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Editorial on the Research Topic

Mouse Models of B Cell Malignancies

B cell malignancies represent a vast group of different entities arising from the multiple
differentiation stages of B cells. In humans, there is a large variety of B cell malignancies, most of
which have counterparts in mice. Prognosis and treatment for these malignancies would be largely
dependent on their type, stage and grade.

Malignant B cells, like their normal counterparts, can disseminate around the body and have the
remarkable ability to generate clonal diversity by mutation, often resulting in the development of
treatment resistances. The microenvironment is crucial to drive tumor evolution, and we cannot yet
adequately recapitulate ex vivo the complexity of the crosstalk between malignant B cells, normal
lymphoid cells and stroma. Mouse models of B cell malignancies offer the possibility to study these
complex relations in vivo. They also provide insights into the cellular and molecular mechanisms
driving tumor evolution and may provide a preclinical platform for testing new therapies against
leukemia and lymphoma.

Genetically engineered mouse models (GEMMs) mimicking the alterations in the expression
and/or bearing cancer-driving mutations of candidate genes (oncogenes and tumor suppressors)
implicated in B cell tumorigenesis are essential tools to assess the role of these genes in cancer. In
addition, the unexpected development of B cell malignancies by genetically modified mice helped to
uncover neoplastic functions of a variety of genes, unveiling new targets for therapy. Furthermore,
the next generation sequencing has opened new possibilities for forward and reverse genetic
screenings to identify gene mutations involved in tumor development, progression, evasion and
relapse, both in human and mice, shaping the field for an exciting future.

This Research Topic is a collection of 13 articles that provides an overview on the recent
developments in the field, including comprehensive reviews on the existing mouse models of B cell
leukemia and lymphoma and on the new techniques available to characterize these models. In
addition, original research articles describing new mouse models of monoclonal gammopathy of
undetermined significance (MGUS), Waldenström macroglobulinemia (WM) and chronic
lymphocytic leukemia (CLL) provide new insights into the role of a variety of oncogenes on the
development of these B cell neoplasms.
org October 2021 | Volume 12 | Article 78990115
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The new methodologies involving forward and reverse
genetics and their applications in mouse research to identify
new pro-oncogenic gene mutations as drivers of B cell
malignancies is reviewed by Uren and Dawes. This timely and
comprehensive review focuses on the experimental high
throughput genetic approaches as tools to identify and validate
large numbers of candidate genes. The authors overview how
forward genetic screening in mice using insertional mutagenesis,
chemical mutagenesis and exome sequencing can help to identify
cooperating mutations at rates not possible using human tumor
genomes. Uren and Dawes also address the usefulness of reverse
genetic models and screenings that use CRISPR-Cas9, ORFs and
shRNAs to provide high throughput in vivo proof of
oncogenic function.
NEW MOUSE MODELS OF PLASMA
CELL NEOPLASMS

Plasma cell neoplasms are tumor entities composed of post-
germinal center (GC), terminally differentiated Ig producing B
cells. There are distinct subclasses, including MGUS), WM,
plasmacytoma and multiple myeloma (MM). Among those,
MM is the most aggressive and the second most frequent
leukemia (1), still causing the death of many patients due to
the development of treatment resistances. Pisano et al. provide
an insightful review of the available mouse models of plasma cell
neoplasms, including transplantation-based and transgenic
mouse models. The authors discuss the strengths and
weaknesses of these mouse models for the study of MM and
other plasma cell neoplasms, highlighting past achievement,
current developments and future directions in the field aimed
to develop new therapies that improve the outcome of patients
with MM.

Schmidt et al. and Ouk et al. present original research
providing conclusive evidence on the role of constitutive
MyD88 activation on the development of plasma cell
neoplasm. A mutation in the MyD88 gene introducing a
leucine in position 265 instead of a proline causing constitutive
MyD88 dimerization and NFKB and JAK activation is found in a
variety of human B cell neoplasms (2), including in most patients
with WM (3). Schmidt et al. developed three genetically
engineered conditional mouse models harboring floxed-
Myd88L252P (the mouse homolog of the human L265P
mutation), one with Cre under the control of CD19 (CD19-Cre
mice), where Myd88L252P expression is enforced in all B cells, a
second mouse strain with Cre under the control of Cg1 promoter
(Cg1-Cre mice), thus limiting Myd88L252P expression to GC cell,
and a third mouse line with restricted MyD88L252P expression to
a few random B cells (CD19-CreERT2 mice). All these models
developed distinct manifestations of IgM plasma cell hyperplasia,
with theMyd88L252P;CD19-CreERT2 mice developing monoclonal
IgM paraproteins and IgM-expressing plasma cell expansions
consistent with MGUS, the premalignant condition preceding
WM. In addition, Ouk et al. independently generated a
transgenic mice constitutively expressing Myd88L252P in CD19
Frontiers in Immunology | www.frontiersin.org 26
B cells (Myd88L252P-IRES-Yfp;CD19-Cre). They show that these
mice accumulate plasma cells in bone marrow and develop
serum hyper-gammaglobulinemia, similar to the Myd88L252P;
CD19-Cre model described by Schmidt et al. Interestingly,
although Schmidt et al. did not observe a path to plasma cell
transformation in their model, Ouk et al. performed a
longitudinal analysis that show that most of their mice develop
w i th ag ing a monoc lona l I gM peak and sp l e en
lymphoplasmacytic-like B cell lymphoma with a transcriptomic
signature consistent with WM. These two excellent works
highlight the key role of the Myd88L252P mutation and
constitutive Myd88 activation in plasma cell transformation.
Interestingly, the results with the two Myd88L252P;CD19-Cre
mice also raise questions on whether a different microbial and
mouse housing environments, and even mouse genetic
backgrounds, might influence the transformation outcome.

TNF-Receptor Associated Factor (TRAF)-3 controls Toll-like
Receptors (TLR) signaling by recruiting and regulating MyD88
function (4). Remarkably, transgenic mice with enforced
expression of TRAF3 in B lymphocytes also cause plasma cell
expansions, hypergammaglobulinemia and exacerbated TLR
responses (5) In addition, a role of TRAF3 in B cell
lymphomagenesis is highlighted by the fact that mouse models
with B cell-restricted upregulated TRAF3 expression (6) or
TRAF3 deficiency (7) develop post-GC and mostly pre-GC B
cell lymphomas, respectively. Looking for the mechanisms
involved in TRAF3-deficiency-mediated B cell transformation,
Liu et al. have uncovered a new role for TRAF3 in regulating B
cell viability. The results provided by Liu et al. indicate that, in
response to survival and/or growth factors deprivation, TRAF3 is
mobilized to mitochondria, where, through its interaction with
MFF, triggers mitochondria-dependent apoptosis. This new role
of TRAF3 in controlling mitochondria homeostasis might have
key implications in the role of TRAF3 in B cell transformation,
providing new insights into why TRAF3-deficient mice (7) and
TRAF3xBCL2 tg mice (6) (the later with protected mitochondria
by means of BCL2 overexpression) develop distinct types of B
cell neoplasia.
MOUSE MODELS OF C-MYC-DRIVEN
LYMPHOMAS

c-MYC is a major transcriptional regulator controlling
proliferation, cell growth, and apoptosis. Dysregulation of c-
MYC is a trademark of a variety of B-cell lymphomas, where
translocations of this gene lead to overexpression of intact c-
MYC protein (8). c-MYC translocation is a primary
transformation event in Burkitt´s lymphoma but its occurrence
as a secondary event in diffuse large B-cell lymphoma,
plasmablastic lymphoma, mantle cell lymphoma, or double-hit
lymphoma fuels the aggressiveness of these lymphomas. Ferrad
et al. overview the various c-Myc-driven mouse models of
lymphoma focusing on those mouse models of c-myc
overexpression regulated by the two main enhancers in the Igh
locus, namely, Eµ and 3´RR enhancer. The authors comment on
October 2021 | Volume 12 | Article 789901
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the strengths and limitations of these mouse models with
deregulated c-Myc expression for the study of lymphoma etiology.

In addition, Malaney et al. also overview the various
transgenic mouse models of B cell lymphoma based on c-MYC
upregulation, with particular emphasis on the heterogeneous
nuclear ribonucleoprotein K (hnRNP K) as a driver of B cell
lymphoma through its role on c-Myc regulation. hnRNP K is a
ssDNA and RNA binding protein that regulates a plethora of
processes controlling transcription and translation (9) and its
over- and under-expression is causative of cancer (10). hnRNP K
has been shown to be upregulated in DLBCL and Burkitt´s
lymphoma patients and the oncogenic role of hnRNP K was
previously confirmed by the authors by means of a B cell specific
Eµ-hnRNP K transgenic mice that develop B cell lymphomas
with high latency and high incidence (11). hnRNP K’s oncogenic
potential stems from its ability to regulate c-MYC expression at
post-transcriptional and translational level, without requiring c-
MYC translocations. In this review, Melaney et al. discuss the
usefulness of the Eµ-hnRNP K mouse models in the study of B
cell malignancies and as a preclinical platform for the assessment
of novel therapeutics.
MOUSE MODELS OF FL AND GCB-DLBCL

Mossadegh-Keller et al. and Meyer et al. provide two
comprehensive reviews on the available mouse models of GC-
derived B cell lymphomas, which are the most frequent
lymphoma types in humans. Mossadegh-Keller et al. pay
particular attention to follicular lymphoma (FL) and the GC B
cell-like subtype of DLBCL, providing a review of the various
mouse models of FL and GCB-DLBCL and their respective key
genetic and epigenetic characteristics. The authors overview the
role of 1) apoptosis dysregulation, as indicated by the
fundamental role of Bcl2 dysregulation in FL and GCB-DLBCL
lymphomagenesis, 2) epigenetic dysregulation (i.e. Ezh2, Crebbp,
Kmt2D), 3) the tumor microenvironment as a driver of tumor
progression and evasion from the immune system, and 4) the
metabolism adaptations fueling tumor progression. Meyer et al.
provide a thorough overview on the mouse models of Burkitt´s
lymphoma, FL and DLBCL based on the key oncogenic events
found in the human counterparts of these tumor subtypes,
highlighting the pros and cons of each of these mouse models
in the context of human disease and their potential therapeutic
utility. Meyer et al. also review the different techniques currently
available for creating a GEMM and comment on the
development of patient-derived xenografts (PDXs) and their
usefulness in lymphoma research.
MOUSE MODELS OF CHRONIC
LYMPHOCYTIC LEUKEMIA

CLL remains as the most common leukemia in Western countries.
CLL is an incurable disease with a variable clinical course
consisting of at least two distinct subtypes based on the
Frontiers in Immunology | www.frontiersin.org 37
mutational status of the immunoglobulin heavy chain variable
IGHV genes, which could be mutated (M) (good prognosis) or
unmutated (UM) (bad prognosis) (12). The establishment of CLL
PDXs have been challenging, in part because CLL cells, unlike
many other B cell neoplasms, are low-proliferating cells, mostly
quiescent and with dysregulated apoptosis. Only a small percentage
are proliferating cells, which makes difficult their expansion in
immunodeficient mice. Patten et al. provide a thorough analysis of
the critical parameters supporting engraftment and growth of
patient´s CLL cells in NGS immunodeficient mice. The authors
find that in vitro pre-activation of CLL-derived T cells is key to
support reliable implantation of CLL cells in a fully autologous
system. The authors also show that patient´s CLL and T cells
implantation follow distinct dynamics that could be differentiated
in 4 temporal phases. The usefulness of this PDX approach is
illustrated by assessing the effects of a bispecific antibody reactive
with B and T cells.

Due to the difficulties in stablishing reliable CLL PDXs as
described above, an intense effort has been invested in
developing CLL mouse models (13). The most profusely
studied CLL mouse model, the Eµ-TCL-1 transgenic (14), as
well as other reported mouse CLL models, only develop UM
CLL, thus leaving unrepresented the M-CLL subtype. Another
mouse model of CLL is the Traf2DN/BCL2-double-tg mice, that
develop CLL/Small Lymphocytic Lymphoma (SLL) with high
penetrance with aging. This mouse model has unbridled BAFF
signaling and constitutive NFKB2 activation, causing the
expansion of marginal zone (MZ) B cells (15) and, together
with BCL2 overexpression, which is a CLL trademark, predispose
MZ B cells to transformation into CLL/SLL. Perez-Chacon and
Zapata provide original research showing that the CLL/SLL
arising in the Traf2DN/BCL2-tg double-tg mice consists of
both expanded M- and UM-CLL/SLL clones. Expanded clones
show a biased IGHV gene usage, stereotypy and express HCDR3
that are similar to those recognizing autoantigens and pathogen
antigens, thus closely resembling human CLL.
PATHOGENS AND IMMUNE EVASION IN
LYMPHOMAGENESIS

The role of pathogens in promoting B cell transformation is
reviewed by Huang and Yasuda, who focus on the role of
Epstein-Barr virus (EBV) infection in lymphomagenesis. EBV
is endemic in humans, with approximately 95% of the world’s
population sustaining an asymptomatic life-long infection. EBV
may cause a variety of immune diseases in immunosuppressed
individuals, including tumorigenesis when infected cells evade
immunosurveillance (16). Huang and Yasuda summarize the
role of EBV proteins and RNAs in promoting lymphomagenesis,
the types of EBV-associated lymphomas and the available mouse
models to study EBV-driven lymphoma.

The key role of immunosurveillance in preventing
tumorigenesis is addressed by Lemasson et al., who evaluates
how GEMMs could help in assessing the specific role of the
distinct immune checkpoints in immunosurveillance and how B
October 2021 | Volume 12 | Article 789901
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cell lymphomas scape from their control. The authors review the
mouse models of B cell lymphoma that have been used to study
the involvement of the PD-1/PD-L1 axis, CTLA-4, MHC-II and
NKG2 in lymphoma immune evasion. The authors also overview
the relevance for the human disease of these mouse models and
the usefulness of these models to pharmacologically target these
checkpoint molecules to improve current treatments.

Overall, the original articles and reviews contained in this
Research Topic provide a broad and updated view on the current
GEMMs of B cell malignancies, highlighting the essential role of
genetically modified mice in understanding all aspects of B cell
lymphoma and leukemia, including development, progression,
immune evasion and evolution to refractory disease.
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Chromosomal translocations linking various oncogenes to transcriptional enhancers of

the immunoglobulin heavy chain (IgH) locus are often implicated as the cause of B-cell

malignancies. Two major IgH transcriptional enhancers have been reported so far. The

Eµ enhancer located upstream of the Cµ gene controls early events in B-cell maturation

such as VDJ recombination. The 3’ regulatory region (3’RR) located downstream from

the Cα gene controls late events in B-cell maturation such as IgH transcription, somatic

hypermutation, and class switch recombination. Convincing demonstrations of the

essential contributions of both Eµ and 3’RR in B-cell lymphomagenesis have been

provided by transgenic and knock-in animal models which bring the oncogene c-myc

under Eµ/3’RR transcriptional control. This short review summarizes the different mouse

models so far available and their interests/limitations for progress in our understanding

of human c-myc-induced B-cell lymphomagenesis.

Keywords: MYC, B-cell lymphoma, transgenic mouse models, IgH locus, IgH transcriptional enhancers

INTRODUCTION

RAG-induced recombination, AID-induced DNA breaks and mutations throughout B-cell
development make the IgH locus a hotspot for translocations (1) (Figures 1A,B). Bcl-2
translocation, the typical hallmark of follicular lymphomas (FL), occurs during RAG-induced
VDJ recombination. Cyclin D1 translocation, associated with mantle cell lymphomas (MCL),
occurs either during AID-induced somatic hypermutation (SHM) or AID-induced class switch
recombination (CSR). C-myc translocation, the typical hallmark of Burkitt lymphoma (BL), takes
place during AID-induced SHM and CSR. Finally, several translocations (such as c-myc, c-maf,
cyclin D1/D3) found in myelomas are also related to AID-induced CSR. During CSR, AID-induced
DNA double strand breaks (DSB) appear in the switch (S) donor region (usually Sµ) and in the S
acceptor region (for example Sγ1 and Sα for CSR toward IgG1 and IgA, respectively). S regions are
of various lengths (for example 3.5 and 10 kb long for Sµ and Sγ1, respectively) and are unusually
G-rich. AID deaminates C into U at preferential AID hotspot motifs located throughout S regions.
The AID-introduced U in S region DNA is removed by UNG to generate an abasic site that is
recognized by the endonuclease APE1 generating a nick. A closely spaced, similarly created nick on
the opposite strand induces a staggered DSB. Translocation of the DNA fragment encompassing
c-myc is due to an off target AID effect on the chromosome bearing c-myc. Since AID transforms C
to U all along S donor/acceptor regions, there is no common breakpoint identified in S regions for
mature B-cell lymphomas. It is the same AID effect for SHMwhere AID targets the VDJ rearranged
segments (and up to several kB in 3’) and can induce DNA DSB for c-myc translocation. Similarly
to CSR, there is no common breakpoint established in VDJ regions for mature B-cell lymphomas.
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During VDJ recombination RAG binds to recombination signal
sequences adjacent to V, D, and J coding segments and induces
DNA DSB. C-myc translocation could take place during this
process. Similarly to CSR/SHM, there is no common breakpoint
singled out in VDJ regions for B-cell lymphomas. The common
point for all these c-myc translocations is the occurrence of
DSB in the IgH locus during its remodeling required for B-
cell repertoire formation and B-cell maturation. All remodeling
events of the IgH locus (VDJ recombination, SHM, and CSR)
require transcription to occur (2). Transcriptional control
and remodeling of the IgH locus are under the control of
several cis-regulatory elements located throughout the IgH locus.
In the murine IgH locus seven regions of interest can be
defined including cis-regulatory elements, matrix attachment
regions (MARs), and hypersensitivity (hs) sites with potential
transcriptional enhancer or insulator activity: 4 hs sites located 5’
of the first V segments, 6 hs sites in the V–D intergenic region, the
DQ52 promoter–enhancer, the Eµ enhancer (between JH andCµ)
and its flankingMARs, the γ1 enhancer element, the 3’ regulatory
region (3’RR) downstream from Cα with its four enhancers
(hs3a, hs1,2, hs3b, and 4) and the 3’CBE insulator region (hs5,
6, 7, 8) as the 3’ boundary of the locus (Figure 1A). Two
potent transcriptional enhancers act during B-cell maturation:
Eµ (during early B-cell maturation stages) and 3’RR (during late
B-cell maturation stages) (Figure 1A). These elements obviously
intervene in oncogene-induced B-cell lymphomagenesis as
reported by several transgenic mouse models (using both
transgene and knock-in (KI) strategies) developed in order to
mimic human mature B-cell lymphomagenesis. Since c-myc
is a key regulator of cell growth through its action on cell
cycle progression, metabolism, differentiation, death receptor
signaling, and DNA damage recovery, the vast majority of
available models use c-myc as a deregulated oncogene (3). This
short review describes how Eµ and 3’RR enhancers might play a
critical role in c-myc deregulation during c-myc-induced mature
B-cell lymphomas, why these models are not silver bullets to
totally mimic human B-cell lymphomagenesis and why it is
possible that targeting the 3’RR would be an interesting strategy
in human B-cell lymphomagenesis.

THE Eµ cis-TRANSCRIPTIONAL IGH
ENHANCER AND c-myc DEREGULATION

Forty years ago, Eµ was the first discovered IgH cis-
transcriptional enhancer (4–6). It is located upstream of the
Cµ gene (Figure 1A). Eµ-deficient mice revealed its role in
controlling IgH locus access at immature B-cell stages and thus
its key role for efficient VDJ recombination (7, 8). In contrast,
Eµ is dispensable for late B-cell maturation events such as IgH
locus transcription for Ig synthesis and CSR (9, 10). In 1985,
transgenic mice bearing c-myc coupled to the Eµ enhancer
were reported to consistently develop immature (pre-B) and
sometimes mature B-cell lymphomas (11). Our entire knowledge
of Eµ involvement in c-myc oncogenic deregulation for B-cell
lymphoma development was built from this model. Since 1985,
183 papers with “Eµ-Myc mice” in their abstract have been

referenced. Of note, 153 have been published in the last 15 years
showing the great interest of the scientific community for this
transgenicmousemodel of B-cell lymphoma. It is thus impossible
in this short review to reference them all. Therefore, the authors
apologize in advance for the numerous interesting manuscripts
which have not been cited in the present review. Lymphomas
from Eµ-Myc mice range from the pre-B to the mature B-cell
stages (Figure 1C). They are usually all positive for the CD45R
(B220), CD19 and CD93 (AA4.1) B-cell specific markers and
negative for the CD3 T-cell marker. Tumors of pre-B-cell type
are characterized by the lack of membrane IgM and no Ig light
chain (IgL) rearrangements. Tumors of immature B-cell types
are more mature and express membrane IgM after efficient IgL
rearrangements. Tumors of mature B-cell types are even more
mature and express both membrane IgM and IgD. The majority
of lymphomas in Eµ-Myc mice are at the pre-B and immature B-
cell stages. In their original study, Adams et al. (11) stated that
“these myc mice should aid study of lymphoma development,
B-cell ontogeny and Ig regulation.” Clearly 35 years later this
is the case. Creation of these mice resulted in the dissection
of many mechanisms implicated in B-cell lymphomagenesis
(Figure 1D). They have highlighted the importance of several
signaling pathways (such as Ras/Mapk, mTOR, and Akt) (12–
14), several cell cycle check-points (such as Mdm2/p53/p73)
(15, 16) and processes that affect c-myc stability and action
(17, 18). Using these mice clearly demonstrated the importance
of numerous (new and well-known) tumor suppressor genes
(such as FoxO3, CDK4, Mtap, and Smchd1) (19–22). This model
reinforced our knowledge concerning the signaling/regulation
of the B-cell apoptotic program (members of the Bcl-2 family
of apoptosis regulator) and deficiencies in apoptotic pathways
leading to B-cell lymphomagenesis (23–28). To our knowledge
the influence of genetic background in the development of B-
cell lymphomas in Eµ-Myc mice has not been documented.
The Eµ-Myc model has also opened a new area of research
concerning the role of tumor microenvironment via release
of angiocrine/chemokine factors (29–31) and the importance
of cells from the vascular niche for NK cell surveillance,
senescence, and homing of B-cell lymphomas (32–34). Perhaps
most importantly, this model is at the origin of a wide number
of publications investigating new therapeutic treatments or
combinations of drugs in order to affect (among various targets)
DNA synthesis (cytarabine, doxyrubicin, cyclophosphamide),
mTOR signaling (rapamycin analogs), microtubule formation
(vincristine), c-myc (decursin), apoptosis (venetoclax and BET
inhibitors), protein synthesis (silvestrol), or B-cell receptor
(BCR)-induced, or chemokine-mediated signaling (ibrutinib)
(35–42). The rapid occurrence of lymphoma in Eµ-Myc mice
and its high penetrance make this mouse model an accurate,
reliable, easy, and fast experimental model not only to test
new therapeutic approaches but also combinatory associations.
This model is also unique by providing the possibility to
monitor the assay of new NK therapeutic vaccination strategies
(43, 44), to stimulate immune defenses for tumor rejection
(45) and to test protocols for monoclonal antibody therapies
(46). Eµ-Myc mice have thus proven their great potential as
a model to study human B-cell lymphomagenesis during the
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FIGURE 1 | Eµ-Myc mice as a model of B-cell lymphomagenesis. (A) Schematic diagrams of the mouse IgH locus. Locations of the various IgH cis-regulatory

elements with enhancer or insulator activity are reported: four hs sites located 5’ of the first V segments, six hs sites in the V–D intergenic region, the DQ52

(Continued)
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FIGURE 1 | promoter-enhancer, the Eµ enhancer (the core region (cEµ) and its flanking MARs), the γ1 enhancer, the 3’ regulatory region (3’RR) [four enhancers

(namely hs3a, hs1,2, hs3b, and 4) with flanking inverted repeats] and the 3’CBE insulator region (hs5, 6, 7, and 8) as the 3’ boundary of the locus. (B) Schematic

representation of oncogene translocation affecting the IgH locus during VDJ recombination, CSR and SHM. Arrows indicate the site of oncogene translocation found

during follicular lymphomas, mantle cell lymphomas, myelomas, and Burkitt lymphomas. (C) Schematic representation of B-cell development from pro-B to mature

B-cells. Lymphomas from Eµ-Myc mice are from the pre-B to the mature B-cell stages. The immature B-cell stage is characterized by the expression of membrane

IgM whereas membrane IgD occurs at the mature B-cell stage. (D) Schematic representation of the various field of research developed with Eµ-Myc mice.

Bibliographic references are reported (number in parenthesis).

past decade. Moreover, arising lymphomas are heterogeneous
(47, 48) mirroring genomic differences observed between human
BL, germinal center B-cell lymphomas (GCBCL), activated B-
cell lymphomas (ABCL), and diffuse large B-cell lymphomas
(DLBCL). The different genomic signatures (toward specific
proliferative and/or apoptotic pathways) of B-cell lymphomas
in Eµ-Myc mice might be used as biomarkers of response
against specific therapeutic strategies. Thus, and especially with
the development of transcriptomic tools, Eµ-Myc mice can
serve as relevant model for human B-cell lymphoma subtype
experimental or associated treatments. The only but nevertheless
major drawback of Eµ-Mycmice relates to the window of activity
for Eµ which has been clearly demonstrated to occur at the
immature pro-B/pre-B B-cell stages (49, 50). Eµ is not implicated
in IgH hypertranscription occurring at the mature/plasma cell
stages. Eµ is also not implicated in DNA breaks occurring
during SHM/CSR and thus clearly not implicated in oncogenic
translocation induced by off target AID action occurring during
CSR or SHM in the majority of human mature B-cell lymphoma
subtypes. As confirmation of this fact, the great majority of
lymphomas from Eµ-Myc mice have a pre-B/immature B-
cell stage.

THE 3’RR cis-TRANSCRIPTIONAL IgH
ENHANCER AND c-myc DEREGULATION

The second transcriptional enhancer located in the IgH locus
is the 3’RR (Figure 1). The 3’RR is a complex element with
four transcriptional enhancers (namely hs3a, hs1,2, hs3b, and
hs4) encompassed in a unique and functional 3D palindromic
architecture (51). The 3’RR controls µ transcription (7), CSR
(52, 53), and SHM (54) in mature B-cells. The transcriptional
activity of the 3’RR occurs from pre-B to mature B-cell
stages (55) and thus has a much larger window of activity
than the Eµ enhancer. In 1994, Madisen and Groudine
reported (in stable transfection assays in plasmacytomas and
BL cells) that the 3’RR was efficient and sufficient to deregulate
c-myc transcription (56). Convincing demonstration of 3’RR
involvement in lymphomagenesis has been produced by a
transgenic 3’RR-deficient model of B-cell lymphomas with IgH-
c-myc translocations (57). The integrity of the 3’RR (deletion of
hs3b to hs4) has been shown to be dispensable for development
of pro-B-cell lymphomas with V(D)J recombination-initiated
translocations suggesting the key role of Eµ. In contrast, 3’RR
integrity (for its optimal transcriptional activity) is required for
B-cell lymphomas with CSR-associated translocations (57). In
another study modeling murine plasmacytomas with T (12, 15)

translocations, the same hs3b-hs4 deletion of the 3’RR in Bcl-
xL transgenic mice was without effect for Myc deregulation
and mouse plasmacytoma generation (58). However, total 3’RR
deletion in these plasmacytomas lowered Myc expression and
cell growth confirming 3’RR involvement for myc deregulation
by T (12, 15). Nevertheless, these models are not sufficient to
monitor in detail and to modulate signaling pathways for B-
cell lymphoma development. The same comments can be made
for the transgenic mouse model of Wang and Boxer (59) which
develops mature B-cell lymphomas (CD19+B220+IgM+IgDlow)
after the KI of a 3’RR cassette upstream of the endogenous c-myc
gene (this model is the reverse of natural c-myc translocation
into the human IgH locus) (Figure 2). More than 15 years
after the development of transgenic Eµ-Myc mice, transgenic
Myc-3’RR mice were generated and were shown to develop
BL-like proliferations and diffuse anaplastic B-cell lymphomas
(60). All these lymphomas exhibited a mature B-cell phenotype
(CD19+B220+IgM+IgD+) but differed by their Ki67 status
(low and high for diffuse anaplastic B-cell lymphomas and BL
lymphomas, respectively). This model was used to study the role
of second hits such as p53 deficiency, Cdk4 mutation, and change
of class-specific B cell receptor (BCR) tonic signals. Results clearly
demonstrated that a second hit affects the phenotype of B-cell
lymphomas, their aggressiveness and transcriptomic signatures
differently (61–64). This model was, however, progressively
abandoned due to its medium B-cell lymphoma penetrance
(compared to Eµ-Myc mice), long delay for B-cell lymphoma
development (compared to Eµ-Myc mice), key differences with
human B-cell lymphomas (such as mutations lacking for the
p53-ARF-Mdm2 apoptotic pathways in numerous cases) and the
description that the occurrence of B-cell lymphomas was much
too sensitive to genetic background [C57Bl/6 mice developed BL-
like lymphomas while none occurred in a Balb/c background
(65)]. All these points argued against the use of Myc-3’RR mice
as an accurate experimental model to test new pharmacologic or
vaccination strategies.

THE COMBINATION OF Eµ AND 3’RR
cis-TRANSCRIPTIONAL ENHANCERS AND
c-myc DEREGULATION

As reported above, a transgenic model with IgH-c-myc
translocations in response to pristine demonstrated the
involvement of IgH cis-transcriptional enhancers in B-cell
lymphomagenesis (57). In another manner, this study confirmed
results obtained with three transgenic mouse models with a
c-myc KI in various locations in the IgH locus (i.e., under the
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FIGURE 2 | The 3’RR and B-cell lymphomagenesis. (A) Schematic representation of several transgenic mouse models reporting c-myc 3’RR-driven deregulation

leading to B-cell lymphomagenesis. B-cell lymphoma phenotypes are reported. Bibliographic references are reported (number in parenthesis). The “Mini-3’RR”

contains the four transcriptional enhancers hs3a, hs1,2, hs3b, and hs4 but not the 3’RR palindromic sequences flanking hs1,2 and the DNA sequence between hs3a

and hs4. (B) Long-range loop interactions between chromatin segments of the IgH locus comprise the mechanism of normal gene transcription regulation by the Eµ

and 3’RR transcriptional enhancers. The example of the IgG3 CSR process is schematized. Putative long-range interactions leading to c-myc oncogene deregulation

in iMycEµ mice are schematized.

dependence of both Eµ and 3’RR elements) (Figure 2). These
models provided the most convincing data for the essential
roles of both Eµ and 3’RR in c-myc B-cell lymphomagenesis.

The KI of c-myc in the mouse IgH locus just 5
′

to Eµ (namely
iMycEµ mice), thus modeling human endemic BL, induced,
as expected, B-cell lymphoma development with alterations
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in the p19Arf-Mdm2-p53 tumor suppressor axis (66) and
NF?B/STAT3/PI3K signaling (67). In this model, c-myc is
under the control of both Eµ and 3’RR at immature and
mature B-cell stages, respectively. iMycEµ mice also mimic
T (12, 15) mouse plasmacytoma translocation and thus also
lead to plasmacytomas (68). KI of c-myc directly into Cα just
5’ to the 3’RR (iMycCα mice) produced B-cell lymphomas
with low kinetics which were increased after overexpression
of the anti-apoptotic Bcl-XL gene (69). In this model, c-myc
is located in a site where Eµ has no transcriptional influence,
c-myc transcription being only under the dependence of 3’RR
at mature B-cell stages. c-myc KI in the mouse IgH locus

just 5
′

to Cµ with Eµ deletion (namely iMycCµ mice), thus
modeling human sporadic BL, confirmed that 3’RR alone
is sufficient to deregulate c-myc in the B-cell lineage and to
induce B-cell lymphoma development (70). Taken altogether,
these KI models carrying c-myc at the IgH locus are prone
to B-cell lymphomas of various penetrance, kinetics, and fate
as recently reported in a study comparing the three mouse
models (71). The lymphoma signatures are also heterogeneous
even comparing lymphomas from a specific KI, mirroring the
genomic differences observed between the various subtypes of
human mature B-cell lymphomas and those previously reported
with the model of transgenic Eµ-Mycmice. In our opinion, these
transgenic mouse models represent the “most physiological”
experimental mouse models by mimicking the direct effect of
c-myc in the context of the endogenous IgH locus. However,
the main drawbacks of these various KI mice (and similarly to
Myc-3’RR mice) remain their low lymphoma penetrance and
their low kinetics of B-cell lymphoma development arguing
against their use as efficient and easy experimental models to
test new experimental therapeutic approaches. The low kinetics
of B-cell lymphoma development compared with 3’RR-Myc
mice would be related to the 3’CBE insulator region at the 3’
boundary of the endogenous IgH locus (72, 73). This region
is not present in the transgenic mouse model of 3’RR-induced
c-myc deregulation. The 3’CBE insulator region contains a high
density of binding sites for CCCTC-binding factor (CTCF), a
protein associated with mammalian insulator activity. Deletion
of the 3’CBE insulator region resulted in significant effects
on VDJ rearrangement, IgH locus compaction, and IgH locus
insulation. Furthermore, physical interactions occur in B-cells
between 3’CBE and 3’RR enhancers suggesting that the entire
3’ region (3’RR enhancers + 3’CBE insulators) works as a
physical unit. The lack of 3’CBE in 3’RR-Myc mice could
induced stronger and longer c-myc deregulation (and thus faster
lymphoma emergence) than that obtained when c-myc is inserted

into the IgH locus under the control of the entire (enhancer +
insulator) region.

CONCLUSION

Knock-out mice models have clarified the functions of Eµ

and 3’RR enhancers as essential for DNA remodeling and IgH
locus transcription at specific stages of B-cell development
and maturation. Thus, these enhancers have a major potential
to be oncogene deregulators for IgH-translocated oncogenes,
even when the breakpoints lie several 100 kb away from them.
All these models contribute different but interesting data to
our understanding of human B-cell lymphoma development
and treatments especially with regards to the great functional
and structural similarities found between human and mouse
IgH loci (74). However, we must keep in mind that these
mice are experimental models that do not reflect 100% of
what happens in humans. For example, if the vast majority
of human mature B-cell lymphomas are mutated in their
VDJ region (highlighting their post-germinal center status) it
is not the case in mice where mature B-cell lymphomas are
unmutated (highlighting their pre-germinal center status) (75).
Long-range loop interactions between chromatin segments of
the IgH locus comprise the mechanism of normal and abnormal
gene transcription regulation by the 3’RR (2, 76) (Figure 2B).
Therefore, it is possible to suggest that targeted inhibition of
the 3’RR would be a therapeutic approach for the treatment of
some mature B-cell lymphomas. Finally, it is also of importance
to mention that the c-myc oncogene driven by Ig light chain
enhancers also induces B-cell lymphoid malignancy in transgenic
mice (11, 77). These models highlight not only the importance
of all Ig enhancers for B-cell lymphoma development but also
that a 3’RR targeting strategy (if any) would not be a silver
bullet to treat all B-cell lymphomas but at best some mature
B-cell subtypes.
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A highly recurrent somatic L265P mutation in the TIR domain of the signaling adapter
MYD88 constitutively activates NF-kB. It occurs in nearly all human patients with
Waldenström’s macroglobulinemia (WM), a B cell malignancy caused by IgM-
expressing cells. Here, we introduced an inducible leucine to proline point mutation into
the mouse Myd88 locus, at the orthologous position L252P. When the mutation was
introduced early during B cell development, B cells developed normally. However, IgM-
expressing plasma cells accumulated with age in spleen and bone, leading to more than
20-fold elevated serum IgM titers. When introduced into germinal center B cells in the
context of an immunization, the Myd88L252P mutation caused prolonged persistence of
antigen-specific serum IgM and elevated numbers of antigen-specific IgM plasma cells.
Myd88L252P-expressing B cells switched normally, but plasma cells expressing other
immunoglobulin isotypes did not increase in numbers, implying that IgM expression may
be required for the observed cellular expansion. In order to test whether the Myd88L252P

mutation can cause clonal expansions, we introduced it into a small fraction of CD19-
positive B cells. In this scenario, five out of five mice developed monoclonal IgM serum
paraproteins accompanied by an expansion of clonally related plasma cells that
expressed mostly hypermutated VDJ regions. Taken together, our data suggest that
the Myd88L252P mutation is sufficient to promote aberrant survival and expansion of IgM-
expressing plasma cells which in turn can cause IgM monoclonal gammopathy of
undetermined significance (MGUS), the premalignant condition that precedes WM.

Keywords: monoclonal gammopathy of unknown significance, IgMMGUS, MYD88 L265P mutation, Waldenström’s
macroglobulinemia, B cell abnormalities, B cell lymphoma, lymphomagenesis, IgM paraprotein
INTRODUCTION

Waldenström’s macroglobulinemia (WM) is an incurable low-grade lymphoplasmacytic
lymphoma, characterized by bone marrow (BM) infiltration of small, IgM-positive lymphocytes
with varying degrees of plasmacytoid or plasma cell differentiation and the presence of monoclonal
immunoglobulin M (IgM) paraproteins (M-spikes) in the serum (1–5). The great majority of
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malignant WM cells are monoclonal and carry somatically
mutated antibody V region rearrangements, suggesting that
transformation occurs at a mature, antigen-experienced B cell
stage (6–11).

More than 90% of WM patients harbor a T794C gain-of-
function mutation in the myeloid differentiation primary
response gene 88 (MYD88), which results in an L265P amino
acid substitution in the MYD88 TIR domain (12), promoting an
increased propensity for Myd88 oligomerization (13). MYD88 is
the canonical adaptor protein for inflammatory signaling
pathways downstream of various toll-like receptor (TLR) and
interleukin (IL)-1 receptor family members (14). First described
in activated B-cell (ABC)-like subtype of diffuse large B-cell
lymphoma (DLBCL) [where it occurs in 21% of patients (15)],
the MYD88L265P mutation constitutively activates NF-kB and
JAK kinase signaling through TLR9, IRAK1 and IRAK4 (16, 17),
and independently through BTK (18), conferring a pro-survival
advantage to mutated B cells. In line with these findings, an
earlier attempt to model the Myd88L265P mutation in mice in
vivo produced fulminant B lymphoproliferative disease and
occasional ABC-DLBCL-type lymphoma (19), while a more
recent study reported low-grade lymphoproliferative disease
with certain pathological features of WM (20). However, in
both mouse models the observed lymphoproliferation
was polyclonal.

WM is diagnosed late in life at a median age of 73 years in
Caucasians (21). Symptomatic WM is preceded by prolonged
asymptomatic phases classified as smoldering (or asymptomatic)
WM and IgM monoclonal gammopathy of unknown
significance (MGUS) (22–26). With increasingly sensitive
methods Myd88L265P mutation could be detected in up to 87%
of IgMMGUS patients, suggesting that it is an early event inWM
pathogenesis (27–33). A second somatic, highly recurrent genetic
event in WM consists of activating C-terminal mutations in the
CXCR4 gene, which appear to enhance tumor cell dissemination
and survival (34–37) and mostly occur in the context of a
mutated Myd88 allele (36, 38, 39). CXCR4 mutations are less
frequent (25–40% of WM patients) and probably acquired later
during disease progression (36, 38–41).

Consistent with such a scenario, we here present evidence that
targeting endogenous expression of the dominant Myd88L265P

mutation to a small number of cells in the mouse B cell
compartment (at the orthologous position L252P in mouse
Myd88) is—by itself—sufficient to cause IgM MGUS, the
premalignant condition which precedes WM.
MATERIAL AND METHODS

Gene Targeting
The gene targeting strategy was based on the NCBI mouse
transcript NM_010851.2, where wildtype exons 5 and 6 were
flanked with loxP sites (4.3kb region). Exons 5 and 6 were
duplicated and inserted downstream of the distal loxP site
followed by an IRES-GFP reporter. The L252P mutation was
Frontiers in Immunology | www.frontiersin.org 219
introduced into the duplicated Exon 5 and a NeoR marker
(flanked by frt sites) inserted between wildtype Exon 6 and
mutated Exon 5. The targeting vector was generated by
amplifying the genomic region of Myd88 using BAC clones
from the C57BL/6J RPCIB-731 BAC library and subsequent
introduction of the point mutation. The linearized targeting
vector was co-transfected with sgRNA and a Cas-9-expression
vector into the Artemis B6/3 C57BL/6 ES cell line. Targeted
clones were isolated using positive (NeoR) selection and correct
integration was verified by Southern blotting. The conditional
Myd88L252P allele was obtained in a germline-transmitting
transgenic animal after in vivo Flp-mediated removal of the
selection markers.

Cell Culture of B Cells Ex Vivo
Splenic B cells were enriched by depletion of CD43+ cells with
magnetic anti-mouse-CD43 microbeads (Miltenyi Biotech Cat#
130-049-801, RRID: AB_2861373), transduced with in-house
generated TAT-Cre recombinase (42, 43), cultured in the
absence or presence of LPS (20 mg/ml, Escherichia coli 055:B5;
Sigma Cat# L2880) or F(ab’)2 fragment anti-IgM (1.2 mg/ml;
Jackson ImmunoResearch Labs Cat# 115-006-020; RRID:
AB_2338469) and 1 µM BrdU or cultured with LPS plus
recombinant mouse IL-4 (10–20 units/ml; Peprotech Cat#
214-14).

Flow Cytometry, Cell Sorting, and
Detection of In Vivo Proliferation
Red blood cells were lysed with Gey’s solution and single-cell
suspensions (in PBS pH7.2 supplemented with 1% FCS and 1 mM
EDTA) from spleen or femur-derived bone marrow were stained
with antibody conjugates (Supplementary Table 1) and analyzed
using FlowJo software (BD FlowJo, RRID : SCR_008520) on an
LSRFortessa (BD Biosciences) or sorted on a FACSAria
(BD Biosciences). NIP-BSA-APC: 4-Hydroxy-3-iodo-5-
nitrophenylacetyl hapten (NIP) conjugated to Bovine Serum
Albumin (BSA) was generated in-house from BSA fraction V
(Roth Cat# 8076.3) and NIP-OSu (Biosearch Technologies Cat#
N-1080-100) and then labeled with Allophycocyanin (APC) using
the Allophycocyanin labeling kit-SH (Dojindo Cat# LK24). For 5-
Bromo-2’-deoxyuridine (BrdU) labeling, we used BrdU Kits (BD
Biosciences Cat# 552598, RRID: AB_2861367). Mice were injected
intraperitoneally with 2 mg BrdU and analyzed by flow cytometry.

Laboratory Mice and Immunizations
Cg1-Cre (44), R26StopFLeYFP (45), CD19-Cre (46), and CD19-
CreERT2 alleles (47) have been described. Mice were bred and
maintained under specific pathogen-free conditions. Unless
specifically indicated (Supplementary Figures 1B, C), mice
used in this study were heterozygous for the Cre and
Myd88L252P alleles (designated Cre;Myd88L252P). To activate
CreERT2, four mg of tamoxifen (Sigma Cat# T5648), dissolved
in sunflower oil (Sigma Cat# S5007), was fed by oral gavage (47).
Eight to 12 weeks old mice were immunized intraperitoneally
with 100 µg alum-precipitated 4-Hydroxy-3-nitrophenylacetyl
December 2020 | Volume 11 | Article 602868
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hapten conjugated to Chicken Gamma Globulin (NP-CGG,
Ratio 10-19) (LGC Biosearch Technologies Cat# N-5055B-5)
followed by secondary immunization intravenously with 100 µg
soluble NP-CGG.

Immunohistochemistry
Tissues were embedded in Tissue-Tek O.C.T. Compound
(Sakura Cat# 4583), stored at -80°C and cryosectioned (7 µm
thickness). Sections were fixed in 100% acetone and stained with
DAPI (eBioScience Cat# D1306), and the antibody conjugates
and reagents listed in Supplementary Table 1.

Enzyme-Linked Immuno Assays, Serum
Protein Electrophoresis, and
Immunofixation
Enzyme-linked immunosorbent assays (ELISAs) were done as
described (48) with addition of 0.05% Tween 20 in block and
wash buffers. 4-Hydroxy-3-nitrophenylacetyl hapten (NP)
conjugated to BSA (NP-BSA, Ratio 28) was generated in-house
with BSA fraction V (Roth Cat# 8076.3) and NP-OSu (Biosearch
Technologies Cat# N1010-100). Plates were coated with 2 µg/ml
NP-BSA or 1 µg/ml anti-light chain antibodies and developed
with 1 µg/ml anti-isotype antibodies and the standards listed in
Supplementary Table 1. For enzyme-linked immuno spot
(ELISPOT) assays MultiScreenHTS IP Filter Plates (Merck Cat#
MSIPS4510) were coated and developed as described above for
the ELISA plates, incubated with cells overnight, washed with
0.1% Tween 20 and processed according to the manufacturer’s
instructions . For serum protein electrophoresis or
immunofixation 10 µl serum was run on buffered agarose gels,
pH8.6 Hydragel PROTEIN(E) (Sebia Cat# PN4100) or pH9.2
DOUBLE IF K20 (Sebia Cat# PN3036), and processed according
to the manufacturer’s instructions. For proteomics, serum
samples were run on multiple lanes of pH8.6 agarose gels and
stained with InstantBlue Ultrafast Protein Stain (Sigma Cat#
ISB1L). Excised bands were processed and analyzed by tandem
mass spectrometry as described below.

Sequence Analysis of IgH V Gene
Rearrangements
IgH V gene rearrangements were PCR-amplified (40 cycles)
from genomic DNA (isolated from sorted, GFP-reporter-
positive TACI+CD138+ plasma cells) using the Expand High
Fidelity PCR System (Roche Cat# 03310256103) with a forward
primer for J558/VH1 family genes [pos. 37–57 (IMTG) ARG CCT
GGG RCT TCA GTG AAG] and a reverse primer for the IgH
intronic enhancer (CTCCACCAGACCTCTCTAGACAGC). A 0.9
kb fragment corresponding to JH4 rearrangements was gel-purified,
cloned (Zero Blunt TOPO PCR Cloning Kit, Invitrogen Cat#
450031) and subclones sequenced on one strand. VDJ sequences
were aligned with IgBLAST (49) software (IgBLAST, RRID :
SCR_002873) against V, D, J genes in the IMGT (50) database
(IMGT—the international ImMunoGeneTics information system,
RRID : SCR_012780) and analysed for clonality (identical or related
CDR3) and somatic mutations. The mixed C57BL/6 and 129
background of the Cg1-Cre allele (44) was taken into account.
Frontiers in Immunology | www.frontiersin.org 320
Ig Isotype Quantification by Tandem Mass
Spectrometry
Excised gel pieces were subjected to tryptic in-gel digest (51)
followed by purification on C18 stage-tips (52). Samples were
measured on a Q Exactive HF-x orbitrap mass spectrometer
(ThermoFisher Scientific) connected to an EASY-nLC system
(ThermoFisher Scientific). HPLC-separation occurred on an in‐
house prepared nano‐LC column (0.074 × 250 mm, 3 mm
Reprosil C18, Dr. Maisch GmbH) using a flow rate of 250 nl/
min on a 45 min gradient with an acetonitrile concentration
ramp from 4.7 to 46.5% (v/v) in 0.1% (v/v) formic acid. MS
acquisition was performed at a resolution of 60,000 in the scan
range from 350 to 1,800 m/z. MS2 scans were carried out at a
resolution of 15,000 with the isolation window of 1.3 m/z and a
maximum injection time of 100 ms. Dynamic exclusion was set
to 20 s and the normalized collision energy was specified to 26.

For analysis, the MaxQuant software package (RRID :
SCR_014485) version 1.6.3.4 was used (53, 54). An FDR of
0.01 was applied for peptides and proteins, and the andromeda
search was performed using Uniprot (Universal Protein Resource,
RRID : SCR_002380) (mouse database release July 2018, including
isoforms). For protein identification a minimum of one unique
peptide was required. Further analysis was done using R (R Project
for Statistical Computing, RRID : SCR_001905). Proteins of non-
mouse origin were considered contaminants and filtered out. All
protein groups belonging to one immunoglobulin isotype were
collapsed into one group by summing their individual intensities
and were compared against the total intensity per sample.

Statistical Analysis
Prism software (GraphPad Prism, RRID : SCR_002798) version 7
was used for pair-wise comparisons between mutant and control
samples using non-parametric, unpaired, two-tailed Mann-
Whitney U tests. Asterisks indicate statistical significance for p-
values ≤0.05 (single), ≤0.01 (double), ≤0.001 (triple), ≤0.0001
(quadruple). Data are represented as individual points or means
(bar graphs or horizontal lines) and error bars represent SD.
RESULTS

Myd88L252P Leads to NF-kB Activation and
Short-Term Proliferation of Primary B
Cells Ex Vivo
In order to investigate and track the consequences of the human
MYD88L265P mutation in mouse B cells, we generated a
conditional Myd88 allele which expresses the mutation at the
orthologous position L252P (as well as GFP) upon Cre-mediated
recombination from the endogenous mouse Myd88 locus
(Figure 1A and Supplementary Figures 1A–D). Endogenous
Myd88L252P expression induced a transient expansion of
transgenic B cells in the absence or presence of added
mitogens (Supplementary Figure 1E) consistent with the effect
of retroviral overexpression of Myd88L252P in mouse B cells ex
vivo as previously reported (55). Myd88L252P caused this effect at
least partially by enhancing proliferation (Supplementary
December 2020 | Volume 11 | Article 602868
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Figure 1F). As shown previously, these effects are likely due to
Myd88L252P activated NF-kB signaling (16–19, 55), concomitant
with increased NF-kB negative regulatory feedback — through
A20 (TNFAIP3) (55) and NF-kB p65 phosphorylation (56).

B-Cell-Specific Myd88L252P Expression In
Vivo Leads to an Increase in IgM+ Plasma
Cells and Serum IgM
In order to address whether B cell-specific expression of
Myd88L252P influences B cell development or homeostasis, we
used the CD19-Cre allele (46) which is expressed from an early B
cell stage on, and monitored mice until 90 weeks of age (Figure
1B). In this and all following experiments, mice heterozygous for
the Cre and mutant Myd88 alleles were used, designated Cre;
Myd88L252P. B cell development in the bone marrow appeared
unchanged (Supplementary Figure 2), as indicated by the
fractions of precursor, immature and mature B cells over time,
absence of selection of AA4.1-positive Myd88L252P-expressing B
Frontiers in Immunology | www.frontiersin.org 421
lineage cells over YFP reporter expressing control cells and
normal bone marrow histology. Two of thirteen mice
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FIGURE 1 | B-cell-specific Myd88L252P expression causes increased IgM plasma cell and serum IgM levels. (A) Gene targeting strategy: Myd88L252P-IRES-GFP was
targeted into the endogenous Myd88 locus by homologous recombination. The wildtype exons 5 and 6 were flanked by loxP sites that can be recombined by Cre
recombinase, leading to expression of the mutant version. (B) Outline of the experiments shown in C–E and Table 1. Mice of the indicated genotypes were observed for
90 weeks. (C) FACS analysis of spleen and bone marrow. Left: TACI+CD138+ plasma cell numbers increase over time. Right panels: Plasma cells expressed mostly IgM
(30 weeks of age). (D) ELISPOT analysis in spleen and bone marrow at 30 weeks of age. IgM secreting antibody forming cells (AFCs) were elevated. (E) Serum
immunoglobulin levels measured by ELISA. IgM titers increased over time while IgG1 titers decreased slightly. Results are representative of three independent
experiments. (C–E) Each symbol represents one mouse. **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, n.s. = not significant. (See also Supplementary Figures 1–4).
TABLE 1 | Myd88L252P does not promote B lymphomagenesis.

Genotype Number of
animals

Age
(weeks)

Phenotype at endpoint
(90 weeks)

CD19-Cre 1 74 T cell tumor (TCRb+)
10 90 Healthy, end of experiment

CD19-Cre;
Myd88L252P

1 70 T cell tumor (TCRb+GFP-)
1 74 GC B cell tumor (reporter-positive)

(B220+CD19+CD38lowFAShighGFP+)
1 78 GC B cell tumor (reporter-negative)

(B220+CD19+CD38lowFAShighGFP-)
1 90 T cell tumor (TCRb+GFP-)
9 90 Healthy, end of experiment
December
CD19-Cre and CD19-Cre;Myd88L252P mice were observed for 90 weeks and monitored
for the appearance of tumors. Tumors were analyzed and characterized by flow cytometry.
Tumor incidence appeared comparable to control animals and likely was due to the
genetic C57BL/6 background (57).
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developed a B cell lymphoma (at 70 and 74 weeks of age; Table 1
and Supplementary Figure 3A). However, only one of these
tumors expressed the Myd88L252P reporter, indicating that these
tumors arose spontaneously due to the C57BL/6 genetic
background (57).

Starting at 30 weeks of age CD19-Cre;Myd88L252P animals
developed a mildly enlarged spleen with more than 95% of
splenic B cells expressing the GFP reporter (Supplementary
Figures 3B, C). While the percentage of follicular and marginal
zone B cells appeared unchanged, germinal center (CG) B cells
increased in frequency and number over time (Supplementary
Figures 3D–F).

The most prominent phenotype in CD19-Cre;Myd88L252P

mice was an enlarged plasma cell compartment in the spleen,
and to a lesser extent, in the bone marrow: Both the frequency
and the absolute numbers of the TACI+CD138+ plasma cells
from 50 weeks old CD19-Cre;Myd88L252P mice were increased
compared to CD19‑Cre control mice (Figure 1C and
Supplementary Figure 4A). The majority of these expanded
plasma cells expressed the Myd88L252P reporter GFP, indicating
that the plasma cell expansion was driven by the Myd88L252P

mutation (Supplementary Figure 3C). Strikingly, the majority of
the expanded plasma cells also expressed and secreted IgM
(Figures 1C, D; Supplementary Figure 4B). Correspondingly,
serum IgM titers increased as early as ten weeks after birth and
continued to increase over time up to twenty-fold, while other Ig
isotypes were unchanged or slightly decreased (Figure 1E).

Taken together, our results suggest that the Myd88L252P

mutation causes elevated serum IgM levels and confers a subtle
survival or growth advantage on IgM-expressing B cells that
encompass a spectrum of differentiation states, including GC B
cells and plasma cells.

Ig Class Switching Is Unchanged in
Myd88L252P-Expressing B Cells
It has remained unclear whether the malignant B cells inWM are
unable to switch Ig isotype from IgM to another class or whether
switched WM cells might disappear over time in vivo (7, 8, 58–
61). In order to gain insight into whether the Myd88L252P

mutation inhibits class switching, we crossed the Myd88L252P

mice with Cg1-Cre mice which express Cre in early GCs at a
mature, activated B cell stage just prior to class switching (44).
Cg1-Cre;Myd88L252P animals were immunized with hapten-
carrier conjugate as shown in Figure 2A. Antigen-specific
GFP-reporter-positive and negative B cells did not differ in
their ability to switch to IgG1 in vivo, neither after primary
nor secondary immunization (Figures 2B, C). Supporting this
result, ex vivo B cells transduced with TAT-Cre recombinase
showed comparable Ig class switching efficiency in cell culture,
irrespective of Myd88L252P expression (Supplementary Figure
5A). We also assessed class switch in CD19-Cre mice (in which
>95% of B cells are GFP-reporter-positive), and could not detect
any change in the frequency of switched cells in either the spleen
(IgG1), mesenteric lymph nodes (IgG1) or Peyer’s Patches (IgA)
(Supplementary Figure 5B).
Frontiers in Immunology | www.frontiersin.org 522
reporter negative  
reporter positive   

N
IP

IgG1

Germinal center B cells 

N
IP

GFP reporter positive

GFP reporter negative

8.52

1st NP-CGG 2nd NP-CGG

9.5 weeks

analysis analysis

0

immunization
                        

6
5
4
3
2
1
0

N
IP

-b
in

di
ng

 
Ig

G
1+

 c
el

ls
 (%

) 

31.5

  
Cg1-Cre;Myd88LP

                        

68.1 82.117.8 93.76.16

non

GFP

FA
S

   
   

   
   

   
   

   
   

immunization  
1st 2nd

non
immunization  

1st 2nd

A

B

C
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Myd88L252P allele was crossed into the B-cell-specific Cg1-Cre strain which
activates Cre-expression in mature B cells upon germline transcription of
the IgH Cg1 switch region. (A) Cg1-Cre;Myd88L252P and littermate control
animals were immunized with hapten carrier conjugate (NP-CGG) and
analyzed at the indicated time points. (B) Representative flow cytometry
plots of germinal center (GC) B cells (B220+CD19+CD38lowFAShigh). Upper
panels: Myd88L252P GFP-reporter-positive cells increased upon primary and
secondary immunization. Lower panels: Antigen-specific, reporter-negative
and -positive GC cells switch to IgG1 to similar extents during primary and
secondary immune responses. (C) Percentage of IgG1-positive, antigen-
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Collectively, these results indicate that the Myd88L252P

mutation does not interfere with Ig class switching. They
rather suggest that the mutation specifically impacts the fitness
of B cells expressing an IgM B cell receptor (BCR).

Myd88L252P Causes Prolonged Persistence
of IgM+ Antigen-Specific Plasma Cells and
Serum IgM
In order to test directly whether IgM-expressing Myd88L252P-
mutated B cells can persist for prolonged times in vivo, we
followed reporter-positive antigen-specific B cells in Cg1-Cre;
Myd88L252P animals until 50 weeks after primary immunization
with hapten-carrier conjugate NP-CGG (Figure 3A). As shown
in Figure 3B, hapten-specific IgM-producing cells in spleen and
bone marrow remained elevated up to 50 weeks after
immunization. Consistent with this finding, NP-specific serum
IgM titers remained elevated, while the NP-specific IgG1 titers
decreased as in the controls (Figure 3C).

The same mice also showed an overall increase in the number
of plasma cells (>80% reporter-positive) and elevated total serum
IgM, similar to the CD19-Cre;Myd88L252P mice described above,
albeit to a lesser extent (Supplementary Figures 6A, B). BrdU-
labeling over 16 h revealed an increased number of labeled
splenic GC B cells and plasma cells compared to controls
(Supplementary Figure 6C). Histology of the spleen suggested
that this proliferation occurred mostly in plasma cell precursors,
since CD138-positive plasma cells showed little active
proliferation and were mostly Ki67-negative (Supplementary
Figure 6D). Reminiscent of malignant Waldenström B cells,
Myd88L252P reporter-positive, IgM+ plasma cells carried
increased numbers of somatic mutations compared to IgM+

plasma cells from controls (Supplementary Figures 4C, 6E).
Our results thus suggest that the Myd88L252P mutation

confers a survival and proliferation advantage to IgM-
expressing B cells and plasma cell progenitors. Taking into
account the capacity of these cells to switch isotype normally,
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these findings imply that surface IgM expression is required for
the observed cellular expansion.

Myd88L252P Expression in a Small Number
of B Cells Leads to Serum IgM
Paraproteins (M-Spikes)
In WM patients, the MYD88L265P mutation presumably arises as
a rare event in a tumor progenitor cell. Therefore, to mimic the
disease etiology more closely, we restricted mouse Myd88L252P

expression to a small fraction of B cells by a tamoxifen-inducible
Cre allele (CD19-CreERT2) (47) which induces Cre-mediated
recombination in only a few percent of B cells (Figure 4,
Supplementary Figure 7). Ten days after a single dose of
tamoxifen expression of Myd88L252P led to a 15-fold increase
in the reporter-positive plasma cell population in the spleen, an
effect not observed in tamoxifen-treated YFP reporter control
mice (Supplementary Figure 7). Importantly, 70 weeks after a
single tamoxifen injection IgM-secreting plasma cells still
persisted in spleen and bone marrow (Figures 4A, B).
Correspondingly, serum IgM levels were also increased in the
mutant animals (Figure 4C), all of which displayed discrete
paraprotein bands in the g-globulin zone upon serum protein
electrophoresis. Such paraproteins are indicative of clonally
restricted plasma cell expansions and occur in IgM MGUS, the
precursor condition of WM (Figure 4D and Supplementary
Figure 8A). Immunofixation confirmed that five out of five mice
had developed a paraprotein of IgM isotype (Figure 4D).

IgM paraprotein bands occasionally also appeared in Cg1-
Cre;Myd88L252P mice, whereas we never observed paraprotein
bands in sera of CD19-Cre;Myd88L252P mice (Supplementary
Figure 8B). Both in aged Cg1-Cre;Myd88L252P and CD19-
CreERT2;Myd88L252P mice 70 weeks after tamoxifen injection,
Myd88L252P-reporter-positive cells—while detectable only in low
in numbers—consisted of B220+ B cells and varying proportions
of differentiated, mostly IgM-posit ive plasma cel ls
(B220lowTACI+CD138+) (Supplementary Figures 8C, D).
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Thus, our data show that chronic activation of Myd88 in a
small fraction of B cells can lead to the development of IgM M-
spikes in the serum of aged, but otherwise healthy mice. They
suggest a causal link between the Myd88L252P mutation and IgM
MGUS, the premalignant condition that precedes WM (23–26).

Myd88L252P Expression in a Small Number
of B Cells Leads to Clonal Expansions of
Plasma Cells
In order to determine the extent of clonal expansions in the
plasma cell compartment in the five aged CD19-CreERT2;
Myd88L252P mice, we analyzed rearranged VH-region
sequences in sorted plasma cells isolated from bone marrow
and spleen. As read-out we examined the J558 family V genes
which constitute about half of the expressed VH gene repertoire
in C57BL/6 mice (62–64). Amplification with a primer in the
downstream JH intron produced bands for all four JH
rearrangements in controls. By contrast, for four out of five
CD19-CreERT2;Myd88L252P mice, we only detected a single PCR
band with JH4 being used in each case (Figure 5A). Since only a
limiting amount of sorted plasma cells was available for this
analysis, we cannot exclude that the JH4 bias may stem from
preferential amplification of short VDJ rearrangements. (For the
fifth mouse, we failed to obtain a PCR product.)

Subcloning and sequencing revealed that each of the four
mice carried a different predominant JH4 rearrangement
involving a J558 family member and that this predominant
Frontiers in Immunology | www.frontiersin.org 724
clonotype was overrepresented in plasma cells from both, bone
marrow and spleen (Figure 5B). Plasma cells from age-matched
control and CD19-Cre;Myd88L252P and Cg1-Cre;Myd88L252P

mice also exhibited predominant clonotypes, but at a much
lower frequency (12–25 versus 44–74% in mutants) and
different ones in bone marrow and spleen (Figure 5B and
Supplementary Figure 9A).

In striking contrast to the controls, the majority of plasma
cells from CD19-CreERT2;Myd88L252P mice expressed IgM
(ranging from 68 and 88% in individual mice; Supplementary
Figure 9B). Still, the overall extent of somatic mutation in GFP+

bone marrow-derived plasma cells from CD19-CreERT2;
Myd88L252P mice was comparable to control plasma cells
which predominantly expressed IgG (Supplementary Figure
9B). In three mice the most frequently detected VDJ genes
showed a moderate number of somatic mutations of up to 5,
13, or 15, respectively, which allowed the reconstruction of
genealogical trees on the basis of intraclonal variation
(Supplementary Figure 9C). In one mouse (#4) the most
frequent VDJ gene was unmutated.

In order to find out whether the IgM M-spikes observed in
these four mice contained the same clonal VDJ rearrangements
that were predominantly detected in spleen and bone marrow of
the individual mice, we analyzed protein bands corresponding to
the individual M-spikes by tandem mass spectrometry
(Supplementary Figure 10). Proteomics confirmed in all cases
that the predominant isotype in the M-spike was IgM, but did
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not reveal clonotypic peptides corresponding to the VDJ regions
that were most frequently detected by sequencing.

Notwithstanding the absence of a clear molecular link
between the M-spikes and the most frequently detected plasma
cell clones in bone marrow and spleen of the four CD19-CreERT2;
Myd88L252P mice, our clonal analysis suggests that—in a genetic
scenario where introduction of Myd88L252P mutation into
CD19+ B cells is a rare event—Myd88L252P mutation confers a
survival and growth advantage to rare cells that over time
produce clonal expansions of IgM-positive plasma cell
progenitors (Supplementary Figure 9C).
DISCUSSION

IgM and non-IgM MGUS are different clinical entities that are
both thought to arise from B cells at late stages of differentiation
(23, 25, 65). While non-IgM MGUS mostly evolves to multiple
myeloma (25, 66–68), IgM MGUS has been increasingly
recognized as the premalignant precursor state for WM (23–
26, 65). However, to date it has remained challenging to clinically
or molecularly distinguish WM from smoldering WM and IgM
MGUS (23, 69–71). Premalignant IgM MGUS and malignant
WM cells were found to be phenotypically similar to each
other (70).

The MYD88L265P mutation is absent in multiple myeloma
patients (27), but highly prevalent in both, WM and IgM-MGUS
patients (27–33). It therefore may represent an early, unifying
genetic event in WM pathogenesis. Here, we provide evidence
Frontiers in Immunology | www.frontiersin.org 825
that B-cell-specific expression of the mouse homolog of the
human MYD88L265P mutation (Myd88L252P) is sufficient to
cause a phenotype that resembles IgM MGUS. We thus
establish a causal link between the Myd88L265P mutation and
the development of a phenotype resembling the WM precursor
condition and shed new light on the etiology of WM.

Based on three different genetic scenarios, our results indicate
that chronic activation of aberrant Myd88 signaling—by
conditional mutagenesis of the endogenous Myd88 locus—
confers a survival and low-grade proliferative advantage on
IgM-expressing B cells. This advantage can manifest in
different ways, depending on the number cells targeted by the
mutation and the time window for progression: In a first
scenario, activation of the mutation by CD19-Cre in early B
cells caused a polyclonal, low-grade lymphoproliferative disease
accompanied by polyclonal plasma cell expansion and
progressively increasing serum IgM titers (up to 20-fold). In a
second scenario, activation of the mutation at the initiation of the
GC stage by Cg1-Cre caused a similar, albeit weaker, phenotype,
consistent with a lower number of mutated B cells. In a third
scenario, a time-restricted activation of Myd88L252P by CD19-
CreERT2 in a small fraction of B cells led to clonal expansions of
IgM-expressing plasma cells and the appearance of IgM M-
spikes in the serum.

The latter scenario most closely mimics the in vivo situation
in human patients, where Myd88 mutation presumably occurs as
a rare event in a tumor progenitor B cell. It appears that IgM
expressing Myd88L252P mutated B cells can gain a competitive
advantage over normal B cells over time resulting in an
3769 9339

31 39 33 43

Control CD19CreERT2;Myd88LP

JH1

CD19-CreERT2;Myd88LP

26

16

        Control

JH1
JH2
JH3

JH4

71% 74% 51%21% 15%

61% 44% 46% 47%19%

V1-22 V1-53 V1-15 V1-64

Control CD19CreERT2;Myd88LP

#1 #2 #3 #5#4

#4#2 #1 #3 #5

Spleen

neelp
S

Bone marrow

worra
m eno

B

V1-69 V1-18

V1-22 V1-53 V1-15 V1-64V1-55 V1-69
CD19-CreERT2 B6 mouse #1 mouse #3 mouse #4 mouse #5

JH2
JH3

JH4

53%

65

25

16%

A B

FIGURE 5 | CDR3 analysis of rearranged VDJ genes shows expansion of clonally related plasma cells in aged CreERT2;Myd88L252P mice. Genomic DNA was
purified from GFP-reporter-positive TACI+CD138+ plasma cells isolated from bone marrow and spleen of CD19-CreERT2;Myd88L252P mice 70 weeks after tamoxifen
induction. (A) PCR amplification of rearranged J558 family V genes from bone marrow (upper panel) and spleen (lower panel). Bands corresponding to all four JH
segments appeared in the controls, while in CreERT2;Myd88L252P mice only JH4 rearrangements could be detected. (No rearrangements were detected in mouse #2).
(B) JH4 bands (red rectangle shown in A) were cloned and sequenced. Clonal analysis based on CDR3 sequence revealed that in each mouse the same clones
were most frequently detected in the bone marrow (upper panel) and spleen (lower panel). For the most frequently detected clonotype (red sector in pie chart), the %
of sequences detected and the VH J558 family member is given. VH genes and VDJ rearrangements of the most frequent clonotypes were shared in bone marrow
and spleen of each CD19‑CreERT2;Myd88L252P mouse, while they differed in bone marrow and spleen of controls and between the controls. Each pie chart
represents one mouse. (See also Supplementary Figures 9 and 10).
December 2020 | Volume 11 | Article 602868

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Schmidt et al. Myd88 L252P Mutation Causes IgM MGUS
outgrowth of clonally related, mutated cells and IgMM-spikes in
the blood when the mutation is restricted to few or single
progenitor B cells. Polyclonal activation of Myd88L252P (as in
the first and second scenario) may mask this effect, and indeed
resulted in overall strongly elevated IgM levels (Figure 1E and
Supplementary Figure 6B) (19). In support of this interpretation,
we never detected IgMM-spikes when the mutation was activated
by the CD19-Cre allele (causing recombination in most B cells)
and only occasionally when the mutation was activated by the
Cg1-Cre allele (which is active in fewer B cells) (44).

The presence of IgM M-spikes in the blood of aged CD19-
CreERT2;Myd88L252P mice was accompanied by clonal
expansions in the plasma cell compartment with the most
frequently detected clonotype being identical in spleen and
bone marrow. Clonally related plasma cells mostly carried
somatically mutated VDJ regions, reminiscent of a molecular
WM cell phenotype (6–11). We also observed intraclonal
diversity with respect to somatic mutations (Supplementary
Figures 9B, C), suggesting that the Myd88L252P mutation
drives IgM MGUS progenitors already at the GC stage,
consistent with our finding that GC B cells rather than plasma
cells are actively proliferating (Supplementary Figures 6C, D).
However, our results do not exclude that the pro-proliferative
activity of the Myd88L252P mutation extends into later stages of B
cell differentiation.

Our attempts to find a direct molecular link by proteomics
between the IgM M-spikes and the most frequently detected
clones were unsuccessful. This may be due to the low amount of
starting material combined with the complexity of serum
samples, the presence of multiple clonotypes in the isolated M-
spike, the locally restricted area of the bone marrow biopsy
(femur), or a combination of these factors. It is also possible that
in CD19-CreERT2;Myd88L252P mice the most frequently detected
plasma cell clones form part of an early, dynamic clonal
landscape in which several competing Myd88L252P B cell clones
are still present until secondary mutations help to establish
dominance and long-term persistence of a single major clone.

Our study is in line with the prevailing view that the
development of WM requires additional mutations besides
MYD88L265P (19, 20, 36, 39–41, 55). The observed B cell
phenotypes are consistent with earlier work that assessed the
effect of retroviral overexpression of mouse Myd88L252P in B cells
ex vivo (55) or B-cell-specific transgenic overexpression of
human MYD88L265P in vivo (20). Both approaches showed that
the Myd88 mutation by itself is not sufficient to immortalize or
neoplastically transform B cells. This appears plausible, because
activation of pro-survival signaling by NF‑kB entails negative
feedback that limits B cell expansion (55). The need to remove
negative feedback loops may explain the frequent occurrence of
mutations that affect negative regulators of NF-kB in human
WM or ABC-DLBCL patients (36, 37, 72–75). Our results (in
genetic scenarios one and two) are also in line with the
observation that human MYD88L265P promotes in the mouse
the development of a polyclonal , low-grade B cel l
lymphoproliferative disorder of lymphoplasmacytic appearance
with increased serum IgM (20).
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However, different from earlier studies, continuous activation
of an endogenous Myd88L252P mutation by CD19-Cre in our
mouse cohort did not cause fulminant lymphoproliferative
disease (19) or an increased transformation to B lymphoma or
increased mortality (Table 1; Supplementary Figure 3A) (19,
20). Rather than owing to differences in the human and mouse
Myd88 proteins, as proposed recently by Sewastianik et al. (20),
these discrepancies may be caused by different external cues
(such as TLR signaling induced by different microbial or mouse
housing environments) (19) or the molecular effects of strong
transgene overexpression (20), or both.

Our results suggest that IgM expression is specifically
required for the pro-survival effect of the Myd88L252P

mutation, since mutated B cells showed normal Ig isotype
switching in a wide range of experimental conditions, but only
IgM-expressing, antigen-specific B cells were able to persist after
immunization. In line with these results, Young et al. (76)
proposed that cell surface IgM acts as an “initiator oncogene”
for B cell lymphomas, with the IgM-BCR potently promoting B
cell proliferation and IgG-BCRs preferentially promoting B-cell
differentiation programs. In this view, the IgM-BCR acts “as an
oncogene that initiates proto-malignant expansion of normal B
cells”, while the extended survival of pre-malignant cells would
require additional cooperating oncogenic events.

One such event may be the MYD88L265P mutation which
transforms normal IgM-expressing proliferating B cells into
premalignant cells that show prolonged survival and
plasmacytic differentiation. This effect may be driven by
external triggers through TLR signaling and be dependent on
BCR surface expression. Enforced overexpression of Myd88L525P

in B cells under the control of a strong constitutive viral
promoter (77) may overcome such a dependency on external
triggers (13) and manifest directly in a Waldenstöm-like B cell
lymphoma (77). In ABC-DLBCL cells, and in at least one WM-
derived cell line, the MYD88L265P mutation promotes the
formation of an oncogenic signaling complex comprising
Myd88, TLR9 and an IgM-BCR (My-T-BCR super complex)
which enforces cooperative survival signaling through the BCR
and TLR (16, 17, 76, 78, 79). It will be interesting to determine in
this context whether a My-T-BCR super complex already forms
in Myd88-mutated B or plasma cells expressing physiological
levels of mutated Myd88, or whether super complex formation
requires either additional oncogenic mutations or increased
expression of mutated Myd88, or both.
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The Epstein–Barr virus (EBV) is endemic in humans and can efficiently transform infected

B cells under some circumstances. If an EBV carrier experiences immune suppression,

EBV+ B cells can turn into lymphoblasts and exhibit growth expansion that may cause

lymphoproliferative diseases which often develop into lymphoma. Our immune system

conducts surveillance for EBV+ B cells in order to block spontaneous tumor formation.

Here, we summarize the EBV products involved in tumorigenesis, EBV-associated

lymphomas, and pathologically relevant mouse models. Preclinical mouse models

for a range of EBV-associated diseases not only clear the path to new therapeutic

approaches but also aid in our understanding of the nature of lymphomagenesis and

immune surveillance.

Keywords: Epstein-Barr virus, B cell lymphoma, immune surveillance, mouse model, lymphoproliferative disease

INTRODUCTION

Epstein–Barr virus (EBV), an oncogenic γ herpes virus, is widespread in all human populations
and persists in the vast majority of individuals throughout their lifetime. EBV preferentially
infects B cells through the CD21/CR2 receptor on the surface of B cells, which is an
entry receptor for viral envelope glycoprotein gp350. Viral glycoprotein gp42 interacts with
cellular human leukocyte antigen (HLA) Class II molecules as a co-receptor, triggering fusion
of the viral envelope with the cell membrane (1). Primary infection in young children is
usually asymptomatic, but if infection is delayed until adolescence, it can cause infectious
mononucleosis (IM) accompanied by EBV-infected B cell expansion and enormous T cell
activation (2). After the acute phase of infection, EBV persists in a small subset of memory
B cells (0.0001–0.005% of peripheral blood B cells) throughout the patient’s lifetime, and is
maintained as silent because of the specifically established memory T cells (3–5). Although EBV is
usually a harmless passenger, immunocompromised individuals can develop severe complications.
Genetic defects that lead to impaired T cell function predispose individuals to EBV-driven
lymphoproliferative diseases or hematological diseases such as X-linked lymphoproliferative
disease (XLP) or familial hemophagocytic lymphohistiocytosis (FHL) (6, 7). Lymphomas
associated with post-transplant lymphoproliferative diseases (PTLDs) arising in patients receiving
immunosuppressive drug treatment after organ transplantation are usually positive for EBV.
Human immunodeficiency virus (HIV) infection can also lead to the development of EBV+

lymphoma called acquired immunodeficiency syndrome (AIDS)-related lymphoma. Thus, in
immune suppression, B cells carrying the EBV episome turn into activated lymphoblasts, which
later often develop into lymphoma. Furthermore, several escape mechanisms from EBV-specific
immunity lead to EBV+ lymphoma even in immunocompetent people, including Burkitt
lymphoma (BL), Hodgkin’s lymphoma (HL), and non-Hodgkin’s lymphoma (NHL). EBV may

30
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TABLE 1 | EBV latency programs and EBV-associated lymphomas.

Latent programs Latency I Latency II Latency III

Expressed EBV

non-coding RNAs

EBER1/2, BART

miRNAs

EBER1/2, BART

miRNAs

EBER1/2, BART

miRNAs

Expressed EBV mRNAs EBNA1 EBNA1 EBNA1

LMP1, LMP2A,

LMP2B

LMP1, LMP2A,

LMP2B

EBNA2,

EBNA3A

EBNA3B,

EBNA3C

EBNA-LP

Sensitivity to CTL Resistant Resistant ∼

Sensitive

Sensitive

EBV-associated

lymphomas (Association,

%)

BL, endemic

(95–100)

BL, sporadic

(20–30)

AIDS-BL (55)

AIDS-PEL

(90–100)

AIDS-DLBCL-

CB (30)

HL, Western

world (40)

HL, Children in

Central

America (90)

AIDS-HL (100)

DLBCL (10–15)

PTLD (80)

AIDS-PCNSL

(100)

AIDS-DLBCL-

IB (90)

AIDS, Acquired immunodeficiency syndrome; BART, BamHI-A rightward reading frame

transcript; BL, Burkitt lymphoma; CB, Centroblast; CTL, Cytotoxic T-lymphocyte; DLBCL,

Diffuse large B-cell lymphoma; EBERs, EBV-encoded small RNAs; EBNA, EBV nuclear

antigen; HL, Hodgkin’s lymphoma; IB, Immunoblast; LMP, Latent membrane protein;

PCNSL, Primary central nervous system lymphoma; PEL, Primary effusion lymphoma;

PTLD, Post-transplant lymphoproliferative disease.

also act as a passenger in cases in whichmalignant transformation
occurs in an EBV-infected B-lymphocyte. Although many B cell
malignancies are associated with EBV infection, the precise roles
of EBV in the tumorigenic process and immune escape remain
largely unknown. Therefore, the development of preclinical
mouse models for EBV infection and the pathogenesis of EBV-
associated lymphoma is important as it could open up new
therapeutic modalities.

EBV PRODUCTS IN LATENTLY INFECTED
B CELLS

Upon EBV infection, each infected cell carries multiple
extrachromosomal copies of viral episomes and constitutively
expresses a limited set of viral gene products called latent
proteins. Among EBV-encoded genes, nine viral proteins can be
expressed from latently infected EBV episomes to maintain the
viral genome and regulate host B cell properties: EBV-nuclear
antigens EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, EBNA-
LP, and latent membrane proteins LMP1, LMP2A, and LMP2B.
Additionally, it also expresses non-coding RNAs EBER1, EBER2,
BART miRNAs, and BHRF-1 miRNAs. EBV exhibits one of four
latency programs, latency 0, I, II, or III, depending on the status of
B cells and lymphoma types (Table 1). EBV can persist in resting
B cells without expressing viral genes escaping from the immune
system for a long period (latency 0) or they can express either
latency I, II, or III depending on the disease type (8).

LATENT MEMBRANE PROTEINS (LMPs)

LMP1 is an important oncogene encoded by EBV that is
expressed inmany types of EBV-associated lymphomas (Table 1).
LMP1 containing intracellular signals and transmembrane
domains can promote self-aggregation in the plasma membrane
that transmits constitutive intracellular signal mimicking CD40,
an important costimulatory molecule for B cells. LMP1 mimics
an active CD40 receptor and recruits tumor necrosis factor
(TNF) receptor–associated factor (TRAF) in the COOH terminal
cytoplasmic region. LMP1 expression induces NF-κB andMAPK
activation, and upregulates anti-apoptotic factors A20, Bcl-2,
and proto-oncogene c-Myc. The expression of LMP1 in B
cells induces blastic change and massive proliferation, which
eventually transform B cells. EBV lacking LMP1 is unable to
transform B cells (9, 10). It is of note that LMP1 expression
is known to be heterogenous in B-NHL. A meta-analysis
demonstrated that LMP1 expression is an unfavorable prognostic
factor for overall survival in NHL patients (11). LMP2A also
contains signaling and transmembrane domains that transmit
constitutive signals mimicking the B cell receptor (BCR). LMP2A
enhances the expression of genes related to cell cycle induction
and apoptosis inhibition, and changes the expression of genes
related to cell metabolism. LMP2A transmits signals through
Lyn and Syk, which can replace BCR in B cell development
(12, 13). EBV-associated lymphomas originate from germinal
center (GC) B cells. Although the BCR signal plays an important
role in GC-derived lymphoma cells, GC B cells characteristically
downregulate BCR expression and its signal, suggesting that
EBV may replace BCR function. In addition, lymphoma derived
from GC B cells such as HLs often lose BCR expression because
of deleterious somatic mutations in their immunoglobulin
genes. Importantly, the EBV-mediated transformation of both
BCR+ and BCR− GC B cells is strictly dependent on LMP2A
expression (14).

EBV NUCLEAR ANTIGENS AND
NON-CODING RNA

EBNA1 is a DNA-binding nuclear phospho-protein that plays
a central role in the replication and maintenance of the
episomal EBV genome. Directing EBNA1 expression to B cells
in transgenic mice results in B cell lymphomas, suggesting that
EBNA1 might have a direct role in oncogenesis, although there
is no evidence explaining the direct role of EBNA1 in the
immortalization or transformation of B cells (15). EBNA2 is
expressed early after infection and has an important role in the
immortalization of B cells through the induction of viral genes
such as LMP1 and LMP2A. EBNA2, which mimics Notch in
binding to RBP-Jκ and activating cellular target genes (most
notably Myc), is an essential molecule in human B cell growth
transformation by EBV (8, 16). A recent study identified EBNA2
as a lead player in tampering with the immunogenicity of
EBV+ B cell lymphoma by altering PD-L1 expression (17). The
EBNA3 family are transcriptional regulators controlling RBP-
Jκ activity, and thereby regulate the activity of cellular and
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viral promoters. Studies with EBV recombinants have shown
that EBNA3A and EBNA3C are essential for human B cell
transformation in vitro whereas EBNA3B is non-essential (18).
Recently, EBNA3A was shown to promote LMP1- and LMP2A-
induced lymphomagenesis in mice by inhibiting the terminal
differentiation of lymphoma progenitors and cooperating with c-
Myc expression (19). EBNA-LP is not required for human B cell
transformation in vitro, but is required for the efficient outgrowth
of LCLs (20). EBNA-LP promotes the cell cycle through the
induction of Cyclin D2 together with EBNA2 (21). The ability of
EBNA-LP to enhance EBNA2-mediated transactivation suggests
its importance in EBV-driven lymphomagenesis. In addition
to the latent proteins, non-coding RNA, EBER1, and EBER2
are consistently expressed in all forms of latent EBV infection
(Table 1). EBER blocks IFN-induced apoptosis by binding to
dsRNA-activated protein kinase (PKR). The role of EBER in IL-
10 production in BL cells has been shown. EBER promotes the
induction of autocrine growth factors IL-10, IL-9, and insulin-
like growth factor-1 (22). The transgenic expression of EBER1
in the mouse B cell compartment promotes hyperplasia and
Myc-induced lymphoma development (23). Therefore, EBERs
may contribute to tumor growth or escape from the immune
system. BARTmiRNAs (encoding 44 mature BARTmiRNAs) are
expressed in all latency types whereas BHRF1miRNAs (encoding
4 mature BHRF1 miRNAs) are only expressed in type III latency.
Although the aberrant expression of these miRNAs may be
involved in transformation and tumor growth, the precise role
has not yet been established (24).

BURKITT LYMPHOMA

BL was the first B cell lymphoma discovered to be associated with
EBV. BL is characterized by c-Myc chromosomal translocation
and is subdivided into three types, endemic, sporadic, and
immunodeficiency, all of which are associated with EBV.
Endemic and sporadic BL account for 95–100 and 20–30% of
EBV-associated lymphomas, respectively (Table 1). Nearly all BL
carries c-Myc/Ig translocation t(8;14), t(2;8), or t(8;22) leading to
dysregulated c-Myc proto-oncogene expression, indicating the
critical role of c-Myc in Burkitt lymphomagenesis (25). In EBV-
positive BLs, only EBNA1 is expressed besides EBERs and BART
miRNAs (latency I). Other EBV latent genes are downregulated,
and lymphoma cells are thus hidden from EBV-specific host
memory T cells. Functional inhibition of EBNA1 eradicates the
EBV episome and prevents the malignant phenotype of EBV+

BL cells (26, 27). The constitutive expression of c-Myc together
with the active form of phosphoinositide-3-kinase (PI3K) in
germinal center B cells, an origin of BL, synergistically induces
mouse B cell lymphoma similar to human BL (28). This study
suggests that the anti-apoptotic survival signal coinciding with
constitutive c-Myc expression is sufficient and critical to the
development of BL. Transgenic expression of EBER1 in B cells
(Eµ-EBER1) together with c-Myc- or N-Myc promoted Myc-
dependent lymphomagenesis, suggesting the role of EBER1 in
lymphomagenesis (23). Because the synergistic effect of Myc and
EBER1 was relatively mild compared to Myc and active PI3K,
however, additional events promoting cell survival might be
required for BL tumor formation. Indeed, oncogenic mutations

in the pro-survival genes, cell cycle regulator, and transcriptional
regulators were found (29), and these additional mutations might
be required for the lymphomagenesis from Myc-translocated
EBV+ GC B cells.

HODGKIN’S LYMPHOMA

HL is characterized by atypical, large tumor cells known as
Hodgkin and Reed–Sternberg (HRS) cells. These cells usually
represent <1% of the tumor tissue; most tumor cells are non-
malignant T cells and other immune cells (8). In the Western
world, EBV is detected in ∼40% of HRS cells in classical HL.
In Latin America, nearly all cases of HL in children are EBV-
positive. In EBV-positive cases, three EBV proteins, EBNA1,
LMP1, and LMP2A, are expressed (latency II). HRS cells are
equipped with mechanisms to escape immune surveillance,
including the downregulation of MHC class I and II, and the
overexpression of CTL suppressormolecules, such as PD-L1, PD-
L2, TGF-β, IL-10, Gal-1, Fas-L, and Treg-attracting chemokines
(30). HRS cells originate from GC B cells. The rearranged Ig
V genes of HRS are somatically mutated but lack intra-clonal
diversity, indicating that the SHM machinery is silenced in
tumor cells. Interestingly, 25% of HRS cells carry non-sense or
deleterious mutations in the functional immunoglobulin gene.
GC B cells that acquire such crippling mutations are normally
eliminated by apoptosis in the GC reaction, but the expression of
LMP2A by EBV infection might allow the survival of GC B cells
with crippling mutations as LMP2A could replace BCR (12, 13).
To date, no mouse models relevant to HL disease have been
successfully established.

DIFFUSE LARGE B CELL LYMPHOMA

Diffuse large B cell lymphoma (DLBCL) is the most common
lymphoid malignant tumor, accounting for 30–40% of NHL
derived from GC B cells. DLBCL occurs primarily in elderly
adults, less frequently in young adults, and rarely in children.
Approximately 10–15% of patients are EBV+ DLBCL, and this is
most prevalent in Asia (31, 32). The large B cells in EBV+ DLBCL
are clonal centroblastic B cells, which in most cases, express
the latency II program (33). Several studies have reported how
these EBV+ lymphoma cells escape host immune surveillance.
Senescence of the immune system related to the aging process
that leads to the defective surveillance of EBV may play a role
in pathogenesis (33). The dysregulated expression of PD-L1 and
PD-L2 caused by a genetic truncation of 3′-UTR has also been
identified in EBV+ DLBCL, but not in EBV- DLBCL, which
provides another explanation of why highly immunogenic EBV+

DLBCL can escape immune surveillance in young adults (34).

POST-TRANSPLANT
LYMPHOPROLIFERATIVE DISEASE

Post-transplant lymphoproliferative disease (PTLD)
encompasses a heterogenous group of lymphocytic proliferations
characterized by the proliferative expansion of lymphocytes,
mostly EBV+ B cells, in immunocompromised patients due to
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treatment with immunosuppressive drugs after solid organ or
hematopoietic stem cell transplantation. PTLD typically exhibits
type III latency features. The World Health Organization
(WHO) classification categorizes the disease into IM-like early
lesions, polymorphic lymphomas (P-PTLD), and monomorphic
lymphomas (M-PTLD). Virtually all early lesions are polyclonal
and do not have any known molecular alterations. Many P-
PTLDs and most M-PTLDs are clonal. Compared to P-PTLD,
M-PTLDs harbor more karyotypic abnormalities. A murine
PTLD model expressing LMP1 in B cells in which breaking
immune surveillance results in rapid, fatal lymphoproliferation
and lymphomagenesis has been established (35) (Figure 1C).

ACQUIRED IMMUNODEFICIENCY
SYNDROME–RELATED LYMPHOMA

EBV-positive lymphomas are highly associated with
immunocompromised patients who have AIDS caused by
human immunodeficiency virus (HIV) infection (Table 1).
In AIDS patients, the incidences of DLBCL, HL, BL, primary
central nervous system lymphoma (PCNSL), and primary
effusion lymphoma (PEL) are increased because of the lack
of T cell–mediated immune surveillance, which suggests
that CD4+ T cells play central roles. EBV-positive rates in
these lymphomas are extremely high (90–100% of PCNSL,
HL, PEL, and immunoblastic DLBCL; 30–70% of BL and
centroblastic DLBCL), indicating the important role of EBV in
the development of lymphoma in AIDS patients (8, 36). The
cellular origin of those lymphomas are thought to be mostly V
gene–mutated GC B cells or post GC B cells.

EBV-SEROPOSITIVE HUMAN PERIPHERAL
BLOOD B CELL TRANSFER MODEL

Injection of human peripheral blood lymphocytes (PBLs) from
EBV-seropositive donors into severe combined immunodeficient
(SCID) mice allows the development of EBV+ B cell tumors
within weeks that resemble the lymphoblastoid cell line
(LCL) generated by EBV infection of normal B cells in
vitro (Figure 1A). The PBL-derived tumors resembling EBV+

large cell lymphoma in immunosuppressed patients formed
monoclonal or oligoclonal foci (37). The remarkable efficiency
of clonal tumor development in the human PBL-SCID model
suggests that lymphomagenesis involves the direct outgrowth of
EBV-transformed B cells without the requirement of secondary
genetic alterations. This transfer model is unable to induce a
host immune response to EBV+ B cells, however, which should
happen in lymphoproliferative diseases or lymphomas.

MOUSE MODELS OF EBV INFECTION AND
ASSOCIATED MALIGNANCIES

Human beings are the only natural host of EBV. As only New
World monkeys can be infected by EBV experimentally, there
is a major limitation to using primates as an animal model of
EBV-associated pathogenesis. Mice reconstituted with human

immune cells, called humanized mice, have been developed to
address the pathology of human hematopoietic cells, including
EBV infection to human B cells (Figure 1B). Transplantation
of human HSCs into severely immunocompromised mice such
as Rag2−/−

γc−/−, NOD-SCID, and NOD-SCID γc−/− mice
allows the reconstitution of a functional human immune
system, including B cells, T cells, natural killer (NK) cells,
dendritic cells (DCs), and macrophages. The administration
of live EBV to those reconstituted mice successfully infected
the reconstituted human B cells, developed LMP1+ B cell
proliferation, and mounted human MHC class I– and class II–
restricted adaptive immune responses to EBV infection (38–
40). Although this system has critical problems in human
T cell selection on a mouse thymic background and the T
cells generated a discriminated self from allogeneic MHC, this
approach provides a tool with which to study pathogens that
specifically target the human immune system and to test potential
therapeutic interventions.

GENETICALLY ENGINEERED EBV MODELS

The reconstitution of EBV pathogenesis as well as
lymphomagenesis through the conditional and timed
expression of limited EBV molecules in mice without
virus infection is challenging. We previously generated
mice expressing LMP1 specifically in B cells in early
development (CD19-Cre; R26LMP1 mouse, PTLD-like
lymphoma model) (Figure 1C). Similar to EBV-infected
human B cells, LMP1+ mouse B cells were efficiently
eliminated by T cells whereas disrupting immune
surveillance resulted in rapid, fatal lymphoproliferation and
lymphomagenesis (35). These results indicate the central
role of LMP1 in the surveillance and transformation
of EBV-infected B cells in vivo, and resulted in the
establishment of the first preclinical mouse model for immune
suppression-dependent lymphomagenesis.

The acute EBV infection of naïve B cells in mice can be
modeled through the timed expression of LMP1 and LMP2A
by tamoxifen-mediated Cre recombination (CD19-CreERT2;
R26LMP1/LMP2A mouse) (Figure 1D). Although lethal when
induced in all B cells, the induction of LMP1 and LMP2A
in just a few naïve B cells initiated a phase of rapid B cell
expansion followed by a proliferative T cell response that cleared
the LMP-expressing B cells. Interfering with T cell activity
prevented the clearance of LMP-expressing B cells (41, 42). Using
this system, primary human immunodeficiency diseases can be
reconstructed, such as perforin (Prf1)-deficient FHL (Figure 1E),
which causes a life-threatening EBV-related immunoproliferative
syndrome in humans (42). Thus, the timed expression of LMP1
together with LMP2A in subsets of mouse B cells allows the study
of the major clinically relevant features of human EBV infection
in vivo, thereby providing a unique animal model that may be
useful for therapeutic testing.

As described above, although EBV infection in humanized
mice has been successfully used to recapitulate virally driven
B cell lymphomagenesis, this approach completely lacks the
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FIGURE 1 | Mouse models for EBV infection and associated malignancies. Schematic illustrations of EBV-seropositive human peripheral blood B cell transfer model

(A), Mouse models of EBV infection and associated malignancies (B), PTLD-like mouse model (C), Acute IM-like mouse model (D), and Prf1-deficient FHL model (E).

SA, splice acceptor; PBL, peripheral blood lymphocytes; PTLD, post-transplant lymphoproliferative disease; IM, infectious mononucleosis; FHL, familial

hemophagocytic lymphohistiocytosis; LPD, lymphoproliferative disease.

hematopoietic cell environment that should be generated
normally (43). As such, it remains meaningful to study
lymphomagenesis in mouse models that induce EBV-driven
lymphoma in an in vivo environment that contains naturally
occurring T cells after education and selection, and that also
carries a normal set of innate and acquired immune cells

with a uniform genetic background. Furthermore, mouse
cytokines and chemokines cannot fully support human
hematopoiesis and in vivo dynamics of human immune cells.
A genetic engineering approach has been used to attempt
an immunocompromised latency III-like lymphoma model
in which EBNA3A, LMP1, and LMP2A are simultaneously
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expressed in GC B cells. In immunocompetent mice,
B cells expressing EBV genes are efficiently eliminated
by T cells; however, in immunocompromised recipient
mice, tumors similar to human EBV+ lymphomas were
formed. EBNA3A or a recurrent activating mutation of
the B cell transcription factor EBF1, a functional proxy
of EBNA3A, interplays with other EBV oncogenes in
B cell transformation (19).

CONCLUSION

Genetic mouse models have shown that the expression of LMP1
is sufficient to model the major features of EBV infection in mice,
namely, immunogenicity and tumorigenesis, despite the fact that
EBV is endemic to humans. This is of particular interest because
the T cell–mediated immune surveillance of LMP1+ B cells
stands in contrast to the belief that the human immune system
has evolved to prevent the expansion of EBV-infected B cells. The
virus might have evolved to be recognized by the mammalian
immune system, likely because lifelong latent infection is
advantageous over fatal infection. The development of preclinical
mouse models for a range of EBV-associated pathologies is
challenging but may open the path to the development of new
therapeutic approaches.
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Patient-derived xenograft models of chronic lymphocytic leukemia (CLL) can be created
using highly immunodeficient animals, allowing analysis of primary tumor cells in an in vivo
setting. However, unlike many other tumors, CLL B lymphocytes do not reproducibly
grow in xenografts without manipulation, proliferating only when there is concomitant
expansion of T cells. Here we show that in vitro pre-activation of CLL-derived T
lymphocytes allows for a reliable and robust system for primary CLL cell growth within
a fully autologous system that uses small numbers of cells and does not require pre-
conditioning. In this system, growth of normal T and leukemic B cells follows four distinct
temporal phases, each with characteristic blood and tissue findings. Phase 1 constitutes a
period during which resting CLL B cells predominate, with cells aggregating at
perivascular areas most often in the spleen. In Phase 2, T cells expand and provide T-
cell help to promote B-cell division and expansion. Growth of CLL B and T cells persists in
Phase 3, although some leukemic B cells undergo differentiation to more mature B-lineage
cells (plasmablasts and plasma cells). By Phase 4, CLL B cells are for the most part lost
with only T cells remaining. The required B-T cell interactions are not dependent on other
human hematopoietic cells nor on murine macrophages or follicular dendritic cells, which
appear to be relatively excluded from the perivascular lymphoid aggregates. Notably, the
growth kinetics and degree of anatomic localization of CLL B and T cells is significantly
influenced by intravenous versus intraperitoneal administration. Importantly, B cells
delivered intraperitoneally either remain within the peritoneal cavity in a quiescent state,
despite the presence of dividing T cells, or migrate to lymphoid tissues where they actively
divide; this dichotomy mimics the human condition in that cells in primary lymphoid tissues
and the blood are predominately resting, whereas those in secondary lymphoid tissues
org March 2021 | Volume 12 | Article 627020137
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proliferate. Finally, the utility of this approach is illustrated by documenting the effects of a
bispecific antibody reactive with B and T cells. Collectively, this model represents a
powerful tool to evaluate CLL biology and novel therapeutics in vivo.
Keywords: chronic lymphocytic leukemia, patient-derived xenograft, engraftment, growth, T cells, B cells
INTRODUCTION

Patient-derived xenograft (PDX) models of chronic lymphocytic
leukemia (CLL) can help analyze the biology of primary leukemic
B and T cells in an in vivo setting (1–7). However, creating
successful xenografts requires surmounting several inherent
barriers, the most significant being the transfer and growth for
a relatively long period of time of cells of one species into
recipients of another. This difficulty has been obviated to a
great degree by using severely immune-deficient mice lacking
mature T cells, B cells and NK cells (“alymphoid mice”). A
commonly used recipient strain of such mice is the NOD-scid
IL2Rgammanull animal, referred to as the “NSG”mouse. Another
major barrier to successful xenografting is pulling together
sufficient environmental cues, from the donor and/or the host,
to allow not only the survival but also the growth of the
transferred cell population.

We previously used NSG animals to develop a PDX model in
which transfer of CLL peripheral blood mononuclear cells
(PBMCs) along with allogeneic antigen-presenting cells (APCs)
led to in vivo CLL-derived T-cell activation that promoted
survival and growth of the leukemic cells (4). In this model,
the presence of activated T cells was essential for successful CLL
B-cell proliferation since CLL B-cell growth was only found
when concomitant expansion of autologous T cells was observed.
Moreover, elimination of T lymphocytes, in particular CD4+

cells, at the initiation of engraftment prevented growth of the
leukemic B cells (4).

This approach has advantages and disadvantages. Positive
aspects include the simplicity of the technique, the relatively
small numbers of CLL B and T cells needed to achieve a
productive outcome, and the ready promotion of CLL-cell
growth in vivo. The major negative feature is the dependence
on T-cell activation taking place in vivo as a consequence of the
donor T cells recognizing the foreign histocompatibility antigens
of the provoking, co-administered human APCs. Although
effective in most instances, the level of histocompatibility
difference between the antigen-presenting cell of the normal
donor and the T lymphocytes from the CLL-cell donor is rarely,
if ever known. Therefore, the extent and degree of CLL T-cell
activation that can occur in the recipient animals differs and is
not readily predictable and quantifiable in advance of cell
transfer. Consequently, the extent of T-cell help provided for
leukemic B-cell proliferation cannot be foretold and controlled to
make robust comparisons between experiments involving a
diverse set of donors.

Here we address the hypothesis that in vitro pre-activation of
CLL-derived T lymphocytes prior to xenografting with
autologous CLL cells provides a more reliable and constant
org 238
source, on a per cell basis, of T-cell help for the growth of
leukemic B cells in NSG recipients. We show that this approach
leads to reproducible growth of primary CLL cells within a fully
autologous system using limited numbers of leukemic cells from
a broad range of patients. We also detail extensive studies of
CLL-cell proliferation and how these relate to CLL-derived
human T cells, murine hematopoietic and non-hematopoietic
cells, route of administration, and the need to pre-condition
recipients. An example of the utility of these improvements in
testing the efficacy of a novel therapeutic is provided.
MATERIALS AND METHODS

Chronic Lymphocytic Leukemia Patient
Samples and Characterization
In accordance with the Declaration of Helsinki and as approved
by the Institutional Review Board of Northwell Health, after
obtaining informed consent, blood was collected from 19 CLL
patients for whom clinical information, laboratory data, and
IGHV-IGHD-IGHJ DNA sequences [Table 1 and (8)] were
available. PBMCs were separated by density gradient
centrifugation using Ficoll Paque Plus (GE Healthcare Life
Sciences) and cryopreserved until use in RPMI-1640 medium
(Invitrogen) supplemented with 10% heat-inactivated fetal
bovine serum (FBS, Atlanta Biologicals).

Xenogeneic Transplantation
Four to 8 week old NOD-scid IL2Rgammanull (“NSG™”, Jackson
Laboratory) mice were used as xenograft recipients for
cryopreserved CLL cells from only a single donor. If a sample
had reduced viability, it was centrifuged through a Ficoll gradient
to remove excess dead cells. For those experiments where extent
of cell division was determined in vivo, cells were incubated 10
minutes at 37°C with CFSE (2.5mM; Invitrogen) and washed with
cold culture medium just before transfer.

For those experiment requiring activated autologous T
lymphocytes, CD3+ cells from a single CLL patient were
enriched from PBMCs using anti-CD3 microbeads (Miltenyi
Biotec) by following the manufacturer’s recommended protocol.
Then, 1 × 106 CD3+cells per mL were cultured for 3–14 days with
25 µl of human T-Activator CD3/CD28 Dynabeads (Invitrogen)
and 30 units of IL-2 (R&D) per mL of cells in culture medium
(RPMI-1640 supplemented with 10% heat-inactivated FBS and
antibiotics (GE Healthcare Life Sciences)) at 37°C, 95% humidity
and 5% of CO2. Cultures were maintained at 1 × 106 cells/mL
with fresh culture medium containing IL-2. In those instances
when cells were cultured for > 7 days, beads were removed using
a magnet, and the CD3+cells were re-exposed to new anti-CD3/
March 2021 | Volume 12 | Article 627020
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28 beads and fresh culture medium. At the end of the T-cell
activation period, autologous CLL PBMCs from the same patient
(all experiments) were thawed and evaluated by trypan blue
(Thermo Fischer Scientific).

Then 20 × 106 viable PBMCs were mixed with CD3+ (at a 1:40
ratio of CD3+ cells: PBMCs) or without CD3+ activated cells
and injected.

Each individual NSGmouse then received 20 million live cells
resuspended in 50-100 ml PBS transferred either intravenously
(iv) via the retro-orbital plexus or intraperitoneally (ip) by
percutaneous injection. Additionally, in a subset of studies,
mice received 25 mg/kg busulfan ip for microenvironmental
preconditioning 24 h prior to xenografting. Following injection,
mice were bled and sacrificed as described for each experiment.
Human cells and murine sera were evaluated as indicated below.

Assessment of Blood, Bone Marrow,
and Splenic Tissue At Euthanasia
At euthanasia, spleens were bisected in order to prepare single
cell suspensions for flow cytometry (FC) studies and tissue blocks
were made for microscopy studies. Antibodies used for FC
studies are listed in Table S1 and primary antibodies for
microscopy studies in Table S2. All FC data were acquired
with a BD LSRII flow cytometer (Becton Dickinson
Immunocytometry Systems) and analyzed by FlowJo V10.6.2
software (TreeStar). Absolute numbers of human cells were
calculated using the cell count from the single cell suspension
obtained at the time of processing, and the percentage was
identified by FC. The VECTASTAIN® ABC system (Vector
Laboratories) was used to visualize primary antibodies for light
microscopy studies. Primary antibodies for immunofluorescent
microscopy were visualized with affinity purified donkey IgG
Frontiers in Immunology | www.frontiersin.org 339
antibodies (Jackson Immunoresearch). Confocal microscopy was
performed using either an Olympus IX70 microscope or a Nikon
A1R confocal microscope. All images obtained were edited for
optimal color contrast using Adobe Creative Cloud v5.1.0.407
(Adobe Systems).

Measurement of Secreted Human IgG
Human IgG concentrations in murine plasma were measured by
ELISA. 96-well flat-bottom microplates (Corning) were coated
with 100 µl/well of 5 µg/ml goat F(ab)’2 anti-human IgG
polyclonal antibodies (pAbs) (Southern Biotech). After
overnight incubation, blocking and washing, wells were
incubated with 80 µl/well dilutions of samples and standards
(IgG from human serum; Sigma), again washed, and then mixed
with 100 µl/well of a 1:8,000 dilution of a 1:1 mixture of goat anti-
human Ig kappa and anti-human Ig lambda pAbs conjugated
with horseradish peroxidase (Southern Biotech). Finally, plates
were incubated with TMB Sure Blue (KPL), reactions stopped
with 60 µl/well of 1N HCl (Fisher Scientific), and absorption at
450 nm measured on an ELx808 absorbance microplate reader
(BioTek Instruments, Inc). IgG concentrations were calculated
based on standard curves using the instrument’s KCjunior
(v1.22) software. Human IgG detection limit varied from 0.3 to
37.8 µg/ml.

Assessment of Plasma IFNg
Plasma was collected at the time of animal sacrifice and stored at
-80°C until use. Levels of IFNg were measured by cytometric
bead array (BD Biosciences). Results were correlated with the
sum of the numbers of human CD45+CD4+CD5+,
CD45+CD8+CD5+, and CD45+CD4+CD8+CD5+ cells expressed
as a ratio over the number of mCD45+hCD45- cells obtained
TABLE 1 | Characteristics of the patients used in this study.

Patient ID # Ig Isotype IGHV IGHV mutation
status

Cytogenetics

6q23.3 11q13 11q22.3 12 centromere 13q14.3 13q34 14q32 17p13

0515 IgM 4-39 U N N N N A N N N
0545 IgM 3-30 M N N N N N N N N
0854 IgM 1-03 M ND ND N N A N ND N
1083 IgM 4-b U N N A N A N N N
1122 IgM 3-09 U ND N N A N N N N
1164 IgM 4-34 M N N N N N N N N
1279 IgM 1-02 U ND ND N N A N N N
1301 IgM 4-31 U N N N A N N N N
1429 IgG 3-48 M N ND N N A N ND N
1435 IgM 1-08 M N N N N N N N N
1463 IgM 3-21 M N N N N A N N N
1493 ND 33-03 M N N N N A N N N
1523 IgM 3-48 U ND N N N A N N N
1539 IgM 3-30 M ND ND N N A ND ND A
1552 ND 1-18 M N N N N A N N N
1623 IgM 2-70 M ND ND ND ND ND ND ND ND
1925 ND 3-11 U N N A N A N N N
2030 ND 3-30 U A A N N A A A N
2156 IgM V5-51 U N N A N A N N N
March 2021
 | Volume 1
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IGHV mutation status is mutated (M) if the expressed IGHV sequence is >2% different from germline; otherwise it is considered IGHV-unmutated (U).
Cytogenetics was assigned as abnormal (A) or normal (N) by FISH.
ND, Not done.
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using identical FSC and SSC gates from FACS analysis of single
cell splenic suspensions obtained at the same time point.

Statistical Analyses
All statistical tests were performed using Prism v8 (GraphPad
Software, Inc). Normality was assessed using the D’Agostino-
Pearson Omnibus Test, and appropriate parametric and non-
parametric analyses performed thereafter. Mann-Whitney U
tests were used for analyses of CLL T- and B-cell numbers in
comparison experiments using PBMCs alone, PBMCS plus
activated T cells, and the different injection routes (iv versus
ip). For the experiments using DART molecules, Kruskal-Wallis
multiple comparison tests were performed for analysis of plasma
IFNg and IgG levels and the percent of CD5+CD19+ cells
obtained from the 3 groups of animals.
RESULTS

Transfer of Unmanipulated Chronic
Lymphocytic Leukemia Peripheral Blood
Mononuclear Cells Into NSG Mice Leads
To Inefficient CLL B-Cell Growth That Is
Only Substantial When Autologous T-Cell
Expansion Spontaneously Occurs
The transfer of solely unmanipulated primary CLL PBMCs
intravenously into alymphoid mice can result in CLL recovery
from the spleen after a period of 3–4 weeks (1, 5, 7). We
performed such experiments transferring CLL PBMCs into
unconditioned NSG animals to assess the frequency of
successful xenografting, spontaneous in vivo T-cell activation,
and growth of CLL B and T cells. In two thirds of the animals,
such transfers led to the detection of none or only scanty,
apparently resting CLL B cells (Figure 1A); in the remaining
mice, CLL B-cell expansion was found (Figure 1B). Notably, in
Frontiers in Immunology | www.frontiersin.org 440
all those animals with CLL B-cell expansion, there was
concomitant autologous T-cell growth. Moreover, evidence for
cellular proliferation, based on the presence of Ki67+ cells, was
also found only in those animals with T-cell expansion
(Figure 1B).

Collectively, these findings confirm that primary CLL B cells
grow in alymphoid mice only when there is a concurrent
expansion of T cells (4). The frequency that T-cell activation
spontaneously occurs and consequently leads to CLL B-cell
growth when transferring unmanipulated CLL PBMCs is low
(~33% in these experiments).

Co-Transfer of Autologous T Cells,
Activated Polyclonally In Vitro, Leads To
Much Greater and More Reproducible
Growth of Chronic Lymphocytic Leukemia
B Cells in NSG Mice
To overcome the above variability, we tested if co-transfer of a
fixed numbers of pre-activated autologous T cells with CLL B
cells would reproducibly lead to a greater and more prolonged
proliferation of leukemic B cells than transferring PBMCs alone.
To do so, we injected into NSG mice 20 × 106 PBMCs alone or in
combination with 0.5 × 106 pre-activated T cells (1:40 T:B) from
4 CLL patients (2 IGHV-mutated, M-CLL cases 1493 and 1521,
and 2 IGHV-unmutated, U-CLL cases 2030 and 2156), and
recipient animals were bled weekly for 3 weeks. Finally, mice
were randomly assorted into groups of 5 mice per patient sample
and euthanized at weeks 4, 5, 7 and 9; blood, spleen and bone
marrow (BM) samples were collected at each time point. For
each group of animals, we calculated the absolute numbers of
different cell types present at each site (Figure 2). We refer to the
combination of CLL PBMCs plus in vitro autologous, activated T
cells (aT) hereafter as “PBMCs + aT”.

Upon analyzing blood samples, human CD45-expressing cells
were identified from days 7 through 63 (Figure 2). When
FIGURE 1 | Growth of CLL B cells only occurs when there is associated expansion of autologous T cells. Representative × 10 original magnification IH images of splenic
tissue obtained at euthanasia (A) Few CD20+ cells with no CD3+ cells or Ki67+ cells are present (CLL1083, representative result from 10/15 animals). (B) Aggregates of
CD20+ and CD3+ cells with Ki67+ cells are apparent around blood vessels (perivascular aggregates, PVAs) (CLL1279, representative of 5/15 animals).
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focusing on CLL B cells, the numbers in the blood diminished
progressively from the time of injection through week 3 for both
the PBMC only and the PBMC + aT groups (Figure 2); this is
consistent with B lymphocytes recirculating less and being more
tissue resident (9, 10). However, the degree of change between
the two groups differed with a lesser fall in the PBMC + aT
groups than PBMCs alone. For the PBMC alone group, B cells
were no longer detectable after day 56.

In contrast, T-cell counts behaved differently. At the time of
the first blood sampling (day 7), the PBMC + aT group had a
significantly higher number of T cells, possibly influenced by the
higher number of T lymphocytes transferred initially (Figure 2).
However, between days 14 and 35, T-cell counts between the two
groups diverged appreciably due to in vivo expansion. This
numerical superiority reached a peak at day 35 and continued
to be maximally divergent until the last bleeding (day 63)
(Figure 2).

These differences in the numbers of CD45+ and CLL B and T
cells in the blood were mirrored temporally in the spleens
(Figure 2) and BMs (Figure 2) of the two groups of animals,
with day 35 being the critical point at which the groups
significantly diverged. This disparity was reflected by the clear
dominance in spleen sizes for the PBMC + aT group at each time
that euthanasia was carried out (Figure 2).

Finally, it is notable that T cell numbers remained relatively
constant from day 35 until the end of the experiment (day 63)
(Figure 2). In contrast, the numbers of CLL B cells started to
decline beginning at day 49. As will be addressed below, the time
points at which individual patient samples reach maximal and
minimal numbers of CLL B and T cells differ for specific samples.
Frontiers in Immunology | www.frontiersin.org 541
No Clear Advantage To Pre-Conditioning
NSG Recipients For Xenografting Mature
Chronic Lymphocytic Leukemia Cells
Busulfan pre-conditioning can support the transfer of
unmanipulated CLL PBMCs (5). Therefore, we tested if this type
of pre-conditioning improved engraftment and growth in the
PBMC + aT model. To do so, we injected busulfan ip into 50%
of NSG recipients and then transferring iv, into all animals, PBMCs
from 4 (2 U-CLL and 2 M-CLL) patients alone (Supplementary
Figure 1) or with pre-activated T cells (Figure 3). All animals were
sacrificed 5 weeks later, and the numbers of CLL-derived B and T
cells in the blood, spleen, and BM evaluated. Busulfan
administration did not alter the numbers of CLL B or T cells
found at any of the examined sites (Figure 3A). Hence, there was
not an advantage to busulfan preconditioning NSG recipients when
transferringmature CLL B and T cells using the PBMC+ aT system.

Additionally, although human hematopoietic cells engraft
best in NSG mice after low dose irradiation (11) and this has
been successfully employed in transfers of CLL cells (2–4), others
(7) and we (not shown) have not found this to enhance
xenografting CLL PBMCs.

Identification of Distinct Temporal Phases
of Engraftment and Growth of Chronic
Lymphocytic Leukemia B and T Cells In
NSG Mice
Since the above indicated that the PBMC + aT approach optimized
leukemia-cell growth without a need for preconditioning and that
the greatest numbers of cells were found in murine spleens, we
FIGURE 2 | Co-injection of autologous activated T cells with CLL PBMCs leads to more effective engraftment and growth in NSG mice. Time course quantification
by FC of human CD45+ cells, CLL B cells and autologous CLL T cells from single cell suspensions in the peripheral blood, spleen and bone marrow of 4 different
patients evaluated independently. PBMCs with or without aT were injected into 5 mice per group and bled weekly up to euthanasia at week 4 (n = 40 mice); for two
of the patients, additional groups of mice were injected, and these were euthanized at weeks 5, 7 and 9. Points represent the median and the interquartile range.
* corresponds to Mann-Whitney U test P values < 0.05, **P < 0.01, and ***P < 0.001. On the right, spleens of 10 mice at week 5 post injection of 20 × 106 CLL
PBMCs with (Left; n = 5) and without (Right; n = 5) 0.5 × 106 activated T cells (aT).
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categorized the temporal relationships of B- and T-cell expansion in
the system. This was done by associating IH studies of tissues and
FC analyses of cells from the blood and spleen with the presence of
plasma Ig and cytokines over time. This exercise defined 4 distinct,
albeit interconnected phases of T- and B-cell growth in NSG
recipients. Table 2 presents the comprehensive analysis after
transfers using CLL 1122 and M-CLL 1164; features of the
timings of the plasma, FC findings and pertinent findings of IH
studies from these and other representative patient samples are
shown in Figure 4. Of note, since these studies use primary CLL
cells, whose biological characteristics vary between patients, the
exact timing of each phase between different patient samples is not
necessarily temporally identical.

Phase 1 is characterized by a predominance of CLL B cells in
the peripheral blood and spleen. At this point, leukemic cells are
resting, as indicated by the lack of CFSE dilution determined by
Frontiers in Immunology | www.frontiersin.org 642
flow cytometry (3 and 7 days post transfer of cells; Figure 4A and
Table 2). Consistent with this, CLL B-cell numbers in the blood
did not significantly change between days 7-21 (Figure 2). In
addition, transferred cells localizing around blood vessels at this
time are virtually all B lymphocytes (as exemplified by CD20
expression), with very few, if any CD3+ cells detectable by IH
(Figure 4B, top panel). Studies using a larger series of CLL cases
indicate that these initially leukemic, B-cell restricted
perivascular aggregates (PVAs) form between 24 – 72 h after
transfer (not shown). The lack of leukemic B-cell division in
Phase 1 might result from not yet reaching the numbers of
activated T cells needed to provide the requisite levels of human
cytokines or the necessary numbers of T-B cell contacts in
recipient mice.

Phase 2 is defined by increasing T-cell proliferation and the
consequent initiation of substantial CLL B-cell division. This is
A B

FIGURE 3 | Busulfan preconditioning does not provide a clear advantage for the xenografting of primary CLL cells in the PBMC + aT model. (A) Five NSG mice did
not or did receive 25mg/kg busulfan ip 24 h prior to xenografting. Then, 20 × 106 CLL PBMCs with 0.5 × 106 activated T cells (aT) were injected iv into NSG mice.
Five weeks after cell injection, mice were sacrificed and single cell suspensions from blood, spleen, bone marrow (BM) and peritoneum were analyzed by flow
cytometry. Busulfan did not significantly improve CLL B-cell (top) and T-cell (bottom) engraftment. Data represent a composite of experiments involving cells from 4
patients, 2 U-CLL and 2 M-CLL. (B) Similar busulfan preconditioning was given or not to two other sets of 5 NSG mice that received samples from 4 different
patients (2 U-CLL and 2 M-CLL). Twenty-four h after, 20 × 106 CLL PBMCs with 0.5 × 106 activated T cells (aT) were injected ip into each recipient mouse.
Although there is a trend for better engraftment of CLL B and T cells in busulfan-pretreated mice, there are no significant differences between the numbers of CLL B
and T cells in any of the groups. Bar graphs represent the mean fold change (after setting the average cell counts obtained from PBMC mouse spleens as 1); S.E.M.
determined by Mann-Whitney U test. n/s: no statistically significant difference.
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evidenced by dilution of CFSE intensity in both cell types (T >> B
cells) (Figure 4A and Table 2), increased numbers of CD3+ cells
as shown by IH (Figure 4B, second panel), the presence of
Ki67+CD20+ and Ki67+CD3+ cells in splenic PVAs (Figure 4C),
and detection of human IFNg in the plasma (Figure 4A and
Table 2). Note that leukemic B cells outnumber autologous T
cells when analyzed by IHC, whereas FC of single cell
suspensions prepared from the same spleens reveal a more
equal ratio of B and T cells. We speculate this represents the
loss of dividing CD20+ cells during processing or the inability to
mechanically dissociate activated CD20+ cells from the tissue
(Figure 4D); the loss of proliferating B cells upon dissociation of
lymphoid tissue is encountered in other settings (12). In this
Phase, human Ig is not yet detectable in plasma (Figure 4A and
Table 2).

In Phase 3, a proportion of the spleen-residing CD5+CD19+

cells have undergone multiple cell divisions (≥ 6) as indicated by
complete absence of CFSE as measured by FC, with the degree of
CLL B-cell replication varying among patients. In addition,
leukemic B cells start to show features of plasmablast/plasma
cell differentiation, consistent with the detection of circulating
human IgG [Figure 4A, 21 days onwards, Table 2 and (6)].
Importantly, splenic histology continued to show aggregates of
CD20+ cells, intermingled with CD3+ cells as before, with some
evidence of plasmablasts/plasma cells at the peripheral margins
[as shown by CD38 expression (13)]; this suggested that terminal
differentiation of leukemic B cells to CD20- antibody secreting
cells was an ongoing process and was not yet complete (Figure
4B, third panel).

Phase 4 is defined by the virtual complete loss of CD20+ cells
by IHC, along with an overabundance of cells bearing CD3 and
other cells with intense intracellular Ig expression (Figure 4B,
fourth panel). This is especially the case in animals transferred
with higher T:B cell ratios. Serial analyses showed a
predominance of CD4+ over CD8+ T cells with no significant
differences in this percentage at all time points (Figure 5A,
upper). Examining all euthanized animals from 13 different CLL
transfers indicated that CD4+ cells were the dominant T-cell
subpopulation (mean 83.1%); in some animals this was as high as
99% of all T cells (Figure 5A, lower). In comparison, based on
IHC studies of different CLL transfers, we found that CD4+ cells
aggregated around and occasionally moved into the PVAs,
whereas CD8+ cells (when present) showed no particular
pattern of localization in splenic tissue (Figure 5B).
Analyses of The Types Of Non-Lymphoid
Human Cells and Of Hematopoietic and
Non-Hematopoietic Murine Cells in and
Around Chronic Lymphocytic Leukemia
B Cells Growing in NSG Mice
Next, we examined the presence of other human hematopoietic
cells in and around the PVAs; such cells would have been
contained in the initial cellular inoculum and have engrafted
and persisted in the murine recipients. These searches, however,
were fruitless, with no human myeloid cells being found in the
peripheral blood or other tissues of recipient mice. This
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A

B

DC

FIGURE 4 | Flow cytometry and IH analyses together with plasma findings over time help define phases of CLL B- and T-cell engraftment and growth.
(A) Percentage of human CD5+CD4+ and CD5+CD19+ spleen-residing cells that have undergone >1 division and >6 divisions as indicated by CFSE dilution (Top)
and time of appearance of detectable human IFNg and human IgG in plasma over 28 days. Data derived from 25 animals using U-CLL1122, with euthanasia
performed on 5 animals at each time point. Similar results were obtained using M-CLL1164. (B) Representative × 10 original magnification IH of splenic tissue
showing typical CD20 and CD3 findings at each phase of engraftment. In Phase 1 the human cells identified are almost exclusively CD20+ with virtually no CD3+ cells
detectable. With progression to Phases 2 and 3, CD3+ staining density becomes increased. Beginning in Phase 3 and continuing to Phase 4, CD38+ cells (used to
identify plasmablasts/plasma cells) appear outside the CD20+PVAs. Ultimately, by Phase 4 very few CD20+ cells are seen in aggregates, but cytoplasmic Ig++ cells
are now present (far right hand panel). Representative images obtained from spleens obtained from cases U-CLL1122 (top 2 rows), U-CLL1523 (third row) and U-
CLL1083 (bottom row). (C) PVAs are strongly Ki67+ once both B- and T-cell division occurs. 40x original magnification view using immunofluorescence showing that
both CD20+ (red) and CD3+ (green) cells express Ki67 (blue). Images obtained from U-CLL1301. (D) Flow cytometry findings from the experiment in (A) indicating
the ratio of CD5+CD19+ cells to CD5+CD4+ cells.
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conclusion is based on the absence of cells reactive with CD11b,
CD11c, CD33, CD14, and CD15 mAbs identified by FC and IHC
(not shown). Notably, we did identify CD68+ cells in the spleen
by FC and IHC (Figure 6A). However, these proved to be human
CLL B cells as indicated by co-localization with PAX5+ cells by
Frontiers in Immunology | www.frontiersin.org 945
IH and evidence for upregulation of CD68 by CD5+CD19+ cells
by FC following transfer into animals (Figure 6A).

Next, we explored the presence and identity of murine non-
lymphoid and non-hematopoietic cells and their proximity to
human B and T cells. As expected, staining for murine
A

B

FIGURE 5 | T-cell findings in the PBMC + aT PDX model. (A) T cells residing in NSG spleens following transfer are principally CD4+. Top. The percentage of
CD5+CD4+as a total of all T cells obtained by flow cytometry analysis of spleen at euthanasia at the time points shown. Data obtained from transfer of cells into 25
mice with euthanasia of 5 animals at each time point. Median percentage CD5+CD4+ cells indicated by bar and percentage figure. Bottom. The percentage of
CD5+CD4+as a total of all T cells obtained by flow cytometry analysis of spleen at euthanasia. Data obtained from 13 independent experiments (each corresponding
to a different CLL case number) where transfer had been made at least 28 days earlier. Median percentage CD5+CD4+ cells indicated by bar and percentage figure.
n/s: no statistically significant differences. (B) Representative FC and IH findings of CD4+ and CD8+ staining in spleen. Images at × 10 original magnification. Pale
central areas correspond to CD20+PVAs. For CLL1279, CD4+ cells are located especially around the rim of the known location of CD20 cells; a minimal number of
CD8+ cells are present. CLL1623 has both CD4+ and CD8+ cells; CD4+ cells again locate around and within CD20+ aggregates. In CLL1083, CD4+ cells are densely
present within the CD20+PVAs with less at the outer margin.
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endothelial cells (CD31+) confirmed that the CLL cells localized
around blood vessels (Figure 6B). In addition, we did find
murine macrophages (F4/80+ cells). However, strikingly, none
were located within the CLL B-cell areas; all resided exclusively at
the periphery of the PVAs (Figure 6C). Similarly, the majority of
murine follicular dendritic cells (FDCs; CD21+CD35+) were
located outside the PVAs, although a few were observed within
(Figure 6C).

Effects of Route of Administration of
Chronic Lymphocytic Leukemia Cells on
Engraftment and Growth
Finally, we questioned if the route of cell injection—ip vs. iv—
affected the level, localization, and expansion of CLL B and T
cells in the blood, spleen, BM and peritoneum (Figure 7).
PBMCs + aT from 4 patients were injected ip or iv, and
engraftment and growth followed for 28 days. Of interest,
regardless of the route of administration, equal numbers of
human CD45+ cells were found in the blood at day 7.
However, when analyzing CD3+ or CD19+ cells in the
circulation, there were significantly more CLL T cells after iv
than ip injection, and more CLL B cells after ip than iv injection
(Figure 7A). Notably, there were no differences in the numbers
of CLL B cells in the spleen, BM, and peripheral blood at day 28
between the types of administration, except for the virtual
absence of B cells in the peritoneal cavity if the inoculum was
given iv (Figure 7B). In contrast, CLL T cells placed initially in
the peritoneum were found in greater numbers at day 28 in the
spleen than those introduced iv (Figure 7B).
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When analyzing the populations in the peritoneal cavity and
spleen for the extent of cell proliferation, we observed that only a
very small fraction of B cells in the peritoneum had divided
through day 28 (Figure 7C). This was quite different for those
CLL B cells that had taken residence in the spleen, regardless of
their site of initial transfer, as B lymphocytes at that location
divided robustly. The disparity of CLL B-cell division between
the peritoneal cavity and the spleen is especially striking in lieu of
the high numbers of dividing T cells at both sites (Figure 7C).

To assure that these differences would not change if the tissue
microenvironments of the NSG recipients were preconditioned,
we administered busulfan to the animals 24 h prior to ip
injection of CLL B and T cells and then analyzed 5 weeks later
the numbers of cells in the spleen, peritoneum and BM in 4 CLL
patients (2 M-CLL, and 2 U-CLL) (Figures 3A, B). No
significant differences in engraftment, localization and
proliferation of CLL B cells were found in animals with or
without busulfan pre-conditioning. There was, however, a
trend for better engraftment of CLL B cells in the spleen and T
cells at these sites after preconditioning.

Utility of the Peripheral Blood Mononuclear
Cell + aT Model To Test Therapeutics
To investigate the value of this revised technique in testing the
efficacy of therapeutics in a preclinical setting, we used a bispecific
retargeted antibody based DART® molecule that engages CD19 on
leukemia/lymphoma B cells and the TCR on T lymphocytes (14).
This CD19xTCR antibody (hereafter referred to as “DART
molecule”) is effective in clearing transplanted lymphoma cell
A

B C

FIGURE 6 | Immunohistochemistry demonstrating the presence and localization of non-B and non-T cells of donor or recipient origin in engrafted spleens. (A) 20x
(single color PAX5 and CD68) and 60x (dual color) IH images of representative spleens aggregated from 5 independent experiments; results with CLL1279 are
demonstrated here. Aggregates contain CD68+ cells that are B lymphocytes as indicated by co-localization with PAX5 in dual color staining. Flow cytometry further
demonstrates that CD5+CD19+ cells express CD68 upon transfer into NSG mice. (B) 20x and 40x magnification view of human CD20+ and CD3+ cells and mouse
CD31+ cells by immunofluorescence of CLL-engrafted spleens; staining from a representative case of at least 10 independent experiments. (C) 20x and 40x
magnification view of human CD20+ and CD3+ cells and mouse F4/80+ and CD21+/35+ cells after immunofluorescence staining of the same case.
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lines co-administered with human PBMCs in a NOD/SCID model
and primary patient material from cases of acute lymphoblastic
leukemia and diffuse large B cell lymphoma (15). Using the PBMC
+ aTmodel, we compared the effects of the DARTmolecule and of a
FITCxTcR antibody that cannot target B cells (referred to as “DART
control molecule”) and of saline. Figure 8A illustrates the
experimental protocol followed.

Each animal in 3 groups (5/group) received iv 20 × 106 CLL B
cells with 0.5 × 106 activated autologous T cells from the U-
CLL1539 clone. Twenty five days following transfer (Phase 3 of
engraftment for this sample), plasma levels of IFNg and IgG were
comparable between the 3 groups of mice (Figure 8B, Pre DART
Molecule Injection), indicating the comparable nature of CLL B-
and T-cell growth among the groups. After receiving the DART
Frontiers in Immunology | www.frontiersin.org 1147
molecule, DART control molecule, or saline ip on 5 consecutive
days, the animals in each group were euthanized 10 days after the
last injection. Plasma levels of IFNg remained comparable, with
the amounts of IFNg increasing in each group by ~1 log over
time (median pre- and post-injection: 70.9 vs. 830.2 pg/ml); this
indicated a continued expansion of T cells in all animals
regardless of their treatment group (Figure 8B).

However plasma IgG levels from the same samples at the
same time points from the PBS-treated animals and those
receiving the DART control molecule exhibited similar or
appreciably higher levels than at the pre-treatment assessment
(median: Pre-treatment = 1558 µg/ml; Post-treatment = 9283 µg/
ml). This reflected the unchecked growth and differentiation of
CLL B cells.
A

B

C

FIGURE 7 | IP administration of CLL B and T cells gives rise to different distributions and activation states. (A) Time course quantification of human CD45-
expressing cells, CLL B cells and human T cells evaluated by FC in the peripheral blood of mice injected with 20 × 106 CLL PBMCs with 0.5 × 106 activated T cells
either iv or ip (4 patients’ samples, 5 mice per patient and condition). Points represent the median and the interquartile range. (B) CLL B and T cell absolute counts
at day 28 post injection in peripheral blood, spleen, peritoneum and bone marrow from mice injected iv (n = 20) or ip (n = 20). (C) Percentage of divided CLL B cells
evaluated by CFSE dilution by FC in the spleen and the peritoneum over time. * corresponds to Mann-Whitney U test P values < 0.05, **P < 0.01, and ***P < 0.001.
n/s: no statistically significant difference.
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In contrast, plasma IgG levels were significantly lower in the
DART molecule-treated animals (Figure 8B). In fact, Ig levels in
the animals receiving the DART molecule were also lower than
those 15 days earlier at the time of initiation of treatment (median:
Pre-treatment = 2288 µg/ml, Post-treatment = 1781 µg/ml), further
supporting that CLL B-cell numbers were substantially reduced
(Figure 8B). Consistent with this, flow cytometric analyses of
spleen cells from the 3 groups showed that CD5+CD19+ cells were
virtually absent in all animals treated with the DART molecule,
whereas those in animals treated with saline or the DART control
Frontiers in Immunology | www.frontiersin.org 1248
molecule were sizeable and very similar (Figure 8C). Additionally,
there were equal numbers of CD5+CD4+ and CD5+CD8+ cells in
all 3 groups, with the predominant type being CD4+; no expansion
of the CD8+ subset was seen in the DART molecule-treated
animals (not shown).

Companion IHC studies indicated the presence of splenic
hCD45+ cells in all groups, and clearly showed typical CD20+

PVAs in untreated (not shown) and DART control molecule-
treated animals (Figure 8D, upper panel). However, CD20+ cells
and PVAs were completely absent in 3 of 4 DART molecule-
A

B C

D

FIGURE 8 | The PBMC + aT PDX model demonstrates the activity of a CD19xTcR-specific DART. (A) Mice (n = 15) were injected with 0.5 × 106 anti-CD3/28 + IL-2
pre-activated CLL-derived T cells and 20 × 106 CLL PBMCs on Day 0. Expansion of both T and B cells was determined 25 days post transfer by detection of
human IFNg, and human IgG in murine plasma samples. DART bispecific antibodies (DART molecule, n = 4 animals; or DART control molecule, n = 4 animals) or
saline were administered ip from Day 30 to Day 34. Plasma levels of human IFNg and IgG were further determined at day 46 when euthanasia was performed.
Animals with <10 pg/ml IFNg at Day 25 were excluded from receiving DARTs and were not included in the analysis making 3 groups of 4 animals for each condition.
(B) Plasma levels of IFNg and IgG in the 3 groups of animals (n = 12, 4 per group), taken pre-DART injection at Day 25 and at euthanasia at Day 40. Results show
no significant differences in IFNg levels between the 3 groups before DART molecule injection and at euthanasia. In contrast, plasma Ig levels are significantly lower in
CD19xTcR DART-treated animals (red dots), compared to the DART control molecule-treated control animals (blue dots). * corresponds to Kruskal-Wallis test P
value < 0.05. (C) FC reveals absence of CD5+CD19+ cells in DART molecule-treated animals. Illustrative FC plots are representative of hCD45 single cell splenic
suspensions obtained at euthanasia. Graph shows median CD5+CD19+ cells in each group as a percentage of total hCD45+ cells isolated. Compared to DART
control molecule-treated control animals (blue dots), there are significantly fewer CD5+CD19+ cells in DART molecule-treated animals (red dots). * corresponds to
Kruskal-Wallis test P value < 0.05. (D) Representative IHC (x20 original magnification) of DART control molecule-treated animals (upper panel) compared to DART
molecule-treated animals (lower panel). These results were apparent for both a U-CLL1539 (illustrated in Figure) and M-CLL0545.
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treated animals (Figure 8D, lower panel); in the fourth animal,
only patchy staining for such cells/structures (estimated as 20%
of that seen in untreated animals) was detected. All animals
showed dense staining for CD4+ cells within PVAs, which was
more marked in those animals treated with the DART molecule
(Figure 8D). CD8+ cells did not show any particular localization
pattern. Results were replicated in a subsequent experiment
using the CLL 0545 clone.
DISCUSSION

In this study we optimized the engraftment and growth of
primary CLL B cells in NSG mice using limited numbers of
cryopreserved, primary, peripheral blood patient samples. This
was achieved by providing a constant number of polyclonally-
activated autologous T cells, pre-stimulated in vitro, at the time
of transfer into recipient mice.

This approach (PBMCs + aT) has several advantages. First, it
increases significantly the percentage of animals that are
successfully engrafted when compared to the transfer of
PBMCs alone.

Second, the approach eliminates the need to rely on
autologous T-cell activation in vivo. Moreover, the approach
does away with the use of allogeneic antigen-presenting cells
(APC) to initiate T-cell activation in vivo. As stated previously,
the former approach can be suboptimal because the level of
histocompatibility disparity between the APC and the CLL cell
donor is usually unknown, and hence the extent and degree of
CLL T-cell activation occurring in recipient mice differs and is
not be predictable nor quantifiable in advance.

Another advantage of the PBMCs + aT approach is the
relatively small number of PBMCs needed to carry out the
engraftment process (20 × 106). Durig et al. have shown that
injecting animals, ip and then iv, with larger numbers of PBMCs
alone (100 × 106 on each occasion) helps engraftment (1); this is
certainly an improvement on a single injection of 100 × 106

PBMCs alone (2, 3, 5, 7). The PBMC + aT method, however,
obviates the need for 2 injections and reduces the numbers of
cells needed (200 × 106 vs. 20 × 106 cells).

Additionally, all the experiments reported here used
cryopreserved patient cells. Although the use of fresh cells can
be advantageous (7), this requirement makes answering
questions about the biology of CLL cells much more difficult.
For example, it would be very cumbersome to compare cells from
two types of patients if only fresh cells had to be used, since this
would require knowing in advance the existence of the variable to
be studied between individual patients and arranging for
patients, differing in this variable, to donate the same amount
of blood on the same day and at approximately the same time.
Furthermore, the use of fresh cells does not allow simultaneous
analysis of samples taken at several points in time, making
comparisons more restricted and much less rigorous. The
capacity to use cryopreserved material removes these and
other restrictions.
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Finally, the PBMC + aT approach does not require chemical
(busulfan) or X-ray preconditioning for effective engraftment of
mature CLL cells. This, again, makes the method more
convenient and less laborious.

It is important to point out that we assign engraftment as
being successful when CLL cells not only survive but also divide
in recipient mice. Leukemia-cell survival is a measure of the
capacity of CLL cells to accept and benefit from murine
microenvironmental signals, actions that a good model should
be able to examine. Importantly and additionally, the PBMC +
aT method measures the ability of CLL cells to receive and
respond to activation signals in vivo. Thus, having the transferred
cells multiply in recipient animals allows measurement of
leukemic-cell birth in vivo, a parameter intimately linked to
CLL-patient clinical courses (16).

Having a reproducible model for the engraftment and growth
of CLL cells in vivo allowed us to perform detailed IHC and FC
analyses of the kinetics of B-cell proliferation and its relationship
with T-cell expansion. We identified 4 phases that a successful
transfer traverses. The first phase is characterized by the
deposition of quiescent leukemic B cells around blood vessels
shortly after cell transfer, hence the term perivascular aggregates
(PVAs). During this phase and in Phase 2, activated T cells start
and continue to expand at the PVAs, initiating CLL B-cell
activation and growth. The majority of T cells are CD4+.
Anatomically, the few CD8+ cells present are interspersed with
CLL B cells in the PVAs, whereas the CD4+ T cells are more often
found at the margins of the PVAs and less so distributed
throughout the structures. We have not defined a parameter
that associates with the apparent different geographic
localization of the CD4+cells. By the time of Phase 3, CLL B-
cell division is robust, with some cells dividing 6 or more times.
Among the latter are cells that phenotypically resemble
plasmablasts or plasma cells and secrete CLL Ig. Phase 4 is
characterized by the almost complete absence of cells bearing a
B-cell phenotype and the predominance of CD4+ T cells. In this
regard, it is noteworthy that T-cell numbers reach a plateau
during Phase 3 and remain constant through Phase 4. The
capping of T-cell numbers at a defined level, often at or near
day 35 after transfer, is consistent with attaining full occupancy
of available lymphoid niches (17). Moreover, the rise in T cell
numbers is likely due to the greater rate of proliferation for T
cells than B cells and the higher likelihood that T cells recirculate
throughout the entire experimental period.

We could not find evidence for human non-lymphoid cells
engrafting in this system, indicating that the myeloid and other
lineages are inherently not transferrable as mature cells or that the
murine microenvironment of NSG mice cannot support their
survival and growth. However this finding strongly implies that
murine non-B and non-T cells within the NSG microenvironment
are capable of providing necessary non-lymphoid support that
xenografted CLL cells require; this is compatible with human and
murine stromal cells providing supportive cues in in vitro (18) and
in vivo (4). However, it was striking to find that murine
macrophages and FDCs, albeit the latter at a somewhat lesser
degree were not found within the CLL PVAs, suggesting an active
March 2021 | Volume 12 | Article 627020

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Patten et al. PDX Model of CLL
exclusion of these cells from those areas and a lack of their
requirement for leukemic-cell proliferation. The reason for this is
obscure at this point. However since both of these cell types are
APCs (macrophages for T cells and FDCs for B cells), their absence
would suggest that the T-B interactions occurring in PVAs are not
cognate, but more likely mediated by cytokines (6), and that
selection for higher affinity B-cell receptors might not occur, even
though B-cell differentiation and BCR diversification along apparent
genealogies can occur within these structures (6). The latter findings
might reflect selection for non-IG genetic changes, not changes that
enhance BCR binding of (auto)antigens.

A full understanding of the kinetics of B- and T-cell
engraftment in NSG mice is essential for the analysis of novel
therapeutics. We here demonstrate the efficacy of a bispecific
antibody (14) whose beneficial effects require the ability to
engage autologous T cells in the cytolytic process. As well as
being an example of the utility of the PBMC + aT method, these
studies highlight and provide an assay whereby the cell
interactions between CLL B and T cells and the antibody
needed to achieve the therapeutic result can be observed and
studied further. Hence, therapeutic agents requiring T-cell
participation should take into account that soon after
engraftment (end of Phase 1 and beginning of Phase 2) only T
cells are dividing, as indicated by the presence of human IFNg in
the blood. Similarly, T-cell numbers are generally limited within
PVAs until at least Phase 2. Therefore investigations regarding
the utility of agents that exploit T cells (for example, the DART
molecule used here) would be expected to have maximal effects
only if introduced at or after this phase of engraftment.

Finally, we would like to highlight the biologic insights as
well as the technical advantages that our studies of the route of
administration of CLL B cells and autologous, activated T cells
provide. First, these findings indicate that the (micro)
environment that the cells encounter at the time of initial
transfer has a substantial effect on migration, cel l
interactions, and subsequent cell division. Specifically, when
activated T and resting CLL B cells are administered iv, the
majority of cells leave the blood (B > T) and track to the spleen
and BM and not to the peritoneal cavity. In the spleen and BM,
both B and T cells undergo vigorous cell division, so much so
that CLL B cells are eventually lost, probably for a variety of
reasons, including exhaustion because of [1] the numbers of
divisions that occur, [2] unsuccessful competition with T cells
for survival niches and nutrient cytokines, and [3] elimination
T-cell mediated cytolysis.

In contrast when the same cells are deposited in the peritoneal
cavity, the vast majority of CLL B cells remaining at that
anatomic site are quiescent, despite being among rapidly
dividing T cells that one would expect would provide help for
B-cell proliferation as occurs when the same cells exit the
peritoneum and enter the spleen. Indeed, sufficient numbers of
B and T cells migrate to the spleen and BM and undergo robust
division at those sites such that B cells achieve the same levels as
animals receiving the inoculum ip and in fact T cell numbers
exceed that of animals given the same cells iv. So either T cells
continue to emerge from the peritoneal cavity into the blood, or
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they divide in the cavity (or elsewhere) and (re)enter the
circulation in higher numbers (Figure 6B).

The discrepancies in B-cell division in the peritoneal cavity
versus the spleen are reminiscent of normal murine B-1 cells (19)
and murine CLL-like TCL1 cells (20). The precise mechanisms
responsible for these striking differences in B-cell growth and
survival at these anatomic sites are not known, although
experiments with murine B-1 cells suggest that soluble factors
in the peritoneal cavity might be involved (19).

Regardless, the ability to have quiescent and proliferating
subpopulations of human CLL cells in the same animals provides
a considerable experimental advantage since this more closely
resembles human CLL where there are both dividing and non-
dividing pools of leukemic cells (21, 22). In addition, these
findings suggest that within this model, the peritoneal cavity
resembles the blood and BM of patients, where cells are primarily
resting, and the spleen resembles human lymph nodes, where
most CLL-cell division occurs (5, 23).

Finally, it is important to recognize that despite the many
advantages of this model, the recipient animals do not develop
obvious CLL disease. Thus, the model is best used to evaluate the
biologic properties of CLL cells and how interactions with
autologous T cells modify these properties. Experiments designed
tomodify the system tomodel the pathology of CLL are in progress.

In conclusion, we demonstrate here that by using in vitro
activated autologous T cells in the PBMC + aT PDXmodel, more
reproducible and enhanced engraftment and growth of CLL B
cells is achieved using a limited initial inoculum of cryopreserved
cells. The system allows comprehensive studies of how CLL B
and T cells behave in a xenogeneic setting as well as how these
cells interact with and are influenced by their surrounding
microenvironment in different tissues and how that might
reflect the human leukemic process. Finally, the method
provides a robust system for the study of new therapeutic agents.
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Supplementary Figure 1 | Busulfan preconditioning does not provide a clear
advantage for xenografting primary CLL cells in the PBMCmodel. Five NSGmice did not
and 5 did receive 25mg/kg busulfan ip 24 h prior to xenografting (10 mice per patient,
total 4 patients). Then, 20 × 106 CLL PBMCswere injected iv into NSGmice. Five weeks
after cell injection, mice were sacrificed and single cell suspensions from spleen, bone
marrow (BM) and peritoneum were analyzed by flow cytometry. Busulfan did not
significantly improve the numbers of CLL B cells (top) and T cells (bottom) found at the
three anatomic sites. Bar graphs represent the mean fold change (after setting the
average cell counts obtained from PBMC mouse spleens as 1); S.E.M. determined by
Mann-Whitney U test. n/s: no statistically significant difference.
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into the Role of hnRNP K in
B-Cell Malignancies
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Marisa J. L. Aitken1, Lauren E. Chan1, Xiaorui Zhang1, Sean M. Post1

and Miguel Gallardo2*

1 Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States, 2 H12O–CNIO Haematological
Malignancies Clinical Research Unit, CNIO, Madrid, Spain

B-cell lymphomas are one of the most biologically and molecularly heterogeneous group
of malignancies. The inherent complexity of this cancer subtype necessitates the
development of appropriate animal model systems to characterize the disease with the
ultimate objective of identifying effective therapies. In this article, we discuss a new driver of
B-cell lymphomas – hnRNP K (heterogenous nuclear ribonucleoprotein K)—an RNA-
binding protein. We introduce the Eµ-Hnrnpkmousemodel, a murine model characterized
by hnRNP K overexpression in B cells, which develops B-cell lymphomas with high
penetrance. Molecular analysis of the disease developed in this model reveals an
upregulation of the c-Myc oncogene via post-transcriptional and translational
mechanisms underscoring the impact of non-genomic MYC activation in B-cell
lymphomas. Finally, the transplantability of the disease developed in Eµ-Hnrnpk mice
makes it a valuable pre-clinical platform for the assessment of novel therapeutics.

Keywords: B-cell malignancies, lymphoma, diffuse large B cell lymphoma, mouse model, hnRNP K, Eµ-Hnrnpk,
RNA-binding protein, MYC
INTRODUCTION TO B-CELL MALIGNANCIES

B-cell neoplasms comprise a heterogeneous cohort of hematological malignancies originating from
B cells. They are classified, according to WHO criteria, into precursor B-cell neoplasms (B-
lymphoblastic leukemia) and mature B-cell neoplasms (1). Mature B-cell neoplasms encompass a
plethora of malignancies, such as leukemias (chronic lymphocytic leukemia, small lymphocytic
lymphoma), plasma cell malignancies (e.g. myeloma), and lymphomas. Specifically, lymphomas are
classified as Hodgkin’s and non-Hodgkin’s lymphomas, which account for 10% and 90% of cases,
respectively (2). Nearly half of all non-Hodgkin’s lymphomas are diffuse large B-cell lymphomas
(DLBCL), making them the most commonly diagnosed lymphoma sub-type. Other non-Hodgkin’s
Abbreviations: DLBCL, diffuse large B-cell lymphoma; hnRNP K, heterogeneous nuclear ribonucleoprotein K; VDJ,
variability, diversity, and joining; PDX, patient-derived xenograft; IgH, immunoglobulin heavy; RBP, RNA-binding protein;
GC, germinal center; SHM, somatic hypermutation; CSR, class-switch recombination.
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lymphomas include follicular lymphomas, marginal zone
lymphoma, mantle cell lymphoma and Burkitt’s lymphoma (3).

B cells are part of the adaptive immune system and play a vital
role in the production of antigen-specific immunoglobulins
(antibodies) in response to invasive pathogens. In order to do
so, B cells must maintain an extensive array of antigen receptors.
B cells must also demonstrate high variability in antigen
recognition sites in order to protect organisms against a
plethora of pathogens. To achieve this, B cells employ a
complex mechanism called VDJ recombination, which enables
the generation of an almost unlimited repertoire of antigenic B-
cell receptors. The VDJ recombination process involves the
formation and repair of several highly regulated DNA breaks.
Aberrations in this intricate process along with spontaneous
mutations and breaks in the DNA lead to alterations that in turn
promote the malignant transformation of B cells (4, 5).

Aberrant VDJ recombination often results in chromosomal
translocations. A clear example of this is Burkitt’s lymphoma
wherein a chromosomal translocation results in constitutive
activation of the MYC oncogene (6–8). Other examples include
the t(14;18) translocation in follicular lymphoma, resulting in
constitutive expression of BCL2 (4) and the t(11;14) translocation
involving the cyclin D1 gene in mantle-cell lymphoma (9, 10). In
addition to translocations, somatic mutations in various genes
have also been implicated in the pathogenesis of other non-
Hodgkin’s lymphomas (11). Beyond mutations, overexpression
of oncogenes and loss of tumor suppressor genes have also been
identified as driver events for lymphomagenesis (12–14). Well-
defined genetic basis of disease has helped establish several
genetically defined transgenic models of B-cell malignancies, as
discussed below.

Microscopic analysis of lymphomas show that tumors
contain not only cancerous cells, but also host immune cells,
stromal cells, blood vessels and the extracellular matrix,
comprising the tumor microenvironment (15). Tumor cells
create this microenvironment by first homing to sites that
promote or help their growth, and later recruiting support cells
and/or causing cells in their microenvironment to differentiate to
their benefit (3). In recent years, it has become clear that the
tumormicroenvironment is a key player in the onset and progression
of cancer, as well as therapy resistance, underscoring the need for
better understanding in this area. Investigating B-cell lymphomas
using in vitro systems is an important initial approach, but its
predictive value is limited as it leaves out other factors such as the
host immune system and the tumor microenvironment. Therefore,
the use of more complex tools such as genetically engineered mouse
models are needed to more fully study B-cell malignancies.

Need for the Development of New Murine
Models for B-Cell Malignancies
Murine models of hematological malignancies can be classified
as genetically modified models or patient-derived xenograft
(PDX) models. The former can be used to investigate the
onset, progression and therapeutic approaches for leukemia
and lymphomas, while the latter is a valuable platform for
drug testing and pre-clinical research.
Frontiers in Immunology | www.frontiersin.org 254
PDX models are ideal for preclinical studies, wherein a
heterogeneous population of tumor cells extracted from a
patient is implanted into an immunocompromised mouse,
thereby facilitating studies that assess the response or
resistance of the disease to existing and novel therapeutic
agents (16). Despite the caveat of lacking the tumor-immune
cell component, B-cell lymphoma PDX mouse models can show
biological, histopathological and clinical features of the original
patient tumor, making it an ideal platform for preclinical studies
(17). The use of humanized mice for transplantation is gaining
popularity and allows for the assessment of immunotherapies as
well as the study of the interactions between the tumor and the
immune system (18). However, PDX models cannot be used to
investigate the onset and progression of tumors. They are also
not amenable for the identification of novel oncogenes or tumor
suppressor genes, making transgenic and knockout mouse
models the preferred platform for this aim. While PDX models
enable the assessment of developed disease, transgenic animal
models can be used to investigate the origin and onset of disease.
Moreover, PDX models carry the diversity of the patients they
are derived from and are therefore diverse in their pathology and
drug responses, complicating interpretation of data. Transgenic
models, however, have a common background allowing for a
replicable and controlled phenotype for research. Taken
together, the research hypotheses and objectives must be taken
into consideration while selecting an appropriate animal model.

There are several well-defined genetic alterations observed in
human patients that give rise to B-cell lymphomas due to
uncontrolled B-cell proliferation and/or maturation. Some of
these genetic alterations have already been recreated in transgenic
mice to study the spontaneous onset and progression of
lymphomas and leukemia-like phenotypes. Notable models
include a BCL6 knock-in which results in a DLBCL-like
phenotype (19), VavP-Bcl2 mice, mimicking the t(14; 18)
chromosomal translocation, which develop follicular lymphomas,
a targeted deletion of Trp53 – CD21-Tp53lox – that develops non-
germinal center B-cell lymphomas, and Eµ-Tcl1 mice which
develop aggressive chronic lymphocytic leukemia (20–22).

However, the most recurrent and extensively investigated
genetic alterations are translocations of the MYC oncogene. In
the 1980s, MYC was identified as the first proto-oncogene in B-
cell lymphomas. Transgenic mouse models with translocations
in the Myc gene were first introduced in 1985 (23). Of these
models, the most extensively used is the Eµ-Myc model. This
mouse obtained by the translocation of Myc to the Ig Heavy
chain (IgH) locus, causing overexpression of c-Myc and
abnormal B-cell proliferation (24). Similar to humans, Eµ-Myc
mice develop B-cell lymphoma-like malignancies with a >90%
penetrance and variable onset. These Eµ-Myc mice exhibit either
a DLBCL phenotype or a Burkitt’s lymphoma phenotype
depending on the time of development (25, 26). Another
model of c-Myc driven Burkitt’s lymphoma is one driven
solely by the 3’ regulatory region of the IgH locus rather than
the Eµ enhancer. This model results in the development of B-cell
malignancies with a mature B-cell phenotype in contrast to the
Eµ model wherein a pro-B phenotype is predominant (27, 28).
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Malaney et al. Eµ-hnRNP K Mouse Model in Lymphoma Research
However, multiple mouse models with other Myc translocations
develop different B-cell malignancies, such as Vk-Myc mice for
myeloma (29), l-Myc for Burkitt’s lymphoma (30), iMycEm for
endemic Burkitt’s lymphoma (31), and iMycCm mice for
sporadic and immunodeficiency-associated Burkitt’s lymphoma
(32), demonstrating the critical role of c-Myc in B cell biology.
NEW DRIVER OF B-CELL LYMPHOMAS:
HNRNP K

Altered genes have historically been designated as either tumor
suppressors or oncogenes. However, recent studies have shown
that some genes can have dual oncogenic and tumor-suppressive
functions in different contexts (33). One such example of a dual
regulator is heterogeneous nuclear ribonucleoprotein K
(HNRNPK) (34).

hnRNP K is an ss-DNA and RNA-binding protein that
regulates a myriad of cellular processes via transcriptional,
posttranscriptional and translational mechanisms. It contains
three K homology (KH) domains – responsible for nucleic acid
binding – one K-protein-interactive domain (KI), and one
nuclear-cytoplasmic shuttling domain (KNS) (35, 36). Due to
hnRNPK’s pleiotropic nature, both its over- and under-expression
can be pathogenic (37–41), likely by deregulating the transcription
and/or translation of multiple cellular oncogenes or tumor
suppressors. For instance, there is a clinical correlation between
high levels of hnRNP K and the onset and treatment resistance of
various tumors types in patients, such as lung (42), breast (43),
rectal adenocarcinoma (44), and melanoma (45). In the context of
hematological malignancies, ~2% of acute myeloid leukemia
patients have a 9q21.32 deletion that encompasses the HNRNPK
gene, resulting in loss of one copy of HNRNPK. Consequently,
haploinsufficiency of HNRNPK was shown to be pathogenic in
mice, as an Hnrnpk+/- mouse model showed a myeloproliferative
phenotype and reduced survival. In addition, Hnrnpk
haploinsufficiency also triggered B-cell lymphoma phenotypes in
30% of the animals. This role of hnRNP K as a tumor suppressor is
partially due to its regulation of the p53/p21 pathway (40, 46).
However, it is of note that hnRNP K acts not only as a tumor
suppressor, but also an oncogene. It has been shown that hnRNP K
promotes the expression of classical oncogenes such c-Myc,
resulting in the development of B-cell malignancies (39, 45), as
well as c-Src (47) and eIF4E (38). As an ss-DNA and RNA-binding
protein, hnRNP K can regulate both the transcription and
translation of certain genes, as it does in the case of MYC. It has
been observed that hnRNP K binds to the CT-rich regions of the
MYC promoter, enhancing transcription of this gene (48–50).
Additionally, hnRNP K positively regulates translation of MYC
mRNA by binding to the IRES (Internal Ribosome Entry Site)
sequence, aiding its entry to the ribosome through a cap-
independent mechanism (37, 51). Control of MYC translation via
this mechanism through hnRNP K is significant in the context of
tumorigenesis, as it has been observed that even a single CT
mutation in the IRES sequence – present in 42% of myeloma
multiple patients – could enhance the binding of hnRNP K to this
Frontiers in Immunology | www.frontiersin.org 355
sequence and promote an increased aberrant expression of c-Myc
(52). In fact, hnRNP K has been described as an (IRES)-trans-acting
factors (ITAF) and can potentially regulating cap-independent
translation of several oncogenes resulting in the systemic
activation of an oncogenic program (53, 54).

Given the role of hnRNP K in regulating the expression levels
of oncogenic molecules, elevated hnRNP K levels are observed in
several solid and hematological malignancies (42, 44, 45).
Specific to B-cell lymphomas, as we have previously described
in Gallardo et al., hnRNP K is overexpressed in human patients
with diffuse large B-cell lymphoma and is associated with poor
clinical outcomes and non-responsiveness to chemotherapy (39).
Overexpression of hnRNP K is also observed in Burkitt’s
lymphoma where sumoylated hnRNP K is elevated, which
regulates the expression of c-Myc at the translational level (55).
Taken together, a dual role of hnRNP K has been observed in the
formation of hematological malignancies, wherein an under-
expression of the protein leads to a deficit in its role inducing the
expression of tumor suppressors p53/p21, thus leading to a
myeloproliferative phenotype and lymphoma in rodents (40),
while on the other hand, an increment in the levels of hnRNP K
has been related to higher levels of c-Myc and the formation of
lymphomas (39, 55).

Critically, with respect to B-cell malignancies, we observe an
oncogenic function for hnRNP K. Our data showed that hnRNP K
is overexpressed in DLBCL patients and higher expression of
hnRNP K correlates with poor clinical outcomes and lack of
response to chemotherapy in these patients. Interestingly, we
observed that hnRNP K is overexpressed in patients who do not
harbor any MYC genomic alterations. The regulation of MYC by
hnRNPK occurs at the post-transcriptional and translational level,
indicating that hnRNP K over-expression represents a key non-
genomic mechanism ofMYC regulation in B-cell lymphomas (37).

The role of hnRNP K is especially critical given the increasing
clinical relevance of RNA-binding proteins (RBPs) and splicing
factors in hematological malignancies. Mutations and aberrant
expression of RBPs is increasingly being observed in leukemia,
myelodysplastic disease, and lymphomas (56–60). Moreover,
taking into consideration the critical role of c-Myc not only in
B-cell biology and B-cell malignancies, but also in other heme
malignancies, hnRNP K-mediated regulation of c-Myc warrants
extensive study. The B-cell specific murine model of hnRNP K,
Eµ-Hnrnpk, described below, is therefore crucial for unraveling the
complex and nuanced role of this protein in B-cell malignancies.
Eµ-HNRNPK MURINE MODEL AS A
PLATFORM TO STUDY B-CELL
MALIGNANCIES

We previously generated the Eµ-Hnrnpk mouse model by
placing the Hnrnpk cDNA downstream of the extensively
characterized immunoglobulin heavy-chain (Igh) enhancer Eµ.
The resulting mice specifically overexpress hnRNP K in B cells,
have reduced survival, and develop B-cell malignancies (39). The
Eµ-Hnrnpkmodel has several utilities and applications. First, the
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model helps establish the RNA-binding protein, hnRNP K, as a
bona fide oncogene. To the best of our knowledge, this is the first
published transgenic mouse model that demonstrates the
oncogenicity of hnRNP K over-expression. Second, the model
provides an in-vivo system to assay the role of hnRNP K in B-cell
biology and malignancy. Third, the mice provide a pre-clinical
platform to test existing and experimental therapeutics.

Phenotype of the Eµ-Hnrnpk Mouse Model
The Eµ-Hnrnpk mice develop B-cell malignancies with a high
latency. Roughly 70% of mice survived the first year but only 20%
survived until the end of the second year. This accelerated
mortality between years one and two may be due to yet-
unknown secondary genomic aberrations or epigenetic changes
warranting further in-depth analyses of this disease model. In
contrast with the slow generation of the phenotype, the disease
penetrance is incredibly high – almost 100% of the mice
developed some type of B-cell malignancy.

Gross analyses revealed that Eµ-Hnrnpk mice have marked
hepatosplenomegaly, a 12-fold increase in spleen weight, and a
3.5-fold increase in the hepatic weight. The splenomegaly is
accompanied by loss of splenic architecture, expansion of B-cell
lineages as evidenced by increased PAX5 staining, and the
presence of highly proliferative Ki67+ cells. In addition to
their proliferative nature, the malignant cells have invasive
properties as well. Livers of tumor-burdened mice showed
extensive B-cell (B220+) infiltration and minimal T-cell
(CD3+) infiltration.

The malignancy of Eµ-Hnrnpk cells was confirmed through
transplantation assays. Immunodeficient mice injected with cells
from Eµ-Hnrnpk mice bearing disease recapitulate the same
phenotypes (reduced survival, B cell proliferation), confirming
the cell-autonomous nature of Eµ-Hnrnpk cells.

The preponderance of large malignant cells observed in
hematopoietic tissues of the Eµ-Hnrnpk mice and clinical data
from DLBCL patients pinpoint the role of hnRNP K
overexpression in this disease. However, a small proportion (2-
5%) of the Eµ-Hnrnpk mice developed other types of B-cell
malignancies, not described herein, consistent with plasma cell-
like malignancy. This observation falls in line with some late-
arising tumors seen in Eµ-Myc mice that tend to develop
lymphomas derived from plasma cells or with plasma cell
differentiation (25).

Molecular Mechanism of hnRNP
K-Mediated Lymphomagenesis
Due to the plurality of hnRNP K’s cellular roles, the molecular
mechanism of hnRNP K-mediated lymphomagenesis is likely to
be multifaceted and complex. However, hnRNP K has been
previously demonstrated to bind to C-rich regions in DNA
and RNA (38, 61). Data obtained from RIP-Seq (RNA
immunoprecipitation followed by sequencing) and its
formaldehyde-fixed molecular cousin (fRIP-seq) (62)
experiments, previously published in Gallardo et al., revealed
that one of the top targets of hnRNP K is the MYC transcript,
and that this interaction enhances its stability and translation
Frontiers in Immunology | www.frontiersin.org 456
(39). We confirmed a direct interaction between hnRNP K
protein and the MYC transcript using fluorescence anisotropy
assays. Actinomycin-chase experiments revealed an increased
stability of the MYC transcript associated with hnRNP K
overexpression. Finally, polysome profiling assays revealed the
essential role of hnRNP K in regulatingMYC translation and that
knockdown of hnRNP K adversely affected the loading of the
MYC transcript onto monosomes. Taken together, our
biochemical and molecular assays establish a physical and
functional link between hnRNP K and MYC (Figure 1). This
finding is borne out in the in vivo model: lymphomas derived
from Eµ-Hnrnpk mice show elevated c-Myc levels. These
findings are particularly relevant when coupled with the
observation that hnRNP K expression levels are elevated in
DLBCL patients without MYC genomic alterations, suggesting
that hnRNP K can drive c-Myc signaling in the absence of MYC
mutations. Therefore, hnRNP K overexpression represents an
alternate mechanism of c-Myc pathway activation in B-cell
malignancies. Interestingly, Smurf2 ablation in mice also
results in the development of B-cell tumors due to
transcriptional upregulation of the c-Myc protein representing
yet another non-genomic mechanism of aberrant c-Myc
FIGURE 1 | hnRNP K binds to and regulates the stability and translation of
the MYC transcript (created with BioRender.com).
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expression in tumors (63). Considering the fact that hnRNP K
binds to a multitude of transcripts, it would be reasonable to
assume that it causes lymphomagenesis via several mechanisms
and not just via regulation of c-Myc. An overlap of RIP-Seq data
from two hematological cell lines (K562 and OCI-AML3) with a
set of genes implicated in lymphomas reveal several interesting
candidates for further study (Figure 2) (19, 64).

Beyond its RNA-binding functions, hnRNP K also interacts
with a host of proteins via its KI domain. Therefore, it is entirely
plausible that the protein interactome of hnRNP K contributes to
its oncogenicity. Immunoprecipitation of hnRNP K followed by
mass spectrometry, as described in Gallardo et al., revealed that
hnRNP K associates with a host of ribosomal and RNA
processing proteins (39). Given the preponderance of
ribosomal subunits in the hnRNP K interactome, the impact
that hnRNP K has on global translational profiles and its
relationship to p53 allude to the possibility that aberrations in
hnRNP K are likely to contribute to a nucleolar stress response
(NSR). In fact, IP/MS experiments reveal a physical interaction
between hnRNP K and the NSR sensor Nucleolin (NCL). The
impact of hnRNP K on ribosome biogenesis and nucleolar stress
pathways and their relevance to disease is currently under
investigation in our laboratories.

In conclusion, the Eµ-Hnrnpk mice demonstrate a level of
biological heterogeneity that is also seen in human disease.
Consequently, the model represents a valuable tool for
the assessment of existing and novel drugs and therapies.
The transplantability of malignant cells from this model
and the aggressive nature of the transplanted disease allow
for a rapid evaluation of therapeutic modalities. Although
current transplantation studies with the Eµ-Hnrnpk are
limited to immunodeficient mice, future research with
syngeneic models may be of value, particularly to test
immunotherapeutic agents.
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DISCUSSION

The generation, maturation, and genetic reprogramming of B-
cell lymphocytes represent some of the most complex biological
processes outside of development. The maturation process
occurs in a bevy of host hematologic tissues. Germinal centers
(GCs) – specific structures in secondary lymphoid organs, such
as lymph nodes and the spleen – are where the generation and
selection of B cells occurs. GCs are typically divided into the dark
and the light zone. In the dark zone, B cells undergo rapid and
mutative cell division called immunoglobulin somatic
hypermutation (SHM), while in the light zone, B cells are
selected based on antigen affinity. The whole process of GC
initiation, dark zone formation, and the passage of B cells
between the dark and light zones to final differentiation is a
concatenated process involving the participation of a plethora of
proteins such as BCL6, BCL2, TCL1, PAX5, IRF4, NFKB, MLL2
and c-Myc (65). All of these molecules are differentially
expressed based on areas within the GC and/or stage of B-cell
differentiation and are intricately balanced via multiple feedback
loops. The inherent process of B-cell maturation and function
relies on the inaccuracy of targeted DNA breaks and subsequent
repair during VDJ recombination, SHM, and class-switch
recombination (CSR). The rapid mutative divisions in B cells
therefore put their genomic integrity in jeopardy. When an error
occurs, the two most common genomic sequelae are
chromosomal translocations and aberrant SHMs (ASHMs)
(66). These alterations are due to mistakes in recombination
activating gene (RAG) mediated VDJ recombination process,
mistakes in the activation-induced cytidine deaminase (AID)
dependent-CSR process, or translocations involving IGH (66).
The result of these aberrancies is commonly the juxtaposition of
strong promoters/enhancers (e.g. IGH) in front of oncogenes
related with B-cell biology. The dysregulation of these oncogenes
FIGURE 2 | Candidate genes, involved in lymphoma, identified in hnRNP K RIP-Seq datasets (39, 64) (created with BioRender.com).
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drives B-cell hematological malignancies such as follicular
lymphoma (BCL2 translocation, MLL2 inactivation) (11, 67)
DLBCL (e.g. BCL6, BCL2 and MYC translocation) (8, 68, 69)
or Burkitt’s lymphoma (MYC translocation) (70, 71).

In the last 40 years, researchers have tried to reproduce the
same genetic alterations and translocations found in human B-
cell malignancies in animal models in order to develop tools to
study the pathophysiology of the disease and develop pre-clinical
therapeutic platforms. However, there are some challenges
involved in the creation of these models. The vast majority of
models of B-cell disease – such as Eµ-Myc, VavP-Bcl2 or
Iµ-Bcl6 – are not “clean” models, i.e. they do not perfectly
recapitulate human disease or often result in the development
of multiple phenotypes due to two main reasons. First, “timing”
and “location” in B-cell development plays a pivotal role in its
biology, and heavily impact the development of B-cell
malignancies. Thus, expression of the oncogenes in a more
mature or immature B-cell subtype could result in completely
different phenotypes than those observed in human disease.
Consequently, the use of universal B-cell promoters that are
common to multiple B-cell subtypes will often result in mixed
phenotypes (25). Second, most drivers of B-cell malignancies are
master regulators of a slew of different biological processes.
Therefore, dysregulation of these molecules inhibits DNA
damage response, increases genomic instability, or promotes
other biological phenomena that enhance the accumulation of
genomic aberrations in lymphoma cells. These genetic
alterations will likely be different in each individual mouse,
and its relationship with the driver alteration could explain the
diversity of phenotypes. As an example, Lefebure et al. studied
the genetic landscape of Eµ-Myc mice and observed multiple
single nucleotide variants, deletions, or indels in Bcor, Trp53,
Cdkn2a, Kras or Nras, suggesting that genomic instability driven
by the genetic modification i.e., Myc, and the collaboration of
other oncogenes and tumor suppressors contribute to the final
malignant phenotype (72). The Eµ-Hnrnpk mouse model is not
an exception to these problems. The limitations of the model are
in fact consistent with other B-cell malignancy models. hnRNP K
is also a master regulator of multiple biological process, as it
regulates transcription, translation, DNA damage response, and
splicing (36), which may contribute to the diversity of
phenotypes observed in the Eµ-Hnrnpk model. Moreover,
hnRNP K, as an RNA-binding protein, governs the expression
of other master regulators beyond c-Myc (39). There are also
multiple lines of evidence that suggest hnRNP K can function as
a master cancer switch, driving not only hematological
neoplasms, but also solid tumors (42–45).

One of the most common lymphomagenesis mouse models
used is the Eµ-Myc mouse model. The extensive use of the Eµ-
Myc model is not only due to historical reasons (model was
developed in 1985), but also due to the biological mechanisms of
lymphomagenesis. c-Myc is the most widely studied master
regulator of B-cell malignancies and is altered in follicular
lymphoma, DLBCL, Burkitt’s lymphoma, and myeloma.
However, dysregulation of the c-Myc pathway is observed
more frequently than can be explained via MYC genomic
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aberrations. Thus, it is critical to identify c-Myc regulators that
contribute to its non-genomic regulation. To this end, hnRNP K
as an RNA-binding protein emerged as an idyllic candidate, and
the Eµ-Hnrnpk mouse model allows exploration of B-cell
malignancies in the absence of MYC alterations. Moreover, we
recently found that hnRNP K is overexpressed in DLBCL
patients, suggesting its direct role in B-cell malignancies and
thereby making the Eµ-Hnrnpk model relevant beyond its
function as a genetic and mechanistic tool. However, hnRNP K
is a relatively under-studied molecule in cancer, particularly in B-
cell neoplasms. Our studies with Hnrnpk haploinsufficient mice
demonstrated that hnRNP K plays a vita l role in
lymphomagenesis beyond its role as a c-Myc regulator (40).
Rigorous experimentation is required to better determine the
role of hnRNP K in lymphocyte biology and its implications in
development of DLBCL and other B-cell malignancies. Further
work also needs to be done to identify the mechanisms
underlying hnRNP K overexpression in human disease.

Perhaps the biggest drawback of most common B-cell
malignancy mouse models is the diversity in phenotype
development that makes them divergent from human disease.
As previously discussed, the nature of the oncogenic drivers and
their relationship with other cancer regulators combined with the
spatio-temporal expression of the genetic modifications
contributes to these divergences. Thus, more selective and
specific mouse models, using promoters of one-stage/one-grade
of B-cell maturation could help to surpass these limitations.
Moreover, the generation of more complex mouse models that
could recapitulate human diseases more precisely, with a
combination of different genetic alterations, could guarantee
more consistent models. In fact, complex models, such as Em-
Myc/BCRHEL/sHEL to mimic Burkitt’s lymphoma, or IL-14a TG ×
c-Myc TG (DTG)mice for blastoid-variant mantle-cell lymphoma
(MCL-BV) are good examples (73, 74).

The ability of a murine model to accurately mimic human
disease is more relevant when animal models are used as
therapeutic platforms. The selection of a model that does not
accurately recapitulate human disease could contribute to the
low correlation between results observed in pre-clinical and
clinical trials. Indeed, only 8% of pre-clinical animal model
research successfully advances to clinical trials, and of the
experimental agents that are successful in preclinical models,
85% of them fail in early stages of human trials (75). Hence, a
battery of B-cell malignancies drivers and promoters is needed to
more precisely mimic the spatio-temporal compartmentalization
of alterations to ensure better clinical correlations. To this end,
the Eµ-Hnrnpk model adds to the catalog of mouse models
available to study B-cell malignancies and establish therapeutic
platforms, alone or in combination with other drivers.
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Chronic lymphocytic leukemia (CLL)/Small lymphocytic lymphoma (SLL) is a
heterogeneous disease consisting of at least two separate subtypes, based on the
mutation status of the immunoglobulin heavy chain variable gene (IGHV) sequence.
Exposure to antigens seems to play a role in malignant transformation and in the
selection and expansion of more aggressive CLL clones. Furthermore, a biased usage
of particular IGHV gene subgroups and the existence of stereotyped B-cell receptors
(BCRs) are distinctive characteristics of human CLL. We have previously described that
Traf2DN/BCL2 double-transgenic (tg, +/+) mice develop CLL/SLL with high incidence with
aging. In this model, TNF-Receptor Associated Factor (TRAF)-2 deficiency cooperates
with B cell lymphoma (BCL)-2 in promoting CLL/SLL in mice by specifically enforcing
marginal zone (MZ) B cell differentiation and rendering B cells independent of BAFF for
survival. In this report, we have performed the sequencing of the IGHV-D-J
rearrangements of B cell clones from the Traf2DN/BCL2-tg+/+ mice with CLL/SLL. The
results indicate that these mice develop oligoclonal and monoclonal B cell expansions.
Allotransplantation of the oligoclonal populations into immunodeficient mice resulted in the
preferential expansion of one of the parental clones. The analysis of the IGHV sequences
indicated that 15% were mutated (M) and 85% unmutated (UM). Furthermore, while the
Traf2DN/BCL2-tg-/- (wild-type), -/+ (BCL2 single-tg) and +/- (Traf2DNDN single-tg)
littermates showed the expression of various IGHV gene subgroups, the CLL/SLL
expanded clones from the Traf2DN/BCL2-tg+/+ (double-transgenic) mice showed a
more restricted IGHV gene subgroup usage and an overrepresentation of particular
IGHV genes. In addition, the HCDR3-encoded protein sequence indicates the existence
of stereotyped immunoglobulin (Ig) in the BCRs and strong similarities with BCR
recognizing autoantigens and pathogen-associated antigens. Altogether, these results
org April 2021 | Volume 12 | Article 627602162
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highlight the remarkable similarities between the CLL/SLL developed by the Traf2DN/
BCL2-tg+/+ mice and its human counterpart.
Keywords: TRAF2, BCL2, chronic lymphocytic leukemia, CLL, small lymphocytic lymphoma, IGHV, BCR stereotipy
INTRODUCTION

Chronic lymphocytic leukemia (CLL) is the most common adult
leukemia in the Western world. CLL and small lymphocytic
lymphoma (SLL) are two manifestations of the same B cell
neoplasia and are characterized by the accumulation of slowly
proliferating CD5+CD23+ B lymphocytes with dysregulated
apoptosis (1–3).

It is well established that CLL is a heterogeneous disease
consisting of at least two separate subtypes, based on phenotypic
and clinical behavior. Approximately 55% of CLL patients have
mutated (M) immunoglobulin heavy chain variable (IGHV)
genes (4–6), which have a better prognosis than patients with
unmutated (UM)- IGHV genes (6–8). According to phenotypic
analysis and gene expression profiling both M- and UM-CLL are
antigen-experienced B cells (9, 10). The differences in clinical
outcome and biological characteristics between CLL patients
with M- and UM-IGHV genes could be related to distinct
differences in mutation incidence and distribution reflecting
specific underlying mutagenic mechanisms between these two
groups (11). As a result, M- and UM-CLL show differences in
BCR reactivity profile (12) and signaling (13).

In addition, CLL can also be classified according to the
expression of stereotyped HCDR3, which are found in a 41%
of CLL patients (14, 15). Indeed, the remarkable similarity of
HCDR3 regions within sets of patients strongly supports the
notion that B cell receptor (BCR) recognition of particular
antigens is a driving force in clonal selection, expansion and
evolution in CLL [reviewed in (16, 17)].

CLL cells are low proliferating cells, mostly quiescent and with
dysregulated apoptosis. Only a small percentage are proliferating
cells, which makes difficult their expansion in immunodeficient
mice. Besides, human CLL cell xenotransplantation may results in
the expansion of B cell clones that do not recapitulate the IGHV-
D-J rearrangements of the parental clone [reviewed in (18)]. In
addition, it has been shown that donor T cells are required to
support CLL implantation (19). However, proliferating T cells
could result in a graft versus host disease that hampers the utility
of CLL xenotransplanted mice.

Mouse models of CLL are useful tools for the study of CLL
etiology and as preclinical platforms for new drug testing. Several
CLL mouse models are currently available, which recapitulate
key aspects of the human disease [reviewed in (20)]. However, a
majority of these CLL mouse models, including the profusely
studied Eµ-T Cell Leukemia-1 (Eµ-TCL-1)-tg mice [reviewed in
(21)], only produce UM-CLL clones, thus implying that M-CLL
etiology is not properly represented in these mice.

We previously described that B cell-specific Traf2DN/BCL2-
double-tg (+/+) mice develop CLL/SLL with high incidence (22,
23). In this mouse model, expression of TRAF2DN causes the
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depletion of endogenous TRAF2, resulting in unbridled BAFF
signaling and constitutive NFKB2 activation, causing the
expansion of marginal zone (MZ) B cells (24). BCL2
overexpression, which is a CLL trademark (25), would provide
MZ B cells with non-redundant and complementary protection
against apoptosis that predisposes these cells to CLL/SLL.

In this report we show that the CLL/SLL arising in the Traf2DN/
BCL2-tg+/+ mice consists of expandedM- andUM-CLL/SLL clones.
Expanded clones show a biased IGHV gene usage, stereotypy and
express HCDR3 that are similar to those recognizing autoantigens
and pathogen antigens, thus closely resembling human CLL.
MATERIALS AND METHODS

Transgenic Mice
Lymphocyte-specific Traf2DN-tg expressing a 1D4-epitope–tagged
TRAF2 deletion mutant lacking the N-terminal 240 amino acids
(AA) encompassing the RING and zinc finger domains
(TRAF2DN) (26) and B cell-specific BCL2-tg mice mimicking
the t(14;18)(q32;21) translocation involving BCL2 and IgH found
in human follicular lymphoma (27) have been previously described.
Traf2DN-tg (FVB/N) and BCL2-tg (BALB/c) heterozygous mice
were bred to produce F1 litters with progeny of the four possible
genotypes ((wild-type -/-; Traf2DN-tg (single-positive, +/-); BCL2-tg
(single-positive, -/+); and Traf2DN/BCL2 (double-positive, +/+))
expressed on FVB/N x BALB/c mixed background as previously
described (22). Analysis of the transgenic mouse genotypes was
performed by polymerase chain reaction (PCR) using primers
specific for Traf2 (F) 5’-GACCAGGACAAGATTGAGGC-3’ and
(R) 5’-GCACATAGGAATTCTTGGCC-3’) and BCL2 (F) 5’-
TTAGAGAGTTGCTTTACGTGGCCTG-3 ’ and (R) 5 ’-
ACCTGAGGAGACGGTGACC-3’. The animal protocols were
approved by the Bioethics Committee of the hosting institution.
Mice showing symptoms of distress and pain (heavy breath, weight
loss, distended belly, respiratory distress, lethargy, etc) were
euthanized. All transgenic mice in the study were heterozygotes
for each transgene.

Isolation of Mononuclear Cells
Spleens, lymph nodes and blood from Traf2DN/BCL2-tg mice of
the different genotypes were collected and mononuclear cells
were isolated by Ficoll density centrifugation (Lympholyte-M;
Cedarlane Laboratories, Burlington, NC).

Flow Cytometry Analysis
Mononuclear cells were incubated with 50 mg/ml human g-globulin
for 10 minutes at 4°C. Then, 106 cells were incubated with a
combination of FITC-, PE-, or APC-conjugated antibodies against
mouse CD45R/B220, CD21, CD23, IgM, IgD, CD5, and CD43
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(all from BD Biosciences). After 30 minutes of incubation at 4°C,
cells were washed with PBS and analyzed by flow cytometry in a
FACSCanto II cytofluorimeter and the FACSDiVa 6.1.2 (BD
Biosciences) flow cytometry analysis software.

Immunohistochemistry
Tissues and organs from transgenic mice were fixed in 10%
formalin (Sigma-Aldrich) or in Bouin’s solution (Sigma-Aldrich)
for bone marrow analysis and embedded in paraffin. Tissue
sections (5 mm) were deparaffinized and then stained with
hematoxylin and eosin, dehydrated, and mounted in DPX
(Fluka). Blood smears were stained with Wright-Giemsa
(Sigma-Aldrich).

Immunoglobulin IGHV-D-J
Sequence Analysis
Tissues and cells from Traf2DNxBCL2 mice representative of all
different genotypic combinations (-/-; +/-; -/+ and +/+) were
extracted and total RNA was isolated using TRIZOL reagent
and the PureLink™ RNA mini kit (Life Technologies,
Carlsbad, CA), following the manufacturer’s instructions. The
obtained RNA was reverse transcribed into cDNA using 2 U
Superscript II reverse transcriptase (Life Technologies). The
IGHV-D-J regions were amplified following a modified
protocol (28), using the following primers: IGHV primer (F)
5’-SARGTBMAGCTGSAGSAGTCWGG-3’; CHµ primer (R) 5’-
CAGATCTCTGTTTTTGCCTCGTA-3’; CHg primer (R) 5’-
ATGCAAGGCTTACACCACAATCC-3’ and CHa primer (R)
5’-TAATAGGAGGAGGAGGAGTAGGAC-3’ (S: G/C; R: A/G;
B: C/G/T; M: A/C; W: A/T). The conditions of the PCR reaction
were: one cycle of denaturing at 94°C for 10 minutes, followed by
38 cycles of denaturing at 94°C for 1 minute, annealing at 52°C
for 1 minute and extension at 68°C for 1 minute, with a final
extension step at 68°C for 10 minutes. The PCR products were
then analyzed by gel electrophoresis on a 2% agarose gel, excised
and purified (Qiagen). Purified products were cloned using the
pGEM®-T Vector System (Promega, Madison, WI, USA),
following the manufacturer’s instructions. From 5 to 15
colonies of each sample were grown up in culture overnight
and the plasmids were extracted using the Wizard® Plus SV
Minipreps DNA Purification System (Promega). Miniprep
products were sequenced in a capillary sequencer by GATC
Biotech (Konstanz, Germany). Nucleotide sequences were
analyzed by means of Chromas 2.4.3 software (Technelysium,
Queensland, Australia) and compared with those mouse germ
line (GL) sequences available in the IMGT repertoire IG database
using the IMGT/V-QUEST analysis tool (29). Since our mice are
FVB/N x BALB/c F1 hybrids and the GL of these strains are
underrepresented (BALB/c) or absent (FVB/N) in the IMGT
repertoire IG database, to discriminate between bona fide
somatic hypermutation (SHM) and strain-specific IGHV gene
polymorphism (SSP), a clustal W multiple sequence analysis of
the IGHV sequences from the clones with identical IGHV genes
(n ≥ 3) found in the Traf2DNxBCL2-tg and Traf3xBCL2-tg mice
irrespective of their genotype (both FVB/N x BALB/c F1 hybrids)
was made. A detailed description of the criteria used to
Frontiers in Immunology | www.frontiersin.org 364
discriminate between SSP and SHM is provided in
Supplementary Materials and Methods. Sequences ≥ 98%
identity to the corresponding GL IGHV gene sequence were
considered unmutated (UM). Isolectric point (pI) of HCDR3
region was calculated with the Compute pI/Mw tool (ExPASy
Bioinformatics Resource Portal, http://web.expasy.org/compute_
pi/). HCDR3 analysis was carried out comparing the sequence in
the protein BLAST database.

Statistics
IBM SPSS statistics v.26 (SPSS, Chicago, IL) and Graph Pad
Prism 5 were used for statistical analysis. Statistical significance
for HCDR3 length and isoelectric point (pI) was determined
using the t-Student test. Pearson Chi-Square and likelihood ratio
tests with Monte Carlo correction were applied for assessing the
significance of the IGHV-D-J subgroups distribution among
genotypes. Proportion test was used to determine the
significance of IGHV gene expression frequency.
RESULTS

Characteristics of BCRs Expressed by
CLL/SLL B Cells From the
TRAF2DNxBCL2-tg+/+ Mice
As stated above, Traf2DNxBCL2-tg+/+ mice develop CLL/SLL
with high incidence as they age (22). In most mice, SLL arises
first, involving splenomegaly, lymphadenopathy and infiltration
of different tissues and organs, later progressing to CLL (22, 23).
An example of the histology features of the bone marrow, blood,
spleen and lung of a representative Traf2DNxBCL2-tg+/+ mouse
with CLL/SLL is shown in Figure 1A. In addition, flow cytometry
analysis of the B cell populations in this mouse (Figure 1B)
identified two B cell populations. One majority population, with
larger cells based on their forward scatter (FSC) profile and
expressing low levels of B220, IgD, CD21 and CD23 and high
levels of IgM (Figure 1B), corresponds to the CLL/SLL expanded
cells (blue). These cells were CD43high and CD5low or null (not
shown). The other population (FSCsmall) is composed by
seemingly normal B2 cells expressing B220high, IgMlow, IgDhigh,
CD21high, and CD23middle (green) (Figure 1B). These cells were
CD43null and CD5null (not shown). The expanded CLL/SLL
population is found in blood, spleen and in pleural effusion
(Figure 1B).

To ascertain the BCR characteristics of these CLL/SLL cells,
we have analyzed the sequences of the HCDR3 of these mice.
Table 1 shows the HCDR3 features and frequency of the
expanded clones isolated from Traf2DNxBCL2-tg+/+ mice with
CLL/SLL. Based on the HCDR3 sequences, these mice develop
oligoclonal (mice: #13, #16, #65, #72 and #74) and monoclonal
(mice: #29, #40, #45, #50 and #51) B cell expansions (Table 1).
Interestingly, when spleen and blood were compared, we have
examples of mice with identical expanded clones in both sources
(mice: #16, #40 and #65) but also a mouse (#55) with different
clones in spleen and blood.
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In addition, blood lymphocytes or splenocytes (40-60 x 106)
from representative Traf2DNxBCL2-tg+/+ mice (#55, #72 and
#74) were allotransplanted into immunodeficient SCID/NOD
mice. Animals were euthanized when they develop any sign of
illness (distended belly, respiratory distress, lethargy, etc). As
shown in Table 1, only one of the expanded CLL/SLL clones
found in each of the parental mice was selectively expanded in
the immunodeficient allotransplanted mice.

IGHV-D-J Subgroups and Gene Usage by
the Expanded CLL/SLL Cells From the
TRAF2DNxBCL2-tg+/+ Mice
CLL clones from human CLL patients express mostly IgM and
have a biased usage of IGHV genes compared to normal B cells
[reviewed in (30)]. These characteristics are also shared by the
Eµ-TCL-1-tg (28, 31) and the MDR−/− and miR-15a/16-1−/− (32)
mouse models of CLL. Thus, to ascertain whether B cells from
the Traf2DNxBCL2-tg+/+ mice with CLL/SLL have similar
characteristics, we have analyzed the Ig isotypes and IGHV-D-J
rearrangements expressed by B cells from these mice and
Frontiers in Immunology | www.frontiersin.org 465
compared them with those found in mice representing all
other genotype combinations. For this purpose, Traf2DN-tg
(FVB/N background) and BCL2-tg (BALB/c background) mice
were crossed to produce F1 litters with mice harboring the
different transgene combinations, Traf2DNxBCL2-tg-/-, +/-, -/+

and +/+. The analyses were performed when the Traf2DNxBCL2-
tg+/+ mice developed CLL/SLL, using for comparison age- and
sex-matched mice representing all genotypes and genders. As
shown in Figure 2A, retrotranscription and amplification of the
mRNAs encoding for IgM, IgG and IgA shows that B cells from
Traf2DNxBCL2-tg+/+ mice with CLL/SLL almost exclusively
express IgM, while all three Igs (M, G and A) mRNAs could
be readily detected in B cells from representative mice of all the
other genotypes. The relative expression of IgM, IgG and IgA in
the Traf2DNxBCL2-tg with the different genotypes and in the
expanded CLL/SLL clones is shown in Figure 2B.

Next, we studied whether a biased IGHV gene usage was also
a feature of the CLL/SLL developed by the Traf2DNxBCL2-tg+/+

mice. The IGHV, IGHD and IGHJ genes and the HCDR3
sequences expressed in the expanded B cell clones from the
A

B

FIGURE 1 | Histochemical and flow cytometry analysis of B cell populations and tissues from representative Traf2DNxBCL2-tg+/+ mice with CLL/SLL.
(A) Histochemical analysis of bone marrow, spleen, lung and blood from one representative Traf2DNxBCL2-tg+/+ mouse that had developed CLL/SLL is shown. H&E
staining was used for bone marrow (x10 and x100), spleen (x4 and x100) and lung (x4 and x100), and Wright-Giemsa staining for the blood smear (x60). Scale bars
are shown. (B) Three-color flow cytometry analysis was performed to determine the phenotype of expanded B lymphocyte populations. Gating of the expanded
population was based on the CD45R/B220 and FSC plot of each sample analyzed and is indicated in the figure. Plots show CD21/CD23 and IgM/IgD expression for
the expanded B cell population (FSClarge/B220low, blue) and of the normal B2 population (FSCsmall/B220high, green). The quadrants settings were selected based on
the staining of isotype controls. The tissue source of the analyzed lymphocytes is indicated in the figure.
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TABLE 1 | Characteristics of the expanded CLL/SLL clones from the Traf2DNxBCL2-tg +/+ mice.

IGD
gene

IGHJ
gene

SHM
%

SHM
status

Frequency % HCDR3 HCDR3
lenght

pI

SP2.9 JH4 1.1 UM 5/13 38 GRDDGYYYAMDY 12 3.93
ST4.3 JH4 2.1 M 3/13 23 AREGPRRDYYAMDY 14 6.16
FL16.1 JH3 0.35 UM 6/10 60 ASYAFAY 7 5.57
SP2.2 JH4 0.35 UM 3/10 30 ASRSTMIIMDY 11 5.88
SP2.2 JH4 0.35 UM 7/10 70 ASRSTMIIMDY 11 5.88
FL16.1 JH3 0.7 UM 3/10 30 ASYAFAY 7 5.57
SP2.2 JH4 2.1 M 8/10 80 ASPSYDYPYYYAMDY 15 3.56
SP2.6 JH4 0 UM 8/10 80 ATYYGYDRVYYYAMDY 16 4.21
SP2.6 JH4 0.35 UM 9/10 90 ATYYGYDRVYYYAMDY 16 4.21
SP2.2 JH3 0.7 UM 8/10 80 ARGDYDGEFAY 11 4.03
SP2.4 JH4 0.35 UM 10/10 100 ASGYDYAMDY 10 3.56
DQ52 JH4 0.7 UM 10/10 100 ARGNWDFYYAMDY 13 4.21
SP2.4 JH4 0 UM 10/10 100 ASGYDYAMDY 10 3.56
SP2.9 JH4 0.35 UM 5/10 50 AVYVIYDGYYGAMDY 15 3.56
FL16.1e JH2 1.4 UM 5/10 50 ARGGDY 6 5.88
FL16.1e JH2 0.7 UM 9/10 90 ARGGDY 6 5.88
ST4.3 JH2 0 UM 2/9 22,2 ALGAGYFDY 9 3.8
SP2.9 JH1 4.9 M 2/9 22,2 ARGNDGSYWYFDV 13 4.21
DST4 JH4 1.0 UM 2/9 22,2 ARIRGGAMDY 10 8.79
SP2.9 JH4 0.35 UM 3/10 30 GRDDGYYYAMDY 12 3.93
ST4.3 JH2 0.7 UM 7/10 70 ALGAGYFDY 9 3.8
SP2.9 JH4 0.7 UM 4/14 29 GRDDGYYYAMDY 12 3.93
SP2.2 JH2 0.35 UM 4/14 29 ARVRNWDFEDY 11 4.56
SP2.2 JH2 0 UM 7/10 70 ARVRNWDFEDY 11 4.56
FL16.1 JH2 0 UM 6/10 60 ASGPDFDY 8 3.56
SP2.4 JH4 0 UM 3/10 30 ARGGYYGYDGDYYAMDY 17 3.93
SP2.4 JH4 0.7 UM 8/8 100 ARGGYYGYDGDYYAMDY 17 3.93

noglobulin IGHV, IGHD and IGHJ subgroups and genes found recombined in each CLL B cell clone are indicated,
; ≤ 2% difference from the GL sequence) or mutated (M; >2% difference from the GL sequence) after correcting for SSP
lated from the indicated tissues of each mouse is also shown. All clones encoded a productive Ig and the HCDR3
he length and isoelectric point (pI) of the HCDR3 sequence are shown. Additional information pertaining to these CLL
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Animal
no.

Age
(months)

Sex Tissue IGHV Family
IMGT

IGHV gene
IMGT

IGHV gene
Vbase2

IGD family
IMGT

13 13 F Spleen VH14 IGHV14-2*02 F VHSM7.a2psi.88 D2
VH5 IGHV5-17*02 F VH7183.a47.76 D3

16 12 M Spleen VH1 IGHV1-85*01 F VHJ558.88.194 D1 D
VH5 IGHV5-17*02 F VH7183.a47.76 D2

Blood VH5 IGHV5-17*02 F VH7183.a47.76 D2
VH1 IGHV1-85*01 F VHJ558.88.194 D1 D

29 20 F Spleen VH1 IGHV1-80*01 F VHJ558.83.189 D2
40 11 F Spleen VH5 IGHV5-17*02 F VH7183.a47.76 D2

Blood VH5 IGHV5-17*02 F VH7183.a47.76 D2
45 20 F Spleen VH1 IGHV1-9*01 F VHJ558.b9 D2
50 18 M Spleen VH1 IGHV1-74*04 F V102 D2
51 18 M Spleen VH1 IGHV1-9*01 F VHJ558.b9 D4
55 P 16 F Spleen VH1 IGHV1-74*04 F V102 D2

Blood VH5 IGHV5-17*02 F VH7183.a47.76 D2
VH1 IGHV1-77*01 F VHJ558.80.186 D1 D

55 F1 - Node VH1 IGHV1-77*01 F VHJ558.80.186 D1 D
65 12 M Spleen VH5 IGHV5-17*02 F VH7183.a47.76 D3

VH1 IGHV1-69*02 F VH124 D2
VH3 IGHV3-5*02 F VH36-60.a5.112 D3

Blood VH14 IGHV14-2*02 P VHSM7.a2psi.88 D2
VH5 IGHV5-17*02 F VH7183.a47.76 D3

72 P 15 F Spleen VH14 IGHV14-2*02 P VHSM7.a2psi.88 D2
VH1 IGHV1S130*01 [F] Unknown D2

72 F1 - Spleen VH1 IGHV1S130*01 [F] Unknown D2
74 P 15 F Spleen VH1 IGHV1S130*01 [F] Unknown D1 D

VH1 IGHV1-9*01 F VHJ558.b9 D2
74 F1 - Spleen VH1 IGHV1-9*01 F VHJ558.b9 D2

Table shows the mouse ID number, the tissue source of the mRNA sample, the age and the sex of the mice. The imm
according to IMGT/V-QUEST and Vbase2 analysis tools. SHM status indicates whether the IGHV region is unmutated (UM
as described in Supplementary Materials and Methods. The frequency and % of occurrence of the B cell clones is
sequence is also provided. Basic (red) and acid (green) AAs are highlighted and stereotyped HCDR3 are shown in bold. T
clones is provided in Supplementary Table 4.
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Perez-Chacon and Zapata Mouse CLL Recapitulates Human CLL
Traf2DNxBCL2-tg+/+ mice with CLL/SLL are shown in Table 1.
In addition, similar information from the Traf2DNxBCL2-tg
mice with -/-, +/-, -/+ genotypes and the whole list of clones
isolated from the Traf2DNxBCL2-tg+/+ mice are shown in
Supplementary Tables 1–4, respectively. A schematic
representation of the IGHV, IGHD and IGHJ subgroups
expressed in B cells from mice of each genotype and those
used by the expanded B cell clones of the Traf2DNxBCL2-tg+/+

mice with CLL/SLL are shown in Figure 3 and Supplementary
Figure 1. B cell clones isolated from the Traf2DNxBCL2-tg-/-

(wild-type) mice demonstrated the usage of various IGHV
subgroups, with a larger representation of IGHV1 (37%)
followed by IGHV2 (13%), IGHV5 (13%), IGHV10 (10%) and
IGHV14 (10%) subgroup genes. A similar picture emerges from
the analysis of the Traf2DNxBCL2-tg mice of +/- and -/+ genotypes,
also showing the usage of various IGHV subgroups, with IGHV1
being the most prominently used in all of them, consistent with
Frontiers in Immunology | www.frontiersin.org 667
the larger representation of this subgroup in the murine GL
repertoire (33). In contrast, IGHV1 (51%), IGHV5 (19%),
IGHV14 (14%) and IGHV3 (9%) are the subgroup genes most
conspicuously used by B cells from the Traf2DNxBCL2-tg+/+ mice
and also by the expanded CLL/SLL clones (Figure 3 and
Supplementary Table 5). Interestingly, the IGHV subgroup
expression frequency observed in other CLL mouse models is
seemingly different to that of the Traf2DNxBCL2-tg+/+ expanded
CLL/SLL clones, with the exception of IGHV1, which is the most
expressed IGHV gene subgroup in all of them (Supplementary
Table 5) (see discussion).

Pearson Chi-square and likelihood ratio (LR) test with the
Monte Carlo correction showed that the distribution of IGHV
subgroups expressed in the Traf2DNxBCL2-tg+/+ B cell clones
compare to those expressed in the -/-, +/- and -/+ mice was
statistically significant (p = 0.069) at 90% confidence, but not
at 95% confidence, with a significant LR (0.015).

To determine whether this restricted IGHV gene subgroup
usage was a distinctive characteristic of the Traf2DNxBCL2-tg+/+

CLL/SLL model or was instead a general feature that could also
be found in the expanded B cell clones of other types of B cell
malignancies, we analyzed the IGHV subgroup repertoire used
by the mature non-Hodgkin lymphomas (NHL) developed by
the TRAF3xBCL2-tg+/+ mice (34). These mice are also F1 hybrids
of FBV/N x BALB/c background, and therefore are genetically
equivalent to the Traf2DNxBCL2-tg mice. As shown in
Supplementary Figure 2, in B cells from the TRAF3xBCL2-
tg+/+ mice the IGHV subgroup usage (IGHV1 (43%), IGHV5
(13%), IGHV14 (11.8%), IGHV2 (10.5%) is similar to that found
in the wild-type (Traf2DNxBCL2-tg-/-) mice. The expanded B
cell clones from the TRAF3xBCL2-tg+/+ mice that have
developed post-germinal center (GC) NHL malignancies used
more frequently genes from the IGHV1 subgroup genes (56%),
similar to the Traf2DNxBCL2-tg+/+ CLL/SLL clones, but the
usage of IGHV5 (12.5%) and IGHV14 (6.3%) genes is much
reduced compared to the latter. Expression of IGHV2 genes is
also found in the TRAF3xBCL2-tg+/+ mice, while it is absent in
the Traf2DNxBCL2-tg+/+ mice.

Regarding the usage of the IGHD genes, B cell clones of all
genotypes preferentially used IGHD2 subgroup gene members
(Figure 3 and Supplementary Figure 1) and no statistical
significance was observed in the IGHD subgroup distribution
among the various Traf2DNxBCL2 genotypes (p = 0.275;
LR = 0.327). In contrast, there is a favored usage of the IGHJ4
gene by the Traf2DNxBCL2-tg+/+ mice (all clones, 58%;
expanded CLL clones, 63%) compared to the mice with the
other Traf2DNxBCL2 genotype combinations (p = 0.024;
LR = 0.024) (Figure 3) and also compared to the average
IGHJ4 gene usage in mice (21.5%) (35).

Next, we assessed whether Traf2DNxBCL2-tg+/+ CLL/SLL
clones show any preferential usage of particular IGHV genes
similar to what has been described in human CLL [reviewed in
(30)] and the Eµ-TCL-1-tg mice (28). Indeed, as shown inTable 2,
we observed that 3 genes are overrepresented in the
Traf2DNxBCL2-tg+/+ CLL/SLL clones compared to the B cells
from mice of all other genotypes and in the TRAF3xBCL2-tg+/+
A

B

FIGURE 2 | Immunoglobulin subtypes found in Traf2DNxBCL2-tg mice
representative of all different genotypic combinations (-/-; +/-; -/+ and +/+).
(A) mRNA from the indicated mice was extracted and retrotranscribed into
cDNA using random primers. Then, PCR was performed using specific
primers for the IGHV-D-J region of IgM, IgG or IgA, as described in Materials
and Methods. The amplified PCR fragments were analyzed in 2% agarose
gels and staining with SYBR Safe and UV light. (B) IgM, IgG and IgA cDNAs
from mice of the various genotypes (-/-, n = 5; -/+, n = 3; +/-, n = 4; +/+,
spleen, n = 8, blood, n = 3) were analyzed as indicated in A and the resulting
bands were quantified. The results show the percentage of each Ig (M, G and
A) found in mice of the various genotypes (average ± SD), Statistical
significance: **p < 0.005; ***p < 0.0005).
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Perez-Chacon and Zapata Mouse CLL Recapitulates Human CLL
mice. Thus, VH7183.a47.76 (IGHV5) is found in 25% of the
Traf2DNxBCL2-tg+/+ CLL/SLL clones. It is found recombined to a
wide variety of IGHD and IGHJ genes producing distinct HCDR3
sequences (Table 1). The expression of this gene is also
overrepresented in B cell clones from the Traf2DNxBCL2-tg+/+

(18%) and the Traf2DNxBCL2-tg-/+ (14.3%)mice compared to the
1.86% rearrangement frequency found in the BALB/c strain (33).
Proportion test shows that these differences are statistically
significant (P>0.0001) (Table 2). The expression of these gene in
the TRAF3xBCL2-tg+/+ B cell lymphoma clones is not significantly
different to the expression in the normal population. Another
gene, VHJ558.b9 (IGHV1) is found in 15% of the Traf2DNxBCL2-
tg+/+ CLL/SLL clones (13.3% of all Traf2DNxBCL2-tg+/+ B cell
clones), a statistically significant difference (P<0.0001) compared
to the 1.18% rearrangement frequency found in the C57BL/6
Frontiers in Immunology | www.frontiersin.org 768
strain (33). It is also overrepresented in the TRAF3xBCL2-tg+/+ B
cell clones but not in the expanded B cell lymphoma clones.
Finally, VHSM7.a2psi.88 (IGHV14) is rarely or not found in
BALB/c and C57BL/6 strains (33), but it was found in 15% of
the expanded CLL/SLL clones and in 8.9% of all Traf2DNxBCL2-
tg+/+ B cell clones (P<0.0001) (Table 2). Interestingly, this
VHSM7.a2psi.88 was found recombined to DSP2.9 and IGHJ4
genes in expanded clones from 3 different Traf2DNxBCL2-tg+/+

mice with CLL/SLL, producing an identical HCDR3 sequence
(see below).

Altogether, these results suggest that a preferential usage of
IGHV subgroups and genes by the expanded CLL/SLL clones
from the Traf2DNxBCL2-tg+/+ mice is occurring, similar to what
has been previously observed in human CLL patients and in the
Eµ-TCL-1-tg mouse model of CLL.
FIGURE 3 | Analysis of the IGHV, IGHD and IGHJ genes subgroup usage in Traf2DNxBCL2-tg. Circle diagrams representing the percentage of the IGHV, IGHD and
IGHJ subgroup usage of mice representative of all different genotypic combinations (-/-; +/-; -/+ and +/+), including those found in the Traf2DNxBCL2-tg+/+ expanded
CLL/SLL clones are shown.
April 2021 | Volume 12 | Article 627602

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Perez-Chacon and Zapata Mouse CLL Recapitulates Human CLL
Analysis of the IGHV Somatic
Hypermutation Status and HCDR3
Features of the CLL/SLL Clones From the
Traf2DNxBCL2-tg+/+ Mice
Patients with CLL segregate into two groups based on the
number of SHMs in the rearranged IGHV genes of the
transformed clones. Approximately 55% of CLL patients have
transformed B cells with mutations in IGHV genes (M) (4–6).
The rest of the patients have UM IGHV CLL clones, which
correlates with poor disease prognosis (6–8).

To determine the frequency of M vs. UM IGHV regions in the
expanded CLL/SLL clones of the Traf2DNxBCL2-tg+/+ mice we first
compared the IGHV sequence of the transformed clones with the
available GL sequences stored in the IMGT repertoire IG database
[mostly based on the C57BL/6, with scattered presence of 129/sv
and BALB/c lines GL sequences (33)]. The results obtained using
the IMGT/V-QUEST analysis tool showed that many sequences
have considerable variations with their respective GL IGHV genes.
A similar result was obtained when the IGHV sequences from the B
cell clones isolated from mice with the other genotypes (-/-, +/-, -/+

and all +/+) was compared. Since our mice are FVB/N x BALB/c
hybrids and because it has been shown that the IGHVGL repertoire
and sequence is highly variable among inbred mouse strains (33,
36), these variations might reflect the reported differences among
strains and the absence of IGHV GL sequences from the FVB/N
mouse line in the IMGT repertoire IG database.

To determine whether some of these variations with the GL
sequences may be the result of SSPs, we have performed a clustal
W sequence comparison of the IGHV region of Traf2DNxBCL2-
tg B cell clones with identical IGHV alleles, irrespective of their
genotype. Indeed, we have observed the existence of nucleotide
mismatches compared to the IMGT referenced IGHV gene that
are conserved in most of the corresponding IGHV gene from
different Traf2DNxBCL2-tg individuals and genotypes. Since
SHM randomly introduces any of the 4 nucleotides in a given
spot, a mismatch of the same nucleotide in the same position of
several identical alleles compared to the GL sequence strongly
suggest the existence of a polymorphism. The number of SSPs
found in the IGHV rearranged sequences from the
Traf2DNxBCL2-tg B cell clones ranges from 1 (0.35% of the
Frontiers in Immunology | www.frontiersin.org 869
IGHV sequence) to 24 (9.375%), averaging a 2.54% SSPs,
consistent with previously reported IGHV GL differences
among mouse strains (36). The criteria for discriminating
between SSP and SHM and examples of the IGHV gene
sequence comparisons are shown in supplementary materials
and methods and Supplementary Figure 3, respectively.

The estimation of SHM events (%) according to the criteria
described above found in the expanded CLL/SLL B cell clones is
shown in Table 1. In addition, the percentage of similarity of the
IGHV region of the analyzed B cell clones with the GL and the
SPP and SHM estimated events for the B cell clones from all
the Traf2DNxBCL2-tg genotypes, is shown in Supplementary
Tables 1–4. A standard 2% difference with the GL was applied to
categorize UM or M IGHV clones (4, 28, 37). As shown in
Supplementary Table 6, the CLL/SLL expanded clones from the
Traf2DNxBCL2-tg+/+ mice were 85% UM and 15% M (identical
clones found in a different tissue of the same mouse as well as
identical clones found in parental and allotransplanted F1 mice
were only counted once). Similar UM and M percentages were
found in Traf2DNxBCL2-tg+/- (78.6% UM vs. 21.4% M), and
Traf2DNxBCL2-tg+/+ (all clones) (80% UM vs. 20% M) mice and
a larger population of UM B cell clones was also found in
Traf2DNxBCL2-tg-/+ (60% UM vs. 40% M). In contrast,
Traf2DNxBCL2-tg-/- B cell clones are split in half (46% UM vs.
54% M). This result is consistent with the fact that Traf2-
deficiency causes the expansion of MZ B cells (24, 38), which
are mostly UM (39). In addition, Bcl2 overexpression has been
shown to reduce the SHM rate (40).

It has been reported in human CLL patients that UM- and M-
CLL clones have a biased usage of IGHV subgroups. Thus,
IGHV1 genes predominate in the rearrangements of UM-CLL
cells while IGHV3 and IGHV4 genes are more frequently found
in M-CLL cells (5, 6, 41). A larger percentage of IGHV1 genes are
also found in UM-CLL clones from the Eµ-TCL-1-tg mice (28)
and the MDR-/- and miR15a/16-1-/- mice (32). A comparison
between the IGHV, IGHD and IGHJ subgroup usage between M-
and UM-clones from the Traf2DNxBCL2-tg+/+ is shown in
Figure 4. Our analyses showed that UM-B cell clones from the
Traf2DNxBCL2-tg+/+ used more frequently IGHV1 (46%),
IGHV14 (20%), IGHV5 (17%) and IGHV3 (11%), while M-B
TABLE 2 | A restricted set of IGHV genes predominates in the expanded Traf2DNxBCL2-tg+/+ CLL/SLL clones.

Mouse tg-line Genotype IGVH genes (% usage)

IGHV5 P IGHV1 P IGHV14 P
VH7183.a47.76 VH558.b9 VHSM7.a2psi88

Traf2DNxBCL2 -/- 4.3 0.12 1.4 0.86 nf 0.9
+/- 4 0.48 4 0.004 nf 0.87
-/+ 14.3 <0.0001 6 0.014 nf 0.85
+/+ 18 <0.0001 13 <0.0001 2 <0.0001
+/+ * 25 <0.0001 15 <0.0001 15 <0.0001

TRAF3xBCL2 +/+ 2.5 0.5 8.1 <0.0001 nf 0.69
+/+ * 6.2 0.18 nf 0.66 nf 0.9

% in mouse (Ref 33) wt 1.9 - 1.2 - <0.1 -
April 2
021 | Volume 12 | Article
The IGHV subgroup, gene and its frequency (%) in the B cell clones isolated from the Traf2DNxBCL2-tg and TRAF3xBCL2-tg mice of the indicated genotypes, as well as the expression
frequency (%) of these genes in mice (33) is shown. Statistical significance was calculated using proportion test and significant results are highlighted in bold. Clones from different tissues of
the samemouse are only counted once. Clones found in parental and F1 mice are only counted once. +/+* indicated the expanded B cell clones (CLL/SLL in the Traf2DNxBCL2-tg+/+ mice
and mature non-Hodgkin lymphoma in the TRAF3xBCL2-tg+/+ mice). nf, not found.
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cell clones used IGHV1 (70%), IGHV5 (20%) and IGHV11
(10%). A similar trend was observed in UM- and M-CLL/SLL
clones, although the reduced number of M-CLL/SLL clones (n=3)
avoid any conclusion. In addition, IGHD2 and IGHJ4 genes were
overrepresented in both UM- and M-Traf2DNxBCL2-tg+/+ B cell
clones and in expanded CLL/SLL clones (Figure 4).

Other HCDR3 features, such as length, charge and AA
sequence are intrinsic HCDR3 characteristics. HCDR3
sequences vary in their AA composition, charge and length
depending on how the IGHV, IGHD and IGHJ genes
recombine (5, 42, 43). A summary of the analysis of these
HCDR3 features in the expanded Traf2DNxBCL2-tg+/+ B cell
clones and of B cells from the other genotypes is shown in
Supplementary Table 6. The analysis of the HCDR3 AA
sequence of the expanded Traf2DNxBCL2-tg+/+ CLL/SLL
clones shows an average length of 11.6 ± 2.9 AAs, which is
similar to the HCDR3 length in all other genotypes (-/-, 11.92 ±
2.7; +/-, 10.71 ± 2.6; -/+, 12.11 ± 3.3; +/+, 11.44 ± 2.8) and in
accordance with the HCDR3 average length in mice (11.5 ± 1.9
AAs) (44). Moreover, no remarkable differences were observed
between the HCDR3 average length of M vs.UM clones in any of
the genotypes, including the expanded CLL/SLL clones
(Supplementary Table 6). Although long HCDR3 have been
proposed to be a characteristic of UM-CLL HCDR3 in humans
(5, 42), long HCDR3 were found in both M- and UM-clones
from mice of the different genotypes, including the expanded
Frontiers in Immunology | www.frontiersin.org 970
CLL/SLL clones. It is noteworthy that the HCDR3 average length
of the Traf2DNxBCL2-tg+/+ UM-CLL/SLL clones (11.18 ± 2.9
AAs) is similar to the HCDR3 average length of the UM-CLL
clones from the Eµ-TCL-1-tg mice [11.6 ± 2.3 AAs (28) and
10.6 ± 2.4 AAs (31)] and from the IgH-TEµ mice [11.4 ± 2.32
(45)]. The average length of the UM-CLL/SLL clones developed
by theMDR-/- and miR15a/16-1-/- is slightly longer [12.87 ± 2.17
AAs (32)], but compared to that of the Traf2DNxBCL2-tg+/+

UM-CLL/SLL clones these differences did not reach statistical
significance (P = 0.073).

The average isoelectric point (pI) of the HCDR3 expressed in
the analyzed B cell clones from the Traf2DNxBCL2-tg mice of
the distinct genotypes is also shown in Supplementary Table 6.
The Traf2DNxBCL2-tg+/+ expanded CLL/SLL clones have the
most acidic HCDR3 (4.54 ± 1.31) compared to that of
Traf2DNxBCL2-tg mice with the other genotypes. Indeed, only
one Traf2DNxBCL2-tg+/+ CLL/SLL clone had a HCDR3 with a
basic pI. Aspartic acid and arginine are the most frequently
found acidic and basic AAs, respectively. In addition, tyrosine is
frequently overrepresented, with some HCDR3 containing as
much as 44% of tyrosine, compared to the average 25%
frequency for this AA found in the mouse HCDR3 (44). Of
note is that the average pI of the HCDR3 of UM-CLL/SLL clones
from the Traf2DNxBCL2-tg+/+ is significantly more acidic than
the average pI of the HCDR3 from the Eµ-TCL-1-tg UM-CLL
clones (4.5 ± 1.4 vs. 5.9 ± 1.9) (P=0.02).
FIGURE 4 | Analysis of the IGHV, IGHD and IGHJ genes subgroup usage in the CLL/SLL clones from the Traf2DNxBCL2-tg+/+ mice according to the SHM status
(UM and M). The percentage of usage of the various IGHV, IGHD and IGHJ subgroups found in B cell clones isolated from the Traf2DNxBCL2-tg+/+ mice (all) and
those found in the expanded CLL/SLL clones, distributed according to the SHM status (UM and M), are indicated and represented in circle diagrams. A given IGHV
gene was considered UM if there was ≤ 2% variation from the GL once corrected for the presence of SSPs.
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Identical HCDR3 Are Expressed in
Traf2DNxBCL2-tg+/+ CLL/SLL Clones From
Distinct Mice
A distinctive characteristic of human CLL is the expression of
structurally identical or highly similar HCDR3 between
unrelated individuals producing structurally similar BCRs (14,
15, 46). This occurrence is known as HCDR3 stereotypy and
points out toward the role of antigens in the clonal selection and
pathogenesis of the disease [reviewed in (17, 30, 47)].
Stereotyped HCDR3 rearrangements account for 41% of
human CLL clones (15). BCR stereotypes are also found in
CLL clones from the Eµ-TCL-1-tg (28, 31) and from the
MDR−/− and miR-15a/16-1−/− (32) mice, among others.

Our results also demonstrate the existence of two identical
HCDR3 sequences in the Traf2DNxBCL2-tg+/+ expanded CLL/
SLL clones. One is found in mice #50 and #55 (ASGYDYAMDY)
and the other in mice #13, #65 and #72 (GRDDGYYYAMDY)
(Table 1), accounting for the 25% of the CLL/SLL clones. These
Traf2DNxBCL2-tg+/+ CLL/SLL stereotyped HCDR3 sequences
are found in UM clones, in agreement with the findings in
stereotyped HCDR3 sequences from human CLL (17) and from
the above mentioned CLL mouse models (28, 32), that are also
found in UM-CLL clones. In addition, it is worth noting that
other stereotyped sequences are also found in seemingly not
expanded clones from the Traf2DNxBCL2-tg+/+ mice
(Supplementary Table 7). These stereotyped sequences might
belong to low represented CLL/SLL clones. Including these low
represented clones, we found 18 stereotyped HCDR3 account
(31% of all Traf2DNxBCL2-tg+/+ B cell clones), of which 16 of
them are UM and 2 are M.

Interestingly, stereotyped HCDR3 sequences were also found
in a few B cell clones from the Traf2DNxBCL2-tg-/-, +/- and -/+

mice (Supplementary Table 7). Of note is that some of these
stereotyped sequences are found in clones expressing distinct
IGHV genes, although always from the same IGHV subgroup. In
addition, Supplementary Figure 4 shows a Clustal W analysis of
the IGHV regions from representative clones producing identical
HCDR3. Even though these IGHV regions are UM, they differ in
their SHM pattern.

It is also worth mentioning that HCDR3 expressed in CLL
clones from the Eµ-TCL-1-tg (28), the MDR−/− and miR-15a/16-
1−/− (32) and the IgH-TEµ (45) mice were also found in
Traf2DNxBCL2-tg-/-,+/-,+/+ and in TRAF3xBCL2-tg+/+ mice,
although none of these were expanded clones (Supplementary
Table 8).This result is consistent with the existence of CLL-
biased stereotyped BCR in healthy individuals (48, 49).

Putative Antigens Recognized by the
HCDR3 Sequences of the CLL/SLL Clones
From the Traf2DNxBCL2-tg+/+ by
Comparison With Those in Public
Databases
As stated above, CLL cells frequently express BCR recognizing
autoantigens and pathogen-associated antigens [reviewed in (16,
17)] that are involved in the clonal selection and progression of
the disease (31, 50–54).
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The comparison of the BCR HCDR3 sequences of the
expanded Traf2DNxBcl2-tg+/+ CLL/SLL clones with similar
sequences found in public databases showed high homology
w i th HCDR3 re cogn i z ing au toan t i g en s , s u ch a s
phosphatidylcholine (82 and 75% homology), cardiolipin (86%
homology), dsDNA (80% homology), as well as to pathogen
antigens, such as hepatitis C virus E2 protein (81% homology),
CMV glycoprotein B (76% homology), Bordetella (75%
homology) and Vaccinia protein A3 (80% homology) (Table 3
and Supplementary Table 9). Many of these antigens were
already described as being recognized by the BCR of human
and mouse CLL clones, including phosphatidylcholine (28),
cardiolipin (55, 56), dsDNA (55, 57) and CMV (58, 59),
further supporting the role of these types of antigens in the
etiology of Traf2DNxBcl2-tg+/+ CLL/SLL.
DISCUSSION

Characteristics of the HCDR3 of the
Traf2DNxBCL2-tg Mice
The results presented herein underscore the similarities between
the CLL/SLL developed by the Traf2DNxBCL2-tg+/+ mice and the
CLL developed by human patients. This includes a biased usage of
IGHV genes, the existence of CLL/SLL clones with stereotyped
HCDR3 and the expansion of CLL/SLL clones with HCDR3
similar to those recognizing autoantigens and bacteria antigenic
determinants (1, 30, 60, 61). Furthermore, compared to other CLL
mouse models, such as the Eµ-TCL-1-tg (28) and theMDR−/− and
the miR-15a/16-1−/− (32) that only generate UM-CLL clones, the
CLL/SLL developed by the Traf2DNxBCL2-tg+/+ mice produce
both UM- and M-CLL/SLL clones, similar to human CLL, albeit a
vast majority of them are UM.

In this report we have compared the IGHV, IGHD and IGHJ
gene usage and the HCDR3 sequences expressed in B cells from
mice representing all the different genotypes obtained by
crossing heterozygous Traf2DN-tg and BCL2-tg mice, that is,
Traf2DNxBCL2-tg−/− (wild-type), +/− (expressing only
TRAF2DN), −/+ (expressing only BCL2) and +/+ (expressing
both TRAF2DN and BCL2). Our results further demonstrate
that monoclonal and oligoclonal B expansions are only observed
in the Traf2DNxBCL2-tg+/+ mice that developed CLL/SLL, thus
confirming that the expression of both transgenes is necessary to
trigger CLL/SLL in these mice (22). In addition, the comparison
of B cell clones isolated from Traf2DNxBCL2-tg mice with all
possible transgene combinations reveal a more restricted set of
IGHV subgroup and IGHV gene usage by the expanded
Traf2DNxBCL2-tg+/+ CLL/SLL clones compared to B cells
from mice of the other genotypes. In all genotypes, IGHV1
genes are the most frequently used by B cells from all the
different genotypes, in accordance with the fact that IGHV1 is
the gene subgroup most prominently used in mice (33). Of note
is the lack of IGHV2 genes found in Traf2DNxBCL2-tg+/+ B cells,
while this subgroup is readily represented in B cells from mice
with the other genotypes and is also found in lymphoma B cell
clones from the TRAF3xBCL2-tg+/+ mice. In this regard, it is
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worth noting that Traf2DNxBCL2-tg+/+ CLL/SLL clones have a
MZ origin (24) and that the IGHV2 gene subgroup is
underrepresented in transformed B cells of a MZ origin (62, 63)

As described above, the analysis of the IGHV subgroup usage
of the expanded Traf2DNxBCL2-tg+/+ CLL/SLL clones indicates a
preponderance of certain gene subgroups (IGHV1 > IGHV5 >
IGHV14 > IGHV3) (Supplementary Table 5). In contrast, the
expression of IGHV subgroups found in other CLLmousemodels
described in the literature is seemingly different. This includes the
Eµ-TCL-1-tg [IGHV1 > IGHV11 = IGHV12 > IGHV4, calculated
from (28)], theMDR−/− andmiR-15a/16-1−/− [IGHV1 > IGHV11
> IGHV12, calculated from (32)] and the IgH-TEµ-tg [IGHV1 =
IGHV11, calculated from (45)] mice (Supplementary Table 5).
Although IGHV1 is most frequently found in the CLL clones
from all these mouse models, the preferential use of IGHV5 and
IGHV14 by the Traf2DNxBCL2-tg+/+ CLL/SLL clones instead of
the use of IGHV11 and IGHV12 seen in the other CLL mouse
models might indicate that the CLL/SLL developed by the
Traf2DNxBCL2-tg+/+ mice arises from a B cell subset different
to that of the other CLL mouse models (see below). These
differences might also underlie the reported differences in
IGHV-D-J usage by mice of different strains (33, 36). In this
regard, differences in IGHV subgroup usage have been also
observed in CLL from distinct human populations [(64, 65) and
references therein]. However, it is noteworthy that mouse IGHV5
Frontiers in Immunology | www.frontiersin.org 1172
and IGHV11 belong to the IGHV clan whose human counterpart
is IGHV3, mouse IGHV1 and IGHV14 share clan with human
IGHV1, and mouse IGHV3 and IGHV12 are in the same clan
than human IGHV4 (66). Interestingly, IGHV3, IGHV1 and
IGHV4 are the subgroups most frequently represented in human
CLL [(64) and references therein], further stressing the
similarities between these CLL mouse models and the human
disease. However, it is worth noting human IGHV3, 1 and 4
subgroups contain the larger number of genes and also dominate
the repertoire in other physiological and pathological contexts.

Although some mouse CLL clones may have longer HCDR3
than normal B cells, as it has been shown in sets of UM-CLL in
humans (5, 42), a comparison of the HCDR3 average length of
the Traf2DNxBCL2-tg+/+ UM-CLL/SLL clones and those from
the Eµ-TCL-1-tg, theMDR−/−, the miR-15a/16-1−/− and the IgH-
TEµ-tg mice showed no significant differences among them and,
in all cases, it was similar to the HCDR3 average length of normal
mouse B cells. However, even though this result suggests that this
feature of human UM-CLL is not shared by its mouse
counterparts, an analysis of a large cohort of CLL samples
from 2662 patients have shown that the stereotyped HCDR3
sequences seem to cluster in discrete groups of 9, 13, 20 and 22
AAs (14), thus suggesting that long HCDR3 are not a general
feature of human UM-CLL but rather of some stereotype
subtypes. Thus, due to the limited number of mouse CLL
TABLE 3 | HCDR3 sequence alignments of the Traf2DNxBCL2-tg+/+ CLL/SLL clones and their putative target antigens.
A clustal W alignment and dendrogram comparing the HCDR3 from the expanded Traf2DNxBCL2-tg+/+ CLL/SLL clones is shown. The ID number of the mouse, the source of the tissue,
the frequency of occurrence for each clone and the SHM status of the clone (M or UM) are indicated. The putative antigens recognized by the CLL/SLL HCDR3 were determined using
NCBI protein Blast (non-redundant sequences restricted to Musmusculus, taxid. 10090) and selecting the antigen recognized by antibodies encoding HCDR3with the highest similarities to the
HCDR3 expressed by the CLL/SLL clones (the antigen candidate and the % of HCDR3 similarities is indicated). Those HCDR3 with ≥ 75% similarities are highlighted. The GenBank accession
code for the referred antibodies is provided. Alignment was performed using the clustal W muscle tree method UPGM https://www.ebi.ac.uk/Tools/phylogeny/simple_phylogeny/.
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HCDR3 sequences available, it remains an open question
whether a similar distribution could be observed in mouse CLL.

It is important to note that the Traf2DNxBCL2-tg mice are in
a FVB/NxBALB/c mixed background. This is relevant
considering that the vast majority of the IGHV sequences
available at the IMGT repertoire IG database are from C57BL/
6 mice and that IGHV from FVB/N mice are not represented in
this database. As stated above, there is a large sequence GL IGHV
variation between mouse strains (33, 36). Therefore, a direct
comparison of the IGHV sequences from the Traf2DNxBCL2-tg
mice with those GL stored at IMGT would not be representative
of the actual percentage of variation of the analyzed IGHV
sequences with the GL. To provide a more precise analysis, we
have compared all available sequences of the same IGHV gene
from the Traf2DNxBCL2-tg mice (irrespective of their genotype)
and TRAF3xBCL2-tg mice (also in a FVB/NxBALB/c mixed
background), as well as with available FVB/N IGHV sequences
available in public databases. These comparisons allowed
discriminating what differences with the GL sequence were
more likely SSP or SHM. Our results indicate that a majority
of the IGHV sequences of the Traf2DNxBCL2-tg -/+; +/- and ++
have ≤ 2% differences with the GL and are categorized as UM.
However, it is important to state that these results are an
estimation of SHM events and that a comparison with the GL
of the mouse strain analyzed is required for an accurate
assessment of SHM events.

Insights Into the Cellular Origins on
Mouse CLL
CLL ontogeny is still a matter of intense study and discussion (2,
67, 68). This also applies to the identification of the cellular
source of mouse CLL, notwithstanding our deeper knowledge on
mouse B cell ontogeny and differentiation compared to that of
humans. Questions still remain even on whether human and
mouse CLL arises from a single or multiple cell types.

MZ B cells are IgM+ cells responding to T-independent
antigens. They have a limited IGHV-D-J repertoire usage often
producing polyreactive BCR recognizing autoantigens and
pathogen antigens (69). MZ B cells are mostly UM but they
can go through extra-germinal center SHMs producing also M-
MZ B cells (70). Our studies on the mechanisms causing CLL/
SLL development in the Traf2DNxBCL2-tg+/+ mice showed that
B cell-specific TRAF2DN expression caused proteasome-
dependent degradation of endogenous TRAF2, thus rendering
B cell-specific Traf2DN-tg mice into bona fide B cell-specific
Traf2-deficient mice (24). Confirming previous results (38, 71),
we showed that the lack of functional TRAF2 enforces MZ B cell
accumulation and releases B cells from the need of BAFF for
survival (24). BCL2 overexpression, a defining characteristic of
human CLL cells (25) would provide in this model a necessary
additional level of protection against apoptosis, likely through a
similar mechanism to that described in human CLL (72).
Altogether, our results would be consistent with a role for
Traf2-deficiency and BCL2 overexpression in promoting MZ B
cells expansion and predisposing MZ B cells to CLL/SLL
transformation (24).
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A role for MZ B cells as the source of the CLL/SLL arising in
the Traf2DNxBCL2-tg+/+ mice might explain why in this mouse
model SLL arises first, later progressing to CLL (22). This would
be in line with the ability of MZ B cells to move into circulation
(73). Moreover, since the CLL/SLL developed by the
Traf2DNxBCL2-tg+/+ mice may express or not CD5 on their
surface (22), this could reflect that MZ B cells were at different
activation stage at the time of transformation [reviewed in (2)].

On the other hand, various lines of evidence suggest that the
CLL developed by other mouse models might arise from a different
B cell type. In this regard, there is evidence pointing out to a B1a cell
origin for UM-CLL developed by some of the available CLL mouse
models [reviewed in (2)]. First, the preferential usage of IGHV1
and IGHV11 genes by the Eµ-TCL-1-tg (28, 51, 74) and by the
MDR−/− andmiR-15a/16-1−/−mice (32) is similar to the preferential
IGHV subgroup usage of mouse splenic B1a cells (75). Second,
the most frequently expressed clones in B1a cells (both,
peritoneal and splenic) have HCDR3 with the sequences
MRYGNYWYFDV, MRYSNYWYFDV, MRYGSYWYFDV
and MRYGSSYWYFDV (75) found in BCRs that are reactive
to phosphatidylcholine (28). These HCDR3 are commonly
found in expanded CLL clones from the Eµ-TCL-1-tg
mice (28) the MDR−/− and miR-15a/16-1−/− mice (32) and the
IgH-TEµ mice (45) (Supplementary Table 8). Third, Hayakawa
and coworkers (52) have shown that allotransplantation of
B1 cells, but not of other B cell subtypes, from the Em-TCL1-tg
mice resulted in CLL with a biased repertoire, including
stereotyped BCRs, thus recapitulating the CLL developed by the
Em-TCL1-tg mice.

Of note is that both MZ B cells and B1 cells have been
proposed as a possible source for CLL cells [reviewed in (2)].
However, there is conflicting evidence for MZ B cells as the
source of human CLL (2, 67) and we are still lacking clear
evidence on the existence of a human counterpart of mouse B1
cells. Therefore, despite the high similarities of the CLL
developed by humans and the available mouse CLL models,
including the Traf2DNxBCL2-tg+/+ mice, additional research is
needed to elucidate whether mouse and human CLL have a
similar ontogeny and cell type origin.

Possible Role of Autoantigens and
Pathogen Antigens in the CLL/SLL
Developed by the
Traf2DNxBCL2-tg+/+ Mice
Although CLL cells relying on antigen-independent, cell-
autonomous BCR signaling have been described (76), there is
ample evidence for the role of autoantigen-stimulated BCR in
CLL clonal selection, expansion and clonal evolution (31, 50–54).
Our results showing the similarities of the HCDR3 expressed by
the expanded Traf2DNxBCL2-tg+/+ CLL/SLL clones to those
recognizing autoantigens and pathogens suggest that antigen-
stimulation would also drive disease progression in our CLL/SLL
mouse model, similarly to what has been demonstrated in the
Eµ-TCL-1-tg mice (31, 51).

Stereotyped HCDR3 sequences are mostly found in UM-CLL
clones in humans and produce BCRs that frequently recognized
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autoantigens [reviewed in (16, 17)]. In agreement with these
findings, the identical HCDR3 found in the Traf2DNxBCL2-tg+/+

mice were also UM-CLL/SLL clones. Moreover, we found several
Traf2DNxBCL2-tg+/+ UM-CLL/SLL clones expressing
HCDR3 highly similar to HCDR3 recognizing autoantigens
(phosphatidylcholine) and pathogen antigens (CMV, hepatitis
C virus, and lipoteichoic acid). However, HCDR3 with similar
antigen specificities were also found in M-CLL/SLL clones,
recognizing autoantigens, such as cardiolipin and dsDNA, and
pathogen antigens (Bordetella) (Table 3). In this regard, Herve
and coworkers (12) have shown that both M- and UM-CLL
clones derived from self-reactive B cell precursors and our data
would be in agreement with those results.

Finally, the presence of B cell clones with similar HCDR3
sequence in mice with different genotypes (Traf2DNxBCL2-tg-/-;
+/-, -/+ and +/+) suggests that all mice are exposed to similar antigens
and have similar immune responses to them. Exposure to the same
antigens should be expected considering that mice in this study are
littermates and are housed together. The fact that only the
Traf2DNxBCL2-tg+/+ mice develop CLL/SLL highlights the need
of both Traf2 deficiency and BCL2 overexpression for promoting
CLL development in this mouse model and underlines a role for
autoantigens- and pathogen antigens-specific HCDR3 in driving
disease progression.
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Cientıfícas (CSIC).
Frontiers in Immunology | www.frontiersin.org 1374
AUTHOR CONTRIBUTIONS

GP-C designed, performed, and analyzed the experiments and
helped writing the paper. JZ designed and analyzed the
experiments and wrote the paper. All authors contributed to
the article and approved the submitted version.
FUNDING

This work was supported by grants from the Agencia Estatal de
Investigacion (PID2019-110405RB-I00/AEI/10.13039/
501100011033) and from the Instituto de Salud Carlos III
(PI16/000895). We acknowledge support of the publication fee
by the CSIC Open Access Publication Support Initiative through
its Unit of Information Resources for Research (URICI). The cost
of this publication was paid in part by FEDER funds.
ACKNOWLEDGMENTS

We are indebted to Laura Barrios (Scientific Calculation Center,
SGAI, CSIC) for statistical analyses. We are thankful to Maria G.
Gonzalez-Bueno for excellent technical support. We are grateful
to the personnel of the Animal facility and Genomics facilities at
Instituto de Investigaciones Biomedicas “Alberto Sols”. We also
thank Dr. Paloma Perez-Aciego (Fundacion LAIR, Madrid) for
kindly providing reagents and helpful discussions. Pablo Carr,
Andrea de Andrés and Blanca Jiménez are acknowledged for
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Continuous MYD88 Activation Is
Associated With Expansion and Then
Transformation of IgM Differentiating
Plasma Cells
Catherine Ouk1†, Lilian Roland1†, Nathalie Gachard1‡, Stéphanie Poulain2‡, Christelle Oblet1,
David Rizzo1, Alexis Saintamand1, Quentin Lemasson1, Claire Carrion1, Morgane Thomas1,
Karl Balabanian3, Marion Espéli3, Marie Parrens4, Isabelle Soubeyran5, Mélanie Boulin1,
Nathalie Faumont1, Jean Feuillard1* and Christelle Vincent-Fabert1*

1 UMR CNRS 7276/INSERM U1262 CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital
University Center (CHU) of Limoges, Limoges, France, 2 UMR CANTHER « CANcer Heterogeneity, Plasticity and Resistance
to THERapies » INSERM 1277-CNRS 9020 UMRS 12, University of Lille, Hematology Laboratory, Biology and Pathology
Center, CHU de Lille, Lille, France, 3 Institut de Recherche Saint-Louis, EMiLy, INSERM U1160, University of Paris, Paris,
France, 4 Pathology Department, Hospital University Center of Bordeaux, Bordeaux, France, 5 Laboratory of Pathology,
Institut Bergonié, Bordeaux, France

Activating mutations of MYD88 (MYD88L265P being the far most frequent) are found in
most cases of Waldenström macroglobulinemia (WM) as well as in various aggressive B-
cell lymphoma entities with features of plasma cell (PC) differentiation, such as activated B-
cell type diffuse large B-cell lymphoma (DLBCL). To understand how MYD88 activation
exerts its transformation potential, we developed a new mouse model in which the
MYD88L252P protein, the murine ortholog of human MYD88L265P, is continuously
expressed in CD19 positive B-cells together with the Yellow Fluorescent Protein
(Myd88L252P mice). In bone marrow, IgM B and plasma cells were expanded with a
CD138 expression continuum from IgMhigh CD138low to IgMlow CD138high cells and the
progressive loss of the B220 marker. Serum protein electrophoresis (SPE) longitudinal
analysis of 40 Myd88L252P mice (16 to 56 weeks old) demonstrated that ageing was first
associated with serum polyclonal hyper gammaglobulinemia (hyper Ig) and followed by a
monoclonal immunoglobulin (Ig) peak related to a progressive increase in IgM serum
levels. All Myd88L252P mice exhibited spleen enlargement which was directly correlated
with the SPE profile and was maximal for monoclonal Ig peaks. Myd88L252P mice
exhibited very early increased IgM PC differentiation. Most likely due to an early
increase in the Ki67 proliferation index, IgM lymphoplasmacytic (LP) and plasma cells
continuously expanded with age being first associated with hyper Ig and then with
monoclonal Ig peak. This peak was consistently associated with a spleen LP-like B-cell
lymphoma. Clonal expression of both membrane and secreted µ chain isoforms was
demonstrated at the mRNA level by high throughput sequencing. The Myd88L252P tumor
transcriptomic signature identified both proliferation and canonical NF-kB p65/RelA
activation. Comparison with MYD88L265P WM showed that Myd88L252P tumors also
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shared the typical lymphoplasmacytic transcriptomic signature of WM bone marrow
purified tumor B-cells. Altogether these results demonstrate for the first time that
continuous MYD88 activation is specifically associated with clonal transformation of
differentiating IgM B-cells. Since MYD88L252P targets the IgM PC differentiation
continuum, it provides an interesting preclinical model for development of new
therapeutic approaches to both WM and aggressive MYD88 associated DLBCLs.
Keywords: MYD88 L265P mutation, lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia, IgM
secretion, monoclonal Ig peak, B-cell lymphoma, plasma cell
INTRODUCTION

Waldenström’s macroglobulinemia (WM) is an incurable
indolent B-cell lymphoma of the elderly accounting for less
than 5% of B-cell lymphomas with, as unique characteristics, a
serum IgM peak and primary medullary localization of
lymphoplasmacytic cells that exhibit continuous differentiation
from mature B lymphocytes to IgM secretory plasma cells (1).
Secondary lymphoid organ infiltration and/or a leukemic phase
is found in 20% cases. Other manifestations include neuropathy,
cryoglobulinemia, skin rash, cold-agglutinin hemolytic anemia,
and amyloidosis (2). The discovery of the activating mutation of
MYD88 (MYD88L265P being the far most frequent) in more than
90% of WM cases contributed to the concept that this entity is
genetically distinct from other B-cell lymphomas (3, 4). Being
present in 50% of IgM monoclonal gammopathies of
undetermined significance (MGUS), MYD88 mutations are
most likely a primary event in WM (5). Considered as
secondary genetic events, activating mutations of CXCR4
(CXCR4S338X or CXCR4WHIM), a receptor implicated in
migration and bone marrow (BM) homing of leucocytes, are
found in 30% of WM cases (6). Additional mutations of CD79b,
ARID1A or TP53 have been reported (7).

Despite these advances, WM pathophysiology is incompletely
understood. Its treatment remains challenging and the exact role
ofMYD88mutations in the emergence of lymphoplasmacytic B-
cell clones is not known (7, 8). Indeed, MYD88 mutations are
also found in 30% of activated B-cell type diffuse large B-cell
lymphomas (ABC-DLBCL), more than half of primary
cutaneous DLBCLs, leg type, and many DLBCLs at immune-
privileged sites but not in plasma cell myelomas, even IgM types
(9). It should be noted that IgM expression is a surrogate marker
of ABC-DLBCLs (10). Moreover, all these aggressive B-cell
tumors associated with MYD88, which often exhibit
morphological features of plasma cell (PC) differentiation, are
all associated with expression of the PC differentiation marker
IRF4. MYD88 protein is the canonical adapter for inflammatory
signaling pathways to downstream members of the Toll-like
receptor (TLR) and interleukin-1 receptor (IL-1R) families.
Forming the myddosome complex, MYD88 binds IL-1R or
TLR family members to IRAK kinases family. IRAK activation
leads to activation of the NF kappa B (NF-kB) transcription
factor and interferon 3 and 7 regulatory factors (IRF3 and 7).
MYD88L265P constitutively increases formation of the myddosome
complex with downstream NF-kB activation (3, 11, 12).
org 278
Experimentally, MYD88L265P is essential for survival of ABC-
DLBCL and WM cell lines (3, 11). A recent publication suggests
the involvement of HOIP and LUBAC-dependent NF-kB
activation in the transformation potential of MYD88 activation
in a mouse model (13). The current published mouse models with
continuous MYD88 activation in the B-cell lineage develop
aggressive clonal B-cell lymphomas that resemble human ABC-
DLBCLs (13–15). Although discussed by Jo et al. in the HOIP/
LUBAC activation context, no IgM peak was reported in these
models. Therefore, the question of a direct role for MYD88 in the
development of a lymphoplasmacytic lymphoma withmonoclonal
IgM secretion is still open. Recently, K Schmidt et al. reported a
mouse model in which MYD88 activation was responsible for an
indolent lymphoproliferative disorder resembling to IgM
monoclonal gammopathy of unknown significance (IgM
MGUS), the asymptomatic preclinical stage of WM (16).

Here, we present a newmouse model in which the MYD88L252P

protein, the murine ortholog of human MYD88L265P, is
continuously expressed in the B-cell lineage together with Yellow
Fluorescent Protein (YFP) (Myd88L252P mice). We show that these
mice first developed early expansion of CD93neg IgM PCs with an
increase in both IgM secretion and bone marrow relocalization of
IgM B-cells. Moreover, these mice also had increased percentages
of IgMhigh CD138low and IgMlow CD138high cells with a CD138
expression continuum between both cell types. Then, these mice
developed an oligoclonal or clonal IgM lymphoplasmacytic-like B-
cell lymphoma together with a serum IgMmonoclonal peak. These
tumors had marked transcriptomic similarities to WM but they
were located in the spleen and exhibited significant increased
proliferation. Despite differences between Myd88L252P LP-like B-
cell tumors and WM, our results demonstrate that the MYD88
transformation potential is strongly associated with a shift in B-cell
peripheral differentiation toward plasma cells with IgM secretion.
These results help explain why MYD88 activation is found in most
WM and in various aggressive B-cell lymphomas with IgM PC
differentiation engagement such as ABC DLBCLs.
MATERIALS AND METHODS

Generation of the Transgenic Mouse
Line Myd88L252P
The transgenes (cDNA) Myd88WT-IRES-Yfp and Myd88L252P-
IRES-Yfp were synthetized (Genecust, Dudelange, Luxembourg)
May 2021 | Volume 12 | Article 641692
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and inserted into the pcDNA3.1 vector. Sequences of these
transgenes are given in Supplementary Materials and
Methods. The Myd88L252P-IRES-Yfp insert was cloned into the
pROSA26-1 vector (17) containing a LoxP-flanked region,
consisting of a stop cassette and the Neomycin gene (18). The
transgene Myd88L252P-IRES-Yfp was inserted downstream from
the stop cassette. JM8 embryonic stem (ES) cells were transfected
with the targeting vector according to a previously described
protocol (19). Targeted ES cells were screened for homologous
recombination by PCR. Genomic DNA (gDNA) extraction was
performed using an in house protocol and consisted of gDNA
precipitation with absolute ethanol. Twenty nanograms gDNA
were used for each PCR (primer sequences in Supplementary
Materials and Methods) using LongAmp® Taq DNA Polymerase
(New England Biolabs, Ipswich, MA) according to the
manufacturer’s recommendations. Recombined ES cells were
injected into C57BL/6J blastocysts which were transferred into
foster mothers to obtain chimeric mice (Myd88L252P-flSTOP mice).

Mice
Cd19Cre mice (20) and mice carrying the Myd88L252P-IRES-Yfp
allele were crossed to induce the expression of the transgene in B
cells (Myd88L252P mice). Offspring were routinely screened by
PCR using specific primers for insertion of the transgene
(Supplementary Materials and Methods). Animals were housed
at 21–23°C with a 12-hour light/dark cycle. All procedures were
conducted under an approved protocol according to European
guidelines for animal experimentation (French national
authorization number: 8708503 and French ethics committee
registration number APAFIS#14581-2018041009469362 v3).

Cell Transfection and NF-kB Dependent
Dual-Luciferase Reporter Assay
A20 cells (5.106) were co-transfected with 5 µg of either empty
pcDNA3.1, pcDNA3.1-Myd88WT or pcDNA3.1-Myd88L252P

vectors, plus 100 ng pRL-TK Renilla luciferase expression vector
(Promega Corporation, Madison, WI) and 5 µg of either the 3X-
kB-L vector with three copies of the major histocompatibility
complex (MHC) class I kB element or its mutated counterpart, the
3X-mutkB-L vector (21) using Amaxa L013 program (AMAXA
Biosystems, Cologne, Germany). Twenty four hours after
transfection, cells were lysed and luciferase activities were
measured using the Dual-Luciferase Reporter Assay System and
the Turner Designs TD-20/20 Luminometer (Promega
Corporation, Madison, WI).

Sera Analyses
Serum was obtained from blood collected retro-orbitally. Specific
ELISA and serum electrophoresis assay were performed as
previously described (19, 22).
Flow Cytometry and In Vivo
Proliferation Assays
In order to collect BM cells of Cd19Cre and Myd88L252P mice,
femurs from both hind legs were rinsed with PBS and sternum
Frontiers in Immunology | www.frontiersin.org 379
was gently crushed and cells filtered on a nylon meshwork that
was rinsed with PBS. Spleen cells from Cd19Cre and Myd88L252P

were filtered through a sterile nylon membrane. Blood samples
were collected retro-orbitally. Red cells were lysed by RBC Lysis
Buffer (Biolegend, San Diego, CA). Cell suspensions were
resuspended at 4°C in a labeling buffer (PBS, 1% BSA, 2mM
EDTA) and labeled with fluorescent conjugated monoclonal
antibodies listed in Supplementary Materials and Methods.
Labeled cells were analyzed using a BD Fortessa SORP flow
cytometer (BD Bioscience France, Le Pont de Claix, France).
Results were analyzed using Kaluza Flow Cytometry software 1.2
(Beckman Coulter, Brea, CA).
Immunohistochemistry
Paraffin embedded tissue sections (5µm) were deparaffinized as
follows: slides were immersed successively in xylene twice for
3 min, 3 times for 3 min in 100% ethanol, once for 3 min in 95%
ethanol and 3 times in PBS for 5 min. Then, slides were
immersed in citrate buffer pH7 and heated 4 times for 5 min
40 sec in a microwave at 800W. Image acquisition was performed
with the Nanozoomer 2.0RS Hamamatsu and NDP.scan software
(812 Joko-cho, Higashi-ku, Hamamatsu City, 431-3196, Japan).
Quantification of Ki67 nuclear labelling was performed with the
imageJS and the Ki67 module: http://imagejs.org/?http://module.
imagejs.googlecode.com/git/mathbiol.chromomarkers.js&http://
module.imagejs.googlecode.com/git/ki67 (23).
Gene Expression Profiling
A series of seven mice (three Cd19Cre and four Myd88L252P) was
studied in parallel with bone marrow purified tumor B-cells from
a series of 11 patients with MYD88L265P WM (series 1) as well as
lymph nodes from a series of 58 patients: 19 MYD88WT chronic
lymphocytic leukemia, 15MYD88L265P WM, 12MYD88wt Nodal
marginal zone lymphoma, 5 MYD88wt WM, 4 follicular
lymphoma and 3 patients with benign follicular hyperplasia
(series 2, Supplementary Tables 1 and 2). Approval of this
protocol was obtained from the local IRB of the CHRU of Lille
(CSTMT043). MYD88 and CXCR4 mutational status was
determined as previously described (6). Total mRNA was extracted
from whole infiltrated tissues and purified B-cells as reported (24).
For humans and mice, RNA amplification and hybridization onto
microarrays were performed on an Affymetrix Human Genome
U133 Plus 2.0 Array and on an Affymetrix Gene Atlas system® with
theMoGene-2_1-st-v1 Affymetrix chip (Affymetrix, Santa Clara, CA)
respectively according to a previously described protocol (25) (GEO
accession number GSE138273). Bioinformatic analyses are detailed in
Supplementary Materials and Methods.
Repertoire Analysis
RNA was extracted from total spleen, and 1µg was used for
sequencing. Transcripts were amplified by 5’RACE PCR using
reverse primers hybridizing within either the membrane or
secreted exon of the µ or g genes. ProtoScript® II Reverse
Transcriptase (New England Biolabs, Ipswich, MA) was used
for reverse transcription and amplicons were obtained using
May 2021 | Volume 12 | Article 641692
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Phusion®High Fidelity DNA Polymerase (New England Biolabs,
Ipswich, MA) according to the manufacturer’s instructions.
Primers used are listed in Supplementary Materials and
Methods. Illumina sequencing adapter sequences were added
by primer extension, and resulting amplicons were sequenced on
an Illumina MiSeq sequencing system using MiSeq kit Reagent
V2 500 cycles. Paired reads were merged using FLASH (26).
Repertoire analysis was done using the IMGT/HighV-QUEST
online tool (http://www.imgt.org/IMGT_vquest/vquest). The
resulting output was parsed by in-house R script.
RESULTS

Generation of a Mouse Model With
Insertion of the Mouse Mutation Myd88
L252P Into the Rosa26 Locus
To study the effect of continuous MYD88 activation on B-cell
differentiation, we created a transgene containing the mutant
murine cDNA sequence of Myd88 (Myd88L252P) which is
orthologous to the human mutant sequence MYD88L265P, in
frame with the Yellow Fluorescent Protein (Yfp) sequence and
separated by an Internal Ribosome Entry Site (IRES) sequence
(Myd88L252P-IRES-Yfp) (Supplementary Figure 1A). To validate
this transgene, we checked that it induced expression of both
MYD88L252P and YFP proteins in the murine A20 B-cell line
(Supplementary Figures 1B, C) and that it was responsible for
constitutive NF-kB activation (Supplementary Figure 1D). The
Myd88L252P-IRES-Yfp insert was cloned into the pROSA26.1 vector
(17) (Supplementary Figure 1E). In this construct, the insert was
subcloned downstream from a Neomycin-STOP cassette flanked by
LoxP sites. Chimeric mice were intercrossed to obtain stable
germinal transmission of the Myd88L252P-IRES-Yfp transgene
(Myd88L252P-flSTOP mice). Myd88L252P-flSTOP and Cd19Cre mice
were crossed. Mice with both transgenes (Myd88L252P mice) were
then studied, with their age matched Cd19Cre littermates as controls
(Cd19Cre LMC). Specific B-cell expression of the transgene was
found in more than 90% of blood and spleen B cells compared to
virtually no expression in the T-cell compartment (Supplementary
Figure 1F). As expected and as evidence of NF-kB activation,
Myd88L252P splenocytes over-expressed the NF-kB target gene
Tnfaip3 at the mRNA level (Supplementary Figure 1G).
Serum Protein Electrophoresis Profiles
Segregate Myd88L252P Mice According
to Age
As a first exploratory step, serum protein electrophoresis (SPE)
was systematically performed on a series of 40 Myd88L252P mice
and 26 age matched Cd19Cre LMCs. As shown in Figure 1A
three SPE profiles were seen: normal, polyclonal hyper
gammaglobulinemia (hyper Ig) and a monoclonal Ig peak. All
Cd19Cre LMCs exhibited normal SPE regardless of their age. In
other words, SPEs with hyper Ig or Ig peaks were found only in
Myd88L252P mice (Figures 1A, B). Figure 1B shows the
relationship between the age of Myd88L252P mice and the SPE
Frontiers in Immunology | www.frontiersin.org 480
profile. Young Myd88L252P mice (16-23 weeks) had a normal or
hyper Ig SPE profile. In contrast, most mice older than 32 weeks
had an Ig peak. In between these two groups, 24 to 31 week old
mice (middle age) had a hyper Ig or an Ig peak in 65% and 35%
cases respectively (Fisher test, p=2.10-4). ELISA quantification of
serum Ig revealed that young Myd88L252P mice with a normal
SPE exhibited a moderate IgM and IgG hyper Ig when compared
to their Cd19Cre LMC (Figure 1C and Supplementary Figure 2).
Serum IgG levels of middle aged and old Myd88L252P mice were
variable when compared to their young counterparts. This was in
contrast to serum IgM levels that were significantly increased in
middle aged mice and even more so in old mice and correlated
with the SPE profile and age (Figure 1C and Supplementary
Figure 2).

These results first indicate that continuous MYD88 activation
in B cells was associated with a global increase in Ig secretion.
Second, age related occurrence of polyclonal hyper Ig and then
monoclonal Ig peaks correlated with the increase in serum IgM
levels. This suggests that, after a polyclonal expansion phase,
aging of Myd88L252P mice was associated with clonal restriction
of IgM-secreting B-cells, very likely reflecting the MYD88L252P B-
cell transformation power in these cells. Therefore, these first
results point to a strong relationship between MYD88L252P and
IgM-secreting B-cells.
Myd88L252P Bone Marrow IgM Plasma Cell
Content Was Increased and Displayed a
CD138 Expression Continuum
As shown in Figure 2A, Myd88L252P bone marrow global B-cell
content was comparable to that of Cd19Cre LMCs in terms of
percentages in 16 week old mice with normal SPE. Transgene
expression was mainly found in Myd88L252P CD19high B-cells.
Indeed, with an on/off effect, percentages of YFP positive cells (i.e
of LoxP rearranged cells) was directly correlated with CD19 mean
fluorescence intensity (Figure 2B). Comparison of CD19cre LMC
and Myd88L252P mice did not reveal any significant bone marrow
B-cell increase with age. However older Myd88L252P mice had
increased levels of IgMpos CD19high B-cells (Figures 3A, B, left
panel and Supplementary Figure 3 for the gating strategy).
Strikingly, a CD138 expression continuum was clearly evident in
a triple parametric B220/CD138/IgM histogram gated on mature
B-cells and/or PCs in Myd88L252P mice only (Figure 3A, lower
panel see in red the decrease in B220 and the increase in CD138
expression). This CD138 expression continuum, that we recently
showed to be characteristics of MYD88L265P WM bone marrow
tumor B-cells (Gayet et al, Cytometry B 2021), started from
IgMhigh CD138low and ended at IgMlow CD138high cells (Figure
3A, lower panel). This CD138 expression continuum was absent
in Cd19Cre LMCs. Consequently, Myd88L252P mice showed
increased percentages of both IgMhigh CD138low B-cells (most
likely precursors of IgM PCs) and total bone marrow PCs (Figure
3B, right panel). Moreover, the proportion of bone marrow IgM
PCs was significantly increased in young Myd88L252P mice and
even more in older Myd88L252P mice (Figure 3C). Indeed,
Myd88L252P CD19pos/YFPpos B cells tended to accumulate in the
May 2021 | Volume 12 | Article 641692
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IgMhigh B-cell compartment when compared to its Myd88L252P

CD19pos/YFPneg counterpart (Supplementary Figure 4).
Altogether, these results indicate that transgene expression

started in a minority of CD19weak B-cell precursors and was
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mainly expressed at the latest stages of B-cell lymphopoiesis
when CD19 expression was high. Evidence for bone marrow
increase in both IgMhigh CD138low and PCs with the
characteristic CD138 expression continuum may either suggest
A

B

C

FIGURE 1 | Myd88L252P transgenic mice exhibited serum IgM hypergammaglobulinemia and then monoclonal IgM peaks when ageing. (A) Examples of serum
protein electrophoresis of Cd19Cre mice (respectively 16 and 36 weeks-old) and three Myd88L252P mice (16, 24 and 36 week-old) with normal, polyclonal
hypergammaglobulinemia (hyper Ig) and monoclonal Ig peaks respectively. (B) Frequencies of cases according to SPE profile and age for Myd88L252P mice (n = 40).
(C) IgM and IgG serum levels in Cd19Cre and Myd88L252P mice. For Cd19Cre (n = 15), Myd88L252P (n = 36). Results are expressed as the mean ± SEM. Mann
Whitney test p-value < 0.01 and < 0.001 are symbolized by ** and *** respectively.
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that the bone marrow of Myd88L252P mice had the ability to
home IgM PC precursors and PCs and/or a shift in peripheral B-
cell differentiation toward IgM PC in Myd88L252P mice.
MYD88L252P First Induced Peripheral Early
Lymphoplasmacytic and Plasma Cells
Expansion and Then B-Cell
Transformation Into a
Lymphoplasmacytic-Like Lymphoma
Extended white blood cell differential was not altered and mice
did not exhibit any palpable/visible peripheral lymphadenopathy
(data not shown) regardless of the SPE profile. Young
Myd88L252P mice with normal SPE tended to have spleen
enlargement when compared to their age related Cd19Cre

LMCs (Figure 4). Spleen enlargement was dramatically
increased in Myd88L252P mice with hyper Ig and even more so
in those with an IgM peak, a feature that was most likely to
related to B-cell transformation. Indeed, the B/T cell ratio was
markedly increased in these latter mice (Supplementary
Figure 5).

While spleen histology of young Myd88L252P mice was
comparable to that of their Cd19Cre LMCs, with an apparent
normal spleen architecture, Myd88L252P mice with hyper Ig or an
Ig peak exhibited enlarged and congruent lymphoid nodules (Figures
5A–E). At high magnification, a marked lymphoplasmacytic aspect
Frontiers in Immunology | www.frontiersin.org 682
consisting of a mixture of small to large lymphocytes with
numerous lymphoplasmacytic cells (LP cells) and PCs was
noted in all Myd88L252P mice whatever their SPE profile
(Figures 5F–J). This spleen aspect was particularly striking for
mice with Ig peaks, and was characterized by massive and diffuse
infiltration of lymphoplasmacytic cells that evoked human B-cell
lymphomas with features of PC differentiation, further called
“LP-like lymphoma” or “LP-like tumors”. (see also the
cytological imprint in Supplementary Figure 6). Presence of LP
cells and PCs in Myd88L252P spleen was invariably confirmed by
immunohistochemistry after intracellular Ig labeling regardless of
SPE status, with numerous LP cells and terminally differentiated
PCs (cells with intermediate or strong intracytoplasmic Ig labeling
respectively). Noteworthy, cell densities were markedly increased
in Myd88L252P mice with hyper Ig or with an Ig peak (Figures
5K–O).

Based on B-cell expression of CD21 and CD23, frequencies of
CD21pos CD23high follicular B-cells were not significantly altered
in Myd88L252P mice regardless of their SPE status (Figure 6A
and Supplementary Figure 7). In contrast, a decrease of
CD21high CD23pos marginal zone B-cells was observed. This
cell content nearly disappeared in Myd88L252P mice with an Ig
peak. Only total PCs were increased in these mice (Figure 6B).
However, among total spleen PCs, percentages of IgM PCs were
increased in a similar manner in all Myd88L252P mice no matter
what their SPE status was (Figure 6C and Supplementary
A

B

FIGURE 2 | Analysis of B-cell differentiation in bone marrow from 16 week-old Cd19Cre and Myd88L252P mice. (A): Percentage of CD19pos and/or B220pos B-cells in
bone marrow from 16 week-old Cd19Cre (n =9) and Myd88L252P mice (n = 9). Results are expressed as the mean ± SEM. (B): Flow cytometry analysis of the
transgene expression according to CD19 expression levels (n=9). Left panel: CD19 monoparametric histogram sliced according to CD19 MFI intervals. For each
CD19 MFI interval, the percentage of bone marrow B220pos YFP positive cells was noted. Two examples of YFP monoparametric histograms are presented in the
upper part, one for CD19low B220pos B-cells and one for CD19high B220pos B-cells with their respective percentages of YFPpos cells Right panel: percentage of
YFPpos B220pos B-cells (Y axis) according to CD19 MFI (X axis).
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A

B C

FIGURE 3 | Increase in the IgM PC compartment in bone marrow from Myd88L252P transgenic mice. (A) Example of bi and triple parametric flow cytometry
histograms gated on mature B or plasma cells for expression of IgM, B220 and CD138 for Cd19Cre and Myd88L252P mice (left and right panels respectively). Upper
panels: IgMlow or neg CD138neg, IgMhigh CD138low, IgMhigh CD138high and IgMlow CD138high cells are colored in blue, orange, red and purple respectively using a
hinged quadstat of the Kaluza software and an IgM/CD138 2-dimensional plot. The hinged quadstat was set-up for one Cd19Cre mouse. Lower panels: triple
parametric histograms using the radar function of the Kaluza software. Note the CD138 expression continuum on Myd88L252P bone marrow B-cells that correlated
with a progressive decrease in B220 expression. This CD138 expression continuum was virtually absent in Cd19Cre mice. (B) Percentages of total IgMpos B cells and
IgMhigh CD138low pre PCs and B220low CD138high PCs in bone marrow from 16-24 week-old Cd19Cre (n =6) and Myd88L252P mice with normal SPE or hyper Ig (n =
6 and n = 3 respectively). Results are shown as the mean ± SEM. Mann Whitney test p-value < 0.05 is symbolized by *. (C) Percentages of IgMpos CD138high PCs
among total PCs in bone marrow from 16-31 week-old Cd19Cre (n =6) and Myd88L252P mice with normal SPE or hyper Ig (n = 6 and n = 3 respectively). Results are
shown as the mean ± SEM. Mann Whitney test p-value < 0.05 and < 0.01 are symbolized by * and ** respectively.
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Figure 7). Moreover IgM PCs were predominantly CD93neg

suggesting that they belonged to the proliferating PC
compartment (27) (Figure 6C and Supplementary Figure 7).

Therefore, morphological and immunophenotypic results
indicated that continuous MYD88 activation was associated
with continuous peripheral IgM PC differentiation very early
on and that these LP and PC subsets continuously expanded with
age first being associated with hyper Ig and then with an Ig
monoclonal peak and a LP-like lymphoma aspect in the spleen.

Proliferation Index of Myd88L252P LP-Like
Tumors Was Moderately Increased in
Myd88L252P Tumors With an LP-Aspect
To better study these Myd88L252P LP-like tumors, we compared
their Ki67 proliferation index to that their of Cd19Cre LMCs as
well as to L.CD40, L.CD40/Lc-MYC mice as controls. L.CD40
mice are a model of marginal zone spleen B cell indolent
lymphomas without plasma cell differentiation but with NF-kB
activation (28). L.CD40/Lc-MYC mice are a model of ABC-
DLBCLs with both c-Myc and NF-kB activation in B-cells (24).
Very few Ki67 positive cells were seen outside germinal centers in
spleen sections from Cd19Cre mice (Figure 7A panel A). The
Ki67 index was weak in L.CD40 mice (Figure 7A panel B). By
contrast, the vast majority of cells from L.CD40/Lc-MYC tumors
were Ki67 positive (Figure 7A panel C). Being moderately
increased in young mice with a normal SPE, the Ki67
proliferative index was further enhanced in mice with hyper Ig
and even higher in those with an Ig peak, but never reached the
proliferation index levels of L.CD40/Lc-MYC tumors (Figures 7A,
panels D–7 and 7B). In vivo incorporation of BrdU was tested for
four mice with an Ig peak and one with polyclonal hyper Ig.
Results confirmed that the proliferation index was consistently
increased (Supplementary Figure 8) albeit always less than 30%
with this technique.

Altogether, these results show that MYD88L252P expression in
B-cells was responsible for progressive peripheral B-cell
Frontiers in Immunology | www.frontiersin.org 884
expansion related to an early increase in B-cell proliferation.
Mice with an Ig peak clearly exhibited a lymphoproliferative
disease with a marked increase in proliferation index but with
features of an LP-like lymphoma such as the presence of
numerous LP cells and PCs.

Myd88L252P Mice With Ig Peaks Developed
IgM but Not Igg Monoclonal or Oligoclonal
B-Cell Lymphomas With Expression of
Both Membrane and Secretory Heavy
Chain mRNA
Since Myd88L252P mice had a global hyper Ig even if
predominantly IgM, it was important to assess µ or g chain
clonality of tumor surface and secreted immunoglobulins at the
molecular level. Six LP-like cases with monoclonal Ig peaks and
five Cd19Cre mice were studied. mRNA reverse transcription
followed by RACE PCR with primers specific for either the
membrane or secreted forms of mouse µ or g heavy chains was
performed, followed by high throughput sequencing (HTS) of
the VDJ-Cµ or VDJ-Cg region (Figure 8A). Figures 8B, C show
the relative frequency of the five most abundant mRNA clones
for the µ or g heavy chains respectively. RACE PCR and HTS
results indicate that Myd88L252P mice developed clonal or
oligoclonal B-cell expansion with expression of both secreted
and membrane forms of the µ heavy chain that had the same
VDJ-Cµ clonal rearrangement (Figure 8B), without any bias in
terms of V segment usage (not shown). The same RACE PCR
technique with primers specific for either the membrane or
secreted form of the mouse g heavy chain did not identify any
significant B-cell clonal expansion in Myd88L252P tumors
(Figure 8C).

These results indicate that, despite initial IgM and IgG hyper
Ig in young Myd88L252P mice, MYD88L252P specifically
promoted IgM B-cell lymphomagenesis with clonal expression
of both membrane and secreted µ chain isoforms identical VDJ
gene rearrangements. These results are in full agreement with the
FIGURE 4 | Myd88L252P mice exhibited a progressively increasing splenomegaly consistently related to the SPE profile. Spleen size of Cd19Cre and Myd88L252P

age-paired mice. Myd88L252P mice were sacrificed together with at least one Cd19Cre mouse of the same age. Left panel: distribution of spleen weights; right panel:
examples of spleen macroscopy (Cd19Cre n = 9 for 16-31 weeks-old and n = 16 for ≥ 32 weeks; Myd88L252P with normal SPE: n = 9; with hyper Ig: n = 13; with Ig
peak: n = 19). Results are given as the mean ± SEM. Mann Whitney test p-value < 0.01 and p-value < 0.001 are symbolized by ** and *** respectively.
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FIGURE 5 | Morphological and immunophenotypic plasma cell engagement of Myd88L252P tumors. Hematein eosin morphological aspect (A–J) and
intracytoplasmic Ig labeling (K–O) of Cd19Cre and Myd88L252P spleens: one 16-31 week-old Cd19Cre (A, F, K), one ≥ 32 week-old Cd19Cre (B, G, L) and three
Myd88L252P (C, H, M) for Normal group, (D, I, N) for Hyper Ig group and E, J, O for Peak group) mice are shown. Panels (A–E) at low magnification, Myd88L252P

tumors often exhibited a nodular pattern (C–E). Panels (F–J): at high magnification, most Myd88L252P tumors had small B-cell aspects with marked
lymphoplasmacytic engagement (panels H–J). Panels (K–O) Myd88L252P tumors with a lymphoplasmacytic aspect exhibited marked plasma cell differentiation as
revealed by the presence of intracytoplasmic Ig in numerous cells (arrows) with various labeling intensities (M–O).
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lymphoplasmacytic aspect Myd88L252P tumors and the persistent
IgM plasma cell differentiation continuum.

Transcriptomic Signature of Myd88L252P

LP-like Tumors Revealed NF-kB RelA
Activation, Proliferation and Plasma Cell
Differentiation and Overlapped With
Waldenström’s Macroglobulinemia Gene
Expression Profile (GEP)
To explore the transcriptomic signature of Myd88L252P LP-like
tumors in conditions similar to those of most studies on human
B-cell lymphomas and to look for common features with WM,
Frontiers in Immunology | www.frontiersin.org 1086
we selected a short series of massively invaded Myd88L252P

spleen tumors with monoclonal Ig peaks. Comparisons were
first done with their Cd19Cre LMCs, and then with WM patients.

With a fold change of 2, a set of 1515 differentially expressed
genes were found in Myd88L252P spleen tumors when compared
to spleens from Cd19Cre LMCs (Supplementary Table 3). To
analyze this set of genes, we combined both K-mean and
hierarchical clustering and principal component analysis, as
already published (29). Following this methodology,
deregulated genes in Myd88L252P spleen tumors could be
segmented into 14 classes of co-regulated genes (Figure 9 with
methodological details in Supplementary Materials and
Methods, Supplementary Figure 9 and Supplementary Table
4). Consistent with increased B/T ratios in Myd88L252P LP-like
tumors, expression of genes belonging to the T-cell lineage, as
well as T-cell signaling and activation signatures was down-
regulated in Myd88L252P spleen tumors (Figure 9, see clusters I,
K and L). Of note, RelB signature was associated with that of T-
cells and was decreased in Myd88L252P spleen tumors. In
contrast, expression of genes belonging to the proliferation,
RelA NF-kB activation pathway and plasma cell differentiation
signatures were up-regulated (Figure 9, cluster J mainly as well
as cluster B, G and M for proliferation).

To identify MYD88L252P deregulated genes in common with
those of WM patients having the MYD88L265P mutation,
transcriptomes of Myd88L252P tumors were compared to those
of purified WM bone marrow B-cells from a series of 11
MYD88L265P WM patients. A subset of 319 coherently
dysregulated genes in both Myd88L252P LP-like tumors and
WM tumor B-cells (163 up and 156 down, Supplementary
Tables 5, 6) was extracted from the 1515 differentially
expressed genes in Myd88L252P LP-like tumors. Unsupervised
hierarchical clustering showed a 95% coherency between the
branches of up and down regulated genes in both WM tumor B-
cells and LP-like Myd88L252P spleen tumors (Figure 10A, left
and middle panels and Supplementary Tables 5, 6). To check
whether this Myd88L252P/WM signature could discriminate WM
from other indolent NHLs, an independent series of 58 patients,
including 15MYD88L265P WM, fiveMYD88wt WM, 12MYD88wt

NMZLs and 19 MYD88wt CLL was analyzed (Supplementary
Tables 2, 7). All MYD88L265P WM patients clustered together
after unsupervised hierarchical clustering (Figure 10A, right
panel and Supplementary Tables 7, 8). Also belonging to the
MYD88L265P WM cluster were 3/5 (60%) MYD88wt WM and 2/
12 (17%) MYD88wt NMZLs. We used the linear predicting score
described by Wright et al. (31) to estimate the informativeness of
the Myd88L252P/WM signature for WM diagnosis. As shown in
Figure 10B, as set of 174 genes (84 up and 90 down, Figure 10B)
was found to predict WM with over 90% probability
(Supplementary Tables 9, 10).

The plasma cell signature was the main component of the
Myd88L252P/WM GEP. Genes such as EDEM1 and 2, IRF4 or
XBP1 were over-expressed while others such as PAX5 or BCL6
were markedly down-regulated (Figure 10). Consistently,
functions revealed by Gene Set Enrichment analysis mainly
corresponded to endoplasmic reticulum and Golgi apparatus
A
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FIGURE 6 | B-cell differentiation in spleens from Cd19Cre and Myd88L252P

mice. (A) Percentage of Follicular B cells (CD21pos CD23high) and marginal
zone (MZ) B cells (CD21high CD23pos). (B) Percentage of plasma cells (PCs,
B220low CD138high). (C) Percentage of IgM+ PCs and CD93neg IgM PCs.
Myd88L252P mice (with normal SPE: n = 7; with hyper Ig: n = 10; with Ig
peak: n = 9) were compared to Cd19Cre mice LMCs (16-31 week and ≥ 32
week-old mice; n = 9 for each group) Results are presented as the mean ±
SEM. Mann Whitney test p-value < 0.05, p-value < 0.01 and p-value < 0.001
are symbolized by *, ** and ***.
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(not shown). In accordance with results published by Hunter
et al. (30), expression of genes such as CXCR4, DUSP22, PIM1
and 2 or TRAM1 was increased while expression of SNED1 was
decreased. Few genes of the Myd88L252P/WM signature
overlapped with those of ABC/GC DLBCLs published by
Wright et al. (31). These overlapping genes, corresponding
only to those that are overexpressed in ABC DLBCLs, were
IRF4, IGHM, CXCR4, P2RX5, PIM1 and PIM2. In other words,
the Myd88L252P/WM signature did not significantly overlap with
that of GCB DLBCLs. Among other deregulated genes were
cyclin kinase inhibitors CDKN1B (p27kip1) and CDKN2C (p18/
Frontiers in Immunology | www.frontiersin.org 1187
INK4AC), mutations of the former being found in hairy cell
leukemias (32). RASSF3 and KRAS were also up-regulated.
RASSF3 belongs to the Ras association domain family (RASSF).

Altogether, the Myd88L252P tumor signature highlights
proliferation as well as canonical NF-kB p65/RelA activation
(but not RelB), which is in agreement with the known fact that
MYD88 activates the classical NF-kB pathway. The Myd88L252P

tumor signature also strikingly confirms that lymphoplasmacytic
differentiation is at the heart of MYD88 related B-cell
transformation in mice, a feature shared with WM tumors
with the MYD88L265P mutation.
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FIGURE 7 | Intermediate increase in Myd88L252P tumor proliferation rate. (A) Examples of Ki67 labeling in spleen sections from three controls (panels A-C) and three
Myd88L252P mice (panels D-F, n=28). Controls were Cd19Cre LMCs (panel A, n = 5 for 16-31 week-old mice and n = 8 for ≥ 32 week-old mice), L.CD40 mice (panel
B) with indolent splenic lymphomas of marginal zone B-cells (n=2), as well as L.CD40/lc-Myc mice (panel C, n=2) with a ABC-DLBCL lymphomas (24, 28). The
three Myd88L252P tumors (panels D-F) are one representative example of each group defined according the SPE profile (normal n = 5, hyper Ig n = 8 and Ig peak n =
15). Here, L.CD40 mice were used as a model of indolent B-cell lymphoma with a low proliferation index while L.CD40/lc-Myc mice were a model of aggressive B-
cell lymphoma with a high proliferation index. (B) Quantification of Ki67 labeling. Box plots represent the median and quartile of percentages of Ki67 positive cells.
Mann Whitney test p-value < 0.05, p-value < 0.01 are symbolized by * and ** respectively.
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FIGURE 8 | µ and g heavy chain mRNA clonal abundance: (A) RACE PCR technique quantifying clonal mRNA abundance of membrane and secreted forms of
mouse µ and g heavy chains. Ighm/Ighg locus (upper panel): Igh locus with variable regions (VDJ), the enhancer Eµ and constant genes (for IgM or IgG). Box “S”
represents the secreted exon used for the secreted form of Ig, “M1 and M2” represent the membrane exons for the membrane form of Ig. Green or blue dotted lines
show RNA splicing respectively for secreted and membrane Ig. RACE mapping (lower panel): 5’RACE PCR followed by preparation of libraries for Illumina
sequencing. First, we amplified cDNA between the primer specific for the membrane or the secreted form (black arrows) and the 5’RACE oligonucleotide. Amplicons
for Illumina sequencing were obtained after two nested PCRs; the first with the 5’ Race CAP primer and either membrane (blue arrow) or secretion (green arrow)
exon specific primer, and the second with the same 5’ primer and a CH1 exon specific primer (grey arrow). For sequencing, forward (grey) and reverse (red) primers
used for the second PCR contained adaptors (blue and purple) and a barcode (orange); each barcode sequence was specific for one sample only. (B, C) Relative
frequency of the five most abundant mRNA clones coding for membrane (left) and secreted (right) forms of µ (B) and g (C) heavy chains for Cd19Cre (n = 5) and
Myd88L252P (n = 6) mice. The most abundant clones are highlighted in red when VDJ sequences of the dominant membrane and secreted clones were identical.
Myd88L252P mice exhibited IgM but not IgG clonal expansion with expression of both secreted and membrane form of the µ chain. Wilcoxon’s test p-value are given
in the figure.
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FIGURE 9 | Whole transcriptome analysis of Cd19Cre and Myd88L252P mice: total mRNA was extracted from whole spleen tissues. Gene expression profiles were
obtained using the MoGene-2_1-st-v1 Affymetrix chip. mRNA transcripts (3236) were selected to be differentially expressed using the Limma R package. Expressed
genes that were too heterogeneous were eliminated, resulting in a final selection of 1515 genes. These genes were segregated into 40 Kmean clusters. The closest
Kmean clusters were merged 2 by 2 according to their proximity by principal component analysis of the mean vectors. This was repeated until maximization of the
absolute value of Chi2 (29). This resulted in 14 aggregated clusters. Functional annotation of the aggregated Kmean clusters was performed using the Ingenuity
Pathway Analysis (IPA) Software. Annotated heatmap of the 1515 genes are segregated into the 14 aggregated clusters. Left: the aggregated Kmean clusters with
the corresponding number of genes; middle: main pathways and or function identified with the IPA software; right: some relevant genes.
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DISCUSSION

Different mouse preclinical models with continuous MYD88
activation in B-cells have been published; All but one
demonstrate the B-cell transformation potential of MYD88 but
without presenting evidence for a correlation between IgM B-cell
LP and PC differentiation (13–15).. The first report was
published by Knittel et al. (14). The authors generated a mouse
model that allows B-cell conditional expression of the
Myd88L252P allele from the endogenous Myd88 locus. In this
model, expression ofMyd88L252P would be regulated in a manner
similar to that of the wild type allele. At least three regulatory
levels of MYD88 activity have been reported. The MYD88
regulatory region harbors various transcription binding sites
such as those for NF-kB, IRF1, SP1 or STAT factors and it was
shown that this gene is regulated by IL-6 (33), which suggests a
role for its expression in either plasma cell differentiation or
inflammation. An alternative splice variant of MYD88, MYD88s,
lacks exon 2 and is unable to activate NF-kB. This variant is also
able to form a heterodimer with the full length MYD88 protein,
resulting in decreased formation of the myddosome complex
(34). MYD88s is increased during sepsis and is thought to ensure
robust termination of MYD88 dependent inflammation (35, 36).
As a third regulation mechanism, hypomethylation and
upregulation of MYD88 are important for NF-kB activation (37).
MYD88 promoter demethylation is important in glioblastoma and
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is associated with increased MYD88 protein expression in lung
cancers (38, 39). Mice from Knittel’s model occasionally developed
DLBCLs when they aged. Therefore, the Knittel mouse model
raises the question of the relationship between B-cell
lymphomagenesis and regulation of the endogenous Myd88 locus
throughout B-cell life. In addition, this model also showed hyper Ig,
even if polyclonal, whichmay suggest that expansion of Ig secreting
B-cells could precede the lymphoma development. In that view, K
Schmidt et al. recently published a mouse model with a transgene
closed to the one of the Knittel’s model. But, after exploring the
effect of MYD88 activation in three different Cre context, Cd19-
Cre, Cg1-Cre and Cd19-CreERT2, as well as analyzing the effect of
NP-immunization, the authors concluded that MYD88 continuous
activation promotes survival of long term IgM expressing B-cells
with clonal restriction a monoclonal serum IgM paraprotein
resulting in an IgM MGUS-like disorder (16).

To our knowledge, two papers, from Wang et al. and
Sewastianik et al. reported the effect of the human MYD88L265P

protein in murine B-cells (15, 40). In the model of Wang et al,
primary murine B-cells were retrovirally infected ex vivo before
reinjection. In this model, an initial boost of B-cell proliferation
was seen followed by B-cell apoptosis in a Bim-dependent manner.
Importantly, no increase in immunoglobulin secretion was
reported. Beside the fact that retroviral infection of B-cells may
have its own interfering effects, this model raises the question of
whether the human MYD88L265P protein may have exactly the
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FIGURE 10 | Comparison of gene expression profile (GEP) of Myd88L252P mice and patients with WM or other indolent B-cell NHL. Affymetrix differential gene
expression profiles (GEP) between four Myd88L252P mice (MUT, n=4) and three Cd19Cre mice (WT, n=3) were compared to the Affymetrix GEP of purified bone
marrow tumor B-cells from 11 WM patients with the MYD88L265P mutation, resulting in selection of 462 probesets (319 genes). This selection was used on the
Affymetrix transcriptome of an independent series of lymph node biopsies from 58 patients: 19 MYD88wt chronic lymphocytic leukemias (CLL), 15 MYD88L265P WM
(WM_L265P), 12 MYD88wt nodal marginal zone lymphomas (NMZL), 5 MYD88wt WM with IgM peaks (WM_WT), 4 follicular lymphomas (FCL) and 3 patients with
follicular hyperplasia (NT). (A) Hierarchical clustering and heatmap of the 462 selected probesets for mice (left), purified bone marrow MYD88L265P WM B-cells
(middle) and lymph nodes (right). Down and up-regulated genes are in blue and red respectively. Branches of down and up regulated genes in Myd88L252P mice,
MYD88L265P WM bone marrow B-cells and MYD88L265P WM lymph nodes are delineated by dashed lines. Venn diagrams of the intersections between the branches
are shown, highlighting the consistency between branches across the different clustering. Some genes of interest are noted on the right. In bold are those of the
plasma cell signature; *: genes in the predictor (see Figure 7B); +: genes reported by Hunter et al. in WM (30); † : genes of the ABC/GC DLBCL signature (31). (B):
Informativeness of MYD88L265P WM diagnosis using the 462 selected probesets defined in Figure 8A. The 462 probesets defined from MYD88L252P mice and bone
marrow tumor B-cells from MYD88L265P WM patients were used to predict MYD88L265P WM diagnosis (WML265P versus non WM) from other lymphomas within the
series of 58 lymph node biopsies. Probabilities that each sample belongs to WML265P versus non WM group are indicated. The WML265P versus non WM or not
attributed (NA) assignment is shown on the left.
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same activation properties on a mouse B-cell background as in
human B-lymphocytes. In the model of Sewastianik et al, the
human loxP-flanked-stop-MYD88L265P transgene was inserted
downstream from the mouse Collagen type I alpha 1 chain
(Col1A1) gene and MYD88L265P expression was induced by
crossing with AidCre mice (15). In addition to focal skin rashes,
some WM features were noted such as expansion of
lymphoplasmacytic cells and increased IgM serum levels.
However, only DLBCL clonal transformation was seen. Because
AID is mainly expressed in germinal center B-cells and because
the promoter of the Col1A1 gene is highly active in fibroblasts and
osteoblasts (41), this model raises the question whether
temporality and/or expression pattern could be important in
MYD88 driven B-cell lymphomagenesis.

The Rosa26 locus has been solidly proven to be valuable for
expression of numerous oncogenes in the B-cell lineage (see
reference (42) for discussion as well as the literature of the K
Rajewsky’s group). By inserting our Myd88L252P-IRES-Yfp
transgene in this locus, we forced continuous expression of the
mutated MYD88 protein in a heterozygous-like context while
respecting the native MYD88 activation pathways of mouse B-
cells. Moreover, we were able to monitor our transgene
expression by flow cytometry due to YFP. Thereby, we created
a conditional Myd88L252P mouse model closed to the one
published by Jo et al. (13). However, these authors mainly
focused their work on the synergy between MYD88 and the
catalytic subunit HOIP which increases LUBAC ligase activity
that in turns promotes NF-kB canonical activation; only four so-
called CD19-cre-MYD88LP have been studied at the
tumor stage.

Here, a longitudinal analysis of a series of 40Myd88L252P mice
compared to their age matched Cd19Cre LMCs demonstrated
that IgM plasma cell expansion is at the heart of MYD88
dependent B-cell transformation. Indeed, by examining clonal
restriction of IgM secreting B-cells, we first showed that ageing of
Myd88L252P mice was associated with polyclonal hyper Ig
followed by monoclonal Ig peak due to increased serum IgM.
Second, we provide evidence indicating that bone marrow
relocalization of IgM B-cells, IgMhigh CD138low cells and IgM
PCs was increased in Myd88L252P mice with a CD138 expression
continuum, that is a characteristic of WM tumor B-cells. Third,
analysis of spleen morphology and spleen B-cell subsets by flow
cytometry indicated that continuous MYD88 activation was
associated very early with peripheral LP cell and CD93neg IgM
PC expansion and that these cell subsets were markedly increased
at the time of the Ig monoclonal peak. Fourth, appearance of a
monoclonal Ig peak was constantly associated with a B-cell
lymphoma with marked features of lymphoplasmacytic
differentiation, so-called Myd88L252P LP-like lymphoma. Fifth, at
the molecular level, Myd88L252P specifically promoted IgM B-cell
lymphomagenesis with mRNA clonal expression of both
membrane and secreted µ (but not g) chain isoforms. Finally,
the Myd88L252P tumor gene expression profile not only highlights
the canonical NF-kB p65/RelA activation pathway and
proliferation, but also strikingly shares an Xbp1 centered
lymphoplasmacytic B-cell differentiation signature with
Frontiers in Immunology | www.frontiersin.org 1591
MYD88L265P WM. This signature differentiates MYD88L265P

WM from other indolent B-cell tumors including marginal zone
lymphomas. Our results contradict the conclusions of Sewastianik
et al. (15), and, being in line with those of K Schmidt et al. (16),
firmly demonstrate the specific transforming effect of MYD88
activation in IgM PC differentiating B-cells.

To establish the gene expression signature from bulk
Myd88L252P spleen tumors rather than from purified B-cells is
matter of discussion. The very obvious disadvantage of working
on bulk tumors is certainly that all mRNA species from all cell
types present in the tissue are mixed together. Even if massively
invaded, both stromal and other residual immune cells (T-cells,
macrophages, dendritic cells…) persist constantly in the tumor.
In these conditions, specifically assigning a given mRNA
expression pattern to tumor cells is always hazardous.
However, because tumors were immediately snap-frozen, all
mRNA species are supposed to be well preserved without any
significant experimental bias. On the other hand, working on
purified cells may also induce artefacts since the abundance of
different mRNA species may vary during the time of purification
which can also stress the cells. Above all, in the specific case of
Myd88L252P spleen tumors, which exhibit an LP aspect with
continuous PC differentiation, the key question would have been
to choose the right negative selection marker. Indeed, tumor cells
are phenotypically heterogeneous with variable expression of
B220, surface Ig or CD138 for example. Should we have selected
B220high versus B220low B-cells or CD138low versus CD138high

cells? Rather than make wrong or partial choices concerning
which tumor cells to purify, we chose to work on bulk
Myd88L252P spleen tumors with well-preserved total mRNA
and to compare this bulk signature to that of WM, including
purified WM bone marrow tumor B-cells.

One characteristic feature of Myd88L252P B-cells was the
strong reduction of the marginal zone B-cell compartment.
While also characterized by continuous activation of NF-kB,
the L.CD40 mouse model published by Hömig-Hözel et al. (28),
in which B-cells are submitted to continuous CD40 activation
signaling, showed expansion of marginal zone B-lymphocytes.
This points out the differences between TLRs and CD40 in terms
of NF-kB activation. Indeed, CD40 is able to activate both the
classical and alternative pathways, i.e. to induce the nuclear
translocation of RelA and RelB NF-kB containing complexes
while TLRs only activate the classical pathway. The effect of both
pathways as well as the strength of NF-kB activation on B-cell
fate has been extensively discussed by Pillai et al. (43). In this
review, the authors also indicate that BTK activation blocks the
Notch signaling pathway that is essential for marginal zone B-cell
differentiation. It turns out that Hunter et al. have shown that
Myd88 is able to activate BTK in a BCR independent manner
(30), which consequently could repress B-cell maturation toward
the marginal zone B-cell lineage.

Gene expression profiles of LP-like Myd88L252P tumors
distinctly suggest the involvement of RelA rather than RelB.
RelA, but not RelB, is clearly associated with EBV-dependent B-
cell immortalization and with EBV-associated DLBCL tumors,
which exhibit a phenotype close to that of ABC-DLBCLs (25).
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RelA is also essential for development of GC-derived PCs (44)
and immunohistochemistry detected nuclear RelA in WM B-
cells (45). Indeed, LP-like Myd88L252P B-cell tumors shared
strong overlaps with human WM in terms of gene expression
profile. Even if a few genes were in common with the ABC-DBCL
signature such as IGHM, CXCR4 or PIM1 and PIM2, the
Myd88L252P/WM signature points to dysregulation of plasma
cell differentiation as the keystone of MYD88 transforming
physiopathology. It also suggests that KRAS activation could be
important. RASSF3 and KRAS itself were up-regulated in both
Myd88L252P B-cell tumors and human WM. Consistently, and in
agreement with results from the group of Treon (30), we also
found RASSF6 overexpression in WM patients (NG and JF
unpublished results). CXCR4, whose expression is increased in
WM, may activate the RAS pathway through RasGAP-associated
proteins (46). The most frequent mutations involve KRAS and
NRAS genes in multiple myeloma (47). Even if such mutations
have not been reported in WM (6), our results highlight the
putative role of the Ras activating pathway in WM, which may
lead to the design of novel therapies.

Despite similarities betweenWM andMyd88L252P LP-like tumors
such as serum Ig monoclonal peak, increase in IgM prePCs, PC
bone marrow relocalization and marked lymphoplasmacytic
differentiation of tumor cells some major differences exist. The first
difference, is the predominant site of tumor involvement. Even if
splenomegaly is found in 20% of bona fide WM patients, it is largely
admitted that bone marrow is the primary tumor site. In contrast,
Myd88L252P LP-like mouse tumors mainly developed in the spleen.
Physiologically, IgM PCs tend to reside mainly in the spleen whereas
switched IgG PCs migrate to the bone marrow (48). This raises the
question of whyWM IgM tumor B-cells migrate to bone marrow. In
that view, it is largely suspected that CXCR4 mutation could play a
role in bone marrow homing. Further studies could also evaluate the
transforming potential of Myd88 by adoptive transfer of LP-like
tumor B-cells. Whether the transferred tumor will retain the
lymphoplasmacytic aspect would also be interesting.

Another significant difference is the presence of large cells and
increased proliferation in Myd88L252P LP-like mouse tumors. The
increased proliferation index was an early event since it was also
found in young Myd88L252P mice with normal SPE. As we
previously discussed (24), only three mouse models for indolent
lymphomas of the spleen have been published, one mimicking
TRAF3 inactivation, the second with constitutive expression of
BCL10 and the last one with continuous CD40 signaling (the
L.CD40 model that we used as a control in Figure 7) (28, 49, 50).
These three models are characterized by increased RelB activation.
We previously demonstrated that immune surveillance may
influence morphology and proliferation in the L.CD40 model. In
this model, immunosuppression led to transformation of small
indolent B-cell L.CD40 tumors into large B-cells with increased
proliferation. Reactivating the anti-tumor response using anti-PD-
L1 immunotherapy led to tumor regression (51, 52). These results
on this mouse model suggest that the immunologically silent
“indolent phenotype” of a B-cell tumor could be related to the
immune pressure exerted on tumor B-cells. Whether and how
activation of the alternative and canonical NF-kB pathways
Frontiers in Immunology | www.frontiersin.org 1692
differently disturb immune surveillance remains to be
determined, and comparison of both L.CD40 and Myd88L252P

mouse models could provide answers. However, as in the L.CD40
tumor model and in spleen marginal zone lymphomas (52, 53),
the PD1/PD-L1 axis is most likely playing a role in the immune
escape of aggressive tumor B-cells with MYD88 activation. Using
Eµ-MYC transgenic hematopoietic stem cells (HSC) stably
transduced with naturally occurring NF-kB mutants to generate
various primary mouse lymphomas, Reimann et al. recently
showed that MYD88 tumors express high levels of PD-L1 and
that anti-PD-1 therapies induce T-cell dependent senescence of
tumor cells (54). PD-L1 surface expression is weak or absent on
WM tumor B-cells. However soluble PD-L1 serum levels are
increased in WM patients and PD-L1 is upregulated by IL6 (55).

In summary, our longitudinal study of Myd88L252P mice
demonstrated that continuous MYD88 activation is able to
promote early expansion of IgM LP cells and PCs with, first,
serum polyclonal hyper Ig and then a monoclonal Ig peak. Ig
peaks were constantly associated with B-cell lymphomas sharing
characteristics withWM. Twomajor differences withWMwere the
spleen localization of Myd88L252P tumors and increased
proliferation. Here, we showed for the first time that IgM
lymphoplasmacytic B-cell differentiation is at the heart of
Myd88L252P transforming potential. Thus, we also provide an
interesting preclinical model for development of new therapeutic
approaches or to study immune surveillance for example not only
inWM but also in others B-cell lymphomas with features of plasma
cell differentiation. Indeed, a better understanding of the underlying
molecular mechanisms is necessary in order to develop new
therapies for these incurable B-cell cancers.
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These last 20 years, research on immune tumor microenvironment led to identify some
critical recurrent mechanisms used in cancer to escape immune response. Through
immune checkpoints, which are cell surface molecules involved in the immune system
control, it is now established that tumor cells are able to shutdown the immune response.
Due to the complexity and heterogeneity of Non Hodgkin B-cell Lymphomas (NHBLs), it is
difficult to understand the precise mechanisms of immune escape and to explain the
mitigated effect of immune checkpoints blockade for their treatment. Because genetically
engineered mouse models are very reliable tools to improve our understanding of
molecular mechanisms involved in B-cell transformation and, at the same time, can be
useful preclinical models to predict immune response, we reviewed hereafter some of
these models that highlight the immune escape mechanisms of NHBLs and open
perspectives on future therapies.
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INTRODUCTION

Non Hodgkin B-cell Lymphomas (NHBLs) are malignant neoplasms characterized by an abnormal
expansion of clonal B lymphocytes. Despite being subdivided in more than 50 entities (1), most of
them can be ascribed as indolent (low grade) or aggressive forms (high grade). Immune escape, also
called immunomodulation or immunoediting, is a way by which tumors neutralize and/or subvert
the host’s immune system to their advantage (2). The concept of host immune response against
neoantigens has been demonstrated long time ago (3) and Tumor Infiltrated Lymphocytes (TILs)
have been recognized very early as a biomarker of the immune response against cancer (4). However,
tumor cells are able to evade immune response by developing an immunosuppressive
microenvironment through the regulation of immune checkpoint protein expression, such
proteins being essential in the negative control of activated immune cells. Various immunotherapy
treatments aim to reactivate antitumor immune response by targeting specific immune-checkpoint
proteins (5). Programmed cell-Death 1 (PD-1) and its ligand Programmed cell-Death Ligand 1 (PD-
L1) are the most studied immune checkpoint proteins. If immune restoring therapies have given
org May 2021 | Volume 12 | Article 669964195
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spectacular results in some solid cancers such as those of the lung,
colon or melanoma, effects on B-cell lymphomas are mitigated
(6). There is an urgent need to understand how tumor B cells
escape immune surveillance. Thanks to genetic engineering,
mouse models are globally useful for phenocopying human
B-cell lymphomas and investigating the emergence and
progression of transformed B cells as well as their concomitant
immune escape and for researching new therapeutic strategies.

Here, we discuss different mouse models that have been used
to study the B-cell immune surveillance (Figure 1 and Table 1).
The human relevance of these models is first presented, and then,
the experimental results are summarized and discussed. A large
part of studies presented hereafter investigated the PD-1/PD-L1
axis. However, other molecules such as CTLA-4, MHC-II or
NKG2D are discussed. Strikingly, these models provide
functional clues to genetic abnormalities as well as immune
evasion occurring in B-cell lymphomas, and recurrently
highlight the role of NF-kB. Indeed, as reviewed recently,
NF-kB plays a major role in immune checkpoint controls and
directly regulates PD-L1 expression (17).
DEREGULATION OF PD-1/PD-L1
AXIS IN MOUSE MODELS OF
B-CELL LYMPHOMAS

Discovered in the nineties, PD-1 and PD-L1 remain the most
promising immune checkpoint targets for cancer immunotherapy
Frontiers in Immunology | www.frontiersin.org 296
(18, 19). PD-L1 (B7-H1 or CD274) binds to its receptor PD-1
(CD279) on T cells (20). PD-L1 first promotes naïve T-cell
expansion through IL-10 stimulation (19). Then, PD-1/PD-L1
signaling induces effective inhibition/exhaustion of T cells in the
context of chronic antigen stimulation (20). Among effects, PD-
1/PD-L1 interaction leads to a drastic inhibition of the T-cell
receptor (TCR) signaling as well as AKT, ERK and NF-kB
signaling pathways. Essential for the immune response control,
this mechanism is adopted by tumor cells to escape immune
surveillance. PD-L1 expression by tumor B cells has been found
in various lymphoma subtypes such as Diffuse Large B-Cell
Lymphomas (DLBCL), associated or not with the Epstein Barr
virus (EBV). This tumor phenotype is usually associated with an
intratumoral infiltration of PD1+ T-lymphocytes (PD1+ TILs)
(21, 22), thus exhibiting an inflamed phenotype according to
classification of Chen (23). The selection pressure exerted by the
immune surveillance is probably one of the drivers of the
emergence of B-cell clones since chromosomal alterations in
the 9p24.1 region which harbors the PDL1 and PDL2 loci are
found in most classical Hodgkin lymphomas (HL) as well as in
27% of non Germinal Center B (GCB) DLBCLs, both B-cell
cancers strongly associated with NF-kB activation (24). Anti-
PD-1/PD-L1 therapy has given promising results in HL (25).
PD-L1 expression is found in 26-75% (26) of patients with higher
expression in Activated B-Cell (ABC) DLBCL, presumably
due to the constitutively activated NF-kB as it is in Epstein
Barr Virus (EBV)-positive DLBCL (27). However, correlation
between PD-L1 expression and the response to PD-1/PD-L1
therapy in DLBCLs remains controversial (28).
FIGURE 1 | B/T/NK cells in the immune escape context. Representation of different mechanisms exploited by tumor B-cell lymphomas to escape immune control
during lymphomagenesis in each presented transgenic mouse models: (i) overexpression of PD-L1 associated with MHC-II downregulation to induce T-cell anergy,
(ii) Reduction of RAE1/H60 expression to induce NK cells tolerance, (iii) CTLA-4 expressed by T-cells is targeted by lymphoma B cells, leading to T-cell inactivation.
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Recently, two studies dealing with NF-kB associated DLBCLs
showed similar results. The first one used the MBC model,
developed by Knittel et al., which develop aggressive DLBCL-
like tumors (29). These mice harbor the MYD88L252P mutation
and overexpress the anti-apoptotic factor BCL2, two features
found in 29% and 40% of ABC-DLBCL cases respectively (30,
31). Flümann et al. found a striking resemblance of MBC tumors
with human ABC-DLBCLs, with a similar gene expression
profile (8). They also demonstrated overexpression of Pdl1 on
MBC lymphoma B cells associated with exhausted infiltrating
CD4+ and CD8+ T cells, highlighting the immune escape strategy
used by tumor cells.

In the second study, Reimann et al. engineered an original
ABC-DLBCL model based on the demonstrated cooperation
between c-MYC and NF-kB (32). Hematopoietic Stem Cells
(HSC) from Eµ-Myc mice were stably transduced with
naturally occurring NF-kB mutants, among them MYD88L252P

or CARD11L244P. Transduced Eµ-Myc cells were injected
into lethally irradiated strain-matched C57BL/6 recipients.
All these allograft models supported MYC-driven B-cell
lymphomagenesis through increased protection against
apoptosis, but only MYD88L252P or CARD11L244P Eµ-Myc
tumors resembled to human ABC-DLBCL, including
expression of PD-L1 which was responsible for an exhausted
T-cell phenotype (12).

In both studies, the authors treated their mouse model with
anti-PD-1 antibodies, leading to a significant increase in overall
mouse survival and inducing phenotypic changes in infiltrating
CD4+ and CD8+ T cells with a restored proliferation potential.
The combination of anti-PD-1 antibody and BCL2 inhibitor
showed an additive effect in the MBC model. The anti-PD-1
Frontiers in Immunology | www.frontiersin.org 397
treatment seems to be really effective regarding these models. But
recent human clinical trial showed a completely different reality
(6), raising the question of resistance to these therapies. Some
clues may have been given by the pBIC model. This model
associates Tp53 deletion, enhanced NF-kB signaling due to an
activated IKK2 mutant, and Blimp1 inactivation that blocks
plasma-cell differentiation. Pascual et al. showed that, in these
mice, DLBCL-like tumors exhibited an ABC-DLBCL phenotype
with FOXP1 dysregulation and overexpression of PD-L1 by
tumor cells. This phenotype was associated with intra-tumor
infiltration of PD-1+ CD8+ T cells. Exhibiting an exhausted
phenotype, these TILs also expressed other inhibitory
molecules such as LAG-3 and 2B4 (7). In this model, anti-PD-
1 treatment did not show any effect on mouse survival and anti-
CD20 treatment alone had limited impact. But combining both
antibodies markedly improved mouse survival and resulted in
tumor regression with clearance of PD-1 TILs, strongly
suggesting that therapies targeting the PD1/PD-L1 axis could
be used in combination with other well established treatments
in DLBCLs.

Taken together, these different mouse models for ABC-DLBCLs
suggest that PD-1/PD-L1 immune checkpoint upregulation is one
of the main mechanisms of immunosurveillance escape in ABC-
DLBCL. It also indicates that, even when poorly effective alone, anti
PD-1/PD-L1 therapies may very well be able to improve the effect
of other molecules that directly target tumor B cells.

To our knowledge, only four mouse models of indolent B-cell
lymphoma have been reported. One is related to Chronic
Lymphocytic Leukemia (CLL) with TCL1 (originally described
in the former CD4 T-CLL, now called T-cell prolymphocytic
leukemia) as a driver oncogene (33) and three others to marginal
TABLE 1 | Transgenic mouse models.

Model Strategy Expression/Induction Phenocopy Immune escape strategy Reference

CRE regulated expression
pBIC NF-kB constitutive signaling

Blimp1 inactivation
p53 inactivation

GC-B cell compartment
(CglCRE)

ABC-DLBCL PD-L1 overexpression
MHC-II downregulation

(7)

MBC endogenous MYD88L252P

expression
BCL2 overexpression

B-cell compartment
(Cd19CRE)

ABC-DLBCL PD-L1 overexpression (8)

CREBBP-/- CREBBP inactivation GC-B cell compartment
(AIDCRE)

DLBCL MHC-II deregulation (9)

P300-/- p300 inactivation GC-B cell compartment
(AIDCRE)

DLBCL MHC-II deregulation (9)

CD19cre;LMP1flSTOP EBV's LMP1 expression B-cell compartment
(Cd19CRE)

EBV driven lymphomas NKG2D blocking (10)

LMP1/CD40 CD40 constitutive signaling B-cell compartment
(Cd19CRE)

SMZL PD-L1 overexpression (11)

EmMyc/lMyc regulated expression
Em-Myc-MYD88L252P transplantation of Em-Myc-MYD88L252P B cell lineage ABC-DLBCL PD-L1/PD-L2 overexpression (12)
Em-Myc-CARD11L244P transplantation of Em-Myc-CARD11L244P HSCs B cell lineage ABC-DLBCL PD-L1/PD-L2 overexpression (12)
hCTLA4-FcgR-/- Human CTLA4 expression

FcgR inactivation
B cell lineage CLL CTLA4 deregulation (13)

Em-Myc-Klrk1-/- NKG2D inactivation B cell lineage MYC driven lymphomas Absence of NKG2D (14)
l-Myc-Klrk1-/- NKG2D inactivation B cell lineage BL Absence of NKG2D (15)
Em-TCL1 TCL1 overexpression B cell lineage CLL PD-L1/PD-L2 overexpression (16)
May 2021 | Volume 12 | Art
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zone lymphomas, involving Traf3 deletion (34), BCL10
deregulation (35) and CD40 signaling (11). The question of
immune surveillance was addressed only in the TCL1 and CD40
mouse models. First, Hofbauher et al. demonstrated that
development of a CLL-like disease was associated with a shift
from naïve to memory phenotypes of both CD4+ and CD8+ T
cells in Eµ-TCL1 transgenic mice (16). In the context of aging,
McClanahan et al. described in this model a PD-1 overexpression
on CD8+ T cells with a defect in immune synapse formation,
associated with specific PD-L1 overexpression on B cells (36). In
the same model, Lewinsky et al. demonstrated the role of CD84, a
member of the Signaling Lymphocyte Activating Molecule
(SLAM) family known to bridge between CLL cells and their
microenvironment (37). CD84 (SLAMF5) activation upregulates
PD-L1 expression on CLL cells and stroma cells, through the
AKT/mTOR pathway, and promotes PD-1 expression on T cells
resulting in their exhaustion (38). In an adoptive transfer of Eµ-
TCL1 CLLs, PD-L1 blockade restored the antitumor immune
response, in conjunction with an enhanced pro-inflammatory
microenvironment (39). However, the question of the tumor
microenvironment arises with this strategy. Adoptive transfer of
Eµ-TCL1 leukemic cells proves their ability to invade and
proliferate in a healthy microenvironment by their own, but this
development is independent of the tumor microenvironment, and
consequently a real immune escape mechanism remains hard to
identify here.

Being also associated with NF-kB activating mutations,
splenic marginal zone lymphomas exhibit an inflamed
phenotype (40, 41). In the model of Hömig-Hözel et al., B-cell
specific continuous CD40 signaling is due to specific B-cell
expression of a chimeric LMP1/CD40 protein composed of the
membrane moiety of the LMP1 protein of EBV and the
intracytoplasmic transducing moiety of CD40 (11). LMP1/
CD40 mice develop indolent lymphomas with clonal
expansion of spleen marginal zone B cells. The indolent
phenotype was shown to be associated with an overexpression
of PD-L1 on B cells, such expression depending on NF-kB,
STAT3 and BCR pathways (42). In this model, T-cell depletion
resulted in progression toward an aggressive tumor, suggesting
that some immune surveillance was still exerted on indolent B-
cell lymphoma (43). Indeed, crossing the LMP1/CD40 and l
-Myc mice (in which Myc is under the control of the Ig lambda
locus) led to the development of aggressive B-cell tumors with
an immunoblast phenotype and further PD-L1 expression (32).
This study suggests that the PD-1/PD-L1 axis is requested for
emergence of an indolent lymphoma as well as for its progression
towards an aggressive form. Concomitantly, our group
demonstrated a beneficial effect of anti-PD-L1 therapy in the
LMP1/CD40 model, resulting in tumor regression and T-cell
reactivation. Interestingly, we also demonstrated that therapies
targeting other pathways, such as NF-kB, JAK/STAT or BCR
signaling, were also able to reduce PD-L1 surface expression of
tumor B cells (42). Like in mouse DLBCL models, these results
suggest that, as long as they are expressed, PD-1 and/or PD-L1
blockade in indolent B-cell lymphomas may synergize with other
therapeutic molecules, for example, the specific inhibitors of
JAK/STAT pathway, ruxolitinib, or, of BTK, ibrutinib.
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In essence, these different transgenic mouse models highlight
the major role of PD-1/PD-L1 axis deregulation in aggressive
lymphomas development, but also showed the involvement of this
immune checkpoint in the transformation of indolent lymphomas
as long as they express PD-L1. They also indicate that the level of
PD-L1 expression may be a critical parameter for immune evasion
and tumor progression and point on the interest of combined
therapies that include anti-tumor immune restoration.
DEREGULATION OF OTHER IMMUNE
CHECKPOINTS IN MOUSE MODELS
OF B-CELL LYMPHOMAS

CTLA-4
In Humans, a single nucleotide polymorphism located in the
3q13.33 region that harbors the CD80 and CD86 loci is
associated with the risk of DLBCL, providing evidence for the
role of immune function in the etiology of these lymphomas (44).
The activating effects of CD80 and CD86 on CD28 are
neutralized by the Cytotoxic T-Lymphocyte Antigen 4 (CTLA-
4). CTLA-4, normally expressed on the surface of activated and
regulatory T cells as well as B cells, even if weakly, is the second
major immune checkpoint molecule. As CTLA-4 has a higher
affinity to CD28 than for CD80 or CD86, it downregulates
primary T-cell responses by interaction with B7 family
members expressed on Antigen Presenting Cells (APCs) (45).
CTLA-4 was shown to be abnormally expressed on B-cell
lymphomas, and is notably a part of the CLL signature (46).

In the Eµ-TCL1mouse model, CTLA-4, which is expressed on
CLL-like B cells, seems to promote STAT3 activation pathway
through its dimerization with surface CD86 followed by its
internalization, and thus acting as a costimulatory signal (47).
By using the adoptive transfer strategy, Do et al. showed that
specific CTLA4 blockade on tumor cells could affect leukemic
progression (13).

MHC-II
Besides their direct role in antibody secretion, B cells express
MHC-II and are also APCs. B-cells are able to improve T-cell
activation and proliferation through a process called B/T-cell
cooperation (48, 49). In B cell lymphomas, loss of MHC-II
contributes to the immune evasion resulting in a decrease of
T-cell activity. This loss of surface MHC-II may be due to genetic
alterations of the MHC-II region, including homozygous
deletions (50). Malignant B cells can also downregulate the
expression of MHC-II by various mechanisms (7, 9, 51) such
as the downregulation of the MHC-II transcriptional activators
class II transactivator (CIITA). The consequence of MHC-II
down-regulation in tumor B-cell escape has been exemplified
in two KO models for the Histone Acetyl-Transferases (HAT)
Crebbp or Ep300 (which deletions are found in 50% of human
DLBCLs). In these models, development of aggressive B-cell
tumors was related to the fact that CD4+ T cells were unable to
interact with B cells because the latter had lost the expression
of MHC-II which is normally up-regulated by these HAT (9).
May 2021 | Volume 12 | Article 669964
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In addition, loss of MHC-II was also demonstrated in the pBIC
mouse lymphoma model, suggesting a cooperation with the PD-
1/PD-L1 in immunosurveillance escape (7). If there is no current
treatment allowing a direct restoration of MHC-II at the surface
of tumor cells, McClanahan et al. showed a restoration of MHC-
II surface expression after anti-PD-L1 treatment in the CLL
model Eµ-TCL1 (39).

Thereby, studies on pBIC and Eµ-TCL1 models converge to
show a striking correlation between PD-L1 and MHC-II
deregulation in different types of lymphomas. Nevertheless,
these findings deserve to be more closely investigated to
improve the comprehension of immune checkpoints
deregulation in lymphomas.

NKG2D
In Humans, cells infected by the EBV are under powerful
immune surveillance by T and NK cells. Compromising this
immune surveillance such as in AIDS or after organ
transplantation, results in aggressive EBV-related B-cell
lymphoproliferations. NK-cell functions could strongly be
altered in DLBCLs that can be associated with resistance to
rituximab-based therapies (52). Mouse Natural Killer Group 2
member D (NKG2D) is a receptor expressed by all cytotoxic
lymphocytes, notably NK cells, activated CD8+ T cells and
activated macrophages (53). Two murine NKG2D ligands have
been described (RAE-1 and H60) (53–56). Interaction between
NKG2D and its ligands induces PI3K-AKT signaling, leading to
an increase in target recognition, cytotoxic activity and a
reduction in sensitivity to cell apoptosis (57). NKG2D ligands
are normally expressed at the surface of any virally infected/
tumorigenic cells. Both mouse and human studies suggest that
tumor cells evade NKG2D recognition either by downregulating
NKG2D ligands expression (14, 58) or by secreting massively
circulating NKG2D ligands resulting in a downregulation of
NKG2D expression on cytotoxic cells (59–61). The occurrence of
B-cell lymphomas is accelerated in the absence of NKG2D. In
mice, Guerra et al. showed, in 2008, that the deletion of Klrk1, the
gene encoding NKG2D, in Eµ-Myc mice, accelerates the
emergence of Eµ-Myc-induced lymphomas (14). A similar
effect was shown on an EBV dependent mouse B-cell
lymphoma (10), and also in a BL l-Myc-Klrk1-/- mouse model
(15). Belting et al. completed this observation by demonstrating
the role of NKG2D in the control of B-cell lymphoma growth
and observed another escape mechanism developed by
lymphomas cells through downregulating NKG2DL during the
NK cell activation through downregulating NKG2DL (15).

All these different studies demonstrate the importance to
escape the recognition of NKG2D receptor in B-cell
lymphomagenesis and suggest its implication in the aggressive
phenotype of these diseases.
Frontiers in Immunology | www.frontiersin.org 599
CONCLUSION

The pressure of the immune surveillance is certainly one of the
major driving forces in the emergence of B-cell lymphomas.
Together, results reported in the articles reviewed here, support
the fact that mouse models are useful to analytically understand
the immune escape in both aggressive and indolent B-cell
lymphomas. Beyond PD-1/PD-L1 axis, roles of CTLA-4, of
antigen presentation and of NK-cells is also highlighted. These
models functionally explain and resume the role of the different
actors of the immune surveillance in B-cell lymphomas.
Engineered mouse models will contribute to better understand
tumor microenvironment in the aim to identify novel
mechanisms of B-cell immune escape, which may be the
keystone of future therapies. Mouse models are also useful for
the preclinical study of these therapies, evidencing the interest of
combinations that include treatments able to restore the anti-
tumor immune response. All the models presented here point
out the major role of NF-kB activation, suggesting that this
pathway should also be targeted together with immune
restoration therapies. Before trying such strategies in Humans,
this is testable in genetically engineered mouse models.
Providing a strong support for the issue of immune escape in
B-cell lymphomas, these models deserve to be widely used.
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Mouse models of human cancer provide an important research tool for elucidating the
natural history of neoplastic growth and developing new treatment and prevention
approaches. This is particularly true for multiple myeloma (MM), a common and largely
incurable neoplasm of post-germinal center, immunoglobulin-producing B lymphocytes,
called plasma cells, that reside in the hematopoietic bone marrow (BM) and cause osteolytic
lesions and kidney failure among other forms of end-organ damage. The most widely used
mouse models used to aid drug and immunotherapy development rely on in vivo
propagation of human myeloma cells in immunodeficient hosts (xenografting) or
myeloma-like mouse plasma cells in immunocompetent hosts (autografting). Both
strategies have made and continue to make valuable contributions to preclinical
myeloma, including immune research, yet are ill-suited for studies on tumor development
(oncogenesis). Genetically engineered mouse models (GEMMs), such as the widely known
Vk*MYC, may overcome this shortcoming because plasma cell tumors (PCTs) develop de
novo (spontaneously) in a highly predictable fashion and accurately recapitulate many
hallmarks of human myeloma. Moreover, PCTs arise in an intact organism able to mount a
complete innate and adaptive immune response and tumor development reproduces the
natural course of human myelomagenesis, beginning with monoclonal gammopathy of
undetermined significance (MGUS), progressing to smoldering myeloma (SMM), and
eventually transitioning to frank neoplasia. Here we review the utility of transplantation-
based and transgenic mouse models of human MM for research on immunopathology and
-therapy of plasma cell malignancies, discuss strengths and weaknesses of different
experimental approaches, and outline opportunities for closing knowledge gaps,
improving the outcome of patients with myeloma, and working towards a cure.

Keywords: genetically engineered mouse models of human cancer, auto- and xenografting, immune,
immunodeficient mice models, immune pathogenesis, Myeloma
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INTRODUCTION

Multiplemyeloma (MM) is a neoplasm of terminally differentiated,
post-germinal center, immunoglobulin (Ig)-producing B-
lymphocytes, called plasma cells, that reside in the hematopoietic
bone marrow (BM). Quintessential disease manifestations include
a serum M-spike (monoclonal Ig, paraprotein) and signs of end-
organ damage known as CRAB symptoms: hypercalcemia, renal
insufficiency, anemia, and lytic bone lesions (1). The most recent
estimate of the US National Cancer Institute SEER (Surveillance,
Epidemiology, and End Results) Program predicts slightly more
than 32 thousand cases of newly diagnosed myeloma (NDMM)
and nearly 13 thousand disease-specific deaths in 2020. This
renders MM the second most common and one of the deadliest
blood cancers in the United States. Owing to newly developed
myeloma agents, particularly proteasome inhibitors (PIs),
immunomodulatory drugs (IMiDs) and monoclonal antibodies
(mAbs), the outcome for patients with MM has significantly
improved in recent years (2), making it possible, at long last, to
cure a tangible number of patients (3). However, in the great
majority of cases, following a period of successful therapy,
myeloma relapses as a drug-refractory, aggressive disease that
leaves few, if any, therapeutic options. The root causes of
progression to relapsed and/or therapy-refractory myeloma
(RRMM) include tumor cell-intrinsic changes such as point
mutations in drug response genes (4), copy number alterations
that may abrogate tumor suppressor pathways (5), epigenomic
aberrations modifying gene expression (6), and increased cancer
stemness, which may impact lineage fidelity and tumor dormancy
to name but two changes (7). An equally important yet tumor cell-
extrinsic driver of RRMM pathophysiology is the tumor
microenvironment (TME), which provides myeloma-promoting
interactions with resident BM cells, including specimens of the
innate and adaptive immune system (8). Enhanced understanding
of immune regulation of the BM microenvironment (BMME) has
not only shed light on pathways of myeloma progression but also
greatly advanced myeloma treatment over the past decade (9).

Mouse models of human myeloma have provided preclinical
research tools for elucidating the role of the immune system in the
natural history of plasma cell neoplasia and in assessing candidate
immunotherapies for myeloma (10, 11). Numerous experimental
model systems are available, however, none perfectly replicate
human myeloma (Figure 1). The most widely used models rely on
in vivo propagation of human myeloma cells in immunodeficient
hosts (human-in-mouse xenografting) (12–14) or myeloma-like
plasma cells from C57BL/6 (B6) (15) or BALB/c (C) mice (16) in
genetically compatible (syngeneic) immunocompetent hosts
(mouse-in-mouse autografting). Both strategies have made and
continue to make important contributions to myeloma research
Abbreviations: BM, bone marrow; BMME, bone marrow microenvironment; B6,
C57BL/6; C, BALB/c; Ig, immunoglobulin; IMiD, immunomodulatory drug; IP,
intraperitoneal; IV, intravenous; mAb, monoclonal antibody; MGUS, monoclonal
gammopathy of undetermined significance; MM, multiple myeloma; NDMM,
newly diagnosed multiple myeloma; PI, proteasome inhibitor; RRMM, relapsed/
refractory multiple myeloma; SC, subcutaneous; SMM, smoldering multiple
myeloma; TME, tumor microenvironment.
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(17, 18), but are hampered by the reality that in vivo transfer of
malignant cells (tumor transplantation) is not suitable for studying
tumor development (oncogenesis). In other words, xeno- and
autografting of neoplastic plasma cells bypasses the natural course
of human myelomagenesis that begins with monoclonal
gammopathy of undetermined significance (MGUS) (19),
progresses to smoldering myeloma (SMM) (20), and eventually
transitions to frank neoplasia (NDMM). Laboratory mice, in
which plasma cell tumors (PCT) arise de novo (spontaneously)
in a fully immunocompetent microenvironment, may remedy this
shortcoming yet are undermined by other limitations, including
complex breeding schemes, cost and time. Here we review the
contribution of mouse models to advances in immunopathology
and -therapy of human myeloma, discuss strengths and
weaknesses of different experimental approaches, and outline
opportunities for closing knowledge gaps.
IMMUNOPATHOLOGY AND -THERAPY OF
MULTIPLE MYELOMA

Immune Editing and Immune Dysfunction
in Myeloma
As mentioned above, frank myeloma is invariably preceded by
the precursor conditions MGUS (19) and SMM (21). MGUS is,
in most cases, asymptomatic (22) and is usually detected years
before frank MM manifests. MGUS progresses to active
myeloma at the slow and constant rate of approximately 1%
per year (21, 23). Consistent with the more advanced stage of
tumor development, the progression rate of SMM is higher: 10%
per annum in the first 5 years and 3% thereafter (24). Notably,
BM plasma cells of individuals with MGUS exhibit a gene
expression profile that is highly similar to that of myeloma
(25) and MGUS plasma cells contain many of the cytogenetic
changes (chromosomal translocations, gains and deletions)
typically seen in myeloma cells (26–28). These findings have
long raised suspicion that MGUS may in fact be a malignancy
that is suppressed by a strong, extrinsic force, such as a cognate
cytotoxic immune response (immune surveillance). Because
most cases of MGUS do not progress to MM, this surveillance
mechanism must be effective and enduring, essentially covering
the entire lifespan of most individuals harboring an aberrant
plasma cell clone of this sort. A large body of recent work
expertly reviewed elsewhere (29, 30) strongly suggests that the
breakdown of immunologic surveillance is at the heart of the
MGUS-to-MM transition. According to this theory, known as
cancer immunoediting (Figure 2A), the immune system is
initially highly successful in eliminating abnormal plasma cells
(Elimination stage), but then switches to an impasse that permits
a limited number of these cells to survive in a quiescent or
dormant state (Equilibrium) that may last for many years in
individuals with MGUS (34). For reasons that are not yet clear,
the equilibrium is eventually disrupted in a subset of patients,
allowing the aberrant cell clone to evade immune control
(Escape) and fuel the malignant growth that underlies active
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myeloma. In sync with that scenario, immune suppression
caused by regulatory T cells, myeloid derived suppressor cells
(MDSC) and dysfunctional effector T lymphocytes, is a hallmark
of NDMM (Figure 2B). Growth and survival support of
myeloma cells by innate immune cells, including conventional
and plasmacytoid dendritic cells (35, 36) and eosinophils (37), is
the flip side of the same coin. Of practical relevance for patient
care is the knowledge that immune dysfunction in patients with
myeloma may lead to increased risk of infections (38) and lack of
a vigorous vaccination response (39) – something to be mindful
about in the midst of SARS-CoV-2 (40).
Immunotherapy of Myeloma
The past decade has witnessed tremendous progress in
immunotherapeutic approaches to myeloma. Authoritative and
up-to-date reviews are available (29, 41). Current FDA-approved
interventions include monoclonal antibodies targeting CD38
[daratumumab (42), isatuximab (43)] or SLAMF7 [elotuzumab
(44)] on the surface of tumor cells. An antibody-drug conjugate
(ADC) that binds to BCMA [belantamab mafodotin (45)] has also
been approved just recently. Additional BCMA-targeted therapies,
in particular chimeric antigen receptor (CAR) T cells and
bispecific T cell engagers (BITEs), are in advanced stages of
clinical development. Immune modulation using small-drug
inhibitors of cereblon, a component of an E2 ubiquitin
ligase complex, is also approved for treatment of myeloma
and is widely used for maintenance therapy internationally.
Immunomodulatory drugs of this sort, dubbed IMIDs, include
Frontiers in Immunology | www.frontiersin.org 3104
thalidomide (46), lenalidomide (47, 48), and pomalidomide (49).
Next-generation cereblon-targeting agents that promise to
overcome acquired resistance to IMIDs are in clinical trial (50).
Figure 2C provides an overview of myeloma immunotherapies in
clinical use. Not shown are proteasome inhibitors (PIs), a class of
targetedmyeloma agents that, in the past, have not been associated
with immune-mediated myeloma-inhibiting effects. However,
recent work demonstrates that modulating the immune
microenvironment of myeloma, by virtue of inducing
immunogenic cell death (51), primes a cytotoxic immune
response to tumor cells, thereby contributing to disease control
in a proteasome-independent manner.
XENOGRAFT MODELS OF MYELOMA

Propagating Human Myeloma Cell Lines
(HMCLs) in NSG and NRG Hosts
Many advances in the field of myeloma biology, genetics, and
therapy would not have been possible without preclinical
investigations that relied on immunocompromised mice for
hosting human myeloma cells. Human-in-mouse xenografting
has a long and distinguished history in cancer, including
myeloma research, beginning in the early 1960s with the
discovery of the T lymphocyte-deficient nude mouse. This
marked the inception of a developmental pipeline of mice that
feature increasing levels of immunodeficiency. SCID (severe
combined immunodeficiency) and Rag mice lack both T and B
FIGURE 1 | Mouse models of human myeloma. Xeno- and autografting relies on in vivo propagation of fully transformed tumor cells. Models of tumor development
include peritoneal plasmacytomas that can be readily induced in genetically susceptible BALB/c mice and myeloma-like tumors that arise spontaneously in a variety
of transgenic mice.
June 2021 | Volume 12 | Article 667054

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pisano et al. GEMM of Myeloma
lymphocytes. The underlying genetic defects are loss-of-function
mutations in Prkdc (protein kinase, DNA activated, catalytic
polypeptide) and Rag1 or Rag 2 (recombination activating gene 1
or 2), respectively. Transfer of the SCID and Rag mutations on
the genetic background of NOD (non-obese diabetic) led to
NOD-SCID and NOD-Rag mice, which exhibit a NK (natural
killer) defect on top of T and B deficiency. In addition to
diminished NK cell function, NOD leads to lack of circulating
complement due to deletion of the C5-encoding Hc gene and
proclivity to Type 1 diabetes mellitus due to autoimmune
insulinitis (52). Further modification of NOD-SCID and NOD-
Rag mice by crossing in IL2Rg (interleukin-2 receptor subunit
gamma) deficiency resulted in strains NSG and NRG, which are
Frontiers in Immunology | www.frontiersin.org 4105
devoid of T, B and NK cells. Lack of IL2Rg (a.k.a. CD132 or
common gamma chain, gc) abrogates NK cells and compromises
at least 6 interleukin signaling pathways: IL-2, 4, 7, 9, 15 and 21
(Figure 3B). NSG and NRG mice, which are commercially
available and widely used in myeloma research, readily permit
engraftment of human myeloma cells upon subcutaneous (SC),
intravenous (IV), intraperitoneal (IP), or intratibial injection (53,
54). Strengths and limitations of myeloma xenografting have
been reviewed in great depth elsewhere (55). Care must be taken
to select the most appropriate HMCL for a given research
question, as significant differences between cell lines exist (56,
57). 3D in vitro culture of myeloma cells using a variety of
artificial scaffolds is an emerging technology that competes with
xenografting and holds promise for drug testing for personalized
myeloma therapy (58).
Engrafting Patient-Derived Myeloma Cells
in Implanted Bone Chips
Major limitationsofmyelomaxenograftingdescribed above include
the reality that tumor growth occurs mostly outside the BM and
primary patient-derived tumors do not grow at all. The latter is a
fundamental flaw caused by the stringent dependency of myeloma
cells on support from the human BMME. HMCLs do not exhibit
this dependency because they are derived from malignant plasma
cells that circulated in the peripheral blood or occurred in body
cavity effusions of patients with plasma cell leukemia, the end stage
of myeloma progression. The derivation from leukemic cells is also
in line with the extramedullary growth pattern (plasmacytoma) of
HMCL-in-mouse xenografts mentioned above. To provide a TME
that is more conducive for primary myeloma cells, investigators
modified SCIDmice by implanting small pieces of human or rabbit
bone subcutaneously. Synthetic 3D scaffolds serving as surrogate
bone provide an alternative approach. These experimental model
systems have come to be known as SCID-hu (12, 59–61), SCID-rab
(62), and SCID-syn (14) (Figure 3A). They are equally capable and
have greatly enhanced preclinical myeloma research (10, 11) by
addressing knowledge gaps in treatment and pathophysiology:
SCID-hu (63–65), SCID-rab (66–68), and SCID-syn (69, 70).
However, more widespread use of these models is hampered by
ethical and practical limitations, such as reliable provision of fetal
humanboneanddifficulties in administering humanmyeloma cells
to small implants. The fact that fetal BMdoes not equate with adult
BM in terms of cellular composition and immune milieu, and that
rabbit or synthetic bone does not fully recapitulate the myeloma-
supporting properties of human bone adds an additional biological
limitation. This backdrop helps explain why the use of SCID-hu,
SCID-rab, andSCID-synhasbeendeclining inrecentyears andwhy
researchers have been looking for alternative strategies to propagate
myeloma in laboratory mice. The most promising development to
date is the humanization of NRG mice, as described below.

Maintaining MGUS/SMM Plasma Cells in
Humanized NRG Mice
Gene targeting in embryonic stem cells is a convenient research
tool for substituting mouse genes with human counterparts and,
A

B

C

FIGURE 2 | Immunopathology and -therapy of myeloma. Evidence indicates
that myeloma development is promoted, in part, by the gradual breakdown of
immunosurveillance (A). Consequently, patients with myeloma have a
suppressed and dysfunctional immune microenvironment (B). 2 subsets of
Tregs that discriminate MGUS from MM (31); 2 subsets of terminal effector T
cells (TTE) are involved in MGUS to MM transition (32); Attrition of BM-resident T
cells due to loss of “stem-like” TCF1/7hi T cells may underlie loss of immune
surveillance in myeloma (33). Enhanced understanding of this microenvironment
has been key for the development of immunotherapies of myeloma (C).
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thereby, humanizing laboratory mice. This approach has
generated highly immunodeficient mice in which two major
obstacles to engraftment of human cells have been largely
overcome: innate immune rejection via phagocytosis and lack
of activity of certain cytokines and growth factors across the
human-mouse species barrier (71). Strain MIS(KI)TRG is an
excellent example of recent developments. It features, on the
Frontiers in Immunology | www.frontiersin.org 5106
genetic background of NRG, the expression of 5 human “knock
in” genes encoding M-CSF (macrophage colony-stimulating
factor a.k.a. colony stimulating factor 1 or CSF1), IL-3
(interleukin-3), GM-CSF (granulocyte-macrophage colony-
stimulating factor a.k.a. colony stimulating factor 2 or CSF2),
SIRPa (signal regulatory protein a), and thrombopoietin (72).
MIS(KI )TRG mice exhibit improved engraftment of
A

B

C

FIGURE 3 | Xenografting human myeloma in immunodeficient mice. NSG and NRG mice are widely employed for preclinical studies using human myeloma cell lines
(HMCLs) but are limited in terms of hosting primary, patient-derived myeloma cells (B). Implantation of bone chips or artificial scaffolds in SCID mice can overcome
this limitation (A) but is faced with practical limitations and the inability to support MGUS and SMM plasma cells. Additional incremental steps in humanizing NSG
and NRG mice may solve this problem. A promising step in this direction is the recent development of IL-6 transgenic MISKITRG mice, which can support homing
and survival of plasma cells not only from patients with frank and smoldering MM but also individuals with MGUS (C).
June 2021 | Volume 12 | Article 667054

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pisano et al. GEMM of Myeloma
hematopoietic stem and progenitor cells and lend themselves to
hosting PDX (patient-derived xenograft) tumors from many
human cancer types. However, these mice were still unsuitable
for stable engraftment of primary myeloma cells. Cognizant of
the critical role of IL-6 for growth and survival of neoplastic
plasma cells (73), Madhav Dhodapkar and his associates added a
human IL-6 allele to strain MIS(KI)TRG, thus generating IL-6
transgenic MIS(KI)TRG, or MIS(KI)TRG6 mice (Figure 3C) (74).
The introduction of human IL-6 resulted in a remarkable
breakthrough for preclinical myeloma research, because for the
first time it allowed engraftment and propagation of primary
MM cells in a reliable and reproducible fashion. What is more,
MIS(KI)TRG6 supported engraftment of SMM and MGUS
plasma cells upon transfer of CD3-depleted BM mononuclear
cells to recipient bone. The finding that, unlike NDMM cells,
RRMM cells actively homed to and expanded in other sites of the
skeleton resembled the more advanced tumor progression stage
of relapsed compared to new myeloma. Finally, while RRMM
remained confined to bone, tumor samples from patients with
plasma cell leukemia demonstrated the kind of systemic,
extramedullary dissemination pattern that one might expect
from a leukemic cell clone.
Utility of Myeloma Xenografting in
Immunotherapy Research
Of the three principal model systems of myeloma xenografting
described above, the HMCL-in-mouse approach, has probably
had the greatest impact on immunotherapy research in
myeloma. While MIS(KI)TRG6 mice have not yet been used to
that end, the implantation-based SCID models have largely been
supplanted by HMCL-in-mouse xenografts, as mentioned above.
Indeed, HMCL xenografting appears to lend itself readily to the
complex requirements of experimental immunotherapy. Often
this involves adoptive immune cell transfer to study mice and
testing of new therapeutic antibodies or antibody-drug
conjugates (ADCs) in mice co-treated with established
myeloma drugs or candidate small-drug inhibitors. HMCL
xenografts are often used as a first choice when the efficacy of
cytotoxic T cells, NK cells, or engineered killer cells to remove
myeloma in an intact organism in vivo is to be evaluated. To
highlight but a few examples of their utility, HMCL xenografts
have majorly contributed to the development of CAR-T
treatments for BCMA (75) and newly emerging CAR-T targets
such as CD229 (SLAMF3, LY9) (76). HMCL xenografts have
been successfully employed to assess a monoclonal antibody to
transferrin receptor 1, a newly emerging molecular target
expressed on the surface of myeloma cells (77, 78). Similarly,
HMCL xenografts have been used to evaluate AMG 701, a half-
life extended BITE that binds to BCMA on myeloma cells and
CD3 on T cells (79), and to demonstrate that the therapeutic
efficacy of daratumumab in myeloma may be enhanced when
CD38 in NK cells has been deleted (80). This body of work
illustrates the rapid evolution of the myeloma immunotherapy
landscape and that HMCL xenografting is poised to add further
value to the field as we go forward.
Frontiers in Immunology | www.frontiersin.org 6107
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5TMM
The 5T mouse model of human multiple myeloma, or 5TMM for
short, is a versatile research tool for fundamental and applied
studies on plasma cell malignancies. The model is based on the
genetic proclivity of inbred C57BL/KaLwRij mice (closely related
to the commonly used C57BL/6) (81) to spontaneously develop a
benign monoclonal gammopathy (serum paraprotein) or
MGUS-like condition (82) that can progress to frank myeloma
(15, 83). Using serial in vivo propagation of bone marrow cells
from independent C57BL/KaLwRij donors containing different
paraproteins, a number of transplantable myeloma-like plasma
cell tumors were generated (Figure 4A). Two of these, dubbed
5T2 and 5T33, were fully established and generously shared with
qualified investigators in Europe, the United States, and
elsewhere. 5TMM tumors cause osteolytic lesions (83) and
recapitulate other features of human myeloma bone disease
(84, 85). 5TMM tumors grow in a fully immunocompetent
BMME and are easily tracked in vivo using radiological
methods including X-ray and PET imaging (86). Unlike 5T2,
which can only be maintained by passaging from mouse to
mouse, two continuous cell lines were derived from 5T33:
5TGM1 (87, 88) and 5T33vt (89). The genetic differences
between these cell lines and 5T2 have been recently
determined using NGS (90). This revealed an additional
strength of 5TMM in regard to modeling human myeloma; i.e.,
the significant overlap of patterns of somatic mutations across
the human-mouse species barrier, particularly with respect to
copy number changes of genes involved in gain of 1q and
deletion of 13q in human myeloma (90). The availability of
cell lines, 5TGM1 and 5T33vt, has greatly enhanced the
flexibility and impact of the 5TMM model. For example, the
cells can be easily modified by virtue of enforced up or down
regulation of genes of interest or the introduction of reporter
genes for whole-body fluorescence or bioluminescence imaging
of tumor growth in a quantitative, objective manner (91). The
cell lines have also facilitated the examination of myeloma-
immune interactions in vitro and in vivo. For example, an
early study using 5TGM1 demonstrated that myeloma cells
inhibit the differentiation of BM-derived dendritic cells (DCs)
and interfere with their function to induce cytotoxic and humeral
immune responses (92). This is relevant for ongoing efforts in
human myeloma to use DCs for vaccination approaches aimed at
eliciting a robust T cell-dependent cytotoxic immu response (93).

5TMM as Research Tool for Immune
Regulation of Myeloma
The broad utility of 5TMM for studies on the immunopathology
and -therapy of myeloma was recognized soon after the first
tumors were established. Initial investigations described the role
of the paraprotein idiotype (Id) in immune regulation (94) and
immune therapy (95) of plasma cell neoplasia. Follow-up studies
relying on 5TGM1 demonstrated that the idiotype is a myeloma-
specific antigen that can induce an Id-specific cytotoxic T cell
(CTL), T helper 1 (Th1) and T helper 2 (Th2) response (96).
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CTLs and Th1s were found to suppress myeloma growth, whereas
Id-specific Th2 cells promoted it (96) – a preclinical clue in
support of the contention that modulation of the Th1:Th2 axis
might have therapeutic benefits in myeloma. The finding that 5T-
bearing mice exhibit an increase in the ratio of regulatory T cells
(Tregs) to T effector cells (97) proved relevant for human
myeloma when it became clear that patients with new disease
contain elevated numbers of Tregs in the peripheral blood (98).
With respect to myeloma immunotherapy, the 5T33 model made
conceptual contributions to developing DC-based MM vaccines
for idiotype protein (99). This included the design of more
effective adjuvants based on CpG and IFN-a (100) and the
realization that myeloma cell lysates provide a more powerful
DC vaccine than idiotype protein and adjuvant, alone (101).
These advances were confirmed in a clinical study a few years ago
showing that a patient-derived DC-MM cell fusion (hybridoma)
vaccine improved the therapeutic response in a quarter of
myeloma patients post-ASCT from partial to (nearly) complete
(102). 5TMM has also been used to examine immunomodulatory
myeloma treatments at the preclinical level; e.g., investigators
demonstrated that CD4 T cells were vital for lenalidomide’s
activity, while NK, B or CD8 T cells were not (103). Activation
of innate-like invariant natural killer T (iNKT) cells, a cell type
that has not yet been extensively examined in human myeloma,
led to significantly increased survival of 5T33-bearing mice (104).
The 5T33 model has also contributed early on to the CAR-T
therapy field by showing that treatment using NKG2D-targeted
CAR-T cells prolonged survival of tumor-bearing mice and
induced a tumor-specific memory response (105). Furthermore,
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5T33 not only demonstrated efficacy of immune checkpoint
inhibitor (CPI) therapy using antibody to programmed death
receptor-1 (PD-1) or its ligand (PDL-1), but also showed that
CD8+ T cells in tumor-bearing mice post-ASCT significantly
upregulated PD-1 (106, 107). In summary, the practical limitation
to in vivo studies using 5TMM requiring the genetic background
of C57BL/KaLwRij (108) is a small inconvenience compared to
the potential contribution of this model to aiding immunotherapy
development for patients with myeloma.

MOPC315.BM
MOPC315 is an IgA-producing peritoneal plasmacytoma (PCT)
that arose half a century ago (109) in a BALB/c (C) mouse treated
with intraperitoneal injections of mineral oil (110). MOPC315 has
beenused fordecades in studies on immuneregulationofmalignant
plasma cell growth (111, 112) although it is not representative of
humanMM,whichgrows in thehematopoieticBManddepends on
the BMME for survival. In a major step forward, this shortcoming
was remedied by the development of a subline of MOPC315,
dubbed MOPC315.BM, generated by serial IV autografting of
BM-derived plasma cells for nine generations. In the course of in
vivo propagation, tumor cell variants with exquisite affinity to the
BM increased oncogenic potency (~1 month median survival of
tumor-bearing mice), and capacity for BM homing and bone
destruction were preferentially selected (Figure 4B). Transfection
with a luciferase reporter further increased the utility the cell line
(16). MOPC315.BM is now increasingly used in preclinical
myeloma research. For example, it provided the foundation for
recent studies on the involvement of IL-34 and notch signaling in
A

B

C

FIGURE 4 | Autografting mouse myeloma in immunocompetent mice. Two models have been established. 5TMM is on a genetic background that is highly similar to
B6 and includes two continuous cell lines, 5TGM1 and 5T33vt, that are widely used (A). MOPC315 is a peritoneal plasmacytoma on the genetic background of C
that has given rise to a BM-seeking subline, MOPC315.BM, that holds great value for myeloma immunology research. (B) Decades of research by Bogen and
colleagues have shown indirect CD4+ T cells mediated killing via interactions with cytotoxic macrophages, further demonstrating the utility of MOPC315.BM as an
immunological research tool (C).
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the pathophysiology of the focal and systemic bone loss inmice that
mimics human myeloma bone disease (MBD) (113, 114).
Additionally, MOPC315.BM has been employed to demonstrate
that eosinophils andmegakaryocytes supportmalignantplasma cell
growth in the BM (115) and that oncolytic myxoma virus, in
conjunction with ASCT, may be an effective treatment for PCT-
bearing mice (116). Importantly, together with its parental line,
MOPC315.BM has made major contributions to our appreciation
of CD4 T cell responses in immunosurveillance and -therapy of
myeloma (117), briefly summarized below.

Lesson on CD4-Dependent Control of
Malignant Plasma Cell Growth
Strong evidence supports the significance of Id-specific CD4 T cells
in clearance of MOPC315 plasma cells in vivo (118), confirming
matching results in the 5TMM model described above. In a
remarkable continuity of investigations that span more than 25
years, Bjarne Bogen and his colleagues have unequivocally shown
that tumor cell-produced monoclonal Ig gives rise to a tumor-
specific antigen (TSA) in theMOPC315model system. The antigen
is processed by professional antigen-presenting cells (APCs) that
include tumor-infiltrating macrophages in the subcutaneous
MOPC315 model and BM macrophages in the medullary
MOPC315.BM model (119). With help of MHC class II-encoded
I-Ed surface protein,APCs present the antigen toCD4Th1 cells as a
l2 light-chain V region-derived idiotypic (Id) peptide; i.e., a
neoepitope. This results in Th1-dependent production of IFN-g,
which activates bystander macrophages and promotes their
polarization to the tumoricidal M1 phenotype. In turn, M1
macrophages upregulate inducible nitric oxide synthetase (iNOS)
to produce and release nitric oxide (NO) into the extracellularmilieu.
NO then kills neighboring tumor cells using a mechanism that
involves reactive nitrogen species (e.g., peroxynitrite) and activates
the intrinsic pathway of programmed cell death (apoptosis). Thus, in
theMOPC315model system, CD4+ T cells kill tumor cells indirectly
with the assistance of cytotoxic macrophages (Figure 4C).
MOPC315.BM has provided additional insights into myeloma
immunology. Examples include the interaction of myeloid-derived
suppressor cells and T cells in vivo (120), the development of
allogeneic T cell treatments for myeloma that may circumvent
GvHD (121, 122), and the evaluation of novel DNA vaccines for
immunotherapeutic purposes (123). Similar to the inconvenience of
the genetic background of 5TMM, MOPC315.BM is on the genetic
background of BALB/c (C), which is not as widely used in cancer
immunology as B6. However, this is a small price to pay considering
the value MOPC315.BM can add to the immune revolution in
myeloma treatment (124).
SPONTANEOUS PLASMA CELL TUMORS
IN LABORATORY MICE

Inducible, Inflammation-Dependent
Peritoneal Plasmacytoma
MOPC315 is but one representative of a large panel of peritoneal
plasmacytomas that has been developed single handedly in the
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1960s and 1970s by Dr. Michael Potter at the US National
Cancer Institute, Bethesda, Maryland. He discovered that IP
treatment of C mice using certain mineral oils (110) or a
chemically defined component thereof, called pristane
(2,6,10,14-tetramethylpentadecane) (125), induced development
of MOPC (mineral oil induced plasmacytoma) and TEPC
(tetramethylpentadecane induced plasmacytoma) tumors,
respectively. Plasmacytomas induced in this fashion were
crucial for basic research breakthroughs in antibody structure
(126) and monoclonal antibody (hybridoma) technology, which
began with MOPC21 (127). Unlike most inbred strains of mice,
C is highly susceptible to plasmacytoma (128) due to a complex
genetic trait that includes hypomorphic (weak efficiency) alleles of
genes that encode the cell cycle inhibitor p16INK4a (129) and the
FKBP12 rapamycin-associated protein Frap (130). Virtually all
peritoneal PCTs harbor a Myc-activating chromosomal
translocation (131) that takes the form of a balanced T(12;15)
(Igh-Myc) in the majority (~85%) of cases. Plasmacytoma
induction requires maintenance of mice in a non-SPF (specific
pathogen-free) environment rich in antigenic stimuli including
gut flora-derived antigens (132). Consistent with that, C mice
raised under SPF or germ-free conditions exhibit a dramatically
reduced tumor incidence (133) or fail to develop plasmacytoma
altogether (134). Peritoneal plasmacytoma is the premier mouse
model of inflammation-induced extramedullary myeloma has
been used for decades to learn about immune regulation of
malignant plasma cell growth (111, 112). However, BALB/c
plasmacytomas are not widely used in myeloma research today
because more accurate, transgenic mouse models of the disease
have become available. These will be described in the
following section.

Transgenic Mouse Models of Human
Myeloma and Related Plasma
Cell Neoplasms
Genetic modification of the mouse germline has been employed
by several independent research groups to generate transgenic
strains of mice that are prone to spontaneous plasma cell tumors
(PCT) that replicate important features of human MM. Mice of
this sort exhibit a predictable progression pattern from MGUS-
and SMM-like precursor conditions to frank plasma cell
neoplasia. This pattern is key for preclinical assessments of
myeloma preventions, a hot topic in clinical myeloma research
(135). PCT-prone mice feature a fully intact innate and adaptive
immune system that is likely to adapt to tumor development
much the same way as the human immune system adapts to
myeloma (Figure 2A). Hence, trialing newly developed
immunotherapeutics in mice that are genetically susceptible to
PCT is poised to yield more complete and higher-quality
information than one might get from mice that are
immunocompetent but not undergoing tumorigenesis (136).
The same argument can be made for the preclinical testing of
complex treatment regimens that combine HSC transplantation
and established myeloma drugs (PIs, IMiDs) with novel
immunotherapies and small-compound inhibitors. Evaluating
these types of treatment in PCT-susceptible mice may more
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closely mimic the response of myeloma patients exposed to
triplet and quadruplet drug regimens (137). Figure 5 presents
a developmental timeline of genetically engineered mouse
models (GEMMs) of human myeloma and related
malignancies. Table 1 provides details on tumor incidence and
phenotype, genetic drivers of tumor development, and genetic
background of mice. An exhaustive discussion of individual
models is beyond the scope of this review. To that end, the
reader is referred to the primary literature and outstanding
recent reviews from Tassone (55), Vlummens (138) and their
associates. A general rule that may be gleaned from the table is
that single-transgenic models exhibit delayed tumor onset and a
relatively low tumor incidence. To accelerate plasma cell
neoplasia, investigators have taken advantage of oncogene
collaboration in double-transgenic mice, such as IL6Myc (139)
and Bcl-XLiMyc (140), that exhibit short tumor onset and full
penetrance of the malignant phenotype (100% tumor incidence).
Inducible transgenes such as L-gp130 (141) and models based on
adoptive transfer of genetically modified B cells (142–144) serve
the same purpose; i.e., faster and more consistent tumor
development. Importantly, Vk*MYC, developed by Marta
Chesi and Leif Bergsagel at Mayo and generously shared with
investigators in many countries, is the only model at this juncture
for which robust immunology work is available. This is one of
several reasons why Vk*MYC is widely considered in the
myeloma community as the gold standard of mouse models.
Advances in immunosurveillance and immunotherapy of
myeloma made possible by Vk*MYC will be briefly
discussed below.

Advances in Myeloma Immunology Made
Possible by Vk*MYC
The realization that Vk*MYC-dependent myeloma causes
changes in immune regulation in mice comparable to changes
seen in patients with myeloma (145) laid the foundation for
mechanistic studies describing role of specific pathways of
immunity to Vk*MYC-driven tumor development. The first
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investigation along this line revealed the importance of CD226
for immune surveillance of myeloma. Lack of CD226 reduced the
anti-myeloma response of NK and CD8 T cells, resulting in
quicker tumor progression and decreased overall survival of
Vk*MYC mice (146). Another insight afforded by Vk*MYC
concerned the intriguing link between microbial gut flora and
IL-17-driven tumor progression. The underlying mechanism is
complex but involves an increase in Th17 cells and activation of
eosinophils. Not coincidentally, therapeutic control of these
changes using antibodies to IL-17 and IL-5 delayed tumor
progression (147). Vk*MYC also provided definitive genetic
evidence on the involvement of the pro-inflammatory cytokine
IL-18 in myeloma progression (148). This was attributable
to IL-18-dependent generation of myeloid-derived suppressor
cells (MDSCs), an important driver of the dysfunctional
immune environment in human myeloma (Figure 2B).
Another study demonstrated that tumor progression and
dissemination in Vk*MYC is not under exclusive control of
the TME. Insead, it is regulated, in part, by properties of tumor
cells such as expression of CD138 (149) (Figure 6A). Vk*MYC
has also impacted the field of myeloma immunotherapy in more
ways than one. One study showed that treatment of mice
using IAP (inhibitor of apoptosis) antagonists activated an
acute inflammatory response that led to enhanced tumor
phagocytosis by macrophages. Interestingly, co-treatment using
antibody to PD1 led to an additional increase in survival of mice
(153). By implicating the upregulation of TIGIT (T-cell
immunoglobulin and ITIM domain) on CD8 T cells, Vk*MYC
has also contributed to our understanding of T cell exhaustion in
myeloma. Checkpoint blockade of TIGIT prolonged survival of
mice and reduced levels of immunosuppressive IL-10 produced
by dendritic cells (154–156). Finally, studies using Vk*MYC
demonstrated that: blocking type 1 interferon signaling may
inhibit Treg expansion in myeloma (157), antibody to CD137
holds promise as a consolidation treatment in myeloma (158),
and HSC transplantion may facilitate both a robust anti-MM
CD8 T cell response and a myeloma-specific T cell memory (159)
FIGURE 5 | Transgenic mouse models of human plasma cell myeloma and extramedullary plasmacytoma. Shown is a timeline of model development that begins
with Eµ-v-abl developed by Susan Cory’s group at WEHI and published in 1990. The H2-Ld-IL6 model of human plasmacytoma published in 2002 gave rise to the
double-transgenic MycIL6 and BCL2IL6 models that take advantage of oncogene collaboration to accelerate neoplastic plasma cell development. Similarly, Vk*MYC,
the premier model of myeloma immunology research, was recently accelerated by breeding in a mutated Ras gene, leading to the highly promising VQ model
published in 2020.
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(Figure 6B). The impressive body of work summarized above
strongly suggests that Vk*MYC provides a valuable blueprint for
immunological studies using other mouse myeloma models
included in Table 1.
RESEARCH GAPS AND FUTURE
DIRECTIONS

Following in the Footsteps of Vk*MYC
One line of future investigation should be aimed at determining
whether the immune changes seen in tumor bearing Vk*MYC
mice also occur in other strains of mice prone to spontaneous
PCT (Table 1). Independent confirmation would lend support to
the contention that the observed changes represent bona fide
biological sequelae of neoplastic plasma cell development rather
than a special feature of this particular model. Uncovering
significant differences in immune cell compartments or
pathways of immunity between different mouse models may
also be of value because it may help investigators match a
particular type of human myeloma in terms of progression
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stage (e.g., NDMM vs RRMM), outcome risk (e.g., standard vs
high risk), or molecular subgroup (184) with the most
appropriate mouse counterpart. Since human myeloma
exhibits a great deal of diversity in cytogenetic, gene
expression, epigenetic, immunologic, and other features (185),
MM should be represented by a collection of models that
mirror that diversity. However, this goal has not yet been
achieved as the models listed in Table 1 represent but a
narrow snapshot of the human myeloma landscape. With the
exception of the most recently developed model that relies on a
Cre recombinase effected loss of the microRNA-encoding tumor
suppressor locus, miR-15a/16-1, malignant development is
driven in these models by a limited set of oncogenes on the
uniform, homogeneous genetic background of inbred mice
(186). The overrepresentation of Myc, IL-6, and Bcl-2 family
genes, particularly among the more thoroughly investigated
models, underscores the narrowness and redundancy of the
present situation.

Be this as it may, Vk*MYC and related models stand ready
both to shed light on long-standing questions in myelomagenesis,
such as the role of antigen and germinal center reentry of tumor
precursors (187) and to revisit difficult issues in myeloma
immunotherapy, such as the benefits of immune checkpoint
inhibition (CPI) (188), which remain unclear at this juncture
(189). Since Vk*MYC mice undergoing IAP inhibition
responded to CPI with increased survival (153), in-depth
analysis of that response may provide clues for how to
incorporate CPI in human myeloma treatment protocols.
Vk*MYC and other transgenics may also assist in validating
novel immunotherapies that are emerging from exploratory
studies using transplantation-based mouse models. Two recent
advances that relied on 5TMM and HMCL, respectively,
concerned the combination of vaccination and epigenetic
therapies (190) and a neat strategy for enhancing the efficacy
of daratumumab by genetic engineering of NK cells (191).
Considering the increased interest of the clinical myeloma
community in tumor prevention (192), Vk*MYC and related
models may also afford opportunities for the preclinical
evaluation of candidate interventions to block the progression
of high-risk MGUS and SMM to frank myeloma.

Toward a Robust PDX Model of MM
Despite the breakthrough accomplishments of the MIS(KI)TRG6
mouse described above, this xenograft model of human myeloma
is still limited compared to well-established PDX (patient derived
xenograft) models of solid cancer (193) and emerging PDX
models of lymphoma (194). Biological limitations of MIS(KI)

TRG6 and the parental strain, MIS(KI)TRG, include proclivity to
anemia and quick exhaustion of human grafts after cell or tissue
transfer (195). There are also some thorny non-biological
limitations, including intellectual property rights that have
prevented the wider distribution of the MIS(KI)TRG6 thus far.
Hence, additional work is warranted to improve upon this model
and develop humanized laboratory mice that lend themselves to
the preclinical evaluation of myeloma immunotherapy and
precision medicine approaches. To that end, a fundamental
conceptual consideration is the recognition that increasing
A

B

FIGURE 6 | First described in 2008, the Vk*MYC model takes advantage of
AID-activated MYC to induce myeloma on the B6 background. All 122 mice in
the original study had monoclonal plasma cell expansion in the BM resembling
human MM. Eighty percent of mice had measurable M-spike by 50 weeks of
age. Additionally, aged Vk*MYC mice displayed many hallmarks of human MM,
including bone loss and protein deposition in the kidneys (150). This allows for
thorough studies of the MGUS to MM transition in this model (A). Vk*MYC
mice accurately predict clinical efficacy of myeloma drugs (151) and provide a
good model for experimental oncolytic immunotherapy (152) (B).
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levels of immunodeficiency result in better engraftment of tumor
cells (Figure 3) but diminished opportunities to assess the
impact of the immune system on myeloma biology and
treatment responses. One way to address this conundrum is a
non-genetic form of humanizing mice by means of adoptive
transfer of human hematopoietic stem and progenitor, T, NK,
and other blood cells. All of these cells are easily obtained from
patients with myeloma, particularly those undergoing SCT, and
can be engrafted in mice together with BM-derived malignant
plasma cells. Disadvantages of this approach include the small
experimental window in the adoptively transferred mouse (on
the order of a few days) and the high risk of GvHD that may
distort study results (196).

A parallel way forward is to continue with the genetic
humanization of laboratory mice. The aim is to generate
humanized mouse PDX myeloma models that will be as
promising for immunotherapy research as the new generation of
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mouse PDX carcinoma models is (197, 198). Molecular targets of
humanization include components of theHSCniche (e.g., c-kit and
Flt3) and biological pathways of myeloid and NK reconstitution
(e.g., c-kit ligand and GM-CSF). Additional targets include the
major histocompatibility complex (e.g., deletion of mouse beta-2
microglobulin) and, importantly, immune checkpoints such as
CTLA-4, the CD47 “don’t eat me” signal to macrophages, BTLA
(CD272), TIM3,GITR,OX40 andothers (199, 200). The long list of
checkpoint genes underscores the elusiveness of humanizing the
immune response of mice completely. The development of
specialized, partially humanized mouse models dedicated to
specific aspects of immunotherapy is therefore a viable
compromise and a step in the right direction. A good example
along this line is the generation of mice that contain a humanized
formof cereblon (201), themolecular target of IMIDs. It renders the
mice responsive to drugs of this sort, which are not active in normal
mice. Three additional examples of humanized mouse models
TABLE 1 | Transgenic mice prone to spontaneous plasma cell tumors recapitulating hallmarks of human plasma cell neoplasms including multiple myeloma.

Row Mouse model 1 TG 2 Back-ground 3 Year 4 Ref. 5 Survival of mice 6 Percent tumors 7 Tumor phenotype 8

1 Eµ-v-abl 1 B6 1990 (160, 161) >1 year 60 PC
2 H2-Ld-IL-6 1 C 1992 (162, 163) 250 days 60 PC > Ly
3 NPM-ALK 1 B6, C 2003 (164) 18 weeks 100 PC
4 Eµ−BCL2 1 B6, C 2003 (165) 120 days 100 PC > Ly
5 BclXLEµMyc 2 Mixed 16 2004 (166) 50 days 100 PC > MM
6 Em-Xbp1s 1 B6 2007 (167) 2 years 20 MM > PC
7 NFkB 1 Mixed 17 2007 (168, 169) 50 weeks 80 PC > Ly
8 Vk*Myc 1 B6 18 2008 (170) 660 days 100 MM
9 Il12rb 1 B6 2005 (171) 2 years 30 PC
4 IL6Myc 9 2 C 2010 (136, 172) 12 weeks 100 PC > MM
10 c-MAF 1 B6 2011 (173) >2 years 30 Ly > PC
11 BclXLiMyc 10 2 Mixed 19 2011 (174) 135 days 100 PC > MM
12 N-RasEµMyc 11 1 Mixed 16 2012 (175) 75 days 100 Ly > PC
13 MafB 1 B6 2012 (176) 1 year 45 MM > PC
14 Rrm2b 1 B6 2013 (177) 30 days 30 PC
15 K-RasMyc 12 2 C 2013 (139, 140) 50 days 100 PC
16 L-gp130 12 1 B6 2014 (178) 200 days 100 MM
17 IL6BCL2 9,12,13 2 C 2016 (141) 5 months 100 MM > PC
18 BCL-B 1 B6 2016 (179) 500 days 100 MM
19 MefRad 2 B6 2016 (180) 480 days 70 MM > PC
20 L-gp130 14 1 B6 2019 (138) 5 months 50 MM
21 N-RasVk*Myc 15 2 B6 2020 (181) 350 days 60 MM
22 miR15a/16-1 16 2 B6 2021 (182) >1 year 45 Ly > PC
June 2021 | Volum
1 Mouse models in chronological order of development, as shown in Figure 5.
2 Mouse models rely on one transgene or two transgenes to drive tumor development.
3 Genetic background of mice is either C57BL/6 (B6), BALB/c (C) or mixed.
4 Publication year.
5 Original reference. A follow-up publication is included in some cases to provide more complete information on survival, tumor incidence, and tumor phenotypes.
6 Median, mean, or estimated survival of mice, depending on results available. Surrogate of tumor onset.
7 Percent tumor incidence (rounded).
8 Phenotypes include plasma cell myeloma (MM), plasmacytoma (PC), and B lymphoma (Ly). The latter often exhibits plasmablastic features. The preponderance of a particular phenotype
is indicated by a “larger than” symbol for models yielding different phenotypes.
9 Using the same IL6 transgene as in row 2.
10 Using the same Bcl-XL encoding BCL2L1 transgene as in row 5.
11 Using the same Myc transgene as in row 5.
12 Model that relies on adoptive transfer of genetically modified B-lymphocytes to a preconditioned host in which neoplastic plasma cell development takes place.
13 Using the same BCL2 transgene as in row 4.
14 Using an inducible version of the transgene from row 16.
15 Using the same Myc transgene as in row 8.
16 Loss of microRNA in germinal center B cells effected by transgenic, AID-dependent Cre recombinase.
17 (B6 x FVB/N) F1 hybrids
18 B6 and SJL alleles.
19 Transfer of Vk*Myc onto background of C abolished cancer phenotype (183).
20 B6, 129SvJ and FVB/N alleles.
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relevant for myeloma research are NOG-hIL-6 (202), B6-hCD3E
(170) and B6-hTIGIT (203), which facilitate preclinical studies on
MDSCs, BITEs and CPI, respectively.
CONCLUSION

Although immunotherapy holds great promise for
revolutionizing myeloma treatment (124), much remains to be
learned. Currently, only a fraction of patients achieves a
complete, long-lasting treatment response and a functional or
definitive cure remains elusive for the great majority of patients.
Accurate mouse models of myeloma are needed to close current
knowledge gaps and accelerate the design and testing of new
immunotherapies. The workhorses of preclinical myeloma
research, HMCL-in-mouse xenografting and mouse-in-mouse
autografting, will continue to be employed to that end, but we
anticipate that humanized PDX models of myeloma (204) and
transgenic mouse models of myeloma will become more
important as we go forward. These models may elucidate the
complex mechanisms underlying myeloma immunopathology
and -therapy and minimize the risk of failure in challenging and
Frontiers in Immunology | www.frontiersin.org 12113
expensive clinical trials. Sharing experimental model systems
without strings attached, enhancing collaboration among
regional core facilities and national reference centers, and
establishing standards for high scientific rigor for the
preclinical myeloma research will contribute to a future for
patients with myeloma that is hopeful and bright.
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Lymphomas are cancers deriving from lymphocytes, arising preferentially in secondary
lymphoid organs, and represent the 6th cancer worldwide and the most frequent blood
cancer. The majority of B cell Non-Hodgkin lymphomas (B-NHL) develop from germinal
center (GC) experienced mature B cells. GCs are transient structures that form in
lymphoid organs in response to antigen exposure of naive B cells, and where B cell
receptor (BCR) affinity maturation occurs to promote B cell differentiation into memory B
and plasma cells producing high-affinity antibodies. Genomic instability associated with
the somatic hypermutation (SHM) and class-switch recombination (CSR) processes
during GC transit enhance susceptibility to malignant transformation. Most B cell
differentiation steps in the GC are at the origin of frequent B cell malignant entities,
namely Follicular Lymphoma (FL) and GCB diffuse large B cell lymphomas (GCB-DLBCL).
Over the past decade, large sequencing efforts have provided a great boost in the
identification of candidate oncogenes and tumor suppressors involved in FL and DLBCL
oncogenesis. Mouse models have been instrumental to accurately mimic in vivo
lymphoma-specific mutations and interrogate their normal function in the GC context
and their oncogenic function leading to lymphoma onset. The limited access of biopsies
during the initiating steps of the disease, the cellular and (epi)genetic heterogeneity of
individual tumors across and within patients linked to perturbed dynamics of GC
ecosystems make the development of genetically engineered mouse models crucial to
decipher lymphomagenesis and disease progression and eventually to test the effects of
novel targeted therapies. In this review, we provide an overview of some of the important
genetically engineered mouse models that have been developed to recapitulate
lymphoma-associated (epi)genetic alterations of two frequent GC-derived lymphoma
entities: FL and GCB-DLCBL and describe how those mouse models have improved
our knowledge of the molecular processes supporting GC B cell transformation.

Keywords: germinal center (GC), follicular lymphoma (FL), diffuse large B cell lymphoma (DLBCL), genetically
engineered mouse (GEMs), epigenetic modifier mutations
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INTRODUCTION

The germinal center (GC) is a specialized immune structure
localized in secondary lymphoid organs—including lymph
nodes, tonsils, and spleen—that forms upon antigenic challenge
to support the B cell receptor (BCR) affinity maturation process. In
this transient, highly dynamic structures, activated B cells undergo
clonal expansion, somatic hypermutation (SHM) of
immunoglobulin (Ig) variable genes, selection and eventual
differentiation into memory B cells or long-lived plasma cells
(PC) (1). The GC is canonically divided into two principal zones:
the dark zone (DZ), where B cells undergo clonal expansion and
accumulate SHM upon activation-induced-cytidine deaminase
(AID) responsible of BCR diversification, and the light zone
(LZ), where GC B cell will test their newly acquired mutated Ig
for improved affinity to antigen through interaction with immune
complex-coated follicular dendritic cells (FDCs) and selection by a
limited number of CD4+ T follicular helper cells (TFH) residing in
the LZ (2). Within the LZ, B cells can have several fates: (i) a small
subset of high-affinity GC B cells, selected in the LZ, will recycle
back in the DZ to undergo further cycles of expansion/mutation/
selection (3, 4), (ii) some selected LZ B cells can directly exit the
GC differentiating into effectors such a memory B cells or plasma
cells and (iii) LZ cells with low/no affinity BCRs following SHM
due to a lack of antigen engagement and subsequent T cell help die
by apoptosis (Figure 1). In the GC LZ, the strength and intensity
of the signal received by B cells from TFH cells, which is largely
influenced by BCR affinity, mainly determines B cell fate. Recently,
the dynamic transcriptional changes characterizing the GC cycle
between LZ and DZ have been further refined through single cell
gene expression approaches revealing a continuum of cell states
between LZ and DZ and highly orchestrated group of molecular
programs that co-evolve during the GC response (30–34).

T dependent humoral response proceeds in several steps
triggered by multiple finely orchestrated cellular interactions
that affect B cell response through the activation and
repression of specific transcriptional programs. Molecular
control of this highly dynamic process is complex and involves
several transcriptional regulators such as transcription factors
and epigenetic regulators that are frequently targeted by somatic
mutations driving lymphomagenesis. After antigen encounter
and T cell co-stimulation, B cells get activated through BCR,
CD40 and toll like receptor (TLR) signalling, inducing NF-kB
activation and the expression of genes involved in B cell
activation and proliferation driving GC initiation (35, 36).
BCL6 is a transcriptional repressor which play a central role in
GC initiation and maintenance (37). Its expression is triggered
by B–T interaction during the early initiation of the GC response,
where it allows B cells to migrate into the center of B cell follicles
through the downregulation of EBI2 and S1PR1 and induction of
CXCR4. Once GCs are established, BCL6 coordinates the GC
response by repressing thousands of genes involved in different
cellular processes (T cell mediated B cell activation, BCR/CD40
signaling, apoptosis, DNA damage response, cellular cycle
checkpoints,…) (38, 39). In this way, BCL6 allows DZ cells to
establish a hyper-proliferative program while tolerating DNA
Frontiers in Immunology | www.frontiersin.org 2120
damage caused by SHM without triggering proliferation arrest or
apoptosis. In addition, BCL6 prevents signal transduction from
several membrane receptors, thus preventing B cells from
premature differentiation. BCL6 expression must be repressed to
allow B cells to exit the GC. Two signals cooperate to repress BCL6:
BCR activation via Ag presented by FDCs and CD40 activation via
CD40L expressed by TFH cells (38, 39). The transcription factor
cMYC is also essential for GC initiation. Indeed, about 2 h after B
cell activation, GC precursors transiently express c-MYC before
expressing BCL6 and co-express c-MYC and BCL6 for a short
period of time, allowing the initial proliferation phase leading to GC
formation. Once the GC is established, c-MYC is then partially
repressed by BCL6 (3, 4). Back in the LZ, high-affinity B cells that
take up the Ag integrate signals from the BCR and additional signals
through several receptors, including CD40, BAFF and TLRs which
ultimately activate NF-kB. NF-kB signaling and CD40
costimulation result in cMYC re-expression in selected B cells
that return to the DZ for further rounds of cell division (40). On
the other hand, this activates IRF4 which, when highly expressed,
represses BCL6 expression, thus promoting GC programme
silencing and post-GC differentiation (35, 41). Indeed, at high
concentration, IRF4 induces BLIMP1 expression which allows
plasma cell differentiation (42). Memory B cell differentiation
process is less understood but is thought to derive from B cells
with low affinity BCR receiving a weak signal from TFH cells, two
transcription factors have been involved in this process: BACH2
and more recently HHEX (43, 44).

B cell lymphomas are cancers that develop from the malignant
transformation of B lymphocytes at different stages of ontogeny
(45). From naive to memory and plasma cells, most differentiation
steps are associated with a malignant B cell counterpart defined
historically as the cell-of-origin on the basis of histological
definitions, phenotype and resemblance of transcriptomic
profiles (46). Rapid clonal expansion, genomic instability,
tolerance to DNA damage and metabolic reprogramming are
physiological GC B cell-specific features that makes them
permeable to lymphomagenesis (47, 48). Accordingly, GC B
cells are considered at the origin of frequent B cell
lymphomas—namely follicular lymphoma (FL), GC B cell-
diffuse large B cell lymphoma (GCB-DLBCL), and Burkitt
lymphoma (BL) (Figure 1). FL have a follicular growth pattern
reminding normal GC architecture, with the presence of TFH cells
and FDC stromal cells, carries heavily mutated Ig genes known to
occur in the GC primarily and retain a closely related signature to
LZ B cells (49, 50). GCB-DLBCL is more transcriptionally
reminiscent of LZ B cells while BL is more similar to DZ B cells
(46, 51). Of note, single-cell gene expression analyses of mouse
(16, 30, 44, 52) and human GC B cells (31–33) have revealed that
GC B cell transcriptional states span a continuum from LZ to DZ,
and that a large proportion (between 30 and 50%) of GC B cells are
in an intermediate state between the two zones. Besides providing
important datasets to understand GC transcriptional programs
during the normal immune response, these studies offered a more
granular survey of human GC B cells states that can serve as
references for re-assessing and revisiting the concept of GC B cell
lymphoma cell-of-origin (31, 32).
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Yet, gene expression profiling only accounts for a portion of
GC B cell lymphoma heterogeneity and the advent of next
generation sequencing (NGS) has provided a great boost in the
identification of genetic alterations (mutations, translocations,
copy number alterations…) involved in FL and DLBCL
oncogenesis, and has revealed an increased complexity of the
Frontiers in Immunology | www.frontiersin.org 3121
lymphoma genetic landscape (14, 18, 19, 53–55). Although GCB-
DLBCL and FL represent two clinically and histopathological
distinct lymphoma entities, it has become apparent that these
two subtypes are far more intricated from a genetic point of view
as illustrated by shared multiple recurrent genetic lesions such as
BCL2 alterations, mutations in epigenetic regulators (KMT2D,
FIGURE 1 | Major mouse models of human B cell lymphomas linked to their putative normal B cell counterpart. Top Panel: Schematic representation of Germinal
Center B cells. Activated B cells enter in the GC dark zone (DZ), the site of clonal expansion and somatic hypermutation. Only a subset of DZ B cells will be selected
to pass in the GC light zone (LZ) while most DZ B cells undergo apoptosis. GC LZ is the site of affinity-based selection where high-affinity B cells tend to capture
more antigen from FDC and receive more T cell help through CD40/CD40L interaction driving their re-entry into the DZ for defined rounds of proliferation and SHM.
In the LZ, owing to the failure to receive T cell help and acquisition of damaging BCR mutations, most GC B cells will undergo apoptosis while some LZ B cells that
gained productive BCR mutations and enhanced affinity will be selected and terminally differentiate into memory B or plasma cells depending on the strength of T cell
help they received [recently reviewed in (5)]. In normal immune response, current models suggest that memory B cells tend to exit early the GC response following
low level of T cell help and typically display less SHM and reduced levels of affinity maturation than plasma cells. A limited number of memory B cells can re-enter
into secondary GC upon antigenic recall for additional rounds of mutations (6, 7). Cyclic memory cell reactivation of mutated B cells into the GC is however a driving
mechanism leading to B cell transformation (8, 9). Bottom panel: The most important genetically-engineered mouse models are linked to the human lymphoma they
intend to mimic distinguishing Burkitt Lymphoma (BL) arising from transformation of DZ cells, Follicular Lymphoma and GCB-DLBCL from LZ cells and ABC-DLBCL
arising from Activated B/plasmablastic or memory B cells. BL is characterized by Myc translocations between the immunoglobulin heavy or light chain locus.
Transgenic mice engineered to dysregulate MYC expression under proximal or distal enhancers Eµ-Myc (10), iMycEµ (11) and c-myc3’LCR (12) led to the
development of aggressive lymphomas with Burkitt-like phenotype with high penetrance and short latency in vivo. Conditional overexpression of Myc and PI3K
signaling (Cg1Cre/wt;Rosa26LSL.Myc/P110a*) in the GC cooperate to drive BL-like tumors identifying PI3K pathway activation as a key survival element in Myc-driven
lymphomas (13). Modeling Cyclin D3 T283A gain-of-function mutations in B cells—which are recurrent event in DLBCL and sporadic BL (14, 15)—leads to increased
DZ proliferation and occasional lymphoproliferative disease in older mice highlighting the need for additional events to exert its oncogenic function (16, 17). ABC-
DLBCL are typically characterized by an enhanced activity of the NF-kB survival pathway and the co-occurrence of genomic aberrations in BCR (CD79B), MYD88,
TBL1XR1, 18q gains affecting BCL2 and PRDM1 inactivation interfering with normal plasma cell differentiation, all defining features of the C5/MCD genetic subtype
(18–20). Single conditional knockout of Prdm1 in B cells or specifically in the GC reveal lymphoma lesions of post-GC origin (Bcl6−, Irf4+) indicative of a
preplasmablastic stage in only 20% of animals and with a long latency (18, 21). Constitutive activation of NF-kB pathway with Prdm1 disruption in the GC cooperate
to drive DLBCL-like tumor development resembling human ABC-DLBCL (22, 23). Conditional expression in B cells of an oncogenic Myd88L252P allele plus BCL2
overexpression (mimicking BCL2 copy number gains) result in the development of aggressive post-GC lymphomas recapitulating many genotypic, transcriptomic and
signaling features of ABC-DLBCL pathogenesis (24, 25) notably the formation of the My-T-BCR (Myd88/TLR9/BCR) supercomplex driving NF-kB mediating survival
signals (26) and detection of autoreactive antibodies suggesting a role for self-antigens in driving BCR stimulation as previously proposed in human and mouse
models (27, 28). Somatic mutations in TBL1XR1 are enriched in the MCD/C5 genetic subtype (18). Conditional deletion of Tbl1xr1 or expression of TBL1XR1D370Y

mutant allele in B cells generates aberrant memory B cells which are more prone to cyclic re-entry into GC reaction thereby providing additional evidence on how
skewed GC/Memory B cell dynamics act as a major pathogenic mechanism in lymphoma development (8, 9, 29). Combined with Bcl2 overexpression, Tbl1xr1
mutant mice ultimately give rise to canonical post-GC extranodal ABC-like lymphomas with a proportion of B cells manifesting with a memory B cell phenotype
consistent with a putative memory B cell origin of ABC-DLBCL tumors (21).
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CREBBP, EZH2, EP300…) and immune receptor signaling genes
suggesting at least clonal evolution from a similar precursor cell
and shared oncogenic pathways (53, 56). Accordingly, the
recently defined EZB/C3 genetic subtype is composed by a
majority of tumors with a GC B cell gene expression profile
and is enriched for the most common genetic abnormalities such
as BCL2 translocations and EZH2 mutations.

Among others, mouse models of lymphoid malignancies have
advanced our understanding of lymphomagenesis [reviewed in
(57–60)] and currently support the biological investigations on
the most common putative driver mutations alone or in
combination. The limited access to (pre)malignant biopsies
during the initiating stage of lymphoma development, the
difficulties to recapitulate in in vitro experimental systems the
complexity of the GC reaction during an immune response (61),
the spatial and (epi)genetic heterogeneity across and within human
lymphomas make the development of genetically engineered mice
models the most suitable tool i) to characterize the molecular
mechanisms by which candidate lymphoma mutations contribute
in vivo to lymphomagenesis either alone or in combination and
ii) to trace how tumours grow and evolve over time by
recapitulating the precise timing at which the genetic lesions
happens in human settings iii) to test the effects of targeted
pharmacological agents and iv) the synergy between co-occurring
genetic alterations. In this review, we will present recent insights on
FL and GCB-DLBCL lymphoma mouse models in which genetic
alterations targeting the epigenome, immune signaling or metabolic
pathways have been accurately recapitulated and for which
mechanistic studies yielded new insights on how GC regulatory
programs are hijacked by somatic mutations to prevent the
resolution of ‘pseudo-tumoral’ GC B cell features and facilitate
lymphomagenesis (Table 1). Starting with the founder BCL2
translocation common to the pathogenesis of most FL and GCB-
DLBCL, we will focus on how genetically engineeredmice (GEM) of
(epi)genetic alterations shed new lights on the link between B ‘cell-
intrinsic’ lesions and their cell-extrinsic functions to drive
lymphoma development by promoting the remodeling of an
aberrant immune niche and contributing to immune
surveillance mechanisms.
MODELING T(14;18) TRANSLOCATION
AND BCL2 OVEREXPRESSION

FL represents an attractive model to study the mechanisms by
which lymphoid B cells undergo neoplastic initiation and
progression in mouse models (50). While FL is considered as a
disseminated GC-derived B cell neoplasia, acquisition of the
t(14;18) translocation—that lays the BCL2 gene under the
transcriptional control of Ig heavy chain (IGH) regulatory
regions—constitutes a critical early, likely primary, event in the
natural history of the disease occurring in bone marrow (BM)
pre B cells during illegitimate V(D)J recombination. It is now
well established that t(14;18), although present in 85% of FL and
about 30% of GCB-DLBCL patients, is not enough to transform
B lymphocytes as t(14;18)-positive circulating B cells are
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detectable at low frequency (one in a million lymphocytes) in
up to 70% of healthy adults who never develop the disease (85),
indicating that complementary “hits” must further accumulate,
presumably during the later phases of GC B cell maturation (86).
Attempts to model the t(14;18) translocation and Bcl2
overexpression have started in the late 80’s with first generation
of Bcl2 transgenic mouse models (62).

Eµ-BCL2 and BCL2-Ig
In 1989, to mimic the human BCL2-IGH translocated allele and
assess the tumorigenic potential of BCL2 in vivo, Mc Donnell and
colleagues developed the first BCL2 transgenic mice bearing a
human BCL2-Ig minigene where expression of BCL2 is restricted
to B cells (62). The mice developed follicular hyperplasia made of
small naive B cells—expressing markers such as B220, IgD, IgM
and Igk—with prolonged survival in vitro. In original studies,
after 18 months of age these mice showed high-grade
lymphomas although at a low penetrance and interestingly half
of those mice harbored c-myc rearrangement. More recent
follow-up studies showed that 40% of BCL2-Ig mice develop
FL-like tumors expressing GC markers (PNA+BCL6+) by 17–18
months when chronically immunized with sheep red blood cells
(SRBC) over 6 months (87). Strasser and colleagues similarly
engineered a transgenic strain Eµ-BCL2, where BCL2 is placed
under the control of the 5’ IGH enhancer Eµ (63). This model
also showed an expansion of small B cells and plasma cells but
did not yield tumor development, however an increased
incidence of other B-lymphoid neoplasms was observed (64).
VavP-BCL2 and IgH-3’E-Bcl2
The first experimental model that faithfully reproduced the
human disease in term of localization, histology, phenotypic
and genotypic features involved expression of Bcl2 in all
hematopoietic cells. Egle and colleagues generated the VavP-
Bcl2 model where the Bcl2 transgene is controlled by Vav gene
regulatory sequences, which confer Bcl2 expression in multiple
hematopoietic lineages (65). The mice developed, in 15–25% of
cases, isotype-switched, somatically mutated Ig and disseminated
lymphomas at 10 months of age. In contrast to Eµ-BCL2
transgenic models of the same age, VavP-Bcl2 mice develop
spontaneous expansion of PNA+ GC lesions in otherwise
‘healthy’ mice, a premalignant condition which is strongly
dependent on CD4 T cell help as in vivo removal of CD4
cells almost abolished GC hyperplasia. In this model, CD4
T cells make a critical input into the exaggerated GC reactions
and eventually the onset of FL. A second model developed
by the group of Boxer (66) consisted of a IgH-3’E-Bcl2 knock-
in mice, where the IgH 3’ enhancer regions was integrated
3’ of Bcl2 locus, thereby mimicking the effects of the long
distance IgH 3’ enhancer on Bcl2 expression and limiting
Bcl2 expression to mature B cells. In addition to an altered
B-cell differentiation and increased B cell numbers in the spleen,
lymph node (LN) and BM, these mice recapitulated, between
7- and 14-months, typical histopathological features of GC-
experienced FL-like tumors expressing the GC markers PNA
and Bcl6 surrounded by FDC networks and CD4+ T cells.
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Despite its main limitations due to the unspecific Bcl2 deregulated
expression in all hematopoietic cells, VavP-Bcl2 is currently one
of the most popular models to study in vivo the role of secondary
genetic alterations that are frequently found in combination
with BCL2 in FL and GCB-DLBCL genetically engineered
mouse models.

These studies support the notion that despite a survival
advantage conferred to B cells by BCL2, the lymphomagenic
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process requires additional hits (genetic and/or immunological)
for transformation.

Modeling the Early Steps of FL
Development: BCL2tracer Model
Although several BCL2-engineered models have provided the initial
proof-of-principle that BCL2 ectopic expression leads to FL and
high-grade lymphomas, the expression of BCL2 in all B cells (and all
TABLE 1 | Relevant mouse models of follicular lymphoma and germinal center B cell diffuse large B cell lymphomas.

Target
gene

Mouse Model Model type Target cells Mutation type Latency
(mo)

Disease
phenotype

References

Bcl2 BCL2-Ig Transgenic (BCL2-Ig minigene) B cells Overexpression 18 Hyperplasia,
FL

(62)

Eµ-BCL2 Transgenic (driven by 5’ Igh Eµ enhancer) B cells Overexpression 18 LPD (63, 64)
VavP-Bcl2 Transgenic (driven by VavP promoter) All

hematopoietic
Overexpression 10–18 FL (65)

IgH-3’E-Bcl2 Knock-in (driven by Igh 3’RR enhancers) Mature B Overexpression 7–14 FL (66)
huBcl2RSS Transgenic (Inactive human BCL2 locus flanked by RAG

recombination sequence signals, RSS)
pre-B Sporadic

overexpression
no tumors (8)

huBcl2RSS;AIDCre

R26LSL.YFP
BM chimera: HSPCs from AIDCreRosa26LSL.YFP

transduced with huBcl2RSS tracer
pre-B (BCL2)
GC for EYFP

Sporadic
overexpression

10 In situ Follicular
Neoplasia

(8)

Crebbp;
Bcl2

Eµ-Bcl2;
Mb1CreCrebbpfl/fl

Conditional knockout combined with Bcl2
overexpression

pro-B Loss of
function

13 FL, GCB-
DLBCL

(67)

VavP-Bcl2;
Cg1CreCrebbpfl/fl

Conditional knockout combined with Bcl2
overexpression

GC Loss of
function

18 FL, GCB-
DLBCL

(68)

VavP-Bcl2;
shCrebbp

BM chimera of HSPCs from VavP-Bcl2 transduced with
shCrebbp

All
hematopoietic

Loss of
function

2 FL, GCB-
DLBCL

(69)

Kmt2d;
Bcl2

VavP-Bcl2;
Cg1CreKmt2dfl/fl

Conditional knockout combined with Bcl2
overexpression

GC Loss of
function

13 FL, GCB-
DLBCL

(70)

VavP-Bcl2;
shKmt2d

BM chimera: HSPCs from VavP-Bcl2 transduced with
shKmt2d

All
hematopoietic

Loss of
function

5 FL, GCB-
DLBCL

(71)

Ezh2 Cd19Cre

Ezh2Y641F/+
Conditional knockin (endogenous promoter) Pre-B Gain of

function
12 DLBCL (72)

Ezh2;
Bcl2

VavP-Bcl2;
Ezh2Y641F/WT

BM chimera: HSPCs from VavP-Bcl2 transduced with
Ezh2Y641F

All
Hematopoietic

Gain of
function

3–4 GCB-DLBCL (73, 74)

Bcl2hi;
Cd19CreEzh2Y641F

BM chimera: HSPCs from Cd19CreEzh2Y641F
transduced with Bcl2

Pre-B Gain of
function

7 FL, GCB-
DLBCL

(72)

VavP-Bcl2;
Cg1CreEzh2Y641F

Conditional knockin combined with Bcl2 overexpression GC Gain of
function

– GCB-DLBCL (74)

Ezh2;
Bcl6

Cg1CreEzh2Y641F/
+; IµBcl6

Conditional knockin combined with Bcl6 overexpression GC Gain of
function

6–12 GCB-DLBCL (75)

H1c/H1e VavP-Bcl2;H1c-/-

H1e-/-
Non-conditional knockout with Bcl2 overexpression All

hematopoietic
Loss of
function

DLBCL (76)

Tet1 Tet1KO/KO Non-conditional knockout All
hematopoietic

Loss of
function

12 LPD, DLBCL (77)

Tet2 CD19Cre Tet2f/f Conditional knockout Pre-B Loss of
function

4–18 CLL (78)

VavCreTet2f/f Conditional knockout All
hematopoietic

Loss of
function

_ GCB-DLBCL (79)

Hvem VavP-Bcl2;
shHvem

BM chimera: HSPCs from VavP-Bcl2 transduced with
shHvem

All
hematopoietic

Loss of
function

4 FL (80)

Ctss Vav-Bcl2;
CTSSY132

BM chimera: HSPCs from VavP-Bcl2 transduced with
mutated human CTSSY132D

All
hematopoietic

Gain of
function

2 FL (81)

Vav-Bcl2;
CTSSHIGH

BM chimera: HSPCs from VavP-Bcl2 transduced with
overexpressed CTSS

All
hematopoietic

Overexpression 2 FL (81)

Ga13 Mb1CreGa13f/f Conditional knockout pro-B Loss of
function

>12 GCB-DLBCL (82)

Ga13;
Bcl2

Eµ-Bcl2;
Mb1CreGa13f/f

Conditional knockout combined with Bcl2
overexpression

pro-B Loss of
function

10 GCB-DLBCL (82)

RragCmut VavP-Bcl2;RragC
S74C/T89N

Knock-in mice crossed with VavP-Bcl2 All
hematopoietic

Gain of
function

10 FL (83)

Sestrin1 VavP-Bcl2,
shSestrin1

BM chimera: HSPCs from VavP-Bcl2 transduced with
shSestrin1

All
hematopoietic

Loss of
function

– FL (84)
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T cells for some models) do not represent a true premalignant
intermediate stage seen during human lymphomagenesis, where the
first t(14;18) event occur in a single B cell in the BM, and is carried
on until its ectopic expression in the GC. Instead, pan-B cells BCL2
mouse models generate a polyclonal hyperplasia of naive B cells
which is not a known progression step in human FL pathogenesis
and as a consequence does not allow studying the early steps of
clonal emergence and disease progression. The BCL2tracer mouse
model has been engineered to mimic “sporadic” t(14;18)
translocation (8). This transgenic model relies on the introduction
of potent RAG recombination sites at the vicinity of an inactivated
human BCL2 transgenic minilocus. In this construct,
recombination allows to turn on ectopic BCL2 expression in only
few B cells, and at the appropriate window of B cell development in
the BM pre-B cells. The recombination breakpoints provide unique
PCR-based clonotypic markers to study early steps of clonal
emergence and expansion in mouse blood/tissues at different time
points, allowing a precise analysis of clonal progression kinetics. As
expected, the emergence of BCL2+ B cells was traced in various
tissues at low frequency (1 in 105 to 106) recapitulating the “healthy
human t(14;18) carrier” situation. At steady state or after acute
immunization with a T-cell dependent antigen, BCL2 alone was not
able to drive progression of BCL2-expressing cells into a tumor after
18 months of follow-up, confirming that lymphomagenesis is a
stepwise process where premalignant B cells require the
accumulation of secondary (epi)genetic alterations to progress
into a tumor. However, a chronic immunization protocol with
SRBC accelerated genomic instability by allowing BCL2-
overexpressing B cells to give rise to memory cells that
preferentially underwent iterative rounds of GC entry, allowing
multiple rounds of AID-mediated mutagenesis over time to
ultimately form premalignant in situ FL structures, the earliest
known intermediate preceding human FL. Although this model
alone does not form FL lesions, it has been instrumental to propose
a revised model of early lymphomagenesis whereby cyclic
reactivation of BCL2+ memory B cells within new GC reactions
would constitute a major pathogenic mechanism facilitating clonal
expansion and accumulation of secondary mutations in FL
precursors. It is likely that this reactivation in humans operates
over decades before clinical manifestation (that we will never reach
during the mouse lifespan) and ultimately contribute to the
generation of a heterogeneous population of aberrant memory B
cell intermediates resembling clonal FL evolving in asymptomatic
patients years before diagnosis. Interestingly, this model also led to
identify an “immunological 2nd hit” in FL, departing from the all-
genetic, cell-intrinsic concept of lymphomagenesis.
MODELING EPIGENETIC ALTERATIONS

Recurrent mutations affecting histone modifying enzymes are a
hallmark of GC-derived lymphomas, more particularly in FL.
Within DLBCLs, these mutations are enriched within the GCB-
DLBCL subtype, with further enrichment within the newly
described EZB/C3 genetic subtype. Inactivating mutations of
the H3K4 lysine methyltransferase KMT2D are found in 70 to
90% of FL cases and up to 30% of DLBCL cases representing the
Frontiers in Immunology | www.frontiersin.org 6124
most frequently FL mutated genes in these lymphomas after
t(14;18) translocations. Approximately 50 to 70% of FLs and
∼25% of DLBCLs carry acquire inactivating mutations in
CREBBP, whereas its paralog EP300 is mutated in ∼5% of cases.
Activating mutations of the H3K27 histone methyltransferase
EZH2, a component of the polycomb repressive complex 2, are
found in 10 to 25% of FL cases and 20% of GCB-DLBCL cases (14,
18, 19, 53–55, 88–90). Overall, 95% of FL patients manifest with at
least one chromatin modifier gene mutation. Thorough genomic
inference analyses of the clonal evolution patterns in sequential
pairs of FL at diagnosis vs. relapse/transformation showed that
recurrent inactivating mutations in CREBBP and KMT2D
represent early events in FL evolution and are likely to be
present in the CPC pool supporting a founder role for these events.

CREBBP and EP300 Inactivation
CREBBP and EP300 are highly homologous histone
acetyltransferases (HAT) that modify gene expression through
H3K27 acetylation at enhancer domains of both histone and non-
histone substrates. In 50 to 75% of cases, mutations of CREBBP are
missense inactivation of the acetyltransferase catalytic domain, the
remaining mutant alleles causing truncation or loss of expression
(54, 55, 69, 90). CREBBP and EP300mutations are usually detected
only at one allele and exclusive fashion, which is thought to be
explainedby the compensatory and redundant role of these enzymes.
The precise timing and location where CREBBP or EP300mutations
happens during B cell transformation is still unclear in humans, but
there is large agreement from clonal evolution studies and in
premalignant FL conditions that CREBBP is an early event (91).
Several groups have therefore attempted to investigate the role of
hemizygous vs. homozygous Crebbp inactivation on mature B cell
differentiation and lymphoma development in vivo using different
strategies from early inactivation in all hematopoietic cells, early B-
cell specific deletion or GC-specific deletion [Cg1-Cre (92)], in
combination or not with BCL2 transgenic models.

Horton and colleagues studied the consequences of Crebbp
deletion in the hematopoietic stem cell compartment thanks to a
pIpC-mediated Mx1-Cre recombinase system (93). Those
animals developed B cell lymphoproliferative disorders
accounting for 29% of all deaths. The B cell lesions localized
mostly in the spleen and blood and stained with B220, CD19 and
surface IgM indicating their mature B cell origin, however these
tumors did not express GC markers. The occurrence of these
lymphoproliferative disorders was preceded by the accumulation
of lymphoid progenitors characterized by a hyperproliferative
state and an altered DNA damage response linked to the loss of
p53 activation in the absence of Crebbp. Interestingly, the
authors found no enrichment for Bcl6 targets among Crebbp
binding sites in their system suggesting different epigenetic
changes when Crebbp is deleted in hematopoietic stem cells
(HSC). This data suggests that CREBBPmutations acquired early
during hematopoiesis may contribute to the emergence of B cell
lymphomas although this model might not be relevant for FL or
DLBCL progression as the tumors do not exhibit GC features. It
also indicates that the timing of mutation acquisition has an
important impact on B cell development. In humans, detection
of CREBBP mutations in HSCs remains a very rare event (93).
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Three others groups investigated the B-cell deletion of Crebbp
in combination with BCL2 overexpression to fit with the
frequent co-occurrence of the two alterations in human FL and
DLBCL (67–69) . J iang et a l . recapi tulated Crebbp
downregulation and Bcl2 overexpression in vivo using a
shRNA retroviral infection system of VavP-Bcl2 hematopoietic
stem progenitor cells (HSPCs) transplanted into lethally
irradiated wild-type recipient mice. They observed an
acceleration of lymphoma onset in double-mutant vs. VavP-
Bcl2 mice. Lymphoma cells expressed B220, CD19 and IgM and
were characterized by somatically mutated Ig locus confirming
their GC B cell origin. Importantly, a similar phenotype was
observed with a shRNA targeting Ep300. The second model
developed by Zhang and colleagues consisted in cohorts of Cg1-
Cre (92) and Cd19-Cre Crebbpflox/flox and Crebbpflox/+ animals
where inactivation of Crebbp was induced in GC or developing B
cells respectively. After a follow-up of 18 months they did not
observe any significant difference between Crebbp mutant mice
and their littermate controls concluding that loss of Crebbp alone
at early or late stages of B cell differentiation was not sufficient to
induce lymphomagenesis. The generation of mice crossing Cg1-
Cre Crebbpflox/flox mice with VavP-Bcl2 transgenic mice led to a
significant increase in the incidence of B cell malignancies
resembling human FL (92% in double mutant versus 61.5% in
VavP-Bcl2 controls). Furthermore, the tumors were
characterized by a follicular architecture, were largely of GC
origin with Bcl6 expression and presence of mutated Ig genes. In
an extension of this study and to investigate in parallel how
CREBBP and EP300 contribute to normal GC B cell physiology,
Meyer et al. established mouse lines carrying single “floxed”
HAT genes that are excised only in activated B cells in the GC
(Cg1-Cre) (94). In accordance with previous studies (95), Meyer
et al. confirmed that loss of Crebbp in GC B cells led to increased
GC formation while Ep300 loss led to an opposite effect with
decreased proportion of GC B cells in immunized mice (94).
Transcriptomic analyses of purified GC B cells obtained from
these two strains revealed that the set of genes modified by Ep300
loss or Crebbp loss was different with expression of DZ
transcripts preferentially repressed in Ep300-deleted GC B cells
while LZ genes were preferentially decreased in Crebbp-deleted
GC B cells providing a mechanistic explanation for the reduced
numbers of GC B cells observed in the GC-deficient Ep300
model. The most interesting phenotype comes from the drastic
reduction of GC B cells observed when both HAT genes are
deleted from the same GC cells. Indeed, the GC response was
completely abrogated indicating that the ability of GC B cells to
proliferate and differentiate relies on the combined activity of
both acetyltransferases likely due to their overlapping and
partially redundant functions. Interestingly, CREBBP-mutated
lymphoma B cells maintained this dependency toward EP300
enzymatic activity which identify a unique vulnerability that
provide exciting opportunities of targeting single mutant
CREBBP or EP300 GC-derived lymphomas.

In a third model, Garcia-Ramirez et al. produced strains of
Mb1-Cre Crebbpflox/+ or Crebbpflox/flox mice where Crebbp was
deleted at early pro-B cell stage in the BM. Crebbp deletion at
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early stages of B cell development led to reduced frequencies of
B-cell subsets with reduced numbers of total B220+ B cells in BM
and spleen. When crossed with the Eµ-BCL2mouse model, these
animals showed higher frequencies of GC B cells in the spleens
after SRBC immunization and occasionally develop clonal B cell
lymphoma with low penetrance and long latency (13 months).
Histology was similar to human FL grade 3 or DLBCL and
tumoral cells expressed Pax5 and Bcl6 and displayed SHMs
consistent with a GC B cell origin (67).

Overall, these three independent in vivomodels confirmed an
oncogenic cooperation between CREBBP loss of functions and
BCL2 overexpression to promote lymphomagenesis in vivo.
Mechanistically, these studies showed that CREBBP, and likely
EP300, maintain H3K27 acetylation at certain enhancer that are
poised during GC reaction and whose reactivation is required for
GC exit and terminal differentiation. This includes genes
involved in immune synapse, downstream effectors of BCR
and NF-kB or terminal differentiation (Irf4, Nfkb2, Cd40) and
antigen presentation, the most notable being MHC class II
molecules which are critical for B cell terminal differentiation.
In normal GC cells, CREBBP targeted enhancers are direct
targets of BCL6 and transiently repressed by BCL6/SMRT/
HDAC3 complexes that deacetylate H3K27. Upon selection
signals received in the LZ allowing GC exit, these enhancers
recover H3K27ac state as CREBBP can directly acetylate BCL6 to
inactivate its function by preventing the interaction with co-
repressor complexes. By impairing the reactivation of these
enhancers leaving unopposed BCL6 oncogenic activity,
CREBBP loss of function disrupt the expression of immune
synapse genes and their downstream signaling pathways,
resulting in accumulation of aberrant GC B cells that fail to
properly respond to exit signals from the GC microenvironment
thereby promoting lymphoma progression. In human FL,
decreased MHC II expression and reduced CD4 and CD8 T
cell infiltrations have been described in CREBBP-mutant FL. A
similar association between CREBBP inactivation and reduced
expression of MHC class II is observed in murine lymphoma
models which alters mutant GC cells ability to present antigen to
CD4+ cells. Interestingly, CREBBP-mutant lymphomas become
dependent to HDAC3, the histone deacetylase opposing the
effect of CREBBP, that has been identified as a relevant
therapeutic target in these tumors (69). Mondello et al.
recently showed that HDAC3-selective inhibitors have a dual
effect by reversing CREBBP-mutant aberrant epigenetic
programming limiting lymphoma growth inhibition while
restoring antitumor immunity, notably antigen presenting-
genes (96).

KMT2D Loss of Function
KMT2D is a component of the COMPASS complex involved in
transcriptional activation through H3K4 monomethylation of
gene enhancers in B cells. The majority of KMT2Dmutations are
nonsense events leading to a truncated protein lacking the
enzymatic SET domain involved in H3K4 methylation
resulting in a loss of function (90). To study the consequences
of Kmt2d inactivation during B cell differentiation, Zhang and
July 2021 | Volume 12 | Article 683597

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mossadegh-Keller et al. Mouse Models of Mature B-Cell Malignancies
colleagues generated a conditional Kmt2d knock-out model
relying on a Cre-Lox system with conditional deletion of B
cells early during B cell development (Cd19-Cre Kmt2dflox/flox)
or after GC initiation (Cg1-Cre Kmt2dflox/flox). Early deletion of
Kmt2d lead to a higher number and enlarged GC formation while
this effect was not seen with late GC deletion and in vitro, Kmt2d-
deficient cells displayed a proliferative advantage compared to wild-
type cells. However, Kmt2d deficiency in B cells alone upon early or
late inactivation was not sufficient to induce FL or DLBCL in vivo.
Kmt2d protein was mainly found on putative GC enhancers and
global H3K4 methylation levels were diminished in Kmt2d mutant
mice. Moreover, although GC-specific deletion was insufficient to
initiate malignant transformation, Kmt2dko-VavP-Bcl2 double-
mutant mice developed B-cell lymphoproliferative disorders with
an incidence of 78% (44% for VavP-Bcl2 alone), with tumors
expressing BCL6 and PAX5 consistent with a GC origin and
recapitulating a spectrum of histopathological features ranging
from early FL to DLBCL (40% early FL, 31% FL and 27%
DLBCL) (70).

Using a different experimental system, Ortega-Molina and
colleagues also explored cooperation between bcl2 and Kmt2d
deletion in B cell lymphomagenesis. Using a retroviral infection
system of shRNAs transduction to silence Kmt2d in HSPCs from
VavP-Bcl2 donor mice following transplantation into irradiated
wild-type mice, an acceleration of the lymphomagenesis process
as well as an increase in the incidence of FL-like tumors (from 30
to 60%) was observed in double-mutant mice compared to
shRNA control vectors, validating the tumor suppressive role
of Kmt2d in B lymphocytes. At preclinical stages of the disease,
Ortega Molina et al. showed that after immunization, the
number of GC B cells was increased when Kmt2d was
suppressed. Moreover, GCs persisted for a longer period than
in control mice. Kmt2d loss was associated with a decrease in
IgG1 production suggesting a dysfunction of the class switch
recombination processes (71). Interestingly, the generation of
Kmt2dflox/floxCd19-Cre crossed with a strain overexpressing AID
led to the development of aggressive lymphomas resembling
DLBCLs and confirms that, independently from BCL2
expression, genetic instability linked to AID overexpression
cooperates with Kmt2d loss to promote lymphomagenesis.

Integrative genomic analyses from human samples carrying
KMT2D mutations and Kmt2d-mouse FLs showed that genes
differentially expressed in Kmt2d-mutated lymphomas were
mostly repressed and affected a set of genes involved in
terminal differentiation programs and GC exit, such as CD40
and BCR signaling, regulation of apoptosis, control of cell
migration and proliferation. KMT2D mutations result in
persistent demethylation of enhancers and failure of the
respective genes to respond to signals, notably CD40 signaling
from TFH. Moreover, absence of Kmt2d affects negatively the
expression of major B-cell tumor suppressors such as Tnfaip3,
Socs3, Tnfrsf14, Asxl1 or Arid1a. In conclusion, lack of Kmt2d
leads to an aberrant repression of key genes normally required
for GC exit, favoring an abnormal GC B cell outgrowth and
failure to differentiate leading eventually to lymphoma
development. Of note, these studies showed once more that
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the stage and/or the timing of a given (epi)genetic alteration has a
strong influence on the transcriptional changes occurring in the
GC. The developmental stage at which Kmt2d mutations are
introduced in human precursor tumor cells is still unknown but
it has been hypothesized that epigenetic reprogramming may
require multiple rounds of cell divisions to allow the replacement
of modified histones by non-modified histones explaining why
Kmt2d inactivation after GC initiation may have a more modest
phenotype than early inactivation.

EZH2 Gain of Function
EZH2 is a H3K27 methyltransferase part of the Polycomb
Repressive complex-2 (PRC2). Heterozygous gain of function
mutations, preferentially affecting the EZH2 SET domain at the
Y641 residue and making EZH2 more efficient at H3K27
trimethylation (97), are found in up to 30% of GCB-DLBCL
and FL and de facto enriched in EZB/C3 DLBCL subtype (18, 89,
98). Several groups have investigated the functional role of wild-
type and mutant EZH2 during GC reaction and B cell
lymphomagenesis (73, 75, 99, 100). Using a Cg1-Cre Ezh2flox/
flox strain, Béguelin et al. observed a marked reduction in GC B
cells after immunization. They reproduced this phenotype in
immunized wild-type mice treated with an EZH2 inhibitor
targeting wild-type and mutant EZH2, establishing that EZH2
is required for GC formation (73). Similar observations were
made by Caganova et al. underlining that under normal
conditions, EZH2 enables GC formation at least in part by
suppressing cell-cycle checkpoint genes like CDKN1A,
impairing DNA damage responses to support centroblast
proliferation and silencing essential plasma cell differentiation
genes, particularly Blimp1 and Irf4 (99, 100).

To understand how EZH2Y641 hotspot mutation perturbs GC
development and drives lymphomagenesis, Béguelin and
colleagues developed two mouse strains conditionally expressing
the mutant Ezh2Y641N or Ezh2Y641F in GC B cells upon Cg1-Cre
recombinase (73, 75). Upon immunization, both models caused
oversized GCs and displayed increased abundance of H3K27me3
mark at critical GC B cell bivalent promoter leading to permanent
silencing of EZH2 target genes. The GC phenotype appears to be
mediated through cooperative and mutually interdependent
actions of EZH2 together with the transcriptional repressor
BCL6 and BCOR repressive complex. These Ezh2 mutant mice
did not develop lymphomas. However, early activation (CD19-
Cre) of mutant Ezh2 in an independent study led to aggressive
DLBCL in about 12 months (72). VavP-Bcl2 HSPCs were
transduced with retroviruses expressing Ezh2Y641F, Ezh2WT or an
empty vector and transplanted into lethally irradiated recipient
mice subjected to SRBC immunization every 4 weeks to induce
GC formation. Ezh2Y641F Bcl2+ chimeric mice led to early
lymphoma development in 70% of mice at 111 days (vs 20% in
mice overexpressing Ezh2WTBcl2+ and none in the Bcl2 control at
that stage), characterized by enlarged spleen and liver and
resembling morphologically to DLBCL with centroblastic
morphology (73, 74). These data demonstrate that EZH2 gain of
function mutations accelerate GC B cell lymphomagenesis in
cooperation with Bcl2 overexpression, recapitulating features of
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GCB-DLBCL. Similar results were obtained when transgenic
and knock-in Ezh2 strains engineered to express heterozygous
mutant Ezh2 in GC B cells were crossed with VavP-Bcl2.
Importantly, homozygous expression of mutant Ezh2
phenocopies the Ezh2 knock-out phenotype further attesting the
requirement for the maintenance of the wild-type allele for Ezh2
mutant enzymatic activity.

Recent studies questioned whether EZH2 mutation has
additional and qualitatively distinct function in lymphomagenesis
beyond simply being a more potent version of the wild-type
enzyme. Along these lines, Ennishi et al. identified a strong
enrichment of EZH2 mutations in human DLBCL cases with loss
of MHC-I and MHC-II expression linked to a reduced number
of tumor-infiltrating lymphocytes and less T cell cytolytic
activity (74). To investigate in detail the consequences of EZH2
mutations on MHC expression and immune microenvironment,
the authors relied on two different mouse models. First, they
used the Ezh2-mutant model developed by Béguelin et al. where
VavP-Bcl2 hematopoietic progenitors are infected with Ezh2-
mutant containing retrovirus before re-injection into lethally
irradiated recipient mice. Second, they used Cg1-Cre Ezh2Y641N

or Ezh2Y641F mice crossed with VavP-Bcl2 strain which develops
DLBCL-like tumors. In both experimental systems, MHC-I
and MHC-II expression were significantly reduced in mutant
Ezh2 mice compared to wild-type mice, with reduced infiltration
of CD3, CD4 and CD8 T cells in the tumor microenvironment,
establishing Ezh2 gain-of-function mutation as a driver of
MHC downregulation in GC lymphomagenesis, and eventually
favoring immune escape. Importantly they also showed that
EZH2 epigenetic switch-off of MHC molecules, driven by
transcriptional repression of MHC-I/II transactivators, could
be reversed with EZH2 inhibitors. The ability to restore
MHC expression provides an interesting proof of concept in
combining epigenetic reprogramming small molecules with
immunotherapeutic approaches.

More recently, Melnick and colleagues further strengthened the
concept that Ezh2mutation initiate GC derived lymphomagenesis
by escaping immune effector recognition and inducing a
remodeling of the GC immunological niche (101). Using
competitive BM chimera to track the cellular dynamics of
Ezh2Y641F B cells during GC reaction, they found that Ezh2
mutants manifested a competitive growth advantage in the GC.
This competitive advantage led to GC hyperplasia characterized by
an increase of a cycling LZ cell population, without maturation
blockade, associated with the expansion of FDC network. Using
droplet based single cell transcriptomics and advanced histone
mass spectrometry technologies, they assessed how Ezh2
mutation affected GC B cell cellular and histone methylation
dynamics in an unbiased manner. They found that the epigenetic
reprogramming imprinted by Ezh2 mutation through the
reinforcement of the repressive program induced by H3K27me3
accumulation led to the abolition of LZ B cells’ dependence toward
TFH emanating signals. Indeed, DZ re-entry of Ezh2-mutated
centrocytes was clearly diminished and these GC B cell escaped
TFH-mediated clonal selection. The ability of Ezh2-mutant GC B
cells to proliferate within the LZ was linked to FDC interaction
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as this ability was impaired when FDC function was abolished
through injection of soluble lymphotoxin receptor b. Remarkably,
this study revealed how activating mutation of EZH2 induces
a premalignant FL-like niche allowing B cells to persist as
slowly proliferative centrocytes without TFH help and in a FDC
dependent manner.

The above studies provide important insights on an emerging
paradigm where one of the most critical function of epigenetic
modifier mutations in promoting GC B cell transformation goes
beyond the sole reprogramming of the GC epigenome, but
instead arise from failure of GC exit signals to restore
expression of genes that normally regulate immune signaling
pathways and antigen presentation (47). Of therapeutic interest
for the targeting of the FL common precursor cells, this
remodeling of the immune synapse at least with EZH2
mutations tends to occur early during lymphomagenesis.

Linker Histone Loss of Function
Linker histones (H1) are additional chromatin modifying genes
involved in the organization and stabilization of the nucleosome
structure, supporting the folding of chromatin into higher-order
conformation, and regulating its epigenetic state through the
recruitment of histone modifiers. Heterozygous H1 mutations,
found in up to 44% of FL and 27% of GCB-DLBCL, are mostly
missense events affecting the globular C-terminal domain
which led to the loss of protein function with impaired
chromatin binding (53). Among them, H1C and H1E are
the most common affected H1 isoforms observed in B cell
lymphomas (102, 103).

To investigate the functionality of these isoforms in
lymphomagenesis, Yusufova and colleagues used the previously
described H1c−/− H1e−/− mice model (104). At early time points
after chronic SRBC immunization, those animals manifested
lymphoproliferative disease with invasiveness of B220+ B cells
in extranodal tissues such as liver and lungs. Further analysis
using competitive BM chimera revealed a competitive advantage
for H1c/H1e-deficient B cells characterized by a specific increase
of cycling LZ B cell population expressing Gl7, Fas and cd86
markers whereas no effect was found in other mature and
immature B cell populations. Notably, H1 deficiency enables a
chromatin decompaction in GC B cells with an enrichment in
stem cell genes that become desilenced in H1-deficient GC cells.
Given the frequent co-occurrence of H1C and H1E mutated genes
with BCL2 overexpression in lymphomas, they crossed H1c−/−

H1e−/− mice with VavP-Bcl2 mice. Loss of H1 isoforms caused a
more extensive disruption of lymph node architecture with diffuse
infiltration of immunoblastic cells, along with an extensive invasion
of B220+ B cells and CD3+ T cells in extranodal tissues establishing
H1 proteins as bona fide tumor suppressors. RNA sequencing
analysis of lymphoma-like tumors in mouse and humans revealed
a significant enrichment for stem cell signature and serial
transplantations confirms that loss of H1 conferred lymphoma
cells with enhanced self-renewal potential. These findings enlighten
the contribution of H1 linker deletion in driving malignant
transformation where epigenetic marks changes favor a relaxed
state chromatin in GC B cells, increasing B cell fitness advantage
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by allowing self-renewal proprieties and may expose DNA to
further AID-mediated additional hits.

TET1 and TET2 Loss
Besides chromatin modifiers genes, a number of studies have
demonstrated methylation and disruption of cytosine
methylation [5-methylcytosine (5mC)] patterning as another
factor linked to the biology of B cell lymphoid malignancies
(105). The methyl-cytosine dioxygenase TET2 (ten-eleven
translocation 2) missense or truncated mutation is present in
6–12% of GCB-DLBCL (14). TET2 mutations are known to
occur early in human HSCs and can be found in individuals with
clonal haematopoiesis. Whether early TET2 mutations has a
driving role in DLBCL was explored in multiple models. 5mC is
well established as an epigenetic mark associated with
transcriptional silencing, notably of tumor suppressor genes.
TET2 is involved in active DNA demethylation, catalysing the
oxidation of 5mC to 5-hydroxymethylcytosine (5hmC).
Recently, it has been appreciated that 5hmC also functions as
an epigenetic mark, and when linked to gene enhancers, is
associated with activation of nearby genes.

Conditional deletion of Tet2 specifically in the B cell
compartment with CD19-Cre Tet2fl/fl mice showed B cell
transformation mimicking chronic lymphocytic leukemia (78).
Programmed deletion of Tet2 in hematopoietic cells (Vav-Cre)
or B cells (CD19-Cre) in immunized animals disrupt the ability
of GC B cells to undergo CSR and terminal differentiation.
Furthermore, conditional deletion of Tet2 at the GC stage
results in a preneoplastic GC hyperplasia, blockage of GC
exit and PC differentiation evolving in DLBCL-like tumors,
confirming its role as a bona fide B cell tumor suppressor (79).
Mechanistically, this phenotype is due to the focal loss of 5hmC
at enhancers linked to B cell differentiation. Indeed, Tet2−/−GC B
cells feature disruption of many enhancers linked to GC exit
signaling pathways, antigen presentation, and terminal
differentiation genes. This mechanism is conceptually similar
to the functions of the histone modifiers in DLBCL which fails to
restore the immune synapse. Interestingly, TET2 and CREBBP
mutations are mutually exclusive in DLBCL (106), thus a
combined mouse model could be engineered to find a potential
therapeutic vulnerability in DLBCL.

The methyl-cytosine dioxygenase Tet1 (ten-eleven translocation
1) is also an important regulator of 5-hydroxymethylcytoine and
interestingly transcriptionally silenced in FL. Cimmino and
colleagues engineered Tet1-deficient mice where B cell lymphoma
development was promoted resulting in a diminished survival
compared to wild type mice (77). Tet1-deficient mice exhibited
lymphadenopathy and hepato-splenomegaly. Splenic tumors were
characterized by a massive infiltration of proliferating lymphocytes
disrupting the normal architecture and expressing the GC markers
Bcl6 and Irf4 but not the PC marker Cd138. When combined with
Bcl2 overexpression, Tet1-deficient B cell lymphomagenesis was
accelerated up to 10 weeks post-transplantation. Altogether,
deletion of Tet1 and Tet2 in mice induces phenotypically
predominant DLBCL tumors supporting a suppressor role in
mature B cells.
Frontiers in Immunology | www.frontiersin.org 10128
MODELING EVASION FROM IMMUNE
SURVEILLANCE AND DISSEMINATION

The influence of the GC microenvironment on B cell
development which provides essential signals for the survival,
selection and differentiation is well established with several
actors residing in the GC LZ such as T follicular helper cells
(TFH), follicular dendritic cells (FDC), regulatory T cells (Treg),
macrophages and stromal cells (19). FL is the paradigm of a B cell
malignancy strongly dependent on direct interaction with a GC-
like permissive microenvironment that co-evolves with
malignant cell clones as a part of a dynamic interplay (49).
Recent studies in both FL patients and genetically-engineered
mouse models have started to highlight the link between B ‘cell-
intrinsic’ tumor genetic alterations and their cell-extrinsic
functions during lymphomagenesis by contributing to escape
of immune surveillance mechanisms. We will discuss the latest
studies showing how the TNFRSF14 or CTSS frequent alterations
in FL modify the TME/malignant B cells crosstalk and contribute
to lymphoma development either by affecting antigen processing
and hiding from the immune system, or modifying its
composition to become tumor-supportive.

Tnfrsf14 Loss in FL
TNFRSF14, the gene encoding the HVEM receptor located on 1p
chromosome is one of the most frequent cell surface protein,
deleted or mutated in >40% of FL cases and enriched in GCB-
DLBCL (14, 18, 19). HVEM is expressed at the surface of B cells
as well as other cell types and has multiple ligands including
LIGHT or BTLA. Besides its role as a signaling receptor, HVEM
can act as ligand and transmit signals into BTLA-expressing cells
notably TFH (107). How loss of HVEM contributes to
lymphomagenesis has been the focus of two independent and
complementary in vivo studies (80, 108). The first study took
advantage of the well characterized VavP-Bcl2 model that
recapitulates key aspects of the genetics and pathology of
human FLs to generate BM chimeras where knockdown of
Hvem was mediated by transduction of shHvem into VavP-
Bcl2 HSCs followed by reconstitution of irradiated wild-type
hosts. Knockdown of Hvem in all hematopoietic system caused a
significant acceleration and increased penetrance of lymphoma
development compared to VavP-Bcl2 controls with 90% of
animals carrying tumors at 100 days. Despite the absence of B-cell
specificity of the shRNA transduction strategy, only B cells were
enriched with the short-hairpin construct indicating the Hvem
knockdown in T cells was unlikely to participate to the
lymphomagenic effect. Mechanistically, besides cell-autonomous
activation of B cells, Hvem loss and the consequent loss of
interaction with Btla triggers the amplification of TFH producing
high amounts of TNF and Lymphotoxin, the two non-redundant
factors involved in lymphoid stromal cell differentiation and
maintenance, and favors lymphoid stromal cell activation
including FDC and FRC (Follicular Reticular Cells). This
seminal study offers the first demonstration of a functional
impact of a B-cell specific genetic alteration on the polarization of a
FL-supportive microenvironment (80). Of therapeutic interest,
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immunotherapeutic delivery of a soluble HVEM receptor, via
modified CAR-T cells, inhibited the growth of lymphoma by
restoring the BTLA-HVEM interaction highlighting the essential
role of the tumor/microenvironment dialog in lymphomagenesis. In
an independent study, Mintz et al. reported that in models of Bcl2
overexpression in B cells,Btla deficiency in T cells led to a similarGC
B cell outgrowth and accelerated lymphomagenesis than Hvem
deficiency in B cells proposing an alternative mechanism by which
the Btla-Hvem axis functions as an cell-extrinsic suppressor in
lymphomagenesis (108). Using a chimeric mouse system, they
identified that during a normal immune response, Hvem restrains
B cell proliferation, differentiation and selection by reducing the
delivery of signal in trans through the Btla-Hvem axis on TFH cells.
Hvemmutation in B cells would lead to a loss of negative signaling in
TFH cells and allows Hvem-mutant B cells to receive exaggerated
helper signals that promote proliferation and accrual of AID-
mediated mutations. Collectively, those data provide important
evidence for a cell-extrinsic tumor suppressor role of Hvem. The
ways inwhich increased signaling viaCD40 and other T cell–derived
helper factors cooperates with Bcl2-overexpression in lymphoma
development remain to be fully elucidated.

CTSS Alterations in FL
Cathepsin S (CTSS) is part of a family of cysteine proteases whose
role is essential in the regulation of normal immune response
through its activity on antigen processing, B cell expansion and
communication with CD4+ T cells. By cleaving the CD74
chaperone protein bound on MHC class II molecules, CTSS
enzymatic activity results in a smaller peptide CLIP that will be
displaced and allow variable antigenic peptides to bond to MHCII
and present at the cell surface. Recurrent hotspot mutations and
gene amplifications of CTSS have been recently described in 6 and
13% of FL patients respectively (81, 109) and mechanistically,
CTSSY132D hotspot mutation promotes activation of the protein
and increases its protease activity. To assess how the most
common CTSSY132D mutations or CTSS overexpression
contribute to accelerate lymphoma development, Dheilly et al.
generated a chimera mouse model of FL using the VavP-Bcl2
mice as HSPC donor cells and expressing either mutated human
CTSS or overexpressing human CTSS. Both models revealed an
oncogenic role of CTSS over-activation with higher penetrance
and decreased latency as compared to VavP-Bcl2 tumors alone.
Tumors with CTSS alterations were characterized by a remodeled
tumor-prone microenvironment with an increased infiltration of
CD4+ T cells while limiting CD8+ T cells recruitment. Depletion
of CD4+ T cells in VavP-Bcl2/CTSS chimera models confirm that
CTSS is essential to support the communication and co-
stimulatory signals between tumor B cells and CD4+ cells in the
GC context. Conversely, loss of CTSS activity in aggressive mouse
lymphoma xenograft restrain lymphoma growth by recruiting
and enhancing CD8+ T cells cytotoxic activity while impairing
communication with CD4+ TFH cells. These data show for the
first time that by altering the processing of antigenic peptides,
CTSS mutations or overexpression remodel the immune
microenvironment to promote lymphoma growth and implies
that targeting a regulator of antigen presentation such as CTSS
could modulate the spectrum of processed antigens, promote
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activation of cytotoxic T cells, enhance tumor immunogenicity
and improve response to anti-PD1 immunotherapies.

Disruption of Ga Migration Pathway
Another pathway frequently mutated in GC-derived lymphomas is
the GC homing pathway involving S1PR2 andGNA13. The guanine
nucleotide binding protein GNA13 (encoding Ga13), is a signaling
mediator downstream of transmembrane G-protein-coupled
receptors sphingosine-1-phosphate receptor-2 (S1PR2), that
confines B cells in the GC and promotes growth regulation by
suppressing both Akt and cell migration (110). In about 20% of
GCB-DLBCL cases (38% in the EZB subtype), deleteriousmutations
affect one of the members of the Ga13 homing pathways, namely
GNA13, S1PR2 and P2RY8 (another S1P receptor expressed on GC
B cells). To model in vivo the impact of GNA13 loss during
lymphomagenesis, Muppidi and colleagues utilized a mixed BM
chimeric approach, deleting Ga13 in all B-lineage using Mb1Cre;
Ga13f/f mice. Deficiency of Ga13 favors the formation of enlarged
mesenteric LN with GC B cells expansion associated with a marked
disruption of the GC architecture and a loss of GC confinement due
to the inability to suppress migration in response to S1P. Occasional
transformation in B cell lymphomas displaying a GC-like
phenotype (Gl7+CD138-Bcl6+Irf4+IgD-) were observed at 1 year
of age (82). One of the critical observations made in Ga13 deficient
cells is the loss of confinement which allows egress outside the GC,
dissemination and seeding of these tumoral cells at distant sites such
as blood and BM. As deficiency in S1PR2 did not phenocopy Ga13
deficiency, the authors searched for additional Ga13 G protein
coupled receptor that may be involved in GC B cell regulation and
discovered that P2RY8, an orphan receptor also represses GC B cell
growth promoting confinement via Ga13 and is mutated in GCB-
DLBCL. Cooperation between Bcl2 overexpression and Gna13 loss
showed an exacerbated phenotype in double mutant mice leading to
greater accumulation of GC B cells in spleen, wider dispersal
throughout the follicles and more dissemination in blood and BM
suggesting a combinatorial effect of Bcl2 in promoting abnormal B
cell survival outside the GC niche. These findings shed new lights on
an important mechanism by which disruption of Ga13 signaling
exerts dual actions in promoting growth and favoring dissemination
of GC B cell in GC-derived lymphomagenesis and offer a biological
explanation for factors leading to systematic dissemination of
tumoral GC B cells in multiple organs including the BM.
MODELING DYSREGULATION
OF GC METABOLISM

During T-dependent adaptive immune responses, B cells
undergo a quick anabolic shift that sustain the GC proliferative
burst (111). Many B-cell lymphomas originating in the GC
present an exceptionally high proliferation index. This implies
massive metabolic requirements in order to generate sufficient
energy and support anabolism for repeated growth and division
cycles. Recurrent mutations in components of the nutrient
sensing pathway that activates the mechanistic target of
rapamycin complex 1 (mTORC1), a driver of cellular
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anabolism are found in about 25% of FLs (112, 113). In response
to growth factors and when there is sufficient intracellular amino
acid concentration, mTORC1 promotes protein synthesis (114).
Intracellular amino acid concentration is perceived through a
protein complex present on lysosome surface comprising RAG
GTPases, Ragulator complex, v-ATPase complex (vacuolar H+-
adenosine triphosphate ATPase) and SLC38A9 (sodium-coupled
amino acid transporter 9). When amino acid concentration is
sufficient, the RAG GTPases form heterodimers on lysosome
surface allowing the recruitment of mTORC1 and downstream
protein synthesis supporting cellular growth (114–116).

RRAGC Activating Mutations
The RRAGC gene encodes for Ras-related GTP-binding protein
(RAGC), an essential activator of mTORC1 downstream of the
sensing of cellular nutrients. Recurrent point mutations of
RRAGC are found in 18% of FLs and are rare in other B cell
lymphomas (112, 113). More than half of these events are
associated with mutations of certain components of the v-
ATPase complex (ATP6V1B2 and ATP6AP1). To characterize
the impact of recurrent RRAGCmutations on B cell function and
lymphomagenesis, Ortega-Molina et al. used CRISPR/Cas9
genome editing techniques to engineer two independent
murine Rragc knock-in mouse strains reproducing hotspot
mutations recurrently found in human FL (S75C and T90N
mutations) (83). Heterozygous RagCS74C/+ and RagCT89N/+

heterozygous mice showed no obvious phenotype. Lymphoid
and myeloid cell populations frequencies were similar in mutant
versus wild-type mice in the spleen and BM however RagC
knock-in mutations conferred partial insensitivity to nutrient
withdrawal. When bred to a VavP-Bcl2 mice, RagC-Bcl2+

double-mutant mice showed exacerbated B cell responses in
response to immunization characterized by enlarged GCs,
increased plasma cell production without impairment of high-
affinity B cell selection and eventually acceleration of lymphoma
development. This was observed both in the progeny of VavP-
Bcl2-RagCmut mice but also using a BM chimeric system where
VavP-Bcl2-RagCmut fetal liver cells were transplanted into
lethally irradiated wild-type recipients. Histological analysis of
these tumors revealed a follicular growth pattern of Bcl6+ B cells
with no difference according to genotype. Bulk RNA sequencing
analysis of B220+ cells obtained from RagCmut and RagCWT

Bcl2+ FL-like tumors revealed that the mTORC1 signaling
signature was enriched in RagCmut FL. Furthermore, when
transcriptional profiles from murine and human FL with or
without RagC mutations were compared, upregulated genes in
murine RagCmut FL were enriched in RRAGC mutated human
FL. Interestingly, the mTOR inhibitor rapamycin, given orally to
RagCmut and RagCWT Bcl2+ mice during long term, inhibited
proliferation selectively in RagCmut FL. Overall, this data shows
that RRAGC mutations result in mTORC1 activation regardless
of the intracellular amino acid concentration which confers a
selective advantage to GC B cells. In addition, the presence of
these mutations makes GC B cells less dependent to TFH signals,
as blockade of T cell help through anti-CD40L after GC induction
makes RagCmut B cells intrinsically resistant to apoptosis despite
TFH suppression. Finally, when these mutations are associated
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with Bcl2 overexpression, the lymphomagenesis process is
accelerated in a cell-intrinsic manner where mutant GC B cells
with increased fitness could continue to undergo cycles of selection
and proliferation favoring further acquisition of additional
hits (83).

SESTRIN1 Loss of Function
SESTRIN1 has been identified as a target gene of the recurrent 6q
deletion in FLs and it is also epigenetically inactivated by EZH2
gain-of-function (84). SESTRIN1 is a mTORC1 regulator that
inhibits cell growth when TP53 is activated in response to DNA
damage. Inactivation of SESTRIN1, by del6q or by the EZH2
mutation leads to mTORC1 activation. Therefore, SESTRIN1
loss represents an alternative to RRAGC mutations that maintain
mTORC1 activity under nutrient starvation. To recapitulate
SESTRIN1 deficiency in vivo, in combination with BCL2
overexpression, Oricchio and colleagues retrovirally transduced
VavP-Bcl2 HSPCs with shRNAs targeting Sestrin1. Sestrin1
deficiency led to an acceleration of the Bcl2-mediated
lymphoma, establishing his tumor suppressive role in B cells.
Morphologically, BCL2/Sestrin1-deficient tumors resembled FL
with a follicular architecture, they displayed markers of a GC
phenotype (PNA and BCL6), showed evidence of somatic
hypermutation, an increased tumor proliferation based on Ki67
staining. Remarkably, pharmacological inhibition of EZH2
promotes SESTRIN1 re-expression and restores its tumor
suppressive activity, suggesting the possibility to epigenetically
control mTORC1 activity in lymphoma. Interestingly, EZH2/
RRAGC gain of function mutations and SESTRIN1 loss are
mutually exclusive suggesting that these alterations are involved
in mTORC1 activity maintenance allowing tumor cells to escape
proliferation inhibition (84) also becoming less dependent to TFH

signals as shown in the context of RRAGC and EZH2 mutations
(83, 101). In summary, mTORC1 pathway activation, through
various mutually exclusive molecular alterations, is clearly
involved in B cell lymphomagenesis process and may be
associated to a specific sensitivity to mTOR inhibitors.
CONCLUSIONS AND PERSPECTIVES

B cell lymphomas are among the most frequent hematopoietic
malignancies and represent a molecularly heterogeneous group of
diseases with different therapeutic vulnerabilities (26, 117) and
clinical outcomes that largely depend on a complex interplay
between a multitude of genomic alterations and heterogeneous
tumor microenvironment signatures (118, 119). Sequencing
studies allowed the identification of recurrently mutated genes
that drive lymphomagenesis and led to refineDLBCL classification
that pave the way for personalized therapeutic strategies (14, 19,
118). The latest large-scale genome sequencing studies identified
up to seven different molecular subtypes of DLBCL (118) which
represent an interesting framework for the development of models
mimicking each molecular subtype. Now, recent DLBCL
classifications based of TME composition revealed four distinct
microenvironment compositions which provide independent
contributions to clinical outcome regardless of the GCB/ABC
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cell-of-origin or the genetic DLBCL subtype classification (119).
The challenge of modeling future preclinical mouse models will be
to recapitulate both the genomic features of the tumors and the
parallel remodeling of the tumor microenvironment. Such tumors
likely develop over decades in humans before clinical symptoms
appear and rely on a complex combination of hits that have been
accumulated in a stepwise and orderedmanner leading to a spatially
and temporally intra-tumor heterogeneity. Advanced technologies
are emerging for a better characterization of the existing and future
models and cellular heterogeneity in murine lymphomas can be
resolved by measuring gene expression at a single cell resolution,
allowing the study of B cells together with their microenvironment.
Using those techniques, we and others have started to uncover
and compare the underlying transcriptional and functional
heterogeneity within FL malignant B cells and normal GC B cells
in human and mice (31, 81, 101, 120, 121).

Another important feature of lymphoma biology that need to be
properly addressed in mouse models is mimicking the kinetics and
cellular context in which genetic hits accumulate overtime
sometimes over years. The order of appearance of such hits and
how it influences lymphomagenesis remains an area of active
research. Mutations in KMT2D, CREBBP or EZH2 represent early
events during lymphomagenesis and have been proposed to occur
in HSPCs. Mouse models reproducing these alterations do not
induce lymphomagenesis on their own but accelerate GC B cell
transformation when combined with BCL2 overexpression (68–71).
Accordingly, recent genomic data obtained from prediagnostic
samples formally demonstrate that BCL2 translocations
systematically precede the acquisition of subsequent epigenetic
mutations (122).

Murine models developed since several decades have been
particularly useful to inform us on the biological mechanisms driving
B cell lymphomagenesis, and helping to understand the functional
consequences of genetic alterations. As one of the emerging functions
of epigeneticmodifier genes inGCB cell lymphoma is to favor disease
initiation through the reprogramming of the immune niche, mouse
models that faithfully recapitulate the complex interactions with the
microenvironment will become valuable tools for the testing and
development of novel, rationally designed therapeutic approaches
(80, 101). In this line, it is remarkable that microenvironment
Frontiers in Immunology | www.frontiersin.org 13131
remodeling seems to occur early in the context of EZH2 mutations,
suggesting that early epigenetic therapy may be useful to prevent
disease progression (105).

GEM models may recapitulate the natural history and
histological properties of human tumors. However, they
display a limited mutational and immunological complexity
compared to the human tumors they are intended to model
(119). Novel sophisticated tools for engineering mouse models
such as CRISPR-Cas9 gene editing techniques or patient-derived
xenografts (especially those mimicking indolent lymphomas
such as FL), including in humanized mice, will be useful to fill
this gap and efficiently generate preclinical models that reflect the
complex genetics of the human tumors (61, 123–125). The
generation of transplantable lymphoma cell lines obtained
from these GEM can be engineered to develop functional
CRISPR screening in vivo; such an approach would also be
useful to screen for therapeutic vulnerabilities in an unbiased
manner. Now that most of the genetic drivers have been
discovered in B cell lymphomas and that we are getting the
tools for a more in-depth characterization of their functional
consequences both on B cells and its microenvironment, we hope
that studies using more complex GEM tumor models will serve
to streamline the translation of targeted therapies with novel
immunotherapies into the clinics.
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Over the last decades, the revolution in DNA sequencing has changed the way we
understand the genetics and biology of B-cell lymphomas by uncovering a large number
of recurrently mutated genes, whose aberrant function is likely to play an important role in
the initiation and/or maintenance of these cancers. Dissecting how the involved genes
contribute to the physiology and pathology of germinal center (GC) B cells –the origin of
most B-cell lymphomas– will be key to advance our ability to diagnose and treat these
patients. Genetically engineered mouse models (GEMM) that faithfully recapitulate
lymphoma-associated genetic alterations offer a valuable platform to investigate the
pathogenic roles of candidate oncogenes and tumor suppressors in vivo, and to pre-
clinically develop new therapeutic principles in the context of an intact tumor immune
microenvironment. In this review, we provide a summary of state-of-the art GEMMs
obtained by accurately modelling the most common genetic alterations found in human
GC B cell malignancies, with a focus on Burkitt lymphoma, follicular lymphoma, and diffuse
large B-cell lymphoma, and we discuss how lessons learned from these models can help
guide the design of novel therapeutic approaches for this disease.

Keywords: germinal center, lymphoma, genetics, mouse models, transgenic
INTRODUCTION

B-cell lymphomas are a spectrum of genetically, phenotypically and clinically diverse neoplasms
that arise from the oncogenic transformation of B cells at various developmental stages and, in most
cases, from germinal center (GC) B cells (1–3). Over the past two decades, studies aimed at charting
the genetic landscape of these malignancies have uncovered a large number of recurrently mutated
genes with potential pathogenic roles in these diseases (4–8). In order to understand the
mechanisms by which these alterations contribute to lymphomagenesis, genetically engineered
mouse models (GEMMs) have proven and will likely continue to prove instrumental, particularly in
the case of GC-derived lymphomas, as an in-vitro system that faithfully recapitulates the complex
biology of the GC reaction is still lacking. By mimicking genetic alterations that are found in the
human disease, these models have allowed the detailed in-vivo investigation of several lymphoma-
associated oncogenes and tumor suppressors, shedding light on their role in normal B cell
development and tumorigenesis. It has to be said that each of the approaches used present
specific advantages and disadvantages; for instance, GEMMs cannot reproduce the genetic
org August 2021 | Volume 12 | Article 7107111135
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complexity and the heterogeneity of the human tumors, an
aspect especially important when aiming at the discovery and
pre-clinical testing of novel therapeutics. To overcome this
hurdle, patient-derived xenografts have been introduced for the
validation of candidate biomarkers and molecular targets (9–11).
Moreover, the versatility of the clustered regularly interspersed
short palindromic repeats (CRISPR)-Cas9 technology and its
high efficiency for precise genome manipulation in mouse
embryonic stem (ES) cells has opened the way to the
construction of a new array of in vivo experimental models.
Although no single model can individualy address the wide range
of questions that remain to be investigated, access to the
appropriate in vivo tools will greatly benefit the lymphoma
community. In this review, we summarize the insights gained
from modeling recurrent genetic lesions associated with human
B cell malignancies, focusing on three common GC-derived non-
Hodgkin lymphomas for which GEMMs that faithfully
recapitulate key aspects of the human disease have been
achieved: Burkitt lymphoma (BL), follicular lymphoma (FL),
and diffuse large B-cell lymphoma (DLBCL). We refer the reader
to the work of Huang and Yasuda for an overview on mouse
models of EBV-driven lymphomas (12).
GERMINAL CENTERS: THE ORIGIN OF
MOST B-CELL LYMPHOMAS

The development of mouse models that recapitulate with fidelity
the human disease is intimately linked to a deep understanding
of the pathogenesis of these tumors and particularly of their
normal cellular counterpart, as the genetic lesion of interest
should be targeted to the proper temporal and developmental
stage context. For most B-cell lymphomas, this is represented by
a GC B cell, as documented in the nineties by the analysis of
clonally rearranged immunoglobulin genes in various lymphoma
subtypes (1, 2). These studies invariably showed that BL, FL and
DLBCL exhibit the imprinting of somatic hypermutation (SHM),
an irreversible marker of GC transit. Thus, although the
tumorigenesis process may be initiated at earlier stages of B
cell differentiation (see the occurrence of BCL2 translocations in
FL and DLBCL), the “tumor precursor cell” undergoes its final
clonal expansion in the GC.

GCs are specialized structures that form transiently in
secondary lymphoid organs upon encounter of a naïve B cell
with its cognate antigen in the context of T cell-dependent,
adaptive immune responses (13–15). The GC reaction serves one
major purpose, that is to produce a population of cells capable of
secreting high-affinity antibodies against the invading pathogen
(i.e., plasma cells), or of maintaining the memory of that antigen
for life (i.e., memory B cells), such that they can quickly
differentiate into effector plasma cells upon recall responses
against the same antigen (Figure 1) (16). Within the GC
microenvironment, B cells cyclically recirculate between two
anatomical areas known as the dark zone (DZ) and the light
zone (LZ) (17). DZ B cells (also called centroblasts) proliferate at
high rate and modify their immunoglobulin variable (IgV) region
Frontiers in Immunology | www.frontiersin.org 2136
genes by the process of SHM, to generate antibody specificities
with different affinity to the antigen. DZ B cells then cease
proliferating and evolve into LZ B cells (also known as
centrocytes), a more quiescent population that is again exposed
to the antigen, retained on the surface of follicular dendritic cells
(FDCs) in the form of immune complexes, and then compete for
help by T-follicular helper (TFH) cells in order to receive survival
signals and undergo affinity-based selection (18). GC B cells that
are not positively selected because the newly introduced somatic
mutations led to a decrease in affinity, disrupted the antibody
structure, or generated autoreactive antibodies, are destined to
die by apoptosis. A subset of LZ B cells upregulate MYC and
recycle to the DZ to undergo further rounds of SHM and
selection (19, 20). Eventually, high affinity LZ B cells will
differentiate into antibody secreting plasma cells or memory B
cells. The GC LZ also supports the process of class switch
recombination (CSR), a second AID-dependent B cell-specific
DNA-modification that confers distinct effector functions to
antibodies with identical specificities; however, recent work
provided experimental evidence that CSR takes place
predominantly in the early phases following antigen encounter,
prior to the GC reaction and to SHM (21).

Consistent with this functional compartmentalization, GC
DZ and LZ B cells are characterized by distinct epigenetic and
transcriptional profiles that sustain diverse biological programs,
with proliferation and DNA replication being enriched in DZ B
cells, and a variety of signaling pathways downstream of surface
receptor molecules being activated in LZ B cells, including the B-
cell receptor (BCR) and the CD40 receptor (22). This
oversimplified view of the GC reaction has been refined to
higher granularity by recent single cell analyses of gene
expression and somatically mutated IgV region genes in
human GC B cells (23, 24). These studies revealed multiple
subclusters of DZ and LZ B cells, along a continuum of
transcriptional changes reflected in several intermediate
subpopulations that bidirectionally recirculate between the DZ
and LZ compartment, ultimately giving rise to precursor
memory B cells and plasma blasts (Figure 1).

With the advent of genome-wide expression profile
technologies, numerous studies have documented the close
similarity between the phenotype of normal bulk GC B cell
subsets and the transcriptional signature of various lymphoma
entities, allowing a more refined assignment of BL, FL and
DLBCL to their putative normal cellular counterpart, as well as
the identification of functionally relevant disease subtypes (25,
26). For example, BL was found to show a gene expression profile
that is closely related to the GC DZ signature, indicating a
cellular origin from DZ B cells that are actively undergoing
SHM (22). Conversely, FL closely resembles early LZ B cells
representing an intermediate GC B cell stage, although at the
single cell level tumor cells feature a desynchronization of the
canonical gene expression programs found in their normal
counterpart (23). Finally, at least two distinct phenotypic
subtypes of DLBCL have been recognized by bulk gene
expression profiling based on their similarity to distinct cellular
counterparts within the GC: the so-called germinal center B cell
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like (GCB)-DLBCL, which is transcriptionally more similar to
intermediate and LZ B cells (22, 27); and the activated B cell like
(ABC)-DLBCL, which resembles in vitro activated B cells and
corresponds in vivo to a small subset of LZ B cells poised to
undergo plasma cell differentiation (27), but also includes, as
recently suggested, cases with similarities to memory B cells (24,
28). The clinical relevance of the “cell-of-origin” (COO)
classification is underscored by the association of GCB- and
ABC-DLBCL with distinct prognostic categories, which
supported its incorporation into the updated WHO
classification of lymphoid malignancies (3). Nonetheless, it is
likely that additional subgroups exist within and across this
heterogeneous disease, where as many as 20% of cases remain
unclassified. Confirming this notion, different genetic subsets
were recently revealed based on genetic profiles, which also
display separate clinical outcomes (29–31); moreover, two
clinically relevant DLBCL subgroups exhibiting particularly
favorable and poor prognosis, respectively, were identified by
applying a single-cell based COO classification (24), warranting
Frontiers in Immunology | www.frontiersin.org 3137
additional studies aimed at dissecting the complexity of
this disease.
TYPES OF GEMMs

GEMMs represent a powerful tool for the study of human
cancers as well as non-malignant diseases, because over 90% of
the mouse and human genomes share regions of conserved
synteny, and mouse ES cells are amenable to be genetically
manipulated, allowing the construction of the mutation of
interest in the context of an immune system that is
comparable to the human counterpart. In the B-cell lymphoma
field, a variety of mouse models have been generated for the
overexpression or deletion of oncogenes and tumor-suppressor
genes that are linked to the human condition, by using the
following main strategies: i) classical transgenic approaches, ii)
targeted approaches based on homologous recombination in ES
cells (i.e., knock-in/knock-out mouse models, either constitutive
FIGURE 1 | The GC reaction as the normal counterpart of most B cell lymphomas. Formation of a GC begins when a naïve B cell encounters an antigen in the
presence of co-stimulatory molecules, provided by a T helper cell. The GC is functionally and histologically divided into two main compartments, the dark zone (DZ)
and the light zone (LZ). Within the DZ, cells undergo somatic hypermutation (SHM) of their immunoglobulin genes and rapid proliferation, whereas in the LZ, B cells
are intermingled with follicular dendritic cells (FDCs) and T follicular helper (TFH) cells, which provide positive selection signals to B cells with high affinity to the
antigen. The LZ is also the site of CSR. By repeatedly cycling between the DZ and the LZ, B cells undergo several rounds of proliferation, SHM and affinity
maturation before being positively selected. In contrast, B cells with low affinity for the antigen are eliminated by apoptosis. High affinity B cells that exit the GC
differentiate into long-lived memory B cells or antibody-secreting plasma cells. Based on molecular profiling, Burkitt lymphoma is postulated to derive from DZ B cells,
FL and GCB-DLBCL from LZ B cells, and ABC-DLBCL from B cells poised to undergo terminal differentiation (plasmablasts) or, in a subset of cases, pre-memory B
cells. Genetic lesions that have been successfully modelled in the mouse and recapitulate key features of the human disease are indicated. Red, gain of function
events; blue, loss of function events. M, mutation; Tx, translocation; Amp, copy number gain/amplification; *, pathway activation by use of a constitutively active protein.
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or conditional); and iii) adoptive transfer of manipulated
hematopoietic stem cells (HSC) (Figures 2A–C) (32–34). More
recently, the development of the CRISPR-Cas9 system, a
genome-editing tool for efficient and precise genome
engineering, has begun to transform the field by allowing to
create virtually any mutation, thus expanding our possibilities to
generate elaborate mouse-models.

The simplest Transgenic Mouse Models are obtained by
random integration of a DNA construct into the genome upon
injection into the pronucleus of fertilized eggs. These earlier
models have provided critical information about the function of
specific genes; however, transgenic approaches do not allow the
control of the transgene copy number nor its integration site/s,
which can be biased. Moreover, only a limited number of
endogenous promoters are available to ensure the proper
spatial and temporal control of gene expression. As such, most
classical transgenic mouse models did not accurately mimic the
type and/or the timing of the genetic lesion of interest, resulting
in the development of tumors that do not always recapitulate the
biology of the human disease. Accordingly, the field is moving
away from using these lines, with few exceptions (e.g. the VavP-
Bcl2 and Bcl2-Ig mice discussed in the Follicular Lymphoma
section) (35, 36).

Constitutive Knock-in/knock-out Mouse Models leverage on
homologous recombination to modify endogenous genomic loci
Frontiers in Immunology | www.frontiersin.org 4138
and introduce activating mutations in proto-oncogenes, disrupt
tumor suppressor genes, or place a mutant cDNA under the
control of a highly expressed heterologous promoter/enhancer
element hijacked by chromosomal translocations in the human
tumors (typically, the immunoglobulin genes). A successful
example of the latter approach is represented by the Iµ-
HABCL6 mouse model, where a BCL6 cDNA cassette was
targeted downstream the endogenous immunoglobulin Iµ
promoter to generate a chimeric transcriptional unit
reproducing the outcome of a common BCL6 chromosomal
translocation variant found in DLBCL (37) (further discussed
in the DLBCL section).

Conditional Knock-in/Knock-out Mouse Models. The
generation of mouse strains where the Cre-recombinase enzyme
is expressed under the control of spatially and temporally
controlled promoters has greatly advanced our ability to
construct faithful mouse models by directing the introduction of
candidate mutations to various stages of B cell differentiation, thus
allowing the conditional activation (via removal of a loxP-flanked
“stop cassette”) or inactivation of specific genes in the desired cell
type. For instance, the crossing offloxed alleles tomb1-Cre (38) or
Cd19-Cre (39) deleter strains permits gene recombination at early
B-cell developmental stages and therefore throughout B cell
development, whereas the Cd21-Cre recombinase is specifically
active in peripheral B cells, from the transitional B cell stage (40).
A

B

D

C

FIGURE 2 | Approaches used to generate mouse models of GC derived lymphomas. (A) Transgenic mouse models; (B) constitutive or conditional knock-out/
knock-in mouse models, obtained via homologous recombination in ES cells or CRISPR-Cas9 mediated genome editing; (C) adoptive transfer of HSCs.
(D) Xenograft mouse models of human lymphoma cells can be established by injection of stable cell lines or by direct implantation of primary tumor samples into
recipient immunosuppressed or humanized mice. Serial passaging of the engrafted tumors may be necessary to achieve high xenotransplantation efficiency. These
models are particularly useful for the pre-clinical evaluation of novel therapeutic combinations in vivo.
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By far the most relevant Cre-recombinase alleles for the design of
BL, FL and DLBCL mouse models are the Cg1-Cre and Aicda-Cre
knock-in alleles, which allow for precise Cre-mediated gene
recombination in antigen-activated mature B cells, including
GC B cells (Figure 3A) (42–44). Conditional knock-out alleles
have been successfully employed to study the in vivo role of many
lymphoma-associated tumor suppressor genes encoding for
transcription factors (BLIMP1), epigenetic modifiers (EZH2,
CREBBP, KMT2D, TET2), small G proteins (GNA13) and
ubiquitin ligases (FBXO11). Likewise, conditional Cre-mediated
activation of mutant gain-of-function alleles, under the control of
the gene endogenous promoter (MEF2B-D83V) or in the context
of the permissive ROSA26 locus (BCL2), allowed to investigate
their contribution to tumor development in vivo.

Adoptive transfer approaches involve the isolation of
hematopoietic progenitor cells (HPCs) from the bone marrow
(BM) or fetal liver of a donor mouse and their subsequent genetic
modification using retroviral vectors or the CRISPR-Cas9 tool,
prior to BM transplantation into recipient animals. Typically,
short-hairpin RNAs (shRNAs) are used for loss-of-function
studies and cDNA cassettes are used to reproduce gain-of-
function mutations, whereas the CRISPR-Cas9 editing
approach can serve both purposes. These modified progenitor
cells will then reconstitute the hematopoietic system of lethally or
sub-lethally irradiated syngeneic animals, resulting in chimeric
Frontiers in Immunology | www.frontiersin.org 5139
mice with a hematopoietic system derived from the donor cells
(45). The adoptive transfer approach offers the advantage of
being highly versatile and rapid, without the need for breeding
with additional transgenic animals (34). It has however limits in
the duration of the animal follow up and the potential effects of
host irradiation. Mouse models obtained using this technique
demonstrated that reduced dosage of Kmt2d or Crebbp
accelerates Bcl2-driven lymphomagenesis by affecting the
deposition of activating histone marks onto the regulatory
domains of genes implicated in GC exit (discussed in the FL
section) (46, 47).

CRISPR-Cas9 editing approaches. The advent of the CRISPR-
Cas9 technology has transformed the approach to genome
editing, as the Cas9 nuclease can be targeted to any specific, 20
nucleotide-long genomic sequence that is followed by a
protospacer-adjacent motif (PAM), where it will cut the DNA
(48). These DNA breaks can then be repaired by non-
homologous end joining, leading to small insertions/deletions,
or by homology-directed repair (HDR), which can be leveraged
to generate precise DNA modifications by providing a DNA
template. HDR can introduce point mutations, insertions of
DNA sequences (e.g. protein tags, LoxP sites) or specific
deletions. This approach, which is extensively reviewed
elsewhere (49–51), bears the advantage of being rapid while
maintaining the endogenous regulation of expression of the gene
A B

C

FIGURE 3 | Benchmarking GC-derived GEMMs. (A) Cre-drivers utilized to achieve deletion/mutation of lymphoma-associated genes at the appropriate stage of B
cell development, namely a HSC (e.g. TET2 mutations), an early B cell (e.g. BCL2 translocations), a transitional/mature B cell (utilized for genes whose endogenous
promoter is specifically induced in the GC, e.g. MEF2B), or a GC-B cell (e.g. CREBBP/KMT2D). (B) Divergent evolution model for the pathogenesis of FL and tFL
inspiring the construction of compound GEMMs. The original B cell clone is on top; based on genetic evidence, BCL2 translocations are thought to represent the
earliest event, which takes place in a pro-B cell as a by-product of the VDJ recombination process. Subsequent gain of CREBBP and KMT2D mutations by a
postulated common mutated precursor cell primes epigenetic reprogramming, favouring its persistence for years before the independent acquisition of distinct
genetic alterations leads to final clonal expansion and malignant transformation into a FL or a tFL, through branching evolution. (C) Representative histo-pathological
and immuno-phenotypic characterization of lymphoproliferative diseases developing in GEMMS of lymphoma [from (41)].
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studied, and can allow complex manipulations involving
multiple independently segregating alleles (52), although the
construction of conditional alleles has been challenging. In the
context of B cell lymphomas, a CRISPR-Cas9 based design was
successfully utilized to engineer two activating mutations in the
gene RRAGC, recurrently detected in FL patients (53) (see FL
section). A lists of GEMMs recpitulating GC-derived lymphomas
is reported in Supplementary Table 1.
PATIENT-DERIVED XENOGRAFT MODELS

Despite many advantages offered by GEMMs in understanding
the basic mechanisms underpinning tumor development,
conditional transgenic mice present some limits particularly in
the context of preclinical oncology. First, they are expensive to
generate, involve laborious techniques, and may require long
time to establish a large animal cohort of the desired genotype,
because many littermates will not carry the desired combination
of alleles after crossing. Moreover, GEMMs are generated from
inbred mouse strains and model only few mutations at a time; as
a consequence, tumors developing in these animals may not
recapitulate the genomic complexity of human lymphomas, and
could thus be less clinically relevant. Finally, the variable onset
and penetrance of disease makes them suboptimal models for
drug development and testing.

To circumvent some of these problems, efforts have been
made to directly implant tumor tissues or cells surgically
dissected from cancer patients into immune-compromised
recipient mice by subcutaneous, intravenous or orthotopic
transplantation (Figure 2D). When successful, such model
system, known as Patient Derived Tumor Xenografts (PDX),
was shown to maintain the same genetic and histopathologic
characteristics of the original tumor clone, and thus to better
represent the genomic complexity of the human disease, in a way
that is hard to achieve in GEMM (54, 55). However, more recent
work has indicated that PDX models rapidly acquire copy
number aberrations during passaging, most likely due to the
expansion of minor clones present in the parental tumor, which
could raise concerns about their role in cancer studies (56, 57).
PDXs can be propagated without in vitromanipulation and have
been used in several preclinical studies aimed at confirming
findings obtained in in vitro cell lines and/or at assessing drug
responses. Nonetheless, testing of multiple PDX models is
necessary in order to obtain generalizable results, which
quickly increases the complexity of the experiments. PDXs also
require significant infrastructural support and may take several
months before engraftment is achieved, which is why large
repositories such as the Public Repository of Xenografts
(ProXe) database or the Novartis Institutes for BioMedical
Research PDX encyclopedia (NIBR PDXE) have been
generated (10, 58). The establishment of several DLBCL and
transformed FL PDXs has been reported, which can be stably
propagated in vivo and reflect phenotypic and genetic features of
the GCB- and ABC-DLBCL subtypes, while maintaining key
Frontiers in Immunology | www.frontiersin.org 6140
genetic drivers of pathogenesis that were present at diagnosis
(10, 59).

The major disadvantages of xenograft models are the lack of a
physiological tumor microenvironment (unless in the context of
orthotopic injections) and the lack of a functional immune
response. The injection of tumor cells into the tissue of origin
more closely mimics microenvironmental cues provided by the
non-neoplastic cells, allowing the interaction between these
components, even though differences in signaling pathways or
cellular populations might be expected between the human and
mouse microenvironment. The lack of a functional immune
response can be partially addressed in NOD/SCID mice by
addition of human peripheral blood lymphocytes, bone
marrow, or fetal liver and thymus into irradiated or
immunodeficient mice (60). However, due to the development
of graft versus host disease, the observational window in these
humanized mice is relatively short (61). Despite these issues,
PDX models are expected to provide an improved platform for
testing drug sensitivities and investigating the development of
drug resistance, as well as for the validation of biomarkers (54),
particularly when compared to cell line derived xenografts
(62–65).
MOUSE MODELS OF BURKITT
LYMPHOMA

The genetic hallmark of BL is a chromosomal translocation that
brings the MYC gene under the control of one of the IG
enhancers (66, 67), causing its ectopic transcription in the bulk
GC population where MYC expression is otherwise limited to a
small subset of cells primed for DZ re-entry (19, 20).
Additionally, several genes were identified as recurrently
mutated in this lymphoma. These include ID3, a negative
regulator of TCF3/E2A that is inactivated in 35-58% of all BL
subtypes, and TCF3, which encodes the transcription factor E2A
and is targeted by gain-of-function mutations in 10-25% of cases
(68–70). The TCF3-ID3 axis is predicted to promote antigen
independent “tonic” BCR signaling, leading to the sustained
activation of the phosphoinositide-3-kinase (PI3K) signaling
pathway and therefore providing pro-survival signals to the
tumor cell. Gain-of-function mutations of CCND3 (5% of
endemic BL and 38% of sporadic BL), which encodes for a D-
type cyclin required for the proliferation of DZ B cells, and
missense mutations of the FOXO1 transcription factor (20% of
cases) are also recurrently found in different clinical variants of
BL, highlighting a prominent oncogenic role for these two genes
(69–73).

Mouse Models of Deregulated
MYC Expression
As the first oncogenic translocation identified in B-cell
lymphomas, several transgenic mouse models have been
generated over the years to drive MYC overexpression
throughout B-cell development under the control of different
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IG enhancers, in an attempt to mimic the IGH-MYC
translocation (74–77). At the time, it was not known that these
lesions occur as by-products of the SHM or CSR process, that is,
during the GC reaction. As a result of such early activation, most
MYC-transgenic models develop pre-GC derived B-cell
lymphomas that, while reproducing some histo-morphologic
features of the human disease, lack surface IG expression
(EµMYC mouse model) (74, 78) or retain transitional B cell
markers (e.g. CD43) in the absence of somatically mutated IGHV
regions (l-MYC mouse model and 3’ IgH LCR-driven Myc
transgenics) (75, 77), an indication that the malignant
transformation process occurred in transitional/pre-GC cells.
Although these models have helped to investigate the role
MYC plays in oncogenesis overall, or to elucidate the
cooperativity among diverse oncogenes (79–82), they are not
considered informative for dissecting the pathogenesis of BL;
moreover, the nearly full penetrance of immature B-cell
lymphomas in some of these models may complicate the study
of the GC B cell response, as mice frequently die before becoming
immunologically mature.

A mouse model that mimics all key aspects of BL was
generated in the laboratory of Klaus Rajewsky in 2012 (83).
This was achieved by inducing the overexpression of MYC
specifically in GC B cells, in combination with a constitutive
active form of the PI3K catalytic subunit (referred to as mutant
P110*). Tumors developing in these mice closely resemble the
human BL morphologically and histologically, as well as in their
transcriptional profile, including the expression of BCL6. In
addition, tertiary transforming events, such as mutations in
CCND3 and ongoing SHM, were observed in the developing
tumors. Thus, the Myc/P110* animal model could represent a
valuable system to study the mechanisms underlying BL
development, as well as the potential preclinical utility of
targeted therapeutics. Using these mice, a pro-proliferative and
anti-apoptotic function of FOXO1 was uncovered, which
contributes to the transformation of GC B cells towards BL (84).
MOUSE MODELS OF FOLLICULAR
LYMPHOMA AND GCB-DLBCL

FL is the second most common type of B-cell lymphoma (3).
While typically an indolent disease, FL represents a continuing
challenge for researchers and clinicians because it remains
incurable. Moreover, a significant fraction of patients progress
early or undergo histologic transformation to a more aggressive
DLBCL, with poor long-term outcome (85, 86). A distinctive
feature of this disease is the constitutive expression of the anti-
apoptotic protein BCL2, due to the hallmark t(14;18)
translocation that places the BCL2 coding region under the
control of the IGH enhancer (87). This genetic lesion is
insufficient alone to drive lymphomagenesis in humans, as
documented by the fact that BCL2 translocations can be
detected, at extremely low frequency, in the peripheral blood of
most healthy individuals (88), yet the majority of these subjects
will never develop a FL (89, 90). Thus, additional oncogenic
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events are required for the malignant transformation of these
precursor cells. Indeed, whole exome sequencing analysis of large
FL datasets revealed a plethora of additional, highly recurrent
somatic mutations, with the majority of them targeting histone/
chromatin modifying enzymes. These include the KMT2D
methyltransferase, mutated in 70-80% of cases, the CREBBP
acetyltransferase (65% of cases), and the EZH2 methyltransferase
(22% of cases), but also multiple linker-histone family members
(over 44% of cases) and, less commonly, the chromatin
remodeler ARID1A (91–95). The nearly universal involvement
of these genes in FL established aberrant epigenetic regulation as
a central driving force in this lymphoma type, in addition to
BCL2 deregulation.

Other common genetic alterations that have been successfully
modeled in mice include gain-of-function mutations of MEF2B
(15% of cases) (96), biallelic loss-of-function mutations and
deletions of TNFRSF14 (up to 40% of cases) (94, 97), and
point mutations of the RRAGC gene. Of note, these same
genes (with the exception of RRAGC) are also recurrently
mutated in GCB-DLBCLs, and particularly in the recently
identified EZB (for EZH2-BCL2)/C3 (Cluster 3) genetic
subtype (29, 30). Accordingly, mouse models recapitulating
these lesions develop both FL and DLBCL. We discuss them in
this section because of the higher prevalence of these alterations
in FL as compared to DLBCL, and the preferential development
of FL-like diseases, with a smaller number of overt large B-
cell lymphomas.

Mouse Models Engineered to Mimic the
BCL2 Translocation
In order to study the impact of deregulated BCL2 expression in
vivo, several attempts have been made to genetically engineer the
t(14;18) translocation in mice. Of these models, two have
successfully recapitulated FL-like tumors within their lifespan:
the VavP-Bcl2 mouse model and the BCL2-Ig mouse model (35,
98, 99). A third model, BCL2tracer mice, faithfully recapitulates
the early stages of BCL2 deregulation, but does not advance to
lymphomas. Similarly, Eµ-BCL2mice develop an expanded small
B-lymphocyte population but they don’t develop tumors
spontaneously (100), unless combined with other oncogenes;
nonetheless, this mouse model has been useful in revealing the
cooperativity between BCL2 and other candidate oncogenic
events such as CREBBP loss (101). More recently, mice
carrying a conditional BCL2 knock-in allele in the Rosa26
locus (Rosa26LSL.BCL2.IRES.GFP) were reported to display
enlarged spleens with an increase in follicular B cells and
larger GCs, when BCL2 expression was induced in pre/pro B
cells using the Cd19-Cre deleter strain (102). These mice were
designed to mimic the BCL2 copy number gains that are
frequently associated with ABC-DLBCL, rather than the t
(14;18) translocation. Consistently, the B cell lymphomas
developing over time in roughly 50% of these animals are
largely B220- and CD138+, indicating a post-germinal center
plasmablastic differentiation. Although recapitulating a more
advanced stage than that from which ABC-DLBCLs
presumably derive, this background was useful to study the
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synergistic activity of mutations implicated in the pathogenesis
of ABC-type DLBCL, and will be discussed in the DLBCL
section (102).

In the VavP-Bcl2 mouse model, the BCL2 oncogene was
placed under the control of the pan-hematopoietic Vav
promoter. Hence, BCL2 expression is enforced in the whole
hematopoietic lineage, at an earlier developmental stage than
when the human BCL2 translocation occurs (36). Despite this
limitation, young VavP-Bcl2 mice display spontaneous, antigen
independent GC hyperplasia, and develop over time B-cell
lymphomas that faithfully recapitulate the GC origin of the
human FL, along with other critical aspects of its pathobiology
such as the follicular pattern, the expression of peanut-agglutinin
(PNA) and BCL6 in the absence of post-GC markers, and the
presence of clonally rearranged IGHV genes that are somatically
mutated (98). The VavP-BCL2 model has served as an excellent
experimental system for deciphering the cooperative role of
other genetic lesions observed in the human condition
concomitantly with BCL2 translocations. To this end, VavP-
BCL2 mice were crossed with other GEMMs (e.g. Crebbpfl/fl,
Kmt2dfl/fl, Ezh2Y641N) or were used directly as a source of HPCs
that were transduced with retroviral constructs carrying gain- or
loss-of-function mutants before transplantation into irradiated
mice (103). Nonetheless, the ubiquitous expression of BCL2 in
the entire hematopoietic lineage and the dependency of VavP-
BCL2 GC B cells on BCL2-expressing CD4+ TFH cells could
represent a drawback that investigators should carefully consider
depending on the specific questions they wish to address.

Unlike the VavP-Bcl2 mouse model, the BCL2-Ig model
expresses a Bcl2 minigene under the control of IG regulatory
elements, and thus exclusively in B cells (35). This strain displays
an excess of B lymphocytes (both small B cells and plasma cells)
that were shown to survive for a prolonged period of time under
in vitro conditions, providing the first in vivo evidence for the
anti-apoptotic function of BCL2, independent of proliferation
(35). Bcl2-Ig transgenic animals did not develop tumors in the
original 12-month follow up study (35) but, when challenged by
chronic immunization with a T cell dependent antigen, they were
shown to accumulate GC B cells and, in 40% of cases, to develop
PAX5+BCL6+ FLs, with a smaller fraction of plasmacytoid
tumors (PAX5–BCL6–IRF4+) (104).

Perhaps the model recapitulating with most fidelity the initial
steps of FL genesis, though never progressing to overt FL, is the
mosaic BCL2Tracer, where expression of a functional human
BCL2 (hBCL2) transgene is contingent on RAG dependent
inversion of this cassette during the V(D)J recombination
process (105). As such, this model mimics both the sporadic
nature of the t(14;18) translocation and its induction at the
appropriate developmental stage, i.e. a BM pro-/pre-B cell, as a
byproduct of VDJ recombination (105, 106). In these mice, the
recombination event leads to a unique coding joint; thus, the
frequency of recombination can be confirmed at the genetic level
by PCR and at the protein level by use of specific anti-hBCL2
antibodies. Although limited to the development of in situ FL,
the BCL2Tracer model has helped in tracking the initial events
leading to the accumulation and expansion of BCL2-translocated
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B cells, paving the framework for the current model of FL
ontogenesis, based on three lines of evidence. First, as in the
case of human in situ FL, when mice were challenged by T-cell
dependent antigens, hBCL2-overexpressing B cells (but not the
non-rearranged B cells) were triggered to make multiple GC re-
entries and spread to an advanced pre-neoplastic stage. Second,
while the fraction of hBCL2+ cells in the naïve, GC and memory
B-cel l compartment was comparable upon a single
immunization, their number was markedly enriched in the GC
and memory B cell population, following chronic antigenic
recall. Finally, hBCL2+ cells were able to repopulate the GCs of
immunized WT mice in adoptive transfer experiments (105).
Together with the observation that t(14;18)-positive cells in
healthy individuals harbor somatically mutated IGHV region
genes, these data provide a plausible explanation for the origin of
FL from a recirculating memory B cell requiring multiple transits
through the GC, before the acquisition of additional genetic or
epigenetic perturbations ultimately drives the development of
clonal tumors.

Mouse Models Recapitulating Alterations
in Histone Modification Genes
A second genetic hallmark of FL and EZB/C3 DLBCL is the
presence of mutations in genes encoding histone/chromatin
modifiers, collectively accounting for almost all FL cases and
over 50% of DLBCL cases. These lesions constitute early events
in the phylogenetic history of the disease, which in the context of
FL transformation can be found in the dominant tumor clone of
both the indolent FL and its transformed FL (tFL) counterpart,
suggesting that they have been acquired by a putative common
precursor cell (CPC), before divergent evolution and final clonal
expansion (Figure 3B) (94, 107, 108). The exact developmental
stage at which KMT2D and CREBBP mutations emerge remains
to be determined; thus, hemizygous and homozygous loss of
these genes has been modeled at different stages of B cell
differentiation, by using Cre-drivers that are specifically active
in HSC (109), early B cells (Cd19-Cre and mb1-Cre) (41, 47, 101,
110) and GC B cells (via the Cg1-Cre recombinase) (41, 110, 111).

The Complex Of Proteins Associated with Set1 (COMPASS)
plays a pivotal role in the process of mammalian transcription
through mono- and di-methylation of histone 3 lysine 4 (H3K4)
at enhancer/super-enhancer regions (112). This activity is
executed through its catalytic subunit KMT2D, which is the
most commonly mutated gene in FL and EZB/C3 DLBCL.
KMT2D mutations are mainly truncating events, with few
missense mutations in the SET domain, which all impair its
enzymatic function, indicating that KMT2D acts as tumor
suppressor gene in B cells. Interestingly, when Kmt2d was
conditionally deleted in pre-B cells, that is, at a much earlier
stage than when the final malignant transformation ensues, the
GC B cell population expanded significantly in response to
antigenic challenge, compared to wild-type littermates (41, 47).
The same phenotype, but less pronounced, was observed when
Kmt2d was disrupted at a later stage, after the initiation of the GC
reaction (41). Analogously, changes in the transcriptional profile
of GC B cells from Cd19-Cre compound mice were more robust
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compared to GC B cells where deletion of Kmt2d was induced by
Cg1-Cre (41). The most prominent signature lost in Kmt2d-
deficient GC B cells includes genes implicated in cytokine
signaling, IFN responses and terminal differentiation programs.
These data suggest an early role for KMT2D inactivation in FL,
likely through epigenetic reprogramming. Consistent with this
model, loss of Kmt2d alone in the GC was not sufficient to drive
lymphomagenesis, but when combined with deregulated
expression of BCL2 (as observed in human FL and DLBCL)
the two cooperate, leading to a significant increase in the
percentage of bona fide FL and DLBCL characterized by
clonally rearranged, mutated IGHV genes and the expression
of GC-specific markers (Figure 3C) (41). The synergistic effect of
Kmt2d loss and BCL2 deregulation in vivo was independently
confirmed in a mouse model of adoptive transfer where Kmt2d
was knocked-down in VavP-Bcl2 HPCs prior to reconstitution
into lethally irradiated syngeneic mice (47).

Mutations inactivating the acetyltransferase CREBBP (either
truncating or missense in the HAT domain) are the second most
common epigenetic lesion in FL (95). Together with its paralog
EP300, CREBBP belongs to the KAT3 family of histone and non-
histone acetyl-transferases, which modulate transcription by
acetylating H3K27 and H3K18 at gene enhancers and
promoters. GEMMs mimicking the conditional loss of Crebbp
share remarkable similarities with the Kmt2d-KO model,
including: a) the increase in GC B cells with partially
overlapping transcriptional changes; b) a more pronounced
GC phenotype in Cd19-Cre background compared to Cg1-Cre
mice; c) the inability to drive full-blown tumor formation on
their own, but a strong synergistic activity with BCL2
deregulation, leading to acceleration of lymphoma onset and
increased penetrance of FL (46, 110). In human GC B cells,
CREBBP binds virtually all GC-specific super-enhancers;
however, not all those genes are transcriptionally affected by its
loss in purified murine GC B cells, as well as in DLBCL cell lines
(46, 110). This might be partly due to the compensatory activity
of its paralogue EP300 and, indeed, CREBBP and EP300 are
rarely concurrently and biallelically mutated, indicating that GC
B cells need a certain threshold of acetyltransferase activity for
their survival (111). However, CREBBP deletion caused focal
enhancer loss of H3K27Ac and reduced expression of specific
genes that are involved in GC exit, such as downstream effectors
of BCR and NF-kB signaling pathways, multiple cytokines, and
antigen presenting molecules, with MHC class-II genes being the
most notable among them (46, 110). These findings parallel the
human FL, where CREBBP mutations are associated with
decreased MHC-II expression and reduced frequency of
tumor-infiltrating T-cell subsets (108). Notably, the chromatin
domains occupied and acetylated by CREBBP are direct targets
of the BCL6 oncorepressor in a complex with SMRT and
HDAC3 (46, 110). Additionally, CREBBP directly acetylates
several proteins that are relevant to B cell lymphoma biology,
including the TP53 tumor suppressor, which requires acetylation
for its activity, and the BCL6 protein, which instead is
functionally impaired by acetylation due to the lost interaction
with co-repressor complexes (95, 113). These GEMMs were
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critical to document a major role for CREBBP in GC B cells by
opposing the oncogenic activity of BCL6 and thereby initiating
the activation of terminal differentiation/antigen presentation
program as LZ B cells engage TFH cells and prepare to exit the
GC. Consistent with these data, CREBBP-mutant lymphomas
show reduced expression of genes that are antagonistically
regulated by the BCL6-SMRT-HDAC3 complex and become
dependent on HDAC3 for their survival. Conversely, when
HDAC3 activity was inhibited, histone acetylation was restored
at these enhancers and lymphoma growth was suppressed both
in vitro and in vivo (46, 114). These studies identified HDAC3
and EP300 as vulnerabilities of CREBBP-mutant cells that may
lead to potential therapeutic avenues for these lymphoma entities.

EZH2, a histone methyltransferase, catalyzes the addition of
repressive H3K27me3 marks at selected, cell-context dependent
regions that, in the GC, include proliferation checkpoint genes
(e.g. CDKN1A, CDKN1B) and genes involved in plasma cell
differentiation (e.g. IRF4, PRDM1), creating bivalent promoters
that can be rapidly re-activated when B cells receive the signal to
exit the GC (115). Indeed, EZH2 is required for GC formation
(115, 116). Two hotspot gain-of-function mutations, Y646F
(equivalent to the mouse residue Y641) and Y646N, have been
observed in human lymphomas and were modeled in the mouse
to study their role in lymphomagenesis. In these animals,
expression of the conditional Ezh2Y641F allele is driven by the
endogenous Ezh2 promoter (117), whereas expression of the
transgenic Ezh2Y641N allele is under the control of the CAG
promoter (115). Both alleles, when selectively activated in the GC
following the Cg1-Cre-mediated excision of a lox-stop-lox
cassette, led to massive GC hyperplasia, sustained by enhanced
proliferation, blockade of terminal differentiation, and increased
abundance of H3K27me3 levels at the promoters of Ezh2 target
genes. A key element for this phenotype is the functional
cooperation between EZH2 and the BCL6/BCOR repressor
complex (117). In both models, expression of the mutant Ezh2
knock-in allele did not lead to lymphomas; however, accelerated
lymphomagenesis was observed when mice were crossed with
VavP-Bcl2 transgenics or upon adoptive transfer of VavP-Bcl2
BM cells transduced with Ezh2Y641F vectors (115, 117, 118). Ezh2
mutations were also shown to cooperate with deregulated BCL6
expression in a compound IµHABCL6;Ezh2 knock-in mouse
model, giving rise to a transplantable, GC-derived DLBCL-like
disease. Comparatively, Cd19-Cre driven expression of a mutant
Ezh2 protein under the control of the endogenous promoter
induced B-cell lymphomas at high penetrance, but the phenotype
of these tumors (B220+, CD19+, IgM+, CD43+, CD5+ andMac1+)
is not reminiscent of the human lymphomas, reinforcing the
importance of achieving precise temporal and spatial control of
the target genetic lesions (119). Besides documenting the
oncogenic role of EZH2 mutations, the value of the Ezh2;Cg1-
CreGEMMs is twofold: first, they revealed an additional function
of Ezh2 in shaping the tumor microenvironment, providing an
opportunity to study syngeneic immune responses (see following
section); second, they proved to be a valuable tool for the
preclinical testing of novel therapeutic approaches, as tumors
developing in these mice replicate the human phenotype in
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several aspects related to the tumor microenvironment. In
particular, they display significantly lower expression of MHC-
I and MHC-II, accompanied by an immunologically cold
environment with reduced T-cell infiltrate, which could be
restored upon treatment with EZH2 inhibitors (118).

FL and DLBCL also feature recurrent somatic mutations in
histone genes, with the linker Histone H1 family being most
commonly affected (up to 44% of FL and 26% of GCB-DLBCL
cases), and the HIST1H1C and HIST1H1E family members
accounting for the majority of mutations (94, 120). The
cooperative role of inactivating H1C and H1E mutations,
which are often concurrently found in the same case, was
recently demonstrated in a double knock-out mouse model
displaying an increase in both the size and number of GC
structures that form upon T-cell dependent antigenic
challenge. This phenotype was linked to the evidence of
chromatin decompaction specifically at target genes of stem
cell factors (e.g. NANOG, SOX2, and PRC2). Thus, H1
mutations may impair proper chromatin compartmentalization
and provide a fitness advantage to mature B cells by both
preventing differentiation and activating stem cell like
programs, including enhanced self-renewal. In line with this
hypothesis, transplantation of VavP-Bcl2;H1c-/+H1e-/+

lymphoma cells into secondary and tertiary recipient mice
yielded 100% engraftment, which was not observed with the
VavP-Bcl2 only tumors, consistent with the fact that H1 mutant
DLBCL are highly aggressive (120).

TET2 is a dioxygenase that converts 5-methylcytosine (5mC)
to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine and 5-
carboxylcytosine, an important step in DNA demethylation
(121). Oxidation of 5mC by TET2 has also been recognized as
a modulator of enhancer activity during differentiation.
Compared to myeloid neoplasms (122, 123), TET2 inactivating
mutations are detected at relatively low frequencies in FL/tFL (3-
10% of cases) and DLBCL (6-12% of cases) (29, 30, 107, 124).
Consistent with the observation that patients with TET2mutated
lymphomas harbor the same mutation in their HSC (125), the
contribution of these alterations to lymphomagenesis was
studied in vivo by engineering the conditional loss of Tet2 in
HSCs or at later stages of B-cell development (126). Tet2
deficiency facilitated the expansion of GC B cells in Vav-Cre
and Cd19-Cre conditional KO mice, but not when directed to the
GC stage, and led to promoter hypermethylation of genes
impl i ca ted in GC LZ programs , wi th consequent
transcriptional repression. However, these abnormal cells fail
to advance to clonal DLBCL. When GC-specific Tet2 deletion
was combined with BCL6 deregulation, effacement of the splenic
architecture due to enlarged follicles or diffuse lymphoid
infiltrates was observed. These tumors are negative for several
mature B cell markers like CD23, CD21, IgM and IgD, and will
require further detailed characterization. However, this work
unraveled a potential link between TET2 and CREBBP in
orchestrating the transcriptional program that sustains GC exit
through CREBBP-dependent acetylation and stabilization of
TET2, resulting in the activation of enhancer domains (126).
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Together, the above studies were critical to demonstrate how
mutations in epigenetic modifier genes initiate lymphomagenesis by
reprogramming the epigenome of the CPC, leading to the activation
of partially overlapping biological programs that, in cooperation
with BCL2 deregulation, cause malignant transformation.
Identifying the specific stage at which these mutations are
introduced, and the sequence of genetic or epigenetic events that
cooperate with these lesions to drive full malignant transformation
remains an open question that warrants further studies. Finally, the
observation that MHC-II and other surface receptor molecules are
regulated by epigenetic modifier genes suggests that epigenetic
dysregulation may contribute to tumor immune escape by
actively influencing the microenvironment.

Mutations Affecting the Cross-Talk
With the Tumor Microenvironment
Normal GC B cell development, survival and differentiation is
essentially dependent on pro survival signal transduction
pathways that are engaged by the cross-talk with immune and
accessory cells, including the secretion of multiple cytokines and
chemokines. These micro-environmental interactions play an
equally important role during FL development, as they create a
permissive niche to support the malignant B cell population
(127, 128). Interestingly, although LZ B cells –the normal
counterpart of FL– are highly dependent on T cell help,
augmenting the anti-tumor immune response by checkpoint
blockade approaches has been disappointing in this disease
(129). Such lack of success may be due in part to multiple
genetic alterations that can affect the FL (and DLBCL)
microenvironment directly and indirectly, allowing escape of
immune surveillance, while creating a pre-lymphoma niche that
fosters malignant transformation and growth. For instance, loss
of MHC-I cell surface expression has been observed particularly
during FL transformation to a more aggressive DLBCL, as the
result of mutations in components of the MHC-I complex or to
alterations in their transcription and transport, which may favor
evasion from CD8+ T cell immunosurveillance (118, 130, 131).
Reduced MHC-II levels are also a feature of FL and DLBCL,
which seems to be enriched in cases carrying mutations of
CREBBP and EZH2. Together, these findings suggest a close
link between epigenetic reprogramming and immune escape in
these tumors, the study of which could ideally leverage
on GEMMs.

TNFRSF14, which encodes the HVEM receptor, is mutated or
deleted in 28% FL and 9% GCB-DLBCL (132, 133). In vivo, loss
of function studies used an shRNA-knockdown strategy in the
VavP-Bcl2 HPC adoptive transfer system (132). Although this
approach may not fully recapitulate the exact timing at which
TNFRSF14 mutations are presumably acquired in the human
tumors, these mice showed an increased penetrance of Bcl2-
driven FLs upon HVEM knockdown. Moreover, only a minority
of T cells were found to express the shHvem hairpin construct,
whereas shHvem-expressing B-lymphoma cells were significantly
enriched. Mechanistically, this model revealed that HVEM loss
stimulates BCR signaling and B cell proliferation both in cell-
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autonomous and BTLA-dependent manner. Moreover, it
demonstrated the ability of HVEM low expression to induce a
tumor-supportive microenvironment through increased
production of TNF-family cytokines that act as stroma-
activating factors. Both murine and human TNFRSF14-
deficient FLs show prominent lymphoid stroma activation.
This research offered a new therapeutic avenue by
demonstrating in-vivo that abnormal BCR signaling and
cytokine production in FL can be normalized by injecting a
soluble HVEM ectodomain protein, resulting in tumor
growth delay.

As mentioned, a recent study has shown that mutant Ezh2
can also affect the GC microenvironment, by attenuating the
requirement of TFH cells for GC B cell survival (134). In
particular, single cell analysis showed an expansion of the LZ
compartment that was not due to impaired differentiation, but to
an increase in proliferation and a reduction in cells circulating
back into the DZ. Genes downregulated in Ezh2 mutant LZ cells
are normally required for the interaction with TFH cells (e.g.
Tnfrsf14, Cd69, Icos and Icam1) and Ezh2 mutant LZ cells
showed impaired TFH interactions, suggesting that they no
longer need to compete for T cell help in order to survive and
undergo selection. Instead, Ezh2 mutant GC B cells upregulated
genes involved in FDC signaling. Importantly, this study showed
a significant association between EZH2 mutated FLs and an
extensive FDC network. Thus, lymphoma cells carrying Ezh2
mutations may reprogram the GC niche to allow for their own
aberrant expansion in an FDC-dependent manner, and remodel
the interaction between B cells, TFH and FDCs. These data also
raise the possibility that one of the mechanisms underlying the
activity of EZH2 inhibitors against EZH2 mutant FLs (135) is
their ability to restore proper interactions between the tumor
cells and the microenvironment.

Modeling MEF2B Activating Mutations
MEF2B is a transcription factor that, within the B cell lineage, is
exquisitely expressed in the GC (96). MEF2B instructs the GC
transcriptional program by modulating a broad set of genes that
are implicated in multiple biological functions and also include
the BCL6 master regulator (104). This activity is hijacked in
~15% of FL and DLBCL due to a variety of somatic mutations
that can be broadly classified into two groups: i) missense
mutations in the protein amino-terminal portion, encoding the
DNA-binding domain; and ii) truncating and missense
mutations in the protein C-terminal portion, where post-
t rans l a t iona l modifica t ions l ike sumoy la t i on and
phosphorylation have been mapped. While the consequences
of the C-terminal group of mutations remain to be studied, the
N-terminal mutations were found to prevent the physical
interaction of MEF2B with components of the HUCA complex
and HDAC genes, thus interfering with negative regulatory
mechanisms of its activity. As MEF2B transcription is induced
in the early stages of GC commitment, the role of the most
common D83V N-terminal mutation was investigated in a
conditional knock-in mouse model crossed with Cd21-Cre
mice (104). Mef2b+/D83V; Cd21-Cre mice display benchmark
characteristics of GC-derived lymphomas, including a
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significantly enhanced GC response compared to their control
littermates and the development of clonal FL and DLBCL in 20%
of the animals, which became fully penetrant when mice were
crossed with the BCL2-Ig allele.

Modeling Metabolic Reprogramming by
RRAGC Mutations
RRAGC encodes a GTPase (RagC) involved in the activation of
mammalian target of rapamycin complex 1 (mTORC1) that is
responsible for the sensing and response to amino acid
availability (136). Together with other components of this
super-complex, RRAGC is mutated in ~17% of FL cases,
implying an important pathogenetic role (137). A mouse
model for the most common FL-associated RRAGC mutations
was recently constructed by taking advantage of the CRISPR-
Cas9 genome engineering technology to introduce the S74C and
T89N sequence changes in the endogenous locus, followed by
crossing with VavP-Bcl2-transgenic mice. These studies revealed
that Rragc-mutant B cells show partial insensitivity to nutrient
withdrawal, leading to accelerated FL tumorigenesis (53). The
phenotype of Rragc mutant cells was not due to enhanced
proliferation, but to reduced apoptosis, and was dependent on
micro-environmental pro-survival signals normally provided by
TFH cells. Expression of the Rragc S74C and T89N protein
increased GC B cell fitness by inducing mild activation of the
mTORC1 pathway, consistent with a model whereby the
mutation provides a competitive advantage to pre-malignant
GC B cells, allowing them to undergo continuous cycles of
selection and proliferation within the GC. This in turn could
facilitate the acquisition of additional genetic alterations, and
ultimately transformation into a bone fide FL. Interestingly, while
mutations in TNFRSF14 increased TFH infiltration, RRAGC
mutations decreased the GC dependency on TFH signaling.
Consistent with these opposing effects on the microenvironment,
mutations in RRAGC and TNFRSF14 are mutually exclusive.
Targeting Rag GTPase signaling could thus represent a promising
strategy against FL, warranting further efforts toward the
development of specific inhibitors of nutrient signaling.
MOUSE MODELS OF DIFFUSE LARGE
B-CELL LYMPHOMA

DLBCL, the most common type of lymphoma in adulthood, is a
heterogeneous disease comprising a diverse group of
phenotypically and molecularly distinct entities associated with
different clinical responses to currently available first-line
chemo-immunotherapeutic approaches (4). In addition to the
phenotypic classification into GCB-DLBCL and ABC-DLBCL, as
many as 8 distinct genetic subgroups have been recently
identified based on the co-occurrence of specific mutational
events (29–31). Among these, the EZB genetic subtype and the
partially overlapping C3 DLBCL share significant similarities
with FL in terms of mutational profile, as reviewed in the
previous section. MYC translocations can also be found in
~12% of tumors with DLBCL morphology, generally in the
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GCB type and largely in the presence of concurrent BCL2
rearrangements (~8% of cases) (see next section). Here, we
summarize mouse models recapitulating other recurrent
DLBCL-associated genetic lesions, including translocations of
BCL6, loss-of-function mutations of FBXO11 and GNA13, and a
constellation of mutations targeting various components of the
BCR, NF-kB, and terminal differentiation pathways, which
represent a genetic hallmark of ABC-DLBCL.

Disruption of the Ga13 Signaling Pathway
Almost one third of GCB-DLBCL (and ~58% of BL) carry
deleterious mutations in multiple components of the Ga13
pathway, which is responsible for the confinement of GC B
cells and also feeds the AKT pathway. The mutated genes include
GNA13 and, more rarely, S1PR2 and ARHGEF1 (138), indicating
that this signaling cascade might be playing an important role
across lymphoma subtypes. The observation that lower
expression of S1PR2 is associated with worse survival in
DLBCL (139) further supports its functioning as a tumor
suppressor. Two conditional knock-out mouse models have
been created, in which Gna13 was either specifically deleted in
GC B cells via crossing with the Aicda-Cre transgenic strain
(140), or ablated in all B cells by using a mixed BM chimera
approach (Gna13fl/fl;mb1-Cre) (138). Both models showed
increased numbers of GC B cells with disordered GC
architecture and altered DZ/LZ distribution, as well as higher
levels of SHM activity and abnormal B-cell migration. Further
supporting the critical role of the Ga13 pathway in
lymphomagenesis, deletion of the S1pr2 receptor led to the
development of clonal B-cell lymphomas with morphologic,
phenotypic and genetic characteristics resembling the human
DLBCL in 50% of mice (141). Interestingly, lack of Gna13 but
not of S1pr2 led to systemic dissemination of B cells in the lymph
and blood, a finding that implies the existence of other G-protein
coupled receptors regulating GC confinement. This observation
led to the discovery of the P2RY8 receptor, which is also mutated
in approximately 4% of GCB-DLBCL (138). Collectively, these
studies provided insights into the mechanisms by which GNA13-
deficient GC B cells leave the GC niche and spread systemically,
and demonstrated a dual tumor-suppressor function for this
signaling pathway via control of B-cell positioning and
AKT activation.
Modeling BCL6 Chromosomal
Translocations
BCL6 is a master regulator of the GC reaction and a common
oncogene in both FL and DLBCL, where it constitutes a
biological dependency. Deregulated expression of an intact
BCL6 protein is induced in these tumors by a variety of genetic
alterations that target the BCL6 gene directly (e.g., chromosomal
translocations or mutations in its 5’ non-coding sequences)
(142–146) and indirectly (e.g. mutations of CREBBP, MEF2B,
FBXO11) (95, 96, 147, 148). The endogenous BCL6 promoter
contains a number of regulatory elements that are bound by
transcriptional repressors to downregulate its transcription at the
exit from the GC (e.g. IRF4), or to maintain homeostatic levels in
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the GC via an autoregulatory negative feedback loop. These
regulatory sequences are lost as a consequence of “promoter
substitution” (cases with chromosomal translocations) or of
point mutations, thus disrupting the BCL6 tightly restricted
expression pattern (142–146). By sustaining constitutive BCL6
expression and/or activity, these lesions prevent the terminal
differentiation of GC B cells, which remain stuck in a highly
proliferative and genetically unstable environment potentially
conducive to malignant transformation. One of the most
common translocations found in FL and DLBCL, t(3;14)(q27;
q32), was mimicked in the first GEMM recapitulating the
genetics and biology of DLBCL (37). This model was created
by knocking in an HA-tagged BCL6 allele into the murine
IG heavy chain locus, for expression under the endogenous
Iµ promoter (Iµ.HA.BCL6). Iµ.HA.BCL6 mice show GC
hyperplasia with increased DZ : LZ ratio also in the absence of
antigenic stimulation, and develop over time clonal lymphomas
that recapitulate key aspects of DLBCL, most notably the
evidence of AID-dependent aberrant somatic hypermutation
and the presence of stochastic Myc-IgH translocations (37, 79).
Interestingly, BCL6 translocations can be found in both GCB-
and ABC-DLBCL, but are enriched in a subset of ABC-DLBCL
belonging to the BN2/C1 genetic subgroup, for which a marginal
zone B cell origin has been postulated (29, 30). In this subgroup,
BCL6 deregulation frequently co-occurs with NOTCH2, SPEN or
TNAFAIP3mutations, for which conditional mouse models have
been generated (149–152). One possibility is thus that ectopic
expression of BCL6 induced by the translocation in marginal
zone B cells cooperates with other “marginal zone” genes to
ultimately cause this type of lymphoma. Although individually
none of these other mutations was sufficient to drive
lymphomagenesis, compound mice involving the Iµ.HA.BCL6
model could shed light on the specific oncogenic events induced
by the combined deregulation of BCL6 and NOTCH2
signaling (153).

Biallelic Loss of PRDM1/BLIMP1
A distinctive feature of ABC-DLBCL, and particularly of the
MCD/C5 genetic cluster, is the presence of genetic and epigenetic
inactivation of the master plasma cell regulator BLIMP1 (also
known as PRDM1). In ~20% of cases, this is due to biallelic
disruptive mutations and/or focal deletions of the BLIMP1 locus,
whereas in an additional subset of cases transcriptional silencing
of BLIMP1 is achieved via deregulation of BCL6 (154, 155).
When engineered in the mouse, conditional B-cell specific
Blimp1 deletion (Blimp1fl/fl; Cd19-Cre and Blimp1fl/fl;Cg1-Cre)
induced a block in plasma cell differentiation and the
development of DLBCLs, the majority harboring somatically
hypermutated IG genes. These tumors typically express IRF4
and CD138 and are negative for BCL6, a molecular pattern closer
to the human ABC-DLBCL (156). As in other lymphoma
models, the long latency and the clonality of the DLBCLs in
Blimp1 conditional KO animals indicate that oncogenic events
affecting other pathways collaborate with BLIMP1 inactivation
during lymphomagenesis. One important contributor to this
process is the NF-kB transcription complex, which is
constitutively active in virtually all ABC-DLBCLs and is
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targeted by genetic alterations at multiple levels in over half of
the cases, frequently together with BLIMP1 mutations (5, 157–
160). Accordingly, DLBCLs developing in Blimp1 conditional
KO mice display nuclear active NF-kB (156), and a similar
phenotype was reported in a conditional mouse model with
combined disruption of Blimp1 and enforced canonical NF-kB
activation, obtained via a constitutively active IKK2 protein in
GC B cells (R26StopFLIkk2ca;Cg1-Cre) (161).

Constitutive Activation of the NF-kB
Signaling Pathway
The canonical (RELA/p50 and c-REL/p50) and non-canonical
(RELB/p52) NF-kB signaling pathways have been shown to play
distinct roles in the GC response (162, 163). In most ABC-
DLBCL cases, the activity of the canonical NF-kB transcription
complex is sustained by the presence of genetic alterations
affecting multiple genes that encode for positive or negative
regulators of the BCR, CD40 receptor, and TLR signaling
cascades, with the TLR adaptor protein MYD88 being mutated
in over 30% of patient samples (157–160). Consistently, both
Cd19-Cre driven and Cg1-Cre-driven expression of a
Myd88L252P allele, corresponding to the most common
activating mutation (L265P) in humans, promotes the
occurrence of tumors that share several traits with the human
ABC-DLBCL (164). MYD88 mutations in the MCD/C5 ABC-
DLBCL often occur in combination with BCL2 copy number
gains, and indeed, in the Myd88L252P mouse model, the
combination with Cd19-Cre driven overexpression of BCL2 led
to a significant increase in ABC-DLBCL-like B cell lymphomas
(102). These tumors were sensitive to combination therapies
with immune checkpoint blockade and BCL2 inhibition,
revealing potentially actionable molecular vulnerabilities (102).
In addition, a synergistic crosstalk was observed between the
Myd88L252P hotspot mutation and CD79B mutations in a
compound mouse model, exemplified by the accumulation of
auto-reactive cells (165). Although these mice fail to develop
overt lymphomas, their phenotype fits well with the suggested
role of self-antigens in the survival of ABC-DLBCL cells
via chronic activation of the BCR-signaling pathway (166).
The Myd88L252P model may also provide a system to further
dissect the signals emanating from a recently described
multiprotein supercomplex formed by MYD88, TLR9 and the
BCR (167).

In a smaller subset of human DLBCL, the observation of
nuclear p52 translocation implies that the non-canonical NF-kB
signaling cascade is also activated (157). Part of these cases can be
explained by the presence of truncating mutations/deletions of
the TRAF3 gene, often coexisting with BCL6 translocations.
TRAF3 encodes for a negative regulator of the NF-kB non-
canonical pathway, involved in the degradation of the NF-kB
inducing kinase (NIK). Accordingly, enforced expression of NIK
and BCL6 in the GC, as obtained by conditional mutagenesis in
the ImHABcl6;NikstopFL;Cg1-Cre mouse model, caused GC
hyperplasia with blockade of terminal differentiation and
development of IRF4-positive DLBCL (168). Notably,
NikstopFL;Cg1-Cre mice display overt plasma cell hyperplasia
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but do not succumb to tumors; thus, the oncogenic function of
the alternative NF-kB pathway may require the concomitant
disruption of terminal B-cell differentiation, which in this case
was achieved by deregulated BCL6 expression. An analogous
synergistic phenotype was observed by combining constitutive
NF-kB activation and Blimp1 loss in the compound Blimp1fl/fl;
R26StopFLIkk2ca;Cg1-Cre model (161).

Deletion of FBXO11
F-box protein 11 (FBXO11) is a member of the F-box protein
family that functions in the protein degradation pathway. FBXO11
is a subunit of the substrate-recognition complex SKP1-cullin-1-F-
box-protein (SCF) E3 ligase, which leads to ubiquitylation and
degradation of numerous target proteins, including BCL6 and
BLIMP1 (147, 169, 170). In DLBCL, FBXO11 monoallelic
mutations and/or deletions are present in 6% of cases and
correlate with increased BCL6 expression (147). To recapitulate
these events, a conditional Fbxo11 knock-out mouse model was
crossed with the GC specific Cg1-Cre driver, documenting a direct
link between Fbxo11 loss and the formation of enlarged GCs with
increased BCL6 protein levels in response to antigenic challenge
(148). Aged Fbxo11-deleted mice, when chronically immunized,
develop various B-cell lymphoproliferative phenotypes including a
low frequency of overt DLBCL. The low tumor penetrance
indicates that additional alterations are required for full
transformation, along with FBXO11 inactivation. Nonetheless,
this model confirmed a tumor-suppressor role for FBXO11 in
lymphomagenesis, and could be utilized to gain further insights
into the mechanism underlying the pathogenetic process.
THE CHALLENGE OF DOUBLE HIT
LYMPHOMAS AND tFL

High-grade large B cell lymphomas with concurrent MYC and
BCL2 (or BCL6) translocations, previously known as double-hit
(DHL)/triple-hit lymphomas, represent a rare category of tumors
that is now recognized as a separate provisional entity in the
revised WHO classification (3). DHLs typically display a GCB-
like phenotype, different from tumors where these two genes are
co-expressed in the absence of genetic alterations (171), and,
although rare, constitute an area of intense research due to their
poor clinical outcome, even though more recent studies suggest a
certain degree of heterogeneity, with cases showing a more
favorable prognosis (3, 172, 173). MYC translocations are also
seen as a secondary genetic alteration occurring on a BCL2-
rearranged genetic background during histologic transformation
of FL to DLBCL, an adverse event denoted by an aggressive
clinical course (85). As such, a faithful model recapitulating the
genetics and phenotype of DHLs or tFL would be an invaluable
tool for uncovering potential vulnerabilities and pre-clinically
testing novel therapeutic principles. Efforts to understand the co-
operation between BCL2 and MYC in-vivo have been conducted,
for instance in transgenic mice expressing these two genes under
the control of the Eµ enhancer (174, 175). However, the early
timing of MYC deregulation invariably leads to the clonal
August 2021 | Volume 12 | Article 710711
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expansion of immature B cells. Thus, the construction of
GEMMs that faithfully mimic the genetics and the
pathobiology of these conditions with regard to both the
developmental stage at which the translocations take place (for
MYC, a GC B cell undergoing SHM or CSR) and the GC origin of
the developing tumors (i.e., somatically mutated IGHV genes and
immunophenotypic markers of GC B cells) remains a gap in
the field.
CONCLUDING REMARKS

GEMMs have revolutionized the study of cancer biology and will
remain an invaluable tool in biomedical research, by allowing to
elucidate the in vivo consequences of novel mutational targets
(including coding and non-coding regions of the genome), study
the mechanisms underlying the development of B cell
lymphomas, and test new therapeutic modalities in a pre-
clinical setting. However, no single model can fully reproduce
the complexity of the human tumors, which evolve through the
sequential acquisition of multiple genetic and epigenetic changes,
in concert with an adaptive microenvironment. Investigating the
synergistic interactions that are implicated in the malignant
transformation process and the plethora of novel therapeutic
agents that are being considered for pre-clinical testing warrants
the need for more rapid, high-throughput, and possibly less
expensive approaches to modeling cancer. While the generation
of lymphoma organoids, the expansion of PDX repositories, and
the advent of increasingly sophisticated approaches such as the
CRISPR-Cas9 editing technique may help to overcome some of
the limitations, the judicious construction and study of GEMMs
Frontiers in Immunology | www.frontiersin.org 14148
will likely continue to deliver advances that can greatly
contribute to improving the management of B cell malignancies.
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Cancer genome sequencing has identified dozens of mutations with a putative role in
lymphomagenesis and leukemogenesis. Validation of driver mutations responsible for B cell
neoplasms is complicated by the volume of mutations worthy of investigation and by the
complex ways that multiple mutations arising from different stages of B cell development
can cooperate. Forward and reverse genetic strategies in mice can provide complementary
validation of human driver genes and in some cases comparative genomics of thesemodels
with human tumors has directed the identification of new drivers in humanmalignancies. We
review a collection of forward genetic screens performed using insertional mutagenesis,
chemical mutagenesis and exome sequencing and discuss how the high coverage of
subclonal mutations in insertional mutagenesis screens can identify cooperating mutations
at rates not possible using human tumor genomes.We also compare a set of independently
conducted screens from Pax5mutant mice that converge upon a common set of mutations
observed in human acute lymphoblastic leukemia (ALL). We also discuss reverse genetic
models and screens that use CRISPR-Cas, ORFs and shRNAs to provide high throughput
in vivo proof of oncogenic function, with an emphasis on models using adoptive transfer of
ex vivo cultured cells. Finally, we summarize mouse models that offer temporal regulation of
candidate genes in an in vivo setting to demonstrate the potential of their encoded proteins
as therapeutic targets.

Keywords: B cell leukemia, B cell lymphoma, mouse models, insertional mutagenesis, exome sequencing, reverse
genetics, CRISPR-Cas, shRNA
INTRODUCTION

B cell neoplasms can be categorized by their cell of origin, each subtype being representative of a discrete
stage in differentiation with characteristic phenotypes and genetic lesions (Table 1, Figure 1) [reviewed
in (1, 2)]. Accurate modelling of these diseases in mice requires alteration of various biological processes
at different stages of B cell development including differentiation, migration, rearrangement of
immunoglobulin genes, T helper interactions, positive selection for antigen and negative selection
against autoreactivity. Like most tumors, B cell malignancies accumulate amplifications, deletions,
rearrangements, deregulation of methylation and non-synonymous point mutations. Additionally, B
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cells are characterized by remodeling of the immunoglobulin loci by
recombinase activating gene (RAG) mediated V(D)J recombination
of immunoglobulin variable regions and by activation induced
cytidine deaminase (AID) mediated class switch recombination.
Errors of these processes mean immunoglobulin loci are the most
frequent translocation partners of B cell malignancies, often placing
oncogenes under the control of the highly expressed
immunoglobulin promoters and enhancers and causing
deregulated and constitutive expression (3–6) (Figure 2). Somatic
hypermutation by AID is also a known source of oncogenic
mutations in B neoplasms as evidenced by the mutation
Frontiers in Immunology | www.frontiersin.org 2155
fingerprint of commonly mutated genes, and aberrant somatic
hypermutation of non-immunoglobulin genes at hotspots located
throughout the genome also contributes to lymphomagenesis (4,
7–9).

Speculation on the developmental stage that each malignancy
is derived from is based on a combination of genetic lesions and
phenotypic characteristics [reviewed in (1, 2)]. The cell of origin
suggested by translocation breakpoints does not always match
the cell of origin suggested by somatic hypermutations and/or
markers expressed on the cell surface. Follicular lymphoma (FL)
and diffuse large B cell lymphoma (DLBCL) appear to have a
FIGURE 1 | Neoplastic mechanisms throughout B cell development. Early B-cell development in adult bone marrow is characterized by generation of the B-cell
receptor (BCR). Immunoglobulin heavy chain (IgH) gene rearrangements (VH, DH and JH), together with the VL-JL rearrangements of light chain (IgL) gene segments
generate a B-cell repertoire of antibodies that recognize a variety of antigens. If the BCR does not form correctly, or is autoreactive, the cell undergoes apoptosis or
receptor editing. Immature B-cells with functional BCRs, migrate to secondary lymphoid organs like the spleen and lymph nodes where they form follicles during the
T-cell dependent immune response. Within the follicle, B-cells undergo two further remodeling steps in the germinal centers (GC): somatic hypermutation (SHM) and
class switch recombination (CSR). SHM introduces point mutations, deletions or duplications into the variable region of the immunoglobulin genes. CSR replaces the
IgH chain constant region, altering the effector response but not the antigen binding domain. GC B-cells that have undergone CSR and have high affinity IgG BCRs
are selected for and differentiate into plasma cells and long-lived plasma cells, the effectors of adaptive immunity. The assignment of translocations to either V(D)J
recombination in pro/pre B cells in the marrow or class switch recombination in the germinal center is based on the location and sequences of junctions present in
each translocation. For instance, V(D)J derived translocations typically give rise to BCL2 or CCND1 translocations to the Ig variable regions whereas class switching
frequently results in translocations between BCL6 or MYC and Ig constant regions.
TABLE 1 | Major subtypes of B cell malignancies.

Subtype Nearest normal B cell phenotype

Burkitt lymphoma (BL) Germinal Center B cell
B-cell acute lymphoblastic leukaemia (B ALL) Pre B cell, Pro B cell, Mature B cell
Chronic Lymphocytic Leukemia (CLL), Small Lymphocyte Lymphoma (SLL) Mature B cell or Post–germinal center B cells
Diffuse large B-cell lymphoma (DLBCL) Activated B cell or Germinal Center B cell
Follicular Lymphoma (FL) Germinal center B cell
Hairy cell leukemia (HZL), variant hairy cell leukemia (HZL-v) Marginal zone/memory B cells
Hodgkin lymphoma (HL) Germinal Center B cell
Lymphoplasmacytic Lymphoma (LPL), Morbus Waldenström Plasma cells
Mantle cell lymphoma (MCL) Mantle B cell
MALT lymphoma (MALT) Post Germinal Center B cells
Marginal zone lymphoma (MZL) Marginal zone B cells
Monoclonal B-cell lymphocytosis (MBL) Germinal Center B cell
Plasma cell myeloma (PCM), Multiple Myeloma (MM), Monoclonal Gammopathy of undetermined significance (MGUS) Plasma cells
Prolymphocytic leukemia (B-PLL) Pro B cells (aggressive CLL variant)
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mature B cell phenotype. Nonetheless, they share a common
translocation IgH/BCL2 t(14;18)(q32;q21) which occurs early in
B cell development during V(D)J recombination mediated by
RAG in the primary lymphoid organs (10). This translocation
places the anti-apoptotic BCL2 gene under control of the
immunoglobulin heavy chain (IgH) enhancer and plays a
causal role in germinal center derived malignancies. Though
this translocation is commonly an initiating event in
development of FL, it alone is not sufficient to initiate
lymphomagenesis and similar translocations can be detected in
the peripheral blood and lymph nodes of healthy individuals
(11). Similarly, whilst chronic lymphocytic leukemia (CLL) is
also considered a mature B cell malignancy, the propensity for
cells to become malignant appears to arise as early as the
hematopoietic stem cell (HSC) stage and driver lesions are
detectable in the hematopoietic progenitors of some patients
(12–14). CLL is also characterized by distinct subtypes that
either have unmutated variable regions or hypermutated post
germinal center variable regions. Mantle cell lymphoma
(MCL) has a similar bifurcation between mutated/unmutated
variable regions.

Further complicating matters, some B cell neoplasms result
from the transformation of non-malignant monoclonal
outgrowths or from other neoplasm subtypes. DLBCL can arise
from the transformation of CLL, small lymphocytic leukemia
(SLL) or FL (15) or less commonly from mucosa associated
lymphoid tissue (MALT) lymphoma (16, 17) or Hodgkin
lymphoma (HL) (18). CLL can itself develop from the
precursor condition monoclonal B cell lymphocytosis (19) and
a high proportion of multiple myeloma (MM) arise from
monoclonal gammopathy of undetermined significance (20, 21).
Frontiers in Immunology | www.frontiersin.org 3156
Recent genomic studies of B cell malignancies implicate a
handful of well-characterized, commonly mutated or
translocated genes as well as a long tail of genes that have
limited or no experimental evidence to support a role in
disease. Since it is unlikely that all these mutations are driving
oncogenesis there is need for validation methods such as
functional genomic screens, forward genetic screens and
comparative genomics to scrutinize driver mutations and
better prioritize candidates for further study. The diverse
mechanisms by which mutations contribute to disease means
that many can only be tested within the context of specific
developmental stages, predisposing mutations and optimal
antigen receptor stimulation. For secondary/later stage
mutations, oncogenic function and selection may only occur
within a specific context of germline variants and/or early stage
initiating mutations. This exponentially expanding set of
parameters for validation experiments therefore requires
prioritization by analysis of mutation profiles and higher
throughput testing methods.

In some respects, sequencing human tumors can be viewed as
a special case of forward genetics, i.e. surveying genetic diversity
under selection in order to identify which genetic changes drive a
biological process. Forward genetic screens can also be targeted
to the somatic cells of mice using either chemical or insertional
mutagens. In the context of mouse cancer models, reverse
genetics is the introduction of variation known to be associated
with cancer in order to study the function of that variation. This
variation can be introduced to the germline or targeted to specific
populations of somatic cells.

The benefit of using mouse models to study hematologic
malignancies is that the major genes and biological processes
A

B C

FIGURE 2 | Aberrent V(D)J & class switch recombination creates oncogenic translocations. Immunoglobulin variable region rearrangement and class switch
recombination are error prone processes. (A) The immunoglobulin heavy chain locus is divided into different repetitive elements including variable segments (VH
purple), diversity segments (DH green), joining segments (JH blue) and constant regions (yellow). Vertical bars depict both functional gene segments (typical numbers
are indicated), non-functional pseudogenes (numbers not indicated) and repetitive elements (adapted from imgt.org). (B) Expression of recombinase activating genes
(RAG) during pre pro, pro and pre B stages creates breaks between V(D)J segments, which are resolved by excision of intervening DNA. Activation induced cytidine
deaminase (AID) deaminates cytosine residues of single stranded DNA which are exposed during transcription. The resulting mismatch is processed by error prone
DNA repair mechanisms (including endonuclease G) resulting in excision of the default IgM/IgD constant region and fusion of the joining segments with constant
regions of other isotypes. (C) Errors in resolving breaks initiated by RAG and AID can resolve as translocations with non-immunoglobulin loci. Break points adjacent
to the heavy chain JH or DH segments indicate that translocations occur at the pre pro B cell stage in the bone marrow (IgH/BCL2 or IgH/CRLF2). Similar
translocations also originate from immunoglobulin light chain loci. Translocations may also result from class-switch recombination in the light zone of the germinal
center, evidenced by breakpoints in the immunoglobulin constant region (IgH/Myc). Breakpoints adjacent to successfully rearranged V(D)J segments with somatically
mutated variable portions indicate that an AID mediated translocation has occurred later in development in the germinal center dark zone.
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driving hematopoiesis and immunity are sufficiently conserved
such that human malignancies can be recapitulated by the
introduction of equivalent mutations. Mice also allow the
complexity of immune system biology to be recapitulated in
vivo in ways not yet possible with cultured cells or organoids.

This review covers mouse models used to rapidly screen for
and validate large numbers of candidate genes driving B cell
malignancies and is aimed at readers seeking to understand
various techniques for targeting different developmental stages
and disease subtypes. We provide a history of forward and
reverse genetic approaches in mice that balance the trade-offs
between fidelity, precision, and throughput. In the first half we
discuss how forward genetics in mice can independently validate
the oncogenic function of rarely mutated genes from human
studies, and in some cases is a tool leading to discovery of human
cancer genes. In the second half we cover reverse genetic screens
and validation experiments where throughput is increased
through the use of transplantation of primary cells transduced
with ORF, shRNA and CRISPR-Cas viral constructs.
Throughout we also emphasize strategies to direct models
toward specific malignancy subtypes by a combination of
germline lesions, targeted cell populations and temporal
control of gene expression.
FORWARD GENETIC MODELS

Many driver genes are difficult to identify because they are
subject to deregulation by non-coding mutations, copy number
changes or epigenetic modification. Comparative genomic
analyses of human tumors with the findings from forward
genetic screens in mouse models can narrow down the identity
of these driver genes. Mice with germline mutations that sensitize
them to a specific disease subtypes are subjected to mutagenesis
of their somatic cells and the resultant tumors are sequenced. We
discuss here the combined use of genetically modified mice,
insertional mutagens and exome sequencing as tools to perform
forward genetic screens in B cell neoplasms (summarized in
Table 2). Observing which mutations are present in both mouse
and human cohorts, or which mutation combinations are
selected to co-occur more or less frequently than expected by
chance can prioritize validation experiments.

Insertional Mutagenesis Screens in
Somatic Cells
Somatic insertional mutagenesis screens are one of the most
efficient tools for performing forward genetic screens in mouse
models of cancer. When insertional mutagens are integrated
randomly throughout the genome of somatic cells, they can
deregulate and disrupt genes in a manner analogous to
chromosomal rearrangements, deletions, non-coding mutations
and truncating coding mutations. Mouse tissues are typically
mutagenized by replicative retroviruses or germline copies of
transposons mobilized in different tissues. Under optimal
conditions a subset of these mutagenized cells eventually give
rise to malignancies.
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The primary benefit of analyzing integration mutations is the
ease with which they can be mapped to the genome by
amplifying sequences that flank the integration using various
ligation mediated PCR methods. In analyzing cohorts of tumors
in these screens, loci found to have insertion sites in independent
tumors, more frequently than expected by chance, are defined as
common insertion sites or common integration sites (CISs).
Selection of mutations at these CIS loci indicates that they
cause changes in expression levels or cause disruption/
truncation of cancer drivers. There can be substantial
phenotypic and genetic variability between malignancies of a
single cohort and driving specificity toward B cells rather than T
or myeloid lineages has been achieved through a combination of
limiting mutagenesis to B lineages, screening mice with a
predisposition toward B malignancy subtypes and curating
uniform subsets of B lineage tumors from mixed cohorts.

Retroviral Mutagenesis in the
Hematopoietic Compartment
Slow transforming retroviruses have an extensive history of use
as insertional mutagens in the hematopoietic compartment
[reviewed in (62)]. When newborn mice are infected with slow
transforming retroviruses, they fail to mount an immune
response and consequently develop a viremia that lasts the
lifetime of the animal. Successive rounds of reinfection lead to
an accumulation of insertion mutations in cells of the
hematopoietic compartment, where the high rate of
proliferation during early postnatal development makes them
the preferred host cells for virus propagation. In some strains the
spontaneous activation of endogenous ecotropic retroviruses
gives rise to disease by a similar process. Over time, mutations
providing a selective advantage will lead to the clonal expansion
of cells with multiple oncogenic insertion mutations.

These viruses induce a range of hematologic malignancies. B
cell tumor cohorts have been generated by choosing specific
combinations of virus strain and host mouse strain. Sequences
within the virus LTRs are responsible for cell type-specific
expression and alterations can skew tumors toward B cell
subtypes (63, 64). Akv is an endogenous, ecotropic murine
leukemia virus isolated from the AKR strain which causes
mature B cell lymphomas with an FL and DLBCL phenotype
(65). Mutation of the Akv LTR enhancer sequences causes
plasmacytoma like disease (66) and mutation of splice sites
broadens the diversity of B malignancy subtypes (32). Somatic
reactivation of endogenous ecotropic proviruses can also give rise
to B lineage malignancies in inbred mouse strains (SJL/J mice,
CWD/LeAgl, SEA/GnJ, SL/Hk) (67, 68), recombinant inbred
strains (AKXD) (69) and the NFS.V+ congenic mice (bearing
ecotropic MuLV loci from AKXD or C58/Lw) (70, 71). When
integration sites from B malignancies of these models were
cloned, many were found recurrently at sites that were known
or have subsequently been found to be drivers of B cell
malignancies (27, 30–39, 41, 42) (Table 2).

Retroviral integrations tend to increase the expression of
oncogenes although occasionally intragenic integrations cause
loss of function of tumor suppressors. One of the more
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TABLE 2 | Forward genetic screens in mouse models of B cell malignancies.
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van Lohuizen et al. (22) MuLV mutagenesis Mo-MuLV Em-Myc
Haupt et al. (23) MuLV mutagenesis Mo-MuLV Em-Myc
Shinto et al. (24) MuLV mutagenesis Mo-MuLV Em-BCL2
van der Lugt et al. (25) MuLV mutagenesis Mo-MuLV Em-Myc Pim1-/-
Sheppard et al. (26) MuLV mutagenesis Mo-MuLV Em-Mycn
Mikkers et al. (27) MuLV mutagenesis Mo-MuLV Em-Myc; Pim1-/-; Pim
Dang et al. (28) MuLV/ENU mutagenesis/exome sequencing Mo-MuLV or ENU thymectomized Pax5+
Webster et al. (29) MuLV mutagenesis Mo-MuLV Em-BCL2, Vav-BCL2
Martı́ n-Hernández et al. (30) MuLV mutagenesis Akv1-99 MuLV NMRI mice
Ma et al. (31) MuLV mutagenesis Akv MuLV & derivatives NMRI mice
Sorensen et al. (32) MuLV mutagenesis Akv MuLV & derivatives NMRI mice
Liu et al. (33) MuLV mutagenesis Akv MuLV & derivatives NMRI mice
Pyrz et al. (34) MuLV mutagenesis Akv MuLV & derivatives NMRI mice
Hartley et al. (35) MuLV mutagenesis endogenous ecotropic MuLV NFS.V+ mice

Suzuki et al. (36) MuLV mutagenesis endogenous ecotropic MuLV AKXD mice

Tsuruyama et al. (37) MuLV mutagenesis endogenous ecotropic MuLV SL/Kh mice

Jin et al. (38) MuLV mutagenesis endogenous ecotropic MuLV SL/Kh mice

Shin et al. (39) MuLV mutagenesis endogenous ecotropic MuLV NFS.V+ mice
Suzuki et al. (40) MuLV mutagenesis endogenous ecotropic MuLV AKXD-Blm m3 mice
Weiser et al. (41) MuLV mutagenesis endogenous ecotropic MuLV AKXD mice
Tsuruyama et al. (42) MuLV mutagenesis endogenous ecotropic MuLV SL/Kh mice

Van Der Weyden et al. (43) SB mutagenesis ETV6 knock in SB ETV6-RUNX1-SB kn
Zanesi et al. (44) SB mutagenesis SB Emu-Tcl1
Van Der Weyden et al. (45) SB mutagenesis/exome ETV6 knock in SB ETV6-RUNX1-SB kno
Heltemes-Harris et al. (46) SB mutagenesis SB Stat5b-CA
Rahrmann et al. (47) SB mutagenesis SB Trp53R270H or Pten +
Weber et al. (48) PB mutagenesis Rosa26 knock in PB Blmm3 mice
Sander et al. (49) exome none Myc and PI3K condit
Sungalee et al. (50) exome of premalignant cells none Em-hBCL2 transduce
Gough et al. (51) exome none Vav-NUP98-PHF23
Martin-Lorenzo et al. (52) exome none Pax5 +/-
Dang et al. (28) MuLV/ENU mutagenesis/exome sequencing Mo-MuLV or ENU Pax5 +/-
Van Der Weyden et al. (45) SB mutagenesis/exome ETV6 knock in SB ETV6-RUNX1-SB kno
Duque-Afonso et al. (53) exome none E2A-PBX1 condition
Lefebure et al. (54) exome none Em-Myc
Rodrıǵuez-Hernández et al. (55) exome none Sca1-ETV6-RUNX1
Gough et al. (56) exome none Vav-NUP98-PHF23
Mouly et al. (57) exome none Tet2 +/- and Tet2 -/-
Jamrog et al. (58) exome none PAX5-ENL knockin
Zaborsky et al. (59) exome none Emu-TCL1
Flümann et al. (60) exome none Myd88 & Bcl2 condi
Vicente-Duenãs et al. (61) exome none Pax5+/-
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innovative strategies to increase the proportion of tumor
suppressors identified is the screening of mice on a Blm
hypomorphic background (40). Blm encodes a recQ DNA
helicase the loss of which creates genomic instability. This
encourages DNA repair by homologous recombination, which
in turn leads to increased sister chromatid exchange and large
stretches of loss of heterozygosity. When integration of a virus
disrupts a tumor suppressor gene, any subsequent deletions or
loss of heterozygosity that removes the wild type copy will
increase selection of tumor suppressor mutations.

Enforced expression of B cell lymphoma oncogenes such as
MYC, NMYC or BCL2, in the B cell compartment or loss of
tumor suppressors can also skew MuLV driven malignancies
toward B cell lymphoma and leukemias (22–26). Recent large
scale analyses of the common integration sites of two BCL2
transgenic strains infected with Moloney MuLV (MoMuLV)
shows a statistically significant bias toward verified drivers of
human B lymphoma and leukemia (Pou2f2, Pax5, Ikzf3, Ebf1) in
addition to dozens of other candidate loci (29).

Transposon Mutagenesis in the
Hematopoietic Compartment
The use of DNA transposons as somatic insertional mutagens in
mice has led to dozens of tissue and cell type specific screens
[reviewed in (72–74)]. The Sleeping Beauty (SB) transposon
isolated from salmonid fish and the piggyBac (PB) transposon
isolated from the cabbage looper moth have both been adapted
for use in mammalian cells. When mice bearing a concatemer of
a transposon as a germline transgene are crossed to mice that
express the cognate transposase, this causes mobilization of the
transposon in somatic cells. By controlling expression of the
transposase and the cargo of the transposon (typically a
promoter trap and/or gene trap) this technique generates a
wider spectrum of tumor types than slow transforming
retroviruses, although this versatility is tempered by several
caveats. Transposons have a tendency to hop in cis which can
complicate analysis of integrations near the initial concatemer.
Furthermore, remobilization of the transposon during tumor
development can cause local hopping around the region of
tumor initiating mutations and there is typically a higher level
of background non-CIS mutations that provide no selective
advantage to tumor cells. The screens discussed in detail below
have successfully targeted transposon mutagenesis to the B cell
compartment using a combination of predisposing mutations
combined with tissue specific transposase expression.

Weakly oncogenic mutations observed in human tumors do
not always lead to tumor development in mouse models due to a
lack of cooperating mutations. One of the first B cell malignancy
SB screens used a mouse model of the t(12;21)(p13;q22) ETV6/
RUNX1 (TEL/AML1) fusion transcript, seen frequently in B cell
acute lymphoblastic leukemia (ALL). Mice expressing the ETV6/
RUNX1 fusion and the SB transposase variant HSB5 from the
endogenous Etv6 locus had a background of long latency
hematologic malignancies similar to wild type controls i.e. the
fusion itself caused only slightly higher rates of lymphomagenesis
(43). When this allele was combined with a gene trap/promoter
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trap transposon the mice developed a spectrum of acute myeloid
leukemia (AML), T cell ALL and B cell precursor ALL. By
sequencing the integrations of B ALL samples, recurrent
truncating mutations were observed in Ebf1, a tumor
suppressor of B ALL (75, 76) which encodes a transcriptional
activator of another B cell ALL tumor suppressor Pax5.

STAT5 activating mutations are observed in a small
proportion of B ALL, however mice expressing a constitutively
active form of STAT5B (STAT5-CA N642H) do not develop ALL
(46). Combining this allele with a transposon gene/promoter
trap concatemer, a Cre-inducible SB and Cd79a-Cre (switching
in developing B cells) induced progenitor B cell leukemias
thereby verifying STAT5B N642H as an oncogene in B ALL.
Integrations of 65 mice identified 12 CIS, the most commonly
mutated genes suggesting three major mechanisms for STAT5
mediated transformation: disruption of B-cell development
(Sos1, Kdm2a, Ikzf1, Klf3), enhanced JAK/STAT5 signaling
(Jak1) and modification of the CDKN2A tumor-suppressor
pathway (Bmi1, Cdkn2a).

The exomes of CLL samples average less than one coding
driver mutation per sample, making mechanisms of
transformation difficult to identify. The Eµ-TCL1 transgenic
model develops a disease that is phenotypically similar to CLL.
The B cells of these mice were mutagenized using a conditional
SB transposase switched by CD19-Cre (pan B cell) (44, 59).
Transposon mobilization decreased latency of Eµ-TCL leukemias
and integrations of 15 mice yielded 8 CIS loci, four of which
implicate Nf-kappaB signaling (Nfkb1, Tab2, Map3K14, and
Nfkbid). NF-kappaB activating mutations are rare in the
coding regions of human CLL however it has been shown that
CLL cells are frequently dependent on extracellular signaling
pathways that activate Nf-kappaB (77) and several mouse models
of CLL/SLL have constitutive activation of NF-kappaB pathways
(78–80).

The Cre strains used to switch conditional SB alleles need not
be entirely B cell specific in order to generate B cell malignancies.
The Cnp-Cre strain expresses Cre in the nervous system and
splenic germinal centers (47). Combining Cnp-Cre with an SB11
conditional allele, a transposon concatemer and a conditional
oncogenic point mutation of tumor suppressor Trp53
(Trp53R270H) generated a mixture of solid tumors as well as
lymphoid malignancies with an FL/DLBCL like phenotype.
Integrations from 23 samples identified Bach2 as the most
frequently mutated locus. Pten disrupting mutations were also
identified and the authors verified Pten as a tumor suppressor in
the Cnp-Cre driven model. These results are consistent with
human germinal center B cell DLBCL where PTEN is mutated or
deleted (81) and reduced expression correlates with AKT
activation (82).

More recently the piggyBac transposon has also been adapted
for somatic insertional mutagenesis. Mice expressing constitutive
piggyBac transposase were crossed with a gene trap piggyBac
transposon concatemer allele onto a Blmm3/m3 hypomorph
background (48). Gene trap transposons are more likely to
generate intragenic loss of function mutations which are in
turn more likely to be selected if they occur in tumor
August 2021 | Volume 12 | Article 670280
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suppressors. The use of a Blm hypomorph background to
enhance loss of heterozygosity events is the same strategy used
to enrich for tumor suppressors in the retroviral screen of AKXD
Blmm3/m3 mice cited in the previous section (40). A spectrum of
solid and hematological tumors were generated, with the
majority of mice having DLBCL like B lymphoid malignancies.
These had recurrent amplification of Bcl11a and Rel, this region
also being amplified in human DLBCL. Integration site cloning
using the semiquantitative QiSeq insert cloning protocol (83) on
43 samples identified nearly 300,000 integrations. Inactivating/
disrupting mutations were observed in tumor suppressors
known to be mutated in human DLBCL and there was
significant overlap between the orthologs of CIS genes and the
set of genes that are down regulated in human DLBCL vs non-
malignant B cells. This suggests CIS genes may inform the
identification of genes that are down regulated in human
DLBCL by epigenetic variation and/or large-scale deletions.

Quantitative Analyses of Subclonal
Integration Mutations
Improvement in next generation sequencing platforms and ligation
mediated PCR methods have increased the throughput and
sensitivity of integration site cloning. Ligation mediated-PCR
methods such as vectorette and splinkerette-PCR use a non-
complimentary adaptor that facilitates enrichment of integrated
sequences separately from the remainder of the genome (84–86).
Shearing of tumor DNA prior to construction of sequencing
libraries allows the abundance of each integration within a sample
to be quantitated by counting the number of unique read fragment
lengths mapping to each integration (83, 87–89). This approach to
quantitation minimizes sequence and amplification biases
particularly when compared to libraries prepared by non-random
digestion at restriction enzymes recognition sites. Other studies have
quantitated integrations through analyses of whole genome
amplification of single cells (SBCapSeq) (90, 91) or using unique
molecular identifiers (LUMI-PCR) (92).

Collectively, these recent methods allow affordable, genome
wide identification of thousands of subclonal mutations with a
sensitivity spanning more than two orders of magnitude. This
quantitative coverage in turn allows estimation of the order in
which lesions occurred (93) and cloning large numbers of
subclonal mutations provides the statistical power needed to
derive genetic associations between early-stage clonal mutations
and late-stage subclonal mutations (29). Translating these types
of analyses to human tumors is currently limited by depth of
sequencing coverage. Currently whole genome sequencing of
human tumors rarely exceeds 100x coverage and therefore offers
less sensitive detection of subclonal mutations than recent
integration site cloning studies. Nonetheless, recent studies of
single cell sequencing of human tumors include thousands of
cells which can therefore identify subclonal mutations within
limited/targeted regions of the genome (94–97).

The scale of these datasets requires innovations in statistical
methodology, both to identify selected mutations and to
demonstrate associations between them. For density based
estimates of mutation selection (98–100) the background
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integration biases of insertional mutagens can be compensated
for by the use of unselected cell populations for comparison with
tumor mutation distributions (29, 93, 101). Alternatively,
identifying local ratios of forward/reverse strand mutations
throughout the genome is analogous to using ratios of
synonymous and non-synonymous coding mutations in that it
does not require correction for integration site biases of the
mutagen (29, 93). Strand bias analyses requires a higher density
of integrations to reach statistical significance and will only
identify loci with a strong bias in one direction or the other.

Analyses of concurrent mutations is complicated by the
inclusion of subclonal mutations. When sequencing coverage is
deep enough to include very subclonal mutations, some of the
most frequently mutated loci can be found mutated in 100% of
samples. Any two loci found to have subclonal mutations in all
samples will appear to be 100% concomitant, even when these
mutations are not found within the same subclones of each
sample. For this reason, quantifying the significance of
concurrent mutations requires the use of contingency table
tests that exclusively use clonal mutations i.e. mutations with a
high likelihood of occurring within the same cells. Alternatively
it is possible to use asymmetrical contingency tables that classify
all tumors on the basis of their early stage “trunk” clonal
mutations and/or germline mutations at one locus and then
test for the distribution of all mutations (both clonal and
subclonal) at other loci (29, 102, 103). The number of genome-
wide pairwise tests that can be performed on these cohorts can
number in the thousands and this in turn requires stringent
multiple testing correction to limit false positive associations.
Nonetheless, with high coverage of subclonal mutations it is now
possible to identify hundreds of significantly co-mutated loci
pairs from a cohort of several hundred mice infected with
MoMuLV (29).

Forward Genetic Screens by
Exome Sequencing
The expense of exome and whole genome sequencing is generally
reserved for the study of human tumors however, an increasing
number of mouse tumor exomes have also been sequenced, albeit
with cohort sizes that are far smaller than their human
counterparts. In most cases this sequencing is to verify that the
model accurately recapitulates human disease, however, some
studies also suggest or verify candidate drivers where coding
mutations in human cohorts fail to reach statistical significance.
Several examples are discussed below.

Combining Cre recombinase inducible alleles of mutant
Myd88 (L252P) and Rosa-26 expressed Bcl2 with germinal
center specific Cg1-Cre generated a human ABC-DLBCL like
model (60). Sequencing samples from 17 mice confirmed
mutation of human DLBCL drivers including Pim1, Myc,
Kmt2d, Nfkbia, Stat3, Pou2f2, and Hist1h1e. In a similar study,
conditional expression in germinal center B cells of Myc and
constitutively activated Akt (fusing p85 to p110) gave rise to
Burkitt’s lymphoma (BL) like disease with recurrent mutations in
Ccnd3, which is mutated in BL and known to regulate germinal
center B cell proliferation (49).
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TET1 and TET2 encodemethylcytosine dioxygenase enzymes that
are thought to play a role in demethylation of DNA by catalyzing
conversion of 5-methylcytosine to 5-hydroxymethylcytosine. TET2 is
mutated in a range of hematopoietic malignancies including a subset
of DLBCL where mutations can be traced back to HSC populations,
suggesting TET2 mutation is an early event in lymphomagenesis
(104). Mice lacking Tet2 globally or in B cell subpopulations (CD19-
Cre or Vav-Cre) develop B cell lymphoma (57, 105). One study
sequencing six B cell tumors matched to germline counterparts
revealed thirty-four acquired mutations, albeit not recurrently
mutated, presumably due to the limited cohort size. Nonetheless,
more than half of these genes are also mutated in either DLBCL, CLL
or both.

TET1 is not mutated in human B malignancies however it is
downregulated in human DLBCL and FL which inconclusively
suggests a role for TET1 in human B lymphoma. Tet1 deficient
mice develop mature B cell malignancies which when sequenced
were found to have missense mutations in the mouse
homologues of known human B cell malignancy drivers
including Gna13, Kmt2d, Myd88, Cd83, Pim1, Cd79B and Fas
(106). Additional mutations were observed in linker histone
genes, histone variants and histone modifying enzymes.
Histone linker mutations are a feature of FL (107). These
mutations corroborate a role for TET1 down regulation in
human B cell malignancies.

Mouse models that accurately recapitulate human disease can
also identify novel drivers. The Em -Mycmodel is a mainstay of B
cell leukemia/lymphoma research but exomes from this model
have only recently been sequenced (54). Sequencing of 23
lymphoma exomes revealed recurrent mutations in known
drivers such as Trp53, Cdkn2a and Kras, but also the “BCL6
corepressor” gene Bcor. Inactivating mutations in Bcor accelerated
Em-Myc driven lymphomas in transplantation assays. An
independent study sequenced NUP98/PHF23 transgenic mice
which primarily develop T cell lymphoma but in a minority of
cases also develop progenitor B-1 type ALL. This study also
identified Bcor mutations in addition to mutations of Jak1, Jak2,
Jak3 and Stat5a (51, 56). Bcor loss of function mutations were
subsequently found to cause B-1 progenitor ALL in mice (108).

Aside from driver detection, exome sequencing can also be a
powerful tool to examine the mutagenic processes of early
premalignant states under defined experimental conditions.
Sungalee et al. developed an innovative model of t(14;18)
translocation where human BCL2 expression from an Em
enhancer is sporadically induced by RAG recombinase in pro/
pre B cells (50). Repeat immunization demonstrated a survival
advantage for hBCL2 expressing cells after multiple rounds of
germinal center reentry. Exome sequencing was performed on
BCL2-enriched germinal center and memory cell fractions from
three chronically immunized mice and a control (empty vector)
mouse. B cell subsets of the BCL2-transduced mice had between
111 and 2,565 nonsilent SNVs compared with 63 to 70 SNVs in
the control mouse, despite the absence of overt morphological
differences between hBCL2 and control animals. This model
demonstrates a role for BCL2 in enhanced survival of cells that
accumulate potentially oncogenic off target mutations of AID.
Frontiers in Immunology | www.frontiersin.org 8161
Pax5 Driven Models of B ALL; A Case
Study of Multimodal Screens Converging
on Common Findings
PAX5 encodes a B cell development transcription factor that
activates B cell specific genes and represses genes of alternative
lineages. It is one of the most frequently altered genes in B ALL
and a varied spectrum of somatic rearrangements, translocations,
mutations and deletions have been observed at this locus (76,
109–111). Karyotypic analysis indicates translocations are early
events whereas deletion of a second allele appears to be a
secondary later event. Germline point mutations that inhibit
PAX5 function also increase the likelihood of B ALL and some
are accompanied by somatic deletion of the other PAX5 allele or
cooperating PAX5 mutations (112–115). The discovery of
frequent PAX5 deletion and translocations in human ALL was
rapidly followed by a large number of studies using some form of
Pax5 deletion or translocation in mice to model B ALL. To date
six independent studies have included exome sequencing and/or
insertional mutagenesis of mouse B ALL samples generated by
mutation of Pax5. The convergence of findings of these studies
demonstrates the value of multimodal screening in mice to
validate mutation profiles of human tumors.

Pax5 heterozygosity combined with thymectomy skews ENU
and MoMuLV driven lymphomas toward a B lineage disease since
thymectomy removes competing T cell malignancies (28). Array-
CGH copy number analyses of these malignancies identified
amplification of chromosome 15 (and consequently Myc) and
focal deletions of the second allele of Pax5. Exome sequencing
revealed B ALL samples from ENU treated mice had 5-fold more
exonic mutations thanMuLV infectedmice and identified recurrent
mutations in the human ALL mutated genes: Pax5, Jak3, Ptpn11,
Jak1, and Nras. Pax5 mutations were almost exclusively within the
DNA-binding paired domain and equivalent to mutations observed
in human B ALL. Jak1 and Jak3 mutations were located in the
pseudokinase domains of JAK1 and JAK3, and are known to induce
cytokine-independent proliferation and activation of downstream
signaling pathways sensitive to JAK inhibitors. MoMuLV CIS
included an overlapping set of B ALL drivers including Myc,
Stat5b, Zeb2, Jak1, Jak3, Ikzf1, Gsdmc, Ebf1 and Ptpn11.

In another study multiple Cre strains (Cd19, Mb1(Cd79a) or
Mx1) were used to induce conditional expression of a E2A/PBX1
fusion, resulting in B cell precursor ALLs, which arrested at the pro
B/large pre B II stages in a manner similar to human E2A/PBX1
ALL (53). Copy number analyses and exome sequencing of
leukemia samples revealed that 30% harbored inactivating
mutations or deletion of Pax5 that resulted in decreased
expression. Combining E2A/PBX1 with Pax5 deletion increased
the penetrance and shortened the latency of leukemia. Other
mutated loci from E2A/PBX1 tumors included Cdkn2a, Jak1,
Jak3, Ptpn11 and Kras.

The ETV6/RUNX1-SB model described in the previous section
(43) was subsequently combined with heterozygous deletion of
Pax5 which increased the incidence of B-cell precursor (BCP)-ALL
(45). Targeted exome sequencing identified recurrent mutations in
Jak3, Trp53 and Jak1, with Jak1/3 mutations again being found in
the pseudokinase domain. Insertional mutagenesis identified 6 CIS,
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four of which (Zfp423, Cblb, Stat5b and Foxp1) have well-
characterized roles in B cell maturation. Increased
ZNF423 expression is associated with ETV6/RUNX1+ B ALL and
Pax5 or Ebf1mutations synergize with STAT5 in B ALL. It is worth
noting this mutation profile is more likely a function of Pax5 loss
since a different model of ETV6/RUNX1 with wild type Pax5
primarily identified loss of function mutations in the KDM lysine
demethylase family (55).

B ALL models have also been used to study the relationship
between gut microbiota and leukemia incidence (52, 55, 61). Pax5
heterozygousmice do not develop leukemia when housed in specific
pathogen free (SPF) conditions however they are prone to precursor
B ALL when exposed to common pathogens and sequencing of
these leukemias identified recurrent Jak3 mutations (52). In an
independent study it was also shown that Pax5 heterozygous mice
or mice bearing a Sca1-ETV6/RUNX1 transgene also do not develop
B ALL when housed in SPF conditions. Nonetheless both mouse
strains had sufficiently altered immune responses to alter the gut
microbiome composition when housed in a non-SPF facility and
Pax5 heterozygous mice in SPF conditions treated with antibiotics
developed B ALL (61). The authors hypothesize that dysbiosis
caused by non-SPF housing or the absence a normal gut biome
in SPF conditions with antibiotics drives disease on this
background, however secondary mutations were also required.
Exome sequencing of 17 B ALL cases from non-SPF conditions
identified recurrent mutations affecting the JAK/STAT and RAS
signaling pathways (Jak1, Jak3, and Ptpn11). Non-SPF mice treated
with antibiotics also harbored recurrent mutations in Kit, Flt3, and
Cbl that have not been observed in other Pax5+/– cohorts. This may
suggest that selection of secondary mutations reflects differences in
gut biome.

PAX5 is frequently mutated by translocation events creating
fusion proteins in human tumors and some of these have been
shown to cause B ALL in mice (58, 116). In one of these studies
exome sequencing of five leukemic mice expressing a PAX5/ENL
fusion identified mutations in Ptpn11, Kras, Pax5, and Jak3 genes
(58). Of these genes PAX5, PTPN11, KRAS and its homologue
NRAS were found recurrently mutated across a panel of human B
ALL samples from diverse subtypes.

These six independent studies using complementary
experimental designs all identify mutations in Jak3 by exome
sequencing and in some cases also by insertional mutagenesis.
Furthermore, four studies identified mutations in Jak1, three
studies identified Ras family member mutations (albeit through
different mechanisms) and four had Ptpn11 mutations. Collectively
this work demonstrates how mutagenesis and exome sequencing of
mouse models with defined lesions can reliably and reproducibly
reveal cooperating mutations in independent cohorts, and that Pax5
heterozygosity in mice faithfully reproduces mutational profiles
observed in human B ALL.
REVERSE GENETIC MODELS

Over the past decade the expanding number of candidate mutations
associated with B cell malignancies has increased the requirement
Frontiers in Immunology | www.frontiersin.org 9162
for medium to high throughput methods of validation. There is an
extensive literature of transgenes, knockouts and conditional alleles
for B cell lymphomas [reviewed in (117–121)]. Although tissue
specific switching of conditional alleles is arguably the gold standard
for mouse tumor models, the obvious drawback of this approach is
the time taken to generate strains and cohorts of multiallelic models.
In this section we discuss higher throughput reverse genetic models
including transplantation/adoptive transfer models with an
emphasis on models using primary cells transduced with viral
constructs. We also summarize recently developed methods for
rapid generation of multiallelic strains and several approaches to
temporal control of gene expression.

B Cell Malignancy Models From
Transplantation of Virus Transduced Cells
Early transplantation-based B cell malignancy models used cell
lines derived from spontaneous malignancies injected into
syngeneic hosts and/or human malignant cell lines injected as
xenografts into immunocompromised mouse strains [reviewed
in (122)]. More recently primary B cell malignancies have been
transduced with viral constructs prior to transplantation, either
to overexpress oncogenes (123–125) or to express shRNAs/
sgRNAs that validate essential genes, therapeutic targets and
tumor suppressors (126–134) (Table 3).

Primary B lymphomas have also been used to perform in vivo
shRNA screens. In one study shRNAs against 1000 candidate
cancer genes were selected to identify genes that are required for
B lymphoma growth in vivo and this identified regulators of actin
dynamics and cell motility (136). In a more targeted study,
combining an in vitro screen with in vivo verification,
conditional deletion of the miR-17∼92 cluster was found to
cause apoptosis in Em-Myc lymphomas. In vitro screening of
shRNAs against targets of these microRNAs identified Pten
suppression as a mediator of miR-17∼92 survival signals which
was verified when shRNAs against Pten rescued in vivo
lymphoma growth of miR-17∼92 deleted Em-Myc lymphoma
cells (137).

Studying the transition of non-malignant cells into
lymphomas and leukemias requires the use of untransformed
primary cells. Retroviral transduction of primary cell
suspensions from spleen, bone marrow and fetal liver can
reveal the transforming potential of candidate genes and
mutations. In early experiments both viral and cellular genes
were found to facilitate colony formation in agar, clonal
outgrowth of cell lines and development of malignancies from
adoptive transfer into irradiated or immuno-compromised
recipients [reviewed in (139, 140)]. The malignancy subtypes
generated are a function of the genes being transduced and the
lineage of infected cells, with B cell malignancies being
successfully generated from wild type donor cells by using
cellular genes (141, 142), acute transforming retrovirus
oncogenes (143–147) and the fusion transcripts of oncogenic
translocations (145, 148–152) (summarized in Table 4).
Experiments using the mixed populations of cell types from
whole bone marrow as donor cells can yield a mixture of
malignancy subtypes from a single cohort. The use of purified
August 2021 | Volume 12 | Article 670280
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TABLE 3 | Reverse genetic B cell malignancy transplantation assays using primary lymphomas.

Recepient Donor cell type Genes delivered Malignancy type

syngeneic primary B lymphoma Bcl2 ORF virus B lymphoma

syngeneic primary B lymphoma Bcl2 ORF virus B lymphoma

syngeneic primary B lymphoma & fetal liver derived
HSPCs

Bcl2, Casp9 dominant negative Cdkn2a &
p19ARF ORF viruses

B lymphoma

syngeneic primary B lymphoma & fetal liver derived
HSPCs

Bcl2 & Casp9 dominant negative ORF
viruses

B lymphoma

syngeneic primary B lymphoma Cd79a (lga) & Cd79b (lgb) shRNA virus B lymphoma
syngeneic primary B lymphoma Syk shRNA virus B lymphoma

syngeneic primary B lymphoma 1000 gene shRNA virus library B lymphoma

athymic nude
mice

primary B lymphoma Pten shRNA & miR-17~92 viruses B lymphoma

syngeneic primary B lymphoma Rpa3 shRNA viruses B lymphoma

syngeneic primary B lymphoma Trp53 & Rosa26 sgRNA viruses B lymphoma

syngeneic or NSG primary B lymphoma or B leukemia cell line Notch1 Notch2 Hey1 & Jag1 shRNA viruses B lymphoma

syngeneic primary B lymphoma Sae2 shRNA viruses B lymphoma

syngeneic primary B lymphoma Hdac2 & Hdac3 shRNA viruses B lymphoma

syngeneic primary B ALL Plcg2 shRNA virus B ALL

syngeneic primary B lymphoma Trp53, Chek2 & 25 gene library sgRNAs
& dCas9/dCas9-VP64 viruses

B lymphoma & B
ALL

syngeneic primary B lymphoma Utx shRNA & Efnb1 ORF virus B lymphoma
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163
Publication Donor lymphoma genotype

Schmitt CA et al. (123) Em-Myc

Schmitt CA et al. (124) Em-Myc

Schmitt CA et al. (125) Em-Myc, Em-Myc;Trp53+/-, Em-Myc;p19ARF+/-

& Em-Myc;Cdkn2a/p19 ARF+/-

Schmitt CA et al. (135) Em-Myc or Em-Myc;Trp53+/-

Refaeli Y et al. (126) Em-Myc;BCRHEL & Em-Myc;BCRHEL;sHEL
Young RM et al. (127) Em-Myc;BCRHEL & Em-Myc;BCRHEL;sHEL

Meacham CE et al. (136) Em-Myc;p19ARF-/-

Mu P et al. (137) Em-Myc;miR-17~92ff/ff;Rosa26-Cre-ER

Zuber J et al. (128) Em-Myc;Trp53-/-

Malina A et al (138) Em-Myc;p19ARF-/-

Cao Z et al. (129) Em-Myc, B6RV2 leukemia cells, primary human Burkitt's
lymphoma

Hoellein A et al. (130) Em-Myc

Matthews GM et al. (131) Em-Myc & Em-Myc;Hdac1-/-

Duque-Afonso et al.
(132)

E2A-PBX1;CD19.Cre & E2A-PBX1;Mx1.Cre

Braun CJ et al. (134) Em-Myc;p19ARF-/- & Bcr-Abl

Li X et al. (133) Em-Myc;p19ARF-/-
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TABLE 4 | Reverse genetic B cell malignancy transplantation assays using primary cells.

Malignancy type

B lymphoma

B lymphoma

B cell lymphoma & erythroleukemia
B lineage subcutaneous tumors

L1 pre B cell lymphoma & myeloproliferative
disease
CML, B/T ALL & macrophage tumors
pre-B lymphoid, T lymphoid, macrophage,
erythroid & mast cell tumors
pre-T-cell thymic lymphomas & pre-B-cell
lymphoblastic leukemia/lymphomas
B cell leukemia

B lymphoma
B lineage large-cell lymphoma
B cell and/or myeloid hematologic
malignancies

ORF CML, B ALL & macrophage tumors

iruses B cell & myeloid leukemia
B lymphoma

e B lymphoma

B lymphoma
B lymphoma
B lymphoma

CML & B ALL
B lymphoma
B lymphoma
B lymphoma

iruses B lympholeukemia
B lymphoid leukemia

LL-
es

B precursor acute lymphomblastic leukemia & AML

B ALL & CML

B lymphoma
B lymphoid leukemia & CML

s & immature B cell lymphoma

(Continued)
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Publication Donor primary cell genotype Recipient Donor cell type Genes delivered

Schwartz et al.
(143)

wild type syngeneic bone marrow derived pre
B cells & sIg+ B cells

v-myc & v-H-ras ORF viruses

McLaughlin et al.
(148)

wild type syngeneic bone marrow derived immature
B cells

BCR-ABL1 p210 ORF virus

Heard et al. (144) wild type syngeneic bone marrow v-fms ORF virus
Alexander et al.
(153)

Em-Myc nude mice bone marrow v-H-ras & v-raf ORF virus

Keliher et al. (145) wild type syngeneic bone marrow Abelson MuLV (v-abl) & BCR-A
p210 ORF virus

Daley et al. (149) wild type syngeneic bone marrow BCR-ABL1 p210 ORF virus
Elefanty et al. (150) wild type syngeneic bone marrow BCR-ABL1 ORF virus

Hawley et al. (146) wild type syngeneic bone marrow v-H-Ras ORF virus

Kitayama et al.
(141)

wild type (Kit+/+ ) KitW/W-v bone marrow KitG599 & KitV814 ORF viruses

Thome et al. (147) wild type syngeneic bone marrow derived pre B cells Abelson MuLV (v-abl)
Kuefer et al. (151) wild type syngeneic bone marrow NPM-ALK fusion ORF virus
Hawley et al. (142) wild type syngeneic bone marrow (5-FU-treated) Flt3 ORF virus

Li et al. (152) wild type syngeneic bone marrow (5-FU treated & untreated) BCR-ABL1 p190, p210 & p230
viruses

Sexl et al. (154) wild type & Stat5a/bDeltaN/DeltaN syngeneic bone marrow BCR-ABL1p210 & p185 ORF v
Schmitt et al. (125) Em-Myc, Em-Myc;Trp53+/-, Em-Myc;p19ARF

+/- & Em-Myc;Cdkn2a/p19ARF+/-
syngeneic primary B lymphoma & fetal liver derived

HSPCs
Bcl2, Casp9 dominant negative
Cdkn2a & p19ARF ORF viruse

Schmitt et al. (135) Em-Myc & Em-Myc;Trp53+/- syngeneic primary B lymphoma & fetal liver derived
HSPCs

Bcl2 & Casp9 dominant negati
ORF viruses

Hemann et al. (155) Em-Myc syngeneic fetal liver derived HSCs Trp53 shRNAs
Hemann et al. (156) Em-Myc & wild type syngeneic fetal liver derived HSCs Puma/Bbc3 shRNA virus
Wendel et al. (157) Em-Myc, Em-Myc;p19ARF+/- & Em-Myc;

Trp53+/-
syngeneic fetal liver derived HSCs & primary

B lymphoma
Bcl2, Eif4e, constitutive Akt &
dominant negative Casp9 ORF
viruses

Hu et al. (158) wild type & Lyn-/-;Hck-/-;Fgr-/- syngeneic bone marrow (5-FU-treated & untreated) BCR-ABL1 p210 ORF virus
Hemann et al. (159) wild type, Bim-/-, Trp53+/- & Trp53-/- syngeneic fetal liver derived HSCs Myc & Myc mutant ORF viruse
He et al. (160) Em-Myc syngeneic fetal liver derived HSCs mir-17–19b microRNA virus
Herbst et al. (161) Trp53+/- syngeneic fetal liver derived HSCs Myc & Myc mutant ORF viruse
Williams et al. (162) wild type, p19ARF+/− & p19ARF−/− syngeneic bone marrow derived pre B cells BCR-ABL1p210 & p185 ORF v
Hoelbl et al. (163) wild type & Stat5a/b-/- Rag2-/- fetal liver cells & bone marrow BCR-ABL1 p185 ORF virus &

Abelson MuLV (v-abl)
Barabé et al. (164) wild type (human) NSG & B-

NOD/SCID
human umbilical cord blood stem and
progenitor cells (Lin– CB)

MLL-ENL (KMT2A-MLLT1) & M
AF9 (KMT2A-MLLT3) ORF viru

Wang etal (165) wild type, Cdkn2a/p19ARF+/- & p19ARF−/− syngeneic bone marrow HSCs, common lymphoid
progenitors, pro/pre B cells

BCR-ABL1p210 ORF virus

Bric et al. (166) Em-Myc syngeneic fetal liver derived HSPCs 1000 gene shRNA virus library
Hoelbl et al. (167) Stat5fl/fl & Mx1Cre+;Stat5fl/fl Rag2-/-gc-/- bone marrow (5-FU treated & untreated) BCR-ABL1 p210 ORF virus &

Abelson MuLV (v-abl)
Nakagawa et al.
(168)

wild type SCID fetal liver derived pro B cells Bcl2, Myc & Ccnd1 ORF viruse
human ORF virus library
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TABLE 4 | Continued

e Genes delivered Malignancy type

es Myc & Pim1 ORF viruses pre B cell hyperplasia
s, lymphoid‐
pleted marrow

BCR-ABL1p210 & p185 ORF viruses B acute lymphomblastic leukemia & CML

erived CD133+ MYC & BCL2 ORF viruses pre B cell lymphoma/leukemia

al centre B cells Bcl2l1 (Bcl-xl) & Myc ORF viruses mature B cell lymphoma
Trp53 sgRNA virus B lymphoma
Kmt2d shRNA virus B lymphoma

BCR-ABL1p210 ORF virus B leukemia

Crebbp shRNA virus B lymphoma
sgRNA virus library B lymphoma

e ORF virus library B lymphoma
Myc & Bcl-xl ORF viruses plasmablast/plasma cell hyperplasia

ells BCR-ABL1 p185 ORF B ALL

ed CD34+ EBV & KSHV infection B lymphoma

PCs MLL(KMT2A) & ENL(MLLT1) sgRNA
viruses

B ALL & MLL

Trp53 & Bcor shRNA/sgRNA viruses B lymphoma
Trp53 sgRNA virus B lymphoma

Trp53 sgRNA viruses & shRNA
library viruses

B lymphoma

PCs AF9(MLLT3) & MLL(KMT2A) sgRNAs B ALL, AML, or MPAL
Bcor shRNA/sgRNA viruses progeniotor B1 acute lymphomblastic

leukemia
Rfx7 & Phip sgRNA viruses B lymphoma
Npm1 & Alk sgRNA plasmids T & B anaplastic large cell lymphoma
BCR-ABL1 ORF & TNF shRNA
viruses

B acute lymphomblastic leukemia
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Bouquet et al. (169) wild type Rag1-/- fetal liver derived pre B cell lin
Kovacic et al. (170) wild type, Mx1Cre+;Stat5+/+ & Mx1Cre+;

Stat5fl/fl
syngeneic bone marrow, long‐term HSC

myeloid progenitors & HSC‐de
Leskov et al. (171) wild type (human) NSG human umbilical cord blood d

HSCs
Arita et al. (172) wild type NSG spleen derived induced germin
Aubrey et al. (173) Em-Myc syngeneic fetal liver derived HSPCs
Ortega-Molina et al.
(174)

VavP-BCL2 syngeneic fetal liver derived HSCs

Scheicher et al.
(175)

wild type & Cdk6-/- NSG bone marrow

Jiang et al. (176) VavP-BCL2 syngeneic fetal liver derived HSCs
Katigbak et al. (177) Eµ-Myc syngeneic fetal liver derived HSPCs
Wolf et al. (178) Myc-GFP Rag1-/- fetal liver derived pre B cell lin
Wolf et al. (179) GFP-rtTA Rag1-/- fetal liver pre BI cells
van Oosterwijk
et al. (180)

wild type, p19ARF−/− , p15smARF+/+ &
p15smArf−/−

syngeneic bone marrow derived pre B c

McHugh et al. (181) wild type (human) NSG human fetal liver derived deriv
hematopoietic progenitor cells

Reimer et al. (182) wild type (human) NSG human cord blood derived HS

Lefebure et al. (54) Eµ-Myc syngeneic fetal liver cells
Katigbak et al. (183) Eµ-Myc;Rosa26-rtTA;Col1A1-TRE-Cas9-

IRES-GFP/CAG-rtTA
syngeneic fetal liver derived HSPCs

Janic et al. (184) Em-Myc, Em-Myc;Bbc3-/- & Bbc3-/-;
Cdkn1a-/-

syngeneic fetal liver derived HSPCs

Jeong et al. (185) wild type (human) NSG human cord blood derived HS
Yin et al. (108) NUP98-PHF23 syngeneic fetal liver cells & bone marrow

Weber et al. (48) Eµ-Myc;Rosa26-Cas9 syngeneic fetal liver derived HSPCs
Rajan et al. (186) wild type syngeneic fetal liver derived HSCs
Verma et al. (187) wild type syngeneic &

Mmp9-/-
bone marrow

165
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Dawes and Uren Genetics of B Cell Malignancies
target cells offers greater control of malignancy subtype, and
protocols for the culture and transduction of purified HSCs,
hematopoietic stem and precursor cells (HSPCs), B lineage
precursors/progenitors and splenic B cells (188–190) have all
been adapted to generate B lineage malignancies.

Combining both sensitized germline alleles with transduction
of retroviruses also influences the cell type and developmental
stage of the disease being modelled. One of the most frequently
used strain to derive B cell malignancies by adoptive transfer of
transduced cells is the Em-Myc model of Burkitt lymphoma
(191). When bone marrow derived pre B cells from Em-Myc
transgenic mice were transformed by transduction with v-H-ras
or v-raf, the resulting clones forming subcutaneous tumors in
nude mice (153). Later protocols using transplanted Em-Myc fetal
liver cells (typically HSCs and HSPCs) yielded B cell lymphomas
that could be accelerated by loss of tumor suppressors in the
germline (e.g. Trp53, Cdkn2a, p19ARF) and by retroviral
expression of cooperating ORFs (125, 135, 157, 162). The use
of fetal liver cells is particularly useful for the generation of
lymphomas where one or more germline alleles prevent normal
development after E17. This approach has been used to
demonstrate that deletion of the essential mediators of
apoptosis Apaf1 and Casp9 does not affect reconstitution by
fetal liver HSCs (192) or alter the phenotype or latency of
lymphomas derived from reconstitution by Em-Myc fetal liver
HSCs (193).

Viral constructs capable of robust expression of short RNAs
have facilitated rapid verification of putative tumor suppressors
and oncogenic microRNAs. In an early study a series of Trp53
shRNAs introduced into Em-Myc HSCs were found to accelerate
lymphomagenesis in a manner that correlated with the strength
of knockdown (155) and similar results were obtained for the
mir-17–19b microRNA (160) and for shRNAs against Puma
(Bbc3, a proapoptotic downstream target of Trp53) (156) and
Bcor (a tumor suppressor of Burkitt lymphoma) (54). The Em-
Mycmodel has also been used to screen pools of shRNAs against
a set of 1000 known and putative cancer genes for tumor
suppressor activity. Infecting fetal liver HSCs and transplanting
them into recipients identified Sfrp1, Numb, Mek1, Ang2 as
tumor suppressors, as well as identifying known components
of the DNA damage response machinery including Rad17 (166).
A more focused shRNA screen of known targets of Trp53 was
conducted using fetal liver HSCs of mice that were either Em-Myc
Puma-/- or Cdkn1a(p21)-/-Puma-/- in order to identify targets
of p53 that were responsible for its tumor suppressor role
independently of Cdkn1a or Puma (184). This identified a
spectrum of shRNAs against DNA damage repair genes
including Mlh1, Msh2, Rnf144b, Cav1 and Ddit4 which were
capab l e o f a c c e l e r a t ing Em -Myc f e t a l l i v e r HSC
transplant lymphomas.

The most common strains used in these transplantation
experiments are wild type mice, Em-Myc transgenics, Trp53
mutants and Cdkn2a/p19ARF mutants however many other
strains have also been used to probe the cooperative or
epistatic relationships of transduced genes with germline alleles
(108, 158, 159, 161, 162, 165, 174–176, 180, 187) (summarized in
Frontiers in Immunology | www.frontiersin.org 13166
Table 4). HSCs transduced with Myc retroviruses develop into
aggressive pre B cell lymphomas when transplanted (159), and
point mutants of Myc typically found in Burkitt’s lymphoma
increased penetrance and accelerated latency. Replacing wild
type donor cells with Trp53-/+, Trp53-/- or Bim-/- donor HSCs
accelerates latency of wild type Myc more than Myc mutants,
suggesting these mutations reduce Myc induced apoptosis
mediated by Trp53/Bim and reduce selection for Trp53
inactivation. Thus, epistatic effects and mutation redundancy
can be rapidly investigated using germline alleles that predispose
animals to disease.

Modelling the Genetics and Cell of Origin
of BCR/ABL Leukemias
The “Philadelphia chromosome” translocation, t(9;22)(q34;q11),
that expresses the BCR/ABL1 translocation product is observed
in both human CML and B ALL. Retroviral transduction of
hematopoietic cells with the BCR/ABL1 fusion transcript and
transplantation into syngeneic recipients is one of the most
extensively studied transplantation models in the literature.
BCR/ABL1 transduced bone marrow gives rise to various
lineages of malignancies including, B lineage, myeloid and
mixed lineage leukemias. Disease subtype and latency can be
altered by varying donor cell lineage, genotype, culture protocols
and the use of different BCR/ABL1 isoforms. B lineage disease is
particularly promoted by culture conditions that enhance pro/
pre B differentiation and the use of the p185(p190) isoform (152,
170). Myeloid disease can be promoted by the p210 isoform and
by pre-treating donor mice with 5-fluorouracil which depletes
bone marrow of cycling cells and prompts cycling of quiescent
HSCs (152, 170).

Mutations that determine which cell lineages can form
different malignancy subtypes have been extensively studied
using this model. Transplantation of purified HSCs transduced
with BCR/ABL1 retrovirus typically gives rise to CML, however
loss of both Cdkn2a/p19ARF or only p19ARF in donor cells gives
rise to B ALL (165). This is consistent with the observation of
concomitant deletion of the CDKN2A/p14ARF locus in human B
ALL but not in CML. p19ARF loss also enables B ALL to develop
rapidly from BCR/ABL1 transduced common lymphoid
progenitors, pro B cells and pre B cells. Furthermore, p19ARF

null pro B cell derived disease was phenotypically different from
wild type pro B cell derived disease which had substantially lower
penetrance and delayed kinetics. When compared to p19ARF null
pro B cell derived disease, p19ARF null HSC derived B ALL had
greater colony forming potential in methylcellulose, greater
resistance to dexamethasone and reduced resistance to the
kinase inhibitor imatinib mesylate (Gleevec) (162, 165).
Germline truncations of p19ARF have also identified a specific
region responsible for Trp53 induction and suppression of BCR/
ABL1 leukemias (180).

These differences of BCR/ABL1 driven disease in different
lineages might suggest a separate cell of origin for B cell and
myeloid disease, however using purified HSCs as donor cells
suggests both CML and B ALL can arise from a long-term HSC
cell of origin (170). In this model disease subtype is primarily
August 2021 | Volume 12 | Article 670280
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influenced by the use of different isoforms of BCR/ABL1, with the
longer p210 isoform giving rise to CML whereas a shorter
isoform p185 causes B ALL. Despite this common cell of
origin, the cancer-propagating “cancer stem cell” populations
responsible for maintaining these diseases appear to be distinct.
The CML disease was maintained by a long-term HSC
population whereas B ALL was maintained by a differentiated
pro B population.

The interactions of BCR/ABL1 with other donor cell lesions has
also identified additional essential mediators of disease. Stat5a and
Stat5b are necessary for establishment and maintenance of
malignancies derived from BCR/ABL1 infected bone marrow
(163, 167) and N-terminal truncation of Stat5a and Stat5b skews
BCR/ABL1 p210 transplants toward a B cell lineage but BCR/ABL1
p185 transplants are unaffected (154). BCR/ABL p210 fails to induce
disease when using Cdk6−/− bone marrow, possibly due to defects in
HSC cycling in these mice (175). BCR/ABL1 transduced bone
marrow lacking three Src kinases (Lyn-/-;Hck-/-;Fgr-/-) resulted in
delayed onset of B ALL compared with wild type donors however
this delay was not seen for the onset of CML derived using 5-
fluorouracil treated donors (158). This demonstrates a B lineage
specific requirement of Src kinases for BRC/ABL1 driven
malignancies, and is consistent with synergy of pan Src kinase
inhibitor CGP76030 with imatinib mesylate in treating BCR/ABL1-
induced B ALL but not CML.

Collectively the above literature of BCR/ABL1 malignancy
models demonstrate how the genotype and developmental stage
of transduced donor cells can alter disease subtype, clonogenicity
and treatment response. These studies also demonstrate the
value of transplantation models in defining the tumor
initiating cell types of genetically similar (if not identical) but
phenotypically distinct diseases.

Modelling Disease Derived From Specific
Stages of B Cell Development
One disadvantage of using HSCs or mixed populations of bone
marrow as donor cells is their potential to develop a wide
spec t rum of mal ignancy l ineages f rom undefined
developmental stages. Culture systems for in vitro expansion of
B cell progenitors (189, 194, 195) have been further refined to use
B220+Kit+ fetal liver cells cultured with IL-7 on ST-2 stromal
cells (168) and more recently stroma free pro B cell culture
conditions have also been developed using IL-7, SCF and FLT3
ligand (196). These systems allow expansion and transduction of
progenitor/precursor B cells for use in transplantation studies. In
one study, pro B cells were transduced with combinations of
Bcl2, Myc and Ccnd1, and transplanted into severe combined
immunodeficient (SCID) mice. The recipients develop an
immature B cell lymphoma/leukemia which infiltrated the
lymph nodes, spleen, thymus and bone marrow. Ex vivo
cultured pro B cells transduced with Bcl2 and Myc were also
transduced with a cDNA library and selected for continued
growth in the absence of IL-7 and ST-2 stromal cells. CCND3
and NRAS both rendered these cultures independent of IL-7 and
ST-2 cells and accelerated Myc/Bcl2 driven disease when
transplanted into SCID mice.
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Long term proliferative pre B cell lines derived from fetal liver
have also been used to identify and characterize genes that
cooperate with Myc in an in vivo setting (195). Tetracycline
inducible vectors expressing both Myc and Pim1 have
demonstrated an interdependent role of these genes in
allowing in vivo expansion of pre B cell lines, and this
expansion is dependent upon continued expression of both
genes (169). In a similar study, doxycycline inducible Myc and
Bcl2l1 (Bcl-xL) pre BI cells were differentiated to immature B1
cells in vitro, and timed CpG stimulation generated either pre
BII-like or mature B1-cell lines and IgM-secreting B1 cells.
Introduction of these pre BI cells into Rag1-/- mice gives rise to
plasmablast and plasma cell hyperplasia that was reversible when
doxycycline was removed (179).

This model was also used to screen a library of cDNAs in pre
B cell lines to identify genes that cooperate withMyc (178). Cells
were selected in vitro in the absence of stromal cells and IL7 and
in vivo by transplantation into Rag1-/- immunocompromised
recipients. These screens identified multiple Myc cooperating
genes including Exosc1, Rpl18a, Rpl35a Ndufs7, Cacybp, and
Ptprcap. Overexpression of both a full length and truncated form
of Exosc1 (a component of the RNA exosome) were validated as
cooperating with Myc and the authors proposed the mechanism
is a function of global inhibition of mRNA degradation.

Later stages of B cell development can also be reproduced in
vitro. Propagating naïve splenic B cells on a layer of 3T3
fibroblasts expressing both CD40L and BAFF causes them to
proliferate into germinal center B cell like cells called in-vitro-
induced germinal center B (iGB) cells (190). When iGB cells were
cultured with IL-4 they differentiated toward memory B cell
precursors and IL-21 steered differentiation to a long-lived
plasma cell phenotype. Retroviral transduction of these iGB
cells with Myc and Bcl2 and transplantation into sublethally
irradiated syngeneic recipients led to development of aggressive
DLBCL like disease (172).

It is worth noting that in vivo library based screens of B cell
biology need not be strictly limited to readouts of malignancy.
Various models of B cell development and positive/negative
selection of B cells are also relevant to malignancy. The IgMb-
macroself mouse strain ubiquitously expresses a superantigen
that causes deletion of immature B cells through reaction of
surface IgM with a “self” superantigen. Transduction of bone
marrow HSPCs with retroviruses encoding a miRNA expression
library, and reconstitution of macroself recipients led to selection
of cells expressing miR-148a, which was then verified to prevent
deletion of self-reactive B cells (197).

The heavy chain of the B1-8hi transgenic strain has an
increased affinity to the 4-Hydroxy-3-nitrophenylacetyl (NP)
hapten after immunization and this model has been used to
screen for modifiers of germinal center formation. Splenic B cells
from B1-8hi transgenic mice were stimulated with anti-CD180
antibody, transduced with a library of shRNAs and transplanted
into wild-type C57BL/6 mice (198). Recipients were then
immunized with NP-chicken gamma globulin and alum to
stimulate germinal center formation by the transplanted cells.
Comparing the ratio of shRNA transduced B cells from germinal
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centers to non-germinal center cells revealed selection against
Zdhhc2 shRNA, thereby demonstrating a role for this gene in
productive germinal center formation. Zdhhc2 shRNA also
inhibited development of iGB cells ex vivo. Although these two
studies do not model tumor development, they demonstrate how
specific stages of B cell development can be probed using
adoptive transfer of primary B cells to perform reverse
genetic screens.

CRISPR-Cas Gene Editing in B Cell
Malignancy Models
Various site-specific nucleases such as zinc finger nucleases,
transcription activator-like effector nucleases (TALENs) and
Cas endonucleases have been adapted to targeted editing of
mammalian genomes (199). Since the proof of concept of
CRISPR-Cas editing in mammalian cells (200, 201) this system
has gained popularity primarily because the target site specificity
is determined by a short guide RNA (sgRNA) sequence that
includes a ~20 nucleotide segment that is complementary to the
target site sequence. This property makes CRISPR-Cas targeting
constructs easier to use than zinc finger nuclease and TALEN
constructs which express large open reading frames and require
longer sequences of protein encoded DNA binding motifs to
determine target site specificity. There can also be gene/locus
specific differences between the technologies, with TALENs
demonstrating greater activity in heterochromatin and Cas9
greater activity in euchromatin (202).

The short targeting sequence of CRISPR-Cas endonucleases
facilitates functional genomics experiments with a similar
throughput to shRNA vectors, with the additional benefit of
editing target alleles permanently rather than changing gene
expression by lowering mRNA levels. Like shRNAs, sgRNAs can
vary in their efficiency and off target effects. Double stranded
DNA breaks created by SpCas9 are primarily repaired by
nonhomologous end joining (NHEJ) which is an error prone
process. Consequently, some earlier versions of CRISPR-Cas
editing have been shown to create imprecise lesions.
Depending on the delivery system used, a subset of target sites
may generate deletions of thousands of bases, complex
rearrangements and crossover events (203–207). Nonetheless,
technical innovations including novel Cas variants and fusions,
improved sgRNA design, optimized delivery methods and allele
replacement by homologous recombination have reduced off
target effects, increased efficiency, improved specificity and even
permitted mutation of single bases (208–225).

CRISPR-Cas genome editing has been adapted to modelling a
variety of tumor types either through loss of function mutations,
chromosomal engineering or gain of expression [reviewed in
(226, 227)]. CRISPR-Cas models of B cell malignancy are rare
although there is now an extensive literature on conditions that
increase the efficiency of editing primary B cells or HSCs. Some
researchers use cells from mice expressing Cas9 and transduce
these with viruses expressing sgRNAs (228–233). In one of these
studies, activated B cells from mice expressing a Cre inducible
Cas9 IRES GFP from the Rosa26 locus were transduced with
sgRNA viruses, achieving up to 80% knockout efficiency in
Frontiers in Immunology | www.frontiersin.org 15168
cultured primary B cells (231). Another study transduced
lipopolysaccharide (LPS) stimulated B cells expressing Cas9
from the Rosa26 locus with virus expressing sgRNA and a
puromycin resistance marker, followed by selection with
puromycin to enrich for edited cells (230). Others have used
Cas9 expressing Lineage- Sca-1+ Kit+ (LSK) HSCs from bone
marrow, transduced these with lentivirus sgRNA constructs,
yielding edited cells of multiple hematopoietic lineages in
reconstituted recipients including B cells (232). B cell
specificity has also been achieved via the transduction of LSK
HSCs bearing a Cre switchable Cas9 under control of a CD19-
Cre transgene (233). The knockout efficiency of target genes in
CD34+ HSPCs from human cord blood can also be improved by
changing the order of delivery and the sgRNA structure, and
these cells remain transplantable into immunocompromised
mice after transduction (234).

Editing can also be made more efficient by delivering Cas9 as
a protein, as an mRNA or as a ribonuclear protein of Cas9
precomplexed with sgRNA [reviewed in (217)]. Activating
culture conditions also play a role in efficient transduction of B
cells. Human peripheral blood B cells can be expanded by IL4
and CD40L cross l inking and then electroporated.
Electroporation with CD19 targeting sgRNAs in combination
with either Cas9 RNA or Cas9 protein, can achieve knockout of
CD19 in up to 70% of cells (235). Mouse splenic B cells activated
using LPS (as a TLR4/CD180 agonist), or human peripheral
blood B cells activated by anti-CD180 antibody can be edited by
electroporated Cas9/sgRNA ribonuclear protein combined with
adeno associated virus templates (236) or transfection of Cas9/
sgRNA ribonuclear protein with ssDNA template (237). Human
peripheral B cells cultured in IL-2, IL-10, IL-15, multimerized
CD40 ligand and CpG oligodeoxynucleotide are efficiently edited
by electroporation with CRISPR/Cas9 ribonuclear protein and
adeno associated virus template constructs (238).

Although CRISPR-Cas has not been used to study lymphoma
and leukemia as often as shRNAs, the technology has proven
utility in validation of tumor suppressor candidates. One of the
earliest proof of concept experiments used a vector expressing
both Cas9 and an sgRNA against Trp53. When established Em-
Myc p19ARF-/- lymphomas were transduced and transplanted into
recipients, lymphoma growth in vivo was accelerated (138).
Another model used a vector constitutively expressing Cas9
with a doxycycline inducible vector expressing Trp53 sgRNA
in Em-Myc HSCs. This yielded rapid 100% penetrant disease
where both Trp53 alleles could be found modified by a range of
insertions, indels, deletions and large deletions (173). A similar
model was subsequently developed using a doxycycline inducible
Cas9 transgene in donor cells (183).

Three of the forward genetic studies mentioned previously in
this review used similar Em-Myc fetal liver HSC transplant
models to verify the tumor suppressors Bcor (using a vector
expressing both Cas9 and sgRNA) (54, 108) and Rfx7 and Phip
(combining a sgRNA vector with a Cas9 transgene) (48). Em-Myc
HSCs have also been used to perform CRISPR-Cas9 functional
genomic screens. In one study a library of 75 sgRNAs was
designed against rarely mutated genes in Burkitt’s lymphoma
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and cloned into a Cas9 expressing vector. Pools of up to 5
sgRNAs were then transduced into Em-Myc fetal liver cells.
Transduced cells were transplanted into irradiated recipients
and when lymphomas developed, sgRNAs were quantitated by
PCR and sequencing; genomic editing was then measured by T7
endonuclease I mismatch assays. Of the candidate sgRNAs
identified by the screen Phip and Sp3 were functionally
validated as tumor suppressors using the same assay (177).

Cas/sgRNA targeting has also been expanded to the
regulation of transcription by fusing nuclease deficient SpCas9
to transcriptional domains that either activate transcription
(referred to as CRISPRa) or inhibit transcription (referred to as
CRISPRi) (239). CRISPRi constructs have modified in vivo
growth of primary Em-Myc;p19ARF-/- lymphoma and have been
used to conduct an in vivo screen in Bcr-Abl driven B ALL (134).
From a 25 gene library of sgRNAs, Chk2 was identified as a
modifier of temozolomide resistance.

CRISPR-Cas has also been used to engineer translocation
events in somatic cells for mouse models of cancer. One of the
earliest examples was induction of the EML4/ALK translocations
in a lung cancer model (240) and since then CRISPR-Cas
induced trans locat ions have also been adapted to
hematological malignancies, with a handful of models
generating a subset of B lineage malignancies alongside other
subtypes. One small study using mouse donor cells introduced
SpCas9 and guide RNAs that translocate Npm1 to Alk in mouse
fetal liver HSCs. Transplanting these into recipients lead to two
cases of T lineage ALK+ anaplastic large-cell lymphoma and one
case of anaplastic ALK+ large B-cell lymphoma (186). Two
studies discussed in the next section have also used CRISPR-
Cas editing to cause malignancies by introducing these same
translocations in human HSCs (182, 185).

Xenotransplantation Models of
Human Leukemia
Human cord-blood derived HSCs have been used in a manner
similar to mouse derived HSCs to generate adoptive transfer
models of various hematologic malignancies. The t(11;19)(q23;
p13.3) translocation produces the MLL/ENL (KMT2A/MLLT1)
fusion and is found in acute leukemias of B, T and myeloid
lineages. The t(9;11)(p21;q23) translocation produces the MLL/
AF9 (KMT2A/MLLT3) fusion and is primarily observed in
childhood AML but also in a subset of ALL in children below
1 year of age. Lineage-depleted human umbilical cord blood
infected withMLL/ENL virus gave rise to B precursor ALL when
injected into sublethally irradiated NOD/LtSz-scid/scid mice
(164). An MLL/AF9 virus in the same model gives rise to a
phenotypically similar B ALL and less frequently an AML
like disease.

The lineage restriction of tumor initiating and tumor
propagating cells was also investigated. The use of myeloid
promoting suspension culture protocols skewed both
transgenes toward a myeloid leukemia when injected.
Transplantation of limiting cell numbers of primary tumors
into secondary recipients indicated self-renewing leukemia cells
were rare. Southern blots of retroviral vector integration and
immunoglobulin heavy chain rearrangement suggested that
Frontiers in Immunology | www.frontiersin.org 16169
leukemia initiating stem cells with germline immunoglobulin
can differentiate into tumor propagating B lineage cell type
having undergone immunoglobulin rearrangement. Lineage
switching between B and myeloid lineages was also observed
in culture.

More recently both translocations have been recreated in
human HSCs using CRISPR-Cas. One model used CRISPR-Cas
to induce the MLL/AF9 (KMT2A/MLLT3) translocation in
cultured human cord blood HSCs. Transplanting these cells
into sublethally irradiated NSG mice gave rise to B ALL, acute
myeloid leukemia or mixed phenotype acute leukemia, as well as
mice with a mixture of AML/ALL (185). Another study induced
CRISPR-Cas mediated translocations between MLL(KMT2A)
and ENL(MLLT1) in human HSCs. When these cells were
introduced to NSG mice, myeloid disease was most commonly
observed however secondary outgrowths of B ALL were also
identified (182).

Other B cell malignancies have also been modelled.
Transducing human CD133+ HSCs with MYCT58A mutant and
BCL2 from a lentiviral vector gives rise to a “double hit”
lymphoma like disease when transplanted into NOD.Cg-
PrkdcscidIL2rgtm1Wjl/SzJ (NSG) mice (171). NSG mice with a
humanized lymphoid compartment can be generated by
injecting human fetal liver CD34+ hematopoietic progenitor
cells into 1 Gy irradiated NSG recipients and these mice can
serve as a model for virus induced primary effusion lymphoma
caused by coinfection with Kaposi sarcoma-associated
herpesvirus and Epstein-Barr virus (181).

Rapid Generation of Germline Mutations
Historically, developing models using new germline alleles is
time consuming. Traditional transgenesis by pronuclear
injection of fertilized zygotes leads to unpredictable integration
sites of unkown copy number. Gene targetting by homologous
recombination in ES cells requires constructs with long
homology arms and extensive screening and characterization
of clones prior to blastocyst injection. Founder animals must then
be crossed to verify germline transmission and to combine multiple
alleles in sufficient animals to form experimental cohorts.

Higher throughput strategies to generating these models and
cohorts have now been developed using various combinations of
CRISPR-Cas, recombinase mediated cassette exchange and
routine derivation of new ES cell lines from mice bearing
multiple germline alleles [reviewed in (241)]. Superficially,
generating null alleles by zygote injection of CRISPR-Cas
components is less laborious and time consuming than
generating constructs for allele replacement, targeting of ES
cells and blastocyst injection. In practice however, the methods
used to generate mouse strains have diversified and now vary
considerably in the time taken to generate targeting constructs
and/or the reliability and efficiency of allele generation.

One of the main advantages of CRISPR-Cas is that the
targeting of multiple alleles simultaneously can disrupt both
copies of a gene and/or disrupt multiple genes a single founder
animal. Simultaneous CRISPR-Cas mutation of both germline
alleles of B lymphoma tumor suppressors Tet1 and Tet2 have
been achieved as inactivating mutations (242) and even
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conditional loss of function alleles (243), potentially saving
generations of breeding time in order to establish mutant
cohorts. The efficiency of generating floxed alleles by injection
of zygotes has been improved by the use of Cas9-avidin fusion
with biotin tagged replacement template DNA (223). As
mentioned previously some versions of CRISPR-Cas editing
can generate imprecise lesions and off target effects (203–207).
As such the speed gained from generating multiple CRISPR-Cas
edited alleles simultaneously may be somewhat offset by the need
for backcrossing and the need to repeat experiments using mice
derived from independent founders. Where greater precision of
allele generation is required (e.g. null alleles are lethal) the use of
newly rederived ES cell lines from mouse strains carrying four or
more alleles of interest offers an alternative for rapid generation
of multiallelic models (244, 245).

CRISPR-Cas also potentially allows novel approaches to increase
the throughput of gene editing of many alleles simultaneously (246).
Multi sgRNA alleles can be generated by placing a lox71 site
downstream of a U6 promoter and then downstream of this a
concatemers of alternating sgRNA sequences with loxKR3 lox sites.
LoxKR3 sites cannot combine with each other but can recombine
with lox71. As such expression of Cre recombinase will lead to a
single recombination event where only one of the sgRNA sequences
chosen at random will be expressed in each cell. This allows Cre
inducible sgRNA mosaicism that can be employed to study a range
of genes in a single animal, or using germline switching the
generation of many sgRNA strains from a single progenitor allele.

Temporal Control of Germline Alleles and
Retroviral Constructs
Studies cited in previous sections drive specific disease subtypes
through combinations of germline alleles, viral vectors and the
cell types being cultured and transplanted. Additional control
can also be achieved though vectors or alleles that are regulated
by Cre recombinase or ligands such as doxycycline (for
tetracycline regulatable promoters) and 4-hydroxytamoxifen
(to regulate nuclear localization of estrogen receptor fusions)
(247). Early regulatable models of lymphoma include mouse
strains expressing human MYC from tetracycline/doxycycline
regulatable promoters (248, 249) which develop T, B and
myeloid lineage malignancies that regress upon doxycycline
induced repression of MYC expression. A similar doxycycline
repressible BCL2 transgene when combined with the Em-Myc
transgene gave rise to B lymphoblastic leukemia. These
leukemias undergo remission upon repression of BCL2
expression (250). Studies such as these demonstrate the
continued requirement of cancer initiating oncogenes in tumor
maintenance and thereby the potential of these proteins as
therapeutic targets.

Similar regulation of shRNAs has also been achieved using
tetracycline/doxycycline repressible germline alleles. Constitutive
knockdown of the Pax5 tumor suppressor by shRNA in
combination with constitutively activated STAT5b causes a B ALL
like disease (251). Repression of Pax5 shRNA expression by
doxycycline treatment removes a block in differentiation and
when these established leukemias are transplanted into Rag1-/-
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recipients, doxycycline treatment causes remission of disease
(251). An analogous model of tumor suppressor restoration is a
mouse strain that fuses the carboxy terminus of the endogenous
Trp53 open reading frame to the estrogen receptor ligand binding
domain. This fusion renders mice functionally Trp53 null until
treated with 4-hydroxytamoxifen (252). Restoring Trp53 function in
established Em-Myc lymphomas demonstrates the therapeutic
potential for Trp53 restoration (253), which is analogous to the
stabilization of Trp53 by treatment with Mdm2/Mdmx inhibitors.

Constructs that express open reading frames or shRNAs from
tetracycline/doxycycline regulatable promoters have been
transduced into B cell lines or hematopoietic stem cells used
for transplant studies (128, 254–258). Placing the expressed
sequences of a retrovirus between tandem loxP sequences
allows controlled expression of an invertible open reading
frame cassette that is limited by lineage specific Cre expression
(259). Viral vectors expressing doxycycline regulatable Cas9
(260) or sgRNAs (173) have also been developed. Aside from
the previously mentioned strains expressing Cas9 under control
of Cre recombinase (228, 233), several mouse strains have also
been generated that place Cas9 under the control of tetracycline
regulatable promoters (183, 261, 262). In one of these studies, the
Col1a1 locus was targetted in ES cells with a construct expressing
multiple sgRNAs constitutively and a tetracycline/doxycyline
regulatable Cas9 expression cassette. The resulting mice were
crossed to mice with a reverse tetracycline transactivator
allowing doxycycline controlled biallelic mutation of multiple
genes in somatic cells using only two alleles (262).

CRISPRi gene regulation has similarly been placed under
doxycycline control; Sp-dCas9 (nuclease deficient Cas9) is fused
with the VP64 transactivation domain (i.e. four copies of the
herpesvirus VP16 domain), the RELA p65 transactivation
domain and the reverse tetracycline activation domain (263).
This fusion has relatively low activity until cells are treated with
doxycycline at which point the coexpression of sgRNA sequences
causes activated expression of genes determined by the sgRNA
target sequence.
CONCLUSIONS AND
FUTURE DIRECTIONS

Human populations are highly polymorphic and this, in
combination with the mutator phenotype generated by many
tumours, can make it difficult to subtract the background noise of
unselected passenger mutations from the evidence for driver
mutations. The growing volume of human cancer genome
sequencing data has created an exponentially expanding
number of potential validation experiments. This in turn
creates a prioritization bottleneck deciding which combinations
of mutations should be tested and the developmental stages in
which they should be modeled.

Forward genetics in mice can aid this prioritization by cross
species comparative genomics i.e. identifying the overlap of
mutation spectra identified between human and mouse
cohorts. There is a tradeoff between the extent to which
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forward genetic screens recapitulate human disease and the
throughput of mutation detection. Exome sequencing arguably
better mimics human tumor exomes, however insertional
mutagenesis screens better represent the effects of
translocation/copy number/non-coding mutations and are
relatively lower cost and higher yield in terms of the number
of driver mutations identified per mouse. This cost benefit
analysis becomes relevant when considering the statistical
limits of proving selection of non-coding point mutations from
WGS of human cohorts. Insertional mutagenesis models also
have greater statistical power to identify cooperating mutations,
especially when sequencing coverage is sufficient to identify
subclonal mutations.

Forward genetic screens in mice also have limitations. In
some cases, the expected homologs of human drivers are not
identified because functionally equivalent mutations that are
specific to mice are identified instead. Another limitation of both
forward and reverse genetic models is that the time frame for
development of malignancies in mice is far shorter than observed in
human lifespans. Consequently, predisposing mutations must be
introduced and this in turn increases the chance of multiple clones
arising independently in a single animal. Furthermore, Cre
expressing strains used in some studies (such as Cd19 and Aicda)
may replace the endogenous gene thereby altering the dosage of
crucial B cell development genes.

Since the emphasis of this review is experimental approaches
with higher throughput to identify and validate large numbers of
candidate genes, for the most part we have not covered reverse
genetic models that exclusively employ cohorts generated by
germline alleles, which is a vast literature in and of itself. Rapid
model prototyping using transplantation of virus transduced
cells reduces the commitment of resources for initial testing of
candidate genes. This allows more genes to be tested before
robust germline models are designed and, in a handful of
instances, allows for high throughput screens of dozens or
even hundreds of candidate genes within a single cohort. This
approach does, however, lack the precision of inducible targeted
germline alleles and the dosage of transduced constructs can be
highly variable and potentially reach expression levels not
observed in human cel ls . Many cancer genes have
physiological roles that are highly sensitive to dosage, and non-
physiological expression levels from vectors may block or drive
differentiation, sensitize cells to apoptosis or alter proliferation in
a manner not typically observed as a result of somatic mutations.

Despite the number of labs working with B cell
transplantation models, very few have published functional
genomic screens where selection takes place in vivo. In vivo
functional genomic screens are arguably a uniquely powerful
application of adoptive transfer protocols, however in writing
this review we only identified a limited number of studies using
libraries of ORFs, shRNAs or gRNAs in B cell malignancy
models. This would suggest that there is unrealized potential
for more screens and/or that there are technical barriers to the
reproducible identification of constructs selected in parallel.
Functional genomic screens are a tradeoff between increasing
the number of constructs screened whilst controlling for the
Frontiers in Immunology | www.frontiersin.org 18171
stochasticity of selection of each construct relative to others in
the library. B cell survival, migration, selection, differentiation
and expansion are highly stochastic processes that may obscure
selection in complex libraries. One approach to controlling for
this stochasticity employed by several researchers is screening
smaller pools of limited numbers of constructs to make selection
of individual constructs easier to observe. Another approach to
increasing confidence in the set of candidates identified in a
screen is performing parallel screens using both shRNAs and
sgRNAs to find genes that are selected by methodologies (264).

In aggregate, the studies discussed in this review suggest
several lines of research that are ripe for further innovation.
The literature of transplantation-based models is dominated by
the use of Em-Myc fetal liver HSCs as donor cells (often in
combination with mutation of Trp53 or the Cdkn2a locus).
Transplantation models could easily be diversified through the
use of different germline lesions or culturing and transplanting
later stages of B cell development. Many of the studies we discuss
have successfully cultured and transduced primary B cells with
high efficiency, though currently only a handful have used
transplantation of transduced B cells as the basis of
lymphoma models.

Another promising direction for future development is the
use of humanized models of human HSCs transplanted into
immunodeficient mice. Immunodeficient host strains vary
considerably in their engraftment potential, and although
most are missing later stages of B cell development, they can
recapitulate earlier stages of lymphoid development and have
formed the basis of useful models for lymphoblastic leukemias.
Immunodeficient mouse strains have various defects in the
hematopoietic microenvironment and/or stromal cell proteins
that are incompatible with their human targets and this can
inhibit engraftment. For instance, IL2 receptor common
gamma chain null mice (including NSG mice) lack lymphoid
tissue inducer cells and innate lymphoid cells and do not
express HLA molecules on thymic epithelia thereby
preventing MHC restriction of T cells. Some models also
develop graft-versus-host disease. There now is a growing
literature of newer humanized models that can better
recapitulate all aspects of human hematopoiesis (265–268).
Newer strains compensate for these deficiencies or enhance
engraftment by transgenic expression of human proteins
(including SCF, GM-CSF, IL3, SIRPA, HLA, B2M, TPO and
TSLP). Other deficiencies can be partly compensated by co-
engraftment of human HSCs with human mesenchymal stem/
stromal cells. Although this review has mostly emphasized the
use of models dissecting the biology and genetics of B cell
malignancies, there is likely unrealized potential for transplant
models in preclinical studies of treatment efficacy and/or
identification of novel therapeutic targets.

Modelling the antigenic context of B cell malignancies is also
rarely addressed in the literature. The role of antigenic
stimulation or tolerization by commensal flora is frequently
overlooked and SPF or germ free conditions may not
accurately represent the microbiome of human cancer patients,
particularly where disease is influenced by a combination of
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normal gut flora and infectious agents, as is the case withH.pylori
infection in MALT lymphoma (269).

Identification of human cancer drivers and the cell types that
are most responsible for tumor initiation and propagation are
critical foundations for the discovery of novel targeted therapies.
The “post-genomic era” with seemingly limitless genomic data to
interrogate has brought its own challenges of how to prioritize
the use of this data. Modeling large numbers of mutations over
the many stages of B cell development is a vast undertaking,
particularly when differentiating between genes responsible for
tumor initiation and maintenance and when testing potential
targets across diverse genetic contexts of a single disease subtype.
As such even the highest throughput experimental approaches
discussed here can benefit from the parallel use of
complementary methods.
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80. Pérez-Chacón G, Zapata JM. Mouse Models of Chronic Lymphocytic
Leukemia. In: Oppezzo P (Ed.) Chronic Lymphocytic Leukemia. London,
United Kingdom: IntechOpen Limited (2012)

81. Lenz G, Wright GW, Emre NCT, Kohlhammer H, Dave SS, Davis RE, et al.
Molecular Subtypes of Diffuse Large B-Cell Lymphoma Arise by Distinct
Genetic Pathways. Proc Natl Acad Sci (2008) 105:13520–5. doi: 10.1073/
pnas.0804295105
Frontiers in Immunology | www.frontiersin.org 21174
82. Pfeifer M, Lenz G. PI3K/AKT Addiction in Subsets of Diffuse Large B-Cell
Lymphoma. Cell Cycle (2013) 12:3347–8. doi: 10.4161/cc.26575

83. Bronner IF, Otto TD, Zhang M, Udenze K, Wang C, Quail MA, et al.
Quantitative Insertion-Site Sequencing (QIseq) for High Throughput
Phenotyping of Transposon Mutants. Genome Res (2016) 26:980–9.
doi: 10.1101/gr.200279.115

84. Arnold C, Hodgson IJ. Vectorette PCR: A Novel Approach to Genomic
Walking. Genome Res (1991) 1:39–42. doi: 10.1101/gr.1.1.39

85. Devon RS, Porteous DJ, Brookes AJ. Splinkerettes—improved Vectorettes
for Greater Efficiency in PCR Walking. Nucleic Acids Res (1995) 23:1644–5.
doi: 10.1093/nar/23.9.1644

86. Hui EKWW, Wang PC, Lo SJ. Strategies for Cloning Unknown Cellular
Flanking DNA Sequences From Foreign Integrants. Cell Mol Life Sci (1998)
54:1403–11. doi: 10.1007/s000180050262

87. Koudijs MJ, Klijn C, van der Weyden L, Kool J, ten Hoeve J, Sie D, et al.
High-Throughput Semiquantitative Analysis of Insertional Mutations in
Heterogeneous Tumors. Genome Res (2011) 21:2181–9. doi: 10.1101/
gr.112763.110

88. Sherman E, Nobles C, Berry CC, Six E, Wu Y, Dryga A, et al. INSPIIRED: A
Pipeline for Quantitative Analysis of Sites of New DNA Integration in
Cellular Genomes.Mol Ther Methods Clin Dev (2017) 4:39–49. doi: 10.1016/
j.omtm.2016.11.002

89. Berry CC, Gillet NA, Melamed A, Gormley N, Bangham CRM, Bushman
FD. Estimating Abundances of Retroviral Insertion Sites From DNA
Fragment Length Data. Bioinformatics (2012) 28:755–62. doi: 10.1093/
bioinformatics/bts004

90. Mann KM, Newberg JY, Black MA, Jones DJ, Amaya-Manzanares F,
Guzman-Rojas L, et al. Analyzing Tumor Heterogeneity and Driver Genes
in Single Myeloid Leukemia Cells With SBCapSeq. Nat Biotechnol (2016)
34:962–72. doi: 10.1038/nbt.3637

91. Mann M, Mann KM, Guzman-Rojas L, Amaya-Manzanares F, Jones DJ,
Newberg JY, et al. SBCapSeq Protocol: A Method for Selective Cloning of
Sleeping Beauty Transposon Insertions Using Liquid Capture Hybridization
and Ion Torrent Semiconductor Sequencing. Protoc Exch (2016).
doi: 10.1038/protex.2016.053

92. Dawes JC, Webster P, Iadarola B, Garcia-Diaz C, Dore M, Bolt BJ, et al.
LUMI-PCR: An Illumina Platform Ligation-Mediated PCR Protocol for
Integration Site Cloning, Provides Molecular Quantitation of Integration
Sites. Mob DNA (2020) 11:7. doi: 10.1186/s13100-020-0201-4

93. Huser CA, Gilroy KL, de Ridder J, Kilbey A, Borland G, Mackay N, et al.
Insertional Mutagenesis and Deep Profiling Reveals Gene Hierarchies and a
Myc/p53-Dependent Bottleneck in Lymphomagenesis. PloS Genet (2014) 10:
e1004167. doi: 10.1371/journal.pgen.1004167

94. van Galen P, Hovestadt V, Wadsworth MHII, Hughes TK, Griffin GK,
Battaglia S, et al. Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to
Disease Progression and Immunity. Cell (2019) 176:1265–1281.e24.
doi: 10.1016/j.cell.2019.01.031

95. Wu J, Xiao Y, Sun J, Sun H, Chen H, Zhu Y, et al. A Single-Cell Survey of
Cellular Hierarchy in Acute Myeloid Leukemia. J Hematol Oncol (2020)
13:128. doi: 10.1186/s13045-020-00941-y

96. Petti AA, Williams SR, Miller CA, Fiddes IT, Srivatsan SN, Chen DY, et al. A
General Approach for Detecting Expressed Mutations in AML Cells Using
Single Cell RNA-Sequencing. Nat Commun (2019) 10:3660. doi: 10.1038/
s41467-019-11591-1

97. Miles LA, Bowman RL, Merlinsky TR, Csete IS, Ooi AT, Durruthy-Durruthy
R, et al. Single-Cell Mutation Analysis of Clonal Evolution in Myeloid
Malignancies. Nature (2020) 587:477–82. doi: 10.1038/s41586-020-2864-x

98. de Ridder J, Uren A, Kool J, Reinders M, Wessels L. Detecting Statistically
Significant Common Insertion Sites in Retroviral Insertional Mutagenesis
Screens. PloS Comput Biol (2006) 2:e166. doi: 10.1371/journal.pcbi.0020166

99. Sarver AL, Erdman J, Starr T, Largaespada DA, Silverstein KAT.
TAPDANCE: An Automated Tool to Identify and Annotate Transposon
Insertion CISs and Associations Between CISs From Next Generation
Sequence Data. BMC Bioinf (2012) 13:134. doi: 10.1186/1471-2105-13-154

100. de Jong J, de Ridder J, van der Weyden L, Sun N, van Uitert M, Berns A, et al.
Computational Identification of Insertional Mutagenesis Targets for Cancer
Gene Discovery. Nucleic Acids Res (2011) 39:e105–5. doi: 10.1093/nar/
gkr447
August 2021 | Volume 12 | Article 670280

https://doi.org/10.1016/S0966-842X(96)10076-7
https://doi.org/10.1128/JVI.62.7.2427-2436.1988
https://doi.org/10.1128/JVI.62.7.2427-2436.1988
https://doi.org/10.1128/JVI.72.7.5745-5756.1998
https://doi.org/10.1016/j.virol.2006.12.016
https://doi.org/10.1128/jvi.62.3.839-846.1988
https://doi.org/10.1128/jvi.67.4.2083-2090.1993
https://doi.org/10.1093/jnci/73.2.521
https://doi.org/10.3390/ijms21031172
https://doi.org/10.1016/j.tig.2017.07.006
https://doi.org/10.1016/j.gde.2018.03.006
https://doi.org/10.1038/sj.leu.2404691
https://doi.org/10.1038/nature05690
https://doi.org/10.1016/j.semcancer.2016.07.005
https://doi.org/10.1073/pnas.0407541101
https://doi.org/10.4049/jimmunol.1200814
https://doi.org/10.1073/pnas.0804295105
https://doi.org/10.1073/pnas.0804295105
https://doi.org/10.4161/cc.26575
https://doi.org/10.1101/gr.200279.115
https://doi.org/10.1101/gr.1.1.39
https://doi.org/10.1093/nar/23.9.1644
https://doi.org/10.1007/s000180050262
https://doi.org/10.1101/gr.112763.110
https://doi.org/10.1101/gr.112763.110
https://doi.org/10.1016/j.omtm.2016.11.002
https://doi.org/10.1016/j.omtm.2016.11.002
https://doi.org/10.1093/bioinformatics/bts004
https://doi.org/10.1093/bioinformatics/bts004
https://doi.org/10.1038/nbt.3637
https://doi.org/10.1038/protex.2016.053
https://doi.org/10.1186/s13100-020-0201-4
https://doi.org/10.1371/journal.pgen.1004167
https://doi.org/10.1016/j.cell.2019.01.031
https://doi.org/10.1186/s13045-020-00941-y
https://doi.org/10.1038/s41467-019-11591-1
https://doi.org/10.1038/s41467-019-11591-1
https://doi.org/10.1038/s41586-020-2864-x
https://doi.org/10.1371/journal.pcbi.0020166
https://doi.org/10.1186/1471-2105-13-154
https://doi.org/10.1093/nar/gkr447
https://doi.org/10.1093/nar/gkr447
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Dawes and Uren Genetics of B Cell Malignancies
101. de Jong J, Akhtar W, Badhai J, Rust AG, Rad R, Hilkens J, et al. Chromatin
Landscapes of Retroviral and Transposon Integration Profiles. PloS Genet
(2014) 10:e1004250. doi: 10.1371/journal.pgen.1004250

102. Uren AG, Kool J, Matentzoglu K, de Ridder J, Mattison J, van Uitert M, et al.
Large-Scale Mutagenesis in P19arf- and P53-Deficient Mice Identifies
Cancer Genes and Their Collaborative Networks. Cell (2008) 133:727–41.
doi: 10.1016/j.cell.2008.03.021

103. Kool J, Uren AG, Martins CP, Sie D, de Ridder J, Turner G, et al. Insertional
Mutagenesis in Mice Deficient for p15Ink4b, p16Ink4a, p21Cip1, and p27Kip1
Reveals Cancer Gene Interactions and Correlations With Tumor Phenotypes.
Cancer Res (2010) 70:520–31. doi: 10.1158/0008-5472.CAN-09-2736
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Proteins controlling mitochondrial fission have been recognized as essential regulators of
mitochondrial functions, mitochondrial quality control and cell apoptosis. In the present
study, we identified the critical B cell survival regulator TRAF3 as a novel binding partner of
the key mitochondrial fission factor, MFF, in B lymphocytes. Elicited by our unexpected
finding that the majority of cytoplasmic TRAF3 proteins were localized at the mitochondria
in resting splenic B cells after ex vivo culture for 2 days, we found that TRAF3 specifically
interacted with MFF as demonstrated by co-immunoprecipitation and GST pull-down
assays. We further found that in the absence of stimulation, increased protein levels of
mitochondrial TRAF3 were associated with altered mitochondrial morphology, decreased
mitochondrial respiration, increased mitochondrial ROS production and membrane
permeabilization, which eventually culminated in mitochondria-dependent apoptosis in
resting B cells. Loss of TRAF3 had the opposite effects on the morphology and function of
mitochondria as well as mitochondria-dependent apoptosis in resting B cells.
Interestingly, co-expression of TRAF3 and MFF resulted in decreased phosphorylation
and ubiquitination of MFF as well as decreased ubiquitination of TRAF3. Moreover,
lentivirus-mediated overexpression of MFF restored mitochondria-dependent apoptosis
in TRAF3-deficient malignant B cells. Taken together, our findings provide novel insights
into the apoptosis-inducing mechanisms of TRAF3 in B cells: as a result of survival factor
deprivation or under other types of stress, TRAF3 is mobilized to the mitochondria through
its interaction with MFF, where it triggers mitochondria-dependent apoptosis. This new
role of TRAF3 in controlling mitochondrial homeostasis might have key implications in
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TRAF3-mediated regulation of B cell transformation in different cellular contexts. Our
findings also suggest that mitochondrial fission is an actionable therapeutic target in
human B cell malignancies, including those with TRAF3 deletion or relevant mutations.
Keywords: TRAF3, MFF, mitochondria, apoptosis, B lymphocytes, B cell malignancies
HIGHLIGHTS

• Cytoplasmic TRAF3 is mainly localized at mitochondria and
interacts with MFF in B lymphocytes after 2 days in culture.

• TRAF3 regulates the phosphorylation and ubiquitination of
MFF, mitochondrial morphology, respiration and ROS
production to induce apoptosis.

• Overexpression of MFF restores mitochondria-dependent
apoptosis in TRAF3-deficient malignant B cells.
INTRODUCTION

B cell malignancies comprise the majority of human blood
cancers and represent the most common types of lymphoid
tumors (1–3). One essential pathogenic mechanism underlying B
cell malignant transformation is the dysregulation of the survival
and apoptosis pathways, including the B cell receptor (BCR)-Btk,
NF-kB1/2-Bcl-2, PI-3K-Akt-mTOR, c-Myc-ERK and Jak-STAT
signaling axes (4–12). Recurrent genetic alterations that lead to
the activation/elevation of the survival signaling pathways or
inhibition/reduction of the apoptosis signaling pathways are
frequently detected in various B cell malignancies. Typical
examples are gene amplifications, chromosomal translocations
or activating mutations that result in increased expression levels
or constitutive activation of critical pro-survival and anti-
apoptotic proteins such as NIK, c-Rel, c-Myc, Bcl-2, Btk, and
p110d of PI-3K (4–12). Alternative examples include gene
deletions, chromosomal loss or inactivating mutations that
cause decreased expression levels or impaired activities of
inhibitors of the survival pathways and pro-apoptotic proteins
such as IkBa, A20, PTEN, DUSP2, Fas and Bim (4–12). Such
deregulation of the survival and apoptosis pathways not only
contributes to the pathogenesis but also mediates resistance to
various therapies in patients with B cell malignancies (4–11).
Therefore, therapeutic strategies and drugs aimed at targeting the
survival pathways or restoring the apoptosis pathways are being
developed and tested in clinical trials as effective treatments for
B cell malignancies, and particularly as useful adjuvants to
overcome resistance to other therapies (4–11). Better
understanding of the regulatory mechanisms of B cell survival
and apoptosis will facilitate the development and improvement
of these therapeutic strategies.

One of the most frequently deleted or mutated survival
regulator in human B cell malignancies is TRAF3 (13, 14), a
cytoplasmic adaptor protein that has been identified as a critical
regulator of cell survival in mature B lymphocytes (13, 15–19).
org 2181
Deletions and inactivating mutations of the TRAF3 gene
have been documented in almost all malignancies of mature
B cells, including multiple myeloma (MM), diffuse large B-cell
lymphoma (DLBCL), B-cell chronic lymphocytic leukemia
(B-CLL), gastric and splenic marginal zone lymphoma
(MZL), Hodgkin lymphoma (HL) and Waldenstrom ’s
macroglobulinemia (WM) (13, 14). Specific deletion of the Traf3
gene from B lymphocytes in mice results in severe peripheral B cell
hyperplasia due to the prolonged survival of mature B cells
independent of the principle B cell survival factor BAFF (15,
16), which eventually leads to spontaneous development of splenic
MZL and B1 lymphomas (19). Mechanistically, the TRAF3-
TRAF2-cIAP1/2 complex constitutively targets the NF-kB-
inducing kinase (NIK) for K48-linked polyubiquitination
and proteasome-dependent degradation (20–23). Ablation of
TRAF3 as well as TRAF2 or cIAP1/2 all results in constitutive
NF-kB2 activation and prolonged survival of mature B
lymphocytes (15, 16, 24). Furthermore, we recently elucidated
that TRAF3 also regulates the choline kinase a (Chka)-
mediated phosphocholine and phosphatidylcholine (PC)/
phosphatidylethanolamine (PE) biosynthesis pathways to
control the survival of mature B cells (25). Paradoxically,
transgenic overexpression of TRAF3 in B cells promotes B cell
differentiation and results in plasmacytosis and autoimmunity in
mice (26), while double transgenic overexpression of both TRAF3
and BCL-2 in B cells leads to the development of multiple classes
of mature non-Hodgkin B cell lymphomas in mice (27). Detailed
mechanisms underlying such seemingly opposite roles of TRAF3
in B cell tumorigenesis were unknown, but all the above findings
consistently indicate that TRAF3 is a master regulator of B cell
survival and function.

It is known that in the absence of stimulation, TRAF3
proteins are distributed in the cytoplasm and nucleus (28, 29).
In the present study, we were interested to determine whether
TRAF3 proteins are evenly distributed within the cytoplasm in
resting B cells. We obtained an unexpected finding that the
majority of cytoplasmic TRAF3 proteins were localized at the
mitochondria in resting splenic B cells after 2 days in culture.
Given the central importance of mitochondria in regulating cell
survival and apoptosis (30–32), our unexpected finding of the
mitochondrial localization of TRAF3 proteins led us to test a
novel hypothesis that in addition to the previously elucidated
TRAF3-NIK-NF-kB2 and Chka-phosphocholine-PC/PE
pathways, TRAF3 can directly regulate the physiology of
mitochondria to control B cell apoptosis. Our results described
in this paper provide interesting evidence to support this
hypothesis. We identified mitochondrial fission factor (MFF), a
mitochondrial outer membrane (MOM) protein, as a novel
TRAF3-interacting protein in B cells. We demonstrated that
October 2021 | Volume 12 | Article 670338
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TRAF3 inhibited the posttranslational modifications of MFF,
regulated mitochondrial morphology and function, and
promoted mitochondria-dependent apoptosis in B cells. Our
findings thus shed new light into the complex apoptosis-
inducing mechanisms of TRAF3 in B cells. Furthermore, our
study discovered additional targetable points, MFF and
mitochondrial fission, for the treatment of human B cell
malignancies, especially those involving TRAF3 deletion or
relevant mutations.
MATERIALS AND METHODS

Mice and Cell Lines
Traf3flox/floxCD19+/Cre (B-Traf3-/-) and Traf3flox/flox (littermate
control, LMC) mice were generated as previously described (15).
All experimental mice for this study were produced by breeding
Traf3flox/flox mice with Traf3flox/floxCD19+/Cre mice. All mice were
kept in specific pathogen-free conditions in the Animal Facility
at Rutgers University, and were used in accordance with NIH
guidelines and under an animal protocol (Protocol # 08-048)
approved by the Animal Care and Use Committee of Rutgers
University. Equal numbers of male and female mice were used in
this study.

The human multiple myeloma (MM) cell line 8226, which
contains bi-allelic TRAF3 deletions, was kindly provided by Dr.
Leif Bergsagel (Mayo Clinic, Scottsdale, AZ) and was cultured as
previously described (33). The human embryonic kidney 293T
cell line was purchased from American Type Culture Collection
(ATCC, Manassas, VA) and was cultured according to the
manufacturer’s protocol.

Reagents and Antibodies
Mitoprobe JC-1 Assay Kit, MitoSOX Red, and tissue culture
supplements including stock solutions of sodium pyruvate, L-
glutamine, non-essential amino acids and HEPES (pH 7.55) were
from Invitrogen (Carlsbad, CA). Fluorochrome-labeled
antibodies (Abs) against Annexin V and mouse Thy1.1 were
purchased from BioLegend (San Diego, CA). Propidium iodide
(PI), MG-132 and the sarkosyl detergent (N-laurylsarcosine
sodium) were purchased from Sigma-Aldrich Corp. (St. Louis,
MO). Mitochondria Isolation Kit was purchased from
ThermoFisher (Waltham, MA). Recombinant BAFF was from
PeproTech (Rocky Hill, NJ) and agonistic anti-CD40 (HM40-3)
was purchased from eBioscience (San Diego, CA). The TnT®

Quick T7 Coupled Transcription/Translation System was from
Promega (Madison, WI). Seahorse XF Cell Mito Stress Test Kit
was obtained from Agilent Technologies (Lexington, MA).
EDTA-free Protease Inhibitor Cocktail Tablets were obtained
from Roche Diagnostics Corp (Indianapolis, IN). Phosphatase
Inhibitor Mini Tablets, the deubiquitinase inhibitor N-
ethylmaleimide (NEM), GelCode Blue Stain reagent and
Streptavidin-Sepharose beads were purchased from Pierce
(Rockford, IL). Glutathione-Sepharose 4B beads were from GE
Healthcare (Chicago, IL). Anti-c-Myc Tag (9E10) Affinity Gel
was from BioLegend (San Diego, CA). Bradford Assay was
purchased from Bio-Rad (Hercules, CA). Polyclonal or
Frontiers in Immunology | www.frontiersin.org 3182
monoclonal rabbit Abs against total or phosphorylated MFF,
Caspase 9, Caspase 3, Calreticulin, COX IV, YY1, Bcl-xL, Bcl-2,
Mcl-1, Bax, ubiquitin (Ub), K48-Ub, K63-Ub and HA tag were
from Cell Signaling Technology (Beverly, MA). Polyclonal rabbit
Abs to TRAF3 (H122) and Myc tag were from Santa Cruz
Biotechnology (Santa Cruz, CA). Mouse monoclonal Abs to
SBP tag was purchased from EMD Millipore Corp (Burlington,
MA). Anti-b-actin Ab was from Chemicon (Temecula, CA). HRP-
labeled secondary Abs were from Jackson ImmunoResearch
Laboratories, Inc. (West Grove, PA).

DNA Constructs
The full-length coding cDNA sequence of human TRAF3 was
cloned and the lentiviral expression vector pUB-TRAF3-Thy1.1
was generated as previously described (25). To facilitate co-
immunoprecipitation and affinity purification, we engineered an
N-terminal FLAG tag or a C-terminal streptavidin-binding
peptide-6xHistidine (SBP-6xHis) tag (34) in frame with the
TRAF3 coding sequence, respectively. We subsequently
generated two lentiviral expression vectors of tagged human
TRAF3, including pUB-FLAG-TRAF3 and pUB-TRAF3-SBP-
6xHis. For GST pull-down studies, we cloned the human TRAF3
coding sequence into the pGEX vector (provided by Dr. Mike
Kiledjian, Rutgers University) (35) and generated the pGEX-
GST-TRAF3 plasmid that expresses the GST-TRAF3 fusion
protein. We also engineered several deletion mutants of human
TRAF3 that lack different structural domains (28) using PCR
cloning, including DTRAF-C (lacks the TRAF-C domain),
DTRAF-N&C (lacks the TRAF-N and TRAF-C domains),
DZnR (lacks the Zinc RING domain) and DZnR&F (lacks the
Zinc RING domain and all 5 Zinc fingers). The coding cDNA
sequences of MFF were cloned from the human MM cell line
8226 cells using reverse transcription PCR with the high fidelity
polymerase Pfu UltraII (Agilent, Santa Clara, CA). Primers used
for the cloning of human MFF include hMFF isoform 1-F (5’-
ATT TAA ATG AGT AAA GGA ACA AGC A -3’) or hMFF
isoform 2 or isoform 3-F (5’- GCT GAG ATG GCA GAA ATT
AGT CGA ATT -3’) paired with hMFF-R (5’- CTC TAG CGG
CGA AAC CAG AGC CA -3’). No PCR products of human MFF
isoform 1 were amplified from 8226 cells. PCR products of
human MFF isoform 2 or 3 were gel-purified and verified by
DNA sequencing. To facilitate immunoprecipitation studies, we
engineered an N-terminal Myc tag (34) in frame with the human
MFF coding sequences and subsequently cloned them into the
expression vector pcDNA3.0. The coding cDNA sequence of
each Myc-tagged MFF isoform was also subcloned into the
lentiviral expression vector pUB-eGFP-Thy1.1 (36) (generously
provided by Dr. Zhibin Chen, the University of Miami, Miami,
FL) by replacing the eGFP coding sequence with Myc-MFF. The
lentiviral expression vector of HA-tagged ubiquitin LPC-HA-Ub
was described previously (37). Each DNA construct was verified
by DNA sequencing at GenScript (Piscataway, NJ).

Splenic B Cell Purification and Culture
Mouse splenic B cells were purified using anti-mouse CD43-coated
magnetic beads and a MACS separator (Miltenyi Biotec Inc.)
following the manufacturer’s protocols as previously described
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(15). The purity of the isolated B cell population was monitored by
FACS analysis and cell preparations of >98% B220+CD3- purity
(Supplementary Figure 1) were used for protein preparation and
mitochondrial analyses. An aliquot of purified splenic B cells was
cultured ex vivo in mouse B cell medium (15, 25) for 1 or 2 days
before protein preparation and mitochondrial analyses.

Transduction of Human MM Cells With
Lentiviral Expression Vectors
Lentiviruses of pUB-TRAF3-SBP-6xHis, pUB-FLAG-TRAF3,
pUB-Myc-MFF, pUB-Myc-MFF3 and an empty vector pUB-
Thy1.1 were packaged and lentiviral titers were determined as
previously described (33, 38). Human MM 8226 cells were
transduced with the packaged lentiviruses at an MOI of 1:5
(cell:virus) in the presence of 8 mg/mL polybrene (33, 38).
Transduction efficiency of cells was analyzed at day 3 post
transduction using Thy1.1 immunofluorescence staining
followed by flow cytometry. Transduced cells were
subsequently used for mitochondrial isolation and affinity
purification or apoptosis analyses.

Flow Cytometry
For analysis of apoptosis, cells were stained with annexin V
according to the manufacturer’s protocol (Invitrogen) and
analyzed by flow cytometry as previously described (19). For
cell cycle analysis, cells were fixed with ice-cold 70% ethanol. Cell
cycle distribution was subsequently determined by propidium
iodide (PI) staining followed by flow cytometry as previously
described (39). For the measurement of mitochondrial
membrane permeabilization, cells were stained with a
MitoProbe JC-1 Assay Kit (Molecular Probes) following the
manufacturer’s instructions. Briefly, 2 x 106 cells of each
condition were resuspended in 1 ml PBS and incubated for 5
minutes at 37°C. Subsequently, 10 µl of 200 µM JC-1 (final
concentration: 2 µM) was added to the cells and incubated at
37°C for 30 minutes. Cells were subsequently washed with 2 ml
of PBS, fixed with 1% formaldehyde, and then analyzed by flow
cytometry. Listmode data were acquired on a Northern Lights
spectral flow cytometer (Cytek, Fremont, CA) or a FACSCalibur
(Becton Dickinson, Mountain View, CA). The results were
analyzed using the FlowJo software (TreeStar, San Carlos, CA).

Total Protein Extraction and
Immunoblot Analysis
For total protein lysates, cell pellets were lysed in 2X SDS sample
buffer (62.5 mM Tris, pH6.8, 1% SDS, 15% glycerol, 2% b-
mercaptoethanol and 0.005% bromophenol blue), sonicated for
30 pulses, and then boiled for 10 minutes (40). Proteins were
separated by SDS-PAGE and immunoblotted with antibodies to
specific proteins as indicated in the figures followed by HRP-
conjugated secondary antibodies (goat anti-rabbit or goat anti-
mouse IgG). A chemiluminescent substrate (Pierce) was used to
detect HRP-labeled Abs on immunoblots. Images of
chemiluminescence signals on immunoblots were acquired and
quantitated using a low-light imaging system (LAS-4000 mini,
FUJIFILM Medical Systems USA, Inc., Stamford, CT) (19, 33).
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Fractionation of Cytosol, Mitochondria and
Microsomes (Rich in ER)
For purified mouse splenic B cells (8 x 107 cells/condition),
mitochondria were fractionated from cells using a Mitochondria
Isolation Kit (ThermoFisher) following the manufacturer’s
protocol. For human MM cells (3 x 107 cells/condition),
mitochondria were fractionated from cells using 700 µl of
Mitochondria Isolation Buffer (250 mM sucrose, 10 mM
HEPES, pH7.5, 10 mM KCl, 1 mM EDTA and 0.1 mM EGTA
with protease and phosphatase inhibitors) followed by
homogenization in a Dounce homogenizer as previously
described (40). Nuclei were pelleted from the Mitochondrial
Isolation lysates by centrifugation at 1,000 g for 10 minutes at
4°C. The cleared lysates were then centrifuged at 10,000 g for 25
minutes at 4°C to obtain the pellets of mitochondria. The
supernatants were further centrifuged at 100,000 g for 2 hours
to separate the pellets of microsomes (rich in ER) from cytosolic
proteins (S100 fraction). One-fifth volume of 5X SDS sample
buffer was added into each S100 fraction. The pellets of
mitochondria and microsomes (rich in ER) were lysed and
sonicated in 300 ml of 2X SDS sample buffer, respectively.
Cytoplasmic and nuclear extracts were prepared as previously
described (15, 33). All protein samples were subsequently boiled
for 10 minutes for immunoblot analyses.

Co-Immunoprecipitation Assay of
Mitochondrial Lysates
Human MM cell line 8226 cells (1.5 x 108 cells/condition)
transduced with pUB-TRAF3-SBP-6xHis or pUB-FLAG-
TRAF3 were used for mitochondrial fractionation as described
above. Mitochondrial pellets were lysed and sonicated in CHAPS
lysis buffer (1% CHAPS, 20 mM Tris, pH 7.4, 150 mM NaCl, 50
mM b-glycerophosphate, and 5% glycerol with freshly added 1
mM DTT and EDTA-free Mini-complete protease inhibitor
cocktail) (39). Mitochondrial lysates were cleared by
centrifugation at 10,000 g for 20 minutes at 4°C. Cleared
mitochondrial lysates were subsequently incubated with the
Streptavidin-Sepharose beads (Pierce) to immunoprecipitate
TRAF3-SBP-6xHis. Immunoprecipitates were washed 5 times
with the Wash Buffer (39), resuspended in 2X SDS sample buffer,
boiled for 10 minutes, and then separated on 4-16% gradient
SDS-PAGE (Invitrogen) for mass spectrometry-based
sequencing or immunoblot analyses.

Liquid Chromatography-Tandem Mass
Spectrometry (LC-MS/MS)-Based
Sequencing
Mitochondrial lysates immunoprecipitated with the
Streptavidin-Sepharose beads were used for LC-MS/MS-based
sequencing. The entire gel lanes of TRAF3-SBP-6xHis and the
negative control (FLAG-TRAF3) immunoprecipitates were each
sectioned into 15 continuous slices. The gel slice samples were
subjected to thiol reduction by TCEP, alkylation with
iodoacetamide, and digestion with sequencing-grade modified
trypsin (41, 42). Peptides were eluted from the gel slices, desalted,
and then subjected to reversed-phase nano-flow ultra high
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performance capillary liquid chromatography (uPLC) followed
by high-resolution/high-mass accuracy MS/MS analysis using an
LC-MS platform consisting of an Eksigent Nano Ultra 2D Plus
uPLC system hyphenated to a Thermo Orbi Velos mass
spectrometer (40). The MS/MS was set to operate in data
dependent acquisition mode using a duty cycle in which the
top 15 most abundant peptide ions in the full scan MS were
targeted for MS/MS sequencing. Full scan MS1 spectra were
acquired at 100,000 resolving power and maintained mass
calibration to within 2-3 ppm mass accuracy. LC-MS/MS data
were searched against the human IPI and UniProt databases
using the Mascot and Proteome Discoverer search engines (41,
42). Protein assignments were considered highly confident using
a stringent false discovery rate threshold of <1%, as estimated by
reversed database searching. Rough relative protein amounts
were estimated using spectra counting values.

Co-Immunoprecipitation From
Transfected 293T Cells
For verification of the TRAF3-MFF interaction, 293T cells were
co-transfected with pUB-TRAF3-SBP-6xHis and pcDNA3-Myc-
MFF, pcDNA3-Myc-MFF3, pcDNA3-Myc-CSNK2A2 or an
empty expression vector pcDNA3-Myc. At day 2 post
transfection, cells (2 x 107 cells/condition) were harvested and
total cellular proteins were lysed in 1% CHAPS Lysis Buffer (39),
sonicated and cleared by centrifugation. The cleared lysates were
immunoprecipitated with the Streptavidin-Sepharose beads.
Immunoprecipitates were washed 5 times with the Wash
Buffer (39), resuspended in 2X SDS sample buffer, boiled for
10 minutes, and then separated on SDS-PAGE for
immunoblot analyses.

In Vitro Transcription and Translation
of Myc-MFF
In vitro translation of Myc-MFF proteins was performed using
the pcDNA3-Myc-MFF plasmid as the template with a coupled
in vitro transcription/translation system from reticulocyte lysates
(TnT® Quick T7 Coupled Transcription/Translation System,
Promega), following the manufacturer’s protocol. The reactions
were incubated at 30°C for 90 min. Translation of Myc-MFF was
verified by Western blot analysis.

GST Pull-Down Assay
For preparation of GST-TRAF3 fusion proteins, each pGEX-
GST-TRAF3 plasmid, including wild type (WT) and the deletion
mutants, was transformed into E. coli BL21 bacteria. Expression
of GST-TRAF3 fusion proteins were induced with 0.2 mM
isopropyl-b-D-thiogalactoside (IPTG) for 2 hours as described
(35). Bacterial pellets were lysed and sonicated in the Bacteria
Lysis Buffer (20 mM Tris-HCl, pH 8.0 and 150 mM NaCl with
freshly added 1 mg/ml lysozyme, 1% sarkosyl, 1 mMDTT and 1x
EDTA-free Protease Inhibitor cocktail). Bacterial lysates were
centrifuged at 10,000 g for 30 minutes to remove insoluble
materials. Cleared bacterial lysates were diluted with 3 volumes
of the Dilution Buffer (2% Triton X-100, 20 mM Tris, pH 8.0, 150
mM NaCl, 1 mM DTT and 1x EDTA-free Protease Inhibitor
cocktail). GST-TRAF3 fusion proteins were subsequently
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purified from the diluted bacterial lysates using Glutathione–
Sepharose 4B beads (GE Healthcare) according to the
manufacturer’s protocol. After incubation with the lysates, the
beads were washed five times in PBS containing 0.5% Triton X-
100, and then eluted with 50 mM Tris-HCl (pH 8.0) containing
10 mM of reduced glutathione. The concentrations of eluted
GST-TRAF3 proteins were determined by Bradford analysis, and
then verified by SDS-PAGE and GelCode Blue staining by
comparing to protein standards of known concentrations
loaded on the same gel.

For GST pull-down assay of Myc-MFF proteins expressed in
293T cells, whole cell lysates were prepared from 293T cells (2 x
107 cells/condition) transfected with pcDNA3-Myc-MFF or
pcDNA3-Myc-MFF3 using the 1% CHAPS Lysis Buffer (39).
For GST pull-down assay of in vitro translated Myc-MFF
proteins, the translated proteins (4 x 50 µl of reactions/
condition) were also lysed in the 1% CHAPS Lysis Buffer (39).
293T cell lysates or the in vitro translated proteins were cleared
by centrifugation, and then incubated with Glutathione-
Sepharose 4B beads for 1 hour at 4°C to remove non-specific
bead interactors. The pre-cleared lysates were subsequently
incubated with 10 µg of GST, GST-TRAF3 fusion protein or
GST-TRAF3 deletion mutants in the presence of Glutathione-
Sepharose 4B beads for 4 hours at 4°C. After incubation, the
beads were washed 5 times with the Wash Buffer (39). Proteins
pulled-down by the beads were eluted with 100 µl of 2X SDS
sample buffer, boiled at 98°C for 10 minutes, and then analyzed
by SDS-PAGE and immunoblot analyses. GST, GST-TRAF3
fusion protein or GST-TRAF3 deletion mutants in each pull-
down sample were also analyzed by SDS-PAGE and visualized by
GelCode blue staining. Band intensity of GelCode Blue stained
gels was quantified using the ImageJ software (NIH, Bethesda,
MD) (43).

Electron Microscopy
For the electron microscopic (EM) examination of
mitochondrial morphology and number, cells were fixed in
0.1 M cacodylate buffer with 2.5% glutaraldehyde, 4%
paraformaldehyde and 8 mM CaCl2. The fixed and processed
samples were subsequently analyzed on a JOEL 1200EX electron
microscope as previously described (44).

Mitochondrial Function Assay
Mitochondrial oxygen consumption rates (OCR) were measured
using a Cell Mito Stress Test Kit and a Seahorse XFe24 Analyzer
(Seahorse Bioscience, North Billerica, MA) as described
previously (45). Briefly, purified splenic B cells were seeded at
2 x 106 cells/well in XFe24 plates in Seahorse XF medium (10%
FBS, 1% Pen-Strep). To derive different parameters of
mitochondrial respiration, OCRs were measured sequentially
before and after injecting oligomycin (a complex V inhibitor),
p-trifluoromethoxy carbonyl cyanide phenyl hydrazine (FCCP, a
protonophore and mitochondrial uncoupler), and antimycin A
(a complex III inhibitor) plus rotenone (a complex I inhibitor),
respectively, from XFe24 reagent ports. The following inhibitor
concentrations were used for the mitochondrial stress test:
oligomycin, 1 µM; FCCP, 1 µM; rotenone/antimycin A, 1 µM.
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All OCR measurements were normalized to cell number (per
million cells).

Mitochondrial ROS Analysis
For mitochondrial superoxide analysis, mouse splenic B cells
were washed with PBS and stained with 1 µM of MitoSOX Red
(Molecular Probes) for 30 minutes at 37°C in a 5% CO2

incubator. Stained cells were washed twice with pre-warmed
PBS and subsequently analyzed by flow cytometry on a Northern
Lights spectral flow cytometer.

Ubiquitination Analysis
For ubiquitination analysis, 293T cells were co-transfected with
LPC-HA-Ub and pUB-TRAF3-SBP-6xHis, pUB-Myc-MFF or an
empty lentiviral vector pUB-Thy1.1. At day 2 post transfection, cells
were treated with 10 µM of the proteasome inhibitor MG-132 at
37°C for 4 h, and then harvested at 2 x 107 cells/condition. Total
cellular proteins were lysed in 1% CHAPS Lysis Buffer (39)
containing 1x Phosphatase Inhibitors (Pierce) and 1 mM NEM.
The insoluble pellets were removed by centrifugation at 10,000 g for
20 minutes at 4°C. The CHAPS lysates were subsequently
immunoprecipitated with the Anti-c-Myc Tag (9E10) Affinity Gel
(BioLegend) or Streptavidin-Sepharose beads (Pierce).
Immunoprecipitates were washed 5 times with the Wash Buffer
(39) containing 1x Phosphatase Inhibitors and 1 mM NEM.
Ubiquitination of the immunoprecipitated MFF or TRAF3 was
analyzed by immunoblot analyses.

Statistics
Statistical analyses were performed using the Prism software
(GraphPad, La Jolla, CA). For direct comparison of the levels of
cell apoptosis and mitochondrial parameters between LMC and
Traf3-/- B cells, statistical significance was determined with the
unpaired t test for two-tailed data. For comparison of three or
more groups of data such as the relative binding between GST-
TRAF3 (WT or mutants) and MFF, a one-way analysis of
variance (ANOVA) was used to determine the statistical
significance. P values less than 0.05 are considered significant,
P values less than 0.01 are considered very significant, and P
values less than 0.001 are considered highly significant.
RESULTS

TRAF3 Promotes Mitochondria-Dependent
Apoptosis in Resting B Cells
We previously reported that Traf3 deficiency results in
prolonged survival of mature B lymphocytes (15), which
eventually leads to spontaneous development of splenic
marginal zone lymphoma and B1 lymphoma in B-Traf3-/- mice
(19). Interestingly, CD95-induced apoptosis is normal in Traf3-/-

splenic B cells (15), suggesting that the extrinsic apoptotic
pathway is not interrupted by Traf3 deficiency. Here we
measured the intrinsic apoptosis in premalignant Traf3-/- and
TRAF3-sufficient splenic B cells prepared from tumor-free,
young adult B-Traf3-/- and littermate control (LMC) mice.
Approximately 50% of LMC B cells underwent apoptosis at
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day 2 after ex vivo culture as analyzed by annexin V staining
(Figures 1A, B). DNA fragmentation was detected in the
apoptotic LMC B cells by cell cycle analysis (Figures 1C, D).
However, such cellular apoptosis and DNA fragmentation were
drastically reduced in Traf3-/- B cells (Figures 1A–D).
Mitochondria are the gateway of intrinsic apoptosis, which is
often preceded by mitochondrial membrane potential change
(30–32). We next analyzed the mitochondrial membrane
potential changes using JC-1 staining and flow cytometry. We
found that Traf3 deficiency dramatically suppressed the
mitochondrial membrane permeabilization in resting splenic B
cells at day 2 after ex vivo culture (Figures 1E, F). Interestingly,
treatment with the survival factor BAFF, which is known to
induce TRAF3 degradation in B cells (28), was able to prevent
apoptosis, DNA fragmentation and mitochondrial membrane
permeabilization in LMC B cells but did not have detectable
effects on Traf3-/- B cells (Supplementary Figure 2). We further
investigated the downstream biochemical events induced by
mitochondrial membrane permeabilization, including
activation of the initiator caspase (caspase 9) and the effector
caspase (caspase 3) of the intrinsic apoptotic pathway. We
observed that activation of both caspase 9 and caspase 3, as
demonstrated by the cleavage of both caspases, was substantially
inhibited in Traf3-/- splenic B cells (Figure 1G). Taken together,
these data indicate that after 2 days in culture and probably
under other stress conditions, TRAF3 promotes the
mitochondria-dependent intrinsic apoptotic pathway in resting
splenic B cells.

It has been shown that Traf3 deficiency leads to constitutive
activation of NF-kB2 (15, 16), which controls the expression of the
Bcl-2 family proteins (28, 46). Given that the Bcl-2 family proteins
are important regulators of mitochondria-dependent apoptosis (47,
48), we examined the expression of several members of the Bcl-2
family in purified LMC and Traf3-/- splenic B cells. We detected a
slight increase in the expression level of the anti-apoptotic protein
Bcl-2 in Traf3-/- B cells at day 0 and a modest up-regulation in
another anti-apoptotic protein Mcl-1 in Traf3-/- B cells at day 0 and
day 1 after ex vivo culture in the absence of stimulation
(Supplementary Figure 3). Interestingly, BAFF stimulation or
CD40 ligation markedly induced up-regulation of the anti-
apoptotic proteins Bcl-xL and Mcl-1 in both LMC and Traf3-/- B
cells. Up-regulation of Bcl-xL and Mcl-1 induced by anti-CD40 was
more robust than that induced by BAFF, while BAFF stimulation
appeared to have a stronger effect on Bcl-xL and Mcl-1 up-
regulation than Traf3 deficiency in B cells (Supplementary
Figure 3). However, Traf3 deficiency was as potent as BAFF
stimulation at inhibiting mitochondria-dependent apoptosis in
resting splenic B cells (Supplementary Figure 2). These results
suggest that in addition to the Bcl-2 family proteins, other
mechanisms may also be involved in TRAF3-mediated regulation
of mitochondria-dependent apoptosis in B cells.

Cytoplasmic TRAF3 Is Mainly Localized at
the Mitochondria in Ex Vivo Cultured
Resting B Cells
In the absence of stimulation, cellular TRAF3 proteins are
distr ibuted in the cytoplasm and nucleus (28, 29)
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(Supplementary Figure 4). BAFF stimulation or CD40 ligation
recruits TRAF3 from the cytoplasm to the BAFF receptor or
CD40 signaling complex at the sphingolipid-enriched membrane
rafts in B cells (49, 50). Viral infection leads to TRAF3 re-
localization from the cytoplasm to mitochondria (51, 52). To
determine if TRAF3 is evenly distributed within the cytoplasm
in the absence of stimulation, we prepared ER, mitochondrial
and cytosolic (S100) fractionations from resting splenic B cells
of naïve mice. Unexpectedly, we found that the majority of
cytoplasmic TRAF3 was in the mitochondrial fraction in resting
Frontiers in Immunology | www.frontiersin.org 7186
splenic B cells (Figure 1H). We also noticed that in LMC B cells,
TRAF3 proteins were remarkably up-regulated in the
mitochondria and less robustly in the ER, but not up-regulated
in the nucleus, at day 2 after ex vivo culture (Figure 1H and
Supplementary Figure 4), probably because endogenous BAFF-
induced TRAF3 degradation was eliminated after ex vivo culture.
These data suggest that BAFF-induced recruitment and
subsequent degradation of TRAF3 mainly affect the proteins
localized at the mitochondria. Thus, the mitochondrial
localization of TRAF3 raises an intriguing possibility that
A B

D

E F

G H

C

FIGURE 1 | TRAF3 promoted the mitochondria-dependent intrinsic apoptotic pathway and was mainly localized at mitochondria in resting B cells. Splenic B cells
were purified from gender-matched, young adult (8-12-week-old) naïve LMC or B-Traf3-/- mice. Purified cells were analyzed directly (Day 0) or at day 2 after ex vivo
culture in mouse B cell medium. (A) Representative FACS profiles of annexin V staining. Gated populations indicate the annexin V+ apoptotic cells. (B) Graphical
results of the percentage of annexin V+ apoptotic cells. (C) Representative FACS profiles of cell cycle distribution analyzed by PI staining. Gated populations indicate
apoptotic cells with DNA fragmentation (DNA content < 2n). (D) Graphical results of the percentage of apoptotic cells with DNA fragmentation. (E) Representative
FACS profiles of mitochondrial membrane permeabilization measured by MitoProbe JC-1 staining. Gated populations in H show cells with healthy mitochondria and
gated populations in P indicate cells with permeabilized mitochondria. (F) Graphical results of the percentage of cells with permeabilized mitochondria. (G) Cleavage
of caspase 9 and caspase 3. Total cellular proteins were prepared at day 1 or day 2 after culture and immunoblotted for caspase 9 and caspase 3, followed by
TRAF3 and actin. (H) Cytoplasmic TRAF3 proteins were mainly localized at mitochondria in resting B cells. ER, mitochondrial and S100 (cytosolic) proteins were
biochemically fractionated and analyzed by immunoblotting. Proteins in each fraction were immunoblotted for TRAF3, calreticulin (an ER protein), COX IV (a
mitochondrial protein) and actin. Immunoblots shown are representative of 3 experiments. Graphs shown in (B, D, F) are the mean ± SD (n=6/group, including 3
female and 3 male samples). ***p < 0.001 by t test.
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TRAF3 may also directly regulate mitochondrial physiology to
induce mitochondria-dependent apoptosis in B cells.

MFF Is a Novel TRAF3-Interacting Protein
Given that TRAF3 does not contain any mitochondrial targeting
motif or transmembrane domain, we reasoned that TRAF3 may
be associated with mitochondria in resting B cells by interacting
with mitochondrial outer membrane (MOM) proteins. We
sought to identify such TRAF3-binding partner(s) in the
mitochondrial fraction of B cells using affinity purification
followed by LC-MS/MS. To facilitate affinity purification, we
generated lentiviral expression vectors of tagged TRAF3,
including pUB-TRAF3-SBP-6xHis and pUB-FLAG-TRAF3 (39,
40). To strengthen the clinical relevance of our study and
eliminate the interference of endogenous TRAF3 proteins, we
used the human MM cell line 8226 that contains biallelic
deletions of the TRAF3 gene for transduction by the lentiviral
expression vectors of tagged TRAF3. Transduction efficiency of
each lentiviral vector in 8226 cells was > 90% as determined by
FACS (Supplementary Figure 5A).

We first validated that the C-terminal streptavidin-binding
peptide (SBP)-6xHis tag did not affect the function of TRAF3 as
demonstrated by its potent induction of cellular apoptosis in
transduced 8226 cells (Figure 2A), which was comparable to that
induced by the untagged, native TRAF3 in transduced 8226 cells as
we previously reported (25). We also verified that TRAF3-SBP-
6xHis proteins maintained the mitochondrial localization of native
TRAF3 (Supplementary Figure 5B). We next performed affinity
purification using mitochondria isolated from transduced 8226
cells. We solubilized the mitochondrial proteins in 1% CHAPS
lysis buffer (39, 40). Using Streptavidin-Sepharose beads, we
immunoprecipitated TRAF3-SBP-6xHis and its associated
proteins from the solubilized mitochondrial proteins. Cells
transduced with FLAG-TRAF3 were subjected to the same
biochemical fractionation and immunoprecipitation procedures as
a negative control. We confirmed the high recovery rate of TRAF3-
SBP-6xHis, but not FLAG-TRAF3, by immunoprecipitation with
the Streptavidin-Sepharose beads using immunoblot analyses
(Figure 2B). We subsequently performed LC-MS/MS of
the mitochondrial proteins immunoprecipitated with the
Streptavidin-Sepharose beads. Interestingly, we identified the
MOM protein MFF (53) as a novel candidate TRAF3-interacting
protein. However, our LC-MS/MS analysis did not detect any
peptide derived from MAVS, a mitochondrial protein that is
known to bind to TRAF3 upon viral infection (54, 55). In
addition to MFF, our LC-MS/MS analysis identified a number of
other candidate TRAF3-interacting proteins, including GSTP1,
CKMT1A, PISD, SLC25A40, HDHD3, PYCARD, GPI, CDS2,
DBI, ACAT2, RETSAT, PDE9A, SLC4A7, PRKG2, CDC42,
ALDH3A1, ME1, CSNK2A2, CAP1, PGM2, PIK3R2, GSTO1,
APEH, PSAT1, UGP2, GUCY1B3 and PRMT1. Bioinformatic
analyses revealed that these proteins are predicted to be localized
at the mitochondrial inner membrane (MIM), mitochondrial
intermembrane space (MIS), mitochondrial matrix, ER
membrane, plasma membrane or cytosol (UniProt: https://www.
uniprot.org/). Lacking a mitochondrial targeting sequence or
transmembrane domain, TRAF3 does not have direct access to
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the MIM/MIS/matrix under physiological conditions. We speculate
that these MIM/MIS/matrix proteins identified in our LC-MS/MS
analysis were likely pulled down with TRAF3 via post-lysis
association. On the other hand, TRAF3-interacting proteins
localized at the ER or plasma membrane or cytosol could not
directly recruit TRAF3 to the mitochondria. We therefore selected
to focus on the MOM protein MFF for further investigation.

There are multiple isoforms of human MFF generated by
alternative splicing (53). MFF isoform 2 is a dominant isoform of
MFF that is commonly expressed in various cell types, including
epithelial cells, fibroblasts, prostate cancer cells and
neuroblastoma cells as well as in the brain (56–61). Using PCR
cloning, we found that two isoforms of MFF, MFF isoform 2 (291
aa; hereafter referred to as MFF) and MFF isoform 3 (MFF3; 243
aa), were expressed in human MM 8226 cells (Supplementary
Figure 6). We therefore engineered expression vectors of
Myc-tagged MFF and MFF3, and then performed co-
immunoprecipitation (co-IP) experiments using 293T cells co-
transfected with the expression vectors of TRAF3-SBP-6xHis
and Myc-MFF or Myc-MFF3 to verify the interaction between
TRAF3 and MFF. We also included Myc-tagged CSNK2A2,
another protein identified by our affinity purification and LC-
MS/MS, in the co-IP experiments for comparison. Our co-IP
experiments verified the association between TRAF3 and MFF or
MFF3 (Figure 2C). Interestingly, the interaction of TRAF3-MFF
or TRAF3-MFF3 appeared to be much stronger than that
observed in the TRAF3-CSNK2A2 co-IP (Figure 2C). These
data demonstrate that MFF and MFF3 are associated with
TRAF3 in transfected 293T cells.

The TRAF-C Domain of TRAF3 Is Essential
For Binding to MFF
We next investigated the potential direct binding between
TRAF3 and MFF/MFF3 using two different GST pull-down
assays. In the first assay, whole cell lysates of 293T cells
transfected with Myc-tagged MFF or MFF3 were pre-cleared
with Glutathione-Sepharose beads, and then incubated with
purified GST-TRAF3 fusion proteins or GST native proteins in
the presence of Glutathione-Sepharose beads. GST native
proteins were used as a negative control to exclude proteins
that were pulled down by GST but irrelevant to TRAF3. We did
not detect non-specific binding between GST and MFF or MFF3
(Figure 2D). However, both MFF and MFF3 were pulled down
by GST-TRAF3, indicating that there is a specific binding
between TRAF3 and MFF or MFF3 (Figure 2D).

Both MFF and MFF3 contain a coiled-coil domain
(Supplementary Figure 6), which is known to mediate the
interactions of other proteins with TRAFs, including the
interactions of TRIP-TRAF2/1, p62-TRAF3 and T3JAM-
TRAF3 (62–64). We did not find any other known TRAF-
interacting motifs such as the (P/S/A/T)-X-(Q/E)-E or (P/S)
XQX(T/S/D) motifs in the protein sequences of MFF or MFF3.
To map the structural domains of TRAF3 required for its
interaction with MFF, we performed GST pull-down
experiments using GST fusion proteins of TRAF3 deletion
mutants in comparison to wild type GST-TRAF3 with whole
cell lysates of 293T cells transfected with Myc-tagged MFF as
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described above. Different GST-TRAF3 deletion mutants were
examined, including GST-TRAF3DTRAF-C (with the TRAF-C
domain deleted), GST-TRAF3DTRAF-N&C (with both the
TRAF-N and TRAF-C domains deleted), GST-TRAF3DZnR
(with the Zinc RING deleted) and GST-TRAF3DZnR&F (with
the Zinc RING and all 5 Zinc Fingers deleted) (Figure 3A). GST,
GST-TRAF3 and GST-TRAF3 deletion mutants used for the
pull-down experiments were visualized by GelCode blue staining
(Figure 3B). We found that the interaction between MFF and
TRAF3 was severely impaired by the absence of the TRAF-C or
Frontiers in Immunology | www.frontiersin.org 9188
TRAF-N&C domains (Figures 3B, C). In fact, the TRAF-C
deletion almost completely abolished the interaction with MFF,
while compound deletion of TRAF-N together with TRAF-C
did not further compromise the interaction with MFF
(Figures 3B, C). Thus, the TRAF-C domain appears to be
essential for the binding between TRAF3 and MFF.

To further assess the potential direct binding between TRAF3
and MFF as well as the requirement of the TRAF-C domain in
this interaction, we carried out the second GST pull-down assay
using in vitro translated Myc-MFF proteins. Similar to the results
A B

DC

FIGURE 2 | MFF is a novel TRAF3-interacting protein. (A) Validation of the functionality of C-terminally SBP-6xHis-tagged TRAF3 in human MM 8226 cells.
Reconstitution with the lentiviral expression vector pUB-TRAF3-SBP-6xHis induced apoptosis in 8226 cells as demonstrated by the cell cycle analysis. Cells
transduced with an empty lentiviral vector (pUB-Thy1.1) were used as a control. Cell cycle analysis was performed by PI staining and FACS at day 7 post
transduction. Gated populations indicate apoptotic cells with DNA fragmentation (DNA content < 2n) and proliferating cells (2n < DNA content ≤ 4n). (B) Large scale
affinity purification of SBP-6xHis-tagged TRAF3 from isolated mitochondria of transduced 8226 cells. Cells were harvested at day 4 post transduction and were
fractionated to isolate mitochondria. Mitochondrial proteins were immunoprecipitated with Streptavidin (SA)-Sepharose beads. Immunoprecipitates of TRAF3-SBP-
6xHis (SA IP) from the mitochondrial proteins were analyzed by immunoblotting and used to identify TRAF3-interacting proteins by LC-MS/MS-based sequencing.
Immunoblots of mitochondrial proteins before immunoprecipitation were used as the input control. Cells transduced with FLAG-TRAF3 were used as a negative
control for SA IP. (C) Co-immunoprecipitation of MFF and MFF3 with TRAF3. 293T cells were co-transfected with pUB-TRAF3-SBP-6xHis and pcDNA3-Myc-MFF,
pcDNA3-Myc-MFF3, pcDNA3-Myc-CSNK2A2 or an empty expression vector pcDNA3-Myc. Transfected cells were harvested at day 2 post transfection and total
cellular proteins were immunoprecipitated with Streptavidin-Sepharose beads. Immunoprecipitates (SA IP) were immunoblotted for the Myc tag followed by the SBP
tag. Bands of Myc-tagged proteins are indicated. (D) MFF and MFF3 pulled down by GST-TRAF3. Pre-cleared whole cell lysates of 293T cells transfected with
pcDNA3-Myc-MFF or pcDNA3-Myc-MFF3 were subjected to the pull-down assay by GST alone or GST-TRAF3 fusion protein in the presence of Glutathione-
Sepharose beads. GST and GST-TRAF3 used for pull-down were analyzed by SDS-PAGE and visualized by GelCode blue staining (the bottom panel). Lysates that
were purified by the same pull-down procedures with GST were used as a negative control. Myc-tagged MFF and MFF3 in the input lysates and pull-down proteins
were detected by immunoblotting (the top panel). Results shown are representative of at least 3 independent experiments.
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FIGURE 3 | Mapping of the structural domains of TRAF3 required for the interaction with MFF. (A) Schematic diagram of the TRAF3 deletion mutants generated
in this study and used for the mapping experiments. Structural domains of TRAF3 that were deleted are depicted in the figure. (B) Interaction with MFF determined
by the GST pull-down assay. Pre-cleared whole cell lysates of 293T cells transfected with pcDNA3-Myc-MFF were used in the pull-down experiments by GST
alone or GST fusion proteins of WT or deletion mutants of TRAF3 in the presence of Glutathione-Sepharose beads. GST, GST-TRAF3 and GST-TRAF3 deletion
mutants used for pull-down were analyzed by SDS-PAGE and visualized by GelCode blue staining (the bottom panel). GST-TRAF3 deletion mutants examined
include GST-TRAF3DTRAF-C (DC), GST-TRAF3DTRAF-N&C(DN&C), GST-TRAF3DZn RING (DZnR), and GST-TRAF3DZn RING and fingers (DZnR&F). Lysates that
were purified by the same pull-down procedures with GST alone were used as a negative control and those with GST-TRAF3 were used as the positive control.
Myc-tagged MFF in the input lysates and pull-down proteins were detected by immunoblotting (the top panel). Results shown are representative of 3 experiments.
(C) Graphical results of the relative association between Myc-MFF and GST fusion proteins of WT or deletion mutants of TRAF3. The Myc-MFF bands on the
immunoblots and GST-TRAF3 or mutant bands on the GelCode Blue stained gels in (B) were quantitated using a low-light imaging system and the ImageJ
Software, respectively. The amount of Myc-MFF in each pull-down lane was first normalized to the intensity of the corresponding input Myc-MFF band and further
normalized to the intensity of the corresponding GST-TRAF3 or mutant band. Fold of change of the normalized Myc-MFF pull-down relative to that detected for
GST-TRAF3 WT was shown in the graph (mean ± SD, n = 3). ***p < 0.001 by one-way ANOVA. (D) Direct interaction between TRAF3 and MFF determined by
GST pull-down assay of in vitro translated proteins. Pre-cleared protein lysates of in vitro translated Myc-MFF were used in the pull-down experiments by GST
alone, GST-TRAF3 or GST-TRAF3DC in the presence of Glutathione-Sepharose beads. Myc-tagged MFF in the input lysates and pull-down proteins were
detected by immunoblotting (the top panel). GelCode blue staining of GST, GST-TRAF3 and GST-TRAF3DC used for pull-down was shown in the bottom panel.
Results shown are representative of 3 experiments.
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described for the GST pull-down assay of Myc-MFF proteins
expressed in 293T cells, we found that in vitro translated MFF
proteins were specifically pulled down by GST-TRAF3 but not by
GST-TRAF3DTRAF-C (Figure 3D). These data demonstrate
that the TRAF-C domain is required for mediating the direct
binding of TRAF3 to MFF. Taken together, we identified MFF as
a novel TRAF3-interacting protein, prompting us to test the
hypothesis that TRAF3 may directly regulate mitochondrial
physiology impacted by MFF.

TRAF3 Regulates the Morphology and
Healthy Status of Mitochondria in B Cells
The primary function of MFF is to promote mitochondrial fission,
the division process of mitochondria within a cell that contributes
to the regulation of mitochondrial number and morphology as
well as quality (53, 65). Identification of MFF as a TRAF3-
interacting protein led us to test the possibility that TRAF3 may
regulate the number, morphology and quality of mitochondria in
Frontiers in Immunology | www.frontiersin.org 11190
B cells. We thus compared the number and morphology of
mitochondria between LMC and Traf3-/- resting splenic B cells
using electron microscopy to discern potential changes caused by
Traf3 deficiency. We did not detect a significant difference in the
number of mitochondria between the two genotypes of B cells
freshly prepared from mouse spleens (Figures 4A, B). However, a
significant decrease in mitochondrial number was observed in
LMC but not in Traf3-/- B cells at day 1 after ex vivo culture
(Figures 4A, B). Interestingly, we observed that premalignant
Traf3-/- splenic B cells generally contained elongated mitochondria
as demonstrated by their significantly increased mitochondrial
length in comparison to LMC B cells (Figures 4A, B).
Furthermore, after cultured ex vivo in the absence of survival
factors for 1 day, the majority of mitochondria in LMC B cells
exhibited abnormal and irregular vacuoles as well as loss of
mitochondrial cristae, while Traf3-/- B cells maintained a healthy
morphology of mitochondria (Figures 4A, B). These data thus
indicate that under certain situations such as growth factor
A

B

FIGURE 4 | TRAF3 regulated the number and morphology of mitochondria in resting B cells. Splenic B cells were purified from gender-matched, young adult (8-12-
week-old) naïve LMC or B-Traf3-/- mice. Purified cells were analyzed directly (Day 0) or at day 1 after ex vivo culture. The number and morphology of mitochondria in
cells were analyzed by electron microscopic (EM) examination. (A) Representative EM micrographs of resting B cells. Sick mitochondria are indicated with red arrows
in the figure. (B) Graphical results of the number, width and length of mitochondria as well as the percentage of cells containing sick mitochondria (vacuole+)
determined by EM examination. Graphs shown are the mean ± SD (n = 6/group; **p < 0.01; ***p < 0.001 by t test).
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deprivation, TRAF3 regulates the number and morphology as well
as healthy status of mitochondria in B lymphocytes.

Regulation of Mitochondrial Respiration
and ROS Production by TRAF3
It has been shown that MFF-mediated mitochondrial fission not
only regulates mitochondrial number and morphology, but also
modulates important mitochondrial functions, including
mitochondrial respiration and energy production (53, 65).
We therefore examined these mitochondrial functions in LMC
and Traf3-/- resting splenic B cells using the Seahorse Cell Mito
Frontiers in Immunology | www.frontiersin.org 12191
Stress Test. Our results showed that mitochondrial basal
respiration and ATP production were comparable between the
two genotypes of resting B cells freshly prepared from mouse
spleens (Figures 5A, B). However, at day 1 after ex vivo culture in
the absence of B cell survival factors, LMC B cells exhibited
significantly decreased mitochondrial basal respiration and ATP
production as compared to Traf3-/- B cells (Figures 5A, B).
Interestingly, we found that the mitochondrial maximal respiration
and spare respiratory capacity were slightly elevated in Traf3-/- B cells
as compared to LMCB cells freshly prepared frommouse spleens and
that these differences were substantially further enlarged at day 1 after
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FIGURE 5 | Regulation of mitochondrial function by TRAF3 in resting B cells. Splenic B cells were purified from gender-matched, young adult (8-12-week-old)
naïve LMC or B-Traf3-/- mice. Purified cells were analyzed directly (Day 0) or at day 1 after ex vivo culture. (A, B) Mitochondrial respiration and energy production
determined by the Seahorse Cell Mito Stress Test. (A) Kinetic changes of the oxygen consumption rate (OCR). Injection time points of oligomycin (Oligo), FCCP
and rotenone/antimycin A (Rot/AA) are indicated in the figure. (B) Graphical results of the OCRs for basal respiration, ATP production, maximal respiration and
spare respiratory capacity. (C–F) Mitochondrial superoxide levels analyzed MitoSOX Red staining and flow cytometry. (C) Representative FACS histogram
overlay comparing the levels of MitoSOX Red staining intensity. (D) Graphical results of the geometric mean (GM) of MitoSOX Red fluorescence intensity (FI).
(E) Representative FACS profiles showing the gated MitoSOX Redhi populations. (F) Graphical results of the percentage of MitoSOX Redhi subsets. (B, D, F) Graphs
shown are the mean ± SD (n = 6/group; *p < 0.05; **p < 0.01; ***p < 0.001 by t test).
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ex vivo culture (Figures 5A, B). Thus, TRAF3 inhibited
mitochondrial respiration and energy production in ex vivo
cultured B cells.

MFF-induced mitochondrial functional alterations may lead
to increased production of reactive oxygen species (ROS)
and consequently oxidative stress, causing deteriorating
mitochondrial health (53, 65). To investigate if TRAF3 also
regulates mitochondrial ROS production, we measured the levels
of mitochondrial superoxide using MitoSOX Red staining followed
by flow cytometry. Our FACS data revealed that the mitochondrial
superoxide levels were slightly higher in LMC than in Traf3-/- B cells
freshly prepared from mouse spleens as measured by the geometric
mean (GM) of MitoSOX Red fluorescence intensity (FI) and the
percentage of MitoSOX Redhi cells (Figures 5C–F). The differences
in themitochondrial superoxide levels between the two genotypes of
B cells were drastically enlarged at day 1 after ex vivo culture
(Figures 5C–F). We also observed that BAFF treatment effectively
inhibited mitochondrial ROS production in LMC B cells but
not in Traf3-/- B cells (Supplementary Figure 7), consistent with
the model that BAFF-induced TRAF3 recruitment and
degradation would inhibit TRAF3-mediated regulation of
mitochondrial ROS production. Taken together, our findings
indicate that TRAF3 regulates mitochondrial respiration, energy
production and ROS production in resting B cells after 2 days
in culture.

The TRAF3-MFF Interaction Affects the
Modifications of MFF and TRAF3
The activity of MFF is regulated by its post-translational
modifications, including phosphorylation and ubiquitination (53,
65). In light of our evidence that TRAF3 regulates mitochondrial
morphology and functions, we sought to analyze if the TRAF3-
MFF interaction affects the modifications of MFF to modulate its
activity. We first compared the phosphorylation of MFF in
cytosolic (S100), mitochondrial and ER fractions between LMC
and Traf3-/- resting splenic B cells. Consistent with the published
literature, we observed that MFF proteins were predominantly
localized at mitochondria in resting splenic B cells (Figure 6A).
MFF phosphorylation was not significantly different between
LMC and Traf3-/- B cells freshly prepared from mouse spleens
(Figures 6A, B). However, MFF phosphorylation was significantly
reduced in LMC B cells as compared to Traf3-/- B cells at day 1
after ex vivo culture in the absence of B cell survival factors
(Figures 6A, B). These data suggest that up-regulation of
mitochondrial TRAF3 protein levels may inhibit the
phosphorylation of mitochondrial MFF in resting B cells.

We noticed that there were multiple bands of higher molecular
weights in the immunoblots of phosphorylated MFF (P-MFF),
which exhibited a regulation pattern similar to that described above
for MFF phosphorylation and likely represent polyubiquitinated
versions of P-MFF (Figure 6A). Given that TRAF3 is an E3
ubiquitin ligase (14, 28), we further investigated if the TRAF3-
MFF interaction directly impacts the ubiquitination of MFF or
TRAF3. We co-transfected lentiviral expression vectors of HA-
tagged ubiquitin together with Myc-MFF and/or TRAF3-SBP-
6xHis into 293T cells. At day 2 after transfection, ubiquitination
Frontiers in Immunology | www.frontiersin.org 13192
of MFF and TRAF3 was analyzed by immunoprecipitation with
Myc and SBP, respectively, followed by immunoblotting with anti-
HA and ubiquitin (Ub)-specific Abs.We found that overexpression
of TRAF3 inhibited both the ubiquitination and phosphorylation
of MFF in transfected 293T cells as demonstrated by the HA and P-
MFF immunoblots (Figure 6C), which is consistent with our
results obtained from resting splenic B cells (Figure 6A).
Subsequently, we attempted to interrogate the type of ubiquitin
modification of MFF using Abs specific for K48- or K63-linked
polyubiquitination. However, K48-linked polyubiquitination of
MFF was not affected by TRAF3 overexpression, while K63-
linked polyubiquitin chains were not detected in the Myc-MFF
immunoprecipitates (Figure 6C), suggesting that TRAF3 inhibits
MFF ubiquitination conjugated via a type distinct from the
canonical K48- or K63-linked polyubiquitination. Interestingly,
overexpression of MFF also inhibited the ubiquitination of
TRAF3 in transfected 293T cells as demonstrated by the HA
immunoblots (Figure 6D). Furthermore, we found that the
decrease in TRAF3 ubiquitination was mainly attributable to the
inhibition on K48-, but not K63-, linked polyubiquitination caused
by MFF overexpression as revealed by the K48-Ub and K63-Ub
immunoblots (Figure 6D). Taken together, our results showed that
the TRAF3-MFF interaction inhibits the phosphorylation and
ubiqui t inat ion of MFF as wel l as the K48- l inked
polyubiquitination of TRAF3. It has been shown that K48-linked
polyubiquitination of TRAF3 induces the proteasome-dependent
degradation of TRAF3 (28) and that phosphorylation and
ubiquitination of MFF may increase its activities at promoting
mitochondrial fission and facilitating mitophagy (56, 61, 66). In
this context, our findings suggest that the TRAF3-MFF interaction
may inhibit specific post-translational modifications of MFF and
TRAF3 to modulate the activities of MFF and regulate the stability
of TRAF3 in B cells.

Overexpression of MFF Induces
Mitochondria-Dependent Apoptosis in
TRAF3-Deficient Human MM Cells
Our above evidence supports the hypothesis that TRAF3 may
induce mitochondria-dependent apoptosis in B cells by
regulating the activity of MFF. Altered activities of MFF or
MFF overexpression have been shown to induce apoptosis in
mammalian cells (53, 65). We reasoned that if MFF acts
downstream of TRAF3, MFF overexpression may restore
cellular apoptosis in TRAF3-deficient malignant B cells. To
address this, we generated lentiviral expression vectors of MFF
and MFF3, including pUB-Myc-MFF and pUB-Myc-MFF3. We
used these lentiviral expression vectors to transduce human MM
8226 cells and ectopically overexpressed MFF or MFF3 proteins
in the transduced cells. Cells transduced with an empty lentiviral
expression vector (pUB-Thy1.1) were used as a control in these
experiments. We determined the transduction efficiency as > 80%
by FACS and verified the overexpression of Myc-tagged MFF and
MFF3 proteins by immunoblot analyses (Figures 7A, B). We next
investigated the functional consequences of ectopic overexpression
of MFF and MFF3. We found that overexpression of MFF or MFF3
significantly induced cellular apoptosis in transduced 8226 cells as
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demonstrated by Annexin V staining (Figures 7C, D). Our cell
cycle analysis revealed that MFF or MFF3 overexpression also
induced DNA fragmentation in transduced 8226 cells
(Figures 7E, F). To elucidate the mechanism of MFF-induced
apoptosis, we further investigated whether it was mediated via the
mitochondria-dependent pathway using JC-1 staining followed by
flow cytometry. Our results showed that as compared to cells
transduced with the empty lentiviral vector, overexpression of
MFF or MFF3 markedly increased the percentage of 8226 cells
containing permeabilized mitochondria (Figures 7G, H). These
data are consistent with the hypothesis that MFF acts downstream
of TRAF3 to promote intrinsic apoptosis. However, it is also
possible that MFF overexpression may affect apoptosis via
Frontiers in Immunology | www.frontiersin.org 14193
TRAF3-independent mechanisms such as causing an imbalance
of the mitochondrial fission and fusion machineries in cells (53, 65,
67). Although the precise mechanisms remain to be elucidated, our
results indicate that overexpression of MFF or MFF3 is able to
induce mitochondria-dependent apoptosis in TRAF3-deficient
malignant B cells, suggesting that MFF or mitochondrial fission
machinery could be targetable points in human B cell malignancies,
including those with TRAF3 deletions or inactivating mutations.

Genetic Alterations of MFF and DNM1L in
Human B Cell Malignancies
MFF acts as a receptor of the fission protein dynamin-related
protein 1 (Drp1; encoded by the DNM1L gene), a mechano-
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FIGURE 6 | The TRAF3-MFF interaction affected the modifications of MFF and TRAF3. (A, B) Phosphorylation of MFF in resting B cells. Splenic B cells were
purified from gender-matched, young adult (8-12-week-old) naïve LMC or B-Traf3-/- mice. Purified cells were analyzed directly (Day 0) or at day 1 after ex vivo
culture. S100 (cytosolic), mitochondrial and ER proteins were biochemically fractionated and analyzed by immunoblotting. Proteins in each fraction were
immunoblotted for phosphorylated MFF (P-MFF), total MFF, Calreticulin (an ER protein) and COX IV (a mitochondrial protein), followed by TRAF3 and actin.
(B) Graphical results of the normalized P-MFF in the mitochondrial fraction. The phosphorylated and total MFF bands on the immunoblots in (A) were quantitated
using a low-light imaging system. The intensity of P-MFF bands in each lane of the mitochondrial fraction was normalized to that of the corresponding total MFF
bands. Fold of change of the normalized P-MFF relative to that detected for LMC B cells at Day 0 was shown in the graph (mean ± SD, n = 3). **p < 0.01 by t test.
(C, D) Ubiquitination of MFF and TRAF3 was affected by the MFF-TRAF3 interaction in 293T cells. Cells were co-transfected with lentiviral expression vectors of HA-
tagged ubiquitin (LPA-HA-Ub) and Myc-tagged MFF (pUB-Myc-MFF), SBP-tagged TRAF3 (pUB-TRAF3-SBP-6xHis) or an empty vector pUB-Thy1.1. Transfected
cells were harvested at day 2 post transfection. Total cellular proteins were immunoprecipitated with Anti-c-Myc Tag (9E10) Affinity Gel (C) or Streptavidin-Sepharose
beads (D). Immunoprecipitates [Myc tag IP in (C) or SA IP in (D)] were immunoblotted for the HA tag, K48-Ub and K63-Ub to detect the ubiquitination, K48- or
K63-linked polyubiquitination of MFF (C) and TRAF3 (D), respectively. Phosphorylated MFF (P-MFF) was also analyzed in the Myc tag IP (C). Immunoblotting of Myc-
MFF and SBP-TRAF3 was performed with both the immunoprecipitates and input lysates (bottom panels). Immunoblots shown are representative of 3 experiments.
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enzymatic GTPase, to recruit the cytosolic Drp1 onto the MOM
surface, allowing Drp1 to assemble the mitochondrial
constriction machinery at sites of ensuing fission (68–70).
Drp1 subsequently hydrolyzes GTP to power membrane
constriction and mitochondrial fission (69, 70). The functional
importance of both MFF and Drp1 in mitochondrial physiology
has been demonstrated by the evidence that genetic mutations of
MFF and DNM1L play causal roles in patients with
developmental abnormalities and neurological disorders (65,
71, 72). Given our current finding and the high frequency of
deletions and mutations of TRAF3 detected in human NHL and
MM (13, 14), we searched the Cancer Genome Atlas (TCGA)
Frontiers in Immunology | www.frontiersin.org 15194
(73) and the Catalog of Somatic Mutations in Cancer (COSMIC)
(74) databases for the potential presence of genetic alterations of
MFF andDNM1L in human B cell malignancies. We noticed that
genetic alterations of MFF are very rare in human B cell cancers
with only 0.49% (4 out of 819 cases) in pediatric acute lymphoid
leukemia (ALL) identified as deep deletions (TARGET, 2018)
(Supplementary Figure 8A). Compared to MFF, DNM1L
exhibits relatively higher frequencies of genetic alterations in
human B cell malignancies, including 7.1% (1/14) of mutations
in NHL (75), 3.8% (2/53) of mutations in DLBCL (76), 0.63% (1/
160) of mutations in CLL (77), 0.49% (1/205) of mutations in
MM (78) and 0.24% (2/819) of amplifications in pediatric ALL
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FIGURE 7 | Overexpression of MFF induced mitochondria-dependent apoptosis in human MM 8226 cells. Cells were transduced with individual lentiviral expression
vector of MFF (pUB-Myc-MFF), MFF3 (pUB-Myc-MFF3), or an empty vector (pUB-Thy1.1). (A) Transduction efficiency of 8226 cells analyzed by Thy1.1
immunofluorescence staining and FACS. Cells were analyzed at day 3 post transduction. Gated population (Thy1.1+) indicates the cells that were successfully
transduced with the lentiviral expression vector. (B) Ectopic overexpression of MFF and MFF3 in transduced 8226 cells. Total cellular proteins were prepared at day
4 post transduction, and then immunoblotted for the Myc tag, followed by actin. Bands of Myc-MFF and Myc-MFF3 are indicated in the figure. (C–H) Cell apoptosis,
DNA fragmentation and mitochondrial membrane permeabilization were analyzed at day 6 post transduction. (C) Representative FACS profiles of annexin V staining.
Gated populations indicate the annexin V+ apoptotic cells. (D) Graphical results of the percentage of annexin V+ apoptotic cells. (E) Representative FACS profiles of
cell cycle analysis by PI staining. Gated populations indicate apoptotic cells with DNA fragmentation (DNA content < 2n) and proliferating cells (2n < DNA content ≤
4n). (F) Graphical results of the percentage of apoptotic cells with DNA fragmentation. (G) Representative FACS profiles of mitochondrial membrane permeabilization
measured by MitoProbe JC-1 staining. Gated populations in H show cells with healthy mitochondria and gated populations in P indicate cells with permeabilized
mitochondria. (H) Graphical results of the percentage of cells with permeabilized mitochondria. (D, F, H) The graphs depict the results of 3 independent experiments
with duplicate samples in each experiment (mean ± SD). ***p < 0.001 by one-way ANOVA.
October 2021 | Volume 12 | Article 670338

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. TTRAF3 Is Associated with MFF
(TARGET, 2018) (Supplementary Figure 8B). We next
examined the combined genetic alterations of MFF, DNM1L
and TRAF3 in human B cell malignancies using the TCGA tool.
Interestingly, we noticed that simultaneous genetic alterations of
any two among these 3 genes are not documented in patients
with B cell malignancies (Supplementary Figure 9). However,
these genetic data are not conclusive due to the low incidence of
mutations in MFF and DNM1L detected in human B cell
malignancies and additional genetic alteration cases need to be
analyzed to determine if TRAF3, MFF and Drp1 act in the same
or overlapping pathways in B cells.
DISCUSSION

Mitochondria, the executioner organelle for cell death, are
exploited by cancer cells and provide a validated therapeutic
target in cancers (30–32). Mitochondria are dynamic, constantly
undergoing fission and fusion to maintain their diverse functions
(53, 65, 67). Mitochondrial dynamics is tightly controlled and
crucial for the regulation of cell homeostasis and survival (53, 65,
67). Disruption or an imbalance of mitochondrial dynamics
causes functional deterioration of mitochondria, often leading
to cell apoptosis and a variety of human diseases ranging from
neurodegenerative diseases to cancers (53, 65, 67). Therefore,
proteins controlling mitochondrial fission have been recognized
as essential regulators of mitochondrial functions, mitochondrial
quality control, and cell apoptosis in health and diseases (53, 65,
67). In the present study, we identified the critical B cell survival
regulator TRAF3 as a novel binding partner of the key
mitochondrial fission protein, MFF, in B lymphocytes.

Elicited by our unexpected finding that the majority of
cytoplasmic TRAF3 proteins were local ized at the
mitochondria in resting B cells after 2 days in culture, we
identified MFF as a TRAF3-interacting protein using affinity
purification of mitochondrial proteins isolated from human MM
cells followed by LC-MS/MS-based sequencing. We verified the
TRAF3-MFF interaction using co-immunoprecipitation and
GST pull-down assays. In support of the model that the
interaction with MFF allows TRAF3 to directly regulate the
physiology of mitochondria, we obtained a variety of evidence
in the present study. We demonstrated that in the absence of
stimulation, increased protein levels of mitochondrial TRAF3
were associated with altered mitochondrial morphology,
decreased mitochondrial respiration, increased mitochondrial
ROS production and membrane permeabilization, which
eventually culminated in caspase 9-dependent apoptotic
pathway activation in resting B cells. In concordance with
these findings, deletion of TRAF3 had the opposite effects on
the morphology, function and healthy status of mitochondria as
well as the mitochondria-dependent intrinsic apoptotic pathway
in resting B cells. Interestingly, BAFF-induced degradation of
TRAF3 appeared to mainly affect mitochondrial TRAF3, which
would inhibi t TRAF3-MFF-mediated regulat ion of
mitochondrial function and mitochondria-dependent apoptosis
in TRAF3-sufficient B cells. Indeed, BAFF stimulation inhibited
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mitochondrial ROS production and prevented mitochondria-
dependent apoptosis in LMC but not in B-Traf3-/- splenic B cells.
Taken together, our findings support the model that TRAF3 can
directly regulate the physiology of mitochondria to promote the
intrinsic apoptotic pathway via interacting with MFF.

Our findings help to understand some seemingly opposite
roles of TRAF3 in B cell function and tumorigenesis. For
example, not only Traf3 deficiency leads to B lymphoma
development in mice (19), transgenic overexpression of TRAF3
in B cells also promotes B cell differentiation and mature non-
Hodgkin lymphomas in mice (26, 27). Interestingly, the pro-
tumorigenic activities of upregulated TRAF3 in B cells require
simultaneous overexpression of the anti-apoptotic protein BCL-2
in B cells (27), suggesting a need for BCL-2-mediated protection
of mitochondria in TRAF3-overexpressing B cells. In this
context, it is conceivable that BCL-2 overexpression could
counteract the TRAF3-MFF-mediated regulation of
mitochondrial morphology and function, thereby preventing
mitochondria-dependent apoptosis in TRAF3-overexpressing
B cells.

Corroborating our evidence that ectopic overexpression of
MFF induced mitochondria-dependent apoptosis in TRAF3-
deficient malignant B cells, it has been previously reported that
overexpression of MFF induced apoptosis and loss of MFF
reduced apoptosis in other cell types such as epithelial cells,
fibroblasts, cardiomyocytes, mesangial and HeLa cells (67–69,
79–83). Paradoxically, deficiency or silencing of MFF also
induced apoptosis in cardiomyocytes, HeLa, prostate cancer
and KRAS-transformed salivary duct cancer cells (58, 84, 85).
These seemingly contradictory observations suggest that the
protein and activity levels of MFF are tightly regulated in cells
to achieve a delicate balance in mitochondrial dynamics and to
appropriately control cell survival and apoptosis.

MFF recruits Drp1, the GTPase that executes mitochondrial
fission, to the MOM to induce mitochondrial fission. In the
present study, we could not detect co-immunoprecipitation of
Drp1 with either MFF or TRAF3 under our experimental
condition (data not shown). In addition, the protein levels of
Drp1 in the S100, mitochondrial and ER fractions of resting
splenic B cells were below the detection limit of immunoblot
analyses in our experiments (data not shown). Therefore, we could
not determine whether the TRAF3-MFF interaction facilitates or
interferes with the recruitment of Drp1 by MFF. Detection of the
weak interaction between Drp1 and MFF requires cross-linking
prior to co-IP as reported in the literature (68, 86–89). Thus, the
interaction betweenMFF and TRAF3 appears to bemuch stronger
than that observed between MFF and Drp1, highlighting the
importance of TRAF3 in modulating the functional properties
of MFF. Indeed, we found that TRAF3 inhibits the
phosphorylation and ubiquitination of MFF in resting B cells
and co-transfected HEK 293T cells.

Phosphorylation of MFF by kinases such as AMPK, JNK,
ERK1/2 or CK2a in different cellular contexts has been shown to
increase the activity of MFF in recruiting Drp1 to mitochondria
and promoting mitochondrial fission (56, 61, 66, 80, 90–94).
Ubiquitination of MFF by the E3 ubiquitin ligase Parkin has been
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reported to promote the association between MFF and the
autophagic adapter protein p62/SQSTM1, thereby facilitating
mitophagy and clearance of damaged mitochondria (57).
Alternatively, Parkin-mediated ubiquitination of MFF under
non-stressed conditions regulates constitutive MFF turnover
and induces the degradation of MFF in HEK 293T cells (95).
Whether and how the TRAF3-MFF interaction affects the
accessibility of MFF to its specific kinase (such as AMPK, JNK,
ERK1/2 or CK2a) or E3 ubiquitin ligase (such as Parkin) in B
cells await further investigation in future studies. Regardless of
the detailed mechanisms, our results suggest that the TRAF3-
MFF interaction has functional impacts on MFF modifications,
mitochondrial morphology and function as well as
mitochondria-dependent apoptosis in B cells.

However, it should be noted that our data do not exclude the
possibility that TRAF3 may also indirectly regulate
mitochondria-dependent apoptosis in B cells through
additional MFF-independent mechanisms. In this regard, it has
been shown that the NIK-NF-kB2 pathway is constitutively
activated and nuclear CREB is markedly elevated in Traf3-/-

splenic B cells (15, 16, 96), which lead to increased expression of
anti-apoptotic proteins of the Bcl-2 family such as Bcl-2 and
Mcl-1 (46, 96). The Bcl-2 family proteins are important
regulators of mitochondrial physiology and intrinsic apoptotic
pathways (47, 48). Moreover, we recently reported elevated
Chka-driven choline metabolism and increased levels of the
phospholipids PC and PE in Traf3-/- splenic B cells (25, 97). PC
and PE are the two most abundant phospholipids of
mitochondrial membranes, critically regulating mitochondrial
physiology and mitochondria-dependent apoptosis (98, 99).
Therefore, it is likely that the TRAF3-MFF interaction together
with the TRAF3-NIK-NF-kB2, TRAF3-CREB-Mcl-1 and
TRAF3-Chka-PC/PE pathways act cooperatively to regulate
mitochondrial morphology, function and mitochondria-
dependent apoptosis in normal B lymphocytes. Disruption of
all these TRAF3-dependent mechanisms in TRAF3-deficient B
cells leads to BAFF-independent survival and eventually
contributes to B cell malignant transformation.

Interestingly, genetic alterations of the TRAF3 gene are not
limited to B cell malignancies but also detected in human
epithelial cancers (14). Most notably, the human papilloma
virus-positive (HPV+) head and neck squamous cell
carcinomas (HNSCC) exhibit an exceptionally high frequency
(~20%) of deep deletions and truncations of the TRAF3 gene (14,
100, 101). Similar to that described for B cells, elevated activation
of the NF-kB2 pathway is detected in TRAF3-deficient HNSCC
cells (101). TRAF3 also plays pro-apoptotic roles in human
bladder and colorectal carcinoma cells upon CD40 ligation via
BAX/BAK-caspase 9- and ROS- dependent mechanisms (102,
103). So far, TRAF3-mediated pro-apoptotic effects in epithelial
cells have been reported to be mediated via transcriptional
regulation (101–103). In this study, we detected co-
immunoprecipitation of MFF with TRAF3 in transfected 293T
epithelial cells. In light of the similarity in the pro-apoptotic role
of TRAF3 observed in B cells and epithelial cells, further
investigation of the potential direct TRAF3-MFF interaction
Frontiers in Immunology | www.frontiersin.org 17196
and its functional impacts in epithelial cancers represent an
interesting area in future research. Such investigation would
extend our knowledge on the potentially universal functions of
the survival/apoptosis regulator TRAF3 in regulating
mitochondria-dependent apoptosis.

In summary, our findings provide novel insights into the
elaborate pathogenic mechanisms of TRAF3 inactivation-
initiated B cell malignant transformation. Our study identified
TRAF3 as a novel regulator of mitochondrial physiology in B
lymphocytes and elucidated the TRAF3-MFF interaction as one
of the underlying mechanisms. Our discovery of the TRAF3-
MFF axis in B cells will open up new therapeutic opportunities
for the treatment of human B cell malignancies, particularly
those with TRAF3 deletion or relevant mutations. We
demonstrated that overexpression of MFF could restore the
apoptotic pathway in TRAF3-deficient malignant B cells. Thus,
an imbalance in mitochondrial dynamics, caused by either
excessive or insufficient levels of MFF proteins or activities,
could induce mitochondria-dependent apoptosis in malignant
B cells. Interestingly, a cell permeable peptidomimetic MFF has
been developed with demonstrated activity on killing melanoma,
breast and lung cancer cells but not normal cells in preclinical
models, indicating that MFF is an actionable therapeutic target in
human cancers (59). Furthermore, pharmaceutical approaches
that target mitochondrial dynamics have been developed for the
treatment of neurodegenerative diseases and type 2 diabetes,
including mitochondrial division inhibitor-1 (mdivi-1, a Drp1-
specific inhibitor), dynasore, P110 and 15-oxospiramilactone,
etc. (53, 65, 104). All these drugs can be exploited and
repurposed to treat human B cell malignancies, overcome
resistance to standard therapies and help to improve patient
outcome, especially when given in combination with other
available chemotherapies, radiotherapies and immunotherapies.
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