0.86 (0.56–1.32) 0.4876

1 240605694 rs12726617 C/T – – 0.412 0.0015 2.44 (1.96–3.54) 2.62e−06

1 240610720 rs9428842 A/G – – 0.052 0.6117 5.86 (2.81–12.2) 2.29e−06

2 23898317 rs4665630 C/T 22242659 – 0.176 0.4723 1.11 (0.68–1.82) 0.6693

2 57934055 rs13026414* T/C 25271899; 22242659 1.51 (0.81–2.83) 0.349 1.0000 0.97 (0.64–1.46) 0.8705

2 57950346 rs4671319* G/A 22242659 – 0.422 0.1598 0.70 (0.47–1.04) 0.0765

2 58042241 rs1402398* G/A 22242659 – 0.35 0.0147 0.77 (0.52–1.14) 0.1906

2 58051769 rs12185644 C/A 22242659 – 0.333 0.1557 1.03 (0.70–1.53) 0.8749

2 58059803 rs2947349* C/A 25087078 1.23 (1.16–1.31) 0.307 0.0064 0.83 (0.55–1.25) 0.3731

2 145359909 rs10496964 T/C 25271899; 22949513 0.68 (0.60–0.78) 0.138 0.8271 1.29 (0.77–2.17) 0.3388

2 145381225 rs13020210* G/A 22242659 – 0.213 0.4299 1.15 (0.73–1.80) 0.5395

2 166943277 rs11890028* G/T 25271899; 22949513; 22242659 0.85 (0.79–0.92) 0.257 0.3361 1.08 (0.69–1.69) 0.7323

2 167084615 rs13406236* C/T 22242659 – 0.294 1.0000 0.96 (0.63–1.46) 0.8425

2 191583507 rs887696* C/T 22242659 – 0.401 0.8268 1.28 (0.86–1.88) 0.2198

3 61699969 rs1915992 A/G – – 0.221 0.6469 3.62 (2.27–5.76) 5.77e−08

3 61733962 rs624755 G/T 22242659 – 0.368 1.0000 0.81 (0.53–1.22) 0.3040

3 63075267 rs1374679 C/T 22242659 – 0.379 0.315 0.97 (0.65–1.46) 0.8945

3 66326302 rs782728* A/G 22242659 – 0.468 1.0000 0.89 (0.61–1.30) 0.5499

3 167113205 rs1464634 T/G – – 0.186 0.0026 4.03 (2.35–6.93) 4.48e−07

3 167861408 rs111577701* T/C 25087078 1.16 (1.09–1.24) 0.074 0.4246 0.90 (0.43–1.89) 0.7834

4 31147874 rs1044352 T/G 25087078; 22242659 1.13 (1.12–1.23) 0.454 0.3963 1.17 (0.79–1.73) 0.4305

4 31151357 rs28498976* A/G 22242659 – 0.446 0.2002 1.26 (0.84–1.88) 0.2629

4 46240287 rs535066* G/T 22242659 – 0.413 1.0000 0.95 (0.64–1.41) 0.8021

4 46397617 rs11943905* T/C 22242659 – 0.293 0.3092 1.19 (0.80–1.78) 0.3828

5 114221505 rs4596374* C/T 22242659 – 0.475 0.0263 0.89 (0.62–1.29) 0.5498

5 114268470 rs55670112* C/A 25087078 1.18 (1.10–1.26) 0.482 0.0458 1.19 (0.83–1.72) 0.3456

5 150840380 rs357608* T/C 22242659 – 0.481 0.2452 0.97 (0.67–1.40) 0.8506

5 162867195 rs2069347 C/T 22242659 – 0.475 0.8331 1.18 (0.80–1.73) 0.3981

5 166893257 rs1025482* C/T 22242659 – 0.488 0.4619 1.03 (0.71–1.49) 0.8813

5 166932520 rs1432881 T/C 22242659 – 0.407 0.2745 1.03 (0.69–1.54) 0.8899

5 167913510 rs244903* G/A 22242659 – 0.364 0.4278 1.14 (0.76–1.71) 0.5419

6 16971575 rs68082256* A/G 22242659 – 0.183 0.2934 0.76 (0.44–1.29) 0.3077

6 17155461 rs6459526 T/C – – 0.222 0.0934 3.57 (2.15–5.92) 8.49e−07

6 128309768 rs13200150* G/A 22242659 – 0.222 0.1711 0.92 (0.57–1.49) 0.7490

11 102595135 rs1939012* A/G 25087078; 22242659 1.12 (1.07–1.17) 0.446 0.6695 0.60 (0.40–0.90) 0.0133

11 102948592 rs2510087 A/G – – 0.217 0.0865 3.17 (1.96–5.14) 2.76e−06

13 23966145 rs1008812* A/G 22242659 – 0.465 1.0000 0.86 (0.59–1.26) 0.4385

13 24615989 rs9551042 A/G – – 0.243 0.1530 0.22 (0.11–0.41) 2.81e−06

13 91417190 rs1332470 C/T 22242659 – 0.307 0.0001 1.10 (0.76–1.58) 0.6244

16 30914626 rs1046276 T/C 22242659 – 0.331 1.27e−13 – -

16 31310372 rs9888879 C/T – – 0.317 0.3935 3.65 (2.27–5.85) 7.91e−08

16 50045839 rs4638568 A/G 22242659 – 0.079 0.7125 1.64 (0.84–3.18) 0.1466

17 46027565 rs12951323* A/C 22949513; 22242659 0.79 (0.72–0.86) 0.206 0.1075 0.67 (0.39–1.15) 0.1429

17 46045495 rs4794333* A/G 22242659 – 0.356 0.0511 0.64 (0.42–0.97) 0.0361

17 46123004 rs72823592* A/G 25271899; 22949513 0.77 (0.71–0.83) 0.181 0.7209 0.65 (0.37–1.13) 0.1262

18 48402338 rs2665558* T/C 30719716; 22242659 – 0.451 0.6707 0.95 (0.64–1.40) 0.7980

18 48404784 rs2255610* G/A 30719716; 22242659 – 0.474 0.7518 1.14 (0.77–1.67) 0.5199

18 48407326 rs608781* C/T 30719716; 22242659 – 0.118 0.4472 1.72 (0.98–3.02) 0.0610

18 48414235 rs2850545* A/C 30719716; 22242659 – 0.471 0.5976 1.12 (0.75–1.65) 0.5845

18 48456903 rs645088 T/C 30719716; 22242659 – 0.339 0.4812 0.83 (0.55–1.26) 0.3873

18 48458662 rs649224 A/G 30719716; 22242659 – 0.107 0.7821 1.50 (0.83–2.70) 0.1834

(Continued)
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TABLE 1 | Continued

Chr Position (BP) dbSNP A1/A2 Reference (PMID) Reference effect sizes MAF (A1) HWE p-value OR (95% CI) (A1) Nominal p-value

18 48464204 rs654136 T/C 30719716; 22242659 – 0.488 0.5266 1.02 (0.69–1.51) 0.9271

19 53719250 rs9788 A/G 22242659 – 0.315 0.9032 1.57 (1.05–2.34) 0.0274

21 32183996 rs2833098* G/A 22242659 – 0.369 0.9099 1.11 (0.75–1.64) 0.6152

21 48063151 rs8133217 G/A – – 0.214 0.0422 0.15 (0.07–0.32) 4.94e−07

21 48077812 rs2839377 T/C 22242659 – 0.497 0.4605 1.07 (0.72–1.57) 0.7491

The positions are based on GRCh37. SNPs with an asterisk (*) were obtained by BEAGLE imputation.
BP, base pairs; PMID, PUBMED ID publications; MAF, minor allele frequency; HWE, Hardy–Weinberg equilibrium; OR, odds ratio; CI, confidence interval.

FIGURE 1 | Principal component analysis (PCA) plot of the Brazilian samples
and 1000 Genomes Project (1KGP) dataset. The x-axis and y-axis show the
first and second principal components (PC1 and PC2) and their respective
percentage variability. Each point represents one individual and each color
indicates patients with genetic generalized epilepsy (GGE), BIPMed controls,
and the continental populations described in 1KGP. as follows: Sub-Saharan
Africans (AFR); Europeans (EUR); admixed Americans (AMR); Southwestern
Asians (SAS); Eastern Asians (EAS).

of identical-by-state (IBS) alleles >0.85, which could indicate
duplicated samples, and individuals with genomic relatedness
matrix estimations higher than 0.125, which is the expected
genomic relatedness for third-degree relatives (Anderson et al.,
2010). The merging process, genotyping, and sample filtering
were performed using PLINK 1.9 software (Purcell et al., 2007).

Subsequently, we merged the filtered admixed Brazilian
sample with the 1000 Genomes Project (1KGP) dataset (The 1000
Genomes Project Consortium et al., 2015), maintaining the SNPs
present only in the admixed Brazilian sample. After merging,
we removed SNPs with a minor allele frequency (MAF) < 0.01
and SNPs in linkage disequilibrium (LD), using the following
parameters: window size = 50 SNPs, shift step = 5 SNPs, and
r2 = 0.5 (Anderson et al., 2010). We compared our dataset with
the 1KGP data by principal component analysis (PCA) using
PLINK v1.9 software (Purcell et al., 2007) to evaluate the presence
of population-based outliers in the Brazilian samples.

To evaluate whether patients with GGE and BIPMed controls
present population stratification, we performed the analysis of
molecular variance (AMOVA) (Excoffier et al., 1992) using the
poppr.amova R package and the RStudio interface, comparing
the genetic distance among the two groups based on a set of
10,000 random SNPs across the genome. The AMOVA partitions
the source of genetic variance (σ2) into two components: within-
groups and between-groups. The null hypothesis states that the

samples were obtained from a global population, with variation
due to random sampling in the construction of populations.
Thus, we would expect a high heterogeneity within groups
(σ2 = 100%) and no heterogeneity between groups (σ2 = 0%). On
the other hand, under the alternative hypothesis, each group was
obtained from different populations, and we would expect a low
heterogeneity within groups (σ2 < 100%) and high heterogeneity
between groups (σ2 > 0%) (Excoffier et al., 1992). Therefore,
to evaluate the significance of σ2 components, we generated a
Monte Carlo null distribution of 10,000 variance components and
tested against the observed variance components by the randtest
function in the ade4 R package.

Single-Nucleotide Polymorphism
Selection and Imputation
We observed that 31 SNPs were not found in the SNP-array
dataset. Therefore, we performed an imputation of all 48 SNPs
to obtain the missing SNPs and to evaluate the concordance
between the imputed genotypes and the genotypes assessed by the
SNP array. Since we analyzed a sample of admixed individuals, we
elected to perform the imputation using two approaches. First,
we phased and imputed the dataset using SHAPEIT2 v2.r387
(O’Connell et al., 2014) and BEAGLE v5.1 software (Browning
et al., 2018) using the default software parameters for phasing and
imputation. As a reference for the BEAGLE imputation, we used
the 1KGP dataset (GRCh37/hg19 assembly) (The 1000 Genomes
Project Consortium et al., 2015). To save on computation time,
we imputed only the chromosomes in which the candidate SNPs
are located (Table 1). We also evaluated whether the genotypes
were successfully imputed by the correlation (in terms of r2)
of genotype dosage values between the imputed genotypes and
true genotypes used as a reference from the 1KGP provided by
the BEAGLE software. For the second imputation approach, we
used the TOPMED Imputation Server (Das et al., 2016), with
the TOPMed v.R2 on GRCh38 build (Kowalski et al., 2019).
The TOPMED server imputation performed the liftover from
GRCh37 to GRCh38 and the phasing using the EAGLE v.2.4
algorithm. Finally, imputation was performed by minimac4.

Candidate Single-Nucleotide
Polymorphism Association Analysis
After genotype and individual filtering, 360 individuals remained
(69 patients with GGE and 291 BIPMed controls), which were
used in the association analysis. We estimated the statistical
power of our sample by the genpwr package in R (Moore et al.,
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TABLE 2 | AMOVA results.

Variance component Variance σ2 Percentage of
variance

Total 8-statistics p-Value

Between samples 0.1884 0.39 0.00393 0.001

Within samples 47.7333 99.61

Total 47.9217 100.00

Variance component estimations are based on the genetic distance among patients
with GGE and controls, including the Monte Carlo test p-value. Values were
estimated based on 10,000 (10k) random autosome SNPs across the genome.
AMOVA, analysis of molecular variance; SNPs, single-nucleotide polymorphisms;
GGE, genetic generalized epilepsy.

2020), which analyzes the statistical power under the evaluation
between true and test genetic models (Dominant, Additive,
Recessive, 2df/unspecified model). In this case, we evaluate the
statistical power using a vector of MAFs (from 0.05 to 0.45,
by 0.05) and an odds ratios (from 1.5 to 2.0, by 0.1) since
not all candidate SNPs presented OR estimations from previous
studies. We also set the following parameters for genpwr:
model = logistic; N = 360; case/control ratio = 69/291 = 0.237;
and alpha = 0.05.

We evaluated candidate SNP association and OR estimation
by logistic regression analysis using the PLINK v1.9 software
(Purcell et al., 2007), including the first five PCs as covariates.
We did not include age, age at seizure onset, and sex since these
variables have not been correlated with the GGE phenotype (Berg
et al., 2010; Scheffer et al., 2018).

It has been reported that SNPs found to be associated
with the phenotype by GWAS in one population may be only
nominally associated or non-associated in another population

due to difference in LD across populations (Akiyama et al.,
2019; Chen et al., 2020; Graff et al., 2021); however, it does
not mean that an associated signal in the genomic region
cannot be replicated. This is because the SNPs ascertained
from GWAS are only tagging variants linked to causal ones.
The lack of signals in the replication population could simply
be caused by the broken linkage between tagging and causal
variants. Therefore, to account for the difference in LD across
populations and to investigate the transferability of previous
GWAS signals, we used the SNP-array dataset, filtered for
population structure and without LD pruning (652,883 SNPs),
to interrogate the SNPs flanking the 1 Mb upstream and
downstream the candidate SNPs by logistic regression. We
assumed a p-value adjusted by the Bonferroni correction to avoid
biased results due to the multiple comparisons. In this case, we
used two thresholds: the first threshold took into account the
48 SNPs (p-value = 0.05/48 = 0.001), assuming one effective test
per region, which is a reasonable assumption and may lead to
more informative results. However, this threshold may not be
stringent enough. Therefore, we also evaluate the results under
a second threshold, considering all the 48 candidate SNPs and
the additional flanking SNPs tested, and the results were plotted
using the qqman package in R software (Turner, 2014).

Since previous studies of GGE were based on European
populations and admixed Brazilians have a large proportion
of European ancestry, we decided to evaluate whether the
candidate SNP allele frequencies are similar between Brazilian
and European populations. We extracted European allele
frequencies from the gnomAD database (Karczewski et al., 2020)
and performed a two-proportion Z-test using the prop.test
function in R. Also, we included African populations from

FIGURE 2 | Statistical power estimation. The figure includes six panels (A–F) for the six OR values evaluated. Each panel shows the statistical power (y-axis)
estimated by minor allele frequency (MAF) (x-axis) for the combination of the three true genetic models (Dominant, Additive, and Recessive) with the four test models
(Dominant, Additive, Recessive, and 2df/unspecified genetic model). Each colored line represents the test model, and each point represents the MAF.
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FIGURE 3 | Manhattan plot of genetic generalized epilepsy (GGE) candidate regions. The figure shows a plot for each candidate chromosome, including the
chromosome position (x-axis) and the –log10(p-value) in the y-axis. The green and black points represent the candidate and the flanking single-nucleotide
polymorphisms (SNPs), respectively. The blue line indicates the suggestive association signal based on the p-value adjusted by the Bonferroni correction under the
48 candidate SNPs. The red line indicates the association signal based on the p-value adjusted by Bonferroni under the 48 candidate SNPs plus the 14,047 flanking
SNPs.

gnomAD in the analysis due to the sub-Saharan African
ancestry component present in Brazilian populations. However,
since gnomAD does not separate Native American populations
in the database, we include the Latin population in the
analysis as a proxy.

RESULTS

Population Structure Analysis
The principal components in the PCA plot indicate that both
cases and controls clustered together and were spread between
Europeans, sub-Saharan Africans, and other admixed American
populations (Figure 1). The AMOVA results showed that
99.61% of the genetic variation was observed within groups
(patients or controls), and only 0.39% of the genetic variation
was observed between groups (Table 2). Because we have
one hierarchical level of stratification (patients/controls), the
poppr.amova package provided one total ϕ-statistics = 0.0031,

with a p-value = 0.001 (Table 2), indicating evidence of
population stratification between patients and controls and
the necessity of population structure correction in further
association tests.

Single-Nucleotide Polymorphism
Selection and Imputation
According to the imputation results from the BEAGLE software
(Browning et al., 2018), the correlation between the estimated
allele dosage and the true allele dosage from the 1KGP is used
as reference (in terms of r2) and presented a minimum value
of 95%. In addition, all 17 SNPs genotyped by the SNP array
were correctly imputed by the BEAGLE software. However,
we observed that the 17 SNPs genotyped by the SNP array
presented only 45.7% of matching (on average) with genotypes
imputed by the TOPMED server. Thus, we decided to perform
further analysis using the imputed genotypes generated by the
BEAGLE software.
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Candidate Single-Nucleotide
Polymorphism Association Analysis
As detailed in Table 1, one candidate SNP (rs1046276)
was withdrawn from further association analysis due to the
presence of the Hardy–Weinberg disequilibrium (p < 0.000001).
According to the analysis performed using the genpwr package
(Moore et al., 2020), we observed that the Additive model
presented the highest power estimation. We did not observe 80%
of statistical power for OR ≤ 1.6 (≥ 0.62 for protection effect)
(Figures 2A,B). However, we calculated that our study had 80%
power to detect an increased risk in terms of OR ≥ 1.7 (≤0.58 for
protection effect) with MAF > 0.25 (Figure 2C), OR ≥ 1.8 (≤0.55
for protection effect) with MAF > 0.2 (Figure 2D), and OR ≥ 1.9
(≤0.52 for protection effect) with MAF > 0.15 (Figures 2E,F).

We identified suggestive evidence of a protective effect for
the SNP rs1939012∗A allele (MAF = 0.446; OR = 0.60; 95%
CI = 0.40–0.90; nominal p-value = 0.0133) and rs4794333∗A
allele (MAF = 0.356; OR = 0.64; 95% CI = 0.42–0.97;
nominal p-value = 0.0361) and an increased risk for rs9788∗G
(MAF = 0.315; OR = 1.57; 95% CI = 1.05–2.34, nominal
p-value = 0.0274). However, these results did not pass the
corrections for multiple comparisons by Bonferroni (Table 1).
Interesting, we found 14,047 flanking SNPs, encompassing 29
candidate regions (Supplementary Data). As shown in Figure 3,
under the p-value threshold = 0.001, we observed that the
association signals in all candidate regions passed the Bonferroni
correction. Adjusting the p-values by Bonferroni for 14,095 tests
(p-value = 3.55e−06), we observed that nine flanking SNPs passed
the multiple comparison adjustment: rs12726617 and rs9428842
on chromosome (chr.) 1q43; rs1915992 on chr. 3p14.2; rs1464634
on chr. 3q26.1; rs6459526 on chr. 6p22.3; rs2510087 on chr.
11q22.3; rs9551042 on chr. 13q12.12; rs9888879 on chr. 16p11.2;
and rs8133217 on chr. 21q22.3 (Figure 3 and Table 1).

Since most Brazilian ancestry is derived from European
populations (Kehdy et al., 2015; Moura et al., 2015; Secolin
et al., 2019), we could hypothesize that effect sizes in terms of
OR would present a higher correlation with European effect
sizes comparing with Chinese or European/African American
samples from previous studies (EPICURE Consortium et al.,
2012a,b; International League Against Epilepsy Consortium on
Complex Epilepsies (ILAE Consortium on Complex Epilepsies),
2014; International League Against Epilepsy Consortium on
Complex Epilepsies (ILAE Consortium on Complex Epilepsies).,
2018; Zhang et al., 2014; Wang et al., 2019). Thus, we show
a comparison of the OR estimations of 11 SNPs, which were
available from the previous studies, and the OR estimations in our
admixed Brazilian samples (Table 3). Remarkably, Chinese and
European/African American samples also presented similar OR
estimations compared with admixed Brazilians. Two SNPs had
different OR estimations for admixed Brazilians compared with
European and Chinese samples (rs10496964 and rs11890028).

Furthermore, the two-proportion Z-test results showed that 25
candidate SNPs have allele frequencies that were different when
comparing admixed Brazilian and the ancestral populations.
Among them, 16 SNPs presented differences in allele frequencies
comparing admixed Brazilian and European populations. All

TABLE 3 | Odds ratio comparison among studies.

SNP Brazil Population from previous studies

European
(PMID:
22949513)

Chinese
(PMID:
25271899)

European/African
Americans
(PMID: 25087078)

rs12059546 0.86 (0.56–1.32) 1.53
(1.32–1.79)

0.93
(0.57–1.53)

–

rs13026414 0.97 (0.64–1.46) 0.78
(0.71–0.86)

1.51
(0.81–2.83)

–

rs2947349 0.83 (0.55–1.25) – – 1.23 (1.16–1.31)

rs10496964 1.29 (0.77–2.17) 0.63
(0.52–0.76)

0.50
(0.18–1.40)

–

rs11890028 1.08 (0.69–1.69) 0.77
(0.70–0.85)

0.77
(0.26–2.24)

–

rs111577701 0.90 (0.43–1.89) – – 1.16 (1.09–1.24)

rs1044352 1.17 (0.79–1.73) – – 0·88 (0·82–0·93)

rs55670112 1.19 (0.83–1.72) – – 1.18 (1.10–1.26)

rs1939012 0.60 (0.40–0.90) – – 1.12 (1.07–1.17)

rs12951323 0.67 (0.39–1.15) 0.75
(0.66–0.84)

– –

rs72823592 0.65 (0.37–1.13) 0.74
(0.66–0.83)

– –

The table shows the OR estimation available in each study, including the 95%
confidence interval in parentheses.
SNP, single-nucleotide polymorphism.

25 SNPs presented different allele frequencies when comparing
admixed Brazilian and African samples. Remarkably, we also
found 15 candidate SNPs with different allele frequencies when
comparing admixed Brazilians and the Latin American samples
in the gnomAD database (Table 4).

DISCUSSION

The Brazilian population was formed by an admixture of three
main ancestry populations: Europeans, sub-Saharan Africans,
and Native Americans (Kehdy et al., 2015; Moura et al., 2015;
Secolin et al., 2019). In this scenario, it is important to explore
whether candidate SNPs previously identified as associated with
complex disorders in non-admixed populations also display
association signals in the Brazilian admixed population. By doing
so, one can better estimate the impact of population structure
in estimating polygenic risks, avoiding misinterpretation of risk
scores calculated in other populations.

Previous genetic association studies have identified 48
candidate SNPs associated with GGEs (EPICURE Consortium
et al., 2012a,b; International League Against Epilepsy Consortium
on Complex Epilepsies (ILAE Consortium on Complex
Epilepsies), 2014; International League Against Epilepsy
Consortium on Complex Epilepsies (ILAE Consortium on
Complex Epilepsies)., 2018; Zhang et al., 2014; Wang et al.,
2019). These studies were all performed in non-admixed
populations, predominantly of European ancestry, raising the
question of reproducibility of these results in other populations.
Lack of transferability of GWAS results and polygenic risk scores
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TABLE 4 | Two-proportion Z-test results comparing Brazilian samples with European, African, and Latin-American samples from gnomAD.

SNP ID Allele Brazilian samples European vs. Brazilian samples African vs. Brazilian samples Latin American vs. Brazilian samples

Allele frequency Allele frequency p-Value Allele frequency p-Value Allele frequency p-Value

rs12136213 G 0.268 0.282 1 0.105 3.66e−37 0.257 1

rs4665630 G 0.176 0.896 0 0.511 6.45e−65 0.895 6.43e−178

rs4671319 T 0.422 0.521 6.37e−06 0.096 2.79e−55 0.417 1

rs1402398 G 0.350 0.615 4.35e−44 0.708 3.69e−114 0.558 7.64e−15

rs2947349 G 0.307 0.617 5.11e−60 0.749 0 0.567 8.40e−23

rs10496964 C 0.138 0.163 1 0.590 3.37e−35 0.091 1.24e−01

rs13020210 C 0.213 0.832 0 0.922 1.36e−41 0.861 1.31e−144

rs11890028 A 0.257 0.278 1 0.036 3.32e−05 0.205 4.62e−01

rs887696 G 0.401 0.660 2.88e−44 0.479 1.36e−83 0.481 4.83e−02

rs111577701 G 0.074 0.131 2.21e−04 0.183 5.95e−17 0.057 1

rs28498976 C 0.446 0.379 8.41e−03 0.689 0.00019 0.313 2.12e−06

rs11943905 C 0.293 0.265 1 0.743 6.70e−13 0.184 1.25e−05

rs55670112 C 0.482 0.457 1 0.386 6.63e−11 0.541 5.62e−01

rs68082256 C 0.183 0.207 1 0.792 9.55e−25 0.209 1

rs1939012 A 0.446 0.498 1.82e−01 0.755 1.01e−47 0.517 1.60e−01

rs1008812 T 0.465 0.490 1 0.210 0.00884 0.579 2.24e−04

rs4638568 T 0.079 0.057 3.87e−01 0.553 7.79e−20 0.031 8.21e−04

rs12951323 A 0.206 0.788 9.49e−280 0.533 1.65e−88 0.882 2.92e−158

rs4794333 G 0.356 0.390 1 0.704 0.00814 0.290 1.62e−01

rs72823592 T 0.181 0.241 6.02e−03 0.177 6.01e−09 0.121 2.91e−02

rs608781 C 0.118 0.928 0 0.618 4.02e−194 0.900 2.81e−208

rs645088 C 0.339 0.625 5.61e−52 0.351 1.73e−152 0.781 4.82e−68

rs649224 T 0.107 0.074 2.08e−02 0.296 2.96e−28 0.064 1.13e−04

rs9788 G 0.489 0.617 4.18e−14 0.316 6.18e−228 0.609 9.30e−06

rs2839377 C 0.497 0.535 1 0.512 1.21e−11 0.463 1

p-Values are adjusted by the Bonferroni correction. We show the results for the 25 SNPs presenting significant differences in allele frequencies among populations.
SNP, single-nucleotide polymorphism.

obtained from Europeans and American admixed populations
have previously been reported (Martin et al., 2017, 2019), making
it important to investigate whether these SNPs are associated
with GGEs in our admixed Brazilian sample.

An alternative explanation for the lack of reproducibility
among populations relies on the observation that only tagging
SNPs are ascertained in GWAS, and the lack of replication in
different populations could be due to broken linkage between
the tagging SNPs and the causal variants (Akiyama et al.,
2019; Chen et al., 2020; Graff et al., 2021). Thus, we searched
for SNPs flanking 1 Mb upstream and downstream of the
candidate regions to investigate this issue. Indeed, we found
14,047 flanking SNPs, and nine of them presented statistically
significant association signals after stringent corrections for
multiple comparisons (p-value < 3.55e−06). These nine SNPs
encompass eight candidate regions (Table 2 and Figure 3),
which were previously found associated in European samples
(1q43; 3p14.2; 3q26.1; 6p22.3; 11q22.3; 13q12.12; 16p.11.2; and
21q22.3), and two of them were also found associated in a mixed
sample of European, African, and Asian populations (3q26.1 and
16p.11.2) (EPICURE Consortium et al., 2012a,b; International
League Against Epilepsy Consortium on Complex Epilepsies
(ILAE Consortium on Complex Epilepsies), 2014; International

League Against Epilepsy Consortium on Complex Epilepsies
(ILAE Consortium on Complex Epilepsies)., 2018; Wang et al.,
2019). Therefore, we may suggest that polygenic risk scores
calculated in European populations at these specific loci could
indeed be transferable to admixed Brazilian individuals.

However, although all these 29 candidate regions passed
the Bonferroni correction based on the 48 candidate SNPs (p-
value = 0.001), we understand that this p-value threshold is
not stringent. Thus, the lack of association signal cannot be
discarded for the 20 remaining candidate regions. Thus, one
may still speculate that the lack of reproducibility could be due
to the absence of statistical power, population stratification, or
the differences in the genomic structure of the admixed sample
compared with the previously studied populations.

Although we have identified flanking SNPs in the
neighborhood of the candidate regions, which presented
80% of statistical power to detect increased risk or protection
allele effect, we acknowledge the limited statistical power
provided by the cohort analyzed, with 87 patients with GGE
and 340 controls.

Despite the observed high heterogeneity within groups
(σ2 = 99.61%) and low heterogeneity between patients and
controls (σ2 = 0.39%), the statistics based on AMOVA results
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revealed evidence of population stratification between patients
with GGE and the BIPMed controls. Thus, we corrected possible
spurious association results by taking the first five principal
components into account in the logistic regression model
(Marchini et al., 2004; Price et al., 2010).

Indeed, the two-proportion Z-test showed that 16 SNPs
presented different allele frequencies when comparing admixed
Brazilian and European samples, further substantiating the
hypothesis of lack of genetic association due to genetic differences
when comparing the admixed Brazilians and Europeans.

It is important to note that 31 SNPs were not found
in the SNP-array dataset, and we decided to impute them
from all populations available in the 1KGP dataset (The 1000
Genomes Project Consortium et al., 2015). Previous studies
have demonstrated that imputation accuracy for populations
with a high proportion of European ancestry is higher than for
populations with African or Native American ancestry (Martin
et al., 2017). In addition, the EPIGEN-Brazil Initiative has also
imputed admixed Brazilian samples from the 1KGP dataset
with high confidence variants (Magalhães et al., 2018). However,
the imputation by the TOPMED Consortium has demonstrated
improved quality of variant imputation for admixed African and
Hispanic/Latin populations compared with the 1KGP dataset
(Kowalski et al., 2019). Thus, we also used this approach for
comparison. We observed a perfect match between the SNPs
genotyped in the SNP-array and their imputed correspondents
for the BEAGLE imputation using the 1KGP as reference.
By contrast, there was only 45.7% correspondence between
the SNPs genotyped and the imputed SNPs using TOPMED.
Thus, we can argue that Hispanic/Latin samples included in
the TOPMED reference panel (Kowalski et al., 2019) may not
represent the genomic structure of admixed Brazilians (Adhikari
et al., 2016). This is an important finding and indicates that
although allele frequencies of admixed Brazilian populations are
different from other populations reported in public databases
(Adhikari et al., 2016; Magalhães et al., 2018; Rocha et al.,
2020), there is a remarkable accuracy in the SNP imputation
for admixed Brazilian individuals based on populations from the
1KGP database, as demonstrated by our results and elsewhere
(Magalhães et al., 2018).

In conclusion, we replicated association signals on eight
candidate regions previously found in European populations,
indicating the possibility of transferability of polygenic risk
scores from European studies to admixed Brazilian populations
in these specific candidate regions. In addition, we show
evidence that differences in the genetic architecture of the
population may hinder the replication of association results in
admixed Brazilians for the remaining candidate regions, thus
supporting the hypothesis of population differences influencing
the association results in the present study. Also, we documented

the effect of different methods/databases used for genotype
imputation in admixed Brazilians. These results could be relevant
to improving stratification risk estimation and future precision
health applications in admixed Brazilian patients with GGEs and
other complex disorders.
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Genetic association data from national biobanks and large-scale association studies
have provided new prospects for understanding the genetic evolution of complex traits
and diseases in humans. In turn, genomes from ancient human archaeological remains
are now easier than ever to obtain, and provide a direct window into changes in
frequencies of trait-associated alleles in the past. This has generated a new wave of
studies aiming to analyse the genetic component of traits in historic and prehistoric
times using ancient DNA, and to determine whether any such traits were subject to
natural selection. In humans, however, issues about the portability and robustness of
complex trait inference across different populations are particularly concerning when
predictions are extended to individuals that died thousands of years ago, and for
which little, if any, phenotypic validation is possible. In this review, we discuss the
advantages of incorporating ancient genomes into studies of trait-associated variants,
the need for models that can better accommodate ancient genomes into quantitative
genetic frameworks, and the existing limits to inferences about complex trait evolution,
particularly with respect to past populations.

Keywords: aDNA, paleogenetics, GWAS, polygenic adaptation, complex traits

INTRODUCTION

The last decade has seen dramatic advances in our understanding of the genetic architecture of
polygenic traits (Visscher et al., 2017). The advent of genome-wide association studies (GWAS),
with large sample sizes and deep phenotyping of individuals, has led to the identification of
thousands of loci associated with complex traits and diseases (MacArthur et al., 2017; Bycroft et al.,
2018; Buniello et al., 2019). The resulting associations, and their inferred effect sizes, have enabled
the development of so-called polygenic risk scores (PRS), which summarise either the additive
genetic contribution of single nucleotide polymorphisms (SNPs) to a quantitative trait (e.g., height),
or the increase in probability of a binary trait (e.g., major coronary heart disease) (Dudbridge, 2013).
For some well-characterised medical traits, like cardiovascular disease, the predictive value of PRS
has led to their adoption in clinical settings (Knowles and Ashley, 2018); however, the accuracy
of PRS remains limited to populations closely related to the original GWAS cohort (Martin et al.,
2019) and can vary within populations due to age, sex and socioeconomic status (Mostafavi et al.,
2020). Ancient genomics has yielded considerable insights into natural selection on large-effect
variants (Malaspinas, 2016; Dehasque et al., 2020), and an increasing number of studies are also
now utilizing ancient genomes to learn about polygenic adaptation; the process by which natural
selection acts on a trait with a large number of genetic loci, leading to changes in allele frequencies
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at many sites across the genome. Among these studies, the
most commonly inferred complex traits are pigmentation and
standing height.

ANCIENT DNA AND COMPLEX TRAIT
GENOMICS

Skin, hair and eye pigmentation are among the least polygenic
complex traits; though more than a hundred pigmentation-
associated loci have been found, their heritability is largely
dominated by large-effect common SNPs (Sulem et al., 2007;
Eiberg et al., 2008; Han et al., 2008; Sturm et al., 2008; Hider
et al., 2013; Liu et al., 2015; O’Connor et al., 2019). Additionally,
several of these variants have signatures of past selective sweeps
detectable in present-day genomes (Lao et al., 2007; Sabeti
et al., 2007; Pickrell et al., 2009; Rocha, 2020). Nevertheless,
genomic analyses in previously understudied populations—like
sub-Saharan African groups—suggest that perhaps hundreds of
skin pigmentation alleles of small effect remain to be found
(Martin et al., 2017b). Similarly, recent studies have shown
that eye pigmentation is far more polygenic than previous
thought (Simcoe et al., 2021). Recent quantitative and molecular
genomic studies are painting an increasingly complex picture
of the architecture of these traits, featuring more considerable
roles for epistasis, pleiotropy and small-effect variants than
were previously assumed (for an extensive review of skin
pigmentation, see Quillen et al., 2019).

Recently, ancient DNA (aDNA) studies have attempted
to reconstruct pigmentation phenotypes in ancient human
populations, although the extent to which these predictions are
accurate remains uncertain. These reconstructions have been
mostly focused on ancient individuals from Western Eurasia, due
to the relatively higher abundance of SNP-phenotype associations
from European-centric studies, and the poor portability of
gene-trait associations to more distantly related populations
(Martin et al., 2017a, 2019). For example, Olalde et al. (2014)
queried pigmentation-associated SNPs in genomes of Mesolithic
hunter-gatherer remains from western and central Eurasia, and
suggested that the lighter skin colour characteristic of Europeans
today was not widely present in the continent before the
Neolithic. González-Fortes et al. (2017) analysed Mesolithic
and Eneolithic genomes from central Europe, and inferred
dark hair, brown eyes and dark skin pigmentation for the
Mesolithic individuals and dark hair, light eyes, and lighter
skin pigmentation for an Eneolithic individual. Similarly, Brace
et al. (2019) inferred pigmentation phenotypes for Mesolithic
and Neolithic genomes from western Europe, and reported that
the so-called “Cheddar Man,” a Mesolithic individual found
in England, had blue/green eyes and dark to black skin, in
contrast to later Neolithic individuals with dark to intermediate
skin pigmentation. Contrastingly, Günther et al. (2018) found
elevated frequencies of light skin pigmentation alleles in
individuals from the Scandinavian Mesolithic, suggestive of
early environmental adaptation to life at higher latitudes. These
reconstructions have also been carried out in individuals with
no skeletal remains; for example, Jensen et al. (2019) used
pigmentation-associated SNPs to infer the skin, hair and eye

colour of a female individual whose DNA was preserved in a piece
of birch tar “chewing gum.”

Some aDNA studies have sought to systematically investigate
how pigmentation-associated variants were introduced and
evolved in the European continent. Wilde et al. (2014) was one
of the first studies to provide aDNA-based evidence that skin,
hair, and eye pigmentation-associated alleles have been under
strong positive selection in Europe over the past 5,000 years. The
first large-scale population genomic studies (Allentoft et al., 2015;
Haak et al., 2015; Mathieson et al., 2015) showed that major effect
alleles associated with light eye colour likely rose in frequency
in Europe before alleles associated with light skin pigmentation.
More recently, Ju and Mathieson (2021) argued that the increase
in light skin pigmentation in Europeans was primarily driven
by strong selection at a small proportion of pigmentation-
associated loci with large effect sizes. When testing for polygenic
adaptation using an aggregation of all known pigmentation-
associated variants, they did not detect a statistically significant
signature of selection.

The other trait that has shared comparable prominence with
pigmentation in the aDNA literature is standing height. In
contrast to pigmentation, the genetic architecture of height
is highly polygenic (Yang et al., 2015; Bycroft et al., 2018;
Yengo et al., 2018). The heritability of this trait is dominated
by a large number of alleles with small effect sizes, and
shows strong evidence for negative selection in present-day
populations (O’Connor et al., 2019). Studies of the genetic
component of height in ancient populations have shown that
ancient West Eurasian populations were, on average, more highly
differentiated for this trait than present-day West Eurasian
populations, and more so than one would predict from genetic
drift alone (Mathieson et al., 2015; Martiniano et al., 2017; Cox
et al., 2019). Cox et al. (2019) compared predicted genetic changes
in height in ancient populations to inferred height changes
estimated via skeletal remains. They concluded that the changes
in inferred standing height were partially predicted by genetics;
with both measures remaining relatively constant between the
Mesolithic and Neolithic, and increasing between the Neolithic
and Bronze Age. A follow-up study by Cox et al. (2021) used
polygenic scores for height to show that PRS predicts 6.8% of
the observed variance in femur length in ancient skeletons, after
controlling for other variables. This is approximately one quarter
of the predictive accuracy of PRS in present-day populations;
which the authors attribute to the low-coverage aDNA data used
in their study. Contrastingly, Marciniak et al. (2021) used the
discordance between PRS for height, calculated from aDNA, and
height inferred from the corresponding skeletal remains, to argue
that Neolithic individuals were shorter than expected due to
either poorer nutrition or increased disease burden, relative to
hunter-gatherer populations.

However, the inference of standing height from skeletal
remains is not without its own problems. Both Cox et al. (2021)
and Marciniak et al. (2021) used the method developed by
Ruff et al. (2012) to estimate stature from skeletal remains.
Nevertheless, their respective estimates of stature—based on
femur length—varied between some of the individuals included
in both studies. Where multiple skeletal elements were available
for ancient individuals, Marciniak et al. (2021) also produced
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separate stature estimates from femur, tibia, humerus and radius
length, which varied substantially within some individuals;
highlighting the uncertainty in estimates of stature from
skeletal remains.

INFERRING COMPLEX TRAITS IN
ARCHAIC HOMINIDS

The availability of genome sequences from archaic humans,
like Neanderthals and Denisovans, has greatly expanded our
understanding of their demographic history and interactions
with modern humans (Meyer et al., 2012; Prüfer et al., 2014,
2017). However, little is known about complex traits in archaic
humans, besides what can be inferred directly from their skeletal
remains. In the case of Denisovans, such remains are presently
limited to a few teeth, a mandible and other small bone fragments,
making it difficult to make confident inferences of their biology
(Meyer et al., 2012; Sawyer et al., 2015; Slon et al., 2017; Chen
et al., 2019). However, past admixture events with archaic human
groups have left a genetic legacy in present-day people, providing
a possible inroad to study archaic human biology (Sankararaman
et al., 2012). Today, around 2% of the genomes of non-African
humans are known to be descended from Neandertals, and an
additional ∼5% of the genomes of people in Oceania can be
traced back to Denisovans (Sankararaman et al., 2014, 2016;
Vernot and Akey, 2014; Vernot et al., 2016).

Knowledge about admixture between archaic and modern
humans has led to a recent flurry of exploratory studies
concerning the potential impact of archaic variants on complex
traits in present-day populations. Various approaches have been
used to identify introgressed archaic DNA putatively under
positive selection in modern humans (Khrameeva et al., 2014;
Sankararaman et al., 2014, 2016; Vernot and Akey, 2014; Perry
et al., 2015; Gittelman et al., 2016; Vernot et al., 2016; Racimo
et al., 2017b). Overall, these studies have shown that archaic DNA
is linked to pathways related to metabolism, as well as skin and
hair morphology. Via association studies, Neanderthal variants
in specific loci have been shown to influence several disease and
immune traits, as well as skin and hair colour, behavioural traits,
skull shape, pain perception and reproduction (Sankararaman
et al., 2014; Dannemann et al., 2016; Sams et al., 2016; Gunz et al.,
2019; Skov et al., 2020; Zeberg and Pääbo, 2020, 2021; Zeberg
et al., 2020a,b).

Additionally, comparisons between the combined phenotypic
effects of Neandertal variants and frequency-matched non-
archaic variants have revealed that Neanderthal DNA is over-
proportionally associated with neurological and behavioural
phenotypes, as well as viral immune responses and type 2
diabetes (Quach et al., 2016; Simonti et al., 2016; Dannemann
and Kelso, 2017; Dannemann, 2021). These groups of phenotypes
may be linked to environmental factors, such as ultraviolet light
exposure, pathogen prevalence and climate, that substantially
differed between Africa and Eurasia. It has been suggested
that the over-proportional contribution of Neandertal DNA to
immunity and behavioural traits in present-day humans might
be a reflection of adaptive processes in Neandertals to these
environmental differences. In comparison, much less is known

about the impact of Denisovan DNA on complex traits, because
limited phenotypic data are presently available from present-
day populations. However, individual Denisovan-like haplotypes
found in high frequencies in some human populations have
been associated with high altitude adaptation and fat metabolism
(Huerta-Sánchez et al., 2014; Racimo et al., 2017a).

One key limitation to these approaches is that only about
40–50% of the Neandertal genome can be recovered in present-
day humans, and therefore discoverable in such analyses
(Sankararaman et al., 2014; Vernot and Akey, 2014; Skov et al.,
2020). Furthermore, the majority of tested cohorts used for
such studies are of European ancestry, which limits analyses to
archaic variants present in these populations. This is particularly
notable since Neandertal phenotype associations in European
and Asian populations have been shown to contain population-
specific archaic variants (Dannemann, 2021). It has also been
shown that negative selection, soon after admixture, has played
an important role in removing some of the missing segments of
archaic DNA (Harris and Nielsen, 2016; Juric et al., 2016; Petr
et al., 2019). It is therefore possible that missing segments of
archaic DNA had strong phenotypic effects. For archaic DNA that
does persist in present-day populations, much of it is segregating
at low allele frequencies, making it difficult to confidently link it
to phenotypic effects.

Furthermore, it remains questionable how transferable any
phenotypic associations are between modern and archaic
humans, given the difficulties of transferring associations
between present-day populations (Martin et al., 2017a; Duncan
et al., 2019). All of the above studies have used gene-trait
association information from analyses carried out in modern
humans. It remains undetermined if the phenotypic effects of
archaic DNA in present-day populations are a reliable proxy for
phenotypic effects in archaic humans themselves.

Recent studies have also aimed to predict the phenotypic
effects of archaic DNA without relying on introgression in
present-day populations (see Figure 1). Colbran et al. (2019)
used a machine learning algorithm, trained on genetic variation
in present-day humans, to infer putative regulatory effects
on variation present only in Neandertal genomes. Gokhman
et al. (2020a,b) used aDNA damage patterns to infer a DNA
methylation map of the Denisovan genome, and linked the
inferred regulatory patterns to loss-of-function phenotypes,
in order to predict their skeletal morphology and vocal
and facial anatomy. It remains to be seen how successful
these approaches are at predicting archaic human phenotypes.
A possible inroad into validation could rest on functional assays
for testing and evaluating the phenotypic impact of archaic DNA
(Dannemann et al., 2020; Dannemann and Gallego Romero,
2021; Trujillo et al., 2021).

THE CHALLENGE OF DETECTING
POLYGENIC ADAPTATION IN ANCIENT
POPULATIONS

Perhaps the most fascinating question about the evolution
of complex traits in humans is whether they were subject
to natural selection. Current methods to detect polygenic
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FIGURE 1 | (A) Schematic illustration of the prediction method used by Gokhman et al. (2020a) to infer archaic human phenotypes based on methylation maps.
(B) Schematic illustration of the method by Colbran et al. (2019) to predict regulatory effects of non-introgressed archaic human DNA.

adaptation have mainly focused on present-day populations;
using either differences between populations, or variation within
them, to identify polygenic adaptation. For example, Berg and
Coop (2014) developed a method that identifies over-dispersion
of genetic values among populations, compared to a null
distribution expected under a model of drift; which Racimo
et al. (2018) extended to work with admixture graphs. Field
et al. (2016) used the distribution of singletons around trait-
associated SNPs, and Uricchio et al. (2019) used the joint
distribution of variant effect sizes and derived allele frequencies
(DAF). Whichever method is used, significant caveats must
be addressed before attributing differences in such scores to
polygenic adaptation (Novembre and Barton, 2018; Coop, 2019;
Rosenberg et al., 2019). Most of these issues affect both present-
day and ancient populations, but many are especially problematic
when working with ancient genomes.

A prominently reported example of polygenic adaptation
is that of selection for increasing height across a north-south
gradient in Europe (Turchin et al., 2012; Berg and Coop, 2014;
Robinson et al., 2015; Zoledziewska et al., 2015; Guo et al.,
2018; Racimo et al., 2018; Berg et al., 2019b; Chen et al., 2020).
Most studies which described this signal based their analyses
on effect size estimates from the GIANT consortium, a GWAS
meta-analysis encompassing 79 separate studies (Wood et al.,
2014). Concerningly, follow-up work using the larger and more
homogeneous UK Biobank cohort failed to replicate the signal
of polygenic adaptation for height (Berg et al., 2019a; Sohail
et al., 2019). A recent systematic comparison across a range
of GWAS cohorts has further shown that the results of these
tests are highly dependent on the ancestry composition of the

cohort used to obtain the effect size estimates (Refoyo-Martínez
et al., 2021). These analyses showed that residual stratification in
GWAS meta- and mega-analyses can result in inflated effect size
estimates that, in turn, can lead to spurious signals of selection.
The effects of this residual stratification may be exacerbated for
ancient populations with non-uniform relatedness to present-day
GWAS cohorts (see Figure 2).

Residual stratification is a major concern for GWAS, even
among a relatively homogeneous cohort like the UK Biobank.
Zaidi and Mathieson (2020) used simulations to show that
fine-scale recent demography can confound GWAS which has
been corrected for stratification using common variants only.
Failure to adequately correct for localised population structure
can lead to spurious associations between a trait and low-
frequency variants that happen to be common in areas of
atypical environmental effect. This finding is problematic as most
GWAS have been conducted on either SNP array data, or on
genomes imputed from SNP array data (Visscher et al., 2017).
For example, GWAS summary statistics from the UK Biobank
are based on imputed genomes (Bycroft et al., 2018). A limitation
of this approach is that the accuracy of imputed genotypes are
inversely correlated with the minor allele frequencies (MAF) of
variants in the reference panel. Additionally, rare variants that
are not segregating in the reference panel cannot be imputed
at all. As a result, imputed genomes are specifically depleted
in the rare variants needed to adjust for stratification from
recent demography.

For large sample sizes, low-frequency variants (MAF ≤ 0.05)
make a significant contribution to the heritability of many
complex traits (Mancuso et al., 2016; Hartman et al., 2019), but
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FIGURE 2 | Potential effect of population stratification in GWAS. Two ancestral
populations, X and Y, have contributed differing ancestry proportions to
present-day individuals. Due to non-genetic environmental effects, individuals
with a larger proportion of population Y ancestry have higher values for a
measured trait. This may lead to biased GWAS effect size estimates, which
associate population Y ancestry with increasing values of the trait. When used
to make inferences about the past, this would lead to systematically inflated
polygenic scores for this trait in samples from population Y.

the role of rare variants is less well established. Both empirical
and simulation studies have shown that for traits under either
negative or stabilising selection, there is an inverse correlation
between effect size and MAF (Simons et al., 2018; Schoech et al.,
2019; Durvasula and Lohmueller, 2021). For the many traits
thought to be under negative selection (O’Connor et al., 2019),
large effect variants that are rare in present-day populations may
have had higher allele frequencies in ancient populations due to
selection. This makes polygenic scores for ancient individuals
especially sensitive to bias from GWAS effect size estimates

ascertained from common variants only. Conversely, where
present-day rare variants with large-effect sizes are known, higher
frequencies in ancient populations would result in more accurate
PRS predictions, due to their larger contribution to the overall
genetic variance.

A recent analysis indicated that a substantial component of
the unidentified heritability for anthropometric traits like height
and BMI lies within large effect rare variants, some with MAF as
low as 0.01% (Wainschtein et al., 2019). However, using GWAS
to recover variant associations for SNPs as rare as this would
require hundreds of thousands of whole-genomes, substantially
exceeding the largest whole-genome GWAS published to date
(e.g., Taliun et al., 2021). The consequence of this missing
heritability may be particularly acute for trait prediction in
ancient samples, as large-effect rare variants which contributed
to variability in the past may no longer be segregating in
present-day populations. Indeed, simulations suggest that the
genetic architecture of complex traits is highly specific to each
population, and that negative selection enriches for private
variants, which contribute to a substantial component of the
heritability of each trait (Durvasula and Lohmueller, 2021).
Empirical studies have also identified that functionally important
regions, including conserved and regulatory regions, are enriched
for population-specific effect sizes, and that this pattern may have
been driven by directional selection (Shi et al., 2021).

In addition to these issues, the majority of SNP associations
inferred from GWAS are likely not the causal alleles. Instead,
GWAS predominantly identifies SNPs which are in high linkage
disequilibrium (LD) with causal alleles. Most GWAS also assume
a model in which all complex trait heritability is additive and
well tagged by SNPs segregating in the cohort; although some
GWAS do include non-additive models (e.g., Guindo-Martínez
et al., 2021). Consequently, effect size estimates are contingent on
the LD structure of the cohort in which they were ascertained.
Due to recombination, this LD structure decays through time,
and is reshaped by the population history in which selection
processes are embedded.

Over the last decade, paleogenomic studies have repeatedly
demonstrated that the evolutionary histories of human
populations are characterized by recurrent episodes of
divergence, expansion, migration and admixture (reviewed
in Pickrell and Reich, 2014; Skoglund and Mathieson, 2018).
For example, in West Eurasia, four major ancestry groups have
contributed to the majority of present-day genetic variation
(Jones et al., 2015). As such, the LD structure of present-day
British individuals—which underpins effect size estimates
from the UK Biobank—was substantially different prior to the
Bronze Age, when the most recent of these major admixture
episodes occurred (Allentoft et al., 2015; Haak et al., 2015). To
improve ancestral trait prediction, new methods which explicitly
model the haplotype structure of both ancient populations and
present-day GWAS cohorts are needed.

In aggregate, these issues combine to substantially diminish
the portability of polygenic scores between populations. Indeed,
in present-day populations, the predictive accuracy of PRS
degrades approximately linearly with increasing genetic distance
from the cohort used to ascertain the GWAS (Scutari et al., 2016;
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Martin et al., 2017a, 2019; Kim et al., 2018; Bitarello and
Mathieson, 2020; Mostafavi et al., 2020; Majara et al., 2021).
Even within a single ancestry group, the correlation between PRS
calculated from different discovery GWAS shows considerable
variance (Schultz et al., 2021). However, the extent to which the
issue of PRS portability also affects ancient populations, which are
either partially or directly ancestral to the GWAS cohort, are yet
to be determined.

In cases where a robust signal of polygenic adaptation can
be identified, care must still be taken when interpreting which
trait was actually subject to directional selection. Due to the
highly polygenic nature of most complex traits, there is a high
rate of genetic correlation between phenotypes (Shi et al., 2017;
Ning et al., 2020). This can occur when correlated traits share
causal alleles (i.e., pleiotropy) or where casual alleles are in
high LD with each other. Consequently, selection acting on
one specific trait can generate a spurious signal of polygenic
adaptation for multiple genetically correlated traits. Recently,
Stern et al. (2021) developed a method for conditional testing of
polygenic adaptation to address this problem. When considered
in a joint test, previously identified signals of selection for
educational attainment and hair colour in British individuals
were significantly attenuated by the signal of selection for skin
pigmentation (Stern et al., 2021). However, this approach can
only untangle genetic correlations between traits which have
been measured in GWAS cohorts, leaving open the possibility
that selection is acting on an unobserved yet correlated trait.
Indeed, many GWAS traits are either coarse proxy measures
with substantial socio-economic confounding (e.g., educational
attainment), or narrow physiological measurements (e.g., levels
of potassium in urine); neither of which are likely to have
been direct targets of polygenic adaptation. In practice, the
truly adaptive phenotype is rarely directly observable, and all
measured traits are genetically correlated proxies at various
levels of abstraction.

LIMITATIONS AND CAVEATS SPECIFIC
TO ANCIENT DNA

In addition to all of the general issues and caveats discussed
above, working with ancient DNA also involves a range of issues
that are particular to the degraded nature of the data; such as
post-mortem damage, generally low average sequence coverage,
short fragment lengths, reference bias, and microbial and human
contamination (Gilbert et al., 2005; Dabney et al., 2013; Renaud
et al., 2019; Peyrégne and Prüfer, 2020). All of these factors affect
our ability to correctly infer ancient genotypes; and therefore, to
construct accurate polygenic scores or infer polygenic adaptation.

A common strategy for dealing with the low endogenous
fraction of aDNA libraries is to use in-solution hybridisation
capture to retrieve specific loci, or a set of predetermined
SNPs (Avila-Arcos et al., 2011; Cruz-Dávalos et al., 2017). This
approach has substantial advantages in on-target efficiency,
at the cost of ascertainment bias. For example, in the case
of the popular “1240k” capture array, targeted SNPs were
predominantly ascertained in present-day individuals (Fu et al.,

2015; Haak et al., 2015). Consequently, an unknown fraction
of the true ancestral variation is lost during capture. This is
further exacerbated by the generally low coverage of most aDNA
libraries; for which a common practice is to draw a read at
random along each position in the genome, to infer “pseudo-
haploid” genotypes. When used to compute polygenic scores for
ancient populations, only a subset of GWAS variants can be
used, which substantially reduces predictive accuracy. Cox et al.
(2021) estimate that the combined effect of low-coverage and
pseudo-haploid genotypes reduced their predictive accuracy by
approximately 75%, when compared to present-day data.

An alternative approach is to perform low-coverage
shotgun sequencing, followed by imputation, using a large
reference panel (Ausmees et al., 2019; Hui et al., 2020).
This has the dual advantages of reducing ascertainment
bias and increasing the number of GWAS variants available
to calculate polygenic scores. However, imputation itself
introduces a new source of bias, particularly if the reference
panel is not representative of the ancestries found in the
low-coverage samples. Nevertheless, the level of imputation
bias can be empirically estimated by downsampling high-
coverage aDNA libraries and testing imputed genotypes against
direct observations (e.g., Margaryan et al., 2020). Where a
suitable reference panel exists, recently developed methods for
imputation from low-coverage sequencing data (Davies et al.,
2021; Rubinacci et al., 2021) show great promise for ancient
DNA studies (e.g., Clemente et al., 2021).

Even under ideal conditions, in which exact polygenic
scores for ancient populations are known a priori, interpreting
differences in mean PRS between groups still requires careful
consideration. For many polygenic traits, the variance between
population means is lower than the variance within populations.
As a result, differences in population level polygenic scores
have limited predictive value for inferring the physiology or
behaviour of individual people in the past. Genetics plays only
a partial role in shaping phenotypic diversity, and differences
in polygenic scores between individuals, or populations, does
not automatically translate into differences in the expressed
phenotype. Indeed, for some complex traits, an inverse
correlation has been observed; in which polygenic scores have
been steadily decreasing over recent decades, whilst the measured
phenotype has been increasing [e.g., educational attainment
(Kong et al., 2017; Abdellaoui et al., 2019)]. This highlights the
substantial role of environmental variation in shaping phenotypic
diversity. For ancient populations, we must also consider the wide
variation in culture, diet, health, social organisation and climate
which will have mediated any potential differences in population
level polygenic scores. Furthermore, ancient populations are
likely to have experienced a heterogeneous range of selective
pressures. What we observe in present-day populations is not
the result of a single directional process, but instead represents
a mosaic of haplotypes which were shaped by different fitness
landscapes, at varying levels of temporal depth.

Lastly, in most cases, we cannot directly observe phenotypes
in the ancient individuals whose genomes have been studied.
This greatly limits our ability to compare the genetically
predicted value of a trait to its expressed phenotype, raising the
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question: are predictions of most ancient phenotypes inherently
unverifiable? For well-preserved traits, like standing height, there
is considerable variability in estimates produced from different
skeletal elements and between different studies (Cox et al., 2021;
Marciniak et al., 2021). For traits that do not preserve well in
the archaeological record, the prospects of validation are much
poorer. These include not only soft tissue measurements (e.g.,
pigmentation or haemoglobin counts), but also personality and
mental health traits that require an individual to be alive to be
properly measured or diagnosed. Furthermore, some phenotypes
are non-sensical outside of a modern context. Whilst it is possible
to build a polygenic score for “time spent watching television”
(UK Biobank code: 1070), it is not clear how to interpret any
potential differences one might find between Mesolithic hunter-
gatherers and Neolithic farmers. This problem extends more
generally to all phenotypes which have strong gene–environment
interactions, in which the expression of the trait may have been
substantively different in the past due to diverse environmental
conditions (e.g., the interplay between BMI and diet).

PROSPECTS FOR THE FUTURE

The growth in the number of ancient genomes currently shows
little signs of slowing, nor does the increasing availability of
gene-trait association data. Predictably, efforts to perform trait
predictions in ancient individuals will also continue to grow. We
believe that increased emphasis on limitations and caveats in
the way we study and communicate these findings will enable
a better understanding of what we can and cannot predict with
existing models.

As a working assumption, polygenic scores from any single
GWAS should be considered unreliable in an ancient trait
reconstruction analysis. Researchers should only trust observed
signals of trait evolution if those patterns hold across multiple
independent GWAS (e.g., Chen et al., 2020), and preferably where
each of these GWAS has been performed on a large cohort with
homogeneous ancestry (Refoyo-Martínez et al., 2021).

We also need to better understand how well GWAS effect size
estimates, ascertained in present-day populations, generalise to
ancient populations that are only partially ancestral to the GWAS
cohort. One approach to this would be to use simulations, under
a plausible demographic scenario, to explore how the predictive
accuracy of PRS degrades through time and across the boundaries
of major ancestral migrations.

Traits that are preserved in the fossil record can provide a
degree of partial benchmarking (Cox et al., 2019, 2021); however,
the genetic components of variation are often only partially
explained by polygenic scores, and environmental components
almost always play large roles in expressed trait variation, often
dwarfing the contribution of polygenic scores. Furthermore, only
a few—largely osteological—traits are well preserved over time,
so these comparisons will always be limited in scope.

That being said, there are several promising avenues of
research that could serve to improve genetic trait prediction
in ancient populations. An existing approach to improve the
portability of PRS across ancestries is to prioritise variants with

predicted functional roles (Amariuta et al., 2020; Weissbrod
et al., 2020). This approach aims to improve PRS portability
in present-day populations by reducing the fraction of spurious
associations due to the cohort specific LD structure of the GWAS
reference panel. Another promising approach is to jointly model
PRS using GWAS summary statistics from multiple populations
(Márquez-Luna et al., 2017; Ruan et al., 2021; Turley et al.,
2021). By including information from genetically distant groups,
these methods can account for the variance in effect sizes
inferred between GWAS cohorts. This multi-ancestry approach
holds particular promise for ancient populations, as it may
help to identify variant associations which are segregating in
only a subset of present-day populations, but which were more
widespread in the past.

These studies also underscore the importance of studying
the ancestral haplotype backgrounds on which beneficial,
deleterious or neutral alleles spread. Recent studies have shown
that tests of selection on individual loci can gain power by
explicitly modelling patterns of ancestry across the genome
(Pierron et al., 2018; Hamid et al., 2021). Strong selective
signals might be masked by post-selection admixture processes,
but might become evident once the ancestry of the selected
haplotypes is explicitly modelled (Souilmi et al., 2020). This
phenomenon is also likely to affect polygenic adaptation studies,
particularly when the degree of correlation between genetic score
differences and differences in ancestral haplotype backgrounds
is expected to be high, for example, after admixture between
populations that have been evolving in isolation for long
periods of time.

A promising avenue of research is developing around new
methods for approximately inferring ancestral recombination
graphs (ARG) via the construction of tree sequences (Kelleher
et al., 2019; Speidel et al., 2019), which have recently
been extended to incorporate non-contemporaneous sampling
(Speidel et al., 2021; Wohns et al., 2021). An ARG is a
model which contains a detailed description of the genealogical
relationships in a set of samples, including the full history
of gene trees, ancestral haplotypes and recombination events
which relate the samples to each other at every site in the
genome (Griffiths and Marjoram, 1997). One potential advantage
of an ARG is that it may be used to help mitigate issues
with the portability of polygenic scores. By building an ARG
composed of both ancient samples and the present-day cohorts
used to ascertain the GWAS associations, one could potentially
determine which haplotypes are shared between the GWAS
cohort and the ancient populations; thereby reducing effect
size bias in populations that are only partially ancestral to the
GWAS cohort.

Another area in which ancient genomes offer unique
potential is in detecting polygenic adaptation in response
to environmental change. The time-series nature of ancient
genomes provides the potential for the incorporation of
paleoclimate reconstructions (e.g., Brown et al., 2018) into tests
of polygenic adaptation, in a manner that is not possible with
present-day data alone.

Ultimately, the ancient genomics community must come
to terms with the limitations of genetic hindcasting. Ancient
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genomes provide an unprecedented window into our past,
but this window is often blurry and distorted. There is still
a lot of information waiting to be obtained from ancient
DNA, and some of the blurriness might ultimately come
into focus as computational methods continue to improve.
But we must also accept the fact that many aspects of
past human biology—including physical characteristics and
disease susceptibility—might be irrevocably lost to the tides
of history. Ancient genome sequences are, after all, molecular
fossils: imperfect and degraded records of lives that ceased
to exist long ago.
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Identity-by-descent (IBD), the detection of shared segments inherited from a common
ancestor, is a fundamental concept in genomics with broad applications in the
characterization and analysis of genomes. While historically the concept of IBD was
extensively utilized through linkage analyses and in studies of founder populations,
applications of IBD-based methods subsided during the genome-wide association
study era. This was primarily due to the computational expense of IBD detection,
which becomes increasingly relevant as the field moves toward the analysis of biobank-
scale datasets that encompass individuals from highly diverse backgrounds. To address
these computational barriers, the past several years have seen new methodological
advances enabling IBD detection for datasets in the hundreds of thousands to millions
of individuals, enabling novel analyses at an unprecedented scale. Here, we describe
the latest innovations in IBD detection and describe opportunities for the application of
IBD-based methods across a broad range of questions in the field of genomics.

Keywords: genetics, pedigree, relatedness inference, biobank, identity-by-descent

INTRODUCTION

The rapid growth and increasing availability of biobank-scale datasets has led to their increased
utilization in human genetics studies, however, the demographic and evolutionary forces that
underly genomic patterns within these data are often overlooked. Biases in sample recruitment
has led to underrepresentation of non-European ancestry participants, limiting the scope and
broad applicability of medical genomics and precision medicine. Additionally, standard genetic
analytical frameworks often overlook the fine-scale population structure relevant to the segregation
of rare variants, despite their role in common, complex diseases becoming increasingly apparent
(Hernandez et al., 2019; Taliun et al., 2021). For these reasons, there is an increasing need for novel
methods that can account for demographic substructure driving patterns of variation across the
site frequency spectrum in large, diverse cohorts (Gravel et al., 2011). The principle of identity-by-
descent (IBD) offers a framework through which we can interpret and leverage the demographic
histories of large-scale human genomic data, and improve statistical power to detect causal variants.

Identity-by-descent is the shared inheritance of an identical portion of the genome between
two individuals (Browning, 2008; Gusev et al., 2008; Browning and Browning, 2010, Browning
and Browning, 2012; Henn et al., 2012; Thompson, 2013). This is distinct from identity-by-state
(IBS), in which a portion of two individual’s genomes may appear identical, but not necessarily
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due to recent shared co-inheritance. Leveraging properties of IBD
allows researchers to infer a vast amount of information about a
population’s demographic history (Carmi et al., 2013; Palamara
and Pe’er, 2013; Nait Saada et al., 2020), allowing for evolutionary
and pedigree-derived insights that can aid in the interpretation of
genetic variation. Further, identifying these shared segments from
a recent common ancestor can enrich for shared patterns of rare
variation, due to the relationship between allele age and frequency
(Slatkin and Rannala, 2000). In essence, inference of IBD sharing
at the population level can allow for the same genetic frameworks
behind pedigree studies and linkage analyses to be applied to
large population-level genotyped or sequenced data sets. In this
review, we explore the population genomic principles governing
patterns of IBD sharing, past and recent methods for detecting
IBD in population scale data, and downstream applications in
contemporary human genomics.

GOVERNING EVOLUTIONARY
POPULATION GENETICS PRINCIPLES

Methods of IBD detection, or the identification of haplotypes
likely to arise from a recent common ancestor are well established
in theory but are rarely applied to modern, biobank-scale
datasets. These modern algorithms have been shown to have
high accuracy and quick computational run times (Ramstetter
et al., 2017). The underlying principle is that long haplotypes
shared between individuals are statistically more likely to arise
from relatedness due to deep, shared population history as
opposed to random recombination or mutation (Browning,
2008; Browning and Browning, 2015). The more closely related
individuals are, the higher the percentage of their genome will
be shared IBD, since they share a common ancestor more
recently in their genealogical history than two randomly sampled
individuals. As populations both diverge and intermix over time,
lengths of IBD segments will degrade due to recombination
(Carmi et al., 2013; Palamara and Pe’er, 2013), therefore longer
haplotypic segments tend to represent more recent relatedness
due to there being a lower probability of recombination inducing
a decay in their length over shorter spans of genealogical
time (Henn et al., 2012). For a given set of observed genetic
data and associated recombination rate estimates, the unknown
population history can be modeled by the population genetics
principle of the coalescent. This results in an abundance of
information that can be inferred from the properties of the
shared IBD segments. The length of a shared IBD segment
serves as a proxy for age of the most recent common ancestor
at that genomic region, i.e., a longer IBD segment reflects a
more recent common ancestor. Therefore, by using IBD to
measure local relatedness between individuals along the genome,
it is possible to infer aspects of a population’s demographic
history. For instance, factors such as the effective population
size over antecedent generations, bottlenecks and subsequent
founder effects may be estimated given the distribution of
observed IBD in a contemporary population (Browning and
Browning, 2015). This has implications at the population level,
as represented by patterns of IBD-sharing genome-wide, but can

also be informative at specific loci along the genome, and can
provide demographic and historical context to loci associated
with complex traits. IBD can account for demography of a
population for a given risk allele, that is, a variant arising
through mutation or recombination, spreading and surviving in
a population due to demographic events and genetic drift, has
information that is encoded in the spanning inherited segment
that is informative of evolutionary and complex disease processes
(Nelson et al., 2018; Tian et al., 2019). With the concept of
IBD explained, we will now offer some of the applications in
contemporary human genomics.

A crucial goal in population genetics is the estimation of
the mutation rate across the genome. IBD-based methods can
augment mutation rate estimation approaches by leveraging IBD
segments to condition on recent ancestry as part of the estimation
process. Prior techniques involved using trios of parents and
offspring to estimate mutation rate. However, this approach is
difficult to implement due to the logistical challenges of recruiting
trios, and is sensitive to genotyping errors or somatic mutations
being incorrectly classified as de novo mutations (Shah et al.,
2018; Tian et al., 2019). In identifying IBD segments, researchers
can quantify the de novo mutation rate on each segment related
to the degree of kinship between the samples to reduce the
false positive rate, particularly when compared to small pedigree-
based studies. Furthermore, IBD methods allow for the expansion
beyond pedigree studies to large-scale population-based datasets
by leveraging the inherent background IBD present in human
populations, with recent investigations further narrowing the
confidence in our estimation of mutation rates to between
1.02 × 10−8 and 1.56 × 10−8 (Campbell et al., 2012; Palamara
et al., 2015). Other studies have shown that inferring short IBD
segments into longer IBD segments can help to adjust estimations
of the de novo mutation rate (Chiang et al., 2016). By leveraging
IBD, the fundamental question of what mutation rates are across
the genome can be more confidently assessed by creating more
complete models of mutation, recombination and kinship.

Alongside interrogating the mutation rate of the genome,
there has been significant interest in determining the variation in
the recombination landscape among global human populations.
In addition to having different population level prevalences,
the same complex disease loci may exhibit local differences in
linkage disequilibrium that directly impact fine-mapping and
other common genetic analyses (Wojcik et al., 2019). This means
that population-specific recombination maps will be important
for fine-mapping both common and rare variants in complex
diseases in diverse populations. One recent study showed that
building a recombination map from IBD segments yields better
estimation of recombinational endpoints and time-to-most-
recent-common-ancestor when compared to LD- or admixture-
based approaches (Zhou et al., 2020a). Here, IBD methods,
particularly those that can work accurately and at scale, can help
to create population specific recombination maps that will in turn
allow for more accurate simulations of each specific population’s
demographic history, leading to other downstream applications
such as improved imputation.

Identity-by-descent detection also plays into the recent
advances in population structure estimation, particularly at fine
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scale. Inherent to the idea of a population is the idea of
shared ancestry and with this shared ancestry comes a higher
probability of relatedness, and a larger portion of the genome
shared IBD between any sampled individuals within the same
population, when compared to two individuals sampled from
between populations. We consider, as an example, the question
of improving admixture inference accuracy. By identifying
IBD segments among individuals in a population, admixture
measurements can be considered with higher accuracy than
just comparing genotypes, which may be additionally influenced
by errors or somatic mutations. In addition, as studies grow
larger, the search space for identifying shared cryptic ancestry as
captured by IBD tends to scale quadratically (i.e., with the total
pairs of individuals). Thus, a high degree of cryptic relatedness
can be present in large-scale genetics studies when a prior,
smaller study in the same population may have shown little to no
cryptic relatedness. To account for this component of population
structure, IBD methods allow researchers to reduce confounding
in their study design and better reflect the populations’ allele
frequencies by matching cases and controls on the basis of genetic
ancestry (Palin et al., 2011; Nelson et al., 2018; Sohail et al., 2019).

Concurrent with GWAS, mapping of genetic variants to IBD
segments and/or clusters is an alternative method that can help
to detect significant associations with a trait of interest. This is
similar to how the technique of linkage mapping narrows the
genetic signal to a linkage peak (Gusev et al., 2011; Browning
and Thompson, 2012). Rare, causal variants preserved in the
population while being affected by population demography,
drift, selection and substructure have been shown to fall within
segments of the genome that are IBD between pairs of individuals
in study populations. Analysis of founder populations offer
examples of how rare variants can be identified using IBD
methods: one example showed how broadly rare European
variants contribute disproportionately to disease risk in Quebec
(Nelson et al., 2018). Similarly, the elevated IBD patterns present
in island populations have empowered novel discoveries, such as
the link between height-associated loci and a collagen disorder
found in Puerto Ricans (Belbin et al., 2017). With increasing
recognition of the role of rare variants in complex disease, and
the highly structured manner in which they segregate, methods
that leverage IBD for rare variant detection have the potential to
be increasingly useful for rare variant discovery.

Finally, imputation can be dramatically improved when
leveraging the population specific information inherent to
IBD. With growing reference panels from global populations,
imputation is resulting in more accurate haplotype matching
(Kowalski et al., 2019). IBD can further improve this by
noting how to match sample haplotypes to appropriate ancestral
references for imputation in a concept called a Study-Specific
Reference Panel (SSRP; Gusev et al., 2012; Uricchio et al., 2012;
Abney and ElSherbiny, 2019). In practice, modern imputation
methods hosted in current servers attempt to approximate this
process, but do not recapitulate the augmentation of standard
reference panels with appropriate SSRPs (Das et al., 2016). Even
without a well annotated pedigree, modern IBD techniques
show that imputation quality can be drastically improved when
leveraging SSRPs above typical LD based imputation methods

(Abney and ElSherbiny, 2019). Not only is IBD useful alone, but it
also augments more standard imputation methods by improving
imputation probabilities at difficult-to-impute SNPs. By creating
custom SSRPs, recruitment efforts to improve representation
of understudied populations in human genetics (Bustamante
et al., 2011; Popejoy and Fullerton, 2016) can be efficiently
leveraged for imputing rare variants, particularly those with
greater population-specificity (Gravel et al., 2011).

With the utility of IBD detection outlined, we will next
describe the theoretical, statistical and computational means
through which IBD detection algorithms are implemented.

OVERVIEW OF METHODS

Both novel computational paradigms and improvements in
computational architecture have led to scalable and accurate
methods for IBD detection (Table 1). Originally, whether
through strict string pattern matching or fuzzier matching,
methods were not equipped to deal with the inherent quadratic
scaling of IBD, limiting the size of initial investigations. The
era of high-throughput IBD detection began with GERMLINE
(Gusev et al., 2008) to detect variation in IBD patterns
efficiently and explore how they are influenced by population
processes. GERMLINE creates a hash table between short,
exact matches of haplotypes and extending into longer, fuzzy
(i.e., allowing for small SNP mismatches or genotype errors)
IBD segments. This “seed and extend” paradigm, leveraging
the inherent efficiency of short hashing functions for speedup
beyond standard pairwise comparisons has been adopted by
subsequent detection algorithms (Shemirani et al., 2019; Nait
Saada et al., 2020), and improved efficiency over hidden
Markov model (HMM)-based algorithms or simpler string
matching approaches. The computational efficiency garnered by
GERMLINE allows computational time to scale approximately
linearly with the number of samples and genotyped variants.
While GERMLINE demonstrated accuracy and efficiency in
identifying known IBD from simulated datasets and early GWAS
studies, it does not easily scale to sample sizes in the hundreds
of thousands of individuals, as seen in many contemporary
genetic cohorts [although it can provide meaningful insights
into biobank-scale data with extensive parallelization (Sapin and
Keller, 2021)]. Thus, the primary value in detailing GERMLINE is
to describe how it influenced the current IBD calling algorithms
outlined below. While GERMLINE works in both diploid and
haploid modes, much recent work has been focused on recent
haploid methods given the ubiquity of phasing in modern
genomic analyses, although we discuss recent efforts in diploid
IBD detection as well.

One of recent innovations in the rapid detection of IBD
segments is the ILASH algorithm (Shemirani et al., 2019).
ILASH works on the principle of locality sensitive hashing
(Leskovec et al., 2020) to efficiently search the genome. It
begins with a similar “seed and extend” hash table of two
individuals in a data set via small stretches of DNA and
extending data if the two stretches meet criteria matching
IBD similarity. The locality sensitive hashing implemented in
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TABLE 1 | Overview of IBD detection tools.

Tool Name Underlying algorithm Diploid/ Citation OS compatibility Link

Haploid

GERMLINE Hash and extension Diploid/Haploid Gusev et al., 2008 UNIX, compile with make http://gusevlab.org/projects/germline

RaPID PBWT on phased haplotypes Haploid Naseri et al., 2019 UNIX, pre-compiled https://github.com/ZhiGroup/RaPID

ILASH Locality sensitive hashing,
extension

Haploid Shemirani et al., 2019 UNIX, CMAKE v3.5 or
higher required

https://github.com/roohy/iLASH

Phaseibd Templated positional
Burrows–Wheeler transform
(TPBWT)

Diploid/Haploid Freyman et al., 2021 UNIX, requires the Python
packages: Cython, numpy,
and pandas

https://github.com/23andMe/
phasedibd

FastSMC Hash/Extend plus HMM for
validation

Haploid Nait Saada et al., 2020 Ubuntu, macOS, compile
with cmake, some python
dependencies

https://github.com/PalamaraLab/
FastSMC

IBIS Sliding Window Overlap on
unphased genotypes

Diploid Seidman et al., 2020 UNIX, compile with make https://github.com/williamslab/ibis

Hap-IBD Error adjusted PBWT Haploid Zhou et al., 2020b UNIX, runs with java -jar https://github.com/browning-
lab/hap-ibd

PBWT, Positional Burroughs-Wheeler Transformation; HMM, Hidden Markov Model.

ILASH is scalable to IBD detection in tens to hundreds of
thousands of individuals, such as in the PAGE Study and
UK BioBank. Furthermore, it utilizes multiple parallelized
computing across multiple stages of the algorithm to ensure
optimization. While ILASH is optimized for the biobank era of
genetics and proves easy to use in standard analysis pipelines,
there are other algorithms with alternative mathematical and
computational approaches.

Another solution to efficient IBD detection is RaPID (Naseri
et al., 2019). Instead of locality sensitive hashing, RaPID
works through random projections of the low-resolution
genetic data and applying the Positional Burroughs-Wheeler
Transformation (PBWT; Durbin, 2014)between phased
individual haplotypes until a perfect match is obtained.
These matches are also stored in a hash table and extended
with further matches as previously detailed, combining those
results into an IBD segment. While PBWT is an efficient
data transformation for genetic data, a key additional step
in RaPID incorporates the approximate matching needed to
be added to tolerate small mismatches, while only adding
trivially to the computational time. Furthermore, the accuracy
of results can be improved by subsequent iterations of
PWBT, albeit at the cost of longer analysis time. Developers
also benchmarked RaPID on simulated and UK BioBank
data, showing performance and accuracy results similar
to those of ILASH.

Another method that has been developed on top of
existing theory is hap-IBD (Zhou et al., 2020b). Building
on extensive previous work in IBD estimation through the
Beagle software program, researchers have made significant
advances in haploid IBD speed. In their most recent efforts,
they developed hap-IBD as an algorithm for implementing
PBWT similar to RaPID. It differs from RaPID in that it
controls for false positives of genotype error or mutation by
allowing for small gaps of non-IBS between IBD segments.
This allows the algorithm to account for gene conversion,
a common phenomenon that can disrupt otherwise IBD

segments. In addition, hap-IBD may run the PBWT in
parallel, thus showing the best performance among algorithms
benchmarked in UK BioBank data. Similarly, investigators at
23andMe leveraged the same PBWT to develop their new
Templated PBWT framework (Freyman et al., 2021) with
similar properties and efficient, scalable runtime. TPBWT is
notable for attempting to identify and correct phase switch
errors, thereby improving IBD tract length estimation and long-
range phasing.

Another novel algorithmic extension that builds on IBD
detection and that shows high performance in accuracy as well
as speed is FastSMC (Nait Saada et al., 2020). FastSMC builds
upon the hash table GERMLINE method as a first identification
step by also including a validation step that uses a approximate
coalescent HMM (Palamara et al., 2018). This second step
distinguishes between segments of IBS and IBD by estimating
the probability a shared IBS segment is due to recent common
ancestry, thus allowing for IBD calls within shorter windows.
This coalescence probability is reported as an IBD quality score,
providing a further layer of information in addition to the IBD
haplotypes themselves. By implementing this validation step,
FastSMC shows higher accuracy in IBD identification at limited
additional computational performance when compared to other
algorithms. FastSMC is just one of many IBD identification tools
that extend upon the frameworks originated in GERMLINE to
improve performance and accuracy, and because of its two-
step design, it could easily be adapted to utilize one of the
newer IBD detection methods to further improve efficiency of
the initial step.

While many IBD detection methods rely upon accurate
phasing of alleles, one approach, IBIS, does not have this caveat.
IBIS works through long range allelic sharing, detecting shared
homozygous alleles between individuals and uses Boolean logic
operators to determine IBD from a given rule set (Seidman et al.,
2020). The main benefit of IBIS compared to other methods is
the time and computational resources saved from not having
to pre-phase the genetic data before IBD detection. The major
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caveat behind this is that without phase information providing
haplotype resolution, excess homozygosity within putative IBD
segments can increase the false positive rate, and the shortest
segments detectable in diploid IBD are larger than in haploid
methods. However, this limitation on segment length (say ∼7 cM
for diploid, versus 2–3 cM for haploid) can be acceptable for
certain analyses. As previously stated, more recently related
individuals share longer IBD segments which may empower
risk allele identification or where measuring the length of
long IBD segments is of particular importance. Researchers
may be especially interested in IBIS as an intermediate
analysis strategy, balancing accuracy and speed, for preliminary
exploration of a dataset, or for applications that do not
require phasing.

A final value to IBD is that in association studies looking
for rare, causal variants in complex disease with large biobank
sample sized data sets, IBD offers improved statistical power
over traditional GWAS methods. This is because, rare variants
are much more likely to be found within an IBD cluster (Nait
Saada et al., 2020). Coalescence simulation-based work has shown
the concordance between IBD and rare exomic variants (Nait
Saada et al., 2020). Similarly, in the UK BioBank, researchers
found significant associations to blood related traits otherwise
not detected in exome-based tests by using IBD methods to
predict sharing of ultra-rare, causal variants (MAF < 0.0001;
Nait Saada et al., 2020). By identifying regions of IBD where
rare, causal variants are likely to occur, the threshold for
significance can be appropriately lowered, analogous to how
a linkage peak narrows the search for a genetic signal. As
a result of looking for associations between IBD segments
and complex disease status, we propose the coining of the
term “IBDWAS” to make the value of IBD-driven insights
more pronounced.

CONCLUSION

To summarize, IBD has significant but often-overlooked
meaning in human genetics studies in the context of biobank
scale data. All genetic variants affecting traits are influenced
by the combination of the evolutionary forces of selection
and genetic drift. While in the past inferring the demographic
history of a study’s population was difficult, the field of
genomics has reached datasets so large that ignoring underlying
population history can lead to inappropriate conclusions in
disease associations and pathogenicity adjudication. As biobank-
scale datasets continue to grow, IBD-based analyses offer a
paradigm to address unanswered questions within the field of
genomics, and with recent advances in IBD-detection methods
there are new opportunities to study these patterns of relatedness
at scale. It is therefore relevant to incorporate methods of
IBD detection into genetic studies to gain insights into the
demographic history of variants of interest, to improve statistical
power in detecting rare, causal variants, and to improve the
accuracy of imputation, among other relevant analyses.
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There is a well-recognized need to include diverse populations in genetic studies,
but several obstacles continue to be prohibitive, including (but are not limited to) the
difficulty of recruiting individuals from diverse populations in large numbers and the lack
of representation in available genomic references. These obstacles notwithstanding,
studying multiple diverse populations would provide informative, population-specific
insights. Using Native Hawaiians as an example of an understudied population with
a unique evolutionary history, I will argue that by developing key genomic resources and
integrating evolutionary thinking into genetic epidemiology, we will have the opportunity
to efficiently advance our knowledge of the genetic risk factors, ameliorate health
disparity, and improve healthcare in this underserved population.

Keywords: population genetics, human genetics, genome-wide association studies, natural selection, Native
Hawaiians, demographic history

INTRODUCTION

Genome-wide association studies (GWASs) have revealed the polygenic nature of human complex
traits and diseases (Hirschhorn and Daly, 2005; McCarthy et al., 2008; Visscher et al., 2017), but
these successes are heavily biased toward European-ancestry populations (Need and Goldstein,
2009; Popejoy and Fullerton, 2016; Spratt et al., 2016). To truly personalize medicine for everyone,
we need to better understand both environmental/lifestyle risk factors and the genetic etiology of
complex diseases, particularly in geographically diverse, often underserved, populations. It remains
a challenge to attain sample sizes from diverse populations comparable to existing European-
ancestry cohorts (>1 million individuals). Even when genetic data from understudied populations
are included, they often comprise a small contributing part of a larger consortium, thereby masking
any population-specific effects. There is thus a need to broadly include diverse populations in
genomic studies through focused efforts. Whereas consortium-scale sample sizes are required
to detect individual variants with ever-decreasing effect sizes associated with a complex trait,
the genetic contributions to phenotypic differences among populations result from the distinct
population history and unique interactions with the environment of the past or the present, which
can be learned from moderately sized studies. For understudied populations, the focus is therefore
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both to transfer knowledge gained from large-scale Euro-centric
studies and to supplement our understanding with insights
specific to the population at hand.

Genetic and phenotypic differences between populations can
arise through two broad categories of evolutionary mechanisms:
demographic events and natural selection. An example of
demographic events is a population bottleneck. In a bottlenecked
population, alleles with functional, deleterious, consequences
can, by chance, overcome the impact of negative selection
(Ohta, 1973) to reach higher frequencies and, in turn, explain
a greater proportion of the heritability of a complex trait
compared to alleles in a non-bottlenecked population (Lim et al.,
2014; Lohmueller, 2014; Locke et al., 2019). An example of
natural selection is local adaptation to selective pressures such
as climate, diet, UV exposures, or pathogens (Fan et al., 2016;
Mathieson, 2020; Rees et al., 2020). Alleles underlying adaptive
traits will increase in frequency in the local population. But as
the environment changed in modern societies, these adaptations
could manifest as diseases and contribute to differences in genetic
risk between populations (Greaves, 2007; Stearns et al., 2010;
Fay, 2013). Leveraging these evolutionary events in practice has
already identified population-enriched alleles disproportionately
contributing to human complex traits in multiple populations
around the globe (Zhernakova et al., 2010; Moltke et al., 2014;
Sidore et al., 2015; Zoledziewska et al., 2015; Minster et al.,
2016; Steri et al., 2017; Grarup et al., 2018a,b; Locke et al., 2019;
Asgari et al., 2020; Lin et al., 2020). These discovered alleles
are oftentimes rare and difficult to map in large continental
populations, but were found using only a moderately sized (by
GWAS standards) cohort. Therefore, a better understanding
of our evolutionary past will enable better designs and
interpretations of genetic epidemiology studies, provide an
opportunity to better understand the biology of human traits and
diseases, help explain the disparity in risks among populations
today, and allow the incorporation of evolutionary insights
into our clinical practice (Stearns et al., 2010). However,
these questions have not been systematically investigated in
geographically diverse populations around the globe.

As an illustrative and motivating example, I will describe the
challenges and benefits to combine evolutionary insights and
genetic studies with the Native Hawaiian population. Though
they are one of the smallest ethnic minorities in the United States,
consisting of 1.2 million individuals and 0.4% of the United States
census in 2010, Native Hawaiians and other Pacific Islanders
(alone or in combination with other races) showed the second
fastest rate of growth at 40% between 2000 and 2010. Compared
to European- or Asian-Americans, Native Hawaiians display
alarming rates of obesity, diabetes, cardiovascular diseases,
cancers, and other related chronic health conditions (Grandinetti
et al., 2002; Pike et al., 2002; Maskarinec et al., 2009; Mau
et al., 2009; Madan et al., 2012; Singh and Lin, 2013; Tung
and Barnes, 2014; Braden and Nigg, 2016). Environmental
and/or social factors undoubtedly play an important role for
these disparity, but in some cases, the risks for diseases are
elevated even after adjusting for BMI and other socioeconomic
and lifestyle factors (Pike et al., 2002; Maskarinec et al., 2009;
Madan et al., 2012; Singh and Lin, 2013). This suggests that

systematic differences in the number, frequencies, or effects of
genetic risk alleles could partly explain the differences in risk
among populations. The history of Native Hawaiians exemplifies
all major evolutionary mechanisms influencing the pattern of
variations in humans – population size changes, adaptation, and
recent admixture. I will describe the opportunities to leverage
extensively characterized genetic history for understanding the
Hawaiian-specific disease architecture, current challenges that
inhibit large-scale and systematic genetic studies, and important
considerations of partnering with Native Hawaiians to perform
genetic research. While I focus on leveraging evolutionary
insight to improve the design and interpretation of genomic
studies in understudied populations, there are important ethical
considerations of studies with indigenous communities. I
describe briefly my own experience and approach, and note that
a large body of literature exists (e.g., Claw et al., 2018; Merriman
and Wilcox, 2018; Garrison et al., 2019; Fox, 2020; Hudson et al.,
2020, among others) that could not be covered in detail here.
Finally, the opportunities and challenges described here are not
limited to Native Hawaiians and are generally applicable to other
understudied populations around the globe.

DEMOGRAPHIC AND ADMIXTURE
HISTORY OF NATIVE HAWAIIANS

There is no detailed characterization of the demographic history
of Native Hawaiians using genetic data, though there are
suggested models for Eastern Polynesians based on archeological
findings, ancient and modern DNA studies, and oral history.
Because of the shared genetic ancestry with aboriginal people
in Island Southeast Asia, it has been hypothesized that
Austronesian-speaking people from locations such as Taiwan
or the Philippines migrated to the remote reaches of Oceania
and Western Polynesia about 2,000–3,000 years ago (Bellwood,
2011; Skoglund et al., 2016; Gosling and Matisoo-Smith, 2018;
Hudjashov et al., 2018; Lipson et al., 2018; Posth et al., 2018).
These Austronesians settled in islands like Vanuatu, Tonga, and
Samoa for nearly 1,000–2,000 years (Nordyke, 1989; Gosling
et al., 2015), where they coinhabited with the Papuan-speaking
natives of Northern Melanesia. Today, Polynesian populations
[including the Native Hawaiians (Kim et al., 2012)] have
varying levels of an ancestry found predominantly in present-
day Papuans (Skoglund et al., 2016; Lipson et al., 2018; Posth
et al., 2018). The ancient Polynesians began long-range seafaring
to the vast stretches of the Pacific around 200 B.C. to 700 A.D.,
arriving at Hawai‘i between 900 A.D. and 1300 A.D. (Kirch, 1985;
Bellwood, 1987; Nordyke, 1989). Inter-island interactions were
initially frequent but ceased by the 1400s perhaps due to the
development of more complex sociopolitical structures. Native
Hawaiians then became relatively isolated until the European
settlers arrived (Nordyke, 1989; Gosling et al., 2015). Records
of Native Hawaiian population sizes pre-European contact are
unreliable, but the effective population sizes (Ne) for Native
Hawaiians are likely small throughout history since a genetically
estimated Ne as recent as 1,000 years ago was reported to be
∼1,000 for Melanesians and Samoans (Bergström et al., 2020;

Frontiers in Genetics | www.frontiersin.org 2 September 2021 | Volume 12 | Article 64388360

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-643883 September 23, 2021 Time: 11:45 # 3

Chiang Genetic Studies of Diverse Populations

Harris et al., 2020). Thus, the demographic history of the Native
Hawaiians is likely characterized by multiple founding events
and persistent small sizes, which would permit rare alleles to
drift to higher frequencies and contribute uniquely to the genetic
architecture. Like previous examples from Sardinia, Peru, and
Samoa (Sidore et al., 2015; Zoledziewska et al., 2015; Minster
et al., 2016; Asgari et al., 2020), a moderate-sized cohort of Native
Hawaiians and other Polynesians could provide power to detect
these population-specific associations.

Native Hawaiians are also recently admixed. The largest wave
of migrants occurred following Captain James Cook’s arrival
in Hawai‘i in 1778. Immigrants and missionaries from Europe
and Americas as well as laborers from China and East Asia
arrived throughout the 19th and 20th centuries. African-ancestry
individuals began arriving on the island in the 20th century,
mostly as part of the military force (Nordyke, 1989). Today,
Native Hawaiians are the group most likely to report having
two or more components of ancestry in the United States
census (Humes et al., 2011), deriving major continental ancestry
from the Polynesians, Europeans, and East Asians (Sun et al.,
2021). Variations of these continental ancestries would also partly
explain risks of diseases in Native Hawaiians. For example,
an individual’s proportion of Polynesian ancestry is associated
with the risk of obesity, while both Polynesian and East Asian
ancestries contribute to the risk of type 2 diabetes (T2D) (Sun
et al., 2021; Figure 1). Note that Polynesian ancestry here is better
considered as the component that spread across Polynesia from
the initial settlements in remote Oceania. This component itself
may be a mixture of the ancient Austronesians that showed close
affinity to the East Asian ancestry, as well as the component
ancestry native to Melanesia and found predominantly in
Papuans today (Gosling et al., 2015; Skoglund et al., 2016).
Moreover, while the associations of disease risks with Polynesian
ancestry suggest the presence of Polynesian-specific genetic risk
factors, the associations are also likely to reflect any cultural or
environmental non-genetic factors correlated with Polynesian
ancestry (e.g., diet). Nevertheless, past admixture events suggest
that approaches such as admixture mapping (Winkler et al.,
2010; Shriner, 2017) could identify regions of the genome
disproportionately impacting the health of Native Hawaiians.

POTENTIAL ROLE OF ADAPTATION IN
SHAPING THE GENETIC
ARCHITECTURE

Adaptive events likely shaped the genetic architecture of
complex traits in Native Hawaiians. The successful settlement
of previously uninhabited Hawaiian archipelago likely involved
adopting new subsistence strategies and overcoming famines,
nutritional deficiencies, and higher tropical load of infections
(Gosling et al., 2015). The encounter in the 18th century
with Europeans and their pathogens deeply impacted the
Native Hawaiians: historians have suggested that pathogens
such as syphilis, gonorrhea, measles, whooping cough, mumps,
cholera, or smallpox, among others, contributed to up to
an 80% decrease in census size in Hawai‘i between 1780

and 1850 (Nordyke, 1989). Diets and pathogens are well-
known evolutionary forces that shaped the human genome and
contributed to phenotypic differences between populations today
(Fan et al., 2016; Mathieson, 2020; Rees et al., 2020). As such,
adaptation, whether due to forces of nature or actions of the
people, could also leave a lasting imprint on the health of Native
Hawaiians. However, this hypothesis has not been systematically
tested in Native Hawaiians or any Polynesian populations.

Native Hawaiians, and Polynesian populations at large,
are more susceptible to metabolic diseases such as obesity
and type 2 diabetes (Maskarinec et al., 2009, 2016; Madan
et al., 2012; Gosling et al., 2015; Minster et al., 2016; Sun
et al., 2021). One contested explanation for this elevated
susceptibility is the “Thrifty Gene Hypothesis,” which stipulates
that efficient energy storage during times of famine in the past
provided an evolutionary advantage that is no longer consistent
with the present-day diets. This hypothesis could explain the
higher burden of metabolic diseases observed in Polynesian
populations today, but there are questions of whether the
diversity of environments and genetic ancestries across the Pacific
populations would all converge on the same manifestation of
risk for metabolic syndromes (Gosling et al., 2015). Genetic
support for the Thrifty Gene Hypothesis in other populations has
been inconclusive (Ayub et al., 2014; Koh et al., 2014). Results
from recent genomic data from Polynesian populations have also
been inconsistent, though generally based on single or a few
loci (Cadzow et al., 2016; Minster et al., 2016; Lin et al., 2020).
Therefore, it is difficult to ascribe the hypothesized selective
pressure to the genetic evidence of adaptation. Ultimately,
the Thrifty Gene Hypothesis is just one possible reason for
adaptation. The focus is not testing the Thrifty Gene Hypothesis,
per se, but to understand the link between past adaptation
and present-day health. Given the advancement in population
genetic methods to detect selection across different time scales
(Field et al., 2016; Palamara et al., 2018; Edge and Coop, 2019;
Speidel et al., 2019), and the emerging genomic data from large
epidemiological cohorts from Polynesian populations (Minster
et al., 2016; Sun et al., 2021), there is now an opportunity to
systematically survey the genome for signature of adaptation and
assess their modern-day health consequences.

CHALLENGES IN GENOMIC STUDIES
WITH NATIVE HAWAIIANS

One deterrent to including Native Hawaiians in genomic studies
is the underdevelopment of genomic resources. For other
continental populations, these resources have been abundant
and publicly available, enabling large-scale collaborations and
investigations. Development of these resources in Native
Hawaiians or other Polynesian populations will similarly
accelerate genetic research in these populations.

One sorely needed resource is a catalog of genetic variation,
akin to gnomAD, which contains variation discovered from
sequencing data of up to ∼141,000 individuals (Karczewski et al.,
2020). This catalog has substantially improved clinicians’ ability
to interpret clinical sequencing data of severe and rare genetic
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FIGURE 1 | Impact of ancestry components on complex traits and disease risks in Native Hawaiians. The distribution of estimated disease risk are shown as a
function of a three-component ancestry model. The linear models used were described in Sun et al. (2021), where for each trait examined as the dependent variable,
the effect sizes of the relevant independent variables (e.g., age, BMI, and estimated genetic ancestry as scalar variables, or education level as the categorical
variable) were estimated from a Native Hawaiian cohort. Quantitative (BMI and HDL) traits were modeled using linear regression, which predicts the estimated trait
value in units of standard deviations given the genetic ancestries. Binary [obesity, type 2 diabetes (T2D), heart failure, hyperlipidemia, and hypertension] traits were
modeled using logistic regression, which predicts the probability of disease given genetic ancestries and other covariates. An adult male with age = 50 years,
BMI = 30 units (excluded from the obesity model), and education level = college graduate was assumed for calculating probability of disease or estimated trait value.
For simplicity, a three-component ancestry model with contributions only from European (EUR), East Asian (EAS), and Polynesian (PNS) ancestors was assumed for
Native Hawaiians. The predicted values were interpolated across all possible combinations of ancestries and shown with contour lines. For example, a hypothetical
individual with 80% PNS ancestry, 10% EAS, and 10% EUR ancestry aged 50 years, with BMI 30 and college degree, is predicted to have 35–36% chance of being
affected with T2D. Similarly, someone with 10% PNS ancestry, 80% EAS, and 10% EUR ancestry of the same age, BMI, and education level is predicted to have
∼42% chance of being affected with T2D. Risk for T2D in Native Hawaiians increases with both PNS and EAS components of ancestry. Note that genetic ancestry
captures both genetic and correlated environmental/cultural effects.

Frontiers in Genetics | www.frontiersin.org 4 September 2021 | Volume 12 | Article 64388362

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-643883 September 23, 2021 Time: 11:45 # 5

Chiang Genetic Studies of Diverse Populations

FIGURE 2 | Relatively poor imputation quality for Native Hawaiians due to underrepresentation in imputation reference panels. We imputed 5,325 African Americans,
2,838 Latino Americans, and 3,940 Native Hawaiians from the Multiethnic Cohort (Kolonel et al., 2000) using freeze 8 of the TOPMED imputation server (Taliun et al.,
2021) (imputed in July 2020). Each population was genotyped on the MEGA array and subjected to the same QC filters. As measured by the mean imputation quality,
R2 (rsq), Native Hawaiian individuals are imputed more poorly than other United States ethnic minority populations, particularly for variants with minor allele frequency
<5%. The disparity is even stronger when focusing on only the 178 Native Hawaiians with estimated Polynesian ancestry >90% (NH Polynesians) (Lin et al., 2020).

diseases and to reach a genetic diagnosis. Though still dominated
by genomic data from European individuals, gnomAD does
include data from ∼20,000 individuals of African ancestry, and
similar catalogs are emerging from Asians as well (Chiang et al.,
2018; Liu et al., 2018; GenomeAsia100K Consortium, 2019)1.
However, Native Hawaiians, or Polynesians in general, are not yet
represented in these catalogs. The publicly available sequencing
data of Native Hawaiians are limited to data from a single
individual in the Simons Genome Diversity Project (Mallick
et al., 2016). [There are also ∼28 individuals across Oceania in
the Human Genome Diversity Panel (Bergström et al., 2020).]
Going forward, the sample size need not be large – even a
few hundred individuals will allow one to detect nearly all
common variations (with frequency >1%) in the population.
Since many of these variants will be Polynesian-specific and
have not been observed elsewhere in the world, such a catalog
will further improve physicians’ ability to interpret variants of
unknown significance in the clinical setting to directly benefit the
Polynesian community (Easteal et al., 2020).

To accelerate the discovery of genetic associations to diseases,
we also need to improve Native Hawaiian representation in
imputation reference panels. Genome-wide genotyping followed
by imputation of the unobserved genetic variation is one of the
most efficient approaches to conduct genetic association studies.
Publicly available imputation reference panels are constantly

1Genome Medical alliance Japan Project. A Comprehensive Japanese Genetic
Variation Database. Available Online at: https://togovar.biosciencedbc.jp/

growing in size, allowing investigators to query rarer variations
that are usually absent on genotyping arrays. Because of the lack
of representation in imputation reference panels, the quality of
imputation in Native Hawaiians lags significantly behind that of
other ethnic minorities (Figure 2). In a proof-of-principle study,
it was shown that rs373863828 in CREBRF is associated with a
large effect on BMI and T2D in Native Hawaiians, but could
not be imputed or discovered using publicly available imputation
resources at the time, despite the study having sufficient statistical
power to do so (Lin et al., 2020). The lack of representation has
thus contributed to the disparity in bringing genomic medicine
to Native Hawaiians compared to other ethnic minorities in
the United States.

Ultimately, larger cohorts will boost statistical power and
undoubtedly enhance the genomic insights we can garner, but
large recruitments in indigenous communities such as the Native
Hawaiians have been challenging. The population sizes of any
indigenous population are already small, and past mistakes
by researchers, such as the Havasupai diabetes study that
misused genetic information from the indigenous community
in unconsented studies (Garrison et al., 2019), have also caused
community mistrust in scientists. In a recent assessment of Pacific
Islanders, over 65% of participants shared some reservation or
reluctance about providing biospecimens for research, citing
concerns due to spirituality, lack of knowledge of research,
or invasion of privacy, among others (Kwan et al., 2015).
With increasing awareness of these past mistakes, genome
scientists should open dialog with the community early and
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often, respect both community and individual consent, and
partner with indigenous communities rather than just enrolling
them as participants (Claw et al., 2018; Garrison et al., 2019;
Hudson et al., 2020).

DISCUSSION

Population genetic theories predict the existence of unique
genetic variants segregating in the Native Hawaiian population
that disproportionately impact their health. Identifying these
variants could significantly improve healthcare practices and
directly benefit this community. Though several challenges
currently exist, the outlook for genetic research in Native
Hawaiians and other diverse populations in general can
be promising while requiring only a moderate level of
funding commitments. Whole genome sequencing of only 150–
200 Native Hawaiian individuals would already allow better
imputation of Native Hawaiian individuals in a genetic study
and accelerate the discovery of population-specific alleles of large
effects (Jewett et al., 2012; Lin et al., 2020). The generation and
aggregation of WGS data from multiple Polynesian populations
will also provide the catalog of genetic variation currently lacking
in Polynesian populations, make an immediate impact in the
clinical care of Polynesian populations, and accelerate future
large-scale genomic research in these populations. Deploying
low-coverage sequencing as an alternative first step could also
efficiently identify population-specific alleles (Sidore et al., 2015;
Chiang et al., 2018; Martin et al., 2021). Importantly, this
roadmap is cost-efficient, achievable by pooling resources from
a handful of research labs. These are realistic outlooks over
the next 5 years.

However, it is important to develop the partnership of the
indigenous community in order for the research to proceed.
Past exploitation of indigenous populations (Claw et al., 2018;
Garrison et al., 2019; Hudson et al., 2020) and the lack of benefits
sharing from lucrative pharmaceutical enterprises (Fox, 2020)
have brooded mistrust between underprivileged communities
and scientists. Research with the indigenous community must
also have the community benefits in mind. Note that as health
disparity between populations is also driven by non-genetic or
social factors, the health benefits derived directly from genomic
studies, if any, will likely be slow and not immediately apparent.
Nevertheless, it is still important for genomic research to be
inclusive if we want to achieve equity and representation; in fact,
exclusion of a group of people from research may contribute to
inequity in itself. In this context, it is often beneficial for research
to be led by scientists of the indigenous community as they are
more knowledgeable of the local cultural practices. Alas, there is
a dearth of indigenous researchers in the specific research domain
described here (see Popejoy and Fullerton, 2016; Merriman and
Wilcox, 2018). Whereas pharmaceutical or biotech companies are
positioned to directly benefit indigenous communities through
proceeds distributions or profit sharing, individual researchers,
including non-indigenous ones, are positioned to tailor their
engagement to the unique circumstances of each community. By
leveraging their long-term individualized interactions, individual
researchers will be able to engage in outreach and develop

improved and informed consent process, act in stewardship
of indigenous data, and help build research capacity through
training of the indigenous scientists.

Working within the framework of the Multiethnic Cohort
(Kolonel et al., 2000) study, every one of my research projects
with – and generally all research proposals utilizing biospecimen
data from – the Native Hawaiian population is reviewed by
the Native Hawaiian Community Advisory Board (NHCAB)
composed of scholars and advocates from the community.
A recent study from my group investigating the impact of genetic
ancestry on risk of disease in Native Hawaiians (Sun et al., 2021)
exemplifies how dialog with community representatives provided
the appropriate cultural context. In this study, we observed
that the Polynesian component of genetic ancestry (sometimes
also with the East Asian component) is associated with risk
to certain cardiometabolic diseases (Sun et al., 2021). Through
constructive comments from the NHCAB on the early drafts
of the manuscript, we came to appreciate that even though the
quantification of components of genetic ancestries is a common
first step to dissect population-specific genetic risk factors, it
should not supplant current approaches (e.g., self-identification
or genealogical records) to define community membership.
As researchers, we are aware of the deficiency of research
methods. We knew that estimated ancestry proportions can be
sensitive to the choice of variants analyzed or reference panels
used (Uren et al., 2020). We also understood the conceptual
difference between genetic ancestry and genealogical ancestry.
That is, an individual may not inherit any genetic material
from a genealogical ancestor (Donnelly, 1983). But we did not
necessarily appreciate how an estimated quantity for research use
could detract from an individual’s cultural identity or heritage. It
is through communication with the NHCAB that we stressed and
repeatedly clarified this concept in our eventual manuscript, and
the reviewers noticed.

This is but the first step of active community engagement.
A step toward the right direction, but the efforts need to be
broadened and made consistent. The Aotearoa New Zealand
genomic variome project (Caron et al., 2020) is an example of an
inclusive framework in Polynesian populations that others can
borrow. The Multiethnic Cohort has been entrusted by >5,000
self-identified Native Hawaiians who donated their biospecimen
for research. These individuals have continued to show their
support for research by responding to follow-up questionnaires,
suggesting that the community is clearly open to partake in
research. Now it is up to individual researchers, indigenous or
non-indigenous alike, to continue to earn the trust from the
indigenous community and be an ally.
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Genome-wide association studies (GWAS) have been very successful at identifying
genetic variants influencing a large number of traits. Although the great majority of
these studies have been performed in European-descent individuals, it has been
recognised that including populations with differing ancestries enhances the potential
for identifying causal SNPs due to their differing patterns of linkage disequilibrium.
However, when individuals from distinct ethnicities are included in a GWAS, it is
necessary to implement a number of control steps to ensure that the identified
associations are real genotype-phenotype relationships. In this Review, we discuss the
analyses that are required when performing multi-ethnic studies, including methods for
determining ancestry at the global and local level for sample exclusion, controlling for
ancestry in association testing, and post-GWAS interrogation methods such as genomic
control and meta-analysis. We hope that this overview provides a primer for those
researchers interested in including distinct populations in their studies.

Keywords: GWAS, admixture, ancestry, PCA, regression

1 INTRODUCTION

Genome-wide association studies (GWAS) aim to identify genetic variants (usually single-nucleotide
polymorphisms or SNPs) that are associated with a phenotype of interest. GWAS have been highly
successful at identifying genetic variants influencing a large number of traits, with nearly 5,000
publications and more than 250,000 variant-phenotype associations included in the GWAS Catalog
(Buniello et al., 2019). Not only have GWAS improved our understanding of the aetiology of complex
traits, identifying potential new biological pathways influencing phenotypes, but they are also of
potential clinical value in assessing an individual’s risk of developing particular phenotypes (e.g.,
Manolio (2013); Khera et al. (2018); Lambert et al. (2019)).

However, focusing only on participants of European descent, a characteristic of many published
studies, restricts extrapolation to those of non-European ancestry (most notably for individual risk
prediction (Mills and Rahal, 2019)) and limits available samples for traits common to multiple
ancestries. By including populations with differing ancestries, the potential is enhanced for
identifying causal SNPs or haplotypes because of the differing patterns of linkage disequilibrium
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(LD) across subpopulations. Driven by the need to identify SNPs
with even more modest effect sizes to further elucidate genetic
architecture, GWAS sample sizes have necessarily increased;
therefore, studies of a wider range of populations are
warranted. In recognition of this, the proportion of studies
including individuals of non-European descent has increased
in recent years (Gurdasani et al., 2019). Such adaptations of
study design require re-assessment of analytical approaches;
when individuals from multiple distinct genetic ancestries are
included in a study, it is necessary to implement a number of
control steps to ensure that the associations identified are not
detecting ancestry-driven rather than trait-related genetic effects.

One of the challenges of performing association tests on
genomic data is that demographic history influences the
genomic structure of the population being analysed. If this is
not properly controlled for, any genotype-phenotype association
found in the study may be a consequence of this structure, rather
than genuine trait association. The source of this potential bias is
known as population stratification, where different trait
distributions within genetically distinct subpopulations will
result in those markers associated with the ancestry of the
subpopulation to be also apparently associated with the trait.
As an illustrative example, Choudhry et al. (2006) analysed the
relationship between ancestry-informative markers (SNPs with
considerably different allele frequencies between Native
American, African, and European ancestral populations) and
asthma. They found that three of the 44 tested markers
appeared to be related to the disease in Mexicans, but none of
these associations persisted when ancestry was controlled for
suggesting that the association is driven at least in part by
ancestry. Therefore, it is of utmost importance to ensure that
either all the individuals in a study are from the same ancestry
prior to performing a GWAS or that this ancestry is appropriately
taken into account in the analysis.

Depending on the populations being studied, analysis may not
be as simple as identifying subpopulations in the samples, since
each individual may be descended from multiple subpopulations
tracing back to a mixture event (or admix event) between them.
One of the ways in which we can express this mixing in an
individual is as a function of ancestral populations; that is,
populations that have been isolated from each other in the
past (e.g., European and African). If the combination of these
ancestral populations has been recent, then we expect to observe
longer LD tracts; but these will decay over time (Montana and
Pritchard, 2004), thus adding to the complexity of finding
significant relationships. However, the more diverse linkage
disequilibrium structure also gives the possibility of finding
more nuanced, ancestry-specific signals in a GWAS. The
purpose of this review is to discuss the main approaches that
are used in order to account for population structure in admixed
individuals in a GWAS to select data to include, control for its
influence on findings, and compare or aggregate results across
populations.

In order to provide an understanding of the methods used for
the analysis of admixed populations, we will first review the steps
involved in performing a GWAS. Secondly, we will discuss some
of the methods used in recent years to study admixed

populations, and the way in which each methodology has been
applied. Here, we will both explain the rationale behind each
methodology and give some examples of applications in recent
studies.

2 CONTROLLING FOR POPULATION
STRUCTURE IN GENOME-WIDE
ASSOCIATION STUDIES
For the purposes of this review, we will divide a GWAS into three
steps:

1) Quality control. (QC). This first, critical step involves filtering
poor quality germline DNA samples and inconsistently
performing SNPs from further consideration. This consists
on applying specific filtering criteria to samples and/or SNPs
before proceeding.

2) Association testing. Once QC has been completed, a statistical
test is performed with the aim of detecting association
between variants in the genome and the trait under
consideration.

3) Post-GWAS interrogation. Once candidate SNPs have been
identified, other types of analyses are performed to ensure the
integrity of the association testing including that the influence
of genetic structure has been well controlled for and to explore
the characteristics of the SNPs identified including for
instance biological processes implicated.

In steps 2 and 3, there are ways in which population structure
can be taken into account, but it is important to note that we can
use more than one technique on a single GWAS; in fact, they are
often combined to avoid spurious associations.

In order to illustrate the use of these methods, we sampled data
using the 1,000 Genomes Project (Consortium, 2015) dataset. We
decided to use this dataset because of the self-reported ancestry
label of the samples; these are useful for visualizing and
comparing different methods.

3 ESTIMATING POPULATION STRUCTURE

The next subsection will cover two methods that are helpful in
investigating the ancestry for each of the individuals in our data.
These methods will be present throughout the review and will
become useful for both quality control and genotype-phenotype
association testing. The first one is admixture analysis, which
assumes the existence of discrete ancestral populations from
which the current population is derived. The second is
principal component analysis, which generates explanatory
variables from the genotype data that summarise the sources
of variation among the samples and helps visualise and interpret
the genetic structure of the samples.

3.1 Ancestry Estimation
Ancestry estimation aims to divide an individual’s genome
between multiple ancestral populations from which it is
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hypothesised to have descended. Most methods used here
follow a clustering approach, where each allele is assumed
to have a probability of coming from one of the ancestral
populations; these methods involve assessment of a large
number of SNPs to estimate the contributions of each
ancestral population. It is important to differentiate
between two distinct forms of ancestry estimation: global
and local (Thornton and Bermejo, 2014). Local ancestry is
based on the fact that genetically adjacent regions form
haplotypes whose ancestry can be probabilistically aligned
to each population. There are local ancestry methods based
on a model of recent admixture, and others that can infer gene
flow from ancient hominids (Sankararaman et al., 2016;
Durvasula and Sankararaman, 2019; Hubisz et al., 2020).
The aim of global ancestry is to estimate the contribution,
overall, of the genome from each ancestral population rather
than each precise genomic region.

3.1.1 Global Ancestry
Themain assumption for this estimation is that a given individual
is descended from ancestors drawn from distinct ethnic groups.
The result of an analysis of this kind is an estimation of the
proportion of each individual’s genome that comes from each of
the ancestral populations.

The two most popular algorithms for global ancestry
calculation are STRUCTURE (Pritchard et al. (2000); Falush
et al. (2003); Porras-Hurtado et al. (2013)) and ADMIXTURE
(Alexander et al., 2009). Both of these algorithms require
choosing the number of ancestral populations a priori and
modeling the probability of membership to each ancestral
population. STRUCTURE assumes a Bayesian model that
accounts for linkage disequilibrium within each ancestral
population, whereas ADMIXTURE assumes linkage
equilibrium and uses the unlinked SNPs to apportion ancestry;
this is a practical observation since an extra step will be required
to run ADMIXTURE by thinning the SNPs to create this set of
“independent” SNPs. The results can be visualized in an
admixture plot, which shows the percentage of each
subpopulation (given by the cluster) that the model assigns to
each individual in the sample (Figure 1, and Figure 2A). While
these methods return “estimates” of ancestry, care must be taken
not to overinterpret these results in terms of alignment with
population history.

3.1.2 Local Ancestry
Although global ancestry uses unsupervised methods such as
clustering, local ancestry is more restricted as it requires a locally
recruited reference panel, enabling the estimation of the locus-

FIGURE 1 | Individuals from 1,000 Genomes Project are plotted according to their labeled self-reported ancestry (AFR, African; AMR, Ad Mixed American; EAS,
East Asian; EUR, European; SAS, South Asian). (A) Results from an ADMIXTURE analysis with K � 5 (number of clusters). The colors represent the clusters inferred from
the data. In this figure, we can infer that c1 corresponds to South Asian ancestry, c3 to East Asian ancestry, c4 to European ancestry, and c5 to African ancestry. The
Admixed American population appears as the most varied across clusters and has an exclusive cluster (c2), which suggests that there is a mix of native ancestry
and influx from Africa and Europe. (B) By running ADMIXTURE with K � 6 we can appreciate similar results. The extra cluster indicates further structure within the African
population, which could be either from admixture or the existence of subpopulations in the African samples, but the rest remains unchanged.
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specific likelihood of ancestry. In other words, for each SNP, the
ancestral population from which it has most probably been
inherited is calculated (Figure 2B). If the estimation is correct,
this analysis achieves global ancestry estimation too.

Although there are several packages to infer local ancestry,
there are two that are most commonly used. The first one is

RFMix (Maples et al., 2013), which adjusts samples to a reference
panel of known ancestries through a random forest procedure.
The second algorithm is implemented in the software LAMP-LD
(Baran et al., 2012), which uses Hidden Markov Models to relate
the linkage disequilibrium in the population to a set of reference
haplotypes.

FIGURE 2 | Differences between global and local ancestry analysis. (A)Global ancestry analysis infers the proportion of each individual’s genome that comes from
each ancestral population (represented as clusters identified in an unsupervised manner). (B) In contrast to global ancestry analysis, local ancestry inference uses a
reference panel to attribute each physical segment of the genome to a specific ancestry reported in the panel.

FIGURE 3 | The first three components from a Principal Component Analysis on data from the 1000Genomes Project. A clear separation is observedwhen plotting
the individuals by their components. (A) First vs second components. (B) First vs third components.
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3.2 Principal Component Analysis
Principal Component Analysis (PCA) is a dimensionality
reduction method that finds the directions in the variable
space under study that explain the most variance; these
directions are called the components. In the case of genotype
data, each SNP can be represented with values 0, 1 or 2 depending
on the dosage of the alternative allele (aa, Aa, AA respectively,
with “a” referring to the reference allele and “A” to the
alternative). In this way, a data matrix can be created that has
individuals in rows and SNPs in columns. From this matrix, we
can compute the components. Each component is orthogonal to
the others so they can be used, for example, to visualize the highly
dimensional genotype data used in GWAS.

It has been observed that the first few principal components
from genotype data are related to population structure
(Figure 3). The advantage of using this method over
admixture analysis is that PCA results in a more nuanced
view of the genetic structure of the sample, given that there is
no need to specify the number of ancestral populations. A
number of distinguishing characteristics can be appreciated
when 1,000 Genomes data are plotted in this way; for example,
the admixed American population overlaps with other
populations in the first two principal components; this
illustrates the admixture in those individuals (Figure 3A).
But if further components are examined (Figure 3B), there is a
clear separation of the American population from others.

PCA is a widely used method in different disciplines, so its
implementations are abundant. Some of the more popular
software for genotype data are the PLINK (Purcell et al., 2007)
--pca method, EIGENSOFT (Price et al., 2006), and the
SNPRelate (Zheng et al., 2012) package for the R
programming language. Results from different PCA
implementations should not differ; however, given the
complexity and size of genetic data, specialized bioinformatic
software such as PLINK is usually preferable to more generic
statistical software.

4 QUALITY CONTROL

In addition to estimating structure within the samples in our
study, we also need to identify the individuals and genomic
markers that are appropriate for our study. The first set of
criteria that we can use to select our data corresponds to the
task of spotting genotyping errors. These criteria are discussed in
more depth in several reviews, as well as in original published
research, and include missingness (applied to SNPs and samples),
case-control differential missingness and tests for heterozygosity
and Hardy-Weinberg equilibrium, and strand alignment checks
when multiple datasets are involved (Turner et al., 2011; Medina-
Gomez et al., 2015). Quality control is of particular importance
when combining data from several sources in order to avoid
confounding batch effects. However, there are some caveats that
need to be considered when applying these criteria, because even
though they are standard in homogeneous randomly mating
populations they may not be appropriate in structured
populations.

• Missingness. This includes removing SNPs that may give
misleading results due to genotyping errors across many
samples, or samples that have an excess of errors in the
genotyping process and too few high-quality SNP.

• Strand alignment. Since DNA is double stranded, it is
important to report (and compare) equivalent strands in
the data; this can be a problem when merging data from
different sources since there can be discrepancies in the
reported strand. For example, the Illumina platform differs
in definition on the concept of strand from the standard
human genome reference (Zhao et al., 2018). It is important
then to align the samples to the same strand. This becomes
specially difficult in circumstances such as when the strands
have complementary alleles (AT/CG). If these kind of
uncertain SNPs are not too frequent in the data, it is
probably better to remove them, since they can bias the
results.

• Heterozygosity. In a homogeneous randomly mating
population, very high or low levels of heterozygosity can
indicate poor quality genotyping. However, this test is not
appropriate in a non-randomly mating population, because
population structure can lead to extremes of heterozygosity
(Boca et al., 2020).

• Deviation from Hardy-Weinberg (HW) equilibrium. This
test, standard in population studies, evaluates whether the
expected relationship between allele frequency and
genotype frequency exists. However, HW equilibrium
assumes that there is random mating in the population
under study; so if there are clear subpopulations (different
ancestries) the conditions are not met and the test is not
valid as a criteria for assessing quality. Therefore, this test is
not generally recommended to use directly when studying
structured populations. If the populations are labeled (e.g.
we have data from different, clear sources) then it is better to
apply HW tests separately.

The second set of criteria we can evaluate with genotype data
can elucidate the ancestry of the individuals in the study. For this
set we can use the methods we described above: admixture
analysis and principal component analysis. There are two ways
in which these are used as part of quality control:

• Firstly, individuals whose ancestry is not well represented in
either cases or controls should be removed. In the case of a
continuous trait this is equivalent to removing outliers. This
avoids ancestry-specific biases in the association test, but is
not expected to affect the variability of the data ancestry-
wise.

• Secondly, if distinct populations (e.g. African, European,
Asian) are represented across the phenotype, the study can
be partitioned over these distinct populations. This would
allow us to obtain multiple association tests, the results of
which can subsequently be combined (see the post-GWAS
Interrogation section). This method reduces ancestry-
related variability and bias of each of the studies but
decreases the amount of data in each of them,
diminishing the statistical power of each test.
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In case-control studies in particular, the selection of
controls is a crucial step. If there is a factor that can
influence the outcome (in our case the phenotype) in some
way other than the variable that we are measuring (the
genotypes), then it must be accounted for in the
experimental design. As an illustrative example, in a trial
for testing a new drug, there may be covariates (such as sex
or age) that should be controlled for in order to ensure that the
effect of the drug versus a placebo is measurable; e.g. age and
sex may influence the outcome variable due to, for example,
metabolism changes and hormone differences. One option to
control for these covariates is randomizing which patients will
receive the drug. What this procedure does is ensure that the
distribution of age and sex between cases and controls is
effectively the same, so the influence of these variables does
not influence our observation of the drug effects. In GWAS

studies, the distribution we want to keep consistent between
cases and controls (or across the continuous trait) is the
ancestry. In the following example we will use the first two
principal components to illustrate this.

4.1 A Motivating Example
In order to develop a feeling for what quality control means in a
GWAS, imagine a simple dataset (Figure 4A) to which PCA was
applied and for which only the first two components are relevant
to account for population structure.

Since the principal components represent a factor that we
want to control (ancestry/ethnicity), we need a similar
distribution of the components in both the cases and controls.
We can further simplify the example by summarising the
distribution using the mean (Figure 4B). Even by using only
the mean of the data, it is evident that the distribution of controls

FIGURE 4 | Quality control previous to performing a GWAS. (A) Hypothetical PCA plot for a simple dataset. There are three separate populations including both
cases and controls. (B) The means of the components for cases and controls are not close because there is a concentration of controls in an area with no representation
from cases. (C) By removing the controls that are not well represented in the cases (light blue), we can get a mean that is closer to the mean of the cases. (D) The means
are closer when separating by the observed populations, so these can then be analysed separately and the results subsequently combined.
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does not follow the same distribution as the cases. A simple
solution is to remove the controls with components that are
unrepresented in cases (Figure 4C). The means of the cases and
controls are now more similar, although not identical. We can
further seek a better fit of the distributions by separating the
populations according to the clusters that we can see in the plot.

Once this cluster separation has been done, there is a better fit
in the distributions in each of the three sets of cases and controls

(Figure 4D). Although for each of the association tests there will
be less data to work with, and so less statistical power for each test,
we can overcome this issue later via meta-analysis.

4.2 Comparability of Cases and Controls
In order to illustrate this approach, we up-sampled 2000
individuals from the 1000 Genomes Project dataset, removed a
number of genotypically similar samples and assigned a fictitious

FIGURE 5 | Comparison between admixture of cases and controls of simulated data according to a run of ADMIXTURE with K � 5. In these data, there is a super
population that is underrepresented in the cases. (A) Admixture plot sorted by population label on 1,000 Genomes. (B) Density plot for cases and controls on the
probability of membership to each of the clusters of the ADMIXTURE run. Note that here, cluster c4 corresponds to the African population.

FIGURE 6 | (A) First components plotted for cases and controls. (B) First components plotted for 1000 Genomes population labels. There is a region in these data
that is not well represented in the cases as well as in the controls (red circle).
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case-control status to each of these in order to make the
usefulness of the method more obvious. An ADMIXTURE run
on the data shows a cluster that is underrepresented in the cases
(Figure 5). This means that there is a super population from
which almost no cases with the phenotype were sampled. In this
case, it is a good idea to remove from the data the individuals
from that population.

A PCA run on these data shows that there is a region of the
plot where there are no cases, so the appropriate step would be to
remove the individuals from that region (Figure 6). It is notable
that if we just used the cluster results from the admixture analysis,
cluster c4 would be a candidate for removal, but with PCAwe find
more nuanced criteria for the decision.

4.3 Separating the Data for Multiple
Association Studies
If the clustering (in admixture analysis) or the separation
(observed in PCA) is clear, such as in our sample data, it is
preferable to analyse the populations in separate datasets as they
may have different patterns of linkage disequilibrium. This can be
useful to make statements about SNPs associated to the
phenotype that are specific to subpopulations. However, if
there are some population-specific signals for the tested trait,
they may be lost in the subsequent meta analysis. If there are no
distinct clusters, it is considered better to analyse the combined
data in the association test (Begum et al., 2012).

In order to separate the data, in admixture analysis we can
choose for each individual the cluster for which the probability of
membership is maximised as its cluster. For PCA, we can use a
clustering method on the first n components (Figure 7).

5 ASSOCIATION TEST

Once we have performed quality control of the samples and SNPs,
and have chosen those to include in the analysis, as well as the

number of separate population clusters we will be analysing, then we
are ready to proceed to the identification of SNPs that are associated
with the phenotype being tested. There are several ways to find
candidate causal SNPs from genotype data, such as hypothesis
testing and linear model-based approaches. In order to account
for population structure, linear models are most widely used.

5.1 Methods to Perform Association Testing
5.1.1 Logistic Regression
In the case of case-control studies, phenotypes are binary, and so
we can use logistic regression. This model consists on assuming a
linear relationship between independent variables and the log-
odds, which represents the logarithm of the ratio of the
probability of being a case over the probability of being a
control conditioned on the covariates. That is, for two
independent variables x1 and x2,

FIGURE 7 | Results of running a K-Means algorithm on the first 5 components of the simulated data with K � 4. The purpose of this analysis is to separate the data
into subpopulations in order to conduct association tests within each.

FIGURE 8 | Examples of estimated probability of phenotype given a
genotype value, which is coded numerically as the number of alternative alleles
(aa � 0, Aa � 1, AA � 2).
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log
p

1 − p
� β0 + β1x1 (1)

Where p is the probability of being a case, β0 is the intercept and
β1 is the effect size for the covariable x1. If we have more than one
covariable, we can add more terms β2x2, β3x3, . . . . The model in
Eq. 1 can yield results such as we see in Figure 8.

In any case, the logistic regression is performed on a locus-by-
locus basis. This yields parameters with its respective p-value for
each SNP. We will now discuss two methods to control for
ancestry in the association test: via PCA and via admixture
mapping. The difference between these methods lies in what
independent variables are used in the logistic regression.

5.1.2 Mixed Models
Mixed models are an extension of linear models that allow us to
include effects that account for dependency between data points.
For example, in the case of genetic studies, the data points are the
individuals, and the dependency can be thought of as being the
ancestry.

Themodel for a mixed effects regression for association testing
can be written as follows

f(x) � Gβ + ] +Xc (2)

Where the first term on the right side of the equation is the same as
any linear model: the independent variables and the parameters;
these are called the fixed effects and in the context of genetic
association it is the genotype as described in the logistic regression
section. The last term is the covariates (e.g., the first principal
components, sex, etc). The second term represents the random
effects, which model the error just like any other regression model,
but in this case, the error is not equally distributed for every
observation. Usually, we would say that the error follows a Normal
distribution centered on zero with a fixed variance N(0, σ2); but in
mixed models we say that ] ∼ N(0, τZ), where τ is a parameter for
Z, the matrix of random effects. Z is usually the genetic relationship
matrix, which estimates the degree of sharing of identity by descent
(IBD) between all pairs of individuals in the dataset, but it can also
be a matrix of categories where each row (sample) is a vector of
zeros everywhere except in the columns that represent the
subpopulation to which it belongs (e.g. from Admixture analysis).

This is a general definition of mixed models, but there are
several particular implementations based on variations of Eq. 2
and in particular of matrix Z such as EMMA (Kang et al., 2008),
FaST-LMM (Lippert et al., 2011), GCTA-LOCO (Yang et al.,
2014) and some Bayesian modelling versions like BOLT-LMM
(Loh et al., 2015).

5.2 Controlling the Association Model for
Ancestry
In the association test, we canmodel each locus as an independent
variable with values 0, 1 or 2 depending on the dosage of the
alternative allele (aa, Aa, AA respectively) with the trait being
measured as a dependent variable. This model allows us to add
other covariables; in particular, we can use the first principal
components from the genotype PCA. Since the components

absorb information about the ancestry, the model will only
give significance to the SNPs that are related to the trait
without the confounding of the population structure captured
by the PCs included in the model.

One way of determining how many components to use consists
in plotting the components until no separation is found in the data.
In our 1000 Genomes example, there is clear separation of the
individuals in the scatterplot between components one through four,
but the direction of the fifth component is reaching for a subset of
less than 1%of the data (the few points with the component 5 greater
than 0.4), so it is not accounting for a significant amount of ancestry-
related variability (Figure 9). So in this case, we would probably be
safe in controlling by using only the first 4 components. This is a
simple example, but it is useful in practice to visually review the
interaction between the components to get a grasp of the structure of
the data. For a more automated and statistically sound procedure,
the software EIGENSOFT provides methods to infer the statistically
significant number of components for population structure by
evaluating the significance of each component iteratively
according to the variance explained by each (Patterson et al., 2006).

An example of this usage can be found in Nannini et al. (2017).
The authors use PCA to compare their Latino population with a
reference panel of Europeans and Africans. They also determine
that using four principal components in their regression is enough
to control for population stratification. Another interesting
example can be found in Costa-Urrutia et al. (2019), where
authors control not by the principal components, but for the
proportion of Amerindian ancestry estimated via ADMIXTURE.

As for local ancestry, inWang et al. (2011) the authors propose
controlling each of the tests by their respective estimated local
ancestry. However, this method is not widely used, as it has been
argued that the bias introduced by using only global ancestry is
small (Martin et al., 2018). The methods that we discuss below
exploit the advantages of local ancestry more directly.

5.3 Admixture Mapping
Admixture mapping is motivated by the scenario of recent mixing
of populations which occurs alongside discrepant incidence of the
trait between two populations (i.e. a difference in the proportion
of affected people between the ancient populations). Affected
persons in the admixed population should therefore be expected
to have preferentially inherited the risk locus from the higher
incidence population (Patterson et al., 2004). The genome-wide
approach is to examine each region of the genome systematically
to identify regions where affected persons inherit a statistically
higher proportion of their alleles from the high risk population
than the overall pattern of inheritance for that person.

This method relies on the assumption that the phenotype-
associated alleles have different frequencies across ancestral
populations. This extra requirement helps specify a model
with more statistical power to find these specific loci, so in
this way fewer SNPs (and since this implies lower burden of
tests, also fewer samples) are needed to find associations.
However, this means that it will fail to identify all risk loci;
since not all causal SNPs follow this pattern. Also, fewer loci
means longer LD tracts and so a higher difficulty in identifying
causal markers via fine mapping (Seldin, 2007).
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Admixture mapping has been successfully used to identify
risk loci associated with specific ancestries across different
traits; the tools and panels necessary for performing these
kinds of analyses were developed in early 2000s. In 2005, the
first applications of this seminal method were published,
focusing on the study of African American individuals and
finding a number of ancestry-specific associated loci
(i.e., either European or African) to the traits: Zhu et al.
(2005) found that excess African ancestry at 6q24 and
21q21 was associated with hypertension, and Reich et al.
(2005) identified a European-derived locus in chromosome
1 associated to multiple sclerosis. Later, Freedman et al. (2006)
identified that excess African ancestry at the 8q24 locus is
associated to increased risk of prostate cancer.

More recently, Wang et al. (2019), used admixture
mapping to find loci related to several traits used to
measure sleep apnea; this study was performed on Latinos
and found three novel regions associated with this condition.
In another study in the Latino population, Burkart et al.
(2018), identified genomic regions associated with lung
function and chronic obstructive pulmonary disease, some
of them previously undiscovered. In both of these studies,
some of the risk loci found were replicated in Europeans,
which illustrates the advantage of using samples from
admixed populations.

As mentioned above, ADMIXTURE and STRUCTURE take
different approaches to estimate a person’s proportion of genome
inherited from an ancestral population (global ancestry). If, as
computed using either of these approaches, the average proportion
of genome from the higher risk population is estimated as θ for a
study participant, then the genome-wide analysis is conducted for
each participant by examining their actual inheritance at each SNP
from this average across the genome. The calculation of the actual
number of alleles at this SNP that have ancestry from the high risk
subpopulation requires some discussion (local ancestry). Analysis
of a single SNP will often be uninformative in terms of identifying
the ancestral origin of each allele so instead the approach required
is to use SNPs in proximity to the SNP under consideration to
estimate the actual number of alleles from the high risk
subpopulation (McKeigue, 1998).

If x is the estimated number of alleles at an SNP that have
ancestry from the high-risk subpopulation (0, 1, 2) for a person,
then given θ and p, the prevalence of the disease (0.5 with equal
number of cases and controls), we can fit the logistic regression
model from Eq. 3 (Hoggart et al., 2004):

log
p

1 − p
� log

π

1 − π
+ x

2
− θ( )β (3)

Where β is the odds ratio for having 2 copies of the risk allele
versus 0 in the high risk population. In the formula, the left

FIGURE 9 | Matrix of scatterplots between the first five principal components of simulated data based on 1,000 Genomes.
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hand term is the log odds of the trait. The right hand term of
the equation has two components: the first one reflects the
prevalence of the disease in log odd terms, and the second
models genetic risk considers deviation from the average
genotypic contribution from the high risk population for
that person.

One extra advantage of admixture mapping is that, since
this model examines ancestry at each SNP with the average
across the genome for that person, there is an alternative test
that can be done without controls (the so called “case only
study”). It involves testing whether there is an increased risk
according to the local ancestry in a given SNP. However, in
practice, power is usually greater for the case-control
comparison.

One widely used software to run admixture mapping can be
found in the GENESIS package for the R programming language
via the admixMap function.

5.4 Local Ancestry Regression
A novel approach is using the inference of local ancestry
directly in the association testing. The software Tractor
(Atkinson et al., 2021) implements the following regression
model for each locus:

log
p

1 − p
� β0 + β1X1 + β2X2 + β3X3 +/ + βkXk (4)

Where every βi are the effect estimates, X1 is the admixture
proportion from the first ancestry, X2, X3 are the number of
copies of the alternative allele coming from the first and
second populations respectively (aa � 0, Aa � 1, AA � 2), and
after that we can add any number of covariates such as age or
some PCA components. This model allows for the inclusion
of ancestry specific information, and in that way it results in
relevant summary statistics related directly to each of the
populations of the admixture. This model accounts only for
two ancestries, however the model can be expanded to
several ancestries.

Having a parameter associated to the ancestry in a given
locus prevents the association model from attributing an effect
to the allele count that is better explained by the ancient
population from which the haplotype is descended. This
avoids bias caused by local ancestry differences between
populations that are not attributable to the trait (Atkinson
et al., 2021).

In addition, although this method is analogous to
controlling via PCA in the sense that we are controlling for
ancestry, this type of regression achieves this by analyzing
the ancestry of each specific locus at a time. This allows us
to add samples without worrying about introducing
population structure, which then translates into more
statistical power.

These ancestry specific parameters provide information on
ancestry predisposition to the trait. In contrast to admixture
mapping, this method does not assume that the phenotype
incidence differs across the ancestral populations. In this
model, however, it is necessary to have data on both cases and
controls.

6 POST-GENOME-WIDE ASSOCIATION
STUDIES INTERROGATION

Association tests are performed on a SNP by SNP basis, so after the
candidate SNPs have been identified, it is important to use
techniques that help us validate the adequacy of our population
adjustments in the previous steps. The technique of genomic control
will allow us to evaluate whether the association test has a bias based
on population structure. Performing a meta-analysis will allow us to
combine the results of the different populations if we previously
decided to separate by subpopulations in the quality control step.

6.1 Genomic Control
This method corrects the test statistics (p-values) obtained from
the association analysis based on a single number, usually called
the genomic inflation factor (Pritchard and Rosenberg, 1999) and
denoted as λ. The inflation factor is calculated using the genetic
markers that are not related to the disease, and it consists in
testing whether there is a consistent difference between the allele
frequencies in cases and controls across the genome.

This factor can be interpreted as follows: If λ � 1, there is no
population stratification, and values greater than 1 indicate that
there is structure unaccounted for in the study. However, in large
well-powered studies, the inflation that this factor measures could
be coming from a different source, such as polygenicity. For a
more nuanced approach we can use LD score regression (Bulik-
Sullivan et al., 2015), which leverages the relashionship between
the SNP in question and those around it to discriminate the
source of the inflation.

Even though the inflation factor can be used to correct for
population stratification, it is not generally recommended to do so
(Shmulewitz et al., 2004), as it is particularly ineffective in highly
admixed data. It is however useful for identifying the presence of
inflation in order to evaluate whether themethods in previous steps
of the analysis were sufficient to account for population structure
(Galanter et al., 2014; Conomos et al., 2016; Hodonsky et al., 2017;
Jorgenson et al., 2017; Nannini et al., 2017).

6.2 Meta-Analysis
The meta-analysis is not in itself a method for correcting for
population structure, but it is employed to analyse GWAS results
from different populations. If we used the methods discussed in the
Quality Control section to separate our individuals and performed
one association test for each of those subpopulations, we can perform
a meta-analysis to aggregate their results. This will help us regain
statistical power lost by the reduced sample sizes of each study; the
power is of course reduced if the effects are specific to some
subpopulation, and this will be true no matter the analytical
approach.

The results that we intend to aggregate from the studies are the
effect sizes (c) for the trait. However, since factors such as sample size
can influence the existence of different levels of uncertainty on each
study, we must have a measure available to assess uncertainty. For
this purpose, having also the standard error will allow us to perform
an inverse variance-weighted meta-analysis; which means that we
are using the variance of the estimator to weigh in the uncertainty
found in each of the studies before performing the meta-analysis.
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The first model we can use is to use a fixed-effects-only model.
This assumes that all of the effect sizes across all studies are the
same, and the differences between them are the product of a
normally distributed random error (ϵ).

c � β + ϵ (5)

Another possible model would be to use a random-effects-
only model. This is applied when we suspect that the
underlying effect size varies between studies, for instance
due to different patterns of linkage disequilibrium or gene-
environment interactons.

c � θ + μi + ϵ (6)

Where θ is the true effect size, and μ is the within study variance
that will be estimated from the data (Kelley and Kelley, 2012).

The difference between the two models then, is that in the
fixed effects model we are assuming that there is a single, true
effect size across all the studies, and we are trying to find whether
this true effect size is different from zero. In the random effects
model we are assuming that there is a distribution of random
effects, and we are trying to find whether the mean of the effect
sizes is different from zero.

The fixed effects model assumes that there is no heterogeneity
between the effects in the different studies being combined, this
can be tested by referring to Higgins and Thompson (2002),
where they propose a metric I2 that measures the proportion of
variation between studies that is due to heterogeneity. They
propose as a rule of thumb that with an I2 > 30% we should
consider using random effects instead of fixed effects. The fixed
effects model provides more power, but it is important to examine
its appropriateness before enjoying its benefits.

Jorgenson et al. (2017) provide an example of a study with
different ethnicities (Non-Hispanic Whites, Hispanic/Latinos, East
Asians, and African Americans) where authors decided to separate
the analysis into different studies and used meta-analysis to
aggregate the results. They were successful in describing both
genotype-phenotype associations that were unique to individual
populations, and signals that reached significance when all
populations were taken into account via a trans-ethnic meta-
analysis.

If we have been careful in performing all steps above, including
quality control, association testing and post-GWAS
interrogation, we should have a list of SNPs that are enriched
for real genotype-phenotype associations.

7 DISCUSSION

In this review, we have attempted to give an overview of the
methods used for performing GWAS on admixed populations.
Themain objective was to shed some light on the intuition behind
using each of them.

1) Quality Control. The objective in this step is to remove low-
quality SNPs and samples and to ensure a comparable
population structure across the phenotype (e.g. same
distribution among cases and controls).

• Comparability of cases and controls. Removing outliers from
the data can be convenient to the analysis, but excluding
whole subpopulations hurts the generalizability of the study.
This strategy is used mostly when the control data has not
been sampled according to the same protocol as the cases,
like the case of using a generic database such as a biobank.

• Separating the data for multiple association studies. If there
is an overrepresentation of a subpopulation or if there is a
need to report population specific related SNPs, it could be
convenient to analyse the data separately. The main caveat
of doing this is the possibility of having to perform an
association test with few data.

2) Controlling for ancestry at the association test step. Here, we
account for population structure in the actual modeling of the
genotype-genotype relationship. This helps avoid spurious
correlations. Methods that we can use for this purpose are:
• PCA. There is no reason not to control for ancestry using PCA,
but it is important to add the correct number of components to
themodel (Tian et al., 2008). The recommendation is to review
the distribution of the data in several component plots and to
examine the results of inflation by using the genomic factor, or
use specialised software such as EIGENSTRAT.

• Admixture mapping. If there are no clearly distinct
subpopulations found in the sample, admixture mapping is
an appropriate way to find regions where the admixture is
related to the phenotype. Some methods such as Tractor can
also find the specific effect sizes on each of the subpopulations.

3) Post-GWAS interrogation. As in many other cases of
experimental studies, the results of a statistical procedure
should be analysed and should be open to correction
according to the data and data cleaning that has been used.
• Genomic control. This tool is useful as a measure of the
population structure that has been introduced to the study, and
to suggest whether or not it is necessary to go back to previous
steps in order to further account for the structure of the data.
Although it is possible to use it to control for overall population
structure by scaling the p-values of the association test, it is not
recommended and should be used only as a sanity check.

• Meta-analysis. This is necessary in order to aggregate the
results in the case that we have separated the data into its
subpopulations. It is possible to achieve the same power as
a whole-data association test given some properties, but
any population specific signal that may have appeared in
the individual studies might be lost in the meta-analysis.
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Maintenance of Complex Trait
Variation: Classic Theory and Modern
Data
Evan M. Koch1,2 and Shamil R. Sunyaev1,2*

1Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States, 2Division of Genetics, Brigham and
Women’s Hospital, Harvard Medical School, Boston, MA, United States

Numerous studies have found evidence that GWAS loci experience negative selection,
which increases in intensity with the effect size of identified variants. However, there is also
accumulating evidence that this selection is not entirely mediated by the focal trait and
contains a substantial pleiotropic component. Understanding how selective constraint
shapes phenotypic variation requires advancing models capable of balancing these and
other components of selection, as well as empirical analyses capable of inferring this
balance and how it is generated by the underlying biology.We first review the classic theory
connecting phenotypic selection to selection at individual loci as well as approaches and
findings from recent analyses of negative selection in GWAS data. We then discuss
geometric theories of pleiotropic selection with the potential to guide future modeling
efforts. Recent findings revealing the nature of pleiotropic genetic variation provide clues to
which genetic relationships are important and should be incorporated into analyses of
selection, while findings that effect sizes vary between populations indicate that GWAS
measurements could be misleading if effect sizes have also changed throughout human
history.

Keywords: population genetics, genome-wide association study, statistical genetics, evolution, quantitative
genetics

1 INTRODUCTION

Attempts to understand genetic architecture preceded the discovery of DNA as the model of heredity
(Fisher, 1918), and much theoretical work on selection, the maintenance of variation, and the
adaptation of complex traits began before the ability to record genotypes on a scale sufficient to
meaningfully contribute to these questions (Walsh and Lynch, 2018). The modern genetic era has
provided an opportunity to test classic theories and to expand models—both long-standing and
relatively recent—based on new understandings of genetic architecture and mechanisms. Genome-
wide association studies (GWAS) and other data-driven tools have raised additional questions,
including how so much heritability for many traits is contributed by relatively common alleles when
natural selection is often expected to remove deleterious variation from the population. The flood of
methods and data has sharpened and revised our understanding of many components that fashion
the structure of the genome—polygenicity, selection, the distribution of mutational effects,
pleiotropy—but has left us wanting for models capable of reconciling these elements (Sella and
Barton, 2019).

The analysis of GWAS data revealed an extraordinary degree of polygenicity, and showed that
most heritability is explained by relatively common, mostly noncoding alleles of small effect. At first
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glance, this observation is surprising. Natural selection is
expected to maintain the population near an optimum value
for quantitative traits and to reduce the prevalence of potentially
maladaptive phenotypes such as diseases. Such optimums and
maladaptive phenotypes are defined within a given
environmental context (Harpak and Przeworski, 2021).
Selection generally acts by reducing the frequency of
phenotypically relevant alleles, though it may drive allele
frequency increases when shifts in the optimum phenotype
occur. This basic logic led to the question whether the effect
of natural selection is evident from GWAS data at all. Recent
studies have reached a strong consensus that phenotypic effect
sizes are negatively correlated with allele frequency (Gazal et al.,
2018; Zeng et al., 2018; Schoech et al., 2019; Speed et al., 2020;
Zeng et al., 2021). These findings are inconsistent with purely
neutral models, but various models of natural selection
influencing trait variation remain plausible (Walsh and Lynch,
2018). Uncertainty largely surrounds whether the focal trait is
causally important for fitness compared to pleiotropically related
ones, and whether selection is primarily stabilizing or has
important directional components. In spite of many
unresolved details, the emerging picture is that a vast supply
of mutations with weak effects, coupled with generally inefficient
selection against such alleles, is the basis of phenotypic variation.

Empirical results from GWAS on the distribution of effect
sizes and allele frequencies still pose the challenge of which classic
and emerging models from theoretical population genetics are
able to best explain the emerging observations. Existing theories
range frommodels of selection acting directly on the focal trait to
models where selection on genetic variation is driven by
simultaneous effects on other traits (pleiotropy), to even fully
“apparent” selection, which assumes the focal trait is not subject
to any selective constraint. In this review, we discuss a relevant
subset of these models and how their predictions look in light of
recent studies of selection in GWAS. We identify pleiotropy and
variable effect sizes of genetic variants across time and space as
important factors that have yet to be satisfactorily included into
statistical methods and theoretical models.

2 THEORETICAL MODELS OF
MAINTENANCE OF COMPLEX TRAITS AND
PREDICTIONS THEY GENERATE
Evolutionary quantitative genetics has subsisted for most of its
existence on a limited set of possible measurements. Estimates of
the genetic and mutational variance, as well as selection gradients,
are informative, especially with respect to contemporary patterns
of selection. However, most progress in explaining maintenance
of genetic variation in phenotypic traits was theoretical. Now that
GWAS have generated an abundance of matched phenotypic and
genetic measurements we live in a much more data-rich world. If
we turn our attention to a single, focal trait, what sort of data
would we ideally wish for?We would probably include the impact
of genetic variants (estimated as their effect size) on the trait in a
range of environments, the fitness effects of these alleles, as well as
their frequencies and linkage patterns (Johnson and Barton,

2005). These would yield a satisfying and useful description of
the genetic architecture and the process of its development, but
there are fundamental details not immediately obvious from this
description. We would like to know whether fitness effects arise
primarily through selection on the focal trait, and if so what form
it takes. If there are substantial fitness effects unrelated to the focal
trait, what other traits are involved and how does selection act on
them? Is the population in equilibrium? Has the genetic
architecture changed in the past and will it do so in the
future? Questions like these can be addressed by modeling
how selection acts on traits, the mutational distributions
underlying them, and how these generate the genetic
architectures we observe.

Textbook introductions to population genetics begin by
assigning fitnesses to genotypes and examine the consequences
for allele frequencies and overall patterns of genetic variation.
Connecting trait values, such as those measured in GWAS, to
selection on individual causative alleles requires the additional
step of specifying how selection on phenotypes leads to fitness
differences among genotypes. While slightly less familiar than
other selection results, this task was also taken up by many of the
authors of classical population genetics and has grown into a large
branch of evolutionary theory.

The simplest andmost obvious model predicts the selection on
individual causative loci arising from stabilizing selection on a
single polygenic trait with purely additive genetic variance
(Wright, 1935; Robertson, 1956; Bulmer, 1972) (Figure 1A).
In this model an individual’s trait value (z) is determined by
the sum of effects from L independent loci:
z � ∑L

l�1(βlgm + βlgp) + e, where βl is the effect size of the
allele at locus l, gl,m and gl,p are the maternal and paternal
genotypes at each locus, and e is a normally distributed
environmental effect centered at zero. If an individual’s fitness
is a Gaussian function centered at the population mean M and
with width VS (w(z) � exp (−(M − z)2/2VS)), then selection will
change the average frequency of a causative allele at locus l with
effect size βl � β as follows:

E[Δx] ≈ − β2

2VS
x(1 − x)(1

2
− x). (1)

Stabilizing selection tends to remove genetic variation in this
trait from the population. A balance between mutation, selection,
and drift generates the trait’s genetic variance in the population
(Bulmer, 1972; Keightley and Hill, 1988). Such direct stabilizing
selection leads to a negative correlation between minor allele
frequencies and the effect size magnitude.

We can write the selection coefficient for this model as
sud � − β2

2VS
to acknowledge that stabilizing selection takes

the underdominant form shown in Eq. 1
(E[Δx] � sx(1 − x)(12 − x)) rather than the more familiar
additive one (E[Δx] � sx (1 − x)). The (12 − x) term appearing
in the underdominant formula means that selection against the
derived allele actually decreases as it approaches 50% frequency
and actually switches signs after that point. The minor allele is
therefore always disfavored. However, when selection is strong or
the allele frequency is low, the differences are minor as x is small
compared to 1/2.We generally omit the subscript in sud for ease of
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FIGURE 1 |Models of selection on the genetic variation influencing complex traits. Panels on the left show how different genotypes affect trait values (in purple) and
fitness (in orange). Panels on the right illustrate how squared trait values change with frequency in each model of selection. Simulated values are shown in grey, the mean
E[β2|x] is represented by the solid green line, and the standard deviation of β2|x is represented by the size of the green circles. The median and 97.5% quantile are shown
as dashed lines to give a better sense of the full leptokurtic distribution of effect sizes. The DFE used in all plots (shape � 0.25, scale � 40) was chosen to be within
the range fit by Schoech et al. (2019). Effect sizes were simulated uniformly on log frequency, and both axes are on a log scale. (A) Classic stabilizing selection as
described by Eq. 1. Genotypes containing more trait-increasing alleles than decreasing, and vice versa, have lower fitness as a result of selection on the focal trait. Large
effect alleles are prevented from reaching high frequencies due to the variance-reducing property of stabilizing selection. (B) In the neutral model no genotype is more fit
than any other and the distribution of effect sizes at any frequency reflects only the distribution of mutational effects. (C) In pleiotropic stabilizing selection as studied
by Simons et al. (2018), there is variation in fitness for each genotypic values depending on the effects mutations have on pleiotropic traits. This leads to the same average
E[β2|x] but a greater variance and therefore different genetic architecture. (D) Models of apparent stabilizing selection first specify the deleterious fitness effects of
mutations, represented here by the size of the brown circles. Genotypes with more and stronger deleterious mutations have a greater variance in phenotypic outcomes.
This too leads to a negative relationship between β2 and x. Here we use the Eyre-Walker (2010) model with τ � 0.4 as fit by Schoech et al. (2019), and σ2 � 1. Altering
thesewould change themean and variance of the (β2, x) relationship. (E)Directional selection is shown here for a scenario where trait-decreasingmutations are unlikely or
impossible. Selection therefore acts to reduce the frequency of trait-increasing alleles. All new mutations are disfavored with s ∝ β. E[β2|x] again decreases with x.
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reading, but it is important to note that the interpretation of
selection coefficients differs depending on whether stabilizing
selection is explicitly modeled or not.

The variance-reducing property of stabilizing selection
motivated the development of other models with variance-
promoting features like overdominant side-effects of
causative alleles (Robertson, 1956; Gillespie, 1984) and strong
mutational pressure (Lande, 1976b). As always in evolution, we
must also at least consider the possibility that a trait of interest
has a negligible impact on organismal fitness. The population
mean value of a trait controlled by strictly neutral mutation will
drift in Brownian motion and have a genetic variance that
depends on the mutation rate, the second moment of the
distribution of mutation effect sizes, and the average pairwise
coalescent time between randomly sampled loci (Lande, 1976a;
Lynch and Hill, 1986; Koch, 2019). Var[z] � E[T2]θμ2, where T2

is the average number of generations it takes for a pair of sites to
coalesce, θ is the mutation rate per generation, and μ2 is the
second moment of the distribution of mutational effects.
Crucially, there would be no relationship between the effect
size and frequency of alleles (Figure 1B).

Of course, both intuitively and empirically, traits in natural
and contemporary human populations at least appear to be under
some selection (Kingsolver et al., 2001; Corbett et al., 2018; Sanjak
et al., 2018), and involve some level of pleiotropy (Stearns, 2010).
Models of apparent selection begin with the assumption that the
focal trait is not itself under any selection but add pleiotropic
fitness effects of the causative alleles. Individuals in the tails of a
phenotypic distribution will carry more mutations overall, and if
trait-affecting mutations have deleterious pleiotropic effects those
individuals will also have lover fitness on average (Barton, 1990;
Kondrashov and Turelli, 1992). Fitness that decreases away from
the mean is reminiscent of stabilizing selection, but the strict
deleterious model of apparent selection does not induce the
negative correlation between allele frequencies and effect size
magnitudes expected when the focal trait itself is actively
selected. The negative correlation between β2 and x may yet
be rescued if the deleterious pleiotropic effects of variants
affecting the focal trait arise from genetic covariance (Lande
and Arnold, 1983) or correlated effect size magnitudes
(Keightley and Hill, 1990). In this scenario, alleles with larger
effects (or absolute magnitudes) on the focal, neutral trait are
more likely to have larger effects on a second, selected trait.
Allele frequencies are suppressed through selection on the
second. In the extreme where the focal and selected trait are
so closely biologically related that the effect sizes of mutations
are deterministically linked, it is indistinguishable which trait
causally impacts fitness, although a strong genetic covariance
would be measurable. One can also imagine a model where each
mutation has such a relationship with a unique pleiotropic trait,
for instance, molecular effects in different pathways. Assuming
that large-effect alleles for the focal trait induce stronger
molecular effects, there may be strong selection without
measurable genetic covariance between the focal trait and
any individual pleiotropic trait.

The differences between models come down to how the
statistical relationship between selection coefficients and effect

sizes is specified: how s scales on average with β and what the
random variation around this looks like. In multivariate
stabilizing selection, s scales with β2 as in direct stabilizing
selection, but apparent selection models don’t have this
restriction. Apparent selection models were extended, as
described above, to include increasing selection with greater β
in addition to the negative pleiotropic consequences (Keightley
and Hill, 1990; Zhang and Hill, 2002; Eyre-Walker, 2010)
(Figure 1D). Models of multivariate stabilizing selection paint
a similar picture, but the focal and pleiotropic traits are explicitly
under stabilizing selection (Zhang and Hill, 2003; Simons et al.,
2018) (Figure 1C). All lead to a negative (β2, x) relationship, so
differences between models come down to the shape and variance
of that relationship, along with impacts on the genetic
architecture.

Directional selection on complex disease susceptibility is also a
viable hypothesis. In this view, the disease phenotype is itself
deleterious and alleles that increase susceptibility will be selected
against (Charlesworth, 2001; Wright et al., 2003) (Figure 1E).
This also implies a mutational bias towards susceptibility-
increasing alleles. It is plausible that there is a fitness cost
associated with carrying such alleles, even for late-onset
diseases (Pavard and Coste, 2021). All of the pleiotropy
arguments made for stabilizing selection would apply equally
well here.

There is an emerging consensus that models of mutation-
selection-drift balance are likely to explain the genetic
architecture of many, if not most, complex traits (Sella and
Barton, 2019). The models of apparent, stabilizing, and
directional selection described above, with varying possible
degrees of pleiotropic selection, all remain possibilities within
this consensus and are not mutually exclusive. Progress in
statistical genetics methodology and increasing GWAS sample
sizes are starting to clarify these details.

3 DETECTING NEGATIVE SELECTION IN
GENOME-WIDE ASSOCIATION STUDIES
DATA
As sample sizes increased and GWAS became sufficiently
powered to detect larger numbers of loci for different traits,
attention started shifting from the speculative question of how
study design should be informed by selection and its effect on
genetic architecture (Pritchard, 2001; Reich and Lander, 2001), to
what the genetic architecture, as revealed through these studies,
might say about selection. A transitional form was contributed by
(Agarwala et al., 2013), who investigated how selection may have
shaped the genetic architecture of Type 2 Diabetes, which had
recently gone from 2 to 39 genome-wide significant loci. Using
primarily the number of associations, conditional on the
heritability and prevalence of the disease, they ruled out both
neutrality of the focal trait and a model where selection is
proportional to effect size: β ∝ |s|.

Following this, methods were developed that do not explicitly
model natural selection on causative variants, but ask whether
lower frequency variants contribute disproportionately to
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heritability. This heritability bias should only occur if rare
variants have larger effect sizes on average, the most plausible
explanation being negative selection correlated with the
magnitude of effect sizes. A simple approach is to divide
variants into MAF bins and estimate the heritability
contribution of each in a mixed model framework (Yang et al.,
2015). applied this approach to height and body mass index
(BMI) and (Mancuso et al., 2016) to prostate cancer risk. Both
found increased heritability in rare variants compared to
common, and Mancuso et al. (2016) performed simulations to
demonstrate that, conditional on disease heritability and
prevalence, they could also rule out focal trait neutrality and
directly proportional selection.

More sophisticated analyses using the same general idea as
partitioning heritability by allele frequency have been developed
and applied to a wide variety of human traits. Extensions of LD
score regression (LDSC), a useful tool for partitioning heritability
among large numbers of annotations (Finucane et al., 2015), were
developed for features of negative selection. These analyses found
that younger genetic variants contribute more heritability than
older genetic variants at the same frequency (Gazal et al., 2017), a
key feature of negative selection (Maruyama, 1974; Kiezun et al.,
2013). They also confirmed earlier findings that rare variants have
greater effect sizes than common ones for a larger number of
traits (Gazal et al., 2018). Another popular and tractable
approach, termed the alpha model, explicitly sets the MAF
dependence of heritability contributions through a single
parameter α: E[β2|x] ∝ (x(1 − x))α (Zeng et al., 2018; Schoech
et al., 2019; Speed et al., 2020; Zeng et al., 2021). An α < 0 indicates
a heritability bias towards rare variants and some amount of
negative selection. Applications of this model have been
remarkable in their consistently negative α estimates across all
analyzed traits. While some differences between traits are
inferred, e.g. height has a smaller α than BMI, estimates are
consistently within the range [− 0.5, −0.2].

The negative relationships between effect size magnitude and
minor allele frequency inferred for so many traits are informative
about the model of selection. In particular, they allow us to rule
out neutral models where the focal trait and all underlying
variation are unaffected by selection, as well as strict models
of apparent selection where the causative variants are deleterious,
but the strength of this selection is uncorrelated with effect sizes.
However, many other models of selection may still be compatible
with these findings (Figure 1, Figure 2). The model of direct
stabilizing selection on a single trait first proposed by Wright and
others (Equation 1) is plausible for some traits. On the other
hand, a genetic correlation between the focal trait and another (or
many) under stabilizing selection could produce the observed
negative correlations even if the focal traits were completely
neutral. There is also a lot of space in between with varying
contributions to selection from the focal and pleiotropic traits.
While seemingly semantic, the question is really about the extent
to which variation in the underlying biology of the focal trait
causes variation in fitness. This can apply even when the focal
trait is something seemingly benign, an arbitrary bone for
instance, whose size is governed chiefly by the biology of
overall body size.

While the alpha model does not explicitly incorporate a
population genetics model in any statistical analysis, it is
possible to further interpret results using simulations and
theory (Figure 2). In simulations, the idea is to use a model of
choice to generate allele frequencies and effect sizes and then use
the inference procedure to estimate what α corresponds to those
model parameters. For theory, one derives E[β2|x] under the
selection model and compare this to the approximate alpha
model expectation of E[β2|x] ∝ xα. Using this approach,
Schoech et al. (2019) showed that the inferred α depends both
on the distribution of fitness effects of new alleles affecting the
trait (DFE), and on the average scaling of effect sizes and selection
E[β2|s] ∝ s2τ, where the parameter τ determines the scaling
through the relationship E[β] ∝ sτ (Eyre-Walker, 2010). The
DFE dependence enters primarily through a frequency-threshold
effect: alleles below the threshold have effect sizes roughly
uncorrelated with frequency because, while above the
dependence scales approximately like E[β2|x] ∝ x−2τ. The
threshold is the frequency below which most new mutations
from the DFE are still mostly affected by drift rather than
selection, and is therefore lower for a heavy-tailed DFE with
a high average s. Zeng et al. (2021) used population genetic
simulations to fit the DFE for various traits by conditioning on
the values they had estimated for α, polygenicity, and SNP
heritability. They found greater variation in the DFE among
trait categories than variation in α estimates. α estimates that
are relatively insensitive to the DFE are consistent with
the predictions of Schoech et al. (2019) if most SNPs
included in the analysis are above the frequency threshold
where selection is detectable. These simulations therefore
also demonstrate that polygenicity and heritability are informative
about the DFE.

Simons et al. (2018) developed a model for the relationship
between effect sizes and selection coefficients based on isotropic
stabilizing selection and Fisher’s geometric model (the specifics of
the model is discussed in a subsequent section). The number of
trait dimensions in this model corresponds to the effective
number of independent axes of genetic variation, a value that
can be interpreted as the degree of pleiotropy. With a single
dimension the selection coefficient is the same as in the classical
model of one dimensional stabilizing selection: |β| � �����

2 sVS
√

.
When the number of traits becomes large the relationship
becomes β ∼ N (0,(VS/ne)s), where ne is the effective number
of traits, and expressions for moderate pleiotropy interpolate
between these extremes. Rather than fit this model to the
heritability explained by different minor allele frequencies,
Simons et al. (2018) analyzed the distribution of variance
contributions, v � 2β2x(1 − x), among genome-wide significant
SNPs. For a given mean among discovered loci, the variance of
v is higher with greater pleiotropy (ne), with a parametric
likelihood derived by the authors. The high-pleiotropy
model was found to fit the distribution of GWAS hits for
standing height and BMI better than the no- and low-
pleiotropy alternatives.

Zeng et al. (2021) also simulated varying degrees of pleiotropy
using the Simons et al. (2018) model and found that α estimates
were insensitive to changes in the degree of pleiotropy (ne). This
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FIGURE 2 | Examples of what alpha models may infer under different models of selection and different distributions of fitness effects (DFE). Effect sizes were
simulated by sampling from p(s|x) and then from p(β|s) under the different models described in the text. Derived allele frequencies are uniform between 0.01 and 0.5.
Estimates of α were obtained by fitting log β2 � α log x (1 − x) + c to the average β2|x values calculated from simulations. The DFE was varied by decreasing the shape
parameter from 1 to 0.25 to 0.125 while keeping the mean constant. It is important to recognize that α̂ values reported here would not necessarily correspond to
those obtained by real statistical genetics methods (Zeng et al., 2018; Schoech et al., 2019; Speed et al., 2020; Zeng et al., 2021). Those methods employ particular
likelihoods and are applied to real genetic data where frequencies are not uniform and effect sizes are estimated with error. The frequencies of analyzed variants may be
particularly important since the slope of the (β2, x) relationship (local α) varies with frequency (Schoech et al., 2019). Estimated α values increase with increasing DFE
kurtosis, reflecting the proportion of variants that are strongly selected. For high kurtosis, estimates approach the theoretical expectation of α � − 2τ for the Eyre-Walker
(2010) model as derived by Schoech et al. (2019). As expected, in a model of stabilizing selection (Simons et al., 2018), the degree of pleiotropy does not affect the α

estimate. Directional selection is associated with higher α estimates than stabilizing selection.
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makes sense, given that the alpha model only attempts to fit the
average effect size - frequency relationship and suggests that new
approaches will be needed to investigate the nature of pleiotropy
and the relative importance of the focal trait.

4 MODEL BUILDING USING GEOMETRY
AND PLEIOTROPY

Using the distribution of causative allele frequencies and their
effects solely on the focal trait, what could be done to further
interpret the results of GWAS studies? One advance would be to
explicitly include selection in the next generation of models that
build upon LDSC or α models (Sella and Barton, 2019). We may
start by imagining what class of models could fit the joint
distribution of (x, β). Assume a set of parameters Θ that
describes the selection model. An analysis would use
the likelihood p(x, β|Θ), which decomposes into p(x, β|Θ) �
p(x|β, Θ)p(β|Θ). Since the distribution of effect sizes is not a
major concern for selection, inference would focus on p(x|β, Θ).
The distribution of frequencies for a given effect size is
determined by integrating over the possible fitness effects of a
mutation with effect size β: p(x|β, Θ) � ∫p(x|s, Θ)p(s|β, Θ)ds. The
effect of selection, s, could be either additive or underdominant
(stabilizing selection), but could also represent other models
beyond these two such as overdominant or fluctuating
selection. x can be replaced by the age or historical frequency
path of the allele (Stern et al., 2021). p(x|s) can be tackled with
standard population genetics, so the trickier problem is to provide
p(s|β, Θ) in cases of pleiotropic selection.

In an early attempt to do this explicitly, Keightley and Hill
(1990) proposed p(s|β,Θ) as the conditional distribution of a two-
dimensional Wishart distribution. In this formulation both the
mean and variance of s, conditional on β, are proportional to |β|
plus a constant, and a correlation parameter determines how the
variance scales with the mean. This contrasts with the model of
direct stabilizing selection where s is proportional to β2. Another
approach decomposes this distribution as p(s|β, Θ) ∝ p(β|s, Θ)
p(s|Θ). This has the appealing property of separating the link
between fitness and trait effects from the distribution of fitness
effects (DFE). Eyre-Walker (2010) proposed a form for p(β|s, Θ)
where E[β]∝ sτ with multiplicative noise. Both of these models try
to capture a space of potential relationships between effect size and
selection without being over-parameterized. However, it is not
actually clear how one should interpret results from either. A weak
correlation parameter from the Keightley and Hill (1990) model
would perhaps indicate the importance of pleiotropy, but the linear
scaling between |β| and s would not make sense with direct
stabilizing selection. Eyre-Walker’s τ doesn’t necessarily mean
stronger or weaker selection. Would it mean anything for the
relative importance of directional or stabilizing selection?
Moreover, these two models make divergent predictions for the
contribution of rare versus common alleles to the genetic variance
(Eyre-Walker, 2010; Caballero et al., 2015; Sella and Barton, 2019).

Simons et al. (2018) made a strong argument for
interpretability when deriving their distribution for p(β|s, Θ).
The framework they used was multivariate stabilizing selection in

a geometric model (Fisher, 1930). Models within this framework
generally posit a multidimensional phenotypic space with a
selection function that describes the fitness of each possible
phenotypic combination. Typically, the fitness function is
Gaussian and centered at some optimum phenotype. A
mutation is a vector that moves an individual to a different
point in phenotype space, thereby altering fitness. Assuming a
population centered at its optimum value, with each phenotypic
direction under equal stabilizing selection and mutational
pressure, p(β|s, Θ) takes a simple parametric form depending
only on the number of dimensions ne and the strength of
selection Vs.

Previous work using Fisher’s geometric model had used it to
derive the DFE of new mutations (Martin and Lenormand, 2006;
Lourenço et al., 2011) or the expected genetic variance and
correlation of the focal trait with fitness (Zhang and Hill,
2003) rather than p(β|s). A major assumption of these studies
was that the phenotypic effects of new mutations were drawn
from a multivariate normal distribution with different
dimensions representing different phenotypes. While a
seemingly natural starting place, the assumption of normally
distributed mutations is far from realistic and mathematically
troublesome. There is accumulating evidence that the mutational
effect distribution is substantially leptokurtic for many traits
(Zhang et al., 2018; O’Connor et al., 2019; O’Connor, 2021). It
is has also been shown that, for a single normal distribution of
mutations, the DFE concentrates around a point value of s as the
number of traits becomes large, an obviously unrealistic scenario
(Waxman and Peck, 1998; Wingreen et al., 2003; Zhang and Hill,
2003). Thankfully, one may still rescue the utility of geometric
models by using a mixture of normals.

For example, the Simons et al. (2018) likelihood can be derived
from the geometric model with normal mutation proposed by
Martin and Lenormand (2006) by integrating out a variance

parameter: p(s|β) � ∫ p(β|s,σ2)p(s|σ2)
p(β|σ2) p(σ2)dσ2. If mutations are

uncorrelated, equally affected by stabilizing selection, and
drawn from a mixture of normal distributions, then the
distribution of variances, p(σ2), fully describes the mutational
distribution. It is straightforward using Bayes’ theorem to
show that p(s|β) ∝ p(β|s)∫p(s|σ2)p(σ2)dσ2 and contains two
components. The first component, p(β|s), has the form derived
by Simons et al. (2018), a normal distribution with variance
proportional to s when the number of traits is large. This part is
independent of σ2. The second component, ∫p(s|σ2)p(σ2)dσ2, is
the DFE itself. In this example, the DFE is generated by the
distribution of mutational effects. The variance of what normal
distribution in the mixture a mutation comes from determines
how strongly selected it is.

The above approach suggests that a fruitful way to propose
future models would be to propose that there exist different
mutational modes. Modes might represent different biological
pathways and could be parameterized by which traits are
involved, the correlation of mutational effects among these,
and the distribution of mutational effect sizes. If summarized
in ΘM, we might then integrate over the distribution of modes. If
β is conditionally independent of s givenΘM, then the form of the
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DFE will be separable from the link between selection and effect
sizes, though it is not always clear that this will be the case.
Directional selection as well as antagonistic pleiotropy may be
possible to model this way, at least for a population at equilibrium
in its fitness landscape. To more directly analyze selection and the
pleiotropic relationships among traits, a vector of effect sizes
could replace the effect β on a single, focal trait.

5 EMPIRICAL DEMONSTRATIONS OF THE
EXISTENCEANDNATUREOFPLEIOTROPY

Since models of the evolution and maintenance of complex trait
variation strongly depend on assumptions regarding the degree of
pleiotropy. Modeling andmeasurement of pleiotropy is key to the
empirical questions of whether the focal trait is under meaningful
direct selection and how selection coefficients depend on the
phenotypic effects of individual variants.

Current estimates of polygenicity indirectly but strongly suggest
highly pleiotropic genetic architecture for most complex traits
(Zeng et al., 2018; O’Connor et al., 2019; Zeng et al., 2021).
Indeed, it was estimated that 2% of genetic variation is involved
in height and a similar proportion (1%) is involved in risk of Type 2
Diabetes (Zeng et al., 2021). It is clear that a model where every
quantitative trait locus (QTL) affects just a single trait is, due to the
finite nature of the human genome, inconsistent with high
polygenicity (defined here as the probability that a variant has a
non-zero effect on the focal trait). We do not know exactly what
fraction of the genome plays any functional role; comparative and
functional genomics produce a range of estimates generally on the
order of 0.1 (Rands et al., 2014; Gulko et al., 2015). If 10% of the
genome is of any functional importance, and trait-affecting
mutations originate from this functional fraction, it clearly
cannot harbor independent QTLs for a vast number of complex
traits each with a polygenicity of 2% (Jordan et al., 2019).

With the abundance of GWAS data, many aspects of
pleiotropy can be empirically estimated using corresponding
well-developed statistical approaches. The specific relationships
between causative QTL effect sizes on different traits that these
approaches investigate are illustrated in Figure 3. The
relationship between two phenotypes is most commonly
expressed as global genetic covariance, which reflects the
overall degree of pleiotropy in the form of correlation of QTL
effects across all loci (Cov[β1, β2], where β1 and β2 are allelic effect
sizes for phenotypes 1 and 2), scaled by the heterozygosity at each
causative locus. A significant genetic covariance below one would
indicate that individual QTL effects are correlated but not
identical. Global genetic covariance is estimated using
statistical approaches related to those used to estimate
heritability including random effect models implemented into
the GCTA software or LD-score regression (Lee et al., 2012;
Bulik-Sullivan et al., 2015). Estimates of genetic covariance come
with the same caveats as must apply to heritability estimates
(Visscher et al., 2008). Measurements apply to the particular
environment in which the different traits are measured and offer
no guarantee of a fundamental relationship between traits. Under
different conditions, gene-by-environment interactions can

change which genetic variants contribute to heritability and
different pleiotropic traits may associate with the new regime.

Using these and related statistical techniques, highly
significant genetic covariances were estimated among various
autoimmune diseases and among various psychiatric diseases and
related phenotypes (Cotsapas et al., 2011; Lee et al., 2013;
Watanabe et al., 2019; Lincoln et al., 2021). The analysis of
genetic covariances between two traits has some limitations.
The genetic covariance alone is not informative about
biological mechanisms and per locus patterns. For example,
the same genetic covariance may indicate either pleiotropy
limited to just a few loci with very similar effects on both
traits on the background of other non-pleiotropic loci or the
broad pleiotropy of all loci but with non-identical effects (Figures
3A vs 3B). For autoimmune traits, it is possible that some loci
impact immune function while others determine tissue or organ
specificity.

The question of contribution of individual loci into global
genetic correlation must be, therefore, addressed at the local
level by studying individual loci. When studying individual loci,
one of the challenges is that linkage disequilibrium confounds
the analysis. Genetic covariance may imply real pleiotropy,
meaning that the same genetic variants causally affect both
traits. Alternatively, some variants may exclusively impact the
first trait and other variants exclusively impact the second trait,
but local genetic correlation can still be induced by linkage
disequilibrium between the two sets. Consequently, the field has
developed two different classes of methods to address this issue.
Methods that estimate local genetic covariance (Shi et al., 2017)
do not distinguish between functional pleiotropy versus non-
independence induced by linkage disequilibrium. A different
class of methods called “colocalization” (Giambartolomei et al.,
2014; Hormozdiari et al., 2016; Chun et al., 2017) relies on
linkage disequilibrium patterns to specifically test the
hypothesis that the same causative variant (or variants) in
the locus impacts both traits (Figure 3B). Multiple examples
of local genetic correlations and individually colocalized loci
have been described (van Rheenen et al., 2019; Aguet et al., 2020;
Vuckovic et al., 2020). However, some QTLs involved in
genetically correlated traits do not show obvious signals of
colocalization, suggesting that genetic correlation does not
necessarily imply pleiotropic effects of all variants (Lincoln
et al., 2021).

A separate aspect of pleiotropy that statistical genetics
addresses is the causal relationship between phenotypes (van
Rheenen et al., 2019). There is an important distinction between
“horizontal” pleiotropy with genetic variants exerting
independent effects on both traits and a causal path or
“vertical” pleiotropy, where one trait directly contributes to the
other (Jordan et al., 2019). Examples of the latter include LDL
cholesterol being a causative risk factor of heart disease (Zhu
et al., 2018), the genetic component of smoking being a causative
risk of lung cancer (McKay et al., 2017), and all molecular effects
(considered as “molecular” phenotypes) leading to changes in a
phenotype of the organism. If one trait is a cause of the other trait,
every variant inducing an effect on the first trait also affects the
second trait (Figure 3C). Moreover, these effect sizes are
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proportional and correspond to the causal effect of the first trait
on the second trait. Because the first trait is usually just one of
many causes, most variants affecting the second trait would not
be expected to have any effect on the first trait. These
considerations are a foundation of Mendelian Randomization
methods that attempt to infer causal relationships even if genetic
associations for the two phenotypes are measured separately in
independent datasets (Pingault et al., 2018). This approach relies
on a large number of QTLs and does not translate to
individual loci.

Many recent studies of pleiotropy, colocalization and causality
have focused on molecular phenotypes such as gene expression,
chromatin accessibility or DNA methylation (Umans et al., 2020;
Vuckovic et al., 2020; Ye et al., 2020; Morabito et al., 2021).
Numerous QTLs for various molecular phenotypes have been
identified for these classes of traits (most prominently expression
QTLs or eQTLs). The main motivation of these studies is to
identify the primary molecular events underlying genetic

associations with human traits and diseases. However, it is not
guaranteed that genetic covariance or colocalization of a
molecular trait with a focal trait is indicative of an underlying
causal impact of variation in the molecular trait on the focal trait.
One example is that changes in BMI actually induce changes in
DNA methylation rather than DNA methylation acting as a
molecular mechanism mediating genetic effects on BMI (Wahl
et al., 2017). The direction of causality was demonstrated by
showing that SNPs which predict methylation levels at individual
loci did not predict BMI levels, while a genetic risk score for BMI
levels did predict methylation levels.

Even in the absence of genetic covariance, molecular effects
may induce pleiotropic relationships between two traits. Imagine
a scenario where the two traits are both mediated by a large
number of molecular phenotypes (activities of many individual
genes or other latent factors), but these molecular phenotypes do
not exhibit correlated effects on the two traits (Figure 3D). In this
case, genetic covariance might not exist or be very weak on

FIGURE 3 | Various potential pleiotropic relationships at individual loci underlie genetic correlations between traits. (A)Mutations affecting trait 1 have a tendency to
impact trait 2 in a particular direction, although a variety of outcomes are possible through the functional particulars of that change. (B)Mutations fall either into a shared
or unshared functional pathway between the two traits. Colocalization analysis aims to test which distribution a given QTL comes from. Even though not every mutation is
pleiotropic, the two traits are genetically correlated. The proportion of mutations falling into either pathway determines the strength of genetic correlation. (C) Trait 1
has a causal impact on trait 2 such that every mutation with a non-zero effect on trait one has a strongly correlated effect on trait 2, but not vice-versa. Mendelian
randomization aims to test for the existence and direction of this effect. This also manifests as a genetic correlation at the phenotypic level. (D) Individual variants may be
pleiotropic, but can result in low or zero genetic correlation if different pathways have opposing effects.
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aggregate but covariance between absolute (or squared) genetic
effects Cov[β21, β22] may be substantial. The popular “omnigenic”
model offers one version of such a scenario (Boyle et al., 2017).
Genetic covariance may also be close to zero if the pleiotropic
effect is limited to one or a small number of loci (in other words,
with a substantial local genetic covariance and even colocalization
in individual loci) (Liu et al., 2019).

These methodological developments and empirical results
related to pleiotropy are important in light of the main subject
of this review. They motivate consideration of evolutionary
models that take into account groups of correlated traits. For
causally related traits, selection effects would probably differ
depending on whether selection primarily acts on the
upstream or downstream trait along the causal chain. An
interesting perspective is also brought by the consideration of
molecular phenotype. If each molecular phenotype is
pleiotropically involved with many downstream organismal
phenotypes, and the focal trait is merely one of these, selection
coefficients can depend on effect sizes even if the focal trait is
neutral. Variants with larger effect sizes on molecular function
would be under stronger selection because this molecular
function impacts multiple other selected downstream traits in
addition to the neutral focal trait.

Few studies have analyzed the effects of pleiotropy on selection
by actually incorporating the measured effects of variants on
multiple traits. Some mutation accumulation studies have tried to
demonstrate whether pleiotropic mutations are under stronger
selection. McGuigan et al. (2014) provide some evidence that
mutations underlying combinations of correlated gene expression
traits in Drosophila serrata are under stronger selection than the
average mutation affecting a given trait. In humans, Sanjak et al.
(2018) regressed lifetime reproductive success on genetic scores
for multiple traits simultaneously in United Kingdom Biobank
participants. Compared to the univariate, this full analysis lacked
power, but quadratic and linear selection terms did change in
both magnitude and sign for some traits, indicating the
importance of accounting for pleiotropy. Stern et al. (2021)
took a similar approach, but used the shape of genealogies at
GWAS loci to look at historical rather than contemporary
patterns of directional selection. Again, the authors found that
many estimates of selection changed substantially, and were
largely attenuated, when accounting for the correlated
response in other traits. At the time of writing, no attempt has
been made to account for pleiotropy in the alpha model
approaches discussed above that have demonstrated negative
selection on many human traits.

6 CONSTANCY OF EFFECT SIZES ACROSS
TIME AND SPACE

Everything discussed so far has assumed that genetic variants have
well-defined additive effects on traits of interest, and that these
effects are measurable in contemporary human populations.
Although convenient, and the correct starting place for most
analyses, recent research has demonstrated that causative
variants for many traits and diseases have population-specific

effect sizes. Such studies are possible when GWAS for the same
traits have been performed in different populations (De Candia
et al., 2013; Mancuso et al., 2016). One approach has been to
estimate the cross-population genetic correlation, the correlation in
causal effect sizes between the different samples, and these
estimates are often less than one (Brown et al., 2016; Galinsky
et al., 2019). This is most likely due to gene-by-environment (GxE)
and gene-by-gene (GxG) interactions, with some effect driven by
different measurement practices and diagnosis criteria.

Shi et al. (2021) estimated the impact of different functional
annotations on the degree of cross-population effect size
correlation of variants within those genomic regions. They
found that the squared genetic correlation was depleted most
strongly in regions under strong background selection as well as
in and around functional elements such as exons, promoters, and
enhancers. These regions are also enriched for heritability and,
as previous research reviewed here has shown, variants residing
there are likely under stronger selection. If a variant has
different effect sizes in different contemporary populations,
we should be more uncertain about its effect size in the
ancestral population where the majority of its existence may
have taken place. Cross-population genetic correlation could
therefore be used as a measure of the temporal stability of allelic
effects. Alternatively, the aggregate pleiotropic effects of an
allele may stay roughly constant even as the effects on
individual traits vary due to GxE or other factors.

7 CONCLUSION

Direct data on genotype-phenotype associations for numerous
human traits have provided an opportunity to investigate which,
if any, of the current theoretical models for the maintenance of
complex trait variation fit observed genetic architectures.
Depending on the degree and nature of pleiotropy, as well as
the importance of the focal trait for selection, these models
predict the relationship between β and s (Johnson and Barton,
2005). Selection analyses of human GWAS data have consistently
demonstrated a negative relationship between effect size
magnitudes and allele frequencies, implying that larger effect
sizes are associated with stronger selection on average (Zeng et al.,
2018; Schoech et al., 2019; Speed et al., 2020; Zeng et al., 2021).
Models where the focal trait is neutral, or largely biologically
unrelated to any aspect of fitness, are therefore ruled out. Within
the class of alpha models, the scaling between β2 and frequency
varies across traits, likely reflecting differences in the DFE and the
scaling between β and s. These estimates are difficult to interpret
in terms of classical stabilizing selection models, and work is
needed to reconcile tractable statistical models of how effect sizes
change with frequency with realistic models of selection at the
phenotypic level. Studies have also largely been limited to
analyzing the average relationship of effect size to frequency.
This limits the ability to capture the importance of pleiotropy
which should create variance around that average. By directly
modeling the variation in genome-wide significant variance
contributions, Simons et al. (2018) were able to infer a high
degree of pleiotropy for height and BMI.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 76336310

Koch and Sunyaev Negative Selection in GWAS

91

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


All the approaches reviewed here infer the nature of
selection on GWAS loci by analyzing the distribution of
allele frequencies and effect sizes (x, β), with the overall
trait heritability sometimes included. Future work along
these lines may utilize fine-mapping (Weissbrod et al.,
2020) or other techniques to better capture this
distribution (O’Connor, 2021). An interesting approach
was developed by O’Connor et al. (2019) who estimated
the kurtosis of heritability contributions using the LDSC
framework to measure trait polygenicity at different allele
frequencies and functional genomic annotations. The
kurtosis depends on the fourth moment of the distribution
of effect sizes, and therefore contains additional information
beyond that contained in the alpha model. A low kurtosis, and
therefore high polygenicity, of common variants indicated a
“flattening” due to selection strongly preventing any large-
effect variants from reaching high frequencies. This indicates
a high importance of the focal trait for selection, but more
thought is needed to tell what degree of pleiotropy is
consistent with these results.

The greatest advances in our ability to make sense of the
maintenance of complex trait variation will likely come from
analyses that utilize variant-level pleiotropy and account for effect
sizes that vary across time and space. Methods to investigate
pleiotropy in statistical genetics are already well-developed (van
Rheenen et al., 2019) but have yet to intersect with analyses of
stabilizing or negative selection. Effect size differences between
populations are also well-documented (Brown et al., 2016; Shi
et al., 2021), but have received less attention, likely in part due to

the lack of large GWAS from diverse populations and the
difficulty of standardizing measurement for some phenotypes.
The portability of polygenic scores is also potentially more
strongly impacted by differences in allele frequencies and
linkage disequilibrium than effect size variation (Wang et al.,
2020), and allele frequencies will differentiate more rapidly under
stabilizing or negative selection (Yair and Coop, 2021). However,
understanding effect size variation in space and time may
ultimately end up being more important for modeling the
maintenance of variation in complex traits as well as detecting
selection on them (Mathieson, 2021).
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GLOSSARY

Causative Allele The allele which causally affects the focal trait. Due to
linkage disequilibrium, many alleles at a GWAS-identified locus are highly
correlated. The causative allele refers only to the one which causally affects the
trait.

Distribution of Mutational Effects The distribution fromwhich the
phenotypic effects of newmutations are drawn. This can include the focal trait
as well as related pleiotropic ones.

Effect Size Magnitude The absolute value of the effect size of an allele. It
is often useful to ignore the direction of effect that an allele has on the trait.

Focal Trait All studies in quantitative genetics must choose some
measurable aspects of biology to focus on. This can be something of obvious
importance like diabetic status, or could be simply something easily queried in
a biobank. Analyzed one at a time, we call the current trait the focal trait.

Genetic Architecture The joint distribution of allele frequencies and
effect sizes in a population or sample. This determines how much different
frequency and effect size ranges contribute to heritability, and answers
questions surrounding the importance of rare versus common variants;

genetic covariance, The covariance between the effects different genotypes
have on two traits. This measures the propensity for an individual with a high
genetic value for one trait to also have a high (or low) genetic value for the
second. It averages over all alleles and their effects on both traits, scaled by
their contributions to the genetic variance.

Genetic Risk Score A phenotypic prediction calculated for an individual
using a weighted sum of the estimated effect sizes of variants found in that
individuals genome.

Molecular Phenotype Phenotypes such as gene expression, methylation
levels, or metabolite concentration that are measured at the molecular level.
These are hoped to represent “low-level” traits that mediate the effects of
genetic variants on other phenotypes.

Overdominant Selection where the heterozygous genotype has higher
average fitness than either of the two homozygotes.

Pairwise Coalescent Time The amount of time it takes two sampled
loci to find a common ancestor going backwards in time. The longer this time,
the more likely it is that mutations occur to differentiate the two loci.

QTL Quantitative trait locus. A region in the genome that has been
statistically associated with a quantitative trait.
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Current Genome-Wide Association Studies (GWAS) rely on genotype imputation to
increase statistical power, improve fine-mapping of association signals, and facilitate
meta-analyses. Due to the complex demographic history of Latin America and the lack of
balanced representation of Native American genomes in current imputation panels, the
discovery of locally relevant disease variants is likely to be missed, limiting the scope and
impact of biomedical research in these populations. Therefore, the necessity of better
diversity representation in genomic databases is a scientific imperative. Here, we expand
the 1,000 Genomes reference panel (1KGP) with 134 Native American genomes (1KGP +
NAT) to assess imputation performance in Latin American individuals of mixed ancestry.
Our panel increased the number of SNPs above the GWAS quality threshold, thus
improving statistical power for association studies in the region. It also increased
imputation accuracy, particularly in low-frequency variants segregating in Native
American ancestry tracts. The improvement is subtle but consistent across countries
and proportional to the number of genomes added from local source populations. To
project the potential improvement with a higher number of reference genomes, we
performed simulations and found that at least 3,000 Native American genomes are
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needed to equal the imputation performance of variants in European ancestry tracts. This
reflects the concerning imbalance of diversity in current references and highlights the
contribution of our work to reducing it while complementing efforts to improve global equity
in genomic research.

Keywords: Imputation, reference panels, GWAS, Native American ancestry, Latin Americans, underrepresented
populations

INTRODUCTION

Over the past years, GWAS have identified thousands of genetic
associations to multiple phenotypes (MacArthur et al., 2017;
Visscher et al., 2017), targets for potential new drugs (Agrawal
and Brown 2014; Flannick et al., 2014; Nelson et al., 2015), and
facilitated disease stratification (Chatterjee, Shi, and García-
Closas 2016). However, most GWAS have been performed in
populations with European ancestry (Popejoy and Fullerton
2016). Unfortunately, the findings of large-scale GWAS
performed in populations of European descent have limited
portability to other ancestry groups (Duncan et al., 2019; Sirugo,
Williams, and Tishkoff 2019) due to population substructure.
This represents a major limitation in the case of Latin American
populations as they are the result of recent admixture primarily
between Native American, European, and African populations,
and only 1.3% of both discovery and replication studies have
been performed in these populations (Mills and Rahal 2019).
Furthermore, the genetic composition of Latin American
populations is heterogeneous between countries (Chacón-
Duque et al., 2018; Soares-Souza et al., 2018) and within
countries (Moreno-Estrada et al., 2014; Harris et al., 2018;
Kehdy et al., 2015). Different demographic histories often
lead to different associated variants to a given phenotype
(Martin et al., 2017). For example, variants in the SLC16A11
gene have been associated with an increased risk of diabetes in
Mexicans and appear to be segregating at low frequency in Latin
American populations specifically (SIGMA Type 2 Diabetes
Consortium et al., 2014). Likewise, risk variants of renal
disease in APOL1 associated with renal disease in west
African populations are also found in the Americas as a
result of the Transatlantic slave trade, differentially shaping
the frequency spectrum of disease variants among Afro-
descendent Latino populations (Nadkarni et al., 2018). If the
current bias in catalogs of human variation persists, many
population-specific variants will be overlooked, and precision
medicine strategies will not benefit all populations equally
(Martin et al., 2019).

A critical step when performing a GWAS is genotype
imputation, which leverages linkage disequilibrium (LD)
structure and haplotype sharing to estimate untyped variation
in a SNP array based on a reference panel (Marchini et al., 2007).
Genotype imputation increases statistical power, improves fine-
mapping of association signals, and facilitates meta-analysis
(Marchini and Howie 2010). Currently, available imputation
panels do not have an explicit representation of Native
American genomes. A previous study showed that in Latin
American populations, SNPs in chromosomal segments with

Native American ancestry have reduced imputation quality
compared to those in chromosomal segments of European
ancestry (Martin et al., 2017). Therefore, association signals
coming from chromosomal segments with Native American
ancestry will be harder to detect. This limits the scope and
impact of biomedical research in the region.

Several projects and initiatives around the world are
contributing to revert this trend (GenomeAsia100K
Consortium 2019; Mulder et al., 2018; Gurdasani et al., 2015;
Magalhães et al., 2018). For example, the Ugandan Genome
Resource (Gurdasani et al., 2019) comprises genome-wide data
for 6,400 individuals, including a subset of 1,978 whole genomes,
which is enabling researchers to explore the genetic substructure
of the region, improve imputation in African populations, and
foster the discovery of novel association signals. In Latin America,
recent sequencing efforts have generated whole-genome data
from dozens of Native American genomes, including the
Peruvian Genome Project (Harris et al., 2018) and the 12G
and 100G-MX Projects (Romero-Hidalgo et al., 2017; Aguilar-
Ordoñez et al., 2021) from the National Institute of Genomic
Medicine (INMEGEN) in Mexico. However, only a subset of the
existing generated data is available to the scientific community
given the data sharing mechanisms implemented in each country.
An ongoing multi-institutional effort in Mexico, the MX Biobank
Project, is generating genome-wide data for more than 6,000
individuals nationwide, including 50 whole genomes of Native
American ancestry representing the genetic variation of
indigenous diversity within Mexico (http://www.
mxbiobankproject.org). At a global scale, the inclusion of
diverse populations in disease association research has been
well demonstrated by the PAGE study (Wojcik et al., 2019),
which combines genome-wide data for 49,839 individuals with
diverse ancestries, enabling the discovery of novel association
signals to well-studied phenotypes. Here, we combine novel and
publicly available data from multiple sources to build a
population-specific reference panel of Native American
variation aimed at improving imputation performance in Latin
American populations by expanding the current and widely used
reference of the 1,000 Genomes Project (1KGP) (The 1000
Genomes Project Consortium et al., 2015) with 134 Native
American genomes. Using a demographic simulation
framework, we also explore the number of additional reference
genomes that should be sequenced to bridge the gap in
imputation quality between different ancestries. Strengthening
these efforts in diverse populations is not only a question of
equality in genomics, but it also entails the scientific advantage of
furthering our understanding of complex phenotypes in
biomedical research.
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MATERIALS AND METHODS

Building a Native American Reference Panel
Our panel consists of 134 Native American individuals broadly
distributed across the continent (Figure 1; Supplementary
Tables S1, S2). We gathered publicly available whole-genome
sequencing (WGS) data from HGDP (Bergström et al., 2020)
(61 individuals), SGDP (Mallick et al., 2016) (11 individuals),
and INMEGEN (Romero-Hidalgo et al., 2017) (12 individuals).
Additionally, we whole-genome sequenced the genome of 50
Mexican individuals with the highest Native American ancestry
(99% on average) from the MX Biobank Project (http://www.
mxbiobankproject.org). These were selected to maximize
indigenous ancestry and geographical representation across
Mexico. Individual genetic ancestry proportions were
estimated using ADMIXTURE (Alexander, Novembre, and

Lange 2009) at K � 3 using Utah residents with Northern
and Western European ancestry (CEU), Yoruba in Ibadan,
Nigeria (YRI), and the Latin Americans (AMR) of 1KGP as
references.

To construct the panel, we restricted the datasets to biallelic
SNPs with no missing data in any individual across each data
source. This was done for all four data sources (Supplementary
Table S3). The data processing was done using VCFtools v0.1.17
(Danecek et al., 2011). Then, we merged the data using bcftools
v1.9 (Danecek et al., 2021) using the flag --missing-to-ref that fills
the missing positions in one panel but present in another with
homozygous reference. To minimize any potential bias
introduced with this strategy, we made sure that any
previously removed position in any of the sources was not
present in the final freeze. The final dataset consists of a total
of 10,981,451 SNPs.

FIGURE 1 | Native American reference panel (NATS). (A) Geographical sampling locations of the NATS reference panel. Colors represent the four data sources:
HGDP (61) (Bergström et al., 2020), SGDP (11) (Mallick et al., 2016), INMEGEN (12) (Romero-Hidalgo et al., 2017), and MX Biobank (50) totaling 134 genomes. (B) SNP
proportions of the union of 1KGP and NATS (1KGP + NATS) by SNP sharing categories. We show the proportion of SNPs unique to 1KGP, SNPs unique to the NATS
panel, and the intersection. (C) Unsupervised ADMIXTURE analysis at K � 3 of the NATS reference panel (far left, N � 134) together with 104 European (CEU), 113
African (YRI), and 347 admixed Latin American (AMR) samples from 1KGP. Genetic ancestry abbreviations: AFR—African, EUR—European, NAT—Native American.
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Finally, we phased the data using SHAPEIT2 v2. r837
(Delaneau et al., 2014) using the following flags: --window 0.5
--states 500 --burn 10 --prune 10 --main 50. Then, we converted
the data to the reference format used by IMPUTE2 (Howie et al.,
2012). We named this panel NATS.

Whole-Genome Sequencing and Variant
Calling
Fifty individuals from the MX Biobank Project were sequenced at
40X on Illumina HiSeqX instruments using dual indexed
barcodes. The raw reads were aligned to the human genome
assembly GRCh37 using BWA v.0.7.17-r1198-dirty (Li and
Durbin 2009). We added the mate tags with Samblaster
v0.1.24 (Faust and Hall 2014) and used Sambamba v0.7.1
(Tarasov et al., 2015) for file conversion and sorting. To
generate the alignment statistics, we used Samtools v1.10 (Li
2011) with the option depth -a. Finally, we performed variant
calling and generated the final gvcf files with GATK v4.1.9.0
(McKenna et al., 2010) using the human genome assembly
GRCh37 as the reference genome. Details are available as part
of the Supplementary Material (Supplementary Table S2;
Supplementary Figure S9).

Creating a SNP Array Subset From WGS
Data for Imputation Performance
Evaluation
To evaluate the performance of our panel, we used WGS data
from the 347 AMR individuals in 1KGP as target individuals for
imputation. Namely, Puerto Ricans in Puerto Rico (PUR),
Peruvians in Lima (PEL), Colombian in Medellin (CLM), and
Mexican ancestry in Los Angeles (MXL). We generated an array
dataset by subsetting the AMR individual genomes to the existing
positions in the Multi-Ethnic Global Array (MEGA) using
VCFtools v.0.1.17 and saved the removed positions from the
WGS data to use for imputation validation. Illumina’s MEGA
array includes nearly 1.8 M markers (1,779,819) genome-wide
distributed and was designed to leverage SNP content from
various global sequencing efforts, mostly Phase 3 of the 1,000
Genomes Project. To better approximate a real scenario, we
unphased the array dataset with Plink v1.9 (Chang et al.,
2015) by transforming the data to bed format. Finally, we
phased the dataset again with SHAPEIT2 v2. r837 using 1KGP
as a phasing reference.

Local Ancestry Inference
To evaluate the performance by ancestry, we deconvoluted local
ancestry for the Latin American individuals from 1,000 Genomes.
We used 70 YRI individuals in 1KGP as the African reference, 70
CEU individuals from 1KGP as the European reference, and 70
Native American individuals from (Moreno-Estrada et al., 2014)
as the Native American reference. The selected individuals had
the highest African, European, and Native American genetic
components, respectively. We used the PopPhased version of
RFMix v.1.5.4 (Maples et al., 2013) with the following flags: -w 0.2
-e 0 --forward-backward.

Imputation and Imputation Performance
We implemented a leave-one-out strategy for imputation.
Namely, the target individual was removed from the 1KGP
reference. We performed imputation with IMPUTE2 for
chromosomes 2 and 9. These chromosomes, being the largest
and of intermediate size, respectively, were selected to ensure a
representative subset of variants across the genome while keeping
the project within the available computational capacity. We used
1KGP and 1KGP + NATS as reference panels. When using 1KGP
as a reference, we used the flag --k_haps 1,000, and when using
1KGP + NATS, we used the flags --merge-ref-panels and
--k_haps 1,250.

We obtained the imputed dosages with the formula: P(Aa) +
2P(aa). We computed the Pearson squared correlation (r2)
between the imputed dosages and the real dosages for each
individual using R software. Overall imputation accuracy was
stratified by minor allele frequency and local ancestry diplotype
(AFR_AFR, AFR_EUR, AFR_NAT, EUR_EUR, EUR_NAT,
NAT_NAT). We also compared the number of SNPs above
the GWAS quality threshold (MAF >�0.01 and INFO >0.3)
for both reference panels stratified by local ancestry diplotype
in the target individuals.

Demographic Simulation
We simulated neutral genetic sequence data under a coalescent
model. We used the msprime (Kelleher, Etheridge, and McVean
2016) option of stdpopsim (Adrion et al., 2020) to simulate a
previously defined American admixture model for Latinos
(Browning et al., 2018). It models African, European, and
Asian (as Native American proxy) demographic history and
an admixture event taking place 12 generations ago. In the
absence of realistic admixture models that use Native
American instead of East Asian genomes as proxy in the
simulations and based on the framework described by
Browning et al. (2018), we will now refer to the simulated
Asian population as Native American for the purpose of
predicting imputation performance at incremental numbers of
reference genomes in a similar scenario to the Latin American
admixture. The simulated admixed population ancestral
proportions are 1/6 African, ⅓ European, and ½ Native
American. In total, we simulated chromosome 9 for 661
Africans, 503 Europeans, 3,000 Native Americans, and 657
admixed individuals. We selected all the Africans, Europeans,
and the first 347 admixed individuals to serve as the base
reference panel (note that these numbers mirror the sample
sizes of 1KGP for each ancestry). The remaining 300 admixed
individuals were used as imputation targets, and incremental
subsets of the 3,000 Native American genomes were added
sequentially to the base reference panel.

To simulate genotype array data for the target individuals, we
downsampled the simulated neutral sequence to match the allele
frequency spectrum in European populations of 1KGP and the
average distance between SNPs of the MEGA array. We used the
European populations in 1KGP to mirror the ascertainment bias
towards European ancestry in current array designs. We
estimated local ancestry using RFMix for the 300 admixed
individuals used as imputation targets. We randomly selected
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100 simulated individuals from each ancestral population
(African, European, and Asian) as references for the local
ancestry inference. Here, again, we used Asians as the closest
proxy for Native Americans in the available simulation model.

We conducted imputation with the base reference panel plus a
varying number of additional reference genomes (0, 100, 134,
200, 400, 600, 800, 1,000, 1,500, 2000, and 3,000). Finally, we
compared imputation r2 of using different reference panels
stratified by local ancestry and allele frequency in the target
individual genomes.

RESULTS

TheNative American Reference Panel NATS
We built a Native American reference panel (NATS)
representing indigenous populations across Latin America.
The panel consists of publicly available data [HGDP
(Bergström et al., 2020), SGDP (Mallick et al., 2016), and
INMEGEN (Romero-Hidalgo et al., 2017)] and 50 new
genomes from the MX Biobank Project (Materials and
Methods, and Supplementary Table S2). While most of the
genomes in the panel are from indigenous groups in Mexico
(103 of 134; 76.8%) (Figure 1A; Supplementary Table S1), our
panel also encompasses native groups from Colombia, Brazil,
and Peru. When merging NATS with 1KGP, the total number
of SNPs is 102,336,497, of which 24,518,242 (24%) are unique
to our panel (Figure 1B). The amount of non-indigenous
admixture in our panel is less than 1.5% overall
(Figure 1C). Only some Mayan individuals from HGDP
show between 0.8 and 23% of European admixture (on
average 6%) (Supplementary Table S1). Overall, our panel
has 98.5% of Native American genetic ancestry. We
acknowledge that, while this panel includes as many
genomes as possible from those publicly available at the
time of publication, it does not fully capture the genetic
variation of the vast ethnic diversity in the continent. It is
intended to serve as a first approximation to evaluate the
impact of ancestry representation in imputation performance.

Imputation Performance of the NATS
Reference Panel
To assess the impact of our panel on imputation performance, we
imputed the AMR individuals (from Colombia, Peru, Puerto

Rico, and Mexico in 1KGP) at SNPs not found on the MEGA
array using a leave-one-out strategy, with either 1KGP or 1KGP +
NATS as reference panels (Materials andMethods). We chose the
MEGA array because it was specifically designed to capture global
variation better. We compared the mean number of SNPs above
the standard quality threshold for human genetic studies (MAF
>� 1% and INFO >� 0.3) using the two reference panels. We were
able to increase the number of SNPs above the quality threshold
across the four populations using our NATS panel (Table 1). The
magnitude of the increase is correlated with the individual’s
proportion of native ancestry (Supplementary Figure S1).
Furthermore, the majority of these SNPs fall into diploid
European tracts of the genome (Supplementary Figure S2)
regardless of the ancestry composition of each population, and
which reference panel was used for imputation. This is because
even though the 1KGP has as many African individuals as
Europeans, European ancestry is more predominant in AMR
individuals.

To determine imputation accuracy, we computed the
correlation between the real allele dosages and the imputed
dosages (Materials and Methods). We checked imputation
accuracy in 1KGP admixed individuals trimmed down to SNP
array positions stratified by diploid ancestry (Figure 2A). Overall,
imputation accuracy is worse in AMR populations with the
highest proportion of Native American ancestry
(Supplementary Figure S3). As previously reported (Martin
et al., 2017), the ancestry tracts that perform the worst are the
ones that are underrepresented in the reference panel, specifically
African and Native American. Next, we evaluated imputation
accuracy using our panel (1KGP + NATS). We were able to
increase imputation accuracy particularly in rare alleles
(frequency >0.003 and <0.008) with diploid Native ancestry of
the Mexican population (p-value < 0.05 two-tailed paired t-test)
(Figure 2B) but not for the other populations (Supplementary
Figure S3) or in common frequencies (Supplementary Figure
S4). Interestingly, we do not see the same increase in the Peruvian
population, which has the highest proportion of Native American
ancestry overall. This could be explained by the fact that the
majority of our reference data comes from native Mexicans
(Figure 1A; Supplementary Table S1). Since rare variants
tend to be more private to each population (Biddanda, Rice,
and Novembre 2020), we could better impute rare alleles in
admixed Mexicans. This suggests that, to see a similar
improvement in accuracy in the other populations, we would
need to include more native individuals from each local region.

TABLE 1 | SNPs above the standard quality threshold using both panels after imputing missing variants. We show the average number of SNPs with MAF >� 0.01 and INFO
>� 0.3 using both reference panels and the overall proportion of Native American ancestry of the population. p-value was calculated with a two-tailed paired t-test. The
average number of SNPs with MAF <0.01 and INFO >0.3 for both panels is shown in Supplementary Table S4.

Population SNPs above quality
threshold (1KGP)

SNPs above quality
threshold (1KGP +

NATS)

Increase of SNPs
using 1KGP +

NATS

Average proportion of
Nat. American ancestry

Peru (PEL) 244,818 248,087 3,269 (p-value � 2.03e-49) 0.70
Mexico (MXL) 265,619 268,254 2,635 (p-value � 6.5e-31) 0.42
Colombia (CLM) 279,828 281,911 2,163 (p-value � 8.3e-47) 0.18
Puerto Rico (PUR) 291,035 292,734 1,699 (p-value � 2.9e-67) 0.06
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Surprisingly, we could also see an improvement in
diploid European ancestry tracts in the Mexican population
(p-value < 0.05 two-tailed paired t-test for SNPs with
frequency >0.003) (Figure 2B). One possible explanation is
that because our NATS reference panel still keeps a minor
fraction of European ancestry, some European haplotypes at
higher frequency in Mexico could be better captured by
reference genomes with such a genetic mixture. In some cases,
like variants of frequency <0.02 and >0.009 with diploid Native
ancestry in PEL, we could also observe a slight decrease in
imputation accuracy using NATS. This could result from the

uncertainty added to the data in the cross-imputation step that
IMPUTE2 performs when merging two reference panels (Howie,
Marchini, and Stephens 2011).

Predicting Imputation Improvement From
Additional Native American Genomes Using
Simulations
Our results show that after adding 134 Native American
genomes to the most widely used reference panel of global
variation, we observe a promising trend of improvement. Still,

FIGURE 2 | Imputation accuracy by local ancestry and population using both reference panels. (A) Imputation accuracy of the four AMR populations stratified by
diploid local ancestry for the MEGA array using 1KGP as reference panel. (B) Imputation accuracy for the Native and European diploid ancestries using 1KGP and 1KGP
+ NATS as reference panel focusing on rare alleles. Imputation accuracy was calculated with the Pearson squared correlation between imputed and real allele dosages.
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we do not come close enough to equal the imputation
performance for other better represented ancestries. The
question remains of how many additional genomes are still
needed to close the gap. To explore this, we employed
demographic simulations using stdpopsim (Adrion et al.,
2020) and msprime (Kelleher, Etheridge, and McVean 2016)
to generate data for a previously defined American admixture
model (Browning et al., 2018). This approach allows us to
explore a simulated scenario where three divergent
populations intermingle to form a new admixed population
(like it occurred in Latin America). With this, we can replicate
the current situation where reference data are mostly available
for two of the three source populations. By being able to
simulate any amount of data, we can assess how many
genomes of the underrepresented population (in our case,
Native Americans) are necessary to equal imputation
performance across ancestries. Briefly, the model simulates
African, European, and Asian source populations. In the
context of this analysis, the Asian population serves as a
proxy for a Native American reference. We do not directly
simulate a Native American population due to the lack of
realistic admixture models that incorporate Native American
instead of East Asian genomes as proxy in the inference of
demographic parameters, which are needed to properly
run the simulations. Building such demographic model is
beyond the scope of this study, so given the available model
and since this project focuses on Latin American
populations, we will refer to the simulated Asian
population as Native American. The model also simulates
an admixed population that consists of 1/6 African, ⅓

European, and ½ Native American. We generated a base
reference panel consisting of 661 Africans, 503 Europeans,
and 347 admixed individuals (matching 1KGP sample sizes
for those ancestries), as well as 3,000 Native American
individuals to add sequentially to the base reference, and
300 additional admixed individuals as imputation targets
(Materials and Methods).

We confirmed the ancestry proportions of our simulated data
usingADMIXTURE (Supplementary Figure S5). To replicate the
imputation pipeline, we created a genotype array dataset for the
simulated target individuals by matching mean distance between
markers and frequency in the European population of SNPs in
the MEGA array to the simulated array, to mirror the bias in
standard arrays (Materials and Methods and Supplementary
Figure S6). Then, we imputed the 300 target individuals with
the base reference plus either 0, 100, 134 (to mirror the sample
size in NATS), 200, 400, 600, 800, 1,000, 1,500, 2000, or 3,000
Native Americans. We were able to recover roughly the same
pattern of imputation accuracy (Supplementary Figure S7).
Namely, accuracy decreased the less represented the ancestry
was in the base reference with the Native American as the worst-
performing ancestry. One caveat is that the best-performing
ancestry is African contrary to what we see in the real data
(Figure 2A). This is likely because the 661 African individuals are
from the population that contributed to the admixed population
in the simulation, which is not the case for real data. Different
African ancestries contributed more or less to different Latin

American populations (Micheletti et al., 2020) and not all are
present in 1KGP.

When incorporating additional Native American genomes,
imputation accuracy only increased in those tracts with any
Native ancestry (Supplementary Figure S8). Furthermore, for
imputation accuracy in Native American diploid ancestry tracts
to equal that in European diploid ancestry tracts, 3,000 Native
genomes were needed for variants with frequency>�2%, while
1,500 were enough for variants with frequency <2% (Figure 3A).
To ask whether we reach a saturation point in the increase of
imputation accuracy in the Native diploid ancestry, we compared
the difference between accuracy in the base reference versus each
additional reference. As expected, the behavior is different for
common (frequency >0.05), low (frequency <0.05 and >0.01),
and rare (frequency <0.01) variants (Figure 3B). Neither of them
seems to show a saturation point at 3,000 newly added Native
genomes. The steepest increase is achieved for the rare alleles,
whereas for the common alleles, the increase is slower. This agrees
with the previous result where more genomes were needed to
match the Native imputation accuracy to the European one for
common variants. It is also evident that the variants of common
frequency are closest to saturation in accuracy as their values were
already close to one (Figure 3A).

DISCUSSION

GWAS requires large sample sizes to detect genetic associations
to complex phenotypes, and more so as the field moves toward
studying rare variants (Collins 2012; Amendola et al., 2018; Abul-
Husn and Kenny 2019). Therefore, SNP array platforms will
continue to inform GWAS even as whole-genome sequencing
costs continue to drop. In this scenario, imputation tools and
genome variation resources are vital to increasing the statistical
power to discover associations in understudied populations. So
far, GWAS have mainly focused on populations with European
ancestry (Popejoy and Fullerton 2016; Mills and Rahal 2019) and,
over the past years, interesting discoveries have been made
(Visscher et al., 2017). However, not all GWAS results are
portable between populations (Martin et al., 2017; Duncan
et al., 2019; Sirugo, Williams, and Tishkoff 2019). To ensure
that these advances reach all people equitably, we must expand
these studies to other populations. Other recent projects around
the world have sought to reverse this trend (Gurdasani et al.,
2015, 2019; GenomeAsia100K Consortium 2019; Magalhães
et al., 2018; Mulder et al., 2018) improving imputation
accuracy, fine mapping of associations, and discovering novel
associations to well-studied phenotypes. We sought to add to this
trend by creating a Native American imputation reference panel
merging publicly available Native American genomes (Mallick
et al., 2016; Romero-Hidalgo et al., 2017; Bergström et al., 2020)
with 50 novel genomes.

One major caveat of our panel is that it does not
comprehensively reflect the indigenous genetic variation across
the Americas. Most of the data come from individuals from
Mexico. Furthermore, the 134 genomes added are only a small
increment (5%) with respect to 1KGP. The contribution of this
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FIGURE 3 | Predicted imputation accuracy according to demographic simulations. (A) Imputation accuracy in the diploid Native American (solid colored lines) and
diploid European (thick dashed line) ancestries using different simulated reference panels of incremental sizes. Ref 0 stands for the base reference (as it has 0 additional
reference genomes). Given the available demographic model (Browning et al., 2018), a simulated Asian population was used as a proxy for Native American ancestry for
the purpose of reproducing a three-way admixture process with similar ancestry proportions of African, European, and Native American sources to that observed in
admixed Latino populations (see Methods for details). (B) Increase in imputation accuracy from the base reference in the Native American diploid ancestry at increasing
sizes of the reference panel by allele frequency [common (0.5–0.05), low (0.05–0.01), and rare (0.01–0.003)].
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panel is small in comparison to projects like the Uganda Genome
Resource that sequenced 1,978 novel genomes (Gurdasani et al.,
2019). Even with these limitations in mind, we were able to
quantify the consequences of the lack of Native American
genomes in commonly used imputation reference panels using
empirical and simulated data analyses, while highlighting what
this means for ongoing and future studies in the region.

Our panel increased the number of SNPs above the standard
quality threshold for human genetic studies increasing statistical
power in the four AMR populations of 1KGP. This mirrors what
has been achieved by other studies in other populations (Ahmad
et al., 2017; Magalhães et al., 2018; Gurdasani et al., 2019). The
magnitude of this increase is positively correlated with the
proportion of Native American ancestry. In other words, our
panel has a stronger impact on individuals with higher Native
American ancestry. However, even after using our panel, the
majority of SNPs that were above the quality threshold are in
chromosomal segments of the genome with European diploid
ancestry, regardless of the proportion of European ancestry in the
population, due to an over-representation of this ancestry in the
reference panel. This means that, when doing a GWAS, the
genetic signals predominantly found on the European ancestry
will be easier to detect.

We were able to increase imputation accuracy in rare variants
of Native American diploid ancestry in the MXL population. This
was not the case for the other three populations. We expected
that, since PEL is the population with the highest Native
American ancestry proportion, it would also be the population
most benefited by the use of our extended panel. However, there
can be high levels of genetic differentiation among Native
American groups, even if they are geographically close
(Moreno-Estrada et al., 2014). In light of this fact, it is not a
surprise that our panel, constructed with a majority of Native
American individuals from Mexico, only improves accuracy in
the MXL population. This suggests that to observe similar results
in other populations, we should include more individuals of those
populations in our panel. We also observed an increase in
accuracy in some variants of European diploid ancestry. This
could be attributed to the small fraction of European admixture
present in the whole genomes of our extended panel, despite
being enriched for Native American ancestry. Also, some of these
European haplotypes could have better-captured variation found
in European ancestry segments of MXL individuals. Finally, to
achieve an overall increase in imputation accuracy across the
whole spectrum of variant frequencies as achieved in other
studies (Ahmad et al., 2017; Gurdasani et al., 2019), we would
need a larger Native American reference panel, as quantified by
our simulations.

These results are important with regard to not only GWAS but
also their further applications. For instance, one of the
applications of GWAS summary statistics is Polygenic Risk
Scores (PRS). PRS calculates the genetic “risk” of an individual
for a particular phenotype by summing the risk alleles present in
that individual (Torkamani, Wineinger, and Topol 2018). PRS
necessitates summary statistics calculated in a population as close
as possible to the target individuals to be accurate. Previous
studies have shown that this is not a trivial task (Tropf et al.,

2017; Sirugo, Williams, and Tishkoff 2019; Mostafavi et al., 2020).
Even among European populations, PRS estimates vary widely
depending on the source of summary statistics due to population
structure (Berg et al., 2019; Sohail et al., 2019). To have accurate
PRS for the Latin American population, we need to have more
studies in the region. Furthermore, our results show that we also
need a better imputation panel for these populations to avoid a
bias towards identifying genetic signals present on the European
ancestry background.

The question of how much data are needed remained. To
answer it, we employed demographic simulations. We
replicated the same pattern of imputation accuracy of our
data and of previous studies (Martin et al., 2017). Our
strategy shows that we would need at least 3,000 Native
American genomes to equal imputation accuracy of Native
diploid ancestry to that of European diploid ancestry across
all variant frequencies. This number holds for populations such
as MXL with roughly similar ancestral proportions as the
simulated admixed population. The minimum number of
necessary new genomes will change depending on the
proportion of native ancestry of the target population. Our
study provides a framework for future projects to decide how
many resources to allocate to the generation of whole-genome
data. Furthermore, we have shown that rare variants are the
most benefited by the addition of new data. This will prove
particularly relevant as the field moves towards studying that
end of the variant frequency spectrum (Cirulli et al., 2020;
Minikel et al., 2020). Overall, our results show the
importance of generating more diverse imputation panels to
enable genetic discoveries in a broader spectrum of human
diversity and to procure equity as scientific advancements in
precision medicine should extend globally in benefit of all.
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