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Editorial on the Research Topic

New Roles of Autophagy Pathways in Cancer

From a simplistic point of view, autophagy is a self-degradative process that relies on lysosomes for
the removal of cytoplasmic bulk cargo and damaged organelles, such as mitochondria. Further on its
homeostatic role, autophagy acts as a catabolic process that promotes cellular resilience in
conditions of nutrient deprivation and energy depletion. A body of literature has established a
crucial role of autophagy in a whole plethora of different physiological processes ranging from
homeostasis maintenance, development, and differentiation, among others. In the last two decades,
the complexity of autophagy regulation has grown exponentially. Indeed, the literature recognizes
canonical and non-canonical autophagic pathways that lead to the degradation and clearance of
non-specific or specific cargos (selective autophagy) depending on the cellular context. Due to the
fundamental role of autophagy in homeostasis maintenance, it is not surprising its recognized
etiologic role in age-related diseases, including cancer. In cancer, autophagy has a dual function,
acting as a cell survival mechanism (e.g. favoring the growth of established tumors) or as a tumor
suppressor (e.g. preventing the accumulation of damaged proteins and organelles). Thus, the
relationship of autophagy with carcinogenesis is complex and, in most cases, it is considered a
context-dependent process.

This collection compiles some of the most recent advances in the knowledge of the autophagic
pathway and its involvement in human cancer development. Carcinogenesis implies proliferation,
tissue invasion, vascularization, and modulation of the immune system. Herein, we expanded our
knowledge about autophagy in carcinogenesis, showing how it has been engaged in various
processes, including tumor progression, cancer-related thrombosis and metastasis, cancer
dormancy linked to stem cell behavior and quiescence, epithelial-to-mesenchymal transition
(EMT), intercellular communications, cell-stroma interactions, and tumor microenvironment
(TME), immune responses, treatment resistance and tumor-adaptative response.

Interestingly, proliferation, invasion, vascularization, and immune modulation, which are
characteristics of cancer, are also present in trophoblast cells during placentation. However,
July 2021 | Volume 11 | Article 72698915

https://www.frontiersin.org/articles/10.3389/fonc.2021.726989/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.726989/full
https://www.frontiersin.org/research-topics/13436/new-roles-of-autophagy-pathways-in-cancer
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:dgrasso@ffyb.uba.ar
https://doi.org/10.3389/fonc.2021.726989
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.726989
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.726989&domain=pdf&date_stamp=2021-07-07


Martins et al. Editorial: New Roles of Autophagy Pathways in Cancer
while these processes are strictly regulated during placentation,
in the context of tumor growth the regulation is lost. Carvajal
et al. discuss similarities and differences between carcinogenesis
and placentation and the role of autophagy in the processes. As
previously mentioned, autophagy can be a bulk process, or highly
selective and Cerda-Troncoso et al. review the pro-tumorigenic
roles of the better-described autophagy receptors such as p62/
SQSTM1, NBR1, NDP52, and OPTN, which are overexpressed
in cancer, and could be considered as new therapeutic targets
against tumor growth. Additionally, Xie et al. describe the
regulation of the autophagy-mediated selective turnover of
mitochondria (mitophagy) in the highly mortal pancreatic
ductal adenocarcinoma. Mitochondria quality control is critical
for cell homeostasis and authors show the dual roles that the
different mitophagy pathways (e.g., PINK-PRKN, BNIP3L/NIX,
FUNDL1, and BNIP3) have in carcinogenesis and treatment of
pancreatic cancer. Consistently, considering the different types of
autophagy, Rios et al. analyze the contribution of chaperone-
mediated autophagy in carcinogenesis. In an exciting emerging
topic, Hernández-Cáceres et al. explore the involvement of cell
mechanics during oncogenesis in autophagy regulation and its
implication in disease progression. In response to the complex
mechano-environment of tumor burden, cells activate
mechanosensitive protein complexes and related-active
cytoskeleton processes that impact the autophagy machinery
and disease progression. On the other hand, instead of
mechanical stimuli, autophagy can be regulated by external
organisms such as viruses. Suares et al. and Ducasa et al. show
how oncoviruses modulate the autophagy machinery enhancing
viral survival and replication that eventually culminates in cell
transformation. Altogether, these works suggest that a deeper
and detailed comprehension of autophagy mechanisms might
pave the way to explore precision therapy approaches against
specific tumors.

Cancer is a tissular disease where cancerous cells are in
dynamic communication with the different actors of TME and
this relationship ultimately determines most of the tumor
behavior. Consequently, many researchers focus their work to
uncover the complexity of TME and its relationship with cancer
cells. Coelho et al. describe the role of WNT signaling, in
response to TME stress, in the regulation of the dichotomic
fate between EMT and autophagy in glioblastoma. The
autophagy pathway is also key for the TME establishment in
oral squamous cell carcinoma, as described in Peña-Oyarzún
et al. Furthermore, despite its actions over tumor cells, autophagy
is also relevant for the communication among tumoral cells,
TME, and the whole body. This autophagic role, as a means for
intercellular communication, is highlighted in Bustos et al. where
they describe the non-autophagic functions of the pathway,
focusing on the new field of the autophagy-dependent
secretion and its important implication for cancer fate
(including the TME), the immune response and the biogenesis
and secretion of extracellular vesicles (EVs). There seems to exist
a strong relationship between the autophagy machinery and EVs,
especially the exosomes that are EVs of endosomal origin. The
state of the art concerning the autophagy-EVs complex
Frontiers in Oncology | www.frontiersin.org 26
associated with TME was investigated in Colletti et al. and
Papademetrio et al. Noteworthy, the tumor-associated immune
system is also reached by the plethora of different EVs of TME as
it is shown in Colletti et al. and Papademetrio et al.
Independently of the EVs, autophagy plays a key role in the
tumor-associated immunology system, according to de Souza
et al. The vast literature compiled in de Souza et al. reveals the
key role of autophagy in tumor immunogenicity and how it
engages TME, which might provide new insights into mitigating
tumor relapse.

Beyond its pro-tumor role in carcinogenesis, autophagy
highlights also as a promisor target for diagnosis and prognosis
of cancer as discussed in this Research Topic. Meng et al., Lyu
et al. and Deng et al. describe different autophagy-related genetic
signatures as potential prognostic tools for neuroblastoma,
bladder urothelial carcinoma, and pancreatic cancer,
respectively. On the dark side, Akkoc et al. discussed
autophagy’s role in cancer dormancy, which eventually
contributes to metastasis and relapse, the leading cause of
cancer-related deaths. Thrombotic events due to an enhanced
thrombotic state are a severe complication among patients
suffering from different types of cancers. Interestingly, Hill
et al. discuss autophagy´s role along with all the coagulation
components system and highlights the related implications
regarding the TME and tumor development. Moreover, it is
well accepted that autophagy may elicit tumor therapeutic
resistance, and thus, it has been considered as a pharmacologic
target to alleviate tumor relapse. Towards this end, Lai et al.
described how metformin might overcome the autophagy-
mediated resistance to Sorafenib treatment in hepatocellular
carcinoma patients. On the other hand, Xiao et al. discussed
how to abrogate cytoprotective autophagy (i.e., by genetic and
pharmacologic means) to improve antitumor therapeutic
approaches. Similarly, Jandrey et al., based on compiling
articles, contributed to deciphering the cancer resilience of
glioblastoma cells to conventional chemotherapies in terms of
the pro-survival autophagy proficiency. Furthermore, Martins
et al. reveal how photodynamic therapy (PDT) mediated-
oxidative stress may induce autophagy in tumor cells, and how
lysosomal photodamage might trigger autophagy as a regulated
cell death mechanism, improving the clinical outcome of PDT-
treated patients.

Carcinogenesis is an age-related process, and as humans
extend their life expectancy, the incidence of cancer will
continue to increase. Although lots of progress has been made
in the diagnosis and treatment of many human cancers, we are
still far from a panacea. Thus, morbidity and mortality related to
cancer remain a global issue. The milestone contributions
presented in this Research Topic regarding the “new roles of
the autophagy pathway in cancer” reveal the great advancement
made in the underlying molecular mechanism of autophagy and
its implication for the comprehension of cancer. Most works
unveil an intricate and complex role of autophagy in tumoral
cells, TME, and even the communications among them.
Altogether, this knowledge provides us a glimpse of new
therapeutic options to be explored, mainly in cancer resilience.
July 2021 | Volume 11 | Article 726989
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Furthermore, since autophagy in cancer is known to be a double
edge sword, it is of great importance to get a deep insight of its
role during carcinogenesis, to design specific therapeutic
approaches. Finally, it is an exciting time of great discoveries
about the autophagic pathway, and more importantly,
those discoveries bring hope and assure great benefits in the
long fight against a devastating disease like cancer.
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Significant Prognostic Value of the
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While hundreds of consistently altered autophagy-related genes (ARGs) have been
identified in cancers, their prognostic value in bladder urothelial carcinoma (BUC)
remains unclear. In the present study, we collected 232 ARGs from the Human
Autophagy Database (HADb), and identified 37 differentially expressed ARGs in BUC
based on The Cancer Genome Atlas (TCGA) database. Kaplan-Meier survival analysis
based on the Gene Expression Profiling Interactive Analysis (GEPIA) database revealed
that among the 37 differentially expressed ARGs, prolyl 4-hydroxylase, beta polypeptide
(P4HB), and regulator of G protein signaling 19 (RGS19) were significantly negatively
correlated with overall survival (OS) and disease-free survival (DFS). Overexpression of
P4HB and RGS19 in BUC was further validated using independent data sets, including
those from the Oncomine and Gene Expression Omnibus (GEO) databases. cBioPortal
and UALCAN analyses indicated that altered P4HB and RGS19 mRNA expression was
significantly associated with mutations and clinical characteristics (nodal metastasis
and cancer stage). Moreover, co-expression network analysis and gene set enrichment
analysis (GSEA) predicted that the potential functions of P4HB and RGS19 are involved
in the endoplasmic reticulum (ER) stress response, cytokine-mediated signaling pathway
and inflammatory response. More importantly, multivariate Cox proportional hazards
regression analysis demonstrated that P4HB, but not RGS19, is an independent and
unfavorable BUC biomarker based on clinical characteristics (age, gender, cancer
stage, and pathological TNM stage). Finally, we validated that the mRNA and protein
expression levels of P4HB were upregulated in four bladder cancer cell lines (T24,
J82, EJ, and SW780) and found that knockdown of P4HB dramatically inhibited the
invasion and proliferation of bladder cancer cells. In summary, our study screened ARGs
and identified P4HB as a biomarker that can predict the progression and prognosis of
BUC and may provide a better understanding of the autophagy regulatory mechanisms
involved in BUC.

Keywords: bladder urothelial carcinoma, autophagy-related genes, prognosis, biomarker, prolyl 4-hydroxylase,
beta polypeptide
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INTRODUCTION

Bladder cancer is the most common malignancy of the
urinary system and the leading cause of cancer-associated
mortality in the elderly population of China (1). The
pathological types of bladder cancer mainly include
bladder urothelial carcinoma (BUC), bladder squamous
cell carcinoma and bladder adenocarcinoma. The most
common pathological type of bladder cancer is BUC, which
has unique characteristics, such as drug resistance, a high
recurrence rate, a higher frequency of metastasis, and poor
prognosis (2, 3). However, traditional clinicopathological
risk factors could not sufficiently identify BUC patients
with high risk and predict the prognosis of BUC. Recently,
molecular biomarkers have been shown to aid the diagnosis
and therapy and guide the prediction of the prognosis
for BUC (4). For example, Chang et al. reported that
BCAT1 is a potential diagnostic and prognostic marker
for BUC patients (5). Zhang et al. revealed that high
expression of HEF1 is associated with advanced stage
and shortened progression-free survival poor for BUC
patients (6). However, the clinical significance of these
potential biomarkers and functionally important genes
were not definitively verified because of a lack of larger
clinical cohorts. Therefore, it is necessary to identify valuable
biomarkers using large clinical samples and further investigate
the molecular mechanisms involved in the development
of BUC.

Currently, autophagy has been extensively studied and
proposed as a significant factor in tumor development
(7–9). Autophagy has both protective and harmful
biological functions, including pro-, or antitumor effects,
depending on the tumor microenvironment. On the
one hand, autophagy enhanced cancer cells to tolerate
stress responses, including a hypoxic microenvironment,
starvation, and chemotherapy (10, 11). On the other hand,
autophagy plays a critical role in damage mitigation in
response to stress that can inhibit tumor progression
by degrading defective proteins and organelles and by
preventing abnormal protein accumulation (12). Regarding
BUC, autophagy-targeted therapy has recently been
considered a valuable strategy. It was recently reported
that autophagy-related gene (ARG) levels are associated
with the chemosensitivity of BUC and markedly affect
the regulation of invasion (13). However, the role and
mechanisms of autophagy remain far from clear. In the
present study, we used bioinformatics analysis to investigate
the expression of variations in 223 ARGs in BUC and to
explore their potency as biomarkers. We finally identified
prolyl 4-hydroxylase, beta polypeptide (P4HB) as a novel
potential biomarker for BUC diagnosis and prognosis.
Moreover, we demonstrated that knockdown of P4HB
in human bladder cancer cells in vitro dramatically
inhibited cancer cell invasion. The present study developed
an ARG into a potential biomarker that provides a
deeper understanding of the mechanism of autophagy
in BUC.

MATERIALS AND METHODS

Collection of ARGs
We first collected 232 ARGs from the Human Autophagy
Database (HADb1). Subsequently, we downloaded the RNA
expression profiles (RNA-Seq2 level 3 data; platform: Illumina
HiSeq 2000, through Mar 2020) and clinical data of BUC patients
from The Cancer Genome Atlas (TCGA) database2. TCGA
provided the mRNA expression data of 430 samples (411 BUC
samples and 19 normal bladder tissue samples).

Functional Enrichment Analysis
The GO database3 was used to analyze differentially expressed
ARGs. The molecular functions (MFs), cellular components
(CCs), and biological processes (BPs) of differentially expressed
ARGs were identified. The potential functions of the differentially
expressed ARGs involved in signaling pathways were analyzed
using the Kyoto Encyclopedia of Genes and Genomes (KEGG)4

and Reactome5. The relationships among the enriched clusters
from the GO and signaling pathway analyses were visualized
using Metascape6 (14). In addition, gene set enrichment analysis
(GSEA) was performed to evaluate the correlation between P4HB
or regulator of G protein signaling 19 (RGS19) expression and
BUC-associated pathways. The detailed protocol for GSEA is
available on the Broad Institute Gene Set Enrichment Analysis
website7 (15).

Survival Analysis
Kaplan-Meier survival curves were generated to evaluate the
prognostic value of the ARGs using the online database Gene
Expression Profiling Interactive Analysis (GEPIA2)8 (16). For the
overall survival (OS) and disease-free survival (DFS) analyses,
the BUC patients were divided into 2 groups according to
the median expression of the mRNAs (high vs. low). The
survival curves of samples with low mRNA expression and
high mRNA expression were compared using the log-rank test.
P< 0.05 indicated statistically significant differences. In addition,
multivariate Cox proportional hazards regression analysis was
performed to determine the P4HB, RGS19, and clinical features
that were significantly associated with OS.

Oncomine Database and GEO Database
Analyses
The mRNA expression of P4HB and RGS19 in BUC was analyzed
within the Oncomine database9. The thresholds were restricted
as follows: P-value: 0.0001, fold change: 1.5, gene ranking: all,
analysis type: cancer vs. normal, and data type: mRNA. This

1http://www.autophagy.lu
2https://portal.gdc.cancer.gov
3http://www.geneontology.org
4http://www.kegg.jp
5https://reactome.org
6http://www.metascape.org/
7http://www.broad.mit.edu/gsea
8http://gepia.cancer-pku.cn
9www.oncomine.org
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analysis drew on a series of BUC studies, including the Modlich,
Sanchez-Carbayo, Dyrskjot and Lee studies (17–20). In addition,
the mRNA expression of P4HB and RGS19 was validated in
three independent Gene Expression Omnibus (GEO)10 data sets
(GSE13507, GSE52519, and GSE37815) using GEO2R. The gene
expression profiling databases were obtained from GEO.

UALCAN and cBioPortal Analyses
UALCAN is an interactive web portal for facilitating tumor
subgroup gene expression and survival analyses11 (21). We used
UALCAN analysis to estimate the P4HB and RGS19 expression
levels based on the clinical features (gender, age, cancer stage,
and nodal metastasis status) of BUC from TCGA data sets.
The cBioPortal for cancer genomics12 is an exploratory analysis
tool for exploring multidimensional cancer genomics data sets.
The frequency of P4HB and RGS19 alterations (amplification,
deep deletion, and missense mutation) and copy number
variations (CNVs) were obtained from Genomic Identification of
Significant Targets in Cancer (CISTC). In addition, the OncoPrint
sub-tool of cBioPortal was also utilized to analyze the integrated
status of CNVs for P4HB and RGS19.

LinkedOmics Analysis
LinkedOmics13 is a publicly available portal that includes
multiomics data from all 32 TCGA cancer types (22). The
LinkFinder module of LinkedOmics was used to analyze the
differentially expressed genes correlated with P4HB or RGS19
in BUC from TCGA cohort. We constructed a co-expression
network based on the Pearson correlation coefficient (| cor|
> 0.35, P < 0.05) between P4HB or RGS19 and the mRNAs
to predict the potential targets of P4HB or RGS19. In addition,
we used GeneMANIA14 (23) to visualize the gene network
of P4HB and RGS19.

Cell Culture
Three human BUC lines (T24, J82, and SW780) and a human
normal uroepithelial cell line (SV-HUC-1) were obtained from
the American Type Culture Collection (ATCC, Manassas, VA,
United States). The BUC EJ cell line was obtained from the
Institute of Biochemistry and Cell Biology of Chinese Academy
of Sciences (Shanghai, China). Cells were cultured in RPMI-1640
medium supplemented with 10% fetal bovine serum (Thermo
Scientific HyClone, Logan, UT, United States), 100 U/ml
penicillin, and 100 µg/ml streptomycin at 37◦C and 5% CO2.

RNA Interference and Transfection
The mRNA sequence of the P4HB gene was obtained from
GenBank (NM_000918), and the targeting sequence was
designed using an RNAi algorithm available online15. The

10www.ncbi.nlm.nih.gov/gds
11http://ualcan.path.uab.edu/analysis.html
12http://cbioportal.org
13http://www.linkedomics.org/login.php
14http://genemania.org
15http://sidirect2.rnai.jp

P4HB-specific siRNA (5′-GTCCTCTTTAAGAAGTTTGATGA-
3′) and a nonsense siRNA [negative control siRNA (NC siRNA)]
were synthesized and purified by GenePharma (Shanghai,
China). T24 and EJ cells were transfected with siRNAs using
Translipid reagent (TransGen, Beijing, China) according to the
manufacturer’s protocol.

qRT-PCR
Total RNA was extracted using the TRIzol Reagent kit
(Invitrogen, Carlsbad, CA, United States) and was reverse
transcribed into cDNA by using PrimeScript RT-polymerase
(TaKaRa, Dalian, China). Real-time PCR was performed
on the cDNA templates using specific primers (Sangon,
Shanghai, China) and SYBR master mix (TaKaRa, Dalian,
China). The relative mRNA expression levels of P4HB were
calculated as a ratio normalized to GAPDH expression.
Comparative quantification was performed using the 2−1 1

Ct method. The sequences of the specific primers used in the
present study were as follows: P4HB (NM_000918), forward
primer 5′-TCACATCCTGCTGTTCTTG-3′, reverse primer 5′-
ACTTGGTCATCTCCTCCTC-3′; and GAPDH (NM_002046),
forward primer 5′-TGAAGGTCGGAGTCAACGG-3′, and
reverse primer 5′-CCTGGAAGATGGTGATGGG-3′.

Western Blot
Bladder urothelial carcinoma tissues and cells were lysed
with RIPA buffer containing protease inhibitor (Thermo
Fisher Scientific, Waltham, MA, United States). Proteins
were quantified and resolved by 12% SDS-PAGE and
electrotransferred to polyvinylidene difluoride (PVDF)
membranes (Millipore Bedford, MA, United States). Then,
the cells were incubated with 5% skim milk at room temperature
for 30 min and with primary antibodies against P4HB (Cell
Signaling Technology, Beverly, MA, United States) overnight at
4◦C. Then, the cells were incubated with horseradish peroxidase
(HRP)-conjugated secondary antibodies (Santa Cruz, CA,
United States) and detected using a chemiluminescence method
(ECL, Thermo Fisher Scientific, Waltham, MA, United States)
according to the manufacturer’s instructions. An anti-GAPDH
(Santa Cruz, United States) antibody was used as a control.

Cell Viability Assays
The effect of P4HB-specific siRNA on cell viability was
tested using an MTT assay (Beyotime Institute Biotechnology,
Shanghai, China) according to the manufacturer’s instructions.
Briefly, T24 and EJ cells at 5 × 103 cells per well were cultured
in 96-well plates and transfected with 100 nM NC siRNA and
P4HB-specific siRNA for the indicated periods. Then, 20 µl MTT
(5 mg/ml) was added to each well, and the cells were incubated for
an additional 4 h. The relative levels of cell proliferation in each
group of cells compared to that in control cells were calculated,
and the control cells were designated to have a cell proliferation
rate of 100%. All experiments were repeated at least three times.

Invasion Assays
Cell invasion assays were performed in a Boyden chemotaxis
chamber (Costar, United States). Briefly, 5 × 104 cells
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resuspended in serum-free RPMI 1640 medium were placed in
the upper chamber, while the lower chamber was filled with 10%
FBS-containing RPMI 1640. After incubation for 24 h, the cells
in the upper chamber were removed, and the cells at the bottom
of the polycarbonate membrane were fixed and stained with 0.1%
crystal violet. The number of invading cells was counted in three
randomly chosen fields under the microscope.

RESULTS

Differentially Expressed ARGs in TCGA
A total of 232 ARGs were collected from the HADb. The
expression level of each of the 232 ARGs was compared between
BUC and normal bladder tissues in the TCGA dataset, which
contained 411 BUC samples and 19 adjacent non-tumor bladder
tissue samples. Thirty-seven differentially expressed ARGs were
identified, among which 18 were upregulated and 19 were
downregulated (Figures 1A,B). All of the differentially expressed
genes are listed in Table 1.

Enrichment Analyses of Differentially
Expressed ARGs
We performed GO and KEGG pathway enrichment analyses to
determine the potential functions of these dysregulated ARGs

in the development of BUC. The GO plot analysis indicated
that in the BPs, these genes were associated with the intrinsic
apoptotic signaling pathway, as well as with the response to ER
stress and the cell cycle. In terms of the CCs, these genes were
involved in the autophagosome, mitochondrial outer membrane
and cell adhesion. With regard to MF, these genes participated in
certain key functions, such as ubiquitin protein ligase binding and
protein phosphatase binding. The significant KEGG pathways
in which the differentially expressed ARGs were enriched were
mainly the p53 signaling pathway, apoptosis, autophagy and
PI3K-Akt signaling pathway. In addition, the KEGG pathway
enrichment analysis indicated that these genes were associated
with multiple cancers, such as bladder cancer, pancreatic cancer,
chronic myeloid leukemia, and breast cancer, which identified
the major roles of these genes in tumorigenesis and development
(Figures 1C,D).

Kaplan-Meier Survival Analyses of
Differentially Expressed ARGs
To explore whether the differentially expressed ARGs were
correlated with survival time, BUC cases were divided into
two groups (low vs. high groups) according to the expression
level of ARGs, and each group was analyzed by Kaplan-Meier
survival analysis using the GEPIA database. The results showed

FIGURE 1 | Differentially expressed ARGs and functional annotation. (A) Heatmap of the differentially expressed ARGs. (B) The differentially expressed ARGs
exhibited as a histogram. (C) GO enrichment analysis of differentially expressed ARGs. (D) KEGG pathway enrichment analysis of differentially expressed ARGs. The
top 30 enriched pathways are shown.
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TABLE 1 | The differentially expressed ARGs in BUC (Tumor vs. Normal).

Gene symbol Ensembl ID logFC Regulation P-value FDR

CDKN2A ENSG00000147889 4.19 Up 2.49E-03 5.39E-03

SERPINA1 ENSG00000197249 2.85 Up 1.16E-03 3.12E-03

BIRC5 ENSG00000089685 2.09 Up 8.84E-09 1.59E-07

TP73 ENSG00000078900 1.96 Up 2.51E-04 8.50E-04

ATG9B ENSG00000181652 1.70 Up 8.09E-04 2.26E-03

EIF4EBP1 ENSG00000187840 1.68 Up 1.27E-09 3.51E-08

SPHK1 ENSG00000176170 1.52 Up 1.64E-02 2.96E-02

ERBB2 ENSG00000141736 1.45 Up 3.68E-03 7.73E-03

BID ENSG00000015475 1.35 Up 7.39E-10 2.85E-08

ITGA3 ENSG00000005884 1.22 Up 4.54E-03 9.13E-03

APOL1 ENSG00000100342 1.18 Up 2.55E-02 4.28E-02

RGS19 ENSG00000171700 1.16 Up 2.44E-07 2.24E-06

ERO1A ENSG00000197930 1.10 Up 3.07E-07 2.58E-06

P4HB ENSG00000185624 1.09 Up 1.19E-09 3.51E-08

SPNS1 ENSG00000169682 1.09 Up 1.68E-08 2.50E-07

ITGB4 ENSG00000132470 1.06 Up 7.56E-04 2.16E-03

BCL2L1 ENSG00000171552 1.03 Up 5.10E-07 4.10E-06

BAX ENSG00000087088 1.00 Up 9.04E-09 1.59E-07

MAP1LC3C ENSG00000197769 −1.01 Down 4.41E-05 1.89E-04

GRID2 ENSG00000152208 −1.01 Down 8.41E-08 9.55E-07

BAG3 ENSG00000151929 −1.12 Down 1.05E-04 4.14E-04

NAMPT ENSG00000105835 −1.15 Down 7.33E-03 1.39E-02

PPP1R15A ENSG00000087074 −1.23 Down 5.54E-06 3.45E-05

CX3CL1 ENSG00000006210 −1.25 Down 2.01E-07 1.94E-06

CXCR4 ENSG00000121966 −1.27 Down 2.19E-03 4.92E-03

DIRAS3 ENSG00000162595 −1.33 Down 2.18E-08 3.01E-07

CDKN1A ENSG00000124762 −1.35 Down 2.51E-04 8.50E-04

BCL2 ENSG00000171791 −1.36 Down 5.96E-10 2.85E-08

DLC1 ENSG00000164741 −1.40 Down 1.66E-07 1.68E-06

MYC ENSG00000136997 −1.44 Down 1.71E-05 9.72E-05

NRG2 ENSG00000158458 −1.73 Down 9.04E-09 1.59E-07

TP53INP2 ENSG00000078804 −1.97 Down 1.90E-10 2.05E-08

ITPR1 ENSG00000150995 −2.40 Down 1.12E-08 1.80E-07

PRKN ENSG00000185345 −2.43 Down 3.46E-10 2.23E-08

HSPB8 ENSG00000152137 −2.83 Down 2.91E-09 7.02E-08

CCL2 ENSG00000108691 −2.89 Down 1.57E-06 1.01E-05

FOS ENSG00000170345 −2.94 Down 2.13E-10 2.05E-08

that among the 37 differentially expressed ARGs, only two
ARGs (P4HB and RGS19) were significantly negatively correlated
with OS and DFS (log-rank test, P < 0.05), suggesting that
the expression levels of P4HB (Figures 2A,B), and RGS19
(Figures 2C,D) were closely related to BUC prognosis. In the
following studies, we focused on investigating the biological role
of these two genes in BUC.

Validation of the mRNA Expression of
P4HB and RGS19 in the Oncomine and
GEO Databases
To validate the difference in P4HB and RGS19 expression in
tumor and normal tissues, especially in BUC, the P4HB and
RGS19 mRNA levels in different tumors and normal tissues

of multiple cancer types were analyzed using the Oncomine
database. The analysis results revealed that P4HB expression
was higher in bladder, brain, breast, kidney, lung, prostate,
ovarian cancers, and lymphoma tumors than in normal tissues.
RGS19 expression was higher in bladder, breast, and kidney
cancer tissues than in normal tissues. However, expression of
P4HB in esophageal, head, and neck cancers and leukemia
was lower than expression in other cancers in some data sets.
Moreover, expression of RGS19 was lower in leukemia, lung
cancer, and lymphoma than in other cancers (Figure 3A).
These results further confirmed that both the P4HB and RGS19
expression levels were higher in BUC than in normal bladder
tissue (Figures 3B,C). The expression of P4HB and RGS19 was
further tested in three independent GEO data sets (GSE13507,
GSE52519, and GSE37815) using GEO2R. Consistent with
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FIGURE 2 | Relationship between P4HB and RGS19 expression and prognosis in BUC patients. (A,B) Kaplan-Meier survival curves of OS and DFS comparing
patients with high (red) and low (blue) expression of P4HB in BUC. (C,D) Kaplan-Meier survival curves of OS and DFS comparing patients with high (red) and low
(blue) expression of RGS19 in BUC.

the results of TCGA database and Oncomine database, the
mRNA expression levels of P4HB and RGS19 in BUC were
upregulated compared with the expression levels in normal
bladder tissue (Table 2).

Genomic Alterations of P4HB and RGS19
in BUC
We analyzed the genomic alterations of P4HB and RGS19 by
using the cBioPortal online database for BUC. P4HB and RGS19
were altered in 52 (12.62%) and 25 (6%) of the 413 BUC
patients, respectively. For P4HB, these alterations were mRNA
upregulation in 30 cases (7.28%), mRNA downregulation in 3
cases (0.73%), amplification in 6 cases (1.46%), mutation in 5
cases (1.21%), and multiple alterations in 8 cases (1.94%). For

RGS19, these alterations were mRNA upregulation in 17 cases
(4.13%), amplification in 5 cases (1.21%), and mutation in 3
cases (0.73%; Figures 4A,B). Next, we analyzed the mutant
mRNA expression of P4HB and RGS19. There was a significant
difference in the P4HB and RGS19 expression levels between
shallow deletion and amplification in the copy number alteration
status in BUC, according to TCGA database analysis (Figure 4C).

Relationship Between the mRNA Levels
of P4HB or RGS19 and the
Clinicopathological Features of Patients
With BUC
To elucidate the relevance of P4HB and RGS19 with respect to
tumor progression, we further performed a subgroup analysis of
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FIGURE 3 | Expression patterns of P4HB and RGS19 in the Oncomine database. (A) The transcription levels of P4HB and RGS19 in different types of cancers.
(B) Box plot showing the RGS19 mRNA levels in the Modlich, Sanchez-Carbayo, and Dyrskjot bladder cancer data sets. (C) Box plot showing the P4HB mRNA
levels in the Sanchez-Carbayo, Lee and Dyrskjot bladder cancer data sets.

multiple BUC clinicopathological features. The analysis included
stage II–IV BUC cases (stage I was omitted due to only two cases
being available from TCGA database). The transcription levels of
P4HB and RGS19 were significantly higher in the tumor tissues
than in the non-cancerous bladder tissues in subgroup analyses
based on gender, age, cancer stage and nodal metastasis status
(Figures 5A,B). In addition, we analyzed the protein expression

levels of P4HB and RGS19 in BUC using The Human Protein
Atlas (THPA) database16. The results revealed that the protein
expression levels of P4HB in BUC tissue were also upregulated
compared with those in normal bladder tissue. However, the

16https://www.proteinatlas.org
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TABLE 2 | The mRNA expression of P4HB and RGS19 in the GEO databases.

Gene symbol Ensembl ID GEO Platform Platform ID Fold change P value

RGS19 ENSG00000171700 GSE13507 GPL6102 ILMN_1677085 1.26 3.56E-02

GSE52519 GPL6884 2.15 4.36E-03

GSE37815 GPL6102 1.24 1.30E-01

P4HB ENSG00000185624 GSE13507 GPL6102 ILMN_1719303 1.89 3.31E-04

GSE52519 GPL6884 1.75 2.36E-02

GSE37815 GPL6102 1.98 8.07E-05

FIGURE 4 | Alteration frequency and mRNA expression of P4HB and RGS19 in BUC (cBioPortal). (A) Summary of alterations in P4HB and RGS19. (B) Oncoprint
represents the distribution and proportion of samples with different types of alterations in P4HB and RGS19. (C) The relationship of P4HB or RGS19 mRNA
expression and gene mutations. **P < 0.001.

RGS19 protein was not detected in the BUC tissue or normal
bladder tissue (Figure 5C).

Biological Interaction Network of P4HB
and RGS19 in BUC
We first confirmed the biological functions of P4HB and
RGS19 using the GeneMANIA database17. The analysis results
showed that P4HB and RGS19 had been reported to be
mainly associated with lipid metabolism and GTPase activity,
respectively (Figure 6). Then, we predicted the potential
functions of P4HB and RGS19 in BUC using co-expression
analysis methods. The Function module of LinkedOmics
was used to analyze the co-expressed genes correlated with
P4HB or RGS19 from 413 BUC cases in TCGA. As shown in
the volcano plot (Figures 7A,B), 1619 and 3160 genes (red
dots) showed significant positive correlations with P4HB (top
three genes: ANAPC11, STRA13, and SLC39A7) and RGS19
(top three genes: OPRL1, ARPC1B, and OGFR), respectively,
whereas 1843 and 2788 genes (green dots) showed significant
negative correlations [false discovery rate (FDR) < 0.01]

17http://genemania.org

with P4HB (top three genes:ZSWIM6, LYRM7, and WDR36)
and RGS19 (top three genes: YTHDC1, TMTC2, and NHSL1),
respectively. The 50 significant gene sets positively and negatively
correlated with P4HB and RGS19, as shown in the heat map
(Figures 7C,D). To obtain new insights into the potential
functions of P4HB and RGS19, we performed co-expression
network analysis based on the Pearson correlation coefficient (|
cor| ≥ 0.30, FDR < 0.01). A total of 276 and 620 protein-coding
genes (PCGs) were highly correlated with P4HB and RGS19,
respectively. Enrichment analyses based on GO terms, KEGG
and Reactome pathways were performed to predict the potential
functions of all PCGs correlated with P4HB and RGS19. The
results showed that P4HB may be involved in autophagy, the
response to endoplasmic reticulum (ER) stress and galactose
metabolic processes. In addition, the potential functions of
RGS19 may be associated with the immune response-regulating
signaling pathway, cytokine-mediated signaling pathway, and
inflammatory response (Figure 8). Subsequently, we performed
GSEA using TCGA data to further validate the potential
biological functions of P4HB and RGS19. Consistent with the
results described above, stratified expression levels of P4HB and
RGS19 were significantly correlated with genes associated with
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FIGURE 5 | P4HB and RGS19 mRNA and protein expression in subgroups of patients with BUC. Boxplot showing the relative expression of P4HB (A) and RGS19
(B) mRNA in normal bladder tissues and subgroups of BUC samples stratified based on gender, age, cancer stage, and nodal metastasis status. (C) The
representative protein expression of P4HB in normal bladder tissues, low grade and high grade BUC. **P < 0.01, *P < 0.05.

the nucleotide sugar metabolic process, regulation of autophagy,
cytokine-mediated signaling pathway, and immune response
(Figures 9A,B).

Independence of the Prognostic Value of
P4HB and RGS19 From Clinical Variables
To clarify whether P4HB and RGS19 were prognostic factors
independent of other clinical variables, we performed univariable
and multivariable Cox regression analyses with P4HB, RGS19,
and clinical features (age, gender, cancer stage, and pathological
TNM stage) as covariates. The results of the univariable
and multivariate Cox regression analysis demonstrated that
age, pathological N and high P4HB mRNA expression were
independent and unfavorable biomarkers of OS. However, RGS19
mRNA expression had no significant relationship with OS
in the univariable and multivariate Cox regression analyses
(Figures 9C,D). The results of the ROC curve analysis showed
that an AUC of 0.624 was achieved for P4HB, suggesting that

P4HB may be an independent unfavorable prognostic biomarker
of BUC (Figure 9E). The prognostic value of P4HB was further
validated in the independent set (GSE32548) and combined sets
(TCGA, GSE13507, GSE3164, GSE32548, and GSE48075) using
the OSblca database18 (24). Consistent with the results of the
TCGA dataset, P4HB was able to serve as a predictive factor for
the prognosis of BUC (Figures 9F,G).

Experimental Verification of P4HB in
BUC Cell Lines
Prolyl 4-hydroxylase, beta polypeptide expression patterns were
further validated in 4 BUC cell lines (T24, J82, EJ, and SW780)
and normal human uroepithelial cells (SV-HUC-1) using qRT-
PCR and western blot analyses. Compared with the expression
levels in SV-HUC-1 uroepithelial cells, the mRNA and protein
expression levels of P4HB in the 4 BUC cell lines (T24, J82, EJ,

18http://bioinfo.henu.edu.cn/
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FIGURE 6 | Identification of the biological functions of P4HB and RGS19 using the GeneMANIA database. Biological function analyses revealed the gene set that
was enriched in the target network of P4HB (A) and RGS19 (B). The different colors for the network nodes indicate the biological functions of the enriched set.

and SW480) were significantly increased by (8.34 ± 0.75)-fold
and (5.20± 0.23)-fold, (5.52± 1.10)-fold and (3.55± 0.35)-fold,
(11.30 ± 0.94)-fold and (4.31 ± 0.44)-fold, and (6.47 ± 0.82)-
fold and (2.5 ± 0.22)-fold (P < 0.05), respectively (Figure 10A).
Since the expression level of P4HB was upregulated in bladder
cancer tissues and cells, we further investigated the effect of
silencing P4HB on the viability and invasion of BUC cells
in vitro. As expected, transfection with P4HB-specific siRNA
in T24 and EJ cells dramatically inhibited cell invasion and
proliferation, consistent with the decreased expression levels
of P4HB (Figures 10B–D), compared with the control group.
The viability of T24 cells and EJ cells at 12, 24, 36, 48, and
72 h in the P4HB-specific siRNA group was (91.8 ± 3.2)% and
(89.2 ± 3.0)%, (83.3 ± 5.4)% and (78.5 ± 5.0)%, (64.8 ± 7.6)%
and (70.4 ± 7.2)%, (40.2 ± 8.1)% and (55.6 ± 8.3)%, and
(37.5 ± 4.2)% and (52.0 ± 3.8)%, respectively (Figure 10C). The
results of invasion assays demonstrated that the invasion of T24
cells and EJ cells was significantly decreased by (0.35 ± 0.12)-
fold and (0.42± 0.14)-fold (P < 0.05), respectively (Figure 10D).
These results further supported that regulation of P4HB may be
responsible for the development of BUC.

DISCUSSION

Autophagy is a multistep, multistage and multifactorial
complex biological process. Numerous ARGs and signaling

pathways have been reported to be involved in the regulation
of autophagy (25–27). Increasing evidence has shown that
autophagy is an important mechanism of tumorigenesis
and that interfering with autophagy signaling by targeting
key ARGs may be a novel therapeutic strategy for cancer
treatment. Previously, researchers have confirmed that
four ARGs, including hypoxia inducible factor-1 (HIF-1α),
autophagy-related 7 (ATG7), sestrin 2 (SENS2), and beclin 1
(BECN1), were associated with the cell proliferation, apoptosis
and invasion of BUC cells (28–31). However, the potential
clinical value of ARGs for the prognosis of patients with BUC
remains unclarified.

In the present study, we first obtained 232 ARGs from
the HADb and further identified 37 differentially expressed
ARGs in the onset of BUC based on the TCGA database.
Subsequently, a functional enrichment analysis demonstrated
that these aberrantly expressed ARGs influenced apoptosis, ER
stress, the cell cycle and several cancer-related pathways. We
then analyzed the correlation between differentially expressed
ARGs and the prognosis of patients with BUC. The results
revealed that BUC patients with high expression of P4HB
and RGS19 have poor OS and DFS, respectively. Thus, we
next focused on investigating the biological roles of P4HB
and RGS19 in BUC. The overexpression of P4HB and RGS19
was further validated in BUC using independent data sets,
including those from the Oncomine and GEO databases.
Moreover, cBioPortal analysis indicated that P4HB and RGS19
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FIGURE 7 | Differentially expressed gene correlations with P4HB or RGS19 in BUC (LinkedOmics). A Pearson test was used to analyze the correlation between
P4HB (A) or RGS19 (B) and differentially expressed genes in BUC. Heat maps showing genes positively and negatively correlated with P4HB (C) or RGS19 (D) in
BUC (top 50 genes). Red indicates positively correlated genes, and green indicates negatively correlated genes.

mRNA expression was significantly associated with mutations
and alterations. Given that P4HB and RGS19 are the potential
clinical values of ARGs for BUC, we further investigated
the clinical significance of P4HB and RGS19 and found that
these two genes were closely related to nodal metastasis
and cancer stage.

Prolyl 4-hydroxylase, beta polypeptide, also known as protein
disulfide-isomerase family A member 1 (PDIA1), is the main
member of the PDI gene family and is identified primarily
as a multifunctional protein involved in ER stress and the
unfolded protein response (UPR) (32). An accumulation of
UPRs in the ER leads to stress conditions and induces
an autophagic response (33). Several studies have linked
P4HB to various human cancers, including brain, colon,
kidney and gastric cancer (34–37). Sun et al. found that
P4HB could attenuate temozolomide resistance in malignant
glioma via the ER stress response pathway (34). Xie et al.
reported that P4HB was associated with tumor progression
and the therapeutic outcome of kidney renal clear cell
carcinoma (36). RGS19 is a prototypical GTPase-activating
protein with multiple functions. Recent studies suggest that

RGS19 can regulate autophagy by directly detecting extracellular
nutrients (38, 39). Emerging studies show that RGS19 also
modulates cell proliferation by forming signaling complexes
with growth factor receptors. Overexpression of RGS19 could
induce increased cell proliferation via enhanced Akt signaling
and the deregulation of cell cycle control (40). Wang et
al. reported that RGS19 suppressed Ras-induced neoplastic
transformation and tumorigenesis of non-small-cell carcinoma
(41). However, few reports have been published regarding
the effects and mechanisms of action of P4HB and RGS19
in BUC. Therefore, we further investigated the potential
functions of P4HB and RGS19 in BUC using co-expression
network analysis and GSEA. We found that P4HB and RGS19
may influence the progression and prognosis of BUC by
regulating the ER stress response, cytokine-mediated signaling
pathway and inflammatory response. The development and
progression of bladder cancer involves multiple factors, such
as clinicopathological features. We further analyzed whether
P4HB and RGS19 are independent poor prognosis factors in
BUC using multivariate Cox proportional hazards regression
analysis. The results revealed that P4HB but not RGS19
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FIGURE 8 | GO, KEGG and Reactome analyses of the mRNA targets of P4HB and RGS19. (A,B) Enrichment analyses based on GO and KEGG/Reactome
pathways to predict the potential function of mRNAs targeted by P4HB. (C,D) Enrichment analyses based on GO and KEGG/Reactome pathways to predict the
potential functions of mRNAs targeted by RGS19. The relationships among the enriched clusters from the GO and KEGG/Reactome analyses were visualized with
Metascape.
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FIGURE 9 | The independence of the prognostic value of P4HB from clinical characteristics. (A,B) GSEA using stratified P4HB and RGS19 expression levels for
genes downregulated or upregulated in BUC. The GSEA results showed the correlation of the P4HB or RGS19 levels and potential biological functions in the GO,
KEGG, and Reactome databases. (C,D) Univariate and Multivariate Cox regression analyses of the correlation between BUC patients’ OS and clinical characteristics
(age, gender,neoplasm histological stage, and pathological TNM stage). (E) ROC curve analysis to compare the sensitivity and specificity of the prognostic values of
P4HB and RGS19 and the clinical characteristics. (F,G) Kaplan-Meier survival curve analysis displaying the correlation of P4HB with OS for patients with BUC in the
GSE32548 dataset and combined data sets (TCGA, GSE13507, GSE19915, GSE31684, GSE32548, GSE48075, and GSE48276) using the OSblca database
(http://bioinfo.henu.edu.cn/).

is an independent unfavorable biomarker from conventional
clinical factors (age, gender, cancer stage, and pathological
TNM stage), indicating that P4HB may potentially enable
clinicians to discriminate high-risk patients from low-risk
patients with identical clinical characteristics for rationalizing

treatment decisions. We investigated the biological effect of
P4HB in BUC cells in vitro. We found that the mRNA and
protein expression of P4HB in BUC cells was upregulated
compared with the expression in SV-HUC-1 uroepithelial
cells, and knockdown of P4HB dramatically inhibited the cell
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FIGURE 10 | The effect of P4HB on cell invasion and viability of BUC cells. (A) Detection of the P4HB expression level using qRT-PCR and western blot analyses in
4 BUC cell lines (T24, J82, EJ, and SW780) and SV-HUC-1 uroepithelial cells. (B) After transfection with P4HB-specific siRNA for 24 h in T24 and EJ cells, the
mRNA and protein expression levels of P4HB were determined by qRT-PCR and western blot analyses, respectively. Representative images of transfection are
shown at 100 × magnification. (C) T24 and EJ cells were transfected with P4HB-specific siRNA for the indicated periods, and the cell viabilities were determined by
an MTT assay. (D) T24 and EJ cells were transfected with P4HB-specific siRNA for 24 h and incubated for an additional 24 h in the Boyden chemotaxis chamber,
and the cell invasive ability was investigated by invasion assays. Data are representative images or expressed as the mean ± SD of each group of cells from three
independent experiments, **P < 0.01 vs. the SV-HUV-1 or control group.

invasion and proliferation of BUC cells. These preliminary
in vitro experimental results confirmed that P4HB may
be associated with the development and progression of
bladder cancer. Previous studies have demonstrated that PH4B
can induce malignant tumor cell proliferation, invasion and
metastasis by regulating hypoxia inducible factor-1α (HIF-
1α) expression and the MAPK signaling pathway (42, 43).
In our present study, we found that P4HB expression was
positively associated with the expression levels of ANAPC11,
STRA13, and SLC397A and negatively associated with the
expression levels of ZSWIM6, LYRM7, and WDR36 (Figure 7A).
However, few reports have demonstrated that these genes,
which are closely related to PH4B, are associated with the
development of BUC. Interestingly, we performed GSEA to

predict the potential biological functions of P4HB expression-
related genes and found that these genes were involved
in the nucleotide sugar metabolic process, regulation of
autophagy, the response to ER stress and vesicle targeting
(Figure 9A), suggesting that P4HB may provide some new
insights into the molecular mechanism of BUC and novel
treatment targets.

CONCLUSION

In this study, we identified P4HB from hundreds of candidate
ARGs in large-scale BUC samples; P4HB can be used as a
diagnostic and prognostic marker for patients with BUC and can
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also provide a better understanding of the regulatory mechanisms
of autophagy involved in the development of BUC. Moreover,
there are still some limitations of the present study that should
be acknowledged. We will perform further experimental research
in vitro and in vivo to investigate the precise functions and
mechanisms of P4HB in the regulation of autophagy-mediated
tumorigenesis in BUC.
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Background: The spontaneous regression of neuroblastoma (NB) is most prevalent and

well-documented in stage 4s NB patients. However, whether autophagy plays roles in

the spontaneous regression of NB is unknown.

Objective: This study aimed to identify autophagy-related genes (ARGs) and

autophagy-related long non-coding RNAs (lncRNAs) differentially expressed in stage 4

and stage 4s NB and to build prognostic risk signatures on the basis of the ARGs and

autophagy-related lncRNAs.

Methods: One RNA-sequence (RNA-Seq) dataset (TARGET NBL, n= 153) was utilized

as discovery cohort, and two microarray datasets (n = 498 and n = 223) were used as

validation cohorts. Differentially expressed ARGs were identified by comparing stage 4s

and stage 4 NB samples. An ARG signature risk score and an autophagy-related lncRNA

signature risk score were constructed. The receiver operating characteristic (ROC) curve

analyses were used to evaluate the survival prediction ability of the two signatures. Gene

function annotation and Gene Set Enrichment Analysis (GSEA) were performed to clarify

the autophagic biological processes enriched in different risk groups.

Results: Nine ARGs were integrated into the ARG signature. Patients in the

high-risk group of the ARG signature had significantly poorer overall survival (OS)

than patients in the low-risk group. The ROC curves analyses revealed that

the ARG signature performed very well in predicting OS [5-year area under the

curve (AUC) = 0.81]. Seven autophagy-related lncRNAs were integrated into the

autophagy-related lncRNA signature. Patients in the high-risk group of the lncRNA

signature had significantly poorer OS than patients in the low-risk group. The ROC

curve analyses also revealed that the lncRNA signature performed well in predicting OS

(5-year AUC = 0.77). Both the ARG signature and lncRNA signature are independent

with other clinical risk factors in the multivariate Cox regression survival analyses. GSEAs

revealed that autophagy-related biological processes are enriched in low-risk groups.
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Conclusions: Autophagy-related genes and lncRNAs are differentially expressed

between stage 4 and stage 4s NB. The ARG signature and autophagy-related lncRNA

signature successfully stratified NB patients into two risk groups. Autophagy-related

biological processes are highly enriched in low-risk NB groups.

Keywords: autophagy, neuroblastoma, stage 4s, prognosis, long non-coding RNA

INTRODUCTION

Spontaneous regression of cancer has been documented since
the 1900s (1). It means that a malignant tumor completely
or partially disappears without acceptance of any tumor-
associated treatment (1). This interesting and promising
biological phenomenon has been observed in various types
of cancers (2–6). However, neuroblastoma (NB) is generally
considered the most common malignancy in which this
phenomenon is most evident and prevalent (3, 7). The
spontaneous regression of NB has been validated by several mass
screening programs undertaken in different regions of the world
including Japan, North America, and Europe or (8–11). This
phenomenon is most evident in NB patients with stage 4s disease
(3, 12–14). Patients with stage 4s NB usually had a localized
primary tumor but with tumors metastasized to the liver, skin,
or bone marrow (7). Unlike other metastatic malignancies, NB
patients with stage 4s disease generally had a surprisingly good
survival outcome, and most of them underwent spontaneous
regression even without antitumor treatment (15–17). One study
reported a 5-year overall survival (OS) rate of 92% for stage 4s NB
patients receiving supportive care or minimal therapy (18). One
recent study also reported a complete regression rate of 92% for
stage 4s adrenal NB (19).

Spontaneous regression is not restricted to stage 4s NB; it
also regularly occurs in infants with localized NB (one study
reported a complete regression rate of about 38.6% for localized
NB) (20). In fact, it can be observed in any stage of NB if
the tumor has biologically favorable histology (7, 15). Because
spontaneous regression of NB is most prevalent in patients with
stage 4s disease, investigators have been focusing on stage 4s NB
as a surrogate to explore the underliningmechanisms responsible
for spontaneous regression of NB (7, 12–14). However, the
mechanism responsible for the spontaneous regression of NB is
still largely unknown.

In recent years, autophagy has been found to play important
roles in tumor development and progression (21, 22) and is also
involved in NB (23–26). The association between autophagy and
spontaneous regression of NB is unknown. Because studies have
found that autophagy is associated with NB cell apoptosis and
differentiation (23, 24), we wish to know whether autophagy is
involved in the process of spontaneous regression.

In this study, as other investigators have done previously
(7, 12–14), we also use stage 4s NB as a surrogate. One RNA-
sequence (RNA-Seq) datasets (TARGET NBL, n = 153) and two
microarray datasets (n = 498 and n = 223) were utilized in this
study. Differentially expressed autophagy-related genes (ARGs)
were identified by comparing those deceased cases in stage 4 NB

and those survived cases in stage 4s NB. As one of our previous
study has done before (7), the dead cases in stage 4s were excluded
to make it better for serving as surrogates to NBs that underwent
spontaneous regression.

Finally, nine differentially expressed and survival-related
ARGs were incorporated into the ARG prognostic signature.
Seven autophagy-related long non-coding RNAs (lncRNAs)
were also identified and incorporated into an autophagy-
related lncRNA prognostic signature. The ARG signature
and autophagy-related lncRNA signature performed well in
predicting OS of NB patients. Gene Ontology (GO) function
annotation and Gene Set Enrichment Analysis (GSEA) revealed
that autophagy-related biological processes were significantly
enriched in the low-risk groups, whereas no autophagy gene set
was identified in the high-risk groups. These results reveal that
autophagy tends to play tumor-suppressive roles inNB andmight
be associated with the spontaneous regression of NB.

MATERIALS AND METHODS

Neuroblastoma Dataset Processing
The processed data of the RNA-Seq dataset (TARGET NBL, n
= 153) were downloaded from National Cancer Institute GDC
Data Portal. The original data of the TARGET NBL obtained
from GDC Data Portal have a total of 161 samples. Two paired
duplicated samples were identified; the gene express values in
the duplicated sample are the same too, and thus, we excluded
these duplicated samples during the analysis. We also identified
that six paired samples are from the same patients. The clinical
information for these paired samples is the same, whereas one
sample was obtained from the original tumor and the other one
sample was obtained from recurrent tumor. In order to reduce
confounding factors, we also excluded those six recurrent tumor
samples and kept their corresponding primary tumor samples
only. Finally, 153 samples were kept for the analyses, with 73 stage
4 NB samples from patients who died and 19 stage 4s samples
from patients who survived during the follow-up.

The processed data of the Agilent microarray datasets
GSE49710 (n = 498) were obtained from Gene Expression
Omnibus (GEO) database. The processed data of the Agilent
microarray datasets E-MTAB-8248 (n = 223) were obtained
from ArrayExpress database. The genes express levels in the
three datasets were already processed and log2 transformed. The
clinical characteristics of the patients in these three datasets
were also obtained and are shown in Supplementary Table 1.
The RNA-Seq dataset (termed as cohort 1) was used as the
discovery cohort. The microarray datasets GSE49710 (termed as
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cohort 2) and E-MTAB-8248 (termed as cohort 3) were used
as the validation cohorts. The Agilent microarray probes IDs
were firstly annotated using the platform GPL16876 (Agilent-
020382 Human Custom Microarray 44k); then, the probes IDs
were re-annotated by their GenBank Accession number in order
to renew the annotation. Finally, in order keep consistency
over the three datasets, the Ensemble ID in the three datasets
was transformed into gene symbols according to GRCh38.p12,
and the background of the three datasets was also intersected
normalized by R package “sva.” If multiple probes mapped to
one same gene, the average level of the expression value will
be used. The online platform of cBio Cancer Genomics Portal
(cBioportal) (http://www.cbioportal.org/) was utilized to analyze
the genomic alteration (mutation and copy number alteration) of
the identified genes (27).

Extraction of Differentially Expressed
Autophagy-Related Genes
ARGs were extracted fromHuman Autophagy Database (https://
www.autophagy.lu/), with a total of 232 ARGs. Differential
expression analyses were performed by “limma” package using
the R (version 3.6.2) software in cohort 1. Genes with false
discovery rate (FDR) < 0.05 and |log2FoldChange| > 0.5 were
extracted as differentially expressed genes. LncRNAs correlated
(Pearson correlation threshold ≥ 0.5) with ARGs were extracted
as autophagy-related lncRNAs. Only those lncRNAs matching
the GENCODE annotation of lncRNA (release 31, GRCh38.p12)
were selected.

Construction of the Autophagy-Related
Prognostic Signatures
Univariate Cox proportional hazards regression analyses were
performed to identify those ARGs associated with OS in the
entire cohort 1. A p≤ 0.05 was considered statistically significant.
Those survival-related ARGs were put into the Cox proportional
hazards model survival analysis with least absolute shrinkage
and selection operator (LASSO) penalty to eliminate false
positives owing to over-fitting (28). Finally, the autophagy-
related prognostic signature was constructed by weighting the
Cox regression coefficients for each gene to calculate a risk
score for every patient. The median value was used as the
cutoff value, and the patients were classified as low risk and
high risk accordingly. The same formula was applied to the
validation cohorts, and the same cutoff value was used to
divide the patients into two risk groups. Autophagy-related
lncRNA signature was constructed by the same method. Those
autophagy-related lncRNAs associated with OS were put into
LASSO Cox model regression analyses. The autophagy-related
lncRNA signature was constructed by the same method.

Function Annotation and Gene Set
Enrichment Analysis
Differentially expressed ARGs that associated with OS were put
into GO functional annotation. The GO function annotation was
first performed by R software using “BiocManager” package of
“clusterProfiler,” “org.Hs.eg.db,” and “enrichplot.” Then the circle

plot of GO function annotation was generated by R software
using package “GOplot.” Functional annotation with a p < 0.05
was considered statistically significant. GSEA comparing low-risk
group and high-risk group was performed by GSEA software
(version 4.0.03). An FDR q-value < 0.25 and a nominal p < 0.05
were considered statistically significant for GSEAs.

Statistical Analysis
The univariate and multivariate Cox survival regression analyses
were calculated by the R package “survival.” The LASSO Cox
survival analyses were performed by the R package “glmnet,”
and 1,000-fold cross-validation was used. The Kaplan–Meier
survival curves were constructed by R software or GraphPad
Prism 5, and the statistical significance was estimated by the
two-sided log-rank test. The time-dependent receiver operating
characteristic (ROC) curves and area under the curve (AUC)
analyses were performed to evaluate the predictive performance
of the prognostic signatures and performed by the R package
“time ROC.” Nomograms were generated by R package “rms,”
and Harrell’s concordance index (C-index) was calculated to
evaluate the discriminatory ability. Volcano plot was plotted
by the R package “ggplot2.” Heat maps were generated by the
R package “pheatmap.” The Pearson correlation matrix was
generated by the R package “corrplot.” The alluvial diagramswere
generated by the R package “ggalluvial.” The R software version
3.6.2 was utilized in this study for the statistical analyses. A p <

0.05 was considered statistically significant, and all statistical tests
were two-sided.

RESULTS

Identification of Differentially Expressed
and Survival-Related Autophagy-Related
Genes
Differential expression analyses were performed on the RNA-
Seq datasets (cohort 1, n = 153). Cohort 1 contains 125 stage
4 NB samples and 21 stage 4s NB samples. A total of 48 ARGs
were found to be differentially expressed between those stage 4
cases who died during follow-up (n = 73) and those stage 4s
cases who survived during follow-up (n= 19). Thirty-two ARGs
were up-regulated in stage 4 NB samples, whereas 16 ARGs were
up-regulated in stage 4s NB samples (Figures 1A,B).

Univariate Cox proportional model survival analyses revealed
that 19 ARGs were significantly (p < 0.05) associated with OS
in the entire cohort 1 (Supplementary Figure 1A). Twelve ARGs
were up-regulated in stage 4s NB samples and associated with
good survival, whereas seven ARGs were up-regulated in stage
4 NB samples and associated with bad survival.

Construction and Validation of
Autophagy-Related Gene Prognostic
Signature
The survival-related ARGs were put into LASSO
Cox survival analysis to eliminate false positives
(Supplementary Figures 1B,C). The 1 – SE criterion revealed
only one gene (TM9SF1) in the model; thus, the “lambda.min”
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FIGURE 1 | Identification of differentially expressed autophagy-related genes (ARGs) between stage 4s and stage 4 neuroblastoma (NB). (A) Volcano plot shows the

differentially expressed 48 ARGs in cohort 1. (B) The heat map shows the expression values of the identified 48 ARGs in cohort 1.

criterion was used to select the minimum lambda value (λ =

0.0677). Finally, nine ARGs (Supplementary Table 2) were
selected and incorporated into the ARG signature risk score. The
risk scores were calculated for each patient as follows: risk score
= 0.1248 ∗ SPNS1 + 0.6746 ∗ TM9SF1 + 0.0145 ∗ WDR45B
+ 0.0088 ∗ EIF4EBP1 – 0.0012 ∗ GABARAPL1 – 0.0649 ∗

ATG14 – 0.0810 ∗ ULK2 – 0.0165 ∗ DLC1 – 0.0269 ∗ ARNT.
The median value was used as the cutoff value, and the entire
cohort 1 was classified into two risk groups accordingly. The
risk distribution, survival status, and gene expression pattern are
shown in Figure 2A. The scatter plot (Figure 2A) shows that
most of the patients in the high-risk group died and most of
the patients in the low-risk group survived during the 15-year
follow-up. The heat map (Figure 2A) shows that five ARGs were
highly expressed in the low-risk group, whereas four ARGs were
highly expressed in the high-risk group. Kaplan–Meier plots
show that patients in the high-risk group have a significantly
poorer OS than those in the low-risk group (Figure 2B). The 3-,
5-, and 10-year OS rates for the patients in high-risk group were
50.42, 28.97, and 16.01%, respectively, whereas the 3-, 5-, and
10-year OS rates for patients in low-risk group were 82.38, 75.28,
and 70.66%, respectively. Time-dependent ROC curves reveal
that the ARG signature has good performance in predicting OS
in cohort 1, whereas the AUC at 3-, 5-, and 10-years were 0.75,
0.81, and 0.71, respectively (Figure 2C).

To corroborate the prognostic significance, the ARG signature
was tested in cohort 2 (n = 498) and cohort 3 (n = 223)
for validation using the same risk score formula. According to
the same cut-off value as cohort 1, the validation cohorts were
divided into two risk groups. The risk distribution, survival
status, and gene expression pattern for cohort 2 are shown in
Figure 2D. Kaplan–Meier plots show that patients in the high-
risk group have a significantly poorer OS than those in the

low-risk group in cohort 2 (Figure 2E). Time-dependent ROC
curves reveal that the ARG signature has good performance in
predictingOS in cohort 2, whereas the AUC at 3-, 5-, and 10-years
was 0.72, 0.76, and 0.78, respectively (Figure 2F). Consistent with
cohort 1 and cohort 2, the validation in cohort 3 shows similar
results (Supplementary Figure 2).

Survival Analysis for the
Autophagy-Related Gene Prognostic
Signature
The univariate Cox regression survival analyses for the ARG
signature risk score and other clinical risk factors in the entire
cohort 1 are shown in Figure 3A. The ARG signature risk
score is significantly associated with OS [hazard ration (HR)
= 5.068; 95%CI: 3.047–8.430; p < 0.001] in the univariate
survival analysis. Multivariate Cox survival analyses including
gender (female vs. male), age status (<18 vs. ≥18 months),
International Neuroblastoma Staging System (INSS) stage
(INSS 2/3/4S vs. INSS 4), MYCN amplification (non-amplified
vs. amplified), Children’s Oncology Group (COG) risk status
(low risk vs. high risk), ploidy (hyperploid vs. diploid),
histology type (favorable vs. unfavorable), differentiation
(differentiating vs. poorly differentiated), mitosis-karyorrhexis
index (MKI) (low/intermediate vs. high), and pathology subtype
(ganglioneuroblastoma vs. NB) as covariates were performed to
evaluate the independent prognostic role of the ARG signature
(Figure 3B). In cohort 1, only the ARG signature (HR = 4.372;
95%CI: 2.020–9.461, p < 0.001) and ploidy (HR= 1.897; 95%CI:
1.087–3.251; p = 0.024) were independently associated with OS
(Figure 3B). The univariate and multivariate Cox regression
survival analyses for the ARG signature and other clinical
risk factors in cohort 2 are shown in Figures 3C,D. The ARG
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FIGURE 2 | The autophagy-related genes (ARGs) prognostic signature for neuroblastoma. (A) The distribution of risk scores, survival status of each patient, and heat

map of ARG expression pattern in cohort 1. (B) Kaplan–Meier survival curve for overall survival (OS) of patients in the low-risk group and high-risk group for cohort 1.

(C) Time-dependent receiver operating characteristic (ROC) curves for the prognostic value of the ARG signature in cohort 1. (D) The distribution of risk scores,

survival status of each patient, and heat map of ARG expression pattern in cohort 2. (E) Kaplan–Meier survival curve for OS of patients in the low-risk group and

high-risk group for cohort 2. (F) Time-dependent ROC curves for the prognostic value of the ARG signature in cohort 2.

signature risk score is significantly associated with OS in cohort 2
by both univariate model (HR = 6.077; 95%CI: 3.889–9.495; p <

0.001) and multivariate model (HR= 2.715; 95%CI: 1.590–4.637;
p < 0.001). Because the COG risk group classification already
considered age, MYCN amplification, and INSS stage into its risk
classification system, we built a nomogram incorporating only
the COG risk classification and the ARG signature risk score for
prediction of OS on the basis of the largest cohort (cohort 2, n
= 498) (Figure 3E). As is shown in the nomogram (Figure 3E),
COG low risk was denoted as 0 point, whereas COG high risk
was denoted as 100 points. As for the ARG signature risk score
in the nomogram, a risk score of 4 was denoted as 0 point, and
a risk score of 7.5 was denoted as 82 points. The risk scores
between 4 and 7.5 were assigned correspondingly between 0 and
82 points and could be calculated as follows: point= (risk score –
4) ∗ (82/3.5). The total points for the patients were calculated by
combining the points for COG risk and the points for the ARG
risk score, and the corresponding predicted survival probability
are shown below.

The C-index for the nomogram was 0.84 (95%CI: 0.81–0.87),
indicating a high level of accuracy. The 1-, 3-, and 5-year calibrate
curves for the nomogram all revealed that the predicted OS
was very close to the actual OS (Figure 3F). The ROC curve
analyses reveal that the AUC values at 1-, 3-, and 5-years for the

nomogramwere higher than the AUC values at 1-, 3-, and 5-years
for the COG risk, respectively (Figure 3G), indicating that the
prognostic role of the nomogram is more accurate than the COG
risk classification alone.

Prognostic Role of the Autophagy-Related
Gene Signature Within Clinical Subgroups
Stratification survival analysis was performed to evaluate the
prediction ability of the ARG signature in different clinical
subgroups. The subgroups were classified based on MYCN
amplification status, histology subtype, differentiation status,
ploidy status, MKI status, pathology subtype, COG risk status,
age status, and INSS stage. Within each subgroup, patients
were stratified into low-risk group and high-risk group on the
basis of the same cut-off value from the entire cohort 1. In
the MYCN non-amplified subgroup, patients in the high-risk
group had a significantly worse OS than patients in the low-risk
group (Figure 4A), whereas the ARG signature failed to stratify
patients in the MYCN amplified subgroup into two risk groups
(Figure 4B). In both of the histology subtype (favorable and
unfavorable), patients in the high-risk group had significantly
worse OS than patients in the low-risk group (Figures 4C,D).
In the differentiating subgroup, the ARG signature failed to
successfully stratify patients into two risk groups (Figure 4E),
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FIGURE 3 | Univariate and multivariate survival analyses of the autophagy-related gene (ARG) signature. (A) Univariate survival analysis of the ARG signature and

other clinical risk factors in cohort 1. (B) Multivariate survival analysis of the ARG signature and other clinical risk factors in cohort 1. (C) Univariate survival analysis of

the ARG signature and other clinical risk factors in cohort 2. (D) Multivariate survival analysis of the ARG signature and other clinical risk factors in cohort 2. (E) The

nomogram model for prediction of overall survival in cohort 2. (F) The 1-, 3-, and 5-year calibration curves for the nomogram. (G) The 1-, 3-, and 5-year ROC curve

analyses for the nomogram.

whereas in the poorly differentiated subgroup, patients in the
high-risk group had significantly worse OS than patients in
the low-risk group (Figure 4F). In both of the ploidy subtype

(hyperdiploid and diploid), patients in the high-risk group
had significantly worse OS than patients in the low-risk group
(Figures 4G,H). In both the lowMKI subgroup and intermediate
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FIGURE 4 | Kaplan–Meier plots show the prognostic role of the autophagy-related gene (ARG) signature for overall survival in different subgroups of cohort 1. (A)

MYCN not amplified. (B) MYCN amplified. (C) Favorable histology. (D) Unfavorable histology. (E) Differencing. (F) Poorly differentiated. (G) Hyperdiploid. (H) Diploid. (I)

Low mitosis-karyorrhexis index (MKI). (J) Intermediate MKI. (K) High MKI. (L) Ganglioneuroblastoma. (M) Neuroblastoma. (N) Children’s Oncology Group (COG) high

risk. (O) Age > 18 months. (P) International Neuroblastoma Staging System (INSS) stage 4. The p-values were obtained using a Mantel log-rank test (two-sided).

MKI subgroup, patients with a high-risk score had a significantly
worse OS than patients with a low-risk score (Figures 4I,J);
however, the ARG signature failed to stratify patients in the high
MKI subgroup into two risk groups (Figure 4K). In both of
the ganglioneuroblastoma subgroup and NB subgroup, patients
with a high-risk score had a significantly worse OS than those
with a low-risk score (Figures 4L,M). All patients in the COG
low-risk subgroup were classified as ARG low-risk group; thus,

the Kaplan–Meier plot was not constructed, whereas the ARG
risk score significantly stratify patients in the COG high-risk
subgroup into two risk groups for OS (Figure 4N). All patients
with diagnosis age < 18 months were classified as ARG low-risk
group; thus, the Kaplan–Meier plot was not constructed, whereas
the ARG risk score significantly stratify patients in the age > 18
month subgroup into two risk groups for OS (Figure 4O). All
patients in stage 4s were classified as ARG low-risk group; thus,
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FIGURE 5 | The correlation between the autophagy-related genes (ARGs) and the autophagy-related long non-coding RNAs (lncRNAs). (A) The correlation matrix

showing the Pearson correlation coefficients. (B) The alluvial diagram showing the correlation between the ARGs and the lncRNAs, which has a coefficient ≥ 5.

the Kaplan–Meier plot was not constructed, whereas the ARG
risk score significantly stratifies patients in the stage 4 subgroup
into two risk groups for OS (Figure 4P). There is only one patient
classified as stage 2, six patients classified as stage 3, and no
patients classified as stage 1 in cohort 1. Thus, we did not conduct
subgroup analysis for stage 1, stage 2, and stage 3.

Construction and Validation of
Autophagy-Related LncRNA Prognostic
Signature
The lncRNAs correlated (Pearson correlation threshold ≥

0.5) with the nine ARGs in the ARG signature were extracted
as autophagy-related lncRNAs. A total of 562 autophagy-
related lncRNAs were identified in cohort 1. However, only
18 autophagy-related lncRNA were shown to be significantly
associated with OS by the univariate Cox survival analysis
(Supplementary Figure 3A). The survival-related lncRNAs
were put into LASSO Cox survival analysis to eliminate
false positives. The 1 – SE criterion revealed no gene in
the model; thus, the minimum lambda value was selected
(λ = 0.0419) (Supplementary Figures 3B,C). Finally, seven
autophagy-related lncRNAs (Supplementary Table 3) were
selected and incorporated into the lncRNA signature risk
score. The correlation between these seven lncRNAs and
the ARGs is shown in Figures 5A,B. Figure 5A shows their
Pearson correlation coefficients, whereas Figure 5B shows
the links between the ARGs and lncRNAs, which have a
coefficient ≥ 0.5.

The lncRNA signature risk scores were calculated for each
patient as follows: risk score = 0.4820 ∗ SLX1A – SULT1A3 +

0.0578 ∗ LINC00665 + 0.0050 ∗ SNH6 – 0.1992 ∗ FAM13A-
AS1 – 0.1984 ∗ AC022075.1 – 0.0273 ∗ LINC01228 – 0.0084 ∗

AL356599.1. The median value was used as the cutoff value, and
the entire cohort 1 was classified into two risk groups accordingly.
The risk distribution, survival status, and gene expression pattern
are shown in Figure 6A. The scatter plot (Figure 6A) shows
that most of the patients in the high-risk group died and that
most of the patients in the low-risk group survived during the
15-year follow-up. The heat map (Figure 6A) shows that four
lncRNAs were highly expressed in the low-risk group whereas
three lncRNAs were highly expressed in the high-risk group.
Kaplan–Meier plots show that patients in the high-risk score
group have a significantly worse OS than those in the low-risk
score group (Figure 6B). The 3-, 5-, and 10-year OS rates for
the patients in high-risk group were 50.39, 34.24, and 32.03%,
respectively, whereas, the 3-, 5-, and 10-year OS rates for patients
in low-risk group were 82.42, 72.16, and 66.96%, respectively.
Time-dependent ROC curves reveal that the lncRNA signature
has good performance in predicting OS in cohort 1, whereas the
AUC at 3-, 5-, and 10-years was 0.77, 0.77, and 0.63, respectively
(Figure 6C).

The lncRNA signature was tested in cohort 2 (n = 498) and
cohort 3 (n = 223) for validation using the same risk score
formula. According to the same cut-off value as cohort 1, the
validation cohorts were divided into two risk groups. The risk
distribution, survival status, and gene expression pattern for
cohort 2 are shown in Figure 6D. Kaplan–Meier plots show
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FIGURE 6 | The autophagy-related long non-coding RNA (lncRNA) signature risk score for neuroblastoma. (A) The distribution of risk scores, survival status of each

patient, and heat map of lncRNA expression pattern in cohort 1. (B) Kaplan–Meier survival curve for overall survival (OS) of patients in the low-risk group and high-risk

group for cohort 1. (C) Time-dependent receiver operating characteristic (ROC) curves for the prognostic value of the lncRNA signature in cohort 1. (D) The

distribution of risk scores, survival status of each patient, and heat map of lncRNAs expression pattern in cohort 2. (E) Kaplan–Meier survival curve for OS of patients

in the low-risk group and high-risk group for cohort 2. (F) Time-dependent ROC curves for the prognostic value of the lncRNA signature in cohort 2.

that patients in the high-risk score group have a significantly
poorer OS than those in the low-risk score group in cohort
2 (Figure 6E). Time-dependent ROC curves reveal that the
lncRNA signature has good performance in predicting OS in
cohort 2, whereas the AUC at 3-, 5-, and 10-years was 0.8,
0.83, and 0.8, respectively (Figure 6F). Consistent with cohort
1 and cohort 2, the validation in cohort 3 shows similar results
(Supplementary Figure 4).

Survival Analysis for the
Autophagy-Related LncRNA Prognostic
Signature
The univariate Cox regression survival analyses for the
lncRNA signature risk sore and other clinical risk factors
in cohort 1 are shown in Figure 7A. The lncRNA signature
risk score is significantly associated with OS (HR = 3.976;
95%CI: 2.572–6.148; p < 0.001) in the univariate survival
analysis. Multivariate Cox survival analyses including gender
(female vs. male), age status (<18 vs. ≥18 months), INSS
stage (INSS 2/3/4S vs. INSS 4), MYCN amplification (non-
amplified vs. amplified), COG risk status (low risk vs.
high risk), ploidy (hyperploid vs. diploid), histology type

(favorable vs. unfavorable), differentiation (differentiating vs.
poorly differentiated), MKI (low/intermediate vs. high), and
pathology subtype (ganglioneuroblastoma vs. NB) as covariates
were performed to evaluate the independent prognostic role
of the lncRNA signature (Figure 7B). In cohort 1, only the
lncRNA signature (HR = 6.186; 95%CI: 3.052–12.536, p <

0.001) and ploidy (HR = 2.139; 95%CI: 1.229–3.772; p =

0.007) were independently associated with OS (Figure 7B). The
univariate and multivariate Cox regression survival analyses for
the lncRNA signature risk sore and other clinical risk factors
in cohort 2 are shown in Figures 7C,D. The lncRNA signature
risk score is significantly associated with OS in cohort 2 by
both univariate model (HR = 7.199; 95%CI: 4.763–10.881; p
< 0.001) and multivariate model (HR = 2.005; 95%CI: 1.220–
3.294; p = 0.006). We also built a nomogram incorporating
the COG risk classification and the lncRNA signature risk
score for prediction of OS on the basis of the largest cohort
(cohort 2, n = 498) (Figure 7E). As is shown in the nomogram
(Figure 7E), COG low risk was denoted as 0 point, whereas
COG high risk was denoted as 79 points. As for the lncRNA
signature risk score in the nomogram, a risk score of −0.5
was denoted as 0 point, and a risk score of 3 was denoted
as 100 points. The risk scores between −0.5 and 3 were
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FIGURE 7 | Univariate and multivariate survival analyses for the autophagy-related long non-coding RNA (lncRNA) signature. (A) Univariate survival analysis of the

lncRNA signature and other clinical risk factors in cohort 1. (B) Multivariate survival analysis of the lncRNA signature and other clinical risk factors in cohort 1. (C)

Univariate survival analysis of the lncRNA signature and other clinical risk factors in cohort 2. (D) Multivariate survival analysis of the lncRNA signature and other clinical

risk factors in cohort 2. (E) The nomogram model for prediction of overall survival in cohort 2. (F) The 1-, 3-, and 5-year calibration curves for the nomogram. (G) The

1-, 3-, and 5-year receiver operating characteristic (ROC) curve analyses for the nomogram.

assigned correspondingly between 0 and 100 points and could
be calculated as follows: points = (risk score + 0.5) ∗ (100/3.5).
The total points for the patients were calculated by combining
the points for COG risk and the points for the lncRNA

risk score. The corresponding predicted survival probability is
shown below.

The C-index for the nomogram was 0.85 (95%CI: 0.81–0.88),
indicating a high level of accuracy. The 1-, 3-, and 5-year calibrate
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FIGURE 8 | Kaplan–Meier plots show the prognostic role of the long non-coding RNA (lncRNA) signature for overall survival in different subgroups of cohort 1. (A)

MYCN not amplified. (B) MYCN amplified. (C) Favorable histology. (D) Unfavorable histology. (E) Differencing. (F) Poorly differentiated. (G) Hyperdiploid. (H) Diploid. (I)

Low mitosis-karyorrhexis index (MKI). (J) Intermediate MKI. (K) High MKI. (L) Ganglioneuroblastoma. (M) Neuroblastoma. (N) Children’s Oncology Group (COG) low

risk. (O) COG high risk. (P) International Neuroblastoma Staging System (INSS) stage 4. (Q) Age > 18 months. The p-values were obtained using a Mantel log-rank

test (two-sided).
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FIGURE 9 | Function annotation and Gene Set Enrichment Analyses (GSEAs) of the prognostic signatures in neuroblastoma. (A) The circle plot of Gene Ontology

(GO) function annotation for the differentially expressed and survival-related autophagy-related genes (ARGs). (B) Gene sets enriched in the low-risk group of the ARG

signature. (C) Gene sets enriched in the low-risk group of the autophagy-related long non-coding RNA (lncRNA) signature.

curves for the nomogram all revealed that the predicted OS

was very close to the actual OS (Figure 7F). The ROC curves
analyses revealed that the AUC values at 1-, 3-, and 5-years for

the nomogram were higher than the AUC values at 1-, 3-, and 5-
years for the COG risk, respectively (Figure 7G), indicating that

the prognostic role of the nomogram is more accurate than the

COG risk classification alone.

Prognostic Role of the Autophagy-Related
LncRNA Signature Within Clinical
Subgroups
Stratification survival analyses were performed in order
to evaluate the prediction ability of the lncRNA signature
in different clinical subgroups. The subgroups were
classified according to MYCN amplification status (not
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amplified and amplified), histology subtype (favorable and
unfavorable), differentiation status (differentiating and poorly
differentiated), ploidy status (hyperdiploid and diploid),
MKI status (low, intermediate and high), pathology subtype
(ganglioneuroblastoma and NB), COG risk status (low and
high), age status (age < 18 months and age > 18 months), and
INSS stage. Within each subgroup, patients were classified into
low-risk and high-risk subgroups on the basis of the same cutoff
value from the entire cohort 1. Except for MYCN amplified
subgroup, differentiating subgroup and high MKI subgroup, the
lncRNA signature risk score significantly stratifies patients into
two risk groups for OS in all of the other subgroups (Figure 8).
Only one patient in stage 4s was classified as lncRNA high-risk
group; thus, the Kaplan–Meier plot was not constructed. There
is only one patient classified as stage 2, six patients classified as
stage 3, and no patients classified as stage 1 in cohort 1. Thus,
we did not conduct subgroup analysis for stage 1, stage 2, and
stage 3.

Gene Ontology Function Annotation and
Gene Set Enrichment Analyses for the
Prognostic Signatures
The 21 differentially expressed and survival-related ARGs were
put into GO functional annotation. The circle plot of GO revealed
that autophagy biological processes (GO: 0006914 autophagy,
GO: 0061919 process utilizing autophagic mechanism, GO:
0016236 macroautophagy, and GO: 0010506 regulation of
autophagy) were down-regulated in stage 4 NB (Figure 9A).

GSEAs were also conducted to compare the difference
between low-risk groups and high-risk groups. For both of the
ARG signature and lncRNA signature, no autophagy-related
gene set was enriched in the high-risk groups. Gene sets of GO
regulation of macroautophagy, GO regulation of autophagosome
assembly, GO selective autophagy, and GO positive regulation
of macroautophagy were significantly enriched in the low-
risk group of the ARG signature (Figure 9B). Gene sets of
GO positive regulation of autophagy, GO autophagosome
organization, GO negative regulation of autophagy, and GO
positive regulation of macroautophagy were significantly
enriched in the low-risk group of the lncRNA signature
(Figure 9C).

Genetic Alterations of the Genes in the
Prognostic Signatures
The cBioportal platform was used to explore the genetic
alterations of the nine ARGs and the seven lncRNAs in
NB tumors (Supplementary Figure 5). The mutation data in
755 NB tissue samples and the somatic gene copy number
data in 59 NB tissue samples were provided by cBioportal.
The results showed that MYCN gene has somatic gene
copy number alteration in about 19% of the NB tissue
samples and has mutations in about 1.2% of the NB tissue
samples. Only GABARAPL1 was found to have amplification
in 1.7% of NB samples (Supplementary Figure 5A). SPNS1,
DLC1, and ARNT were found to have missense mutation
in 0.1% of NB samples (Supplementary Figure 5B). No gene

alteration data were available for the lncRNA AC0022075.1
and AL356599.1. No somatic gene copy number alteration
or mutation was detected for each of the other lncRNAs
(Supplementary Figures 5C,D).

DISCUSSION

Autophagy is a highly conserved homeostatic pathway, which
captures intracellular proteins and organelles and put them into
degradation and recycling (21, 22). The role of autophagy in
cancer is context dependent; in some models, autophagy could
suppress cancer genesis, whereas some cancers are dependent
on autophagy for survival (22). Some researchers reported the
tumor-suppressive role of autophagy for NB. For example,
one study reported that inhibition of cyclooxygenase-2 (COX-
2) promotes 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced autophagic cell death in human NB cell line
SH-SY5Y (29); another study revealed that calcium/calmodulin-
dependent protein kinase II (CAMK2) promotes autophagic
degradation of inhibitor of differentiation 1/2 (Id-1/2) and then
induces cell differentiation in NB (24). However, there are also
studies that found the tumor-protective role of autophagy for
NB. For example, rapid induction of ARG GABARAPL1 could
promote NB cell survival before autophagy activation (25);
autophagy was also found to be associated with chemoresistance
of NB (26).

The association between ARGs and the spontaneous
regression of NB is largely unknown. To our knowledge, this
present study is the first with the purpose finding out ARGs
associated with spontaneous regression of NB by combining
both RNA-Seq and microarray data. Because spontaneous
regression of NB is most prevalent in stage 4S NB patients, in
this study, stage 4s tumors were used as surrogates to explore
the underlining mechanisms responsible for the spontaneous
regression of NB as many other investigators have done before.
The dead cases in stage 4s were excluded to make it better to
serve as surrogates. Actually, there were only two out of 21 stage
4s cases who died in cohort 1, five out of 54 stage 4s cases who
died in cohort 2, and one out of 30 stage 4s cases who died in
cohort 3 during more than 10-years of follow-up.

In this study, out of 233 ARGs in the Human Autophagy
Database, a total of 48 ARGs were found to be differentially
expressed between stage 4s and stage 4 NB samples, and 19
of these 48 ARGs were found to be significantly correlated
with OS of NB patients. After LASSO Cox survival analysis,
nine ARGs were found to have the best prognostic value and
were used to construct an ARG prognostic signature. The ARG
signature risk score successfully divided each of the cohorts
into two different risk groups, with the low-risk group having
good survival outcome and the high-risk group having bad
survival outcome. The ARG signature also performed well in the
subgroup survival analyses on the basis of different clinical risk
factor stratifications. Multivariate survival analyses revealed that
the prognostic role of this ARG signature is independent with
other clinical risk factors. These results corroborate the role of
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autophagy in the genesis and progression of NB and suggest the
use of this ARG signature as a risk factor for risk stratification.

Most NB patients in North America are treated according
to the COG risk classification system. Based on MYCN
amplification status, age at diagnosis, INSS stage, histopathology,
and tumor cell ploidy, NB patients are stratified into low-,
intermediate-, and high-risk groups according to the 2007 COG
risk system (30, 31). The latest available data reveal that the 5-
year OS rate was about 97% for COG low-risk NB patients (32);
the 3-year OS rate was about 96% for COG intermediate-risk NB
patients (33); and the OS rate for COG high-risk NB patients is
only about 50% (31). In this study, although all patients in the
COG low-risk subgroup were also classified as ARG signature
low risk, the ARG signature significantly striated patients in the
COG high-risk NBs into two risk groups. This suggests that the
ARG signature risk score could improve the prognostic ability of
COG risk classification system. We thus built a nomogram on
the basis of the COG risk classification and the ARG signature
risk score using the largest cohort (cohort 2, n = 498), which
shows good accuracy for OS prediction. One drawback is that
this dataset (cohort 2, GSE49710) only consists of COG low-risk
and high-risk NB patients, whereas no NB patients were in the
intermediated-risk group. In the TAGERTNBL cohort (n= 153),
there are only several cases classified as COG intermediate risk,
and we thus combined COG intermediate-risk and low-risk NBs
together as one group during the analysis. However, because the
OS rate of COG low-risk NB patients and COG intermediate-risk
NB patients is similar (32, 33), we think that the influence of this
drawback is limited.

The nine ARGs incorporated in the ARG signature include
SPNS1 (sphingolipid transporter 1), TM9SF1 (transmembrane
9 superfamily member 1), WDR45B (WD repeat domain
45B), EIF4EBP1 (eukaryotic translation initiation factor 4E
binding protein 1), GABARAPL1 (gamma-aminobutyric acid
receptor-associated protein-like 1), ATG14 (autophagy related
14), ULK2 (unc-51 like kinase 2), DLC1 (DLC1 Rho GTPase
activating protein), and ARNT (aryl hydrocarbon receptor
nuclear translocator). Five (ATG4, ULK2, ARNT, GABARAPL1,
and DLC1) of them are highly expressed in the low-risk group
and are associated with good OS, whereas four (EIF4EBP1,
WDR45B, SPNS1, and TM9SF1) of them are highly expressed in
the high-risk group and are associated with bad OS.

The five ARGs that associated good survival of NB are
all important positive regulators of autophagy. Two of them
(ULK1 and ARNT) have been found to have important roles in
regulating neuronal development: ULK1 is essential to mediate
autophagy under nutrient-deficient conditions and regulate
axon guidance in the developing forebrain of mouse via a
non-canonical pathway (34, 35); ARNT is mostly expressed
in neuronal cell types and play roles in regulating dendritic
morphology and neuronal differentiation (36). Two of them
(GABARAPL1 and DLC1) have been found to have a tumor-
suppressive function: the GABARAPL1 protein could positively
regulate ULK1 activity and autophagosome formation (37) and
was also found to have a tumor-suppressive function in breast
cancer cells (38, 39); DLC1 is involved in regulating autophagy
and apoptosis and was found to be a potential tumor suppressor

in many types of human cancers (40). ATG4 is the only protease
functions as an important factor in the ATG8 conjugation
system, and its activity is essential to autophagy (41). It has
to be mentioned that one study revealed that rapid induction
of GABARAPL1 promotes NB cell survival before autophagy
activation (25), which is somewhat inconsistent with our findings
as GABARAPL1 was found to be associated with good survival
in our study. However, as is described in the literature, the
protective role of GABARAPL1 for NB cell functions before
autophagy activation (25).

The function of the four ARGs that associated bad survival
of NB in our study has been reported as follows: EIF4EBP1
is a downstream target of mTOR signaling pathway and could
inhibit autophagy initiation (42, 43); WDR45B was found to play
an essential role in maintaining neural autophagy and neural
homeostasis (44); SPNS1 was found to play an important role in
orchestrating autolysosomal biogenesis and is critically linked to
developmental senescence and survival (45); TM9SF1 was found
to play important roles in inducing autophagy (46). Except for
GABARAPL1, the roles of the other eight ARGs in NB genesis
and progression have not been reported. The exact roles of
these ARGs in NB and their underlining mechanisms need to be
investigated by further studies.

LncRNAs are known as RNA transcripts longer than 200
nucleotides with no protein-coding capacity (47). LncRNAs are
crucial players in various types of cancers including NB (48–52).
In this study, we identified that the expression of 18 survival-
related lncRNAs are correlated with the expression of the nine
ARGs in the ARG signature. We termed these lncRNAs as
autophagy-related lncRNAs. Seven autophagy-related lncRNAs
were identified as having the best prognostic value by the LASSO
Cox survival analyses. These seven autophagy-related lncRNAs
were used to construct an autophagy-related lncRNA signature.
The lncRNA signature risk score also successfully divided each
of the cohorts into two different risk groups, with the low-risk
groups having good survival outcome and the high-risk groups
having bad survival outcome. The lncRNA signature performed
well in the subgroup survival analyses on the basis of different
clinical risk factor stratifications. Multivariate survival analyses
revealed that the prognostic role of this lncRNA signature is also
independent with other clinical risk factors. Different from the
ARG signature, this lncRNA signature significantly stratified both
COG low-risk NBs and COG high-risk NBs into two risk groups,
indicating a somewhat better prediction accuracy. The C-index
for the nomogram based on the lncRNA signature is a little higher
than the C-index for the nomogram based on the ARG signature
(0.85 vs. 0.84).

These seven lncRNAs incorporated in the lncRNA signature
include FAM13A-AS1, SLX1A-SULT1A3, SNHG6, LINC001128,
LINC00665, AL356599.1, and AC022075.1. Four (LINC01128,
FAM13A-AS1, AL356599.1, and AC022075.1) of them are highly
expressed in the low-risk group and are associated with good
OS, whereas three (SLX1A-SULT1A3, LINC00665, and SNHG6)
of them are highly expressed in the high-risk group and are
associated with bad OS. The function of these lncRNAs is largely
unknown. SNHG6 has been found to function by sponging
microRNAs and to act as an oncogene in gastric cancer, colorectal
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cancer, and lung adenocarcinoma (53–55). LINC00128 could
promote cervical cancer progression by binding with miR-383-
5p and up-regulating Stratifin (56). The function of the other
lncRNAs and their relation with cancer have not been reported
in the literature. The relation of these lncRNA with autophagy,
the role of their function in NB, and the underlying mechanisms
still need to be clarified by further researches.

Investigation of the cBioportal platform discovered that
GABARAPL1 has amplification in 1.7% of NB samples, whereas
SPNS1, DLC1, and ARNT have missense mutation in 0.1% of
NB samples. There is no somatic gene copy number alteration
or mutation detected for these lncRNAs. It seems that genetic
alterations play little roles in their differential expression in NB.
However, this result should be interpreted with caution, as the
number of NB cases providing genetic alteration information is
limited. In addition, genetic alterations outside those genes might
also be potential causes responsible for their altered expression.
More studies are needed to figure out whether these ARGs and
autophagy-related lncRNAs have genetic alterations in NB.

GO function annotation revealed that autophagy biological
processes (GO: 0006914 autophagy, GO: 0061919 process
utilizing autophagic mechanism, GO: 0016236 macroautophagy,
and GO: 0010506 regulation of autophagy) were down-regulated
in stage 4 NB. Consistent with the finding of GO function
annotation, the GSEAs also revealed that autophagy gene sets
were significantly enriched in the low-risk group: gene sets of
GO regulation of macrophagy, GO regulation of autophagosome
assembly, GO selective autophagy, and GO positive regulation
of macroautophagy were significantly enriched in the low-risk
group of the ARG signature, whereas gene sets of GO positive
regulation of autophagy, GO autophagosome organization, GO
negative regulation of autophagy, GO positive regulation of
macroautophagy were significantly enriched in the low-risk
group of the lncRNA signature. It is very interesting to
find that no autophagy gene set is enriched in the high-risk
groups. These results suggest that autophagy might mainly
play a tumor-suppressive role in NB and might be associated
with the spontaneous regression of NB. Undoubtedly, further
investigations are needed to clarify how autophagy affects the
process of spontaneous regression.

There are indeed some drawbacks in this study. Firstly, we
did not perform in vivo or in vitro experimental studies to
corroborate the findings of the present study. The exact roles of
these identified ARGs or lncRNA in NB are largely unknown.
Their underlining mechanisms responsible for NB progression
or regression need to be clarified by further experimental studies.
Secondly, spontaneous regression of NB did not occur in stage 4s
tumors only, and not all cases in stage 4s underwent spontaneous
regression. However, many other researchers have used stage 4s
tumors as a surrogate. The dead cases in stage 4s NBs were also
excluded in this study to make it better to serve as surrogates.
Thirdly, the prognostic role of the signatures in some subgroups
stratified by clinical risk factors showed no statistical significance.
We think that the main reason is the low case number in these
subgroups. Studies with larger sample size for these subgroups
are needed. Despite these drawbacks, the combination of RNA-
Seq data and microarray data, the large sample size of the three

cohorts, and the validation of the findings by two independent
cohorts all provide a high level of confidence.

In conclusion, we find that ARGs are differentially expressed
between the stage 4 and stage 4s NB samples. The ARG
prognostic signature has good performance in predicting OS
of NB patients. The autophagy-related lncRNA signature also
has good performance in predicting OS of NB patients. The
prognostic value of both the ARG signature and lncRNA
signature is independent of other clinical risk factors. The
autophagy-related signatures have the potential to be used as
risk factors for risk stratification of NB. Autophagy biological
processes are significantly enriched in the low-risk groups and
might mainly play a tumor-suppressive role in NB.
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Tumor cells can employ epithelial-mesenchymal transition (EMT) or autophagy in reaction
to microenvironmental stress. Importantly, EMT and autophagy negatively regulate each
other, are able to interconvert, and both have been shown to contribute to drug-
resistance in glioblastoma (GBM). EMT has been considered one of the mechanisms
that confer invasive properties to GBM cells. Autophagy, on the other hand, may show
dual roles as either a GBM-promoter or GBM-suppressor, depending on
microenvironmental cues. The Wingless (WNT) signaling pathway regulates a plethora
of developmental and biological processes such as cellular proliferation, adhesion and
motility. As such, GBM demonstrates deregulation of WNT signaling in favor of tumor
initiation, proliferation and invasion. In EMT, WNT signaling promotes induction and
stabilization of different EMT activators. WNT activity also represses autophagy, while
nutrient deprivation induces b-catenin degradation via autophagic machinery. Due to the
importance of the WNT pathway to GBM, and the role of WNT signaling in EMT and
autophagy, in this review we highlight the effects of the WNT signaling in the regulation of
both processes in GBM, and discuss how the crosstalk between EMT and autophagy
may ultimately affect tumor biology.

Keywords: glioblastoma, autophagy, microautophagy, chaperone-mediated autophagy, epithelial-mesenchymal
transition, metabolic reprograming, WNT signaling
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INTRODUCTION

Autophagy and epithelial-mesenchymal transition (EMT) are
cellular processes that present an intricate correlation, being
associated with the development and progression of different
tumors. Particularly, autophagy is an essential process for cell
survival in healthy tissues and in several types of cancer.
Autophagy allows tumor cells to obtain energy from their own
cellular structures, consequently turning cell components into
possible energy and nutrient reserves, preserving metabolic rates
(1–3). It directly contributes to resistance to stress in the tumor
microenvironment that is associated with hypoxia, nutritional
deficit, acidosis or genotoxicity (3–6). Additionally, autophagy is
able to interconvert with EMT, that, in turn, is a cellular process
in which the epithelial cells lose their cell-cell junction proteins,
apical-basal polarity, and interaction with the basement
membrane to acquire mesenchymal cell characteristics. This
leads to functional changes and increased migratory capacity
with invasive properties (7, 8). The crosstalk between autophagy
and EMT, as well as all different molecular pathways involved in
these processes, is of great interest in physiological and
pathological contexts, especially in cancer.

In tumor cells, EMT is activated in metastasis and invasion,
which allows cells to detach from the basement membrane and
connect with other cells, extravasating from its initial location
and invading adjacent tissues (6, 9). However, in some types of
cancer, such as glioblastoma (GBM), EMT appears to be favored
by downregulation of autophagic processes (10), and a better
comprehension of this entangled regulation might help to clarify
GBM biology.

GBM is the most common and malignant glioma, classified as
a grade IV brain tumor derived from glial cells (11). Besides high
mitotic activity, microvascular proliferation, necrosis, cellular
polymorphism, and substantial infiltrative capacity, this tumor
is highly heterogeneous and is mainly characterized by resistance
to treatment (12, 13). The standard treatment for newly
diagnosed tumors is surgical resection with radiation, followed
by chemotherapy with temozolomide (TMZ) (13). Along with
radiotherapy and TMZ, bevacizumab, a monoclonal antibody
against vascular endothelial growth factor (VEGF), and
lomustine, an alkylating agent, are current options for
recurrent GBM (14). However, a high recurrence rate and
failure to respond to therapy lead patients to an average
survival time of 15 months (15, 16). A subpopulation of GBM
cells with stem-like features termed glioblastoma stem cells
(GSCs) is characterized by self-renewal and differentiation into
distinct neural cell types, which greatly contributes to the
intratumor heterogeneity of GBM (17). GSCs are associated
with GBM maintenance, progression and resistance to therapy,
contributing to the highly aggressive phenotype (18, 19).

Several signaling pathways upregulated in GBM are involved
in cell survival, growth and invasiveness that sustain tumor
development and confer resistance to therapy and to harsh
microenvironments (20). Among these pathways, current
literature suggests that aberrant activation of the Wingless
(WNT) signaling contributes to GBM pathology through
different cell processes, such as proliferation (21, 22), motility
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(23–25), cell fate specification (26), and maintenance of stemness
properties (27, 28). Interestingly, WNT signaling pathway
emerged as a pivotal player to mediate the crosstalk between
autophagy and EMT, regulating molecules and connecting to
other important signal transduction cascades, such as the mTOR
signaling pathway.

Mammalian target of rapamycin (mTOR) signaling pathway
is also upregulated in GBM (29). mTOR can establish two
distinct multiprotein complexes: mTORC1, that promotes its
effects downstream of PI3K/AKT signaling, regulating a diverse
variety of cellular processes such as glucose, lipid and nucleotide
metabolism, protein biosynthesis and degradation (30); and
mTORC2, responsible for phosphorylation of AKT on Ser473,
which stimulates its maximal activation (31). In GBM, the
PTEN/PI3K/AKT/mTOR pathway is one of the most
deregulated, contributing to tumor development and
progression (32). Furthermore, mTOR is highly associated with
WNT signaling (33), and both WNT pathway and mTOR
complexes are involved with autophagy and EMT in GBM, as
will be discussed throughout this review.

Thus, we analyze the current knowledge on the role of WNT
signaling in autophagy and EMT in the context of GBM, discussing
the existent crosstalk between these processes. Notably,we consider
howautophagy,EMTandWNTsignalingmaybe interconnected to
promote GBM development, progression and therapy resistance.
WNT SIGNALING PATHWAY AND ITS
ROLE IN GLIOBLASTOMA

WNTs are secreted glycoproteins rich in cysteine and composed
of 300–400 amino acids (34). WNT signaling is classified as the
canonical or b-catenin-dependent pathway, and the non-
canonical or b-catenin-independent pathway.

In the canonical WNT signaling (Figure 1), WNT proteins
(WNT1, WNT3A, WNT7A) bind to the membrane receptor
complex of Frizzled (FZD) and low-density lipoprotein receptor-
related protein 5/6 (LRP5/6), recruiting Dishevelled (DVL). This
ultimately leads to stabilization and translocation of the
transcription factor b-catenin to the nucleus, where it activates
WNT target genes, such as AXIN2, C-MYC and CCND1 (cyclin
D1), through binding with the complementary transcription
factors T-cell factor (TCF) and the lymphoid enhancer factor
(LEF) (Figure 1) (34). In the lack of WNT binding, b-catenin is
phosphorylated by casein kinase 1 (CK1) and glycogen synthase
kinase 3 (GSK3), which leads to the rapid degradation of b-
catenin by the proteasome through a destruction complex with
involvement of axin-1 and adenomatous polyposis coli (APC)
(34). The existence of a low concentration of b-catenin in the
nucleus induces the formation of the transcriptional co-repressor
Groucho-TCF/LEF complex, which downregulates the
expression of WNT target genes (35).

The non-canonical pathway is further divided into two
processes: the planar cell polarity (PCP) and the WNT/Ca2+

cascade pathways (Figure 1). In the first, activation of the PCP
pathway leads to determination of the polarity of cells, in
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addition to affecting cellular shape and migration. In the PCP
pathway, WNT ligands (WNT4, WNT5A and WNT11) bind to
the FZD receptor and to one of two co-receptors: receptor-like
tyrosine kinase (RYK) or receptor tyrosine kinase-like orphan
receptor (ROR). This binding induces DVL, which activates
DVL-associated activator of morphogenesis 1 (DAAM1),
profilin, and the protein Rho- and RAS-related C3 botulinum
toxin substrate 1 (RAC1). DAAM1 then activates the RAS
homolog family member A (RhoA), which regulates the
cytoskeleton through the Rho-associated kinase (ROCK).
RAC1 induces c-Jun terminal kinases (JNKs), which directly or
indirectly activate cytoskeletal alterations (20, 35). Secondly, the
WNT/Ca2+ pathway is important during embryogenesis, in the
formation of the embryonal dorsal axis, gastrulation and tissue
Frontiers in Oncology | www.frontiersin.org 343
morphogenesis. WNT ligands bind to the FZD receptor, which
promotes activation of DVL1 and a G-protein. This complex
results in the intracellular release of Ca2+, which activates the
Ca2+/calmodulin-dependent protein kinase II (CAM-KII) and
calcineurin, along with two transcription factors: nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB) and
nuclear factor of activated T cells (NFAT). Additionally, certain
WNT ligands of the non-canonical pathways can inhibit the
canonical WNT pathway (20).

Moreover, certain extracellular antagonists can control WNT
signaling, by extracellularly interacting with WNT ligands or
receptors, preventing the proper binding of WNT proteins and
impairing the maturation of receptors (36). For instance, Dickkopf
(DKK1, DKK2, DKK3, DKK4, and DKKL1) is a family of secreted
FIGURE 1 | Schematic representation of cell signaling pathways involved in autophagy and epithelial-mesenchymal-transition (EMT). 1) In the canonical WNT
signaling, b-catenin stabilizes and translocates to the nucleus after binding of WNT to Frizzled and low-density lipoprotein receptor-related protein 5/6 (LRP5/6)
receptors. GSK3 is sequestered together with proteins of the destruction complex of b-catenin (DVL, axin, CK1). 2) In the nucleus, b-catenin binds to TCF/LEF
transcriptional factors, activating its target genes. b-catenin also stimulates transcription of important EMT transcriptional factors such as ZEB1/ZEB2, Twist and
Snail/Slug. 3) EMT is also induced by the mammalian Target of Rapamycin Complex 1 (mTORC1) signaling, through activation of the transcriptional factors ZEB1/
ZEB2, Twist and Snail/Slug. mTORC1 and mTORC2 are activated by tyrosine kinase receptor (TKR) signaling through PI3K/AKT. mTORC2 also stimulates AKT. 4)
Depending on the energy status of the cell, activation of AMP Kinase (AMPK) inhibits mTORC1 and induces macroautophagy (MA). 5) Chaperone-mediated
autophagy (CMA) degrades cytosolic proteins that possess the KFERQ or KFERQ-like motif through recognition and binding of the heat shock-cognate chaperone of
71 kDa (HSC70) and a cochaperone complex. HSC70 targets the substrate protein to the lysosomal membrane, where it binds monomeric lysosome-associated
membrane protein type 2A (LAMP2A) and induces its multimerization and stabilization. The substrate protein is unfolded and translocated into the lysosome for
degradation through multimerized LAMP2A. 6) In mammals, microautophagy (mA) occurs in the late endosome, in a process called endosomal microautophagy. It
can degrade cytosolic proteins, and some are recognized by HSC70. Some proteins, such as GSK3, are targeted for mA through arginine methylation (meArg) by
protein arginine methyltransferases (PRMTs). After entering the late endosome, this organelle fuses with lysosomes to complete the mA cycle. 7) In the noncanonical
WNT signaling, WNTs bind to Frizzled receptors and DVL1 is recruited to the membrane. c-Jun N-terminal kinases (JNKs), RhoA and phosphoinositide
phospholipase C (PLC) can be activated by noncanonical WNT. JNK and RhoA further regulate the cytoskeleton, and JNK induces gene transcription through
activator protein 1 (AP1). PLC increases cytosolic Ca2+ levels, leading to activation of Ca2+/calmodulin-dependent protein kinase II (CAM-KII) and calcineurin, which
activate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and nuclear factor of activated T cells (NFAT), respectively. Solid black lines represent
activation, while solid red lines represent inhibition. Double black lines represent indirect activation. Dashed lines indicate protein interactions when the WNT/b-
catenin and mTOR signaling are not activated.
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glycoproteins that modulate WNT signaling mainly by binding to
LRP5/6, preventing the triggering of signaling (37). These features
of DKK proteins are being explored due to its role in different types
of cancers (38, 39). Additionally, other antagonists such as WNT
inhibitor factor 1 (WIF1), frizzled-related protein family (FRP) –
also referred as secreted frizzled-related proteins (sFRP) – and
Cerberus work in similar ways (40).

Growing evidence has established a critical role of WNT
signaling pivotal players during the onset of GBM. Several of the
aforementioned molecules can be associated with the aberrant
activation of WNT pathway in GBM, and a particular interest
has been attributed to GSCs. WNT5A is epigenetically activated
in GSCs due to absence of the H3K27me3 repressive mark (41).
Another important molecule is LEF1, and its downregulation
inhibits the capacity of self-renewal and expression of stemness
markers, such as CD133 and Nestin (42), which negatively
impacts proliferation, migration and in vitro invasion of GBM
cells, playing a role in the EMT process (43). Additionally, the
RYK receptor is upregulated in GSCs of patient samples,
activating WNT pathway, promoting stemness and improving
cell motility (44). Moreover, one of the molecules responsible for
translocating and stabilizing b-catenin in GBM is forkhead box
protein M1 (FOXM1), which may induce the canonical pathway
independently from ligand binding (45). This factor can also be
linked to the SOX2 promoter, a classic marker of the stem cell
phenotype, known for promoting clonogenic growth in
GBM (46).

Using a whole-genome approach, Foltz et al. (47) found that
DKK1, sFRP1 and WIF1 were epigenetically silenced in GBM
cells (47). The FRP genes are frequently found hypermethylated
and inhibited during tumor development. Demethylation of the
FRP gene promoter in human glioma cell lines led to an increase
in phosphorylated b-catenin in the cytosol, attenuating
tumorigenesis (48). Expression of FRPs promotes apoptosis
through a possible activation of the DNA damage machinery
through FAS-p53, activating the non-canonical WNT/Ca2+

pathway and the release of reactive oxygen species (ROS) (49).
FRP4 treatment, in conjunction with TMZ, inhibited the
canonical WNT pathway and was associated with a decrease in
the expression of mesenchymal markers such as N-cadherin,
Twist and Snail, along with a greater expression of epithelial
markers, such as E-cadherin, showing the role of the inhibitor in
reversing EMT (49). In addition, FRP4 chemically sensitizes
GSCs, which decreases stemness properties that contribute to
therapeutic resistance (49).

WIF1 has a negative influence on the ability of tumor cells to
invade and migrate in vitro and in vivo (24). This suppressor
phenotype is due to the downregulation of the canonical and
non-canonical WNT pathways, with the inhibition of b-catenin-
independent pathway being mediated by the sequestration of
WNT5A, a ligand overexpressed in GBM. This inhibition results
in decreased phosphorylation of p38-MAPK, reduction of
intracellular Ca2+ concentration, and reduction in the expression
of the metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), a long non-coding RNA and a key invasion regulator
(24). Moreover, recovering the expression of DKK1 in GBM cells
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results in inhibition of the WNT pathway, leading to growth
suppression and decreased colony formation (47).

WNT signaling is also fundamental in the crosstalk between
microglia and GBM (50). WNT3A derived from GBM induces
upregulation of stress-inducible protein 1 (STI1/HOP), interleukin
10 (IL-10), and arginase-1 (ARG-1) in tumor-associated microglia.
Together, these molecules collaborate with tumor immune evasion
and increase in cell proliferation and migration (51–53). Another
report showed that WNT3A increases the level of expression of
programmed death-ligand 1 (PD-L1) on the surface of GBM cells,
which is an importantprotein that inhibits theactivation, expansion
and effector functions of cells with antitumor activity (TCD8+) (54),
corroborating the importance ofWNT3A in immune evasion (55).
Furthermore,WNT3A also acts on theWNT/b-catenin/FRA1 axis,
a cascade that plays a crucial role in the aggressiveness of gliomaand
in EMT activation (56).

Due to GBM heterogeneity, EMT is usually incomplete, with
associated transient phenotypic states, which results in a
combination of epithelial and mesenchymal characteristics (9).
It is noteworthy that the infiltrative peripheral region of GBM
contains cells with mesenchymal characteristics, with higher
WNT/b-catenin pathway activation (5), conferring a specific
type of EMT-like process in GBM. As will be further discussed
in this review, EMT and autophagy are influenced by WNT
signaling, and the crosstalk between these pathways plays an
important role in GBM pathology.
AUTOPHAGY IN THE CONTEXT OF
GLIOBLASTOMA AND WNT SIGNALING

Autophagy is a greatly conserved process in eukaryotes, and it
has an important role in homeostasis and cell components
renewal in the face of adverse conditions. Autophagy degrades
defectively folded proteins and dysfunctional organelles, such as
mitochondria and peroxisomes, in addition to being essential for
cell survival under microenvironmental stress (57).

Mammalian autophagy is classified in three types:
microautophagy (mA), chaperone-mediated autophagy (CMA),
and macroautophagy (MA) (57, 58). All three types can coexist
within a cell and, despite all having the same overall purpose of
cargo recycling or degradation of cargo in the lysosome, each one
has its own delivery mechanisms and regulation. Remarkably,
the modulation of different autophagy types has been associated
to GBM biology and will be discussed as follows.

Microautophagy in Glioblastoma
In mammals, mA ensues through different mechanisms that share
some similarities. It can occur directly in lysosomes, in which they
extend and wrap themselves around a portion of the cytoplasm, or
they form arm- or flap-like protrusions that surround parts of the
cytoplasm (59, 60). However, mammalian mA is mostly described
as endosomalmicroautophagy (eMI), occurring in late endosomes/
multivesicular bodies (MVBs) (61), which then fusewith lysosomes
for breakdownof their cargo (Figure1).Thisprocess is attributed to
bulk degradation of proteins and other cytosolic components
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engulfed by late endosomes and can also selectively degrade specific
proteins with the assistance of chaperones such as heat shock
cognate 71 kDa (HSC70) (61). Interestingly, Sato et al. (62)
demonstrated that rapamycin induces eMI, independently of MA,
while lacking effect upon CMA (62). This activation is triggered by
the nuclear transcription factor EB (TFEB) which increases the
expression of several genes related to mA (62).

Recent studies have shown a connection between the WNT
pathway and mA. WNT activation leads to the sequestration of
GSK3 from the cytosol into late endosomes/MVBs through mA
(63). WNT signaling also stabilizes other proteins and GSK3
substrates besides b-catenin. Moreover, WNT activation is
highest in the G2/M phase of the cell cycle and the stabilization of
GSK3 substrates is thought to decrease the rate ofGSK3-dependent
protein degradation to prepare for cell division. This shifts the
molecules from proteasome degradation (which consumes a large
amount of ATP) to microautophagic degradation, which depends
on hydrolases inside lysosomes and does not require ATP
consumption (64). Despite the research gathered about WNT and
mA, there is still an extensive gap in the knowledge of the intricate
regulatorymechanisms and the physiological function attributed to
mA/eMI in mammals.

eMI is suggested to control protein quality (65) by limiting
the intracellular levels of key proteins, working as a regulator of
specific cellular processes (66, 67). Other than its physiological
roles, mA may be involved with cancer growth. Albrecht et al.
(64) showed, for example, that arginine methylation (meArg),
promoted by protein arginine methyltransferases (PRMTs), is
important for mA, being necessary for the WNT-induced GSK3
sequestration and subsequent microautophagic degradation (64).
GSK3 and the tumor suppressor SMAD4 are methylated and
targeted to late endosomes/MVBs upon WNT signaling (Figure
1), suggesting that inhibition of PRMT1 might oppose cancer
progression. Additionally, axin has also been shown as a PRMT1
substrate. As mentioned above, axin acts as a scaffold protein and
plays a major role in the destruction complex of b-catenin (64).
Upon WNT activation, axin is recruited to the plasma
membrane, where it binds to the WNT receptor complex.
Arginine methylation in axin has been shown to increase its
binding to GSK3, and the WNT coreceptors and GSK3 are then
translocated together with axin to MVBs (64).

Thus, meArg has been associated with cancer progression and
PRMTs have been considered as novel drug targets (68). In GBM,
PRMT2 was shown to be overexpressed and is correlated with a
poor prognosis (69). PRMT5 is also highly expressed in GBM,
promotes self-renewal ofGBMneurospheres (70), and resistance to
mTOR inhibition in GBM cells lines and short-term patient
cultures (71). mA, however, has not been investigated in GBM.
Due to the recent discoveries on the requirement ofmeArg andmA
to WNT signaling activation, this autophagic process might be
involved with GBM biology and merits further investigation.

Chaperone-Mediated Autophagy in
Glioblastoma
CMAcontributes to the control of cellular quality andmaintenance
of the proteome (72, 73). Exposure of the KFERQ-like domain of
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proteins targets them toCMAand selective eIM. InCMA, exposure
of this motif leads to its recognition by the chaperone HSC70, and
consequent binding of this chaperone to the substrate protein,
followed by targeting of this complex directly to the lysosomal
membrane (74). This mechanism differs from mA and MA, in
which the cargo is sequestered into vesicles before being directed to
the lysosome (75). Interestingly, selective blockage of CMA induces
activation of MA; however, MA cannot compensate for CMA
functions under specific stress conditions, in which CMA plays
an essential role (76).

Upon binding of HSC70 to the substrate protein, a chaperone-
cochaperone complex is formedandassistsHSC70 to redirect client
proteins captured in the cytosol to the lysosomemembrane (Figure
1) (77).On the lysosomemembrane, the chaperone complex and its
client proteins bind to the lysosome-associated membrane protein
type 2A (LAMP2A), inducing LAMP2A multimerization (78).
After unfolding, the substrate is then translocated into the
lysosome, where the protein is rapidly degraded by hydrolases
(77, 78). It is clear that CMA activity is limited by the levels of
LAMP2A on the lysosomal membrane, whichmakes LAMP2A the
rate-limiting component for CMA (79, 80).

Inaddition toLAMP2Alevels, further regulationofCMAoccurs
at the lysosomal membrane. Glial fibrillary acidic protein (GFAP)
and elongation factor 1a (EF1a) regulate the stability ofmultimeric
LAMP2A (81). Lysosomal GFAP, when phosphorylated by AKT1
activated by mTORC2, remains bound to EF1a and it is unable to
stabilize multimeric LAMP2A (81). Ultimately, this leads to CMA
inhibition regulated by mTORC2. When CMA is necessary, the
GTPase RAC1 recruits and stabilizes the phosphatase pleckstrin
homology domain and leucine-rich repeat protein phosphatase 1
(PHLPP1) at the lysosomal membrane, and this phosphatase
dephosphorylates AKT1. This increases non-phosphorylated
GFAP and favors the formation of the LAMP2A multimeric
complex (73). Thus, it is possible to hypothesize that CMA
inhibition might be regulated by mTORC2 and by WNT
signaling, since RAC1 is one of the effectors of the PCP pathway.
Moreover, signaling of the retinoic acid receptor a (RARa),
associated to differentiation of non-tumor and tumor cells,
inhibits transcription of genes required for CMA, highlighting an
additional pathway of regulation for this autophagic process in
health and, particularly, in cancers such asGBM, inwhichGSCs are
a prominent factor (82).

CMAactivity ismarkedly increased in cancer cells. Noteworthy,
an anti- or pro-cancer function of CMA appears to depend, at least
in some extent, on the status of cell transformation (83) and stage of
the specific tumor (84, 85). This facet supports the importance of a
context-dependent therapy investigation, requiring specialized
research and a more translational approach.

There are very few studies that specifically explore the function
of CMA in GBM, but the aggressiveness and high heterogeneity of
this tumor raise important questions about the extent to which
CMA may be contributing to these features. Maititi et al. (86)
reported that the treatment of different GBM cell lines with
curcumin and solid lipid curcumin particles downregulated
LAMP2A levels, consequently decreasing CMA (86).
Alternatively, regarding CMA activation, TMZ-resistant and
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TMZ-sensitive cells respond differently, according to hypoxia-
inducible factor 1a (HIF-1a) expression and their basal levels of
cytoplasmic ROS. CMAwas shown to be themain process through
which TMZ inhibits activity ofHIF-1a in sensitive cells, promoting
apoptosis and increasing responsiveness to the drug (87).
Downregulation of LAMP2A blocks HIF-1a degradation through
CMA and is sufficient to induce a TMZ-resistant phenotype in
GBM sensitive cells, reducing the expression of several apoptosis-
relatedgenesupontreatment (87). Further research showedCMAis
activated following cytoplasmic release ofmitochondrialROS, since
concomitant increase in LAMP2A and HSC70 is observed with
induction of oxidative stress. In accordance, inhibition of
mitochondrial ROS downregulates LAMP2A and HSC70 (88).
TMZ-sensitive cells present low basal levels of ROS, which in turn
are increased with TMZ treatment, consequently activating CMA
and pro-apoptotic genes. In contrast, TMZ-resistant cells have high
basal levels of ROS and fail to activate CMA upon TMZ treatment
(88). Remarkably, knockout of LAMP2A leads to CMA blockage,
which is sufficient to trigger the switch of sensitive to resistant
responsiveness (88). InT cells, productionofmitochondrialROSby
engagement of the T cell receptor induces nuclear translocation of
NFAT, which binds to the LAMP2 promoter and activates CMA
(89). As discussed in section 2, the non-canonical b-catenin-
independent WNT/Ca2+ cascade activates NFAT (90). Although
non-canonical WNT pathways are usually related to embryonic
patterning and morphogenesis, their aberrant regulation increases
invasiveness in GBM (20). It is interesting to interrogate whether
non-canonical WNT signaling through NFAT could be involved
with activation of CMA in GBM cells, since ROS can be involved
with the activation of both NFAT and CMA.

Another compelling mechanism is the ability of GBM cells to
induce CMA in pericytes that surround the tumor, suppressing
antitumor response and facilitating tumor progression.
Specifically, interaction between GBM cells and pericytes of the
peritumoral area increases ROS and subsequently LAMP2A
levels, inducing nanotube formation and downregulation of the
secretion of vesicles containing cytotoxic molecules (91). This
results in promotion of direct interaction between these cells and
abrogates inflammatory response (91). Supporting this, high
levels of granulocyte-macrophage colony stimulating factor
(GMCSF), molecule that promotes immunosuppression, were
found in GBM cells after interaction with pericytes (91).

A thought-provoking aspect of CMA contribution to GBM is
that chaperones and cochaperones that function in CMA play
important roles in GBM biology (92). STI1/HOP, a known
component of the CMA translocation complex (77), is
upregulated in GBM cells. High levels of both STI1/HOP and
its partner cellular prion protein (PrPC) are correlated with
increased proliferation of GBM cells (93). Moreover,
interaction between STI1/HOP-PrPC was found to sustain
proliferation of GBM stem-like cells and tumor growth in vivo,
contributing to its aggressiveness (94). Curiously, a mutant form
of PrPC interacts with LAMP2A and HSC70, raising the question
whether the non-mutated form of PrPC can also interact with
CMA-related proteins (95). Interestingly, WNT3A increases
STI1/HOP expression in GBM cells (53), suggesting that WNT
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signaling could regulate CMA, or that GBM cells take advantage
of increased STI1/HOP expression to sustain tumor growth and
modulate GSCs. Furthermore, since mA favors WNT signaling
through GSK3 degradation, these data demonstrate how WNT
signaling appears closely involved with autophagic processes,
both by depending on them to be induced and by participating in
their indirect activation.

In addition to STI1/HOP, other proteins of the translocation
complex are proposed to be related toGBMbiology, such as BAG1.
BAG1 confers proliferation advantage in GBM cell lines in serum
starvation conditions, a CMA-inducing environment, through
interaction with BCL-2 (96). Although the mechanisms described
for the functionof these proteins in the biology ofGBMhavenot yet
beendirectly associatedwithCMA, itmay be an interesting strategy
to investigate the contribution of CMA in this context, considering
the intricate relationship of its components with the aggressiveness
of GBM. Thus, evidence gathered here demonstrate that, despite
knowing themain processes andmolecules involved inCMA, novel
intermediate players that finely tune the mechanism - especially in
the context of disorders such as cancer - need to be unraveled to
actively consider CMA as a viable, well controlled and safe
therapeutic approach.

Macroautophagy in Glioblastoma
MA involves the formation of an isolated vesicle, termed
autophagosome, for transportation of the materials to the
lysosome (Figure 1) (97). It consists of the following critical steps:
initiation, nucleation, maturation and degradation of the cargo,
with consequent release of thedegradationyields to the cytosol (98).
In the initiation step, there is the formation of a kinase complex
comprised ofUnc-51-like kinase 1 and2 (ULK1/2), family 200-kDa
interacting protein (FIP200), the mammalian ATG13 (mATG13);
and ATG101 (99). mTORC1 inhibition under starvation activates
ULK1/2, triggers phosphorylation of mATG13 and ULK1/2, and
induces ULK-dependent phosphorylation of FIP200 (100).
Moreover, studies demonstrate AMP-activated protein kinase
(AMPK) binds to the ULK1-mTORC1 complex and induces
ULK1-mediated autophagy through inhibition of mTORC1 by
phosphorylation of Raptor (Figure 1) (101, 102).

In the stage of nucleation, the ULK1 complex targets another
protein complex, which includes a class III phosphatidylinositol-3
kinase (VPS34), beclin 1, ATG14L, VPS15, and the autophagy
beclin 1 regulator 1 (AMBRA-1) (103, 104). Subsequent to
phagophore nucleation, in the maturation phase, there is the
formation of two protein conjugations. During one of them, the
processing of microtubule associated protein 1 light chain 3 (LC3)
byATG4 occurs to yield LC3-I, which in turn is bound to the target
lipid phosphatidylethanolamine to generate processed LC3-II
(105). LC3-II is integrated in the phagophore where it interacts
with adaptor molecules, such as p62/SQSTM1, to select cargo for
degradation and to label the phagophore membrane as autophagic
(106). Promptly after autophagosome completion,most of theATG
proteins detach from the vesicle (107) triggering its fusion with the
lysosome to form the autolysosome (108). In mammalian cells,
autophagosome-lysosome fusion is regulated by LAMP2 and the
small GTPase RAB7 (109, 110).
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The role of MA in cancer and in GBM has been extensively
covered in the literature (for more information, refer to (98, 111).
Herewewill focus on the involvement of theWNTpathway andMA
in GBM.

In GBM cell lines, WNT5A/b-catenin signaling was
demonstrated to modulate MA (112). The macroautophagic flux
was increased upon impairment of WNT/b-catenin signaling via
the inhibition of the downstream effector TCF (113). Similarly,
extracellular DKK1 triggers MA by disrupting the communication
ofWNT ligands to their cell surface receptors, thus inhibitingWNT
cascades (113).

Furthermore, WNT signaling proteins are also targets of MA.
The WNT/b-catenin target genes AXIN2 and CCND1 become
downregulated upon starvation-induced MA or mTOR blockage
in GBM, although C-MYC expression shows no alteration (114).
The same autophagy-inducer mechanisms were shown to decrease
the expressionof theDVL2protein (115). Thiswas also observed by
Colella et al. (114), where MA led to a decrease in the expression of
DVL2 and nuclear b-catenin in GBM cells (114). The study also
showed that b-catenin was located in nearby plasma membrane
regions and engaged with N-cadherin to form structures similar to
epithelial-like cell-cell junctions (114).

The protein Von Hippel-Lindau (VHL) was demonstrated to
ubiquitylate DVL2, which leads to its macroautophagic
degradation (115). Noteworthy, data from the literature
demonstrate that VHL also promotes the ubiquitination of the
HIF-1a and 2a (HIF-2a) in GBM (116–119). Interestingly, in
renal cell carcinoma, HIF-2a was shown to be degraded via both
proteasome system and macroautophagic pathway in a VHL-
dependent manner. Inhibition of MA led to HIF-2a degradation
by the proteasome, whereas suppression of the proteasome
caused HIF-2a degradation by MA (120). Furthermore, HIF-
1a was demonstrated to induce MA in GBM as a mechanism of
resistance to antiangiogenic therapy (121). Evidence indicates an
interaction between the WNT/b-catenin pathway and HIF
proteins in both physiological and pathological conditions. For
instance, the crosstalk between WNT signaling and HIF-1a was
demonstrated to be involved in maintenance of GSCs stemness,
since their interaction transcriptionally regulates the neuronal
differentiation of these cells (122).

In summary, the aforementioned studies point out to the
importance of the WNT signaling and MA in GBM biology. As
discussed, there is an important crosstalk between WNT/b-
catenin signaling, MA and hypoxic pathways that warrants
further investigation. The relationship between these pathways
indicates the importance of metabolic reprogramming in GBM,
in a context where nutrient availability may be scarce, and MA
may be downregulated through induction of WNT/b-catenin
and PI3K/AKT/mTOR signaling.
EPITHELIAL-MESENCHYMAL
TRANSITION IN GLIOBLASTOMA

Epithelial cells can undergo EMT, in which cells lose their apical-
basolateral polarity aswell as cell-cell adhesion structures inorder to
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obtain an enhanced migratory phenotype (123). Upon transition,
the cells become able to degrade the basal membrane using
metalloproteases and thus migrate from their original site assisted
by cytoskeleton rearrangements (124). As described in the name of
the process, the transitioning cell shows increased expression of
mesenchymal markers as well as loss of epithelial marker and
adhesion molecules (125). Initial onset of EMT is dependent on
many proteins that participate in the motility cycle, such as Rho
GTPases, RAC1, and CDC42 (126), transcription factors from the
SNAI family, such as Snail1 and Slug, as well as homeodomain
transcription factors such as ZEB1 and ZEB2 (Figure 1) (5, 125).
Additionally, many of the above-mentioned proteins - such as
Snail1, Slug, ZEB1, ZEB2 and Twist - are able to regulate the switch
of expression from E-cadherin to N-cadherin, an important
hallmark of EMT (127, 128). This biological phenomenon has a
well-known role in wound healing and development (129, 130), in
addition to cancer invasion (131).Moreover, EMT is divided into 3
distinct subtypes: type 1 EMT is related to morphogenesis and is
modulatedbysignalingpathways suchasWNT/b-catenin,which in
turn regulates Snail1 expression (132); type 2 EMT is related to
wound healing and fibrosis and can be regulated by Slug, epidermal
growth factor (EGF) and transforming growth factor b (TGF-b)
pathways (130); and type 3 EMT occurs in cancer cells, playing an
important role on tumor invasion andmetastasis (133), and can be
regulated by cytokines secreted in the tumoral niche such as TGF-b
and tumor necrosis factor a (TNFa) (5).

As seen during neurodevelopment, mainly during migration
of the neural crest, neuroepithelial cells may undergo transition
to a more mesenchymal phenotype and, therefore, increased
migratory capacity (134, 135). GBM can co-opt this process to
assist cell invasion and migration. Importantly, neural tissues
lack E-cadherin expression, although this protein is expressed in
GSCs and in a rare subgroup of extremely aggressive GBM cells
(5, 136). As GBM cells do not intrinsically express E-cadherin,
the switch to N-cadherin, that is classic in EMT, is not entirely
observed in this tumor (137). Moreover, distinct motility
behaviors observed in GBM were associated to N-cadherin
distribution in the cell instead of its expression levels (138).
Therefore, GBM cells undergo a process similar to EMT, called
EMT-like or glia-to-mesenchymal transition (GMT). Such
process can be induced through radiation and be modulated by
TGF-b-dependent and TGF-b-independent pathways through
mitogen-activated protein kinases (ERK1/2) and GSK3, which in
turn modulate Snail expression and localization (139). Likewise,
neuronal cells also seem to undergo an EMT-like process, relying
on Scratch1 and Scratch2 proteins, members of the Snail
superfamily, to repress E-cadherin expression (140).

Additionally, the G protein-coupled receptor LGR5 triggers
EMT in GSCs through the WNT/b-catenin cascade (141).
Moreover, WNT-C59, an antagonist of the pathway, was able to
impairEMTinGSCs (141).The transcription-relatedproteinFRA1
was shown to act downstream of WNT3A signaling, promoting
EMT in GBM cells and therefore contributing to the aggressive
behavior of this tumor (56). Furthermore, themicro-RNAmiR-504
suppresses the expression of the FZD7 gene, which causes the
WNT/b-catenin pathway to be downregulated and affects EMT
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(142). Importantly, the transcription factors LEF1 and HOXA13
havebothbeen shown topromoteEMTinGBM viaWNTsignaling
(143). Furthermore, the WNT/b-catenin cascade was shown to be
activated in GBM cells of the mesenchymal subtype, leading to
induction of expression of ZEB1, Twist1 and Slug, along with
increased migratory capability of these cells (5). These recent
findings support the importance of the WNT signaling for
induction of EMT in GBM, pointing out to the WNT pathway as
a promising therapeutic target for reducing the aggressiveness of
this tumor.
CROSSTALK BETWEEN AUTOPHAGY,
EPITHELIAL-MESENCHYMAL
TRANSITION, AND WNT SIGNALING IN
GLIOBLASTOMA

When supporting cancer cells, autophagy can provide nutrients
and energy for both EMT and the consequent metastasis, since it
can sustain cells for survival in stressful environmental
conditions (7). On the other hand, autophagy can also inhibit
EMT by modulating the expression of specific proteins. As such,
MA can downregulate mTOR signaling, leading to b-catenin and
N-cadherin degradation and E-cadherin expression (7, 144).
Therefore, it is believed that autophagy is oncosuppressive at
initial stages of metastasis, by destabilizing or degrading crucial
inducers of EMT, consequently inhibiting this process. If the cell
is unable to prevent malignant transformation and metastasis
ensues, EMT is activated and autophagy is required for tumor
cell survival in environmental stress (5). Additionally, further
dimensions should be added to this hypothesis, by considering
the role that important pathways, such as the WNT signaling,
and the different autophagic processes (mA, CMA, and MA),
may have in the balance of oncosuppressive or metastatic
function, especially in a highly infiltrative tumor as GBM. In
this session, we discuss the evidences for the crosstalk of WNT
signaling-autophagy-EMT observed in different aspects of GBM
biology (Figure 2).

The microenvironment surrounding GBM presents hypoxic
niches, which contribute to scarcity of nutrients and to
dependence on glycolytic metabolism (145). Hypoxia, and
consequent HIF-1a signaling activation, is a known inducer of
MA, and also a known EMT promoter in different types of
cancers (146–150). In GBM, an intricate relationship of those
pathways with WNT signaling can be postulated, since strong
correlation in the expression of HIF-1a and b-catenin was
demonstrated in tumor cells (151). In addition, HIF-1a
promotes the expression of the b-catenin transcriptional
partners TCF1 and LEF1, regulating b-catenin nuclear
retention (152, 153). This contributes to the activation of target
genes associated with GBM tumor invasion and proliferation,
such as Snail/Slug and cyclin D1 (154). Remarkably, MA and
CMA appear to have opposed roles during GBM responsiveness
to hypoxia. As covered in Chaperone-Mediated Autophagy in
Glioblastoma, CMA decreases HIF-1a activity in GBM cells. On
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the other hand, hypoxia induction increases MA. Furthermore,
the response to curcumin treatment is also opposed: while the
treatment induces MA, concomitantly decreasing the expression
of b-catenin targets, it also decreases CMA. However, this
increased MA by curcumin treatment could be a feedback
response of the tumor cell to the CMA inhibition.

Alternatively, HIF-1a/TCF1 activation can also result in
neuronal differentiation in GBM cells subjected to hypoxia,
and this pathway is primarily activated in the subpopulation of
GSCs, being responsible for a pro-differentiation phenotype
(122, 155). Interestingly, HIF-1a/TCF4 activation in normoxia
triggers transcriptional inhibition of the same regions once
activated in hypoxia (122). The differences between the
outcomes for tumor biology might rely on the highly
heterogenous cell populations in GBM tumors, and the initial
spatial-molecular context of these cells. Despite that, different
reports advocate hypoxia-mediated pathways working in tumor
supporting mechanisms, contributing to chemotherapy
resistance and invasion of healthy tissue.

Besides contributing to the distinct above-mentioned
mechanisms, HIF-1a is able to bind the hypoxia-response
element of TWIST proximal promoter and mediate its expression
(156). Twist and Snail are targets of b-catenin signaling (156, 157),
andare knownEMTtranscription factors (158),whose levels canbe
controlled by MA (159). In GBM particularly, a recent report
describes the associated increase in MA markers with decreased
levels ofTwist andSnail in tumorcells treatedwith a combinationof
TMZ and curcumin (160). Moreover, Snail and Twist are found
increased in GBM, together with other EMT-related transcripts
(161). Thus, regulation of the levels of these transcription factors by
autophagy represents one of the feedback correlations contributing
to the crosstalkbetweenautophagy andEMT,ultimately dictatedby
WNT upstream signaling.

An additional factor to be considered when exploring the
implications of WNT pathway, EMT and autophagy in GBM is
FOXM1. FOXM1 is upregulated in GBM (162) and plays a key
role in the EMT-like process, directly controlling the expression
of the proteins matrix metallopeptidase 2 (MMP2) (163) and A
disintegrin and metalloproteinase 17 (ADAM17) (164). WNT
signaling works in the stabilization of FOXM1 (165), and
FOXM1 is able to directly translocate b-catenin to the nucleus
of GBM cells, independently of extracellular ligands (45).
Recently, it was shown that FOXM1 binds to the promoter
region and controls the overexpression of the ubiquitin-
conjugating enzyme E2C (UBE2C), protecting GBM cells from
autophagic cell death, probably through PI3K-AKT-mTOR
activation (166).

Accordingwith this overall increase inWNTactivation inGBM,
protein expression of theDVL family is also enhanced in this tumor
(167–169). Interestingly, autophagic decrease in DVL2 levels
impairs b-catenin nuclear localization, concomitant with an
epithelial-like phenotype (114). Additionally, the dishevelled-
associated antagonist of b-catenin 2 (DACT2) is a DVL-
interacting protein that decreases the level of activated b-catenin
resulting in suppression of WNT/b-catenin target genes (170). In
GBM, decreased levels of DACT2 were proportionally associated
November 2020 | Volume 10 | Article 597743

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Coelho et al. WNT Signaling in Glioblastoma Autophagy and EMT
with shorter patient survival, greater tumor aggressiveness and in
vivo growth (171), suggesting that an apparent decrease in the levels
of this protein favors tumor maintenance. The control of the levels
of DACT2 in GBM has not yet been directly associated with
autophagy, but the expression of other proteins of the same
family were found strongly associated with autophagic processes
in cancer cells (172, 173). Those evidences support the fundamental
role of the intricate relationship between the EMT-like process,
WNT signaling and autophagy for the progression ofGBM tumors.

In the context of GBM, angiogenesis provides nutrients for
the tumor to grow and favors metastasis (174). Thus,
antiangiogenic therapy has been employed for GBM, especially
with bevacizumab as adjuvant therapy (175). Although
bevacizumab was shown to increase progression-free survival
by 6 months, its effects on overall survival are controversial (175).
Moreover, bevacizumab treatment generated hypoxia in the
tumor microenvironment in vivo, and this hypoxia induced by
the drug altered the metabolism of GBM cells in vitro (176).
Interestingly, endostatin is another antiangiogenic drug being
considered for GBM therapy. Endostatin is a terminal fragment
of collagen XVIII-a 1, binds to a5b1 integrin on endothelial cells
and induces autophagy through VPS34, beclin 1 and LC3-II
activation (177, 178). Moreover, endostatin was shown to
antagonize WNT signaling and to target b-catenin for
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degradation (179). Endostatin also decreased EMT markers on
basal cell carcinoma (180). Additionally, a negative correlation
between b-catenin and beclin 1 was reported (181), which could
explain the decrease of EMT markers by endostatin, through
inhibition of WNT signaling and induction of autophagy. Other
reports in the literature confirm a role for WNT signaling in
inhibiting autophagy in GBM (182).

Therefore, other therapeutic approaches against GBM are
aiming to induce autophagy through mTOR inhibition. The first
line of mTOR inhibitors, however, were able to block only
mTOCR1 activity (183). As seen throughout this review,
mTORC2 is involved with GBM invasion and could inhibit
CMA. Moreover, during osteoblast differentiation, WNT3A/
LRP5 induces mTORC2/AKT signaling downstream of RAC1
(184). To circumvent this ineffectiveness of initial mTOR
inhibitors, novel ATP-competitive mTOR kinase inhibitors
(TORKIs) were developed to target both mTOR complexes
and are being investigated against GBM (5). Torin 1, for
example, induced nutrient deprivation and inhibition of
mTOR complexes, resulting in b-catenin re-localization and
inhibition of migration (114). Moreover, other molecules that
induce autophagy in GBM, such as arsenic trioxide, sodium
selenite, and cannabinoids, combined with traditional therapy,
were able to increase drug-induced cell death (185–187).
FIGURE 2 | Schematic representation of signaling pathways involved with WNT/b-catenin, autophagy and epithelial-to-mesenchymal transition (EMT) in glioblastoma
(GBM). The major players of the highlighted processes are grouped by a colour code, which differentiates microautophagy (mA, light blue), chaperone-mediated
autophagy (CMA, purple), macroautophagy (MA, green), EMT (orange) and some metabolic processes (pink). AMPK, AMP Kinase; DKK, Dickkopf; DVL2, dishevelled
2; FOXM1, forkhead box protein M1; HIF1a, hypoxia-inducible factor 1a; LAMP2A KO, knockout of LAMP2A protein; LEF1, lymphoid enhancer factor 1; mTOR,
mammalian target of rapamycin; PRMT, protein arginine methyltransferase; TCF1, T-cell factor 1; TMZ, temozolomide.
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In contrast, autophagy inhibition was also proposed as a
therapeutic approach against GBM. TMZ was shown to induce
autophagy in GBM cells instead of apoptosis. The use of an
inhibitor of late stages of autophagy restored TMZ-induced cell
death (188). In accordance with this observation, chloroquine
and hydroxychloroquine (HCQ) are being considered promising
adjuvants in GBM therapy and are currently under phase III
clinical trials (5, 189). Up until recently, these drugs were thought
to improve median survival on GBM patients through autophagy
inhibition. However, the maximum tolerated dose of HCQ was
ineffective for autophagy inhibition, demonstrating the drug
exerts its antitumoral effects through unknown mechanisms
(190). Ultimately, the question of whether activation of
autophagy would be beneficial or detrimental as a possible
treatment for GBM remains unanswered. Knowledge on the
crosstalk of autophagy with other cellular and molecular
mechanisms can enlighten the discussion of how induction or
suppression of this process should be safely applied in
GBM treatment.

The comprehension of the metabolic features of GBM, highly
associated with autophagic process, may contribute to
circumvent the challenges faced in anti-tumor therapy. In fact,
metabolic reprogramming is one of the hallmarks of cancer (191)
and, in GBM, it fuels tumor survival, proliferation and invasion
(192). Specially for this type of cancer, the upregulated WNT and
AKT/mTOR signaling pathways are directly or indirectly
involved with regulation of a diverse range of metabolic
pathways (192, 193), intricately regulating autophagy processes
and EMT.

As discussed in Macroautophagy in Glioblastoma, an overall
downregulation of mTOR signaling exerted by MA was noted,
leading to b-catenin degradation and decrease in WNT signaling
(7, 144). On the other hand, mA is important for canonical WNT
signaling activation. Evidence suggests methionine is required
for the WNT-induced mA through the universal methyl donor
S-adenosylmethionine (SAM), which would assist the
internalization of GSK3 into late endosomes/MVBs (194).
SAM is a known hub metabolite generated through one-carbon
metabolism, which involves both folate and methionine cycles
(195). Recently, WNT signaling has been emerging as a key
regulator of cellular endocytic capacity and studies show
endocytosis of extracellular proteins could provide cancer cells
with recycle of nutrients required to grow, leading to adaptation
and survival in a hostile microenvironment (64). Albrecht et al.
(194) demonstrated methionine and SAM are necessary for this
WNT-induced endolysosomal activity and extracellular protein
degradation (194). In that sense, one-carbon metabolism has
been shown to contribute to the de novo synthesis of purines and
pyrimidines, in addition to nucleotide salvage in several tumors
(193). In GBM, the scavenging of hypoxanthine is being
considered as a reason for the resistance to anti-folate therapy
(193). Furthermore, nearly half of GBM tumors have deleted 5-
methylthioadenosine phosphorylase (MTAP), a key enzyme in
the methionine salvage pathway (196). This enhances the
dependence of the tumor cells for PRMT5 and studies have
demonstrated PRMT5 inhibitors show antitumor effects against
Frontiers in Oncology | www.frontiersin.org 1050
GBM (197–200). As such, PRMT5 inhibitors are currently being
tested in clinical tr ia ls in GBM and several sol id
tumors (NCT02783300).

As one type of autophagic process, CMA has great impact on
glucose metabolism (201). Studies with CMA-incompetent mice
showed increased glycolysis in hepatocytes, due to decreased
degradation of the glycolytic enzymes pyruvate kinase (PK),
enolase 1 (eno1) and aldolase A (aldoA) (202). The glycolytic
enzymes hexokinase 2 (HK2) and the M2 isoform of pyruvate
kinase (PKM2) were also shown to be substrates of CMA
degradation, in ovarian and non-small cell lung cancers,
respectively (203, 204). GBM significantly boosts glycolysis for
energy production through transcriptional and allosteric
upregulation of key glycolytic enzymes such as HK2, enolase 2
(eno2) and phosphofructokinase (PFK), while decreasing the
entering of pyruvate to the TCA cycle through inhibition of PDH
(for more details on GBM metabolism, refer to 193).
Interestingly, WNT3A/LRP5 signaling was shown to increase
glycolysis during osteoblast differentiation through induction of
the glycolytic enzymes GLUT1, HK2, PFK, PDK1 and others
(184). Additionally, mTORC2 was shown to influence glycolytic
metabolism in GBM through c-MYC activation (205). It would
be interesting to evaluate whether canonical WNT signaling
could be involved with glycolytic metabolism and CMA
regulation in GBM cells, since the canonical WNT pathway is
also upregulated in this tumor. Thus, in contrast to the possibility
of CMA and MA hindering GBM metabolism and invasiveness,
activation of mA may be a strategy employed by this tumor to
survive in the surrounding microenvironment.

Given the importance of WNT signaling in GBM biology, the
use of WNT pathway inhibitors are being evaluated for GBM
therapy [reviewed in (206)]. LGK974 is a promising small-
molecule inhibitor that interferes with the palmitoylation of
WNTs, an indispensable step for their secretion and consequent
binding to receptors. LGK97 was recently shown to have a
synergistic effect with TMZ in vitro, reducing the clonogenic
potential, with decreased expression of CD133, Nestin and SOX2.
Importantly, these effects were shown to be independent of O6-
alkylguanine DNA alkyltransferase (MGMT) promoter
methylation status (207). Some WNT signaling inhibitors are
currently being tested in clinical trials, such as Enzastaurin and
alisertib. Enzastaurin inhibits phosphorylation of GSK3 and AKT,
through protein kinase Cb inhibition. However, a phase II trial of
Enzastaurin in combination with bevacizumab had response and
progression free survival similar to bevacizumab monotherapy,
although the drugwaswell-tolerated (208). Alisertib is anAuroraA
kinase (AURKA) inhibitor that decreasedWNT signaling in GBM
in vivo and in vitro. AURKA interferes with GSK3/axin/b-catenin
through interactionwithaxin. Inpatient-derivedorthotopicmodels
of GBM resistant to bevacizumab, alisertib prolonged survival,
induced mitotic arrest and decreased histone H3 phosphorylation
(209). Ina recent phase I clinical trial forGBMpatients, alisertibwas
safe and well tolerated (210). Hence, although WNT signaling
inhibitors show promising therapeutic rationale and results
against GBM, the intricate crosstalk between EMT-autophagy-
WNT needs further evaluation to gain a clearer understanding of
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how these processes and signaling pathways may be used
against GBM.
CONCLUDING REMARKS

GBM is a highly heterogeneous and invasive solid tumor and,
although there has been certain progress in the search for new
therapeutic strategies, treatmentofprimary and recurrentGBMstill
remains a great challenge. Several of the signaling and metabolic
abnormalities of GBMs are well described, especially those
involving WNT, mTOR and EMT (Figure 2). However, the
contributions of autophagic processes to GBM biology are largely
unknown and debated, with clinical trials aiming at apparent
opposing objectives. Some focus on autophagy inhibition, while
others target mTOR inhibition to stimulate autophagy (211).

Moreover, as a highly heterogeneous tumor, GBM cells in
different tumor layers may present distinct autophagic and EMT
phenotypes that confer them with the molecular tools necessary
to survive, proliferate, and evade therapy. As such, single-cell
Frontiers in Oncology | www.frontiersin.org 1151
omics technologies are greatly contributing to the understanding
of GBM heterogeneity and identification of subpopulations in
the tumor bulk. However, it is crucial to first understand the
molecular control and role of autophagy and EMT in GBM, to
add to the identification of subpopulations of cells that would be
the best target to overcome this disease.

As discussed in the present review, the WNT/b-catenin
pathway plays a major role on EMT induction and
invasiveness in GBM, while contributing to inhibition of MA
(Figure 2). Interestingly, mA and one carbon metabolism are
facilitators of b-catenin activation, and one carbon metabolism
has been viewed as a possible therapeutic target in GBM (193).
CMA was linked to acquired TMZ resistance in GBM cells, with
very few reports about CMA in this tumor. Importantly, CMA
assists the metabolic regulation of glycolytic enzymes and
lipolysis and can also inhibit MA via p62 and HIF-1a
degradation (Figure 2). Thus, there is an increasing demand
for investigating mA, CMA and MA separately from each other
in cancer and GBM (Figure 3). This could unveil the intricate
relationship between these different autophagic processes, and
FIGURE 3 | Schematic summary of the crosstalk between WNT signaling, autophagy and epithelial-mesenchymal transition (EMT) in glioblastoma (GBM). Despite
the extensively discussed relevance, the importante of WNT pathways in the crosstalk between autophagy and EMT in GBM is still surrounded by open questions.
Among them, the role of microautophagy (mA) and chaperone-mediated autophagy (CMA) is largely unknown. Moreover, function of chaperones in this context
might represent a target for crosstalk regulation in GBM, in glioblastoma stem-like cells (GSCs), tumor bulk and tumor niche, and warrant further investigation.
Accordingly, the role of HIF signaling and metabolic reprogramming on this crosstalk should also be a subject for future research efforts.
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how they influence cancer metabolism, aggressiveness, and
invasion. Although these processes have overlapping signaling
control, they can be activated or inhibited separately, which
could confer tumor cells with a vast array of possible responses to
survive and thrive even in harsh microenvironments.
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Tecnológico (CNPq, Process number: JMB: 101796/2020-0).
REFERENCES
1. Liu EY, Ryan KM. Autophagy and cancer–issues we need to digest. J Cell Sci

(2012) 125(Pt 10):2349–58. doi: 10.1242/jcs.093708
2. Kimmelman AC, White E. Autophagy and Tumor Metabolism. Cell Metab

(2017) 25(5):1037–43. doi: 10.1016/j.cmet.2017.04.004
3. Nazio F, Bordi M, Cianfanelli V. Autophagy and cancer stem cells:

molecular mechanisms and therapeutic applications. Cell Death Differ
(2019) 26(4):690–702. doi: 10.1038/s41418-019-0292-y

4. Kaza N, Kohli L, Roth KA. Autophagy in brain tumors: a new target for
therapeutic intervention. Brain Pathol (Zurich Switzerland) (2012) 22
(1):89–98. doi: 10.1111/j.1750-3639.2011.00544.x

5. Colella B, Faienza F, Di Bartolomeo S. EMT regulation by autophagy: a new
perspective in glioblastoma biology. Cancers (2019) 11(3):312. doi: 10.3390/
cancers11030312

6. Rojas-Sanchez G, Cotzomi-Ortega I, Pazos-Salazar NG, Reyes-Leyva J,
Maycotte P. Autophagy and Its Relationship to Epithelial to Mesenchymal
Transition: When Autophagy Inhibition for Cancer Therapy Turns
Counterproductive. Biology (Basel) (2019) 8(4). doi: 10.3390/biology8040071

7. Chen H-T, Liu H, Mao M-J, Tan Y, Mo X-Q, Meng X-J, et al. Crosstalk
between autophagy and epithelial-mesenchymal transition and its
application in cancer therapy. Mol Cancer (2019) 18(1):1–19. doi:
10.1186/s12943-019-1030-2

8. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–
mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol
(2019) 20(2):69–84. doi: 10.1038/s41580-018-0080-4

9. Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, et al.
Guidelines and definitions for research on epithelial-mesenchymal
transition. Nat Rev Mol Cell Biol (2020) 21(6):341–52. doi: 10.1038/
s41580-020-0237-9

10. Catalano M, D’Alessandro G, Lepore F, Corazzari M, Caldarola S, Valacca C,
et al. Autophagy induction impairs migration and invasion by reversing
EMT in glioblastoma cells. Mol Oncol (2015) 9(8):1612–25. doi: 10.1016/
j.molonc.2015.04.016

11. Wirsching HG, Galanis E, Weller M. Glioblastoma. Handb Clin Neurol
(2016) 134:381–97. doi: 10.1016/b978-0-12-802997-8.00023-2

12. Chen Z, Hambardzumyan D. Immune microenvironment in glioblastoma
subtypes. Front Immunol (2018) 9:1004. doi: 10.3389/fimmu.2018.01004

13. Noch EK, Ramakrishna R, Magge R. Challenges in the Treatment of
Glioblastoma: Multisystem Mechanisms of Therapeutic Resistance. World
Neurosurg (2018) 116:505–17. doi: 10.1016/j.wneu.2018.04.022

14. Weller M, Le Rhun E. How we treat glioblastoma. Curr Oncol Rep (2019) 4
(Suppl 2):e000520. doi: 10.1136/esmoopen-2019-000520

15. Campos B, Olsen LR, Urup T, Poulsen H. A comprehensive profile of
recurrent glioblastoma. Oncogene (2016) 35(45):5819–25. doi: 10.1038/
onc.2016.85

16. Batash R, Asna N, Schaffer P, Francis N, Schaffer M. Glioblastoma
multiforme, diagnosis and treatment; recent literature review. Curr Med
Chem (2017) 24(27):3002–9. doi: 10.2174/0929867324666170516123206
17. Sattiraju A, Sai KKS, Mintz A. Glioblastoma Stem Cells and Their
Microenvironment. Adv Exp Med Biol (2017) 1041:119–40. doi: 10.1007/
978-3-319-69194-7_7

18. Hatiboglu MA, Wei J, Wu AS, Heimberger AB. Immune therapeutic
targeting of glioma cancer stem cells. Targeted Oncol (2010) 5(3):217–27.
doi: 10.1007/s11523-010-0151-8

19. Liebelt BD, Shingu T, Zhou X, Ren J, Shin SA, Hu J. Glioma Stem Cells:
Signaling, Microenvironment, and Therapy. Stem Cells Int (2016)
2016:7849890. doi: 10.1155/2016/7849890

20. Tompa M, Kalovits F. Contribution of the Wnt Pathway to Defining Biology
of Glioblastoma. Neuromolecular Med (2018) 20(4):437–51. doi: 10.1007/
s12017-018-8514-x

21. Liu X, Wang L, Zhao S, Ji X, Luo Y, Ling F. b-Catenin overexpression in
malignant glioma and its role in proliferation and apoptosis in glioblastma
cells. Med Oncol (Northwood London England) (2011) 28(2):608–14.
doi: 10.1007/s12032-010-9476-5

22. Yu CY, Liang GB, Du P, Liu YH. Lgr4 promotes glioma cell proliferation
through activation of Wnt signaling. Asian Pacific J Cancer Prevent: APJCP
(2013) 14(8):4907–11. doi: 10.7314/apjcp.2013.14.8.4907

23. Kamino M, Kishida M, Kibe T, Ikoma K, Iijima M, Hirano H, et al. Wnt-5a
signaling is correlated with infiltrative activity in human glioma by inducing
cellular migration and MMP-2. Cancer Sci (2011) 102(3):540–8.
doi: 10.1111/j.1349-7006.2010.01815.x

24. Vassallo I, Zinn P, Lai M, Rajakannu P, Hamou MF, Hegi ME. WIF1 re-
expression in glioblastoma inhibits migration through attenuation of non-
canonical WNT signaling by downregulating the lncRNA MALAT1.
Oncogene (2016) 35(1):12–21. doi: 10.1038/onc.2015.61

25. Wang M, Li Q, Yu S, Zhang Z, Qiu P, Zhang Y, et al. Coronin 3 Promotes the
Development of Oncogenic Properties in Glioma Through the Wnt/b-
Catenin Signaling Pathway. OncoTarg Ther (2020) 13:6661–73.
doi: 10.2147/ott.s257001

26. Rajakulendran N, Rowland KJ, Selvadurai HJ, Ahmadi M, Park NI,
Naumenko S, et al. Wnt and Notch signaling govern self-renewal and
differentiation in a subset of human glioblastoma stem cells. Genes Dev
(2019) 33(9-10):498–510. doi: 10.1101/gad.321968.118

27. Huang M, Zhang D. Wnt-mediated endothelial transformation into
mesenchymal stem cell-like cells induces chemoresistance in glioblastoma.
Sci Transl Med (2020) 12(532):eaay7522. doi: 10.1126/scitranslmed.aay7522

28. Manoranjan B, Chokshi C, Venugopal C, SubapandithaM, Savage N, Tatari N,
et al. A CD133-AKT-Wnt signaling axis drives glioblastoma brain tumor-
initiating cells.Oncogene (2020) 39(7):1590–9. doi: 10.1038/s41388-019-1086-x

29. Mecca C, Giambanco I, Donato R, Arcuri C. Targeting mTOR in
Glioblastoma: Rationale and Preclinical/Clinical Evidence. Dis Markers
(2018) 2018:9230479. doi: 10.1155/2018/9230479

30. Laplante M, Sabatini DM. mTOR signaling in growth control and disease.
Cell (2012) 149(2):274–93. doi: 10.1016/j.cell.2012.03.017

31. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, et al.
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB.
Mol Cell (2006) 22(2):159–68. doi: 10.1016/j.molcel.2006.03.029
November 2020 | Volume 10 | Article 597743

https://doi.org/10.1242/jcs.093708
https://doi.org/10.1016/j.cmet.2017.04.004
https://doi.org/10.1038/s41418-019-0292-y
https://doi.org/10.1111/j.1750-3639.2011.00544.x
https://doi.org/10.3390/cancers11030312
https://doi.org/10.3390/cancers11030312
https://doi.org/10.3390/biology8040071
https://doi.org/10.1186/s12943-019-1030-2
https://doi.org/10.1038/s41580-018-0080-4
https://doi.org/10.1038/s41580-020-0237-9
https://doi.org/10.1038/s41580-020-0237-9
https://doi.org/10.1016/j.molonc.2015.04.016
https://doi.org/10.1016/j.molonc.2015.04.016
https://doi.org/10.1016/b978-0-12-802997-8.00023-2
https://doi.org/10.3389/fimmu.2018.01004
https://doi.org/10.1016/j.wneu.2018.04.022
https://doi.org/10.1136/esmoopen-2019-000520
https://doi.org/10.1038/onc.2016.85
https://doi.org/10.1038/onc.2016.85
https://doi.org/10.2174/0929867324666170516123206
https://doi.org/10.1007/978-3-319-69194-7_7
https://doi.org/10.1007/978-3-319-69194-7_7
https://doi.org/10.1007/s11523-010-0151-8
https://doi.org/10.1155/2016/7849890
https://doi.org/10.1007/s12017-018-8514-x
https://doi.org/10.1007/s12017-018-8514-x
https://doi.org/10.1007/s12032-010-9476-5
https://doi.org/10.7314/apjcp.2013.14.8.4907
https://doi.org/10.1111/j.1349-7006.2010.01815.x
https://doi.org/10.1038/onc.2015.61
https://doi.org/10.2147/ott.s257001
https://doi.org/10.1101/gad.321968.118
https://doi.org/10.1126/scitranslmed.aay7522
https://doi.org/10.1038/s41388-019-1086-x
https://doi.org/10.1155/2018/9230479
https://doi.org/10.1016/j.cell.2012.03.017
https://doi.org/10.1016/j.molcel.2006.03.029
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Coelho et al. WNT Signaling in Glioblastoma Autophagy and EMT
32. Li X, Wu C, Chen N, Gu H, Yen A, Cao L, et al. PI3K/Akt/mTOR signaling
pathway and targeted therapy for glioblastoma. Oncotarget (2016) 7
(22):33440–50. doi: 10.18632/oncotarget.7961

33. Shimobayashi M, Hall MN. Making new contacts: the mTOR network in
metabolism and signalling crosstalk. Nat Rev Mol Cell Biol (2014) 15(3):155–
62. doi: 10.1038/nrm3757

34. Nusse R, Clevers H. Wnt/b-Catenin Signaling, Disease, and Emerging
Therapeutic Modalities. Cell (2017) 169(6):985–99. doi: 10.1016/
j.cell.2017.05.016

35. Lee Y, Lee JK, Ahn SH, Lee J, Nam DH. WNT signaling in glioblastoma and
therapeutic opportunities. Lab Investigation; J Tech Methods Pathol (2016)
96(2):137–50. doi: 10.1038/labinvest.2015.140

36. Cruciat C-M, Niehrs C. Secreted and transmembrane wnt inhibitors and
activators. Cold Spring Harbor Perspect Biol (2013) 5(3):a015081. doi:
10.1101/cshperspect.a015081

37. Niehrs C. Function and biological roles of the Dickkopf family of Wnt
modulators. Oncogene (2006) 25(57):7469–81. doi: 10.1038/sj.onc.1210054

38. Katase N, Nagano K, Fujita S. DKK3 expression and function in head and
neck squamous cell carcinoma and other cancers. J Oral Biosci (2020) 62
(1):9–15. doi: 10.1016/j.job.2020.01.008

39. Li J, Gao Y, Yue W. The Clinical Diagnostic and Prognostic Value of
Dickkopf-1 in Cancer. Cancer Manag Res (2020) 12:4253–60. doi: 10.2147/
cmar.s254596

40. Esteve P, Bovolenta P. The advantages and disadvantages of sfrp1 and sfrp2
expression in pathological events. Tohoku J Exp Med (2010) 221(1):11–7.
doi: 10.1620/tjem.221.11
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The tumor microenvironment (TME) is a complex environment where cancer cells reside
and interact with different types of cells, secreted factors, and the extracellular matrix.
Additionally, TME is shaped by several processes, such as autophagy. Autophagy has
emerged as a conserved intracellular degradation pathway for clearance of damaged
organelles or aberrant proteins. With its central role, autophagy maintains the cellular
homeostasis and orchestrates stress responses, playing opposite roles in tumorigenesis.
During tumor development, autophagy also mediates autophagy-independent functions
associated with several hallmarks of cancer, and therefore exerting several effects on
tumor suppression and/or tumor promotion mechanisms. Beyond the concept of
degradation, new different forms of autophagy have been described as modulators of
cancer progression, such as secretory autophagy enabling intercellular communication in
the TME by cargo release. In this context, the synthesis of senescence-associated
secretory proteins by autophagy lead to a senescent phenotype. Besides disturbing
tumor treatment responses, autophagy also participates in innate and adaptive immune
signaling. Furthermore, recent studies have indicated intricate crosstalk between
autophagy and the epithelial-mesenchymal transition (EMT), by which cancer cells
obtain an invasive phenotype and metastatic potential. Thus, autophagy in the cancer
context is far broader and complex than just a cell energy sensing mechanism. In this
scenario, we will discuss the key roles of autophagy in the TME and surrounding cells,
contributing to cancer development and progression/EMT. Finally, the potential
intervention in autophagy processes as a strategy for cancer therapy will be addressed.

Keywords: tumor microenvironment, secretion, immune system, epithelial-mesenchymal transition, cancer, new
autophagy functions
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INTRODUCTION

The autophagy process has been explored for almost 60 years, from
morphological studies since early 70’s to molecular studies initiated
in the 1990s (1–3). During this period, several studies were
conducted to understand the genetic mechanisms of autophagy,
leading to the discovery of autophagy-related genes (ATG) in yeast
(4, 5). Subsequently, ATG homologs were identified in various
organisms, and new ATG genes were described in mammals (6).
Building upon these findings, efforts to delve into the molecular
mechanisms involved in the degradation of intracellular
constituents have grown rapidly. However, several issues remain
unsolved regarding the molecular regulation of autophagy, its
integration and control at the tissue and systemic levels and its
role in cancer pathophysiology. Three main types of autophagy have
been described, depending on the morphology and mechanisms:
microautophagy, chaperone-mediated autophagy and the best
characterized macroautophagy (hereafter referred as autophagy).

Autophagy is an evolutionarily conserved process responsible for
removing intracellular molecular aggregates of misfolded proteins
and damaged organelles, through the sequestration of these
substrates in a double-membrane vesicle, which fuses with
lysosomes, where degradation of the macromolecular machines or
complexes takes place. Multiple proteins are involved in the
sequential stages of autophagy consisting in initiation, elongation
of isolated membranes decorated by microtubule-associated protein
1A/1B-light chain 3 (LC3) to form an autophagosome, and its
fusion with the lysosome to cargo degradation. Autophagy is
stimulated in physiological and pathological conditions regulating
cell metabolism and homeostasis (7). In cancer cells, stressors, such
as hypoxia or nutrient deprivation, induce autophagy to support the
high energy demand of cells with dysregulated proliferation. Many
Frontiers in Oncology | www.frontiersin.org 259
tumor suppressor and oncogene products are elements of
autophagy pathways, pointing to the relationship between
autophagy and tumorigenesis. Moreover, it is well known that
many cancer cells have high basal levels of autophagy. Although
autophagy contributes to cancer promotion in advanced stages, it is
also capable to inhibit tumor initiation in early stages (8, 9). The
molecular circuitry controlling autophagy is therefore complex, as it
can either induce cell-death or promote cell survival (Figure 1) (10,
11). Understanding the mechanisms for the protective role of
autophagy in cancer is essential for the identification of novel
targets to the control of resistance of tumors to treatment.

The process of recycling cellular components performed by
autophagy has been well characterized. Beyond self-eating and
recycling damaged organelles, new roles for autophagy and the
ATG genes have been ascribed (12, 13). Indeed, autophagy
interferes in a wide range of cellular processes. Interestingly,
components of autophagy can influence dynamic cellular processes
and lead to tumor microenvironment (TME) reprogramming. Here,
we discuss the novel roles of the autophagy machinery in tumor
secretion, immune response, migration, and invasion capacity of
tumor cells undergoing the epithelial to mesenchymal transition
(EMT) (14, 15). These processes may occur simultaneously or not,
affecting not only tumor cells, but also tumor microenvironmental
components. These processes may also be interconnected and thus
interfering with tumor progression, amplifying the roles of
autophagy in tumor development and heterogeneity.

AUTOPHAGY AS A MECHANISM OF
PROTEIN SECRETION
Among the diverse functions triggered by autophagy, “autophagy
secretion” has received attention for its ability to alter the
FIGURE 1 | Dual role of autophagy in cancer. Autophagy is implicated in several stages of tumorigenesis executing different processes. The extensive and opposite
functions in cancer makes autophagy an important target to develop new therapies. A deeper knowledge about this complex feature of autophagy in cancer
research is essential to find more accurate therapeutic approaches.
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secretory profile of the tumor microenvironment, participating
in the modulation of processes related to cancer progression (16,
17). Since the term autophagy secretion does not culminate in
degradation into lysosomes, we adopt here, like some authors,
the term autophagy-dependent secretion (ADS) (18). Nowadays,
it is well established that some components of the autophagy
route are involved in both conventional and unconventional
secretion pathways (19). The conventional secretion route is the
best-studied route for protein secretion; it can be regulated
positively and negatively by autophagy components, for instance
during protein recycling or through the selective clearance of
secretory vesicles (20, 21). Unlike proteins exported through the
conventional secretory pathway, the cargo delivered to the
extracellular space or the plasma membrane by unconventional
secretion (UPS) lacks the specific signal peptide and bypasses the
classical Endoplasmic Reticulum (ER)-to-Golgi pathways of
protein secretion (22). Usually, this pathway is activated by
cellular stress, being an alternative route to proteins that use the
conventional secretion (23).

Over the last few years, various studies have shown that
autophagy takes part in the secretion of several proteins that
critically contribute to tumor development. Among them are
included different types of cargo, such as High Mobility Group
Box 1 (HMGB1), IL1-b and other cytokines, immune mediators,
and RNAs (18, 24, 25). Although the major complexes of
classical autophagy and their molecular machinery have been
clarified, novel and specific autophagy-dependent processes are
still under investigation. Despite that, some evidence about
the mechanism of intracellular traffic in ADS has emerged by
Frontiers in Oncology | www.frontiersin.org 360
the examination of unconventional secretion in yeast and the
alternative route of IL1-b extracellular secretion (Table 1) (26,
49). Thereby, the results revealed that some markers involved in
this pathway are shared with the classical autophagy program,
but there are others exclusive to ADS. Findings of the machinery
implicated in cargo selection and release have been suggested
three different pathways.

First, the ATG genes stimulate the generation of an
intermediate membrane, not a regular autophagosome,
required to LC3I lipidation (LC3II) and the cargo contained
within the inner membrane is subsequently delivered
extracellularly instead to the lysosomes (50). Second, leaderless
proteins are translocated to the intermembrane space of an
autophagosome and released directly by fusion with the plasma
membrane or with multivesicular bodies (MVBs). The last
process proposed consists of an MVB/amphisome intermediate
(late endosome-MVB and autophagosome fusion) and the
secretion of material in small extracellular vesicles (51).

Considering all strategies, recent studies have been shown
that the ADS needs SNARE (soluble N-ethylmaleimide-sensitive
fusion protein attachment protein receptors) proteins, as
SEC22B, to prevent the fusion with lysosomes and drive the
select target to the plasma membrane (52). Besides the regulation
by ATG proteins, for instance, ATG5/ATG12/ATG16L1
complex and ATG3, the unconventional secretion also requires
of cargo receptors as TRIM (Tripartite motif family) proteins,
specifically TRIM16, as well as LC3, GRASP65 (Golgi
reassembly-stacking protein)and the GTPase Rab8A of the Ras
family, necessary for sorting the target to the plasma membrane
TABLE 1 | Evidence summary of studies related to molecular mechanisms and components of autophagy implicated in the three topics covered in this review:
secretion, epithelial to mesenchymal transition (EMT) and immunity.

Process Interfacing mechanisms References

Autophagy-
dependent
secretion

• TASCC is Rag guanosine triphosphatase–dependent, necessary to recruit mTOR and favor protein secretion.
• Atg9L and LC3 cooperate to expand the protein secretion compartment. GRASP, Sec, Atg5 and Vsp proteins are

required in the process.
• Specialized SNAREs, as Sec22b and receptors, like TRIM16, coordinate secretory autophagy. ESCRT components

also are involved in autophagy secretion pathway.

Narita et al. (20)
Duran et al. (26)
Dupont et al. (16)
Gee et al. (23)
Kimura et al. (27)
Noh et al. (28)
Rabouille (29)

Epithelial -
Mesenchymal
Transition

• TGFb activates autophagy in early phases of cancer progression; in later phases inhibits ULK1 promoting EMT.
Autophagy attenuates EMT by degradation of SNAIL, TWIST and SLUG and activation of ROS-NFkB-HIF1a pathway.

• ROS-NFkB-HIF1a pathway stimulates SNAIL, N-cadherin expression and thus EMT.
• Autophagy increase HMGB1 expression and TGF-b/Smad3 signaling enhancing EMT markers.
• Beclin-1 signaling inhibits EMT by down- regulation of WNT1, ZEB1, and NF-kB. Accelerates EMT increasing Twist

and Vimentin.

Gugnoni et al. (30)
Zi et al. (31)
Wang et al. (32)
Li et al. (33)
Bao et al. (34)
Li et al. (35)
Cicchini et al. (36)
Catalano et al. (37)

Immunity • LAP: ULK and Rab7 independent. Activated by membrane receptors like TLR2. Dependent of Rubicon and NADPH
oxidase (NOX2) to produce ROS and recruit LC3.

• T cell function involves autophagy activation by TCR or IL-2 receptor, SQSTM1/p62 and Bcl10 degradation.
Autophagy controls T homeostasis due expression of ATG3, Vps34, ATG7, ATG5.

• MHC antigen presentation: Dribbles formation via SQSTM1/p62 and LC3.
• Macrophages differentiation: Involves beclin-1 release from BCL-2 and ATG5 cleavage.
• Immune cells differentiation and function regulation.

Heckmann et al. (38)
Botbol et al. (39)
Murera et al. (40)
Merkley et al. (41)
Munz (42)
Zhang et al. (43)
Pua et al. (44)
Xu et al. (45)
Salio et al. (46)
Clark and Simon (47)
Sil et al. (48)
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(27, 53). Curiously, proteins implicated in extracellular vesicle
secretion, like VCP and Rab7, were also found in autophagy
pathways and conversely, key ATG proteins, such as ATG12/3
and ATG5, were identified as crucial regulators of exosome
biogenesis (54–57). Thus, this data demonstrated a potential
link between autophagy and extracellular vesicles (EVs)
machinery, processes that contribute to cellular communication
and signaling in the tumor microenvironment acting as
modulators of tumor progression and aggressiveness. All data
collected until now expose the relevance of the set of proteins
released by ADS to contribute with some of the hallmarks of
cancer (58).

Most of the proteins released by ADS can activate invasion
and metastasis, induce resistance to cancer therapies and/or
promote inflammation, helping tumor cells to mitigate stress.
Such set includes cytokines that use unconventional routes, as
TGF-b and IL1-b, both responsible for playing antagonistic roles
within the tumor microenvironment, depending on the cellular
context (59, 60). Despite that, many studies support their
functions as tumor promotors influencing in the inflammatory
response of immune cells and contributing to immune
suppression, tumor growth, angiogenesis, and metastasis, as
observed in breast cancer cells, where the secretion of IL1-b
drives colonization of the bone microenvironment, establishing a
metastatic niche and cell proliferation (61, 62).

Similar responses were observed in HMGB1 and ATP
secretion. Extracellular HMGB1 induces pro-inflammatory
cytokines and regulates other genes leading to cell migration
and metastasis. HMGB1exerts pro-tumoral functions favoring
prostate cancer cells survival and cancer progression (63).
Simultaneously, HMGB1 is also responsible for autophagy
induction. Regarding ATP, recent studies support its role in
tumor survival by switching the ATP-gated receptor P2x to
nfP2X7, a non-pore functional, that impairs the membrane
permeability and the subsequent cell death (64). In addition,
IL-6 and IL-8 secreted by autophagy are key determinants of the
senescence-associated secretion phenotype (SASP), characteristic
of senescence activated by DNA damage-mediated signals (65–
67). High levels of both cytokines secreted by tumor cells and
other cells such as cancer-associated fibroblasts (CAF) establish a
senescent microenvironment and increase tumor aggressiveness
showing a correlation with cancer progression and poor prognosis
in many tumor types (68, 69). For example, in colorectal cancer, it
was showed that peritoneal mesothelial cells control metastasis in
SW480 cells and stimulate proliferation by the activation of
senescence along with the secretion of mediators as IL-6 and IL-
8 (70). Based on these findings and the prominent role of
autophagy in cancer, various researchers have hypothesized a
link between autophagy and senescence induction (71).

The Dual Interface of Autophagy
and Senescence
One of the first evidence of autophagy acting as an effector
mechanism of senescence came from Young et al. (12), who
demonstrated, in an oncogene-induced senescence model (OIS),
that up-regulation of ATG genes induced autophagy and
Frontiers in Oncology | www.frontiersin.org 461
senescence, while the inhibition of ATG7 and ATG5 by shRNA
delayed senescence. The OIS program is a dynamic process
consisting of an initial phase of rapid proliferation and mTOR
activation, a transition phase where diverse changes in
morphology, signaling, translation and mTOR activity occur,
culminating in a senescence phase, achieved by diverse
senescence programs. Thus, autophagy is activated by stress,
oncogenic stress, helping to shift the proliferative cell state to a
senescent state through the fast protein remodeling and the
synthesis/secretion of proteins as IL-6 and IL-8. Later, the
same group demonstrated that autophagy is involved in IL-6,
IL-8 secretion in a posttranslational manner since the mRNA
levels remain stable in ATG knockdown cells. Secretion of these
cytokines was further associated with a new type of autophagy
called TOR- autophagy spatial coupling compartment (TASCC),
which is located at the trans side of Golgi apparatus of senescent
cells to accumulate autolysosomes, and mTOR1 facilitating the
biosynthesis and secretion of proteins (20, 72). These secretion
events were related to survival in tumor cells dependent on
autophagy (73, 74). Moreover, several studies in different cell
types endorsed the connection between these processes, but the
mechanisms are not completely understood and occasionally
contradictory, making it crucial to assess what type of autophagy
program has been activated (75, 76). Collectively, there is
evidence supporting pro-senescence and anti-senescence
mechanisms induced by autophagy, including those promoting
senescence under different conditions (77, 78).

As a pro-senescence program, a set of studies of Caparelli et
al. (79–81), validated an autophagy-senescence transition (AST)
process which consists of autophagy activation, metabolism
alteration and the subsequent senescence induction in CAFs,
responsible to promote tumor growth. They also showed that
overexpression of CDK inhibitors (p16/p19/p21) was able to
induce autophagy and senescence in CAFs and breast cancer
cells favoring tumor promotion. Another study illustrated the
notion that p53-mediated senescence is regulated by autophagy,
which leads to the degradation of a p53 isoform capable of
inhibiting the whole protein, and thereby inducing senescence
(82). Likewise, the loss of p53 function can boost SASP in cells
and promote tumor growth (83). However, the induction of
senescence by wild type p53 has also been reported in different
cellular contexts (84, 85). In a different approach, Knizhnik, and
collaborators demonstrated that temozolomide triggers
autophagy in glioma cells through the generation of DNA
adducts, leading to senescence and not apoptosis, thus playing
a role in cell survival rather than cell death (86). Besides,
exposure of cancer cells to either chemotherapeutic agents or
irradiation-induced autophagy is followed by cellular senescence.
The entry to senescence has been described as a tumor
suppressor mechanism limiting the replication of premalignant
cells (75, 87). Although therapy-induced senescence has the
intent to suppress cancer cell growth, senescent cells can also
contribute with the survival of non-damaged neighboring cells.
This protumoral effect of senescence, a bystander effect by SASP
activation, may consequently stimulate invasion and tumor
progression (88). Alternatively, studies in human fibroblasts
November 2020 | Volume 10 | Article 606436

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bustos et al. Tumor Microenvironment and Autophagy Functions
showed that autophagy impairment by ATG7, ATG12
knockdown induces premature senescence mediated by
activation of p53 and the generation of reactive oxidative
species from dysfunctional mitochondria (89). In line with this,
a work using a glioma model driven by oncogenic KRAS
observed that autophagy inhibition using KRAS:shAtg7 cells
predisposes cell to senescence, characterized by b-galactosidase
activity and SASP markers (90). A similar outcome came from
data of miR-212 in prostate cancer. Interestingly, the authors
found that miR-212 is upregulated in benign regions compared
with PCa tissues and responsible to negatively modulate
autophagy, inducing premature senescence by inhibiting
SIRT1. Thus, miR-212 controls senescence induction, acting as
a tumor suppressor (91).

Over the last years, senescence has been considered an
important process to fight cancer, encouraging the search for
anti-cancer therapies based on the induction of cell senescence
(92–94). However, studies based on therapy-induced senescence
(TIS) indicated the emergence of adverse effects on cancer
treatment (95, 96). Chemotherapy-induced SASP drives bone
loss in breast cancer and its regulation by p38-MAPK-MK2
inhibition could preserve bone, improving the quality of life of
patients (97). TIS may contribute to unwanted outcomes
through the stimulation of inflammation by increased secretion
of SASP factors, the induction of senescence-associated stemness
phenotype or senescence cell scape and further proliferation
recovery (98–100). Together, these findings attracted interest to
autophagy-modulated senescence and the therapeutic responses
associated with both processes since senescence has been
implicated with maintaining tumor dormancy, and thus
mediating cancer relapse (101, 102). Then, senescence has a
potential pro-tumorigenic role supporting aggressiveness,
survival responses and shorter recurrence-free survival in
patients (103). Finally, regarding its pro-tumorigenic role, there
is increasing evidence that SASP components are involved in the
establishment of an immunosuppressive environment and in the
induction of EMT in TME (104–107). Further studies addressing
these novel functions of autophagy and senescence in the tumor
microenvironment are warranted and may pave the way to novel
targeted therapies that increase the efficacy of the existing cancer
treatment modalities.

The Effects of Autophagy on Epithelial-to-
Mesenchymal Transition
Besides being involved in the regulation of protein secretion and
tumor cell immunogenicity, autophagy has also been implicated
in the process of tumor cell invasion. One of the first associations
between autophagy and the invasion process was evidenced by
the capacity of epithelial cells to evade anoikis via autophagy,
what enabled cancer cells migration and invasion (108). More
recently, autophagy has been connected to epithelial-to-
mesenchymal transition (EMT), a critical multistep process
required for cancer cells to invade and metastasize (109, 110).
During EMT, epithelial cells undergo profound molecular and
biochemical changes to be transiently converted into
mesenchymal cells to gain motility, invasiveness, stemness
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characteristics, and chemoresistance. Multiple embryonic signaling
pathways cooperate in the initiation and progression of EMT,
including TGFb, WNT, Hedgehog, and Notch (109, 111).

Notably, there is a multifaceted link between autophagy-
correlated and EMT-correlated signaling pathways, reflected by
an intricate web of regulatory signaling pathways that converge
on the regulation of EMT and autophagy, and that may alter the
reciprocal equilibrium between these two processes (30). These
pathways often activate EMT-transcription factors and are
initially triggered by extracellular signals (112). Probably, the
best characterized EMT inducer is TGFb, known to trigger EMT
through the activation of SMAD, PI3K/AKT, MAPK, and Rho-
GTPases (112). During cancer progression, cells that undergo
EMT require autophagy activation to survive the metastatic
spreading. On the other hand, autophagy tends to inhibit the
early phases of metastasis, contrasting the activation of the EMT
mainly by selectively destabilizing crucial mediators of this
process, such as TGFb (Table 1). As part of the tumor-
suppressive program dependent of TGFb, it would promote
autophagy in the early phases of tumor formation. On the
other hand, later in tumor progression, TGFb would restrain
autophagy while inducing EMT and promoting metastatic
spreading of cancer cells (30). Regarding TGFb and the
convergence of signaling pathways between both processes, it
was identified recently that the autophagic activity mediated by
the transcription factor EB regulates TGFb signaling in
melanoma. Blockage of the BRAFi-induced autophagy function
led to an augment of EMT activation and metastasis by
enhancing TGFb signaling, which was responsible for driving
tumor progression (113).

Based on the complex relationship between autophagy and
EMT, controversies have emerged in the literature regarding the
role of autophagy inhibition on EMT: while several studies
implicate autophagy in the promotion of EMT, others have
suggested the inverse, indicating that inhibition of autophagy
could promote EMT and consequently induce cancer cell
invasion. Although considerable evidence suggests that the
inhibition of autophagy will improve cancer therapy and
despite early phase clinical trials show promising results for the
use of hydroxychloroquine for this purpose (114), others have
highlighted possible undesirable effects of the inhibition of
autophagy in cancer therapy (31, 115, 116). Supporting the
beneficial effect of autophagy inhibition during cancer progression,
there are several compounds and/or microenvironmental conditions
that activate the EMT program, and can also induce an autophagic
response in different types of cultured cancer and non-cancerous
cells, impairing EMT. It has been suggested that EMT impairment
could benefit the treatment efficacy of renal cell carcinoma with
existing therapeutic regimen when combined to the autophagy
inhibitor chloroquine, supporting the evidence that an EMT-like
phenotype corresponds to a higher autophagic flux (15). In this
regard, it has been also suggested that autophagy is required for EMT
induction and metastasis in hepatoblastoma cells (117) and for
TGFb1-induced EMT in non-small-cell lung carcinoma cells
(118). Additionally, autophagy induced by starvation was able to
activate migration, invasion, and EMT marker expression upon
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rapamycin induction, and BECN1 knockdown reverted this
phenotype. (119). Also, following mTOR signaling inhibition,
which is known to induce autophagy, the migration, invasion and
EMT marker expression were reduced in colorectal cancer cells
(120). Moreover, autophagy is critical for hepatocellular carcinoma
cells invasion through the induction of EMT and activation of TGF-
b/Smad3-dependent signaling, which plays a key role in regulating
autophagy-induced EMT (33), as well as is required for TGFb2-
induced EMT and reactive oxygen species (ROS) modulation in
these cells (34). Another model of hepatocellular carcinoma revealed
that inhibition of autophagy did not alter cell migration, invasion or
EMT marker expression in vitro, however sensitized cells to anoikis
and decreased lung metastases in vivo (121). Therefore, the role of
autophagy in EMT seems context-dependent and indicates that the
effects of autophagy inhibition in the establishment of metastasis are
not necessarily due to its effects on EMT, but rather on its effects on
other steps of the metastatic process or in the promotion of cell
death. In this regard, autophagic stimulation of metastasis could be
simply a consequence of its pro-survival activity against the apoptotic
signals coming from changes in adhesion and cytoskeleton
reorganization (121).

Ultimate evidence has indicated that autophagy activation
could rather induce a reversion of the EMT phenotype and
several anticancer compounds that induce autophagy also inhibit
EMT (Table 2) (37, 122–129, 135). By its dual role in cancer, the
effect of autophagy on EMT appears controversial and likely
dependent on the cellular type and/or stage of tumor progression
(130–134). Thus, at early stages of metastasis, autophagy could
inhibit the EMT program mainly by destabilizing EMT crucial
players. Later, metastatic cells could require sustained autophagy
to survive environmental and metabolic stressful conditions
encountered (30). Therefore, our efforts should be concentrated
in selecting the precise approaches needed to stimulate or block
autophagy in a time/context-dependent manner, to primarily
suppress EMT and control cancer progression.
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Autophagy Plays an Essential Role in
Metastatic Dormancy
Once the transformation has occurred, autophagy can maintain
cellular senescence to avoid the proliferation of transformed cells
(109). Accumulating evidence indicates that autophagy is also a
fundamental characteristic of stem cells, including cancer stem
cells (CSCs). As CSCs are likely to play a central role in
tumor dormancy, it appears that autophagy could contribute
to the capacity of these cells to survive for extended periods of
time in a dormant state and eventually give rise to recurrent
tumors that are determinants of morbidity and mortality in
cancer patients. Hence, once a tumor is established, tumor cells
use autophagy as a survival mechanism to metabolic stress and
hypoxia, to maintain tumor-related inflammation, CSCs survival
and resistance to therapy.

The ‘reawakening’ of tumor cells at distant sites leading to the
outgrowth of metastatic disease many years after primary tumors
were treated has led to the concept of metastatic dormancy (136–
138). Several studies have shown a role for autophagy in
promoting cancer cells survival during dormancy (139).
Autophagy may promote the dormancy of disseminated tumor
cells simply by supplying key amino acids and other nutrients or,
autophagy may play a more instructive role by eliminating
mitochondria, modulating redox balance, and actively
promoting the CSC state (136, 140, 141). However, it has been
suggested that dormant tumor cells are CSCs that depend upon
autophagy to survive at distant sites over extended periods of
time to expand later as metastatic lesions composed of both CSCs
and non-CSCs, representing the full heterogeneity of rapidly
growing tumors (136, 139). Indeed, dormant disseminated
cancer cells can survive for several years before recurring as
extremely aggressive metastatic tumors. There are relevant
observations providing insights into the connection between
autophagy and dormancy. Despite the autophagy-associated
dormancy has not been fully elucidated and some results seem
TABLE 2 | Examples of autophagy modulation and its role in epithelial-mesenchymal transition (EMT) in cancer.

Autophagy Cell/tissue Function References

Induction by the overexpression of DEDD (death effector domain-
containing protein)

Breast cancer tissues EMT inhibition Lv et al. (122)

Induction by AZD2014 (mTOR inhibitor) Hepatocelullar carcinoma EMT inhibition Liao (123)
Induction by Alisertib (Aurora Kinase A inhibitor) Osteosarcoma

Colorectar cancer cells
EMT inhibition Niu (124)

Ren (125)
Induction by Metformin (AMPK activation) Thyroid cancer EMT inhibition Han et al. (126)
Induction by Danusertib (Aurora Kinase A/B/C inhibitor) Ovarian cancer EMT inhibition Zi (31)
Induction by Rapamycin or PP242 (mTORi) Glioblastoma cells Reverse EMT, inhibit invasion Catalano et al. (37)

Mecca et al. (127)
Induction by Brusatol (Nrf2 inhibition) Hepatocelullar carcinoma Suppress invasion capacity and

EMT
Ye et al. (128)

Induction by SB202190 and SP600125 (p38-JNKi) Ovarian cancer cells EMT inhibition Chen et al. (129)
Inhibition by cloroquine Hepatocarcinoma cells EMT inhibition Hu et al. (130)
Inhibition by Cudraxanthone D Oral squamous cell

carcinoma
Suppress EMT Yu et al. (131)

Induction by Rapamycin Acidic gastric cancer cells Antimetastatic effect, Reverse
EMT

Wang et al. (132)

Induction by Cisplatin (DNA damage) Nasopharyngeal carcinoma
cells

Promote EMT Su et al. (133)

Induction by Alteronol (Akt/mTORi) Melanoma cells Promote invasion Bao et al. (134)
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controversial or related to specific phenomena, several studies
recognize its crosstalk with cancer relapse (142). Findings in
dormant breast cancer cells support that autophagy is crucial to
promote their metastasis and survival, probably preventing the
accumulation of ROS and damaged organelles (143).
Additionally, increased unfolded protein response (UPR)
markers have been found in dormant cells. Considering the
established link between autophagy and UPR under stress
conditions, it has been suggested that UPR-induced autophagy
activation in dormant cells to sustain tumor survival (144, 145).
Breast cancer stem cells (BCSCs), which undergo tumor initiation
and unlimited self-renewal, also exhibit dormancy-associated
phenotypes by upregulating autophagy during metastatic
dormancy to survive environmental stress and nutrient poor
conditions. Consequently, therapeutic targeting of autophagy is
actively being pursued as an attractive strategy to alleviate
metastatic disease and the recurrence of dormant BCSCs (146).

In conclusion, dormant cancer cells are especially dependent
on autophagy for survival, which provides a rationale for
combining autophagy inhibition with conventional therapeutic
strategies to eliminate these cells and prevent subsequent
metastatic outgrowth (147).

Autophagy and Immune System
As mentioned before, autophagy has an important role in innate
and adaptative immunity and can act in several steps of the immune
response, leading to its activation or inhibition, depending the
context, taking part in tumor immunosurveillance. Besides the
ability to modulate the TME through its secretory function,
autophagy regulates cellular components (natural killer (NK) cells,
dendritic cells (DC), macrophages and lymphocytes (T and B cells))
of immune response, acting on differentiation, proliferation,
activation, survival and homeostasis of these cells (Table 1).
Moreover, autophagy acts on cytokines (interleukins (IL),
interferons (IFN), transforming growth factors (TGF)) and
antibodies production as well as phagocytosis. Interestingly,
cytokines can act as autophagy stimulators or autophagy
inhibitors (148).

Autophagy also has a role in tumor response to immunotherapy
and a better understand of autophagy-modulation of innate and
adaptative immune response could contribute to better strategies to
circumvent immunotherapy resistance. For example, autophagy
enhances antigen delivery to immune cells (antigen-presenting
cells (APCs) and CD8+ cytotoxic T lymphocytes) and in this way
can initiate an immune response against tumor cells and enhance
immunotherapy efficacy. However, in the case of cancer
development, autophagy is a double edge sword for immunity
since it can inhibit immune response and attenuate immunotherapy
outcomes (149, 150).

Autophagy and Innate Immunity
Innate immunity is the first defense of eukaryotic cells against
invading pathogens and autophagy participates in the process
with autophagy adaptor proteins that interact with pattern
recognition receptors and activates immune response together
with elimination of intracellular invaders (47). The activation of
innate immune receptors as Toll-like receptors (TLRs) and
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nucleotide oligomerization domain-like receptors (NLRs)
induces innate-immunity-mediated autophagy upregulation
(150–152). TLRs interact with pathogens on the cell surface
and usually are also expressed in cancer cells, inducing cytokines
production together with NF-kB andMAPK pathways activation
(151–153). TLRs are proposed to activate autophagy as
demonstrated for TLR2 that enhances innate immunity
through ERK and JNK signaling pathways after autophagy
stimulation, and also boosts autophagy in glioma cells being
correlated with poorer patients outcome (154, 155). For TLR4,
the autophagy induction is mediated by TRIF (Toll-IL-1 receptor
adapter-inducing IFN)/RIP1 (receptor-interacting protein)/p38-
MAPK axis (156). TLR4 and TLR3 activation after LPS
(lipopolysaccharides) treatment induces autophagy by TRIF
pathway, which contributes to TRAF6 ubiquitination followed
by MAPK and NF- kB activation and harmful cytokine
production, leading to lung cancer cell migration and invasion
(157). In p62 knockout cancer cells, stimulation of TLR4 induced
activation of the TRAF6-BECN1-autophagy axis leads to cancer
cell migration and invasion (158). Additionally, in patients with
luminal breast cancer, higher levels of TLR4 and accumulation of
LC3II were observed in CAFs. These features were associated with
a more aggressive relapse and poorer prognosis in the cohort of
patients studied (159). Taken together, TLR and autophagy
activation can contribute to tumor development since it enhances
survival and proliferation of cancer cells and also triggers the
release of cytokines and immunosuppressive factors, contributing
to immune evasion and tumor cell resistance (160).

NLR family members, such as NOD1 and NOD2, that
recognize intracytoplasmic pathogens, can also activate NF-kB
and MAPK pathways and produce immunosuppressive
cytokines, as well as induce autophagy by recruiting ATG16L1
(161, 162). Both NOD1 and NOD2, altering the balance of anti-
and pro-inflammatory cytokines, can modulate the risk of cancer
development (163). For example, in triple negative breast cancer
(TNBC), the expression of NOD1 and NOD2 is associated with
cancer progression and a global proteome profiling of TNBC-
derived cells overexpressing these receptors demonstrated
disrupted immune-related pathways such as NF- kB and
MAPK signaling and autophagy (164).

Autophagy and Adaptive Immunity
Autophagy participates in adaptative immune response such as
thymus selection, lymphocyte development and homeostasis,
antigen presentation and cytokine release, exerting anti-tumor
effects (47, 165). Adaptative immunity occurs when extracellular
or intracellular peptide epitopes are presented by APCs through the
major histocompatibility complex (MHC) class I and II to CD8+
and CD4+ T cells, respectively. The interaction of antigen and T cell
receptors triggers cellular (cytotoxic lymphocytes) and humoral
(antibody-producing B cells) adaptative immune response (42,
166). The efficient antigen presentation requires proteasomal or
lysosomal antigen degradation and delivery of resulting peptides to
MHC molecules and this step can be enhanced by autophagy, for
example, in APCs upon uptake of extracellular antigens (e.g. tumor
antigens) and in antigen processing for MHC I cross- presentation.
Autophagosomes facilitate intracellular trafficking of these antigens
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to endosomes to be degraded by cathepsins followed by peptide load
onto MHC II molecules that mature and get translocated to the
plasma membrane and present antigens to CD4+ T cells (42, 166).
A non-canonical regulation of phagocytosis by ATG proteins can
also be used to engulfment of extracellular antigens, which is known
as LC3-associated phagocytosis (LAP), characterized by a single
membrane vesicle decorated with LC3-II instead of double-
membrane autophagosome as in autophagy (Table 1) (42, 167).

Autophagy and Immune Cells
Autophagy has multiple roles on immune cells acting during their
differentiation, proliferation, activation, and homeostasis
maintenance and in this setting can also promote or inhibit
tumor development (150). Dendritic cells link the innate and
adaptative immune system as they are powerful professional
APCs. Autophagy is involved in different DC functions both in
physiological and pathological conditions (168). The inhibition of
autophagy impacts the ability of DCs to process and present
cytoplasmic antigens through the MHC II pathway and cytokines
secretion, which increases their immunostimulatory phenotype
(169–171). Macrophages are also APCs that require autophagy
during the differentiation process in monocytes from the bone
marrow into macrophages in tissue site (43, 172). Granulocyte-
macrophage colony-stimulating factor (GM-CSF) is a signal to
maturation and prevents monocytes apoptosis together with
autophagy induction. When autophagy is downregulated either by
BECN1 knockdown or pharmacological inhibition using 3-
methyladenine (3-MA) and chloroquine, caspases are activated
and cytokine production is prevented (43). Autophagy is also
involved in macrophage polarization with its inhibition leading to
the classical activation profile and augmented pro-inflammatory
cytokines secretion, and its induction promoting macrophage
alternative activation, resulting in increased production of anti-
inflammatory cytokines (173).

T cells use basal autophagy to maintain organelle homeostasis
and it can be induced after T cell antigen receptor (TCR)
stimulation. Moreover impaired autophagy after deletion of
ATG proteins (ATG3, ATG5, and ATG7), BECN1 or Vps34
can hinder T cell survival, proliferation, differentiation, and
activation (150, 174–176). Autophagy proteins may also be
involved in other functions besides autophagy as demonstrated
for memory CD8+ T cell, in which UVRAG (ultraviolet radiation
resistance-associated protein) deletion does not impair
autophagy but affects proliferation (177). On CD4+ T cells,
autophagy impairment after BECN1 deletion leads to apoptosis
upon TCR stimulation (178). On the other hand, blockage of
mTOR signaling after rapamycin treatment in effector CD8+ T
cells can enhance memory CD8+ T cells in lymphoid tissue or
inhibit them in mucosal tissue (179). In antigen-specific memory
CD8+ T cells, deficient autophagy leads to the accumulation of
damaged mitochondria and increased apoptosis (180).
Moreover, mTOR status can also interfere with T cell
differentiation since its induction lead to activated T cell to
differentiate into Th cells and its downregulation together with
AMPK induction cause naïve T cells differentiation into
regulatory T (Treg) cells (181). The metabolic profile also
influences the dependence on autophagy since cells as memory
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lymphocytes and Treg cells, that use more oxidative phosphorylation
(OXPHOS), are more dependent on autophagy for homeostasis than
effector T cells that use preferentially aerobic glycolysis (45, 181, 182).
On Treg cells, impaired autophagy induces mTORC1 and MYC
signaling pathways, contributing to apoptosis induction (182).

For B cells, autophagy participates during cell development to
support extremely high metabolic demands for their
differentiation and reaches maximal levels during the earliest
stages of development and diminish as B cells mature. It is also
important, at basal levels, to maintain peripheral B cell numbers
as required to cell survival after LPS stimulation, as well as for
IgM production after immunization. However, autophagy is not
essential for transition of pro- to pre-B cell stages in the bone
marrow and B cell activation after BCR stimulation (183).
Mature B cells with impaired autophagy (Atg5-/-) accumulate
damaged organelles and have enlarged endoplasmic reticulum
together with ER stress, more antibody secretion and plasma cells
apoptosis (184).

Autophagy is also required for NK cell differentiation, since it
regulates the number and quality of mitochondria on
proliferating NK cells and enhances memory NK cells in an
ATG3 dependent manner (185). In invariant natural killer cells
(iNKT), it is observed a high level of autophagy during iNKT cell
thymic differentiation into memory cells to regulate
mitochondrial content and ROS production. A conditional
deletion of Atg7 gene in T-cell compartment blocked iNKT
development and maturation, as well augmented its
susceptibility to apoptosis (46). In another study, the deletion
of Atg5 or Atg7 decreased iNKT mature cells and IL-4 and IFN-g
levels accompanied by an increase in apoptosis (186).

In neutrophils, autophagy deficiency has no impact on their
morphology, migration, granular content, apoptosis or effector
functions, but in autophagy-deficient mice, neutrophil proliferation
and differentiation is augmented, indicating an inverse correlation
between autophagy and neutrophil differentiation (187).

As mentioned previously, there are feedback loops between
autophagy and different cytokines. For IL-1 (IL-1a and IL-1b),
autophagy limits its secretion although it is observed autophagy
induction by these cytokines, indicating a negative feedback
mechanism (188, 189). The interferon family (IFN types I and
II) also induces autophagy in epithelial, immune, and tumor cells
(190, 191). IL-2, IL-12, and TGF-b also stimulate autophagy
(192–194). On the other hand, IL-6 has an anti-autophagic effect
in starvation-induced autophagy in U937 cells (195) but
stimulates autophagy in B cells (196). IL-10 also inhibits
starvation-induced autophagy in DCs (197).

Autophagy can also act in immune tolerance mediated by
immunotherapy strategies since immunologic molecules such as
indoleamine 2,3-dioxygenase (IDO), PD-1 and CTLA-4 can be
regulated by autophagy pathways. IDO is found in tumor sites
and has anti-tumor immunity effects through interference with a
cytotoxic T-cell response, DC maturation and increase in Treg
population, promoting immunologic tolerance and tumor
development, but its production can be inhibited by autophagy
stimulation (198, 199). PD-1 from tumor cell surface interacts
with PD-L1 on T-cells and acts as an inhibitory checkpoint
molecule, preventing recognition of tumor cells, suppressing T
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cell proliferation, development, and anti-tumor immunity. It has
been reported that the interaction of PD1 with its ligand limits
nutrients availability to nearby T-cells, promoting autophagy
induction (200). Treatment with Sigma1 can induce autophagy
in co-cultured T-cells and tumor cells, leading to degradation of
PD-L1 and suppression of PD-1 and PD-L1 interaction, which
could favor immunotherapy effects due to immune
microenvironment modulation (201). However, the expression
of PD-L1 affects several genes involved in mTOR signaling and
autophagy. When PD-L1 is lost, it is observed autophagy
upregulation and less sensitization to autophagy inhibitors to
reduce tumor cell proliferation (202). CTLA-4 is another
immune tolerance checkpoint and an effective target for tumor
treatment. In human melanomas, over-expression of MAGE-A,
a cancer-germline antigen, is associated with CTLA-4 blockade
resistance and can downregulate autophagy, suggesting
autophagy induction as a potential therapeutic approach to
improve CTLA-4 inhibitors efficacy (203).

Autophagy in Immune Cells: Dual
Functions Shaping Tumor Response
Increasing data suggest that autophagy can interfere with
antitumor immunity together with tumor development and
survival (149, 150). Knockdown of ATG5 in cancer cells was
followed by increased induction of DC maturation, production
of IL-6 and IFN-g along with the proliferation of CD4+ and
CD8+ T-cells after an immunogenic cell death inducer treatment
(204). In Treg cells, autophagy is an important and active
process to support their homeostasis contributing to their
immunosuppressive profile. Suboptimal NK cell activity
induces autophagy in surviving tumor cells, leading to
treatment resistance (205). As mentioned before, many pro-
inflammatory cytokines contribute to tumor growth, metastasis
and can induce autophagy (206). Although the treatment with
high-dose-IL-2 has antitumor effects it is limited by severe side
effects, as multiorgan dysfunction that is accompanied by
systemic autophagic syndrome induced by cytokines. In a
murine model of metastatic liver tumor, the combined
treatment of high-dose-IL2 and chloroquine increased
antitumor effects along with decreased toxicity, increased long-
term survival and enhanced infiltration of immune cells in liver
(207). In a renal cell carcinoma model, autophagy inhibition also
improved HDIL-2 anti-tumor effects due to apoptosis induction
and immune system stimulation together with increased activity
of DCs, T-cells, and NK cells (208). Inhibition of autophagy
through 3-MA treatment also potentiates apoptosis induced by
IL-24 in oral squamous cell carcinomas, demonstrating that
autophagy inhibition can be explored as a promising approach
to increase immunotherapy efficacy (209). The phytochemical
shikonin can induce necroptosis accompanied by autophagy
enhancement that directly contributes to DAMP upregulation
in tumor cells. However, if autophagy flux is blocked by
chloroquine treatment, there is an even greater upregulation of
ectoDAMPS, resulting in DC activation. In the context of DC
vaccines, the pretreatment of tumor cells with chloroquine and
shikonin potentiated antimetastatic activity and reduced
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chemotherapy doses in vivo (210). Autophagy can also reduce
immunotherapy effect by impairing cytotoxic T-lymphocyte
(CTL)-mediated tumor cell lysis when autophagy is induced
under hypoxia conditions, activating STAT3 signaling in target
cells which in turn favors tumor cell survival, proliferation, and
immune escape. If autophagy is blocked in this context and CTL-
response is boosted with a vaccination strategy, vaccination
efficacy is improved, leading to tumor regression in vivo (211).
Hypoxia-induced autophagy also impairs NK cells function by
degradation of NK-derived granzyme B in autophagosomes of
hypoxic breast cancer cells, leading them less susceptible to NK
killing and immunotherapy effects. However, if autophagy is
blocked by deletion of BECN1, granzyme B levels are restored
and favors tumor regression in vivo due to tumor cell death by
NK-mediated lysis (212). Pancreatic ductal adenocarcinoma
(PDAC) is known for immune checkpoint blockade resistance
and frequently altered MHC-I expression that facilitates immune
evasion trough NBR1 selective autophagy downregulation of
MHC-I. If autophagy is inhibited, there is recover in MHC-I
expression and augmented immunotherapy response along with
enhanced T-cell immunity in tumor models in vivo (213). In a
cohort of gastric cancer (GC) patients, the expression of CXCL10
has a positive correlation with patient prognosis and induces T
lymphocyte migration and infiltration into the GC 3D cell
culture model. It is also observed in basal conditions that GC
cells have increased autophagy, and the knockdown of essential
autophagy genes (Atg5 and Atg7) or their pharmacological block
in these cells augmented CXCL10 expression under normal and
hypoxic conditions facilitating T cell lymphocyte migration and
potentiating tumor immunity (214). Recent studies
demonstrated that autophagy activation in tumor cells is one
of the main reasons for decreased antitumor immune response,
reinforcing the concept of autophagy inhibition as a valuable
approach to increase immunotherapy results. One of the
autophagic proteins that have been recently described as drug
targetable is Vps34, whose inhibition with genetic or
pharmacological approaches decreased tumor growth along
with increased mice survival due to infiltration of immune cells
(NK, CD8+ and CD4+ T effector cells) within the tumor
microenvironment, which could turn cold tumors into hot
inflamed tumors to enable immunotherapy treatments.
Moreover, the combined treatment of Vps34 inhibitor and
anti-PD-L1/PD-1 in melanoma and colorectal cancer models
prolonged mice survival and enhanced immunotherapy benefits
(215). Impairment of autophagy with BECN1 ablation is also
beneficial to increase NK infiltration and inhibit tumor growth in
a melanoma tumor model. In addition, NK infiltration in the
tumor microenvironment is mediated by CCL5 chemokine
overexpression in autophagy-deficient cells trough c-Jun/JNK
activation. Similar results were also obtained after deletion of
other autophagic genes as Atg5 and SQSTM1/p62 and
pharmacological inhibition by chloroquine. In conclusion,
targeting autophagy may be a valuable approach to improve
immunotherapy mediated by NK cells (216).

On the other hand, autophagy has also anti-tumoral effects
since its induction contributes to a better response of helper T
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lymphocytes (HTLs) against head and neck squamous carcinoma
cells and its inhibition decreases HTLs recognition of tumor cells
(217). Tumors can act as antigen donor cells that require
autophagy to form tumor-derived autophagosomes (Dribbles)
which contain tumor-associated antigens. Dribbles can stimulate
efficient cross-presentation of T-cells (218) and induce B cell
activation along with cytokine release and antibody production
(219) which can contribute to tumor control and elimination. For
vaccination strategies, in contrast to whole-cell tumor vaccine,
Dribbles prime T cells by enhancing costimulatory molecules as
well as MHCI, and reduce tumor formation on hosts challenged
with nonhomologous tumors, effect limited if there is depletion of
the autophagic protein SQSTM1/p62 (220, 221). For efficient
immunotherapy, tumor antigens should be immunogenic,
essential only for tumor cells and overexpressed in tumors
compared to normal tissue. Recently, it was demonstrated that
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SQSTM1/p62 fits all these requisites and a DNA-vaccine encoding
this protein had antitumor and antimetastatic effect against several
tumor models in dogs, suggesting that this can be a useful strategy
for immunotherapy (222). Inactivation of ATG5 in non-small cell
lung carcinoma favors carcinogenesis and its development is
accelerated in KRASAtg5(fl/fl) autophagy-deficient mice. In these
mice, a higher expression of ENTPD1/CD39 was observed,
culminating in an immunosuppressive environment along with
increased Treg infiltration that contributes to tumor development
(223). As discussed previously, autophagy plays a role in
monocytes/macrophages recruitment, what decreases infiltration
in liver tissues accompanied by autophagy reduction and
hepatocarcinogenesis (224). Immunotherapy can also be
potentiated by autophagy. For instance, in murine tumor models,
the treatment with chemotherapy or radiotherapy induced
autophagy, which favored translocation of the mannose-6-
FIGURE 2 | Overview of autophagy roles in the tumor microenvironment. The scheme summarizes the role of autophagy in secretion (left), immune system (middle),
epithelial-mesenchymal transition (EMT) and tumor dormancy (right). There is an intricate and dynamic network of signaling circuits that drive tumor development and
progression within the tumor microenvironment. The connectivity among various processes may regulate the fate of the microenvironment components, indicating
the importance of viewing this as an emerging system, where the resulting interactions are larger than the sum of the individual parcels. Autophagy can act in many
ways in different types of cells displaying anti-tumoral (shown in blue) or pro-tumoral functions (shown in red). Protein secretion by CAF or tumor cells can modulate
cellular states inducing or inhibiting senescence, which ultimately can control tumor survival, immune cell response and interfere with the epithelial-mesenchymal
transition, affecting tumor invasion capacity. In the context of the immune system, autophagy has a key role in immune cell differentiation, proliferation, activation and
effector function, covering the range of homeostatic to reactive functions of the immune system. At the same time, autophagy is also connected with the innate
immune response being controlled by receptors such as TLRs. Importantly, in advanced stages, the autophagy system in tumor cells is involved with EMT and the
consequent ability of cancer cells to invade tissues and metastasize. The interplay among these functions contributes to tumor aggressiveness. Moreover, autophagy
was also appointed as a characteristic of cancer stem cells (CSC) playing a central role in tumor dormancy. Altogether, the myriad of connected process regulated
by autophagy in the TME modulate tumor response and may determine its regression or progression. Altogether, understanding the integrated mechanisms that
regulate autophagy within the TME constitute a niche for development of novel strategies for combination therapy.
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phosphate receptor (MPR) from autophagosomes to tumor cells
surface, rendering the cells more sensitive to granzyme B from
activated CTLs, potentiating CTLs killing and immunotherapy
(225, 226). In another example, autophagy elicited by alpha-
tocopheryloxyacetic acid (a-TEA) on tumor cells improved
cross-presentation of tumor antigens for MHCI and MHCII,
which can be use as an adjuvant strategy to improve anti-tumor
immune responses and strength immunotherapy (227, 228).
Treatment of ovarian cancer models with farletuzumab, a
humanized monoclonal antibody against folate receptor a, also
induced autophagy and reduced proliferation, which was reversed
by autophagy pharmacological blockage (229). Finally, studies
indicate that although statins have no protective effect on breast
cancer incidence, they can be used as adjuvant therapy to increase
apoptosis and radio-sensitivity along with proliferation and
invasion inhibition of cancer cells. Fluvastatin belongs to the
statin family and when used in vitro to treat breast cancer cells, it
induced autophagy but with impaired lysosome function which
may contribute to cell death. Moreover, a decrease of pro-
inflammatory cytokines, such as IL-6 and TNF-a, was observed
along with autophagy consequent effect in tumor immunity (230).
CONCLUDING REMARKS

Given the dual role of autophagy in cancer and its involvement in
cancer therapeutic responses, the process of autophagy has been
pointed as an important theme in cancer research (Figure 1). The
interconnection of autophagy to the regulation of several biological
processes in the TME indicates that autophagy has key roles in
tumor progression. Thus, in addition to its primary function of
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degradation and recycling, most of the components of the
autophagy machinery also mediate numerous non-autophagic
functions. This suggests that autophagy operates in many ways,
establishing an intricate network of signaling, along with other cell
elements, integrating diverse signals within the TME and regulating
the fate of cancer and other microenvironmental cells (Figure 2).
Integrative approaches, which address the impact of autophagy
inhibition in complex systems, are therefore necessary for the
development of strategies that exploit the autophagy machinery as
a target to control tumor growth, without impeding the generation
of a long-lasting memory cytotoxic immune response or the
induction of a stemness phenotype in residual cancer cells.
Models of the intricated and dynamic network of cancer cells and
the tumor microenvironmental cells are warranted for filtering
compounds that may control tumor growth and increase the
efficacy of many known therapeutic regimens.
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66. Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated
secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol
(2010) 5:99–118. doi: 10.1146/annurev-pathol-121808-102144

67. Ohtani N. Deciphering the mechanism for induction of senescence-
associated secretory phenotype (SASP) and its role in aging and cancer
development. J Biochem (2019) 166(4):289–95. doi: 10.1093/jb/mvz055

68. Ortiz-Montero P, Londoño-Vallejo A, Vernot JP. Senescence-associated IL-
6 and IL-8 cytokines induce a self- and cross-reinforced senescence/
inflammatory milieu strengthening tumorigenic capabilities in the MCF-7
breast cancer cell line. Cell Commun Signal (2017) 15(1):17. doi: 10.1186/
s12964-017-0172-3

69. Kim YH, Choi YW, Lee J, Soh EY, Kim JH, Park TJ. Senescent tumor cells
lead the collective invasion in thyroid cancer. Nat Commun (2017) 8:15208.
doi: 10.1038/ncomms15208
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The tumor microenvironment (TME) is complex, and its composition and dynamics
determine tumor fate. From tumor cells themselves, with their capacity for unlimited
replication, migration, and invasion, to fibroblasts, endothelial cells, and immune cells,
which can have pro and/or anti-tumor potential, interaction among these elements
determines tumor progression. The understanding of molecular pathways involved in
immune escape has permitted the development of cancer immunotherapies. Targeting
molecules or biological processes that inhibit antitumor immune responses has allowed a
significant improvement in cancer patient’s prognosis. Autophagy is a cellular process
required to eliminate dysfunctional proteins and organelles, maintaining cellular
homeostasis. Usually a process associated with protection against cancer, autophagy
associated to cancer cells has been reported in response to hypoxia, nutrient deficiency,
and oxidative stress, conditions frequently observed in the TME. Recent studies have
shown a paradoxical association between autophagy and tumor immune responses.
Tumor cell autophagy increases the expression of inhibitory molecules, such as PD-1 and
CTLA-4, which block antitumor cytotoxic responses. Moreover, it can also directly affect
antitumor immune responses by, for example, degrading NK cell-derived granzyme B and
protecting tumor cells. Interestingly, the activation of autophagy on dendritic cells has the
opposite effects, enhancing antigen presentation, triggering CD8+ T cells cytotoxic
activity, and reducing tumor growth. Therefore, this review will focus on the most
recent aspects of autophagy and tumor immune environment. We describe the dual
role of autophagy in modulating tumor immune responses and discuss some aspects that
must be considered to improve cancer treatment.

Keywords: macroautophagy, tumor microenvironment, antitumor immunity, tumor immune evasion,
onco immunology
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INTRODUCTION

According to the Cancer Immune Edition hypothesis, tumor and
immune cell interactions go through three phases: elimination,
equilibrium, and evasion. During cancer development, the
immune system recognizes molecular changes in transformed
cells and eliminates most or all of them, avoiding tumor
progression. Genetic alterations that cause cell transformation
generate neoantigens for immune recognition, leading to T
lymphocyte activation, which can prevent tumor outgrowth,
through cytotoxic activity and interferon-gamma (IFN-g)
signaling (1, 2). At the same time, less immunogenic mutations
or mutations that lead to loss of the antigen recognized by the
immune system allow tumor cells to escape from elimination
mechanisms. As genetic alterations accumulate, generating
oncogenes and preventing the expression of tumor-suppressor
genes, transformed cells gain proliferative advantages, and again
escape immunosurveillance, leading to tumor progression (3, 4).

The interplay between tumor and other cells composing the
tumor microenvironment (TME) is determinant for tumor
growth, maintenance, metastasis, and response to therapy.
TME is composed of stromal cells (fibroblasts, pericytes,
mesenchymal and endothelial cells), extracellular matrix
(ECM), and immune cells, such as natural killer (NK) cells,
tumor-associated macrophages (TAMs), myeloid-derived
suppressor cells (MDSCs), and T and B lymphocytes. During
cancer progression, tumor cells display genetic and phenotypic
diversity, changing cellular metabolism and, consequently, the
TME (5, 6).

Generally, TME displays low levels of oxygen and nutrients,
and high production of reactive oxygen species (ROS), crucial
factors for autophagy activation. Autophagy is a natural cellular
Abbreviations: IFN-g; interferon gamma; TME, tumor microenvironment; ECM,
extracellular matrix; NK, natural killer; TAMs, tumor-associated macrophages;
MDSC, myeloid-derived suppressor cell; ROS, reactive oxygen species; AIDS,
Acquired Immune Deficiency Syndrome; HAART, highly active antiretroviral
therapy; IL, interleukin; Th, T helper; KIR, killer immunoglobulin-like inhibitory
receptor; HLA, human leucocyte antigen; TCR, T cell receptor; DC, dendritic cell;
Treg, regulatory T cells; IRF1, interferon regulatory factor 1; HDAC, histone
deacetylase; IFN-I, type I interferon; TNF-a, tumor necrosis factor alpha; CTLA-4,
cytotoxic T lymphocyte associated protein 4; IDO, indoleamine-2,3-deoxygenase;
PD-L1, Programmed cell death-ligand 1; APC, antigen presenting cell; PD-1,
programmed cell death-1; ITIM, immunoreceptor tyrosine-based inhibitory; PD-
L2, programmed cell death ligand-2; CMA, chaperone-mediated autophagy; LC3,
light chain protein-3; Hsc 70, heat shock cognate 70; LAMP, lysosomal-associated
membrane protein; HIF, hypoxia-inducible factor; HREs, hypoxia response
elements; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein
3 like; Bcl-2, B-cell lymphoma 2; ATG, autophagy-related genes; AMPK,
adenosine monophosphate-activated protein kinase; mTOR, mammalian target
of rapamycin; TAA, tumor-associated antigens; MHC, major histocompatibility
complex; TILs, tumor infiltrate lymphocytes; a-TEA, alpha-tocopheryloxyacetic
acid; LLC, Lewis lung carcinoma; TLR, toll-like receptor; PDAC, pancreatic ductal
adenocarcinoma; TIM-4, T cell immunoglobulin and mucin domain protein-4;
CQ, chloroquine; TNBC, triple negative breast cancer; LDHA, lactate
dehydrogenase A; G-CSF, granulocyte colony- stimulating factor; LAP, LC3-
associated phagocytosis; NSCLC, non-small cell lung cancer; GB, glioblastoma;
PC, pericytes; NBD, nitrobenzoxadiazole; MTX, mitoxantrone; ICD,
immunogenic cell death; DAMPs, damage-associated molecular patterns; CRT,
calreticulin; ATP, adenosine triphosphate; CT, chemotherapy; HCQ,
Hydroxychloroquine sulfate; MAGE, melanoma-associated antigen; HNSCC,
head and neck squamous cell carcinoma.
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survival process, usually activated to maintain cellular
homeostasis (7, 8). Despite that, recent studies have suggested
that autophagy is also important for cancer development and
progression, neurodegenerative and infectious diseases, once it
can affect immune cells and modulate immune responses (9–11).

In this review, we will present the major mechanisms by
which the immune system interferes in the TME, and how
autophagy can influence it. Then we will focus on the
modifications of cancer immune responses in TME influenced
by autophagy and how it can affect cancer therapy.
CANCER IMMUNE RESPONSE
AND TUMOR MICROENVIRONMENT

Besides the TME elements already mentioned, soluble molecules
as cytokines, metabolites, and inflammation mediators also
contribute to the interaction among the cellular elements.
These biochemical signals orchestrate cell death, proliferation,
survival, and other cells recruitment. Leukocyte activity is
essential in cancer progression (reviewed in 12). Since Rudolph
Virchow has described the presence of lymphoreticular infiltrate
in human tumors, it was discovered that leukocytes play an
essential role in tumor progression, either by eliminating tumor
cells or by facilitating progression and growth (13).

Immune responses can inhibit tumor growth and even
eliminate tumor cells completely. However, chronic inflammation
is considered a risk factor for many types of cancers (reviewed in
12). An interesting example of this dual role is HIV infection, AIDS
(Acquired Immune Deficiency Syndrome), and cancer risk. In the
early ‘90s, patients with AIDS were at high risk of Kaposi
sarcoma and non-Hodgkin lymphoma development, in part due
to cellular and molecular mechanisms, but in large part due to
immunodeficiency. Highly active antiretroviral therapy (HAART)
decreased AIDS-related cancer (14) by increasing T lymphocyte
levels and consequently immune responses. Still, HAART treated
HIV infected patients display chronic inflammation and early
aging, with increased plasma levels of interleukin-(IL)6 and C
reactive protein, which have a role in carcinogenesis. Indeed,
HAART treated patients display increased risk to develop AIDS-
unrelated cancer, such as cervical, lung, anal cancer, and Hodgkin
lymphoma (14, 15).

The immune responses mediated by NK cells, CD8+ T
lymphocytes, and CD4+ T helper (Th) 1 and Th17 lymphocytes
are considered cytotoxic responses. These cells can control tumor
growth through either directly killing tumor cells, as NK and
CD8+ T cells, or indirectly, in the case of CD4+ T cells, which
secrete cytokines capable of activating other effector leukocytes
(16–18).

NK cells and CD8+ T lymphocytes are bona fide cytotoxic
cells. NK cells are innate lymphoid cells that recognize target cells
through activating and inhibitory receptors. The signaling
triggered by these sets of receptors determines the cytotoxic
activity. Among the inhibitory receptors, there are the killer
immunoglobulin-like inhibitory receptors (KIRs), which
recognize human leukocyte antigen (HLA) class I molecules and
December 2020 | Volume 10 | Article 603661
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CD94/NKG2A, which specifically binds to the non-classical HLA-
E molecule. The last one causes NK inhibition to ensure that
normal cells cannot be lysed. However, transformed cells that
downregulate the HLA-I surface molecules are not able to inhibit
NK cells. The stimulatory receptors bind to stress-inducible
molecules in the target cell surface, as sialic acid, Fcg, adhesion
molecules, and others, to trigger cytotoxic activity. Displaying a
different strategy for target recognition, CD8+ T lymphocytes
activation depends on TCR (T cell receptor) binding to specific
antigens presented by classical HLA-I molecules in target cells
(19). In spite of the different development and recognition
receptors, both NK and CD8+ T cells display similar cytotoxic
mechanisms, leading to the activation of cell death pathways in
cancer cells (20).

Th1 and Th17 cells can either assist in CD8+ T lymphocytes
and dendritic cells (DCs) activation, through CD40L signaling,
and cytokine secretion as IL-2, or activate other effector cells,
such as macrophages, neutrophils, NK cells through IFN-g and
tumor necrosis factor-alpha (TNF-a). Moreover, TNF-a,
through its receptor, can trigger cell death, and IFN-g and
cytokines secreted by Th17 cells, through activation of stromal
cells, can stimulate ROS production and neutrophils, enhancing
the cytotoxic effects on cancer cells (21).

These antitumor responses are counteracted by tolerogenic
responses, enabling tumor growth. There are several known
immune escape mechanisms. Chemokines secreted by cells in
the TME favors the recruitment of MDSCs and regulatory T cells
(Treg), well-characterized suppressors of effector T lymphocytes
function. Moreover, it is well known that cancer cells display
reduction in antigen presentation potential, decreasing tumor
cell recognition by CD8 T lymphocytes. One classic example,
from a virus associated cancer is the HPV E7 oncoprotein, which
binds to interferon regulatory factor 1 (IRF1) in the IFN type I
(IFN-I) signaling pathway, and recruits histone deacetylase
(HDAC) to the promoter sequences responsive to IRF1,
repressing genes that otherwise would be transcribed in
response to the virus (22). IFN-I are important activators of
innate responses, as well as antigen-presenting activity, therefore
playing a role in T lymphocyte activation and phenotype (23).
More recently, it has become clear that human oncogenes also
play a role in immune escape mechanisms (24). Stabilization of
b-catenin, in the Wnt pathway, for example, reduces the
expression of CCL4, a chemokine that attracts DCs, impairing
tumor antigen presentation (25).

Oncogenes also drive the reprogramming of tumor cell
metabolism, the so-called Warburg effect. Tumor cells display
different metabolic strategies to maintain energy production and
catabolism at a rate to allow continuous cell proliferation. Some
cells use glycolysis almost exclusively, while others also required
amino acids and fatty acids as well, and keep the Krebs cycle and
oxidative phosphorylation active. In either case, tumor cells
usually increase the glucose uptake and secrete lactate in
higher concentrations than other cells in the body (26). Both
the decrease in glucose and the increase in lactate concentration
have consequences for immune responses. Activated T
lymphocytes and M1 macrophages display a metabolic profile
Frontiers in Oncology | www.frontiersin.org 377
similar to tumor cells, therefore, dependent on glucose. Low
glucose concentration inhibits T lymphocyte proliferation and
macrophage function. Additionally, lactate is a regulatory
molecule, modulating the phenotype of DCs, inducing
suppressor phenotype on macrophages, and inhibiting T
lymphocytes (27).

Besides tumor cell-intrinsic metabolism, other cells in the
TME also display metabolic pathways that lead to tolerance.
DCs, the essential population for naive T lymphocyte activation,
can acquire tolerogenic phenotype due to signals from tumor
cells, but also from binding, via CD80 or CD86, to cytotoxic T
lymphocyte-associated protein 4 (CTLA-4) expressed by Treg.
The signal triggered by this interaction promotes indoleamine-
2,3-deoxygenase (IDO) expression in DCs. This enzyme, which
physiological function is the protection of immune-privileged
tissues, catabolizes the reaction that converts the essential amino
acid tryptophan in kynurenine, which through the aryl
hydrocarbon receptor, promotes regulatory phenotype in T
lymphocytes (28). Therefore, this mechanism works as an
amplification of the regulatory cycle in the TME. Furthermore,
tumor cells can also overexpress IDO, as observed in oral
squamous cell carcinoma from smoker patients (29). In
general, IDO expression depends on IFN-g stimulation, which
in cancer, characterizes it as a negative feedback mechanism for
effector immune responses.

Programmed cell death-ligand 1 (PD-L1) is also an inhibitory
molecule expressed upon IFN-g stimulation, both in antigen-
presenting cells (APCs) and cancer cells (30). The receptor for
PD-L1, programmed cell death-1 (PD-1), is upregulated upon T
lymphocytes activation. Several transcription factors, such as
NFAT, AP-1, FoxO1, and NFkB, mediate the PDCD1 expression.
Moreover, chromatin changes are also important to control PD-
1 expression and are observed in exhausted CD8+ T cells (31).
PD-1 contains immunoreceptor tyrosine-based inhibitory
(ITIM) domains and can inhibit TCR signaling, rendering T
cells inactive. PD-1 expressing stem-like CD8+ memory T cells
can be found in lymphoid follicles in the tumor (32). These cells,
when activated, differentiate in exhausted cells. There are two
PD-1 ligands: CD274 (PD-L1), which has a basal expression in
several cell types, and programmed cell death ligand-2 (PD-L2),
which expression is usually limited to DCs and macrophages. A
variety of cancers display constitutive PD-L1 expression, which
can be triggered by genetic and epigenetic alterations in its
promoter region, cytokine stimulation, such as IFN-g and IL-6,
growth factors, hypoxia, among others (28). The PD-1/PD-L1
signaling, which induces T cell exhaustion, is an important effect
resulting from the chronicity of antigen presentation in cancer.
Whenever antigens are chronically presented, negative feedback
mechanisms are activated to protect the organism. This
protective response is usurped by cancer to create an immune-
privileged situation, and immune evasion (33).

As mentioned before, CTLA-4 binds to the co-stimulatory
molecules CD80 and CD86. It competes with the activating
receptor CD28, which also binds to these molecules, but with
lower affinity. CD28 signaling is essential for T lymphocyte
activation since it triggers the PI3K/Akt pathway and causes
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stabilization of the antigen activation signal. Not only CTLA-4
competes for biding to co-stimulatory molecules, but also,
through a process called trans-endocytosis, this biding removes
CD80 and CD86 from the APC surface, eliminating the
possibility of CD28 activation, and consequently preventing T
cell activity (34).

Many of these mechanisms can happen simultaneously in
the TME, in a dynamic process that varies through time. To add
to this complex situation, other factors should also be
considered. Some tumors are very immunogenic, and tumor
antigen-specific T lymphocytes can be found in the TME, where
it can also be observed evasion mechanisms and chronic
antigen signaling that can, eventually, inhibit anti-tumor
responses. When immune responses persist, it results in
chronic inflammation leading to cancer progression. Other
tumors are less immunogenic and recruit mainly myeloid
cells, which display a tolerogenic phenotype, helping cancer
cells meet their metabolic demands, and promoting
angiogenesis. M2 macrophages, for example, display arginase
activity, causing conversion of arginine to ornithine, which is a
substrate to the synthesis of polyamines, necessary for
catabolism and cell proliferation (35).
AUTOPHAGY MODULATES TUMOR
IMMUNE ENVIRONMENT

Autophagy
Autophagy is a survival cellular process in which organelles and
other cytoplasmic components are directed to the lysosomes for
degradation (7, 36). This mechanism is highly conserved in
eukaryotic cells and its activation occurs in face of starvation,
hypoxia, and/or oxidative stress conditions (8). Up to now, three
classes of autophagy are known: macroautophagy, microautophagy,
and chaperone-mediated autophagy (CMA). In macroautophagy, an
isolationmembrane enclosures a portion of the cytoplasm,molecules,
and organelles, forming a double-membrane vesicle associated with
light chain protein-3 (LC3), called an autophagosome. LC3 is
processed and cleaved, generating LC3-I, which receives carboxyl
glycine radical and turns into LC3-II. LC3-II acts as a receptor in
autophagosome membrane binding to p62, through the LC3-
interacting region. P62 is a multidomain protein, involved in the
cell death and survival process, which delivers ubiquitin radicals to
LC3-II. This induces autophagosome-lysosome fusion to form an
autolysosome, autophagy is then activated and p62 is degraded (37,
38). In microautophagy, an invagination of the lysosome membrane
engulfs cytoplasmic compounds, in a similar process to endosome
formation, producing amultivesicular body (39). Conversely, CMA is
a type of autophagy used to degrade specific soluble proteins. A
cytosolic substrate is recognized by the chaperone protein heat shock
cognate 70 (Hsc 70), which binds to lysosomal-associated membrane
protein-(LAMP) 2A in the lysosome membrane to transport this
substrate into the lysosome lumen (40).

Macroautophagy is the main type of autophagy, therefore it
will be referred to just as autophagy. In response to hypoxia and
oxidative stress, hypoxia-inducible factors (HIF) 1 and 2 bind to
Frontiers in Oncology | www.frontiersin.org 478
hypoxia response elements (HREs), leading to the transcription
of several genes that are involved in angiogenesis, metastasis, cell
survival, immune escape, and autophagy pathways. Activation of
HIF-1 subunit-1 leads to an increase in BCL2 interacting protein
3 (BNIP3) and BCL2 interacting protein 3 like (BNIP3L)
expression levels. These factors are responsible for breaking the
connection between Beclin1 (BECN1) and B-cell lymphoma 2
(Bcl-2), an inhibitory complex that prevents autophagy (41).
Another way to induce autophagy in a hostile cellular
environment is through the activation of autophagy-related
genes (ATG) (42) and 5’-adenosine monophosphate-activated
protein kinase (AMPK) (43). AMPK is a nutrient availability
sensor and can regulate oxidative and glycolytic metabolism. It
can also activate the autophagic recycling of cellular components
to balance cellular energy supply. In autophagy activation, ATG
and AMPK, independently of BNIP3 and BNIP3L, downregulate
the mammalian target of rapamycin (mTOR), which drives
autophagosome formation (43).

Despite being a natural process to maintain cellular
homeostasis, autophagy activity has been described to
contribute to the progression of many human diseases, such as
some neurodegenerative disorders, infectious diseases, and
cancer. In 1999, it was described that mono-allelic deletions
and decrease in expression of Beclin1, on MCF7 human breast
carcinoma cells, contributed to tumorigenesis in nude mice,
indicating that autophagy could inhibit tumor growth (9). It is
reasonable to assume that autophagy could stop the
transformation process by eliminating oncogenic, aggregated,
or erroneously folded proteins (44). Nevertheless, tumor cells
and components of TME can induce autophagy to survive hostile
conditions and suppress immune responses, helping tumor
growth and proliferation (reviewed in 45). Thus, its role in
cancer development remains unclear, and the aspects of how
autophagy can modulate immune components of TME will be
reviewed in the next topics.

Autophagy and Antitumor Immune
Response
The Dual Role of Autophagy in Antigen Presentation
Studies have shown the influence of autophagy in antigen
presentation (46–49), as well as in the anti-tumor adaptive
immune response activation (50). As shown in Figure 1,
adaptive anti-cancer immune responses are triggered by
endogenous tumor-associated antigens (TAA) presented to T
lymphocytes via the major histocompatibility complex (MHC)
context by DCs (reviewed in (51, 53). Normally, MHC-I presents
intracellular antigens, such as the ones derived from self-proteins
and viral proteins, to CD8+ T lymphocytes while extracellular
antigens are generally presented to CD4+ T lymphocytes by
MHC-II (reviewed in 54). Effective tumor antigen presentation
and the consequent effector T lymphocyte responses and access
to the TME are essential for clinical responses to immunotherapy
(55) and are associated with positive clinical outcomes (56).
Reduction in MHC expression and expression of non-classical
molecules is frequently observed in different types of cancers,
leading to compromised antigen presentation and/or immune
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evasion (reviewed in 52), which can influence tumor progression
and resistance to immunotherapy (57).

Effective Antitumor Immune Responses
Effective antitumor responses are dependent on potent antigen
presentation and leukocyte infiltrates enriched with effector
CD8+ T cells (49). Autophagy activation in DCs may improve
antigen presentation and stimulate cytotoxic responses mediated
by CD8+ T lymphocytes (47, 49). For example, nano-activators
conjugated to antigens were used to stimulate DCs, triggering
anti-tumor T cell responses in mice. It has been shown that
nano-activators treated DCs, through autophagy-dependent
mechanisms, could increase antigen presentation and cross-
presentation to T lymphocytes, increasing effector CD8+ T
tumor infiltrating lymphocytes (TILs) (49). Additionally,
experimental data has shown that semi-synthetic vitamin E
derivative alpha-tocopheryloxyacetic acid (a-TEA) could
modulate autophagy in tumor cells from both Lewis lung
carcinoma (LLC) and murine mammary tumor, improving
antigen cross-presentation by DCs and triggering tumor
antigen-specific CD8+ T lymphocytes responses. Treatment
with a-TEA resulted in LC3-II increase, both in vitro and in
vivo, indicating autophagic activity. These authors also found
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that a-TEA-generated autophagosome-enriched fraction (a-
TAGS) was a competent tumor antigen carrier, which
stimulated antigen cross-presentation mediated by DCs to
CD8+ T cells and stimulated CD8+ T cell proliferation in an
autophagy-dependent fashion. Overall, these findings
demonstrated a new mechanism of immune activation by a-
TEA, which stimulated tumor cell autophagy and antigen cross-
presentation to CD8+ T cells (47).

Autophagy can also create new epitopes arising from stress-
induced post-translational modifications, which could increase
immune recognition (46). It has been shown that citrullination –
the conversion of arginine residues to citrulline - can take place
in cells during autophagy induced by stress and, in inflammatory
conditions, it can result in MHC-II presentation of citrullinated
epitopes to CD4+ T cells (46). Although autophagy modulation
has not been directly investigated, the combination of
citrullinated peptide based vaccine with TLR ligand adjuvant
promoted a Th1 anti-tumor response in melanoma and ovarian
cancer mouse models. CD4+ T TILs were associated with tumor
regression. Interestingly, they also observed a Th1 response to
the citrullinated peptides in ovarian cancer patients (58).
Collectively, these findings indicated that autophagy is
associated with efficient antigen presentation in different types
FIGURE 1 | Autophagy influence on tumor-associated antigen presentation 1. Genetic alterations that cause cell transformation can also generate tumor-associated
antigens (TAA) for immune recognition. Tumor cell death is an antigen source for antigen-presenting cells, such as dendritic cells (DC) and macrophages. DC
activation by DAMPs and antigen processing leads to an upregulation of costimulatory molecules and MHC on DC surface, the cardinal signals for T lymphocyte
activation, and migration to adjacent lymphoid tissue. 2. Mature DCs present TAA through MHC-I and MHC-II to naïve CD8+ T cells and CD4+ T cells, respectively.
Antigen recognition results in T lymphocyte differentiation in effector cells (CTL e Th) and migration to the tumor site. 3. In the tumor microenvironment, upon TAA
recognition through TCR interaction with MHC-I and MHC II, CTL and Th lymphocytes, respectively, trigger cytotoxic mechanisms, as interferon-gamma (IFN-g)
mediated ones. Despite that, inhibitory molecules, such as PD-1 and CTLA-4 in T cells, and PD-L1 in TME can interfere in T cell activation and function. IFN-g
stimulation can result in PD-L1 expression in both APCs and tumor cells, inhibiting T cell function. CTLA-4 expressed by regulatory T lymphocytes (Treg), through
binding to co-stimulatory molecules, CD80/86, induces tolerogenic phenotype on DCs, amplifying the regulatory mechanisms in the TME. Autophagy (A) can either
help or disturb the antigen presentation and T cell activation pathway. Autophagic activity on DCs seems to increase MHC-I expression, thus enhancing antigen
presentation. On the other hand, autophagy activation on tumor cells may promote a reduction in MHC-I and an increase in PD-1 and CTLA-4 expression, leading to
tumor progression. Sources (11, 28, 34, 47, 49, 51–56).
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of cancer. As it increases antigen availability and enhances T cell
activation, it favors cytotoxic responses and clearly can act to
inhibit cancer progression.

Immunosuppression: Autophagy Disrupts Antigen
Presentation
Autophagy may also play a negative role in antigen presentation,
facilitating tumor evasion from CD8+ T cells in both pancreatic
ductal adenocarcinoma (PDAC) and melanoma (11, 59). PDAC
displays low levels of MHC-I surface molecules. In these tumor
cells, knockdown of the autophagy cargo receptor gene, NBR1,
increased MHC-I surface expression, confirming the implication
of NBR1-mediated autophagy-lysosomal pathway in the process.
The authors showed that NBR1 targeted MHC-I for lysosomal
degradation. Mouse PDAC cells expressing an autophagy
inhibitor, restored MHC-I membrane expression, improved
antigen presentation, and CD8+ TILs, leading to a reduction in
tumor growth. These findings indicated that high levels of MHC-
I at PDAC cell surface after autophagy inhibition were required
Frontiers in Oncology | www.frontiersin.org 680
to increase CD8+ T cell infiltration and to kill the tumor
cells (11).

The activation of autophagy pathways has also been described
in macrophages and DCs infiltrating B16F10 mouse melanoma.
These tumors normally express T cell immunoglobulin and
mucin domain protein-4 (TIM-4). Autophagy initiates when
TIM-4 binds to AMPK-a1. This activation promotes the
degradation of TAA through the lysosomal pathway, which led
to a decrease in antigen presentation and, consequently, in
specific anti-tumor CD8+ T cells. TIM-4 blockade with a
monoclonal specific antibody resulted in autophagy inhibition
and improvement in antigen cross-presentation and IFN-g
production (59). Moreover, chloroquine (CQ), a known
autophagy inhibitor, combined with low concentrations of 5-
fluorouracil (5-FU), increased DCs maturation and activation in
HCT-116 colorectal cancer cells, enhancing CD8+ T lymphocyte
stimulation (60). Together, these results suggested that
autophagy can impair antigen presentation by interfering with
different key steps in this process.
FIGURE 2 | Effects of autophagy on the tumor microenvironment. Tumor microenvironment (TME) is composed by cytokines (e.g. IFN-g), extracellular matrix (ECM),
and several cell types: tumor cells, fibroblasts, and immune cells, such as natural killer (NK) cells, CD8+ T and T helper (Th) lymphocytes, T regulatory (Treg) cells,
myeloid-derived suppressor cells (MDSC), dendritic cells (DCs), macrophages, and pericytes (PC). Autophagy (A) is a cellular survival mechanism, which is activated
in stressful conditions, can be activated in TME. Autophagy can either enhance antitumor immune responses (green boxes) or induce an immunosuppressive
environment (red boxes), thus playing a dual role in cancer development and progression. Autophagy activation in DCs enhances antigen presentation and results in
an enrichment of CD8+ T tumor-infiltrating lymphocytes, also decreasing infiltrated Treg and tumor cell proliferation. Similar outcomes can be seen when IFN-g
induces autophagy on tumor cells, and elevated extracellular potassium induces autophagy on CD8+ T cells. In these situations, it is possible to observe a decrease
in infiltrated MDSCs and T lymphocytes expressing PD-1, thus inhibiting tumor growth. Contrarily, the autophagy activation in myeloid cells and tumor cells has the
opposite effect, favoring an immunosuppressive profile of TME, leading to tumor cell proliferation, through M2 macrophage polarization, enhancing Treg infiltration
and inhibitory molecules (PD-1 and CTLA-4) expression. Sources (5, 6, 11, 47, 49, 61–67).
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TME Induces Autophagy
Not only autophagy modulates TME components, but the
opposite is also true. As shown in Figure 2, cytokines and
metabolic conditions may also promote or inhibit autophagy
and influence the tumor immune response. IFN-g can induce
autophagy in gastric cells, thus inhibiting carcinogenesis (61).
Gastric cancer is usually associated with chronic inflammation.
Transgenic mice that overexpress IFN-g in the gastric mucosa
(H+/K+-ATPase-IFN-g and H+/K+-ATPase-IL-1b; IFN-g)
displayed protection against gastric dysplasia in comparison to
controls. The authors observed that gastric cells displayed lower
proliferation rates and T cell apoptosis dependent on IFN-g
expression. Furthermore, transgenes resulted in increased levels
of LC3-II and Beclin-1 mRNA and protein, in the stomach,
indicating autophagy activation. Additionally, transgenic
animals showed higher apoptotic T cells, concurrently with
inhibition of IL-6, IL-1b; and TNF-a production, and
presented less chronic inflammation (61).

Besides the cellular components and soluble mediators, TME
also display metabolic disorders such as aerobic glycolysis (68),
oxygen deprivation, and higher levels of extracellular potassium
(62), which are stressful conditions that can also influence
cellular autophagy. Activation of autophagy in T lymphocytes
exposed to elevated potassium concentrations reduced
acetylation of the promoter and enhancer regions of T cell
effector- and exhaustion-markers Ifng and Pdcd1. Potassium
exposed T lymphocytes adoptively transferred to B16
melanoma bearing mice resulted in T cells persistence in the
TME, driving tumor regression, and improving animal survival
(62). Furthermore, metabolic conditions of TME, such as
elevated extracellular potassium levels, were responsible for
autophagy activation on T-cells and boosted antitumor
responses (62).

Despite that, tumor metabolism can play tricks on antitumor
immune responses, such as the ones with elevated glycolytic
metabolism, that seems to inhibit autophagy pathways and fuel
MDSCs development, leading to an immunosuppressive
environment (68). MDSCs and Treg cells suppress T
lymphocyte effector functions in the TME and are enriched
in tumors with elevated glycolytic metabolism, such as triple-
negative breast cancer (TNBC). These tumors secrete high
levels of G-CSF, which stimulates MDSCs, and lower
expression levels of LC3 mRNA. Inhibition of the glycolytic
enzyme lactate dehydrogenase A (LDHA) in 4T1 and
Py8119 TNBC cells using target-directed short-hairpin(sh),
restored tumor autophagy, and reduced MDSC infiltration in
tumors growing in BALB/C and C57/BL6 mice, respectively.
The mechanism was dependent on AMPK-ULK1 signaling,
which was impaired by glycolysis. At the same time, glycolysis
and AMPK-ULK1 inhibition increased G-CSF expression.
Consequently decreasing IFN-g+ and TNF-a+ effector CD8+

T TILs and in tumor-draining lymph nodes, resulting
in an immunosuppressive environment. Consequently,
autophagy boosted antitumor response mediated by effector
CD8+ T cells (68). These results described above indicate that
autophagy may be an important mechanism in tumor immune
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responses. Sometimes, directly improving the cytotoxic activity
of T cells, and others, modulating the immunosuppressive
components of TME, such as infiltrated MDSCs and T-cell
exhaustion-markers, leading to tumor elimination and better
survival rates.

Autophagy and Immune Evasion
Mechanisms
Despite the evidence that autophagy can improve antitumor
immune responses, it can also inhibit both innate and adaptive
responses, leading to cancer immune evasion.

Autophagy in Myeloid Cells Induces
an Immunosuppressive TME
It is known that MDSCs and M2 macrophages are components
of the immunosuppressive compartment of TME. The
autophagic activity in MDSCs has been described by different
research groups (63, 64) and has been associated with antigen
presentation and cytotoxic T cell function impairment, as well as
to M2 macrophage polarization and Treg recruitment (Figure 2)
(48, 63).

The importance of a non-canonical autophagy pathway, the
LC3-associated phagocytosis (LAP), in TME was demonstrated
using Cre-lox based ablation of several genes in myeloid cells of
immunocompetent mice (C57BL/6). The ablation of Becn1,
Vps34, Atg5, Atg7, or Atg16l1 impacted on both conventional
autophagy and LAP pathway. While myeloid cells deficient in
Fip200, Ulk1, or Atg14 lacked only the canonical autophagy
pathway, and the absence of Rubicon or Nox2 affected only the
LAP pathway (63). In the LLC mouse model, the absence of
LAP (Rubcn-/-) in myeloid cells increased the co-stimulatory
molecule CD86 and reduced CD206, a mannose receptor
associated with M2-like phenotype. In this model, the
reduction on M2-like TAMs improved CD8+ and CD4+ T cell
IFN-g production, increased IFN-I, and IL-1b, although no
quantitative alteration in the frequency of TILs was observed
(63), suggesting modulation of T cell activity rather than
proliferation or recruitment.

Similarly, an increase in autophagy activity was observed in
MDSCs from melanoma patients and melanoma experimental
model. Functional autophagy was measured by the expression of
LC3, LAMP-1, and SQSTM1/p62, and colocalization analysis
with p62 and LC3 in MDSCs isolated from melanoma patients
(stages III and IV) and clinically healthy controls’ peripheral
blood. MDSCs frommelanoma patients, and also frommice with
melanoma, showed higher levels of functional autophagy. In
LysMcreAtg5fl/fl mice, in which myeloid cells lacked Atg5
expression, there were less Treg TILs, tumor cell proliferation
rate reduction, and a significant increase in both MHC-II
expression and IFN-g production (64). Again, an indication
that autophagy activity in TME myeloid cells plays a role in
these cells’ immunosuppressive functions.

Autophagy Disrupts the Cytotoxic Activity of TME
TME is a hostile environment where autophagy can lead to
degradation of cytotoxic molecules (granzyme B and IFN-g),
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expression of T cell exhaustion markers, and quantitative
changes in TILs.

NK cells release granules containing perforins and granzymes
as part of their effector mechanism. In MCF7 breast cancer cells,
granzyme B suffered lysosome degradation, after hypoxia-
induced autophagy, which inhibited NK cell-mediated tumor
cell lysis (65). Likewise, BECN1 inhibition increased functional
NK cell tumor infiltration in a melanoma mouse model. The
higher frequency in infiltrating NK cells was correlated with an
increase in CCL5 secretion, which is an important chemokine for
NK cell proliferation and activation. The enhancement of NK cell
function, after inhibition of tumor-autophagy, caused tumor
regression and predicted improved patient survival (66),
suggesting that tumor cell-autophagy can be a resistance
mechanism to NK cell activity.

The impact of autophagy in cytotoxic immune responses also
influences CD8+ and CD4+ T cells, although there is no
consensus about this topic in the literature. Atg5 deficient mice
displayed a reduction of CD8+ TILs in mammary and colorectal
cancer models. Despite that, among the CD8+ T lymphocytes
recruited to the tumors, around 80% exhibited memory
phenotype and were positive for IFN-g and TNF-a, leading to
tumor rejection (69). Moreover, in the non-small cell lung cancer
(NSCLC) mouse model, Atg5 tissue-specific depletion promoted
tumor initiation through a mechanism dependent on Treg
recruitment to the TME (48). These findings indicated that
autophagy may have a positive effect on cytotoxic immune
responses, through the reduction in Treg frequency in the
TME and increase in IFN-g and TNF-a release.

On the other hand, the interaction with human glioblastoma
(GB) cells induced Lamp2a mRNA and protein expression in
mouse brain pericytes (PC). Engraftment of PC from Lamp2a
knockout mice (PC-KO) into GB grown in mice led to central-
memory (CD44+, CD62+) CD4+ and CD8+ T TILs and better
CD4+/CD8+ ratio of 2:1 than in tumors engrafted with wild
type (WT) PC. Moreover, only 2% of TILs expressed PD-1 and
CTLA-4 and there was a lower GB cell proliferation rate than in
GB/PC-WT control mice. Compared to GB/PC-KO, GB/PC-
WT mice displayed increased IL-2 levels, tumor proliferation,
FoxP3+PD-1+CTLA-4+ TILs, higher Tgfb, and Il10 mRNA
expression levels, and a CD4+/CD8+ ratio of 4:1. Collectively,
these results demonstrated that CMA activity in PC favored an
immunosuppressive environment in response to GB cells (64).

Inhibitory molecules expression is associated with CD8+ T
cell exhaustion phenotype, and also resistance to targeted
therapy and autophagy inhibitors. PD-L1+ A375 melanoma
cells showed resistance to BRAF inhibitor Vemurafenib and
CQ, but not to nitrobenzoxadiazole (NBD). Both CQ and NBD
inhibit autophagy, however, NBD acts at multiple levels,
targeting not only the late stages of autophagy but also
different apoptotic pathways (70). These findings indicate that
autophagy may act as an immunosuppressive mechanism,
affecting cytotoxic cells—NK and T lymphocytes—functionally
and quantitatively. Additionally, autophagy modulates immune
checkpoints expression, leading to T cell exhaustion phenotype
and resistance to treatment.
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AUTOPHAGY AND CANCER THERAPY

Autophagy can be a preventive mechanism to malignant
transformation in healthy cells, but in transformed cells this
mechanism can contribute to cancer progression. Autophagy’s
main roles in tumorigenesis and cancer therapy were reviewed
elsewhere (71). In this section, we will focus on the interplay
between autophagy and immune responses in cancer therapies in
different experimental models.

Autophagy and Conventional Therapies
Traditionally, cancer therapy is based on direct toxicity to tumor
cells. But the importance of immune responses to the efficacy of
traditional therapies can be observed in mouse models, in which
T lymphocytes are necessary for tumor growth reduction by
chemotherapeutic agents (72). Recently, it has become clear that
several chemotherapeutic agents, such as doxorubicin and
mitoxantrone (MTX), and even radiotherapy, may induce
tumor cell immunogenic cell death (ICD) (72–74). ICD is
characterized by the release of damage-associated molecular
patterns (DAMPs) and consequent elicitation of immune
responses. The pre-apoptotic surface exposure of calreticulin
(CRT) is considered the “eat me” (immunogenicity) signal for
DCs, influencing antigen presentation to T lymphocytes (73).
Likewise, adenosine triphosphate (ATP) secreted or leaked to the
extracellular milieu is considered a “find me” signal. The
chromatin-binding protein high mobility group B1 (HMGB1)
is another DAMP exposed after chemotherapy by post-apoptotic
release. It induces TLR4-MyD88 signaling on DCs facilitating
antigen processing and presentation (74, 75).

The ATP lysosomal secretion depends on autophagy, as
autophagy-deficient CT26 colon carcinoma mouse cells (due to
the lack or decrease in Atg5 or Atg7 expression) released lower
amounts of ATP in response to MTX chemotherapy. The lower
ATP release resulted in DCs recruitment impairment and
consequent lack of T cell priming to elicit an anti-tumor
immune response (76). Extracellular ATP binds to surface
purinergic receptors (such as P2YR2 receptors) on immature
DC precursors (77), promoting DC maturation and recruitment
to the tumor site in lung cancer mouse model. In line with that,
autophagy induction (by fasting or caloric restriction) resulted in
ATP release and improved chemotherapy “efficacy” by
decreasing TME infiltration by Treg (78).

CD39, an ectonucleotidase, also influences the extracellular
ATP concentration by converting extracellular ATP into
adenosine. CD39 overexpression was observed in Atg5
deficient tumors, leading to the attraction of Treg expressing
adenosinergic receptors to the TME (48). Indeed, an enhanced
number of initial tumor foci and increased Treg infiltration were
observed in autophagy-deficient tumors in the KRasG12D-
driven lung cancer mouse model (48). In contrast, similar T
cell infiltration and function in autophagy-deficient (due to
inhibition of autophagy essential genes Atg7 and Atg12) or
competent tumors were observed in the B16 melanoma mouse
model, even after Doxorubicin treatment (10). These data
suggest that autophagy-dependent immune modulation may be
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specific to the clinical context and time (10). However, the
complexity of autophagy role in carcinogenesis can be seen in the
KRasG12D-driven lung cancer mouse model, because mice with
autophagy-deficient-tumors presented a prolonged survival and
reduced malignant progression of adenomas to adenocarcinomas,
in a TP53 dependent manner. Although the autophagy modulation
needs to be investigated in each case, these data indicated that
tumor-specific loss of Atg5 favored Treg TILs. Thus, autophagy-
deficient tumors (or with CD39 overexpression) treated with ICD
inducer chemotherapy agents did not recruit effector cells and it
possibly contributed to chemotherapy (CT) resistance (48).

Indeed, there is evidence that autophagy may play a role in CT
resistance in pancreatic cancer patients. A clinical trial to investigate
if autophagy inhibition by HCQ (Hydroxychloroquine sulfate)
improved overall survival of metastatic pancreatic cancer patients
treated with gemcitabine hydrochloride and nab-paclitaxel was
performed (79). Autophagy inhibition did not improve 1-year
patients’ overall survival, but there was an improvement in the
overall response rate in HCQ treated patients, indicating its role in
the locally advanced setting, supporting the need for more research
and biomarkers to drive this therapeutic option. Likewise, the
treatment of bladder cancer cells (J82 and T24) with enzalutamide,
an anti-androgen receptor drug, resulted in cytoplasmatic
autophagosomes accumulation, increased expression of autophagy-
related genes (AMPK, ATG5, LC3B, ULK1, and LC3-II) and had no
effect on apoptosis and proliferation rates. However, the treatment
with a combination of enzalutamide and autophagy inhibitors (CQ,
3-methyladenine, and bafilomycin A1) impaired tumor growth,
indicating that the combined treatment may be a potential strategy
to avoid enzalutamide-resistant bladder cancer (80). A similar result
was exhibited in docetaxel resistant prostate cancer cell lines (PC3-
DR and VCaP-DR): these cells present enhanced autophagy activity
through the overexpression of Forkhead box protein M1 (FOXM1).
Thus, the knockout of ATG7, Beclin-1, or treatment with CQ
restored the antitumor effect of docetaxel, demonstrating that
either autophagy or FOXM1 may be potential targets for
combined therapies with docetaxel to treat metastatic prostate
cancer patients (81). On the other hand, new therapies may be
used to activate autophagy, improving the efficacy of conventional
treatment, such as CT. Oxaliplatin-induced ICDwas not sufficient to
completely eliminate both breast and colorectal tumors (82, 83).
Oxaliplatin treatment together with a nanoparticle in CT26 tumor-
bearing mice led to autophagy activation on tumor cells, improving
antigen presentation, and consequently tumor cell death (83).

The role of autophagy in other cells beyond the tumor ones
was investigated to elucidate the hypothesis that autophagy
competence in the immune system would contribute to the
reduction of tumor growth by ICD-inducing CT. However, the
growth of autophagy competent tumors was the same in wild
type and partially autophagy-deficient (Becn1± or Atg4b-/-) mice,
although the MTX toxicity was higher on Atg4b-/- mice (84).
These results pointed to an autophagy role in tumor cells
influencing anticancer immune responses induced by CT.
Nonetheless, a similar T cell profile was observed in the B16
melanoma mouse model, both in tumor-specific autophagy
inhibition treated with Doxorubicin (10) and in systemic
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inhibition of autophagy with CQ and quinacrine, suggesting
that host autophagy competence did not influence the efficacy of
ICD-inducing CT in this model (10).

Response to radiotherapy may also be influenced by
autophagy. Radiation therapy induced MHC-I expression in
NSCLC cell lines A549 and H1975 in parallel with an increase
in the LC3-II/LC3-I ratio, while p62 detection decreased (85).
Treatment of both cell lines with autophagy inhibitor CQ after
radiation resulted in decreased MHC-I expression, indicating
that radiation-induced MHC-I expression and CD8+ T cell
infiltration were dependent on autophagy (85). It was also
demonstrated that imiquimod (TLR7 agonist) activated
oxidative stress, inducing autophagy, and sensibilization of
melanoma cells to g-ionizing radiation (86). Mouse treatment
with 3-MA, an autophagy inhibitor, after radiation restored the
B16F10 or B16F1 tumor growth. The combined imiquimod and
radiation therapy increased IFN-g and TNF-a secreting CD8+ T
lymphocytes and decreased Treg and MDSCs in the TME (86),
indicating the influence of autophagy in the regulation of
therapy-induced immune responses.

Autophagy Improves New Therapeutic
Strategies, by Modulating TME
Components
Recently, immunotherapy has emerged as a therapeutic option
able to elicit high rates of durable anti-tumor responses in cancer
patients, including the ones with previously refractory responses
to CRT (87). Immunotherapy aims to activate and recruit
immune cells to the TME to target transformed cells. The best
results have been achieved in patients with immunogenic
tumors, which express high levels of neoantigens, such as
metastatic melanoma. Even so, a proportion of patients with
no clinical benefit after immune checkpoint blockade therapy has
been reported in several studies, and autophagy may play a role
in this resistance to therapy. A set of melanoma-associated
antigen (MAGE) cancer-germline antigens was identified as a
predictor of CTLA-4 blockade resistance in melanoma patients
(88). Interestingly, autophagy markers, including LC3B, were
enriched in MAGE negative tumors, suggesting that autophagy
suppression (in MAGE positive tumors) may contribute to
resistance to CTLA-4 inhibitor therapy (88). Another
autophagy mechanism that influences the TME was observed
in head and neck squamous cell carcinoma (HNSCC). Despite
the high immune cell infiltration in HNSCC, response rates to
immune checkpoint blockade therapy are low. It was identified
that the SOX2 oncoprotein elicited an autophagy-dependent
degradation of STING, which mediates IFN-I activation,
important for Th1 chemokines production and M1-like
macrophage polarization (89). In mice with HNSCC, the
immunosuppressive TME could be reversed by vaccination
with nanosatellite SatVax, which enhanced the potency of
STING agonist and delivered high-density tumor antigens,
improving tumor-specific T cell infiltration. Associated with
anti-PD-L1 therapy, it could prevent the CD8+ T cell
exhaustion (the therapy expanded CTL effectors and reduces
the CD8+ T cells exhausted) (89).
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Along with that, autophagy-deficient 4T1 cells, through Atg5
or Beclin1 depletion with specific single guide(sg)RNA, generated
larger tumors with reduced CD4+ and CD8+ TILs and IFNg+ T
cells in Balb/c mice, when compared to autophagy competent
4T1 cells. Moreover, the antitumor effect of the anti-PD1
antibody was limited in autophagy-deficient tumors, while a
significant reduction in tumor volume and increased cytotoxic
activity of TILs was observed in the control group (90). Similarly,
a combination of anti-PD1 immunotherapy with anti-angiogenic
endostatin, Endostar, promoted the activation of autophagy
pathway PI3K/AKT/mTOR in LLC-bearing mice. Combined
therapy suppressed tumor growth and modulated TME,
decreasing IL-17 and TGFb1 while reducing infiltrated MDSCs
and reversing CD8+ T cell suppression (91). These results
indicated that the complex relationship between autophagy
and TME components may be important not only to the
modulation of immune responses but also to define treatment
efficacy and resistance.

In addition to immunotherapy, a new therapeutic approach
using RP-182, a synthetic peptide analog to naturally occurring
antimicrobial peptides, triggered a conformational switch in the
mannose receptor CD206, M2 macrophage marker. It resulted in
endocytosis, autophagy, and apoptosis of these cells and also a
shift toward an M1 phenotype in the remaining cells. This
treatment enriched M1-like macrophages in TME and
increased the antitumor immune response in the pancreatic
cancer animal model, as well as CT-26 and B16 models (92).
CONCLUSIONS

In conclusion, we described data suggesting that autophagic activity
plays a dual role in cancer development and progression,
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modulating TME in many different ways, that can either help or
inhibit tumor development, as shown in Figure 2. DC-autophagy
and TME-induced autophagy are usually associated with better
antitumor responses and improvement of antigen presentation and
cytotoxic activity, inhibiting regulatory T lymphocytes and MDSCs.
However, myeloid cells and tumor cells autophagy seem to have the
opposite effect. It improves immunosuppressive TME, through the
recruitment of MDSCs and M2-like macrophage polarization,
leading to tumor progression and worst prognosis. The influence
of autophagy also reaches cancer treatment. The activation of
autophagy pathways modulates TME by inducing macrophage
polarization (M1-like phenotype), reducing CD8+ T cell
exhaustion and Tregs infiltration. Therefore, targeting autophagy
could improve ICD-induced by conventional and non-
conventional therapies.
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Thrombotic complications are the second leading cause of death among oncology
patients worldwide. Enhanced thrombogenesis has multiple origins and may result from
a deregulation of megakaryocyte platelet production in the bone marrow, the synthesis of
coagulation factors in the liver, and coagulation factor signaling upon cancer and the
tumor microenvironment (TME). While a hypercoagulable state has been attributed to
factors such as thrombocytosis, enhanced platelet aggregation and Tissue Factor (TF)
expression on cancer cells, further reports have suggested that coagulation factors can
enhance metastasis through increased endothelial-cancer cell adhesion and enhanced
endothelial cell activation. Autophagy is highly associated with cancer survival as a double-
edged sword, as can both inhibit and promote cancer progression. In this review, we shall
dissect the crosstalk between the coagulation cascade and autophagic pathway and its
possible role in metastasis and cancer-associated thrombosis formation. The signaling of
the coagulation cascade through the autophagic pathway within the hematopoietic stem
cells, the endothelial cell and the cancer cell are discussed. Relevant to the coagulation
cascade, we also examine the role of autophagy-related pathways in cancer treatment. In
this review, we aim to bring to light possible new areas of cancer investigation and
elucidate strategies for future therapeutic intervention.

Keywords: cancer, metastasis, coagulation, autophagy, cancer-associated thrombosis, megakaryopoeiesis and
thrombopoiesis, protease (proteinase)-activated receptor
INTRODUCTION

While the precise role of the extrinsic coagulation cascade in the pathophysiology of cancer
progression is still largely unknown, a hypercoagulable state has been intimately linked to cancer
progression for more than a century (1). Cancer-associated thrombosis (CAT), or Trousseau’s
syndrome, is attributed as the second leading cause of cancer patient death after organ failure upon
metastatic disease (2, 3). High D-dimer levels, a product of coagulation cascade activation, are
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associated with advance cancer stage and accordingly there is a
high prevalence of venous thromboembolism (VTE) in stage IV
cancer patients (4–6). Given the risk of VTE being 4- to 7-fold
higher in the cancer patient, modulation of the coagulation
system is currently an essential aspect of cancer treatment (7),
with the potential to improve in the coming years. A chronic
hypercoagulable state in oncologic patients may have a
multifaceted role in conferring both a survival advance and
dissemination potential to a bourgeoning tumor. This
hypercoagulable state can be explained by several factors,
including increased megakaryocyte (MK) and platelet
production (Figure 1A), increased platelet activation and
deregulation of other cells intertwined with coagulation
systems such as endothelial cells (ECs) and neutrophils
(Figure 1B).

Different cell types express Tissue Factor (TF), including
cancer cells, platelets, and activated endothelial and immune
cells. The antibody blocking of TF has been shown to delay the
initiation of tumor formation, growth and vascularization in
immunodeficient mice (8). Collectively, data suggest that
oncogenic and differentiation pathways regulate TF and that it
functions in tumor initiation, tumor growth, angiogenesis, and
metastasis. At the molecular level, TF, a transmembrane receptor
belonging to cytokine receptor family, initiates the extrinsic
Frontiers in Oncology | www.frontiersin.org 288
blood coagulation pathway once bound in a quaternary
complex with activated factor VII (FVIIa) and coagulation
factor X (FX) (Figure 1C) [reviewed in (9)]. The cleavage of
FX by FVIIa gives rise to the active protease (FXa), which in turn
cleaves prothrombin to thrombin. This coagulation initiation
complex can also directly activate cofactor VIII and coagulation
factor IX, leading to thrombin generation (9).

The principal mediators of FXa and Thrombin protease signal
transduction are the protease-activated receptors (PARs). These
receptors belong to the G protein-coupled receptor (GPCR)
family and become activated upon proteolytic cleavage of their
N-terminal domain by extracellular proteases. PAR signaling has
been implicated in several inflammatory diseases, including
cancer (10, 11). Mammalian genomes contain four PARs that
are ubiquitous within the body. PAR1, PAR3, and PAR4 are
thrombin receptors, unlike PAR2. Classically, soluble proteases
that are active during vascular injury, coagulation, and
inflammation are responsible for PAR activation (12). Among
these proteases are plasmin, matrix metalloproteinases (MMPs),
activated Protein C (aPC), FVIIa, and FXa. However, the
mechanisms remain elusive (13). The proteolytic cleavage of
PARs activates numerous downstream signaling pathways,
including intracellular Ca2+ mobilization, ERK1/2, NFkB
signaling pathways and the induction of cytokines such as
A C

B

FIGURE 1 | Overview of the coagulation and clotting factor signaling. Increased levels of platelet blood counts and coagulation cascade activation are determinants
of a hypercoagulable state. Platelet production (thrombopoiesis) at the bone marrow by megakaryocytes determines platelet counts (A). Upon vascular damage,
platelets become activated, adhere to the vascular endothelium and promote neutrophil activation and NET release (B). Platelets, Neutrophils and Endothelial cells
become activated and promote thrombus formation, a process mediated by the coagulation cascade activation (C). TF, a transmembrane receptor, initiate the
extrinsic blood coagulation pathway once bound in a quaternary complex with FVIIa, that is inhibited by TFPI. The cleavage of FX by FVIIa gives rise to FXa, which in
turn cleaves prothrombin into thrombin. Thrombin, FXa and other proteases such as Plasmin, MMPs, and aPC can activate PARs, which signal through PLC-PKC-
Ca2+ Pathway and activate other signaling pathways such as NFkB and ERK1/2, leading to platelet, neutrophil and EC activation. This pathway also promotes
cancer cell growth and invasion. PAR activation leads to receptor internalization, which classically occurs through the endolyosomoal pathway. aPC, activated
Protein C; ERK1/2, Extracellular signal-regulated protein kinases 1 and 2; EC, Endothelial Cell; FVIIa, activated factor VII; FX, factor X; FXa, activated FX; MMPs,
matrix metalloproteases; NET, Neutrophil Extracellular Trap; NFkB, Nuclear-Factor kappa B; PAR, protease activated receptor; TFPI, Tissue Factor Pathway Inhibitor.
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Interleukin-8 (IL-8) and IL-6 (14), allowing the PARs to mediate
several processes in the coagulation-inflammation interplay,
including those implicated in cancer progression (15, 16).
Thus, PARs regulate platelet activation, assist in maintaining
vascular barrier function through adhesion molecules (17, 18),
and are associated with immune cell activation and migration
(19–21). Upon activation, PARs are rapidly uncoupled from
heterotrimeric G proteins through internalization to endosomes
and then sorted to lysosomes and degraded. However, recent
studies indicate that activated internalized PARs signal from
endosomes through the recruitment of b-arrestins and
potentially other pathways [reviewed in (10, 22)]. Interestingly,
crosstalk between PAR signaling and autophagy has been
described in different cell types (23–25), the physiological and
pathophysiological role of this crosstalk still is an open field for
investigation and discussion.

Autophagy, which comes from the Greek and means “self-
eating”, is a highly regulated catabolic pathway by which
cytoplasmic cargo is delivered to lysosomes for degradation
and recycling, in order to preserve cellular homeostasis (26–
29). In cancer, autophagy is broadly recognized as a “double-
edged sword”, participating in both cancer suppression and
promot ion depend ing on tumor type , s t ag e and
microenvironment (30–32). Three principal types of autophagy
have been identified: macroautophagy, microautophagy and
chaperone-mediated autophagy (33, 34). Macroautophagy
hereafter referred to as autophagy, is the most extensively
characterized in cancer context and will be the focus of
discussion within this review (35–37).

Autophagy involves the sequestration of cytoplasmic
material, such as damaged organelles (i.e. mitochondria,
endoplasmic reticulum) and protein aggregates, in a double
membrane organelle called the autophagosome, which
subsequently fuses to lysosomes, forming a new vesicle known
as the autolysosome. Lysosomal enzymes within the
autolysosome initiate the hydrolytic breakdown of their cargo
(30). The resulting degradation products (i.e., sugars, amino
acids, fatty acids, nucleosides/nucleotides) are transferred back
to the cytoplasm for macromolecule synthesis and energy
production (Figure 2) (38). Therefore, autophagy sustains
cellular homeostasis by regulating the quality of cytoplasmic
organelles. Moreover, this is also an adaptive mechanism that
promotes cell survival in response to stress conditions such as
nutrient deprivation, hypoxia, reactive oxygen species (ROS),
DNA damage, intracellular pathogens or an increase in
misfolded proteins (39, 40). Cancer cells can exploit this
mechanism when exposed to metabolic, oxidative and
inflammatory stress (41–43). Different “autophagy-related
proteins” (ATGs) participate in the autophagic process (44),
which can be divided into different stages: initiation, nucleation,
elongation, autophagosome maturation and fusion with the
lysosome, and finally cargo degradation followed by the release
of breakdown products into the cytosol.

As schematically represented in Figure 2, the “initiation
stage” involves the activation of the ULK1 complex, which is
composed of the Unc-51-Like Kinase 1 (ULK1), the Focal
Frontiers in Oncology | www.frontiersin.org 389
adhesion-kinase family Interacting Protein of 200 kDa
(FIP200), ATG101, and ATG13. The ULK1 complex integrates
nutrient and energy stress signals through the activity of the
Serine/Threonine kinase Mammalian Target of Rapamycin
Complex 1 (mTORC1), which is known as the master negative
regulator of autophagy (29). In parallel, an isolation membrane
called phagophore is formed by membrane contributions from
various organelles, including the endoplasmic reticulum (ER),
Golgi apparatus, and mitochondria (45). Once activated, the
ULK1 complex translocates to a membranous site where
the phagophore is formed, where it serves as a scaffold for the
recruitment of ATG proteins to the isolation membrane and
thereby initiating autophagosome biogenesis (46, 47).

In the following step, referred to as the “nucleation stage”
(Figure 2), the ULK1 complex phosphorylates the class III
Phosphatidylinositol 3-Kinase (PI3K) complex, composed of
Vacuolar Sorting Protein 34 (VPS34), Beclin-1 (BECN1),
VPS15, and Autophagy Related 14-Like protein (ATG14L).
The class III PI3K complex promotes local production of
phosphatidylinositol 3-phosphate (PI3P) at the phagophore
and initiates the recruitment of effector proteins to assist
autophagosome formation (48, 49). ATG9, the only
transmembrane protein that is part of the ATG machinery,
cycles between the phagophore and the Golgi/endosomes,
contributing to the recruitment of membranes for the
formation and subsequent expansion of the phagophore (47,
50, 51). The sorting of ATG9 and its following transport to
phagophore membranes occurs at RAB11-positive recycling
endosomes (52, 53). Besides, ATG2 participates in the transfer
of lipids from the ER to the phagophore leading to its expansion
(54, 55).

The subsequent step is the “elongation stage” and involves the
extension of the phagophore membrane (Figure 2). This process
requires two ubiquitin-like systems: the ATG5–ATG12 system
and the Microtubule-Associated Protein 1A/1B-Light Chain 3
(MAP1LC3A/B, also known as LC3)-phosphatidylethanolamine
(PE) system (56). First, ATG12 is conjugated to ATG5 by the
sequential activity of ATG7 and ATG10. The resulting ATG5-
ATG12 complex interacts with ATG16L, leading to the
formation of the multimeric complex ATG5-ATG12-ATG16L
which is fundamental for LC3 lipidation (57, 58). Second, pro-
LC3 is cleaved by ATG4 to form the cytosolic soluble LC3-I.
Subsequently, ATG7 and ATG3 activity enable LC3-I
conjugation to the lipid PE to form LC3-II, which is then
recruited to the inner and outer surface of the autophagosome
in an ATG5-ATG12 dependent manner (59). This process
elongates and seals the phagophore leading to the subsequent
formation of the autophagosome. Importantly, under basal
conditions, LC3-I is uniformly distributed across the
cytoplasm; however, upon autophagy induction, the lipidated
form of LC3 (LC3-II) accumulates on nascent autophagosomes,
and thus, represents a marker to monitor the formation of
autophagosomes and autophagy-related structures (60–62).
Autophagic cargo selection occurs in parallel to the processes
of sensing, initiation and elongation. Cargo adaptors such as the
receptor protein Sequestosome 1/p62 (SQSTM1/p62) can
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interact with both ubiquitin chains and LC3, and thereby
promote ubiquitinated cargo recruitment to autophagosomes
for selective degradation (63). As p62 becomes incorporated
within the autophagosomes and are degraded in autolysosomes,
thus serving as an index of autophagic degradation (60). Upon
closure, the autophagosome dissociates from the assembly site
and undergoes “maturation” via fusion with endosomes and
subsequently with lysosomes to form a degradative autolysosome
(64, 65). Maturation and autophagosome-lysosome fusion
requires several proteins including Rab GTPases, membrane-
tethering complexes and soluble N-ethylmaleimide-sensitive
factor attachment protein receptors (SNAREs) (66–68).

Finally, the lysosomal hydrolases degrade the autophagic
cargo, and the resulting metabolites get recycled and returned
to the cytosol through autolysosome efflux transporters, and thus
cellular homeostasis is maintained (34, 69, 70).
Frontiers in Oncology | www.frontiersin.org 490
Autophagy is highly regulated by different signaling pathways
implicated in cancer (36, 71, 72). Nutrient starvation is the best-
characterized autophagy inductor, where the serine/threonine
protein kinase mTOR plays a critical role as an energy sensor
(73). Within the human cell, mTOR can be found in at least two
distinct multiprotein complexes, referred to as mTOR complex 1
(mTORC1) and mTOR complex 2 (mTORC2) (74). The
mTORC1 complex is considered the primary negative
regulator of autophagy (75, 76). Under nutrient-rich
conditions, class I PI3K and AKT/PKB activate mTORC1
complex which by phosphorylating ULK1 and ATG13,
prevents the induction of autophagy as shown in Figure 2
(77–80). A sensor of available energy is the AMP-activated
protein kinase (AMPK), which is directly activated by a low
ATP:ADP ratio (81, 82). Under starving, AMPK directly
phosphorylates and inactivates mTORC1 (83). Through
FIGURE 2 | Overview of the autophagic pathway. Autophagy is induced by different stress stimuli including nutritional status, hypoxia and ROS. The autophagic
process is initiated by the activity of ULK1 complex, which is regulated negatively by mTORC1 and positively by AMPK. ULK1 complex initiates phagophore
nucleation by phosphorylating components of the PI3KC3 complex that leads to the recruitment of several ATGs to assist autophagosome formation. The elongation
step involves two ubiquitin-like conjugation complex, the ATG5-ATG12 complex and the LC3-PE complex, which are required for proper phagophore membrane
expansion and subsequent closure of the autophagosome. Completed autophagosome fuses with the lysosome to form the autolysosome, where hydrolytic
enzymes degrade the enclosed material. The degrading metabolites are transported back to the cytosol for macromolecule synthesis and energy production. In
addition, the autophagic machinery is associated with unconventional secretory processes. See the text for additional information. AMPK, AMP-activated protein
kinase; ATG, autophagy-related proteins; BafA1, bafilomycin A1; BECN1, Beclin-1; BCL-2, B Cell Lymphoma 2; CQ, chloroquine; ER, endoplasmic reticulum;
FIP200, focal adhesion kinase family interacting protein of 200 kDa; JNK1, c-Jun N-terminal kinase 1; LC3, microtubule-associated protein 1A/1B-light chain 3;
mTORC1, mammalian target of rapamycin complex 1; PE, phosphatidylethanolamine; PI3K, phosphatidylinositol 3-kinase; SNAREs, soluble N-ethylmaleimide-
sensitive factor attachment protein receptors; ULK1, unc-51-like kinase; VPS, vacuolar protein sorting; vWF, von Willebrand factor; 3-MA, 3-methyladenine.
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AMPK regulation, the inhibition of mTORC1 and the activation
of the ULK complex can initiate the autophagy process (Figure
2) (46, 77).

Numerous factors that regulate autophagy are also classified
as either oncoproteins or products of tumor suppressor genes
[reviewed in (36, 71, 84)]. Thus, autophagy-signaling pathways
are caught up in cancer regulation and control (Figure 2).
Oncoproteins, including the small GTPase RAS, RHEB, and
Nuclear Factor-kB (NF-kB), can activate mTORC1 and in
consequence inhibit autophagy (85). NF-kB activates
autophagy by inducing the expression of proteins involved in
autophagosome formation, including BECN1, ATG5, and LC3.
Conversely, NF-kB can also inhibit the autophagic process by
increasing the expression of autophagy repressors, such like B
cell lymphoma 2 (Bcl-2) family members (86). The anti-
apoptotic members of the B Cell Lymphoma 2 (Bcl-2)-family
bind and sequester BECN1 to prevent autophagy induction (87).
On the contrary, tumor suppressors such as the transcription
factor Forkhead box O1 (FOXO1) and nuclear p53 are known to
induce autophagy (88). Interestingly, ROS production, a
hallmark of cancer, and the subsequent activation of the
oncogene c-Jun N-terminal kinase1 (JNK1) (89) can lead to
the phosphorylation of Bcl-2; this prevents the interaction of this
latter protein with BECN1 and thereby induces autophagy (88).

Pharmacological agents are frequently used to either enhance
or suppress autophagy (Figure 2) (90). A frequent used approach
for autophagy induction is mTOR inhibition by rapamycin (91).
Conversely, 3-methyladenine (3-MA) can suppress the
nucleation stage by inhibiting the PI3K complex, thereby
inhibiting autophagosome formation (92). Autophagy can be
blocked at later stages resulting in the inhibition of autophagic
flux. This refers to the entire process from autophagosome
synthesis to lysosomal degradation (93). Bafilomycin A1
(BafA1) is a potent V-ATPase inhibitor that impairs lysosomal
acidification and thus the degradation of autophagic cargo (94).
By a similar approach, chloroquine (CQ) can inhibit autophagy
by increasing the lysosomal pH and therefore reducing the
activity of degradative enzymes (95). Accordingly, BafA1 and
CQ are commonly used to decrease the autophagic flux.

Although canonically characterized as a degradation
mechanism, recent evidence has demonstrated a role for the
autophagic machinery in extracellular secretion, a process termed
as “secretory autophagy” or more linguistically precise “ATG gene-
dependent secretion” (96–98). Accordingly, canonical autophagy
involves the fusion of the autophagosomes with lysosomes for cargo
degradation, whereas the secretory pathway bypasses this
degradative process to allow unconventional extracellular delivery
of cytosolic proteins via LC3-positive vesicles (Figure 2) (99, 100).
Even though the molecular pathways in secretory autophagy are not
entirely deciphered, the molecular machinery of the degradative
processes is required (99). ATG5 and BCN1, together with other
factors participating in canonical autophagy, are also activated as
part of the secretory pathway (98, 101). The secretory autophagy
pathway plays a key role in the progression of several diseases,
including cancer (102, 103). It is involved in the secretion of
cytokines such as IL-6, IL-8, and IL-1b, damage response
Frontiers in Oncology | www.frontiersin.org 591
mediators such as High mobility group box 1 protein (HMGB1)
or ATP, and granule content such as von Willebrand factor (vWF)
(104–107). Particularly, autophagy-dependent secretion of IL-6 has
been implicated in tumor cachexia (103) and the metastatic
potential of Ras-transformed cancer cells (108). The secretory
autophagy pathway is reported to mediate cytokine release from
cancer-associated fibroblasts, contributing to the development of
head and neck squamous cell carcinoma (102). Thus, within the
TME, both the cancer cells and supporting stromal cells rely on
autophagy-dependent secretion for malignant progression (98).

Interestingly, it has been observed that decreased
autophagosome degradation is associated with increased
release of extracellular vesicles (EVs) in human malignant
cervical and breast cancer cell lines (109). Extracellular
secretion may provide a supplementary pathway to maintain
cellular homeostasis when the degradative autophagy pathway is
blocked (109). These suggest possible crosstalk between
degradative and secretory autophagy to maintain cellular
homeostasis and tumor cell survival. Furthermore, following
pathological stress, there is a reported release of cytosolic
proteins, molecular chaperones, harmful nucleic acids and
misfolded proteins into the extracellular space through EVs,
and this may contribute to tumor progression and metastasis
(110, 111).

There is a complex association between cancer and autophagy.
While in late-stage disease autophagy promotes tumor progression
by providing nutrients to a rapidly dividing yet under vascularized
and undernourished tumor, at early stages autophagy may suppress
the bourgeoning tumor by suppressing reactive oxygen species and
thus limiting genomic instability and, furthermore, promoting an
anti-inflammatory microenvironment (36, 112–115).

Noteworthy is that the participation of the coagulation
cascade in cancer progression is not limited only to
thrombogenesis and thrombocytosis. The hemostatic system is
known to promote tumor growth and metastasis, with thrombin
increasing proliferation, migration and angiogenesis in
preclinical models (116, 117). Circulating Tumor Cells (CTCs)
are a marker of poor prognosis and are associated with increased
risk of VTE in cancer patients (6, 118). TF has been identified to
promote and be present on cancer stem cells (119, 120).
Moreover, cancer and adjacent cell expression of PAR1 was
recently postulated as a predictive marker of metastasis (121).
The plasmatic concentration of Thrombin–Anti-Thrombin III
(TAT) complex, a surrogate marker for activated thrombin used
to assess coagulation state, inversely correlates with cancer
patient survival (6). Independently of a direct role in the
clotting process, the TF-FVIIa-PAR2 signaling was also linked
to breast and liver cancer progression (23, 122).

Mouse models of cancer have demonstrated that FXa can
increase tumor growth (15, 19, 20). Moreover, FXa increased
lung, lymph node, liver, kidney metastasis in a syngeneic
melanoma model, while promoting vascular permeability and
increased infiltration (15). How PAR activation impinges on the
autophagic pathway and how this regulates both physiological
and pathophysiological processes is still an area requiring further
study. We discuss herein that the coagulation system is not
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merely a bystander in cancer metastasis, but instead an integral
part of the multifaceted approach taken by the malignant cell to
survive, propagate, and ultimately exhaust the body’s capacity to
function. We speculate that the malignant cell may use common
mechanisms to hijack immune cells, ECs, hematopoietic cells,
and platelets to integrate with the coagulation system for its own
end. In this review, we postulate that a common mechanism
present in each of these components may be the hijacking of the
autophagy pathway, given the reported correlation between
CTCs, hypercoagulable state and reduced survival in cancer.
We examine the evidence for shared mechanisms and pathway
integration to better understand cancer pathophysiology and to
uncover novel druggable targets for the oncology clinic.
AUTOPHAGY REGULATES THROMBUS
FORMATION THROUGH
MEGAKARYOCYTE DIFFERENTIATION,
PLATELET PRODUCTION, AND PLATELET
ACTIVATION

Autophagy Is Implicated in
Megakaryopoiesis and Thrombopoiesis
The body produces 1 × 1011 platelets per day to maintain platelet
count through the processes of megakaryopoiesis and
thrombopoiesis (123). As schematically represented in Figure 3,
within the bone marrow, the process of megakaryopoiesis gives
origin to MKs from Hematopoietic Stem Cells (HSCs) through
successive lineage commitment steps, followed by a maturation
process. HSC differentiate through sequential steps into
multipotent progenitors (MPPs), common myeloid progenitors
(CMPs), bipotential MK-Erythroid progenitors (MEPs), and
unipotent MK progenitors (MKPs), which then mature into MKs
(124–127). The principal growth factor regulating steady-state
megakaryopoiesis and thrombopoiesis is Thrombopoietin (TPO),
which influences almost every step of the differentiation and
maturation process. TPO is involved in HSC self-renewal, the
proliferation of MKPs, MK maturation, and platelet production.
TPO binds to the Thrombopoietin receptor (Mpl) activating JAK2
signaling, STAT3/5 andMAPKpathways and in this way positively
regulates MK and platelet production (128).

Autophagy and megakaryocytic differentiation are
overlapping processes. An up-regulation of BECN1 and LC3II
precedes megakaryocytic differentiation. Moreover, autophagy is
necessary for MK differentiation in vitro (129). Human CD34+
hematopoietic progenitor cell differentiation into MKs is slowed
down by the autophagy inductor rapamycin, resulting in a lower
percentage of and smaller MKs (130). It was further shown that
ATG2B and the GSK3B-interacting protein (GSKIP) enhanced
the differentiation of CD34+ progenitors and MKPs into MKs by
increasing progenitor TPO sensitivity (131).

Moreover, it seems that autophagic flux regulation and its
counterbalance of the apoptosis pathway is a crucial aspect
during megakaryopoiesis (132). Interestingly, TPO stimulation
results in TPO-Receptor internalization and targeting to the
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autolysosome for degradation (133, 134). Besides the canonical
ER-Golgi route, the receptor traffics to the membrane through
secretory autophagy (133, 134). Based on these studies, steady-
state megakaryopoiesis and thrombopoiesis may be maintained
by MAPK activation, which in turns targets the TPO receptor to
autolysosomes and thus decreases TPO sensitivity in MPPs.
However, an increase in p62 and thus disruption of the
autophagic flux is observed (129), indicating that TPO could
increase autolysosome formation but not necessarily
degradation, thus favoring secretory autophagy. TPO activation
of MAPK signaling may be promoting autophagy and therefore
reducing TPO sensitivity; however, sensitivity could increase
through secretory autophagy mediated by BECN1, ATG2B,
and GSKIP (Figure 3). Therefore, the balance between
degradative and secretory autophagy may play a key role in
TPO sensitivity and steady-state megakaryopoiesis.

Further demonstrating the dependence of the autophagic
pathway in steady-state megakaryopoiesis, VPS34, a protein
required at the “nucleation stage”, is implicated in MK
migrat ion, Demarcat ion Membrane System (DMS)
development, pro-platelet formation and platelet release (135,
134). Although rapamycin strongly inhibits polyploidization and
pro-platelet formation (130, 137), hematopoietic lineage-specific
Atg7 deletion demonstrated that the autophagy machinery is
necessary for thrombopoiesis (138). Atg7 deletion not only
impaired autophagy but also megakaryopoiesis, MK
differentiation and thrombopoiesis. In particular, Atg7
knockout (KO) mice presented fewer platelets and failed to
maintain hemostasis (138). In contrast, a separate study using
Atg7f/f; PF4-Cre mice failed to demonstrate a role for Atg7 in
thrombopoiesis (139). Differing results may be explained by HSC
relying exclusively on ATG7-dependent autophagy; however,
differentiated cells may trigger compensatory non-canonical
signaling pathways (140). Given the role of Atg7 in the
initiation of canonical autophagy, this process appears to be
crucial for both MK and platelet production and function.

Under stress conditions such as injury and infections,
platelets are rapidly consumed, representing a high risk for
health. Inflammatory signaling leads to a 10-fold increase in
platelet production and platelet size (141). As shown in Figure 3,
the regulatory mechanism of thrombopoiesis is mainly attributed
to IL-6 promoting TPO secretion from the liver (142). However,
inflammatory signaling could have a more direct effect as STAT3
activation is required for MKP expansion, MK maturation, and
platelet production in a TPO independent fashion (143). Further
mechanisms may involve the potentiation of megakaryopoiesis
through TLR-mediated activation of quiescent stem-like MK-
committed progenitors and IL1a driven MK rapid cytoplasmic
fragmentation (144, 145). While autophagy regulation by
inflammatory stimuli is well studied (42, 97), to our
knowledge, there are no reports to date implicating autophagy
in inflammation-mediated thrombopoiesis.

Taken together, published data strongly suggest the relevance of
the autophagic process during steady-state megakaryopoiesis.
Interestingly, autophagic activity may vary between stages of
commitment and differentiation and may be involved in TPO
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sensitivity and pro-platelet production in steady-state
thrombopoiesis. The relationship between autophagy and
inflammatory signaling, as well as the existence of inflammatory
induced thrombopoiesis, raises the question if these processes are
connected. Further studies are required to clarify the role of
autophagy during megakaryopoiesis and thrombopoiesis.

Crosstalk Between Coagulation Cascade
and Autophagy During Platelet Activation
Despite being a developing field of research, the machinery and
cellular structures of autophagy have been identified to be
Frontiers in Oncology | www.frontiersin.org 793
present and operative in platelets, indicating that platelets
undergo basal autophagy much like nucleated cells.
Autophagosome-like structures in platelets were first described
during the 70s (146) and recently confirmed by super-resolution
microscopy (147). Furthermore, the presence of autophagy-
related structures and proteins are also evidenced in resting
platelets (139, 147–150). Starvation or rapamycin treatment
increases the autophagy in platelets in an ATG5-dependent
fashion, which is reversed by 3-MA (151, 152). Although still
under study, the physiological relevance of autophagy in platelets
appears to be related to their activation. Firstly, autophagy can be
FIGURE 3 | Autophagy regulates megakaryopoiesis and thrombopoiesis. Hematopoietic stem cells give origin to megakaryocytes (MKs) through megakaryopoiesis
by a succession lineage commitment steps, followed by a maturation process. TPO is the main growth factor regulating steady-state megakaryopoiesis and
thrombopoiesis, which bind to the Thrombopoietin receptor (Mpl). Autophagic regulation of the Thrombopoietin receptor plays a key role in steady-state
megakaryopoiesis. ATG7, ATG2B, and GSKIB are necessary for megakaryopoiesis, while BafA1, CQ and rapamycin have an impact at different steps of the
differentiation process. Furthermore VPS34 is also necessary for MK maturation. Inflammatory signaling through TLR/NFkB pathways promotes the differentiation of
quiescent MKP–like stem cells into megakaryocytes during emergency megakaryopoiesis and thrombopoiesis upon injury. Importantly, cancer increases systemic
levels of TPO, IL-1a, IL-6, SCF, VEGF-A, and DAMPs that could not only enhance steady state thrombopoiesis but also emergency megakaryopoiesis and
thrombopoiesis. The regulation of autophagy during megakaryopoiesis and thrombopoiesis still requires further investigation. For more information please refer to
text. ATG, Autophagy-Related Gene; BafA1, Bafilomycin A1; BECN1, Beclin-1; CQ, Chloroquine; DAMPs, Damage-Associated Molecular Patterns; IL-1a, Interleukin
1 alfa; IL-6, Interleukin 6; MAPK, Mitogen-Activated Protein Kinase; PI3K, Phosphatidylinositol 3-Kinase; STAT, Signal transducer and activator of transcription 3;
Thrombopoietin, TPO; VPS, Vacuolar Protein Sorting; 3-MA, 3-methyladenine; SDF-1, stromal cell-derived factor 1.
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induced during platelet activation by hemostatic agonists (139,
151). Secondly, defective platelet activation has been reported in
Atg7-, Atg5-, Becn1-, Vps34- knockout mice (135, 139, 153).

Platelet activation occurs upon collagen binding to platelet
glycoproteins (such as GPVI), thrombin engagement of PARs,
and ADP activation of P2X receptors [reviewed in (154)].
Activation of these pathways triggers positive feedback, with
platelets releasing their granules containing more agonists such
as prothrombin, ADP and among other growth factors (Figure
Frontiers in Oncology | www.frontiersin.org 894
4). In parallel, integrins are upregulated on platelet membranes,
allowing platelet aggregation and ultimately clot formation (155).
Noteworthy, is that Becn1 KO and platelet specific Vps34 KO
mice display defective collagen-induced platelet aggregation,
adhesion and thrombus formation (136, 152, 153). This
association still needs further investigation as Becn1 is also
dampened in ECs, among other cells relevant for hemostasis.

Interestingly, platelet specific Vps34 KO showed impaired
thrombus formation in two independent studies, indicating that
FIGURE 4 | Coagulation cascade and autophagy crosstalk in platelet activation and cancer-associated thrombosis. Platelet agonists such as thrombin, ADP and
collagen can increase autophagic flux, which is necessary for efficient platelet activation. PAR activation and P2Y engagement activate the PLC-PKC-Ca2+ signaling,
which has been shown to increase platelet autophagic flux during platelet activation, possibly through CAMKKB. Additionally, autophagy proteins such as BCN1,
VPS34, ATG7, ATG5, and VAMPs have been shown to be necessary for platelet activation, cargo packing and granule secretion. Tumors increase systemic
inflammation and locally generate both hypoxia and nutrient deprivation, which cannot only promote platelet activation but also autophagy through JNK and AMPK
activation, and mTORC1 inhibition. Pro-inflammatory signaling through increased levels of extracellular TNFa, IL-6, and IL-8, which are frequently elevated in cancer
patient serum samples, is involved in both platelet activation and possibly modulating platelet autophagy. ADP, adenosine diphosphate; AMPK, AMP-activated
protein kinase; ATG, autophagy-related proteins; BECN1, Beclin-1; CAMKKB, calcium/calmodulin-dependent protein kinase kinase 2; CVX, convulxin; DAMPs,
Damage-Associated Molecular Patterns; FVII, Factor VII; FX, Factor X; FXa, activated FX; GPVI, Glycoprotein VI; IL-6, Interleukin 6; IL-8, Interleukin 8; JNK1, c-Jun
N-terminal kinase 1; LC3, microtubule-associated protein 1A/1B-light chain 3; mTORC1, mammalian target of rapamycin complex 1; oxLDL, Oxidized low-density
lipoprotein; PAR, protease activated receptor; PE, phosphatidylethanolamine; PI3K, phosphatidylinositol 3-kinase; PKC, Protein kinase C; PLC, Phospholipase C;
TF,Tissue Factor; TNFa, Tumor Necrosis Factor a; VPS, vacuolar protein sorting; VAMP, Vesicle associated membrane proteins.
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platelet VPS34 is necessary for the clotting process (133 153).
Accordingly, thrombin or C Reactive Protein (CRP) treatment
significantly increases VPS34 dependent PI3P production in
platelets while in Vps34−/− platelets and human platelets
treated with 3-MA displayed impaired responses to thrombin,
collagen and ADP (133). Furthermore, Vps34−/− platelets
displayed impaired aggregation, dense granule secretion and
decreased levels of Syk and PLCg2 phosphorylation (153). In
line with these findings, 3-MA impaired human platelet
activation in response to Convulxin (a GPVI agonist) and
thrombin, suggesting involvement of VPS34 in platelet
activation downstream of PARs and GPVI (153). Although
Vps34−/− platelets showed reduced mTOR signaling and
increased LC3-II levels, the authors of this study did not
demonstrate an association between autophagy and platelet
activation (153). Alternatively, they proposed that VPS34
promotes PI3P–guided NADPH oxidase assembly and
subsequent ROS generation, supporting PAR- and GPVI-
mediated platelet activation (153). However, a separate study
showed an increased rate of secretion in response to platelet
agonists in VPS34-deficient platelets ex vivo and underflow
conditions (133). Moreover, under arterial flow, VPS34-
deficient platelets display an inefficiency in recruiting
circulating WT platelets to the growing thrombus (133). These
authors proposed that VPS34 production of PI3P contributes to
the spatiotemporal regulation of granule secretion, possibly by
recruitment of intracellular proteins that regulate granule fusion
and secretion (133). Interestingly, ROS production in platelets
suppresses the downstream activity of the PI3K/AKT/mTOR
signaling pathway promoting autophagy and consequently
exacerbating platelet aggregation (156). These observations
raise the possibility that VPS34 mediation of ROS production
may promote autophagy and subsequently platelet aggregation;
however, this hypothesis still needs to be tested.

Interestingly, 65% of mice with a platelet specific deletion of
Atg7 (Atg7f/f;PF4-Cre/+) were unable to arrest bleeding 10 min
after tail transection despite no significant effects on platelet
counts or volumes (139), further demonstrating that selective
autophagy is an aspect for platelet activation. In the same line, it
has been proposed that Atg5 enables mitophagy in platelets,
which is a requirement for correct platelet activation (157).

The concept that autophagy could be promoted downstream
of platelet agonist signaling, and that in turns regulates platelet
activation, is supported by the observation that autophagy
inhibitors block platelet aggregation and adhesion. Pre-
incubation of platelets with 3-MA, BafA1 or CQ is shown to
inhibit Collagen I (COL1)- and thrombin-stimulated aggregation
(151). Interestingly, thrombin reduces LC3II levels, indicating an
increase of the autophagic flux upon platelet activation (139).
Similarly, a PAR1 peptide and ADP both mediated a reduction in
LC3II (139). LC3II reduction requires degradation through
canonical autophagy which is mediated by key downstream
elements of platelet activation signaling cascade, including
phospholipase C, protein kinase C, Ca2+, and Src-family
kinases, as shown in Figure 4 (139) Although Src-family
kinases seem to be upstream of LC3II increase in platelets, the
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specific mechanism has yet to be elucidated. On the other hand,
extrapolating mechanisms reported in other cell types, Ca2+ may
promote autophagy through CAMKKb/AMPK/mTOR signaling
(158). Hence, GPCR mediated platelet activation and subsequent
increase in [Ca2+]i could promote autophagy through this
pathway (Figure 4). However, AMPK-independent Ca2+

regulation of autophagy has also been described (159). Thus,
the possibility exists that Ca2+ promotes autophagy through a
different mechanism.

The evidence of autophagy in resting platelets and, more
importantly, of an increased autophagic flux regulation during
platelet activation, clearly points to crosstalk between platelet
agonists and autophagy and strongly suggests that autophagy is
essential for coagulation. Furthermore, deficiency in key
mediators of autophagosome formation such as VPS34 and
ATG7 are associated with secretion and packaging of platelet
granules, a fundamental aspect in thrombus formation. Taken
together, platelet agonists signaling through PARs and GPVI
could activate the autophagy signaling machinery, potentially
mediated by Ca2+ and Src signaling, to promote autophagosome
formation, which in turn promotes efficient granule packing and
secretion (Figure 4).
Autophagy Implication in Cancer-
Associated Thrombocytosis Through the
Regulation of Platelet Production and
Activation
It is established that thrombocytosis at diagnosis correlates with
enhanced tumor invasion, metastasis, and poor prognosis in
several solid cancers. Mean platelet volume was recently
proposed as a diagnostic biomarker for lung cancer (160),
while platelet counts have been correlated with stage and
survival in melanoma patients, were thrombocytosis at
diagnosis was significantly associated with distant metastasis
(161). The current line of thought is that tumors benefit from
thrombocytosis through platelet interaction with the CTCs, the
latter encapsulating the tumor cells protecting them from NK
cells and promoting the maintenance of an epithelial to
mesenchymal transition (EMT) state (119, 162–165).

Altered platelet production in cancer could be explained by
inflammation-mediated thrombopoiesis. A hypothesis is that
tumor production of IL-6 promotes megakaryopoiesis via
hepatic TPO, leading to thrombocytosis (142, 166). However,
other plasmatic thrombopoietic cytokines such as Stem Cell
Factor (SCF), Interleukin 1 alpha (IL-1a), Tumor Necrosis
Factor alpha (TNF-a), stromal cell-derived factor 1 (SDF1),
and Vascular Endothelial Growth Factor A (VEGF-A) are
increased in cancer patients, providing alternative pathways for
thrombopoiesis that could be independent or complementary to
the IL-6/TPO axis. The SDF1a-CXCR4 axis is independent of the
TPO/Mpl axis in murine models (167). Moreover, VEGFR1
promotes MKP maturation, possibly through CCXR4 up-
regulation, leading to increased platelet counts in vivo (168,
169). Likewise, VEGFR2 activation increases MK proliferation,
survival and differentiation (170).
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Moreover, it has been reported that quiescentMKPs can rapidly
differentiate into mature MKs and replenish platelet counts in
response to inflammatory stimuli (144). This may be triggered by
malignant signaling, as Toll-Like Receptor (TLR) activation is
implicated in both hematological and solid tumors (171). As
previously discussed, autophagy inhibition in early megakaryopoiesis
appears to impair MK maturation, reduce platelet formation, and
affect platelet function. Although many of the thrombopoietic
cytokines such as TPO, IL-6, TNF-a, and VEGF have been
associated with autophagy in MK or other cell types (131, 172) it
remains unknown if, through deregulation in cancer, autophagy is
central to promoting platelet production and thus sustaining a
vicious cycle between malignancy and thrombopoiesis.

Suggesting that platelet autophagy is somehow deregulated in
cancer, Lewis et al. described an increase in autophagosome-like
structures in platelets from cancer patients (146). In malignancy,
an obvious path for platelet autophagy regulation and platelet
activation is the deregulation of the coagulation-signaling
cascade. As previously discussed, platelet agonists such as
thrombin, ADP and collagen can increase autophagic flux
which is necessary for efficient platelet activation. Pro-
inflammatory cytokines such as TNFa, IL-6, and IL-8, which
are frequently elevated in cancer patient serum samples (173),
are also involved in both platelet activation and autophagy.
TNFa was shown to promote the platelet activation
independently of platelet agonists, increasing TF expression,
thrombin generation and subsequent clot formation (174).
Other pro-inflammatory cytokines such as IL-6 and IL-8 and
NF-k B activation can also promote platelet activation (175, 176).
TLR, TNFa, NF-kB, and JAK/STAT signaling pathways have
been widely reported to regulate autophagy (42, 172, 177);
however, this has yet to be evaluated in platelets.

ROS regulates autophagy in various cells by modulating the
PI3K/AKT/mTOR pathway, and recent studies show that this is
also true in platelets (156). High blood levels of oxidized LDL
(oxLDL) have been reported in cancer patients and associated
with metastasis in breast, ovarian, gastric and prostate cancer
(178–180). Noteworthy, these cancers are also associated with a
higher risk for thrombosis (181). ox-LDL can increase platelet
activation in a VPS34 dependent manner, suggesting the
involvement of the autophagy process (156). In line with these
findings, the Oxidized low-density lipoprotein receptor 1 (LOX-
1), recognizes and binds activated platelets assisting in the
formation of a thrombus (182).

Furthermore, a separate study revealed that autophagy was
activated in plate lets through an oxidative stress-
induced JNK pathway, which was evidenced by increased co-
localization of LC3II with the Lysosomal Associated Membrane
Protein 1 (LAMP1), suggesting enhanced autolysosome
formation, after hydrogen peroxide treatment (152). It was also
observed that mitophagy reduced phosphorylated p53, thus
preventing apoptosis, and conversely the absence of mitophagy
resulted in increased thrombosis (152). In this way, tumor
micro-environmental cues such as ROS could alter platelet
selective autophagy of mitochondria and thereby regulate
platelet activation and thrombus formation.
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Taken together, tumor-derived soluble factors could promote
thrombopoiesis and potentially deregulate autophagy in
hematopoietic progenitors and MKs. TME factors may regulate
autophagy and subsequent platelet activation, furthermore, a
high coagulative state and platelet-derived factors may promote
tumor growth, metastasis and chemotherapy resistance.
COAGULATION AND AUTOPHAGY
CASCADE IN CANCER CELLS

TF and its protease products, such as Thrombin and FXa, are
associated with cancer progression and cancer-related
thrombosis (15, 20, 119, 183). Furthermore, this association
may not be solely related to TF expression in the primary
tumors as results have now shown that circulating
microparticles carrying TF are 16- to 26-fold higher in
pancreatic cancer patients with thrombosis when compared to
healthy controls (183). There is emerging evidence that there is
an involvement of the autophagy cascade in the mechanism
controlling and promoting cancer progression and cancer-
related thrombosis (23, 184). Proteins of the autophagy
pathway are associated with cancer cell chemotherapy and
radiation sensitivity through the alleviation of cellular stress
and the dampening of apoptosis. Somewhat paradoxically,
BECN1 has been postulated as a tumor suppressor due to its
role in regulating p53 stability (185). As already mentioned,
mTORC1 is the master negative regulator of the autophagic
pathway and plays a critical role in cancer cell growth and
progression (186, 187). Due to insufficient vascularization,
tumors experience nutrient deprivation and hypoxia (188–
190). In this scenario, mTORC1 may act as a restriction point
between proliferation and differentiation (191). A hypoxic
microenvironment also leads to an increase in both TF and
FVII, correlating with tumor progression, local invasion, distant
metastasis and therapeutic resistance (192).

As shown in Figure 5, thrombin mediated-PAR1 activation
signals through PI3K/AKT/mTORC1 and activates Hypoxia-
Inducible Factor-1 alpha (HIF-1a) (193), a well-known
mediator of tumor survival, EMT, angiogenesis, and metastasis
(193–195). Activation of PAR2 also leads to the downstream
activation of the PI3K/AKT signaling pathway, promoting cell
migration and invasion in both oral squamous and renal cell
carcinoma (196, 197). In accordance, activation of both PI3K-
AKT and mTORC1 signaling pathway by TF-FVIIa-Xa complex
mediated by PAR1 and PAR2 has been associated with enhanced
cell migration in a human breast cancer cell line (198, 199).
Furthermore, recombinant TF, recombinant FVII or a PAR2
agonist upregulated mTORC1 signaling pathway in a
hepatocellular carcinoma cell line (23). Moreover, levels of the
autophagic marker LC3-II and the coagulation proteins TF, FVII
and PAR2 were inversely correlated in human hepatocellular
carcinoma tissues (23), suggesting a possible role of the
coagulation pathway on autophagy suppression in cancer. In
further accordance with an interaction between PAR signaling
and autophagy, it was reported in human kidney tubular
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epithelial cells that PAR2 acting through the PI3K/AKT/mTOR
pathway suppressed the process of autophagy, by affecting ATG5
and ATG12, and thus decreasing autophagosome formation
(24). Additionally, downregulation of autophagy is associated
with enhanced secretion of inflammatory mediators, such as
IL-1b, TNF-a, and Monocyte Chemoattractant Protein-1
(MCP-1) (24). The aforementioned data suggest that activation
of PAR2 by TF-FVII-Xa suppresses the autophagic pathway in
a PI3K/AKT/mTOR-dependent manner (184), contributing to
the generation of an inflammatory microenvironment that may
lead to increased cancer cell migration and invasiveness. In this
way, PAR signaling could directly promote tumor growth.

Interestingly, allograft models indicate that PAR1 promotes
tumor growth by mediating immune escape. Tumor depletion of
TF or PAR1 in allograft studies showed that CD8+ T cells effectively
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eliminated Par1 KO cancer cells in immune-competent mice (21).
Similarly, in a separate study, cancer cell derived-extracellular vesicles
and tumor-released autophagosomes (TRAPs) mediated immune
escape by T cell suppression. In particular, these vesicles induced
autophagy and activation and polarization of neutrophils and
macrophages into an anti-inflammatory phenotype that promoted
tumor growth and immune escape in a Programmed Death-ligand 1
(PDL-1) dependent fashion (200, 201). Furthermore, blockade of
autophagy in tumor cells promoted the switch of macrophages into
the anti-tumor M1-like phenotype and restored immune function of
tumor-infiltrating lymphocytes (TILs) (201). A tempting hypothesis
would be that PAR signaling mediates the secretion of TRAPs
through autophagy regulation, thus promoting secretory
autophagy while decreasing degradative autophagy, which may
promote both cancer cell survival and immune escape.
FIGURE 5 | Crosstalk of the coagulation cascade and autophagy pathway in cancer cells. The activation of PAR1 and PAR2 by coagulation factors suppresses the
autophagic pathway in an mTORC1-dependent manner. mTORC1 upregulates HIF1-a and miR135, both implicated in cancer and in autophagy regulation. PAR1
activation leads to Cx-43 up-regulation, which may impair autophagy by sequestering ATG16L and the PI3KC3 complex to the membrane. In turn, the autophagic
pathway mediates PAR1 degradation. Additionally, PAR4 selective stimulation downregulates proteins associated with chaperone-mediated autophagy. Therefore,
autophagy suppression by PARs activation leads to increased pro-inflammatory microenvironment and enhanced cancer progression and metastasis. Moreover, the
autophagy secretory pathway participates in TRAPs release, which suppress anti-tumor immune response and thereby facilitate tumor progression. See the text for
additional information. Cx-43, Connexin 43; EMT, Epithelial to Mesenchymal Transition; ERK, Extracellular-signal Regulated Kinase; FVII, Factor VII; FX, Factor X; FXa,
activated FX; HIF1-a, Hypoxia-Inducible Factor-1; LC3, microtubule-associated protein 1A/1B-light chain 3; MEK, mitogen-activated protein kinase; MCP1,
monocyte chemoattractant protein 1; Monocyte mTORC1, mammalian target of rapamycin complex 1; PAR, protease-activated receptor; PI3K, phosphatidylinositol
3-kinase; TAM, tumor-associated macrophage; TF, tissue factor; TRAPs, tumor cell-released autophagosomes.
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While extracellular vesicles may allow intercellular
communications throughout the body, direct communication
between tumor cells and ECs mediated by connexins may also be
critical to tumor cell extravasation at a potential metastatic site
(202). Connexin 43 (Cx-43) has been reported as an obstacle and
a promoter of cancer progression. As examples, Cx-43 may
obtain tumor suppressor gene status as its loss contributes to
metastasis (203–205). Conversely, expression of Cx-43 has also
been shown to enhance tumor metastasis through increased
attachment and communication with the vascular endothelium
(Figure 5) (206–209). In metastatic melanoma cell lines, PAR1
silencing decreased Cx-43 expression as well as cancer cell
attachment to ECs and extravasation, suggesting that PAR1
contributes to invasion and metastasis via regulation of Cx-43
(210). However, it should be noted that most connexins are
characterized by a rapid turn-over mediated by different
degradation pathways, including autophagy, where p62 served
as a cargo-recognition factor, forming a bridge between
ubiquitinated Cx-43 and LC3, thereby leading it ’s to
degradation (211–213). In turn, connexins might negatively
regulate the autophagic process at initial stages (214). As
represented schematically in Figure 5, Cx-43 may recruit
ATG16 and the PI3K-complex to the plasma membrane,
limiting their availability and capacity for regulating autophagy
(212). Thus, Cx-43 up-regulation induced by PAR1 could impair
autophagy leading to enhanced migration and invasion
in cancer.

Furthermore, PAR4 is also associated with cancer
development (215), and its activation in esophageal squamous
cell carcinoma (ESCC) leads to the downregulation of proteins
associated with chaperone-mediated autophagy, such as the Heat
shock protein family A (Hsp70) (216). This evidence strongly
suggests that PARs activation mediates cancer progression by
regulating signaling pathways associated with the autophagy
process (Figure 5).

MicroRNAs (miRNAs) are now widely reported to play
critical roles in the modulation of autophagy in cancer cells
and as potential markers for cancer detection (217, 218). It is
thus unsurprising that an association exists between coagulation-
mediated autophagic suppression and tumor malignancies
involving miRNAs participation (25). Huang and collaborators
observed in hepatocellular carcinoma tissues that elevated levels
of both miR-135a and FVII were associated with tumor stage,
recurrence, microvascular invasion, and decreased disease-free
survival (Figure 5) (25). Moreover, in Hep3B cells treated with
recombinant TF, FVIIa, or a PAR2 peptide agonist, the
expression levels of miR135a were increased. They further
demonstrated that expression of this miRNA was dependent
on mTOR levels and that miR-135a acts as a downstream effector
of PAR2 activation, abrogating the autophagic process in an
mTOR dependent manner (25). In the same line, in breast cancer
cells, miR-142-3p inhibits autophagy by targeting HMGB1 (219),
which can be delivered by platelets and is associated to
autophagy in other cell types (220). Platelet-derived exosomes
contain miR-126 (221), which inhibition enhances autophagy as
determined by LC3-II increased and p62 decreased protein levels
Frontiers in Oncology | www.frontiersin.org 1298
in ESCC (222). These few examples demonstrate that miRNAs
secreted by the coagulation through the release of platelet
exosomes may impinge on autophagy-related pathways and
mediate cancer cell progression. Thus, future investigation
should seek to evaluate the interplay between coagulation,
autophagy and microRNA in the same biological models.
COAGULATION CASCADE AND
AUTOPHAGY IN THE TUMOR
MICROENVIRONMENT

The tumor microenvironment (TME) plays a principal role
during tumor growth and metastasis. Within the tumor, ECs,
immune cells and stromal cells alter their phenotype into a
tumor-promoting state through secretion of growth factors and
cytokines that sustain cancer cell survival and proliferation, while
dampening the immune response. Interestingly, all these cells are
subjected to stressors generated by cancer cells, such as glucose
deprivation, hypoxia and inflammatory signaling; thus,
autophagy plays a central role in the regulation of the TME.
The TME is also a source of pro-thrombotic proteins, such as TF
and FX, and thus in the subsequent section we will discuss how
the interplay between the coagulation and autophagy cascades
could maintain and promote tumor growth.

Coagulation Cascade and Autophagy in
the Tumor Endothelium
During metastasis, cancer cells acquire an invasive phenotype
and detach from the primary tumor and enter the bloodstream in
a process called intravasation. Subsequently, cancer cells migrate
out of the bloodstream by the process of extravasation and
establish metastatic foci at distant organs (223). Fundamental
to both these processes is endothelial permeability, which is
promoted by the coagulation factors thrombin and FXa (15,
224). Interestingly, recent studies have shown that autophagy is
involved in thrombin-induced endothelial dysfunction.
Thrombin promotes VE-cadher in disassembly and
degradation, allowing endothelial hyper-permeability in
through BECN1 (225). Likewise, in vitro knockdown of Atg5
inhibited thrombin-induced actin stress fiber formation and VE-
cadherin loss at the cell surface, thus preventing endothelial
barrier dysfunction (226). Furthermore, pharmacological
inhibition of autophagy with 3-MA, BafA1, or CQ can
abrogate thrombin-induced hyperpermeability (227). Thus, in
response to thrombin, VE-cadherin degradation through
autophagy may lead to vessel hyperpermeability, as shown in
Figure 6.

Poor vascular integrity contributes to the TME. Thrombin
induces macrophage migration Inhibitory Factor (MIF)
secretion from ECs, and the process of autophagy is involved
in MIF-mediated endothelial hyperpermeability. Chao and
colleagues showed that blocking autophagy attenuated
thrombin-induced hyperpermeability in EC lines. Furthermore,
blocking of autophagy or MIF effectively alleviated vascular
leakage (227). These data suggest that endothelial permeability
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modulated by coagulation factors is dependent on autophagy
(Figure 6), although further studies are required to evaluate these
processes in the context of cancer.

How coagulation factor signaling pathways interact with
autophagy is still an open question. However, upon ECs we
know that thrombin binding to PAR1 initially induces Ca+2

mobilization through activation of the Gq/11-phospholipase C
pathway and members of the transient receptor potential
canonical (TRPC) family of channels (228, 229). This raise in
[Ca2+]i activates CaMKKb, which in turn, activates AMPK (228,
230, 231). Hence, it is tentative to suggest that activation of PARs
by coagulation factors induce AMPK activation and thus initiate
autophagy (Figure 6).

Within ECs, the autophagy machinery is associated with vWF
and P-selectin secretion in autophagic vacuoles (106, 232, 232).
The primary function of vWF is to create a cell-surface adhesion
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site for coagulation factor VIII or platelet adhesion (among other
proteins) at the endothelium membrane. Upon vascular damage,
secretory granules called Weibel-Palade Bodies (WPBs), which
contain thrombosis promoting factors, are assembled into chains
that bind to adjacent connective tissue and in turn trap
circulating platelets (234). Notably, Torisu et al. showed that
autophagosomes contain vWF and that pharmacological
inhibition of the autophagy or knockdown of Atg5 or Atg7
inhibits vWF secretion (106). Accordingly, EC-specific KO of
Atg5 or Atg7 increased mice bleeding time (106). However, the
size and composition of thrombus did not vary in EC specific
Atg5-KO mice (235). Moreover, the secretion of vWF and P-
selectin in response to the ox-LDL pro-thrombotic stimulus is
associated with a decrease in Sirt1/FoxO1 signaling, and
therefore autophagic flux. Moreover, the increased release of
vWF and P-selectin is mediated by the inhibition of the Sirt1/
FIGURE 6 | Crosstalk between the coagulation cascade and autophagy on tumor-associated endothelial cells. Thrombin-induced endothelial hyperpermeability and
endothelial secretion of thrombosis-promoting factors are dependent on autophagy. Activation of the coagulation cascade and PAR1 induces an increase in
intracellular Ca+2, which allows activation of AMPK by CaMKKB. Thus, the activation of AMPK induced by PARs could induce autophagy. Disassembly and
degradation of VE-cadherin and the formation of actin stress fibers promoted by thrombin through autophagy could allow endothelial hyperpermeability. The
secretion of vWF and P-selectin is mediated by the secretory pathway autophagy. Autophagosomes contain vWF and allow its release from endothelial cells. The
secretion of vWF and P-selectin stimulated by ox-LDL is mediated by the inhibition of Sirt1/FoxO1 signaling by preventing fusion of autophagosome with lysosome.
These factors allow adhesion of cancer cells and platelets to the endothelium, thus promoting cancer-related thrombosis and metastasis. FVII, factor VII; FX, factor X;
FXa, factor X activated; TF, tissue factor; PAR1, protease-activated receptor 1; TRPC, transient receptor potential canonical; PLC, phospholipase C; PKC, protein
kinase C; CaMKKB, calcium/calmodulin-dependent protein kinase kinase B; AMPK, AMP-activated protein kinase; mTORC1, mammalian target of rapamycin
complex 1; VE-cadherin, vascular endothelial cadherin; vWF, von Willebrand factor; WBP, Weibel-Palade bodies; Sirt1, sirtuin 1; FoxO1, forkhead box protein O1;
ox-LDL, oxidized low-density lipoprotein.
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FoxO1 pathway that depresses the fusion of the autophagosome
with the lysosome, thus favoring the secretion of these factors
(Figure 6) (232).

Interestingly, it has been observed in cervical and breast
cancer cell lines that decreased autophagosome-lysosome
fusion is associated with increased release of extracellular
nanovesicles, suggesting that extracellular secretion might
provide a supplementary pathway to maintain cellular
homeostasis when the autophagy degradative pathway is
damaged (109). Moreover, extracellular vesicle secretion may
contribute to tumor progression and metastasis (110, 111).
Indeed, exosome secretion is shown to be essential for
directional and efficient migration of HT1080 fibrosarcoma
cells (236). Thus, these examples suggest a possible crosstalk
between degradative and secretory autophagy pathways to
maintain cellular homeostasis and tumor cell survival (99).

Within the TME, endothelial autophagy regulation of
coagulative factors may contribute to cancer progression and
cancer-related thrombosis. Cancer cells promote the secretion of
WPBs and vWF from ECs (237, 238) and elevated plasmatic
vWF correlate with tumor grade and metastasis (239). Moreover,
vWF secretion has been reported to contribute to the process of
EMT (240), the secretion of pro-inflammatory cytokines, and
vascular permeability (234). Several studies show vWF-
dependent cancer cell adhesion to the endothelium is mediated
by integrin receptors and facilitates extravasation during
metastasis (239, 241–243). It is tempting to speculate that
autophagy plays a central role in mediating cancer-related
thrombosis and metastasis by regulating vWF release from the
activated endothelium.

Autophagy also possesses a role in the constitutive recycling
of PAR1, a pivotal process to maintain the receptor pool and
enable re-sensitization to its potential coagulation cascade
agonists. Rab11A and Rab11B are involved in autophagosome
formation by regulating membrane transport from recycling
endosomes (52). Grimsey and collaborators found that under
basal conditions PAR1 is constitutively internalized and recycled
back to the cell surface by a Rab11B-dependent pathway,
whereas Rab11A regulates PAR1 basal lysosomal degradation
(244). Interestingly, when recycling is disrupted in Rab11B-
deficient cells , PAR1 is sorted from endosomes to
autophagosomes and subsequently degraded in autolysosomes,
in a Rab11A and ATG5 dependent manner (244). These results
support a role for Rab11A in PAR1 basal autophagosomal-
lysosomal sorting. Consistently, in EC cell lines, Rab11-B
depleted cells showed decreased expression of PAR1, as a sign
of its increased degradation. Conversely, in Rab11A deficient
ECs, PAR1 protein expression was elevated. Thus, Rab11B and
Rab11A serve distinct functions and regulate PAR1 recycling or
basal autophagic/lysosomal degradation, respectively (244).

Autophagy may regulate the signaling pathways of different
coagulation factors and their appropriate cellular responses in
ECs by altering the recycling and endosomal sorting of PAR1 as
well as in pro-thrombotic factors release. Furthermore, the pro-
inflammatory, hypoxic and nutrient-starved state of the TME
may deregulate EC autophagy, promoting coagulation and in
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turn paving the way for metastasis. Further experimental
approaches should be applied to confirm this hypothesis.

Coagulation Cascade and Autophagy
Regulate Myeloid Cell Polarization Within
the Tumor Microenvironment
Autophagy and inflammation work synergistically in the TME to
facilitate tumor growth and metastasis (245). Within the TME,
monocytes and macrophages are essential sources of
extravascular FX and TF. Notably, the synthesis of FX myeloid
cells determines the Tumor-Associated Macrophage (TAM)
phenotype (20). Inhibition of FXa-PAR2 signaling causes
reprogramming of TAMs and attenuates the recruitment of
immunosuppressive neutrophils and regulatory T cells
promoting anti-tumor immunity (20). Coagulation factors
could facilitate invasion and metastasis by transforming
monocytes and macrophages into TAM-like cells. In the same
line, monocytes and macrophages treated with FXII exhibited
polarized M2 phenotypes with up-regulation of CD163, IL-10,
IL-8, CCL18, CCR2, and CXCR2 (246). It has been reported that
FXII and FXIIa upregulate neutrophil functions, contributing to
macrophage polarization and T-cell differentiation that may
contribute to cancer progression [Reviewed in (247)].
Furthermore, epithelial ovarian cancer cells exposed to
conditioned medium from FXII-stimulated monocytes/
macrophages showed increased invasive potential (246). In the
same way, TF-FVIIa complex produced CD14 and CD163 up-
regulation in monocytes in addition to an increase in the
expression of IL-10, IL-8, TNF-a, CXCR2, and CCR2 (248).
Moreover, co-cultures of epithelial ovarian cancer cells with TF-
FVIIa stimulated monocytes increased the invasive potential
(248). Additionally, THP-1 human monocytic cell line
stimulated with TF or FVIIa displayed an M2-like phenotype
with high levels of IL-4, IL-10, TGF-b, and TNF-a. Gastric
cancer cells co-cultured with TF-stimulated TAMs also showed
increased migration and invasion (249). These TF-stimulated
TAMs induced VEGF and MMP-9 expression, which could
promote the invasive potential and angiogenesis (249).
Furthermore, co-cultivation of TF-expressing cancer cell lines
with human monocytes stimulated invasive capacity, an effect
inhibited by a TF neutralizing antibody (250). In non-small cell
lung cancer patients with lymph node metastasis, there are
reported higher levels of monocyte TF mRNA, which correlate
with overall survival (251).

Interestingly, Graf et al. showed that PAR2 signaling directly
regulates TAM mediated immune-evasion (19). Given that
macrophage-specific deletion of FX prevented in vitro
macrophage polarization, these observations suggest that
coagulation factors contribute to cancer progression by
promoting the formation of TAM-like cells. Furthermore,
TAM phenotypic changes were similar in both macrophage
FX-deficient mice and PAR2 mutant mice and accompanied by
increased T cell infiltration, suggesting that PAR2 activation by
FXa impairs anti-tumor immunity (19, 20). FXa production
through TF-FVIIa leading to PAR2 activation and the
formation of the TF-FVIIa-FXa-Endothelial protein C receptor
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(EPCR) complex is essential in the TLR4-mediated innate
immune responses [reviewed in (9)]. Moreover, the TF-FVIIa-
FXa-EPCR complex selectively induces expression of the TLR3/4
signaling adaptor protein Pellino-1, the transcription factor
interferon regulatory factor 8 (IRF8) and a set of interferon
(IFN)-regulated genes (252).

Autophagy is also associated with macrophage phenotype and
activation as the AKT pathway converges both inflammatory and
metabolic signals (253). The activation of mTORC1 promotes
M1 polarization (254) and in accordance autophagy modulates
the activity of macrophages and their responses (255–257). In
general, the induction of autophagy downstream of TLR/NF-kB
promotes monocyte differentiation and M2 polarization
[reviewed in (258)]. Since the coagulation cascade also
interacts with TLR-NF-kB signaling promoting polarization
toward an M2 phenotype, it would be interesting to evaluate if
there is an interaction between autophagy and the coagulation
cascade in terms of innate immune signaling within the TME.

Coagulation Cascade, Autophagy, and
Neutrophil Extracellular Traps in the
Tumor Microenvironment and Cancer-
Associated Thrombosis
Neutrophils and platelets cooperate to enhance coagulation
(259). The release of intracellular components by neutrophils
promotes coagulation and this has been associated with
hypercoagulability and cancer-related thrombosis (260). As
clinically observed in patients with sepsis and deep vein
thrombosis, the activation of platelets can induce neutrophil
extracellular traps (NETs), which in turn potentiate platelet
aggregation (261–263). Once again demonstrating a
connection to thrombosis and cancer, NETs can also formed
under conditions of inflammation (264–267). As schematized in
Figure 7, neutrophils can translocate TF to the generated NETs,
where neutrophil elastase enhances TF pro-thrombotic activity
through the degradation of TFPI (9). Elastase is capable of
activating PAR1 and PAR2 receptors (268, 269), which may
contribute to thrombus formation by promoting platelet and EC
adhesion and activation.

Interestingly, the autophagy pathway is involved in mediating
the delivery of thrombogenic TF to NETs, thus promoting
thrombin generation and subsequent PAR-1 signaling (270).
Moreover , in neutrophi l s , the inc lus ion of TF in
autophagosomes is associated with its extracellular delivery.
Disruption of autophagy by addition of 3-MA or BafA1 can
abrogate NET release and TF trafficking, respectively (270).
Notably, autophagy-mediated NET formation has been
associated with CAT (271, 272), suggesting a potential
interaction between autophagy, neutrophils and platelets
within TME.

In line with this hypothesis, tumor-bearing mice incapable of
forming NETs display decreased platelet aggregation and
decreased circulating TF (271). Moreover, under in both in
vitro and ex vivo experimental conditions, the pre-treatment of
neutrophils with CQ inhibited NET formation (273, 274). TF,
located in acidified autophagosomes, is released into NETs upon
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neutrophils exposure to inflammatory stimuli. Furthermore, TF
from NETs can induce both thrombin generation and platelet
activation mediated by PAR1 signaling (270). These data suggest
that the release of TF through NETs could cause localized
activation of the coagulation cascade and subsequent PAR
dependent activation of platelets and ECs.

Interestingly, neutrophils from tumor-bearing orthotropic
mice have increased LC3-II expression (274). Inhibition of
autophagy with CQ or genetic ablation of the Receptor for
Advanced Glycation End-products (RAGE), a Class III MHC
protein receptor that mediates autophagy, resulted in reduced
NET formation frequency within the TME (274). Based on these
findings, Boone et al., proposed that NETs are upregulated in
pancreatic cancer through RAGE (274). In the same line of
thinking, a separate study found that, in response to platelet-
derived microparticles, neutrophils can increase autophagy,
mobilization of the granule content, enhanced proteolytic
activity, prolonged survival, and generation of NETs (275).
Neutrophil autophagy and the generation of NETs were also
blunted in the presence of a competitive inhibitor of the cytokine
mediator of inflammation HMGB1 (275). These findings are in
line with other studies showing that autophagy in the neutrophil
is essential for the NET formation, and this process is
deregulated in cancer.
TARGETING THE COAGULATION
CASCADE AND AUTOPHAGY FOR
CANCER TREATMENT

How can the knowledge of the interplay between coagulation
and autophagy be put in practice in the oncology clinic? In
truth, the axis of TF-FXa/thrombin-PAR-AKT- mTOR is
already exploited in numerous treatments such as the
rapamycin family of drugs, anticoagulants, metformin and
certain targeted therapies. VTE is a significant cause of
cancer-related death (276) and its prophylactic treatment
reduces mortality, with low molecular weight heparin (an
anticoagulant) often employed as the first-line treatment (7).
As discussed previously, anticoagulants such as low molecular
weight heparin, Rivaroxaban and Dalteparin have also
demonstrated direct effects on tumor growth, immune-
evasion and metastasis. It has already been speculated that the
specific targeting of FXa could reduce metastasis and promote
anti-tumor immunity (15, 20). It was previously reported that
exogenous FXa increases melanoma metastasis to the lung,
spleen and lymph nodes, together with an accumulation of
intra-peritoneal fluid in a syngeneic mice model (15).
Furthermore, the co-administration of the anticoagulant
Dalteparin reduced the FXa- increased lung metastasis, while
no metastasis was observed in other organs (15). A separate
study demonstrated that the targeted deletion of this
coagulation factor in myeloid cells reduced tumor progression
in animal models, adding justification for pharmaceutical
intervention in this pathway.
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Furthermore, the anticoagulant Rivaroxaban has been
demonstrated to give similar results to that of anti–PD-L1
therapy, and these two treatments were shown to synergize to
improve anti-cancer immunity. As a mechanism, the authors
propose that FXa signals through PAR2 to promote immune
Frontiers in Oncology | www.frontiersin.org 16102
evasion, an effect attenuated by Rivaroxaban through the
reprogramming of TAMs (20). Furthermore, co-treatment with
a thrombin inhibitor, Dabigatran, and cisplatin in a model of
ovarian cancer reduced tumor growth and levels of circulating
activated platelets compared to Dabigatran or cisplatin alone.
FIGURE 7 | The crosstalk between coagulation and autophagy promotes cancer-associated thrombosis and metastasis. The coagulation system is an integral part
of the multifaceted approach taken by the cancer cell to survive, propagate and ultimately exhaust the body’s capacity to function. We speculate that cancer cells
may use common mechanisms to hijack immune cells, ECs, and platelets to integrate with the coagulation system for its own end. A common mechanism present in
each of these components may be the hijacking of the autophagy pathway. At early stages, cancer cells downregulate degradative autophagy while they increase the
secretion of TRAPs, indicating a disruption in the balance of degradative and secretory autophagy. This balance is influenced by the coagulation cascade, particularly,
PAR activation. In turn, both TRAPs and PAR activation by coagulation factors FVII and FX promote macrophage polarization into a M2 phenotype (TAMs) with
enhanced suppressive capacities, reducing cytotoxic T cell responses favoring tumor growth. PARs also promote EMT, thus enabling cancer cells to invade and
intravasate. In circulation, CTCs imcrease degradative autophagy as a survival mechanism and can promote thrombogenesis through activation of the coagulation
cascade on platelets, neutrophils and ECs leading to an hypercoagulable state, that also promotes metastasis through endothelial and neutrophil activation. BafA1,
bafilomycin A1; CCL18, Chemokine (C-C motif) ligand 18; CQ, chloroquine; EMT, Epithelial to Mesenchymal Transition; FVII, Factor VII; FX, Factor X; FXa, activated FX;
IL-8, Interleukin 8; IL-10, Interleukin 10; PAR, protease-activated receptor; TAM, tumor-associated macrophage; TF, tissue factor; TGFb, Tumor Growth Factor beta;
TRAPs, tumor cell-released autophagosomes; VE-Cad, Vascular Endothelial Cadherin; NET, Neutrophil Extracellular Trap; 3-MA, 3-methyladenine.
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Interestingly, these authors demonstrated that this co-treatment
with Dabigatran promoted anti-tumor activity of cisplatin by
alleviating the immunosuppressive microenvironment. Co-
treatment significantly decreased the number of Myeloid-
Derived Suppressor Cells (MDSCs) and dendritic cells while
increasing IFN-g production by CD8+ effector T cells in
ascites (277).

Similarly, in a melanoma metastasis model FXa increases
endothelial permeability and promotes immune infiltration into
mouse lungs, and this accumulation was reduced by the presence
of the anticoagulant Daltepatin (15). These results further
support the use of direct oral anticoagulants to reduce
metastasis and favor an immune response against the tumor.
Of note is that the inhibition of FXa on metastasis may be
distinct to that of thrombin, shedding further light on the non-
coagulation related roles of these coagulation factors. These
observations also highlight the possibility that compounds may
be developed that differentially inhibit either the coagulation or
the non-coagulation actions of coagulation factors.

PARs, central proteins in the pathway connecting coagulation
and in malignancy, are already a recognized cancer target (278).
TF-mediated signaling via PAR2 has been associated with
proliferation, migration and invasion of the cancer cell, and
accordingly, the use of an anti-TF antibody has been shown to
block PAR2 activation and suppresses tumor growth while
demonstrating minimal effects on the coagulation process (279,
280). PAR inhibitors like vorapaxar, atopaxar, and PZ-128 have
undergone clinical evaluation in the oncology setting. Evidence
from metastatic breast cancer suggests that PAR1 blockade with
PZ-128 in combination with Taxotere could be beneficial.
Furthermore, a benefit may be present in dual-standard
chemotherapy regimens and PZ-128 treatment in breast and
ovarian cancers (278).

A further potential therapeutic target is oxidoreductase-
protein disulfide isomerase (PDI) that catalyzes a thiol-
disulfide exchange. In monocytes and macrophages, the
activation of the TF cascade is reported to require a thiol-
disulfide exchange and PDI (9). Liberated from both the EC
and platelets upon agonist vascular injury, the subsequent use of
PDI inhibitors could potentially attenuate platelet thrombus
formation and fibrin deposition (9). Inhibition of PDI, by
either antibodies or a non-specific thiol inhibitor decrease
thrombus formation and fibrin generation in a mouse model
of thrombosis and thus it will be interesting to examine if this
could give potential benefit in the cancer setting (281).

As a central pathway for cellular function, the autophagy
pathway is also a potential target for therapeutic intervention in
cancer. To this end, the understanding of the action of
rapamycin, discovered from a plant on Easter Island, has led to
a series of “rapalogs” entering clinical oncology practice.
Rapamycin, a specific mTOR inhibitor, can decrease cell
migration promoted by the formation of TF-FVIIa-FXa
complex in breast cancer cell model (199). Rapamycin, in
combination with doxorubicin, can bring about remission in
an AKT-positive lymphoma mouse model by blocking AKT
signaling and overcoming chemotherapy resistance (282).
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Furthermore, in a vascular malformational model, the levels of
D-dimer, a direct indicator of coagulation, were significantly
decreased following treatment with an mTOR inhibitor (283).

Interestingly, long non-coding RNAs have been suggested to
be a mechanistic target of mTOR signaling, ubiquitin-mediated
proteolysis, and the coagulation cascade, opening the door to
future intervention with RNA targeted therapy in cancer (284).
However, as with any distribution of a ubiquitous process in
cellular machinery, the use of mTOR inhibition may bring
caveats. In an EC model, rapamycin strongly enhances the
VEGF-induced expression of TF, possibly due to the
interference in the negative feedback mechanism controlling
this cycle. As VEGF is upregulated in tumors, this may explain
the tumor vessel thrombosis observed in patients undergoing
rapamycin therapy (285). Understanding the signaling of the
coagulation system and its interaction upon cancer cell
progression will be necessary for the targeted selection by the
plethora of anticoagulants currently on the market to reduce
tumor burden without perturbing essential hemostatic signaling.

Precision medicine based on Tyrosine Kinase Inhibitors
(TKIs) has been reported to induce autophagy in many types
of cancer cells (286). Noteworthy, the combination of certain
TKIs with azithromycin (which dampens autophagy), enhanced
cytotoxicity (286, 287). In the same line, an antibody-modified
nanoparticle containing a combination of gefitinib and CQ was
shown to have potential benefit in overcoming acquired EGFR-
TKI resistance (288). Similarly, a combination of BafA1 with
Gefitinib improved anti-tumor activity in a mouse model of
triple-negative breast cancer (289). This burgeoning field may
show the potential of multi-targeting to achieve both tumor-
targeting selectivity and autophagy inhibition.

As previously discussed, recent studies have brought to light
the immune regulatory role of coagulation components in the
TME. FXa promotes immune evasion by signaling through
PAR2, and the consequent addition of Rivaroxaban
reprograms TAMs, supporting the translational potential of
direct oral anticoagulants to overcome resistance to
immunotherapy. A recent publication reported a before
unidentified role of the immune checkpoint Programmed cell
death protein 1 (PD-1) in regulating both lineage commitment
and cell metabolism in cancer-associated myelopoiesis (290).
These authors demonstrated that myeloid progenitors deficient
for PD-1 manifested enhanced activation of mTORC1 in
response to Granulocyte-Colony Stimulating Factor (G-CSF).
This myeloid cell-specific ablation of PD-1 increased T memory
cell function and anti-tumor activity. This evidence opens the
door to the potential manipulation of the autophagy pathway
during cancer immunotherapy.

Conclusion
The coagulation cascade and specifically its primary initiator TF
possess effects that extend well beyond hemostasis and into the
poorly characterized cauldron of cancer progression.
Furthermore, the PARs, once believed to be exclusive
mediators of the thrombin activation of platelets, have now
manifested their versatility in regulating the intracellular
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pathways of almost every cell type examined. At the center of
every cell lies the machinery for the process of autophagy,
another black hole of information, yet this cascade is known to
impinge on every biological process imaginable to the minds of
cell biologists and physiologists. A NCBI Pubmed search in late
2020 with the keywords coagulation, PAR, autophagy and cancer
will bring back only a handful of publications. However, each
word alone will offer up more references than the most diligent
biomedical investigator could read in their lifetime. Therefore, it
is evident that we are extensively researching each integral
pathway that classically appears in our physiology textbooks.
However, there is little integration between the disciplines. In
this review, we made a first attempt to examine coagulation and
cancer signaling pathways to try and find common ground
between each cascade and in particular, identify if autophagy is
at the center of the intersections. Herein, we illustrated that each
pathway has components in common.

Although the functional relevance of autophagy in cancer
requires further study, it is proposed that autophagy acts as a
protective mechanism during cancer initiation, yet promotes
later stage tumor growth and metastasis. Evidence that
autophagy-associated cell death acts as an initial tumor
suppressor comes from the observation that many tumors
present deletions in autophagy-related genes; moreover, loss of
autophagy can induce genomic instability. Conversely,
autophagy could promote cancer cell survival under metabolic
stress, thereby facilitating metastasis by promoting cancer cell
survival. The later hypoxic, nutrient-starved and pro-
inflammatory TME may deregulate local and distant
autophagic pathways in ECs, platelets, immune cells, and HSCs
Frontiers in Oncology | www.frontiersin.org 18104
promoting coagulation and paving the way for metastasis and
thrombosis. Moreover, the knowledge that components of the
autophagy machinery are required for non-conventional protein
secretion of pro-inflammatory and thrombotic mediators into
the TME suggests that not only conventional autophagy but also
secretory pathway may have a role in CAT and metastasis.
Hopefully, this first in-depth analysis of the crossovers in these
differing pathways will serve to bring to light possible new areas
of investigation and elucidate strategies for future
therapeutic intervention.
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Oral squamous cell carcinoma, the most common type of oral cancer, affects more than
275,000 people per year worldwide. Oral squamous cell carcinoma is very aggressive, as
most patients die after 3 to 5 years post-diagnosis. The initiation and progression of oral
squamous cell carcinoma are multifactorial: smoking, alcohol consumption, and human
papilloma virus infection are among the causes that promote its development. Although
oral squamous cell carcinoma involves abnormal growth and migration of oral epithelial
cells, other cell types such as fibroblasts and immune cells form the carcinoma niche. An
underlying inflammatory state within the oral tissue promotes differential stress-related
responses that favor oral squamous cell carcinoma. Autophagy is an intracellular
degradation process that allows cancer cells to survive under stress conditions.
Autophagy degrades cellular components by sequestering them in vesicles called
autophagosomes, which ultimately fuse with lysosomes. Although several autophagy
markers have been associated with oral squamous cell carcinoma, it remains unclear
whether up- or down-regulation of autophagy favors its progression. Autophagy levels
during oral squamous cell carcinoma are both timing- and cell-specific. Here we discuss
how autophagy is required to establish a new cellular microenvironment in oral squamous
cell carcinoma and how autophagy drives the phenotypic change of oral squamous cell
carcinoma cells by promoting crosstalk between carcinoma cells, fibroblasts, and
immune cells.

Keywords: oral squamous cell carcinoma, autophagy, tumor microenvironment, cancer, carcinoma-
associated fibroblast
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INTRODUCTION

The study of the tumor microenvironment has gained attention
during the last decade and the development of effective anti-
cancer therapies has been challenging (1). Tumors are not just
masses of growing cells, but a novel tissue with evolving features
over time (2). Tumors contain, besides primary tumor cells,
stromal cells (including fibroblasts, vascular endothelial cells
and adipocytes, among others) and immune cells (such as
macrophages, T cells and B cells), which assist tumor initiation
and/or progression (2).

Oral squamous cell carcinoma (OSCC) is the most common
type of oral cancer and current treatments are limited to surgery,
radiotherapy, chemotherapy or a combination of these, inflicting
a huge impact on the quality of life of the patients, such as
speech impairment, swallowing difficulties and face remodeling
(3). Understanding the cellular mechanisms that allow
communication between primary tumor cells and the tumor
microenvironment can be crucial to find novel pharmacological
targets for the treatment of OSCC. One of these mechanisms is
autophagy, an intracellular degradation process that behaves as a
“double-edge sword” when it comes to cancer (4). Treatment of
different types of cancer, including OSCC, with autophagy
modulators yields either promising or devastating results (5).
Here we summarize and discuss the evidence regarding the role
of autophagy in the communication of OSCC cells and their
microenvironment. This review will hopefully shed some light on
the contradictory results of autophagy-based treatments in OSCC.
ORAL SQUAMOUS CELL CARCINOMA

Oral cancer is one of the head and neck cancers which represent
the sixth most common malignancy in the world (6, 7). Oral
cancer affects nearly 300,000 persons each year, mainly in high-
income countries (8, 9). Oral cancer is twice as common in men
as in women and the average age for diagnosis is 62, although it
Abbreviations: a-SMA, alpha smooth muscle actin; AMPK, AMP-activated
protein kinase; ATG, autophagy-related protein; BECN1, Beclin 1; CAF, cancer-
associated fibroblast; CCL, chemokine (C-C motif) ligand; CCR, chemokine (C-C
motif) receptors; CXCL, chemokine (C-X-C motif) ligand; CD, cluster of
differentiation; DLC-1, Deleted in Liver Cancer; EGF, epithelial growth factor;
EMT, epithelial-mesenchymal transition; FAK, focal adhesion kinase; HSP90, heat
shock protein 90; HPV, human papillomavirus; HIF1a, hypoxia inducible factor 1
subunit alpha; IkB, inhibitor of NFkB; IL, interleukin; IL1b, interleukin-1b; JAK2,
Janus kinase 2; lncRNA, long non-coding RNA; mTOR, mechanistic target of
rapamycin; MMP, metalloproteinase; miR, microRNA; MAP1LC3/LC3,
Microtubule Associated Protein 1 Light Chain 3; MCP-1, monocyte
chemoattractant protein-1; MDX1, Myc-competitor MAD; NFkB, nuclear factor
kB; OSCC, oral squamous cell carcinoma; PtdIns3K, Phosphatidylinositol 3-
phosphate kinase complex; PFK, phosphofructokinase; PDGF-Rb, platelet-
derived growth factor receptor b; RANKL, receptor activator of nuclear factor
kB ligand; ROCK2, Rho-associated coiled-coil kinase 2; SQSTM1/p62,
Sequestrosome 1; STAT3, signal transducer and activator of transcription
protein 3; TLR4, Toll-like receptor 4; TGFb, transforming growth factor b;
TAM, tumor-associated macrophage; TAN, tumor-associated neutrophil; TNF,
tumor necrosis factor; TRAIL, tumor necrosis factor-related apoptosis-inducing
ligand; ULK1, Unc-51-like autophagy activating kinase; VEGF, vascular
endothelial growth factor.
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also occurs in younger people (10). Importantly, only 40%–50%
of patients have a 5-year survival, and if there is metastasis, the
average 5-year survival rate is 39%. However, survival is 84% at 5
years if the diagnosis is made at an early stage. Therefore, early
diagnosis of oral cancer is a decisive factor in improving patient
survival (10).

About 90% of oral cancers originate in the stratified non-
keratinized epithelium of the oral mucosa, which is the reason for
its denomination as oral squamous cell carcinoma. Its main risk
factors include consumption of tobacco and alcohol, along with
other possible risk factors, such as chronic irritation, poor oral
hygiene, human papillomavirus (HPV), malnutrition and
immune system suppression (11–13). These risk factors provoke
the development of various genetic instabilities and molecular
alterations, including the loss of heterozygosity of chromosomes 3,
4 7, 8, 11, 17, and 19, among others, down-regulation of tumor-
suppressor genes such as TP53, RB, CDKN2A, and up-regulation
of oncogenes such as cyclin D1 (6, 14, 15). Following exposure to
the carcinogens mentioned above, normal oral keratinocytes form
an epithelial dysplasia, which is a tissue alteration where cells
adapt to stressful stimuli by changing their number and shape.
Continuous exposure to carcinogens shifts the progression of the
epithelial dysplasia from mild to severe, ending with its malignant
transformation to OSCC and metastasis (16). Metastasis of OSCC
cells is mainly through the lymphatic vessels to the cervical lymph
nodes on the same side of the face, which plays a critical role in the
management and prognosis of patients with OSCC. The most
common distant metastatic sites are the lungs, liver and bones (17,
18). The pathological progression, as well as the global burden and
survival chances after diagnosis of OSCC, are depicted in Figure 1.

The clinical presentation of OSCC is highly variable; the most
common is observed as an ulcerated lesion in the oral cavity that
does not heal, containing harsh edges by palpation, while other signs
may include mobile teeth, bleeding, pain or numbness in the mouth
or face (9, 10). Treatment options are limited to surgical resection as
a primary treatment, and radiation as a primary treatment or as an
adjuvant after surgery. Chemotherapy is used mainly as adjuvant
after surgery, given that pharmacological treatments usually have
secondary effects (19). In most cases surgery, radiation and
chemotherapy lead to negative effects on the patient’s quality of
life, such as speaking impairment, swallowing dysfunction, physical
appearance alteration, sensory disability and chronic pain (19, 20).
Thus a deeper understanding of the cellular and molecular biology
of OSCC, regarding its development and progression, is required to
improve pharmacological treatments and avoid secondary effects.

In this context, it has been acknowledged that the tumor
microenvironment plays a vital role in OSCC progression and
invasion, as it directly affects both tumor growth and its ability to
progress and metastasize. Here, blood vessels, nerves and immune
cells contribute to the tumor heterogeneity limiting therapeutic access,
altering drug metabolism and contributing to drug resistance (21).
THE MICROENVIRONMENT OF THE OSCC

Stromal cancer-associated fibroblasts, CAFs, are the primary
non-immune infiltrative cells in the carcinoma microenvironment
December 2020 | Volume 10 | Article 602661
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(22). Studies have revealed that CAFs show increased expression of
proteins involved in actin cytoskeleton remodeling during
migration, such as Rho-associated coiled-coil kinase 2, ROCK2
(23), focal adhesion kinase, FAK (24), and alpha smooth muscle
actin, a-SMA (25). In vitro studies reported that CAFs show higher
migration rates compared to fibroblasts obtained from normal
subjects (26), suggesting that events linked to the epithelial-
mesenchymal transition (EMT) in CAFs may participate during
OSCC progression. EMT of CAFs is related to increased levels of
platelet-derived growth factor receptor b, PDGF-Rb, in the plasma
membrane (27), which in turn activates Janus kinase 2, JAK2, and
the signal transducer and activator of transcription protein 3,
STAT3 (25). Activation of the JAK2/STAT3 pathway in CAFs
provokes the release of epidermal growth factor, EGF, which
promotes the EMT in tumor cells (25). It has also been reported
Frontiers in Oncology | www.frontiersin.org 3114
that CAFs release other factors that contribute to the EMT in tumor
epithelial cells. Among these, CAFs generate exosomes containing
microRNAs (miRs) such as miR-382-5p (28), which is associated
with advanced TNM stages of the OSCC (29). Although the
molecular mechanism by which miR-382-5p affects OSCC has
not been totally elucidated, studies have shown that miR-382-5p
is required to down-regulate the expression of the Myc-competitor
MAD (MDX1) in breast cancer (30), as well as the expression of the
negative regulator of cell motility Deleted in Liver Cancer, DLC-1, in
hepatic cancer (31), suggesting that miR-382-5p may reduce the
expression of tumor suppressor genes in OSCC. However, it is
worth noting that OSCC-related CAFs may also reduce the delivery
of specific miRs such as miR-34a-5p, which has been shown to
reduce the expression of the tyrosine kinase receptor AXL,
decreasing b-catenin-dependent proliferation and SNAIL-
FIGURE 1 | Global statistics, survival rate, and pathophysiological features of oral squamous cell carcinoma (OSCC). Top left: countries with higher cases of OSCC
diagnosed around the world. Top right: the main risk factors involved in OSCC development and progression. Bottom left: chances of survival 5 years after being
diagnosed with OSCC. Note that early diagnosis of OSCC is crucial to ensure over 80% survival chance after 5 years. The general statistics show a 50% survival
rate after 5 years, given that OSCC is usually diagnosed late. Bottom right: development of OSCC from a normal oral epithelium. The normal epithelium, composed
of epithelial cells known as keratinocytes, is located over a basement membrane that separates the epithelium from the connective tissue composed of fibroblasts,
immune cells and vessels. Exposure to carcinogens derived from the risk factors of the top right panel generate a potentially malignant lesion, characterized by an
altered cellular morphology that starts affecting the inner layers of the epithelium close to the basement membrane, progressing toward the outer layers of the
epithelium. Continuous exposure to carcinogens leads to OSCC development, a phenomenon that alters all the epithelial cell layers both genetically and
morphologically. Interplay between connective tissue cells and OSCC cells is also observed, which assists OSCC growth and metastasis.
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dependent expression of metalloproteinases 2 (MMP2) and 9
(MMP9) (32). This reveals that OSCC-related CAFs selectively
promote the release of pro-tumoral miRs over anti-tumoral miRs.

OSCC cells promote the release of several chemokines from
CAFs, leading either to immune infiltration or changes in OSCC
phenotype toward a pro-migratory and proliferative phenotype.
For instance, OSCC cells release interleukin-1b, IL1b, which in
turn provokes the release of the chemokine (C-C motif) ligand 7,
CCL7, from CAFs (33). Then CCL7 binds to the chemokine
(C-C motif) receptors 1-3, CCR1-3, located in the OSCC cells,
increasing cell migration in vitro (33). The chemokine CCL2,
also known as monocyte chemoattractant protein-1, MCP-1, is
released by CAFs, being positively associated with lymph node
metastasis (24). CCL2 positive CAFs are observed at the
lymphoid metastatic focus, specifically at the marginal sinus of
OSCC (34). The activation of NFkB and STAT3, as a result of
hypoxia in the tumor niche, can also induce expression and
release of CCL2 from CAFs (35). On the other hand, hypoxia has
been shown to promote the expression of galectin-1, a protein
involved in FAK activation and migration (36). Notably,
galectin-1 is required for CCL2 expression in CAFs, promoting
OSCC tumor growth and intravasation in xenograft models (37).

The transformation of normal fibroblasts into CAFs is also
mediated by molecules that are released from OSCC cells. For
instance, IL1b expression becomes progressively increased in OSCC
cells and is released, activating the NFkB pathway in fibroblasts that
induces release of the chemokine (C-X-C motif) ligand 1, CXCL1
(38). CXCL1 generates an autocrine mechanism that transforms
fibroblasts into high-a-SMA expressing CAFs (39), suggesting that
early carcinogenesis events provoke slight inflammatory alterations
in the epithelial cells that then lead to the generation of CAFs.

Infiltration of immune cells is observed in OSCC, mainly
promoted by the cytokines released from CAFs. Tumor-associated
neutrophils, TANs, and tumor-associated macrophages, TAMs, have
been observed both at the primary tumor site and at the lymphoid
metastatic focus (34). Studies have shown that anti-inflammatory
mediators such as TGFb and IL10 are released from CAFs, which
prevent proliferation of T-cells and promote infiltration of CD163-
positive TAMs (40, 41). The CD163 membrane marker of M2
macrophages is expressed during resolution of inflammation,
indicating that infiltration of specialized immune cell triggers an
immunosuppressive environment (42). Thus M2 macrophage
infiltration may promote tumor angiogenesis and metastasis
through the release of vascular endothelial growth factor, VEGF,
and PDGF (43). The presence of CD163 TAMs correlates with lymph
node invasion and poor prognosis of patients with OSCC (40, 44).
TAMs may also induce OSCC cells proliferation via the release of
EGF (45). Interestingly, both CAFs and OSCC cells depict reduced
TGFb receptors 2 and 3, suggesting that the cytostatic effect of TGFb
only affects immune cells (46, 47). Finally, CAFs also attract regulatory
T-cells, T-regs, shutting down the inflammatory response of T-cells
and sustaining the immunosuppressive environment of the tumor
(48). As in the recruitment of TAMs, the attraction of T-regs to the
OSCC primary site is mediated by TGFb and IL10 (49).

In contrast to the immunosuppressive role of CAFs, most
molecules released from OSCC cells, such as IL8 and IL6, depict
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pro-inflammatory effects as a result of the stressful insults (i.e.
tobacco smoking) (50–52). Similar to the anti-inflammatory
molecules released from CAFs, IL8 and IL6 are produced in an
NFkB-dependent manner, suggesting that inhibition of the
NFkB pathway may be suitable for the treatment of OSCC (50,
52). The contrasting inflammatory behavior of OSCC cells and
CAFs may provide an alternative approach for the treatment of
OSCC, since CAF-independent growth of OSCC cells may not be
sustainable in time because it would alert the defensive branch of
the immune system. Further studies are required to elucidate this.

The OSCC microenvironment is subjected to both pro- and
anti-inflammatory mediators over time. Initial epithelial insults
result in increased tumor features with underlying inflammation.
Pro-inflammatory cytokines released by OSCC cells provoke the
development of CAFs from normal fibroblasts, thereby
sustaining proliferation, migration and invasion of the OSCC
cells. Also, CAFs cause the infiltration of immune cells with
immunosuppressive behavior, further assisting during the
metastatic process of OSCC toward lymph nodes. These
antecedents are summarized in Figure 2.
AUTOPHAGY IN STRESS AND CANCER

Autophagy is a cellular process, conserved from yeasts to
mammals, that promotes the degradation of wasted intracellular
materials such as macromolecules and organelles, to maintain the
cell homeostasis (53). A basal autophagic tone is present in all
cells, but autophagy is up-regulated under certain stress stimuli to
cope with the damage (54). For instance, oral gingival cells
exposed to tobacco smoke, alcohol consumption or HPV
increase autophagy as a protective mechanism (55). Autophagy
occurs with the formation of double-membrane vesicles known as
autophagosomes. Autophagosomes sequester the material that is
targeted for degradation, and ultimately fuse with the lysosome to
form the autolysosome (56). The lysosome contains hydrolytic
enzymes and a low pH that allows degradation of the materials
sequestered by the autophagosome (57).

The proteins that participate during autophagy are known as
autophagy-related proteins or ATGs (56). ATG8, known as
Microtubule Associated Protein 1 Light Chain 3, MAP1LC3 (or
just LC3), is critical for the autophagy mechanism (58). When
autophagy is induced, LC3 is cleaved by the protease ATG4,
forming LC3-I, and then conjugated by the ATG5-ATG7
complex with the lipid phosphatidylethanolamine, forming LC3-
II (59). Then LC3-II binds to the autophagosome membrane and
promotes its elongation (58). Detection of LC3 positive vesicles and
LC3-II levels are usually performed to evaluate autophagy (60). Of
note, autophagy is not the mere formation of autophagosomes, but
also degradation of target materials within lysosomes. This is
known as “autophagy flux”, which indicates the progression from
sequestration to degradation of the cargo (61). Chemical
compounds such as bafilomycin-A1 and chloroquine, which
inhibit the fusion between autophagosomes and lysosomes, blunt
autophagy, as observed by the accumulation of autophagosomes
(60). This is why conclusions from LC3 data alone should be
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managed with caution, as it will be discussed in the following
section. Other markers besides LC3 are commonly determined to
help to draw appropriate conclusions, such as Sequestrosome 1,
SQSTM1 (also known as p62), which is a protein that binds poly-
ubiquitinated proteins and LC3, carrying the proteins into the
autophagosomes (62). SQSTM1/p62 is degraded along with the
targets, leading to a reduction in its level (63). In contrast,
autophagy flux blockage leads to increased levels of SQSTM1/p62.

Autophagy is controlled by stress signaling pathways that work
as an on/off switch. This switch is known as ATG1 (also known as
Unc-51-like autophagy activating kinase, ULK1), a kinase activated
by AMP-activated protein kinase, AMPK, and inactivated by the
Frontiers in Oncology | www.frontiersin.org 5116
mechanistic target of rapamycin, mTOR (64), a serine/threonine
protein kinase. Both AMPK and mTOR are kinases that check the
nutritional status of the cell. Under normal nutritional conditions,
mTOR represses autophagy, while starvation increases AMPK
activation and autophagy (65, 66). Thus, starvation and mTOR
repression are common autophagy inducers. Active ATG1
phosphorylates and activates Beclin 1 (BECN1), a protein required
to transform intracellular membranes into autophagic membranes
(67). BECN1 assembles the phosphatidylinositol 3-phosphate
kinase complex, PtdIns3K, which catalyzes the formation of
phosphatidylinositol 3-phosphate from phosphatidylinositol,
serving as an intracellular domain that recruits other ATG
A

B

FIGURE 2 | The oral squamous cell carcinoma (OSCC) tumor microenvironment. (A) The OSCC tumor microenvironment is mainly composed of cancer-associated
fibroblasts (CAFs). CAFs derive from normal fibroblasts after autocrine stimulation of chemokine (C-X-C motif) ligand (CXCL1) chemokine through a nuclear factor kB
(NFkB)-dependent mechanism. NFkB is activated in fibroblasts by the action of interleukin-1b (IL1b) released from OSCC cells. Conditions surrounding the tumoral
tissue, such as increased levels of platelet-derived growth factor (PDGF) and IL1b or hypoxia activate Janus kinase (JAK)/STAT and NFkB pathways in CAFs, which
induce the release of chemokines (CCL2 and CCL7) and epithelial growth factor (EGF), or inhibit the release of selective miRs such as miR-34a-5p. All these
mediators augment proliferation and EMT of OSCC cells. (B) CAFs release well known anti-inflammatory molecules such as IL10 and TGFb that attract anti-
inflammatory macrophages and regulatory T-cells, T-regs, and inhibit proliferation of T-cells.
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proteins that elongate the autophagosome (68). The mechanism of
autophagy is depicted in Figure 3.

Autophagy may also be controlled by inflammatory pathways
like those converging in the transcription factor NFkB (69–71).
NFkB is a master regulator of the inflammatory response; the
activation of this pathway depends on the degradation of its specific
inhibitor, the inhibitor of NFkB (IkB) proteins following their
phosphorylation by the IkB kinase IKK complex, allowing NFkB
translocation to the nucleus that promotes the expression of genes
involved in inflammation, cell proliferation and survival, epithelial-
to-mesenchymal transition and invasion, angiogenesis and
metastasis (72). Activation of NFkB induces expression of genes
involved in autophagy such as BECN1, ATG5 and LC3, leading to
increased autophagy (73, 74). However, NFkB may also reduce
autophagy by promoting expression of mTOR pathway
components (75). Most of the increased NFkB activity observed
in solid malignant tumors is due to increased production of IKK-
activating cytokines, including tumor necrosis factor, TNF, and
IL1b (76). The role of NFkB in autophagy is also shown in Figure 3.

Modulation of autophagy is relevant during the pathophysiological
progression of cancer. It has been reported that autophagy has a
dual role in cancer. Autophagy inhibition in normal tissues leads to
tumor formation, while in established tumors increased autophagy
is a mechanism that overcomes a nutrient-deficient environment
and promotes tumor growth (4). Spontaneous formation of lung
carcinoma and hepatocellular carcinoma is observed in mice with a
heterologous deletion of BECN1, suggesting that some components
of the autophagic machinery may behave as tumor suppressors
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(77). However, breast carcinoma cells knocked down for BECN1
show decreased tumor growth in vivo, indicating that in developed
carcinoma cells, BECN1 behaves as an oncogene (78). Similar
results have been observed for other ATG proteins, including
ATG5 and ATG7 (79, 80).

This dual role of autophagy in cancer is far more complex
when considering that tumor cells and non-tumor cells within
the tumor microenvironment exhibit different autophagic status,
and that autophagy levels of each may vary in time, explaining
tumor initiation and progression. This is the case for OSCC, as it
will be discussed in the following section.
THE ROLE OF AUTOPHAGY IN THE OSCC
MICROENVIRONMENT

Autophagic impairment is mostly associated with poorer
prognosis in patients with OSCC (81). SQSTM1/p62 is highly
accumulated in patients with advanced OSCC, suggesting that
autophagosomes do not fuse with the lysosome in tumor cells
(82). Accumulation of SQSTM1/p62, as well as LC3 and BECN1 in
poorly differentiated OSCC, is correlated with immune infiltration
of T cells and TAMs, revealing that autophagic inhibition during
advanced stages of the OSCC is relevant to establish a tumor
immune niche (83). Autophagy seems to inhibit OSCC cell
migration, which may explain the reduced autophagic status
during advanced OSCC. Indeed, downregulation of ATG7 in
OSCC cells augments tumor cell migration through a mechanism
FIGURE 3 | The mechanism of autophagy. Autophagy is a degradation process that involves the formation of double membrane vesicles called autophagosomes.
Canonical signaling pathways, such as activation of the nutrient deprivation sensor AMP-activated protein kinase (AMPK) or inhibition of the nutrient-full sensor
mechanistic target of rapamycin (mTOR) activate autophagy-related protein 1 (ATG1) kinase by phosphorylation. This in turns phosphorylates the Beclin 1 (BECN1)
protein, allowing formation of a PtdIns3K complex that phosphorylates the phosphatidylinositol of intracellular membranes. Formation of the autophagosomes
implicates the elongation of the membranes and their decoration with LC3 molecules, a process that is assisted by the ATG5 protein. The material targeted for
degradation (i.e. proteins and organelles) arrives to the elongating membrane of the autophagosome through “receptors”, like SQSTM1/p62, which binds
polyubiquitinated proteins. Once the autophagosome is formed, it fuses with a lysosome that contains hydrolytic enzymes, leading to the degradation of the material
enclosed within the autophagosome. The NFkB pathway is involved in transcriptional up-regulation of autophagy proteins such as BECN1, LC3 and ATG5, thereby
promoting autophagy.
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dependent on Toll-like receptor 4, TLR4, a protein highly expressed
during poor prognosis OSCC (84). TLR4 may activate the NFkB
pathway by inhibiting autophagy in OSCC cells (84). However,
other studies suggest that autophagy activation is associated with the
progression and poor prognosis in OSCC, because higher levels of
BECN1, LC3, ATG5, and ATG16L are found in patients with
advanced TNM stages (85–88). These observations, however, may
be a result of either increased or decreased autophagy, and
functional experiments would be required to clearly identify
whether autophagy is activated or inhibited instead.

With low oxygen available and intracellular inhibition
of autophagy, the preferred metabolic pathway in OSCC
cells is glycolysis. High levels of the glycolytic enzyme
phosphofructokinase, PFK, are commonly observed in poorly
differentiated OSCCs (89). Novel compounds based on a 4H-1-
benzopyran-4-ones structure show differential cytotoxicity on
OSCC cells by blocking glycolysis, and on CAFs by suppressing
the Krebs cycle (90), further indicating that the tumor
microenvironment of OSCC depicts different metabolic
requirements. Studies suggest that this metabolic difference
occurs as a result of a cellular reprograming of normal
fibroblasts into CAFs by OSCC cells (91). During this
reprogramming, normal fibroblasts export their mitochondria
into OSCC cells through tunneling nanotubes, which in turn
produce lactate that fuels the fibroblasts and increases HIF1a-
dependent transcription, supporting the transformation of normal
fibroblasts into CAFs (91). Despite this mitochondrial transfer
mechanism, OSCC relies on anaerobic metabolism to produce
lactate. AMPK is inactive in the normal fibroblast. However,
AMPK activity increases progressively when normal fibroblasts
are transformed in CAFs, suggesting that autophagy may be an
important factor in the formation of CAFs by OSCC cells (91).
CAFs provoke a reduction in the activation of AMPK in OSCC
cells, which explains not only the possibly reduced autophagy, but
also the resistance to treatment against metformin, a chemical
activator of AMPK that increases AMP levels within the cell and
reduces tumor development in pancreatic, colorectal and
hepatocellular cancer, among others (92, 93).

The low-to-high autophagy in CAFs is interesting and might
explain the controversial role of autophagy in chemokine release
from OSCC-related CAFs. Autophagy may be required for
chemokine release. For instance, chemical inhibition of heat
shock protein 90, HSP90, which is well-known to inhibit
autophagy by decreasing NFkB-dependent transcription of
autophagic genes like beclin-1 in other cancer models (94),
dramatically reduces the release of the CCL7 chemokine by
CAFs, thereby decreasing the invasive rate of OSCC cells (95).
As mentioned, the NFkB pathway is severely increased in CAFs
as a result of IL1b stimulation (derived from OSCC cells),
ultimately leading to the release of chemokines from CAFs
(38). This suggests that HSP90-mediated autophagy in CAFs
may be required for the release of chemokines that promote
migration and invasion of OSCC cells. CCL2 and CXCL1
chemokines are released from skin keratinocytes after UV
exposure by an ATG7-dependent mechanism (96). Inhibition
of autophagy has been related to increased release of IL1b in
Frontiers in Oncology | www.frontiersin.org 7118
macrophages (97), while CAF-related chemokines like CCL2 are
known to reduce autophagy in breast cancer (98). There may be a
vicious cycle between OSCC cells and CAFs; OSCC cells may
release IL1b and promote autophagic-dependent release of
chemokines by CAFs, which then inhibit autophagy in OSCC
cells, raising the levels of IL1b even more. Further experiments
would be required to confirm these possibilities.

Autophagy inhibition in OSCC cells can also be regulated by
chemokines released from CAFs. For instance, expression of the
FLJ22447 long non-coding RNA, lncRNA, is upregulated in CAFs,
which prevents autophagic degradation of IL33 by inhibiting
SQSTM1/p62 complex formation with the cargos in OSCC cells
(26). Given that IL33 supports tumor growth (99), FLJ22447 is an
important factor for OSCC cell proliferation (26), indicating that
autophagy inhibition in CAFs is relevant for OSCC tumor growth.

Given that CAFs can both inhibit and activate autophagy in
OSCC, a conciliated model is proposed, where immature CAFs, with
low autophagy, may promote the release of some molecules such as
IL33, while mature CAFs, with high autophagy, may promote the
release of other cytokines like CCL2. Most importantly, given that
OSCC cells direct CAF maturation, OSCC cells up-regulate their
growth by modulating autophagy levels in CAFs. This interplay
between CAFs and OSCC cells can provide therapeutic cancer
resistance. In vitro exposure of OSCC cells to cellular stressors
such as cadmium or tri-gas hypoxia leads to increased autophagy
through mTOR inactivation (100, 101), suggesting that OSCC cells
are still sensitive to autophagy under insults. Indeed, the lower basal
autophagy in OSCC cells seems to provide a faster and sustained
increase in autophagy after treatment with chemotherapeutic agents,
such as cisplatin (102). Thus, an essential aspect to improve the
chemotherapeutic toxicity over OSCC cells is to deplete the survival
response of the tumor cells by concomitantly using an autophagy
inhibitor compound like 3-methyladenine (102). The same results
have been observed when OSCC cells are challenged with nutrient
starvation conditions and co-treated with autophagy inhibitors
(103). Given that CAFs reduce autophagy of OSCC cells, it is fair
to conclude that CAFs promote the phenotype change of OSCC cells
toward treatment-resistant cells. The phenotypic change of OSCC
cells is associated with the expression of the membrane marker
CD24, which correlates with both chemotherapy resistance and
autophagy sensitivity (104). Curiously, while chemotherapy
increases autophagy in OSCC cells, it decreases autophagy in
CAFs, as reflected by higher accumulation of SQSTM1/p62 levels
in a-SMA-containing cells (105).

To date, the role of autophagy in OSCC-related TAMs remains
unclear. However, two recent studies have shown that OSCC cells
can secrete high levels of the receptor activator of nuclear factor kB
ligand, RANKL, a protein that transforms macrophage-derived
pre-osteoclasts into osteoclasts, therefore promoting bone
resorption and metastasis (106, 107). Interestingly, RANKL also
binds to its receptor on OSCC cells, leading to a slight increase in
autophagy that provides resistance against extrinsic apoptotic
pathway inducers like the tumor necrosis factor-related
apoptosis-inducing ligand, TRAIL (108). Caspase activation is
observed when OSCC cells are stimulated with TRAIL in the
absence of RANKL (108). This supports the view that reduced
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basal autophagy in OSCC cells is required to respond promptly
against a stressful condition and to cope with a death stimulus.

Together, autophagy is a key process to induce CAF
maturation. The different levels of autophagy in CAFs provide a
delicate tuning process that regulates the cytokines released in a
time-specific manner. The maturation of CAFs is directed by
OSCC cells; thereby OSCC cells control their malignancy by
indirectly promoting the differential chemokine release from
CAFs. Importantly, the lower the autophagic status of OSCC
cells, the more malignant the tumor is and more resistant to
chemotherapy. Increased sensitivity to cell death is achieved by co-
treatment with chemotherapy and autophagy inhibitors, suggesting
that malignant OSCC also respond better to autophagy-based
treatments. Finally, OSCC cells release molecules that increase
their autophagy status through an autocrine mechanism and
modulate TAMs that promote metastasis. The role of autophagy
during OSCC progression is depicted in Figure 4.
CONCLUDING REMARKS

The number of patients with OSCC keeps rising, because the risk
factors involved in the development of OSCC are mainly
environmental and considered to be “normal” by the modern
society, such as tobacco smoking and alcohol consumption.
Although OSCC is observed as morphological changes in oral
epithelial cells, other cells in the oral tissue are also exposed to
these risk factors. Efforts have been made during the last decade
to elucidate the role of CAFs and immune cells in OSCC. These
cells communicate with the OSCC cells and receive instructions
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from them by a complex cytokine interplay. Tobacco, alcohol and
infection with HPV behave as direct tissue stressors modulating
the homeostatic cellular process known as autophagy. Autophagic
degradation levels are cell-specific and time-specific; OSCC cells
show a counterintuitive reduction of autophagy over time, while
CAFs show progressive increase in autophagy over time. This
autophagic balance is important to induce the structural change
from normal fibroblasts into CAFs that control the release of
cytokines from CAFs and promote EMT in OSCC cells. Thus,
autophagy is a critical player in the crosstalk between OSCC cells
and tumormicroenvironment cells such as CAFs and TAMs, fine-
tuning the development of the OSCC.
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FIGURE 4 | A unified model for the role of autophagy during oral squamous cell carcinoma (OSCC) progression. During the early stages of OSCC, the long non-
coding RNA FLJ22447 inhibits autophagy in cancer-associated fibroblasts (CAFs), impairing the autophagic degradation of IL33. Increased levels of IL33 are
released from CAFs, inducing proliferation of the OSCC cells. Then, OSCC cells increase autophagy that releases interleukin-1b (IL1b), which then increases
autophagy in CAFs through an nuclear factor kB ((NFkB)-dependent mechanism. The IL1b released from the OSCC cells may promote activation of heat shock
protein 90 (HSP90) in the CAFs to increase NFkB activity, but this needs to be demonstrated (dashed line). However, it is known that NFkB-dependent autophagy in
CAFs induces release of chemokine (C-C motif) ligand 7 (CCL7), which acts on OSCC cells, promoting epithelial-mesenchymal transition (EMT) and inhibiting
autophagy. During later phases of OSCC, autophagy reduces Toll-like receptor 4 (TLR4)-dependent EMT. Therefore, inhibition of autophagy by CCL7 may promote
TLR4-depedent EMT. Finally, during the advanced stages of OSCC, receptor activator of nuclear factor kB ligand (RANKL), which induces autophagy in OSCC cells,
is released from OSCC cells transforming tumor-associated macrophages, TAMs, into osteoclasts, ultimately inducing metastasis.
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Autophagy is an important bioprocess throughout the occurrence and development
of cancer. However, the role of autophagy-related lncRNAs in pancreatic cancer
(PC) remains obscure. In the study, we identified the autophagy-related lncRNAs
(ARlncRNAs) and divided the PC patients from The Cancer Genome Atlas into training
and validation set. Firstly, we constructed a signature in the training set by the
least absolute shrinkage and selection operator penalized cox regression analysis
and the multivariate cox regression analysis. Then, we validated the independent
prognostic role of the risk signature in both training and validation set with survival
analysis, receiver operating characteristic analysis, and Cox regression. The nomogram
was established to demonstrate the predictive power of the signature. Moreover,
high risk scores were significantly correlated to worse outcomes and severe clinical
characteristics. The Pearson’s analysis between risk scores with immune cells infiltration,
tumor mutation burden, and the expression level of chemotherapy target molecules
indicated that the signature could predict efficacy of immunotherapy and targeted
therapy. Next, we constructed an lncRNA–miRNA–mRNA regulatory network and
identified several potential small molecule drugs in the Connectivity Map (CMap).
What’s more, quantitative real-time PCR (qRT-PCR) analysis showed that serum
LINC01559 could serve as a diagnostic biomarker. In vitro analysis showed inhibition
of LINC01559 suppressed PC cell proliferation, migration, and invasion. Additionally,
silencing LINC01559 suppressed gemcitabine-induced autophagy and promoted the
sensitivity of PC cells to gemcitabine. In conclusion, we identified a novel ARlncRNAs
signature with valuable clinical utility for reliable prognostic prediction and personalized
treatment of PC patients. And inhibition of LINC01559 might be a novel strategy to
overcome chemoresistance.

Keywords: pancreatic cancer, autophagy-related lncRNA signature, prognostic prediction, LINC01559,
chemoresistance

Abbreviations: PC, pancreatic carcinoma; lncRNA, long non-coding RNA; ARlncRNA, autophagy related lncRNA; TCGA,
The Cancer Genome Atlas; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes; ROC, receiver operating characteristic.
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INTRODUCTION

Pancreatic cancer (PC) is one of the most lethal malignancies with
a rising incidence and an extremely poor prognosis. There will be
approximately 57,600 new PC cases and 47,050 deaths occurred
in the United States in 2020 (Siegel et al., 2020). Although
therapeutic treatments for PC have been improved, including
surgery, chemotherapy, radiotherapy, and immunotherapy, 5
years survival rates remain unsatisfactory (Vincent et al., 2011;
Bliss et al., 2014). Therefore, there is an urgent need to identify
reliable biomarkers for the prognostic prediction and develop
effective therapeutic strategies for PC patients.

Long non-coding RNA (lncRNA) is a gene transcription
composed of more than 200 nucleotides, which has been reported
to be aberrantly expressed and abnormally regulated in multiple
cancers (Li et al., 2016; Castro-Oropeza et al., 2018). Accumulated
evidence have shown that lncRNAs are involved in a variety
of cancer biological processes, such as epigenetic regulation,
DNA damage, immune escape, metabolic disorders, chemical
resistance, as well as epithelial-mesenchymal transition (EMT),
and cell stemness (Jiang et al., 2019). The underlying mechanism
may be related to the mutual correction of lncRNA and other
cellular molecules, including DNA, miRNA, and mRNA (Tang
X. J. et al., 2019; Grixti and Ayers, 2020). At present, several
lncRNAs have been identified as tumor biomarkers, such as
HOTAIR, MALAT1, and H19. Iyer et al. (2015) curated a total
of 7,256 RNA-seq libraries and identified 7,942 cancer-associated
lncRNAs that could potentially be biomarkers for specific cancer
types. Thus, better understanding of the role of lncRNAs in
cancer is helpful to identify novel diagnostic biomarkers and
develop potential therapeutic targets.

Autophagy, also known as type II cell death, is a process in
which cells use lysosomes to degrade their damaged organelles
and macromolecules under the regulation of autophagy related
signaling pathways. Autophagy is involved in pathophysiological
processes of multiple diseases, including neurodegenerative
diseases, metabolic diseases, infectious diseases, and cancers
(Yang et al., 2017). Flaks et al. (1981) first proposed the presence
of autophagy during pancreatic carcinogenesis. Indeed, the role
of autophagy in cancer is still controversial. Emerging evidence
suggests that suppressed autophagy contributes to initiation
of carcinogenesis, while activated autophagy is required for
malignancy maintenance and development (Chen K. D. et al.,
2018; Folkerts et al., 2019). Moreover, autophagy is reported
to play a vital role in cancer cells survival, metastasis, and
drug resistance (Yun and Lee, 2018). Several cellular molecules
and signaling pathways are involved in autophagy regulation,
including lncRNAs. Hu et al. reported that lncRNA MALAT1
regulated autophagy-related chemoresistance in gastric cancer
(YiRen et al., 2017). However, the role of autophagy-related
lncRNAs in PC has been not fully elaborated yet. Therefore,
this study aimed to identify the autophagy-related lncRNAs and
explore their clinical relevance in PC.

In the present study, we identified the autophagy-related
lncRNAs of PC and established a risk model that could provide
valuable clinical utility for prognostic prediction and potential
drugs selection of PC patients.

MATERIALS AND METHODS

Data Acquisition and Processing
The pancreatic adenocarcinoma RNA-seq data and
corresponding clinical information were downloaded from
the TCGA dataset1. The cohort contains 178 tumor tissues
and four normal pancreatic tissues. And, 177 PC patients
with complete clinical information were extracted for further
analysis. Perl language was performed to convert gene names
from Ensemble IDs to a profile of gene symbols with the
Ensemble database2.

Identification of Autophagy-Related
lncRNAs
Autophagy-related genes (ARGs) were obtained from the Human
Autophagy Database3. We extracted the lncRNA list from mRNA
expression data of the GNECODE project4. Then, the Pearson
correlation was applied to analyze the correlation between the
lncRNAs and ARGs. The lncRNAs with correlation coefficient
|R2| > 0.5 and p < 0.01 were considered as autophagy-related
lncRNAs (ARlncRNAs).

Construction and Validation of an
ARlncRNAs Prognostic Signature
To increase the reliability of our study, we randomly divided
the entire dataset into a training set (accounting for 60%) and
a validation set (accounting for 40%) by the “caret” R package
(version 6.0-84)5 (Deist et al., 2018). And the whole dataset
was considered as an entire set (n = 177). At first, we adopted
the univariate cox regression analysis to identify the significant
ARlncRNAs in the training set with a p< 0.01 by the “survival” R
package. Then, the least absolute shrinkage and selection operator
(LASSO) penalized cox regression analysis was performed to
further reduce the dimension and the multivariate cox regression
analysis was utilized to calculate the risk coefficients of the
prognostic signature. The risk score formula is shown as follows:
Risk score = 6Coef ARlncRNAs × Exp ARlncRNAs. The Coef
ARlncRNAs represents the coefficient of each ARlncRNAs and
Exp ARlncRNAs is the expression of each ARlncRNAs. Based
on the median risk score of the signature, the patients were
divided into low-risk and high-risk groups. The survival analysis
for the different groups was performed using the Kaplan-Meier
(K-M) survival curve analysis and log-rank test analysis with the
“survminer” R package. Moreover, we constructed the receiver
operating characteristic (ROC) curve by using the “survivalROC”
R package to evaluate the specificity and sensitivity of the
prognostic signature.

The Nomogram Establishing
In order to simplify the predictive model, we created a nomogram
based on independent clinical prognostic factors with the “rms”

1https://portal.gdc.cancer.gov
2http://asia.ensembl.org/index.html
3http://autophagy.lu/clustering/index.html
4http://www.gencodegenes.org
5http://caret.r-forge.r-project.org/
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R package (Iasonos et al., 2008). We plotted the calibration
curve of the nomogram to value the predictive power of the
prognostic signature.

Bioinformatics Analysis of the Signature
Grouped samples and expression patterns were analyzed using
the principal component analysis (PCA). Gene set enrichment
analysis (GSEA) was performed to evaluate different functional
phenotypes between low- and high-risk groups (Subramanian
et al., 2005). Moreover, we analyzed the correlation between
different risk groups and clinical characteristics with the chi-
square test and the results were presented in a heat map.

To better investigate the relationship between the signature
and immune cell infiltration, we calculated the infiltration
expression of 22 immune cells in PC by using the “CIBERSORT”
R package. Then, the immune-related Pearson correlation
coefficients were tested for relevance in the R program.

Moreover, to explore the clinical utility of the signature to
predict therapeutic effect, we used the Pearson’s analysis to
calculate the correlation between risk scores with molecules of
targeted therapy. The therapy targets are as follows: programmed
cell death 1 (PD-1, also known as PCDC1), programmed cell
death ligand 1 (PD-L1, also known as CD274), epidermal
growth factor receptor (EGFR), vascular Endothelial Growth
Factor Receptor 3 (VEGFR3, also known as FLT4), KIT
proto-oncogene (KIT), Fms-like tyrosine kinase 3 (FLT3),
MET proto-oncogene (MET), vascular Endothelial Growth
Factor Receptor (VEGFR1, also known as FLT1), mammalian
target of rapamycin (mTOR), platelet-derived growth factor
receptor alpha (PDGFRA), and platelet-derived growth factor
receptor beta (PDGFRB).

Construction of the
lncRNA–miRNA–mRNA Regulatory
Network
The DIANA online tools6 were employed to explore the miRNAs
binding to lncRNA. We employed three miRNA databases,
including miRDB7, miRTarBase8, and TargetScan9, to predict the
target genes of miRNAs. To predict the expression correlation
between lncRNAs and miRNAs, the threshold was set at 0.9.
Subsequently, the lncRNA-miRNA-mRNA regulatory network
was mapped by the Cytoscape (version 3.7.0)10 to better
understand the connections.

Functional Annotation and Pathway
Analysis of the Target mRNAs
To further explore the functional annotation and pathway
analysis of the target mRNAs, the Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

6http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=
lncbasev2%2Findex
7http://mirdb.org/miRDB/
8http://mirtarbase.mbc.nctu.edu.tw/
9http://targetscan.org/
10https://cytoscape.org/

analysis were performed by using the “clusterProfiler” R package
with a p < 0.05, and FDR < 0.05.

Identification of Potential Small Molecule
Drugs
Connectivity Map (CMap)11 is a collection of genome-wide
transcriptional expression data from cultured human cells treated
with bioactive small molecules and analyzed by corresponding
matching algorithms to investigate the relationship between drug
and gene expression changes and phenotypes (Lamb et al., 2006).
We uploaded up- and down-regulated target genes from the
lncRNA-miRNA-mRNA network to CMap. A connectivity score
ranging from -1 to 1 was used to reflect the degree of closeness
between the expression spectrums. The drugs with negative
scores were potential therapeutic molecules. Moreover, these
candidate drugs were investigated in the Pubchem database12.

Gene Expression Profiling Interactive
Analysis (GEPIA)
Gene Expression Profiling Interactive Analysis (GEPIA)13 is a
website for large-scale expression analysis and interactive analysis
that has been used to compare the expression of signature
lncRNAs (Tang Z. et al., 2019).

Patients and Samples
Blood samples of PC patients were collected from the Tongji
Hospital, Tongji Medical College, Huazhong University of
Science and Technology (Wuhan, China) between May 2019
and July 2019. Patients were eligible if they didn’t receive any
preoperative radiation and chemotherapy and the postoperative
pathology was officially diagnosed as pancreatic adenocarcinoma.
Exclusion criteria are as follows: (1) patients with history of
previous cancer; (2) patients with multiple tumors or PC is not
a primary lesion; and (3) patients with co-morbidities of the
blood system. Finally, 30 of the 37 blood samples were eligible
for further study. And, 10 blood samples of healthy donors were
collected as a control group.

The serum specimen was separated at 3,000 rpm for 10 min
from the venous blood. All the serum samples were stored at
−80◦C. Ethical approval for the use of human samples was
obtained from the Tongji Hospital Research Ethical Committee.

RNA Extraction and Quantitative
Real-Time PCR
Total RNA was extracted from serum samples and cells
by the TRIzol reagent (Life Technologies, Thermo Fisher
Scientific, United States). The complementary DNA was
synthesized with the PrimeScriptTM RT Master Mix (Takara
Bio Inc, Dalian, China) according to the manufacturer’s
instructions. Quantitative real-time PCR (qRT-PCR) was
performed using a SYBR Green PCR kit (Thermo Fisher
Scientific) following the standard protocol. And GAPDH served

11https://portals.broadinstitute.org/cmap/
12https://pubchem.ncbi.nlm.nih.gov/
13http://gepia2.cancer-pku.cn/
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as the internal control. The forward primer for LINC01559
was 5′-GTCCTGCAGAACTCCCTCTT-3′, the reverse primer
for LINC01559 was 5′-AGTCCTGGAGCTGCAGAAAT-3′.
The forward primer for AC245041.2 was 5′-
TTGCCCCCATCTTTGCCATTCC-3′, the reverse primer
for AC245041.2 was 5′- TTGACCCATCTTTCCTCCCCAC-3′.
The forward primer for AC005332.6 was 5′-AAGACAGCACG
GTGTTAAAAAG-3′, the reverse primer for AC005332.6 was
5′-TTGAATCCAGGAGGCGGAAG-3′. The forward primer
for GAPDH was 5′-GGAGCGAGATCCCTCCAAAAT-3′, the
reverse primer for GAPDH was 5′-GGCTGTTGTCATACTT
CTCATGG-3′. The relative expression was calculated by the
2−11Ct method.

Cell Culture and Transfection
Human PC cell lines PANC-1 and SW1990 were obtained
from the American Type Culture Collection (Manassas, VA,
United States). These cells were maintained in the Dulbecco’s
modified Eagle medium (Gibco, Carlsbad, CA, United States)
supplemented with 10% fetal bovine serum (FBS; Gibco),
100 units/mL of penicillin, and 100 mg/mL of streptomycin
(Sigma-Aldrich, St. Louis, MO, United States). All cell lines
were authenticated, mycoplasma-free and cultured at 37◦C in a
humidified incubator containing 5% CO2.

LINC01559 si-1, LINC01559 si-2 and si-NC were purchased
from the DesignGene Biotechnology (Shanghai, China) and
transfected into PC cells using the Lipotransfectamine 3000
(Thermo Fisher Scientific). The lentiviral vector containing
the tandem-labeled GFP-mRFP-LC3 reporter were also
constructed by the DesignGene Biotechnology (Shanghai,
China), and transfection was carried out according to the
manufacturer’s specification.

Western Blot Analysis
Western blotting assay was performed to detect the expression
of LC3B, p62, and GAPDH as previously described (Tian et al.,
2018). The antibodies of LC3B (#2775, 1:200), p62/SQSTM1
(#5114, 1:500), cleaved caspase-3 (#9661, 1:1,000), cleaved
PARP (#9544, 1:1,000), and GAPDH (#5174, 1:1,000) were
purchased from the Cell Signaling Technology (CST, Danvers,
MA, United States). And the intensity of bands was estimated
by the Image J2X (National Institute of Mental Health, Bethesda,
MD, United States). All experiments were repeated three times.

Transwell Assay
For migration assay, 1× 105/mL PC cells were suspended into the
upper transwell chamber of 24-well transwell plates (8 µm pore
size; Corning) containing 200 µL serum-free medium, while the
lower chambers were supplied with a 500 µL complete culture
medium. After 48 h co-culture, the cells on the lower surface
of membrane were fixed in 4% paraformaldehyde and stained
with crystal violet solution. The stained cells were then counted
under a Nikon light microscope (Nikon, Japan). For invasion
assay, the upper transwell chambers were coated with 60 µL
Matrigel matrix gel (BD Biosciences, United States). The other
operations were the same as the transwell migration experiment.
All experiments were repeated three times.

Wound Healing Assay
Indicated PC cells (2 × 105 cells/well) were seeded in 6-well
plates to grow to 90% confluence, and then we scratched the
wound with a 200 µL pipette tip across the center of the well.
After washing three times with PBS, the cells were incubated in a
serum-free medium at 37◦C with 5% CO2. Wound healing was
observed with the optical microscope (Nikon, Japan) at 0 and
24 h, respectively. All experiments were repeated three times.

In vitro Drug Cytotoxic and Cell
Proliferation Assay
A Cell Counting Kit-8 (Dojindo Laboratories Co. Ltd,
Kumamoto, Japan) assay was used to evaluate cell viability.
Briefly, PANC-1 and SW1990 cells were seeded in 96-well
plates at a density of 2 × 103 cells per well. Each group
had triplicates (n = 3). Cells were treated with gemcitabine
at indicated concentration after 48 h. At the indicated time
point, 10 µL of CCK-8 solution was added into each well and
cells were incubated for 2 h at 37◦C with 5% CO2. Then, the
absorbance was measured at 450 nm with a plate reader (Bio-Tek
Elx 800, United States). To assess cell proliferation, PC cells
(1× 103 cells/well) were placed into 96-well plates and measured
at 0, 24, 48, 72, 96. All experiments were repeated three times.

TABLE 1 | Clinical information of pancreatic cancer patients in the training,
validation, and entire cohort.

Variable Entire cohort
(n = 177)

Training cohort
(n = 107)

Validation cohort
(n = 70)

p-value

Age

≤ 65 93 (52.54%) 53 (49.53%) 40 (57.14%) 0.4023

> 65 84 (47.46%) 54 (50.47%) 30 (42.86%)

Gender

Female 80 (45.2%) 52 (48.6%) 28 (40%) 0.3324

Male 97 (54.8%) 55 (51.4%) 42 (60%)

Grade

G1–2 125 (70.62%) 76 (71.03%) 49 (70%) 0.4866

G3–4 50 (28.25%) 29 (27.1%) 21 (30%)

GX 2 (1.13%) 2 (1.87%) 0 (0%)

Stage

I–II 167 (94.35%) 102 (95.33%) 65 (92.86%) 1

III–IV 7 (3.95%) 4 (3.74%) 3 (4.29%)

Unknown 3 (1.69%) 1 (0.93%) 2 (2.86%)

T stage

T1–2 31 (17.51%) 22 (20.56%) 9 (12.86%) 0.3011

T3–4 144 (81.36%) 85 (79.44%) 59 (84.29%)

Unknown 2 (1.13%) 0 (0%) 2 (2.86%)

M stage

M0 79 (44.63%) 48 (44.86%) 31 (44.29%) 0.9106

M1 4 (2.26%) 2 (1.87%) 2 (2.86%)

MX 94 (53.11%) 57 (53.27%) 37 (52.86%)

N stage

N0 49 (27.68%) 33 (30.84%) 16 (22.86%) 0.1963

N1 123 (69.49%) 72 (67.29%) 51 (72.86%)

NX 5 (2.82%) 2 (1.87%) 3 (4.29%)
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FIGURE 1 | Construction of the autophagy related lncRNAs signature in training cohort. (A) The procedure of the construction of the SRGs signature, including
univariate Cox regression analysis (left), LASSO penalized Cox regression analysis (middle) and multivariate Cox regression analysis (right). (B) Correlation between
the prognostic signature and the overall survival of patients. The distribution of selected ARlncRNAs (upper), risk score (middle) and survival time (below).
(C) Kaplan-Meier survival analysis of high-risk and low-risk risk group. (D) Receiver operating characteristic (ROC) curves for 1, 3, and 5 years survival (*p < 0.05;
***p < 0.001; ns, not significant).

Cell Apoptosis Assay
The percentage of apoptotic cells was analyzed by the PE Annexin
V Apoptosis Detection kit (BD Pharmingen). Briefly, 1× 105/mL
cells indicated PC cells were seeded into six-well culture plates.
After 48 h of relevant treatment, the cells were harvested using
trypsin without EDTA and washed twice with binding buffer.
Finally, the cells were resuspended in 100 µL of binding buffer
containing 5 µL Annexin V-PE and 5 µL 7-ADD for 15 min in the
dark at room temperature, and the apoptosis was detected by flow
cytometry (BD Biosciences, Franklin Lakes, NJ, United States).
All experiments were repeated three times.

Colony Formation Assay
Indicated PC cells (1 × 103 cells/well) were seeded into 6-
well plates and cultured in completed medium at 37◦C with
5% CO2 for 2 weeks. Then, the cells were cleaned, fixed and
dyed, and finally photographed. All experiments were repeated
three times.

Immunofluorescence and Confocal
Microscopy
Cells transfected with GFP-mRFP-LC3B were grown
on glass coverslips. Following the indicated treatments,
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FIGURE 2 | The validation of the risk model in the validation cohort and entire cohort. (A,B) Correlation between the prognostic signature and the overall survival of
patients in the validation set (A) and entire set (B). The autophagy related lncRNAs levels (upper), risk scores (middle), survival time (below). (C,D) Kaplan–Meier
curves of overall survival in the training cohort (C) and the validation cohort (D) stratified by risk scores. (E,F) Receiver operating characteristic (ROC) curve analysis
for the survival prediction model in the training cohort (E) and the validation cohort (F).

cells were fixed with 4% formaldehyde for 30 min and
photographed under a confocal microscope (Carl Zeiss,
Germany, LSM710).

Statistical Analysis
All statistical analysis and plotting were performed in the
R language (Version 3.6.2). Univariate and multivariate
Cox regression analyses were used to identify independent
prognostic factors for PC. And p < 0.05 was considered
statistically significant.

RESULTS

Identification of Autophagy-Related
lncRNAs (ARlncRNAs)
A total of 13,482 lncRNAs was extracted from the TCGA dataset,
825 of which were identified as ARlncRNAs by the Pearson
correlation analysis (|R| > 0.5, p < 0.01).

Establishment and Verification of a
Prognostic ARlncRNAs Signature
Firstly, all patients were divided into training cohort (n = 107)
and validation cohort (n = 70) (Table 1). Then, we employed the
LASSO penalized cox regression analysis by the training cohort
and found 10 more representative ARlncRNAs: AC245041.2,
AL354892.2, FLVCR1.DT, AC125494.2, AL162274.2, LINC01559,
AC090114.2, SH3PXD2A.AS1, AC005332.6, and AC092171.2
(Figure 1A). Moreover, the stepwise multivariate Cox regression
was utilized to establish a predictive signature for PC patients in
the training cohort with a risk score = (0.319702425× expression
level of AC245041.2) + (−0.934877496 × expression
level of AC125494.2) + (0.038664123 × expression level
of LINC01559) + (−0.594425726 × expression level
of AC090114.2) + (−0.110425977 × expression level
of AC005332.6) + (−0.184537572 × expression level of
AC092171.2) (Figure 1A).

Next, the patients in the training cohort were divided into
high-risk group and low-risk group based on the median
risk score. Figure 1B showed the distribution of prognostic
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FIGURE 3 | Establishment of a nomogram based on clinical characteristics and the autophagy related lncRNAs signature. (A,B) Univariate Cox regression analysis
(A) and Multivariate Cox regression analysis (B) of clinical features and the signature. (C) The nomogram consists of clinical characteristics and prognostic signature.
(D) The nomogram calibration curve is used to predict 1, 3, and 5 years survival rates.

signature, survival outcomes of PC patients in different
groups, and the expression profiles of the selected lncRNAs.
Notably, the Kaplan-Meier survival analysis in the training
cohort revealed that the survival time of PC patients was
significantly longer in the low-risk group than the high-risk

group (Figure 1C). As shown in Figure 1D, the area under
the ROC (AUC) for 1, 3, and 5 years of the survival were
0.938, 0.890, and 0.804 in the training cohort, suggesting that
the signature exerted a certain potential property for prognostic
prediction in PC patients.
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FIGURE 4 | The low-risk and high-risk groups displayed different autophagy statuses. (A) Principal components analysis between low- and high-risk groups on the
basis of the autophagy-related gene sets. (B) Gene set enrichment analysis (GSEA) of the two groups.

To verify the accuracy of the signature, we analyzed its
prognostic value in the validation cohort and entire cohort.
LncRNAs expression profiles, risk distribution, and survival
rate in the validation cohort and entire cohort were shown
in Figures 2A,B. Similar to the results in the training
cohort, the Kaplan-Meier (K-M) survival analysis in both
the validation cohort and entire cohort indicated that the
survival outcome of PC patients was better in low-risk group
than in high-risk group (Figures 2C,D). The AUC at 1, 3,
and 5 years were and 0.848, 0.677, 0.737, and 0.921, 0.808,
0.774 in the validation cohort and entire cohort, respectively
(Figures 2E,F).

Furthermore, the univariate and multivariate Cox regression
analysis were employed to confirm the independent prognostic
role of the signature for PC patients in the entire cohort
(Figures 3A,B). Another independent prognostic factor was age.
Moreover, a nomogram based on the signature risk score and
clinical features was constructed and the calibration curve for 1,
3, and 5 years of the nomogram showed a great predictive power
of the prognostic signature (Figures 3C,D).

Functional Analysis of the Signature
PCA was employed to demonstrate the significant distribution
difference between low- and high-risk groups based on the
risk scores (Figure 4A). Then, GSEA was implemented to
explore the significant enriched pathways between the two
groups. As shown in Figure 4B, the top five up-regulated
and down-regulated KEGG pathways were the “mTOR
signaling pathway,” “calcium signaling pathway,” “regulation
of autophagy,” “RNA polymerase,” “lysine degradation,” and
“pentose phosphate pathway,” “starch and sucrose metabolism,”
“glycolysis gluconeogenesis,” “glycosphingolipid biosynthesis
lacto and neolacto-series,” and “pentose and glucuronate
interconversions,” respectively. These results indicated
that the high-risk score was significantly associated with

autophagy regulation and several signaling pathways may
participate in the process.

The Relationship Between the Signature
and the Clinical Features in PC
To investigate the clinical utility of the signature, we explored the
relationship of the signature with clinical features. We found that
the high-risk score was significantly correlated with tumor grade,
AJCC stage, N stage, T stage, and survival status (Figure 5A).

The Relationship of the Signature and
Immune Cell Infiltration in PC Tissues
To investigate the relationship between the prognostic signature
and immune cell infiltration. Pearson correlation analysis showed
that the signature score was significantly correlated with the
infiltration of activated dendritic cells (cor = 0.152, p = 0.043),
plasma cells (cor =−0.155, p = 0.040), CD8 T cells (cor =−0.193,
p = 0.010), M1 macrophages (cor = 0.200, p = 0.008), and
neutrophils (cor = 0.152, p = 0.043) (Figure 5B).

Predicting Efficacy of Immunotherapy
and Targeted Therapy With the Signature
The tumor mutation burden (TMB) has been shown to be related
to the clinical efficacy of immunotherapy (Samstein et al., 2019).
To explore the value of our signature for predicting the efficacy
of immunotherapy in PC, we assessed the TMB of PC patients
in the high-risk and low-risk groups. We found that TMB of
PC patients in the high-risk group was higher than that in the
low-risk group, which implied that immunotherapy may be a
potentially effective treatment to those PC patients with high-risk
scores (Figure 5C).

Furthermore, we analyzed the correlation of the signature
score with the therapy-related targets. Pearson’s correlation
analysis showed that the risk score was significantly associated
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FIGURE 5 | The correlation of the risk score with the clinical traits, immune cells and therapy targets. (A) Correlation of risk group and clinical traits. (B) The
correlation between the risk score and immune cells. (C) The TMB of PC patients in the high-risk and low-risk groups. (D) The correlation between the risk score and
therapy targets (*p < 0.05; ***p < 0.001; ns, not significant).

with PD-L1 (cor = 0.151, p = 0.044), VEGFR3 (cor = −0.194,
p = 0.010), EGFR (cor = 0.177, p = 0.019), FLT3 (cor = −0.165,
p = 0.028), KIT (cor =−0.164, p = 0.029), and MET (cor = 0.358,
p = 1.026e–06) (Figure 5D).

Construction of the
lncRNA–miRNA–mRNA Regulatory
Network
LncRNAs could interact with miRNAs to modulate mRNA
expression, thereby modulating the biological characteristics of

malignant tumors. To explore the regulation of these selected
LncRNAs, we constructed a regulatory network consisting of six
lncRNAs, 107 miRNAs, and 209 mRNAs (Figure 6).

Functional Analysis of the Regulatory
Network
To better understand the function of the regulatory network,
the “clusterProfiler” R package was employed to conduct
a KEGG pathway and GO enrichment analysis. As shown
in Figure 7, these genes in the regulatory network are
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FIGURE 6 | Construction of lncRNA-miRNA-mRNA regulatory networks.

enriched in many cellular components (CC) and molecular
functions (MF). The most significantly enriched molecular
functions included “protein serine/threonine kinase activity,”
“Rab GTPase binding,” and “protein serine/threonine/tyrosine
kinase activity,” In terms of KEGG pathway, the main significant
pathways included “autophagy,” “small cell lung cancer,” “Toll-
like receptor signaling pathway,” “pancreatic cancer,” “ErbB
signaling pathway,” “colorectal cancer,” “endocrine resistance,”
and “hedgehog signaling pathway.” These results indicated that
the regulatory network may contribute to therapeutic resistance
of PC through multiple signal pathways.

Potential Small Molecule Drugs
Screening
To screen small molecule drugs, 209 selected mRNA
were further analyzed in the Connectivity Map (CMap).

The top six most significant potential small molecule
drugs were listed in Figure 8A, including vorinostat
(C14H20N2O3), trichostatin A (C17H22N2O3), sirolimus
(C51H79NO13), phthalylsulfathiazole (C17H13N3O5S2), GW-
8510 (C21H15N5O3S2), and daunorubicin (C27H29NO10). And
the 2D chemical structures of these potential agents were shown
in Figure 8B.

Serum LINC01559 Served as a
Diagnostic Biomarker
Firstly, we evaluated the expression profiles and prognostic
performance of these six lncRNAs. The expression level of
AC245041.2, LINC01559, and AC005332.6 was significantly
upregulated in PC than in normal tissues (Figure 9A). Moreover,
the Kaplan-Meier survival analysis demonstrated the prognostic
power of these six lncRNAs (Figure 9B). Then, qRT-PCR was
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FIGURE 7 | Functional enrichment analysis of target mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of mRNAs. Gene
ontology (GO) enrichment analysis of the mRNAs. CC, cellular component; MF, molecular function.

applied to value the expression level of these lncRNAs in
serum. Notably, only the expression of LINC01559 was markedly
increased in the serum of PC patients, indicating that LINC01559
could serve as a diagnostic biomarker (Figure 9C).

Inhibition of LINC01559 Suppressed PC
Cell Proliferation, Migration, and Invasion
We selected LINC01559 for further analysis. As shown in
Figure 10A, we successfully silenced the expression level of
LINC01559 in PC cells by si-LINC01559 transfection. Next,
we explored the effect of silencing LINC01559 on the PC
cells proliferation, migration, and invasion. CCK8 assay showed
that the inhibition of LINC01559 led to a reduced viability in
the PANC-1 and SW1990 cells (Figure 10B). Also, transwell
assay was performed to demonstrate that the invasion and
migration ability of PC cells were suppressed under LINC01559
depletion (Figures 10C,D). Furthermore, it was proved by
wound healing assays that silencing LINC01559 obviously
hindered the migration ability of PANC-1 and SW1990 cells
(Figure 10E). These results suggested that knockdown of
LINC01559 suppressed PC cell proliferation, migration, and
invasion in vitro.

Inhibition of LINC01559 Suppressed PC
Cell Autophagy and Promotes Apoptosis
The role of LINC01559 in autophagy and chemotherapeutic
resistance was further explored. WB analysis were employed
to show that PC cells transfected with si-LINC01559 exhibited
decreased the expression of LC3I/LC3II but increased the
p62 expression, indicating that autophagy was inhibited after
LINC01559 depletion (Figure 11A). However, gemcitabine
(10 µM) treatment induced autophagy in PC cells (Figure 11A).
This observation was further confirmed by the tandem
LC3B-RFP-GFP fluorescence microscopy assay. As shown in

Figure 11B, gemcitabine increased the number of red-only LC3
puncta in PC cells, implying an increase of autophagic flux.
Inhibition of LINC01559 reduced the number of red-only LC3
puncta in GFP-mRFP-LC3-transfected PC cells compared with
the cells treated with gemcitabine. Besides cell viability assay,
colony formation assay, cell apoptosis assay, and WB analysis
of apoptotic markers were performed. CCK-8 results showed
that the IC50 value for gemcitabine was significantly increased
in LINC01559-silenced PC cells (Figure 11C). In contrast,
knockdown of LINC01559 significantly induced the colony-
forming capacity of PANC-1 and SW1990 cells (Figure 11D) and
increased the gemcitabine-induced apoptosis rates (Figure 11E).
And the protein level of cleaved caspase3 and PARP were
increased in LINC01559-downregulated cells with or without
gemcitabine (10 µM) treatment (Figure 11F). These results
suggested that the inhibition of LINC01559 could suppress
autophagy and stimulate apoptosis, which would ultimately lead
to sensitize PC cells to gemcitabine.

DISCUSSION

PC is a solid tumor with a highly malignant behavior, which has
become the fourth largest cancer causing cancer-related death
in western countries, with a 5 years survival rate of less than
10% (Siegel et al., 2019). Accumulated evidence showed that
autophagy got involved in tumor development and treatment
resistance in PC (Piffoux et al., 2020). Thus, it is essential to screen
autophagy-related molecular to identify effective prognostic
biomarkers for PC. Recent great advances in genomics have
provided opportunities for the identification of cancer prognostic
biomarkers and potential molecular targets. Here, we were
the first to construct a reliable prognostic signature based on
autophagy-associated lncRNAs (ARlncRNAs) and confirmed the
clinical utility in PC patients. Moreover, we preliminary explored
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FIGURE 8 | Screening of six pancreatic cancer candidate small molecule drugs. (A) The top six most significant potential small molecule drugs based on cMAP.
(B) The chemical structure depiction of the six candidate small molecule drugs for PC.

the carcinogenic role of LINC01559 in PC and found that the
inhibition of LINC01559 might be a potential therapeutic strategy
for improving sensitivity to gemcitabine in PC patients.

Firstly, we employed a Pearson correlation analysis to
identify ARlncRNAs, and 826 lncRNAs were obtained. Then,
these ARlncRNAs were screened to establish a six-ARlncRNAs
signature in training cohort. Next, KM survival analysis and
ROC analysis demonstrated the prognostic value of the signature
in training cohort. And the similar results were also observed
in both validation cohort and entire cohort. Furthermore, the
independent prognostic role of the signature was confirmed

by the univariate and multivariate cox regression analysis.
Moreover, a nomogram indicated a great predictive power of the
prognostic signature.

To further explore the clinical utility of the signature, we
investigate the association of the signature with clinical features
and found that high risk score was positive correlated with tumor
grade, AJCC stage, N stage, and T stage. Immune cell infiltration
analysis showed the risk score was negatively correlated with
plasma cells and CD8 T cells. Moreover, the tumor mutation
burden (TMB) of PC patients in the high-risk group was
statistically higher than that in the low-risk group, indicating
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FIGURE 9 | LINC01559 serves as a diagnostic biomarker. (A) Comparison of differential expression of signature lncRNAs by GEPIA. (B) Kaplan-Meier survival
curves for the signature lncRNAs. (C) qRT-PCR was conducted to detect the expression levels of LINC01559, AC245041.2, and AC005332.6 in serum (*p < 0.05;
**p < 0.01; ns, not significant).

that immunotherapy may be a potentially effective option to
those PC patients with high-risk scores. Next, correlation analysis
showed that the signature scores were positively correlated with
the expression of PD-L1, EGFR, and MET, implying that those PC
patients with high-risk scores may be sensitive to these targeted
chemotherapy drugs.

To better understand the potential biological mechanism of
the involved ARlncRNAs, we constructed the lncRNA-miRNA-
mRNA regulatory network. As indicated by KEGG pathway and
GO enrichment analysis, the regulatory network may promote
therapeutic resistance of PC. And several pathways, such as Toll-
like receptor signaling pathway, ErbB signaling pathway, and
hedgehog signaling pathway, may be involved in the process.

Most importantly, we identified six potential small molecule
drugs from the network, including vorinostat, trichostatin-A,
sirolimus, phthalylsulfathiazole, GW-8510, and daunorubicin.
Vorinostat is a histone deacetylase (HDAC) inhibitor approved
by FDA for the treatment of patients with refractory or
relapsed cutaneous T cell lymphoma. Pre-clinical studies have
demonstrated that vorinostat could induce apoptosis and inhibit
tumor growth in human PC cell lines. And the combination
of vorinostat and capecitabine with radiation in PC patients

were well tolerated with antitumor activity in a phase I
clinical trial (NCT00983268) (Chan et al., 2016). Trichostatin
A (TSA), a natural derivative of dienohydroxamic acid, is a
potent inducer of tumor cell growth arrest, differentiation, and
apoptosis. Donadelli et al. (2003) demonstrated the antitumor
value of TSA in human PC cell lines. And, combined therapy
of gemcitabine and TSA exerted synergistic inhibition of PC cell
growth (Donadelli et al., 2007). Sirolimus, also called rapamycin,
is an immunosuppressive agent proved by FDA mainly for
the prophylaxis of organ rejection in patients receiving renal
transplants. However, as a derivative of sirolimus, everolimus
exerts anti-angiogenic properties and is indicated as the first
line therapy for pancreatic neuroendocrine tumor. And, clinical
trials of everolimus in combination with other anticancer
agents in PC patients is going on. Phthalylsulfathiazole is
a broad-spectrum antimicrobial agent which is used in the
treatment of dysentery, colitis, and gastroenteritis. It has not been
reported that the agent shows anti-tumor effects. GW8510 is a
synthetic cyclin-dependent kinase (CDK) inhibitor that could
reverse tamoxifen resistance in breast cancer and gemcitabine
resistance in lung squamous cell carcinoma through autophagy
induction (Chen P. et al., 2018; Li et al., 2020). Daunorubicin
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FIGURE 10 | Inhibition of LINC01559 suppresses PC cell proliferation, migration and invasion. (A) qRT-PCR was performed to measure the expression level of
LINC01559 in PC cells transfected with si-NC or two siRNA targeting LINC01559. (B) CCK-8 analysis was used to examine the proliferation of PC cells. (C,D)
Transwell assays were conducted to evaluate the effect of silencing LINC01559 on PC cell invasion ability (C) and migratory capacity (D). Scale bar: 200 µm (200×).
(E) Wound healing assays showing the capacity of indicated PC cell migration. Scale bar: 200 µm (40×) (**p < 0.01; ***p < 0.001; ns, not significant).

is the first generation of anthracyclines with antineoplastic
activity and is indicated exclusively for the treatment of
acute leukemia. Anthracycline drugs, including daunorubicin,
doxorubicin, epirubicin, therarubicin, and aclacinomycin, are
widely used in the treatment of hematologic malignancies and
solid tumors. Taken together, these findings provide potential
therapeutic options for patients with PC.

Among the six selected ARlncRNAs, LINC01559 was reported
to be upregulated in renal cell carcinoma, gastric cancer, PC, and
hepatocellular carcinoma (Chen B. et al., 2018; Chen et al., 2020;

Dong et al., 2020; Lou et al., 2020; Wang et al., 2020).
Moreover, we found that the expression of LINC01559 was
significantly increased in both serum and tumor tissues of
PC patients, indicating that LINC01559 could serve as a
diagnostic biomarker. Thus, we chose LINC01559 for further
analysis. Functional analysis showed inhibition of LINC01559
suppressed proliferation, migration, and invasion in PANC-
1 and SW1990 cells. The results were similar to Lou et al.
(2020) and Chen et al. (2020) in AsPC-1, BXPC-3, MIA PaCa-2
cells. Interestingly, Dong et al. (2020) reported that LINC01559
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FIGURE 11 | Inhibition of LINC01559 suppressed PC cell autophagy and promoted apoptosis. (A) Protein expression levels of p62 and LC3B after various
treatments measured by Western blot analysis. (B) Representative confocal images of autophagosome (yellow puncta) and autolysosome (red puncta) formation are
presented in the left panel. Scale bar: 20µm. The numbers of RFP+GFP+ LC3 puncta and RFP+GFP− LC3 puncta are shown in the right panel. (C) The cell
inhibition was calculated by the CCK-8 assay in PC cells treated with different concentrations of gemcitabine at 48 h. (D) Representative images from the clonogenic
assays of PANC-1 and SW1990 cells with or without gemcitabine (10 µM) treatments and cultured for 14 days. (E) Apoptosis rate after various treatments was
detected by flow cytometry. (F) Protein expression levels of cleaved PARP and cleaved caspase-3 after various treatments measured by Western blot analysis
(*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant).
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may be involved in regulating the resistance and response to
oxaliplatin in hepatocellular carcinoma. Then, we investigated
the relationship of LINC01559 expression and chemoresistance.
In vitro analysis showed that silencing LINC01559 suppressed
the gemcitabine-induced autophagy and promoted gemcitabine-
induced apoptosis, implying that inhibition of LINC01559 could
be a potential therapeutic treatment for improving sensitivity to
gemcitabine in PC patients.

Although there have been many reports of bioinformatic
analysis of PC (Wei et al., 2019), we focused on the essential
role of autophagy-related lncRNAs (ARlncRNAs) in biological
characteristics of tumor malignancy and first proposed a six-
ARlncRNAs signature for PC cohort. Moreover, we validated the
independent prognostic value of the signature and explored in
depth the clinical utility for predicting efficacy of immunotherapy
and targeted therapy in PC patients. More importantly, we
constructed an lncRNA-miRNA-mRNA regulatory network to
better understand the potential biological mechanism. And,
cMAP analysis was performed to screen potential small molecule
drugs for patients with PC, which may provide clinical benefits.
However, there are inevitably several limitations in our paper.
First, due to the lack of valid data, our prognostic model and
nomogram cannot be verified by external data. Second, the
universality of the conclusion may be limited by the influences
of race/ethnicity in PC patient TCGA cohorts. Moreover, despite
the reports that LINC01559 regulate proliferation and migration
by acting as a competing endogenous RNA of miR-1343-3p and
miR-607 (Chen et al., 2020; Lou et al., 2020), the biological
role of LINC01559 in regulating autophagy is obscure. Thus, we
should combine multicenter clinical trials and prospective study
to further prove the clinical value of the model in PC and it’s
essential to further elucidate the molecular mechanisms that link
LINC01559 with autophagy.

In summary, our study provided a deeper understanding
of the role of autophagy in biological characteristics of tumor
malignancy and firstly proposed a six-ARlncRNAs signature that
could provide valuable clinical utility for reliable prognostic
prediction and personalized treatment of PC patients. Moreover,

we identified the prognostic role of LINC01559 in PC, and
targeting LINC01559 may be a potential therapeutic option for
overcoming the resistance to gemcitabine in PC patients.
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Autophagy is an intracellular degradation process involved in the removal of proteins
and damaged organelles by the formation of a double-membrane vesicle named
autophagosome and degraded through fusion with lysosomes. An intricate relationship
between autophagy and the endosomal and exosomal pathways can occur at different
stages with important implications for normal physiology and human diseases. Recent
researches have revealed that extracellular vesicles (EVs), such as exosomes, could
have a cytoprotective role by inducing intracellular autophagy; on the other hand,
autophagy plays a crucial role in the biogenesis and degradation of exosomes. Although
the importance of these processes in cancer is well established, their interplay in
tumor is only beginning to be documented. In some tumor contexts (1) autophagy and
exosome-mediated release are coordinately activated, sharing the molecular machinery
and regulatory mechanisms; (2) cancer cell-released exosomes impact on autophagy
in recipient cells through mechanisms yet to be determined; (3) exosome-autophagy
relationship could affect drug resistance and tumor microenvironment (TME). In this
review, we survey emerging discoveries relevant to the exosomes and autophagy
crosstalk in the context of cancer initiation, progression and recurrence. Consequently,
we discuss clinical implications by targeting autophagy-exosomal pathway interaction
and how this could lay a basis for the purpose of novel cancer therapeutics.

Keywords: autophagy, exosome, microenvironment, cancer, target therapy

AUTOPHAGY: AN OVERVIEW

Autophagy is a self-degradative process occurring in all eukaryotic cells for maintaining
homeostasis and cell survival. In basal conditions, autophagy degrades cytosolic materials such
as long-lived proteins and old organelles for renewal of cellular components. During stressful
conditions such as starvation or hypoxia, autophagy is induced to recycle macromolecules,
providing energy and nutrients. Autophagy begins with the formation of a unique smooth double-
membrane phagophore that traps cytosolic materials; after closure, autophagosome vesicle is
formed and upon fusion with lysosomes, the inner membrane and the cargos are degraded
and subsequently recycled (Yu et al., 2018). Three morphologically and mechanistically distinct
types of autophagy have been described: macroautophagy (here referred to as autophagy),
microautophagy and chaperone-mediated autophagy (CMA) (Abdrakhmanov et al., 2020). They
differ substantially for cargo selection and delivery mechanism into lysosomes: macroautophagy
is characterized by the formation of autophagosome, while during microautophagy the cargos
are sequestered by direct invagination of the vacuole membrane. CMA only occurs in
mammalian cells and uses chaperones to identify cargo proteins that contain a particular
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pentapeptide motif that are translocated directly across the
lysosomal membrane. Although autophagy was initially thought
to be a non-selective degradation mechanism, now it is clear
that it allows the removal of specific cellular components such as
mitochondria (mitophagy), aggregates (aggrephagy), or invading
pathogens (xenophagy) (Gatica et al., 2018).

Autophagosome formation is driven by the autophagy-
related (ATG) proteins that are both spatially and temporally
controlled and are divided into distinct units: ULK complex,
the class III phosphatidylinositol 3-kinase (PI3K) complex,
the ATG2-ATG18/WIPI4 complex, ATG9, the ATG12
conjugation system and the ATG8/LC3 conjugation system
(Nishimura and Tooze, 2020).

The role of autophagy has been explored in many fields (Yang
and Klionsky, 2020). In cancer progression, autophagy has a
dual and paradoxical role: while at early stages autophagy acts
as a tumor suppressor mechanism, in advanced stages it has a
fundamental role in tumor survival being active in response to
cellular stress (White, 2015; Keulers et al., 2016; Cotzomi-Ortega
et al., 2018; Amaravadi et al., 2019, 2020; Mulcahy Levy and
Thorburn, 2020).

EXOSOMES: BIOGENESIS, RELEASE
AND FUNCTIONS

According to the International Society for Extracellular Vesicles
(ISEV) which provides guidelines for the classification of
extracellular vesicles (EVs), exosomes are nano-sized (30–
120 nm) (Théry et al., 2018). EVs secreted by all cell types that
play a role in cell-cell communication through the transfer of
active biomolecules such as proteins, lipids, RNAs, DNA and
microRNAs (Raposo and Stoorvogel, 2013). Exosome precursors,
named intraluminal vesicles (ILVs), derive from the membrane of
endocytic cisternae by inward budding of microdomains. Upon
ILVs accumulation, the cisternae become multivesicular bodies
(MVBs) that undergo exocytic fusion with the plasma membrane
followed by release of their ILVs to the extracellular space
(Raposo and Stoorvogel, 2013; Cocucci and Meldolesi, 2015).
Due to the mechanism of biogenesis, the exosomal membrane has
the same orientation as the parental cell plasma membrane, and it
is enriched in endosome-related proteins, lipids and tetraspanins.
The exact mechanisms involved in exosomes packaging have
not been fully elucidated but their secretion requires formation
of an endosomal-sorting complex that is required for transport
(ESCRT) (Scita and Di Fiore, 2010). ESCRT is comprised of four
complexes (ESCRT−0,−I,−II, and−III) and associated proteins
(vacuolar protein sorting-associated protein 4 (VPS4), tumor
Susceptibility 101 (Tsg101) and ALIX) (Schuh and Audhya,
2014). In addition to ESCRT, which recognizes ubiquitylated
proteins, other ESCRT-independent mechanisms operate to
generate exosomes (Stuffers et al., 2009). These unconventional
ESCRT-independent pathways seem to be driven by the presence
of certain lipids, such as ceramides and lysobisphosphatidic acid
(Matsuo et al., 2004; Babst, 2011). The release of exosomes
into the extracellular environment requires the transport and
docking of MVBs as well as their fusion with the plasma

membrane (van Niel et al., 2006). These processes need several
factors including molecular switches, cytoskeleton, molecular
motors and the membrane fusion apparatus. It has been
proposed that exosome release is a Ca2+-dependent (Savina
et al., 2003) and pH-dependent (Parolini et al., 2009) process.
After secretion, exosomes can be transferred to recipient cells
via clathrin-mediated endocytosis (Tian et al., 2014), lipid raft-
mediated endocytosis (Svensson et al., 2013), heparin sulfate
proteoglycans-dependent endocytosis (Christianson et al., 2013),
or phagocytosis (Feng et al., 2010). These pathways lead to
different sorting and fate of exosomal cargo and the route
by which exosomes are internalized appears to be cell and
context specific. Tian et al. (2014) have showed that clathrin-
mediated endocytosis and macropinocytosis are involved in the
up-take of PC12-derived exosomes through a receptor-mediated
mechanism. Svensson et al. (2013) have demonstrated that the
signaling status of recipient cells is important in determining
the pathway by which exosomes are internalized: exosomes
derived from glioblastoma (GBM) cells, indeed, trigger lipid
raft-mediated endocytosis where ERK activation is required.
Furthermore, Christianson and co-workers provide evidences
that exosomes produced by GBM cells require heparan sulfate
proteoglycans for internalization and this affects the functional
effects of exosomes in cancer cells (Christianson et al., 2013).
Feng et al. (2010) have highlighted the role of the type of
recipient cell in determining how exosomes are internalized:
they have showed that phagocytic cells internalize exosomes
via phagocytosis while in non-phagocytic cells exosomes attach
to the cell membrane. In target cells, molecules carried by
exosomes can trigger and influence several processes both
in physiological and pathological conditions. In recent years,
numerous evidence highlights the involvement of exosomes in
angiogenesis promotion (Skog et al., 2008; Hong et al., 2009;
Ahmadi and Rezaie, 2020), suppression of immune response (Yu
et al., 2007; Clayton et al., 2008), induction of invasive (Luga
et al., 2012; Guo et al., 2019; Jabbari et al., 2020a) and metastatic
phenotype (Peinado et al., 2012), formation of pre-metastatic
niche (Costa-Silva et al., 2015; Colletti et al., 2020). Moreover,
tumoral exosomes can induce drug resistance carrying miRNAs
that target antiapoptotic and immune-suppressive pathways or
ABC transporters, which export chemotherapeutic agents out
of recipient cells (Santos and Almeida, 2020). Given their
involvement in cancer progression and their presence in different
biological fluids, there have been increasing efforts toward their
characterization as a source of possible diagnostic and prognostic
biomarkers even in pediatric oncology (Colletti et al., 2017,
2019, 2020; Galardi et al., 2019, 2020) and as a delivery tool for
biomedical applications (Rezaie et al., 2018; Rahbarghazi et al.,
2019; Jabbari et al., 2020b; Wu Z. et al., 2020).

CROSSTALK BETWEEN AUTOPHAGY
AND EXOSOME BIOGENESIS

An intricate relationship among autophagy and the exosome
biogenesis (Figure 1A) occurs at different stages (Buratta et al.,
2020; Hassanpour et al., 2020; Salimi et al., 2020). If in some
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FIGURE 1 | Autophagy and exosomes relationship. (A) A crosstalk between exosome biogenesis and autophagy flux occurs both at molecular level and at
membranous vesicles such as amphisomes. In the cytoplasm several Rab-GTPase proteins regulate the movement of vesicles between autophagy and exosomal
secretory pathway. On the MVB’s membrane different autophagic proteins such as LC3B, ATG5, and ATG16L1 participate to generate exosomes. Then, exosomes
can carry autophagic cargo and secrete this into extracellular milieu. (B) Both autophagy and exosome release are strongly stimulated by TME conditions (hypoxia,
starvation, ER stress) or chemotherapy treatments. (C) Exosomes released by cancer cells can induce autophagy in recipient cells, stimulating growth, migration and
enhancing drug resistance. On the other hand, cancer cell-released exosomes can activate pro-tumoral stromal or immune cells via autophagy-related mechanisms
or MSCs-derived exosomes may induce oncogenic autophagy in recipient cancer cells. The figure was performed with https://biorender.com.
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cellular contexts autophagy and exosome production act at the
same time to counter cellular stress (Kumar et al., 2014), in other
circumstances the two processes can compensate each other. In
fact, dysfunctional MVBs can be degraded by autophagy and the
inhibition of lysosomal function or autophagy restores exosome
secretion (Villarroya-Beltri et al., 2016). Moreover, EVs can
have a cytoprotective role by inducing intracellular autophagy
and, on the other hand, autophagy regulates the biogenesis and
degradation of EVs (Xu et al., 2018). Finally, emerging evidence
supports a role of both autophagy and exosomes in contributing
to the export of cytokines or proteins by an unconventional
secretory pathway (Ponpuak et al., 2015; Zhang et al., 2015;
Kimura et al., 2017). The main advances about the crosstalk
between these pathways are summarized below.

Molecular Interaction Mechanism
Some studies are emerging about how individual ATG proteins
can regulate exosome biogenesis and secretion (Salimi et al.,
2020). Intriguingly, it has been observed that ATG5, which
participates at the stage of autophagosome precursor synthesis
(Nishimura and Tooze, 2020), allows the dissociation of vacuolar
proton pumps (V1V0-ATPase) from the MVBs, thus inhibiting
the acidification of MVB-lumen and contributing to the fusion
of MVB with the plasma membrane (Guo et al., 2017) in a
canonical autophagy-independent manner. The treatment with
V-ATP inhibitors of Atg5 knockout cells demonstrated that
luminal pH plays a role in controlling whether MVBs must
undergo fusion with lysosomes for degradation or with plasma
membrane for exosomes release (Mauthe et al., 2018). Guo et al.
(2017) have demonstrated that the down-regulation of both
ATG16L1, a core autophagy protein implicated at distinct phases
of autophagosome biogenesis (Nishimura and Tooze, 2020), and
ATG5 reduces exosome biogenesis in breast cancer cells; this, in
turn, decreases tumor metastasis. Moreover, G alpha interacting
protein (GAIP) and GAIP interacting protein C-terminus
(GIPC), two proteins initially identified for G-protein coupled
receptor subunit GI alpha (De Vries et al., 1998), can
simultaneously stimulate exosome biogenesis and autophagy flux
in pancreatic tumor cells (Bhattacharya et al., 2014).

Murrow et al. (2015) have demonstrated that the inhibition
of ATG12–ATG3, a complex essential for a late step of
autophagosome formation (Nishimura and Tooze, 2020),
changes the form of MVBs, disrupts late endosome trafficking
and reduces exosome biogenesis. This occurs through an
interaction between ATG12-ATG3 and ALIX, a protein
implicated in membrane fission which interacts with ESCRT
members involved in exosomes release. ALIX inhibition also
reduces basal autophagy flux, indicating a reciprocal regulation
between autophagy and exosome biogenesis. Moreover, loss of
ALIX or depletion of ATG12-ATG3 complex does not impact
on starvation-induced autophagy, specifying the association
of different complexes which control basal and stress-induced
autophagy (Murrow et al., 2015).

Interestingly, a study perfomed by Bader and collaborators
reports that the transmembrane protein ATG9 is implicated
in the formation of ILVs in Drosophila melanogaster. In
basal conditions, depletion of ATG9 leads to both autophagy

inhibition and decrease of the ILVs content of amphisomes and
autolysosome (Bader et al., 2015).

One of the key autophagy players is MAP1LC3B, Microtubule
Associated Protein 1 Light Chain 3 Beta (or LC3B). LC3B is one
of the main autophagy flux markers: in the initiation step, LC3B
conjugation complex induces autophagosome biogenesis through
ULK activation; during the maturation step, LC3B mediates
closure, fusion and transport of the autophagosome (Mizushima
et al., 2011). LC3B is incorporated into autophagosome
membranes but it is also recruited to single-membrane
phagosomes in a process called LC3-associated phagocytosis
(LAP), which does not require the formation of autophagosomes
(Florey et al., 2011; Martinez et al., 2011). LC3B has been
found into exosomes (LC3-I rather than LC3-II) in an ATG7-
independent manner, suggesting that the LAP-like lipidation
mechanism could share a non-degradative role in exosome
secretion. Furthermore, a very recent work has identified a new
secretory mechanism where components of LC3 conjugation
complex favor the association with RNA binding proteins (RBPs)
and small non-coding RNAs into EVs, resulting in their secretion
outside of cells (Leidal et al., 2020). This process has been defined
as LDELS: LC3-Dependent EV Loading and Secretion. Using
a proximity-dependent biotinylation proteomics strategy, the
authors found that this mechanism does not require canonical
autophagy but only components of the LC3 conjugation
machinery, linking exosome secretion pathway, extracellular
RNA release and autophagy in a very fascinating way. Finally,
although not designated as ATGs, soluble N-ethylmaleimide-
sensitive factor attachment protein receptor (SNARE) proteins
are also an example of the interplay between autophagy and
exosome secretion (Zhao and Zhang, 2019). SNARE complexes
(such as STX17-SNAP29-VAMP7/VAMP8 or STX7-SNAP29-
YKT6) mediate autophagosome-lysosome fusion; however,
secretory autophagy requires different SNAREs than degradative
autophagy (such as Sec22b), adding further to the complexity of
this crosstalk (Zhao and Zhang, 2019).

Interestingly, growing evidence indicates that exosomes could
contain ATG proteins. For example, Sequestosome 1 (SQSTM1),
a classical receptor of autophagy, Neighbor Of BRCA1 Gene
1 Protein (NBR1), a selective autophagy receptor, WD Repeat
Domain, Phosphoinositide Interacting 2 (WIPI2), a component
of the autophagy machinery, or LC3 were found into exosomal
fractions in PC-3 cells; intriguingly, both SQSTM1 and CD63,
used as a representative exosomal marker protein, were found
in the same MVB-like organelles inside the cells (Hessvik et al.,
2016). Minakaki et al. (2018) have discovered that, in neuronal
cells, autophagy inhibition increases alpha-synuclein levels in
EVs released in human cerebrospinal fluid. These vesicles are
biochemically characterized by the presence of both LC3-II and
SQSTM1 together with classical MVB-EV markers. This study
provides, for the first time, the presence of EVs with a hybrid
autophagosome-exosome-like profile.

Vesicular Interaction Mechanism
Antagonist interaction between autophagy and exosomes release
has been well-defined in the context of amphisomes biogenesis.
Amphisomes are degradative hybrid compartments formed after
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fusion between autophagosomes and MVBs, which can then fuse
with lysosomes (Liou et al., 1997). As an example, autophagy
induction supports MVB-autophagosome fusion and leads to
a reduction of exosomes release (Fader et al., 2008). On the
other hand, autophagy inhibition rescues exosome secretion,
suggesting an involvement of autophagy in the lysosome-
dependent degradation of MVBs (Villarroya-Beltri et al., 2016).

Recently, using biochemical, electron microscopy and
fluorescence microscopy-based approaches, Ariotti et al. (2020)
dissect a novel autophagy-based secretion of Caveolin 1 (CAV1)
in addition to conventional exosome-based release. In details,
in pancreatic cancer cells, they identified a novel class of
exosomes, enriched in CAV1 (50–60 copies), and released via a
non-canonical secretory autophagy pathway.

AUTOPHAGY AND EXOSOMES
RELATIONSHIP IN CANCER

Although the importance of autophagy and exosomes in tumor
progression is well-documented (Yu et al., 2007; Clayton et al.,
2008; Skog et al., 2008; Hong et al., 2009; Svensson et al., 2013;
Keulers et al., 2016; Ahmadi and Rezaie, 2020; Amaravadi et al.,
2020), in recent years the understanding of their connection
and interplay in cancer has aroused a lot of interest (Table 1;
Kulshreshtha et al., 2007; Bellot et al., 2009; Chiavarina et al.,
2010; Mazure and Pouysségur, 2010; White et al., 2010; Aga et al.,
2014; Dutta et al., 2014; Li et al., 2016; Zhang et al., 2018, 2019; Jin
et al., 2019; Meng et al., 2019; Shao et al., 2019; Wang et al., 2019,
2020; Yeon et al., 2019; Yuwen et al., 2019; Zeng et al., 2019; Zhou
et al., 2019; Dai et al., 2020; Han et al., 2020; Huang et al., 2020;
Kulkarni et al., 2020; Kumar and Deep, 2020; Liu et al., 2020; Sung
et al., 2020; Wu X. et al., 2020; Yao et al., 2020).

Are Autophagy and Exosome-Mediated
Release Coordinately Induced During
Carcinogenesis?
In tumor cells, both autophagy and exosome release are
strongly activated, suggesting that both these pathways are a
part of cancer cells response (Figure 1B). This coordinated
activation may represent an adaptive stress response, although
the molecular details are not yet understood. Hypoxic tumor
microenvironment (TME) is a key feature in many solid tumors
and it is associated with unfavorable prognosis. In tumors,
both starvation and hypoxia induce autophagy, which avoids
inflammation and cell death (Bellot et al., 2009; Chiavarina et al.,
2010; Mazure and Pouysségur, 2010; White et al., 2010). Many
studies have shown that cancer cells secrete a higher number of
exosomes under hypoxic conditions (Kumar and Deep, 2020) and
hypoxia is able to alter the proteomic and nuclear acid profiles of
exosomes (Meng et al., 2019). Interestingly, HIF-1α was found
in exosomes with transcriptional activity (Aga et al., 2014),
representing a potential cancer biomarker. In addition, several
miRNAs under the transcriptional control of HIF-1α are enriched
in EV derived from hypoxic cells; among these, miR-23a targets
BCL2 Interacting Protein 3 Like (BNIP3L), a crucial mitophagy

receptor (Kulshreshtha et al., 2007). Moreover, high levels of the
HIF1-α transcriptional target BCL2 Interacting Protein 3 (BNIP3)
mRNA, another mitophagy receptor, are found in EV produced
by hypoxic glioma cells (Kucharzewska et al., 2013).

In cancer cells autophagy and exosome release may be
concomitantly up-regulated in response to other cellular stressors
such as unfolding protein response (UPR) and endoplasmic
reticulum (ER) stress. ER stress is known to increase autophagy
in several types of normal and tumor cells (Verfaillie et al.,
2010; Corazzari et al., 2017). Kanemoto et al. (2016) found
that MVB formation and exosomes release are enhanced by
ER stress; furthermore, the down-regulation of both Inositol-
Requiring Protein 1 (IRE1α) and PKR-like ER kinase (PERK),
two key players of UPR pathway, impacts on exosome
production. In addition, the spliced form of X-box binding
protein 1 (sXBP1), a key transcription factor that promotes UPR,
was found in exosomes, suggesting the transmission outside
the cell of UPR mechanism, following exposure to stresses
(Hosoi et al., 2018).

Very recently, using Drosophila model and human cell lines,
Fan et al. (2020) have found that glutamine depletion induces
secretion of exosomes carrying exclusive cargos created in
Rab11−positive recycling endosomal MVBs. Interestingly, the
release of exosomes from glutamine depleted HCT116 cells
stimulate angiogenesis and enhances tumor cell proliferation.
Glutamine depletion is likely to be an autophagy inducer
determining tumor growth (Tan et al., 2017), supporting the
concept of a strict connection between autophagy and exosome
secretion as a part of neoplastic cells response.

Beside microenvironmental conditions, up-regulation of both
autophagy and exosome release has been well-recognized after
chemotherapy treatments (Bandari et al., 2018; Yun and Lee,
2018; Ab Razak et al., 2019; Kang et al., 2020) and in mediating
chemoresistance (Yun and Lee, 2018; Ender et al., 2019; Nazio
et al., 2019; Steinbichler et al., 2019). For example, exosomes
can carry functional plasma membrane transporter proteins
from resistant cells to their drug-sensitive ones (Lu et al., 2013)
or can sequestrate drugs reducing their concentration (Goler-
Baron et al., 2012). It is unknown whether up-regulation of
both autophagy and exosome secretion is part of the resistance
mechanism or a consequence of cellular phenotype changes.
Nevertheless, autophagy inhibiiton and modulation of exosome
release may serve for therapeutic approaches and needs to
be investigated.

How Do Exosomes Released by Tumor
Influence Autophagy in Recipient Cells?
Specific cancer exosomal miRNAs and proteins seem to have
a crucial role in determining an ATG response (Figure 1C;
Jin et al., 2019; Shao et al., 2019; Yuwen et al., 2019; Han
et al., 2020; Kulkarni et al., 2020; Wang et al., 2020). Recently,
exosomes carrying miR-1910-3p secreted by breast cancer cells
have been found to promote tumor development inducing
proliferation, migration and autophagy in recipient mammary
epithelial cells and breast cancer cells (Table 1; Wang et al., 2020).
Several recent studies have shown that specific exosomal miRNAs
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TABLE 1 | Summary of the exosomal molecules that regulate autophagy in target cells or whose release is regulated by autophagy in cancer models.

Exosomal molecule Target molecule/pathway Cell releasing exosomes Target cells Autophagy in
cells releasing
exosomes

Autophagy in
target cells

Effect References

miR-1910-3p MTMR3 Breast cancer Cancer cells n.d. Induction Increased proliferation and migration Wang et al., 2020

miR-1229-5p,
miR-1246, miR-21-5p,
miR-96-5p

Autophagy pathway Serum of CRC patients n.d. n.d. n.d. Chemoresistance Jin et al., 2019

miR-454-3p ATG12 Serum of glioma patients;
glioma cells

Glioma cells n.d. Suppression Tumor suppression Shao et al., 2019

miR-567 ATG5 Breast cancer Cancer cells n.d. Suppression Increased trastuzumab sensitivity Han et al., 2020

miR-425-3p AKT1 NSCLC Cancer cells n.d. Induction Increased platinum chemoresistance Yuwen et al., 2019

miR-30a BECLIN1/Bcl2 OSCC Cancer cells n.d Induction Decreased cisplatin sensitivity Kulkarni et al., 2020

miR-19a-3p phosphatase and tensin
homolog/AKT/mTOR signaling
pathway

SHSY5Y (NB cells) Microglia cells n.d. Suppression Dysfunction of autophagy in recipient
cells

Zhou et al., 2019

CircNRIP1 AKT1/mTOR Gastric cancer Cancer cells n.d. Suppression Increased tumor progression Zhang et al., 2019

Circ-PVT1 miR-30a/YAP1 Gastric cancer Cancer cells n.d Induction Increased cisplatin chemoresistance Yao et al., 2020

WNT1 WISP-3 CT26Flag−CAGE1 (mouse colon
cancer cells)

CT26, mast cells
and macrophages

Increased Induction Increased tumorigenic potential Yeon et al., 2019

HMGB1 TLR4/NF-kB pathway Gastric cancer Neutrophils n.d. Induction Increased pro-tumor activation of
neutrophils

Zhang et al., 2018

n.d. n.d. Breast cancer Mammary epithelial
cells

n.d. Induction ROS production, DNA damage
response, release of tumor promoting
factors

Dutta et al., 2014

n.d. ATG5 BMMSC OS cells n.d. Induction Promotion of proliferation, migration
and invasion

Huang et al., 2020

LMP1 p65/NF-kB pathway NPC cells NFs, CAFs n.d. Induction Promotion of proliferation, migration
and radiation resistance of NPC cells

Wu X. et al., 2020

MALAT1 AKT1/mTOR Lung carcinoma cells DCs n.d. Induction T cells proliferation inhibition Liu et al., 2020

KRASG12D STAT3 pathway PDAC Macrophages Increased n.d. Polarization of macrophages into
M2-like TAM

Dai et al., 2020

ITGB4 BNIP3L Breast cancer CAFs n.d Induction
(Mitophagy)

Induced tumor progression Sung et al., 2020

LC3, SQSTM1,
SQSTM1–349, NBR1,
NDP52

n.d. Breast cancer cells Breast cancer cells Increased Induction Increased proliferation Wang et al., 2019

VEGF,miR-9 n.d. HUVEC HCC cell lines Decreased Induction Increased angiogenesis Zeng et al., 2019

n.d. n.d. Adenocarcinoma cells Adenocarcinoma
cells

n.d. Induction Chemoresistance Li et al., 2016

MTMR3, myotubularin related protein 3; CRC, colorectal cancer; NSCLC, non-small cell lung cancer; OSCC, oral squamous cell carcinoma; NB, neuroblastoma; YAP-1, yes associated protein-1; WISP-3, WNT1-
inducible-signaling pathway protein 3; HMGB1, high mobility group box 1; TLR4, toll like receptor 4; BMSC, bone marrow mesenchymal stem cells; OS, osteosarcoma; LMP1, latent membrane protein 1;
NPC, nasopharyngeal carcinoma; NFs, normal fibroblasts; CAFs, cancer associated fibroblasts; MALAT1, metastasis associated lung adenocarcinoma transcript 1; DCs, dendrytic cells; PDAC, pancreatic ductal
adenocarcinoma; ITGB4, integrin beta 4; BNIP3L, BCL2 interacting protein 3 like; SQSTM1, sequestrome1; VEGF, vascular endothelial growth factor; HUVEC, human umbilical vein endothelial cells; HCC, hepatocellular
carcinoma; n.d., not determined.
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regulate autophagy-dependent therapy resistance in recipient
cells (Kaminskyy et al., 2012; Zhou et al., 2012; Dutta et al., 2014;
Zhang et al., 2018; Deng et al., 2019; Huang et al., 2020; Kang
et al., 2020). In breast cancer, exosomal miR-567 down-regulates
ATG5 and consequently autophagy, reversing trastuzumab
resistance (Dutta et al., 2014). In cisplatin-resistant non-small
cell lung cancer (NSCLC), exosomal miR-425-3p down-regulates
AKT1 inducing autophagy and leading to therapeutic failure
both in early and advanced stages (Yuwen et al., 2019). Also,
in oral squamous cell carcinoma (OSCC), exosomal miR-30a
modulates cisplatin-sensitivity reducing autophagy via Beclin1
and Bcl2 (Kulkarni et al., 2020). These studies are in support
for the use of exosome- mediated miRNA delivery as an effective
therapeutic approach. In a very recent paper, exosomal circRNA-
plasmacytoma variant translocation 1 (circ-PVT1) intensifies
cisplatin-resistant gastric cells through modulating autophagy,
invasion, and apoptosis; circ-PVT1 negatively controls miR-
30a-5p that, in turn, regulates Yes-associated protein 1 (YAP1)
levels (Yao et al., 2020). Besides general autophagy, there is
some evidence that also specific forms of autophagy could be
modulated by exosomes. Liu et al. (2019) showed that hepatitis
B virus (HBV)-infected liver cancer cells-derived exosomes
promote liver cancer chemoresistance by modulating the CMA
pathway. Specifically, an increased expression of lysosome
associated-membrane protein type 2A (LAMP2A), a membrane
protein that acts as a specific receptor for the CMA, was
observed in cells treated with HBV-associated exosomes and
this is associated with a down-regulation of cell death after
oxaliplatin treatment due to the activation of the CMA pathway.
This is the first study investigating the connection between CMA
and exosome release in cancer drug resistance; it proposes the
targeting of exosomes to increase chemosensitivity in patients
with HBV-liver cancer.

In addition to having a role on tumor cells communication,
cancer cell-released exosomes are also able to modulate ATG
mechanisms in surrounding stromal and immune cells to support
tumor progression. In a study performed by Zhang et al.
(2018) suggest that gastric cancer cell-derived exosomes induce
autophagy and pro-tumor activation of neutrophils, which, in
turn, promote gastric cancer cell migration. Other authors have
begun to investigate the importance of exosomes-autophagy
interplay between normal and neoplastic cells in supporting
carcinogenesis. For example, mesenchymal stem cells (MSCs)-
derived exosomes have been identified to modulate autophagy
in pathological conditions such as during ischemia or spinal
cord injury (Baixauli et al., 2014; Tian et al., 2019) and,
more recently, in cancer (Huang et al., 2020). Huang et al.
(2020) indeed, found that MSCs-derived exosomes promote
osteosarcoma development and invasion by inducing autophagy.

Dai et al. (2020) found that extracellular KRASG12D is
packaged into exosomes and transferred, through them,
from cancer cells to macrophages. In pancreatic ductal
adenocarcinoma (PDAC), G12D is the most frequent mutation
in KRAS. In this work the authors demonstrate that oxidative-
stress induced autophagy regulates KRASG12D protein release
from PDAC cells, and this drives macrophages polarization into
pro-tumor M2-like tumor-associated macrophages. Given that

autophagy can influence exosome release, a novel study discovers
a potential strategy to counteract esophangeal squamous
cell carcinoma (ESCC) growth by affecting autophagy and
exosome-mediated paracrine senescence (Zheng et al., 2020).
Sulforaphane, an isothiocyanate derived from cruciferous
vegetables, inhibited fusion process between autophagosome
and lysosome resulting in significantly higher exosome release;
these exosomes evidently trigger senescence of receipt ESCC
cells in a ROS-mTOR-dependent manner. This is in line with the
idea that defects in autophagy avoid the effective degradation of
intracellular aggregates and exosome discharge may be increased
to improve the proteotoxic stress. Another study proposes a
link between mitochondria-selective autophagy and exosome
content in cancer. Sung et al. (2020) reported that triple negative
breast cancer-derived exosomal Integrin beta 4 (ITGB4) induces
a metabolic reprogramming in cancer-associated fibroblasts
(CAFs) that, in turn, supports tumor progression. Exosomal
ITGB4 triggers the conversion of pyruvate to lactate in CAFs
via BCL2 Interacting Protein 3 Like (BNIP3L)-dependent
mitophagy. The produced lactate is released in the extracellular
space and then taken-up by breast cells. This study suggests
that ITGB4-induced mitophagy could be a novel target
for cancer therapy.

Unveiling Exosomal Contents as New
Frontier for Autophagy Modulation and
Cancer Treatment
In the era of precision medicine, the development of targeted
drugs is also addressing several efforts in investigating new
pharmaceutical compound that can modulate autophagy,
overcoming the stress tolerance of the tumor and undermining
the mechanism of survival of tumor cells. In cancer biology,
autophagy plays dual role in both tumor promotion and
suppression. In this context the choice to induce or inhibit
autophagy is related to the role of autophagy in each specific
cancer. A large number of clinical trials using autophagy
inhibitors (Malhotra et al., 2019) or activators (Geissler et al.,
2016; Rodríguez-Perálvarez et al., 2018; Kulka et al., 2020) are
ongoing and, when used in association with anti-cancer drugs,
can sensitize chemoresistant cells to treatment (Singh et al.,
2018). Chloroquine/Hydroxychloroquine is the only autophagy
inhibitor that has been approved by the FDA; however, it also
has many off-target effects and the majority of clinical trials
have been performed in patients with no specific selected criteria
beyond the tumor type.

Given the close relationship between autophagy and exosome
pathways in cancer, a better understanding of the biological basis
of this complex dialog will help to design specific therapeutic
strategy (Lin et al., 2019), such as nano-carriers therapy, to
modulate autophagy. Although the use of nanotechnology for
the delivery of drugs/biological products targeting autophagy
is largely unexplored, investigation of exosome cargo contents
could offer opportunities for affecting autophagy in a specific
tumor context. In particular, for the treatment of personalized
cancer, antagonistic oligonucleotides (antagomiRs, anti-miRs)
may be designed for the development of autophagy-modulating
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therapy, increasing cell chemo-sensitivity and overcoming
drug resistance. Proof-of-concept studies are required to
understand the role of autophagy in each tumoral context
and whether triggering or suppressing autophagy (by specific
miRNAs/anti-MiRs) could counteract tumor aggressiveness and
progression. To this regard, nanoparticles as miRNAs/miRs
delivery systems for modulation of autophagy could be a
promising therapeutic strategy.

CONCLUSION

Autophagy and exosome pathways are strictly interconnected
at several levels. In cancer, increasing evidence discussed above
indicate a crucial interplay between these processes. Although
exosomes control of autophagy is context-dependent, targeting
the exosomal pathway to modulate autophagy may suggest a
basis for aiming novel cancer therapeutics that need to be further
studied. Moreover, the biomarker application of the regulatory
factors of both autophagy and exosome signaling has been
proposed. However, the effects of their interaction are intricate
and TME-dependent and therefore need further valuations.
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Cancer is considered an age-related disease that, over the next 10 years, will become the
most prevalent health problem worldwide. Although cancer therapy has remarkably
improved in the last few decades, novel treatment concepts are needed to defeat this
disease. Photodynamic Therapy (PDT) signalize a pathway to treat and manage several
types of cancer. Over the past three decades, new light sources and photosensitizers (PS)
have been developed to be applied in PDT. Nevertheless, there is a lack of knowledge to
explain the main biochemical routes needed to trigger regulated cell death mechanisms,
affecting, considerably, the scope of the PDT. Although autophagy modulation is being
raised as an interesting strategy to be used in cancer therapy, the main aspects referring
to the autophagy role over cell succumbing PDT-photoinduced damage remain elusive.
Several reports emphasize cytoprotective autophagy, as an ultimate attempt of cells to
cope with the photo-induced stress and to survive. Moreover, other underlying molecular
mechanisms that evoke PDT-resistance of tumor cells were considered. We reviewed the
paradigm about the PDT-regulated cell death mechanisms that involve autophagic
impairment or boosted activation. To comprise the autophagy-targeted PDT-protocols
to treat cancer, it was underlined those that alleviate or intensify PDT-resistance of tumor
cells. Thereby, this review provides insights into the mechanisms by which PDT can be
used to modulate autophagy and emphasizes how this field represents a promising
therapeutic strategy for cancer treatment.
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INTRODUCTION

Cancer remains one of the most common causes of health
problems worldwide with increasing rates in developed and
under-developed/developing countries (1). The new cases and
deaths numbers were estimated at 18.1 and 9.6 million,
respectively, according to GLOBOCAN updates (2). Cancer
more often affects aged people (50.8% of cases), but there is a
worldwide concern about those >65 years in the near future (3,
4). Over the next 10 years, people will suffer more death from
cancer than from other very common diseases, such as diabetes
(5). It is clear, therefore, that although cancer treatment has
considerably improved in the last decades, the fight against this
disease is in urgent need of novel tools.

Cancer is a multifactorial disease and despite the many
recently introduced chemo and immunotherapies the general
clinical outcome and prognosis of cancer patients is not
optimistic at all. Overall, novel therapies are less detrimental to
Abbreviations: 1400W, N-[3- (aminomethyl)benzyl]acetamidine; 2-DG, 2-deoxy-
D-glucose; 3-MA, 3-methyladenine; 5-ALA, 5-aminolevulinic acid; ABC, ATP
binding cassette; ABCB1, ATP Binding Cassette Subfamily B Member 1 or P-
Glycoprotein 1; ABCB6, ATP Binding Cassette Subfamily B Member 6 (Langereis
Blood Group); ABCG2, ATP Binding Cassette Subfamily GMember 2 (Junior Blood
Group) or BCRP; AKT, Ser and Thr kinase AKT, also known as protein kinase B;
APAF-1, Apoptotic protease-activating factor-1; ATF4, Activating transcription
factor 4; ATF6, Activating transcription factor 6; BAF-A1, Bafilomycin A1; BAK,
Bcl-2 homologous antagonist killer; BAX, Bcl-2 -associated X protein; BLC-2, BCL2
apoptosis regulator; BCL-xL, BCL2 Like 1; BID, BH3 interacting-domain death
agonist; BPD, Benzoporphyrin or verteporfin; Ce6, Chlorin e6; CHOP, C/EBP
homologous protein or DNA damage inducible transcript 3 (DDIT3);
CisDiMPyP, meso-cis-di(N-methyl-4-pyridyl)diphenyl porphyrin dichloride;
cPTIO, 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide; CQ,
Chloroquine; DCA, Dichloroacetate; dc-IR825, Near-infrared cyanine dye;
DMMB, 1,9 dimethylmethylene blue; eIF2a, Eukaryotic translation initiation
factor 2A; EGFR, Epidermal growth factor receptor; ER, Endoplasmic reticulum;
ERK, Extracellular signal-regulated kinases; H2O2, Hydrogen peroxide; HAL,
Hexaminolevulinate or 5-Aminolevulinic acid hexyl ester; HPPH, 2-(1-
Hexyloxyethyl)-2-devinyl pyropheophorbide-a; HSP27, Heat shock protein
27; HSP70, Heat Shock Protein Family A (Hsp70) Member 4; HSP90, Heat shock
Protein 90 Alpha Family Class A Member 1; HSPA5, Heat Shock Protein Family A
(Hsp70) Member 5; iNOS/NOS2, Inducible nitric oxide synthase; JNK, c-jun N-
terminal kinases; LAMP2A, Lysosome-associated membrane protein type 2A; LED,
Light-emitting diode; MAP2K1, Mitogen-activated protein kinase kinase 1; MAPK1/
ERK2, Mitogen-activated protein kinase 1; MAPK3/ERK1, Mitogen-activated
protein kinase 3; MPPa, Pyropheophorbide-a methyl ester; m-THPC, meta-
tetrahydroxyphenylchlorin; mTOR, Mammalian target of rapamycin; mTORC1,
mTOR complex 1; NPe6, Mono-L-aspartyl chlorin e6 or talaporfin sodium; N‐TiO2,
Nitrogen‐doped titanium dioxide; •OH, Hydroxyl radical; (O−·

2 ), Superoxide ion; 1O2

, Singlet oxygen; p38a, P38 mitogen-activated protein kinase or Mitogen-Activated
Protein Kinase 14; PARP1, Poly(ADP-ribose) polymerase 1; Pc13, Zinc(II)
phthalocyanine Pc13; PEPT1, Oligopeptide transporter peptide transporter 1;
PFKFB3, 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3; PpIX,
Protoporphyrin IX; PS, Photosensitizer; PSA, Pepstatin A; RIPK3, Receptor
Interacting Serine/Threonine Kinase 3; ROS, Reactive oxygen species; SLC15A1,
Solute Carrier Family 15 Member 1 or PEPT1; TPGS, D-a-tocopheryl polyethylene
glycol 1000 succinate; TPPOH, 5-(4-hydroxyphenyl)-10,15,20-triphenylporphyrin;
TPPOH-X SNPs, Silica nanoparticles (SNPs) coated with xylan-TPPOH conjugate
(TPPOH-X); TPPS, Tetraphenylporphinesulfonate; TPCS2a, Disulfonated
tetraphenyl chlorine; TPPS2a, meso-Tetraphenylporphine disulphonic acid
disodium salt (adjacent isomer), WST11, Palladium bacteriopheophorbide.;
TRIB3, Tribbles-related protein 3; ULK1, Unc51-like autophagy activating kinase
1; VMP1, Vacuole membrane protein 1.
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the individual because they are specific in modulating different
immune/biochemical pro-death modes (e.g. apoptosis), to get rid
of tumor cells. Unfortunately, by a phenomenon known as
chemo-adaptation and dormancy many human cancers (e.g.
cutaneous melanoma, breast, head, and neck tumors) can
downregulate specifically the pro-apoptotic mechanisms,
worsening the outcome and the prognosis of cancer patients.
In addition to proliferation and plasticity abilities, tumor cells
considered “stemness” gradually give rise to chemoresistance via
a distinct variety of mechanisms and pathways. For this reason,
the modulation of different cell death pathways could help to
define complementary or alternative strategies to those based on
the activation of apoptosis.

Since all cells have membranes whose integrity is necessary
for survival, therapeutic strategies that address specific oxidative
damage in the membranes of organelles have great potential to
avoid therapeutic resistance. Photodynamic Therapy (PDT) is a
non-invasive and efficient strategy based on photophysical
principles that may provide specific oxidative damage in
organelles such as the endoplasmic reticulum, mitochondria,
and lysosomes. Herein, we present our current knowledge
regarding tumor resistance concerning the suppression of
autophagic response, in an attempt to improve clinical
outcomes. In this scenery, the photo-mediated pro-death
autophagy emphasizes PDT as a promising therapy to deal
with tumors that evade apoptosis. Undeniably, PDT has been
applied with success to treat several types of human cancers with
tolerable side effects. However, as PDT-resistance has increased
due to distinct reasons (oxidative-scavenger response, autophagy
activation, drug extrusion, and others), we will discuss the pitfalls
and successes of its use, considering autophagy as a therapeutic
target to improve tumor remission. Considering the PDT
photophysics and photochemistry effects, as well as the
photooxidative-mediated membrane damage, we will discuss
the molecular mechanism for tumor-resistance, particularly
focusing on the biological, molecular, and translational aspects
of the PDT-related cancer treatments.
PHOTODYNAMIC THERAPY (PDT)

Considering the difficulties and challenges in conventional
cancer treatment, such as tumor resistance, new treatment
concepts for both primary care and adjuvant therapy are
highly necessary. PDT is a well-established medical procedure
due to the selective cancer eradication (sparing normal cells),
especially when tumor sites can be demarcated (6). The PDT
advantages compared to the conventional cancer treatments
include: (i) it does not seem to induce drug resistance, (ii)
promote selective cancer destruction, preserving the
surrounding normal tissues (iii) preserving the native tissue
architecture and giving a decisively better recovery compared
with surgery (iv) can be used with other therapies (7).

PDT is definitively less invasive compared to surgery, andmore
precise than chemotherapy and,finally, as opposed to radiotherapy,
may be repeated several times (8). A photosensitizer (PS) molecule
can be administered intravenously, intraperitoneally, or topically to
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the patient, and the tumors tissue sites are selectively
irradiated. Although these components (i.e., PS and light)
are harmless alone, when combined they provide localized
antitumor therapy. This avoids damage to healthy cells thus
preventing side effects. The combination of PS and light results in
the generation of reactive excited states (singlet and triplet excited
states) as well as several reactive oxygen species (ROS), such as
singlet oxygen (1O2), hydroxyl radical (

·OH), superoxide ion (O−·
2 ),

and hydrogen peroxide (H2O2). These reactive species can
efficiently oxidize and irreversibly damage targeted tumor
tissues/cells (9–11).

Light with a specific wavelength PS triggers the photooxidative
process, as summarized in Figure 1. PS excitation through photon
absorption transforms the ground state PS (S0) into an excited
state - singlet excited state PS (S1). Next, PS (S1) can be converted
into a triplet excited state (PS (T1), by the change in the spin of
electron via a process known as intersystem crossing (ISC). Due to
its new spin configuration, PS (T1) can live long enough to interact
with species nearby, resulting in two main photosensitization
mechanisms: (a) energy transfer to oxygen (Type II process) or
(b) a directed reaction with biological substrates (Type I process).
On the Type II process, energy transfer to molecular oxygen (3O2)
yields the highly reactive oxygen state known as singlet oxygen
(1O2), an electrophilic molecule that is often considered the main
PDT performance species (10–12). Type I processes are based on
reactions between PS (T1) and nearby biomolecules, forming a
variety of products, which can start a radical chain reaction. The
free radicals generated during the Type I mechanism can still react
with oxygen, resulting in the production of ROS such as · OH,
(O−·

2 ), and H2O2 (10–12).
These two reaction mechanisms, Type I and Type II, invariably

involve oxygen as either a primary or a secondary intermediate
reactant and are also called photosensitized oxidation reactions
(11, 13). Both mechanisms may occur simultaneously, and a
balance between them is important for ROS production and, in
turn, determines the overall photo-cytotoxicity effectiveness of the
PDT reaction (11, 14). The dominant mechanism will depend on
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the PS itself, the type of substrate, the distance between the PS and
the oxidative targets as well as the oxygen concentration.

The PDT efficiency depends on the illumination conditions,
the chemical properties, and the intra-tumoral localization of the
PSs localization. Selecting a suitable device for the tumor region
irradiation is a fundamental factor in PDT protocols. The main
types of light sources used in PDT include lasers, light-emitting
diodes (LEDs), and lamps. Each category source presents
advantages and disadvantages. For this reason, a choice of
proper light source needs to be carefully evaluated according to
the PS, tumor location, and the light dose to be delivered (15).
The geometry of the tumor area which, sometimes, is not easy to
access, determines the decision of the correct light apparatus to
be used (15). As an example of selecting a suitable light device,
Davanzo et al. demonstrated that it is possible to obtain different
PDT outcomes depending on the light source used (16). Under
the same light dose exposure, they reported that continuous laser
was a better light source compared to other devices (pulsed laser
and LED) under the same light dose exposure (16). Indeed, other
factors impact the final PDT outcome, including the amount and
the type of reactive species, which is highly dependent on the
photochemical and photophysical properties of the PS.

Several classes of PSs have been commonly employed in PDT,
including porphyrins, chlorins, phthalocyanines, and
phenothiazines (10). Each one of them presents distinct
advantages and disadvantages regarding the chromophore type.
For example, Photofrin™ (porfimer sodium), which is an
oligomer and was the first PS approved by the FDA for the
treatment of bladder cancer in Canada in 1993 (17). Its structure
is not well defined, but its aqueous suspension can be applied
intravenously. However, the absorption in the low ‘therapeutic
window’ (between 600-800 nm) and a prolonged (~ 4 weeks)
skin photosensitivity is an important side effect (17). On the
other hand, phthalocyanines have a high molar absorption
coefficient in the red spectral region but are not water-soluble.
To deal with this limitation, a liposomal zinc phthalocyanine was
developed and has been tested in phase 1 or 2 clinical trials for
FIGURE 1 | Photodynamic Therapy Mechanism. The photosensitization process starts with a photon absorption that converts the photosensitizer PS (S0) ground
state to a more energetic state known as a singlet excited state PS (S1). Then, an intersystem crossing conversion (ISC) changes the PS multiplicity to a triplet
excited state PS (T1). PS (T1) can interact with molecules nearby and react via two distinct mechanisms: Type I – electron transfer and Type II – energy transfer,
generating reactive oxygen species (ROS). Finally, oxidative species damage biomolecules and can trigger cell death. Created with BioRender.com.
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solid tumors (17). However, it did not reach the clinical practice,
probably due to issues concerning the stability and the difficulty
of large-scale liposome (18).

Since several ROS species have high reactivity, short lifetimes,
and consequently small diffusion pathways (12), only those PSs
nearby to the biological substrates can cause tumor photodamage
(12, 19). 1O2 lifetime in pure water is ~4 µs (20), which provides a
mean diffusion distance traveled by 1O2 molecules in water of
less than 200 nm, without considering any other reaction with
biomolecules besides its intrinsic decay. Although the average
dimensions of mammalian cells are around 10-30 µm diameter,
the 1O2 mediated oxidative-damage would reach only short
distances, reaching specifically a target PDT organelle (12, 21).
Therefore, generating amounts of ROS does not mean PS
effectiveness (22). If PS is near to an intracellular target, the
photo-generated ROS would oxidize biomolecules in a more
specific way (22). Thus, the oxidative reactions primarily affect
only nearby PS-targeted organelles (12). Also, the relative oxygen
concentration may favor or disfavor 1O2 formation, which may
amplify (or not) the biomolecule’s oxidation reactions (23, 24).
Another parameter that drives PDT efficiency is the molecular
structure of the PS. Of note, PSs belonging to the same class may
have distinct properties, given the diversity of the side-groups
that can be attached to the lead chromophore (25–31).

Knowing that biological membranes guarantee cell
homeostasis due to their crucial role in compartmentalizing
intracellular content and organelles, they are particularly
important targets for PDT. The basic structural membrane
elements are the lipid bilayer and the integral or linked
proteins (32, 33). Both the lipids and the integral proteins
display amphiphilic characteristics, explaining why PSs that
exhibit amphipathic character will interact with the membrane,
independent of whether it is a plasma, mitochondrial, lysosomal,
or endoplasmic reticulum membrane. As an example, Engelman
et al. compared porphyrins with two charged groups around the
ring at position cis and trans and observed that cis-isomer
presented a much larger binding to the membrane than
predicted by water/octanol partition (log POW) (34). This is
because the cis-isomer has an optimized amphiphilic structure
that matches the amphiphilic structures of the lipids in the
bilayer. As a result, an enhanced photodynamic efficiency was
perceived regardless of the type of the membrane (i.e., liposomes,
mitochondria, and erythrocytes membrane) (34). Tsubone et al.
also studied a series of amphiphilic PSs displaying opposite
charges (negative or positive) and noticed that hydrophobic
and dipolar interactions play crucial roles in defining the
affinity of these molecules to membranes (12, 35). Although
the increase in the alkyl chain length above certain limits leads to
aggregation and decreases in the PS photoactivity, increasing the
hydrophobicity up to certain limits has also been associated with
enhanced cell photokilling efficiency (36–38). Another parameter
that favors the PS binding in the lipid membranes is the molecule
asymmetry. In Porphyrin, a peripherical group at meta-position
was found to be more phototoxic than its para-isomer, mainly
because the meta-isomer asymmetry favors the PS-membrane
interaction compared to the symmetric para-isomer (39).
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Because proteins are the most abundant biomolecules in cells,
they probably act as major targets for photo-oxidation (40, 41).
The main forces that govern PS-protein interaction are well
described in the literature (42, 43). Phototoxic outcomes seem to
depend on PS-protein interaction. Towards this end, Cozzolino
et al. bound curcumin to bovine serum albumin and showed that
the conjugate displays a better photodynamic effect when
compared to the unbound curcumin (44). Proteins can also be
used as PS carriers. Recently, it was reported a macromolecular
approach of a synergistic combination of Ru-complexes on a
protein carrier with subcellular mitochondria targeting groups,
allows enhanced phototoxicity and efficacy (45).

Linking the PS to a monoclonal antibody allows the
photodamage to be addressed to key specific molecular
markers, present, for example in tumor surface. In this context,
the epidermal growth factor receptor (EGFR) is a promising
target for PS-immunoconjugates, considering it is commonly
overexpressed in cancer cells (46). Indeed, it has been recently
shown that the verteporfin-immunoconjugate (monoclonal
antibody targeting EGFR) causes significantly higher levels of
cell death in ovarian metastatic cancer cells (overexpressing the
EGFR receptor) compared to the cell death without EGFR
overexpression (47, 48). Besides the cell-surface EGFR
receptors that have antibodies, such as cetuximab (49) or
panitumumab (50), recent reports pointed out as promising
targets in preclinical models (51) the photobiomodulation of
tumor-associated regulatory T cells (52, 53).

Cellular compartments vary substantially and the
photosensitizer structures determine the subcellular location of
the photodamage and control cell death efficiency (12).
Therefore, understanding the cellular and molecular
photodynamic mechanisms can lead to an optimization in the
PDT efficacy. As long as each PS has a distinctive subcellular
localization profile, the PDT-mediated cell death can be
modulated regarding specific oxidative stress in the targeted
organelle (47). For instance, whereas CisDiMPyP incorporates
into mitochondria, TPPS2a accumulates mainly within lysosomes
(35). Other PSs can evoke mitochondrial, lysosomal, and/or ER
photodamage (35, 54–62). Such a possibility of PSs selectively
inducing damage in targeted organelles is key to potentiate the
photo-induced cell death (63, 64).
MOLECULAR MECHANISMS FOR TUMOR
RESISTANCE TO PDT

The resistance to regulated cell death mechanisms (RCD) is one of
the most prominent cancer hallmarks, intrinsically contributing to
tumor recurrence and metastasis. Accordingly, the tumor relapse
to current conventional chemotherapies has increased up to 2500-
fold (65). The PDT approach (i.e., light energy and PS
concentration) might eliminate most of the tumor cells,
however, some of them may elicit their survival and dormancy,
leading to phototherapeutic cancer resistance. Thus, despite
PDT potentially circumventing cancer recurrence to some
chemotherapies (e.g. cisplatin, dacarbazine, or 5-Fluoracil)
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(66–68), its promisor tumor dealing potential might also fail
(69–72). Therefore, just as with other approaches similar to
chemotherapy and radiotherapy, post-PDT treatment tumors
are prone to become resistant and more aggressive (73, 74). Most
of these mechanisms that elicit tumor PDT-resistance relies on the
number of phototherapy sessions, the cell type, delivery system,
and photo-physical aspects of the PS (65, 74–76). Although the
PDT resistance mechanism remains elusive, we briefly consider the
main molecular mechanisms underlying the tumor defense against
the photooxidative damage and PS uptake (Figure 2). We also
pointed out the new PDT approaches to deal with tumor
recurrence and maximize the phototherapeutic efficacy.

Tumoral tissues might acquire an intrinsic resistance to
treatment or activate alternative compensatory signaling
pathways to handle cytotoxicity (73). Indeed, most of those
resistant mechanisms comprise an adaptative response to the
therapeutic-mediated extrinsic stresses, including mutations,
altered genetic and epigenetic profiles, dysregulation of
regulatory proteins of apoptosis or autophagy, dormancy,
surrogation of the chemotherapeutic targets, drug efflux
capacity, and stimulation of compensatory signaling or
mediated repair pathways (76–80). Moreover, we can focus on
tumor relapse related to the tumoral microenvironment, limited
incorporation of the PS, hypoxia, and low penetration of
radiation into tumoral mass (73).
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In many cases, cell morphology, cytoskeleton, and cell
adhesion changes have been observed in cells or tissue under
photosensitization, which was correlated to significant
impairment of migratory and invasive behaviors (81). The
photo-mediated alterations into cytoskeleton (e.g. shorter stress
fibers, decreased number of dorsal fibers, loss of cell-to-cell
interactions, and epithelial morphology) ascribes less
invasiveness and migratory properties to tumor cells, which
lead to higher cellular plasticity and PDT resilience (81).
Paradoxically, cytoskeleton alteration associated with invasion
and metastasis might result in PDT-resistance (81). Such
discrepancies can occur due to higher tumor heterogeneity, as
well as the presence of hypoxic regions that may impair the PDT-
overcome in innumerous ways beyond the limitation of oxygen,
one of the components of phototherapy (Figure 1).

In an elegant model using heterotypic spheroids composed of
human colorectal SW480 cancer cells and fibroblast, Lamberti
et al. demonstrated that the tumor-stroma interaction with a
hypoxic environment significantly impairs the 5-ALA
metabolism, and so reduces the production of the endogenous
PpIX (Protoporphyrin IX), the photosensitizer molecule (82). In
this context of oxygen deprivation, HIF-1a is the key player and,
despite conferring adaptability to hypoxia, it might also assign
resistance to PDT by at least avoiding intracellular PS
accumulation. Additionally, the HIF-1a mediated resistance
FIGURE 2 | Molecular mechanisms underlying PDT-resistance of tumor cells. Created with BioRender.com.
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could be induced by the PDT itself (83). In colorectal cancer cell
spheroids, the PpIX-PDT can activate the MAPK1/ERK2 and
MAPK3/ERK1 pathway as an adaptative and survival mode to
resist the mitochondrial photooxidative damage. This molecular
event results in the transcriptional activation of HIF-1a,
suggesting that the ROS-MAPK1/3-HIF-1a axis may be a
solution for PDT-resistance (83). It is worth noting that
autophagy induction in response to PDT might be also related
to HIF-1a. The simple HIF-1a stabilization induces autophagy
in colon Caco-2 and SW480 cancer cells and significantly
increases cell survival following PpIX-PDT (84). The
autophagy activity is dependent on HIF-1a since this
transcription factor recognizes a hypoxia response element
(HRE) in the promoter of expression of the vacuole membrane
protein 1 (VMP1), a protein capable of inducing the formation of
autophagosomes (84) (Figure 2).

The cancer expression profile of drug-efflux mediators has
been involved in multidrug tumor-resistance (MDR) against
chemotherapeutics such as imatinib, doxorubicin, and
mitoxantrone, as well as PDT (79, 85–91). The ATP binding
cassette (ABC) superfamily transporters (e.g. ABCG2 and
ABCB1) were found to extrude PS out of the tumor cells (86–
88). Despite some mutations on ABCG2 (e.g. R482G, R482T) not
affecting PS transport, the Q141K polymorphism may explain
increases in the patient photosensitivity to PDT on account of a
lower PS efflux (89, 90). On the other hand, the ABCG2
overexpression has been suggested to render the incorporation
of some photosensitizers with chemical similarity to
pheophorbide A (PhA), including Ce6, MPPa, and 5-ALA
(89). Noteworthy, the photosensitizers m-THPP and m-THPC
may provide a more effective PDT response even in ABCG2-
overexpressing bronchoalveolar carcinoma H1650 MX50 cell
line (89). To improve PDT-efficacy considering the ABCB1-
mediated PS extrusion, there are several new protocols in
development including those on zinc phthalocyanine
tetrasulfonic acid and nanotechnology approaches (79, 92).
Another way to overcome PS-efflux is to promote a
multifunctional drug delivery system (e.g. endocytosis), in
which lysosome highlights as a targeted organelle (69), as well
as the PDT combination with ABCG2 inhibitor Ko143 (93).
Human glioblastoma T98G cells with the highest ABCG2
expression levels showed relevant synergic death after the
PpIX-PDT plus Ko143 in response to increased 5-ALA
incorporation (93).

Recently, TPPS-loaded nanogels through its endocytic
internalization and pH-sensitive framework might elude
photo-oxidation toward multidrug-resistant cancer cells (94).
Noteworthy, this approach also remarkably modulates
autophagy, whose inhibition may alleviate PFKFB3-elicited
tumor dormancy (95). PFKFB3 functions as a regulator of
cyclin-dependent kinase 1, linking glucose metabolism to cell
proliferation and survival, as well as apoptosis prevention.
Depending on the physicochemical PS properties (e.g. pKa),
the endo/lysosomal entrapment phenomena may occur during
PDT (86), as reported by multiple hydrophobic weak-base drugs
(e.g. sunitinib, doxorubicin) (96, 97).
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Several strategies have been proposed to overcome PDT-
resistance on PS-specificity (70–72, 79). Most of them adjust
the PS chemical structure by targeting specific membrane
components, which may lessen PS-extrusion. For example, the
covalent introduction of a phospholipid to generate porphyrin-
lipid derivatives might deal with ABCB1-mediated BPD
extrusion and alleviate PDT-resistance of tumor cells (88). It is
noteworthy that the ‘unconjugated’ form of the same porphyrin-
lipid does not mitigate the BPD efflux by ABCB1 in breast cancer
cells (88). The covalent conjugation of indocyanine green (ICG)
and TNYL peptide onto the surface of gold nanospheres
(HAuNS) was found to overcome the PDT-resistance (72).
Also, Liu et al. have proposed the molecular linkage of the
nano photosensitizer to a BCL-2 inhibitor as an adjuvant
intervention strategy to increase the PDT efficacy in relapsed-
tumor cells (71). Kralova et al. demonstrated that PDT-resistance
may be related to PS lipophilicity (86). While glycol porphyrins
suffer ABCB1-mediated drug-extrusion, the elicited PDT-
resistance associated with the highest lipophilic structure of
termoporfin relies on the PS-lysosome sequestration (86).

Also, the protein dysregulation involved in PS-influx must be
considered. The 5-ALA influx transporters, such as ABCB6 and
SLC15A1/PEPT1, play a pivotal role in the PS-uptake, whose
overexpression might increase the PDT efficacy depending on
the PS type and the subcellular specificity (91, 98). Thereby, their
genetic profiles might determine phototherapy efficacy in
dormant cancer cells responsible for disease latency, late
metastasis, and tumor relative relapse to chemotherapy and
radiation (80, 99).

Aside from less PS accumulation or reduction on ROS
generation, the tumor molecular adaptation regarding signaling
pathways (e.g. MAPK/JNK/p38a, AMPK, and AKT/mTOR)
have also provided PDT-resistance with crosstalk between
apoptotic machinery (e.g. BCL-2, BCL-xL, survivin, caspases,
and PARP1) and autophagy, as summarized in Figure 2 (60, 74,
76, 100–103). To overcome ATP depletion due to mitochondrial
photo-oxidation, tumor cells activate the canonical energy-
sensing AMPK mechanism (104). After phosphorylation
AMPK becomes active and leads to Rheb/mTORC1 inhibition
with consequent induction of lysosome biogenesis and
autophagy, which may dictate the tumor PDT-resilience (102,
104). Also, the acquired tumor resistance to TPCS2a-PDT likely
occurs due to higher expression of the EGF receptor (i.e., EGFR)
and loss of the MAPK/p38 inducing death pathway (76). Indeed,
by targeting EGFR the TPCS2a-PDT-resistance is significantly
reduced regardless of the tumor adaptation respecting the cell
death mechanism (e.g. apoptosis, necroptosis, or autophagy),
Figure 2 (76).

The phototoxic PDT-effects might be abrogated by
antioxidant defense mechanisms, including ROS-scavenger
proteins glutathione, ferrochelatase (FECH), heme oxygenase
(HO-1), glutathione peroxidase 4 (GPX4), and glutathione S-
transferase Pi 1 (GSTP1) (93, 105). Besides, the heat shock
protein 27 (HSP27) may also play a pivotal role in tumor
resistance to the mediated-photooxidative stress, e.g. against
Photofrin™ (106) or 5-ALAm-PDT, which was related to the
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activation of autophagy-based recurrence (107). Paradoxically,
its downregulation leads to a relevant decrease in HSP70
expression under hematoporphyrin-PDT, which was associated
with an increase in autophagy (108) or apoptosis lessening (109).

Another type of resistance involves nitric oxide (NO)
generation through inducible nitric oxide synthase (iNOS/
NOS2) in tumor cells. NO has a short life (i.e., <2 s in H2O)
depending on the 3O2 concentration, and is freely diffused as a
bioactive free radical interacting with other biomolecules and
membranes by hydrophobic partitioning. Besides, NO reversibly
impairs mitochondrial respiration through competitive
cytochrome oxidase inhibition (110). Several reports revealed
that the photooxidative stress may activate the inducible NO
synthase isoform (i.e., iNOS), which catalyzes the L-arginine
conversion to citrulline and NO in a Ca+2-independent manner
and the expense of NADPH and O2 (111). The PDT-induced
iNOS activation may virtually increase NO at the micromolar
concentration, which reacts with superoxide ion (O−·

2 ) to give
peroxynitrite (ONOO−), a strong oxidant that damages both
DNA and unsaturated membrane phospholipids, as reviewed by
Tsubone et al. (112). Such NO has been shown to modulate
tumor PDT-resistance, which was first demonstrated for
Photofrin™ through an in vivo preclinical test to treat cancer
(113). Subsequently, several reports revealed that the iNOS-
derived NO might play a pivotal role in the adaptation and
survival of breast (100, 114–117), glioma (103, 118, 119), and
prostate (120) cancer cells to 5-ALA-PDT oxidative stress.
Autophagy activation may modulate the iNOS expression in
response to the suppression of AKT/mTOR signaling via ROS
generation by UCNPs/Ce6-PDT (121).

5-ALA-PDT also triggers NO-adaptative resistance via
activation of the PI3K/AKT signaling, leading to NFkB-
mediated transcription of iNOS, Figure 2 (100, 120, 122). Such
iNOS upregulation increases NO that modulates cytoprotection
against the photo-stress, including apoptosis abrogation,
MAPK1/3 deactivation, invasion/migration, and tumor pro-
growth (100, 103, 114–120). The adaptative response of tumor
cells to PDT-generated oxidative stress (i.e., increased NO)
correlates with inhibition of the pro-apoptotic role of MAPK/
JNK/p38a pathway (100, 114), with consequent downregulation
of the anti-apoptotic proteins survivin, BCL-2, and BCL-xL,
lessening the caspase-dependent apoptosis (117, 122). As
proposed by Girotti the tumor antagonism mediated by the
iNOS/NO axis may promote further PDT-resistance pro-
growth, invasion, and migration of tumor cells, leading to
cancer recurrence (123). To improve 5-ALA-PDT outcome
several approaches have been proposed, including iNOS non-
specific activity inhibitors (e.g. L-NAME or L-NNA), iNOS
specific inhibitors (e.g. 1400W or GW274150), NO scavenger
(e.g. cPTIO), NFkB inhibitor (e.g. Bay11) or iNOS-knockdown
(100, 103, 114–120).

Another molecular mechanism related to tumor adaptation
and resistance against 5-ALA-PDT photo-oxidation relies on the
anti-necrotic role of NFkB via the increase in AKT/mTOR
signaling, at least for glioblastoma U87 and LN18 cells (103).
Likewise, 5-ALA-me through photooxidative stress enhances
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HIF-1a that alleviates cell demise due to an increase in
expression of VMP1, which plays a vital role in autophagy
initiation (84, 124). On the other hand, 5-ALA-photoinduced
stress may activate autophagy via AMPK signaling, whose
chemical negative regulation results in less caspase-9 activity,
and in turn, death suppression, and PDT-resistance (104). Upon
ER photoinduced stress autophagy activation contributes to
adaptation and rescue of the cellular homeostasis upon RO
damage by hypericin-PDT (60). Autophagy abrogation in
ATG5-silenced cells increases the PERK/eIF2a/CHOP cascade
in response to augmentation of chaperones HSPA5 or GRP78/
BiP after hypericin-PDT induced ER-stress (125). It seems that
the correlation between the levels of proteotoxicity and the
amount of ROS relies on selective autophagy towards the
damaged endoplasmic reticulum (i.e., reticulophagy).
Therefore, any process that alleviates proteotoxicity and ER-
stress might lead to functional consequences, including
anticancer immunity (125–127), as well as chemosensitivity
(128). For more detailed information see our recent review (112).

Whereas autophagy suppression (i.e., ATG5 knockdown or 3-
MA) increases tumor cells’ death, in non-malignant cells (e.g.
fibroblasts and murine embryonic fibroblasts, MEFs) autophagy-
deficiency paradoxically alleviates mitochondrial cytochrome c
release, caspase 3 activation, PARP1 cleavage, and turn apoptosis
induction. Besides, such ATG5-deficiency leads to clearance of
oxidized proteins and reduces photokilling by hypericin-PDT
probably through up-regulation of LAMP2A, a receptor for
another type of autophagy, i.e., chaperone-mediated autophagy
(60). Nevertheless, LAMP2A knockout implicates in apoptotic
death correlated with the upregulation of caspase-3 and poly
(ADP-ribose) polymerase 1 (PARP1) (60). There is interesting
crosstalk between autophagy regulation and PARP1 that may
evoke resistance to PDT (101). Besides, cancer stem cells (CSC)
are essential players for PDT-resistance and tumor regeneration.
Consequently, Wei et al. demonstrated that autophagy in
colorectal cancer stem-like cells promotes resistance to PDT-
induced apoptosis (129). By isolating PROM1/CD133+ stem-
cells they revealed a significant and specific increase in autophagy
in response to PpIX-PDT (129). Interestingly, autophagy
inhibition and PDT concomitantly elicit higher apoptosis
induction, and so, in vivo tumorigenicity alleviation (129).
Therefore, autophagy plays dichotomic roles in the
determination of the cellular resistance or sensitization to
PDT-mediated oxidative-stress. This paradigm will further be
considered along with the studies discussed in the next section.
PDT-MEDIATED AUTOPHAGY
REGULATION IN TUMOR CELLS

PDT triggers autophagy (or macroautophagy) in tumor cells by
suppressing the AKT-mTOR signaling (60) or up-regulating the
AMPK pathway (102, 104), as summarized in Figure 3. The
negative effects of the TSC1/2 complex on the mTORC1
activator Rhe may be regulated by AMPK or AKT signaling
(Figure 2). Also, autophagic machinery may be transcriptionally
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regulated (e.g. ATF4, ATF6, CHOP, and p53) in response to
cytoplasmic or organelle photo-oxidation (128, 135, 136). Photo-
oxidation enhances HIF-1a/VIMP1-mediated autophagy
induction (84, 124). There are other pathways triggered by
PDT capable of regulating autophagy machinery, e.g. NFkB
(103) and MAPK1/3 (74) (Figure 3).

Depending on the extent of mitochondrial photodamage,
tumor cells elicit mitophagy to rescue cellular homeostasis
through clearance of oxidized or depolarized mitochondria.
Mitophagy has several distinct variants (i.e., type 1, 2, and 3)
and prevents the release of proapoptotic proteins, generation of
toxic mitochondrial-derived ROS, and futile ATP hydrolysis
(137–140). A primary cellular response following the
Frontiers in Oncology | www.frontiersin.org 8158
mitochondrial photodamage is the recruitment of the E3
ubiquitin ligase PRKN/parkin to the mitochondrial outer
membrane, which depends on PINK1 (59, 141). Once
recruited, PRKN ubiquitinates several outer membrane
proteins marking mitochondria for 2 mitophagy (140, 142).

The cellular responses against the photo-stress also involve
selective autophagy known as reticulophagy that removes
oxidized ER subdomains. Despite not yet being fully
understood, there are two main ER-resident proteins prone to
interact with LC3-II, i.e., reticulophagy regulator 1 (RETREG1/
FAM134B) and cell cycle progression 1 (CCPG1) (143). During
the PDT-mediated reticulophagy, ATF4 or CHOP upregulates
the expression of TRIB3 or autophagy-relevant proteins (ATG5,
FIGURE 3 | PDT-mediated autophagy regulation in mammalian cells. The reactive oxygen species (ROS)-mediated mechanism covers the autophagy regulation via
several signaling cascades, including the energy-sensing AMPK and the PI3K/AKT/mTOR pathways. Following mTOR inhibition, the autophagy initiation starts
through the activation of the ATG/ULK1 complex that translocates to the ER membrane and recruits ATG9, providing membrane components to the phagophore
(130, 131). ULK1 complex can also be alternatively activated by AMPK (132, 133). In the nucleation process, following activation of the Class III PI3K complex I,
occurs the production of phospholipid phosphatidylinositol3-phosphate (PI3P) which recruits PI3P-binding proteins (e.g. WIPI2), resulting in the change of the ER
membrane structure with its elongation to form a phagophore (134). The elongation step relies on the generation of the soluble cytosolic LC3-I that becomes LC3-II
after conjugation to the head group of the lipid phosphatidylethanolamine (PE), which occurs through a cascade of ubiquitin-like reactions involving ATG enzymes
(e.g. ATG7, ATG3, and ATG5-ATG12-ATG16L). Next, LC3-II is attached to the lumenal and cytosolic surfaces of autophagosomes. The drug mediators that activate
(BEZ235, rapa, and LY-294) or inhibit (3-MA, compound C and wo) autophagy machinery are depicted in red. Rapa = rapamycin, LY-294 = LY-294002, wo =
wortmannin. Picture created with BioRender.com.
FIGURE 4 | PDT-mediated autophagy regulation in tumor cells. Several PSs were described as phototherapeutic modulators of autophagy flux, which may be
further activated (green) or inhibited (red) by some drugs, including the Class I PI3K/mTOR inhibitor (BEZ235), NFkB inhibitor (bay11), pan-the Class I PI3K inhibitor
(LY-294002), or mTORC1 inhibitor (rapamycin), AMPK inhibitor (compound C), Class III PI3K/VPS34 inhibitor (3-MA or wortmannin) and lysosome inhibitor (BAF-A1,
CQ, E-64d, or PSA) (104, 150–156). BAF-A1 also blocks the lysosome fusion with autophagosomes that occurs independently on intralysosomal pH and relates to
reduced ATP2A/SERCA activity (152, 157). For more details, see Tables 1 and 2. Art was created with BioRender.com.
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ATG12, and Beclin 1), as well as downregulates the expression of
BCL-2 (62, 135, 136). The PDT-mediated autophagy can be
chemically regulated by some drugs as depicted in Figure 3, such
as rapamycin, BEZ235, LY-294000, Compound C, 3-MA, and
wortmannin (56, 60, 100, 103, 104, 144–147).

PDT of early response genes by the hyperactivation of the
survival pathway, resulting in overexpression of anti-apoptotic
(BCL-2, survivin, BCL-xL) or autophagy-related proteins,
evoking PDT-resistance (68, 122). Recently, the tumor
resistance to several antitumor agents (e.g. cisplatin,
oxaliplatin, carboplatin, doxorubicin, etoposide, rapamycin,
everolimus, alpelisib, pictilisib, and AZD8055) was related to
elevated and sustained activation of the PI3K/mTOR signaling
Frontiers in Oncology | www.frontiersin.org 9159
pathway (148). Curiously, in these PI3K/mTOR-activated cells,
the promotion of energy metabolism stress (e.g. 2-DG/DCA) led
to apoptosis due to the sustained blockage of the pro-survival
autophagy (148). Hence, photo-damaging organelles, such as
mitochondria, lysosomes, or reticulum endoplasmic seem to be
amenable to mediate death in drug-unresponsive tumors.

Evidence relating to the important role of autophagy in the
PDT context continues to accrue (63). Owing to the high
reactivity of photogenerated ROS, selective autophagy is
initiated to remove oxidatively damaged organelles, such as
mitochondria (i.e., mitophagy), lysosomes (i.e., lysophagy),
endoplasmic reticulum (i.e. , reticulophagy), and, or
peroxisomes (i.e., pexophagy), which are intracellular targets of
TABLE 1 | PDT-mediated autophagy: cytoprotective role and modulatory guidelines to increase tumor outcome.

PS Target Experimental model Autophagy
activation

Therapeutic modula-
tion of the autophagy

machinery

Outcome Ref.

Chemical Genetic

5-ALA Mito Human glioblastoma (U87 and LN18) and breast cancer
(COH-BR1)

PI3K/AKT/mTOR BAF-A1
Wortmannin
Bay11

ATG7A ↑apoptosis,
↑necrosis
↑LDH

(100,
103)

Chlorophyllin e4 Lyso Human bladder cancer (5637 and T24) Beclin/LC3-II
increase

3-MA
BAF-A1

↑apoptosis (55)

Chlorophyllin f Lyso
Mito

Human bladder cancer (5637 and T24) LC3-II increase 3-MA ↑apoptosis (54)

Hematoporphyrin Memb. Human oral cancer (Fadu) AKT/mTOR 3-MA No effect (101)
Hypericin ER Human cervix carcinoma (HeLa) AKT/mTOR 3-MA ATG5A ↑apoptosis

↑cleaved PARP1
↑caspase 3

(60)

Hypericin low dose
(<100 nM)

ER Human oxaliplatin-resistant colon cancer (HCT116, HCT8)
and HCT116/L-OHP murine model

↑GRP78/↓LC3II/I
↓SQSTM1

3-MA
4-PBA

Beclin
1A

CHOPA

↑apoptosis
↓out-growth
↓Ki67
↑oxaliplatin
sensitization

(128)

Hypocrellin A Mito Human cutaneous squamous carcinoma (cSCC) JNK/NFkB pathway 3-MA
Bay11

↑apoptosis
↓BCL2
↑caspase 3
↑BAX

(146)

Pc13 Mito Human melanoma (A375) BCL-2/LC3-II
increases

CQ
3-MA
Wortmannin

↑apoptosis
↑cleaved PARP1

(74)

Photofrin™ Mito Human cervix carcinoma (HeLa) and breast cancer (MCF7) LC3-II increase 3-MA
BAF-A1

ATG5B

ATG5C
↑apoptosis
↑cleaved PARP1
↑caspase-3

(161,
162)

Photosan-II Mito Human colorectal cancer (HCT116 and SW620), and
SW620 derived xenografts

ATK/mTOR and
AMPK pathway

CQ ATG7A ↑apoptosis
↑cleaved PARP1
↑LC3-II
↓Tumor mass

(102)

Porphyrin IX Mito Human colon cancer (HCT116) BCL-2/Beclin 1/
ATG7/LC3-II

CQ ATG7A ↑apoptosis
↑caspase 3
↑LC3-II
↑SQSTM1

(163)

Protoporphyrin IX Mito Human colon cancer (HT29 and PCC) Beclin 1/ATG7/
ATG5-12/LC3-II

3-MA
CQ

ATG3B

ATG5B
↑apoptosis
↑caspase 3

(129)

TPPOH-X SNPs Lyso Human colon cancer (HT29) LC3-II increase 3-MA ↑apoptosis
↑caspase 3
↓LC3-II

(164)

Verteporfin Mito Murine hepatoma cells (1c1c7) PI3K/AKT/mTOR CQ ATG7B ↑apoptosis (165)
January 2021 |
 Volume 10 | Article
Lyso, lysosome; memb, intracellular membranes; mito, mitochondria; ER, endoplasmic reticulum; 3-MA and wortmannin, Class III PI3K inhibitors; Bay11, NFkB inhibitor; CQ and BAF-A1,
inhibitors of lysosome function; A: siRNA; B:shRNA; C: CRISPR/Cas9.
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several photosensitizers (149). Despite controversial findings
concerning autophagy activation via ROS generation following
PDT, there is now a consensus about the underlying mechanisms
regarding cytoprotection or death.
Frontiers in Oncology | www.frontiersin.org 10160
Over the past ten years, some questions have been addressed
by several authors using cancer cell lines and distinct PDT
protocols. As summarized in Figure 4, PDT protocols with
different PSs were found to therapeutically modulate autophagy.
TABLE 2 | PDT-mediated autophagy: death routine and modulatory guidelines.

PS Target Experimental model Molecular mechanism Autophagy flux and death
routine

Autophagy
modulation

Outcome Ref.

5-ALA Mito Human lung cancer (CL10 and PC12) AMPK/MAPK/mTOR Boosting: AMCD? 3-MA ↑survival
↓caspase-9
and 3

(104)

Verteporfin Mito Human prostate cancer (PC3) Inhibition of
autophagosome
formation

Dysfunctional: AACD BEZ235
LY-294002

↑apoptosis
↓cleaved
PARP1
↑LC3-II

(144)

(145)
Ce6 Mito Human breast cancer (MCF7 and MCF7/ADR) ? ? 3-MA

BAF-A1
↑survival

(166)
Human breast cancer (MDA-MB-231 and
MCF7)

AMPK Boosting: AACD 3-MA + 2-
DG

↑apoptosis
↑pAMPK
↓Beclin 1
↓LC3-II
↓Tumor
mass

(167)

DMMB Mito
Lyso

Human cervix carcinoma (HeLa),
hepatocarcinoma (HepG2), and melanoma
(SKMEL18 and 25)

Mitophagy/Lysosomal
dysfunction

Dysfunctional: AACD
↑PRKN, ↑SQSTM1, ↑LC3II,
↑autolysosomes
accumulation

3-MA
BAF-A1

↓survival
Non-
changed

(59)

Hypericin high
dose (500 nM)

ER Human oxaliplatin-resistant colon cancer
(HCT116, HCT8) and HCT116/L-OHP murine
model

GRP78/CHOP/AKT Boosting: AACD
↓SQSTM1, ↑LC3II/I

3-MA
ATG5*
Beclin 1*

↑out-growth
↑Ki67
↓oxaliplatin
sensitization

(128)

MPPa ER Human osteosarcoma (MG-63) JNK pathway Boosting: AMCD?
↓BCL-2, ↑ Beclin 1, ↑LC3II/I,
↓SQSTM1

3-MA
CQ

↓apoptosis
↓LC3-II
↓caspase 3

(168)

Human breast cancer MDA- MB-23 and
murine model

PERK/eIF2a/CHOP Boosting: AACD
↑ Beclin 1, ↑LC3BII/I,
↓SQSTM1

3-MA ↓apoptosis
↑out-growth
↓LC3B-II

(62)

Human osteosarcoma (MG-63) PERK/IRE1a/CHOP
CHOP/AKT/mTOR

Boosting: AMCD?
↑LC3II/I,↓SQSTM1

Rapamycin ↑apoptosis
↓pMTOR
↑LC3-II
↓SQSTM1
↑caspase 3
↑ cleaved
PARP1

(147)

mTHPC
Foscan®

ER Human breast (MCF7), lung (A-427),
oral cavity (BHY), esophagus (KYSE-70),
bladder (RT-4), and cervix (SISO) cancer

GRP78/LC3-II Boosting: AMCD?
↑LC3II/I

Wortmannin
PSA
E-64d

↓apoptosis
↓LC3-II
↓caspase-9
↓caspase-3
↑LC3-II

(56)

(155)

NPe6 Lyso Murine hepatoma (1c1c7) Lysosomal dysfunction Dysfunctional: AACD?
↑LC3II/I, ↑vacuolization

ATG7* ↑survival
↓caspase
activation

(169)

N‐TiO2

nanoparticles
Lyso Human melanoma (A375) Impairment of lysosomal

fusion with
autophagosome

Dysfunctional: AACD
↑LC3II/I, ↑SQSTM1 ↑RIPK1,
↑HMGB1

3-MA
BAF-A1
Necrostatin-
1

↓necroptosis
↑cellular
rescue
(90%)

(170)

TPPS2a Lyso Human cervix carcinoma (HeLa) Lysosomal dysfunction Dysfunctional: AACD
↑LC3II/I, ↑vacuolization

3-MA Slightly
decrease

(35)

TPGS/dc-
IR825

Mito Human lung cancer (A549) and xenografts Mitophagy/AMPK Boosting: AACD
↑PINK1, ↑PRKN, ↑LC3II/I,
↑SQSTM1, ↓ATP

CQ
3-MA

↑survival
↓PINK1
↓pAMPK

(141)

WST11
TOOKAD®

Lyso Murine hepatoma (1c1c7) Lysosomal dysfunction Dysfunctional: AACD?
↑LC3II/I, ↑vacuolization

ATG5*
ATG7*

↑survival
↓caspase
activation

(169)
January 2
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Lyso, lysosome; mito, mitochondria; ER, endoplasmic reticulum; 3-MA, LY-294002, and wortmannin, Class I/III PI3K inhibitors; BEZ235, Class I PI3K/mTOR inhibitor; rapamycin,
mTORC1 inhibitor; BAF-A1, CQ, E-64e, PES, inhibitors of lysosome function; * genetic silencing/knockout.
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Note also that the complexity of autophagy and numerous steps
allows for several possibilities of intervention, but the
performance in PDT does not come to simple conclusions, i.e.,
a better understanding of its role is still necessary. To avoid
controversial analysis of the real role of autophagy (i.e.,
cytoprotective versus death routine), the autophagy community
appeals to a straightforward effort in following robust guidelines
to monitor autophagy (158–160). As summarized in Tables 1 and
2, numerous in vitro or in vivo studies have been conducted to
describe the autophagic pivotal role in PDT. Herein, we will
briefly discuss this paradigm.

The Pro-Survival Autophagy Role
In general, the therapeutic effects of PDT are related to apoptosis
or necrosis, and autophagy might be a double-edged sword,
depending on the type of photosensitizers and cells (19). Instead
of promoting cell death per si, autophagy often accompanies the
cellular demise by PDT, as a last attempt of cells to cope with
oxidative stress and to survive. Several in vitro and in vivo reports
have demonstrated considerable evidence that autophagy plays a
pivotal cytoprotective role that virtually occurs along with other
RCD, like apoptosis, necroptosis, necrosis, or parthanatos (54,
55, 60, 74, 100–103, 128, 129, 146, 161–165, 171–174). The
description of such cell death mechanisms will not be
considered herein.

Autophagy is a key point on survival and tumor adaptation,
whose inhibition decreases anti-apoptotic proteins’ expression
(e.g. BCL-2 and survivin) or increases pro-apoptotic proteins,
such as BAX, leading to tumor sensitization to photo-stress, e.g.
5-ALA-PDT (68). However, this protective response may be
compromised via photooxidative-mediated NFkB activation
through induction of an adaptative AKT/mTOR/S6K response
that leads to the alleviation of necrotic cell death (103). The
apoptotic machinery (e.g. upregulation of cytochrome c release,
BAX, caspase-3, and PARP1) was found to occur accompanying
the protective autophagic signals in response to Photosan II-PDT
via activation of the AMPK pathway or suppression of the AKT/
mTOR signaling (102). Notably, the protective autophagy is
responsible for cell adaptation and delay of PARP1-mediated
apoptosis at low dose hematoporphyrin-PDT (101).

Autophagy was found to protect photosensitized cells from
oxidative damage triggered by several photosensitizers, like 5-
ALA (100, 103), chlorophyllin e4 (55), chlorophyllin-f (54),
hypericin (60, 128), hypocrellin A (146), Pc13 (74),
Photofrin™ (161, 162), protoporphyrin IX (129), and
porphyrin IX (163), TPPOH-X SNPs (164), and verteporfin
(165). This cytoprotective autophagy can be alleviated trough
chemical (e.g. BAF-A1, CQ, 3-MA, or wortmannin) and genetic
inhibition of essential autophagy-related genes (e.g. ATG3,
ATG5, ATG7, or Beclin 1) or autophagy regulators (e.g.
CHOP), leading to significant suppression of PDT-resistance of
tumor cells (Table 1).

Thereby, photoinduced cellular stress could be targeted to
further death through negative modulation of autophagy. Xiong
et al. demonstrated a promisor therapeutic association-targeting
autophagy to overcome PDT-resistance of colon cancer
xenografts (102). Protoporphyrin IX-PDT in colorectal cancer
Frontiers in Oncology | www.frontiersin.org 11161
stem-like cells (CCSCs) failed to initiate out-growth in almost
70% when associated with autophagy inhibitors (e.g. CQ and
ATG5 shRNA), compared to 25% in PDT alone. Thus,
autophagy inhibition can be considered as a target to deal with
adaptation or resistance to photooxidative stress, leading to
higher antitumorigenicity of PDT in tumor-xenografts
(102, 129).

Whereas most of the PDT-protocols trigger autophagy as
cytoprotective, fewer propose to activate autophagy as a death
routine in cells succumbing to photooxidative stress, as
summarized in Table 1. By analyzing reliable experimental
studies, we propose in the next section to cope with the
challenge to distinct autophagy-associated death modes,
considering the high variability of cellular responses and
different types of PDT protocols.

The Pro-Death Autophagy Role
In general, photoinduced cell death in the mammalian cells is
preceded or accompanied by autophagic vacuolization, a
morphological alteration that may be considered as an example
of the widespread belief of a “type II programmed cell death” or
“autophagic cell death” (175). However, both terms are
unappropriated following recent guidelines (160). On July 15,
2020, a Medline search of “autophagic cell death” or “autophagic
death” and “PDT” or “Photodynamic Therapy” yielded 17 entries,
which constitutes a fraction - close to 10% - of all 184 articles
published on the topic “autophagy” in the PDT field. This led us
to reflect on the expression “autophagic cell death” (57) after
photodamage. Autophagy can protect cells and help them to
tolerate the photodamage (60, 129); however, if there is a high
level of autophagy or blockade flux, “autophagic cell death” could
probably occur. Herein, we review this paradigm and –
polemically – raise doubts about the existence of “autophagic
cell death” mediated by PDT.

Incontestably, converting a protective autophagic mechanism
to a destructive or lethal avenue is now being well-defined as
autophagy-dependent cell death (ADCD) as postulated by the
international committee on cell death (176). Using ADCD term
one would postulate that the photoinduced death is autophagy-
regulated through its machinery and thereof components,
whereas its pharmacologic or genetic lessening would lead to
less death regardless of other RCD mechanisms. Even though
most of the reports have evaluated increased autophagic flux and
puncta vacuoles, none of them formally establishes autophagy
itself (or ADCD) as responsible for photo-induced cell death.
Consequently, before ascribing a direct death role to autophagy,
it is recommended to determine the machinery efficiency status
by generally inhibiting the autophagy pathway using genetic
approaches (knockdown or knockout based in siRNA, shRNA,
or CRISPR/Cas9), see Table 2.

Some reports have shown that depending on the stress level,
the autophagic apparatus might intrinsically contribute to other
cell death programs, like apoptosis or necroptosis (35, 56, 59, 62,
104, 128, 141, 144, 145, 147, 155, 166–170), see Table 2. In spite
of not inducing cell death per si, the RCD routine autophagy-
mediated cell death (AMCD) may be significantly rescued by
chemical autophagic inhibition (e.g. CQ, 3-MA, or BAF-A1)
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and/or genetic manipulation (e.g. ATG7, Beclin 1), as reported
for some drugs (e.g. QW24, PTC-209, or sodium butyrate)
(177–179).

During photooxidative damage autophagic machinery seems
to play a key role regarding the increase in death mediators,
probably leading to AMCD together with apoptosis (56, 147,
168). Another RCD routine linked to autophagy has been
proposed, i.e., autophagy-associated cell death (AACD, which
may or not occur alongside other cell death modalities, like
apoptosis (Table 2). AACD commonly relates to the impairment
of the early (144, 145) or the late stages of the autophagy flux (35,
59, 169, 170). Based on recent evidence, we propose that the
terms “autophagic cell death” or “autophagy death” should be
substituted to “AMCD” or “AACD”. However, one should
initially consider the main differences between AMCD and
AACD in tumor cells succumbing to photooxidative stress.
Unlike AACD (35, 59, 62, 128, 141, 167, 170), AMCD may
require the autophagic machinery to intrinsically regulate
apoptosis (56, 104, 147, 155, 168), as summarized in Table 2.

The engagement of autophagy as a death route does not occur
naturally, instead, quite specific experimental conditions should
be followed, including the PDT exposure dose, type of protocol
sub-sequentially or parallel photodamage on intracellular
targets), type of targeted organelle (e.g. lysosomes or ER),
availability of cellular machinery to evade apoptosis. Whereas
in the case of cytoprotective autophagy the pharmacologic or
genetic autophagic lessening sensitizes tumor to higher PDT-
photoinduced death (Table 1), in the case of pro-death
autophagy may occur either no effect or substantial alleviation
of the PDT-photokilling (Table 2). Nevertheless, autophagy as a
death routine remains allusive and still requires more studies.

The autophagy-related death can be either related to AMCD
or AACD, depending on the dose, physicochemical properties,
and the intracellular specificity. Lange et al. showed different
autophagy responses concerning the Foscan®-PDT doses (e.g.
LD50 versus LD90) (155). While LD50 dose leads to moderate ER-
stress with less apoptotic cell death and probable autophagic
response, high-dose PDT (i.e., LD90) by damaging proteins
involved in the autophagic machinery triggers pro-death
autophagy associated with activation of apoptotic hallmarks,
such as cleaved PARP1, phosphatidylserine membrane
externalization (155). A similar regulation was described in
mutated caspase-3 breast cancer cells (e.g. MCF7) (56). While
autophagosome formation accompanies cleavage of pro-caspase
7 and PARP1 at the LD90 dose´s Foscan®-PDT, chemical
inhibition of the autophagy flux lessen the pro-death
autophagy, leading to a decrease in procaspase activation and
less cytotoxicity (56). The MPPa-PDT also may activate pro-
death autophagy via a ROS-dependent JNK/Beclin 1 pathway,
which intrinsically enhances procaspase-3 activation (168). By
suppressing the early (e.g. 3-MA) or late stages of the autophagic
process (e.g. CQ), tumor recurrence may increase by up to
70% (168).

Recent reports revealed that MPPa- ER photo-stress could
intrinsically regulate the pro-death autophagy via a PERK/
CHOP/AKT/mTOR signaling, with consequent boosting
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autophagy flux and activation of PARP1, procaspase 3 and 12
(62, 147). Probably, as a secondary response of mTOR on the
phosphorylation of S6K or 4EBP1, the ROS-mediated effect on
the PERK pathway leads also to cell arrest, decrease in invasion
and migration, due to respectively, downregulation on cyclins
(A, E and B1) and metalloproteinases (MMP-2 and -9) (147).
Such MPPa-triggered downregulation of MMP-2 and -9 was due
to the ROS-mediated inhibition of AKT/NFkB/mTOR signaling
with suppression of the metastatic behavior of breast MCF-7
cancer cells in xenografts (180). Chen et al. demonstrated that
rapamycin (mTOR inhibitor) enhances the phototoxicity related
to MPPa-mediated pro-death autophagy with a consequent
decrease in SQSTM1/P62 levels and increased cleavage of
procaspase-3 and PARP1 (147). Even though this pro-death
autophagy role should be more investigated regarding the
elicitation of the autophagic machinery to cleavage PARP1 and
procaspases, these findings are suggestive of an AMCD routine.

Lin et al. revealed that the correlation between AMCD and ER
photo-stress occurs via CHOP following hypericin-PDT at high
doses (128). They proposed that pro-death autophagy occurs in
the case of high ER photo-stress, which may relieve chemo-
resistance towards oxaliplatin (128). Paradoxically, a low level of
ER photo-stress mediated by hypericin-PDT leads to the
opposite role of the autophagy process (i.e., pro-survival), via
downregulation of AKT/mTOR signaling in HeLa tumor cells,
which enhances PDT-mediated death by 50% after negative
modulation of autophagy (e.g. ATG5 siRNA or 3-MA) (60).
Thereby, depending on the level of damage (low or high dose)
mediated by hypericin-PDT, autophagy may contribute
distinctively in apoptosis-resistant tumor cells (128).

The type of activation mechanism (e.g. AMPK) regardless of
the type of PS (i.e., 5-ALA or Ce6) also leads to pro-death
autophagy (104, 167). Although this interpretation is correct, it is
still not possible to correlate pro-death autophagy with PS type
and subcellular localization. PDT activates the pro-apoptotic
MAPK/JNK/p38a pathway (100, 114) but also negatively
regulates the AMPK phosphorylation (104). Parallel to AMPK
activation, there is a decrease in the caspase-3 activity, an
increase in the ATP depletion, and deactivation of the
MAPK1/3 pathway (104). That MAPK deactivation would lead
to mTOR activation, with consequent inhibition of autophagy,
is contrary to the sustained AMPK activation that maintains
elevated as an adaptative response to 5-ALA-PDT (104).
Consequently, AMPK seems to be a key point in the PDT-
response and autophagy activation. Indeed, through AMPK
activity abrogation by compound C or VPS34 inhibition
(3-MA mediated) the cell survival might be partially rescued,
possibly due to the autophagy-independent mitochondrial
photodamage (104). Corroborating this finding, Ce6-PDT also
activates AMPK that is further enhanced upon glycolysis
inhibition by 2-DG, with consequent tumor regression in vitro
and in vivo (167). The AMPK hyperactivation relates to high
ATP depletion, which leads to an increase in Beclin 1 and
LC3 lipidation that could be lessened by 3-MA (167).
Especially in caspase-3 mutated cancer cells resistant to
either multidrug (e.g. doxorubicin, cisplatin, and paclitaxel) or
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Ce6-PDT when the autophagic flux is chemically inhibited (e.g.
3-MA or BAF-A1), the tumor relapse increases up to 50% (166).
It seems that the hyperactivation of the AMPK pathway relates to
boosted autophagy triggered by photooxidative damage on
mitochondria (Figure 3). However, it is important to emphasize
that the activation mechanisms of AACD remain elusive and
poorly understood.

Overall, excessive, or impaired mitophagy/autophagy appears
to trigger the AACD routine. The boosted mitophagy activation
mediated by TPGS/dc-IR825-PDT exceeds the degradative
function of autolysosomes, ending up with huge vacuolization
and degradation impairment, as well as depletion of ATP,
activation of AMPK pathway, and bioenergetic catastrophe
(141). Such effects were also observed in xenografts models
when TPGS/dc-IR825 nanomicelles were intravenously injected
into tumor-bearing mice showing high tumor accumulation and
retention (141). TPGS/dc-IR825 nanomicelles showed a
remarkable in vivo therapeutic efficiency leading to total tumor
remission, possibly related to their minimized cellular-
extrusion (141).

When photodamage reduces the number of functional
lysosomes and promotes their total disruption (59), or avoids
their fusion with autophagosomes (170), AACD is activated. If
the lysosomes are slightly photodamaged, only enough to enable
an autophagic pro-survival response (probably due to
lysophagy), there is a restoration of homeostasis (59). The pro-
survival autophagy triggered by PDT (PS at low doses) can be
promptly switched to AACD when parallel mitochondrial
membrane damage occurs (59). In line with this notion,
lysosomes have been considered as promisor targeted-organelle
to PDT, even much more when parallel damage in the
mitochondria membrane is mediated (59). Some reports
corroborated with this premise (181, 182). Following this
concept, the PDT-triggered mitophagy activation would fail in
the context of lysosomal impairment, which evolves to AACD
(Figure 5) (59).

Another path to trigger AACD was recently reported (170).
Whereas N‐TiO2-PDT induces efficient autophagic flux in the
dark condition, its photo‐activation compromises pro-survival
Frontiers in Oncology | www.frontiersin.org 13163
autophagy. The replacement of the cytoprotective response
mediated by photooxidative stress relates to the impairment of
the lysosomal fusion with autophagosomes (170). Consequently,
there was an increase in ROS production with consequent
elicitation of RIPK1/HMGB1‐related necroptosis, which is
abrogated upon treatment with necrostatin-1, a specific
inhibitor (170).

The PDT-triggered molecular mechanisms differ concerning
the pro-death autophagy routine, i.e., AMCD or AACD, and the
mechanistic framework must be carefully considered before
choosing the type of autophagy modulation (e.g. activation or
inhibition). For instance, even targeting the same organelle (i.e.,
lysosomes), the AACD elicitation might differ upon the 3-MA
inhibition in the early autophagy. Whereas the photoinduced
lysosomal dysfunction promoted by DMMB evokes per si tumor
death regardless of 3-MA (59), the impaired lysosome/
autophagosome fusion mediated by N‐TiO2-PDT leads to a
high level of tumor relapse (90%) (59). Thereby, to efficiently
relieve tumor recurrence, a better choice should be the lysosomal
inhibitor BAF-A1, which slightly increases the N‐TiO2

phototoxicity (170). Meanwhile, when PDT increases AMCD,
the boosting autophagy triggered through mTOR inhibition (e.g.
rapamycin) should be the best direction to deal with MPPa-
PDT-resistance (147). Moreover, the secondary effects regarding
mTOR suppression would lessen any invasive or migratory
activity of tumor cells (147).

Although autophagy plays a protective role in murine tumor
cells photosensitized with lower concentrations of verteporfin
(165), at higher concentrations it switches pro-survival
autophagy to AACD probably by the inhibition of
autophagosome formation in human prostate cancer cells
(144). Thereby, in high-phototoxicity doses that compromise
autophagy flux instead of inhibiting autophagy it is preferable to
modulate its activation through treatment with dual Class I
PI3K/mTOR inhibitor, e.g. BEZ235 (144), or pan-Class I PI3K
inhibitor, e.g. LY-294002 (145). BEZ235 markedly increased
growth inhibition of PI3K mutated-cancer cells (183). These
findings highlight that verteporfin-PDT is an independent cancer
treatment strategy, capable of overcoming pro-autophagy to deal
FIGURE 5 | Parallel photodamage in mitochondria and lysosome evolves to autophagy-associated cell death. The PDT-mediated photodamage in mitochondria and
lysosomes per si leads to efficient autophagy-associated cell death regardless of the chemical modulation of autophagy flux (i.e., BAF-A1 or 3-MA) (59). Figure
created with BioRender.com.
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with cancer resistance (e.g. against chemotherapy and radiation).
However, further in vivo studies are still urgent to determine
whether such a combination will lessen tumor out-growth.

Based on these pieces of evidence, we can conclude that the
efficiency and rate of engagement in causing death after PDT
depend on the cell type, the photosensitizer type, protocol details
(concentration, light dose, targeted-organelle, and others). As
revealed by pre-clinical studies, both AACD and AMCD can be
chemically or genetically modulated to increase PDT outcomes,
and therefore both mechanisms should be considered as
promisor ways to deal with clinical tumor recurrence.
THE IMPROVEMENT IN THE CLINICAL
OUTCOME OF CANCER PATIENTS
MEDIATED BY PDT

Aside from the PDT-mediated photodamage that intrinsically
correlates with regulated cell death, PDT also plays antitumor
immunological activity, involving activation of CD+4 and CD+8

helper T lymphocytes, endothelial damage, the release of
inflammatory mediators and cytokines (184–188). Thereby,
along with the engagement of cell death PDT outcomes,
tumoral remission is also due to its modulatory role in the
immune response (187), which could control the disease´s
progression to distant sites. Several preclinical pieces of
evidence pointed out the promising role of PDT as a
therapeutic strategy for tumor local or distant remission
supporting; the oncology community also moved forward in
the clinical field. Consequently, several clinical trials have been
conducted or are in progress. According to Clinical Trials.Gov,
186 intervention studies have been carried out so far (189).

Despite all favorable oncological applications of PDT, it still
raises urgent debate in medical practice. We shall, therefore,
summarize the key issues concerning clinical outcomes,
tolerability, and efficacy of PDT using e.g. 5-ALA, HAL,
Photofrin™, Foscan®. We have considered only completed or
terminated clinical trials, which enrolled at least three patients,
most of them had the involvement of apoptosis or necrosis, and
we will argue how the regulation of autophagy could improve
clinical outcomes.

Basal cell carcinoma (BCC) continues to have increased
incidence rates worldwide, especially in Australia where there
has been a 4.4-fold increase (190). According to a network meta-
analysis of non-melanoma skin cancer treatment, the surgical
excision has been considered as the optimal approach with high
efficacy, considering the complete response and complete lesion
clearance, with moderate adverse effects (191). However, the risk
of developing a subsequent lesion in three years after the first one
is elevated ranges from 33% to 70%, which probably evolves from
compromised histological margins (192). Indeed, even after early
surgery intervention, tumor recurrence was observed in 50% of
the BCC patients (~7 months after first intervention) (193). In
addition to the poor or unacceptable long-term cosmetic
outcomes, wide surgical excisions might sometimes require
surgical reconstruction (194).
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Contemplating the preserved cosmetic effect and safety for
treating non-melanoma skin cancer, PDT is highlighted as an
alternative strategy to treat BCC (195, 196). According to the
randomized phase 3 trial (NCT02144077), the PDT protocol
employing the 5-ALA formulated through a non-emulsion gel
BF-200, promoted an effective remission response (93.4%) in
BCC lesions, with a low cancer recurrence of 8.4%, after a one-
year follow-up (197). The trial showed side effects with mild to
moderate intensity regarding tolerability and safety, including
pain at the treatment site. Another clinical trial corroborates the
favorable outcome of PDT for BCC treatment. In a non-
randomized phase 1 trial (NCT00985829) with the enrolment
of 28 participants, 5-ALA-PDT lead to complete (32%) or partial
(50%) remission, without considerable cosmetic impairment,
having only low cases of local pain (7.1%). Even though 5-
ALA-PDT is a promising therapeutic avenue to tackle BCC,
some details of the protocol were not considered or even
described, including exposure time and thickness of the
photosensitizer applied to the skin, the specific wavelength of
the light used, and the clinical outcome of BCC concerning its
histologic subtype, e.g. pigmentary, superficial or nodular.
Therefore, it is difficult to analyze the reasons for partial
remission response (<50%) (NCT00985829). Proper
establishment/definition of the dosimetry parameters could
improve this result (197). Considering tumor-adaptative
response related to sustained AMPK signaling (104), drug-
efflux (89) or iNOS/NO axis (123), the combination of 5-ALA-
PDT with positive modulators of the autophagic machinery (e.g.
rapamycin), regulators of iNOS and drug-extrusion, NO
scavengers, or NFkB inhibitors should be considered to
increase clinical outcomes (93, 100, 103, 114–120, 147).

In general, the therapeutic approach to tackle head and neck
tumors is difficult, considering that recurrence or even the
remaining disease may occur in over 40% of the treated
patients (198). This scenery maybe even more dramatic in
severe cases, including those related to surgeries following neo-
adjuvant treatment, or even, in the case of adjuvant radiotherapy.
To overcome such difficulties related to internal tumors, the PDT
protocol was improved based on the facility to percutaneously
deliver light using multiple laser fibers, which are inserted
directly into head and neck tumors, named Interstitial
photodynamic therapy (iPDT). A phase 1-2 study attempted to
assess the efficacy of iPDT using Foscan® as a photosensitizer.
This strategy was considered as an alternative rescue therapy to
treat recurrent head and neck tumors before surgery,
radiotherapy, or chemotherapy (199). After 1 month of follow-
up, 20% of the 45 patients treated obtained a complete response
(e.g. free disease), whereas half (53%) experienced symptomatic
relief (bleeding, pain, or decreased tumor volume). Among those
patients with complete response, 33% died due to recurrence
disease within an interval of 17 to 32 months. Meanwhile, 56%
survived during follow-up time (10-60 months). Notably, 73% of
patients survived for at least 16 months. Adverse events such as
pain and edema for 2-4 weeks was reported (199). To improve
clinical outcomes, the combination of Foscan®-PDT with late
inhibitors of autophagy flux might be considered in future
studies, which beyond increases to AACD may improve
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antitumor immunological activity. This combined approach may
increase the proteotoxicity and calreticulin surface exposure,
instigating a series of immune responses including DC
maturation, CD8+ T cell proliferation, and cytotoxic cytokine
secretion (112, 125, 155, 200).

In head and neck tumors, several reports are using PDT as a
treatment option, from early-stage tumors to those without other
therapeutic alternatives. Complete remission rates range from
68% to 95% (201). According to the open-label phase 2 trial
(NCT00453336), the PDT protocol employing the Photofrin™

evolved a better clinical outcome regarding the lesion location,
the histopathological and clinical staging, thereby, less
aggressive/invasive lesions located in the oral cavity at early
stages of the disease. Briefly, the casuistic comprised 45 patients
showing lesions in the oral cavity (53.3%), larynx (40%), or other
lesions (6.7%). Concerning the histological subtypes, 22/45
related to squamous carcinoma, 13/45 to severe dysplasia, 9/45
in situ carcinomas, and 1/45 verrucous cancer. Upon a six
month-based follow up, Photofrin™-PDT evolved completed
cancer remission of 73% for less aggressive or invasive disease
(e.g. severe dysplasia and in situ carcinoma), whereas it was of
50% for squamous carcinoma. On the other hand, clinical-stage
squamous carcinoma (stage I) revealed 70% of complete
responses, while more advanced stages obtained lower
complete responses (i.e., 38%). This study counted to 45
adverse events, such as pain inside the oral cavity (53%) or
moderate skin irritation (18%). Remarkably, after seven years of
follow-up, 71% of patients obtained a desirable outcome;
meanwhile, fewer patients required endoscopic resection
(13%). Despite the difficulty of adequately managing the light
device to provide proper dosimetry assessment, by following
standard guidelines, it is possible to successfully tackle
carcinomas at early stages, which after Photofrin™-PDT
treatment, show cure rates in the oral cavity and larynx as high
as 94% and 91%, respectively (202). Based on preclinical findings
the tumor-resistance should decrease following Photofrin™-
PDT combined with negative regulators of autophagy (e.g. 3-
MA or BAF-A1) (161, 162).

The nonrandomized pro spec t i v e c l i n i c a l t r i a l
(NCT00530088) proposed to determine the efficacy of
Photofrin™-PDT in the treatment for dysplasia, in situ
carcinoma, or stage I carcinoma in the oral cavity and larynx.
After following the patients for a mean period of 15 months, a
significant and complete lesion remission was observed in 92% of
the patients, with recurrence in only 13% of the treated cases.
Adverse effects associated with PDT were transient local edema,
pain, and phototoxic reaction (203). These findings corroborate
with the PDT´s premise as an alternative and efficient strategy to
treat cancers of the oral cavity and larynx since the protocols are
already better defined.

HAL-PDT was investigated to treat cervical intraepithelial
neoplasia of 262 patients during a randomized phase 2 clinical
trial (NCT01256424) (204). In this study, 118 were diagnosed
with CIN1 (low-grade squamous intraepithelial lesion), 83 with
NIC2 (high-grade squamous intraepithelial lesion), the others
were not considered as eligible for the study (i.e., NIC 3 or
regular exam). Among those eligible, the frequency for high-risk
Frontiers in Oncology | www.frontiersin.org 15165
oncogenic HPV (e.g. HPV 16/18) was 46% (6/13) and 37% (7/19)
for CIN2 and CIN1, respectively. Aside from the significant and
sustained tumor remission of 95% for CIN2, PDT also leads to a
remarkable reduction of HPV infection. For instance, PDT
undergoes clearance of high-risk HPV in 83% of CIN2 patients
(5/6) compared to the control group (33%). Despite the favorable
PDT response, adverse effects were reported in 125 patients and
included vaginal discharge, local discomfort, and mild bleeding
(204). In a phase 2 study (NCT00708942) involving 83 women
diagnosed with CIN1, it was observed that the HAL-PDT was
able to offer a complete cytohistological and HPV viral clearance
in 90% of the patients, in a 6-month follow-up.

Even with PDT’s mechanism inactivates the HPV virus is
elusive; it seems to be related to the host’s immune response.
Studies suggest that there is an influence of antitumor immunity
after PDT. This premise is based on experimental findings
demonstrating the activation of dendritic cells and tumor-
specific T response upon PDT. Beyond this immunity
activation, PDT also triggers systemic inflammation causing
oxidative damage and cytokines release (187, 188).

Studies carried out on lung tumors have shown that PDT
might reduce airway obstruction and improve respiratory
function (205, 206). The literature has reported several clinical
studies highlighting PDT as a promising strategy to treat early-
stage, superficial lung cancer, through a robotic transthoracic
needle, and navigation bronchoscopy (205). The first clinical trial
was conducted in 1993, through a prospective phase 2 trial on
PDT using Photofrin II in which 84.8% cases of squamous cell
carcinoma, centrally located, evolved a complete response after
initial PDT-treatment (207). This favorable outcome extended
for a median of 14 months (range 2-32 months). Aside from a
lower frequency of side effects (e.g. photosensitivity in 2% of
cases), PDT led to fewer cases of local recurrence in 4/50 (8%)
cases during the 16-month follow-up. The multicenter phase 2
trial applying NPe6-PDT revealed a considerable outcome in
patients succumbing with early-stage, lung squamous carcinoma
(208). Again, PDT leads to a complete response in 85% of lesions
but now with incredibly low skin photosensitivity. Based on these
favorable findings, PDT with Photofrin II or NPe6 was approved
in Japan as a suitable treatment for early-stage lung cancer,
centrally located (205).

The uncontrolled, non-randomized, open-label, prospective,
multicenter, phase 1 clinical trial (NCT03344861), performed in
10 patients, evaluated the safety of the tissue response to
hematoporphyrin-PDT in solid lung tumor, previous to
surgery. On the 15th day after PDT, patients were submitted
to standard surgery, following macro and microscopic cancer
evaluations. Despite the occurrence of side effects in 40% of
patients, including hemorrhagic shock, anemia, and skin
photosensitivity, the performance status and presence of
inflammation suggest Photofrin™-PDT as a preoperative
possibility in solid lung tumors. The same group conducted a
phase 1, interventionist study (NCT02916745), in 5 patients
diagnosed with non-small cell lung cancer or with lung
metastasis. The objective was to assess the safety and viability
of Photofrin™-iPDT by bronchoscopy intervention. The tumor
remission with antitumor immunity after 6 months of iPDT was
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complete (20%) or partial (60%). In general, this PDT-mediated
antitumor-immunity has been associated with the activation of
dendritic and T cells (188).

The critical role of autophagy in cell biology and its considerable
therapeutic potential against cancer recently received the oncology
community’s attention. Autophagy generally promotes resistance
to photodynamic therapy-induced apoptosis or necrosis and may
serve as a strategy to improve its efficacy (129, 161). In linewith this
notion, PDT’s autophagy modulation would represent a potential
therapeutic target for human cancer (209, 210).Wemust be aware
that the PDT-phototoxicity as well as the type of autophagy
induction is dose-dependent, if cytoprotective or pro-death, as
discussed earlier.
MAJOR CHALLENGES AND
PERSPECTIVES

The trajectory of clinical PDT for cancer treatment is somewhat
peculiar and not straightforward. Many new photosensitizers
have been designed and tested, showing relatively important
improvements compared to preceding ones. However, few of
them were approved by the FDA and others are undergoing
clinical trials (17). Despite the FDA approval, until now no PS
presented a magic bullet or exhibited all characteristics of an
ideal PS. Photofrin™, Foscan®, ALA and HAL are still the most
used photosensitizers in PDT, despite the several disadvantages
presented by them (17).

Thus, somehow a significant part of the knowledge acquired
is not reaching clinical protocols routinely. It is essential to call
attention to this fact and ask: how can we get through it? We
consider that one of the bottlenecks for expanding the PDT
application in a clinical routine because of the biological system’s
complexity. Toward this end, it would be necessary to stress the
interaction of the PDT response regarding other intrinsic
stressors, including cell stemness capacity, metabolic condition,
cross-talking with the microenvironment and stroma,
microbiota, genome instability, inflammatory and immune
responses, vasculogenic mimicry, hypoxia, and other
biochemical anomalies.

Another pivotal point comprises the discrepancy or even lack
of a consensual or gold-standard procedure for PDT clinical
practice concerning light dose exposure regimen, PS
concentration, and the type of light device used. Also, topical
products containing PS are lacking information about the exact
amount applied to the skin and the time to be activated. All these
points make it difficult to establish standard protocols that can be
replicated in other studies. Furthermore, the progression-free
survival investigation of clinical cases is still missing. We should
also look for the PDT’s ability to prolong the patient’s time of life,
instead of PDT being indicated only for the curative aspect.

Considering the premise that autophagy represents a
therapeutic target to improve oncology clinical outcomes, future
efforts should bemade to the development of drugs with increased
pharmacologic specificity beyond those commonly used in the
current approach. Among all efforts, we have elicitedmainly those
Frontiers in Oncology | www.frontiersin.org 16166
focused on the development of novel autophagy inhibitors, whose
consolidation into therapeutic regimens should be considered as a
new avenue for the PDT antitumor field.
CONCLUDING REMARKS

In this review, we discussed the significant progress in the
comprehension of autophagy modulation in cells succumbing
to photooxidative damage. Preclinical reports pointed out that
autophagy targeting can be a key regulatory routine to improve
clinical outcomes in oncology practice. The repurposing drugs
have been considered, including mTORC1 inhibitors (e.g.
temsirolimus, everolimus, and rapamycin), chloroquine, and
BAF-A1. Several efforts have been made to deal with tumor
resistance. Chemical or photochemical inhibition of lysosomal
function seems to bear a promising strategy since autophagy
machinery plays a pivotal role in tumor vulnerability. Towards
the increase in the death-autophagy related to lysosomal
photodamage (e.g. verteporfin-PDT) or ER-stress (e.g. MPPa-
PDT), the positive regulation of autophagy (e.g. BEZ235, LY-
294002, or rapamycin) is highlighted as a promisor way to deal
with tumor resistance. Notably, the modulation of parallel
photodamage in lysosomes and mitochondria is a favorable
route to trigger AACD thoroughly. Therefore, the PDT-
mediated autophagy associated-cell death may be considered as
a new therapeutic avenue, even though it needs to be further
explored in clinical trials.
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Despite the activation of autophagy may enable residual cancer cells to survive and

allow tumor relapse, excessive activation of autophagy may eventually lead to cell

death. However, the details of the association of autophagy with primary resistance

in hepatocellular carcinoma (HCC) remain less clear. In this study, cohort analysis

revealed that HCC patients receiving sorafenib with HBV had higher mortality risk. We

found that high epidermal growth factor receptor (EGFR) expression and activity may

be linked to HBV-induced sorafenib resistance. We further found that the resistance

of EGFR-overexpressed liver cancer cells to sorafenib is associated with low activity

of AMP-activated protein kinase (AMPK) and CCAAT/enhancer binding protein delta

(CEBPD) as well as insufficient autophagic activation. In response to metformin, the

AMPK/cAMP-response element binding protein (CREB) pathway contributes to CEBPD

activation, which promotes autophagic cell death. Moreover, treatment with metformin

can increase sorafenib sensitivity through AMPK activation in EGFR-overexpressed liver

cancer cells. This study suggests that AMPK/CEBPD-activated autophagy could be a

potent strategy for improving the efficacy of sorafenib in HCC patients.

Keywords: sorafenib, metformin, autophagy, AMPK, CEBPD

INTRODUCTION

Sorafenib is a multi-kinase inhibitor that mainly targets Raf kinases and receptor tyrosine kinases,
including vascular endothelial growth factor receptor (VEGFR)-2/3, platelet-derived growth factor
receptor (PDGFR)-β, FMS-like tyrosine kinase 3 (Flt3), and c-Kit (CD117) (Cervello et al., 2012),
which are involved in tumor angiogenesis and progression. However, the overall outcomes for
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patients with advanced hepatocellular carcinoma (HCC) are
discouraging and distinct tumor cells exhibit diverse degrees of
sensitivity to sorafenib. Therefore, a precise understanding of
the mechanism of resistance is critical to develop personalized
medicine strategies for HCC patients.

Autophagy is a highly conserved intracellular degradation
process that can be enhanced when cancer cells face
environmental stresses such as nutritional deficiency and
even chemotherapy. Autophagy induced by hepatitis B virus
(HBV)/hepatitis C virus (HCV) has been suggested to support
viral replication and contributes to HCC progression (Wang
et al., 2014; Wu et al., 2014; Khan et al., 2018). Epidermal
growth factor receptor (EGFR) is overexpressed and activated
in more than half of HCC patients (Buckley et al., 2008). A
combination of EGFR inhibitor and sorafenib was assessed
as a rational therapeutic strategy for HCC (Zhu et al., 2017),
but the preclinical results were far from satisfactory. Some
studies showed that autophagy induced by EGFR inhibitors is
cytoprotective, and the combination of EGFR inhibitors with
autophagy inhibitors might be beneficial (Wang et al., 2019).
Despite autophagy is involved in a survival mechanism, excessive
activation of autophagy could eventually lead to cell death (Liu
and Levine, 2015). Autophagy is also responsive to sorafenib
stress and strengthens the sorafenib-induced death of cancer
cells (Park et al., 2010). Therefore, the complex role of autophagy
should be clarified, which may be important to precisely regulate
the levels of autophagy to control HCC.

CCAAT/enhancer binding protein delta (CEBPD) is a
transcription factor that responds to various external stimuli,
including the proinflammatory cytokines IL-1β and TNFα
(Chang et al., 2012), stress (O’Rourke et al., 1997), growth
factors (Wang et al., 2005), and anti-cancer chemotherapy drugs
(Li et al., 2015; Chu et al., 2017; Tsai et al., 2017). CEBPD is
thought to be a potent tumor suppressor, and its expression is
downregulated in several cancers, including breast cancer (Sivko
and DeWille, 2004), leukemia (Agrawal et al., 2007), cervical
cancer (Pan et al., 2010), and hepatocellular carcinoma. We
previously demonstrated that epigenetic regulation contributes
to CEBPD inactivation in cancers (Ko et al., 2008) and that
strong CEBPD activation can strengthen the death of cancer
cells via eliminating epigenetic control (Li et al., 2015). However,
we also found that inhibition of the EGFR/STAT3/CEBPD axis
reverses cisplatin resistance in bladder cancer (Wang et al., 2017).
Therefore, the different and sometime paradoxical function of
CEBPD appears to be dependent on cell type-specific contexts.

Metformin (dimethylbiguanide) is a current first-line
pharmacological treatment for type 2 diabetes. Some studies
have further demonstrated that metformin can induce cell
arrest and promote cell death (Chen et al., 2013). Metformin
can activate autophagy by inhibiting mammalian target of
rapamycin (mTOR) directly or indirectly in an AMP-activated
protein kinase (AMPK)-dependent manner (Kim and He, 2013;

Abbreviations:AMPK, AMP-activated protein kinase; CEBPD, CCAAT/enhancer

binding protein delta; EGFR, epidermal growth factor receptor; ERK, extracellular-

signal-regulated kinase; HBV, hepatitis B virus; HBx, HBV-encoded X protein;

HCC, hepatocellular carcinoma; LC3B, light chain 3 beta.

Pernicova and Korbonits, 2014). It has also been suggested
that metformin should be applied for therapy for other cancers
in addition to HCC, including melanoma and lymphoma, via
autophagic activation (Tomic et al., 2011; Shi et al., 2012).
However, the molecular details of metformin in overcoming the
primary resistance of liver cancer cells to sorafenib remains an
open question.

MATERIALS AND METHODS

Clinical Data Analysis
Our nationwide cohort analysis used the Taiwan Cancer
Registry (TCR) and National Health Insurance Research
Database (NHIRD) to identify diagnosis of HCC and sorafenib
prescription (Lu et al., 2017; Chan et al., 2019). The TCR database
captures 97% of the cancer cases in Taiwan and also represented
a perfect data quality comparing to other well-established cancer
registries (Bray and Parkin, 2009; Chiang et al., 2016). To
ensure patient privacy, all personal identifying information was
removed prior to analysis. This study was approved by the
Institutional Review Board of Chi-Mei Medical Center in Taiwan
(IRB: 10702-E04).

The International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM) code 155.0 were used to
identify patients diagnosed with HCC between 2012 and 2015
from the TCR database. Information on HBV or HCV infection
were obtained for the period from 12 months before until 12
months after HCC diagnosis based on ICD-9-CM diagnosis
codes: HBV (070.20, 070.22, 070.30, 070.32) and HCV (070.41,
070.44, 070.51, 070.70, 070.71). Patients with a previous cancer
history, a lack of clear demographic and tumor information
or aged <18 years were excluded. Finally, a total of 6,628
HCC patients were enrolled in this analysis. For the usage
of sorafenib, all patients were reimbursed without co-payment
by NHI according to the criteria BCLC advanced stage that
were not amenable to either surgical resection or locoregional
therapy and Child–Pugh class A liver functional reserve. The
prescription of sorafenib is 800mg (200 mg/tablet) for 2 months.
The application needed to be re-evaluated every 2 months for
next term of sorafenib usage with imaging evidence showing no
disease progression.

The categorical variables were presented as frequency with
percentage, and the difference between patients with HBV
diagnosed and those without was compared using Pearson’s
chi-square test. The 1-year mortality risk for HCC patients
with different hepatitis B/C virus was estimated using Cox
proportional regression analysis adjusted with age, gender, HCC
diagnosed to start sorafenib, dosage of sorafenib, comorbidities,
and additional therapy after sorafenib such as TACE, RFA,
radiation, hepatectomy, and liver transplantations. The stratified
analysis was also implemented to investigate the mortality risk
among the different duration of sorafenib used. In addition,
the estimation of different follow-up period mortality risk was
considered. The predicted survival curves were plotted using
the results of above Cox regression analysis with adjusted
confounding factors. SAS 9.4 for Windows (SAS Institute,
Inc., Cary, NC, USA) was used for all statistical analyses. All
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statistical tests were 2-sided, and p < 0.05 was considered
statistically significant.

Cell Culture
The human hepatocellular carcinoma cell lines Huh7 and
Hep3B were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum (FBS),
100µg/ml streptomycin, and 100 units/ml penicillin at 37◦C and
5% CO2.

Lentiviral shRNA Knockdown
The virus was produced from Phoenix Ampho cells using Mirus
Bio TransIT-2020 and cotransfected with various short hairpin
RNA (shRNA) expression vectors in combination with pMD2.G
and psPAX2 vectors and the pLKO.1-shRNA expression vectors.
The short interfering RNA sequences targeting LacZ, CEBPD,
and AMPK were subcloned into the lentiviral expression
vector pLKO.1. The short interfering RNA sequences are as
follows: shLacZ (shZ): 5′-CCGGTGTTCGCATTATCCGAA
CCATCTCGAGATGGTTCGGATAATGCGAACATTTTT
G-3′; shCEBPD (shD): 5′-CCGGGCCGACCTCTTCAACAG
CAATCTCGAGATTGCTGTTGAAGAGGTCGGCTTTTT-3′;
shAMPKα (shKα1): 5′-CCGGTGATTGATGATGAAGCC
TTAACTCGAGTTAAGGCTTCATCATCAATCATTTTT-3′;
shAMPKα (shKα2): 5′-CCGGCAACTTTACCTGGTTGATAA
CCTCGAGGTTATCAACCAGGTAAAGTTGTTTT-3′. The
expression vectors and shRNAs were obtained from the National
RNAi Core Facility located at the Genomic Research Center of
Institute of Molecular Biology, Academia Sinica, Taiwan.

Plasmid Transfection and Reporter Assays
Human CEBPD reporter was constructed in our lab (Wang et al.,
2005). The reporter was transfected into Huh7 cells by Turbofect
according to the manufacturer’s suggestions. Transfectants were
cultured in complete medium with or without treatment for 3 h.
Luciferase activity was measured in the lysates of transfectants.

Cell Viability
Huh7 and Hep3B cells were seeded 5∗103 cells per well in 96-
well plates. Cells were treated with various concentrations
(0, 2.5, and 5µM) of sorafenib for 48 h or with the
combination of 2.5µM sorafenib and 5mM metformin for
48 h. The experimental cells were incubated with diluted MTT
reagent [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide] at 37◦C for 3.5 h. The samples were then measured
spectrophotometrically at 595 nm by an ELISA plate reader.

Flow Cytometry Analysis
Huh7 and Hep3B cells were treated with sorafenib for 48 h.
Treated and control cells were harvested, washed twice and re-
suspended in 500 µl of PBS plus Annexin V-FITC and PI in
dark for 15min at room temperature. The degree of apoptosis
was determined as the percentage of cells positive for Annexin V-
FITC/PI. For each sample, at least 1× 10 4 cells were analyzed by
FACScan cytometry (CellLab QuantaTM SC, Beckman Coulter).
The data were determined by three independent experiments.

Fluorescence Microscopy
The pEGFP-LC3 plasmid was a gift obtained from Dr. Tamotsu
Yahsimori and Noboru Mizushima (Kabeya et al., 2000). Huh7
and Hep3B cells transfected with GFP-LC3B plasmid were grown
on glass coverslips or treated with sorafenib (2.5 and 5µM) for
6 h, and then examined under a fluorescence microscope. Images
shown are representative of three independent experiments. The
fold changes of the average numbers of puncta per positive cells
were calculated with 50 individual cells.

Animal Studies
Male, 6-week-old NOD/SCID mice were obtained from the
Laboratory Animal Center of National Cheng Kung University,
Tainan, Taiwan. Hep3B cells (5 × 106) in 0.2ml PBS were
inoculated subcutaneously into the right flank of the mice.
After 14 days, when macroscopic tumors (50–100 mm3) had
formed, animals were placed randomly into four groups (n =

5 per group) as follows: (1) the control group, which received
identical volumes of vehicle; (2) the sorafenib treatment group,
which was treated with sorafenib at doses of 15 mg/kg/day; (3)
the metformin treatment group, which was treated with 250
mg/kg/day metformin; and (4) the combined treatment group,
which was injected with sorafenib combined with metformin.
Treatment was given to all groups intraperitoneally every day for
4 weeks. Animal weight and tumor dimensions were measured
every 4 days with calipers, and tumor volumes were estimated
using two-dimensional measurements of length and width and
were calculated with the formula: [l × (w)2] × 0.52, where l is
length and w is width.

Statistical Analysis
All experiments were repeated at least 3 times, and data
were analyzed for statistical significance by two-tailed unpaired
Student’s t-test using Prism 5 software. The data were expressed
as the means ± SEM. Differences were considered statistically
significant when indicated by asterisks.

RESULTS

HBV Is Associated With Sorafenib
Resistance in HCC Cells
HBV and HCV are major risk factors for HCC and have
been associated with therapeutic efficacy. To check the clinical
relevance of HBV/HCVwith sorafenib resistance in patients with
HCC, cohort analysis was performed to identify HCC patients
receiving sorafenib with (n = 3,389) or without HBV/HCV (n =

2,113) (Table 1). After adjusted to potential confounding factors,
patients with HBV/HCV increased 10% risk of overall 1-year
mortality compared with those without HBV/HCV (Table 2). In
addition, patients with HBV/HCV had higher mortality risk at
6–12 months follow-up period than those without HBV/HCV
(Table 3), and the estimated survival probability from the hazard
function after adjusted to age, gender, HCC diagnosed to start
sorafenib, dosage of sorafenib, comorbidities, and additional
therapy after sorafenib was plotted as Figure 1A. Interestingly,
previous study indicated that sorafenib improved overall survival
among patients with HCC who were HCV positive but HBV
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TABLE 1 | Clinical information of HCC patients treated with sorafenib with or without HBV/HCV.

Characteristic HBV diagnosed (with HBV alone or

both HBV/HCV)

No HBV and HCV diagnosed P-value*

N % N %

Overall patients 3,389 61.6 2,113 38.4

Age groups

<35 114 3.36 33 1.56 <0.0001

35–50 769 22.69 195 9.23

50–65 1,684 49.69 813 38.48

>65 822 24.25 1,072 50.73

Gender, male 2,917 86.07 1,661 78.61 <0.0001

HCC diagnosed to start sorafenib, months

<3 1,564 46.15 1,181 55.89 <0.0001

3–6 476 14.05 201 9.51

6–12 521 15.37 253 11.97

>12 828 24.43 478 22.62

Duration of sorafenib used, months

<2 1,703 50.25 1138 53.86 0.0787

2–4 692 20.42 400 18.93

4–6 301 8.88 176 8.33

>6 693 20.45 399 18.88

Dosage of sorafenib

<240 173 5.1 152 7.19 <0.0001

240–480 1,136 33.52 813 38.48

480–720 259 7.64 168 7.95

>720 1,821 53.73 980 46.38

Comorbidities

Alcoholic liver disease 197 5.81 168 7.95 0.0019

Liver cirrhosis 1,184 34.94 547 25.89 <0.0001

Liver decompensation 197 5.81 125 5.92 0.8744

Diabetes mellitus 922 27.21 873 41.32 <0.0001

*P-value was estimated using Pearson’s chi-square test.

TABLE 2 | Risk of 1-year mortality in HCC patients receiving sorafenib with or without HBV/HCV.

Characteristic Adjusted HRa (95% CI)

Overall Duration of sorafenib used, months

<2 2–4 4–6 >6

HBV diagnosed (with HBV alone or both HBV/HCV) 1.10 (1.03–1.19)* 1.04 (0.95–1.14) 1.21 (1.04–1.41)* 1.29 (0.99–1.68) 1.27 (0.92–1.75)

No HBV and HCV diagnosed Ref. Ref. Ref. Ref. Ref.

HR, hazard ratio; CI, confidence interval.
aAdjusted for age groups, gender, HCC diagnosed to start sorafenib, dosage of sorafenib, comorbidities, and additional therapy after sorafenib.

*P < 0.05.

negative (Jackson et al., 2017), suggesting that HBV might be
the major cause of sorafenib resistance. To dissect the presence
of HBV in sorafenib resistance, two human HCC cell lines,
Huh7 without HBV and Hep3B with an integrated HBV genome,
were treated with different concentrations (2.5 and 5µM) of
sorafenib to address this issue. A cell viability assay revealed that
Huh7 cells were more sensitive than Hep3B cells to sorafenib
(Figure 1B). Furthermore, a cell death assay revealed that
sorafenib significantly induced apoptotic cell death in Huh7 cells

compared to Hep3B cells (Figure 1C), suggesting that Hep3B
cells are intrinsically more resistant than Huh7 cells to sorafenib.

High EGFR Activity and Low AMPK Activity
Determine the Primary Resistance of
Hep3B Cells to Sorafenib
To check the efficacy of sorafenib, the Raf downstream effector
extracellular-signal-regulated kinase 1/2 (ERK1/2), a potential
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TABLE 3 | Risk of follow-up period mortality in HCC patients receiving sorafenib with or without HBV/HCV.

Characteristic Adjusted HRa (95% CI)

Overall Follow-up period, months

<2 2–4 4–6 6–12

HBV diagnosed (with HBV alone or both HBV/HCV) 1.10 (1.03–1.19)* 1.03 (0.90–1.19) 1.02 (0.89–1.17) 1.06 (0.90–1.25) 1.30 (1.14–1.49)*

No HBV and HCV diagnosed Ref. Ref. Ref. Ref. Ref.

HR, hazard ratio; CI, confidence interval.
aAdjusted for age groups, gender, HCC diagnosed to start sorafenib, dosage of sorafenib, comorbidities, and additional therapy after sorafenib.

*P < 0.05.

FIGURE 1 | HCC cells with HBV are more resistant than those without HBV to the anti-cancer effects of sorafenib. (A) The survival curves for more than 6 months

follow-up period. (B) Huh7 and Hep3B cells were treated with sorafenib (SFN) at the indicated concentrations for 48 h. The cell viability of the experimental cells was

measured by MTT assays after 48 h of sorafenib treatment at the indicated concentrations. (C) Huh7 and Hep3B cells were treated with sorafenib at the indicated

concentrations for 48 h. Experimental cells were collected after 48 h of sorafenib treatment at the indicated concentrations, stained with Annexin-V/PI, and analyzed

by flow cytometry. The data are shown as the mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001 by Student’s t-test.

biomarker for sorafenib response, was examined in Huh7 (HBV-
negative) and Hep3B (derived from HBV-infected liver) cells.
The results showed that, in contrast to that in Huh7 cells,
the activity of ERK1/2 (phosphorylated ERK1/2, pERK1/2) was
sustainedly activated in Hep3B cells, and there was no further
effect following sorafenib treatment (Figure 2A). HBV-encoded
X protein (HBx) has been suggested to increase EGFR expression
by inhibiting miR129-5p function (Ochi et al., 2020). Here,

we found that upregulation of EGFR in HBV-infected liver
tissues compared with healthy liver tissues through analysis of
the public dataset GSE83148 (Supplementary Figure 1A). To
further dissect whether EGFR contributes to sorafenib resistance
in Hep3B cells, the activity of EGFR (phosphorylated EGFR,
pEGFR) was examined. Western blot analyses revealed that the
basal levels of EGFR and pEGFR were higher in Hep3B cells than
in Huh7 cells (Figure 2B) and that the EGFR inhibitor gefitinib
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FIGURE 2 | High activity of EGFR and low activity of AMPK determine the primary resistance of Hep3B cells to sorafenib. (A) Huh7 and Hep3B cells were treated with

sorafenib at the indicated concentrations for 3 and 24 h. Whole cell lysates were harvested for Western blot analyses. (B) Two types of liver cancer cells (Huh7 and

Hep3B) were treated with or without sorafenib (2.5µM) for 24 h and harvested for Western blot analyses. The quantitative analyses of phosphorylated AMPK and ACC

were shown in the graphs. (C) Hep3B cells were treated with sorafenib (2.5µM) alone or with the combination of sorafenib and the EGFR inhibitor gefitinib (GEF; 1µM)

for 24 h. Whole cell lysates were harvested for Western blot analyses. The data are shown as the mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001 by Student’s t-test.

increased the efficacy of sorafenib by reducing the level of the
phosphorylated ERK1/2 protein in Hep3B cells (Figure 2C).
The above results suggest that the EGFR/ERK pathway may be
linked to HBV-induced sorafenib resistance. Previous studies
have indicated that ERK1/2 can promote the uncoupling of
liver kinase B1 (LKB1) and AMPK to confer anti-apoptotic
effects (Esteve-Puig et al., 2009). Here, we showed that the levels
of phosphorylated AMPK and its downstream target acetyl-
CoA carboxylase (ACC) were lower in Hep3B cells than in
Huh7 cells under sorafenib treatment (Figure 2B) and that the
EGFR inhibitor gefitinib strengthened sorafenib-induced AMPK
phosphorylation in Hep3B cells (Figure 2C). Collectively, these
results imply that the EGFR/ERK-induced reduction in AMPK
phosphorylation plays a functional role in hepatocarcinoma
resistance to sorafenib.

Resistance of Hep3B Cells to Sorafenib Is
Associated With Lower Autophagic
Responsiveness
Accumulated results have suggested that AMPK is an upstream
activator of autophagy. Meanwhile, autophagy can serve as a
tumor suppressor, and its deficiency leads to HCC (Liang et al.,
2006; Takamura et al., 2011). However, whether AMPK and
autophagy are involved in primary resistance to sorafenib in liver

cancer cells remains unknown. Our results demonstrated that
the levels of AMPK phosphorylation and the LC3B-II/LC3B-
I ratio were significantly higher in Huh7 cells than in Hep3B
cells upon sorafenib treatment (Figures 3A,B). In addition,
sorafenib significantly increased the number of LC3B puncta
in GFP-LC3B/Huh7 cells, but the number of LC3B puncta
was marginally higher in GFP-LC3B/Hep3B cells (Figure 3C).
The results suggest that the sorafenib resistance in liver cancer
cells with EGFR overexpression is associated with insufficient
autophagic activation.

CEBPD Is Involved in Sorafenib-Induced
Autophagic Cell Death
Our previous results showed that CEBPD expression is
responsive to clinical anti-cancer drugs in liver cancer cells (Li
et al., 2015). Here, we found that co-downregulation of CEBPD
and LC3B in EGFRhigh HBV-infected liver tissues compared
with EGFRlow HBV-infected liver tissues through analysis
of the public dataset GSE83148 (Supplementary Figure 1B).
We further validated the liver specimens from the HBx
transgenic mice by immunofluorescence. Consistently, we
found that CEBPD and LC3B expressions were lower in
tumors (T) compared with adjacent non-tumor (N) tissues
(Supplementary Figure 2). Interestingly, we found that
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FIGURE 3 | Resistance of Hep3B cells to sorafenib is associated with lower autophagic responsiveness. (A) Huh7 and Hep3B cells were treated with sorafenib at the

indicated concentrations for 3 and 24 h. Whole cell lysates were harvested for Western blot analyses. (B) The quantitative analyses of phosphorylated AMPK and

LC3B-II/LC3B-I were shown in the graphs. (C) Huh7 and Hep3B cells were transfected with GFP-LC3B expression vectors and then treated with sorafenib at the

indicated concentrations for 6 h. The number of LC3B puncta was evaluated under a fluorescence microscope. The data are shown as the mean ± SD. *P < 0.05;

**P < 0.01; ***P < 0.001 by Student’s t-test.

sorafenib can activate CEBPD expression in Huh7 cells but not
in Hep3B cells (Figures 4A,B). In addition, the LC3B-II/LC3B-I
ratio and the level of caspase-3 activation were significantly
lower and the cell viability inhibition effect was minor in
Hep3B cells than in Huh7 cells upon sorafenib treatment
(Figures 4B,C). To verify whether CEBPD is involved in
the sorafenib-induced anti-cancer effect, a loss-of-function
assay was conducted by reducing the levels of CEBPD with
shRNA. The results showed that the loss of CEBPD attenuated
the sorafenib-induced increase in LC3B-I/-II conversion and
caspase-3 activity (Figure 4B) and suppressed the sorafenib-
induced inhibition in cell viability (Figure 4C) in Huh7 cells.

Treatment with an autophagy inhibitor (chloroquine, CQ) also
restored sorafenib-inhibited Huh7 cell viability (Figure 4C).
Our previous studies suggested that the methylation status
of the CEBPD promoter determines CEBPD induction and
expression in HCC and other cancer types (Ko et al., 2008; Li
et al., 2015; Chu et al., 2017). However, the methylation states
of the CEBPD promoter were not different between Huh7
and Hep3B cells (Supplementary Figure 3), indicating that
a non-DNA methylation mechanism contributes to CEBPD
desensitization in liver cancer cells. AMPK is involved in
CEBPD activation (Tsai et al., 2017), and the p38 MAPK/cAMP-
responsive element binding protein (CREB) pathway is

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 January 2021 | Volume 8 | Article 596655179

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Lai et al. Autophagy Mediates Sorafenib Sensitivity

FIGURE 4 | CEBPD is involved in sorafenib-induced autophagic cell death. (A) Huh7 and Hep3B cells were treated with sorafenib at the indicated concentrations for

3 and 24 h. Total RNA was harvested for RT-qPCR assays. (B) Huh7 and Hep3B cells were infected with lentiviruses encoding shLacZ (shZ) or shCEBPD (shDB and

shDC) and then treated with or without sorafenib (2.5µM). Whole cell lysates were harvested for Western blot analyses. (C) Huh7 and Hep3B cells were infected with

lentiviruses encoding shLacZ (shZ) or shCEBPD (shDB or shDC) for 3 days. Huh7 cells were pretreated with or without chloroquine (CQ, 10µM) for 30min. After being

treated with sorafenib (2.5µM) for 48 h, the cell viability of the infected experimental cells was measured by MTT assays. (D) Huh7 cells were pretreated with or

without the AMPK inhibitor compound C (10µM) for 0.5 h and then treated with or without sorafenib (2.5µM) for an additional 6 h. Whole cell lysates were harvested

for Western blot analyses. (E) Huh7 cells transfected with CEBPD reporters were cotransfected with or without DN-CREB expression vectors for 18 h or treated with

or without the AMPK inhibitor compound C (10µM) for 30min and then treated with or without sorafenib (2.5µM) for an additional 3 h. The lysates of the transfected

cells were harvested for luciferase assays. The data are shown as the mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001 by Student’s t-test.

important for the transcriptional activation of the CEBPD gene
(Hsiao et al., 2013; Lai et al., 2017). In addition, activation
of AMPK has been reported to activate CREB in liver cancer
cells (Irungbam et al., 2020). We next tested whether AMPK

contributes to sorafenib-induced CEBPD expression. The results
demonstrated that the AMPK inhibitor compound C suppressed
sorafenib-induced AMPK and ACC phosphorylation as well
as CEBPD expression in Huh7 cells (Figure 4D). Moreover,
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FIGURE 5 | Metformin improves the sensitivity of Hep3B cells to sorafenib. (A) Hep3B cells were treated with metformin at the indicated concentrations for 3 and 6 h.

Whole cell lysates were harvested for Western blot analyses. (B) Huh7 and Hep3B cells were treated with metformin (MET) at the indicated concentrations for 48 h.

The cell viability of the experimental cells was measured by MTT assays after 48 h of metformin treatment at the indicated concentrations. (C) Hep3B cells were

infected with lentiviruses encoding shLacZ (shZ) or shAMPKα (shKα1 or shKα2) for 3 days. Hep3B cells were treated with sorafenib (2.5µM) or metformin (5mM)

alone or with the combination of sorafenib (2.5µM) and metformin (5mM) for 24 h. Whole cell lysates were harvested for Western blot analyses. The quantitative

analysis of phosphorylated AMPK was shown in the graph. (D) Hep3B cells were transfected with GFP-LC3B expression vectors and then treated with sorafenib or

metformin alone or with the combination of sorafenib and metformin for 6 h. The number of LC3B puncta was evaluated under a fluorescence microscope. (E) Hep3B

cells were pretreated with or without chloroquine (CQ, 10µM) for 30min and then treated with sorafenib or metformin alone or with the combination of sorafenib and

metformin for 48 h. The cell viability of the experimental cells was measured by MTT assays. The data are shown as the mean ± SD. *P < 0.05; **P < 0.01; ***P <

0.001 by Student’s t-test.

sorafenib-induced CEBPD reporter activity was attenuated
in compound C-treated and dominant negative CREB (DN-
CREB)-transfected Huh7 cells (Figure 4E). Taken together, these

results suggest that AMPK participates in sorafenib-induced
CEBPD expression, which contributes to autophagic cell death
in HCC.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 January 2021 | Volume 8 | Article 596655181

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Lai et al. Autophagy Mediates Sorafenib Sensitivity

Metformin Improves the Sensitivity of
Hep3B Cells to Sorafenib
Our current results suggest that sorafenib cannot efficiently
induce AMPK activation to contribute to autophagic cell death
due to EGFR overexpression. Since clinical drug metformin
can activate AMPK bypassing the inhibitory effect of the
EGFR/ERK pathway, we further assess the activity of AMPK and
CEBPD in response to metformin for sorafenib resensitization.
We first examined the effect of metformin on the activity of
AMPK in Hep3B cells. The results revealed that metformin
increased AMPK phosphorylation, CEBPD expression, and
the LC3B-II/LC3B-I ratio in Hep3B cells (Figure 5A). Next,
we tested whether metformin inhibits Hep3B and Huh7 cell
proliferation. The results revealed that metformin reduced Huh7
andHep3B cell viability (Figure 5B). Moreover, a combination of
sorafenib and metformin was used to assess whether metformin
can enhance sorafenib sensitivity in Hep3B cells. The results
revealed that, compared to sorafenib treatment, combination
of sorafenib and metformin significantly enhanced AMPK
phosphorylation, CEBPD expression, the LC3B-II/LC3B-I ratio
(Figure 5C), and the number of LC3B puncta (Figure 5D) in
Hep3B cells. To further support the contribution of AMPK
activity to downstream targets and biological effects, a loss-
of-function assay using lentiviruses encoding shAMPKα1 and
shAMPKα2 was conducted. The results showed that the
knockdown of AMPKα could suppress dual treatment-induced
CEBPD expression, LC3B-I/-II conversion (Figure 5C), and the
number of LC3B puncta (Figure 5D) in Hep3B cells. Moreover,
the combination treatment reduced Hep3B cell viability more
than treatment with sorafenib or metformin alone, and
either AMPKα knockdown or autophagy inhibition could also
restore dual treatment-inhibited Hep3B cell viability (Figure 5E).
Collectively, these results suggest thatmetformin can enhance the
death of sorafenib-insensitive EGFR-overexpressed liver cancer
cells by activating AMPK/CEBPD-induced autophagy in vitro.

The Combination of Sorafenib and
Metformin Elicits a Stronger Anti-tumor
Effect in a Hep3B Cell Xenograft Mouse
Model
We further assessed the in vivo effect of the dual treatment
of sorafenib and metformin in a human tumor xenograft
mouse model in accordance with the ARRIVE guidelines
(Supplementary Table 1). Concerning the effects of sorafenib
dose on toxicity in HCC, we used a relatively lower dose
of sorafenib in combination with metformin in Hep3B cell
xenografts in NOD/SCID mice. Consistent with the above in
vitro results, the combined treatment of sorafenib andmetformin
significantly enhanced cytotoxicity compared with that induced
by sorafenib or metformin treatment alone (Figure 6A, left
panel). Importantly, the combined treatment was well tolerated
as evidenced by no weight loss was observed after treatment
(Figure 6A, right panel). Furthermore, the loss of CEBPD
attenuated the combined treatment-induced enhancement of
Hep3B tumor xenograft death in NOD-SCID mice (Figure 6B,
compare lane 1 with lane 3 and lane 3 with lane 4), suggesting that

CEBPD has a strong anti-tumor effect. Importantly, the LC3B-
II/LC3B-I ratio was examined in tumor lysates extracted from
these experimental xenografts. The result demonstrated that
the LC3B-II/LC3B-I ratio was induced in metformin treatment
alone and in combination group (Figure 6C). Collectively, these
results suggest that the insufficient activation of autophagy may
enable residual HCC cells to survive; however, strong autophagy
can contribute to cell death and resensitize sorafenib-resistant
HCC cells.

DISCUSSION

In this study, we showed that EGFR activation is a potential
determinant of the primary sorafenib resistance of HCC cells
with HBV. However, the clinical results revealed that the addition
of erlotinib, an oral tyrosine kinase inhibitor of EGFR with
moderate anti-tumor activity against HCC, to sorafenib did not
affect the overall survival (Finn, 2013). This could be partially
explained by the fact that EGFR inhibitors cannot efficiently
induce AMPK activation (Peng et al., 2016), and the insufficient
activation of autophagy may enable residual cancer cells to
resist chemotherapy. Our current results reveal that AMPK
and CEBPD are unresponsive to sorafenib due to sustained
EGFR/ERK activation in Hep3B cells. Therefore, metformin that
has the direct effect on the activity of AMPK and CEBPD may
be a potential combined with sorafenib to overcome sorafenib
resistance in HCC. Interestingly, accumulation of evidence
showed that metformin synergistically sensitizes leukemia cells
(Wang et al., 2015) and lung cancer cells (Groenendijk
et al., 2015) to sorafenib through AMPK activation, which are
consistent with our findings.

There are other downstream signaling pathways regulated
by EGFR, including Src/signal transducer and activator
of transcription (STAT) and phosphatidylinositol 3-kinase
(PI3K)/Akt signal transduction pathways (Nyati et al., 2006).
Our previous finding revealed that metformin can reduce
Src-mediated CEBPD protein degradation (Tsai et al., 2017).
However, Western blot analyses revealed that sorafenib
activates Src. Meanwhile, the AMPK inhibitor compound
C has no effect on sorafenib-induced Src phosphorylation
(Supplementary Figure 4). These results suggest that metformin
could work via the Src-dependent pathway to enhance CEBPD
expression and autophagic cell death in sorafenib-resistant liver
cancer cells. Moreover, several studies have demonstrated that
metformin inhibits STAT (Feng et al., 2014) and the PI3K/Akt
pathway (Pernicova and Korbonits, 2014). Therefore, the
application of metformin for the improvement of the efficacy of
sorafenib in HCC with EGFR overexpression involves multiple
factors that need to be further investigated.

Acute inflammation is a strong and rapid response to
tissue injury and protects body, but low-grade and chronic
inflammation can be harmful. Sustained cell growth in an
inflammatory environment combined with accumulation of
genetic abnormalities contributes to cancer progression. Our
previous study demonstrated that inflammation-responsive
transcription factor CEBPD can induce genomic instability
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FIGURE 6 | The combination of sorafenib and metformin elicits stronger cytotoxicity in a Hep3B cell xenograft mouse model. Hep3B cells were subcutaneously

inoculated into NOD-SCID mice, and the mice then received an intraperitoneal injection of vehicle, sorafenib (15 mg/kg/day), metformin (250 mg/kg/day), or sorafenib

(15 mg/kg/day) combined with metformin (250 mg/kg/day). (A) Tumor dimensions were obtained at the indicated time points. Following 4 weeks of drug treatment,

the mice were sacrificed, and animal weights were obtained. (B) Hep3B cells were infected with lentiviruses to drive the stable expression of either IPTG-inducible

LacZ shRNA (shC) or IPTG-inducible CEBPD shRNA (shD). Infected Hep3B cells were subcutaneously inoculated into the dorsum of 6-week-old NOD-SCID mice (n

= 5), and the mice then received an intraperitoneal injection of 200 µl IPTG (0.53 mmol) every other day. The mice were then treated with or without sorafenib (15

mg/kg/day) combined with metformin (250 mg/kg/day) via intraperitoneal injection. After 28 days of treatment, the mice were sacrificed, and the tumor volume was

measured. (C) After 28-day treatment, the lysates extracted from these experimental xenograft tumors were collected and analyzed by Western blotting. The data are

shown as the mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001 by Student’s t-test.

and promote tumorigenesis, even though it serves as a tumor
suppressor in cervical cancer (Wu et al., 2011). Recent study
indicated that the acquired sorafenib resistance may also
be associated with genomic instability (Xia et al., 2020).
Therefore, the association of insufficient but sustained CEBPD
and autophagic activity with genomic instability and cell
survival, respectively, in response to sorafenib deserves to be
clarified. In this way, the molecular details of how sorafenib
establishes acquired resistance will be dissected. The dual roles
of CEBPD may orchestrate the dual functions of autophagy to
contribute to both death and resistance of cancer cells and this
could in part underlie the complex role of inflammation in
cancer development.

We propose that metformin, an AMPK activator, restores
the sensitivity of EGFR-overexpressed liver cancer cells to
sorafenib. However, many anti-diabetic drugs and small molecule
compounds should be tested with the goal of activating

AMPK in cancer cells. Insulin-sensitizing thiazolidinediones
(TZDs) are potent agonist ligands for the nuclear hormone
receptor peroxisome proliferator-activated receptor γ (PPARγ).
They are also thought to exert some of their anti-diabetic
effects through AMPK activation in a variety of tissues,
including skeletal muscle (LeBrasseur et al., 2006) and liver
(Saha et al., 2004). Glucagon-like peptide-1 (GLP-1) mimetics
stimulate insulin secretion in a glucose-dependent manner.
Previous studies have shown that these compounds and
endogenous GLP-1 can activate the AMPK pathway (Svegliati-
Baroni et al., 2011). The first direct AMPK activator was
A-769662, but this compound is unsuitable to be used
due to its poor oral absorption. Recently, compound 991
is significantly more potent than A-769662 in allosterically
activating AMPK (Xiao et al., 2013). Although further clinical
trials are needed to evaluate the safety and efficacy of
these compounds, our results indicate that therapeutic AMPK
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FIGURE 7 | Schematic model of the molecular mechanism by which

metformin increases the sensitivity of Hep3B cells to sorafenib. Hep3B cells

are intrinsically more resistant than Huh7 cells to sorafenib. High activity of

epidermal growth factor receptor (EGFR) and low autophagic responsiveness

may determine the primary resistance of Hep3B cells to sorafenib.

CCAAT/enhancer binding protein delta (CEBPD), a potent tumor suppressor, is

responsive to metformin via AMP-activated protein kinase (AMPK) activation,

and it promotes autophagic cell death. Furthermore, metformin can resensitize

sorafenib-induced autophagic cell death in Hep3B cells. Taken together, our

results provide possible implications for improving the efficacy of sorafenib and

helping to develop personalized medicine strategies for HCC patients.

activation should be an attractive target for improving the efficacy
of sorafenib.

CONCLUSIONS

Even though new chemotherapy agents are being developed
quickly, all chemotherapy agents face the challenge of drug
resistance. Primary drug resistance is one of the reasons for
the attenuation of the efficacy of chemotherapy agents. In the
current study, our results revealed a new insight that insufficient
AMPK and CEBPD activation as well as lower autophagic
activity play a functional role in sorafenib resistance in liver
cancer cells with EGFR overexpression. Meanwhile, we further
demonstrated that metformin may be combined with sorafenib
to strengthen autophagic cell death (Figure 7). The discoveries
indicated that AMPK activators and autophagy activators could
be potential candidates for further application in sorafenib-
resistant liver cancers.
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Supplementary Figure 1 | EGFR upregulation is associated with lower CEBPD

and LC3B levels in HBV-infected livers. (A) Quantitative data of EGFR transcripts

were extracted from the transcript microarray of 6 healthy livers and 122

HBV-infected livers. (B) HBV-infected liver tissues were divided into two groups

according to the median value of EGFR levels (EGFRlow and EGFRhigh ).

Quantitative data of CEBPD and LC3B transcripts were extracted from the

transcript microarray of EGFRlow and EGFRhigh HBV-infected livers.

Supplementary Figure 2 | CEBPD and LC3B are co-downregulated in tumors of

HBx transgenic mice. The liver specimens [tumors (T) and adjacent non-tumor (N)

tissues] from the 18-month old HBx transgenic mice were analyzed by

immunohistochemistry using CEBPD and LC3B antibodies.
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Supplementary Figure 3 | Methylation states on the CEBPD promoter are not

different in Huh7 and Hep3B cells. The CpG methylation status of CEBPD

promoters in Huh7 and Hep3B cells was determined using MSP assays.

Supplementary Figure 4 | The effects of sorafenib and the AMPK inhibitor

compound C on Src phosphorylation in liver cancer cells. (A) Two types of liver

cancer cells (Huh7 and Hep3B) were treated with or without sorafenib (2.5µM) for

24 h and harvested for Western blot analyses. (B) Huh7 cells were pretreated with

or without the AMPK inhibitor compound C (10µM) for 0.5 h and then treated with

or without sorafenib (2.5µM) for an additional 6 h. Whole cell lysates were

harvested for Western blot analyses and examined indicated proteins with specific

antibodies.

Supplementary Table 1 | Animal studies comply with the ARRIVE guidelines.
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Cancer progression involves a variety of pro-tumorigenic biological processes including
cell proliferation, migration, invasion, and survival. A cellular pathway implicated in these
pro-tumorigenic processes is autophagy, a catabolic route used for recycling of
cytoplasmic components to generate macromolecular building blocks and energy,
under stress conditions, to remove damaged cellular constituents to adapt to changing
nutrient conditions and to maintain cellular homeostasis. During autophagy, cells form a
double-membrane sequestering a compartment termed the phagophore, which matures
into an autophagosome. Following fusion with the lysosome, the cargo is degraded inside
the autolysosomes and the resulting macromolecules released back into the cytosol for
reuse. Cancer cells use this recycling system during cancer progression, however the key
autophagy players involved in this disease is unclear. Accumulative evidences show that
autophagy receptors, crucial players for selective autophagy, are overexpressed during
cancer progression, yet the mechanisms whereby pro-tumorigenic biological processes
are modulated by these receptors remains unknown. In this review, we summarized the
most important findings related with the pro-tumorigenic role of autophagy receptors p62/
SQSTM1, NBR1, NDP52, and OPTN in cancer progression. In addition, we showed the
most relevant cargos degraded by these receptors that have been shown to function as
critical regulators of pro-tumorigenic processes. Finally, we discussed the role of
autophagy receptors in the context of the cellular pathways implicated in this disease,
such as growth factors signaling, oxidative stress response and apoptosis. In summary,
we highlight that autophagy receptors should be considered important players of cancer
progression, which could offer a niche for the development of novel diagnosis and cancer
treatment strategies.
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INTRODUCTION TO PHASES OF
CANCER DEVELOPMENT

According with the World Health Organization (WHO) in 2018
around 18.1 million people in the word had cancer, and 9.6
Frontiers in Oncology | www.frontiersin.org 2188
million died due to this disease, making it the second leading
cause of death worldwide (1).

The development of cancer, termed carcinogenesis is a
multistep process involving three different stages: initiation,
promotion, and progression (2, 3) (Figure 1A). The tumor
FIGURE 1 | (A) Stages of Carcinogenesis. Initiation involves irreversibly alterations of particular tissue cells and increased susceptibility to tumor progression. The
alterations are frequently related with mutational events induced with chemicals, radiation or biological agents (carcinogen). Promotion implicates the clonal expansion of
altered cells leading to a visible tumor, a stage known to be reversible. In the progression stage, cells show several characteristic processes necessary to develop a
malignant phenotype characterized by aggressive properties such as angiogenesis, cell proliferation and survival, immune evasion, cell migration and invasion, and
metastasis. (B) Involvement of autophagy receptors in cancer progression. During the stage of cancer progression several characteristic processes occur.
Angiogenesis corresponds to the formation of interconnected capillaries within the tumor. This is the product of the up-regulation and secretion of pro-angiogenic
factors by cancer cells, a crucial process in the supply of oxygen and nutrients to the tumor. Cytosolic autophagy receptors do not promote this process. Cell
proliferation and survival are the consequence of genetic changes which promotes metabolic and morphological features that sustain these events. P62, NBR1,
NDP52, and OPTN are involved in the promotion of these processes by several mechanisms. Immune evasion corresponds to the mechanism by which cancer cells
evaded the immune system, here represented by T cells. NBR1 is known to contribute to immune evasion. Migration and invasion processes are part of the metastatic
cascade, in which cells acquire the capacity to migrate and invade the surrounding tissue of the primary tumor. Furthermore, it is proceeded by the intravasation into
the circulatory or lymphatic system. p62 and NBR1 receptors promote migration and invasion processes. After intravasation, survival cells in circulation proceed to
extravasation in a distant site (respect to primary tumor), and colonize and grow in a new site (metastasis colonization). p62 supports the metastatic process.
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initiation and promotion involve irreversible genetic alterations
in normal cells, induced by a carcinogen, followed by a reversible
process regulated by epigenetic modifications, which promotes
the clonal expansion of the altered cells (2) (Figure 1A). The final
result of these two steps is the generation of a pre-neoplastic
lesion forming a visible tumor (2, 4, 5). Although both, initiation
and promotion are two crucial steps in cancer development, it is
not until the tumor progression step is triggered that altered cells
begins to express a malignant phenotype and acquire more
aggressive characteristics forming cancer cells (2, 5, 6) (Figure
1A). In this early stage of the tumor progression, cancer cells
show an increase in the frequency of additional genetic
abnormalities such as number of chromosomes, single point
mutations, translocations, deletions, and amplifications of genes
namely TP53, RB1, EGFR, and KRAS, among others (7), which
are responsible for promoting metabolic and morphological
changes that sustain the proliferation of cancer cells (2, 4, 5, 8)
(Figure 1B). In addition, to sustain the ability to proliferate,
cancer cells must acquire several properties to contribute to the
tumor progression, including resistance to cell death, induction
of angiogenesis, evasion of the immune system, and activation of
the metastatic cascade (9) (Figure 1B). During tumor
progression, cancer cells are exposed to extreme conditions
characteristic of the tumor microenvironment, however how
tumor cells adapt to these adverse scenarios is only partially
understood. For example, it has been shown that hypoxia, a
physiological feature present in the tumor microenvironment
triggers apoptosis, dependent of the tumor suppressor p53 (10).
Strikingly, the TP53 gene is frequently found mutated in cancer
cells, which elicits a loss of function that ultimately results in
apoptosis resistance (11). Cancer cells must also survive to the
attack of immune cells, a process known as immune evasion (9)
(Figure 1B). Here, cancer cells can evade the immune system
losing the expression of MHC-I, activating either the intrinsic
signaling pathway WNT/b-Catenin axis or promoting the
secretion of the factor like VEGF-A, among others (12). In
fact, hypoxia up-regulates the expression and secretion of
VEGF-A triggering the formation of interconnected capillaries
within the tumor (13). This process is called angiogenesis, which
is responsible of oxygen and nutrients supply to the growing
tumor, allowing cancer cells to survive and proliferate (Figure
1B). Angiogenesis is also required to provide an escape route to
cancer cells for dissemination and colonization in distant organs
through the process of metastases (14). The metastatic cascade
involves the capacity of cancer cells present in the primary tumor
to migrate and invade the surrounding tissues leading to
intravasation in the circulatory or lymphatic system (Figure
1B). Cancer cells survive in the circulation, including
extravasation in a distant site, with the capacity to colonize
and grow in the new site (15–17).

Several cellular and signaling pathways are involved in how
pro-tumorigenic properties in cancer cells are triggered,
impacting multiple steps in the cascade of tumor progression
(9, 18). One cellular pathway originally implicated as a tumor-
suppression mechanism is autophagy, which is now considered a
potent tumor promoter cellular pathway (19).
Frontiers in Oncology | www.frontiersin.org 3189
AUTOPHAGY: A CRUCIAL CELLULAR
PATHWAY DURING CANCER
PROGRESSION

Although several studies have shown that basal levels of
autophagy can suppress initiation of tumor development (20),
a growing number of studies indicated that autophagy enables
tumor cell survival, growth, and malignancy by facilitating the
supply of metabolic demands during tumor progression (21, 22).
In fact, defects in the autophagic machinery often restrain the
proliferation, dissemination, and metastatic potential of
malignant cells. Indeed, pharmacological interruption of
autophagy or genetic knockdown of crucial ATG proteins
promoted apoptosis of tumor cells (23–27). In addition,
autophagy-deficient tumors are often more sensitive to several
chemotherapeutic agents as well as to radiation therapy than
their autophagy-proficient counterparts (20, 28, 29). In this
review, we summarize the contribution of autophagy cytosolic
receptors during the tumor progression stage in carcinogenesis.

Macroautophagy (herein referred to as autophagy) is a
catabolic process involving the engulfment of cytoplasmic
material into double-membraned autophagosomes that
subsequently fused with lysosomes to form autolysosomes,
where the materials are finally degraded by lysosomal
hydrolytic enzymes (30, 31) (Figure 2). Autophagy substrates
included abnormal constituents such as protein aggregates,
damaged organelles and intracellular pathogens (32).
Autophagy is also involved in the degradation of normal
cellular constituents for cell survival under restriction of
nutrients or by the actions of stressors, a response necessary to
maintain cellular fitness in response to environmental conditions
contributing to the pathogenesis of various disorders, including
cancer (30, 33).

The mechanism of autophagy consists of multiple steps,
including formation and expansion of the pre-autophagosomal
isolation membrane (phagophore) induced by cellular signals,
substrate engulfment, autophagosome closure, and autophagosome-
lysosome fusion (30, 34) (Figure 2).

Cellular signals promote the formation of the phagophore at
specific subdomains of the endoplasmic reticulum (ER) enriched
of phosphatidylinositol synthase (35). Within these domains
occurs the recruitment of several ATG proteins necessary for
early events of phagophore formation and expansion that
mediates the synthesis of phosphatidyl-inositol-3-phosphate
(PI3P), a pivotal phospholipid needed in the later recruitment
of other ATG proteins (34) (Figure 3). Key ATGs are members
of the yeast Atg8 family of ubiquitin (Ub)-like proteins (LC3A,
LC3B, LC3C, GABARAP, GABARPL1, and GABARAPL2 in
mammals) which play roles in autophagosome formation and
autophagosome-lysosome fusion (36, 37). The best studied
member of this family is LC3B (product of the MAP1LC3B),
which undergoes conversion from a soluble, cytosolic form
(LC3B-I) to a phophatidylethanolamine (PE)-conjugated,
membrane-bound form (LC3B-II) (38). LC3B-II subsequently
interacts with LC3-interacting region (LIR) motifs of various
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cargo receptors to capture autophagic cargos into forming
autophagosomes (39, 40) (Figures 2, 3).

Selective autophagy is orchestrated by cargo receptors
responsible for the recognition and incorporation of cargos
into the autophagosomes (41). Among these receptors are
cytosolic proteins such as p62/SQSTM1, NBR1, OPTN,
NDP52, TAX1BP1, and TOLLIP. These receptors bind
polyubiquitinated cargos via their Ub-binding domains (42,
43). Other cargo receptors are anchored to the autophagic
cargos via their transmembrane domains, as is the case for
BNIP3, NIX and FUNDC1 in mitochondrial autophagy
(mitophagy) (39, 40), and RTN3, SEC62, CCPG1, FAM134B
and TEX264 in ER autophagy (ER-phagy) (40, 44–48). After
fusion of autophagosomes with lysosomes, the autophagy cargos,
together with the Atg8-family proteins and cargo receptors, are
degraded in autolysosomes (49, 50).

Interestingly, several cytosolic autophagy receptors such as
p62/SQSTM1, NBR1, NDP52 and OPTN have been reported to
be overexpressed in several types of cancer playing regulatory
roles in the last stage of carcinogenesis (Figures 1, 2). In this
review, we focus on the emerging roles of autophagy receptors in
cancer cell biology.
Frontiers in Oncology | www.frontiersin.org 4190
MOLECULAR FEATURES OF AUTOPHAGY
CYTOSOLIC RECEPTORS

Most of cytosolic autophagy receptors are characterized by the
presence of specific domains that define their role as cytosolic
sensors of damaged cellular constituents. Generally, they harbor
both LC3-interactin region (LIR) and ubiquitin-binding domains
(UBDs) (51). The LIR motif is considered a hallmark of these
receptors corresponding to a short sequence of 6 amino acids
based on the multiple alignments of LIR sequences. This
sequence is known to be responsible for the interaction with
ubiquitin-like proteins like the lipidated ATG8-proteins (LC3s
and GABARAPs) in the phagophore membrane (39, 40, 52).
UBDs are modular elements found in each autophagy receptor
that bind non-covalently to the protein modifier ubiquitin (39,
51). The preferences of UBDs for ubiquitin chains of specific
length and linkage are central to their functions in the
recognition of cargos into the autophagosomes. Most UBDs
use a-helical structures to bind a hydrophobic patch in the b-
sheet of ubiquitin (53). For instance, the ubiquitin-binding zinc
finger (UBZ) binds ubiquitin with a single a-helix oriented either
parallel or antiparallel to the central b-strand. However, other
FIGURE 2 | Function of autophagy receptors in different types of cancer. (A) At specific subdomains of the endoplasmic reticulum (ER) enriched of
phosphatidylinositol synthase (PIS), various Atgs complexes are recruited (ULK1 and Beclin1 complexes). These steps are implicated during early stages of
autophagosome formation. Subsequently, the Atg5 complex is recruited to this location facilitating the conversion [from a soluble cytosolic form to a
phophatidylethanolamine (PE)-conjugated membrane-bound form] of Atg8 family members (LC3A, LC3B, LC3C, GABARAP, GABARPL1, and GABARAPL2),
process implicated in the elongation of the membrane, structure known as phagophore. (B) The phagophore is further detached at the ER, where ATG8s proteins
begin to interact with autophagy receptors responsible of the selective capture of cargos. (C) The final closure of the phagophore form a vesicular double membrane
structure called autophagosome. (D) The autophagosome finally fuses with the lysosome forming the autolysosome. p62, NBR1, NDP52, and OPTN function in the
progression stage of carcinogenesis in several types of cancer by the selective capture of specific cargos indicated in the boxes.
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ubiquitin-binding elements, including the ubiquitin-associated
(UBA) domain and ubiquitin binding in ABIN and NEMO
(UBAN) domain bind ubiquitin through two discontinuous a-
helices (53). Interestingly, a variety of post-translational
modifications including acetylation, phosphorylation or
ubiquitylation can positively regulated the LIRs and UBDs
domains enhancing their affinity to ATG8s proteins and
ubiquitin, respectively (54–57).

p62/SQSTM1/Sequestosome-1 (Hereafter
Referred to as p62)
p62 was the first autophagy receptor identified in mammals (50).
This autophagy receptor is a multidomain protein, which
contains a LIR motif that interacts with LC3s/GABARAPs
attached to the autophagosomes and an UBA domain located
in its C-terminal region allowing p62 to associate with ubiquitin
and ubiquitin-tagged cargos. This binding results in the
formation of cytosolic aggregates and/or the incorporation of
Frontiers in Oncology | www.frontiersin.org 5191
cargos into autophagosomes having a functional role in cell
survival (58, 59). In addition, p62 contains other additional
modules with a role in autophagy such as the ZZ type zinc
finger domain. This domain binds to cytosolic cargos bearing
amino terminal arginine residues (Nt-Arg) generated by
proteolytic processing (N-degrons), interaction that drives
these cargos for autophagy degradation (60–63); and a KEAP1-
interacting region (KIR) implicated in the sequestration of
KEAP1, a key adaptor protein for Cullin-3 ubiquitin ligase
implicated in the ubiquitylation and inactivation of the
transcription factor NRF2 by degradation through the
ubiquitin proteasome system (UPS) (59, 64) (Figure 3). Thus,
p62 competitively binds to KEAP1 to allow NRF2 function, a
transcription factor engaged in the control of ROS levels (65).
p62 is expressed in all tissues and has been extensively studied as
a scaffold protein in several signal transduction pathways, many
of which have been involved in cell survival and cell death
(65–68).
FIGURE 3 | Domain architecture of mammalian autophagy receptors and relevant interactions. (A) p62: N-terminal region Phox-BEM1 domain (PB1) mediates p62
homodimerization or its heterodimerization with NBR1; ZZ-type zinc finger domain recognizes N-terminal argenylated substrates (Nt-Arg); nuclear localization signals
(NLS1 and NLS2); tumor necrosis factor (TNF) associated receptor-6 (TRAF6) binding (TB) domain; export motif (NES); LC3-interacting region (LIR) motifs mediate
the interaction with all Atg8s; KEAP1-interacting region (KIR) binding with KEAP1; and ubiquitin-associated (UBA) domain recognizes mono and poly-ubiquitylated
(Mono-Ub and Poly-Ub) substrates. (B) NBR1: PB1 mediates interaction with p62 and itself; ZZ-type Zink finger, Coiled-coil-1 (CC-1) mediates self-oligomerization,
four tryptophan (FW); LIR-2 motif; CC-2 domain; LIR-1 motif, binding to Atgs8 proteins more functional that LIR-2; and UBA domain recognizes mono-Ub and poly-
Ub substrates. (C) NDP52: skeletal muscle and kidney-enriched inositol phosphatase carboxyl homology domain (SKICH); LC3C-specific LC3-interacting region
(CLIR) mediates selective and strong binding to LC3C; Coiled-coil (CC) domain participates in its homodimerization; Galectin-8 binding region (GalBi) mediates the
interaction to Galectin-8 in the context xenophay and lysophagy; and ubiquitin-binding zinc finger (UBZ) domain binds to mono-Ub or poly-Ub. (D) OPTN: three
Coiled-coil domains are found (CC-1, CC-2, and CC-3). CC-1 domain promotes the formation of a hetero-tetramer complex between OPTN and serine/threonine
TANK-binding kinase 1 (TBK1). CC-3 domain mediates the homodimerization of OPTN; a leucine zipper (LZ) domain; LIR motif binds to all members of Atg8s family;
ubiquitin-binding domain of ABIN proteins and NEMO (UBAN) binds to methionine1 (Met1)-linked linear polyubiquitin (Met1-l-polyUb) of ubiquitylated cargos; and zinc
finger (ZF) domain.
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p62 and Poor Prognosis in Cancer Patients
p62 has been found overexpressed in different types of
tumors, which expression has been associated with poor
prognosis in cancer. For example, studies performed in
patients with non-small cell lung cancer, including those with
lung adenocarcinoma, showed an increase in the levels of p62,
correlating with poor prognosis in this type of cancer (69). In
addition, immunohistochemistry analysis of tumors derived
from patients with non-small cell lung cancer demonstrated
an association between high expression of p62 and the
aggressiveness of the tumor (70). A similar correlation was also
reported in patients with colorectal cancer, osteosarcoma,
prostate cancer, hepatocellular carcinoma, breast cancer, and
acute myeloid leukemia, among others (71–75).

p62 and Pro-Tumorigenic Properties
The association of p62 expression with the aggressiveness
of several types of cancer has been investigated in different
cellular models, in which the contribution of p62 in the
induction of different pro-tumorigenic properties has been
proven. In a cell line of lung adenocarcinoma, silencing of p62
promotes the formation of aberrant autophagosomes, condition
that triggers cancer cell death (76). In the same context,
reduction in the levels of p62 in a model of chemoresistance of
small-cell lung cancer increases its sensitivity against cisplatin.
Contrary, overexpression of p62 enhances the resistance to this
chemotherapeutic agent, preventing cell death in response to this
treatment (77). In the colorectal cancer cell line SW480, p62
proteins levels are found elevated (78), which correlates with
active autophagy pathway compared to other cellular models of
this type of cancer (79). Interestingly, silencing of p62 in SW480
cell line decreases cell proliferation and their capacity to invade
and migrate. Additionally, injection of p62 depleted SW480 cells
in mice decreases tumor growth and metastasis into the lung,
compared to control cells (78). Similar findings have been
reported with F5M2 and F4 cell lines of osteosarcoma, which
present high levels of p62 (73). Silencing of p62 in these cell types
decreases their proliferative capacity, migration, and invasion
(73). Another example is the cell line Huh-1, a model of human
hepatocellular carcinoma. Huh-1 cells present higher levels of
p62 compared to the immortalized HEK293 cell line. In addition,
in Huh-1 cells, p62 is found phosphorylated on its Ser349. Either
silencing of p62 or expression of its phosphorylation-defective
mutant Ser349A, caused a decrease in cell proliferation in vitro,
and a reduction of tumor growth in vivo (65). All these studies
provide strong evidence to support that p62 promotes pro-
tumorigenic properties, making now necessary to elucidate
how p62 mechanistically promotes tumor progression.

p62 and KEAP1–NRF2 Axis
One protein positively regulated by p62 is the transcription
factor NRF2. As previously mentioned, p62 facilitates KEAP1
degradation, which abolishes ubiquitylation and degradation of
NRF2 (80). Thus, high levels of KEAP1 upon silencing of p62,
triggers a reduction in NRF2 levels. NRF2 is consider a master
regulator of the cellular antioxidant response, which regulates
key target genes for cancer development and progression, such as
Frontiers in Oncology | www.frontiersin.org 6192
those involved in survival, proliferation, DNA repair, and
autophagy (81, 82). In particular, several evidence show the
contribution of NRF2 in the properties of cancer stem cells
(83–85), a subpopulation of cells present in the tumor niche
involved in tumor growth, therapy resistance and metastasis
(86). Ryoo and colleagues showed that high levels of NRF2 are
involved in drug resistance, cell migration and invasion capacity
of breast cancer stem cells (87). Importantly, silencing of p62
reduces NRF2 levels, demonstrating the regulatory role of p62 on
NRF2 levels in these type of cells (87). This p62/NRF2 regulation
has been also found in the glioblastoma multiforme cell line
T98G, which express high levels of p62. Activation of autophagy
in T98G cells leads to an increase in the levels of NRF2 (88).
Moreover, and similar to what occurs in Huh-1 cells, p62 in
T98G is found phosphorylated in Ser349 (88). Authors found
this post-translational modification increases affinity of p62 to
KEAP1 promoting its degradation by selective autophagy,
with a positive impact in the stability and function of NRF2
(65). Finally, same findings have been reported in the cellular
model of prostate cancer DU145, characterized by high levels
of p62. Indeed, silencing of p62 in DU145 cells decrease cell
proliferation, apoptosis-resistance and invasion by a mechanism
related with the inactivation of the NRF2 pathway (75, 89).
Altogether, these findings demonstrate the role of the axis p62/
NRF2 in tumor progression in different types of cancer.

p62 and Other Possible Targets
p62 regulates several other proteins involved in tumor
progression. One interesting target is the Vitamin D receptor
(VDR). The VDR has a protective role in cancer due to its anti-
proliferative and pro-apoptotic actions (90). In fact, VDR
downregulation is associated with a poor prognosis and cancer
progression (91). In this regard, high levels of p62 are correlated
with a decrease in the levels of VDR in colorectal cancer (78),
probably mediated by selective autophagy degradation. The
authors showed that through its direct interaction, p62/VDR
contributed to the pro-tumorigenic properties of two cell lines of
colorectal cancer (SW480 and HCT116), promoting tumor
progression in vivo (78). Another target of p62 is the
transcription factor TWIST1, a crucial protein that facilitates
epithelial mesenchymal transition (EMT) (92). Interestingly, the
ubiquitin-associated domain of p62 interacts with TWIST1 to
block its degradation by autophagy (92). Strikingly,
overexpression of p62 in the A431 human skin cancer cell,
which does not express TWIST1, is unable to increase cell
migration. In contrast, when p62 is overexpressed together
with TWIST1 in A431 cells, an increase in cell migration,
tumor growth and metastasis is observed, proposing a
functional link between p62/TWIST1 in promoting pro-
tumorigenic effects in vivo (92). Another protein implicated in
the pro-tumorigenic effects of p62 is Vimentin, a protein
involved in tumor progression. Vimentin is a Type III
intermediate filament that regulates cell shape, motility, and
adhesion during EMT, processes implicated in cell invasion
and aggressiveness in cancer cells (93, 94). In the highly
metastatic MDA-MB-231 breast cancer cell line, vimentin co-
immunoprepicitates with endogenous p62. Interestingly,
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silencing of p62 leads to a decrease in the levels of Vimentin
correlating with a reduction in the invasive capacity of these cells.
Importantly, overexpression of Vimentin is sufficient to rescue
this tumoral property (71). Besides, the increase phenotype in
invasive capacity of MDA-MB-231 by overexpression of p62 is
dependent on Vimentin levels, demonstrating Vimentin plays a
crucial role in p62-mediated invasion in breast cancer cells (71).
The molecular mechanism by which p62 regulates Vimentin
levels remains unknown. However, and similar to the findings
with TWIST1, it is possible that p62 could act by preventing
Vimentin degradation. In addition, p62 is also implicated in the
selective degradation of dysfunctional mitochondrial by
mitophagy in acute myeloid leukemia cells (74). In fact, p62
promotes myeloid transformation, cell proliferation, leukemia
development and progression of acute myeloid leukemia by a
process dependent on the efficient degradation of mitochondria
by mitophagy (74).

Neighbor of BRACA1 Gene1
NBR1 (neighbor of BRCA1 gene1) is an autophagy receptor with
several domains including a PB1, CC1, LIRs, and UBA (95). Its
PB1 domain, allows NBR1 oligomerization with either itself or
p62 where these two receptors act either independently or
cooperatively in the recognition of cargos for degradation (95).
Similar to PB1, CC1 domain also facil i tates NBR1
oligomerization. Indeed, deletion of the CC1 domain on NBR1
impairs its oligomerization and avidity to bind ubiquitin (96).
Both LIRs domains can individually interact with Atg8s-
proteins, where LIR1 is the most functional domain (95).
Finally, the UBA domain mediates binding of NBR1 to
monoubiquitin or poly-ubiquitin chains (51, 96) (Figure 3).
Although the most common function of NBR1 is associated
with its role as an autophagy receptor of autophagosomes, NBR1
can also be found associated with endosomal membranes, where
it seems to mediate the delivery of certain cargos (52, 96–98). In
terms of expression, NBR1 is expressed in all tissues, showing its
highest expression in testis and thyroid (99).

NBR1 in Cancer Patients
Little information is known about the role of NBR1 in cancer.
Data extracted from the human protein atlas (www.proteinatlas.
org) showed mRNA expression of NBR1 in 17 different types of
cancer with low cancer specificity (Supplementary Figure 1),
whereas NBR1 protein levels in cancer samples displayed weak to
moderate cytoplasmic expression (100). Related to cancer
prognosis, it has been reported that low mRNA levels of NBR1
predict a poor clinical outcome in patients with clear cell renal
carcinoma (101).

NBR1 in Migration and Metastasis
Although the clinical data available show a negative association
between the NBR1 mRNA levels and the prognosis of patients
with cancer, other findings suggest a positive contribution of
NBR1 in the acquisition of pro-tumorigenic properties. For
example, it is known that NBR1 contributes for cancer cell
migration, a process finely regulated by structures called focal
Frontiers in Oncology | www.frontiersin.org 7193
adhesions (FAs), a large protein complex that connects tumor
cells with the extracellular matrix (ECM) through the action of
integrins (102). Turnover of the FAs is essential for the migratory
rate of tumor cells dependent on the assembly and disassembly of
these complexes, processes that impact positively pro-
tumorigenic properties (103). For instance, in a cellular model
of breast cancer cell known as HRAS-transformed MCF10A cells
that mimic an early stage of the tumor progression cascade,
NBR1 binds ubiquitylated proteins of FAs mediating their
degradation by autophagy. Indeed, reduction of NBR1 levels
reduces FAs turnover with a negative impact in breast cancer cell
migration (104). This effect is not observed in other breast cancer
cell models, indicating some level of specificity of NBR1
function depending on the cell type and stages of the tumor
progression. Accordingly, recent studies have demonstrated that
NBR1 plays an important role in breast cancer metastatic
progression. First, it was demonstrated that autophagy
promotes growth of the primary breast cancer tumor but with
a negative impact in the metastasis stage. In contrast, inhibition
of autophagy showed an impairment in tumor growth but with a
positive impact in metastasis (105). Moreover, it was found a
robust accumulation of NBR1, suggesting that intracellular
accumulation of NBR1 plays a role on metastasis (105).
Interestingly, ectopic NBR1 overexpression in breast cancer
cells is sufficient to promote metastatic outgrowth. Contrary,
silencing of NBR1 suppresses cancer dissemination. However,
the mechanism by which NBR1 promotes metastasis is still
unknown. Since the effect of NBR1 on metastasis is related
with inhibition of autophagy, it opens the possibility that
NBR1 mediates metastasis by a non-canonical function
possibly related with its role on endosome membranes. In this
regard, it has been shown that NBR1 prevents the degradation
of tyrosine kinase receptors, such as epidermal growth
factor receptor (EGFR) and fibroblast growth factor receptor
(FGFR), causing the accumulation of these cargos in endosome
compartments (98), a key aspect in the control of their signaling
(106–111).
NBR1 Function in Evasion of the Immune System
The immune system has the potential to recognize and eliminate
tumor cells, therefore escape to the immune surveillance, which
contributes to cancer progression (12). A commonmechanism used
by tumor cells to evade the immune system, specifically CD8+ T
cells, is the impairment of the antigen presentation, which can be
the result of mutations or loss of the expression of the major
histocompatibility complex class I (MHC-I) (112–114). In
pancreatic ductal adenocarcinoma, resistant mostly to all
therapies, MHC-I is found downregulated due to the consequence
of mutations in MHC-I (114). Furthermore, MHC-I is not found at
the cell surface of these cells, instead it accumulates in intracellular
membranes. Surprisingly, silencing of ULK1/2 complex (ULK1,
FIP200 or ATG13), a protein complex implicated in the initiation of
autophagosome biogenesis is sufficient to rescue the levels of MHC-
I at the cell surface (114). Among all autophagy receptors, it is
known that NBR1 interacts with ubiquitylated MHC-I. Moreover,
silencing of NBR1 rescues the levels of MHC-I at the cell surface of
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pancreatic ductal adenocarcinoma cells. Together, all these
antecedents strongly indicate that distribution of MHC-I at the
cell surface is controlled by NBR1 selective autophagy, highlighting
NBR1 as a crucial molecule in how tumor cells evade the immune
system (114).

NBR1 and Loss of Primary Cilium in Cancer
Primary cilia are non-motile microtubule-based cellular organelles
present in nearly every cell that gather information about the
environment, triggering a variety of cellular responses through
specific intracellular signaling pathways (115). The primary cilium
is dynamically regulated during the cell cycle, disappearing
transitorily during cellular division (116). Importantly, loss of
primary cilia has been reported in different cancer cells and
tumoral tissues including pancreatic, renal, and hepatic
carcinomas (117, 118). Interestingly, it has been reported that in a
cellular model of cholangiocarcinoma, a type of hepatic cancer,
autophagosomes are located in the primary cilia, suggesting a role of
autophagy in their maintenance. Indeed, LC3 interacts with the
ciliary proteins IFT88 and a-tubulin. Moreover, in comparison with
others autophagy genes, NBR1 expression is found increased in
intrahepatic cholangiocarcinoma tumor samples compared to
normal controls. In addition, silencing of NBR1 in HuCCT1 cells,
a cell line of cholangiocarcinoma, increases the size of the primary
cilia (119). These antecedents suggest that NBR1 could be
implicated in the degradation of ciliary component through
selective autophagy, explaining the loss of the primary cilium
in cholangiocarcinoma.

Nuclear Dot Protein 52 KDa
Nuclear dot protein 52 KDa [NDP52, also known as calcium
binding and coiled-coil domain 2 (CALCOCO2)] is composed
by the skeletal muscle and kidney-enriched inositol phosphatase
carboxyl homology domain (SKICH), LC3C-specific LC3-
interacting region (CLIR), Coiled-coil (CC), Galectin-8 binding
region (GalBi), and ubiquitin-binding zinc finger (UBZ) domain
(51, 120, 121). In mammals, NDP52 is located on the
chromosome 17 and is composed of 15 exons. The role of
SKICH domain in autophagy is not yet completely understood.
However, it is known that SKICH domain is responsible in the
binding of NDP52 to the mitochondrial RNA poly(A)
polymerase (MTPAP) in depolarized mitochondria to enhance
mitophagy (122). On another hand, the CLIR domain in NDP52
is a non-canonical LIR motif that confers selective and strong
binding to LC3C, with a very weak affinity to other Atg8s
proteins members (120). The CC domain in NDP52
participates in its homodimerization facilitating the binding to
LC3C (121, 123). The GalBi domain allows the binding of
NDP52 to Galectin-8 in the context of degradation of
pathogens (xenophagy) or damaged lysosomes (lysophagy),
selective forms of autophagy (124, 125). Finally, the UBZ
domain allows NDP52 binding to ubiquitin (mono or poly-
ubiquitin) (51, 58) (Figure 3).

NDP52 and Its Role in Cancer Cell Survival
NDP52 has been detected in different cancer tissues with a
moderated protein expression, including the majority of renal
Frontiers in Oncology | www.frontiersin.org 8194
cancers. In contrast, in few cases of malignant gliomas, malignant
lymphomas, skin, and lung cancers, NDP52 protein expression is
almost undetected [Human protein atlas (99)]. Although the role of
NDP52 in cancer is still unknown, recent evidence suggests that
NDP52 could have a role in the acquisition of some pro-
tumorigenic properties such as cell survival. For instance, in the
cellular model of non-small cell lung cancer, cell line A549, NDP52
is found bound to LC3 in autophagosomes under basal conditions.
NDP52 mediates selective degradation of the tumor necrosis factor
receptor-associated factor 3 (TRAF3), a repressor of activation and
nuclear translocation of RELB, an effector of non-canonical NF-kB
signaling, which is usually implicated in pro-tumorigenic properties
(126, 127). Interestingly, silencing of NDP52 impairs the
localization of RELB into the nucleus and downregulated the
expression of anti-apoptotic target genes of REL-B (128). In
addition, activation and translocation of RELB due to the
degradation of TRAF3 by NDP52, inhibits the transcription factor
SMAD leading to a reduction in the expression of the transforming
growth factor b (TGFb), with known tumor-suppressive functions
(126, 129). This inhibition promotes proliferation of A549 cells and
tumor growth in animal models of non-small cell lung cancer (126).

Optineurin
Optic neuropathy inducing, also called Optineurin (OPTN), is
composed by three Coiled-coil domains (CC-1, CC-2, and CC-
3), a leucine zipper (LZ), LIR, ubiquitin-binding domain of ABIN
proteins and NEMO (UBAN) and zinc finger (ZF) domain (130).
The CC-1 domain, located in the N-terminal of OPTN binds
serine/threonine TANK-binding kinase 1 (TBK1) leading to the
formation of a stable OPTN-TBK1 hetero-tetramer complex.
TBK1 phosphorylates the Ser172 on LIR domain of OPTN
enhancing its binding to ATG8s proteins. In addition, TBK1
phosphorylates the Ser473 located on the UBAN domain
leading to an increase in the binding to ubiquitin (131). The
LIR domain binds to all members of ATG8s family, but
compared to other autophagy receptors, the LIR domain of
OPTN is the unique phosphorylated by TBK1 (51, 132). The
CC-3 domain mediates the homodimerization of OPTN. Only in
this form, OPTN binds, through the UBAN domain, to
methionine1 (Met1)-linked linear polyubiquitin (Met1-l-
polyUb) of ubiquitylated cargos in a reason of 2:1 (53, 131,
133) (Figure 3).

OPTN in Cancer Tumor Progression
RNA-seq data of 17 different types of cancer show that OPTN is
overexpressed in pancreatic cancer, being the second most
expressed autophagy receptor, after p62, in this type of cancer,
and its expression correlated with a reduced survival of
pancreatic ductal adenocarcinoma patients (134). Furthermore,
the silencing of OPTN in different cells lines of pancreatic ductal
adenocarcinoma promotes cell cycle arrest, decreases colony
formation and induces apoptosis through ER stress activation
(134). These antecedents indicate OPTN could play a relevant
role in pancreatic ductal adenocarcinoma cells. However, it is
necessary to find new cargos, which could work as negative
regulatory proteins of the cell cycle.
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CANCER THERAPY AND
SELECTIVE AUTOPHAGY

Chemotherapy is the main strategy for cancer treatment,
characterized by the use of drugs that alter and kill tumoral
cells rapidly (135). These drugs include anti-mitotic agents
(e.g., paclitaxel and docetaxel), topoisomerase II inhibitors (e.g.,
doxorubicin and epirubicin) and DNA alkylating agents (e.g.,
cisplatin and carboplatin) (135). Regrettably, tumor cells respond
developing a variety of cellular adaptation programs that provide
the ability to tolerate the cytotoxic effects of chemotherapy (135,
136). One of this responses is the activation of autophagy, a pathway
that helps in the evasion of the effects of chemotherapies in tumor
cells transforming them in cells resistant to chemotherapy (135–
138). Indeed, it has been previously summarized the contribution of
autophagy in chemoresistance in different types of tumor under
different chemotherapeutic agents, proposing that autophagy
inhibition is a good strategy to promote sensitization to
chemotherapy (135). However, the role of autophagy receptors in
chemoresistance has been poorly explored. Only recent studies have
started to propose p62 as a possible target of intervention (139, 140).
Cisplatin is one of the most used chemotherapeutic agent, but
several studies have reported development of resistance to this
chemotherapeutic agent (141). Alsamman and El-Masry showed
that cisplatin promotes the increase in p62 levels in cellular models
of breast, colon and ovarian cancer (139). Interestingly, treatment of
these cells with cisplatin in combination with Staurosporine (natural
broad-spectrum antitumor agent derived from Streptomyces
staurosporeus (142–144) abrogates the up-regulation of p62,
suggesting that Staurosporine sensitizes cancer cells to cisplatin in
a p62-dependent manner (139). Similarly, Sorafenib, a multikinase
inhibitor chemotherapeutic agent used in the treatment of
Hepatocellular carcinoma has shown, in some cases low efficacy
due to development of resistance to this chemotherapeutic agent
(140). Sorafenib causes the upregulation of the KEAP1-NRF2 axis
associated with an increase in the phosphorylation of p62 at Ser349
and chemoresistance (140, 145). Surprisingly, blocking interaction
between KEAP1 and phospho-p62 at Ser349 seems to be sufficient
to sensitize resistant cells to Sorafenib (140).
CONCLUSION AND FUTURE
PERSPECTIVES

Several evidences indicate that autophagy receptors play a crucial
role in cancer progression. Among all autophagy receptors
identified, p62 is by far the most characterized one, currently
considered a good predictor marker of the grade of malignancy in
several types of cancer (71–75). Since the pro-tumoral effects of p62
are not only related with the degradation of specific cargos such as
what occurs with VDR or damaged mitochondria, it opens the
possibility of non-canonical roles of p62 mostly related with the
stability of certain proteins like NRF2, TWIST1 and Vimentin (65,
71, 75, 80, 87). A challenge for the future to better understand the
contribution of p62 during cancer progression is the identification
of novel cargos of this receptor, considering specific types of cancer
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cells including cancer stem cells. Furthermore, it is critical to
investigate these aspects studying the variety of stages during
cancer progression. This type of approach could offer valuable
information for the design of novel strategies in cancer treatment
reducing the side effects commonly observed with current
treatments. In addition to p62, recent findings highlight the role
of NBR1 in cancer progression, controlling the presence of
important molecules and structures implicated in pro-tumorigenic
properties such as MHC-I, FAs and cilia (104, 114, 119). It is now
key to decipher the regulatory mechanisms underlying their specific
recognition. Similarly, it opens the possibility of NBR1 functioning
as a crucial regulator of cancer signaling pathways associated with
EGFR and FGFR (98). Although there is very little information
about the pro-tumorigenic roles of NDP52 and OPTN, its presence
in several types of cancer, and even its overexpression in the case of
OPTN, make these receptors interesting targets to study during
tumor progression. In this regard, since OPTN and NDP52
participate in mitophagy (125, 146, 147), it is relevant to explore
the contribution of active mitophagy pathway in tumor progression
and metastasis.

In conclusion, autophagy receptors are interesting molecules
with validated contribution in different tumoral contexts that
promotes a variety of cellular properties during cancer
progression, and therefore must be considered possible targets
for cancer treatment.
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Chaperone-mediated autophagy (CMA) represents a specific way of lysosomal protein
degradation and contrary to macro and microautophagy is independent of vesicles
formation. The role of CMA in different physiopathological processes has been studied for
several years. In cancer, alterations of the CMA principal components, Hsc70 and Lamp2A
protein and mRNA levels, have been described in malignant cells. However, changes in the
expression levels of these CMA components are not always associated with changes in CMA
activity and their biological significance must be carefully interpreted case by case. The
objective of this review is to discuss whether altering the CMA activity, CMA substrates or
CMA components is accurate to avoid cancer progression. In particular, this review will
discuss about the evidences in which alterations CMA components Lamp2A and Hsc70 are
associated or not with changes in CMA activity in different cancer types. This analysis will help
to better understand the role of CMA activity in cancer and to elucidate whether CMA can be
considered as target for therapeutics. Further, it will help to define whether the attention of the
investigation should be focused on Lamp2A and Hsc70 because they can have an
independent role in cancer progression beyond of their participation in altered CMA activity.

Keywords: CMA, oncogenic protein, tumor suppressor, autophagy, cancer progression
AUTOPHAGY

Autophagy is a lysosomal dependent cellular pathway that mediates the degradation of organelles,
protein aggregates and specific proteins, and is essential for cell survival, development and
homeostasis (1). There are three main routes where different cargos arrive to the lysosomes
(Figure 1): i) Macroautophagy (MA) the cargo is trapped in double membrane vesicles
Abbreviations: ATG-5, Autophagy-related gene 5; CMA, Chaperone-Mediated Autophagy; CRTC1, CREB-regulated
transcription coactivator 1; EF1, Elongation Factor 1; GFAP, Glial Fibrillary acidic protein; GKN2, Gastrokine 2; GLPR1,
Glioma pathogenesis-related protein 1; HIF-1, Hypoxia-inducible factor 1; HKII, Hexokinase II; Hsc70, Heat Shock cognate 70
KDa; HSD17B4, Hydroxysteroid 17-Beta Dehydrogenase 4; Hsp90, Heat Shock protein 90 Kda; IGF-IR, Insulin-like growth
factor-1; Lamp2A, Lysosomal-associated membrane protein type 2A; Lys-HSc70, Lysosomal Heat Shock Cognate 70 KDa;
MORC2, MORC family CW-type zinc finger 2; NSCLC, Non-Small-Cells Lung Cancer; PHLPP1, PH domain leucine-rich
repeat-containing protein phosphatase 1; PRDX1, Peroxiredoxin 1; RND3, Rho Family GTPase 3; SNX-10, Sorting Nexin 10;
TAM, Tumor associated macrophages; TFEB, Transcription Factor EB.
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known as phagosomes or autophagosomes that then fuse
with the lysosome for the final cargo degradation (2);
ii) Microautophagy, the lysosomes directly engulf cargo by
membrane invagination (yeast) or late endosomes that form
multivesicular bodies (mammals) to capture specific cytosolic
components and then fuse with the lysosome for its
degradation (3, 4); and (iii) Chaperone-mediated autophagy
(CMA), there are no trafficking membranous vesicles involved,
instead, cargo is selectively recognized by a chaperone protein
and then internalized into the lysosome for its degradation (5).
In the case of Microautophagy and CMA, both pathways need
the interaction between the KFERQ-like motive in the protein
substrate and the Hsc70 for target degradation. However,
Microautophagy, does not requires Lamp2A as protein
receptor (Figure 1) [for a compressive review see (5)].

The evidences reveal that alterations in autophagy are
implicated in multiple human diseases and pathophysiological
conditions like neurodegeneration (6), infection, immunity and
inflammation (7), cardiovascular diseases (8), respiratory
affections (9), liver diseases (10) and cancer (11). In the case of
CMA, this pathway has been reported to be altered, principally,
Frontiers in Oncology | www.frontiersin.org 2201
in neurodegeneration (12), metabolic disorders (12) and cancer
(13). In this review, we will focus in the observations that link
CMA with cancer. In particular, we will discuss the relevance
that changes in CMA substrates and principal components
would have in the context of different cancer types.
CHAPERONE MEDIATED AUTOPHAGY
(CMA)

The main feature of this particular lysosomal pathway is the
cargo selectivity. CMA degrades mostly cytosolic proteins that
are characterized by the presence of a consensus pentapeptide
known as the KFERQ-like motif. This motif includes at least two
positively charged residues (K, R), up to two hydrophobic
residues (F), one negatively charged residue (E) and a
glutamine (Q) that can be positioned at the beginning or at the
end of the motif. Proteins containing the KFERQ-like motif are
recognized by the Heat Shock Cognate 70 (Hsc70) protein and
other co-chaperones (14) that assist in the transport to the
FIGURE 1 | Scheme of three main autophagic pathways. 1. Macroautophagy can degrade individual proteins and complete organelles by engulfing them within an
initial membrane called Phagophore, this membrane closes forming the Autophagosome vesicle. Later, the Autophagosome fuses with the lysosome membrane
forming the Autolysosome where the cargo will be degraded by cathepsins and other lysosomal proteases; 2. Microautophagy, that in mammals involves the
invagination of proteins (blue) that may contain a KFERQ-like motif recognized by Hsc70. Also, the ESCRT complex present in the membrane of late endosomes can
form multivesicular bodies (MVBs) containing the cargo to be degraded. Later, MVBs can fuse with the lysosome. In yeast it has been observed that Microautophagy
process occurs by direct invagination of the lysosomal membrane to degrade the cargo in the lumen; 3. Chaperone-mediated autophagy (CMA), necessarily requires
that substrate proteins possess KFERQ-like motifs to be recognized by Hsc70. Contrary to Microautophagy, CMA also requires the Lamp2A lysosomal protein
receptor located at the lysosomal membrane (red) to translocate the unfolded substrate (blue) into the lysosome lumen.
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lysosomal surface to interact with the cytosolic tail of Lysosome-
associated membrane protein type 2A (Lamp2A) (5).

Lamp2A is found in a monomeric state at the lysosomal
surface and, when the substrate-chaperone-Lamp2A complex is
formed, Lamp2A initiates a multimerization process (15). This
process is assisted in the cytosolic side by positive regulators
including Glial Fibrillary Acidic Protein (GFAP), PH domain
Leucine-rich repeat-containing Protein Phosphatase 1
(PHLPP1), and Elongation Factor 1a (EF1a) (16) that regulate
and stabilize the multimer. Once stabilized, the Lamp2A
multimer serves as a “translocation complex” by which the
substrate is unfolded and translocated into the lysosomal
lumen. Inside the lysosome, the presence of a luminal
chaperone lys-Hsc70 is also required to complete the substrate
internalization (14, 17) (Figure 2).
CMA ACTIVITY IN DIFFERENT CANCER
TYPES

Altered CMA activity has been reported in different
physiopathological processes such as metabolic alterations,
neurodegeneration and aging (12), where the abnormal
Frontiers in Oncology | www.frontiersin.org 3202
degradation of the substrates are contributing to the
progression of the cellular damage. Changes in CMA activity
also has been addressed for different types of cancer. For
example, through immunostaining and fluorescent reporter
proteins, studies in several cancer cell lines such as lung (A549,
H460), breast (MCF7), liver (HUH7), epithelial (Saos 2
osteosarcoma), stomach, colon, uterus, and ovary, have
concluded that CMA activity is constitutively upregulated in
cancer cells (18). Interestingly, such up-regulation seems to be
independent of the macroautophagy status, suggesting a specific
role of CMA in these cancer types (19–21). Taking into account
the different cancer cell lines studied, it was possible to suggest
that CMA is found to be upregulated 2.8-fold with respect to
non-oncogenic control cells (18). In this sense, it becomes
important to understand the role that CMA up-regulation can
be playing in the development of cancer pathology. The most
accepted theory is that CMA contributes to maintain the
malignant condition by preventing the entry of the cells into
an apoptotic process and protecting them from stress (13, 22).
Taking into account these two aspects, and the observations
made by some authors (18), CMA up-regulation could be
considered as a pro-survival cancer cell factor and thus its
activity inhibition could be the target for therapeutics.
However, the latter is not a general rule since recent studies
FIGURE 2 | Scheme of different chaperone-mediated autophagy (CMA) steps. In the cytosol, Hsc70 heat shock protein recognizes CMA protein substrates
containing KFERQ-like motifs (purple circle) with the assistance of co-chaperones Hip, Hop and Hsp40 (light blue, green and orange ovals) to form a “Hsc70-
substrate complex”. The Hsc70-substrate complex interacts with monomeric Lamp2A at the lysosomal membrane to induce the formation of a “translocation
complex” through Lamp2A oligomerization, which is regulated at the outer lysosome membrane by the Glial Fibrillary Acidic Protein (GFAP), Protein Phosphatase 1
(PHLPP1), and Elongation Factor 1a (EF1a) proteins (not shown). Once the “translocation complex” is formed, the CMA substrate protein unfolds to enters at the
lysosomal lumen thanks to the assistance luminal Hsc70 (lys-Hsc70) and Hsp90 (green squares). Once, the CMA substrate protein is degraded by cathepsins and
other proteases, the “translocation complex” dissociates, Hsc70 is recycled and Lamp2A returns to a monomeric state.
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also indicate that CMA has an anti-oncogenic role by limiting
malignant transformation in some types of cancer (13, 23).

On the other hand, a very recent review describing the role of
CMA in regulating the cell cycle by keeping the balance between
negative and positive cell cycle regulators suggests that a CMA
impairment could lead to tumor progression and cell malignant
transformation (24). Further, an additional report has recently
showed that CMA is able to drive the balance between stem cell
proliferation and cell differentiation, two cellular properties that
are closely related with cancer (25).

Thus, up to date, the exact role of CMA in cancer is uncertain
and it will depend on each cancer type. Probably, a way to
determine how CMA is participating in the progression of cancer
is to correctly interpret the significance that alterations of specific
CMA substrates or CMA components might have in the different
cancer types.
CMA SUBSTRATES IN CANCER:
DIFFERENT PERSPECTIVES TO
APPROACH THE PROBLEM

Different confirmed or potential CMA substrates in different
cancer types accumulate despite the fact that CMA activity is
increased (26). Some of these CMA substrates are pro-oncogenic
and are protected from CMA degradation by different reasons.
Thus, cancer progression not always will depend on the status of
Frontiers in Oncology | www.frontiersin.org 4203
CMA activity but also on the altered CMA-dependent
degradation of the anti- and/or pro-oncogenic protein
substrates (Table 1).

One of the most known CMA substrate that is protected from
CMA degradation is P53, an important tumor suppressor
protein encoded by the tp53 gene. Whereas wild type P53
protein is a poor CMA substrate, missense mutations in the
tp53 gene leads to a mutant form of P53 which favors its
degradation by CMA in the cytosol. Mutant P53 accumulates
in the nucleus exerting its pro-oncogenic role and protecting
itself from degradation, but under conditions of stress and
autophagy inhibition, mutant P53 translocate to the cytosol
and interacts with Hsc70 followed by CMA degradation (27).
The latter example suggests that, in particular cases, a strategy to
counteract the cancer progression can be to expose the mutant
pro-oncogenic substrate to be degraded by CMA.

In addition, there is evidence indicating that alteration of
CMA substrates through post-translational modifications such
as acetylation or phosphorylation can also represent an
appropriate alternative to reduce cell malignance. For example,
in prostate cancer cells, the up-regulation of HSD17B4, a protein
involved in fatty acid oxidation, is correlated with tumor
progression (28). HSD17B4 acetylation enhances its interaction
with Hsc70 and Lamp2A, allowing its degradation through
CMA. However, it was shown that deacetylation processes that
are predominant in prostate cancer (28) protects HSD17B4 from
CMA degradation and contributes with cancer progression.
TABLE 1 | Protein acting as pro-oncogenic or anti-oncogenic factors, validated or not as chaperone-mediated autophagy (CMA) substrate and its role in different
cancer types.

Cancer type Altered protein in
cancer

Normal function Activity in
cancer

KFERQ motif Protected from
degradation

Reference

Breast,
Ovarian, cancers
Fibrosarcome

Mutant P53 Apoptotic pathway Promoter Non canonical
Proved CMA
substrate

Yes Vakifahmetoglu-
norberg et al. (27)

Breast,
Prostate cancer

HSD17B4
17b- hydroxysteroid
dehydrogenase type 4

Fatty acid b-oxidation and steroid
metabolism

Promoter Non canonical
Not proved CMA
substrate

Yes Huang et al. (28)

Acute Myeloid
leukemia
erythroleukemia

HKII
Hexokinase II

Glucose metabolism Promoter Canonical
Proved CMA
susbtrate

Yes Xia et al. (29)

Breast cancer MORC2
MORC family CW-type
zinc finger 2

Lipogenesis and adipogenesis Promoter Canonical
Proved CMA
susbtrate

Yes Yang et al. (30)

Pancreatic
cancer

IGF-IR
insulin-like growth factor
1 receptor

Proliferation and cell growth Promoter Non canonical
Not proved

Yes Xue et al. (31)

Hepatocellular
carcinoma
Cervical cancer

HIF 1a
Hypoxia-inducible factor
1a

Hypoxia response
Cell cycle regulator

Promoter Non canonical
Proved CMA
substrate

No Hubbi et al. (32)

Gastric cancer RND3
Rho Family GTPase 3

Anti-proliferative
Cell cycle regulator

Suppressor Canonical
Proved CMA
substrate

No Zhou et al. (33)

Breast cancer ATG-5
Autophagy-related gene
5

Autophagy Suppressor Non canonical No Han et al. (34)

Colorectal SNX10/P21
Sorting nexin 10/protein
21

endosome/lysosome homeostasis/
cell cycle regulator

Suppressor Non canonical
Proved CMA
substrate

No Zhang et al. (35)
February 2021 | Volu
me 10 | Article 614677

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Rios et al. Lamp2A and Hsc70 in Cancer
Phosphorylation is another modification that protects CMA
substrates from degradation. Hexokinase II (HKII) is a key
enzyme involved in glucose metabolism and is highly
expressed in cancer cells (36). Interestingly, in breast cancer,
HKII phosphorylation protects the protein from its degradation
through CMA, promoting proliferation, migration and
tumor growth (37). However, when using a specific HKII
phosphorylation inhibitor, tumor growth is reduced (37). In
addition, in gastric cancer cells, some members of the Rho family
like RND3, are maintained in the cytosol by specific
phosphorylation events, which in turn allow their interaction
with CMA components followed by lysosomal degradation (38).
A similar example is the novel oncogene MORC2 (MORC family
CW-type zinc finger 2), that has been found at high levels in
breast cancer promoting metastatic progression. This protein is
protected from CMA degradation by a phosphorylation that
prevents its interaction with Hsc70 (39). Thus, the inhibition of
MORC2 phosphorylation to allow its degradation through CMA
could be a good approach to reduce the cell malignance.

Finally, to expose the KFERQ-like motif can be also an option
to drive the degradation of a pro-oncogenic CMA substrate. For
example, it was shown that inhibition of macroautophagy in
ovarian cancer cells in the absence of glucose exposes the HKII
KFERQ-motif and allows its recognition by Hsc70, directing its
degradation through CMA (29). A similar situation occurs with
the IGF-IR (insulin-like growth factor-1), a family member of
insulin receptors that is enhanced in different cancer types (39).
In pancreatic cancer, IGF-IR acts as pro-oncogene and remains
protected from CMA degradation by its interaction with
chaperone Hsp90. If this interaction is disrupted by specific
Hsp90 inhibitors, IGF-IR is exposed for Hsc70 recognition and is
degraded through CMA (31).

There are cases where the direct CMA up-regulation can
effectively drive the degradation of a particular CMA substrate to
prevent cancer progression. Hypoxia-inducible factor 1 (HIF-1),
is a transcription factor composed by two subunits, HIF-1a and
HIF-1b and is required as an adaptive response to low oxygen
conditions and necessary for tumor progression (40, 41). Hsc70
and Lamp2A knock-down led to an increase of HIF-1a protein
level in cancer cell lines such as HeLa and Hep3b (32). On the
other hand, high expression levels of Hsc70 and Lamp2A in the
same cell lines were associated with reduced protein of HIF1a
(32). Thus, in this case, the direct enhancement of CMA activity
can promote the degradation of this pro-oncogenic protein.
Another example is the case of RND3 (Rho Family GTPase 3),
an anti-proliferative protein that has been previously confirmed
as CMA substrate (33). High expression of Lamp2A was
correlated with reduced RND3 protein levels in cancer gastric
cells, and the silencing of Lamp2A was associated with increased
RND3 protein levels and inhibited cell proliferation (33).
Therefore, in this particular case, inhibition of CMA
activity could be considered as a therapeutic alternative to
implement. Autophagy-related gene 5 (ATG5) acts as a tumor
suppressor protein and its absence causes tumor generation in
different tissues (42), including breast. Also, in breast cancer,
Lamp2A protein is abnormally upregulated (43) and plays an
Frontiers in Oncology | www.frontiersin.org 5204
important role in cell survival and metastasis (34). Interestingly,
in a breast cancer model it was shown that Lamp2A down-
regulation induces ATG5 protein levels increase and inhibited
cancer cell growth and metastasis (34), suggesting that an
inhibition of CMA activity could be an option to reverse the
malignant phenotype dependent on ATG5 protein alterations.

Finally, in colorectal cancer cells, Lamp2A expression levels
are upregulated as a consequence of the lower protein levels of
sorting nexin 10 (SNX10) (35). The latter leads to increased
CMA activity and exacerbated degradation of the tumor
suppressor protein P21, allowing the proliferation of colon
cancer cells (35). Thus, in this particular case, overexpression
of SNX10 protein results to be a good alternative to reduce CMA
activity and allows the accumulation an anti-oncogenic action
of P21.
LAMP2A AND HSC70 IN CANCER
BEYOND CMA

As mentioned above, Lamp2A and Hsc70 are two proteins whose
role is essential for the CMA pathway, in particular Lamp2A that
has been reported to be the limiting step of the pathway (44). Up to
date,manyevidenceshave stablished that in addition to evaluate the
levels of Lamp2A and Hsc70, additional requirements and
functional assays are necessary to determine whether changes in
CMA activity occurs in a determined cellular state. In particular,
immunoblots of Lamp2A and Hsc70 in total cell lysates or tissue
homogenates are less valuable to determine CMA activity as their
changes should be confirmed principally in lysosomes (17, 44, 45).
Sometimes, in variouscell types, auseful indirect indicationofCMA
activation can be to evaluate the distribution of hsc70-positive
lysosomes toward the perinuclear region (46). Additionally, in
total cell lysates or tissue homogenates, and particularly when
using isolated lysosomes from cells or tissues, changes in the
levels of CMA substrates is a good indication of alteration in
CMA activity (46). Finally, applying some functional assays such
as the use of photoconvertible CMA reporters, the assessment of
intracellular protein degradation or the in vitro analysis of CMA
using isolated lysosomes, are all very well accepted approaches to
confirm changes in CMA activity (44).

Thus, considering all the exposed above, additional
considerations should be taken before to conclude that alterations
in Lamp2A and Hsc70 levels are directly correlated with changes in
CMA activity, and the altered expression of these proteins might
have a different significance for the cancerous cell. In fact, these
proteins would fulfil additional functions in the cell, in particular
Hsc70 (47, 48). Next, we discuss about some evidences reporting
alterations in Lamp2A and Hsc70 expression but where changes
in CMA activity was not clearly confirmed, suggesting that the
alteration in Lamp2A or Hsc70 may have a different role in the
cancerous cells.

Lamp2A Protein
By alternative splicing, the lamp2 gene can generate three
different isoform proteins; Lamp2A, Lamp2B, and Lamp2C,
February 2021 | Volume 10 | Article 614677

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Rios et al. Lamp2A and Hsc70 in Cancer
where only Lamp2A has been exclusively linked to CMA activity
(45). In patients with breast cancer, Lamp2A overexpression was
detected in all samples containing cancerous tissues and was
correlated to cancer cell survival (43). In addition, Lamp2A has
also been used as a marker to measure the lysosomal content in
breast carcinomas and was correlated with increased activity of
the transcription factor EB (TFEB). Interestingly, in another
study in breast cancer showed that 30% of the cancerous samples
displayed Lamp2A overexpression (49). Although the exact role
of Lamp2A in breast cancer progression should be further
clarified, it is clear that this protein is relevant for cancerous
cell survival demonstrated by the inhibition of cell migration and
invasion in silenced cells (34). In addition, when Lamp-2A was
experimentally up-regulated an increase in cell growth was
observed (34). In addition to breast cancer, other cancer types
have reported altered Lamp2A expression without an evident
analysis on the changes in CMA activity. For example, reduced
Lamp2A expression was required to avoid apoptosis and
promote cell proliferation in hepatocellular carcinoma
xenograft growth (50). Further, in several gastric cancer cells,
Lamp2A overexpression was proposed as a good marker for early
cancer prediction in precancerous lesions (33). Additionally, in
Non-Small-Cells Lung Cancer (NSCLC), an increase in Lamp2A
expression was observed compared to healthy tissues (21).
Further, in Tumor-associated macrophages (TAM), it was
demonstrated that supernatants from tumor cells, which
contains growth and inflammatory factors, induce Lamp2A
up-regulation in TAM and allow its activation, favoring the
tumor growth maintenance (51). Lamp2A silencing by shRNA
or CRISPR-Cas9 was correlated with an increase in PRDX1
(peroxiredoxin 1) and CRTC1 (CREB-regulated transcription
coactivator 1), two factors necessary to promote macrophage
pro-tumorigenic activation. Although CMA activity was not
evaluated, the increase in PRDX1 and CRTC1 after Lamp2A
down-regulation suggest that in this case a CMA impairment in
TAM can be related with tumor growth (51). Further, Lamp2A
down-regulation reverted the tumorigenic features of TAM cells
(51). Finally, an increased expression of Lamp2A has been found
in tissues from patients with colorectal cancer Stage II and III,
and the Lamp2A silencing in the colorectal cell line CT26
induced apoptosis and inhibited cell proliferation (19). Taken
all together, Lamp2A overexpression is mostly associated to
cancer progression independent of observable or reported
changes in CMA activity.

Hsc70 Protein
Hsc70 is a cytoplasmic protein that belongs to the Hsp70
multigene family. An important aspect of Hsc70 is that its
expression is constitutive and independent to a heat shock
response (52). This chaperone has been described to interact
with several cancer-related proteins (47) and thus its role in
cancer includes its interaction with related and non-related CMA
proteins, and with its altered expression levels in cancerous cells
or tissue (Figure 3). Hsc70 is part of the co-chaperones required
for the delivery of “client proteins” to Hsp90 machinery (53).
Further, the development of Hsp90 inhibitors has been the focus
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of many studies due to the implications of this protein in cancer
progression (54). However, the inhibition of Hsp90 might induce
Hsc70 overexpression which counteract the antitumorigenic
effect of the Hsp90 inhibitor (55). Thus, the silencing of Hsc70
in different cancer cell lines, together with the use of Hsp90
inhibitors, has been used to cause cell cycle arrest and increase in
tumoral cell apoptosis in response to Hsp90 inhibitors (55). In
line with this, it was observed that the use of a Hsp90 inhibitor in
B-lineage acute lymphoblastic leukemia cells allowed the
induction of Hsc70, cathepsin D inhibition and apoptosis
induction of the cancerous cells (56). In addition, BAG-1 a
multifunctional protein related to diverse cancer types (57),
also interacts with the Hsc70 amino-terminal ATP-binding
domain (58). When using peptides resembling the BAG
domain in breast cancer cells, the interaction between BAG-1
and Hsc70 is prevented and cell growth is arrested (59).
Moreover, the interaction of Hsc70 with glioma pathogenesis-
related protein (GLIPR1) was associated with oncogenic
signaling pathway by suppressing the transcription of AURKA
and TPX2 by SP1 and c-Myb destabilization (60). Furthermore,
it has been observed that Rab1A overexpression is vital for the
maintenance of cancer cell physiology under stress conditions.
With this regard, the ubiquitination and protein degradation of
Rab1A was shown to be protected due to its interaction with
Hsc70 (61). Thus, in some cancer types, Hsc70 expression can
favor cancer progression by, for example, replacing the function
of a related protein (e.g., Hsp90) or by protecting a pro-
oncogenic factor from its degradation.

However, in other cancer types, Hsc70 can be beneficial by
promoting cancer arrest. For example, the overexpression of
GKN2 protein sensitized gastric cancer cells to apoptosis under
oxidative stress inducers. However, the effect of GKN2 to induce
apoptosis was dependent on its interaction with Hsc70 (62).
Also, Hsc70 has also been described as an important player in the
mechanism regulating the suppression of colorectal cancer
metastasis by its interaction with the amino-terminal enhancer
of split protein (Aes) (63). Finally, it was shown that colon cancer
tissues displayed increased expression and protein complexes of
Hsp70, Hsp90 and HOP compared with control tissues,
suggesting an association between cancer progression and
complexes formation (64).

Additionally, some works have associated the variations in
Hsc70 expression as part of cell-to-cell communication, or as
a biomarker of cancer progression. In healthy cells, Hsc70
remains intracellular but in the lymphoblastic cell line K562
and in human breast cancer cells, Hsc70 is secreted to the
media and considered as a new signal of growth arrest when
cells are confluent (65, 66). Hsc70 has also been proposed
as a biomarker for endometrial carcinoma due to its up-
regulation in cancer tissues (67). Further, the progression
of human brain glioma cells and tumor grade was associated
with Hsc70 overexpression. In particular, the migration
and invasion of these cells was inhibited by a Hsc70
downregulation (68).

Altogether, these evidences further indicate that, depending
on each cancer nature, the altered Hsc70 expression might have
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additional or different effects on cancer progression, rather than
modified CMA activity.
CONCLUDING REMARKS

Most of the analyzed evidence, report an up-regulation in
Lamp2A and Hsc70 CMA components in the different cancer
cell types studied. When the up-regulation of these CMA
components were associated with an increase in CMA activity,
it was mostly connected with a protective mechanism for stress
microenvironment and lack of nutrients, contributing to tumor
growth and cancer progression. The latter suggests that
inhibition of CMA activity could be a target for therapeutic
approaches to increase the sensitivity of tumor cells to stress,
promote cell death and decreased tumor growth. However, few
evidences also show that CMA activity would contribute to
cancer arrest and thus to inhibit or enhance the CMA activity
probably will depend on each specific cancer type.

In addition, whereas several proteins involved in the
progression of different cancer types have been experimentally
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well-defined as CMA substrates, others, although having
putative KFERQ-like motifs or indirectly associated to changes
in CMA activity, have not fully been defined as CMA substrates
(Table 1). With this regard, although the enhancement or
inhibition of CMA can be the objective to reverse the cancer
phenotype, also the efforts could be made in modifying protein
substrates (e.g., by altering posttranslational modifications,
cellular conditions or protein-protein interactions) to promote
or inhibit its degradation through CMA, depending on the
particular case.

Many evidences have stablished that, in addition to evaluate
the levels of Lamp2A and Hsc70, further assays are necessary to
determine whether changes in CMA activity occurs in a
determined cellular state. According to this, some reports have
showed alterations in Lamp2A and Hsc70, without evident
assayed changes in CMA activity. The latter leaves the open
question about if the changes in Lamp2A or Hsc70 expression in
these particular cases can be fulfilling an additional role in
carcinogenesis beyond modifying the CMA activity.

In conclusion, depending on each specific cancer type, it will
be important to experimentally determine whether detectable
FIGURE 3 | Schematic representation of multiple routes where Hsc70 is associated with cancer. (A) shows Hsc70 forming complex with additional chaperones and
recognizes chaperone-mediated autophagy (CMA) substrates for lysosomal degradation by Lamp2A-mediated internalization; (B) shows Hsc70 interaction with
BAG-1, a co-chaperone with anti-apoptotic activity; (C) Hsc70 interacts with Glioma Pathogenesis-related Protein 1 (GLIPR1) related to glioma and glioblastoma
multiforme; (D) Rab1A, a protein related with cancer cell survival, is protected from degradation by interacting with Hsc70, despite Rab1A has canonical KFERQ
motif; (E) Hsc70 complexes with Gastrokine-2 (GKN2), a secretory protein associated with gastric cancer; (F) Hsc70 acting as cochaperone to deliver “client
proteins” to Hsc90 machinery.
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alterations in Lamp2A and Hsc70 expression have a direct
impact on CMA activity. If it is the case or not, then the
question should be whether targeting CMA activity is an
option to counteract cancer progression, or whether the
attention of the strategy must be focused on Lamp2A or
Hsc70, or some particular CMA protein substrate.
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Pancreas ductal adenocarcinoma is a highly aggressive cancer with an incredible poor
lifespan. Different chemotherapeutic agents’ schemes have been tested along the years
without significant success. Furthermore, immunotherapy also fails to cope with the
disease, even in combination with other standard approaches. Autophagy stands out as a
chemoresistance mechanism and is also becoming relevant as responsible for the
inefficacy of immunotherapy. In this complex scenario, exosomes have emerged as a
new key player in tumor environment. Exosomes act as messengers among tumor cells,
including tumor microenvironment immune cells. For instance, tumor-derived exosomes
are capable of generating a tolerogenic microenvironment, which in turns conditions the
immune system behavior. But also, immune cells-derived exosomes, under non-
tolerogenic conditions, induce tumor suppression, although they are able to promote
chemoresistance. In that way, NK cells are well known key regulators of carcinogenesis
and the inhibition of their function is detrimental for tumor suppression. Additionally,
increasing evidence suggests a crosstalk between exosome biogenesis and the
autophagy pathway. This mini review has the intention to summarize the available data
in the complex relationships between the autophagy pathway and the broad spectrum of
exosomes subpopulations in pancreatic cancer, with focus on the NK cells response.

Keywords: pancreatic cancer, autophagy, exosomes, natural killer cells, tumor microenvironment
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor with a survival of 4-6 months
after diagnosis (1, 2). Besides the lack of early diagnosis, the rapid development of chemoresistance
makes PDAC one of the highest deadly cancers (3). PDAC cells show high levels of basal autophagy
(4–6) and an immunosuppressive tumor microenvironment (TME) conditioned by the presence of
immunosuppressive cells, i.e., regulatory T lymphocytes (Tregs), tumor-associated macrophages,
and myeloid-derived suppressor cells (MDSCs) widely present in the early stages of the disease
(7, 8). Immunotherapy against CTLA4 and PD-L1, with remarkable results on several solid tumors
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(9, 10), was unsuccessful in PDAC patients (11), even in
combination with other standard approaches (12).

Macroautophagy, hereafter named simply as autophagy, is a
catabolic process with the capacity to degrades cellular constituents
including whole organelles (13, 14). Briefly, upon autophagy
induction the serin kinase activity of ULK1 complex induces a
successive recruitment of autophagy proteins to discrete areas of
ER membrane. This includes a complex with phosphatidyl-inositol
3-kinase activity (PI3K), composed of Beclin-1, ATG14, Vps150
and Vps34, which in turn deposit phosphatidyl-inositol 3-
phosphate (PI3P) which is recognized by further autophagic
proteins (13, 14). These events let to evolution of the isolation
membrane followed by WIPI1/2-mediated recruitment of ATG5-
12-16L complex, needed for the incorporation of the lipidated form
of LC3B to the budding membrane. Isolation membrane
invaginates over the cargo in a LC3-decorated double membrane
vesicle denominated the autophagosome. Eventually, the
autophagosome fuses with a lysosome where cargo is degraded
(13, 14). Literature is contradictory about the role of autophagy in
cancer and then it is accepted to be a context dependent factor (6,
15). In vitro, gemcitabine which is the standard chemotherapeutic
agent against PDAC increases the autophagic flux in PDAC cells in
order to avoid its deleterious effects (4). Then, autophagy inhibition
increases the sensitivity of PDAC cells to gemcitabine, but also to
other treatment such as inhibitors of the NF-kB and MAPK
pathways (5).

Extracellular vesicles (EVs) can be classified by size as small
(sEVs - <200 nm) or medium/large (m/lEVs - >200 nm), but they
can also be discriminated by density, membrane markers and cell
type origin (16). From that plethora of different types of EVs,
exosomes are those sEVs with an endosomal origin and a size
ranging from 30 to 200 nm (17). The biogenesis of these vesicle is
produced by inward budding of the membrane of late
endosomes/multivesicular bodies (MVBs) (18), These particles
are secreted by most cells, including tumoral cells, and can exert
an effector response in distant tissues (19, 20). Exosomes transfer
their content specifically to target cells, through mechanisms
including ligand/receptor recognition, direct fusion with the
recipient cells, phagocytosis, endocytosis (21–24). Moreover,
they can transfer receptors from the plasma membrane (25)
and deliver, to target cells, proteins (26), mRNAs, miRNAs (27,
28) and reporters genes (29). The mechanism that controls the
inclusion of specific molecules within the exosomes remains to
be clarified, and in addition, a cell can secrete diverse exosome
populations each one with a unique content. The so-called
tumor-derived exosomes or TEXs often bear tumor associated
antigens and in some cases they can activate and stimulate
immune cells (30, 31). However, the effect of TEXs over the
immune system is not always activation (32). Hence, TEXs can
induce apoptosis of effector T cells (33–37), inhibit the cytotoxic
activity of natural killer (NK) cells (38–40), activate
immunosuppressive functions in myeloid cells (24, 41, 42),
impair differentiation of dendritic cells (43), and induce the
response of Tregs (44, 45).

NK cells are a class of innate lymphocytes cells with the ability
to rapidly eliminate infected and tumor cells. There are two main
Frontiers in Oncology | www.frontiersin.org 2210
subclasses of NK cells, phenotypically and functionally different.
Phenotypically they can be classified according to the level of
CD56 and CD16 expression and functionally according to their
cytotoxic potential (46). The CD56dimCD16bright NK cells subset
is highly cytotoxic and expresses high levels of perforin and
granzyme B. This subpopulation does not migrate to secondary
lymphoid organs, but they express chemokine receptors that
allow them to migrate to inflamed tissues, can mediate ADCC
processes, and have low cytokine secretion capacity. By contrast,
CD56brightCD16dim NK cells are the cytokine secreting subset, do
not migrate to inflamed tissues and their cytotoxic capacity is
limited (46). Opposite to LT CD8+, mature NK cells do not need
previous activation to exert their functions. Moreover, NK
functionality is independent of the presence of non-self-
antigens presented by MHC molecules to CD8+ lymphocytes.
Hence, NK cells can eliminate target cells without previous
sensitization. Nonetheless, it is now well-known that previous
activation enhances NK cell activity by regulating the expression
of cytotoxic mediators, as well as several receptors (47).
Furthermore, previous exposure to haptens, viral infection
(HCMV) or cytokines (IL12, IL15, and IL18) generates
adap t i v e NK ce l l s w i t h immuno log i c a l memory
(47).Nevertheless, the potent immunosuppressive TME in
PDAC impairs NK function and cytotoxicity by different ways
such as downregulation of effector molecules and activation
receptor (48). Altogether, NK cells are serious candidates to
develop therapeutic strategies to eliminate tumors that are
invisible for T cells.

The last few years have seen little or no progress in the
development of more effective treatments for patients with
PDAC. In this review, we aim to analyze the complex
relationships between autophagy and the broad spectrum of
exosomes in TME of PDAC, with focus on NK cell response.
PANCREATIC CANCER CELLS ARE
MODULATED BY TME-DERIVED
EXOSOMES

There is a complex and dynamic relationship among tumor
autophagy, immune response and TME. TME is a complex
system that is affected by several factors including hypoxia,
acidosis, and immune and inflammatory responses. Moreover,
TME influences cell adhesion, invasion, angiogenesis, and even
tumor autophagy which in turn can promote tumor growth and
enhance metastasis. TME is responsible for release of the
chemoattractant factors that recruit the immune effector cells.
The response of tumor autophagy to the inflammatory
components is unpredictable and the generation of a pro-
inflammatory environment may not always be effective against
the tumor. For example, IL-1 can inhibit the cyclooxygenase 1
(COX-1) signaling pathway, and phosphorylation of the kB
inhibitor (IkB), promoting tumor development and metastasis.
In contrast, inhibition of IL-1 expression in tumor cells induces
overexpression of p21 and p53, leading to tumor suppression
February 2021 | Volume 10 | Article 622956
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(49). At the pancreatic level, IL-1b induces autophagy in acinar
pancreatic cells (50). In the case of pancreatic tumors, they are in
hypoxic TME which induces autophagy. In this setting, tumors
were reported to increase their autophagy levels in order to
selectively degrade granzyme B released by NK cells, thereby
inhibiting one of the cytotoxic mechanisms of NK cells (51, 52).

One important member of TME are the cancer-associated
fibroblasts (CAFs) which foster proliferation (53) and
chemoresistance (54) in PDAC. CAFs are innately insensitive
to gemcitabine and a key player in the development of
chemoresistance in tumor cells. Exosomes released by
gemcitabine-treated CAFs increase proliferation and survival of
PDAC cell lines by carrying the chemoresistance-inducing
factors, Snail, and miR-146a, which in turn also induce its own
expression in the recipient cells (54). Moreover, CAFs-derived
exosomes contain the miR-106b which promote gemcitabine
resistance in PDCA cells by targeting TP53INP1 (55).

Recently, the exosomes from bone marrow mesenchymal
stem cell (BMSC), residents of the TME, raised attention in
PDAC. The over-expression of miR-126-3p in BMSC-derived
exosomes not only inhibits the proliferation, invasion and
metastasis of PDAC cells, but also promotes apoptosis in vitro
and in vivo by down-regulation of disintegrin and
metalloproteinase-9, ADAM9 (56). Furthermore, the amount
of miR-1231 in those sEVs was significantly correlated with the
TNM stage of PDAC in the clinic. The proliferation, migration,
invasion, and adhesion to the matrix of PDAC cells were
negatively regulated by BMSC-derived exosomes transfected
with miR-1231 oligonucleotides. Then, the exosomes extracted
from BMSCs, with high levels of miR-1231, inhibit the
proliferation of pancreatic cancer cells and induce cell cycle
arrest (57). Finally, similar results can be observed in exosomes
from the tumor-associated stroma (TAS) cells, which are
enriched in miR-145 and possess tumor suppressive properties
by inducing apoptosis of PDAC cells (58).

The studies carried out suggest that the ability of exosomes to
induce or suppress the proliferation, invasion, metastasis and/or
chemoresistance of pancreatic cancer cells, depend on the cell
type where those vesicles come from. Different sources of
exosomes have different effects on pancreatic cancer cells
activity, or even the opposite, which needs further clarification
and in-depth study.
RELATIONSHIP BETWEEN AUTOPHAGY
AND EXOSOMES BIOGENESIS

Alternative to the direct fusion with lysosomes (see
Introduction), autophagosomes can previously fuse with some
endocytic compartments such as early and late endosomes, and
the MVBs. These merged structures, called amphisomes,
eventually fuses with lysosomes where sequestered material is
finally degraded (59). Therefore, autophagy induction has been
shown to cause recycling of the MVBs, which, instead of fusing
with the plasma membrane, enter the autophagic pathway.
Furthermore, it was observed in some cell lines a relationship
Frontiers in Oncology | www.frontiersin.org 3211
between exosomes release and the induction level of the
autophagy pathway (60–63). Consequently, it is not surprising
to find evidence of autophagic pathway cross-linking with
exosome biogenesis (64). Starvation-induced autophagy
reduces the release of exosomes in K562 cells (63). Starvation
cou ld increase in the fus ion between MVBs and
autophagosomes, thus directing the MVBs toward the
degradative pathway. Similarly, inhibition of PIKfyve kinase,
essential for endolysosomal vesicular trafficking, increases
exosome release and reduces the degradative process via
autophagy, probably due to reduced fusion of lysosomes with
MVBs and autophagosomes (65). In line with this, the lysosomal
dysfunction, provoked by ammonium chloride or bafilomycin
A1, increases sEVs secretion of SH-SY5Y cells (66). Nevertheless,
we cannot discard that those results are due to vesicular
trafficking interference.

There is data supporting that at least part of the autophagy
machinery contributes to the biogenesis of exosomes, in a
process where completion of the autophagic process itself
seems to be dispensable (67, 68). In non-autophagic functions,
ATG5 and ATG16L1 proteins have been associated with the
biogenesis of exosomes (67). ATG5 participates in the
dissociation of the vacuolar proton pump (V1V0-ATPase)
from the MVBs preventing its acidification, and this is believed
to allow the fusion with the plasma membrane and consequent
exosomes releasing. Accordingly, depletion of ATG5 or
ATG16L1 significantly reduces exosome release and attenuates
exosomal enrichment in LC3B-II. Moreover, lysosomal or V-
ATPase inhibitors rescue the release of exosomes in ATG5
depleted cells further supporting the role of luminal pH to
define the fate of MVBs. It is interesting to note that while
ATG5 decreases the acidification of the MVBs, it increases the
acidification in those LC3 positive intracellular compartments,
such as autolysosome, phagosomes associated with LC3 and
endosomes, all of them destined for degradation. A proposed
model indicates that in MVBs, LC3 can remove ATP6V1E1 from
intraluminal vesicles/exosomes and decrease acidification, while
it recruits ATP6V1E1 or stabilize V1V0ATPase in the
aforementioned degradative vesicles to promote acidification
(67). The complex of two other autophagy proteins, ATG12
and ATG3, interacts with ALIX and ESCRT-associated proteins,
crucial in exosomes biogenesis (68). Hence, loss of ATG12-
ATG3 alters the morphology of MVBs, impedes late endosome
trafficking, and reduces exosome biogenesis. Worth note that
decreased ALIX expression reduces basal autophagic flux,
demonstrating reciprocal regulation between both pathways.
Interestingly, the lack of ALIX or the ATG12-ATG3 complex
impairment do not affect starvation-induced autophagy,
suggesting different regulatory machinery for basal and stress-
induced autophagy, as well as the interaction of these pathways
with endocytic compartments (68).

Highly desmoplastic and poor vascularized, PDAC stroma
imposes a hypoxic condition to most cancer cells into pancreatic
tissue. It was described that hypoxia, an autophagy inductor,
promotes the release of EVs in several PDAC cell lines. The effect
seems to be quite specific since a significant increase of sEVs,
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without or minimal release of mEVs and lEVs, is observed.
Moreover, changes in size distribution among the sEVs is
observed with a shift toward smaller average size under
extreme hypoxia (69). Furthermore, the GAIP C-terminal
interaction protein (GIPC) acts as a scaffold to control
receptor-mediated trafficking (70–72). After receptor
internalization, GIPC is transiently associated with the pool of
endocytic vesicles that are close to the plasma membrane (73). A
regulatory role of GIPC on autophagy, via the glucose-dependent
metabolic pathway, and on biogenesis and release of exosomes
has been described in AsPC-1 and PANC-1 pancreatic tumor
cells (74). GIPC depletion in these cell lines generates metabolic
stress with autophagy induction and increased exosome release.
Lack of GIPC increases LC3-II expression and biogenesis of
autophagosomes and at the same time leads to increased
secretion of exosomes by the PDAC cells. Mechanistically, the
absence of GIPC increases exosomes released by higher
expression levels of ALIX, TSG101 and CHMP4B. Noteworthy
is that exosomes from GIPC-depleted cells lack the drug
resistance associated molecule ABCG2, suggesting that this
molecule might be a sEVs cargo (74).

Altogether, several molecules that belong from the autophagy
pathway seem to play important roles in exosomes biogenesis.
However, we still have a long way to precisely define how deeply
the autophagy and exosomes biogenesis are crisscrossed. In
addition, the stroma profile, for instance through its hypoxic
status, let us glimpse that influences of TME over cancer cells in
PDAC could be even far more complex that speculated some
time ago.
PDAC-DERIVED EXOSOMES INFLUENCE
TUMOR BEHAVIOR

Among the cells with different grades of malignancy that
compose the PDAC, highly invasive cell-derived exosomes
promote the migration and invasion of weakly invasive cells
(75). ZIP4, a zinc transporter, is the most up-regulated exosomal
protein and promotes the growth of recipient cells (76).
Moreover, exosomes derived from highly invasive cells are rich
in miR-125b-5p which promotes migration and invasion and is
associated with metastasis in PDAC through MEK2/ERK2
signaling (77). Likewise, the miR-5703 present in exosomes
from primary cultures of pancreatic stellate cells is capable of
fostering proliferation of PDAC cells by activation of the PI3K/
Akt pathway. This has been shown to be due to miR-5703
downregulated CMTM4 where CMTM4 suppresses the PI3K/
Akt pathway (78). In a different aspect of tumor biology, TEXs
can also transfer chemoresistance by a paracrine action.
Gemcitabine, being one of the most commonly used
chemotherapeutic agents in pancreatic cancer (79), upregulates
miR-155 expression in PDAC cells which is transferred, through
exosomes, to the neighboring cells. This microRNA confers
chemoresistance to receptor cells by upregulation of SOD2 and
CAT, involved in ROS detoxification, and downregulation of
DCK, a gene related to gemcitabine metabolism (80).
Frontiers in Oncology | www.frontiersin.org 4212
Additionally, miR-155 induces the biogenesis and secretion of
exosomes leading to a positive feedback loop of drug resistance
(80, 81).

The composition, biogenesis and secretion of exosomes are
finely regulated processes, influenced by changes in the TME. In
this context, exosome secretion is an efficient adaptive
mechanism by which cells modulate intracellular stress
situations and modify their microenvironment (82). PDAC
cells are usually exposed to hypoxia, which is an important
autophagy inductor, as commented above. This situation induces
adaptation mechanisms that promote endothelial activation,
angiogenesis, proliferation, and cell survival (83). Noteworthy,
concomitantly to autophagy flux induction, cells under hypoxic
or anoxic stress increase the secretion of exosomes rich in CD63,
CD9, and miR-210 in breast cancer cells (84). Furthermore, in
this situation, secreted exosomes contain proteins associated
with cell migration, degradation of the extracellular matrix,
growth signaling molecules, clathrin-mediated endocytosis, and
molecules of the endothelial and vascular growth factor signaling
pathway (85, 86). Acid conditions are common in the tumor
microenvironment. This factor also modulates the release,
charge, function, and trafficking of exosomes released by the
tumor cell. An acidified microenvironment increases the release
of exosomes, but with a different lipid composition. These
exosomes are enriched in sphingomyelin and GM3 ganglioside,
thus increasing their rigidity and fusion efficiency with the target
cell (87). It has been shown that situations such as oxidative and
thermal stress can increase the release of immunosuppressive
exosomes from leukemia cells and T and B lymphomas (32).
Besides, the effects of pancreatic cancer-derived sEVs on T
lymphocytes are far from be elucidated. The promotion of
Treg expansion and impairment of T lymphocytes cytotoxicity
against PDAC cells by pancreatic cancer-derived sEVs was
recently described. In these lymphocytes, the up-regulation of
FOXP3 and the consequent Treg promotion was mediated by the
ATM-AMPK-SIRT1/2/6- FOXO1A/FOXO3A axis, suggesting
an induction of autophagy pathway by PDAC TEXs (88).

In the TME, the exosomes from hypoxic PDAC cells are
capable of activating the PTEN/PI3K pathway, inducing the
shifting of macrophages toward the M2 phenotype. This
process is dependent on HIF1a or HIF2a, and accelerates
invasion, migration and epithelial-mesenchymal transition
(EMT) of PDAC cells (89). Moreover, CD151−/tetraspanin 8
containing exosomes support the EMT of non-metastatic PDAC
cells for a motile phenotype (90). Furthermore, exosomes
bearing VEGF and TGF-b promote angiogenesis enhancing the
invasiveness and the establishment of a metastatic TME. PDAC
also releases TEXs bearing c-Met (proto-oncogene
mesenchymal-epithelial transition factor) and PD-L1
(programmed cell death 1 ligand 1) (91). The tyrosine kinase
receptor c-Met controls key signaling cascades including MAPK,
STAT, NF-kB and PI3K/Akt pathways, which overall provide
proliferation, migration and an anti-apoptotic status of tumor
cells (92). On the other hand, PD-L1 is a ligand of the PD-1
receptor which prevents from excessive immune response and
guarantees the tolerance of harmless antigens and self-tissues.
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Tumor cells take advantage of this mechanism by expressing PD-
L1 in order to evade immune control (93). In this context, TEXs
from PDAC bear both c-Met and PD-L1 on their surface
enhancing the carcinogenesis. Importantly, detection of c-Met
and PD-L1 may have diagnostic or prognostic relevance when
are detected jointly with the marker CA 19-9 used in PDAC (91).

Finally, PDAC-derived TEXs composition results from
activation of several survival pathways which confers
aggressiveness, chemoresistance and even immune evasion to
neighboring tumor cells.
NATURAL KILLER CELLS IN PDAC
MICROENVIRONMENT

NK cells are central in the immunological fight against tumor
and infected cells. Although NK cells are expected to play
an important role in the immune surveillance against
tumors, suppressive components in the TME dampen their
efficacy. Several studies proposed Tregs as the responsible in
suppressing tumor-infiltrating NK cells (94, 95). However, TEXs
have gained attention as key players for immunosuppression
in the TME. The exposure of phosphatidylserine (PS) is
perhaps the most representative “eat-me” signal which is
recognized by opsonins and other serum proteins for removal
of apoptotic bodies by phagocytic cell. Physiologically, the
externalized PS functions as a dominant immunosuppressive
signal, promoting tolerance and preventing local and systemic
activation of immune system. Pathologically, the innate
immunosuppressive effect of externalized PS has been
commandeered by numerous microorganisms to facilitate
infection, and in some cases to establish infection latency. In
TME, PS is also profoundly dysregulated and inhibits the
development of tumor immunity. The exposure of PS is
favored by the hypoxic stress, but also PS is exposed in TEXs
where it binds to PS-receptors (e.g., TIM-receptors on immune
cells), triggering the immune-suppressive signals (i.e. enhanced
TGF-b and IL-10 secretion) and leading to an impaired immune
activation (96).

NK cells exert their cytotoxic function directly by contact with
tumor cells, but also through the action of their own secreted
exosomes. Interestingly, the exosomes released by the NK cells
seem to be independent of its activation state. Activated and
resting NK cells release almost the same number of exosomes,
which contain typical protein markers of NK cells such as FasL
and perforin. Moreover, these exosomes exert cytotoxic activity
against several tumor cell lines in vitro (97). In this sense, NK-
derived exosomes can regulate tumor cells suppression by two
mechanisms: Fas-FasL interaction between exosomes and
tumoral cells membrane, and cytotoxicity triggered by
excessive uptake of exosomes in the target cells (98). Recently,
the presence of miR-3607-3p in EVs was associated with
suppression of pancreatic cancer (99). EVs derived from NK
cells, enriched in miR-3607-3p, could suppress PDAC
development and malignant transformation. The amount of
miR-3607-3p in NK cells and its EVs is higher than in PDAC
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cells, but this miRNA increases significantly in these last when
they are cultured in presence of NK-derived EVs (99). IL-26 is a
member of the IL-10 cytokine family with unknown function in
human tumors. Compared to healthy tissue IL-26 in highly
expressed PDAC, miR-3607-3p directly suppresses its
expression in these tumoral cells. In sum, there is a significant
negative correlation between the expression levels of miR-3607-
3p and IL-26 in pancreatic cancer tissues. However, in gastric
cancer cells it was reported that over-expression of IL-26
facilitates proliferation and survival by regulation of STAT1/
STAT3 signaling (100). Worth to note, that characteristics of
cytokine composition in the surroundings where NK cells are
activated determine the fate of those immune cells. For instance,
survival of NK cells is promoted in presence of IL-15, an innate
cytokine, or IL-2, an adaptive cytokine. However, NK cells
activated in presence of IL-2 die by apoptosis after contact
with vascular endothelium, a key step for their extravasation
(101). Further work will elucidate whether the exosomes present
in the TME could be mediators of this phenomenon.

NK cells represent a significant attempt of the immune system
to fight against PDAC. Nevertheless, cancerous cells, through the
PDAC-derived TEXs, can inhibit the functionality of NK cells. In
response, NK cells release exosomes which contain FasL and
perforin and seem to exert cytotoxic activity against tumor cells.
More evidence is needed to completely understand the role of
NK-derived exosomes over the PDAC as a whole and vice versa.

Finally, those data could give us the basis to design strategies
where this game of different intratumorally exosome populations
are exploited for the well-being of patients.
CONCLUSIONS AND PERSPECTIVES

Indeed, the development of specific immunotherapy protocols
based on NK cells to treat cancer has been dampened by the
complexity of the mechanisms that regulate NK cell function and
elimination of target cells. Luckily, times are changing and, at
present, in the era of cancer heterogeneity and immunotherapy,
NK cells are emerging as the golden effectors to eliminate non-
antigenic tumor cell clones. A perfect duet in the symphony of
destruction, LTc and NK cells destroy immune “visible” and
“invisible” cancer cells to overcome immunogenic tumor
heterogeneity. A better understanding of autophagy and
exosome pathways and their interrelationships seems to be key
for controling these events, where we could find the way of
successfully using the immune system against the deadly PDAC.

Available data suggest that exosomes, EVs in general, are
changing the communication paradigm within the TME
(Figure 1). These tiny vesicles can modulate both the immune
and therapeutic responses in complex and difficult-to-treat
pathologies such as the PDAC. The scientific community is
just beginning to understand the mechanisms that govern the
intricate and complex interactions among the different actors
into the TME. In this scenario, autophagy seems to play a key
role in exosomal biogenesis regulation and probably also in cargo
selection. We still have a long way to go but is for sure that a
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FIGURE 1 | Schematic diagram depicting a proposal model of the complex relationship between autophagy and exosomes in the context of pancreas ductal
adenocarcinoma (PDAC) and its environment. The autophagy pathway and exosomes biogenesis are suggested to be highly interconnected. Both pathways share
several structures of the endo-lysosomal system. In the context of PDAC and its tumor microenvironment, autophagy and exosomal processes are mutually
influenced and condition tumor behavior responding to the pressure of the immune system. (1) – violet arrows - Cancer-associated fibroblasts (CAFs) foster
proliferation and chemoresistance. Exosomes bearing miR-106b are released by gemcitabine-treated CAFs increasing proliferation and survival of PDAC cell lines.
The effector response is traduced in cancer cells as induction of chemoresistance-inducing factors, Snail, and miR-146a, and TP53INP1. (2) – light blue arrows -
Bone marrow mesenchymal stem cell (BMSC)-derived exosomes contain miR-126-3p and miR-1231, which in turn inhibit proliferation, invasion and metastasis and
promotes apoptosis by down-regulation of disintegrin and metalloproteinase-9 (ADAM9). (3) – brown arrows - Vesicles from tumor-associated stroma cells (TASC)
are enriched in miR-145. This molecule possesses tumor suppressor action on target cells by inducing apoptosis. (4) – green arrows - NK-derived exosomes
mediate tumor cells suppression by two mechanisms. One of them is Fas-FasL interaction between exosomes and tumoral cells. The other mechanism is mediated
by excessive uptake by cancer cells of exosomes carrying miR-3607-3p which possess tumor suppressive qualities and decrease IL-26 expression. (5) – purple
arrows – PDAC tumor exosomes (TEXs) bearing c-Met and PD-L1 enhance carcinogenesis. c-Met provides proliferation, migration, and an anti-apoptotic status in
recipient cancer cells. PD-L1 guarantees evasion of immune control. (6) – black arrow – TEXs from highly invasive cells carry ZIP4, miR-125b-5p and miR-5703
towards weakly invasive cancer cells enhancing the aggressiveness of these last and promoting an increased invasive potential. (7) – orange arrows – In response to
gemcitabine treatment, chemoresistant PDAC cancer cells are capable of transferring their resistance properties to neighboring cells through exosomes. They release
TEXs bearing miR-155 and induce upregulation of SOD2 and CAT meanwhile DCK, a gene related to gemcitabine metabolism, is downregulated. Furthermore,
exosomes from different cell types of tumor microenvironment condition autophagy response and affect PDAC behavior. EE, Early endosomes; LE/MVB, Late
Endosomes/Multivesicular bodies; ER, endoplasmic reticulum; TEX, Tumor-derived exosomes.
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future with an exciting new comprehension about tumor biology
is waiting.
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5. Papademetrio DL, Lompardıá SL, Simunovich T, Costantino S, Mihalez CY,
Cavaliere V, et al. Inhibition of Survival Pathways MAPK and NF-kB
Triggers Apoptosis in Pancreatic Ductal Adenocarcinoma Cells via
Suppression of Autophagy. Target Oncol (2016) 11:183–95. doi: 10.1007/
s11523-015-0388-3

6. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, et al. Pancreatic
cancers require autophagy for tumor growth. Genes Dev (2011) 25:717–29.
doi: 10.1101/gad.2016111

7. Inman KS, Francis AA, Murray NR. Complex role for the immune system in
initiation and progression of pancreatic cancer. World J Gastroenterol
(2014) 20:11160–81. doi: 10.3748/wjg.v20.i32.11160

8. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH.
Dynamics of the immune reaction to pancreatic cancer from inception to
invasion. Cancer Res (2007) 67:9518–27. doi: 10.1158/0008-5472.CAN-07-0175

9. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: A
common denominator approach to cancer therapy. Cancer Cell (2015)
27:450–61. doi: 10.1016/j.ccell.2015.03.001

10. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1
and PD-L1 checkpoint signaling inhibition for cancer immunotherapy:
mechanism, combinations, and clinical outcome. Front Pharmacol (2017)
8:561. doi: 10.3389/fphar.2017.00561

11. Jindal V. Immune checkpoint inhibitors in gastrointestinal malignancies.
J Gastrointest Oncol (2018) 9:390–403. doi: 10.21037/jgo.2018.01.03

12. Guo S, Contratto M, Miller G, Leichman L, Wu J. Immunotherapy in
pancreatic cancer: Unleash its potential through novel combinations. World
J Clin Oncol (2017) 8:230–40. doi: 10.5306/wjco.v8.i3.230

13. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, et al.
Mammalian Autophagy: How Does It Work? Annu Rev Biochem (2016)
85:685–713. doi: 10.1146/annurev-biochem-060815-014556

14. Grasso D, Renna FJ, Vaccaro MI. Initial Steps in Mammalian
Autophagosome Biogenesis. Front Cell Dev Biol (2018) 6:1–10.
doi: 10.3389/fcell.2018.00146

15. Grasso D, Garcia MN, Iovanna JL. Autophagy in pancreatic cancer. Int J Cell
Biol (2012) 2012:1–7. doi: 10.1155/2012/760498
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Autophagy is a highly regulated multi-step process that occurs at the basal level in almost
all cells. Although the deregulation of the autophagy process has been described in
several pathologies, the role of autophagy in cancer as a cytoprotective mechanism is
currently well established and supported by experimental and clinical evidence. Our
understanding of the molecular mechanism of the autophagy process has largely
contributed to defining how we can harness this process to improve the benefit of
cancer therapies. While the role of autophagy in tumor resistance to chemotherapy is
extensively documented, emerging data point toward autophagy as a mechanism of
cancer resistance to radiotherapy, targeted therapy, and immunotherapy. Therefore,
manipulating autophagy has emerged as a promising strategy to overcome tumor
resistance to various anti-cancer therapies, and autophagy modulators are currently
evaluated in combination therapies in several clinical trials. In this review, we will
summarize our current knowledge of the impact of genetically and pharmacologically
modulating autophagy genes and proteins, involved in the different steps of the autophagy
process, on the therapeutic benefit of various cancer therapies. We will also briefly discuss
the challenges and limitations to developing potent and selective autophagy inhibitors that
could be used in ongoing clinical trials.

Keywords: autophagy, cancer resistance, chemotherapy, radiotherapy, targeted therapy, immunotherapy
INTRODUCTION

Macroautophagy (referred to as autophagy) was first described in 1966 as a cellular process that
occurs at the basal level in all cells (1). Autophagy relies on the formation of double-membraned
vesicles known as autophagosomes, leading to the degradation of their cargo, such as damaged
proteins or organelles (2). The autophagy process involves more than thirteen autophagy-related
(ATG) proteins and requires the following major steps: (i) Initiation, (ii) Nucleation, (iii)
Maturation, and (iv) Fusion with lysosome for cargo degradation (Figure 1). Originally
described as a bulk degradation process, autophagy is now described as a highly selective
degradation mechanism for the recycling of cellular components. Autophagy can be activated as
an adaptive cellular response to external stimuli such as hypoxia, starvation, and different cancer
therapies and therefore considered as a cytoprotective mechanism (1, 3–5).
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Autophagy is activated under nutrient deprivation or
starvation condition, which resulted in a decrease of mTOR
activity and an increase of Unc-51 like autophagy activating
kinase 1 (ULK1) activation. Activated ULK1 is subsequently
dissociated from the 5’ adenosine monophosphate-activated
protein kinase (AMPK), resulting in autophagy activation
(6, 7). In addition to starvation, autophagy can also be
activated in the tumor microenvironment by hypoxia through
the hypoxia-inducible factor 1-a (HIF-a). The accumulation of
HIF-1a in hypoxic cells activates the expression of BNIP/
BNIP3L, which subsequently dissociates the complex between
Bcl-2 and Beclin-1 (BECN1) to activate autophagy (8).

Autophagy was primarily considered as a tumor suppressive
mechanism. Such a role was supported by studies showing
that targeting BECN1, ATG5, and ATG7 promotes tumor
initiation (9–11). In particular, evidences have demonstrated that
Everolimus, an mTOR inhibitor and analogue of rapamycin,
significantly increases mice survival in acute lymphoblastic
leukemia in combination with Vincristine (12, 13). Conversely,
many groups highlight the tumor supportive role of autophagy by
showing its role in promoting tumor cell survival and growth in
multiple tumor types (14, 15). The consensus appears to be that
autophagy plays double-edged sword in suppressing tumor
initiation and in promoting the survival of established tumors
(16). Indeed, experimental evidence points at autophagy as a
mechanism involved in cancer cell resistance to various therapies,
such as chemotherapy, radiotherapy, targeted therapy,
photodynamic therapy-induced apoptosis, and immunotherapy
(17–21). Despite the complex interplay between the tumor
suppressive and supportive role of autophagy in cancer (14), the
vast majority of the clinical trials have focus on inhibiting autophagy
with chloroquine (CQ) and hydroxychloroquine (HCQ) either
alone or in combination with anticancer therapies (22). Therefore,
autophagy inhibition has been suggested as a strategy to improve
Frontiers in Oncology | www.frontiersin.org 2219
cancer therapies and has been considered in multiple clinical trials.
Autophagy inhibitors have been classified according to their action
on the major steps of autophagy and numerous preclinical studies
have evaluated the therapeutic benefit of inhibiting autophagy.

In this review, we will summarize the impact of inhibiting the
different steps of autophagy, either pharmacologically or
genetically by silencing or knocking down autophagy-
associated genes (Figure 2), and describe how autophagy can
be leveraged to improve the therapeutic benefit of current cancer
therapies and elicit a synergistic effect with antineoplastic agents.
IMPACT OF INHIBITING THE INITIATION
AND NUCLEATION STEPS ON CANCER
THERAPIES

The first step of the autophagy process, so-called the initiation
step, involves the ULK protein complex including ATG13,
ATG101/ULK1/2, and FIP200 (2, 23). The initiation step of
autophagy facilitates the recruitment of the class III PI3K or
VPS34 complex containing BECN1, VPS34, regulatory subunit 4
(VPS15/P150), activating molecule in BECN1-regulated
autophagy protein 1 (AMBRA), UV radiation resistance-
associated gene protein (UVRAG), BIF1, and ATG14L (2, 23)
to the newly formed “phagophore”. The recruitment of the class
III PI3K constitutes the nucleation step. In this section, we will
summarize the different drugs and/or strategies used to target the
initiation and nucleation steps and briefly discuss data available
on their efficacy in pre-clinical tumor mouse models.

Inhibition of ULK1
Several long noncoding RNAs (lncRNAs) have been reported to
induce tumor chemoresistance to 5-fluorouracil (5-FU) such as
FIGURE 1 | General presentation of the major steps of autophagy. Several stimuli have been identified to induce autophagy such as hypoxia, starvation, and cancer
therapies. The major steps of autophagy are: 1) Initiation, 2) Nucleation, 3) Maturation, and 4) Fusion with lysosome for the degradation and recycling of
autophagosome constituents.
February 2021 | Volume 11 | Article 626309

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xiao et al. Role of Autophagy in Cancer-Therapies
lncRNA H19 and lncRNA small nucleolar RNA host gene 6
(SNHG6) in colorectal cancer (24, 25). SNHG6 promotes
resistance of mice bearing RKO colon tumors to 5-FU.
Furthermore, investigations showed that SNHG6 induced
ULK1-dependent autophagy via sponging miR-26a-5p (25).

SBI0206965 is a highly selective inhibitor of ULK1 kinase (26)
and it has been reported to sensitize NSCLC cells and acute myeloid
leukemia (AML) cells to cisplatin- and daunorubicin-based
chemotherapy, respectively, by decreasing cancer cell viability
Frontiers in Oncology | www.frontiersin.org 3220
(27, 28). In pancreatic ductal adenocarcinoma (PDAC) cells,
combining extracellular signal-regulated kinase (ERK) inhibitors
with inhibitors of ULK1 complex (SBI0206965 or MRT68921) or
with spautin-1, a specific inhibitor of two ubiquitin-specific
peptidases USP10 and USP13 that control BECN1 degradation
(29), decreased cell proliferation relative to ERK inhibitors alone
(30). Recently, Chen et al. demonstrated that simultaneous
inhibition of ULK1 (MRT68921) with NUAK1 (also known as
ARK1) induces apoptosis in various cancer types (31).
FIGURE 2 | Schematic representation of proteins involved in the major steps of autophagy. Genetic or pharmacological approaches targeting proteins involved in
each step of autophagy are reported in squares.
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Inhibition of Class III PI3K
Pre-treatment with class III PI3K inhibitors, such as 3-
Methyladenine (3-MA), showed a significant improvement of
the sensitivity of MDA-MB-231 and HBL-100 breast cancer cells
to ionizing radiation (IR) despite an apparent low level of basal
autophagy in HBL-100 cells (32). The therapeutic benefit of
combining IR and 3-MA was observed in a xenograft esophageal
squamous cell carcinoma mice model in vivo with a significant
decrease in tumor volume relative to single treatment (33).
Moreover, it has been demonstrated that 3-MA in combination
with docetaxel, a semi-synthetic analog of paclitaxel, overcame
docetaxel-induced autophagy and improved the sensitivity of
lung adenocarcinoma (LAD) cells to docetaxel. Docetaxel-
induced autophagy was mediated by High-mobility group box
1 (HMGB1) translocation, which participates in the BECN1
PI3K-III core complex formation via MEK/ERK1/2 pathway.
Indeed, knockdown of HMGB1 reverted the sensitivity of LAD
cells to docetaxel (34).

Sorafenib is a well-known anti-angiogenic agent and remains
the standard treatment in advanced unresectable hepatocellular
carcinoma (HCC) (35). Over the past decade, several studies
have focused on the underlying mechanisms induced by
Sorafenib and exploring new combination therapies. In various
types of cancers, Sorafenib has been described as inducing
autophagy (36). Yuan et al. showed that 3-MA treatment in
combination with Sorafenib significantly improved growth
inhibition in HepG2, Hep3B, and PLC/PRF/5 treated cells (37).
In triple-negative breast cancer (TNBC) cells, dual inhibition of
autophagy and the Insulin-like growth factor (IGF) signaling
pathway using 3-MA and NVP-AEW541, respectively, enhanced
the NVP-AEW541-induced cell growth inhibition and apoptosis
(38). In addition, preclinical studies have focused on exploring
the benefit of epidermal growth factor receptor (EGFR)
inhibitors such as gefitinib in EGFR-positive cancers (39). In
TNBC cells, an increasing concentration of gefitinib combined
with 3-MA significantly decreased cell viability in vitro.
Interestingly, in TNBC xenograft mice models, a gefitinib and
3-MA combination resulted in a significant decrease in tumor
volume and tumor weight compared to the gefitinib treated
group. Further investigations revealed that autophagy inhibition
by 3-MA enhanced gefitinib-induced GO/G1 cell cycle arrest,
DNA damage, and cell death via the mitochondrial apoptosis
pathway (40).

Selective VPS34 kinase inhibitors have acquired great interest
as potential potent drugs to inhibit early autophagy. The VPS34
kinase inhibitor SAR405 in combination with everolimus, a well-
known mTOR inhibitor approved for the treatment of various
tumors (41), induced efficient autophagy inhibition and reduced
renal tumor cell proliferation in vitro (42). In addition, the
VPS34 kinase inhibitor SB02024 in combination with
sunitinib, a tyrosine kinase inhibitor, significantly decreases cell
viability and multicellular spheroid (MCS) growth in both MCF-
7 and MDA-MB-231 breast cancer cell lines. Notably, inhibition
of MCS growth was not observed with a chloroquine (CQ) and
sunitinib combination (43). We have recently shown that
pharmacological targeting of VPS34 kinase activity by SB02024
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(Sprint Bioscience) or SAR405 (Sanofi) significantly decreased
tumor growth and improved mice survival in melanoma B16-
F10 and colorectal CT26 tumor mouse models (44). We provided
evidence that deep changes in the immune landscape occurred
in B16-F10 and CT26 mice models treated with VPS34 inhibitors
(SB02024 and SAR405), characterized by increased infiltration of
immune effectors such as NK, dendritic cells (DCs), M1
macrophages, and CD8+ T cells in the tumor microenvironment.
Because there was no difference in the growth of tumors engrafted
in NOD scid gamma (NSG) mice upon treatment with VPS34
inhibitors, these data clearly indicated that the tumor inhibitory
effect of VPS34 inhibitors involves the host immune system.
Moreover, we demonstrated that pro-inflammatory chemokines
such as CCL5 and CXCL10 are responsible for NK and CD8+ T cell
recruitment in B16-F10 tumors and CT26 tumors treated with
VPS34 inhibitors relative to control. Interestingly, SB02024 or
SAR405 improved the therapeutic benefit of anti-PD-1/PD-L1 by
significantly reducing tumor growth and tumor weight and
improving mice survival in B16-F10 and CT26 tumors (44).
Inhibition of Beclin-1
It has been reported that genetic inhibition of BECN1 or UVRAG
potentiated IR-induced DNA double-strand breaks (DSBs) and
cell death in colorectal cancer cells (45). Furthermore, gene
silencing of BECN-1 enhanced the efficiency of fasudil (a
RhoA/ROCK inhibitor) to induce apoptosis in esophageal
squamous cell carcinoma cells (46). Similarly, in vitro
suppression of BECN1 reduces paclitaxel-mediated cell
viability, colony formation, and induced apoptotic death in
BT-474 and MDA-MB-231 breast cancer cells in dose- and
time-dependent manners (47). Similar effects were observed in
non-small cancer lung cancer (NSCLC) cells, endometrial
carcinoma, nasopharyngeal carcinoma cells, and ovarian and
renal cancers (48–53). Interestingly, the therapeutic benefit of
paclitaxel was increased in a Becn1-targeted BT-474 xenograft
mice model based on cleaved caspase-3 positive cells and
inhibition of tumor growth (47).

In human chronic myeloid leukemia (CML) cells, co-
treatment with spautin-1 and imatinib, a BCR-ABL tyrosine
kinase inhibitor, potentiated imatinib-induced CML cell
apoptosis in both the K562 cell line and primary cells (54). In
line with this latter study, it has also been reported that imatinib
in combination with microRNA-30a, identified as potent
inhibitor of BECN1 and ATG5, significantly increased the
imatinib-mediated cytotoxicity in CML cells (55).

Tamoxifen is one of the most efficient endocrine treatments
in estrogen receptor (ER) positive breast cancers, which account
for 70% of the breast cancer subtypes. However, the therapeutic
benefit of Tamoxifen is negatively impacted by the development
of drug resistance (56). Gu et al. discovered that tamoxifen
resistance was associated with an increased BECN1 and human
epidermal growth factor receptor 2 (HER2) expression in breast
cancer cells. BECN1 silencing enhanced the sensitivity of breast
cancer cells to tamoxifen by reducing tumor cell proliferation,
migration, and invasion capabilities. These data highlight a novel
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role of BECN1 in HER2 regulation that contributes to tamoxifen
resistance (57).

Using several ovarian cancer cells, Zhang et al. showed that
cancer cell resistance to cisplatin relied on autophagy-dependent
induction of nuclear accumbens-1 (NAC1). Indeed, targeting
NAC1 or autophagy, via 3-MA or BECN1 silencing, enhanced
ovarian cancer cell sensitivity to cisplatin (58). Similar results
were reported in adenoid cystic carcinoma of the salivary glands,
glioma, and urothelial carcinoma (59–61).

Bevacizumab, a monoclonal anti-vascular endothelial growth
factor (VEGF) antibody, is widely used to treat metastatic
colorectal cancer, lung cancer and renal cell carcinoma
(62–64). Knowing that bevacizumab induces autophagy, it has
been reported that genetic inhibition of BECN1 improves the
anticancer effects of this drug in colorectal cancer cells (65).
Likewise, improved clinical response to trastuzumab was
observed in HER2+ breast cancer displaying loss of BECN1
gene (38, 66). The role of autophagy, including BECN1, in
tumor resistance to targeted therapy is comprehensively
reviewed by Mele et al. (67).

We have previously reported that genetic targeting of Becn1
in melanoma cells prevents the degradation of Natural killer
(NK)-derived Granzyme B and enhances melanoma
susceptibility to NK-mediated killing (68). Furthermore, we
showed that the infiltration of NK cells into Becn1 defective
melanoma is increased, which results in significant inhibition of
tumor growth (69). Importantly, the impact of inhibiting
autophagy on the infiltration of cytotoxic immune cells into
the tumors and the decrease in tumor growth is also reported by
other studies (70–73).
TARGETING AUTOPHAGOSOME
MATURATION GENES ATG4B, ATG5,
AND ATG7 POTENTIATES
ANTICANCER THERAPIES

The third major step of autophagy involves two key complexes that
promote the expansion of the phagophore membrane and result in
the formation of a double-membraned vesicle named
autophagosome. The first complex involves cooperation between
ATG4B and ATG7, allowing for the conjugation of LC3I with
phosphatidylethanolamine (PE) to form LC3II. LC3II is
subsequently incorporated into the newly formed autophagosome
(74). The second complex includes ATG7 and the E2-like enzyme
ATG10, which are involved in ATG5-ATG12 conjugation (2). In
this section, we will describe the therapeutic benefit of inhibiting
autophagy genes involved in the maturation of autophagosomes.
Inhibition of ATG4B
The serine/threonine protein kinase MST4, also known as
mammalian STE20-like protein kinase 4 (MST4) (75), was
reported to facilitate p-ERK pathway and promote epithelial to
mesenchymal transition (EMT) and cancer metastasis in gastric
cancer (76). MST4 is associated with prostate cancer, hepatocellular
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carcinoma, and breast cancer progression (77, 78). It has been
reported that MST4 directly phosphorylates ATG4B at S383
position (79). Furthermore, ATG4B inhibition, by NSC185058
(80), improves the anti-tumor effect of radiotherapy in
intracranial glioblastoma (GBM) patient derived xenograft (PDX)
mice models (79). These data suggest a potential interconnection
between MST4, autophagy and malignancy in GBM; however, the
value of direct targeting MST4 as a strategy to modulate autophagy
remains to be defined.

Recently, benzotropolone derivatives were synthetized and
tested for ATG4B inhibition. UAMC-2526 was selected as the
best candidate according to its efficiency to reduce basal
autophagy and its high stability in the plasma. A combination
of UAMC-2526 with oxaliplatin-based chemotherapy reduced
colorectal cell proliferation and promoted tumor growth
inhibition in HT29 colorectal tumor-bearing mice (81).

FMK-9a is another ATG4B inhibitor, reported to attenuate
the pro-LC3 cleavage process and the LC3-PE delipidation.
FMK-9a could also induce autophagy independent of its
inhibition on ATG4B activity (82). Recently, S130 has been
identified to bind and inhibit ATG4B, hence attenuating the
delipidation of LC3-II and suppressing the recycling of LC3-I in
colorectal cancer cells. Therefore, S130 has been described as a
novel small-molecule to improve cancer therapy (83).

Moreover, an FDA-approved drug screening identified
tioconazole as a new ATG4 inhibitor. Tioconazole treatment
enhanced doxorubicin efficiency by decreasing cell viability in
H4, HCT116, and MDA-MB-231 cells. Interestingly, the
combination of tioconazole and doxorubicin showed an
enhanced antitumor effect in HCT116 xenografted mice
relative to each drug alone (84). In this context, it has been
reported that the HER2 status was positively correlated with the
expression of ATG4B protein. Interestingly, ATG4B silencing
was associated with reduced viability of trastuzumab treated
HER2+ cells compared to trastuzumab treatment alone (85).

Inhibition of ATG5 and ATG7
In A549 human lung cancer, overcoming the cytoprotective effect of
autophagy induced by cisplatin, via ATG5 silencing, improves
cancer cell apoptosis, as compared to cisplatin treatment alone
(86). Dual combination of Epirubicin, a structural analog of
doxorubicin, with ATG5- or ATG7-silencing, significantly reduced
cell viability in anthracycline-sensitive and resistant TNBC cells
(87). O’Donovan et al. showed that combining both siRNA BECN1
andATG7 decreased cell survival in 5-FU-treated esophageal cancer
cells while targeting BECN1 or ATG7 alone had no impact (88).
Therefore, it appears that targeting different steps of autophagy may
be a more appropriate strategy to improve chemotherapy efficacy.
In TBNC cells, Wu et al. demonstrated that dual inhibition of
ATG7, genetically, and IGF-1R pharmacologically, promotes
apoptosis and cell growth inhibition (38). In PDAC cells, genetic
inhibition of ATG5 or ATG7 significantly improved the effect of
ERK inhibitors on inhibiting cell proliferation relative to ERK
inhibitors alone (30). Dual combination of ATG5 siRNA and
docetaxel, a well-known second-line approved treatment in
NSCLC, decreased cell proliferation together with increasing
cytotoxicity and apoptosis in LAD cells (34). In renal cell
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carcinoma cells, ATG5 silencing or 3-MA treatment in combination
with Sorafenib enhanced the sensitivity of RCC cells to
Sorafenib (89).
IMPACT OF INHIBITING
AUTOPHAGOSOME-LYSOSOME FUSION
ON THE RESPONSE TO VARIOUS
ANTICANCER THERAPIES

The final step of autophagy consists of fusion between
autophagosomes and lysosomes for the degradation, and
recycling of damaged proteins and organelles. Thus, the outer
membrane of autophagosomes merges with the lysosomal
membrane, and then the inner membrane is degraded (90).
The principal factors involved in autophagosome-lysosome
fusion are the homotypic fusion and protein sorting (HOPS)
complex, RAB7, and the N-ethylmaleimide-sensitive factor
attachment protein receptors (SNAREs) (91). Other proteins,
such as the lysosomal-associated membrane protein 2 (LAMP2),
are also required for proper fusion (92). This part will focus on
the impact of targeting these factors and the fusion step on the
therapeutic benefit of radiotherapy, chemotherapy, targeted
therapy, and immunotherapy.

Targeting the Soluble N-Ethylmaleimide-
Sensitive Factor Attachment Protein
Receptors (SNAREs) to Enhance
Response to Conventional Treatments
Syntaxin 17 (STX17), SNAP29, and vesicle-associated membrane
protein 8 (VAMP8) are N-ethylmaleimide-sensitive factor
attachment protein receptors (SNAREs) involved in the
autophagosome-lysosome fusion. During this process, STX17 is
recruited to the outer membrane of autophagosomes through
HOPS complex and interacts with VAMP8, located on
lysosomes. This interaction is enhanced by SNAP29, which
forms a SNARE complex with STX17 and VAMP8 (93).
Knockdown of STX17 causes a blockade of the fusion between
autophagosomes and lysosomes and results in the accumulation
of autophagosomes (93). Therefore, targeting SNARE proteins is
considered a strategy for preventing the late step of autophagy.
Moreover, SNAP29-STX17-VAMP8 complex formation can be
enhanced by the down-regulation of O-GlcNAc transferase
(OGT). This was correlated with the resistance of ovarian
cancer to cisplatin treatment (94), and highlights that targeting
SNAP29-STX17-VAMP8 complex by overexpression of OGT
could improve the sensitivity to cisplatin treatment.
Overexpression of VAMP8 has also been associated with
resistance to temozolomide in human glioma cells, and
knockdown of STX17 in glioma cells overexpressing VAMP8
led to increased chemosensitivity (95).

In addition, Berbamine, a natural product isolated from
traditional Chinese medicine, inhibits autophagosome-lysosome
fusion by preventing the interaction between VAMP8 and
SNAP29. Berbamine was proposed as a new potential inhibitor of
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autophagy that could enhance the effects of chemotherapy
treatment (96). Moreover, Berbamine has been investigated as a
potential anticancer drug in several studies and seems to act on
multiple pathways such as MEK/ERK (97) and WNT/b-catenin
pathways (98).

Targeting Lysosomal-Associated
Membrane Protein 2 (LAMP2) as a
Potential Target to Inhibit
Autophagosome-Lysosome Fusion and
Improve the Response to Anti-Cancer
Therapies
LAMP2 is a glycosylated protein ubiquitously expressed, and
mostly located on lysosome membranes. LAMP2 is required for
the proper fusion between autophagosomes and lysosomes (92).
In neuroendocrine prostate cancer, knockdown of LAMP2 by
siRNA induced an autophagy blockade and decreased both
cancer cell proliferation and neuroendocrine markers. These
results indicate that LAMP2 plays a dual role in cell survival,
by inducing autophagy and in the differentiation of androgen-
sensitive human prostate adenocarcinoma cells into
neuroendocrine prostate cancer cells (99). In addition, a recent
in silico approach showed that the expression of LAMP2 was
decreased in prostate cancer tissues as compared to normal
prostate tissues (100), indicating that the expression level of
LAMP2 could act as a regulatory element in cancer progression.
Another study compared the expression level of LAMP2 in
salivary adenoid cystic carcinoma and pleomorphic adenoma
and/or a normal salivary gland (101). The results showed an
increased expression of LAMP2 in salivary adenoid cystic
carcinoma, which was associated with cancer progression.
Although the expression level of LAMP2 seems to be different
in various cancer types, several data suggest that LAMP2 is a
potential target for cancer therapy in combination with
conventional treatments. This statement was supported by data
showing that the silencing of LAMP2 by siRNAs led to a
radiosensitization of prostate cancer cell lines (102). In
addition, a reduced expression of LAMP2 has been associated
with a decreased resistance to both cisplatin in human ovarian
carcinoma cells (103) and azacitidine in acute myeloid leukemia
(104). Nevertheless, the sensitization to radiotherapy and
chemotherapy by LAMP2 targeting should be investigated in
other types of cancer cells.

Overexpression of RAB7 as a Potential
Strategy to Improve Sensitivity to Anti-
Cancer Treatments
RAB7 is a small GTPase localized to late endosomes and
lysosomes and has multiple functions in autophagy. In
mammalian, RAB7 is not direct ly involved in the
autophagosome-lysosome fusion but rather in autolysosome
maturation under nutrient-rich conditions (105). The
significance of RAB7 as a target for autophagy modulation is
not well defined so far.

The role of RAB7 in cancer progression has recently been
described as a protein involved in promoting the proliferation,
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invasion, and migration of gastric cancer cells (106). RAB7 has
also been associated with chemoresistance to cisplatin. Indeed,
RAB7 was downregulated in cisplatin-resistant cervical cancer
cell lines as compared to chemosensitive ones (107).
Additionally, RAB7 overexpression induced chemosensitization
of cisplatin-resistant cells, while depletion of RAB7 by siRNA
induced resistance to cisplatin in chemosensitive cells (108).
Furthermore, RUBICON (Run domain Beclin-1 interacting
and cysteine-rich containing), a negative regulator of
autophagy, inhibits autophagosome-lysosome fusion and
interacts with RAB7-GTP via a RUBICON homology (RH)
domain (109).

Impact of Using Drugs Inhibiting the Last
Step of Autophagy Process on Various
Cancer Therapies
CQ and its derivate, hydroxychloroquine (HCQ), are the only
drugs having shown their ability to block the last step of
autophagy and being approved by the Food and Drug
Administration (FDA) for clinical use. Indeed, CQ blocks the
autophagic flux by altering autophagosome fusion with
lysosomes, presumably by interfering with SNAP29
recruitment (110). In addition, CQ cytotoxicity induced
autophagy-associated cell death associated with nuclei
abnormalities, lipofuscinogenesis, and senescence (111). As
reported in clinicaltrials.gov, CQ is currently being investigated
as a potent anticancer drug in small cell lung cancer, breast
cancer, pancreatic cancer, glioblastoma, melanoma, and other
types of cancers.

Because CQ and HCQ are the only autophagy inhibitors
available and approved for clinical use, multiple studies evaluated
the potential effects of CQ in vitro, in combination with
anticancer treatments. In fact, CQ was responsible for radio-
sensitizing bladder cancer cells and bladder cancer xenografts in
mice (112). CQ also had a synergetic effect with radiotherapy on
glioma initiating cells by inducing apoptosis and inhibiting
autophagy induced by ionizing radiation (113). The same
synergistic effects were observed on glioblastoma cell lines
(114). CQ administered after radiation is also capable of
increasing the death of breast cancer cells and tumor
regression in vivo (115). The use of CQ as a potent enhancer
of radiotherapy is currently being evaluated in clinical trials
involving small cell lung cancer (NCT01575782) and
glioblastoma (NCT04397679), and in patients with brain
metastases from solid tumors (NCT01894633). It should be
highlighted that CQ sensitized various breast cancer cell lines
to cisplatin and LY294002, reported to induce autophagy in these
cells. However, CQ sensitization in these cells occurred
independent of autophagy inhibition. Therefore, the autophagy
independent sensitizing effects of CQ should be considered in
clinical trials where CQ or its derivatives are used in the
treatment of cancer (116, 117). In HCT-116 and HT-29
colorectal cancer cell lines, it has been reported that CQ
sensitized these cell lines to radiation and 5-FU treatment and
resulted in a significant decrease in clonogenic survival of HT-29
cell line without any impact on cell cycle progression or cell
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death (118). However, in GBM, CQ was found to induce P53-
independent cell deaths that do not require caspase-mediated
apoptosis. The CQ derivatives, Quinacrine and Mefloquine, are
more potent and displayed superior blood-brain barrier
penetration compared to CQ (119).

Maycotte et al. evaluated the effects of combining CQ with
chemotherapeutic drugs such as the DNA damaging agent
cisplatin, the mTOR inhibitor Rapamycin, and the PtdIns3K
inhibitor LY294002 in two mouse breast cancer cell lines (117).
While the combination of CQ and cisplatin had no significant
effect on the viability of both cell lines, CQ combined with
PtdIns3K and mTOR inhibition sensitized both cell lines.
However, the CQ-mediated sensitization seems to be
independent of autophagy, since this sensitization was not
observed following Atg12 and Becn1 knockdown (117). A
similar result was observed in KRAS-driven cancer cell lines
where the antiproliferative effects of CQ were similar between
ATG7-deficient tumor cell lines with undetectable autophagic
flux and ATG7-efficient tumor cell lines (120). In addition, CQ
sensitizes bladder cancer cells to cisplatin treatment by inhibiting
cisplatin-induced autophagy (121). Similar results were observed
in nasopharyngeal carcinoma cells (122) and hypopharyngeal
squamous cell carcinoma xenografted mice (123). This suggests
that CQ effects, in combination with chemotherapy, depend on
the type of cancer and therefore require further investigation.

Several studies have been conducted on CQ in combination
with targeted therapies. Erlotinib and Rapamycin are two
tyrosine kinase inhibitors targeting the EGFR and the
mammalian target of Rapamycin, respectively. These
anticancer drugs are particularly used for NSCLC treatment
where EGFR and PI3K/AKT/mTOR pathways are often
dysregulated. It has been shown that the combination of
Erlotinib and Rapamycin with Monensin, a polyether
antibiotic inhibiting autophagosome-lysosome fusion,
improved Erlotinib and Rapamycin induced tumor growth
inhibition and apoptosis in NSCLC (124). Similar results were
observed in prostate cancer cells by Monensin, although the
involvement of autophagy inhibition was not clearly suggested in
this study (125). Furthermore, the combination of the tyrosine
kinase inhibitor, sunitinib, with CQ or LAMP2 knockdown also
showed promising results in a metastatic pancreatic
neuroendocrine tumor mice model (126). The combination of
the monoclonal antibody trastuzumab with CQ in HER2+ breast
cancer (127) also led to promising results. Indeed, CQ sensitized
both trastuzumab-resistant breast cancer cells and trastuzumab-
resistant xenografts, resulting in increased cell death in vitro and
decreased tumor growth in vivo.

In addition to its effects in combination with radiotherapy,
chemotherapy, and targeted therapy, CQ seems to be responsible
for various effects on the immune system. CQ resets tumor-
associated M2 macrophages to the tumor-inhibiting M1
phenotype in B16 melanoma and H22 hepatocarcinoma mouse
tumor models, and ameliorates the immunosuppressive tumor
immune microenvironment through a lysosomal calcium-TFEB
pathway (91). Another recent article showed that CQ in
combination with 5-FU increased the driving of DC
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maturation by HCT-116 colon cancer cells, and in this way
stimulates T cell responses induced by tumor cell lysates (128).
Considering the impact of CQ on the immune system, CQ was
tested in combination with dual CTLA4 and PD-1 immune
checkpoint blockade in orthotopic tumors established from
pancreatic ductal adenocarcinoma cells. This study revealed an
increased CD8+ T cell infiltration within the tumors and a tumor
sensitization to anti-PD-1 and anti-CTLA4 therapy when
combined with CQ (129). These data support further
investigations on the potential effect of combining CQ with
other immunotherapy such as new immune checkpoint
inhibitors, T-cell transfer therapy, or monoclonal antibodies,
on the immunosuppressive tumor microenvironment.

Besides CQ, Bafilomycin A1 (BafA1) is another drug acting at
the last step of autophagy. BafA1 is an antibiotic targeting the
vacuolar H+-ATPase enzyme, thus inducing acidification of
lysosomal pH, therefore inhibiting lysosomal degradation
capacity. BafA1 has also shown promising effects in combination
with chemotherapy, since BafA1 increased cisplatin cytotoxicity in
tongue squamous cell carcinoma cells and bladder cancer cells (121,
130). BafA1 also increased chemosensitivity to 5-FU in gastric
cancer cells (131). Other drugs have been described to target
autophagosome-lysosome fusion, such as LS-1-10, Cytochalasin E
and Simvastatin. LS-1-10 is a novel acridine derivative sharing
structure with CQ and HCQ. LS-1-10 has a dual function, it is able
to both induce DNA damage and block autophagosome-lysosome
fusion. In addition, LS-1-10 is significantly more potent in reducing
cell viability than CQ (>50%) in colon cancer cells (132).

Cytochalasin E is a fungal toxin found in Aspergillus clavatus,
which binds to actin filaments. Cytochalasin E can inhibit
autophagosome-lysosome fusion in the same way as CQ. In
addition, cytochalasin enhances the effect of bortezomib in
human lung cancer cells (133). Simvastatin is a powerful inhibitor
of hydroxymethylglutaryl CoA reductase, an enzyme involved in
cholesterol biosynthesis. Interestingly, Simvastatin can induce cell
death in astrocytoma, neuroblastoma, glioblastoma, breast cancer,
and lung adenocarcinoma (134). Moreover, this drug appears to
inhibit the fusion between autophagosomes and lysosomes and
increase the effects of Temozolomide in glioblastoma cell lines (135).
Finally, the combination of Simvastatin with Vorinostat, a histone
deacetylase inhibitor, inhibits autophagy by preventing RAB7
prenylation and decreases tumor growth in mice bearing triple-
negative breast tumors (136).
CONCLUSION

Despite the dual role of autophagy in suppressing tumor initiation
and in promoting the survival of established tumors (16), the studies
reported in this review highlight the pivotal role of autophagy as a
cytoprotective and therapy resistance mechanism in cancer.
Therefore, strategies used to modulate autophagy for enhancing
the therapeutic benefit of current anticancer therapies are an area of
intense investigation. Based on data reported in this review, we
strongly believe that inhibiting autophagy represents a new
paradigm for overcoming therapy resistance and enhancing drug
sensitivity in multiple tumor cell types. Because autophagy
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inhibition is currently used in many clinical trials along with
different therapeutic strategies, it is reasonable to consider that
several cancer treatments themselves induce autophagy in
tumor cells.

Among the various autophagy inhibitors, CQ or its derivative
HCQ are the major drugs used in clinical trials, with mitigated
success. While CQ provides promising results in combination with
conventional anticancer therapies, in some studies CQ sensitization
appears to be independent of autophagy inhibition. Therefore, more
selective and potent autophagy inhibitors must be designed to
definitively endorse the therapeutic benefit of targeting autophagy
in cancer patients. While CQ and HCQ inhibits the last step of
autophagy (110), other druggable autophagy proteins have recently
been proposed, which include the early autophagy protein BECN1
(45) and its interacting protein VPS34 (or PI3K class III) (41, 42,
44). Thus, more potent and selective autophagy specific inhibitors
are currently in pre-clinical development; these include drugs
targeting earlier steps in the autophagy process, such as ULK1,
VPS34, and ATG4B (27, 28) (79). Other factors interacting with the
autophagy process could also be considered as potential targets to
inhibit autophagy and overcome therapy resistance, such as AMPK
and HIF-1a, which are reported as key inducers of autophagy
through negative regulation of the mTOR pathways and inducing
hypoxic conditions, respectively (6, 7, 137). Other drugs are able to
target the late step of autophagy by interacting with lysosomes.
ROC-325 has been described as a potent autophagy inhibitor
exhibiting superior in vitro and in vivo anticancer effects
compared to CQ. In Renal cell carcinoma RCC, ROC-325
induced an accumulation of autophagosomes in vitro and
inhibited RCC growth and survival in an ATG5/7-dependent
manner in vivo by disrupting autophagic degradation (138). In
acute myeloid leukemia, ROC-325 improved the anti-leukemic
activity of azacitidine through inhibiting autophagy (139).
BRD1240 is a small-molecule suppressing the V-ATPase function
and therefore inhibiting the lysosomal acidification property. It has
been reported that, similar to BafA1, BRD1240 inhibited
autolysosome formation and subsequently triggering a significant
accumulation of autophagosomes (140). Similar to ROC-325 and
LS-1-10, Betulinic acid (BA) disrupt the degradative lysosomal
function (74, 141–143), leading to the accumulation of
mitochondria inside dysfunctional autolysosomes. Such a
lysosome-mitochondrial stress axis is responsible for the
induction of lipofuscinogenesis and ageing (143).

It should be highlighted that even if a selective and potent
autophagy inhibitor is identified, the challenging task is to
demonstrate that the therapeutic benefit that could be observed is
indeed related to inhibition of the autophagy process, as almost all
autophagy-related genes have non-autophagic functions. Another
challenge is to maintain a balance between the benefits gained by
autophagy inhibition and the deleterious effects of this inhibition in
cancer patients. Indeed, the process of autophagy seems to both
activates and inhibits cellular senescence (144), and chronic
inhibition of autophagy appears to increase permanently the risk
of cancer (145). Finally, considering the controversial role of
autophagy regarding its cytoprotective or cytotoxic function, it is
more likely obvious that the clinical outcome of combination
treatment between an inhibitor of autophagy with chemotherapy,
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radiotherapy, targeted therapy, or immunotherapy would lead to
contradictory or equivocal results (146). Therefore, the last
challenge to overcome would be to determine whether patients
would benefit from autophagy inhibition prior to conventional
therapies, with for example the use of novel biomarkers of
cytoprotective autophagy.
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Católica De Chile, Santiago, Chile, 2 Laboratory for Mechanobiology of Transforming Systems, Institute for Biological and
Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile,
Santiago, Chile, 3 Laboratory for Molecular Mechanics of Cell Adhesion, Department of Physiology, Faculty of Biological
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Proper execution of cellular function, maintenance of cellular homeostasis and cell survival
depend on functional integration of cellular processes and correct orchestration of cellular
responses to stresses. Cancer transformation is a common negative consequence of
mismanagement of coordinated response by the cell. In this scenario, by maintaining the
balance among synthesis, degradation, and recycling of cytosolic components including
proteins, lipids, and organelles the process of autophagy plays a central role. Several
environmental stresses activate autophagy, among those hypoxia, DNA damage,
inflammation, and metabolic challenges such as starvation. In addition to these
chemical challenges, there is a requirement for cells to cope with mechanical stresses
stemming from their microenvironment. Cells accomplish this task by activating an
intrinsic mechanical response mediated by cytoskeleton active processes and through
mechanosensitive protein complexes which interface the cells with their mechano-
environment. Despite autophagy and cell mechanics being known to play crucial
transforming roles during oncogenesis and malignant progression their interplay is
largely overlooked. In this review, we highlight the role of physical forces in autophagy
regulation and their potential implications in both physiological as well as pathological
conditions. By taking a mechanical perspective, we wish to stimulate novel questions to
further the investigation of the mechanical requirements of autophagy and appreciate the
extent to which mechanical signals affect this process.
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INTRODUCTION

At its completion in 2003, the Human Genome Project (1) was
saluted as the tool to finally cure every cancer. Two decades later,
this largely anticipated promise has yet to be delivered and
the community of cancer researchers, which was once
disproportionally focused on the central dogma of molecular
biology, now embraces more holistic views. One of the most
exciting frontiers of cancer research deals with understanding
homeostatic processes during cancer development and how cancer
cells respond to environmental stresses of a chemical and physical
nature. In this context, the catabolic activity of autophagy is the
key mechanism to maintain the balance between synthesis,
degradation, and recycling of cytosolic components (2). These
routine housekeeping functions provide a cellular mechanism to
preserve homeostasis, enhance resilience to stresses and promote
cell survival. Several environmental stresses activate autophagy,
among those hypoxia, DNA damage, inflammation, andmetabolic
challenges such as starvation. Aside from challenges of chemical
nature, cells are also exposed to stresses of mechanical nature,
arising from environmental cues. Sensing of mechanical stress
(mechanosensing) is mediated by force-induced conformational
changes of mechanosensitive proteins directly or indirectly
connected to the cytoskeleton and by mechanically activated ion
channels (3, 4). Mechanosensing results in a modification of
intracellular tension through reorganization of cytoskeletal and
actomyosin contraction, which, in turn, integrate the mechanical
signals into biochemical cascades (mechanotransduction), and, at
longer time scale, lead to modification of gene expression (4).
Hence, the physical properties of the microenvironment, such as
extracellular matrix composition, stiffness, and architecture, have a
profound impact on cellular genotype, phenotype, processes,
tissue organization and overall biological function of the
organism (4). This relation between mechanics and biological
responses is also important during cancer transformation and
progression, where the specific physical microenvironment of the
tumor cells undergoes dramatic changes. These modifications of
the tumor microniche are driven by enhanced cell contractility,
increased pressure resulting from abnormal cell proliferation and
growth of tumor mass, and alterations of composition,
architecture and rheological properties of the surrounding
extracellular matrix (5, 6). It has been reported that these
Abbreviations: AMPK, AMP-activated protein kinase; ATG, autophagy related
protein; EGF, epidermal growth fctor; EMT, epithelial to mesenchymal transition;
ER, endoplasmic reticulum; ESCRT, endosomal sorting complex required for
transport; FAK, focal adhesion kinase; GABARAP, gamma-aminobutyric acid
receptor-associated protein; JMY, junction-mediating and regulatory protein;
LC3, microtubule-associated protein 1A/1B-light chain 3; LKB1, liver kinase B1;
MLCK, myosin light-chain kinase; mTOR, mechanistic target of rapamycin; NPFs,
nucleation-promoting factors; PE, phosphatidylethanolamine; PI(3)P,
phosphatidylinositol 3-phosphate; PI3KC3: class III phosphatidylinositol 3-
kinase; SNARE, soluble NSF attachment protein receptor; TAZ, transcriptional
co-activator with PDZ-binding motif; TRP, transient receptor potential; VEFGR2,
vascular endothelial growth factor receptor 2; VPS, vacuolar sorting protein;
WASH, WAS protein family homolog; WHAMM, WASP homolog associated
with actin, membranes and microtubules; YAP, Yes-associated protein; CAFs,
cancer associated fibroblasts; ECM, extracellular matrix; FIP200, focal adhesion
kinase family interacting protein of 200 kDa; ULK1, unc-51-like kinase 1.
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mechanical changes correlate with activation of autophagy,
which may be part of an integrated response to mechanical
stresses employed by cancer cells to escape programmed cell
death and to facilitate their adaptative response to the new
mechanical environment (7). Furthermore, compelling evidence
have suggested that autophagy impact several cancer hallmarks
including cell motility and invasion, cancer stem cell viability and
differentiation, epithelial to mesenchymal transition (EMT),
resistance to apoptosis and anoikis, escape from immune
surveillance and tumor cell dormancy (7, 8). However, the
causative relation between cellular mechanics and autophagy
and their interdependent role in cancer transformation are
fragmentary and largely anecdotical. Here, we aim to review the
autophagic process using a mechanical perspective and explore the
crosstalk between mechanotransduction and cellular catabolism in
order to access their possible contribution to cancer
transformation and survival.
ROLE OF CYTOSKELETON IN CELL
MECHANICS

Vital functions of eukaryotic cells such as resistance to
deformation, control of cellular shape, migration and transport
of intracellular cargos depend on the activity of the cytoskeleton,
an interconnected network of filamentous polymers, motor
proteins and regulatory proteins (9). This network is composed
by three interdependent structural components, namely
microtubules, intermediate filaments, and microfilaments
(actin) which are the engine of the cells as they convert
chemical energy into mechanical energy via ATP-dependent
polymerization and action of motor proteins. This mechanical
energy is used to produce forces that displace cellular elements
(e.g. formation of cellular protrusion, transport of cargos) and/or
store elastic energy therein (e.g. cortical tension, cellular
contractility). The whole process of autophagy being a
sequence of membrane remodeling events is mechanically
accomplished and coordinated by ATP-dependent cytoskeletal
dynamics that lead to mechanical deformation and transport (10,
11). The cytoskeleton acts as an important framework for the
modulation and control of correct positioning, tethering,
docking, priming, fusion, and movement of organelles, such as
autophagosomes and lysosomes. Actin cytoskeleton is composed
by actin filaments and fibers whose assembly and disassembly
generate web-like networks (Arp2/3-mediated branching) and
bundles (formin-dependent crosslinking of filaments). These
networks and bundles structurally support cellular membranes
and determine their dynamics (12). Importantly, the action of
molecular motors of the myosin family puts actin filaments
under tension. Similar to a stretch coil, the release of this
tension produces kinetic energy used for vesicle transport and
membrane remodeling associated to autophagosome formation
(13, 14). In addition, some myosins [i.e. myosin VI (15)] are
directly involved in the transport of various cargos including
autophagosomes (15). Furthermore, microtubules dynamics of
polymerization and depolymerization and the action of
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associated motor proteins [i.e. kinesin and dyneins (16, 17)]
orchestrate the movement of pre-autophagosomal structures and
autophagosomes across the cytoplasm during the process of
autophagosome maturation (18, 19) and autolysosome
bidirectional transport (20). The cooperation and competition
between actin and microtubules are responsible for a large part of
cellular mechanics. Together, these ATP-dependent cytoskeletal
processes provide the mechanisms to overcome the energy
barriers imposed by membrane elasticity and resistance to
deformation that affect each step of the autophagic process
(21). Finally, intermediate filaments (i.e. keratins and
vimentin), which do not have evident dynamics and lack
motor proteins, are thought to provide mechanical stability to
the cell and its organelles (22). Intermediate filaments play a key
role in autophagosome and lysosome positioning by providing a
resistance to their free, unregulated movement (23). For instance,
networks of vimentin cables have been observed to form cages
around cellular organelles including the nucleus, endoplasmic
reticulum, and mitochondria (24). Consistently with this
Frontiers in Oncology | www.frontiersin.org 3233
regulatory function, pharmacological disruption of the
vimentin network results in defective flow of the autophagic
process (autophagic flux), the perinuclear position of autophagic
vesicles and a loss of their region-specific localization at different
stages of the process (23).

Step-By-Step Mechanics of Autophagy
From a mechanical point of view, the autophagic process can be
divided into seven main stages, as depicted in Figure 1:
initiation, nucleation, elongation, closure, autophagosome
maturation and transportation toward the perinuclear region
of the cell, fusion with the lysosome, and finally, cargo
degradation and recycling (25).

Initiation Stage
Upon a chemical or mechanical stimulation the autophagic
process begins, with the recruitment of core autophagy factors
(Figure 1—initiation). This stage corresponds to the activation
of the ULK1complex (26). As indicated in the schematic in
FIGURE 1 | Mechanics of the autophagic process. From a mechanical point of view, the autophagic process can be divided into seven main stages: initiation,
nucleation, elongation, closure, autophagosome maturation, autolysosome formation, and finally, cargo degradation and recycling. Cytoskeletal active processes and
membrane organization during the sequential steps of autophagy are highlighted. See the main text for details.
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Figure 2, modulation of the ULK1 complex is achieved by
enhancing the activity of AMPK (induced by ATP depletion)
(27) and/or by inhibition of the mechanistic target of rapamycin
complex 1 (mTORC1) which acts as repressor of autophagy and,
under basal conditions, maintains ULK1 in an inactive
conformation (27). Canonical initiation of autophagy entails
that metabolic stresses (chemical stimuli), such as nutrient
deprivation, cause mTORC1 dissociation from ULK1, which
becomes active and binds to ATG13 and FIP200 (ULK1
complex—Figure 2). This early signaling triggers the
downstream events of autophagosome formation (Figure 1—
initiation). Whether mechanical stresses and signals may play a
direct role in ULK1 activation is still unclear. It has been reported
that mechanosensitive (that responds to mechanical stimuli)
mTORC2 (28, 29) is in a negative feedback loop with
mTORC1 (30, 31), thus could indirectly induce activation of
Frontiers in Oncology | www.frontiersin.org 4234
ULK1 to initiate autophagy via inactivation of mTORC1-
repressor function (32). Importantly, mTORC2 can be
mechanically activated by mechanosensitive, focal adhesion
kinase (FAK) (33) (Figure 2). In adherent cells, FAK is part of
focal adhesion, a protein complex mediating cell/substrate
adhesion. Decrease of mechanical forces at the focal adhesions,
which may occur upon detachment of the cells from the substrate
or due to changes in rheological properties of the extracellular
matrix, induce FAK dissociation from the focal adhesion
complex (34). Soluble FAK is free to phosphorylate (activate)
mTORC2 and consequently initiate autophagy (33).
Interestingly, mTORC2 can also activate AKT, which
reestablishes the inhibitory activity of mTORC1 through an
indirect signaling cascade (28). Hence, FAK, mTORC2 and
AKT may provide a possible negative modulation or an off-
switch to detain the autophagic process (Figure 2).
FIGURE 2 | Schematic representation of signaling circuits for ULK1 complex activation in autophagy initiation. Initiation of autophagy via ULK1 signaling entails
mTORC1 dissociation from ULK1, which becomes active and binds to ATG13 and FIP200 to form ULK1 complex. This dissociation and the following signaling
cascade can be elicited by chemical stimuli, via e.g. enhancing the activity of AMPK and/or by mechanical stimuli. This second pathway is achieved via inhibition of
mTORC1 by the mechanosensitive mTORC2, which responds to various mechanical stimuli. For instance, mTORC2 can be directly activated by the soluble form of
focal adhesion kinase (FAK) that is releases from focal adhesion at low traction forces (e.g. detachment of the cells from the substrate).
February 2021 | Volume 11 | Article 632956
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Nucleation
The process of formation of the initial complex of membranes
that will elongate and mature into the autophagosome, begins
with the binding of activated ULK1 complex to or in proximity of
the sites for phagophore formation (35) (Figure 1—nucleation).
In yeast, the phagophore assembly site is found in a dedicated
and confined space between the endoplasmic reticulum (ER) exit
site (36, 37) and the vacuole (yeast degradative lysosome) (38).
Interestingly, in yeast, the autophagosome remains in this space
throughout the autophagic process. Conversely, in mammalian
cells, the phagophore assembly sites may be found at different
cytoplasmic locations such as ER, ER-mitochondria junctions, or
ER-plasma membrane, as well as specific subdomains of the
plasma membrane containing the primary cilium (39–41). As
consequence, the autophagosome needs to be transported
throughout the cytosol for proper maturation. These
differences between mammalian and yeast cells may reflect
differences in structural complexity and spatial patterns of
stress signal. It is tempting to speculate that the higher spatial
complexity of the autophagic process seen in mammalian cells
could be a result of higher mechanical complexity as compared to
the wall-protected and sedentary yeast cells. The formation of the
autophagosome begins with a curved membranous structure,
named the omegasome for its shape resembling the Greek letter
omega (42). The omegasome folds as a double membrane digit
that receives lipids from most of the internal compartments of
the cell (42, 43). The omegasome grows into a cup-shaped double
membrane, known as phagophore or isolation membrane, which
is typically connected with the ER membrane at its base (44).
Eventually, the connection between the ER and the omegasome
is sealed off and an independent double-membrane organelle is
formed (42). To achieve this, several mechanical and energetic
requirements need to be met. These include recruitment of
specific ATGs, actin cytoskeleton to support and direct the
curved membrane, and the recruitment of the necessary
material, in particular phospholipids, to allow the de novo
buildup of the phagophore (45) (see Figure 1—nucleation).
ULK1 complex is responsible for the initiation all these
mechanisms. As first step, ULK1 recruits and activates
PI3KC3, a kinase complex formed by VPS34, Beclin-1, VPS15
and ATG14 (46). Activation of PI3KC3 occurs via ULK1
phosphorylation of Ambra1 (47), a Beclin-1 interacting
protein. The PI3KC3 complex, which is tethered to the
cytoskeleton through an interaction between the Ambra1 and
dynein light chains (47), leads to PI3KC3 release from dynein
light chain and the microtubule network, enabling the complex
activation and translocation to the omegasome. In this location,
PI3KC3 phosphorylates Phosphatidylinositol to generate
Phosphatidylinositol 3-phosphate (PI(3)P), which promotes
membrane bending and the recruitment of the additional ATG
proteins required in the later stages of autophagosome formation
(44) (see Figure 1—nucleation; ATGs recruitment). In addition
to PI(3)P, membrane bending is also sustained by Atg17 (yeast
counterpart of FIP200), a specific scaffolding protein that may
also provide a curvature-sensing mechanism (48, 49). The Atg17
dimer has multiple hydrophobic residues that favor membrane
Frontiers in Oncology | www.frontiersin.org 5235
interaction. Atg17 dimers arrange to tether the fused vesicles
together, adopting a peculiar double-crescent shape (48) which is
ideal to induce and sustain membrane bending. In addition, PI
(3)P recruits specific membrane associated nucleation-
promoting factors (NPFs), such as WHAMM (50), JMY (51),
and WASH (52). In response to the specific localization of these
factors, Arp2/3 and CapZ polymerize a network of branched
actin proximal to the ER membrane (see Figure 1—nucleation;
actin polymerization). This ATP-dependent and spatially
controlled polymerization of actin generates pushing forces
against the membrane, and thus sustaining the dome-shaped
concavity therein (the isolation membrane) (45). In addition, this
branched actin network provides a structural scaffold to sustain
the pronounced curvature of the membranes forming the
omegasome first and the subsequent phagophore. In particular,
the latter would energetically tend to open into a spherical
vacuole rather than keeping its typical cup shape due to the
high curved edges. The preferred shape of a vesicle is defined by
minimizing the membrane bending energy for a given enclosed
volume (53). To overcome this energy barrier, cells take
advantage of several tools such as asymmetric lipid and protein
distribution between the two faces of the bilayer (e.g. PI(3)P and
cholesterol) and the action scaffolding proteins (e.g. Atg17) and
scaffolding cytoskeletal structures (actin) (53–56) (see Figure 1—
nucleation). However, in a field that is disproportionally focused
on protein-mediated signaling cascades, the importance of
physical properties of the phospholipid bilayers has been
largely overlooked. While PI(3)P and actin polymerization
primes the physical environment, ULK1 also initiates a second
crucial cascade leading to recruitment of phospholipids to
assemble the pre-autophagosomal double membrane, which is
achieved by the recruitment of vesicles receiving input from
different membrane sources (mitochondria-associated ER
membrane, ER, Golgi, plasma membrane, and recycling
endosomes) (57, 58). This seems to be accomplished by two
mechanisms: ATG9-vesicle transport and fusion with the
omegasome (35) and ATG2-mediated transport of lipids from
one donor compartment to the omegasome (59). Various
signaling pathways such as EGF/Src induce incorporation and
phosphorylation of cytosolic ATG9 in the target membrane and
the formation of ATG9-vescicles (60, 61). The selectivity of the
source of the membranes, depending on the type of autophagy
and the nature of the cargo to be sequestered, is still debated (44).
In general, intracellular membrane trafficking is regulated by the
Rab family of small monomeric GTPases (62). In their GTP-
bound form, Rab proteins recruit effectors to regulate vesicle
trafficking, while hydrolysis of the bound GTP to GDP causes
loss of effector binding and extraction from membranes. Upon
activation of the autophagic process, activated Rab11/Ypt11
GTPase regulates the recruitment of ATG9 vesicles to the
omegasome through the tethering of ATG9 to ULK1 (48, 49,
63). Actomyosin contractility seems to play a fundamental role
in ATG9-vesicle transport. It has been shown that activation of
myosin IIA via MLCK-like protein Sqa, which is downstream of
UKL1, induces transport of ATG9 vesicles to the phagophore
(64). While the proposed mechanism of cargo transport by
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
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myosin IIA seems farfetched, as myosin IIA is not a cargo
transporter (65), it is possible that cables of actin under
tension provide physical guidance for the flow of vesicles
toward the phagophore. Recent work presents a different
mechanism for the transport of phospholipids from the donor
membrane to the forming autophagosome (66). Indeed,
according to the experimental evidence, Atg9 establishes
membrane contact sites with a donor compartment. Here
phospholipids are transferred between compartments by lipid
transfer proteins like Atg2, resulting in a net flow of lipids from
the vesicles to the autophagosome without vesicle fusion (66).

Elongation and Closure Stages
After priming of the physical environment, the membrane of the
nascent phagophore elongates to an open cup-shaped structure
thanks to the fusion of additional membrane (Figure 1—
elongation). This novel structure encompasses a portion of the
cell cytosol, which is ready to accept the material to be recycled
(cargo loading) and finally seal through SNARE-mediated fusion
(Figure 1—elongation and closure). In mechanical terms, the
growth of the phagophore double membrane has the same
mechanical requirements as the previous stage. Hence, this
stage follows the same dynamics with lipid being recruited
through ATG9-mediated fusion and/or transfer (Figure 1—
elongation; membrane recruitment) and polymerization of actin
cytoskeleton to structurally support the growing double membrane
and maintain its shape (67) (Figure 1—elongation; actin
polymerization). These processes are under strict regulation by
several ATG proteins (such as ATG3, ATG7, ATG5, ATG12 and
ATG16L1), including the lipidated LC3/GABARAP protein family
(25). The lipidation process occurs by conjugating the cytosolic
LC3-I protein to phosphatidylethanolamine (PE), which generates
the membrane bound LC3-II (68–70). Importantly, LC3 lipidation
requires the curved rim of the phagophore, as ATG3, the E2-like
enzyme necessary for LC3 lipidation, only functions on a highly
curved membrane (71). Additionally, it has been observed that the
local curvature of the phagophore increases upon LC3 insertion,
indicative of the curvature-inducing properties of LC3 (72). Hence,
PE localization and enrichment on the phagophore inner
membrane is fundamental for the progression of autophagy.
Indeed, it has also been proposed that phospholipid transfer (PE
precursors) from the ER to acceptor membrane on adjacent
organelles (e.g. mitochondria) may be the mechanism which
induces formation of the phagophore on sites other than the ER
(73, 74). Among other cargo-receptors, LC3 is fundamental for
selection and loading of specific cargo into the autophagosome
[reviewed in (75)] (Figure 1—elongation; cargo loading). LC3 is
also known to regulate cytoskeletal dynamics. On one hand, LC3
recruits NPFs (i.e. WHAMM and JMY) to promote the Arp2/3-
mediated expansion of the membrane-proximal actin network and
allow for the phagophore extension and shaping (13, 76). On the
other hand, interaction of LC3 with microtubules has been
proposed to mediate transport and selection of dysfunctional
organelles (77), phagophore expansion and later in the process to
mediate the closure of the autophagosome (16, 78, 79). Once loaded
with its content, the phagophore closes into a double membrane
organelle, the autophagosome proper, to confine its inner
Frontiers in Oncology | www.frontiersin.org 6236
degradative space (80, 81) (Figure 1—closure). Prior to closure all
the ATG proteins tethered to PI(3)P platform are removed from the
surface of the autophagosome. This process requires the removal of
PI(3)P by phosphoinositide phosphatases and possibly other factors
(82–84). It must be noted that the clearance of PI(3)P is an
important mechanism to dismantle the nucleating-elongating
ATG machinery, required for the formation of the mature
autophagosome (82). Finally, the closure of the phagophore is
completed by a scission (or fission) process of the inner and outer
membrane of the phagophore to generate the autophagosome with
a double membrane (85). This process, still not completely
understood, is mediated mainly by the endosomal sorting
complex required for transport (ESCRT) (58, 86) and shares
topology with canonical ESCRT-dependent cellular membrane
scission processes, including cytokinesis, plasma membrane repair
and multivesicular body biogenesis (87, 88). The ESCRT machinery
is composed by distinct conserved complexes (ESCRT- I, -II and -II)
and accessory proteins, such as ATPase protein VPS4, which
disassembles and recycles ESCRT-III complex (89, 90). During
the process, ESCRT-III subunits assemble into helical filaments
providing the driving force to induce membrane deformation, while
the recruitment of VPS4 drives membrane sealing (88) and,
subsequent scission (91, 92). In addition to the ESCRT complex
the motor protein Myo6 and the actin network participate in
phagophore closure (87, 88). Altogether these components bring
the open ends of the autophagosome in close contact to allow for
SNARE-mediated fusion (93).

Maturation and Formation of
Autolysosome
Once the double membrane is fused, the process of
autophagosome maturation begins. This requires fusion of the
autophagosome with early/late endosomes (Figure 1—
maturation) and transport towards a perinuclear region
mediated by microtubules and dynein (Figure 1—maturation;
transport) (18, 19). This is followed by fusion of the mature
autophagosome with lysosome to form the autolysosome where
the degradation of cargo occurs (Figure 1—autolysosome
formation). Autophagosome–endosome/lysosome fusion may
occur by a large variety of mechanisms, including kiss-and-
run, complete fusions or fusion mediated through tubules (94).
In these processes, docking and fusion appear to be two
separately regulated events. Once the autophagosome and the
lysosome encounter, the outer membrane of the autophagosome
fuses with the lysosome forming an autolysosome. The fusion of
endo-lysosomal vesicles with autophagosomes broadly requires
Rab GTPases for trafficking and vesicles docking (in particular
Rab7), membrane-tethering complexes and SNAREs to mediate
vesicles fusion in a specific manner (95–97). The molecular
mechanism regulating the fusion of autophagosomes with
lysosomes has not yet been fully understood. Recent evidence
shows that increased levels of PI(4)P on late endosomes/
lysosomes stimulate the recruitment of the multisubunit
homotypic fusion and vacuole protein sorting (HOPS)
complex (98). HOPS complex, by interacting with LC3, tethers
lysosomes to autophagosomes (99, 100) and, by direct
interaction with autophagosome-localized STX17, facilitates the
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assembly of the SNARE complexes (101) between STX17 with its
partners, ubiquitous SNAP29 and with lysosomal VAMP3 (95,
98). Beside the HOPS complex, TECPR1, a protein that localizes
at lysosomal membranes has also been proposed as tethering
factor that initiates autophagosome-lysosome fusion (102) by
recruitment of LC3 matured autophagosomes to lysosomes and
promoting the degradation of protein aggregates (103). The
whole process of tethering and fusion is accompanied by the
omnipresent actin network that stabilizes the curvatures and
provides the mechanical energy to force the membranes of
different organelles in close contact and fusion (11, 17). This
latter process is mediated by WHAMM-dependent
polymerization of branched actin network (cortactin and
Arp2/3), leading to the appearance of stress-bearing actin
comets (13), and by the unconventional myosin motor protein
Myo1C (104). Contrary to the canonical, fast twitching myosins
(e.g. Myosin IIA), Myo1C is a slow monomeric actin-based
motor protein adapted for translocation of large loads at a
slow pace. Though its mechanistic action is not completely
elucidated, its suggested function is to link membrane cargo
enriched in PI(3,5)P2 [produced by PIKfyve-dependent PI(3)P
dissipation (105)] to the actin cytoskeleton (106) and to stabilize
membrane ruffles (107).

Cargo Degradation and Recycling
Upon fusion of lysosomes with the autophagosome and the
degradation of the inner membrane, the process of
autophagosomal cargo degradation begins, as depicted in
Figure 1 - Degradation and Recycling (43). During this step
the autolysosomes significantly reduces in size (108), due to
cargo degradation and the transport of small solutes (amino
acids, monosaccharides and nucleosides) mediated by the solute
carrier transporter (109). Solute transport across the
autolysosome membrane is followed by the subsequent
osmotic forces causing an outward flow of water. The
shrinkage of the autolysosome is required for the following
step of lysosome membrane recycling. The high membrane
curvature, driven by the autolysosome shrinkage, recruits the
protein complexes required for the processes of vesiculation and
tubulation that allow lysosomes vesicles to reform (110).
Autolysosome tubulation is also facilitated by the protein
WHAMM, which, once recruited in autolysosome surface,
promotes the formation of a branched actin scaffold that
facilitates the process (108).
CELLULAR MECHANICS AND
AUTOPHAGY

A great variety of biophysical stimuli elicit cellular responses and
determine cellular functions (Figure 3A) (111). Much of these
stimuli stem from short-scale (Figure 3A, blue boxes) interaction
between the cells and their physicochemical microenvironment.
Cells have been reported to sense and respond to the a) physical
status of the extracellular matrix (e.g. composition, stiffness,
topography and density) by exerting traction forces on the
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substrate (112–114), b) geometrical cues (e.g. size,
confinement, curvature) affecting cortical and membrane
tension (115, 116), c) presence of surrounding cells (e.g. cell
crowding) and their physical activity (e.g. pulling and pushing
causing cell-cell shear and normal forces), and the chemical
composition of the interstitial and luminal fluids (e.g. osmotic
pressure inducing cell swelling or shrinkage and consequent
variation in membrane tension) (117). In addition, cells are
subject and respond to large-scale mechanical forces (Figure
3A, red boxes) such as shear stresses and fluid pressure due to
flow of liquids or solid material in the lumen of tubular structures
(e.g. gut, blood vessels and urinary tract), and lateral stretch and
compression of tissues required for physiological function of
lungs, muscles, and digestive system, among others (118–121).
Short and long-scale force (summarized in Figure 3A) elicit
reactive and adaptive cellular responses that primely involve
active processes mediated by the cell cytoskeleton (4). This can
be activated by the direct action of external mechanical cues on
the cytoskeleton via sensing mechanisms involving various
mechanosensors at the cell surface, such as mechanically
activated ion channels (e.g. TRP and piezo), proteins sensing
tension and curvature of the plasma membrane (e.g. BAR proteins)
and of the cytoskeleton (e.g. filamin), and adhesion protein
complexes (e.g. focal adhesion, adherens junctions) (122). These
mechanosensors translate mechanical inputs into biochemical
signals via mechanotransducers (AKA mechanotransduction
process) that control cytoskeletal organization, membrane
trafficking, gene expression profile and ultimately cellular function
as a whole (4, 123, 124) (Figure 3B). Mechanosensing is generally
achieved by a force-dependent conformational change of the
sensing protein that may lead to the opening of a channel
(typically calcium channels), which subsequently activates a
cellular response via an electrochemical signal, or through the
dissociation of proteins (mechanotransducer) from the sensing
complex. In its freely diffusive form, the mechanotransducer
participates in enzymatic reactions (e.g. phosphorylation), either
as the enzyme or the substrate. As examples of both cases, the rise of
calcium and/or the activation of protein phosphorylation cascades
will lead to short- and long-term adaptation to mechanical stimuli.
Acting as an essential part of the innate adaptive mechanisms of the
cell, the autophagic response aids in the management of mechanical
challenges and allows the cell to adapt to the everchanging physical
environment (Figure 3B). In general terms, mechanical cues may
affect the autophagic process in two ways: firstly, via specific
crosstalk between mechanotransduction and autophagy regulatory
proteins (e.g. mTORC, AMPK) (125, 126) responsible for the
initiation and/or inhibition of the autophagic process and/or
secondly, via the unspecific cooperation/competition mechanisms
between mechanical processes and autophagy to recruit cytoskeletal
elements and phospholipid membranes (127). A growing body of
evidence demonstrates that indeed mechanical cues feed into the
signaling required for the activation of autophagy (7, 128–130).
Conversely, despite being highly plausible, the competition for
cellular components between the two processes and the
consequences of such, have still to be addressed by the literature.
A final point of convergence is the regulatory role of autophagic
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catabolism and recycling of biological components in managing the
turnover of cellular components necessary for proper execution of
mechanical processes. In the following sections, we will discuss the
crosstalk and interactions between cell mechanics and autophagy.
Next, we will discuss in detail some the most relevant and better
known connection between the mechanotransduction machinery
and the autophagic process.

Extracellular Matrix and Focal Adhesions
The macromolecular composition, structural architecture, and
rheological properties of the extracellular matrix undergo
constant remodeling due to the enzymatic and mechanical action
of the cells (113, 131). These modifications and the remodeling
processes deliver a versatile microniche that in turn affects cell
phenotype and function and, when dysregulated, may lead to the
emergence of disease states such as fibrosis and cancer (111). The
ability of cells to sense mechanical properties of the extracellular
matrix innormal and inpathological conditions canbeattributed to
the integrin-mediated adhesions, also known as focal adhesions
(132, 133). Focal adhesions are composed of multiple
mechanosensors (e.g., talin, vinculin), signaling molecules (e.g.,
FAK, Src, PI3K), adaptor proteins (e.g. paxillin) and actin linker
proteins (e.g., filamin, alpha-actinin), which physically connect the
integrins to the cytoskeleton [reviewed in (134)]. The binding of
extracellular matrix ligands to integrin heterodimers promotes
tension-induced conformational changes in the integrin
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cytoplasmic tail, leading to the recruitment of talin and paxillin
(135, 136). As tension increases and focal adhesionmature, protein
tyrosine kinase 2 and Src are recruited, providing the enzymatic
kinase activity to promote downstream signal transduction,
including Rho GTPase signaling, anoikis signaling, mitogenic
signaling, and extracellular matrix turnover (137). Thus, integrin-
mediated adhesions interact with the extracellularmatrix and sense
its rigidity, which in turn modulates cellular behavior including
motility and migration (138). Several studies address how the
extracellular matrix and integrin-mediated adhesion may trigger
autophagy via FAK and ILK (integrin linked kinase), thus linking it
to anoikis and cancer progression (detachment-induced cell death)
(139–141). Importantly, these emerging interconnections between
integrin-mediated adhesion pathways and autophagy are relevant
for immunosurveillance (142) and thus impinge on the appearance
of certain diseases, including cancer. Matrix constituents have been
shown to regulate autophagy in both a positive (activators) or
negative (inhibitors) manner. Decorin, collagen VI, kringle 5,
perlecan, and endostatin function as activators (142–145),
whereas laminin a2 is an inhibitor of the autophagic process
(146). The extracellular matrix, which constitutes different
physical and structural properties, can initiate biochemical
signaling cascades that involve membrane receptors (e.g.
integrins, VEGFR2, GRP78) (143, 144, 147), regulatory proteins
(AKT, mTORC1 and 2) and autophagy specific effectors, including
VPS34, Beclin-1 and lipidated LC3 (LC3-II) (142, 148). On the
A B

FIGURE 3 | Schematic representation of cell mechanics and its interplay with autophagy. Cells subjected to a great variety of mechanical forces (red arrows) from
the environment that generate cell-autonomous forces mediated by the cytoskeleton. (A) There are two main different categories of forces sensed by the cells: short
scale (blue boxes) and large scale (red boxes). Short and long-scale forces are perceived by the cells via various mechanosensors, including interfacial protein
complexes (integrin- and cadherin-mediated adhesions), mechanosensitive ion channels (TRP, piezo), tension and curvature sensors at the plasma membrane and
actin cortex (BAR proteins, filamin), and the primary cilium. (B) Mechanical inputs are transduced to biochemical signals (mechanotransducers), such as Ca2+,
transcription factors (YAP/TAZ) and signaling proteins (phosphatases and kinases) that affect the cytoskeleton, gene regulation, and other cellular functions.
Autophagy is directly (cellular signaling mediated) and indirectly (cooperative action with the cytoskeleton) activated by mechanical processes. While likely to exist,
negative feedbacks (inhibitions and competition for cytoskeletal elements) are still underexplored in the literature. Autophagy regulates various mechanical processes
via ensuring recycling of cellular components and providing energy during catabolism.
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other hand, autophagy regulates integrin-mediated adhesion, and
therefore cell migration, via controlling focal adhesion turnover
through a mechanism involving LC3, paxillin and Src (149).

Cell–Cell Adhesions
In addition to the extracellular matrix, cells in a tissue physically
interact with other cells (e.g. epithelial cells, muscle cells) through
transmembrane receptors that mediate extracellular bonds with
receptors on neighboring cells to control tissue integrity and
collective cell dynamics (150). Cell-cell contacts are mediated by
various adhesion complexes, such as adherens junctions, tight
junctions and desmosomes, each with distinct functions and
molecular characteristics. Adherens junctions are force-sensor
complexes. Tight junctions only appear to act in parallel to
adherens junctions via a physical connection between the two
complexes. The role of the desmosome in junctional
mechanotransduction responses remains elusive. In adherens
junctions, coupling between the cadherin transmembrane
receptor and the actin cytoskeleton is mediated by a protein
complex collectively termed the cadhesome network (151).
Similarly to the previously described integrin-based adhesion, this
complex has a well-defined spatial organization where force-
transduction is mediated by protein conformation that in turn
modulates the engagement of cadherins with the actin network
(152, 153). Tension at adherens junctions induces an a-catenin
conformational switch with consequent exposure of previously
hidden binding sites for vinculin, resulting in increased functional
integration of the complex with actin dynamics. Tension-induced
conformation changes of vinculin can differentially engage the
signaling layer to the actomyosin contractile machinery and enable
localized actin polymerization through the Mena–VASP complex
associated with vinculin (152, 153). Thus, vinculin serves the role of
‘molecular clutch’ that integratesmechanical andbiochemical signals
to engage and disengage the cell-cell junction to internal and external
forces. This remarkable spatial organization and the molecular
mechanism involved therein provide the cells with the strength and
plasticity needed by the highly dynamic epithelial tissues during
biological processes such as collective cell migration, wound healing,
tissue stretching, etc. Autophagy plays a critical role in junctional
homeostasis by actively regulating the recycling of the junctional
complexes in response to various intra- and extra-cellular cues
[reviewed in (154)]. Experimental evidence shows an autophagy-
dependent translocationof cadherin (155)andclaudin (156) fromthe
cell membrane to the cytosol where they are subsequently degraded
by the autophagosomeor lysosome.The effect of cell-cell adhesionon
the autophagic process has been less well studied. Nevertheless, it has
been shown that the application of force to E-cadherin stimulates
autophagy via Liver Kinase B1 (LKB1) activation, which recruits the
autophagy-initiator-factor AMPK to the E-cadherin complex (157).

Yes-Associated Protein/Transcriptional
Co-ActivatorWith PDZ-BindingMotif Signaling
In addition to what has been discussed in previous paragraphs,
autophagy, and mechanosensing are interdependent via the YAP/
TAZ system. Yes-associated protein (YAP) and the transcriptional
co-activator with PDZ-binding Motif (TAZ) regulate gene
expression in a force-dependent manner. Pioneering work of
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Piccolo and co-workers showed that mechanical forces regulate
YAP/TAZcytosolic localizationandnuclear translocation (158). By
analyzing YAP localization and transcriptional response, these
investigators showed YAP activity to be regulated by extracellular
matrix stiffness, cell density and cell geometry.When cells are at low
density or on a stiff extracellular matrix, YAP and TAZ are active
and localize in the nucleus, where they interact with the DNA-
binding transcription factor TEAD to promote the expression of
several growth-related genes and ultimately induce cell
proliferation (159, 160). Conversely, when cells are at high-cell
density or plated on soft matrix, YAP/TAZ are inactive in the
cytoplasm (158, 161, 162) leading to contact inhibition of
proliferation. This force-dependent control of proliferation is a
fundamental mechanism tomaintain tissue homeostasis and allow
tissue repair. Impairment of this system may lead to uncontrolled
cell growth (a cancer hallmark). Interestingly, one of the
transcriptional targets of YAP/TAZ is Armus (163), a protein of
the Rab-GAP family that mediates autophagosome-lysosome
fusion (164). Consequently, it has been seen that the efficiency of
the autophagic flux depends on the physical properties of the cell
microenvironment via YAP/TAZ mechanical response (163).
Furthermore, mTORC1 regulates YAP by mediating its
autophagic degradation (165), further linking cellular nutrient
status to YAP activity (166).

Mechanosensitive Ion Channels
Calcium influx mediated by mechanosensitive channels have been
implicated in the initiation and elongation stages of autophagy
(167). ER-resident channels exhibit the potential to regulate
autophagy at different stages (initiation as well as the
autophagosome-lysosome fusion), due to its special role as a
platform for autophagosome nucleation. However, these ER-
resident channels have not being linked to mechanosensing. On
the other hand, plasma membrane channels have been reported to
control the initiation process via AMPK and mTOR. Interestingly
two large families of calcium channels, the (osmo-mechano and
voltage) transient receptor potential (TRP) channels and pore-
forming Piezo (168) are known to be mechanosensitive. These two
channel families are gated by changes inmembrane tension, which
may arise from stretch and compression of the plasma membrane
during cell migration or when the cells are subject to shear flow.
Similarly, these channels respond to osmotic challenges which
increase membrane tension during cellular swelling (169).

Membrane and Cytoskeletal Tensions
As a physical boundary between the cell and the environment, the
plasma membrane consti tutes a prime location for
mechanosensation and mechanotransduction (170, 171). The
poorly extensible lipid bilayer (rupture occur at only 3–5% area
expansion) is mechanically supported by the actin cortex, which,
thanks to its active dynamics, absorbs a great portion of applied
stress, control folding and unfolding of plasmamembrane into and
out of membrane reservoirs and facilitates vesicle trafficking and
fusion. Mechanical stimuli at the plasma membrane can be
differentiated as tensile stress (cell stretching and hypoosmotic
swelling), compressive stress (cell compression and hyperosmotic
shrinkage), shear stress (flows of fluids over adherent cells) and
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forces generated by topographical cues (confinement caused by the
physicalmicroenvironment). Fluid shear stress has been reported to
induce autophagy by activating the RhoGTPases (Rac1, RhoA, and
Cdc42) with consequent upregulation of Beclin-1, ATG5, ATG7
and LC3 (172). Furthermore, cells respond to mechanical stress
with rapid autophagosome formation through an mTOR-
independent pathway (173). Autophagic response demonstrates
high specificity to mechanical load with a transient and gradual
response to the stimulus (half-maximal responses at ~0.2 kPa)
(173). While the exact sensing and signaling mechanisms are not
entirely clear, they may involve BAR proteins that have been
identified as primary membrane tension sensors (174). Another
mechanism of tension sensing involves the actin scaffold protein
filamin. Filamin A control the tensional state of the actin
cytoskeleton by mediating crosslinking of actin filaments at large
angles (175, 176). When cells are challenged by sheer flow, filamin
accumulates throughout the cell, increasing the overall mechanical
stability of the cytoskeleton (177). In addition, filamin A crosslinks
integrin with actin and thus mediates force-dependent
reinforcement at the focal adhesions (178). In response to
tension, filamin A undergoes conformational changes that
promote its ubiquitination and subsequent targeting by
chaperone-mediated autophagy (179).

Mechanosensing at the Primary Cilium
Key processes such as cell migration, differentiation, cell cycle re-
entry and apoptosis largely depend on the specific activity of the
primary cilium (180). Found in the majority of cell types, the
primary cilium is a non-motile microtubule-based appendix that
senses extracellular chemical and mechanical stimuli (181, 182).
For instance, the cilium in kidney cells is a flow sensor. Sheer
forces causing bending of the the cilium induce calcium entry
into the cell via polycystin-2 (PC2) and transient receptor
potential vanilloid 4 (TRPV4) (183). This sheer-stress-
dependent signaling triggers autophagy and leads to cell size
regulation (184, 185) through the LKB1-AMPK-mTOR signaling
pathway (186). In contrast to starvation-induced autophagy,
mechanical signaling from the cilium initiates autophagy in a
ULK1, Beclin-1 and PI3K/VPS34 independent manner (187,
188). It was recently reported that the PI3KC2a lipid kinase
(PI3K class II), required for ciliogenesis and cilium function, can
promote the synthesis of a local pool of PI(3)P in response to
shear stress (188). In turn PI(3)P is crucial for Rab11a membrane
mobilization and activation (189, 190), and serves as platform for
autophagosome assembly and formation (191, 192). On the
other hand, primary cilium length and assembly (ciliogenesis)
are modulated by autophagy. This involves the degradation of
ciliogenesis regulators (193, 194), as evidenced that during
starvation, several components of the autophagic machinery
(including ATG16L1) localize at the cilium’s basal body (40).

MECHANICS OF AUTOPHAGY DURING
CANCER TRANSFORMATION

Malignant transformation is accompanied by a progressive loss of
tissue homeostasis and perturbations of tissue architecture. It is
Frontiers in Oncology | www.frontiersin.org 10240
widely recognized that a critical component of this transformation
involves alterations in the mechanical phenotype of the cell and of
the surrounding microenvironment, creating a peculiar mechanical
milieu predominantly composed of cancer cells surrounded by a
dense extracellular matrix (6, 195, 196). In addition, a set of
accessory cells may be found in the tumor microenvironment,
including blood and lymphatic vascular cells, lymphocytes,
inflammatory cells and cancer associated fibroblasts (6, 195, 197).
Depending on the context and stage of cancer development,
autophagy has been recognized as a “double-edged sword”
(Figure 4, left panel), as it can act as a mechanism for either
tumor-suppression or tumor-promotion depending on the cellular
context in which it acts (198, 199). Consistent with its role in
promoting cell survival and rejuvenating cellular components,
autophagy serves as a quality-control mechanism, detecting
changes in organelle architecture and protein folding and thus
preventing tumor initiation. On the other hand, these same
mechanisms promote cancer cell survival and escape from
apoptosis. This occurs by aiding the responses against
environmental stress and generating the energy needed for
unregulated growth and metastasis through the recycling and
degradation of cellular organelles (Figure 4) (198, 200–202).

In the context of solid tumors, several mechanical aspects of
the tumor microenvironment contribute to the tumor-
promoting function of autophagy (Figure 4, right panel).
When confined by the extracellular matrix, cancer spheroids
experience forces exerted by the expanding tumor mass as a
result of unchecked proliferation and the resistance to
deformation of the surrounding stromal tissue (203, 204). This
causes increased interstitial pressure (203) and generates shear
stress within the tumor microenvironment (7, 205, 206).
Eventually, this mechanical stress affect cell growth directly, by
compressing cancer cells, and/or indirectly, by compressing the
surrounding blood and lymphatic vessels (207). Due to the
sustained compression of the vasculature within the tumor,
poor tissue perfusion causes hypoxia and eventually necrosis
within the tumor (208). Hypoxia promotes epithelial to
mesenchymal transition (EMT), a reorganization of the
cytoskeleton and dissolution of the epithelial cell-cell junctions.
This enables dynamic cell elongation, directional motility (209),
and consequently an increase in the metastatic potential of the
tumor cells. Furthermore, during EMT the composition of
intermediate filaments changes, switching from keratin to
vimentin (195, 210). Furthermore, during this process the actin
cytoskeleton becomes hypercontractile through the TGF-b-
dependent activation of pathways such as Rho GTPases,
p38MAPK and ERK1/2 (211). This pathway activation triggers
actin reorganization and formation of cellular protrusions,
including lamellipodia and filopodia (212, 213). Furthermore,
TGF-b and hypoxia also promote the formation of cancer
associated fibroblasts (214, 215), which interact with each
cellular component of the tumor microenvironment.

By mediating extracellular matrix stiffness, the cancer
associated fibroblasts can regulate the cancer cell cytoskeleton
(216–218). These changes to the cellular cytoskeleton during
transformation or EMT drastically alters their mechanical
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phenotype and in particular the degree of tension exerted on
neighboring cells and the extracellular matrix, leading to
increased migration, invasion and dissemination potential
(201, 219). To successfully metastasize, tumor cells migrate
locally and invade into surrounding tissue to gain vasculature
access, and subsequently intravasate through the basal
membrane and detach from the extracellular matrix to become
circulating tumor cells (220, 221). Ultimately, circulating tumor
cells that survive in circulation can extravasate from the
bloodstream and engraft in secondary tissue sites and thus
forming metastatic foci (222). All cells that travel in the
bloodstream experience fluctuating levels of shear stress.
Hemodynamic shear stress, caused by the movement of blood
along the cell surface, is influenced by both the fluid viscosity and
fluid flow velocity (210). Shear stress can also be caused by
frictional interaction with endothelial cells (6, 223). Equally,
tumor cells within the bloodstream must survive harsh
conditions, including extracellular matrix detachment-induced
apoptosis (i.e. anoikis), immune system assault, along with the
variations in shear stress (222). The physiological shear stress
(0.5–3 Pa) caused by blood flow may suppress cancer cell
proliferation but may also promote migration and adhesion
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(224–227). Substantial evidence suggests that mechanical
stress, such as compressive and shear forces, in the tumor
milieu boosts malignant progression by inducing autophagy
(129, 130, 172, 228). Consistent with this, cervical cancer cells
exposed to pulses of laminar shear stress of 2 Pa (over 3 and 6
minutes) undergo autophagy, by a lipid raft-mediated p38MAPK
dependent process, and delay apoptotic cell death (130).
However, shear stress is not necessarily beneficial to the cancer
cell. Conversely, elevated levels of shear stress (6 Pa), as occurs
during intense exercise, has been shown to promote tumor cell
death (229). Furthermore, fluid shear stress in the range of 0.05
to 1.2 Pa is shown to trigger cancer cell death through apoptosis
and autophagy in several cancer cell lines, including
hepatocarcinoma, osteosarcoma, oral squamous carcinoma,
and carcinomic alveolar basal epithelia. Interestingly, this fluid
shear stress induced death did not occur in non-cancerous cells
(230). Thus, it appears that depending on both the intensity and
the duration of the shear stress, autophagy may act as either a
pro- or anti-survival mechanism. Furthermore, it has been
shown that autophagy induced by shear or compressive stress
plays a role in cytoskeletal remodeling and in the recycling of
proteins essential for cancer progression (149, 172). Indeed,
FIGURE 4 | Autophagy and mechanics during cancer transformation. The role of autophagy in preserving cell homeostasis and protecting cells from mechanical
environmental stress is represented and described in the left panel (dotted line separates the normal and cancer context). Cancer cells exploit autophagy to adapt to
the tumor microenvironment and promote malignant progression. Right panel illustrate the mechanical components of the tumor microenvironment.
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increased tissue stiffness is implicated in the control of several
tumor features, such as growth, invasion, and metastasis (203,
231, 232). Accordingly, it has been observed that the stiffness of
cancerous tissue of breast, hepatic and liver origin is higher than
that of the corresponding respective physiological context (233–
236). Extracellular matrix stiffening in tumors is produced as
consequence of stroma reorganization, through the excessive
activity of extracellular matrix proteins and enzymes that
covalently cross-link collagen fibers and other extracellular
matrix components (237, 238). Collagen crosslinking enhances
integrin activation, focal adhesion maturation, intracellular
contraction and thus causes a subsequent increase in the
stiffness of the actin cytoskeleton, which may favor cancer cell
migration and invasion (214, 239–241). The higher extracellular
matrix stiffness also plays a role in the onset of the malignant
phenotype: cytoskeletal tension leads to increased cell-
extracellular matrix adhesions and disruption of cell-cell
junctions (242). Enhanced collagen deposition in the
extracellular matrix leads to activation of the Hippo signaling
pathway (159, 162, 243) with a consequent loss of contact
inhibition. Autophagy is also reported to have a pivotal role at
the center of these processes. Autophagy is reported to be
compromised in contact-inhibited cells in both 2D or 3D-soft
extracellular matrix cultures. In such cells, YAP/TAZ (previously
mentioned to be regulated by mechanical forces) fail to co-
transcriptionally regulate the expression of myosin-II genes,
resulting in the loss of F-actin stress fibers, which leads to
impairment in autophagosome formation. This loss of F-actin
stress fibers is also associated with a reduction in the number of
ATG16L1 puncta per cell and with decreased co-localization of
ATG9A-LC3, suggesting an alteration in the trafficking of key
autophagy proteins and thus a defective autophagic response
(244). Furthermore, compressive stress-induced autophagy can
promote secretion of matrix metalloproteinase-2 and the
turnover of the focal adhesion paxillin, boosting the
invasiveness of the HeLa cervical cancer cell line (129). In line
with these results, it has been suggested that paxillin binds
directly to LC3 to stimulate focal adhesion disassembly in
MDA-MB-231 human breast cancer and in B16.F10 mouse
melanoma cell lines, and furthermore promote metastasis in
vivo in the 4T1 mouse mammary tumor model (149). Another
mechanism of force sensing in cancer involves filamin A. This
actin and actin-integrins crosslinker is down-regulated in human
bladder cancer, reducing autophagy in these cancer cells, as
indicated by the decrease in the levels of LC3-II and decrease
in LC3-I (245). It has been further reported that upon
overexpression, filamin A attenuates autophagy and suppresses
the invasive ability in cancer cells. The mechanism of action may
involve the inhibition of matrix metalloproteinases expression,
regulation of integrin function and enhances apoptosis (245–
247). Interestingly, YAP/TAZ signaling has been shown to
stimulate filamin A transcription to maintain actin anchoring
and crosslinking under mechanical tension (248). This could be a
potential mechanism for cancer cells, to control autophagy
through a crosstalk between YAP/TAZ and cytoskeletal
elements. Low mechanical stress has been shown to activate
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Caveolin-1, triggering the FAK/Src and ROCK/p-MLC
pathways, which are involved in the reorganization of the
cytoskeleton, cell motility, focal adhesion dynamics and breast
cancer cell adhesion (227). PI3K/AKT activation and b-Catenin-
TCF/LEF-dependent activity downstream from Caveolin-1 also
correlates to increased VEGF expression and thus greater
angiogenic potential of tumor (249). Shear stress-induced
Caveolin-1 activation can induce PI3K/AKT/mTOR signaling
and metalloprotease activity, which have been shown to promote
cell motility and metastasis of breast carcinoma cells (250).
Conversely, it was determined that phosphorylated Caveolin-1
functions to activate autophagy through binding to the Beclin-1/
VPS34 complex under oxidative stress and to protect against
ischemic damage (251). These data suggest that Caveolin-1
function might be cell-context dependent (252), resulting in
different autophagic outcomes. Interestingly, similarly to
autophagy, Caveolin-1 has also been implicated both in tumor
suppression and progression (253, 254). Although potentially
protective in bourgeoning tumors, higher levels of either
Caveolin-1 mRNA or protein have been reported in varying
cancers strongly correlating with poor survival in advanced
cancer patients (227). This further implies that Caveolin-1 has
a role in the metastatic process, as evidenced by increased
migration, invasion and anchorage-independent growth (255).
Furthermore, recent studies have unveiled the existence of an
interplay between the primary cilium and autophagy in the
regulation of cancer development and progression (256–258).
In addition to being considered as a survival mechanism in
tumorigenesis, excessive accumulation of autophagosomes may
induce autophagic cell death or apoptosis (259–262), which, in
the context of cancer, limits tumor growth and spread. Recently,
Wang and collaborators showed that acute shear stress (10 Pa for
60 min) promotes autophagosome accumulation, which is
accompanied by increased fusion of autophagic vesicles with
multivesicular bodies, and reduction of autophagosome-lysosome
fusion, in HeLa and MDA-MB-231 cell lines (263). Furthermore,
the inhibition of autophagosome degradation, induced by
mechanical stress, is associated with increased release of
autophagic components in extracellular nanovesicles, possibly
through a Ca2+-dependent pathway involving autophagy,
multivesicular bodies and exosomes (263). Thus, exosome
secretion might provide a supplementary pathway to maintain
cellular homeostasis when the autophagy pathway is damaged or
insufficient to degrade large amounts of damaged proteins and
prevent cell death (263). In conditions of mechanical stress, these
results suggest a possible crosstalk between degradative and
secretory autophagy to maintain cellular homeostasis and tumor
cell survival (264). Furthermore, following pathological stress,
harmful nucleic acids, molecular chaperones, cytosolic proteins,
and misfolded proteins are released into the extracellular space
through exosomes and may contribute to tumor progression and
metastasis (265, 266).

As we have highlighted in the previous sections, the relation
between cell mechanics and autophagy goes two ways. In the
context of cancer, autophagy regulates multiple metastasis-related
signaling pathways associated with cell mechanics depending on
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cell type and tumormicroenvironment. Autophagic protein LC3-II
mediates the targeted degradationoffocal adhesionproteins such as
Src and paxillin (149, 267) to promote focal adhesion disassembly
and turnover and lead to cellmigration. Furthermore, integrins can
be differently recycled and degraded, depending on their
conformation, activation by ECM proteins, and binding of
effector proteins, such as TLNs and FERMTs/kindlins. Integrins
trafficking, recycling and degradation affect their availability at the
plasma membrane, focal adhesion dynamics and Rho GTPase-
mediated cytoskeleton remodeling to facilitate cell motility (127,
268). While nutrient starvation (269) increases integrin
internalization and ECM degradation (270), hypoxia (271)
promotes recycling of specific integrin. Since nutrient starvation
and hypoxia are both hallmarks of tumor microenvironment,
further investigation into how autophagy regulates integrin
trafficking may provide insight into the overall role of autophagy
in cancer metastasis and lead to the understanding of how
microenvironmental stress act on cell mechanics to induce cancer
cell exit from the primary tumor.
MECHANOBIOLOGY OF AUTOPHAGY IN
CANCER TREATMENT AND IN
AVOIDANCE OF CHEMORESISTANCE

In the last decade a plethora of new treatments has been
introduced that significantly improved the survival of cancer
patients. Despite this, highly aggressive cancers often develop
primary or acquired resistance that finally cannot be treated. To
this aim, new therapeutic approaches are required to overcome
drug resistance and improve treatment response. Based on the
reviewed literature, considering the “mechanobiology of
autophagy” might represent a novel and promising approach.
Indeed, even if, to the best of our knowledge, to date there are no
drugs approved by the FDA or currently being investigated in
clinical trials that consider the mechanobiology of autophagy in
their approach there are examples of proteins/pathways that are
modulated by mechanical forces thus affecting autophagy.

As previously mentioned, a pathway that is activated in cancer
cells, which is regulated by mechanical forces, is the Hippo–YAP/
TAZ pathway, whose inhibition has been shown promising results
in reducing therapy resistance [for recent reviews see (272, 273)].
Interestingly, blockade of this pathway also reduces autophagy
(244), which is targeted by several drugs currently under
investigation in clinical trials, suggesting that dual inhibition of
YAP-TAZ pathway and autophagy could improve treatment
response. Mechanics also regulate epidermal growth factor
receptor (EGFR), a protein that is regularly amplified or mutated
in glioblastomas, and where autophagy is enhanced promoting cell
survival (274). Inhibition of autophagy, in addition to radiotherapy,
already showedpositive resultswhichmight be further improvedby
considering the mechanics of cancer. Consistently, inhibition of
Janus-associated kinase (JAK) byRuxolitinib, a drug currently used
in myeloproliferative neoplasms which inhibits cell contractility,
preventing signaling downstream of focal adhesions, has recently
been shown to induce autophagy (275), thus a combination of
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ruxolitinib with pharmacological inhibitors of autophagy needs to
be followed for cancer treatment. Another drug that is currently
being studied in clinical trials is losartan, an angiotensin II receptor
blocker, which reduces intratumoral interstitial fluid pressure in
solid tumors (276). Interestingly, this drug has also been shown to
inhibit autophagy promoting autophagic cell death in cancer cells
(277), again confirming the importance of targeting autophagy and
mechanobiology in cancers.
CONCLUDING REMARKS

In recent years, autophagy has emerged as one of the key regulators
of cellular, tissue, and organism homeostasis. Vibrant research in
this field has brought to light the intricacies of autophagy’s
molecular machinery, together with its biochemical regulation
and biomedical consequences associated with its impairment. The
complex mechanobiology regulating cellular mechanical and
biochemical processes is also a bourgeoning field. In this review,
we hoped to bring to light the role of physical forces in autophagy
regulation and their potential implications in both physiological as
well as pathological conditions. More importantly, we hoped to
raise questions to help investigate the mechanical requirements of
autophagy and appreciate the extent to which mechanical signals
affect this process. For instance, a diet rich in saturated fatty acids
can negatively impact autophagic flux in neurons (278, 279).
Interestingly, as the steric conformation of these phospholipids is
known to mechanically decrease membrane bending, it could
consequently impair autophagy by preventing vesicle fusion.
However, the mechanical role of phospholipids is largely
overlooked in the literature and it could represent an important
area for future investigation. Similarly, to provide new frontiers for
exploration, areas worthy of investigation are the action of
cytoskeletal dynamics, the mechanical interplay between cellular
processes, and the role of environmental cues. To achieve this a
paradigmshift is required, one that adoptsmodern interdisciplinary
approaches combining cell biology, physics, and engineering (280).
To this end, cutting-edge techniques such as superresolution
microscopy and the control of the mechanochemical
environment (281) (e.g. by incorporating biomimetic substrates
and microfluidics) will open exciting opportunities and
perspectives. Combined, these technological and conceptual new
directions will lead to a better understanding of autophagy and
mechanisms onsetting related diseases, which in turn would pave
the way to the identification of new pharmacological targets.
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Hernández-Cáceres et al. Mechanics of Autophagy in Cancer
208. Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK.
Coevolution of solid stress and interstitial fluid pressure in tumors during
progression: implications for vascular collapse. Cancer Res (2013) 73
(13):3833–41. doi: 10.1158/0008-5472.CAN-12-4521

209. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-
mesenchymal transition. Nat Rev Mol Cell Biol (2014) 15(3):178–96. doi:
10.1038/nrm3758

210. Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of
physical interactions and mechanical forces in metastasis. Nat Rev Cancer
(2011) 11(7):512–22. doi: 10.1038/nrc3080

211. Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of
the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia
(2004) 6(5):603–10. doi: 10.1593/neo.04241

212. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in
TGF-beta family signalling. Nature (2003) 425(6958):577–84. doi: 10.1038/
nature02006

213. Ridley AJ. Life at the leading edge. Cell (2011) 145(7):1012–22. doi: 10.1016/
j.cell.2011.06.010

214. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix:
drivers of tumour metastasis. Nat Rev Cancer (2014) 14(6):430–9. doi:
10.1038/nrc3726

215. Stylianou A, Gkretsi V, Stylianopoulos T. Transforming growth factor-beta
modulates pancreatic cancer associated fibroblasts cell shape, stiffness and
invasion. Biochim Biophys Acta Gen Subj (2018) 1862(7):1537–46. doi:
10.1016/j.bbagen.2018.02.009

216. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF,
Harrington K, et al. Fibroblast-led collective invasion of carcinoma cells
with differing roles for RhoGTPases in leading and following cells. Nat Cell
Biol (2007) 9(12):1392–400. doi: 10.1038/ncb1658

217. Garcia-Palmero I, Torres S, Bartolome RA, Pelaez-Garcia A, Larriba MJ,
Lopez-Lucendo M, et al. Twist1-induced activation of human fibroblasts
promotes matrix stiffness by upregulating palladin and collagen alpha1(VI).
Oncogene (2016) 35(40):5224–36. doi: 10.1038/onc.2016.57

218. NajafiM, Farhood B, Mortezaee K. Extracellular matrix (ECM) stiffness and
degradation as cancer drivers. J Cell Biochem (2019) 120(3):2782–90. doi:
10.1002/jcb.27681

219. Yu H, Mouw JK, Weaver VM. Forcing form and function: biomechanical
regulation of tumor evolution. Trends Cell Biol (2011) 21(1):47–56. doi:
10.1016/j.tcb.2010.08.015

220. Plaks V, Koopman CD, Werb Z. Cancer. Circulating tumor cells. Science
(2013) 341(6151):1186–8. doi: 10.1126/science.1235226

221. Massague J, Obenauf AC. Metastatic colonization by circulating tumour
cells. Nature (2016) 529(7586):298–306. doi: 10.1038/nature17038

222. Strilic B, Offermanns S. Intravascular Survival and Extravasation of Tumor
Cells. Cancer Cell (2017) 32(3):282–93. doi: 10.1016/j.ccell.2017.07.001

223. Fan R, Emery T, Zhang Y, Xia Y, Sun J, Wan J. Circulatory shear flow alters
the viability and proliferation of circulating colon cancer cells. Sci Rep (2016)
6:27073. doi: 10.1038/srep27073

224. Avvisato CL, Yang X, Shah S, Hoxter B, Li W, Gaynor R, et al. Mechanical
force modulates global gene expression and beta-catenin signaling in
colon cancer cells. J Cell Sci (2007) 120(Pt 15):2672–82. doi: 10.1242/
jcs.03476

225. Mitchell MJ, King MR. Fluid Shear Stress Sensitizes Cancer Cells to
Receptor-Mediated Apoptosis via Trimeric Death Receptors. New J Phys
(2013) 15:015008. doi: 10.1088/1367-2630/15/1/015008

226. Ma S, Fu A, Chiew GG, Luo KQ. Hemodynamic shear stress stimulates
migration and extravasation of tumor cells by elevating cellular oxidative
level. Cancer Lett (2017) 388:239–48. doi: 10.1016/j.canlet.2016.12.001

227. Xiong N, Li S, Tang K, Bai H, Peng Y, Yang H, et al. Involvement of caveolin-
1 in low shear stress-induced breast cancer cell motility and adhesion: Roles
of FAK/Src and ROCK/p-MLC pathways. Biochim Biophys Acta Mol Cell Res
(2017) 1864(1):12–22. doi: 10.1016/j.bbamcr.2016.10.013

228. Wang X, Zhang Y, Feng T, Su G, He J, Gao W, et al. Fluid Shear Stress
Promotes Autophagy in Hepatocellular Carcinoma Cells. Int J Biol Sci (2018)
14(10):1277–90. doi: 10.7150/ijbs.27055

229. Regmi S, Fu A, Luo KQ. High Shear Stresses under Exercise Condition
Destroy Circulating Tumor Cells in a Microfluidic System. Sci Rep (2017)
7:39975. doi: 10.1038/srep39975
Frontiers in Oncology | www.frontiersin.org 19249
230. Lien SC, Chang SF, Lee PL, Wei SY, Chang MD, Chang JY, et al.
Mechanical regulation of cancer cell apoptosis and autophagy: roles of
bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. Biochim
Biophys Acta (2013) 1833(12):3124–33. doi: 10.1016/j.bbamcr.
2013.08.023

231. Chaudhuri O, Koshy ST, Branco da Cunha C, Shin JW, Verbeke CS, Allison
KH, et al. Extracellular matrix stiffness and composition jointly regulate the
induction of malignant phenotypes in mammary epithelium. Nat Mater
(2014) 13(10):970–8. doi: 10.1038/nmat4009

232. Tung JC, Barnes JM, Desai SR, Sistrunk C, Conklin MW, Schedin P, et al.
Tumor mechanics and metabolic dysfunction. Free Radic Biol Med (2015)
79:269–80. doi: 10.1016/j.freeradbiomed.2014.11.020

233. Masuzaki R, Tateishi R, Yoshida H, Sato T, Ohki T, Goto T, et al. Assessing
liver tumor stiffness by transient elastography.Hepatol Int (2007) 1(3):394–7.
doi: 10.1007/s12072-007-9012-7

234. Lopez JI, Kang I, You WK, McDonald DM, Weaver VM. In situ force
mapping of mammary gland transformation. Integr Biol (Camb) (2011) 3
(9):910–21. doi: 10.1039/c1ib00043h

235. Pang M, Teng Y, Huang J, Yuan Y, Lin F, Xiong C. Substrate stiffness
promotes latent TGF-beta1 activation in hepatocellular carcinoma.
Biochem Biophys Res Commun (2017) 483(1):553–8. doi: 10.1016/
j.bbrc.2016.12.107

236. Pang MF, Siedlik MJ, Han S, Stallings-Mann M, Radisky DC, Nelson CM.
Tissue Stiffness and Hypoxia Modulate the Integrin-Linked Kinase ILK to
Control Breast Cancer Stem-like Cells. Cancer Res (2016) 76(18):5277–87.
doi: 10.1158/0008-5472.CAN-16-0579

237. Egeblad M, Rasch MG,Weaver VM. Dynamic interplay between the collagen
scaffold and tumor evolution. Curr Opin Cell Biol (2010) 22(5):697–706. doi:
10.1016/j.ceb.2010.08.015

238. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in
cancer progression. J Cell Biol (2012) 196(4):395–406. doi: 10.1083/
jcb.201102147

239. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix
crosslinking forces tumor progression by enhancing integrin signaling. Cell
(2009) 139(5):891–906. doi: 10.1016/j.cell.2009.10.027

240. Pickup MW, Laklai H, Acerbi I, Owens P, Gorska AE, Chytil A, et al.
Stromally derived lysyl oxidase promotes metastasis of transforming growth
factor-beta-deficient mouse mammary carcinomas. Cancer Res (2013) 73
(17):5336–46. doi: 10.1158/0008-5472.CAN-13-0012

241. Rubashkin MG, Cassereau L, Bainer R, DuFort CC, Yui Y, Ou G, et al. Force
engages vinculin and promotes tumor progression by enhancing PI3K
activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res (2014)
74(17):4597–611. doi: 10.1158/0008-5472.CAN-13-3698

242. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et al.
Tensional homeostasis and the malignant phenotype. Cancer Cell (2005) 8
(3):241–54. doi: 10.1016/j.ccr.2005.08.010

243. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP
oncoprotein by the Hippo pathway is involved in cell contact inhibition and
tissue growth control. Genes Dev (2007) 21(21):2747–61. doi: 10.1101/
gad.1602907

244. Pavel M, Renna M, Park SJ, Menzies FM, Ricketts T, Fullgrabe J, et al.
Contact inhibition controls cell survival and proliferation via YAP/TAZ-
autophagy axis. Nat Commun (2018) 9(1):2961. doi: 10.1038/s41467-018-
05388-x

245. Wang Z, Li C, Jiang M, Chen J, Yang M, Pu J, et al. (FLNA) regulates
autophagy of bladder carcinoma cell and affects its proliferation, invasion
and metastasis. Int Urol Nephrol (2018) 50(2):263–73. doi: 10.1007/s11255-
017-1772-y

246. Sun GG, Lu YF, Zhang J, Hu WN. Filamin A regulates MMP-9 expression
and suppresses prostate cancer cell migration and invasion. Tumour Biol
(2014) 35(4):3819–26. doi: 10.1007/s13277-013-1504-6

247. Krebs K, Ruusmann A, Simonlatser G, Velling T. Expression of FLNa in
human melanoma cells regulates the function of integrin alpha1beta1 and
phosphorylation and localisation of PKB/AKT/ERK1/2 kinases. Eur J Cell
Biol (2015) 94(12):564–75. doi: 10.1016/j.ejcb.2015.10.006

248. Ulbricht A, Arndt V, Hohfeld J. Chaperone-assisted proteostasis is essential
for mechanotransduction in mammalian cells. Commun Integr Biol (2013) 6
(4):e24925. doi: 10.4161/cib.24925
February 2021 | Volume 11 | Article 632956

https://doi.org/10.1158/0008-5472.CAN-12-4521
https://doi.org/10.1038/nrm3758
https://doi.org/10.1038/nrc3080
https://doi.org/10.1593/neo.04241
https://doi.org/10.1038/nature02006
https://doi.org/10.1038/nature02006
https://doi.org/10.1016/j.cell.2011.06.010
https://doi.org/10.1016/j.cell.2011.06.010
https://doi.org/10.1038/nrc3726
https://doi.org/10.1016/j.bbagen.2018.02.009
https://doi.org/10.1038/ncb1658
https://doi.org/10.1038/onc.2016.57
https://doi.org/10.1002/jcb.27681
https://doi.org/10.1016/j.tcb.2010.08.015
https://doi.org/10.1126/science.1235226
https://doi.org/10.1038/nature17038
https://doi.org/10.1016/j.ccell.2017.07.001
https://doi.org/10.1038/srep27073
https://doi.org/10.1242/jcs.03476
https://doi.org/10.1242/jcs.03476
https://doi.org/10.1088/1367-2630/15/1/015008
https://doi.org/10.1016/j.canlet.2016.12.001
https://doi.org/10.1016/j.bbamcr.2016.10.013
https://doi.org/10.7150/ijbs.27055
https://doi.org/10.1038/srep39975
https://doi.org/10.1016/j.bbamcr.2013.08.023
https://doi.org/10.1016/j.bbamcr.2013.08.023
https://doi.org/10.1038/nmat4009
https://doi.org/10.1016/j.freeradbiomed.2014.11.020
https://doi.org/10.1007/s12072-007-9012-7
https://doi.org/10.1039/c1ib00043h
https://doi.org/10.1016/j.bbrc.2016.12.107
https://doi.org/10.1016/j.bbrc.2016.12.107
https://doi.org/10.1158/0008-5472.CAN-16-0579
https://doi.org/10.1016/j.ceb.2010.08.015
https://doi.org/10.1083/jcb.201102147
https://doi.org/10.1083/jcb.201102147
https://doi.org/10.1016/j.cell.2009.10.027
https://doi.org/10.1158/0008-5472.CAN-13-0012
https://doi.org/10.1158/0008-5472.CAN-13-3698
https://doi.org/10.1016/j.ccr.2005.08.010
https://doi.org/10.1101/gad.1602907
https://doi.org/10.1101/gad.1602907
https://doi.org/10.1038/s41467-018-05388-x
https://doi.org/10.1038/s41467-018-05388-x
https://doi.org/10.1007/s11255-017-1772-y
https://doi.org/10.1007/s11255-017-1772-y
https://doi.org/10.1007/s13277-013-1504-6
https://doi.org/10.1016/j.ejcb.2015.10.006
https://doi.org/10.4161/cib.24925
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
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Pancreatic ductal adenocarcinoma (PDAC), one of the most aggressive solid
malignancies, is characterized by the presence of oncogenic KRAS mutations, poor
response to current therapies, prone to metastasis, and a low 5-year overall survival rate.
Macroautophagy (herein referred to as autophagy) is a lysosome-dependent degradation
system that forms a series of dynamic membrane structures to engulf, degrade, and
recycle various cargoes, such as unused proteins, damaged organelles, and invading
pathogens. Autophagy is usually upregulated in established cancers, but it plays a dual
role in the regulation of the initiation and progression of PDAC. As a type of selective
autophagy, mitophagy is a mitochondrial quality control mechanism that uses ubiquitin-
dependent (e.g., the PINK1-PRKN pathway) and -independent (e.g., BNIP3L/NIX,
FUNDC1, and BNIP3) pathways to regulate mitochondrial turnover and participate in
the modulation of metabolism and cell death. Genetically engineered mouse models
indicate that the loss of PINK1 or PRKN promotes, whereas the depletion of BNIP3L
inhibits oncogenic KRAS-driven pancreatic tumorigenesis. Mitophagy also play a dual role
in the regulation of the anticancer activity of certain cytotoxic agents (e.g., rocaglamide A,
dichloroacetate, fisetin, and P. suffruticosa extracts) in PDAC cells or xenograft models. In
this min-review, we summarize the latest advances in understanding the complex role of
mitophagy in the occurrence and treatment of PDAC.

Keywords: mitophagy, autophagy, PDAC - pancreatic ductal adenocarcinoma, tumorigenesis, therapy
INTRODUCTION

More than 90% of pancreatic cancers are ductal adenocarcinoma (PDAC), which is highly
malignant, difficult to diagnose early, and has a very poor prognosis. It is estimated that by 2030,
pancreatic cancer will become the second largest tumor-related death in humans (1). Although
there have been a variety of “precision” targeted therapies for certain solid cancers (such as lung and
breast cancer), the clinical treatment of PDAC is still in the “non-precision” era. The effective rate of
the widely used gemcitabine regimen is only 30%, while FOLFIRINOX (a regimen consisting of 5-
fluorouracil, leucovorin, irinotecan, and oxaliplatin) has serious adverse reactions, and the targeted
drug erlotinib (an oral tyrosine kinase inhibitor of epidermal growth factor receptor [EGFR]) as well
as cutting-edge immune checkpoint inhibitors have limited efficacy in patients with PDAC (2). How
to achieve “precise” diagnosis and treatment of PDAC is a challenging issue in clinical practice. This
clinical goal may require in-depth basic research to understand the complex pathological
mechanisms of PDAC initiation and development.
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Cells produce a large amount of waste every day, which needs
to be removed by an integrated degradation system to maintain
normal cell functions. In addition to the ubiquitin-proteasome
system (UPS), autophagy is a lysosomal-dependent pathway that
can remove various endogenous cellular materials (such as
proteins and organelles) and exogenous invading pathogens.
Autophagy dysfunction (including defects or over-activation)
may cause abnormal cell components and functions, leading to
various pathological conditions and diseases (3). Therefore, it is
important to understand the types, functions, and regulation of
autophagy under different conditions (4). The focus on
autophagy provides a promising alternative to the development
of new treatment options for human diseases. In this min-review,
we describe the types of autophagy and the mechanism of
mitophagy, and then analyze the effects of mitophagy on
PDAC, including tumorigenesis and tumor treatment.
TYPE OF AUTOPHAGY

According to the different ways of transporting cellular components
to lysosomes, autophagy is divided into the following categories
(Figure 1A) (4). 1) Macroautophagy. The process of
macroautophagy is a dynamic membrane reforming process
involving the formation and maturation of three special
structures: phagophore (also known as separated membrane
produced by endoplasmic reticulum, mitochondria, or other
subcellular membrane organelles), autophagosome (a double-
membrane organelle phagocytosing degradable materials), and
autolysosome (a hybrid organelle formed by the fusion of
autophagosomes and lysosomes) where sequestered material is
degraded by lysosomal hydrolases. 2) Microautophagy: lysosome
membrane directly envelops longevity protein and then degrades
in lysosome; 3) Chaperone-mediated autophagy (5): proteins
containing KFERQ-like motifs bind to molecular chaperones
(such as heat shock protein family A (Hsp70) member 8
[HSPA8/HSC70]), and then are transported to the lysosome
cavity by lysosomal associated membrane protein 2 (LAMP2/
LAMP2A) to be digested by lysosomal enzymes. It is worth noting
that the multimerization of LAMP2 is required to transport the
substrate into the lysosomal cavity (6, 7). Among them,
macroautophagy (hereinafter referred to as autophagy) is the
most common and well-studied form of autophagy in
mammalian cells. The so-called autophagy-related (ATG) genes
or proteins play a key role in the regulation of autophagy
membrane dynamics through protein-protein interaction, and
post-translational modifications (especially phosphorylation)
further regulate autophagic process by affecting ATG function (8).

According to the selectivity of the substrate to be degraded,
autophagy is further divided into selective autophagy and
non-selective autophagy to control cell fate (9, 10) (Figure 1A).
Non-selective autophagy refers to non-specific degradation
processes, such as starvation-induced autophagic degradation. In
addition to the core autophagymechanism, selective autophagy also
requires specific autophagy receptors to selectively degrade specific
cargo (9, 11, 12). For example, xenophagy (13), clockophagy
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(14, 15), and mitophagy (16) can selectively degrade invading
pathogens, aggregated circadian protein aryl hydrocarbon
receptor nuclear translocator like (ARNTL), and damaged
mitochondria, respectively (Figure 1A). This selective autophagy
mainly depends on the molecular bridge-like autophagy receptor
(also called adaptor protein), which not only specifically binds
to the substrate, but also binds to members of the ATG8/LC3
family (MAP1LC3A, MAP1LC3B, MAP1LC3C, GABARAP,
GABARAPL1/GEC1 , GABARAPL2 /GATE-16 , and
GABARAPL3) through different structure domains (12). The
number of genes in the ATG8/LC3 family may be caused by
gene duplication and loss events during evolution. LC3-II is a
standard marker for autophagosomes, which is produced by
conjugating cytoplasmic LC3-I with phosphatidylethanolamine
on the surface of newborn autophagosomes (17). It is worth
noting that certain autophagy receptors (such as sequestosome 1
[SQSTM1/p62]) act on both selective and non-selective autophagy
during stress (18). In addition, the protein level of SQSTM1 is also
regulated by the crosstalk between the UPS and autophagy
pathways (19). Collectively, these kinetics indicate that a
complex feedback network is involved in metabolism and signal
transduction to control substrate degradation (20).
TYPE OF MITOPHAGY

Mitochondria are organelles composed of two membranes (inner
membrane and outer membrane) found in most cells. Normal
mitochondria act as a “power factory” whose main function is to
perform aerobic respiration to produce adenosine triphosphate
(ATP). In addition, the interaction between mitochondrial and
non-mitochondrial metabolic pathways is important for generating
secondary signals (such as reactive oxygen species [ROS] and
calcium) and biological macromolecules (such as proteins,
carbohydrates, lipids, and nucleic acids). Therefore, maintaining
healthy mitochondria, including quantity and quality, is essential
for cell homeostasis. Conversely, damage to the mitophagy pathway
can cause various pathological conditions (such as inflammation)
and diseases (such as neurodegenerative diseases and cancer) (21–
23). As an important component of the mitochondrial quality
control mechanism, mitophagy can be activated through either
ubiquitin (Ub)-dependent or independent pathway (Figure 1A),
which is regulated by various proteins, including mitochondrial
inner or outer membrane proteins (Figure 1B).

Mitophagy that rely on Ub can be further divided into
classical and non-classical pathways (24). The classical pathway
is mediated by the PTEN induced kinase 1 (PINK1, a serine–
threonine protein kinase) and parkin RBR E3 ubiquitin protein
ligase (PRKN/PARK2) (25). Mutations in PINK1 and PRKN are
one of the important causes of Parkinson’s disease, a progressive
neurodegenerative disease with motor and non-motor symptoms.
The impaired PINK1-PRKN-dependent mitophagy pathway also
promotes various types of tumor formation, including PDAC
(discussed later). Mechanistically, oxidative damage to the
mitochondria causes the accumulation of PINK1 on the
mitochondrial outer membrane and the recruitment of PRKN
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from the cytoplasm to the mitochondria, leading to subsequent
assembly of phosphorylated Ub chains on mitochondrial outer
membrane proteins (25). In addition to the earliest reported
SQSTM1 (25), other autophagy receptors, such as optineurin
Frontiers in Oncology | www.frontiersin.org 3253
(OPTN) (26), neighbor of BRCA1 gene 1 (NBR1) (27), calcium
binding and coiled-coil domain 2 (CALCOCO2/NDP52) (28),
and tax1 binding protein 1 (TAX1BP1) (28), also help to
recognize and degrade damaged mitochondria after activating
FIGURE 1 | The role of mitophagy in pancreatic tumorigenesis. (A) In mammalian cells, there are three main types of autophagy: microautophagy, macroautophagy,
and chaperone-mediated autophagy. Macroautophagy can be further divided into selective and non-selective forms. (B) Core mitophagy regulators mediate
mitochondrial clearance. (C, D) PINK1/PRKN and BNIP3L-dependent mitophagy play different roles in inhibiting or promoting pancreatic tumorigenesis, respectively.
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the PINK1-PRKN pathway (Figure 1A). Moreover, PINK1-
PRKN-mediated mitophagy can be reversed by deubiquitinating
enzymes, such as ubiquitin-specific peptidase 8 (USP8), USP15,
USP30, and USP35 (29). Non-classical Ub-dependent mitophagy
is mediated by non-PRKN E3 ubiquitin ligases (such as
mitochondrial E3 ubiquitin protein ligase 1 [MUL1] (30), siah
E3 ubiquitin protein ligase 1 [SIAH1] (31), SMAD specific E3
ubiquitin protein ligase 1 [SMURF1] (32), and autocrine motility
factor receptor [AMFR/GP78]) (33). The impact of crosstalk
between Ub-dependent classical and non-classical mitophagy
pathways on tumors is still poorly understood.

Ub-independent mitophagy is mediated by receptors, rather
than E3 ligases. Recently, depending on the stimulus and cell
type, the list of mitophagy receptors is increasing (34). In addition to
the early reports of BCL2 interacting protein 3 like (BNIP3L/NIX)
acting as a mitophagy receptor in red cells (35), other mitophagy
receptors, including FUN14 domain containing 1 (FUNDC1) (36),
BCL2 interacting protein 3 (BNIP3) (37), nipsnap homolog 1
(NIPSNAP1) (38), nipsnap homolog 2 (NIPSNAP2) (38),
prohibitin 2 (PHB2) (39), BCL2 like 13 (BCL2L13) (40) and
FKBP prolyl isomerase 8 (FKBP8) (41), have also been identified
in cancer and non-cancer cells (Figure 1B). These unique receptors
are responsible for binding to different mitochondrial membrane
components in response to various stresses (such as hypoxia and
oxidative damage). In addition to protein, non-protein
mitochondrial components, such as cardiolipin and ceramide
(42), also mediate mitophagy in some case, indicating that there
are complex mitophagy sub-routes to regulate mitochondrial
turnover and function.
MITOPHAGY IN PANCREATIC CANCER

Compared to normal cells, pancreatic cancer cells generally
exhibit highly fragmented mitochondria, which is associated
with increased mitochondrial fission and numbers as well as
enhanced mitochondrial oxidative phosphorylation or glycolysis
(43–45). Therefore, understanding the mechanism of mitochondrial
biogenesis and turnover in different stages of pancreatic cancer,
including initiation, progression, and metastasis, is essential for the
next generation of cancer treatments. Indeed, increased autophagy
or mitophagy levels are observed in various types of pancreatic
cancer (46–48). However, autophagy plays a dual role in various
cancer (including PDAC), depending on many factors, such as
tumor stage, tumor microenvironment, gene mutation status
involving oncogenes and tumor suppressor genes, and metabolic
reprogramming (49–54). PDAC is a heterogeneous disease and can
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be morphologically classified into four types: conventional, tubulo-
papillary, squamous, and “composite”, which exhibit different
molecular and genetic characteristics (55). Generally, autophagy
inhibits the growth of PDAC in the early stage by limiting DNA
damage or inflammation, and upregulated autophagy in the later
stage can promote PDAC survival by limiting cell death or anti-
tumor immunity (56–60). Since covering all the effects of autophagy
in PDAC is outside the scope of this min-review, we will only
discuss the modulation and function of mitophagy in PDAC as
described below.

Pancreatic Tumorigenesis
Evidence is accumulating that both intrinsic genetic factor and
extrinsic environmental factor are important for tumorigenesis.
For pancreatic cancer, the oncogenic KRAS mutation is a key
driving force for the formation of precursor lesions and
subsequent development of PDAC with stromal response (61).
KRAS activation is related to changes in mitochondrial
morphology (e.g., increased mitochondrial fragmentation) and
function (for example, reduction of mitochondrial respiratory
complex I activity, enhancement of glycolytic activity, promotion
of ROS production and induction of mitophagy) in various
cancers (including PDAC) (62–66). Moreover, the conditional
expression of endogenous KrasG12D in the pancreas of mice
(Pdx1-Cre;KrasG12D; called KC mice) can mimic most of
pathological development of human PDAC (67). This
spontaneous transgenic PDAC mouse model is widely used to
further consume or overexpress additional genes to evaluate the
function of target genes in pancreatic tumorigenesis (Table 1).
For example, based on KC mice, further depletion of the tumor
suppressor high mobility group box 1 (HMGB1, Pdx1-Cre;
KrasG12D;Hmgb1-/-) (69) or overexpression of tumor protein
p53 (TP53) mutation (Pdx1-Cre;KrasG12D;Tp53R172H, termed
KPC mice) (70) can significantly promote the development of
KRAS-driven PDAC. HMGB1 is a positive regulator of autophagy
and mitophagy, coupled with TP53 signaling in a variety of
tumors (71–74). Cytoplasmic HMGB1 is a BECN1-binding
protein that contributes to the formation of autophagosomes
(72). Nuclear HMGB1 promotes the expression of heat shock
protein b-1 (HSPB1) and subsequent HSPB1-mediated
cytoskeletal integrity, which is required for the membrane
dynamics of mitophagy (71). In addition, mitochondrial
HMGB1 repairs mitochondrial genomic DNA damage, which
also plays a potential role in suppressing tumorigenesis (75).
However, depletion of mitophagy regulators, including PINK1
[Pdx1-Cre;KrasG12D;Pink1-/-] (22), PRKN [Pdx1-Cre;KrasG12D;
Prkn-/-] (22), or BNIP3L/NIX [Pdx1-Cre;KrasG12D;Bnip3l-/- or
TABLE 1 | Mitophagy regulators in PDAC.

Mitophagy regulator Expression in human PDAC Function Mechanism Refs

BNIP3L Upregulation Tumor promoter Increases glucose metabolism and antioxidant capacity (68)
PINK1 Upregulation Tumor suppressor Inhibits inflammation and mitochondrial iron-related antitumor immunity (22)
PRKN Downregulation Tumor suppressor Inhibits inflammation and mitochondrial iron-related antitumor immunity (22)
HMGB1 Upregulation Tumor suppressor Inhibits genomic instability and mitochondrial dysfunction (69)
TP53 Upregulation Tumor suppressor Inhibits genomic instability and mitochondrial dysfunction (70)
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Pdx1-Cre;KrasG12D;Tp53R172H; Bnip3l-/- (68), in KC mice exhibits
different phenotype in pancreatic tumorigenesis. These transgenic
animal studies show that Ub-dependent and independent
mitophagy pathways play different roles in PDAC.

Dysregulated autophagy promotes or inhibits the growth of
pancreatic cancer by interfering with different metabolic pathways or
tumor signals, such as carbohydrate metabolism, fatty acid b-
oxidation, and amino acid transport (48). For example, the
reduced glycolysis gene PKM2 promotes survival by maintaining
autophagy induced by low glucose in PDAC cells (76). Autophagy-
mediated lipid degradation and subsequent fatty acid b-oxidation
may provide additional resources for ATP production during PDAC
growth (77, 78). Autophagy-mediated degradation of cellular
material provides reusable amino acids for PDAC cell proliferation
during glutamine deprivation (79). In addition, the PINK1-PRKN
pathway can degrade mitochondrial iron importers (such as solute
carrier family 25 member 37 [SLC25A37] and solute carrier family
25member 28 [SLC25A28]) through SQSTM1-mediated mitophagy
to inhibit carcinogenic KRAS-driven pancreatic tumorigenesis in
mice, thereby inhibiting mitochondrial iron-mediated absent in
melanoma 2 (AIM2)-dependent inflammasome activation and the
subsequent activation of damage associated molecular pattern
(DAMP, such as HMGB1)-dependent immune checkpoint
expression (e.g., CD274/PD-L1) (Figure 1C) (22). These findings
establish a role of PINK1/PRKN-mediated mitophagy to inhibit
pancreatic tumorigenesis by limiting chronic inflammation-related
immunosuppression in the hypoxic tumor microenvironment (80).
Of note, high expression of PRKNmRNAwas found to be associated
with improved survival of pancreatic cancer patients, whereas
mRNA expression of PINK1 did not influence patient survival
(22), indicating that PINK1 is a contributor of PDAC, but it is not
a potential biomarker. In addition, both PINK1 and PRKNmay have
mitophagy-independent functions in controlling the quality of
mitochondria during pancreatic tumorigenesis (22).

In contrast, in a precursor lesion called pancreatic intraepithelial
neoplasia (PanIN), oncogenic KRAS-mediated BNIP3L expression
may activate mitophagy in a rapidly accelerated fibrosarcoma
(RAF)-mitogen-activated protein kinase (MAPK)-dependent
manner to limit the flux of glucose to mitochondria and enhance
reduced nicotinamide adenine dinucleotide phosphate (NADPH)-
dependent redox capacity, thereby promoting pancreatic
tumorigenesis (Figure 1D) (68). In KC and KPC pancreatic
cancer models, the depletion of additional BNIP3L will increase
the content of mitochondria in PanIN, thereby increasing the
production of mitochondrial ROS to limit the development of
PanIN to PDAC (68). These observations indicate that BNIP3L-
mediated mitophagy have different roles in promoting pancreatic
tumorigenesis by enhancing the antioxidant capacity of cancer cells
for cell proliferation and metastasis. However, oxidative stress and
redox regulation are double-edged swords in tumorigenesis (81).
Certain types of oxidative cell death, such as necroptosis (a caspase-
independent regulated necrosis) and ferroptosis (an iron-
dependent regulated necrosis), can promote KRAS-driven PDAC
by activating inflammation-related immune suppression (82–84).
Whether PINK1, PRKN2, and BNIP3L have non-mitochondrial
functions in the modulation of the oncogene KRAS signal remains
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to be seen. In addition, various types of regulated cell death are
closely related to autophagy (85–87), which may accelerate the
complexity of the immune characteristics of the tumor
microenvironment, thereby affecting anti-tumor immunity.

There is emerging evidence that impaired mitophagy is related to
epithelial-mesenchymal transition and pancreatic cancer stem cells
(pCSCs), which are pluripotent, self-renewable, and capable of
forming tumors (88). In particular, the interferon signaling
pathway-mediated the upregulation of Ub-like modifier interferon-
stimulated gene 15 (ISG15) and its modification ISGylationmaintain
mitophagy and metabolic plasticity of pCSCs (89), suggesting a
potential link between interferon, mitophagy, and metabolism in
pCSCs. PDAC patients with high ISG15 levels showed increased
expression of genes related to the CSC pathway, including epithelial-
mesenchymal transition and oxidative phosphorylation (89). In
contrast, the inhibition of ISG15/ISGylation impairs PRKN-
dependent mitophagy, causing pCSCs to fail to eliminate
dysfunctional and unhealthy mitochondria (89). Overall, these
findings support a role of ISG15 in pCSCs by regulating
mitochondrial dynamics and energy metabolism. The role of
ISG15 in pancreatic tumorigenesis needs to be further studied
using transgenic mice.

Pancreatic Cancer Therapy
The purpose of tumor treatment is to induce death in tumor cells
without damaging normal cells. Cell death can be divided into
accidental or regulated cell death (90). Regulated cell death further
includes apoptotic and non-apoptotic forms. In addition to the
extensively studied apoptosis (91, 92), the induction of non-
apoptotic regulated cell death [such as necroptosis (93, 94),
alkaliptosis (95, 96), and ferroptosis (97–101)] in preclinical
PDAC models has shown promising results in inhibiting tumor
growth. As a metabolic center, mitochondria play a complex role in
regulating apoptosis and non-apoptotic cell death by cooperating
with other subcellular organelles (102). Accordingly, mitophagy-
mediated mitochondrial degradation and turnover is reasonable to
affect the anti-cancer activity of cytotoxic agents in PDAC cells. The
best cell models for studying mitochondrial biology and mitophagy
of pancreatic cancer are various human PDAC cell lines with KRAS
mutations. For example, rocaglamide A, a natural product from the
plant Aglaia elliptifolia, has the ability to induce PINK1/PRKN-
mediated mitophagy as a negative feedback mechanism to limit
rocaglamide A-induced apoptosis in various human PDAC cell
lines with KRAS mutations (103). In contrast, the inhibition of
mitophagy by Mdivi-1 enhances the anti-cancer activity of
rocaglamide A in PDAC cells (103). Overexpression of serine/
threonine kinase 25 (STK25, also known as MST1) in various
PDAC cells induces apoptosis by inhibiting mitophagy mediated by
mitofusin 2 (MFN2) (104). In contrast, leflunomide, an FDA-
approved arthritis drug, can inhibit the growth of PDAC tumors
by inducing MFN2 expression and subsequent mitophagy (44). In
addition, in vitro and xenograft models, the combination of cyst(e)
inase (an engineered human enzyme) and anuranofin (a
thioredoxin reductase inhibitor) can inhibit mitophagy, thereby
increase ROS production and apoptosis in the human PDAC cells
(105). In other cases, dichloroacetate (an inhibitor of pyruvate
February 2021 | Volume 11 | Article 616079

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xie et al. Mitophagy in Pancreatic Cancer
dehydrogenase kinase) (106), fisetin (a bioactive flavonoid molecule
found in fruits and vegetables) (107), and P. suffruticosa extracts
(108) may play a context-related role in the induction of mitophagy
and tumor suppression in PDAC cells. These findings further
indicate that the complex relationship between mitophagy and
mitochondrial dynamics can affect the effects of chemotherapy and
targeted therapy.

In addition to PDAC cells, pCSCs is another cell model for
studying mitochondrial dysfunction. pCSCs not only promote
the growth and metastasis of pancreatic tumors, but also mediate
chemoresistance. Metformin is a biguanide anti-diabetic drug that
activates AMP-activated protein kinase (AMPK) to trigger
autophagy (109). Retrospective studies have shown that
compared with patients receiving insulin or sulfonylureas, many
diabetic patients with solid tumors (including pancreatic cancer)
treated with metformin have a survival benefit (109). The loss of
ISG15 in pCSCs by CRISPR-Cas9 technology results in sensitivity
to metformin therapy in xenograft models (89). These findings
further indicate a potential role of ISG15 in regulating the anti-
cancer activity of metformin in pCSCs. Further investigations are
still needed to determine whether ISG15 directly regulates AMPK
activation in pCSCs.
CONCLUSION AND PERSPECTIVES

In the past decade, basic and clinical research on autophagy has
involved various diseases, including pancreatic cancer (48, 59,
110–112). With the deepening of research, the functions of
autophagy in tumor biology show diversity and complexity.
One of the important reasons is that autophagy can have
different degradation substrates, and these substrates can play a
Frontiers in Oncology | www.frontiersin.org 6256
tumor-promoting and anti-tumor effect. In addition, the degree
of substrate degradation (such as complete or partial degradation)
also affects the function of autophagy in tumors. Similarly,
mitochondrial coupling with mitochondrial biogenesis also plays
a dual role in cancer. In this min-review, we discussed the context-
dependent role of mitophagy in pancreatic cancer. Although this
information enhances our understanding of the role of
mitochondrial homeostasis in pancreatic cancer, there are still
some key questions about the process and function of mitophagy
in PDAC. How does the multi-step mitophagy actually proceed at
different stages of PDAC? What are the key molecules or signals
that distinguish the functions of mitophagy in promoting or
inhibiting pancreatic tumorigenesis? Do tumor cells and non-
tumor cells (such as immune cells or stromal cells) in the
pancreatic tumor microenvironment have different mitophagy
activities? In the pancreatic tumor microenvironment, what is
the synergy or competition between mitophagy and other types of
selective autophagy? How to develop specific mitophagy targeted
drugs to kill pancreatic tumors? Are there specific markers to
assess the level of mitophagy in PDAC patients?
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Autophagy is a complex degradative process by which eukaryotic cells capture
cytoplasmic components for subsequent degradation through lysosomal hydrolases.
Although this catabolic process can be triggered by a great variety of stimuli, action in cells
varies according to cellular context. Autophagy has been previously linked to disease
development modulation, including cancer. Autophagy helps suppress cancer cell
advancement in tumor transformation early stages, while promoting proliferation and
metastasis in advanced settings. Oncoviruses are a particular type of virus that directly
contribute to cell transformation and tumor development. Extensive molecular studies
have revealed complex ways in which autophagy can suppress or improve oncovirus
fitness while still regulating viral replication and determining host cell fate. This review
includes recent advances in autophagic cellular function and emphasizes its antagonistic
role in cancer cells.

Keywords: autophagy, human diseases, cancer cells, oncoviruses, cell survival, cell death
INTRODUCTION

Living organisms survive and are naturally preserved thanks to the combination of complex systems
that coordinate to maintain homeostatic balance (1). The immune and endocrine systems represent
good examples, as specialized cells and chemical mediators work together with antibodies and
hormones to generate a specific response in the body (2). Individuals constantly face tissue damage
due to stressful and environmental signals, as well as normal body deterioration and aging
consequences (3). This is why organisms need intracellular signaling mechanisms that allow
them to protect themselves from damaged cells, either by killing them or inhibiting their spread (4).
In this way, organisms are prevented from preserving defective cell lines with potential mutation or
error accumulation that may contribute to disease risk (5).

Macroautophagy (autophagy) is a metabolic process of intracellular component
autodegradation, such as proteins and organelles, crucial for maintaining metabolism and
cellular homeostasis (6). Normal levels of basal autophagy prevent cells from gradually
accumulating proteins and damaged organelles that can become toxic to cells over time (7).
Identifying the mechanistic components of this process at the cellular and molecular levels has been
of great interest to researchers worldwide since the late 1950s (8). The first scientists to study and
coin the name this catabolic mechanism believed that autophagy was just a cytoplasmic “cleaning
mechanism” by which cells remove harmful components that accumulate in the cytoplasm (9). This
explains the etymology of the term, which comes from the Greek words “phagy,”meaning “eat,” and
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“auto,” meaning “me.” However, the role of autophagy in cells is
now considered to be much broader as well as strongly
influenced by the cellular environment. Autophagy modulation
is related to human pathophysiology, and its implications affect
different medical fields (10). This review summarizes the
advances in molecular biology in relation to how this catabolic
process helps develop different human diseases, focusing
primarily on autophagy’s dual role in health maintenance and
tumor progression, with special interest in tumors associated
with viral infections.
MECHANISM OF AUTOPHAGY

Up to date, 32 atg (autophagy-related genes), involved in regulating
different autophagy stages have been identified in mammals. These
genes encode numerous proteins (ATG) that regulate the
autophagic machinery (11). Autophagy can be divided
mechanistically into different stages: 1) initiation and nucleation
(molecule recruitment for isolation membrane extension), 2)
phagophore elongation and closure (autophagosome), 3) fusion
with lysosomes (autolysosomes), 4) degradation, and 5) cytoplasmic
material recycling (12) (Figure 1). Mammalian cells induce the
autophagic machinery in response to various cellular stimuli, such
as prolonged starvation (13), decreased glucose levels (14), hypoxia
(15–17), increased levels of reactive oxygen species (ROS) (18, 19),
and ER (endoplasmic reticulum) stress (20, 21), among others (22).

AMPK protein (AMP-activated kinase) is the main inducer of
the autophagic machinery thus reducing intracellular ATP levels.
Frontiers in Oncology | www.frontiersin.org 2261
Recent studies have revealed AMPK’s fundamental role in
autophagosome maturation and its fusion with lysosomes (23).
Similarly, mTOR (mammalian target of rapamycin) activity is
regulated by amino acid and glucose levels in mammalian cells
(24), mTOR being their main autophagy inhibitor (25).
Specifically, mTORC1 (mTOR complex 1) detects the cell’s
nutritional status and activates various signaling pathways to
regulate cell fate (26). mTORC1 detects and responds to
fluctuations of intra and extracellular nutrient levels, mainly
amino acids and oxygen, as well as various growth factors (27). A
complex dynamic between mTOR and AMPK enables
coordinated regulation of signaling pathways in response to
cellular environment changes (28).

High-nutrient levels promote mTORC1 inactivation and the
induction of anabolic pathways involving protein, lipid, and
nucleotide synthesis through S6K (ribosomal protein kinase
S6) and 4E-BP1 (initiation factor of the eukaryotic translation
4E - binding protein 1) phosphorylation (29). At the same time,
catabolic cellular programs are suppressed as ULK1 is inhibited
(Unc-51-like kinase 1, mammalian homolog of atg1), thus
leading -in turn- to autophagy inhibition (30). Multiprotein
complex ULK1 (ULK1, Beclin-1 (BECN1), and PI3KCIII
(phosphatidylinositol-3 kinase class III)) mainly regulates the
autophagic mechanism initiation process (31). Once active, the
complex is recruited to the isolation membrane, where it
contributes to PIP3 (phosphatidylinositol 3-phosphate)
formation and Akt activation (32). These cellular events
dampen TSC 1/2 (tuberous sclerosis protein 1 and 2)inhibitory
effect, a protein heterodimer homologous to RHEB (RAS
FIGURE 1 | Steps involved in autophagic responses. Autophagy begins with the progressive segregation of cytoplasmic material by double-membrane structures,
commonly known as phagophores or isolation membranes. In general, this process is preceded by the inactivation of the PI3K/Akt/mTOR signaling axis.
Phagophores are nucleated primarily from the endoplasmic reticulum (ER), but other organelles, such as the Golgi apparatus, plasma membrane, mitochondria, and
recycling endosomes have also been shown to participate in this process. The complexes ULK1 and PI3KCIII are involved during phagophore initiation and
elongation. Pro-LC3 is free in the cytoplasm and by the action of ATG4 and ATG7, LC3-I is formed. This molecule interacts with the complex ATG16L, ATG3, to
later incorporate a phosphatidylethanolamine (PE) molecule into its structure. This results in LC3-II, which binds to autophagosomal membranes and contributes to
phagophore elongation as well as closure. Then, these membranous structures seal, and autophagosomes are entirely assembled. Subsequently, autophagosomes
fuse with lysosomes to form single membrane structures called autolysosomes, where the degradative process takes place through lysosomal hydrolases. The
degradation products of these catabolic reactions reach the cytosol through transporters in the lysosomal membrane and are recycled by bioenergetic circuits.
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enriched in brain protein) (33, 34). Akt can also be inhibited by
mTORC2, further contributing to autophagy inhibition (35).
PTEN (phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase)
can hinder PIP3 formation, by activating the PI3K/Akt/mTOR
pathway (36).

How the isolation membrane resulting in the phagophore
forms still remains unclear. However, this membrane has been
reported to derive from the plasma membrane, the endoplasmic
reticulum (37), the Golgi apparatus (38), the ER-Golgi
intermediate compartment (39), and the mitochondria (40). In
these membranes, nucleation occurs (41) (Figure 1). All proteins
involved in pagophore elongation, maturation, and closure are
recruited through this process (42). The phagophore
incorporates and degrades cytoplasmic material during
extension and then it closes up, forming double-membrane
vesicular structures called autophagosomes (35).

The action of PI3KCIII multiprotein complex (VPS34
(vacuolar proteins sorting 34), BECN1, p150 (ortholog of
mammals of VPS15), mAtg14) in the protein recruitment
process to the isolation membrane is fundamental (12). At this
point, achieving active recycling is essential, a process involving
the intervention of the ATG9 protein anchored in the
membranes (31). Some Bcl-2 (B-cell lymphoma 2) family
members, such as Bcl-2 and Bcl-xL (B-cell lymphoma extra-
large), are known inhibitors of programmed cell death but can
also inhibit autophagy through their interaction with BECN1
(43–45). Such interaction does not allow BECN1 to interact with
VPS34 (46–48).

After nucleation, the ATG16L complex (ATG12, ATG5,
ATG16L1) is recruited into the membrane, where it
contributes to LC3 (light chain microtubule-associated protein-
1 or MAP1LC3B) (49), GATE-16 (Golgi-associated ATPase
enhancer of 16 kDa), and GABARAP (aminobutyric protein
associated with the g-acid receptor) lipidation (11, 50). These
three groups belong to the ATG8 protein family, highly
conserved across the evolutionary scale (51). Several proteins
are anchored to the phagophore membrane, which is shed and
returned to the cytoplasm before closure. Meanwhile, LC3
remains attached to the autophagosomal membranes
throughout the process, making it a useful autophagosome
marker (52) (Figure 1).

Several cellular receptors are involved in the selective
recognition and recruitment of the cytoplasmic material that is
later degraded in autolysosomes. The best-characterized
autophagy receptor to date is p62 (Sequestosome 1 or
SQSTM1), a molecular adapter with a ubiquitin-binding site
and another for LC3 (35). p62 can also promote inflammatory
gene expression through NF-kB (nuclear factor kB) regulation,
activated when binding to TRAF6 (tumor necrosis factor
receptor-associated factor 6) (53). Furthermore, p62 has been
shown to activate an antioxidant response by sequestering Keap-
1 (Kelch-like ECH-associated protein-1) through an Nrf2-
dependent (erythroid-derived nuclear factor 2) mechanism
(54) as well as to activate mTORC1 and regulate c-Myc (55).

After formation, autophagosomes relocalize to the
perinuclear region through microtubules, where they fuse with
Frontiers in Oncology | www.frontiersin.org 3262
lysosomes to form single membrane vesicles called
autolysosomes (56), a complex process requiring anchoring
factors and about which very little is known so far (57).
SNARE proteins (soluble NSF binding protein) take part in the
recognition and fusion of these structures. Studies in mice have
revealed the importance of a SNARE complex [VTI1B, syntaxin
8, syntaxin 7, and VAMP-8 (vesicle-associated membrane
protein 8)] in late fusion with the lysosome (Vadim
Atlashkin2003). UVRAG (a gene associated with ultraviolet
radiation) can activate GTPase RAB7 to promote fusion (58).
Syntaxin 17, located in mature autophagosomes, can also
regulate this mechanism (59). Successful binding to lysosomes
is necessary for complete autophagy, as lysosomes provide the
lytic enzymes needed for the degradation of cytoplasmic
components in vesicles (60).
FUNCTIONS OF AUTOPHAGY

Historically, autophagy was considered to be a mechanism
benefitting cell survival, as it recycles damaged and potentially
toxic cytoplasmic components to increase vitality in cells
subjected to stressful conditions, such as nutrient deprivation (61).
Depending on cellular context, autophagy is selective or non-
selective (massive autophagy). The former shows high specificity
in degradation load selection and delivery, while in the latter,
cytoplasmic particles are incorporated randomly (62). Selective
autophagy is defined by the cytoplasmic material digested in
mitophagy (affects mitochondria) (63), pexophagy (peroxisomes)
(64), reticulophagy (endoplasmic reticulum and ribosomes) (65),
nucleophagy (nucleus) (66), lipophagy (fat cells) (67), xenophagy
(involves pathogens and other non-host entities) (68), and
aggrephagy (damaged protein aggregates) (69).

With the advancement of knowledge, autophagy has been
found not only to promote cell survival, but also to be induced in
dying cells (70). The role of autophagy in death is, even today, a
critical controversial point among researchers. While some
scientists consider autophagy to been an independent death
mechanism (autosis) (71), others argue that activation in dying
cells occurs as a failure to rescue the cells from the stressful
stimuli leading them to death in the first place (72, 73). In light of
the growing number of physiological functions related to the
autophagic mechanism, connections with numerous human
pathologies have also been strengthened (74).
THE ROLE OF AUTOPHAGY IN CANCER

For cell transformation and tumor development to happen,
several basic cellular alterations -referred to as the hallmarks of
cancer- must occur (75, 76). Increasing evidence suggests a link
between autophagy and cancer (77).

However, establishing the role of autophagy in cancer has
proved problematic as it can both contribute to tumor
promotion and inhibition, depending on cellular context and
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disease stage (78). In the early stages of tumor transformation,
autophagy can be activated to help cells mitigate mutations and
damage their various components. But, once the transformation
is complete, tumor cells can make use of the autophagic
machinery to meet the high metabolic requirements of these
uncontrolled dividing cells (79) (Figure 2).

Autophagy as a Tumor-Suppressing
Mechanism
The most relevant findings related to autophagy and its role as a
tumor suppressor come from studies on BECN1 (80). Mice with
depletion of an allele for this gene showed a higher
predisposition to different neoplasm spontaneous development
(81). BECN1 has a BH3 domain, so it is not surprising that it can
interact with various members of the Bcl-2 protein family and
homologous viral proteins (82). Through these interactions,
Frontiers in Oncology | www.frontiersin.org 4263
BECN1 can regulate autophagic and programmed cell death
(83). Under normal conditions, Bcl-2 inhibits BECN1, whereas
under stress conditions, they dissociate. This allows BECN1 to
interact with VPS34 and modulate autophagy (84).

BECN1 dysregulation has been associated with the
development of several cancers, including 50%–70% of
prostate, breast, and ovarian cancers (85). In response to
stressful stimuli, BECN1 can interact with Bif-1 (bax1
interaction factor or endophilin B1) through a mechanism
involving UVRAG, thus leading to PI3KCIII and VPS34
activation. This regulatory mechanism has been evidenced in
various tumor models (86).

Under cellular stress conditions, autophagy induction
mit igates oxidat ive stress by el iminat ing damaged
mitochondria, a crucial source in ROS production (80). When
defective autophagy occurs, debris cannot be removed, leading to
FIGURE 2 | Autophagy and cancer. Autophagy plays a dual role in the development of cancer, the nature of which depends on the tissue, stage, and type of
tumor. In carcinogenesis early stage, autophagy induction protects cells from DNA and protein damage due to the indiscriminate increase in ROS and cell-toxic
components. Once cells are immortalized, autophagy plays an essential role in promoting tumors. Autophagy induction can be modified, or at least some of the
steps involved in the mechanism can be changed. The excessive accumulation of autophagic vesicles leads to p62 molecule accumulation and intracellular signaling
activation, which leads to Nrf2 transformation, inflammation, and cell necrosis. In tumor progression, autophagy provides high-energy nutrients to actively dividing
transformed cells. When transformed cells metastasize, autophagy can inhibit the process by promoting anti-tumor inflammatory responses or by restricting the
expansion of dormant metastatic tumor cells. On the contrary, it supports metastasis by improving cell fitness against a stressful microenvironment (anoikis).
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increased ROS levels and DNA damage with consequent loss of
genomic integrity (87, 88). Therefore, autophagy prevents tumor
generation by regulating ROS levels (89).

Atg genes expression has been directly linked to this process.
Studies in mouse liver with silenced atg7 and atg5 showed
autophagy malfunction as contributing to benign hepatic
adenoma development (90). These tumors did not progress
over time, suggesting that the loss of autophagy may be
sufficient for tumorigenesis onset, but not for progression
towards advanced stages of the disease (91). On the other
hand, mice with deficient in atg4C showed alterations in
autophagy and greater predisposition to fibrosarcomas induced
by carcinogens (92).

Numerous tumor suppressor proteins promote autophagy
(93–95). Tumor suppressor p53 is a usually deregulated
protein in many human neoplasms which promotes autophagy
when activated by nutrient deprivation or genotoxic stress (91).
p53 functional loss is therefore expected to lead to autophagy
inhibition (96). However, p53 can act as either an activator or an
inhibitor of autophagy depending on its subcellular localization
and its action mode (97). Mice with pancreatic oncogenic alleles
for k-ras develop precancerous lesions and PDCA (pancreatic
ductal adenocarcinoma) over time. Here, p53 expression blocks
autophagy, thus inhibiting initial carcinogenesis (98). On the
other hand, p53 can contribute to autophagy activation through
DRAM1 (DNA damage-regulated autophagy modulator protein
1) (99), atg7, and ulk1 (100) modulation. Another p53 target
gene is isg20l1, which promotes autophagy induction and cell
death when activated (101).

Numerous studies have revealed an increase in autophagy
levels as carcinogenesis progresses (89). In metastasis early
stages, cells acquire migratory properties and detach from the
tumor to enter the bloodstream and flow through the body to
colonize new tissue. At this point, autophagy exerts an anti-
tumor role by modulating inflammation and cell shedding, but it
also promotes motility and invasion (102). These results suggest
that the autophagic machinery is a regulatory mechanism that
can inhibit tumor generation in the early stages of the disease and
in metastasis (Figure 2).

Autophagy as a Pro-Survival and
Resistance Mechanism
High metabolism requires a stressful condition to which tumor
cells must adapt to proliferate actively in combination with a
hypoxic cellular environment (86). Under these conditions, cells
can activate autophagy to address various cellular needs and
promote oncogenesis (77). Autophagy is activated in the hypoxic
regions of tumors to counteract cellular oxygen demand (103).
When tumor cells blood supply is insufficient, the autophagic
machinery can be activated through an HIF-1-dependent
mechanism (hypoxia-inducible factor-1) (15), VEGF (vascular
endothelial growth factor) (104), PDGF (platelet-derived growth
factor) (105) and oxide synthase (106). Hence, autophagy plays
an essential role in promoting tumor cell survival under
metabolic stress (107). Furthermore, cell division high rate
translates into increased energy and biosynthetic needs, which
Frontiers in Oncology | www.frontiersin.org 5264
can be satisfied by rising autophagy levels to obtain ATP and
metabolic intermediates (108).

Transcription factor p53 acts as a cellular stress sensor in
response to DNA damage and oncogenic stress (94) and often
mutates in different types of human cancers (109). Moreover,
point mutations in p53 prevent it from inhibiting autophagy in
some breast cancer models (96). Consequently, this catabolic
signaling pathway is activated to help repair damaged DNA and
benefit tumor cells (110).

p62 cell adapter is another crucial molecule in nutrient
detection. It can also act as a mitotic transit modulator, an
oxidative detoxifying protein inducer, and genomic stability
regulator (111). It also contributes to the autophagic
mechanism by recruiting proteins and organelles into the
autophagosomal compartments for subsequent degradation
(112). In liver carcinoma cells, mTORC1 inhibition and ER
stress promote p62 accumulation and autophagy induction
(113). In colorectal cancer cells, p62 promotes invasion and
metastasis by inhibiting apoptosis through a mechanism
involving the vitamin D receptor and Nrf2 (114). p62 deletion
produces significant autophagy inhibition and affects tumor
growth in in vivo and xenograft models (115). Upregulated p62
is commonly found in various tumor models (111).

Approximately 33% of neoplasms developed in mammals
present mutations of the ras gene, which indicates the
importance of this gene for medical science (116). Recent
studies have revealed that autophagy promotes tumor
development, invasion, and metastasis in epithelial cells
transformed by this oncogene (117). Furthermore, autophagy
inhibition in mice with lung tumors induced by k-ras expression
was fatal, as specimens died of pneumonia (118). In pancreatic
adenocarcinoma models with k-ras mutations, tumorigenicity
was associated with increases in IL-1 (interleukin-1), NF-kB, and
p62 levels (119).

Many patients manifest metastatic bodies many years after
the primary tumor has appeared (120). Autophagy can suppress
cell division and motility, thus conserving dormant tumor cells
energy. At some point, latent cells can reactivate proliferation
and colonize new tissue in response to changes in the tumor
microenvironment (121). Anoikis is an apoptotic cell death
model triggered by insufficient interaction between the cell and
the extracellular matrix, a critical factor for transformed cell
invasion and metastasis (122). When cells detach from their
matrix to enter the bloodstream, autophagy protects them from
anoikis and promotes metastasis (123). On the other hand,
autophagy contributes to carcinogenesis by inhibiting
apoptosis caused by mitochondrial dysfunction and excessive
ROS production (124) (Figure 2).
AUTOPHAGY WITHIN THE TUMORAL
MICROENVIRONMENT

The tumor microenvironment is the tumor stroma and occupies
most of the neoplasm (125). We can therefore hypothesize that
as carcinogenesis progresses, the interaction between tumor cells
March 2021 | Volume 11 | Article 603224

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Suares et al. Autophagy in Viral Development and Progression of Cancer
and surrounding stromal cells increases (126). Compared to
normal tissues, the tumor microenvironment is characterized
by low oxygen levels, high lactate levels, extracellular acidosis,
and decreased nutrients (127). It presents great cellular
heterogeneity, composed of mesenchymal stem cells,
fibroblasts, endothelial cells, immune cells, cytokines, and
growth factors (128). Cancer-associated fibroblasts (CAF) are
the most studied cells in the tumor microenvironment as they
play an active role in tumor promotion (129). These components
cooperate to contribute to tumor development (121) (Figure 3,
top panel).

Autophagy is activated in the tumor microenvironment and
in adjacent transformed cells to ensure tissue remodeling,
angiogenesis, and interaction with surrounding immune cells
Frontiers in Oncology | www.frontiersin.org 6265
(126). Autophagy has been detected in most cells of the tumor
microenvironment, but with the ability of performing different
actions. For example, when faced with a specific stimulus, the
autophagic machinery in fibroblasts promotes tumorigenesis.
Simultaneously, in some immune cells, such as cytotoxic T
cells, it facilitates immune-response execution against
neoplastic cells (130). Under extreme physiological conditions,
the stroma activates autophagy to supply energy for adjacent
tumor cells (131). In addition, tumor cells can modulate
autophagic vesicles’ induction in specific stromal cells (108).

For many years, cancer-related studies focused exclusively on
transformed cells, ignoring the tumor environment. At present,
the tumor microenvironment is considered to play a
fundamental role in tumor development, and its study is
FIGURE 3 | Active crosstalk between autophagy and tumor microenvironment. Carcinogenesis is regulated by autophagy in transformed cells and cells belonging to
the tumor microenvironment. Signaling is triggered to the ECM (extracellular matrix) and to stromal cells (such as fibroblasts and pericytes), generating a favorable
context for tumor development. As tumor development progresses, cell autophagy activation in the tumor microenvironment serves, in part, to compensate for the
inadequate nutritional supply associated with rapidly growing tumors. Here, proper quality control of the mitochondria is necessary to aid glycolysis in tumor cells. In
this way, the energy balance (Warburg effect) typically found in malignant cells is maintained. Also, the autophagic process is involved in multiple aspects of
lymphocyte development, innate immune signaling and antigen presentation by APCs (antigen presenting cells), processes that are relevant to the disease
pathogenesis. HSPA/HSP70 overexpression can induce HMGB1 release in a BECN1-dependent process. This event culminates in the activation of NFkB and
promotes tumor proliferation and invasion. Similarly, autophagy induction can contribute to IL-6, IL-1, and IL-8 secretion and promote inflammation. The expression
of specific cytokines may inhibit this process, generating a decrease in the inflammatory process.
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essential to form a cohesive idea of what happens within the
tumor (132). The extracellular matrix is a fundamental
component of the tumor microenvironment. In addition to
providing a physical scaffold, it contributes to the secretion of
key factors for the tumor’s proper development. Macrophages
and fibroblasts associated with cancer are the main cellular
models associated with the tumor microenvironment (133).

The bone marrow is the leading site of hematopoiesis and
bone formation in most vertebrates as well as the location of
inactive and undifferentiated hematopoietic stem cells (HSC)
(134). In response to specific stimuli, HSC can differentiate into
various blood cells (135). As they have a short life cycle, HSC
functional differentiation becomes necessary. During
differentiation, cells are exposed to low oxygen levels, a
sufficient condition for autophagy induction (136). Recent
studies have revealed that autophagy is essential both for self-
renewal and for HSC differentiation (137, 138).

After extravasation, monocytes are stimulated by CSF-1
(colony-stimulating factor-1) to induce differentiation.
However, this stimulating factor is also associated with
autophagy induction through ULK1 activation (139) and PI3K/
Akt inhibition (140). CSF-2, another cytokine related to
macrophage differentiation, prevents BECN1 and Bcl-2
interaction through a mechanism that includes JNK and
triggers autophagy (141). At the same time, G-CSF
(granulocyte colony-stimulating factor) contributes to cell
survival through apoptosis inhibition and autophagy
induction (142).

In recent years, studies related to the role of autophagy and
CAFs in the tumor microenvironment have increased (143) and
autophagic machinery induction has been associated with the
NF-kB pathway and Caveolin-1 (Cav-1) expression in the tumor
microenvironment (144, 145). Cav-1 is an essential component
of the plasma membrane caveolar, contributing to modulating
various signaling pathways. Other scientific sources have
revealed a direct relationship between the autophagy induction
and BNIP3 (E1B-binding protein 19K/Bcl-2 Nip3) expression in
fibroblasts. This induction is accompanied by the loss of Cav-1
expression and the increase in BECN1 and ATG16L (146).
Pancreatic stellate cells are a specialized type of fibroblast that
can be found in tumor stroma, including PDAC (48, 147).
Extensive studies have shown that stellate cells can secrete
extracellular matrix molecules and cytokines that contribute to
tumor aggressiveness (148). The baseline level of autophagy in
PDAC patients is high, and active interaction between the tumor
and stromal cell autophagy has been observed (149).

Tumor vasculature is involved in immune cell trafficking and
activity. However, it also increases nutrient and oxygen
circulation to meet solid tumors’ high energy demands (150).
A constant imbalance between pro-, and anti-angiogenic
signaling in the tumor microenvironment exists, which
contributes to new vessel formation through a VEGF-
dependent mechanism (151, 152). Endothelial cells that reside
in tumors are exposed to high VEGF levels, nutrient deprivation,
and aberrant blood circulation, thus leading to increased
autophagy levels (150). In fact, in tumor endothelial cells,
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autophagy levels are higher than in healthy endothelium (153).
Said induction, as mentioned in the previous paragraph, can
have anti-angiogenic (154) or pro-angiogenic (155) functions
and, therefore, contribute to a different cell fate (156).

Autophagy as a Regulator of Tumor
Immunity and Inflammation
Autophagy can induce immune system cells to exert specific
responses (157). Recently, autophagy has been shown to
influence not only the antigenic profile of antigen donor cells
and their ability to release immunogenic signals (158, 159), but
also the survival, differentiation, and function of antigen-
presenting cells (APC) (160–162).

Innate immunity is the body’s first line of defense against
attack by pathogens; it is an active process and it favors the
complement system as well as inflammation (163). At the cellular
level, the presence of intracellular pathogens is detected by PRRs
(pattern recognition receptors) located in the plasma membrane
(TLR (Toll-like receptors), 1, 2, 4, 5, and 6), in endosomal
membranes (TLR3, TLR7, TLR8, TLR9) or in the cytosol
(NOD (Nod-type receptors), RIG-I (gene I-like receptors), RLR
(retinoic acid-inducible receptors), and CLR (C-Type lectin-like
receptors) (164). PRRs recognize surface antigens of microbes
called PAMPs (pathogen-associated molecular patterns), such as
lipopolysaccharides of the bacterial cell wall (LPS), flagellin,
bacterial, and viral nucleic acids, and finally, some components
of the fungal cell walls (165, 166).

After PPRs recognize pathogens, cells can induce autophagy
to eliminate them through lysosomal degradation, although this
is highly dependent on cellular context and cell type (167).
Evidence has shown several TLRs, including TLR1, TLR3,
TLR4, TLR5, TLR6, and TLR7, inducing autophagy in humans
and mice macrophages (168). The connection between TLR
signaling and autophagy is believed to be mediated by adapter
proteins TRIF (adapter-inducing interferon-b containing the
TIR domain) and Myd88 (Myeloid differentiation primary
response 88), which inhibit the interaction between BECN1
and Bcl-2, thus contributing to autophagy induction (169).
Furthermore, the link between Myd88 and mTOR has been
reported to allow the activation of transcription factors (IRF-5
(interferon regulatory factor 5), IRF-7) that encode for pro-
inflammatory cytokine genes and IFN-I (interferon type-I) (170).

Adaptive immunity, on the other hand, produces/makes a
more robust and specific response (171), which involves
capturing foreign material by APCs (macrophages, B cells, and
dendritic cells) to stimulate T lymphocytes and give specific
cellular responses (Figure 3, left panel) (172). APCs present
antigens to major histocompatibility complex (MHC) molecules
through the complex interaction of various cellular factors (173).
Autophagy inhibition has been found to reduce MHC-I (MHC-
class I) molecules in murine B16 melanoma cells and subsequent
cytolysis of tumor cells by CD8+ T cells through cross-
presentation (174). CD8+ T cells can respond to exogenous
antigens and material undergoing phagocytosis (175). CD4 + T
cells recognize antigens from MHC-II molecules (MHC-class II)
that are processed in endolysosomal compartments (176).
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Autophagy may be an essential source of MHC-II antigens
derived from intracellular sources through lysosome material
supply (177). Like T cells, B cells are regulated by the autophagic
machinery. For example, deletion of atg7 or atg5 in the
hematopoietic system results in a reduced number of
peripheral B cells (178, 179). Dendritic cells are responsible for
presenting pathogenic antigens to CD4+ and CD8+
lymphocytes, a process that is favored by autophagy
induction (180).

Autophagy can regulate immunity and inflammation in
tumor transformation in order to regulate carcinogenesis
(181). Cytokine signaling is involved in tumor-associated
inflammation and has been linked to promoting tumor-
initiating cell self-renewal, tumor growth, angiogenesis, and
metastasis (182). Cytokine secretion is variable depending on
cancer type, but generally involves IL-1, IL-6, CXCL8/IL-8, IL-
10, and interferon-gamma (183). In estrogen-receptor-negative
breast tumors, IL-1 expression has been associated with
autophagy induction with p62 and LC3 accumulation (184). In
liver tissue carcinomas, IL-37 expression regulates autophagy by
inhibiting the PI3K/Akt/mTOR axis (185). Some cytokines
stimulate autophagy (Th1, TNF-a (tumoral necrosis factor a),
IL-2), while others inhibit it (Th2, IL-4, IL-13, IL-10) (121)
(Figure 3, bottom panel).

ROS accumulation in tumor development can cause
mutations, protein and mitochondrial damage, and increased
secretion of inflammatory and antimicrobial agents (186). An
increase of intracellular ROS levels is commonly related to
inflammatory signaling activation involving NF-kB and
regulating the inflammatory response, angiogenesis, and the
function of tumor-initiating cells, according to cellular context
(187). Furthermore, interaction between NF-kB and the
autophagic machinery in order to alter apoptosis and benefit
tumor cell survival is common (181). Studies carried out in a
murine model of lung adenocarcinoma have revealed that p62
deletion inhibits tumor development through a mechanism
that prevents RELA/65 nuclear localization and NF-kB
activation (188).

Autophagy in Tumor Cell
Metabolism Remodeling
In the 1920s, scientist Otto Heinrich Warburg discovered that
tumor cells produce more energy than usual and absorb more
glucose than healthy cells through glycolysis regulation, a process
known as the “Warburg effect” (189). Numerous scientific
reports support the idea that autophagy can generate ATP
through a mechanism that involves glycolysis (Figure 3, right
panel). Through studies linking these cellular processes, a new
paradigm known as the “reverse Warburg effect” has emerged.
Stromal cells have been postulated as the key generators of fuel
for transformed cells (190). Nowadays, both tumor cells and
adjacent stromal cells are believed to contribute to meeting
tumor energy needs (191). The importance of autophagy in
glycolysis has also been observed in chronic myeloid leukemia
and breast cancer cells (192, 193). In mice with K-Ras-driven
lung tumors, loss of atg7 leads to defective autophagy, which
alters tumor fate, forming benign tumors called oncocytomas
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(118). These tumor masses with low autophagy levels show
defective mitochondria and neutral lipid accumulation
(particularly cholesterol esters) due to fatty acid oxidation
defects (194).

Mitochondria are central regulators of cell metabolism, which
is why they must function correctly. In general, autophagy plays
a vital role in the cleaning and quality control of these organelles
(195). Both glucose-dependent metabolic pathways and
mitochondrial metabolism are essential in tumorigenesis
modulation (196). Under hypoxic conditions, pro-apoptotic
receptors (BNIP3 and NIX) are activated to induce mitophagy
and promote cell survival through HIF-1 regulation (197, 198).
In breast cancer cell lines, IGF-I (insulin-like growth factor 1)
expression induces BNIP3 expression through a HIF-1-
dependent mechanism (199).

Likewise, in glioblastoma cells, PINK1 deletion (the kinase 1
induced by PTEN is a mitochondrial protein of the serine/
threonine kinase type) promotes the Warburg effect through
ROS and HIF-1 level stabilization. It also reduces PKM2
(pyruvate kinase isoenzyme M2) activity, both regulators of
aerobic glycolysis (200). Glycolysis can also be modulated by
the interaction between p53 signaling pathways and mitophagy
in head and neck squamous carcinoma cell lines (201). Although
the molecular mechanism that links these two metabolic
regulators has not yet been fully comprehended, Parkin has
been found to regulate p53, a ubiquitin ligase that modulates
mitochondrial energy metabolism, antioxidant defense, and
radiation-induced tumorigenesis (201, 202).

Acetyl-coenzyme A (AcCoA) is a critical metabolic
intermediate in autophagy regulation: when its intracellular
levels decrease, the autophagic machinery is activated (203).
Recent studies in glioblastoma cells have shown that AcCoA
increase as a glycolysis product can regulate genes involved in
cell migration and adhesion (204). Pancreatic cancers are highly
desmoplastic, leading to highly inhospitable environments for
cells with high ROS levels, hypoxia, and insufficient nutrient
levels (147). Pancreatic stellate cells are a specialized type of
fibroblast, commonly found in this type of neoplasm, which
contributes to mitochondrial metabolism (205). In the face of
stressful conditions, these cells can secrete alanine through an
autophagy-dependent mechanism and then be absorbed and
used by tumor cells (206). This amino acid fuels the Krebs
cycle in PDAC and allows glucose to be used for other anabolic
processes such as serine/glycine biosynthesis. Autophagy
inhibition in pancreatic stellate cells has recently been shown
to decrease tumor growth in transplantation models (149).

HIF-1 and the c-Myc oncogenes coordinated expression
regulate cellular glucose transporters, glycolytic enzymes, and
mitophagy through choline metabolism (207–209). In B
lymphoma cells, c-Myc activates the choline phosphate
cytidyltransferase A (PCYT1A) enzyme, inducing mitophagy
and preventing cells from dying of necroptosis (210). Arginine
is another amino acid that can be dysregulated in cancer cells.
Autophagic regulator AMBRA1 (regulator 1 of BECN1 and
autophagy) can influence tumor metabolism by regulating c-
Myc degradation. When mTOR is inhibited, AMBRA1 is
activated. This protein favors the interaction between c-Myc
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and its phosphatase PP2A (protein phosphatase 2A) to result in
the dephosphorylation and degradation of c-Myc, thus reducing
cell division rate (211). Cell transformation mediated by c-Myc
or RAS-v12 overexpression increases AMPK and FoxO3
expression, which results in increased levels of positive
autophagy for BNIP3 and LC3 (212). Finally, the close link
between the signaling mechanisms triggered in tumor cells and
the adjacent stroma should be taken into consideration; all these
events together contribute to tumor metabolism (206, 213).
AUTOPHAGY DURING VIRAL INFECTION

Autophagy is an essential cellular response element for various
types of infections. In general, intracellular pathogens are
sequestered and selectively degraded by autophagosomal
vesicles (214). However, many pathogens use the host cell’s
autophagic machinery to survive and spread (68). Viruses are a
good example: once inside the cell, they modulate autophagy to
regulate almost all viral life cycle, including insertion and entry of
the virus into the host cell, exposure of viral components, and
vira l prote in product ion (215) . Some viruses use
autophagosomal membranes as anchors in the replication
process, while others inhibit autophagy from avoiding being
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degraded by lysosomal enzymes in autolysosomes (216). A more
detailed examination of the molecular mechanisms modulated
during viral infection in relation to the autophagy degradation
pathway will be made in the following sections.

Autophagy in Antiviral
Immunity Regulation
Among the various PRRs involved in detecting pathogenic
components, TLR receptors located in the plasma membrane
and the cytosol stand out (217) (Figure 4A). TLRs activation in
endosomes requires PAMPs endocytosis, such as viral RNA,
damage-associated molecular patterns (DAMPs), apoptotic cells,
or autophagy induction (218). Upon activation, TLRs recruit the
Myd88 primary response protein or adapter molecule 1 as an
NF-kB activator, contributing to the synthesis of inflammatory
cytokines, which in turn trigger IFN production (219) (Figure
4A). NF-kB, IRF-3, and IRF-7 activation can determine the
inflammasome assembly and ultimately result in caspase-1 and
IL-1b, and IL-18 activation (220). On the other hand, astrocytes
infected with three different Zika virus (ZIKV) strains show an
increase in inflammatory molecule release (IP-10, IFN-b, NF-kB)
and autophagy activation by a mechanism involving TLR3 (221).

In mice dendritic cells infected with the human herpes
simplex virus-1 (HSV-1), atg5 deletion causes deficiency in the
A B

FIGURE 4 | Autophagy-mediated elimination of pathogens. (A) Once a virus enters a cell, (I) viral DNA may be exposed in the cytoplasm, leading to cGAS-STING
pathway activation and IFN-I expression, thus triggering the antiviral defense; or (II) viral RNA (endosome) can be recognized by TLR3 (dsRNA) and by TLR7 or TLR8
(ssRNA), triggering IRAK and TRAF6, which leads to IFN-I synthesis. Virus recognition by TLR2 or TLR4 may also trigger the cascade that leads to IFN-I (IRF3, IRF7,
or NF-kB) and pro-inflammatory cytokine activation transcription factors. (B) Once pathogens enter the cell, a parasitophorous vacuole with glycosylated molecules
starts enclose them. Galectins present in this vacuole bind to NDP52, which interacts directly with E3 ligase LRSAM1 and indirectly with TBK1. TBK1 interacts with
optineurin. NDP52 binds to LC3-II, resulting in xenophagy activation. LRSAM1 polymerize ubiquitin at different targets that are yet to be identified. This hypothetical
model includes the pathogen and the parasitophorous vesicle as targets. NDP52 recognizes the ubiquitin tags, optineurin, and sequestosome-I. TBK1
phosphorylates optineurin and sequestosome (I) After these steps, the autophagic isolation membrane elongates to capture the pathogen to degrade it.
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processing and presentation capacity of viral antigens into
MHC-II. In this process, TLRs located in endosomal
membranes and associated with LC3 have been shown to
improve viral antigen processing (222). Moreover, atg5 has
been proven necessary for IFN-a production and TLR9
activation through CpG (DNA regions that make up 40% of
gene promoters in mammals, with high concentrations of
phosphate-linked cytosine and guanine) in HSV-2 infected
cells (223).

The second most important PRRs family are the NOD
receptors (224), which constitute the cytosolic counterpart of
TLRs and include 23 members in humans (225). NOD1 and
NOD2 are two receptors that recognize peptidoglycan, a
component of the bacterial cell wall; the stimulation of these
two receptors forms a transducer complex called the NOD
signalosome (226). This signalosome leads to NF-kB activation,
which stimulates chemokines and cytokines production, and
which in turn initiates the pro-inflammatory response involved
in eliminating pathogens (227). Recent studies have revealed an
increase in NOD1 and ATG5-dependent autophagy in hepatic
ischemia/reperfusion injuries (228). On the other hand, epithelial
cell infection with adherent/invasive Escherichia Coli have
increased ATG16L1 and LC3 through interaction with NOD2
cytosolic receptor (229).

The CRL receptors family binds to carbohydrates present in
pathogens (lectins are proteins that recognize sugars) through a
Ca2+ dependent mechanism (230). Type C lectin receptor,
Mincle (macrophage-inducible Ca2+ dependent lectin
receptor), and TLR4, induce autophagy by activating Myd88 in
macrophages (231). RIG-I receptors are characterized by having
a C-terminal regulatory domain and a DExD/H helicase domain
that contribute to recognizing and unwinding the viral RNA
duplex (232). Melanoma differentiation-associated protein 5
(MDA5) is another essential protein in this family. Both
proteins detect viral RNA in the cytosol by interacting with
mitochondrial signaling through its caspase recruitment domain
and regulating autophagy (233).

The last group of receptors includes cytosolic DNA and RNA
sensors. An excellent example of these sensors is the cyclic GMP-
AMP synthase (cGAS), which plays a fundamental role in
recognizing DNA viruses and IFN pathway induction (234).
Excessive IFN stimulation can damage the body, so complex
regulatory mechanisms have been developed, one of them being
autophagy (235). After infection with HSV-1, BECN1 interacts
with cGAS, thus altering its nucleotidyltransferase function and
triggering the autophagic machinery. When free in the cytosol,
cGAS recognizes virus DNA and activates IRF-3 and STING
(interferon gene stimulator) to increase IFN production (236)
(Figure 4A).

Autophagy can also modulate the adaptive immune response
to infection through intracellular pathogens. MHC-I molecules
are responsible for presenting pathogenic antigens to CD8+ T
lymphocytes in order to trigger different cellular responses, such
as endocytosis, vesicle trafficking, and autophagy (237). In the
conventional mechanism, the proteasome breaks down these
protein antigens into peptide fragments and transports them to
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the endoplasmic reticulum, where their processing concludes
(238) (Figure 4B). Some cells, such as dendritic cells, can present
pathogenic antigens to lymphocytes through “cross-presentation”
(239). This mechanism can occur through three different
signaling pathways (240). In the first case, pathogens are
recognized and transported to the proteasome, where small
peptide fragments are released and transported to the ER by
TAP1 (transporter associated with antigen processing 1) and
TAP2 to be presented to HMC-I molecules (240) (Figure 4B).
The second pathway is independent of the proteasome, and its
lysosomal proteolysis helps facilitate antigen processing (241).
Finally, in the last signaling pathway, degradation is proteasomal
but independent of TAP (242).

The various death mechanisms involved in dendritic cell cross-
presentation have been assessed in comparative studies, which show
that atg5 inhibition also inhibited said presentation. This finding has
made it possible to associate autophagy with antigens effective
presentation to CD8 + T cells (243). Subsequent studies have
revealed that autophagy not only influences antigen processing on
HMC-I molecules but that is also a prime antigen source for HMC-
II molecules, such as CD4 + T cells (244).

Viruses Can Activate or Inhibit Autophagy
in Favor of Their Replication
Viruses are particles that cannot survive on their own. This is
why they have evolved alongside their respective hosts, a process
that has given them the ability to use host cell signaling pathways
to their advantage (245). To this end, viral particles promote the
expression of various viral proteins that mimic host protein
structure and function (215). These proteins modulate many cell
signaling pathways in favor of viral replication, and autophagy is
not exempt from this regulation (246, 247). Viruses with RNA in
their genetic material usually contribute to autophagic
membrane accumulation, regardless of whether their
replication is nuclear or cytosolic (248).

Many viruses that regulate autophagy to facilitate viral
survival and replication have been discovered, including
poliovirus (249, 250), Coxsackievirus (CVB3) (251, 252), CVB4
(253), Enterovirus 71 (EV71) (254), human rhinovirus (HRV)
(255), foot-and-mouth disease virus (FADV) (256),
encephalomyocarditis virus (EMCV) (257), dengue virus
(DENV) (258, 259), ZIKV (260, 261), mouse hepatitis virus
(MHV) (262), Newcastle disease virus (NDV) (263), severe acute
respiratory syndrome coronavirus (SARS-CoV) (264),
Chikungunya virus (CHIKV) (265), and Japanese encephalitis
virus (JEV) (266), among others.

In cells infected with human poliovirus, viral proteins 2BC
and 3A promote the formation of autophagic vesicles where viral
replication takes place. The virus induces tubular structures in
early stages of infection, while forming double-membrane
vesicles in advanced settings (267, 268). Recent studies have
provided a novel and deeper understanding, by revealing that
these viruses can regulate autophagy through a ULK1-
independent mechanism (269). During infection with EV71,
the ERK inhibition pathway and autophagy impairs viral
replication (270).
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Measles virus (MeV) belongs to the Paramyxoviridae family and
manifests itself mainly in children as high fever, acute respiratory
infections and typical papular rashes (271). MeV binds to the host
cell through CD46 (CD46 complement regulatory protein), a
receptor on the plasma membrane that initiates the autophagic
cascade when activated (272). Once active, this receptor binds to the
VPS34-BECN1 complex via the GOPC scaffold protein (containing
Golgi-associated PDZ and spiral-spiral motif) (273). Virulent MeV
samples recognized by CD150membrane receptors have not shown
to have the ability to regulate autophagy in early stages of infection.
However, these strains modulate autophagy late in the mechanism
to prevent cell death and benefit viral replication (274).

The human immunodeficiency virus (HIV) is a member of
the Retroviridae family, affecting more than 30 million people
worldwide (275). This human disease progresses towards
immune system failure, resulting in infection development or
tumor transformation (276), generating alterations in the host’s
signaling pathways, and therefore damage accumulation. Critical
regulation aspects of the cell cycle are altered, which determine
cell transformation and tumor progression, mainly of B cells
(277). HIV tat protein, HIV-induced immunosuppression, and a
hyperinflammatory state facilitate the oncogenic activity of
Kaposi’s sarcoma-associated oncovirus (278). Average survival
after HIV infection is estimated to be nine to eleven years
without treatment, depending on HIV subtype (279). This
retrovirus is transmitted by body fluids and infects CD4+
lymphocytes and macrophages, ensuring prevalence in the host
through complex cellular processes (280). In macrophages,
autophagy can contribute to HIV degradation or replication.
Nef viral protein blocks autophagy initiation by promoting
BECN1 binding to Bcl-2 through a PRKN-ligase dependent
mechanism (Parkin RBR E3 Ubiquitin Protein Ligase) (281).
In studies on CD8+ lymphocytes infected with HIV from
patients with lymphoblastic leukemia, the virus was able to
inhibit autophagy by reducing ATG8 and BECN1. The
opposite result was seen in HIV-infected CD4+ cells (282).
Furthermore, an active modulation of ATG1, ATG4D, and
ATG5-ATG12 proteins by the virus has been shown. The
findings reported so far indicate that HIV can modulate
autophagy at different stages to benefit its replication and
escape cell degradation (215, 283).

The group of RNA viruses belonging to the Coronaviridae
(CoV) family has recently gained relevance. SARS-CoV-2 is the
etiological agent of COVID-19, a disease that has had a
devastating impact in the past year around the world (284).
Before COVID-19, six human CoV pathogens had been
identified, two of which are aggressive enough to develop
massive infections (285). SARS-CoV infected cells can use the
autophagic machinery to degrade viral particles or promote their
replication and prevalence. However, more studies are needed to
better understand the signaling pathways involved in these viral
replication processes (286).

The influenza virus (family Orthomyxoviridae) is another
group of viruses implicated in developing human respiratory
diseases. Three influenza serotypes have been characterized, only
one of them responsible for generating epidemics annually and
pandemics at irregular intervals (287). Viral protein M2 is a
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proton channel that facilitates the acidification of viral particles
and allows their decomposition in the host cell nucleus (288).
This protein also blocks autophagosome degradation and
redirects LC3 to the plasma membrane, generating a cellular
redistribution of membranes coupled with this protein. Through
this process, these viruses can lead to the formation of
filamentous buds, which appear to increase virus stability (289).

CHIKV is transmitted to humans by the bite of some mosquito
species and can induce the autophagic machinery through ER stress,
increased ROS levels, and reactive nitrogen species (290). Some
studies have reported that when the virus is actively replicating, it
induces autophagy through the AMPK pathway. However, this has
not been observed when the virus is latent (291). Another virus
transmitted to humans by mosquitoes is DENV, a Flaviviridae
family member that can cause acute or chronic infections (292).
These viruses replicate in ER invaginations, so autophagy does not
have a structural role in replication. However, cells activate
lipophagy to break down cellular triglycerides as well as increase
B oxidation and energy production (293). Notably, infections
caused by ZIKV, an RNA flavivirus, has generated epidemic
outbreaks throughout the world from 2007 to the present (294).
A recent study has shown that autophagy can facilitate viral
replication through autophagosomal vesicle production or inhibit
it in in vivo and in vitro models (295)

Oncovirus and Autophagy
Traditionally, cell transformation has been associated with chronic
exposure to various carcinogens, such as ionizing radiation and
chemical carcinogens, or to genetic predisposition. However,
scientific evidence linking viral infections to tumor development
has increased (296). Currently, between 15% and 20% of neoplasms
are considered to be related to primary viral infections (297). These
oncogenic viruses integrate into the host cell genome and utilize
host signaling pathways to regulate cell proliferation and
differentiation, genomic stability, apoptosis, and immune system
recognition (298, 299). Oncoviruses can be classified as direct and
indirect carcinogens, although there is some overlap between both.
Indirect regulation is related to chronic inflammation modulation
contributing to carcinogenesis (300).

Human viral oncogenesis is a complex process in which only a
low percentage of individuals develop cancer years after viral
infections (301). During this coexistence between the virus and
the host, multiple genetic and epigenetic alterations accumulate,
contributing to oncogenic pathway dysregulation. In this context,
oncoviruses are considered necessary but not sufficient to determine
cell transformation (302). Patients with this type of cancer have
reduced viral replication, which is required for the cell to actively
divide. The virus remains within the cell as a naked nucleic acid in
the form of a plasmid or an episome, or it integrates into the cell
genome and remains latent (303). Co-evolution of viruses with
hosts has shown that the autophagic machinery can be used
alongside various proviral and antiviral functions, depending on
virus type, cell, and cellular environment (304, 305).

Up to date, eight different oncogenic viruses have been
characterized (Table 1) and are described as follows. The human
papillomavirus (HPV) and the Merkel cell polyomavirus (MCPyV)
are both involved in the development of neoplasms associated with
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mucosa and skin (306). Hepatitis B virus (HBV) and hepatitis C
virus (HVC) are associated with 80% of hepatocellular carcinomas
(HCC) (307). The herpes virus associated with the development of
Kaposi’s sarcoma (KSHV) and the Epstein-Barr virus (EBV) are
mainly viruses associated with endothelial carcinogenesis (308).
Cytomegalovirus (HCVM) is another herpes virus that has an
onco-modulatory function (309). And human T-cell
lymphotropic virus-1 (HTLV-1) is an RNA retrovirus responsible
for the development of adult T-cell tumors (ATLL) (310). These
viruses can modulate oncogenic responses by regulating autophagy
at different points (300, 311) (Figure 5).
HUMAN HERPESVIRUS

Herpesviruses are biological structures that have linear double-
stranded DNA, ranging from 100 to 200 kb. The viral genome is
packaged in an icosahedral capsule embedded in a protein
integument and surrounded by a host-derived lipid envelope
(312). The viral envelope has glycoproteins that mediate the
union with the cytoplasmic membrane of the host for subsequent
entry of the virus accompanied by the nucleocapsid and the
integument. The capsid travels through microtubules until it
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reaches the nucleus, coupled with protein complexes that allow
nuclear pore opening. It then injects its genetic material into the
nucleus (313).

Eight herpesviruses have been identified in humans with a
common evolutionary origin, classified according to their
genomic sequence and biological characteristics into three
subfamilies (alpha, beta, and gamma) (314). Within the
gamma-herpesviruses, we can find human herpesviruses 4
(EBV) and 8 (KSHV). These viruses have a high affinity for B
lymphocytes, and both establish latent and lytic infections that
promote the development of hematological diseases and various
types of solid human cancers (315). Surprisingly, the ability of
viruses to regulate autophagy can vary according to infection
stage (316). HCMV is another herpes virus that primarily infects
fibroblasts, but which can also be found in epithelial cells,
endothelial cells, hepatocytes, stromal cells, monocytes/
macrophages, astrocytes, and neural stem/progenitor cells (309).

Kaposi’s Sarcoma Virus
KSHV was discovered in 1993 from a tissue sample of a patient
with Kaposi’s sarcoma (KS) (317). This virus is generally
transmitted by body fluids, although transmission has been
observed through the placenta to the fetus in some rare
TABLE 1 | Oncogenic viruses and their involvement in autophagy.

Virus Genetic
Material

Capsid Involvement in autophagy

HHV-8
(KSHV)

dsDNA Icosahedral capsid embedded in
integument, surrounded by a lipid envelope
with glycoproteins

Latency: autophagy is decreased
- vFLIP inhibits activation of ATG3 and LC3 proteins
- LANA binds to viral and host DNA ensuring its stability and inhibiting autophagy
Lytic cycle: autophagy is activated
- mTORC1 is required for RTA synthesis and viral transport

HHV-4
(EBV)

Latency: PI3K/Akt stimulation inhibits autophagy
- LMP-1 activates mTOR to suppress autophagy and facilitate cell growth and proliferation
Lytic cycle: autophagy is activated
- BALF0 and BALF1 are expressed, both with a region of interaction with LC3 necessary to
modulate autophagy induction
- RTA promotes autophagy through regulation of ERK1/2

HTLV-
1

ssRNA Early stages: autophagosomes accumulation that contributes to viral replication
- Tax protein stimulates BECN1 and NFkB leading to formation of autophagosomes
- p47 degradation induces NFkB
Late stages: autophagy inhibition
- BHZ activates mTOR, blocking autophagosomes binding to lysosomes

HCMV dsDNA Primary infection: autophagy is induced
- Increased levels of LC3
- TLR2 activation by glycoproteins in the viral envelope
One day after primary infection:
- TRS1 and IRS1 associate with BECN1 inhibiting autophagy

HCV ssRNA Lipid bilayer with 2 glycoproteins: E1 and
E2. A non-icosahedral nucleocapsid
surrounds the lipid bilayer.

It has been reported an increase in the number of autophagosomes accompanied by decrease of
their degradation. Autophagic machinery is necessary for viral translation but becomes expendable
once the viral replication process begins.
Selective autophagy is induced in some organelles such as mitochondria and lipid deposits in cells.
ATG5-12/16L1 protein complex is recruited to membrane, contributing to viral replication.

HBV dsDNA SHB protein generates a massive induction of autophagy
HBx induce autophagosome formation through BECN1 modulation
HBx represses V-ATPase, decreasing acidification of lysosomes, inhibiting autolysosome degradation,
contributing to viral development.

HPV dsDNA Primary infection can induce autophagic machinery (ATG7, BECN1, and p62 are induced).
After primary infection, mTOR is activated, suppressing autophagy, what protects capsid degradation
in autophagosomes
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occasions (318, 319). KSHV seroprevalence is estimated to range
between 5%–20% worldwide. Yet, only a small number of
patients develop secondary diseases associated with the virus,
the population mostly at risk being immunosuppressed
individuals or individuals with immune system abnormalities,
as is the case of AIDS patients (320). KSHV infection is
associated with the development of various human pathologies,
including Kaposi’s sarcoma, primary effusion lymphoma (PEL),
multicentric Castleman’s disease (CMD), and inflammatory
cytokine syndromes (KICS) (321). The main reservoir of this
virus in its latent form are B lymphocytes, but it can also infect
monocytes, fibroblasts, endothelial, epithelial, and dendritic cells
through associat ion with receptors on the plasma
membrane (322).

After primary infection, the virus remains in the cell as an
episome and regulates various host signaling pathways to
replicate correctly. The virus produces proteins associated with
the viral latency phase which are essential for cell transformation
(323). Some of the encoded proteins are complement-fixing
proteins (v-CBP), viral interleukin-6 (v-IL-6), viral
inflammatory protein type-I (v-MIPI) and type-II (v-MIPII),
viral Bcl-2 (v-Bcl-2), viral interferon regulatory factor (v-IRF),
viral cyclin (v-Cyclin), latency nuclear antigen (LANA), viral
adhesin (v-ADH), receptor-coupled G-protein (v-GCR),
thymidylate synthetase, thymidine kinase, ribonucleotide
reductase (300, 324)

In various models, autophagy has been found to be a cellular
mechanism commonly regulated by viral KSHV proteins (325).
After initial expansion at the infection site, the new viral particles
spread throughout the body and reach the cells in order to
establish a latency phase, especially in the B lymphocytes and
endothelial cells of the blood/lymphatic vessels (326). During the
latency phase, autophagy and other cellular mechanisms
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contribute to creating a cellular microenvironment favorable to
tumor initiation and progression (321).

The transmembrane glycoprotein K1, encoded by the first
KSHV open reading frame, is a signaling protein capable of
causing B cell activation (327). V-cyclin and K1 have been found
to promote autophagy by stimulating the AMPK pathway (328,
329) (Figure 6). On the other hand, vFLIP restricts the
autophagic machinery by inhibiting ATG3 and LC3 proteins
(330) (Figure 6). Once viral latency is established, LANA plays a
fundamental role in maintaining this phase through NF-kB
activation (331). Granato et al. observed viral particles inside
autophagic vesicles in the cytoplasm of PEL cells in active
replication, thus postulating that autophagy may also be
related to viral transport (332). Finally, another protein linked
to viral latency is STAT3 (signal transducer and activator of
transcription 3), which remains active in a state of viral latency
(330). In dendritic cells, KSHV infection induces STAT3
phosphorylation, promoting cell survival and viral latency.
Moreover, the release of IL-10, IL-6, and IL-23, cytokines that
contribute to keeping STAT3 active, is also induced (333). This
allows the viral genome to remain unchanged and the particles to
replicate successfully (334).

Numerous cellular events can activate lytic KSHV
reactivation. Cellular microenvironment can shape the viral
epigenome to facilitate latency reactivation (335). ER stress can
induce rad21 cleavage, a member of the cohesin complex that
generates dramatic changes in the KSHV genome. The loss of
DNA loops triggers virus reactivation (336). During this process,
cells activate the autophagy machinery with various
functionalities (335).

A fundamental component for lytic reactivation is the
expression of lytic switch master proteins (RTA), targeting 100
different sites in the KSHV genome and transactivating 34 lytic
FIGURE 5 | Manipulation of autophagy by oncoviruses. Oncoviruses regulate autophagosome formation or degradation in order to promote their replication cycle.
Like many DNA viruses, Herpesviruses prevent their degradation by inhibiting the creation of these vesicles, whereas RNA viruses often induce the accumulation of
autophagic membranes independent of their replication in the cytosol or the nucleus. These autophagic membranes can form autolysosomes and finally conclude. In
other cases, the autophagic membranes may be used as scaffolds, where the viral replication complexes are positioned or serve as support for the release of the
particles. Poliovirus was the first virus where this mechanism has been evidenced.
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genes (337). Pringle et al. have reported that mTORC1 is
required for lytic replication and RTA synthesis as an activator
of cellular transcription. In contrast, this autophagy inhibitor
complex has not shownmore significant involvement in genomic
replication, late gene expression, or in the release of infectious
progeny (338). Furthermore, autophagy inhibition has been
reported to reduce lytic KSHV reactivation (339).

In contrast to the nuclear LANA function, cytoplasmic isoforms
of this viral protein mediate lytic reactivation by antagonizing
cellular DNA sensors. These isoforms bind to cGAS, a process
that involves STING and NF-kB induction (340). Viral protein K7
expression stimulates RBCN (Rubicon autophagy regulator)
interaction with BECN1. These events promote the blocking of
autophagosome maturation (333) (Figure 6). KSHV monocyte
infection counteract ROS increase induced by macrophage
colony-stimulating factor (M-CSF), preventing JNK and Bcl-2’s
phosphorylation and inhibiting autophagy. Together with the
decrease in TNFa and the increase in the immunosuppressive
cytokine IL-10, all these events lead to impaired macrophage
survival and differentiation (341). Findings so far allow us to infer
that these viruses may induce autophagosomes formation, in which
they are transported to the cell surface. Viral proteins inhibit
lysosome-to autophagosome-binding and, therefore, autolysosome
formation is not degraded by lysosomal hydrolases (330) (Figure 6).

Epstein Barr-Virus
EBV is a very easily transmitted herpesvirus that is mainly
contracted in childhood through body fluids. 90% of the world’s
population is believed to have been infected at some point of their
lives (342, 343). This virus has contributed to the development of
various secondary pathologies, such as infectious mononucleosis
and some neoplasms of epithelial and lymphocytic origin (344).
After entering host cells, viruses amplify and rapidly enter a state of
Frontiers in Oncology | www.frontiersin.org 14273
latency. A distinct fact is the presence of three different latency types
that can be independently regulated, autophagy playing an essential
role in this regulation (345, 346). Each cell presents multiple copies
of viral DNA episomes and produces a series of proteins associated
with latency, including six nuclear antigens (EBNA 1, 2, 3A, 3B, 3C,
and -LP) and three latent membrane proteins (LMP1, 2A and
2B) (347).

LMP2 viral protein has been reported in most neoplasms
associated with this virus. This protein stimulates the PI3K/Akt
signaling pathway, a process that triggers apoptosis and
autophagy inhibition, thus contributing to tumor cell
proliferation (348) (Figure 6). This regulation has been seen in
gastric carcinomas associated with EBV infection, where the
presence of PI3K mutations has been associated with higher
tumor occurrence and metastasis (349). Furthermore, LMP2 has
been found to contribute to cell proliferation through p27
degradation (350, 351).

Additionally, LMP1 binds to membrane-bound death
receptors TRAF and TRADD (tumor necrosis factor receptor
type 1-associated death) or activate signaling pathways that
include NF-kB, JNK, p38, small GTPases (Cdc42), and the
JAK/AP-1/STAT cascades. Moreover, LMP-1 has been
reported to activate mTOR to suppress autophagy and
facilitate tumor growth and proliferation (352) (Figure 6). In
contrast, Hurwitz has shown that LMP-1 can inhibit mTOR by
secreting CD63-dependent vesicular proteins, contributing to
autophagy induction. This induction is not complete since LMP1
inhibits lysosomes’ binding to autophagic vesicles in order to
avoid the viral particles’ degradation by lysosomal hydrolases
(353). On the other hand, EBNA3C nuclear antigen activates
autophagosome formation through transcriptional induction of
several autophagy regulators, including ATG3, ATG5, and
ATG7 (354).
FIGURE 6 | Human Herpesvirus regulation of autophagy. The viral ability to regulate autophagy depends on stage of infection. This regulation can alternate between
latent, de novo, or lytic reactivation infections. A distinguishing feature of these lymphotropic viruses is their ability to promote autophagy induction, a process
followed by inhibition of autophagosome maturation. This defective autophagy does not allow autolysosomes to form, and therefore to perform successful clearance.
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During the EBV lytic cycle, autophagy may present bimodal
modulation, showing an early stimulation phase in combination
with the inhibition of the late phases of the autophagic mechanism
(degradation of cytoplasmic material by lysosomal hydrolases)
(355). This final regulation favors the acquisition of envelopes and
components of the autophagic machinery by newly synthesized
virions (356, 357). The viral proteins associated with this virus that
regulate autophagy in the EBV lytic cycle have not yet been fully
characterized. RTA function, an early expression protein regulating
autophagy through an ERK-dependent mechanism, has been
recently highlighted (358) (Figure 7).

EBV codes for the expression of two Bcl-2 homologous viral
proteins called BHRF1 and BALF0/1 (359, 360). Both viral
proteins prevent apoptosis during early B-cell infection but
may be dispensable once the latent infection is established
(361). BHRF1 anti-apoptotic activity has been studied
extensively (362). However, BALF0/1 expression and function
remain ambiguous. Two in-frame methionine codons are
present near the beginning of the BALF0/1 open reading frame
(ORF), suggesting that two proteins with different N-termini
may be encoded (363). So far, the BALF1 protein is known to be
encoded by the shortest ORF, while the BALFO protein is
encoded by the first non-conserved methionine. During the
lytic cycle initial phase, BALF0 and BALF1 are expressed, both
with a region of interaction with LC3, and modulate autophagy
induction (364). So far, we can infer that EBV inhibits autophagy
during the latency phase in its initial steps. Simultaneously,
during lytic reactivation, the formation of dysfunctional
autophagosomes is promoted (Figure 6).

Human Cytomegalovirus
HCMV is a double-stranded DNA herpes virus transmitted
through body fluids, not prevalent in any particular age range.
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This virus has an extensive genome of 236 kilobases, one of the
largest viruses that can infect humans (365). Primary infections
are generally asymptomatic, although congenital diseases can
lead to various severe disabilities or fetal death (309).

HCMV particles have been detected in different cell types,
including epithelial cells, connective tissue, hepatocytes, various
populations of leukocytes, and vascular endothelial cells (366).
HCMV also infects tumor cells and contributes to
transformation when affecting healthy tissue by modulating
various cellular signaling pathways (309). This virus regulates
autophagy in a bimodal manner (367). First, during early stages
of infection, it induces autophagic vesicle formation. Later in
infection, HMCV blocks autophagy through viral proteins
synthesized in the host cell (368). Two proteins involved in
autophagy inhibition by association with BECN1 (TRS1 and
TRS2) have been identified (Figure 6). Mouna et al. has found
that co-expression of viral proteins TRS1 and IRS1 is essential for
autophagy inhibition in various cell models (369).

Recent attention has been given to viral components that
determine HMCV latency and lytic reactivation, with special
focus on the uLb’ gene locus (ul133-138) that restrict viral
replication by modulating viral latency and immune evasion
through the expression of a considerable number of viral
proteins (370). An example of this is UL138: this viral protein
is presented to HMC-I to regulate the host’s adaptive immunity
in fibroblast, and the autophagic machinery holds this event
(371). In contrast, it was reported that autophagy inhibition
generates a high response of CD8 + lymphocytes due to the
internalization of molecules in MHC-I (372).

Early expression of viral proteins associated with HMCV
genes 1 and 2 (IE1 and IE2) is necessary for lytic reactivation of
host cell virus and immunomodulation (373). IE2 can interact
with itself and UL84 as well as with many specific cell
FIGURE 7 | HCV and HBV regulation of autophagy. The autophagic machinery is necessary for incoming viral RNA translation, but it becomes expendable once the
viral replication process begins. An increase in the number of autophagosomes does not correlate with an increase in the rate of lysosomal degradation. HCV has
been shown to induce the expression of Rubicon, thus inhibiting the maturation of autophagosomes. For its part, HBC reduces the acidification of lysosomes and
autolysosomes through the inhibition of V-ATPase (H + type vacuolar enzyme). However, in vitro studies show good fusion of autophagosomes with lysosomes, as
well as successful autophagic flow, indicating that these viruses are able to induce selective autophagy in some cellular organelles, such as the mitochondria and
lipid deposits in cells.
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transcription factors to regulate gene expression. This protein
plays a critical role in viral DNA synthesis and is also considered
to counteract host response (374, 375). IE2 overexpression has
been recently found to induce autophagy in HMCV-infected
cells (376). These results show that in the early stages of HCMV
infection, viral proteins contribute to autophagosomal vesicle
formation. At the same time, they inhibit vesicles-to-lysosomes
binding in later stages, thereby losing their degradative capacity
(Figure 6).
HUMAN T-CELL LYMPHOTROPIC
VIRUS TYPE 1

HTLV-1 is a member of the Retroviridae family and is represented
by a small single-stranded RNA genome approximately nine
kilobases long (377). This retrovirus was first isolated in 1979 in
samples from patients with cutaneous manifestations of rapidly
growing T-cell lymphoma (ATLL) (378). Furthermore, HTLV-1 is
associated with the development of poliomyelitis, HTLV-1
associated myelopathy, infectious dermatitis, arthropathy, and
facial nerve palsy (379). Evidence suggests that there are between
5 and 20 million HTLV-1 carriers worldwide, but only 3-5% of
them develop secondary pathologies (380, 381).

Immediately after entering the host cell, the viral RNA
undergoes reverse transcription, and then binds to the cell’s
genome as a provirus. This binding generally occurs in areas
close to the binding sites of transcription factors such as STAT1,
TP53, and HDAC6 (histone deacetylase 6). Dysregulation
generates alterations in cell signaling in the expression of
specific genes and autophagy is not exempt from this
viral regulation.

Regulatory protein HTLV-1 Tax is an oncoprotein that plays an
essential transcriptional role in viral replication and participates in T
lymphocytes’ transformation. It can also transactivate or
transrepression more than 100 cellular genes by linking and
modulating stability and activity (300). Recently, HTLV-1
infection has been reported to induce autophagosomes in cells
and inhibit their binding to lysosomes through a tax-dependent
mechanism. In this way, the number of non-degrading autophagic
vesicles, where viruses can replicate, increases considerably (382).
Therefore, Tax viral protein, located in the plasmamembrane’s lipid
microdomains, binds to the IKK complex to stimulate BECN1 and
NF-kB activity (383).

Cell adhesion molecule 1 (CADM1) is a member of the
immunoglobulin superfamily and is considered to be an
excellent cell surface marker of HTLV-1 infected T cells (384).
For CADM1 to be correctly expressed, Tax and NF-kB induction
and p47 (a negative NF-kB regulator) degradation are necessary.
Autophagy is p47 primary degradation mechanism, and it is
active in most ATLL cells infected with HTLV-1 (385).

Another essential viral protein for ATLL development is HBZ
(bZIP factor) (303). HBZ inhibits both apoptosis and autophagy
andmay induce the expression of brain-derived neurotrophic factor
(BDNF) and its receptor (386). According to the subcellular location
of HBZ, it contributes to tumor progression (nuclear) or favourably
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contributes to inflammation induction (cytoplasmic) (387). When
HBZ is exported from the nucleus to the cytoplasm, it activates
mTOR through the DNA damage-inducible protein PPP1R15A (a
regulatory subunit of protein phosphatase -1 15A) (386). As in other
viral infections, HTLV-1 induces autophagosome formation and
inhibits binding to lysosomes to prevent degradation. Consequently,
the number of autophagosomal vesicles in the cytosol increases,
creating a physical obstacle for developing other cellular processes
and a favorable environment for viral particle formation (388).
HEPATITIS C VIRUS

HCV belongs to the Flaviviridae family, characterized by viral
particles with an RNA helix of 9.6 kb in length and wrapped in a
lipid bilayer with two anchored glycoproteins (E1 and E2). In
general, it presents a non-icosahedral nucleocapsid, although it is
possible to find viruses without nucleocapsid in infected patients’
blood (389). Chronic HCV infection can trigger liver fibrosis and
cirrhosis, and it is also associated with hepatocellular carcinoma
(HCC) and non-Hodgkin lymphomas development (390). This
virus can promote carcinogenesis directly through the
modulation of specific signaling pathways and indirectly
through chronic inflammation (391).

Once inside the host cell, the virus forms a membranous
network used during replication (392). Three membranous
rearrangements associated with the virus have been identified:
cluster vesicles, contiguous vesicles and double-membrane
vesicles. In general, cluster vesicles are associated with viral
infection early stages. As the infection progresses, the number
of double-membrane vesicles also increases (393).

Some viral proteins (CORE, NS2, NS5B, NS3, NS5A) directly
benefit carcinogenesis through the induction of proliferation,
angiogenesis, apoptosis, immune response, and inhibition of
tumor suppressors (303). HCV can induce autophagosome
formation and inhibit binding to lysosomes (311) (Figure 7).
However, some in vitro studies have revealed that the virus can
cause successful autophagic flux. This conflicting result may be
explained by HCV probably inducing selective autophagy in
some cellular organelles, such as the mitochondria and lipid
deposits in cells (394).

Furthermore, the ATG16L complex is recruited into the
membranous network, contributing to viral particle replication,
and subsequent ATG12 removal suppresses viral RNA replication.
Autophagy activation can counteract HCV infection, and the virus
has developed different strategies to strengthen its persistence by
temporarily regulating the autophagic process (395). The
autophagic machinery is necessary for the translation of viral
RNA in early stages of infection but becomes dispensable later.
Once the replication process is complete, autophagy contributes to
releasing viruses to the extracellular space, thus benefiting HCV
transmission (300).

HCV infection has been found to induce autophagy through the
direct interaction of viral proteins with autophagy effectors. In
contrast, HCV has been shown to induce stress autophagy of the
endoplasmic reticulum by inducing the three response pathways to
misfolded proteins (p-ERK, ATF6 (activating transcription factor
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6), IRE1) (396) (Figure 7). Reticulum stress produces calcium
release, which disrupts mitochondrial activity and leads to ROS
accumulation and damaged mitochondria. This leads to mitophagy
activation through NS5A expression. This HCV non-structural
protein causes an increase in LC3 levels and reduces p62 in host
cells (397) (Figure 7). In patients with chronic HCV infections,
mitophagy was observed to be induced due to PINK1 and Parkin’s
translocation to the mitochondria outer surface. This mechanism
correlates with oxidative phosphorylation dysregulation and
mitochondria depletion, contributing to liver injury (398). HCV
modulates the autophagic machinery in order to exist in the host
cell. Like other viruses, it increases the formation of dysfunctional
autophagic vesicles within which it replicates. Furthermore, in
tumors associated with this virus chronic infections, high levels of
mitophagy were presented (Figure 7).
HEPATITIS B VIRUS

HBV belongs to the Hepdnaviridae family and is responsible for
developing acute and chronic viral hepatitis as well as long-term
complications ranging from fibrosis and cirrhosis to cancer.
Chronic infection progression is predominant in infected
patients during the perinatal and infantile periods (399). Two
billion people are estimated to be infected with HBV worldwide,
and more than 350 million to be chronic carriers. Only 25% of
infected patients develop liver neoplasms (300).

These viruses present circular double-stranded DNA of 3.2 kb in
length, which has four open reading frames and has the peculiarity
of forming an incomplete chain (400). The end of one strand is
associated with viral DNA polymerase (401). Immediately after
entering the cell, the virus undergoes reverse transcription within
the nucleocapsid. Consequently, linear DNA is formed and secreted
as virions or transported to the nucleus, integrating into the host
genome to regulate tumor transformation (402).

HBV has a complex replication cycle and needs to encode at
least seven viral proteins that regulate different processes in the
host cell in order to complete it successfully (403). HBx (hepatitis
B virus protein x) and SHB (small surface protein) expression is
associated with autophagy regulation in several biological models
(404) (Figure 7). SHB protein travels through the cytosol to the
endoplasmic reticulum, where stress increases and generates
massive autophagy induction. Signaling pathways initiated by
stress sensors such as IRE1, p-ERK, and ATF6 help regulate cell
homeostasis (405).

As for HBx, it is a multifunctional regulatory protein that may be
involved in viral pathogenesis and carcinogenesis (406). Molecular
studies have revealed that HBx generates strong autophagy
induction by activating DAPK (death-associated protein kinase)
and increasing BECN1 (407). However, in later stages of the
autophagic mechanism, HBx can repress V-ATPase (vacuolar
enzyme type H+), thus reducing lysosome and autolysosome
acidification (408) (Figure 7). As they become less acidic,
autolysosomes lose their degradative capacity as cytoplasmic
debris increases in the cell, creating an inhospitable environment
that contributes to carcinogenesis (408). The virus can also interfere
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with autophagic degradation through RAB7 (Ras-related protein), a
small GTPase involved in autophagosome maturation and their
fusion with lysosomes (409).

HBV-infected patient biopsies showed that viral persistence is
correlated with the expression of mitophagy effectors, Parkin,
and PINK (410). Furthermore, this mechanism is believed to be
regulated by the AMPK/mTOR/ULK1 axis (411). Liver cells
infected with HBV show that miR-155 expression contributes
to viral replication and enhances autophagy induction (412). At
least four miRNAs have been identified to inhibit viral
replication in clinical samples from virus-infected patients,
(let-7, miR-433, miR-345, miR-511) (413).

Liver cancer is a global concern due to its high resistance to
chemotherapeutic drugs, which has been linked to exosome
formation in transformed cells (414). These structures increase
drug resistance by inducing chaperone-related signaling pathways
and LAMP-2-dependent (type-2 lysosomal membrane protein)
autophagy. Patients with liver tumors associated with primary
HBV infection show greater tumor volume and greater
pathogenicity. This suggests that the virus contributes to
generating a more aggressive and resistant HCC phenotype (415).

Therefore, we can infer that HBV generates bimodal autophagy
regulation: first by inducing the mechanism and then by inhibiting
the formation of mature autolysosomes, thus contributing to viral
replication and carcinogenesis (Figure 7).
PAPILLOMAVIRUS AND
HUMAN POLYOMAVIRUS

Papillomaviruses (HPV) and human polyomaviruses (PyV) were
initially considered members of the same virus family due to their
morphological similarity and genome organization, but have now
been classified into separate families: Papillomaviridae and
Polyomaviridae, respectively (416), both composed of viruses with
a double-stranded circular DNA that encodes various regulatory
and structural proteins, some of which have oncogenic
properties (417).

Merkel cell polyomavirus (MCPyV) is implicated in
developing a very aggressive skin cancer called Merkel
carcinoma (418). Most findings about MCPyV oncogenic
potential are associated with LT (large antigen T) and sT
(small antigen T) expression (419, 420). LT has a J domain
(heat shock protein binding domain), a retinoblastoma binding
motif (RB, inhibits members of this protein family), and a C-
terminus binding to helicase/ATPase domain (required for viral
DNA replication) (418). LT’s oncogenic role is mainly associated
to its high binding affinity to RB, which promotes the
sequestration and inactivation of this tumor suppressor (421).

Regarding the sT antigen, it shares a 78 amino acid N-terminal
region (includes the J domain) with LT and has a unique C-terminal
domain. This antigen is considered to be the mainMCPyV-induced
oncogenesis regulator (422). LTs unique expression is sufficient to
transform fibroblasts in vitro (423) and in vivo models (424). sT
keeps the eukaryotic 4EB-P1 binding protein hyperphosphorylated
and inactive, which leads to deregulation of cellular translation
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events and contributes to cell proliferation and transformation
(422). Through these surface antigen expression, viruses modulate
the autophagic machinery and contribute to immunosuppression
and viral oncogenesis. In MCC tumors associated with MCPyV
infection, sT and LT antigen expression suppresses autophagy
through miR-375, miR-30a-3p, and miR30a-5p gene modulation.
These microRNAs act on atg7, p62, and bcn1 to inhibit autophagic
initial stages. These events protect cancer cells from cell death (425).

Human papillomavirus (HPV) is the leading cause of cervical
cancer (426). It is also associated with the development of non-
melanoma skin cancers, cancer of the head, neck, oropharynx,
and the development of various anogenital neoplasms (427). The
viral genome is integrated into the host cell’s DNA and encodes
the expression of early viral genes (E1 to E7) essential for cell
replication, transcription, and transformation. These viruses can
also regulate the expression of late genes L1 and L2, which
encode viral capsid proteins (428).

Binding and internalizing the virus are processes closely
related to manipulating the host cell autophagic machinery.
The entry of HPV into cells is associated with autophagy
suppression through mTOR activation (429). This event
promotes mTORC1, 4EB-P1, and S6K1 (ribosomal protein
kinase 1) phosphorylation and activation (430) and ULK1
inactivation. This -in turn- contributes to inhibiting the initial
steps of the autophagic mechanism (431).

Once internalized in cells, HPV circulates through an
endosomal compartment where capsid proteins are degraded
within acidified endosomes, and the viral genome enters the
nucleus (432). Here, HPV DNA is amplified and maintained as
episomes in the epithelium basal cells by mechanisms mediated
by E1 and E2 (433). These early expression proteins are involved
in various cellular signaling mechanisms. In particular, E5, E6,
and E7 oncoproteins modulate the host cell autophagic
machinery. Keratinocytes with HPV-16 infection, followed by
E5 expression, produce a decrease in LC3 levels and prevent p62
degradation. E5 interferes mechanically with the transcriptional
activation of the autophagic machinery, regulating the
expression of bcn1, atg5, lc3, ulk1, atg4a, and atg7 (434).

Unlike E5, viral gene E6/E7 inhibits autolysosome formation by
a mechanism involving p53 (435). HPV-16 and HPV-18 infections
are associated with the development of squamous cell carcinomas of
the head and neck, two neoplasms with a high incidence worldwide
(436). In addition to regulating the autophagic machinery, viral
proteins E6 and E7 contribute to p53 and p-Rb degradation of. All
these events cause the activation of specific transcription factors that
modulate cell fate (437). The information obtained so far reveals
that autophagy inhibition promotes HPV life cycle and
tumor progression.
CONCLUSIONS

In recent decades, studying the different cellular functions
associated with autophagy has kept specialized scientists alert.
This degradative mechanism, used by mammalian cells to
maintain cell homeostasis, also directly contributes to
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modulating the progression of various diseases, such as cancer.
Cellular context is essential to determine the functionality of
autophagy. In general, cells accumulate damage at disease initial
stages, affecting critical points in cell cycle regulation and thus
determining cell transformation. Cells can therefore activate
autophagy to shrink the damaged organelles and counteract
the stressful stimuli to which they are exposed and restore
normal state. However, in the context of tumor progression
and invasion, the situation may be different. Here, cells present
multiple alterations in their signaling pathways, which develops
an aggressive cell phenotype, active and uncontrolled division,
and high metabolism. Tumor cells can then induce autophagy to
generate a fuel supply to maintain tumor cell metabolism.

Furthermore, autophagy can regulate tumor angiogenesis and
immunity to benefit disease progression. Before infection, cells
can eliminate intracellular pathogens by enzymatic digestion in
autophagic vesicles. However, many viruses have developed
strategies that allow them to bypass host attack and achieve
successful replication and permanence. The number of viruses
that modulate the autophagic mechanism for their benefit is
increasing. In general, these intracellular organisms regulate the
autophagic machinery in a bimodal manner. Upon entering cells,
they promote autophagosome formation and inhibit binding to
lysosomes, thus losing their degradative capacity. Viruses can use
these dysfunctional vesicles to replicate within them, while debris
and damage accumulate in cell organelles due to the
mechanism’s inefficiency. Other viruses, on the other hand,
directly inhibit the autophagic machinery from preventing its
degradation. Dysfunctional vesicle accumulation contributes to
cell damage accumulation, which benefits cell transformation
and tumor development over time. However, more studies are
needed to clarify autophagy’s relation to viral infections and
tumor development. A thorough understanding of these
molecular mechanisms is crucial for developing new antiviral
drugs and targeted oncogenic therapies.
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Istanbul, Turkey, 4 Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey

Metastasis and relapse account for the great majority of cancer-related deaths. Most
metastatic lesions are micro metastases that have the capacity to remain in a non-dividing
state called “dormancy” for months or even years. Commonly used anticancer drugs
generally target actively dividing cancer cells. Therefore, cancer cells that remain in a
dormant state evade conventional therapies and contribute to cancer recurrence. Cellular
and molecular mechanisms of cancer dormancy are not fully understood. Recent studies
indicate that a major cellular stress response mechanism, autophagy, plays an important
role in the adaptation, survival and reactivation of dormant cells. In this review article, we
will summarize accumulating knowledge about cellular and molecular mechanisms of
cancer dormancy, and discuss the role and importance of autophagy in this context.

Keywords: autophagy, dormancy, recurrence, relapse, cancer, metastasis
INTRODUCTION

Cancer is the cause of death for millions of people every year, hence it’s one of the most devastating
disease. Detection and diagnosis at early stages of cancer remarkably improve the chance of cure.
However, the incidence of cancer continues to rise due various factors, including tobacco use, air
pollution, obesity, increased life expectancy and cancer-causing infections. First approach in the
treatment of cancer is usually surgical resection of the primary tumor, often followed by
chemotherapy and/or radiotherapy. Besides, recent advances in targeted therapies and
immunotherapies help to reduce the tumor burden. Thanks to high resolution diagnostic tools,
advances in tumor ablation techniques, drug combinations, and targeted therapeutics, 5-year
survival rates are improved for some cancer types, yet overall cancer survival rates for patients
suffering from advanced disease are still low. A major reason for such discrepancy is the spread of
cancer cells to organs other than the primary site and formation of the metastatic lesions. In other
words, metastasis is among the leading causes of cancer-related deaths.

Metastasis of cancer to distant organs requires a sequential and complex chain of events. Cancer
cells need to undergo several mutations and adaptations in order to gain motility and invasiveness,
intravasate (migration into vessels), survive in the blood circulation and the lymphatics, extravasate,
nestle and grow at secondary sites. Metastasis and survival of cancer cells at secondary sites are also
affected by “the soil” in which tumor cells are seeded, namely the tumor microenvironment or
stroma (1).

Mutations promoting epithelial-to-mesenchymal transition (EMT) greatly contribute to
metastasis of cancer cells. Cells of normal tissues are tightly regulated by cell-to-cell and cell-to-
matrix interactions. During cancerous transformation, epithelial cells may acquire mesenchymal
cell-like properties, including loss of critical epithelial markers (e.g., E-cadherin, a-catenin), and
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expression of mesenchymal markers (e.g., N-cadherin and
vimentin) (2). A transcriptional program orchestrates this
transformation (e.g., ZEB1/2, Snail etc.) (3–5). Remodeling of
epithelial junctions and cytoskeleton promotes motility and
invasiveness of cancer cells (6). Cancer cells that are now
motile and invasive, penetrate through the tissue extracellular
matrix (ECM) and spread to lymph nodes and secondary sites
through blood and lymph vessels. Seeding to metastatic sites and
metastatic growth require reversal of this process, namely
mesenchymal-to-epithelial transition (MET).

Advances in the last decade showed that in many tumor types,
a small population of progenitor cancer cells, namely cancer stem
cells (CSC), are responsible for the evolution and progression of
the disease and metastasis (7, 8). Cancer cells and CSC might
spread from primary tumors at various stages of tumor
progression. These disseminated cells or clusters of cells
(disseminated tumor cells, DTC) continue their evolution in
their new tumor niches and they generally acquire genetic and
epigenetic signatures that are different from the tumor of origin
(9–13). Although aggressive proliferation of DTC might result in
overt metastasis, latency periods lasting for months or even years
were observed. During the latency period that spans the time
between tumor formation and recurrence (also known as
relapse), some cancer cells stay in a “dormant” state, a state of
balanced proliferation or no proliferation at all (14, 15). At least
some of these dormant cells have capacity to reactivate and form
new metastatic lesions. Recurrent tumors were associated with
drug resistance and aggressive behavior. So, most patients with
recurrent disease show a very poor prognosis (16–18). For this
Frontiers in Oncology | www.frontiersin.org 2290
reason, as an important mechanism contributing to tumor
recurrence, cancer dormancy became a focus of attention in
recent years.

There are two major mechanisms of cancer dormancy, namely,
tumor mass dormancy and tumor cell dormancy (or cellular
dormancy) (Figure 1). In tumor mass dormancy, proliferation of
tumor cells counterbalanced by cellular demise and the tumor mass
is preserved to a certain extent. A reason for limited tumor growth is
hypoxia and inefficient nutrient supply due vascularization defects
(angiogenic dormancy). Trimming of tumor cells by the cells of the
immune system is another mechanism limiting tumor growth and
expansion (immunological dormancy). On the other hand, cellular
dormancy involves transition to a quiescent, cell cycle-arrest state,
while cells retain the capacity to perpetuate neoplastic behavior
when reactivated. In this review, we will mainly focus on the role of
autophagy in cellular dormancy.
AUTOPHAGY AND CANCER DORMANCY

Mechanisms of Mammalian Autophagy
Autophagy activation was reported as a novel characteristic of
dormant cells in different tumor types (19). Three major types of
autophagy were described: Macroautophagy, chaperone-
mediated autophagy (CMA) and microautophagy. Although a
clear connection between cancer and CMA was established (20),
according to our knowledge, so far no study directly connecting
CMA to cancer dormancy was published. Similarly,
microautophagy was not studied in this context either. On the
FIGURE 1 | Time-dependent progression of metastasis and dormancy. Conventional diagnostic tumor scans are able to detect tumors bigger than 1 mm3 (tumor
mass = mprimary). After diagnosis with cancer (time = t0), patient may undergo chemotherapy, radiotherapy or adjuvant therapy, yet dormant cells escape and
become resistant to these treatments (time = t2), and awaken after years or even decades (time = t3). In tumor dormancy, tumor mass (m1) stagnates due to limited
neovascularization and constant immune cell attack that balance tumor cell demise and proliferation. After the latency period, dormant tumor cells awaken and lead
to tumor outgrowth (tumor mass>m1). In cellular dormancy, cancer cells hibernate as single cells or small clusters (tumor mass = m1≈0) and lead to massive tumor
growth (tumor mass≥mprimary) following exit from dormancy.
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other hand, the number of studies implicating a role for
macroautophagy in cancer dormancy continues to increase.
Macroautophagy (autophagy herein) is an evolutionarily
conserved catabolic process and an important stress response in
all eukaryotic cells. Activation of autophagy leads to the clearance
of various cellular components, including damaged organelles
(e.g., mitochondria) as well as unfolded proteins and abnormal
protein aggregates. As such, autophagy helps cells to combat stress,
thereby contributes to survival. Mechanisms orchestrating
autophagy activation, autophagic vesicle (autophagosome)
formation and autophagic degradation were studied in detail.

Autophagic machinery primarily relies on the activity of ATG
(autophagy-related) proteins (Figure 2). Following exposure to
stress, activation of a core pathway involving ATG proteins leads
to formation of double-membrane structures (phagophores)
around target molecules and organelles. Phagophores eventually
elongate and seal, forming closed vesicular structures called
autophagosomes or autophagic vesicles. Autophagosomes fuse
with late endosomes or lysosomes, to form autolysosomes. Lytic
enzymes in the lumen of autolysosomes are responsible for the
degradation of cargos carried by autophagosomes.

Autophagic activity is tightly controlled by protein complexes
containing the mTOR kinase: mTORC1 and mTORC2 (21).
These protein complexes are highly responsive to cellular cues,
such as nutrient and growth factor availability, and in the active
state, they work to inhibit autophagy (22). PKB/AKT pathway
provides input from growth-related signals in order to regulate
the mTOR complexes and autophagy. AMPK pathway, an
energy sensor of the cell that monitors AMP/ATP ratios,
comes into play when energy levels are low (23–25). While the
mTORC1 has been documented to regulate autophagy directly,
mTORC2 complex provides regulatory and feedback signals
from insulin receptor phosphoinositide 3-kinase signaling (26–
28). Under nutrient-rich conditions, mTORC1 keeps ULK1 and
ATG13 in an inactive state. Nutrient deprivation leads to
dephosphorylation of mTORC1 sites on ULK1 and ATG13
(24). ULK1 then autophosphorylates and phosphorylates its
Frontiers in Oncology | www.frontiersin.org 3291
partner proteins ATG13 and FIP200 (29, 30). By this way,
ULK1 activation initiates a cascade of events that promotes
autophagosome formation.

Phagophore nucleation results from phosphorylation of
lipids by the VPS34 lipid kinase complex (the class III PI3K,
PI3KC3), BECN1 (Beclin-1), AMBRA1 and ATG14 (31, 32).
Phosphorylation of inositol lipids on cellular membranes, such
as ER membranes, leads to accumulation of phosphatidylinositol
3-phosphates (PI3P) (33). PI3P formation at membrane sites
called omegasomes (or cradles), through recruitment of proteins
with PI3P-binding domains, such as WIPI1/2 proteins and
DFCP1 (34–36).

Proteins from the ubiquitin-like ATG8 family control
elongation of phagophores through the activity of two key
protein complexes. ATG12-ATG5–ATG16L1 complex facilitates
coupling of ATG8 proteins, including MAP1LC3 (LC3) and
GABARAPs, to phosphatidylethanolamine (PE) molecules on
elongating membranes (37). Lipidated ATG8 proteins on
autophagic membranes allow growth and closure of phagophore
membranes (38, 39). Autophagy can be selective or non-selective.
In the latter case, autophagy receptors, such as SQSTM1/p62,
bridge between ATG8 proteins and ubiquitylated targets and
direct them to autophagosomes. Hence, assessment of lipidation
of ATG8s, especially LC3 lipidation, is a widely accepted as a
powerful approach for monitoring autophagic activity (40, 41).

Mature autophagosomes are then transported along
microtubules toward late endosomes and lysosomes. SNARE
proteins facilitate fusion of autophagosomal outer membrane
with endosomal or lysosomal membranes (42). Lysosomal acidic
hydrolases degrade autophagic cargos into their building blocks
(e.g. proteins into amino acids), which in turn are recycled to
cytosol and used in the synthesis of new cellular components. As
such, autophagy functions as a cellular degradation and recycling
mechanism that allows cells to survive under stressful conditions.

Dysregulation of autophagy pathway is associated with
various diseases, including cancer (43–45). In fact, autophagy
plays an important yet context-dependent role at various stages
FIGURE 2 | General mechanism of mammalian autophagy. Autophagy is tightly controlled by the activity of AMPK and mTOR. Under nutrient deprivation, AMPK
activates autophagy, yet mTOR inhibition is relieved. Subsequent activation of ULK1 and BECN1 complexes promotes formation of phagophore. ATG5-12-16L complex
and ATG8 family protein LC3 are required for elongation and closure of phagophore. Fully mature double-layered autophagosome containing cargo molecules fuses with
late endosomes and lysosomes. Autophagosomes and their cargo are degraded through lysosomal enzymes and recycled into cytosol for reuse.
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of cancer progression and metastasis (45, 46). In early stages of
cancer, control of ROS accumulation, prevention of DNA
damage and genome instability require functional autophagic
activity, eliminating damaged mitochondria and misfolded/
aggregated proteins (47). Conversely, in established tumors
and especially those tumors that grow relatively faster (e.g.,
tumors with K-RAS activation), tumor supporting role of
autophagy is prominent. In this context, autophagy
compensates for increased metabolic demands, originating
from nutrient and energy deficiency, hypoxia and acidosis (48).
Tumor stage-dependent dual role of autophagy might be
explained in some models by hypoxia-triggered switches
involving proteins, such as RAC3 (49). Moreover, autophagy
was involved in various tumor progression- and metastasis-
associated phenomena, including cell cycle regulation, stem cell
behavior, extracellular matrix interactions, EMT, anoikis, tumor
cell-stroma interactions, angiogenesis, immune responses and
treatment resistance (50–54). In line with these observations, a
number of autophagy genes and proteins show tumor suppressor
or oncogenic activities (45, 55, 56).

In spite of the importance of autophagy in cancer formation
and progression, contribution and molecular mechanisms of
autophagy to cancer dormancy was not explored in detail in
different cancer types and models. As summarized below, an
increasing number of recent studies begins to provide evidence
about a direct involvement of autophagy in cancer dormancy.

Mechanisms of Cellular Dormancy
Cellular dormancy is characterized by a halt in cancer cell
proliferation and entrance to a quiescence-like state. This non-
proliferative state of existence may last for months or years.
Moreover, no matter how long the dormant state is, some cells
retain the capacity to reactivate and re-enter to a proliferative state
(57–59). So, cellular dormancy is defined as a reversible mechanism.

Dormant cells usually reside and survive in the G0-G1 phase
of the cell cycle. Hence, they lack proliferation markers (e.g.,
Ki67) as well as markers of apoptosis (e.g., active-caspases) and
senescence (e.g., beta-galactosidase) (60–62). Not surprisingly,
several changes in cell cycle regulatory molecules were observed.
For instance, cyclin-dependent kinase (CDK) inhibitors p27Kip1

and p21Cip1/WAF1 controlled the non-proliferative state during
hematopoietic stem cell dormancy (63). In another example,
adhesion of lymphoma cells to bone marrow stromal cells
resulted in cell cycle arrest, involving post-transcriptional
regulation of Skp2, a component of p27Kip1 and p21Cip1/WAF1

containing SCF complex (64).
Another regulator of dormancy-associated cell cycle arrest

was identified as the DREAM complex. The complex consists of
p130 or p107 (Retinoblastoma-like pocket proteins), MuvB and
E2F protein. MuvB was defined as a core component in the
transcriptional regulation of cell cycle genes by the DREAM
complex (65). In dormant cells, elevated p130 levels were shown
to facilitate DREAM complex formation and regulate its
transcriptional effects (65, 66). On the other hand, high levels
of p107 were detected only in proliferating cells. Regulatory
kinases DYRK1A and DYRK1B phosphorylated a subunit of
MuvB, namely LIN52, and activated DREAM complex assembly
Frontiers in Oncology | www.frontiersin.org 4292
during entry to the non-proliferative state (67). Additionally,
these kinases stabilized p27Kip1 and induced cyclin D turnover,
further contributing to the non-proliferative state (68, 69).

Mitogen-activated kinase (MAPK) pathway plays a central
role in the regulation of dormancy. A number of dormancy-
related factors and their cognate receptors were associated with a
shift in the balance between proliferative ERK1/2 versus non-
proliferative p38 MAPKs. Independent studies conducted in
different cancer cell types, including breast, prostate,
melanoma cells, supported the involvement of p38 pathway in
cancer dormancy (70), and activation of this pathway
contributed to the proliferation arrest in this context (71, 72).
For instance, p38 kinases were stimulated by the activity of TGF-
b2/TGFbRIII, which in turn supported dormancy of head and
neck squamous cell carcinoma cells in the bone marrow (73). In
addition, as a paracrine factor, secreted TGF-b2 from osteoblasts
in the bone microenvironment contributed to prostate cancer
dormancy through activation of p38 (74). Dormant cells secreted
high levels of TGF-b2, creating an autocrine loop in the
regulation of dormancy (75). In line with this, results revealed
that proliferating cells have low TGF-b2 levels (75).

Urokinase plasminogen activator receptor (uPAR) pathway
was described as another dormancy-associated pathway. In
HNSCC, status of the uPAR was directly related with the
dormancy capacity of cells in vivo. In this tumor type,
interaction of uPAR with a5b1 integrin dictated formation of
insoluble fibronectin fibrils and blocked the activation of p38 (76).
Conversely, decreased uPAR levels were detected correlated with
ERK1/2 pathway attenuation (76). Moreover, downregulation of
uPAR inhibited focal adhesion kinase (FAK) phosphorylation and
downstream Src activity, facilitating the dormant state in vivo
(77, 78).

In addition to the HNSCC model, FAK and Src-related
mechanisms were also studied in breast cancer dormancy.
Activation of Src by CXCL2/CXCR4 signaling correlated with
prolonged survival of DTC in the bone marrow niche via
phosphoinositide 3-kinase (PI3K)/AKT pathway (79, 80).
Interestingly, Src-assisted dormancy was secondary organ-
dependent and its downregulation had no effect on lung
metastasis of breast cancer cells (79, 80).

Bone morphogenetic proteins (BMP) were mainly involved in
dormancy regulating tumor stroma interactions. Investigations
on prostate cancer revealed that, BMP7 (bone morphogenetic
protein 7) regulated dormancy of prostate cancer cells through
affecting cancer stem cell population. This effect required
BMPR2 (BMP receptor 2) expression and activation of
dormancy-associated downstream signaling components, such
as p38, p21 and the metastasis suppressor NDRG1 (81). In
another study, bi-directional communication between tumor
cells and stroma was revealed. Dormant prostate cancer cells,
but not proliferative cells, secreted SPARC, a factor which
stimulated BMP7 expression from bone marrow stromal cells,
contributing to the maintenance of dormant phenotype (82).
Another BMP protein, BMP4, was studied in the context of
breast cancer. High levels of BMP4 expression correlated with
entrance of cancer cells to a dormant state in the lung. In this
organ, dormancy activation was associated with ALK2/3 and
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SMAD1/5 signaling (83). In this system, extracellular BMP
antagonist DAND5 counteracted BMP4-assisted dormancy and
promoted the proliferative state (84).

Dormancy-related signaling pathways lead to the activation
of a specific gene regulatory program. For instance, BHLHE41
transcription factor was documented among the downstream
effectors of p38-regulated dormancy in HNSCC (72). In another
study, Kim et al. identified BHLHE41 and NR2F1 as key factors
promoting ER positive breast cancer dormancy in an in vivo
xenograft mice model (85). Importance of BHLHE41 to breast
cancer dormancy was further confirmed in a 3D endosteal bone
niche model containing bone marrow-derived cells and
endothelial cells (86).

NR2F1 belongs to the NR2F family of cancer-related
transcription factors (77). Dormant cancer cells were found to
express high levels of NR2F1 in comparison to their proliferative
counterparts (79, 87). Moreover, high NR2F1 and TGF-b2
expression were characterized as a dormancy signature in prostate
cancer DTC (87). Moreover, transcription of another p38-regulated
gene, SOX9, was directly controlled by NR2F1 binding elements in
its promoter (87). NR2F1-SOX9 axis was also regulated by
microenvironment-derived retinoic acid (RA) signaling and
RARb (87). In addition to other targets, NR2F1 promoted
expression of the CXCL12 and its receptor CXCR4 and induced-
cell cycle arrest in salivary adenoid cystic carcinoma cells (79).

Receptor tyrosine kinases, including TYRO3, AXL and MER,
were critically involved in the dormancy phenotype of certain
cancer types. For example, activation of AXL or TYRO3 receptor
kinases by GAS6 secreted from osteoblast cells, contributed to
the establishment of metastatic dormancy of prostate cancer cells
in the bone marrow (75, 88, 89). In another example, dormant
state was triggered in lymphoblastic leukemia cells by GAS6 to
MER binding (90). On the other hand, AXL was found to be an
important regulator of myeloid lineage-related gene expression
and dormancy in myeloma cells (91).

Although generally considered as a pathway involved in
cancer dissemination and metastasis (92), Wnt pathway was
implicated in dormancy control in a context- and stimulus-
dependent manner (93, 94). For instance, DKK1-dependent
inhibition of Wnt3a signaling induced growth arrest and entry
to dormancy (95). On the other hand, activation of Wnt5a
pathway was responsible for the entrance of prostate cancer
cells to a non-proliferative dormant state (94).

Overall, several cytokines, growth factors and signaling
pathways involving kinases as well as transcription factors were
identified as regulators of dormancy. Although we are far from
having a complete picture, pathways regulating dormancy are
being better defined. A summary of known proteins and
pathways studied in vitro and in vivo were shown in Tables 1
and 2 respectively, and the reader is referred to recent review
articles about dormancy for further details (58, 191, 192).

Role of Autophagy in the Context of
Cancer Dormancy
In addition to recycling long-lived proteins, autophagy plays a
key role in the management of energy crisis, control of reactive
Frontiers in Oncology | www.frontiersin.org 5293
oxygen accumulation through destruction of damaged
mitochondria, and in the elimination of unfolded and
misfolded proteins. Studies in the last decade indicated that
autophagy is involved in various stages of cancer formation and
progression (193–197). As mentioned previously, autophagy
plays a role in various events leading to tumor cell survival,
resistance to treatment and metastasis. Hence, autophagy
emerges as one of the critical determinants of the dormant
state. In fact, several independent studies using cancer cells-
derived from a wide variety cancer types, including breast, ovary,
gastrointestinal tract, pancreas and bone cancers and their
respective mice tumor or xenograft models showed that,
autophagy is highly active in dormant cancer cells (125, 148,
180, 198–200). Some of these observations were even supported
by the analysis of patient-derived tissue samples (201), yet
molecular details of how and why autophagy contributes to the
dormant phenotype are not well known. In this section, we will
o v e r v i ew th e cu r r e n t l i t e r a t u r e on au t opha g y -
dormancy connection.

Autophagy-Dormancy Connection:
Experimental Evidence
Studies using different experimental set-ups, different cancer cell
types and models revealed that, malignant cells entering a non-
proliferative, dormancy-like but reversible cycle arrest state
showed increased autophagic activity (Table 3) (148, 180, 199).
In this context, dormant cancer cells were more sensitive to
autophagy inhibition compared to their proliferating
counterparts and inhibition of autophagy was lethal in most
cases. Moreover, inhibition of autophagy in dormant cancer cells
changed their metastatic behavior in vivo in mice (148, 199).

For instance, in gastrointestinal stromal tumor (GIST) cells,
treatment with a KIT/PDGFRA inhibitor, imatinib, induced a
dormancy-like quiescent state during which cells entered cell
cycle arrest through accumulation of the cell cycle inhibitor p27
(198). Autophagy activation was observed under these
conditions, and inhibition of autophagy using a genetic or
chemical (chloroquine or quinacrine treatment) approach
resulted in the loss of cell viability, and increased the anti-
tumor efficacy of imatinib in in vitro and in vivo tests.

Contribution of autophagy to ovarian cancer dormancy was
studied in detail. DIRAS3 (or ARHI) is a maternally imprinted
tumor suppressor that is frequently downregulated in breast and
ovarian cancers (209, 210). Re-expression of DIRAS3 in cancer
cells robustly induced autophagy (180, 202, 211). Interestingly,
although DIRAS3 expression resulted in the apoptotic death of
cancer cells in culture (203), it promoted a dormancy-like state in
vivo (180, 202). Re-expression of DIRAS3 in a Tet-inducible
manner, stimulated autophagy in ovarian cancer xenografts, and
led to a reversible inhibition of tumor growth and entry to a
dormant state. Downregulation of the tumor suppressor was
sufficient for the establishment of overt metastatic tumors. In this
model, inhibition of DIRAS3-induced autophagy by chloroquine
(a lysosomal autophagy inhibitor) reduced tumor growth,
further underscoring the importance of autophagic activity to
DIRAS3-related dormancy (202).
March 2021 | Volume 11 | Article 627023
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TABLE 1 | Summary of in vitro dormancy models and mechanisms.

t on
ancy

Dormancy Mechanism Reference

ion Tumor niche (96)

ion Tumor niche, apoptosis (97)

ion Integrin and PI3K/Akt signaling (98)
ion p38 signaling, ER stress (99)

ion Wnt signaling (100)

ion Her2/neu and ER/PR hormone receptor
signaling

(101)

ion CDK2 signaling (102)
ion CDKIs (103)

ion CDKIs, Stemness (104)

ion Tumor niche, p38/ERK signaling (77)

ion Tumor niche, p38/ERK signaling, CDKIs (105)

ion N.D. (106)

on EMT, Stemness (107)

on Integrin signaling, FAK, CDKIs (108)

on ERK1/2 signaling, CDKIs (109)
on SMAD, FAK and ERK signaling (110)
on Ca+2 signaling (111)

on CXCL5/CXCR2 signaling (112)
on ECM, JNK/SAPK signaling (113)

on Immunogenic response (114)

ion EMT, CDKIs, Stemness (115)
ion Tumor niche (116)
ion Stat3/Wnt/Notch signaling (117)

ion N.D. (118)

on AKT and p53 signaling (119)

ion CDKIs (120)

(Continued)
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Proteins and Factors Cell line Tissue of
Origin

Metastatic
Target

Dormancy Tests Effec
Dorm

1 Osteopontin Nalm-6 ALL Bone Ki67 positivity, Fluorescent dye retaining (DiR), Drug
resistance (Ara-C)

Induc

2 Bcl-2 CD34-enriched
primary AML

AML N.D. Drug resistance (Ara-C), Fluorescent dye retain (PKH26), Induc

3 FGF-2 T47D, MCF7 Breast N.D. Drug resistance (Taxotere) Induc
4 CK19 BT549, MDA-MB-

231
Breast N.D. G0/G1 cell cycle arrest, Drug resistance (Cisplatin) Induc

5 DNp63a MCF7 Breast N.D. 3D spheroid formation, G0/G1 cell cycle arrest, Drug
resistance (Paclitaxel, Doxorubicin), Ki67and BrdU positivity

Induc

6 NR2F1-AS1 BT474 Breast Lung Ki67 positivity, Colony formation Induc

7 p21 MCF10A Breast N.D. BrdU positivity, G0/G1 cell cycle arrest Induc
8 miR-222/223 MDA-MB-231, T47D Breast Bone G0/G1 cell cycle arrest, Drug resistance (Carboplatin), Stem-

like phenotype (Oct4+)
Induc

9 IKKb MCF7 Breast Bone, pelvic
organs, lung

Colony formation, G0/G1 cell cycle arrest, Ki67 positivity Induc

10 BHLHE41, Wnt3,
HBP1

MDA-MB-231 Breast N.D. 3D spheroid formation Induc

11 IL1b T47D, MCF7 Breast N.D. Drug resistance (Fulvestrant), colony formation, G0/G1 cell
cycle arrest, p-p38/p-ERK1/2 ratio

Induc

12 Fra-1 4TO7 Breast N.D. Drug resistance (Doxorubicin, Cyclophosphamide), G0/G1 cell
cycle arrest, Stem-like phenotype (Sca-1+), Ki67 positivity

Induc

13 LOXL2 MCF7 Breast N.D. Stemness (CD44 high/CD24low), 3D matrigel spheroid
formation

Inhibit

14 MLCK D2.A1, D2OR,
MCF7, MDA-MB-231

Breast N.D. 3D spheroid formation Inhibit

15 Src D2.0R Breast Lung Ki67 positivity, G0/G1 cell cycle arrest, 3D spheroid formation Inhibit
16 Profilin-1 MDA-MB-231 Breast N.D. 3D matrigel spheroid formation Inhibit
17 Parathyroid hormone-

related protein (PTHrP)
MCF7 Breast N.D. RNA-seq dormancy associated gene downregulation (e.g.

SOCS3, AMOT)
Inhibit

18 CXCL5 PyMT Breast Bone Ki67 positivity Inhibit
19 RhoA/RhoC MCF-7, MDA-MB-

231
Breast N.D. Ki67 positivity, Colony formation Inhibit

20 Zeb1 D2A1, 67NR, 168
FARN

Breast Lung, Bone,
Adrenal gland

Fluorescent dye retaining (CFSE) Inhibit

21 ZEB2 SW480 Colorectal N.D. Fluorescent dye retaining (PKH26) Induc
22 SDF-1a HT-29, SW480 Colorectal N.D. Drug resistance (5-fluorouracil, irinotecan, oxaliplatin) Induc
23 IL-23/IL-23R TE-1, ECA

109
Esophagus N.D. G0/G1 cell cycle arrest, Stem-like phenotype (CD133+), p21

and p16 expression, Radioresistance
Induc

24 CXCL12, CXCL16 and
CX3CL1

LN229, T98G Glioblastoma N.D. Drug resistance (Temozolomide), Ki67 positivity, Fluorescent
dye retaining (DiO), p-p38/p-ERK1/2 ratio

Induc

25 PP2A Primary Tumor stem-
like cells (TSCs)

Glioblastoma N.D. G0/G1 cell cycle arrest, BrdU positivity Inhibit

26 Aurora kinase A
(AURKA)

Hep2 Larynx N.D. Drug resistance (5-FU), G0/G1 cell cycle arrest, Induc
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TABLE 1 | Continued

Dormancy Tests Effect on
Dormancy

Dormancy Mechanism Reference

arrest, p-p38/p-pERK1/2 ratio Induction Smad-independent TGF-b signaling,
FOXO1, FOXO3A, MYC and AKT
signaling

(121)

eroid formation, Drug resistance (5-FU), G0/
est, EdU positivity

Induction TGF-b/smad-slug signaling, CDKIs,
stemness

(122)

CNA positivity, G0/G1 cell cycle arrest Induction Integrin signaling, FAK, CDKIs (123)

positivity Induction Immunogenic response (124)

arrest, Ki67 positivity, Drug resistance Induction PI3K/Akt pathway, Autophagy (125)

is by FACS, Drug resistance (Carboplatin) Induction CDKIs (126)

ositivity, G0/G1 cell cycle arrest, 3D sphere Inhibition AKT signaling, CDKIs (127)

arrest, Drug resistance (Cisplatin) Inhibition Nuclear pore architecture (128)
(Erlotinib), 3D spheroid formation Induction Integrin signaling, avb3-KRAS-NF-kB

axis
(129)

Drug resistance (5FU, SN38), G0/G1 cell
matrigel spheroid formation

Inhibition Tumor metabolism (130)

positivity, Fluorescent dye retaining (DiD) Induction TGFb signaling (75)
retaining (PKH26) Induction Immunogenic response, Type I IFN

pathway (IFNAR)
(131)

Inhibition ECM, TGFb signaling (132)
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295
Proteins and Factors Cell line Tissue of
Origin

Metastatic
Target

27 miR-122 HCC-BCLC9 stem-
like cell

Liver N.D. G0/G1 cell cycle

28 p53 A549, H460 Lung N.D. 3D matrigel sph
G1 cell cycle arr

29 3D fibrin matrix
stiffness

B16F10 Melanoma N.D. Ki67 positivity, P

30 (TRP)-2 Prominin-1 (CD133)+
RET
transgenic primary
mouse melanoma
cells

Melanoma Bone Ki67 and PCNA

31 IGF2 AXT Osteosarcoma N.D. G0/G1 cell cycle
(Adriamycin)

32 Dyrk1A iOvCa147E2 and
HEY

Ovary N.D. Cell cycle analys

33 AKT OVCAR3, primary
Epithelial ovarian
cancer (EOC)

Ovary N.D. Ki67 and BrdU p
formation

34 NUP62 TOV112D Ovary N.D. G0/G1 cell cycle
35 TBK1 FGb3 Pancreas N.D. Drug resistance

36 AKT AsPC-1 Pancreas N.D. BrdU positivity,
cycle arrest, 3D

37 Axl PC3, DU145 Prostate Bone BrdU and Ki67
38 IRF7 RM1 Prostate Bone, Lung Fluorescent dye

39 MLCK LuCaP 86.2, 92, and
93

Prostate N.D. Ki67 positivity
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TABLE 2 | Summary of in vivo dormancy models and mechanisms.

Effect on
dormancy

Dormancy mechanism Reference

Inhibition Tumor niche (133)
Induction Immunogenic response (134)

Inhibition ECM (135)
Inhibition Integrin signaling (136)

Induction EMT (137)

Induction Angiogenesis, Tumor
niche

(138)

Induction p38 signaling, GATA3/
FOXA1 axis

(139)

Induction p38, FAK, PLCb signaling (140)
Induction Wnt signaling (141)

Induction Tumor niche, Notch
signaling

(142)

Induction Tumor niche, CDKIs (143)
Induction Tumor niche (144)
Induction Immunogenic response (145)
Induction N.D. (146)

Induction N.D. (85)

Inhibition Angiogenesis (147)
Inhibition Autophagy (148)
Inhibition EGFR signaling (149)

Inhibition Notch signaling (150)

Inhibition Tumor niche, UBE2N/
Ubc13 signaling

(151)

Inhibition Tumor niche (152)
Inhibition Tumor niche, Integrin and

NFkB signaling
(153)

Inhibition Tumor niche, SMAD
pathway, Stemness

(84)

Inhibition Tumor niche (154)

Induction Immunogenic response,
Type I IFN pathway
(IFNAR)

(155)

Induction p38/ERK and Integrin
signaling

(70)

(Continued)
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Proteins
and Factors

Cell line Tissue of origin Metastatic
target

Dormancy tests

1 Notch3 ICD MOLT-3, MICOL-14 ALL, Colorectal N.D. Xenograft tumor formation
2 CXCL10 DA1-3b cell line AML Bone, spleen

and liver
Allograft tumor formation ratio

3 ILK J82, JB-V Blader N.D. Xenograft tumor formation, Ki67 positivity
4 MMP2 Dunn, LM8 Bone Liver, kidney,

lung
Allograft tumor formation, 3D matrigel spheroid formation

5 miR-200b/
200a/429
cluster

RJ345 Breast Lung 3D matrigel spheroid formation, Xenograft tumor formation

6 POSTN MDA-MB-231, T4-2 Breast Bone, Brain,
Lung

KI6̇7 positivity, Allograft tumor formation

7 MSK1 T47D Breast Bone Ki67 and BrdU positivity, Xenograft tumor formation

8 LPA1 4T1, MDA-MB-231T Breast Liver, Lung Xenografted tumor formation, Ki67 positivity
9 Int2/Fgf3 MMTV(LA)-Induced

Mammary Tumor
Breast N.D. Xenograft tumor fomation, BrdU positivity

10 Notch-2 MDA-MB-231 Breast Liver Ki67 and phospho-Histone H3b positivity, Drug resistance (Doxorubicin),
Xenograft tumor formation, Stem-like phenotype (Sca1, CD34+)

11 TIE2 MCF7, 4T1 Breast Bone G0/G1 cell cycle arrest, Xenograft tumor formation, Drug resistance (5-FU)
12 CXCR4 MDA-MB-231 Breast Lung G0/G1 cell cycle arrest, Ki67 positivity, Xenograft tumor formation
13 Ron PyMT-MSP Breast Lung Allograft tumor formation
14 Fbxw7 E0771 and MDA-MB-

231
Breast Bone Xenograft tumor formation, Allograft tumor formation, Drug resistance

(Paclitaxel), Fluorescent dye retaining (PKH26), G0/G1 cell cycle arrest, 3D
spheroid formation, Ki67 positivity

15 BHLHE41,
NR2F1

MCF7 Breast N.D. Xenograft tumor formation

16 HSP27 MDA-MB-436 Breast N.D. Xenograft tumor formation, Ki67 positivity
17 Pfkfb3 D2.OR, D2.A1 cells Breast Lung Xenograft tumor formation, 3D matrigel spheroid formation
18 FGFR1 Wnt1/

iFGFR1-driven breast
cancer cell

Breast N.D. Xenograft tumor formation, Ki67 positivity

19 HER2/neu MMTV-rtTA;TetO-
NICD1 cells

Breast N.D. Colony formation, Tumor formation

20 miR-205,
miR-31

MDA-MB-231 Breast Bone, brain and
lung

Xenograft tumor formation, 3D sphere formation

21 ROCK1 MDA-MB-231 Breast N.D. Xenograft tumor formation
22 VCAM1 SCP6, TM40D, MCF7,

CN34, MDA-MB-435
Breast Bone Xenograft tumor formation

23 Coco 4TO7, 4T1 Breast Bone, Brain,
Lung

Ki67 and EdU positivity, Allograft tumor formation, Fluorescent dye retaining
(PKH26), 3D spheroid formation

24 Angiopoietin-
2

MCF7 Breast N.D. 3D matrigel spheroid formation, Xenograft tumor formation, p-p38/p-ERK
1/2 ratio,

25 IRF7 4T1 Breast Lung Xenograft tumor fromation, Drug resistance (Methotrexate, Doxorubicin),

26 ERK/p38 MDA-MB-231, MCF7,
Hep3, M24met

Breast, Head and
neck, Melanoma

N.D. Xenograft tumor formation on CAM (Chorioallantoic membrane)
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TABLE 2 | Continued

Effect on
dormancy

Dormancy mechanism Reference

Induction Angiogenesis (156)

Induction Epigenetic alteration,
Stemness

(157)

Induction Angiogenesis, EGFR
signaling

(158)

Inhibition Immunogenic response (159)

Induction Immunogenic response,
antigen presenting

(160)

Induction EMT, TGF-b and p38
signaling

(161)

ell Induction p38 and Integrin signaling (162)

Induction UPR, Rheb-mTOR and
MKK6/p-38 axis

(163)

Induction p53, c-Jun signaling (72)
Inhibition FAK/PI3K/Akt signaling (164)

Induction SMAD pathway, CDKIs (73)
Induction Epigenetic alteration,

Retinoic acid pathway,
Stemness

(87)

Induction p38/ERK and Integrin
signaling

(76)

Inhibition N.D. (165)

Induction EMT, Evasion of apoptosis (166)
Inhibition N.D. (167)

Induction Ca+2 and AKT signaling (168)

Induction Retinoic acid pathway,
STAT3 and p53 signaling,
CDKIs

(169)

t, Induction ECM, IDO1/AhR-
dependent p27 pathway
STAT1 pathway

(170)

Induction N.D. (171)
Inhibition Angiogenesis (172)

ell Inhibition FOXO3A signaling, CDKIs (173)

(Continued)
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Proteins
and Factors

Cell line Tissue of origin Metastatic
target

Dormancy tests

27 H2BK, Eph
receptor A5
(EphA5),
Angiomotin

MDA-MB-436, KHOS-
24OS, T98G, SW872

Breast,
osteosarcoma,
glioblastoma,
liposarcoma

N.D. Xenograft tumor formation

28 CUL4B Patient-derived tumor
organoid (PDOs) cell,
HT29 and HCT116

Colorectal Liver, Lung 3D matrigel spheroid formation, Xenograft tumor formation

29 TSP-1,
EGFR

U87-MG, T98G Glioblastoma N.D. Xenograft tumor formation, Drug resistance (Erlotinib, Cetuximab), 3D
matrigel spheroid formation

30 Tissue factor
(TF)

U373 Glioblastoma N.D. Xenograft tumor formation, Ki67 positivity

31 miR-190 T98G, KHOS-24OS Glioblastoma,
Osteosarcoma

N.D. Ki67 positivity, Xenograft tumor formation

32 PRRX1 Cal-27, SCC-9 Head and neck N.D. Xenograft tumor formation

33 a5b1
Integrin

HEp3 Head and neck N.D. Xenograft tumor formation on CAM (Chorioallantoic membrane), G0/G1 c
cycle arrest

34 ATF6a D- and T-variant of
HEp3

Head and neck N.D. Xenograft tumor formation on CAM (Chorioallantoic membrane)

35 BHLHE41 Hep3 Head and neck N.D. Xenograft tumor formation
36 Aurora

kinase A
(AURKA)

Hep2 Head and neck Lung Xenograft tumor formation, G0/G1 cell cycle arrest, Ki67 positivity

37 TGFb2 Hep3 Head and neck Lung, Bone p-p38/p-ERK ratio, Xenograft tumor formation
38 NR2F1 Hep3 Head and neck Spleen, Lung Ki67 positivity, Xenograft tumor formation

39 Fibrinogen
fibrils

HEp3 Head and neck N.D. Xenograft tumor formation on CAM (Chorioallantoic membrane)

40 MYC LAP-tTA Tet-o-MYC
cells

Liver N.D. Ki67 positivity, Xenograft tumor formation

41 YAP/TEAD PC-9 Lung N.D. Xenograft tumor formation, Drug resistance (Osimertinib+ Trametinib)
42 PAX5 Raji Lymphoblastoid N.D. EdU, Fluorescent dye retaining (CFSE), G0/G1 cell cycle arrest, Xenograf

tumor formation, Drug resistance (Etoposide, Daunorubicin)
43 KISS1 C8161.9 Melanoma Lung, Bone,

Kidney, Eye
Xenograft tumor formation

44 Sox2 B16F1, A375 Melanoma N.D. 3D fibrin spheroid formation, Ki67, COUP-TF1 and BrdU positivity, G0/G
cell cycle arrest, Drug resistance (Tazarotene, ATRA, Temozolomide,
Cisplatin), Stemness (CD133+) Xenograft tumor formation

45 IFN-g B16, A375 Melanoma N.D. 3D spheroid formation, Xenograft tumor formation, G0/G1 cell cycle arre
PCNA positivity, Drug resistance (Methotrexate, paclitaxol)

46 Angiostatin B16F10 Melanoma Lung Xenograft tumor formation
47 VEGF B16F10 Melanoma N.D. Xenograft tumor formation
48 GILZ B16F1, B16F1-GM-

CSF
Melanoma Brain Stemness (CD133, CD24 positivity), Xenograft tumor formation, G0/G1 c

cycle arrest
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TABLE 2 | Continued

Effect on
dormancy

Dormancy mechanism Reference

Inhibition Tumor niche,
angiogenesis

(174)

Induction Angiogenesis, lipogenesis (175)

Induction N.D. (176)

Induction Angiogenesis, EMT (177)

Induction Angiogenesis, Epigenetic
alterations

(178)

Induction Autophagy, ERK and AKT
signaling

(179)

Induction PI3K and TSC1/2
signaling, autophagy

(180)

g Inhibition EGFR signaling (181)

Inhibition Tumor niche, EMT (182)

Induction IGF1/IGF-1R/AKT/XIAP
signaling axis

(183)

Induction Tumor niche, Cytokine
signaling

(184)

Induction Angiogenesis (185)
Induction p38/ERK signaling,

Stemness
(186)

Induction p38 signaling, SPARC/
BMP7/BMPR2 axis,
CDKIs

(82)

Induction BMPR2/NDRG1/P38 axis (187)

Induction Tumor niche, TGFbRIII-
p38-pS249/T252 RB
signaling axis

(74)

Induction Tumor niche, platelet
aggregation and activation

(188)

Induction Tumor niche (89)
Induction Tumor niche (90)
Induction Tumor niche, mTOR

signaling
(189)

e Inhibition Tumor niche, Wnt5a/
ROR2/SIAH2 signaling
axis, CDKIs

(94)

(Continued)
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Proteins
and Factors

Cell line Tissue of origin Metastatic
target

Dormancy tests

49 EET LLC, B16F10,T241 Melanoma, Sarcoma Lung, axillary
lymph nodes,
liver and kidney

Allograft tumor formation

50 TIMP-1 and
TIMP-2

MLS 402-91 and
primary human myxoid
liposarcoma

Myxoid liposarcoma N.D. Xenograft tumor formation

51 LTBP2 HONE1-2, NP460 Nasopharynx N.D. Colony formation, 3D matrigel spheroid formation, Xenograft tumor
formation

52 miR-34a,
miR-93, and
miR-200c

Saos-2, MG-63 Osteosarcoma Lung Ki67 positivity, Xenograft tumor formation

53 ARHI
(DRAS3)

SKOv3, Hey Ovary N.D. Xenograft tumor formation, Colony formation, PCNA positivity

54 VEGF, IL8
and IGF-1

SKOv3, OVCAR8 Ovary N.D. Xenograft tumor formation

55 ARHI
(DIRAS3)

SKOv3 Ovary N.D. Colony formation, Xenograft tumor formation

56 MED12 HO8910 and SKOV3 Ovary N.D. Xenograft tumor formation, Colony formation, G0/G1 cell cycle arrest, Dr
resistance (paclitaxel, gemcitabine, topotecan, and
5-FU)

57 CXCR4 A2780, SKOv-3 Ovary N.D. Drug resistance (cisplatin, doxorubicin, paclitaxel), Xenograft tumor
formation, Colony formation

58 IGF1 AsPC-1, MIA PaCa-2 Pancreas N.D. Allograft tumor formation, Xenograft tumor formation, G0/G1 cell cycle
arrest, Ki67 positivity

59 IL8 R254, H6c7-kras,
Panc1

Pancreas N.D. Ki67 positivity, p-P38/p-PERK1/2 ratio, Xenograft tumor formation

60 15-LOX-2 DU145, PC-3 Prostate N.D. Xenograft tumor formation, G0/G1 cell cycle arrest
61 MERTK PC3, C4-2B Prostate Bone Xenograft tumor formation, G0/G1 cell cycle arrest, Ki67 positivity

62 BMP-7 PC3mm Prostate Bone Xenograft tumor formation, Stemness (CD24low/CD44high/CD133high),
Fluorescent dye retaining (DiD)

63 BMP7 PC3 mm, C4-2B Prostate Bone 3D sphere formation, Xenograft tumor formation, Stemness (CD24-/CD4
+/CD133+)

64 GDF10,
TGFb2

C4-2B4 Prostate Bone Ki67 positivity, Xenograft tumor formation, p-p38/p-ERK1/2 ratio

65 Axl PC3, C42B Prostate Bone Xenograft tumor formation

66 Axl, Tyro3 PC3, Du145 Prostate Bone Xenograft tumor formation
67 Anxa2 PC3 Prostate N.D. Xenograft tumor formation, G0/G1 cell cycle arrest
68 TBK1 PC3, C4-2B Prostate Bone Xenograft tumor formation, Drug resistance (Taxotere)

69 Wnt5a PC3, C4-2B Prostate Bone Fluorescent dye retaining (DiD), Xenograft tumor formation, Drug resistan
(Docetaxel), G0/G1 cell cycle arrest, Ki67 positivity
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In other ovarian cancer studies, ascites-derived primary
cancer cells from patients with high-grade serous ovarian
cancer and ovarian cancer cell lines were used. Treatment of
these cells with an allosteric AKT inhibitor Akti-1/2 induced a
dormancy-like cytostatic response, and under these conditions,
autophagic activity was significantly increased (204).

The role of autophagy in dormancy was studied in detail in
breast cancer cell culture and animal models. Autophagy
activation was observed during a dormancy-like arrest state of
MCF7 breast cancer cells that were cultured with farnesyl
transferase inhibitors (FTIs) (212). In MDA-MB-231 breast
cancer cells, repetitive long-term hypoxia/reoxygenation cycles
resulted in a low proliferation state and dormancy-like reversible
cell cycle arrest (206). In another study, a dormancy-like state
was induced by an adriamycin- (ADR-) treatment in vitro
regimen using breast cancer cells from a Neu-driven cancer
mice model (FVBN202 mice). Autophagy activation was also
observed in this model of dormancy (207).

Other groups used two breast cancer cell lines derived from
murine mammary hyperplastic alveolar nodules for modeling
dormant versus proliferation states of this cancer type. D2.A1
cells were metastatic and D2.0R cells were dormancy-prone
under certain growth conditions. In this system, autophagic
activity of dormant D2.0R cells was found to be significantly
higher than that of D2.A1 metastatic cells (148, 199). Both
autophagosome and autolysosome numbers were increased,
autophagy receptor (e.g. SQSTM1/p62) degradation was
observed, indicating that autophagy in dormant cells was fully
functional (148). In line with studies in other cancer types,
dormant breast cancer cells were sensitive to autophagy
inhibition whereas proliferative cells were resistant (199).
Following tail vein injection to mice, most D2.0R cells stayed
dormant in the lungs. Autophagy-related gene expression and
autophagic activity in micrometastatic dormant lesions of D2.OR
cells were observed higher as compared to the metastatic lesions
of D2.A1 cells (148, 199).

Dormancy was also investigated in pancreatic duct
adenocarcinoma (PDAC). In this cancer type, elevated levels of
copper were associated with the degree of cancer progression.
Interestingly, blockage of copper absorption by targeting the
copper transporter 1 (SLC31A1) or usage of copper chelator
tetrathiomolybdate (TM) inhibited proliferation of cancer cells
and induced a dormancy-like arrest state (200). Under these
conditions, autophagy was activated, and it was responsible for
PDAC cell survival both in vitro and in vivo tests. Indeed, inhibition
of autophagy caused an increase in in vitro cell death and decreased
in vivo tumor burden. These results further provided evidence about
the role of autophagy in the survival of dormant cells.

Dormancy in osteosarcoma following chemotherapy, has
been associated with increased levels of IGF2 (125). Chronic
exposure of osteosarcoma cells to IGF2 or insulin in combination
with serum deprivation, successfully established an in vitro
dormancy and drug-resistance model in osteosarcoma (125).
Under these conditions, autophagy was activated.

Analysis of patient-derived samples provided further
evidence about the importance of autophagy in cancer
dormancy (201). In primary ovarian tumor tissue sections,
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LC3 localization in punctate structures was observed in only 21–
23% of cases. In contrast, LC3 puncta, hence an upregulation of
the autophagic activity was observed in more than 80% of tumor
nodules found on the peritoneal surface of patients at second-
look operations following primary chemotherapy. These results
point out to a significant increase in autophagy in dormant
ovarian cancer cells seeded in the peritoneum compared to
primary tumor samples. These results underline the relevance
and importance of experimental observations about dormancy-
autophagy connection.

Role of Autophagy in Dormancy
Establishment, Dormant Cell Survival,
and Reactivation
Autophagy controls dormant cell survival and behavior in many
ways. In DIRAS3-induced ovarian cancer dormancy model, ARHI
re-expression enabled SKOv3 ovarian cancer cells to remain
dormant when they were grown in mice as xenografts (180).
Reduction of ARHI levels in dormant cells caused xenografts to
grow faster, and inhibition of ARHI-induced autophagy with
chloroquine dramatically blocked regrowth of tumors.

In the D2.0R dormant and D2.A1 metastatic breast cancer cell
models, autophagy was critical for the maintenance of the
dormant phenotype in cancer cells and their survival. In 3D
cultures, dormant D2.0R cells lost viability following treatment
with autophagy inhibitors hydroxychloroquine, bafilomycin or
3-methyladenine, while non-dormant counterparts were not
affected (199). Knockdown of autophagy genes Atg3, Atg7, p62
or FIP200, resulted in the outgrowth of dormant cells in 3D cell
cultures. Moreover, Atg3-deficient D2.0R cells showed an
increased capacity to create pulmonary tumors in mice (148).
Similarly, in the ADR-induced dormancy model of Neu-driven
breast cancer, mice that were i.v. injected with ADR-treated Atg5
knockdown cancer cells developed lung metastasis significantly
sooner than those that were injected with wild-type dormant
cells. As expected, a higher frequency of Ki67 positive, polyploid-
Frontiers in Oncology | www.frontiersin.org 12300
like cells was observed in ADR-treated Atg5 knockdown
mammary tumors (207). In line with these results, autophagy
was downregulated in proliferating metastatic cells, but it was
found to be necessary for a dormant-to-proliferative switch
before the establishment of overt metastatic lesions (199).
Consequently, treatment with autophagy inhibitors after the
development of proliferative lesions (i.e. lesions that moved
beyond the dormant-to-proliferative switch) had lesser impact
on the metastatic burden (199).

These observations indicate that autophagy plays an active
role in the initiation and maintenance of the dormant state, as
well as during the switch from dormancy to a proliferative state.

Role of Autophagy in the Clearance of
Mitochondria and Regulation of
Metabolism in Dormant Cancer Cells
Mitochondria are at the center of cellular energy metabolism
control. A side product of oxidative phosphorylation is reactive
oxygen species (ROS), anddysfunctional ordamagedmitochondria
aremore prone toproduceROS.A life-threateningoutcomeofROS
accumulation at a cellular level is oxidation of building blocks such
as proteins and lipids, aswell as damage toDNA.A selective formof
autophagy, mitophagy is a major mechanism that eliminates
dysfunctional and damaged mitochondria and that ensures
control of the mitochondrial mass in cells.

Cancer cells are able to stay in a dormant state for months or
even years. Hence in dormant cells, in addition to elimination of
unfolded/misfolded proteins and other building blocks,
regulation of the mitochondrial mass and prevention of ROS
accumulation should be of utmost importance for long-term
survival and the preservation of reactivation capacity after
transition to the proliferative state. Additionally, control of
mitochondrial mass and function should be critical for
metabolic reprogramming of dormant cells. Indeed, increased
autophagic activity was associated with mitophagy in several
models of cancer dormancy.
TABLE 3 | Dormancy models with documented autophagic activity.

Dormancy activating
conditions

Cell line Cancer type Status of
autophagy

References

1 Re-expression of DIRAS3/
ARHI

SKOv3 Ovarian cancer Activated (180, 202,
203)

2 Akt1/2 inhibition Ascites-derived primary human cancer cells Ovarian cancer Activated (127, 204)
3 LKB1 Ascites-derived primary human cancer cells Ovarian cancer Activated (205)
4 Farnesyltransferase inhibitors

(FTIs)
MCF7 Breast cancer Activated (113)

5 Hypoxia/Re-oxygenation MDA-MB-231 Breast cancer Activated (206)
6 Adriamycin-(ADR-) treatment Neu-derived mammary cancer cells/mice model (FVBN202 mice) Breast cancer Activated (207)
7 ECM D2.A1, D2.0R Breast cancer Activated (199)
8 Pfkfb3 D2.A1, D2.0R Breast cancer Activated (148)
9 SYK inhibitor, R406 4T1 Breast cancer Activated (208)
10 SLC31A1 orT

etrathiomolybdate (TM)
Panc‐1, MiaPaCa‐2 Pancreas cancer Activated (200)

11 IGF2 or Insulin c-MYC in bone marrow stromal cells derived from Ink4a/Arf
knockout mice cells (AXT)

Osteosarcoma Activated (125)

12 KIT/PDGFRA inhibitor,
imatinib

GIST-T1 Gastrointestinal stromal
tumor (GIST)

Activated (198)
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For instance, mitophagy was activated during DIRAS3-induced
dormancy of ovarian cancer cells. Following DIRAS3 induction by
the Tet-on system in ovarian cancer stable cell lines, TMRM
uptake by mitochondria was decreased, indicating accumulation
of depolarized mitochondria in these cells. Reduced TOM20
mitochondrial protein levels and mitochondrial mass as assessed
through mitotracker staining were reported in dormant cells. As
such, dormancy state was associated with a higher rate of
mitochondrial depolarization, and mitophagy was increased as a
mechanism to eliminate depolarized mitochondria and to limit
ROS accumulation (213).

In the D2.0R breast cancer model of dormancy, autophagy
protein LC3 was found to colocalize with mitochondria in cells
growing in a matrix supporting dormancy. During mitophagy,
PINK-assisted ubiquitylation of mitochondrial proteins by E3
ligases such as PARKIN prime mitochondria for mitophagic
degradation. Indeed, accumulation of mitophagy-associated full
length PINK and degradation of mitochondrial protein TOM20
was reported under these experimental conditions. Additionally,
autophagy inhibition using HQ caused an accumulation of
damaged mitochondria as well as ROS. Following suppression of
the autophagic activity, dormant cells suffered fromDNA damage,
caspase-3 activation was prominent, and cells eventually died.
Mitochondrial ROS scavengers prevented cell death, indicating
that an important function of autophagy in dormant cells is the
maintenance of healthy mitochondrial mass, hence limitation of
ROS-induced damage (199). Similarly, in the TM-treated PDAC
cell model of dormancy, inhibition of autophagy by CQ increased
ROS accumulation and resulted in cell death, further showing that
ROS limiting activity of autophagy is central to dormant cancer
cell survival in different cancer models (200).

Autophagic and mitophagy activation during dormancy was
associated with metabolic changes in cells. In the ovarian cancer
dormancy model, induction of DIRAS3 resulted in a higher
glycolytic rate and mitochondrial respiration rate was decreased
(213). Indeed, ATP levels of were found to be attenuated in
different models of dormancy (200, 205, 213). Moreover, in
dormant cells, an increase in glucose and glutamate uptake was
accompanied by extracellular lactate accumulation (213). Under
these conditions, increased glucose uptake was coupled to an
upregulation of glycolysis and glutaminolysis, and all these
changes were autophagy dependent. In this context, blockage
of these metabolic pathways resulted in decreased cell viability
(213). In autophagic tumors in vivo, free valine, glycine, and
alanine concentrations were increased at statistically significant
levels, indicating that bulk degradation of proteins by autophagy
was also accelerated and it further supported metabolic activities
of dormant cancer cells (213).

Molecular Mechanisms of Autophagy
in Dormant Cells
To date, molecular mechanisms governing autophagy activation
during dormancy and autophagy signaling pathways that are
involved are largely unknown. Yet, studies on autophagy-
dormancy connection provided hints about the involvement of
certain autophagy-related proteins and pathways in the process.
Frontiers in Oncology | www.frontiersin.org 13301
Among the upstream signaling pathways regulating
autophagy, inhibition of the PI3K/AKT pathway emerges as a
common observation. In many reports, mTOR pathway that is
downstream to AKT was shown to be inhibited in dormant cells.
As mentioned above, mTOR is a central regulator of autophagy,
and its inhibition correlates with autophagy activation in various
systems (214–217).

In ovarian cancer dormancy model, DIRAS3 expression
resulted in the inhibition of signaling through PI3K/AKT and
Ras/MAP through enhancing internalization and degradation of
the epidermal growth factor receptor. As a result, mTOR signaling
downstream to the AKT pathway was also inhibited (180, 201).
Indeed, downregulation the pathway by DIRAS3 resulted in a
decrease in the activation of mTOR downstream pathway
proteins, such as p70S6K and pS6, proteins that are involved in
the regulation of cell size and protein synthesis (180). Autophagic
activity was strongly stimulated under these conditions.

In line with the DIRAS3 model, ascites-derived ovarian
cancer spheroids were in a dormant state that was associated
with AKT downregulation and autophagy activation (127, 205).
In fact, inhibition of the AKT pathway in ovarian cancer cells
using specific inhibitors of the AKT kinase, namely Akti-1/2, was
sufficient to direct the entry of cells to a dormant-like state (127).
Downregulation of AKT and mTOR pathway was also observed
in the osteosarcoma dormancy model (125) and breast cancer
cells entering dormancy following exposure to long-term
hypoxia/reoxygenation cycles (206). Similarly, mTOR and its
downstream pathways were reported to be inhibited in the
imatinib-induced GIST cell dormancy model (198).

Another key protein regulating autophagy activation is the
energy sensor kinase AMPK. Increased AMP/ATP ratio
correlates with problems in energy status of cells, and leads to
the activation of AMPK (218). Hypoxia is another signal that can
activate AMPK (219). Following activation, AMPK was shown to
phosphorylate TSC2 and interfere with the activity of the GTPase
RHEB, an activator of mTORC1 signaling; the net result is
autophagy activation (220, 221). Another mechanism through
which the kinase contributes to autophagy activation direct
phosphorylation of the autophagy protein ULK1 (23, 24).

In dormant cells, intracellular ATP levels are decreased (74,
205, 213). Consequently, AMPK activation was reported in
different experimental models of dormancy. For instance, in
ovarian tumor cells, LKB1 and AMPK expression and activity
were increased during spheroid formation and dormancy (205).
The study showed that LKB1 (and possibly AMPK) was required
for the survival of ovarian cancer cells in a dormant state.
Moreover, AMPK activation in proliferating ovarian cancer
cells caused them to enter cell cycle arrest (205). Similarly, an
increase in AMPK activity was observed during DIRAS-3-
induced dormancy of ovarian cancer cells (180) and chronic
hypoxia-induced dormancy of breast cancer cells (206).

Transcriptional upregulation of autophagy-related genes was
observed in dormancy models. Independent groups reported the
upregulation of key autophagy genes, including LC3, ATG4,
ATG5, ATG7 and BECN1, in dormant cells (148, 199). A
mechanistic explanation on the transcriptional regulation of
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autophagy gene expression in the dormant state came from
studies using ovarian cancer cells. During DIRAS3-induced
dormancy, mTOR inhibition promoted translocation of
transcription factors FOXO3a and TFEB to the nucleus (222).
The end result was a FOXO3a-dependent upregulation of
autophagy proteins ATG4 and LC3 and Rab7, a mediator of
autophagosome-autolysosome fusion (222). Similar to FOXO3a,
TFEB translocation to the nucleus activated transcription of
various autophagy-related genes (223, 224).

Interestingly DIRAS3 itself was subject to transcriptional
regulation downstream to the mTOR pathway (225). Under
conditions of nutrient deprivation, mTOR inhibition resulted in
the dissociation of E2F1 and E2F4 from the DIRAS3 promoter,
leading to the proteasomal degradation of these transcription
factors. Dissociation of E2F1 and E2F4 from DIRAS3 promoter
allowed transcriptional upregulation of the gene and activated
autophagy. On the other hand, another transcription factor,
CEBPa, positively regulated DIRAS3 expression and autophagy.
Hence, transcriptional loops involvingDIRAS3might contribute to
further activate and sustain autophagy during nutrient deprivation
and possibly during dormancy (225).

DIRAS3 was directly participating to autophagy regulating
protein complexes. In fact, DIRAS3 was shown to stabilize the
autophagy initiation complex consisting of VPS34 (PIK3C3),
BECN1 and ATG14 (201). DIRAS3 binding to BECN1
destabilized BECN1-BCL2 inhibitory complexes, displaced BCL2
and allowed recruitment of BECN1 protein by autophagy-related
VPS34 lipid kinase complex. Binding of DIRAS3 to BECN1
facilitated association of BECN1 with VPS34 and ATG14.
DIRAS3 was also shown to directly bind VPS34. Altogether,
DIRAS3 enhanced VPS34 lipid kinase activity that is required
for autophagosome formation and autophagy activation (201).
Moreover, DIRAS3-mediated stabilization of the initiation
complex and subsequent autophagy activation was necessary for
dormant cell survival after chemotherapy (201).

On the other hand in mice, knockdown of Atg7 but not Becn1
decreased numbers of tumors formed by dormancy-prone cells in
a TGFb-induced inflammatory background, indicating that
requirement for Becn1 gene in dormancy-related autophagy and
tumor cell survival might be tumor and cell type-dependent (199).

Role of Autophagic Degradation
in Dormancy
Data that was presented above show that autophagic activity is
prominently higher in dormant cancer cells compared to their
actively proliferating counterparts. Several studies provided clues
about the nature of autophagy in this setting. In addition to an
increase in autophagosome numbers, autolysosome formation and
autolysosomal degradation was reported to be upregulated during
dormancy. Autolysosomal degradation of the selective autophagy
receptor p62/SQSTM1aswell as the LC3protein itself was reported
inmany studies (148, 199). Inhibition of the autolysosomal activity
by chemicals, such as chloroquine and its derivatives, changed the
behavior of dormant cells, influenced cell survival, dormant cell
reactivation and metastatic capacity. As explained above,
mitochondria are among the targets of selective autophagic
degradation during dormancy. Therefore, metabolic outcomes of
Frontiers in Oncology | www.frontiersin.org 14302
autophagic activity in dormant cells might be attributed to
mitophagy and non-selective autophagic degradation of cellular
components, including long-lived proteins. So far, the role of
selective autophagy in cancer dormancy is not well studied, and
there are only a few reported examples.

A dormancy-related direct target of autophagy was identified
using the D2.0R model of breast cancer dormancy. In this study,
Pfkfb3 (6-phosphofructo-2-kinase/fructose 2,6-biphosphatase 3)
was identified as a gene that was highly expressed in metastatic
cells but downregulated in dormant cancer cells (148). Pfkfb3 is a
key regulator of glycolysis rate in cells, and its expressionwas shown
to promote metastatic tumor growth. An inverse correlation
between dormancy-related autophagic activity and Pfkfb3 levels
was observed. So, the role of autophagy in the degradation of Pfkfb3
proteinwas studied in dormant cancer cells. Indeed, Pfkfb3 protein
accumulatedwhen autophagic degradationwas inhibited using CQ
or autophagy gene knockdown. The protein was polyubiquitylated,
and in this state, it directly interacted with the ubiquitin-associated
domain (UBA) of the p62 protein. Strikingly, Pfkfb3
downregulation in metastatic D2.A1 breast cancer cells prevented
their growth and delayed establishment of metastatic lesions.
Conversely, autophagy inhibition and Pfkfb3 upregulation
correlated with reactivation of dormant of D2.0R cells. The study
showed that, although proteasomal degradation also contributes to
the determination of protein’s half-life, selective degradation by
autophagy is important in the control of Pfkfb3 protein levels in
dormant cells. Hence, the study provides an example where tumor
dormancyandrecurrence relyonautophagic clearanceofmetabolic
regulators (148).

Another autophagy targetwas identifiedamong factors regulating
EMT-MET (epithelial-mesenchymal and mesenchymal- epithelial
transitions) duringmetastasis. SYK is a non-receptor tyrosine kinase
mediating signaling events downstream to several transmembrane
receptors, including the B-cell receptor (BCR). Decreased expression
of SYK mRNA correlated with decreased survival in breast cancer
patients (226). P-bodies are cytoplasmic foci containing mRNA,
miRNA and mRNA-binding proteins, and they are involved in the
regulation ofmRNAhalf-life and translation control. During TGFb-
induced EMT, accumulation of P-bodies was observed. SYK
concentrated in P-bodies, and SYK activity and autophagy was
necessary for controlled clearance of P-bodies during MET and
metastasis (208, 227). Hence in this system, SYK promoted
removal of P-bodies through autophagy and supported activation
dormant cancer cells, allowing initiation of cancer metastatic
outgrowth (208).

There are possibly other direct or indirect targets of
autophagy that are involved in dormancy maintenance and a
dormant-to-proliferative switch. Further studies will reveal the
identity of these key factors that are degraded by dormancy-
associated autophagic activity.

Treatment Responses, Dormancy,
and Autophagy
Current cancer treatment approaches are usually unable to result
in the total elimination of disseminated cancer cells and
micrometastases. They even seem to create a selective pressure
on cancer cells promoting their escape from cell death by
March 2021 | Volume 11 | Article 627023
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entering to a dormant state. Since dormant cells are not actively
proliferating, they are in general resistant to chemotherapy and
radiotherapy approaches that mainly result in DNA damage and
block cell division. A body of literature provide evidence about
the role of autophagy in the treatment resistance of growing
primary tumors and overt metastases (228–231). Since
autophagic activity is increased in dormant cells, autophagy
might be a contributing factor in the observed robustness of
dormant cells when faced with anticancer insults.

A number of studies tested the contribution of autophagy to
treatment resistance that is observed in dormant cells. First
observation is some drugs that were utilized in order to create
models of dormancy, they themselves induced autophagy
upregulation in cells. For example, treatment of cancer cells with
imatinib (198), farnesyltransferase inhibitors (212), AKT inhibitor
(204), and adriamycin (207), resulted in the upregulation of
autophagic activity. Usage of antimalarial lysomorphic inhibitors of
autolysosomal activity, such asChloroquine,Hydroxychloroquine or
quinacrine, as a combination treatment along with chemotherapy
agents blocked autophagy under these conditions and generally
resulted in the death of dormant cells and even elimination of
tumors (125, 180, 202, 207). Combination of chemotherapy with
genetic approaches gave similar results as well (125, 202, 207). So,
capacity to activate sustained autophagy in response to cancer
therapies might be one of the critical factors favoring the selection
of dormant cells. This “autophagy addiction”might be exploited for
the elimination of disseminated dormant cells in patients. On the
otherhand, considering indicationsabout the roleof autophagy in the
dormant-to-proliferative switch, inhibition of autophagy might
promote reactivation of dormant cancer cells, leading them to
reenter an active proliferative state that renders them again
susceptible to antiproliferative cancer treatments. On the other
hand, crizotinib, an ALK inhibitor was shown to further activate
autophagy and trigger apoptosis of dormant ovarian cancer cells
(232). Eitherway, all these studies underline the therapeutic potential
of autophagy manipulation in the context of dormancy.
CONCLUSION

Drug resistance and cancer dormancy are the two important causes
of incurable metastatic disease that results in the loss of millions of
lives from cancer-related deaths every year. Autophagy emerges as
an integral part of the dormancy phenomenon. Autophagy
activation was observed in dormant cells originating from
different types of cancers, in cancer cellular models and animal
models, as well as in patient-derived cells and tissues.

Autophagic activity was shown to confer survival advantage,
treatment resistance and resilience to dormant cells. An
important contribution of autophagy to dormant cell survival
was related to the limitation of ROS accumulation. Autophagy is
an important mechanism for the elimination of depolarized
mitochondria, damaged peroxisomes and other organelles, as
well as cytosolic long-lived proteins that are prone to aggregate
and accumulate in the cytosol when exposed to excessive
oxidative damage. Protection and preservation of the genetic
Frontiers in Oncology | www.frontiersin.org 15303
material from ROS damage during long-lasting non-proliferative
periods that may last for months or years, such as those observed
during dormancy, is also an important challenge. For cells to
preserve the reactivation capacity, dormant cells should be able
to limit the number and extent of mutations they accumulate
during periods of cell cycle arrest. Potency and efficacy of DNA
repair pathways in dormant cells is not clear and further studies
are required (233–235). At this point, studies in normal stem cell
quiescence might give indications about the faith of DNA in cells
that reside in long-term dormant periods. These studies
indicated that in quiescent cells, DNA damage burden may
even be higher in older cells than younger ones, and that
repair process only begins following entry to cell cycle (236).
Hence, these data underline the fact that, limitation of ROS
accumulation by the autophagic activity contributes significantly
to the survival of dormant cells.

Autophagy seems to play a critical role in the maintenance of
dormant phenotype. Autophagy-deficient cells were not able to
enter or stay in a dormant state compared to controls.
Mechanisms through which autophagy controls the dormant
phenotype are not clear. So far, only a few dormancy-related
targets of autophagy were described. Pfkfb3 protein was
identified as a target of selective autophagy in dormant cells. In
fact, in addition to being a regulator of glycolysis, Pfkfb3 was
shown to translocate to nuclei and its product fructose 2,6-
biphosphate was shown to inhibit cell cycle inhibitor p27Kip and
activate cyclin D3, resulting in progression from the G1 phase to
the S phase (237). Moreover, Pfkfb3 was also involved in the
upregulation of CDK1 and Cdc25 expression promoting entry to
mitosis (237). Therefore, selective targeting of key proteins
involved in cell cycle by autophagy, such as Pfkfb3, may be an
important function of autophagy in the entry to and
maintenance of the dormant phenotype.

P-bodies were also reported as selective targets of autophagy
in a dormancy context. Whether autophagic degradation control
a general downregulation of P-bodies or whether it is selectively
and deliberately targeting a cell cycle- and dormancy-relevant
subset of mRNAs, miRNAs and/or proteins is not clear.

Characterization of a full list of selective autophagy targets
during dormancy will allow a better understanding of the role
and contribution of autophagic degradation to the
dormant phenotype.

Mechanistic aspects of autophagy signaling during dormancy
are being better understood. In fact, AKT and related growth
factor pathways seem to emerge as an important regulators of
autophagy activation in dormant cells. Downstream to AKT,
mTOR pathway components are inhibited, resulting in the
activation of autophagy proteins, including ULK1. A decline in
ATP levels in dormant cells may activate the energy sensor
systems LKB1 and AMPK and further inhibit the mTOR
pathway through TSC2 phosphorylation and activate
autophagy by phosphorylating ULK1. Deficiency of nutrients,
such as amino acids, possibly contribute to inhibition of mTOR
on the lysosomes (238). mTOR inhibition allows activation of
factors FoxO3a and TFEB, that transcriptionally upregulate
autophagy-related genes.
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Although most components of the canonical autophagy
pathways were reported to be involved in dormancy-related
autophagy, some studies questioned the contribution of key
proteins, such as BECN1. Others placed BECN1 containing
complexes at the center of autophagy regulation in dormant
cells. ATG5 and ATG7 were reported to be important as well.
p62/SQSTM1 was degraded in several independent models of
dormancy, indicating that it may be an important mediator of
selective autophagy under these conditions. Whether other
autophagy receptors contribute to the autophagy pathway in
dormant cells need further investigation.

Inhibition of autophagy by drugs or genetic methods was
reported to impede dormancy, affect cell survival, or lead cells to
enter into a proliferative phase, in which cancer cells are more
susceptible to be eliminated by common cancer therapeutic
strategies. Hence, approaches involving promotion of dormancy
or reactivation of dormant cells should both necessitate study and
manipulation of autophagy. A detailed understanding of
mechanisms, regulatory pathways and specific targets of
Frontiers in Oncology | www.frontiersin.org 16304
autophagy in the context of dormancy will certainly contribute
to a better management of metastatic and recurrent disease, and
maybe allow one day total elimination of disseminated cells and
micrometastases in all cancer patients.
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Jiménez S, et al. TIE2 induces breast cancer cell dormancy and inhibits the
development of osteolytic bone metastases. Cancers (Basel) (2020) 12.
doi: 10.3390/cancers12040868
March 2021 | Volume 11 | Article 627023

https://doi.org/10.1158/0008-5472.CAN-07-6849
https://doi.org/10.1172/JCI70259
https://doi.org/10.1038/s41416-018-0284-6
https://doi.org/10.1038/s41416-018-0284-6
https://doi.org/10.3389/fendo.2018.00241
https://doi.org/10.1038/s41467-019-12108-6
https://doi.org/10.1002/ijc.25655
https://doi.org/10.1002/ijc.25655
https://doi.org/10.1158/0008-5472.CAN-16-0608
https://doi.org/10.1186/s13046-019-1505-4
https://doi.org/10.1593/tlo.12268
https://doi.org/10.1007/s00109-018-1724-8
https://doi.org/10.1038/s41388-020-1302-8
https://doi.org/10.1038/s41388-020-1302-8
https://doi.org/10.1371/journal.pone.0030059
https://doi.org/10.1002/hed.25689
https://doi.org/10.18632/oncotarget.11885
https://doi.org/10.18632/oncotarget.11885
https://doi.org/10.18632/oncotarget.8172
https://doi.org/10.18632/oncotarget.8172
https://doi.org/10.1158/0008-5472.CAN-17-3719
https://doi.org/10.1158/0008-5472.CAN-17-3719
https://doi.org/10.1016/j.canlet.2020.01.016
https://doi.org/10.1158/0008-5472.CAN-14-0914
https://doi.org/10.1158/1541-7786.MCR-16-0323-T
https://doi.org/10.1093/carcin/bgr241
https://doi.org/10.1016/j.ajpath.2011.09.024
https://doi.org/10.1038/s41598-020-65804-5
https://doi.org/10.1371/journal.pone.0098858
https://doi.org/10.15252/embr.202050162
https://doi.org/10.15252/embr.202050162
https://doi.org/10.1371/journal.pone.0130565
https://doi.org/10.1158/0008-5472.CAN-08-2791
https://doi.org/10.1182/blood-2004-09-3458
https://doi.org/10.1371/journal.pone.0064181
https://doi.org/10.1155/2013/404962
https://doi.org/10.1016/j.yexcr.2018.04.024
https://doi.org/10.1016/j.yexcr.2018.04.024
https://doi.org/10.1038/ncb2767
https://doi.org/10.1038/s41556-017-0021-z
https://doi.org/10.1093/jnci/djs319
https://doi.org/10.1158/0008-5472.CAN-03-3992
https://doi.org/10.1038/s41416-019-0501-y
https://doi.org/10.3390/cancers12040868
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Akkoc et al. Autophagy and Cancer Dormancy
144. Nobutani K, Shimono Y, Mizutani K, Ueda Y, Suzuki T, Kitayama M, et al.
Downregulation of CXCR4 in metastasized breast cancer cells and
implication in their dormancy. PloS One (2015) 10. doi: 10.1371/journal.
pone.0130032

145. Eyob H, Ekiz HA, DeRose YS, Waltz SE, Williams MA, Welm AL. Inhibition
of Ron kinase blocks conversion of micrometastases to overt metastases by
boosting antitumor immunity. Cancer Discovery (2013) 3:751–60.
doi: 10.1158/2159-8290.CD-12-0480

146. Shimizu H, Takeishi S, Nakatsumi H, Nakayama KI. Prevention of cancer
dormancy by Fbxw7 ablation eradicates disseminated tumor cells. JCI Insight
(2019) 4. doi: 10.1172/jci.insight.125138

147. Straume O, Shimamura T, Lampa MJG, Carretero J, AM Ø, Jia D, et al.
Suppression of heat shock protein 27 induces long-term dormancy in human
breast cancer. Proc Natl Acad Sci USA (2012) 109:8699–704. doi: 10.1073/
pnas.1017909109

148. La Belle Flynn A, Calhoun BC, Sharma A, Chang JC, Almasan A, Schiemann
WP. Autophagy inhibition elicits emergence from metastatic dormancy by
inducing and stabilizing Pfkfb3 expression. Nat Commun (2019) 10.
doi: 10.1038/s41467-019-11640-9

149. Holdman XB, Welte T, Rajapakshe K, Pond A, Coarfa C, Mo Q, et al.
Upregulation of EGFR signaling is correlated with tumor stroma remodeling
and tumor recurrence in FGFR1-driven breast cancer. Breast Cancer Res
(2015) 17:1–17. doi: 10.1186/s13058-015-0649-1

150. Abravanel DL, Belka GK, Pan TC, Pant DK, Collins MA, Sterner CJ, et al.
Notch promotes recurrence of dormant tumor cells following HER2/neu-
targeted therapy. J Clin Invest (2015) 125:2484–96. doi: 10.1172/JCI74883

151. Vallabhaneni KC, Penfornis P, Xing F, Hassler Y, Adams KV, Mo YY, et al.
Stromal cell extracellular Vesicular cargo mediated regulation of Breast
Cancer cell Metastasis Via Ubiquitin conjugating Enzyme E2 N pathway.
Oncotarget (2017) 8:109861–76. doi: 10.18632/oncotarget.22371

152. Bartosh TJ, Ullah M, Zeitouni S, Beaver J, Prockop DJ. Cancer cells enter
dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs). Proc
Natl Acad Sci USA (2016) 113:E6447–56. doi: 10.1073/pnas.1612290113

153. Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, et al. VCAM-1 Promotes
Osteolytic Expansion of Indolent Bone Micrometastasis of Breast Cancer by
Engaging a4b1-Positive Osteoclast Progenitors. Cancer Cell (2011) 20:701–
14. doi: 10.1016/j.ccr.2011.11.002

154. Han HH, Kim BG, Lee JH, Kang S, Kim JE, Cho NH. Angiopoietin-2
promotes ER+ breast cancer cell survival in bone marrow niche. Endocr Relat
Cancer (2016) 23:609–23. doi: 10.1530/ERC-16-0086

155. Lan Q, Peyvandi S, Duffey N, Huang YT, Barras D, Held W, et al. Type I
interferon/IRF7 axis instigates chemotherapy-induced immunological
dormancy in breast cancer. Oncogene (2019) 38:2814–29. doi: 10.1038/
s41388-018-0624-2

156. Almog N, Ma L, Raychowdhury R, Schwager C, Erber R, Short S, et al.
Transcriptional switch of dormant tumors to fast-growing angiogenic
phenotype. Cancer Res (2009) 69:836–44. doi: 10.1158/0008-5472.CAN-08-2590

157. Li Y, Hu H, Wang Y, Fan Y, Yang Y, Guo B, et al. CUL4B contributes to
cancer stemness by repressing tumor suppressor miR34a in colorectal
cancer. Oncogenesis (2020) 9. doi: 10.1038/s41389-020-0206-3

158. Tiram G, Ferber S, Ofek P, Eldar-Boock A, Ben-Shushan D, Yeini E, et al.
Reverting the molecular fingerprint of tumor dormancy as a therapeutic
strategy for glioblastoma. FASEB J (2018) 32:5835–50. doi: 10.1096/
fj.201701568R

159. Magnus N, Garnier D, Meehan B, McGraw S, Lee TH, Caron M, et al. Tissue
factor expression provokes escape from tumor dormancy and leads to
genomic alterations. Proc Natl Acad Sci USA (2014) 111:3544–9.
doi: 10.1073/pnas.1314118111

160. Almog N, Briggs C, Beheshti A, Ma L, Wilkie KP, Rietman E, et al.
Transcriptional changes induced by the tumor dormancy-associated
microRNA-190. Transcription (2013) 4:177–91. doi: 10.4161/trns.25558

161. Jiang J, Zheng M, Zhang M, Yang X, Li L, Wang SS, et al. PRRX1 Regulates
Cellular Phenotype Plasticity and Dormancy of Head and Neck Squamous
Cell Carcinoma Through miR-642b-3p. Neoplasia (United States) (2019)
21:216–29. doi: 10.1016/j.neo.2018.12.001

162. Aguirre Ghiso JA, Kovalski K, Ossowski L. Tumor dormancy induced by
downregulation of urokinase receptor in human carcinoma involves integrin
and MAPK signaling. J Cell Biol (1999) 147:89–103. doi: 10.1083/jcb.147.1.89
Frontiers in Oncology | www.frontiersin.org 20308
163. Schewe DM, Aguirre-Ghiso JA. ATF6a-Rheb-mTOR signaling promotes
survival of dormant tumor cells in vivo. Proc Natl Acad Sci USA (2008)
105:10519–24. doi: 10.1073/pnas.0800939105

164. Yang LY, He CY, Chen XH, Su LP, Liu BY, Zhang H. Aurora kinase A revives
dormant laryngeal squamous cell carcinoma cells via FAK/PI3K/Akt
pathway activation. Oncotarget (2016) 7:48346–59. doi: 10.18632/
oncotarget.10233

165. Shachaf CM, Kopelman AM, Arvanitis C, Karlsson Å, Beer S, Mandl S, et al.
MYC inactivation uncovers pluripotent differentiation and tumour
dormancy in hepatocellular cancer. Nature (2004) 431:1112–7.
doi: 10.1038/nature03043

166. Kurppa KJ, Liu Y, To C, Zhang T, Fan M, Vajdi A, et al. Treatment-Induced
Tumor Dormancy through YAP-Mediated Transcriptional Reprogramming
of the Apoptotic Pathway. Cancer Cell (2020) 37:104–22.e12. doi: 10.1016/
j.ccell.2019.12.006

167. Liang X, Gu J, Li TJ, Zhao L, Fu X, Zhang W, et al. PAX5 haploinsufficiency
induce cancer cell dormancy in Raji cells. Exp Cell Res (2018) 367:30–6.
doi: 10.1016/j.yexcr.2018.02.010

168. Nash KT, Phadke PA, Navenot JM, Hurst DR, Accavitti-Loper MA, Sztul E,
et al. Requirement of KISS1 secretion for multiple organ metastasis
suppression and maintenance of tumor dormancy. J Natl Cancer Inst
(2007) 99:309–21. doi: 10.1093/jnci/djk053

169. Jia Q, Yang F, Huang W, Zhang Y, Bao B, Li K, et al. Low levels of sox2 are
required for melanoma tumor-repopulating cell dormancy. Theranostics
(2019) 9:424–35. doi: 10.7150/thno.29698

170. Liu Y, Liang X, Yin X, Lv J, Tang K, Ma J, et al. Blockade of IDO-kynurenine-
AhR metabolic circuitry abrogates IFN-g-induced immunologic dormancy
of tumor-repopulating cells. Nat Commun (2017) 8. doi: 10.1038/
ncomms15207

171. Ambs S, Dennis S, Fairman J, Wright M, Papkoff J. Inhibition of tumor
growth correlates with the expression level of a human angiostatin transgene
in transfected B16f10 melanoma cells. Cancer Res (1999) 59:5773–7.

172. Malafa MP, Fokum FD, Smith LK, Louis A. Inhibition of angiogenesis and
promotion of melanoma dormancy by vitamin E succinate. Ann Surg Oncol
(2002) 9:1023–32. doi: 10.1245/ASO.2002.03.580

173. Touil Y, Segard P, Ostyn P, Begard S, Aspord C, El MacHhour R, et al.
Melanoma dormancy in a mouse model is linked to GILZ/FOXO3A-
dependent quiescence of disseminated stem-like cells. Sci Rep (2016) 6.
doi: 10.1038/srep30405

174. Panigrahy D, Edin ML, Lee CR, Huang S, Bielenberg DR, Butterfield CE,
et al. Epoxyeicosanoids stimulate multiorgan metastasis and tumor
dormancy escape in mice. J Clin Invest (2012) 122:178–91. doi: 10.1172/
JCI58128

175. Dossi R, Frapolli R, Di Giandomenico S, Paracchini L, Bozzi F, Brich S, et al.
Antiangiogenic activity of trabectedin in myxoid liposarcoma: Involvement
of host TIMP-1 and TIMP-2 and tumor thrombospondin-1. Int J Cancer
(2015) 136:721–9. doi: 10.1002/ijc.29023

176. Chen H, Ko JMY, Wong VCL, Hyytiainen M, Keski-Oja J, Chua D, et al.
LTBP-2 confers pleiotropic suppression and promotes dormancy in a growth
factor permissive microenvironment in nasopharyngeal carcinoma. Cancer
Lett (2012) 325:89–98. doi: 10.1016/j.canlet.2012.06.005

177. Tiram G, Segal E, Krivitsky A, Shreberk-Hassidim R, Ferber S, Ofek P, et al.
Identification of Dormancy-Associated MicroRNAs for the Design of
Osteosarcoma-Targeted Dendritic Polyglycerol Nanopolyplexes. ACS Nano
(2016) 10:2028–45. doi: 10.1021/acsnano.5b06189

178. Lyu T, Jia N, Wang J, Yan X, Yu Y, Lu Z, et al. Expression and epigenetic
regulation of angiogenesis-related factors during dormancy and recurrent
growth of ovarian carcinoma. Epigenetics (2013) 8:1330–46. doi: 10.4161/
epi.26675

179. MaoW, Peters HL, Sutton MN, Orozco AF, Pang L, Yang H, et al. The role of
vascular endothelial growth factor, interleukin 8, and insulinlike growth
factor in sustaining autophagic DIRAS3-induced dormant ovarian cancer
xenografts. Cancer (2019) 125:1267–80. doi: 10.1002/cncr.31935

180. Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, et al. The tumor suppressor
gene ARHI regulates autophagy and tumor dormancy in human ovarian
cancer cells. J Clin Invest (2008) 118:3917–29. doi: 10.1172/JCI35512

181. Luo XL, Deng CC, Su XD, Wang F, Chen Z, Wu XP, et al. Loss of MED12
induces tumor dormancy in human epithelial ovarian cancer via
March 2021 | Volume 11 | Article 627023

https://doi.org/10.1371/journal.pone.0130032
https://doi.org/10.1371/journal.pone.0130032
https://doi.org/10.1158/2159-8290.CD-12-0480
https://doi.org/10.1172/jci.insight.125138
https://doi.org/10.1073/pnas.1017909109
https://doi.org/10.1073/pnas.1017909109
https://doi.org/10.1038/s41467-019-11640-9
https://doi.org/10.1186/s13058-015-0649-1
https://doi.org/10.1172/JCI74883
https://doi.org/10.18632/oncotarget.22371
https://doi.org/10.1073/pnas.1612290113
https://doi.org/10.1016/j.ccr.2011.11.002
https://doi.org/10.1530/ERC-16-0086
https://doi.org/10.1038/s41388-018-0624-2
https://doi.org/10.1038/s41388-018-0624-2
https://doi.org/10.1158/0008-5472.CAN-08-2590
https://doi.org/10.1038/s41389-020-0206-3
https://doi.org/10.1096/fj.201701568R
https://doi.org/10.1096/fj.201701568R
https://doi.org/10.1073/pnas.1314118111
https://doi.org/10.4161/trns.25558
https://doi.org/10.1016/j.neo.2018.12.001
https://doi.org/10.1083/jcb.147.1.89
https://doi.org/10.1073/pnas.0800939105
https://doi.org/10.18632/oncotarget.10233
https://doi.org/10.18632/oncotarget.10233
https://doi.org/10.1038/nature03043
https://doi.org/10.1016/j.ccell.2019.12.006
https://doi.org/10.1016/j.ccell.2019.12.006
https://doi.org/10.1016/j.yexcr.2018.02.010
https://doi.org/10.1093/jnci/djk053
https://doi.org/10.7150/thno.29698
https://doi.org/10.1038/ncomms15207
https://doi.org/10.1038/ncomms15207
https://doi.org/10.1245/ASO.2002.03.580
https://doi.org/10.1038/srep30405
https://doi.org/10.1172/JCI58128
https://doi.org/10.1172/JCI58128
https://doi.org/10.1002/ijc.29023
https://doi.org/10.1016/j.canlet.2012.06.005
https://doi.org/10.1021/acsnano.5b06189
https://doi.org/10.4161/epi.26675
https://doi.org/10.4161/epi.26675
https://doi.org/10.1002/cncr.31935
https://doi.org/10.1172/JCI35512
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Akkoc et al. Autophagy and Cancer Dormancy
downregulation of EGFR. Cancer Res (2018) 78:3532–43. doi: 10.1158/0008-
5472.CAN-18-0134

182. Lee HH, Bellat V, Law B. Chemotherapy induces adaptive drug resistance and
metastatic potentials via phenotypic CXCR4-expressing cell state transition in
ovarian cancer. PloS One (2017) 12. doi: 10.1371/journal.pone.0171044

183. Rajbhandari N, Lin Wc, Wehde BL, Triplett AA, Wagner KU. Autocrine IGF1
Signaling Mediates Pancreatic Tumor Cell Dormancy in the Absence of
Oncogenic Drivers. Cell Rep (2017) 18:2243–55. doi: 10.1016/j.celrep.2017.02.013

184. Lenk L, Pein M, Will O, Gomez B, Viol F, Hauser C, et al. The hepatic
microenvironment essentially determines tumor cell dormancy and metastatic
outgrowth of pancreatic ductal adenocarcinoma. Oncoimmunology (2018)
7:1–14. doi: 10.1080/2162402X.2017.1368603

185. Tang Y, Wang MT, Chen Y, Yang D, Che M, Honn KV, et al.
Downregulation of vascular endothelial growth factor and induction of
tumor dormancy by 15-lipoxygenase-2 in prostate cancer. Int J Cancer
(2009) 124:1545–51. doi: 10.1002/ijc.24118

186. Cackowski F, Eber MR, Rhee J, Decker A, Yumoto K, Berry JE, et al. Mer
Tyrosine Kinase Regulates Disseminated Prostate Cancer Cellular Dormancy
Graphical Abstract HHS Public Access. J Cell Biochem (2017) 118:891–902.
doi: 10.1002/jcb.25768

187. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y,
et al. The selective autophagy substrate p62 activates the stress responsive
transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol (2010)
12:213–23. doi: 10.1038/ncb2021

188. Axelrod HD, Valkenburg KC, Amend SR, Hicks JL, Parsana P, Torga G, et al.
AXL is a putative tumor suppressor and dormancy regulator in prostate cancer.
Mol Cancer Res (2019) 17:356–69. doi: 10.1158/1541-7786.MCR-18-0718

189. Kim JK, Jung Y, Wang J, Joseph J, Mishra A, Hill EE, et al. TBK1 regulates
prostate cancer dormancy through mTOR inhibition. Neoplasia (United
States) (2013) 15:1064–74. doi: 10.1593/neo.13402

190. O’Reilly MS, Holmgren L, Chen C, Folkman J. Angiostatin induces and
sustains dormancy of human primary tumors in mice. Nat Med (1996)
2:689–92. doi: 10.1038/nm0696-689

191. Phan TG, Croucher PI. The dormant cancer cell life cycle. Nat Rev Cancer
(2020) 20:398–411. doi: 10.1038/s41568-020-0263-0

192. Aguirre-Ghiso JA, Sosa MS. Emerging Topics on Disseminated Cancer Cell
Dormancy and the Paradigm of Metastasis. Annu Rev Cancer Biol (2018)
2:377–93. doi: 10.1146/annurev-cancerbio-030617-050446

193. Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-
Akha E, et al. The autophagy protein Atg7 is essential for hematopoietic stem
cell maintenance. J Exp Med (2011) 208:455–67. doi: 10.1084/jem.20101145

194. Lazova R, Camp RL, Klump V, Siddiqui SF, Amaravadi RK, Pawelek JM.
Punctate LC3B expression is a common feature of solid tumors and
associated with proliferation, metastasis, and poor outcome. Clin Cancer
Res (2012) 18:370–9. doi: 10.1158/1078-0432.CCR-11-1282

195. Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM, Chu GC,
et al. Autophagy is critical for pancreatic tumor growth and progression in
tumors with p53 alterations. Cancer Discovery (2014) 10:1683–4.
doi: 10.1158/2159-8290.CD-14-0362

196. Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quondamatteo F, Gherardini
PF, et al. AMBRA1 links autophagy to cell proliferation and tumorigenesis by
promoting c-Myc dephosphorylation and degradation. Nat Cell Biol (2015)
17:20–30. doi: 10.1038/ncb3072

197. Mowers EE, Sharifi MN, Macleod KF. Autophagy in cancer metastasis.
Oncogene (2017) 36:1619–30. doi: 10.1038/onc.2016.333

198. Gupta A, Roy S, Lazar AJF, Wang WL, McAuliffe JC, Reynoso D, et al.
Autophagy inhibition and antimalarials promote cell death in
gastrointestinal stromal tumor (GIST). Proc Natl Acad Sci USA (2010)
107:14333–8. doi: 10.1073/pnas.1000248107

199. Vera-Ramirez L, Vodnala SK, Nini R, Hunter KW, Green JE. Autophagy
promotes the survival of dormant breast cancer cells and metastatic tumour
recurrence. Nat Commun (2018) 9. doi: 10.1038/s41467-018-04070-6

200. Yu Z, Zhou R, Zhao Y, Pan Y, Liang H, Zhang JS, et al. Blockage of SLC31A1-
dependent copper absorption increases pancreatic cancer cell autophagy to
resist cell death. Cell Prolif (2019) 52. doi: 10.1111/cpr.12568

201. Lu Z, Baquero MT, Yang H, Yang M, Reger AS, Kim C, et al. DIRAS3
regulates the autophagosome initiation complex in dormant ovarian cancer
cells. Autophagy (2014) 10:1071–92. doi: 10.4161/auto.28577
Frontiers in Oncology | www.frontiersin.org 21309
202. Washington MN, Suh G, Orozco AF, Sutton MN, Yang H, Wang Y, et al.
ARHI (DIRAS3)-mediated autophagy-associated cell death enhances
chemosensitivity to cisplatin in ovarian cancer cell lines and xenografts.
Cell Death Dis (2015) 6. doi: 10.1038/cddis.2015.208

203. Bao JJ, Le XF, Wang RY, Yuan J, Wang L, Atkinson EN, et al. Reexpression of
the tumor suppressor gene ARHI induces apoptosis in ovarian and breast
cancer cells through a caspase-independent calpain-dependent pathway.
Cancer Res (2002) 62:7264–72.

204. Correa RJM, Valdes YR, Peart TM, Fazio EN, Bertrand M, McGee J, et al.
Combination of AKT inhibition with autophagy blockade effectively reduces
ascites-derived ovarian cancer cell viability. Carcinogenesis (2014) 35:1951–
61. doi: 10.1093/carcin/bgu049

205. Peart T, Valdes YR, Correa RJM, Fazio E, Bertrand M, McGee J, et al. Intact
LKB1 activity is required for survival of dormant ovarian cancer spheroids.
Oncotarget (2015) 6:22424–38. doi: 10.18632/oncotarget.4211

206. Carcereri de Prati A, Butturini E, Rigo A, Oppici E, Rossin M, Boriero D,
et al. Metastatic Breast Cancer Cells Enter Into Dormant State and Express
Cancer Stem Cells Phenotype Under Chronic Hypoxia.s. J Cell Biochem
(2017) 118:3237–48. doi: 10.1002/jcb.25972

207. Aqbi HF, Tyutyunyk-Massey L, Keim RC, Butler SE, Thekkudan T, Joshi S,
et al. Autophagy-deficient breast cancer shows early tumor recurrence and
escape from dormancy. Oncotarget (2018) 9:22128–37. doi: 10.18632/
oncotarget.25197

208. Shinde A, Hardy SD, Kim D, Akhand SS, Jolly MK, Wang WH, et al. Spleen
tyrosine kinase–mediated autophagy is required for epithelial–mesenchymal
plasticity and metastasis in breast cancer. Cancer Res (2019) 79:1831–43.
doi: 10.1158/0008-5472.CAN-18-2636

209. Wang L, Hoque A, Luo RZ, Yuan J, Lu Z, Nishimoto A, et al. Loss of the
expression of the tumor suppressor gene ARHI is associated with
progression of breast cancer. Clin Cancer Res (2003) 9:3660–6.

210. Lu Z, Luo RZ, Peng H, Rosen DG, Atkinson EN, Warneke C, et al.
Transcriptional and posttranscriptional down-regulation of the imprinted
tumor suppressor gene ARHI (DRAS3) in ovarian cancer. Clin Cancer Res
(2006) 12:2404–13. doi: 10.1158/1078-0432.CCR-05-1036

211. Zou CF, Jia L, Jin H, Yao M, Zhao N, Huan J, et al. Re-expression of ARHI
(DIRAS3) induces autophagy in breast cancer cells and enhances the
inhibitory effect of paclitaxel. BMC Cancer (2011) 11. doi: 10.1186/1471-
2407-11-22

212. Chaterjee M, van Golen KL. Breast Cancer Stem Cells Survive Periods of
Farnesyl-Transferase Inhibitor-Induced Dormancy by Undergoing
Autophagy. Bone Marrow Res (2011) 2011:1–7. doi: 10.1155/2011/362938

213. Ornelas A, McCullough CR, Lu Z, Zacharias NM, Kelderhouse LE, Gray J,
et al. Induction of autophagy by ARHI (DIRAS3) alters fundamental
metabolic pathways in ovarian cancer models. BMC Cancer (2016) 16.
doi: 10.1186/s12885-016-2850-8

214. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-
mediated induction of autophagy via an Apg1 protein kinase complex. J Cell
Biol (2000) 150:1507–13. doi: 10.1083/jcb.150.6.1507

215. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition
of mTOR induces autophagy and reduces toxicity of polyglutamine
expansions in fly and mouse models of Huntington disease. Nat Genet
(2004) 36:585–95. doi: 10.1038/ng1362

216. Takeuchi H, Kondo Y, Fujiwara K, Kanzawa T, Aoki H, Mills GB, et al.
Synergistic augmentation of rapamycin-induced autophagy in malignant
glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors.
Cancer Res (2005) 65:3336–46. doi: 10.1158/0008-5472.CAN-04-3640

217. Tanemura M, Ohmura Y, Deguchi T, MacHida T, Tsukamoto R, Wada H,
et al. Rapamycin causes upregulation of autophagy and impairs islets
function both in vitro and in vivo. Am J Transplant (2012) 12:102–14.
doi: 10.1111/j.1600-6143.2011.03771.x

218. Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL. Regulation of
the TSC pathway by LKB1: Evidence of a molecular link between tuberous
sclerosis complex and Peutz-Jeghers syndrome. Genes Dev (2004) 18:1533–8.
doi: 10.1101/gad.1199104

219. Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, et al.
Hypoxia Triggers AMPK Activation through Reactive Oxygen Species-
Mediated Activation of Calcium Release-Activated Calcium Channels. Mol
Cell Biol (2011) 31:3531–45. doi: 10.1128/mcb.05124-11
March 2021 | Volume 11 | Article 627023

https://doi.org/10.1158/0008-5472.CAN-18-0134
https://doi.org/10.1158/0008-5472.CAN-18-0134
https://doi.org/10.1371/journal.pone.0171044
https://doi.org/10.1016/j.celrep.2017.02.013
https://doi.org/10.1080/2162402X.2017.1368603
https://doi.org/10.1002/ijc.24118
https://doi.org/10.1002/jcb.25768
https://doi.org/10.1038/ncb2021
https://doi.org/10.1158/1541-7786.MCR-18-0718
https://doi.org/10.1593/neo.13402
https://doi.org/10.1038/nm0696-689
https://doi.org/10.1038/s41568-020-0263-0
https://doi.org/10.1146/annurev-cancerbio-030617-050446
https://doi.org/10.1084/jem.20101145
https://doi.org/10.1158/1078-0432.CCR-11-1282
https://doi.org/10.1158/2159-8290.CD-14-0362
https://doi.org/10.1038/ncb3072
https://doi.org/10.1038/onc.2016.333
https://doi.org/10.1073/pnas.1000248107
https://doi.org/10.1038/s41467-018-04070-6
https://doi.org/10.1111/cpr.12568
https://doi.org/10.4161/auto.28577
https://doi.org/10.1038/cddis.2015.208
https://doi.org/10.1093/carcin/bgu049
https://doi.org/10.18632/oncotarget.4211
https://doi.org/10.1002/jcb.25972
https://doi.org/10.18632/oncotarget.25197
https://doi.org/10.18632/oncotarget.25197
https://doi.org/10.1158/0008-5472.CAN-18-2636
https://doi.org/10.1158/1078-0432.CCR-05-1036
https://doi.org/10.1186/1471-2407-11-22
https://doi.org/10.1186/1471-2407-11-22
https://doi.org/10.1155/2011/362938
https://doi.org/10.1186/s12885-016-2850-8
https://doi.org/10.1083/jcb.150.6.1507
https://doi.org/10.1038/ng1362
https://doi.org/10.1158/0008-5472.CAN-04-3640
https://doi.org/10.1111/j.1600-6143.2011.03771.x
https://doi.org/10.1101/gad.1199104
https://doi.org/10.1128/mcb.05124-11
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Akkoc et al. Autophagy and Cancer Dormancy
220. Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells.
Int J Biochem Cell Biol (2004) 36:2445–62. doi: 10.1016/j.biocel.2004.02.002

221. Inoki K, Li Y, Xu T, Guan KL. Rheb GTpase is a direct target of TSC2 GAP
activity and regulates mTOR signaling. Genes Dev (2003) 17:1829–34.
doi: 10.1101/gad.1110003

222. Lu Z, Yang H, Sutton MN, Yang M, Clarke CH, Liao WSL, et al. ARHI
(DIRAS3) induces autophagy in ovarian cancer cells by downregulating the
epidermal growth factor receptor, inhibiting PI3K and Ras/MAP signaling
and activating the FOXo3a-mediated induction of Rab7. Cell Death Differ
(2014) 21:1275–89. doi: 10.1038/cdd.2014.48

223. Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, et al.
Characterization of the CLEAR network reveals an integrated control of
cellular clearance pathways. Hum Mol Genet (2011) 20:3852–66.
doi: 10.1093/hmg/ddr306

224. Settembre C, Di Malta C, Polito VA, Arencibia MG, Vetrini F, Erdin S, et al.
TFEB links autophagy to lysosomal biogenesis. Science (80- ) (2011)
332:1429–33. doi: 10.1126/science.1204592

225. Sutton MN, Huang GY, Zhou J, Mao W, Langley R, Lu Z, et al. Amino acid
deprivation-induced autophagy requires upregulation of DIRAS3 through
reduction of E2F1 and E2F4 transcriptional repression. Cancers (Basel)
(2019) 11. doi: 10.3390/cancers11050603

226. Blancato J, Graves A, Rashidi B, Moroni M, Tchobe L, Ozdemirli M, et al.
SYK allelic loss and the role of Syk-regulated genes in breast cancer survival.
PloS One (2014) 9. doi: 10.1371/journal.pone.0087610

227. Krisenko MO, Higgins RL, Ghosh S, Zhou Q, Trybula JS, Wang WH, et al.
Syk is recruited to stress granules and promotes their clearance through
autophagy. J Biol Chem (2015) 290:27803–15. doi: 10.1074/jbc.M115.642900

228. Du H, YangW, Chen L, Shi M, Seewoo V, Wang J, et al. Role of autophagy in
resistance to oxaliplatin in hepatocellular carcinoma cells. Oncol Rep (2012)
27:143–50. doi: 10.3892/or.2011.1464

229. Shimizu S, Takehara T, Hikita H, Kodama T, Tsunematsu H, Miyagi T, et al.
Inhibition of autophagy potentiates the antitumor effect of the multikinase
inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer (2012) 131:548–
57. doi: 10.1002/ijc.26374

230. Qu X, Sheng J, Shen L, Su J, Xu Y, Xie Q, et al. Autophagy inhibitor
chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma
cells by mitochondrial ROS. PloS One (2017) 12. doi: 10.1371/
journal.pone.0173712
Frontiers in Oncology | www.frontiersin.org 22310
231. Tong M, Che N, Zhou L, Luk ST, Kau PW, Chai S, et al. Efficacy of annexin
A3 blockade in sensitizing hepatocellular carcinoma to sorafenib and
regorafenib. J Hepatol (2018) 69:826–39. doi: 10.1016/j.jhep.2018.05.034

232. Blessing AM, Santiago-O’Farrill JM, Mao W, Pang L, Ning J, Pak D, et al.
Elimination of dormant, autophagic ovarian cancer cells and xenografts
through enhanced sensitivity to anaplastic lymphoma kinase inhibition.
Cancer (2020). doi: 10.1002/cncr.32985

233. Nishikawa S, Ishii H, Haraguchi N, Kano Y, Fukusumi T, Ohta K, et al.
Genotoxic therapy stimulates error-prone DNA repair in dormant
hepatocellular cancer stem cells. Exp Ther Med (2012) 3:959–62.
doi: 10.3892/etm.2012.522

234. Evans EB, Lin SY. New insights into tumor dormancy: Targeting DNA repair
pathways. World J Clin Oncol (2015) 6:80–8. doi: 10.5306/wjco.v6.i5.80

235. Skvortsova I, Debbage P, Kumar V, Skvortsov S. Radiation resistance: Cancer
stem cells (CSCs) and their enigmatic pro-survival signaling. Semin Cancer
Biol (2015) 35:39–44. doi: 10.1016/j.semcancer.2015.09.009

236. Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ. Quiescent
hematopoietic stem cells accumulate DNA damage during aging that is
repaired upon entry into cell cycle. Cell Stem Cell (2014) 15:37–50.
doi: 10.1016/j.stem.2014.04.016

237. Yalcin A, Clem BF, Simmons A, Lane A, Nelson K, Clem AL, et al. Nuclear
targeting of 6-phosphofructo-2-kinase (PFKFB3) increases proliferation via
cyclin-dependent kinases. J Biol Chem (2009) 284:24223–32. doi: 10.1074/
jbc.M109.016816

238. Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: A
control centre for cellular clearance and energy metabolism.Nat Rev Mol Cell
Biol (2013) 14:283–96. doi: 10.1038/nrm3565

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Akkoc, Peker, Akcay and Gozuacik. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
March 2021 | Volume 11 | Article 627023

https://doi.org/10.1016/j.biocel.2004.02.002
https://doi.org/10.1101/gad.1110003
https://doi.org/10.1038/cdd.2014.48
https://doi.org/10.1093/hmg/ddr306
https://doi.org/10.1126/science.1204592
https://doi.org/10.3390/cancers11050603
https://doi.org/10.1371/journal.pone.0087610
https://doi.org/10.1074/jbc.M115.642900
https://doi.org/10.3892/or.2011.1464
https://doi.org/10.1002/ijc.26374
https://doi.org/10.1371/journal.pone.0173712
https://doi.org/10.1371/journal.pone.0173712
https://doi.org/10.1016/j.jhep.2018.05.034
https://doi.org/10.1002/cncr.32985
https://doi.org/10.3892/etm.2012.522
https://doi.org/10.5306/wjco.v6.i5.80
https://doi.org/10.1016/j.semcancer.2015.09.009
https://doi.org/10.1016/j.stem.2014.04.016
https://doi.org/10.1074/jbc.M109.016816
https://doi.org/10.1074/jbc.M109.016816
https://doi.org/10.1038/nrm3565
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
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Viruses play an important role in the development of certain human cancers. They are
estimated to contribute 16% to all human cancers. Human T-cell leukemia virus type 1
(HTLV-1) was the first human retrovirus to be discovered and is the etiological agent of
adult T-cell leukemia/lymphoma (ATLL), an aggressive T-cell malignancy with poor
prognosis. HTLV-1 viral proteins interact with mechanisms and proteins present in host
cells for their own benefit, evading the immune system and promoting the establishment
of disease. Several viruses manipulate the autophagy pathway to achieve their infective
goals, and HTLV-1 is not the exception. HTLV-1 Tax viral protein engages NF-kB and
autophagy pathways prone favoring viral replication and T cell transformation. In this
review we focus on describing the relationship of HTLV-1 with the autophagy machinery
and its implication in the development of ATLL.

Keywords: HTLV-1, autophagy, T-cell leukemia, NF-kB, tax
INTRODUCTION

Human T cell leukemia virus type 1 (HTLV-1), was the first human retrovirus discovered (1). It is the
etiological agent of an aggressive T cell malignancy known as adult T cell leukemia/lymphoma
(ATLL) and a neurologic disease named HTLV-1-associated myelopathy/tropical spastic paraparesis
(HAM/TSP), other inflammatory syndromes, opportunistic infections, and lung diseases (2). HTLV-
1 is transmitted through sexual contact, from mother to child (mainly by prolonged breastfeeding)
and parenterally (3, 4). In 2014, HTLV-1 was included as group 1 human carcinogens by the
International Agency for Research on Cancer (IARC) (5). The vast majority of HTLV-1 infected
individuals are asymptomatic and around 3-5% of them will develop ATLL, that usually occurs after a
long latency period. It is clinically classified as smoldering, chronic, lymphoma and acute (6). The
smoldering and chronic without unfavorable prognostic factors are categorized as indolent ATLL and
generally progress slowly. On the contrary, acute, lymphoma and chronic with unfavorable
prognostic factors are aggressive forms and patients have a survival of months (7, 8). The HTLV-
1 genome shares the structural features of other retroviruses, but it also has a pX region which
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encodes regulatory proteins, such as Tax and bZIP factor (HBZ)
(9). HBZ and Tax have opposing functions in most transcription
pathways, but both proteins play a critical role in HTLV-1
infection as well as in growth and survival of leukemia cells (10).

Autophagy (also known as macroautophagy) is a degradative
process for cellular components including macromolecules such
as proteins, RNA and even whole organelles (11). Under stress
conditions such as cell starvation, inhibition of mTORC1
(mammalian Target of Rapamycin Complex 1) leads the
activation of ULK1 (unc-51 Like Autophagy Activating Kinase
1) complex which in turn triggers the autophagosome biogenesis
(12). ULK1 activates a complex which includes BECN1 among its
members and a PI3KC3 (phosphatidylinositol 3-kinase Class 3).
The PI3P (phosphatidylinositol 3-phosphate) generated by this
last complex is required for recruitment of further autophagic
proteins and the autophagosome formation. Autophagosomes are
double membrane vesicles decorated by LC3 protein and, once it
is loaded with the cargo, this particular vesicle is carried to fuse
with lysosomes where the cargo is eventually degraded (12–15).

Alternatively, autophagosomes can fuse with components of the
endosomal system, late endosomes or multivesicular bodies (MVBs)
(16). These hybrid compartments, named as amphisomes, have the
options of degrading its intravesicular material by fusion with a
lysosome or fusing with the plasma membrane (17, 18). In the case
they fuse with the plasma membrane, their contents are released
outside the cell including extracellular vesicles (EVs) (19, 20). These
small vesicles have recently gained special relevance since they are
important intercellular messengers capable of carrying several
molecules, proteins, nucleic acid, and even viral components, and
yield an effector response in the target cell (21–24). Importantly,
exciting new data is supporting the idea of a superlative crosstalk
between autophagy and EVs machineries (25–30). Moreover,
autophagy can take an antiviral or pro-viral role. It could be
expected to degrade intracellular pathogens, but certain viruses
have evolved to use the autophagic machinery for their own
benefit, increasing viral replication and viral spread (31).
ADULT T-CELL LEUKEMIA/LYMPHOMA

The adult T-cell leukemia/lymphoma or ATLL is a malignant and
aggressive neoplasm as a consequence of HTLV-1 infection. In
endemic regions of Japan, ATLL affects about 8.7 persons per 10,000
HTLV-1 infected citizens and, having in mind an annual incidence
of 20 million around the world, it is expected a significant number
of persons suffering this pathology (32). In Latin America, 1% of
HTLV-1 infected individuals are asymptomatic positive, but in
some endemic areas it might reach 10% (32). It is interesting to
know that HTLV-1 infects T cells, B cells, fibroblasts, dendritic cells,
and macrophages, though hitherto data show it is only capable of
transforming regulatory T cells which are positive for CD4/CD25
(33). The carcinogenesis induced by HTLV-1 infection possesses a
biphasic behavior, with an initiation and a maintenance phases.
Epidemiology demonstrates that ATLL onset is observed about the
fifth decade in individuals that were infected during the firsts years
of life (34, 35). This suggests an extensive latency period coincident
with the conception that oncogenesis is initiated in a first phase of
Frontiers in Oncology | www.frontiersin.org 2312
viral infection and then a second phase where oncogenic properties
of transformed cells are maintained (34, 35).

HTLV-1 seems to rely on two main proteins for cellular
transformation, HBZ and Tax. Data suggests that HBZ is
important for viral replication, cellular proliferation and
evasion from the immune system (36, 37). Then, the major key
role of HBZ in oncogenesis is maintaining the oncogenic
phenotype by attenuation of host immune response against
leukemic cells and fostering a microenvironment appropriate
for HTLV-1 infected cells (38). On the other hand, Tax is the
main actor for the T cells transformation process engaging
several cellular pathways (39). This means that Tax appears
early during infection and during the long period of latency time,
and it is crucial to initiate cellular transformation. Once cells are
transformed, HBZ enters in the second phase for maintaining the
transformed phenotype. This is also supported by the fact that
Tax gradually disappears during that time, to the point of being
almost undetectable, contrary to HBZ whose presence is
prominent and ubiquitous in advanced stages of ATLL (40, 41).

The central role of Tax in ATLL is highlighted with the
observation that impairment of functionality of tax gene impedes
T cells transformation (42). Even more, Tax overexpression
provokes a leukemia phenotype in transgenic mouse models (43,
44). This data suggests that Tax is indeed enough for T cells
immortalization. Moreover, the capacity of Tax to induce cell
survival, proliferation and bypass tumor suppressor processes
such as senescence and apoptosis has been vastly demonstrated
(45–50). The powerful property of Tax lies on its ability to activate a
myriad of signaling pathways including PI3K/AKT, p53 inhibition,
induction of ROS (reactive oxygen species) production and even
genome instability by direct DNA damage and impairment of
proteins related to DNA repair (51, 52). Although, those
characteristics are important in Tax-mediated transformation is
worthy to mention specially the NF-kB pathway. Tax has the ability
to activate both canonical and noncanonical NF-kB pathways
which in turn set up a broad cell survival program (53–55). Tax-
mediated initial activation of NF-kB pathways is in such a way that
it persists even after Tax expression has disappeared (52, 56).
HTLV-1 TAX RELATIONSHIP WITH THE
NF-ΚB PATHWAY

The NF-kB family of transcription factors is composed of five
members: RelA (p65), c-Rel, RelB, NF-kB1 (p50) and NF-kB2
(p52), which can form hetero or homodimeric combinations (57).
There are two major pathways for NF-kB activation: the canonical
and non-canonical NF-kB signaling pathways. Canonical NF-kB
signaling is induced upon stimulation by pro-inflammatory
cytokines, such as TNF-a, IL-1b and IL-6, pathogen-associated
molecular patterns (PAMPs) from viruses and bacteria, agonists for
the B or T cell antigen receptors (BCR or TCR), and chemicals or
radiation (58). On the other hand, non-canonical NF-kB signaling
pathway is restricted to a subset of TNF family members such as B
cell activating factor (BAFF), lymphotoxinb-(LTb) and CD40L (59).
These two pathways of NF-kB activation differ, not only in the
involved receptors, but also, in the implicated molecules and the
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generated response. The induction of the canonical NF-kB signaling
involves a variety of different adaptor molecules to engage the IKK
complex which in turn triggers the signaling pathway (60). IKK
complex consists of the regulatory subunit IKKg/NEMO, and IKKa
and IKKb, the catalytic ones (61). Once activated, IKK
phosphorylates IkBs subunits (IkBa, IkBb and IkBϵ) inducing
the IkBs ubiquitination and proteasomal degradation (62). Then,
classical NF-kB dimers, like p50/RelA and p50/c-Rel, are released
from IkB to enter the nucleus and induce the transcription of target
genes (60). This activation of the canonical NF-kB pathway under
physiological conditions, induces a rapid but transient
transcriptional response (58, 59). On the contrary, non-canonical
NF-kB signaling activation relies on NIK, which in resting cells is
constantly degraded by an E3 ligase complex consisting of the E3
ligases c-IAP1/2 and the adaptor TRAF3/TRAF2. Activation of
BAFFR, LTbR and CD40 provokes inactivation of the TRAF/c-IAP
complex and the consequent NIK stabilization. In this situation,
NIK phosphorylates IKK, which in turn phosphorylates p100/RelB
tagging it for proteasomal processing and the consequent release of
Frontiers in Oncology | www.frontiersin.org 3313
p52/RelB, which translocates to the nucleus. Compared to the
canonical way, non-canonical NF-kB response is delayed, but its
transcriptional response is sustained in time (58, 59). It has been
described the existence of negative regulators of the NF-kB pathway
that could be involved in the constitutive activation of NF-kB in
ATLL such as TNF-a-induced protein 3 (TNFAIP3, A20),
Cylindromatosis (CYLD), and NSFL1 cofactor (p47) among
others. The implication of any of these negative regulators of the
NF-kB pathway could be of extreme importance in the persistence
of its activation (63–65).

In HTLV-1 infection, Tax persistently activates both
canonical and non-canonical NF-kB pathways which are
required for cell survival and T lymphocyte transformation
(66, 67). Indeed, a persistent NF-kB activity is observed in
HTLV-1 transformed cell lines (54). By intervention at
different levels, Tax ensures the NF-kB pathway activation
without external signals. HTLV-1 Tax interacts with TAK1-
binding protein 2 (TAB-2) activating MEKK1 and TAK1
which in turn activate the IKK complex (68, 69) (Figure 1).
FIGURE 1 | In HTLV-1 infection, the viral protein Tax interferes at several steps of both canonical and noncanonical NF-kB pathway in order to activate it, inducing
cell survival and proliferation, and eventually resulting in oncogenesis. By interaction with IKKg/NEMO, Tax recruits and activates IKK complex (IKKg/NEMO, IKKa,
IKKb) in lipid raft domains (LRD) on the Golgi. After IKK activation, Tax recruits the autophagy proteins BECN1, Bif-1 and the PI3KC3 complex through its direct
interaction with BECN1, which in turn binds also with IKKa, IKKb. Then, Tax deregulates the autophagy pathway fostering autophagosomes biogenesis but, at the
same time, blocking the autophagosome-lysosome fusion. Autophagosomes accumulation enhances HTLV-1 replication. Moreover, recent data suggest a crosstalk
between autophagic and extracellular vesicles (EVs) biogenesis pathways. EVs from HTLV-1 infected cells bearing the viral proteins Tax and HBZ among some host
proteins, and transcriptional mRNA of Tax, HBZ and 5’LTR has been reported.
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The direct association of Tax with IKKg/NEMO in the lipid raft
domains (LRD) localized on Golgi is key for Tax goals (70–73).
This Tax-IKKg/NEMO interaction recruits the whole IKK
complex and this action is indispensable for its activation
(Figure 1) (74–76). Moreover, the resulting degradation of
IkBs and consequent release of NF-kB transcription factor
subunits are further enhanced by Tax direct interaction with
IkBs and 20S proteasome (54, 77) (Figure 1). On the other hand,
Tax also interacts with IKKg/NEMO and p100 to induce the
proteasome-mediated processing of this last in order to activate
the non-canonical NF-kB pathway (55, 78–82). These data are
supported by the fact that IKK is persistently activated in
primary ATLL and HTLV-1 transformed cells (54, 77). The
deep involvement of Tax with the NF-kB pathway is justified by
the fact that the activity of this pathway is indispensable for T cell
transformation and the maintenance of the leukemic phenotype
(81, 83).
HTLV-1 TAX DEREGULATION OF
AUTOPHAGY

The fight between cells and viruses came from a constant
competitive evolution. Cells have developed several strategies
against viral infections and autophagy is into their toolkit
repertory. For instance, xenophagy and virophagy are two
types of selective autophagy that are activated in order to clear
intracellular pathogens (84, 85). Xenophagy leads cells to
microorganisms recognition, including viruses, to target them
towards lysosome, through the autophagy machinery for
degradation by the lysosomal hydrolases (84). In a similar way,
virophagy tags specific viral components to be degraded by the
autophagy flux (86). Nevertheless, viruses also have evolved to
evade those strategies and indeed use autophagy machinery for
their own benefit (87). In dendritic cells, one strategy of human
immunodeficiency virus (HIV-1) is enhancing mTORC1
activation which in turn inhibits the autophagy pathway (88).
Another way, used by herpes simplex virus type 1 (HSV-1), is to
produce a specific viral protein that suppresses autophagy by its
binding to BECN1, which is essential for autophagosome
biogenesis initiation (89). Furthermore, most RNA viruses such
as hepatitis C virus (HCV) induce autophagy flux to use the
double membrane of autophagosome vesicles to hide themselves
and, in fact proliferate and come out from the host cell (87, 90,
91). All in all, viruses have developed several strategies with the
goal of modifying autophagy in each step, avoiding cellular
defensive mechanisms and promoting their proliferation.

It is clear that HTLV-1 infection induces cytoplasmic
autophagosomes accumulation and indeed this event increases
viral particles production, measured by the viral capsid protein
p19 (92). The single transfection of Tax in HeLa and Jurkat cells
is enough to accumulate cytoplasmic LC3 positive dots (58).
Interestingly, Tax co-localizes with cytoplasmic LC3 puncta but
its capacity to accumulate autophagosomes is highly increased
when cells are transfected with a Tax targeted by myristoylation
to LRDs (83). Worth to note, HTLV-1 capacity to increase
Frontiers in Oncology | www.frontiersin.org 4314
cytoplasmic autophagosomes relies also on Tax ability to
activate the NF-kB pathway (92). For instance, a mutated Tax
without the ability to activate IKK complex is also unable to
induce autophagy (83, 93). Besides, impairment of any member
of the IKK complex, by abolition of the catalytic activity of IKKa
or IKKb, or the knockdown of IKKg/NEMO, decreases the
cytoplasmic LC3 positive autophagosomes (83). As commented
above, Tax activates the IKK complex by recruiting IKKg/
NEMO, and the IKK complex, to the LRD located at the Golgi
(71, 73). Additionally, in those LRD, Tax recruits BECN1 and
Bif-1, and indeed there is an interaction with PI3KC3 (56, 83).
All those proteins belong to the autophagy PI3KC3 complex, the
first structural complex of the autophagosome biogenesis (94). In
Tax-immortalized T cells Tax co-precipitates with BECN1 and
PI3KC3 but not with UVRAG which form with BECN1 another
complex related to the autophagosome maturation (95, 96).
Without BECN1, Tax is unable to co-precipitated PI3KC3
suggesting that the interaction is through BECN1. Moreover,
the sequence of BECN1 that goes from aminoacids 250 to 300 is
implicated in the BECN1-Tax interaction (96). Worthy, Tax-
mediated recruitment and subsequent activation of IKK complex
in the LRDs is a prerequisite to further recruitment of BECN1
and Bif-1 forcing the activation of those autophagy proteins to
trigger the autophagosomes biogenesis. This process seems to be
exclusive of HTLV-1 infected cells because the co-distribution in
LRDs of IKK complex with BECN1 and Bif-1 is only observed in
Tax expressing cells (83). Furthermore, the entire IKK complex is
key in this Tax-mediated autophagy dysregulation since Tax
does not colocalizes in the LRD in absent of IKKg/NEMO and
depletion or impairment of any of the three IKK complex
members impedes BECN1 and Bif-1 recruitment to the LRD.
The importance of this recruitment is highlighted by the fact that
myristoylation of either BECN1 or Bif-1 to target them towards
the LRDs induces autophagy (83). It is important to consider the
key role that this function of Tax over autophagy seems to have
for HTLV-1 infection. Wang and colleagues described how Tax-
mediated autophagy provides to infected cells resistance to cell
death and, in fact, they suggest to explore autophagy inhibition as
a possible treatment against HTLV-1 infection (93).

The relationship between HTLV-1 infection and the
autophagy pathway is intricate and the roles of Tax/IKK over
the autophagy proteins go in both directions. BECN1 is needed
to maintain NF-kB and STAT3 activity in HTLV-1 infected cells
(96). STAT3 cooperates with NF-kB in HTLV-1 infected cells.
When silencing BECN1, in HTLV-1 transformed cells, a
decreased NF-kB and STAT3 activity as well as an impairment
in cellular growth is observed (96). Furthermore, PI3KC3 or
BECN1 depletion significantly slows the proliferation of HTLV-1
infected T lymphocytes (83). Co-precipitation experiments show
that BECN1 interacts directly with the catalytic subunits of IKK
complex (i.e. IKKa and IKKb) through its C-terminal 150 amino
acids region. Neither IKKa nor IKKb alone can co-precipitate
BECN1 and the PI3KC3 complex suggesting that both are
indispensable for the interaction (60). Altogether, in the LRDs
Tax recruits the IKK complex, by its interaction with IKKg/
NEMO, and the autophagy PI3KC3 complex by its interaction
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with BECN1. In that context BECN1 interacts with IKKa and
IKKb and it might suggest that LRDs function as a platform
where Tax engages the NF-kB and autophagy pathways by the
local interaction of Tax, BECN1 and IKK complex (Figure 1).
Furthermore, as the autophagy is required for the maintenance
of NF-kB activity and the LRD recruitment and activation of IKK
is needed for Tax-mediated autophagosomes biogenesis, it is
logical to speculate about a positive feedback loop between NF-
kB and autophagy pathways in HTLV-1 infection (Figure 1).

Beyond all above comments, HTLV-1 possesses other goals
for autophagy deregulation. The p47 protein was recently found
in an attempt to find IKKg/NEMO interactors. Interestingly, p47
is found highly decreased in HTLV-1 infected cells and in cells
from ATLL patients (97). Among its different functions, p47 with
its UBA domain is related to degradation of ubiquitinated
proteins (98, 99). In CD4+ T lymphocytes, p47 recognizes
ubiquitinated IKKg/NEMO and induces its lysosomal
degradation since lysosomal inhibitor but not MG132
(proteasome inhibitor) restore the IKKg/NEMO levels (97). In
this way, p47 negatively regulates IKKg/NEMO independently of
the other two known regulators of the IKK complex, A20 and
CYLD (97, 100). Worth to note, shRNA-mediated depletion of
p47 significantly potentiates IkBa phosphorylation induced by
transfection of Tax in HeLa cells (97). This means that p47
opposes the action of Tax over the NF-kB pathway. In fact, in co-
precipitation assay p47 is unable to precipitate IKKg/NEMO in
presence of Tax suggesting that Tax disrupts the p47 binding to
IKKg/NEMO. The regulation of p47 seems to be mediated by its
stability since cells from patients with the acute type of ATLL the
expression of p47 is similar to uninfected CD4+ T lymphocytes
but the amount of p47 protein is significantly lower (65). This
degradation of p47 is avoided upon lysosomal inhibition but not
with MG132. Moreover, in MEFs Atg5+/+ the induction of
autophagy by starvation reduces the levels of p47 in stark
contrast to Atg5-/- MEFs where the lack of autophagy does not
perturb p47 levels upon cell starvation. Finally, similar results
were obtained in HTLV-1 infected cells where shRNA-mediated
depletion of ATG5 increased the amount of p47, and
concomitantly a decrease in IKKg/NEMO, phosphorylated
IkBa and even CADM1 (which is a receptor dependent on
NF-kB activity) was detected (65). All these data confirm the
degradation of p47 by the autophagy pathway and give an
additional reason for Tax-mediated deregulation of the
autophagy pathway (Figure 1).

The Tax-mediated deregulation of autophagy by Tax/BECN1/
IKK in the LRDs is completed with its effects on late steps of
autophagosome maturation. Data shows that inhibition of
autophagosome-lysosome fusion, by means of bafilomycin A1,
improves Tax stability suggesting that Tax could be degraded into
the lysosome through the autophagy pathway (92). In
consequence, they proved that Tax inhibits the fusion of those
degradative vesicles (92). Then, HTLV-1 Tax exerts a deep
interference in the autophagy pathway fostering autophagosomes
biogenesis but, at the same time, inhibiting the autophagosome-
lysosome fusion (Figure 1). Additionally, new points of contacts
between autophagy and HTLV-1 Tax are still being described such
Frontiers in Oncology | www.frontiersin.org 5315
as the case of SQSTM-1/p62. In MEFs and HEK293T cells, but not
in Jurkat cells, depletion of SQSTM-1/p62 impair the Tax-
mediated NF-kB activity. Indeed, SQSTM-1/p62 directly
interacts with Tax in the Tax/IKK complex located in Golgi-
associated structures (101). SQSTM-1/p62 is an autophagy
receptor with domains for recognition of ubiquitin chains and
LC3 to canalize cargoes towards the autophagy-mediated
degradation (102, 103). Similar data is obtained with Optineurin,
another autophagy selective receptor, but interestingly in both
cases Tax interaction with those proteins seems to be related to
Tax-mediated NF-kB activation and not with Tax degradation
(101, 104). By the side of HBZ, it negatively regulates the
autophagy pathway. In cytoplasm, HBZ associates and inhibits
GADD34 which has been demonstrated to be a mTOR inhibitor.
Then, HBZ enhances mTOR activity probably for allowing its
anabolic functions, though mTOR inhibits the autophagy
triggering and in consequence HBZ indirectly inhibits the
autophagy pathway (105, 106). This is interesting because it
might be related to the strategy used by Tax to induce
autophagy that is going directly to BECN1/PI3KC3 complex in a
manner independent of mTOR activity status. All in all, these data
demonstrate that we are not yet watching the whole panorama.
Future work would shed light about the complex mechanisms in
Tax-autophagy close relationship and whether it includes other
autophagy related processes such as selective autophagy, non-
canonical forms of autophagy, etc.

Going even further, it has been demonstrated that a
constitutively activated IKK complex induces autophagy in
vitro and in vivo (107). IKK is implicated in early
carcinogenesis inducing autophagy in several tumors in order
to cope with the stress related to tumor microenvironment (108).
IKKb seems to be crucial in this intricate mechanism since this
molecule transactivates BECN1 to induce autophagy (109). With
very interesting data, Peng and colleagues show that IKKb
induces accumulation of autophagosomes, but at the same
time enhances the fusion of those autophagic vesicles with the
MVBs, resulting in amphisomes (110). They also observed the
IKKb-mediated driving of amphisomes toward the plasma
membrane with the consequent release of small extracellular
vesicles (EVs) which are positive for the autophagic proteins LC3
and SQSTM-1/p62 (110). Importantly, Tax has recently been
found in EVs fromHTLV-1 infected T cell lines (111). Moreover,
those EVs bear the viral proteins Tax and HBZ among some host
proteins, and transcriptional mRNA of Tax, HBZ and 5’LTR
(Figure 1) (111). The incubation of those EVs with uninfected
cell cultures (CTLL-2 and PBMC) increases survival under stress
conditions (111, 112). This was further confirmed in EVs from
ATLL patients derived leukemia cells where Tax was also
detected (113). In the same work, EVs purified from ATLL cell
line HUT-102 were taken up by bone marrow mesenchymal
stem cells (MSC) with the consequent activation of NF-kB
pathway, observable morphological changes, proliferation,
activation of a migratory phenotype and presence of
angiogenic markers (Figure 1) (113). Putting together the
effect of IKKb over the autophagy pathway and the release of
EVs with presence of EVs containing Tax from infected cells and
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ATLL patients cells it is not difficult to speculate that both events
might be connected, though it needs to be confirmed. For sure,
these results broaden the views about the possible roles of Tax,
and/or other HTLV-1 proteins, regarding all these pathways.
Finally, we are just observing the tip of the iceberg about HTLV-
1, autophagy, and their relationship in the development of ATLL.
CONCLUSIONS AND PERSPECTIVES

Most viruses have developed different strategies to overcome cell
defenses over evolution, and even more, to use those cellular
mechanisms for their own viral cycle. Autophagy is an important
homeostatic cellular process and as such it has an antiviral
program of action like virophagy and xenophagy. Indeed,
HTLV-1 virus induces autophagy to foster viral production.
Tax protein seems to be the wild card weapon of HTLV-1,
which is able to orchestrate most of the viral action to success in
its infective attempt. In the same movement, Tax engages the
autophagy and the NF-kB pathways in such a way that it is
enough to produce the oncogenic transformation of the cell and,
indeed, go on even when Tax is not more detectable. The recent
results around IKK, autophagy, the vesicular trafficking and the
EVs carrying Tax let us imagine that this is just the beginning in
our comprehension of this intricate process. Finally, during
Frontiers in Oncology | www.frontiersin.org 6316
HTLV-1infection, Tax is in the middle of a complex crossroad
that includes inflammatory signal pathways, apoptosis,
autophagy, and intercellular communication, that could be the
key to uncover its oncogenic transformation ability.
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Early human placental development begins with blastocyst implantation, then the
trophoblast differentiates and originates the cells required for a proper fetal nutrition and
placental implantation. Among them, extravillous trophoblast corresponds to a non-
proliferating trophoblast highly invasive that allows the vascular remodeling which is
essential for appropriate placental perfusion and to maintain the adequate fetal growth.
This process involves different placental cell types as well as molecules that allow cell
growth, cellular adhesion, tissular remodeling, and immune tolerance. Remarkably, some
of the cellular processes required for proper placentation are common between placental
and cancer cells to finally support tumor growth. Indeed, as in placentation trophoblasts
invade and migrate, cancer cells invade and migrate to promote tumor metastasis.
However, while these processes respond to a controlled program in trophoblasts, in
cancer cells this regulation is lost. Interestingly, it has been shown that autophagy, a
process responsible for the degradation of damaged proteins and organelles to maintain
cellular homeostasis, is required for invasion of trophoblast cells and for vascular
remodeling during placentation. In cancer cells, autophagy has a dual role, as it has
been shown both as tumor promoter and inhibitor, depending on the stage and tumor
considered. In this review, we summarized the similarities and differences between
trophoblast cell invasion and cancer cell metastasis specifically evaluating the role of
autophagy in both processes.

Keywords: autophagy, placentation, trophoblast and cancer cells, cellular proliferation, migration and invasion,
vasculogenic capacity, vascular remodeling, immune evasion
INTRODUCTION

The placentation is a complex process that involves different stages, which quickly and efficiently
leads to the development of the placenta, a temporary organ. The placenta is developed through
regulated and dynamic cellular processes that include embryo pre-implantation and implantation,
decidua formation, trophoblast proliferation, trophoblast differentiation into the invasive
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phenotype, and vascular remodeling (1). Interestingly, during
placentation, the ability of trophoblast cells to proliferate, invade,
and evade the immune system, resemble those induced by cancer
cells during tumor growth (2). Indeed, the processes of
proliferation, migration, and invasion in cancer cells and
trophoblast derived cells share different molecules such as
growth factors, cell adhesion molecules, surface receptors,
matrix-digesting enzymes, and enzymes inhibitors, proto-
oncogenes, hormones, and peptides, among others (3). These
molecules regulate different processes that are highly controlled
in trophoblasts, with trophoblast-derived cells following an
organized pattern without metastasizing to new tissues, while
the same pathways are dysregulated in cancer, driving
metastasis (4).

In addition to sharing proliferative and invasive features,
trophoblasts and cancer cells, actively modulate the host
immune response to develop and sustain nutrient supply (5).
Interestingly, it has been described that activation of autophagy
occurs in both processes, regulating placental and cancer
development (6, 7). However, how autophagy modulation
affects trophoblast function is not entirely known (8).
Consistently, the role of autophagy in cancer development is
still a matter of study due to its dual role in tumor onset and
progression (9, 10). Indeed, the role of autophagy in tumor
development is controversial and dependent on tumor stage and
type. It has been suggested that autophagy could promote
aggressive characteristics of cancer cells, such as increased
cellular invasion (11, 12), but also be a barrier to cancer
proliferation (13–15). Additionally, autophagy also provides
the microenvironment for placentation and cancer growth.
This review will summarize the parallels between trophoblast-
derived cells in placentation and cancer cells in tumor growth
and metastasis with a final focus on the role of autophagy in
both processes.
DEVELOPMENT OF THE HUMAN
PLACENTA

The placenta is a temporary organ that maintains and protects
the fetus during pregnancy controlling the maternal-fetal
exchange of nutrients, gases, and metabolic waste. Human
pregnancy begins with the physiological preparation
of the endometrium modulated by hormones such as
progesterone and estrogen, which regulate growth factors,
cytokines, and adhesion molecules that allow the blastocyst’s
implantation (16).

The placenta develops from the trophectoderm (TE), the
outer layer of the blastocyst from which derives the
undifferentiated cytotrophoblast (CTB). The CTB originates
two main villus structures: the floating villus, where CTBs fuse
to form the multinuclear syncyiotrophoblast (STB) and the
anchoring villus (17–20) (Figure 1). The STB acts as an
exchange barrier with the maternal blood to assure nutrients as
well as waste and gases exchange with the fetal blood (21). The
Frontiers in Oncology | www.frontiersin.org 2321
floating villus cells proliferate to form primary villi, which show
further branching, forming the intervillous space. The branching
to secondary and tertiary villi, allows the expansion of the STB
surface area, which favors an efficient nutrient exchange with the
fetal blood (19).

As mentioned, the second villus structure derived from
the CTB is the anchoring villus, whose main function is to
mediate the placental attachment to the endometrium in the
uterine wall, to sustain fetal growth (17–20) (Figure 1). In the
distal tip of the anchoring villus it is possible to find a group of
proliferating cells known as cell column trophoblast
(CCT). From these cells emerge the placental giant trophoblast
(PGT) that mediates the early histotrophic nutrition of
the embryo and of extravillous trophoblast cells (EVT). EVTs
are a group of non-proliferating trophoblast cells characterized
by a highly invasive phenotype. They invade the maternal
decidua and the first third of the myometrium, playing a
crucial role in the histotrophic nutrition of the fetus,
immunomodulation and remodeling of the uterine spiral
arteries (Figure 1) (19).

These activities are mediated by specialized subgroups of
EVTs, characterized by specific markers: the endovascular EVT
(evEVT) and the interstitial EVT (iEVT) (Table 1). The evEVTs
migrate through the lumen of the spiral arteries forming a
trophoblast plug reducing the maternal blood flow towards the
intervillous space during the early stages of placenta
development, permitting histiotrophic nutrition (46).
Additionally, evEVT maintain the oxygen concentration low,
which is required for placental development and successful
trophoblast differentiation and may also promote favorable
trophoblast migration and endothelial cell replacement, both
required for vascular remodeling. Finally, at the end of first
trimester the trophoblast plug formed by evEVT is disintegrated
(47, 48).

The main function of iEVT is to participate to the immune
tolerance and placental invasion of maternal tissues. iEVTs
express Human Leukocyte antigen-G (HLA-G), a nonclassical
major histocompatibility complex (MHC) (Table 1), which is
essential to modulate the immune tolerance at the maternal-fetal
interface by regulating the interaction and communication with
the Uterine Natural Killers (uNK) (49).

iEVTs invade trough the interstitium of the decidua and
myometrium towards the maternal spiral arteries (46). Once
there, the iEVT acquires an endothelial-like phenotype under
conditions of low oxygen concentration (approximately 8%
oxygen) replacing the maternal endothelial cells of the uterine
spiral arteries. It is important to highlight that many studies refer
to this low oxygen concentration as an “hypoxic” environment.
However, the reduced oxygen level corresponds to the
physiological level required for placenta development, which is
maintained until the end of the first trimester (below 20 mmHg).
Thus, as this occurs in normal placental development, we will
refer to this low oxygen condition as normoxic and not hypoxia
(50–52).

The process of invasion by EVTs allows the replacement of
the endothelial layer of the maternal spiral arteries, which is
April 2021 | Volume 11 | Article 637594
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essential for an appropriate placental perfusion that maintains an
adequate fetal growth. This complex process not only involves
different placental cell types, but also a wide range of molecules
related to cell growth (i.e., hormones and growth factors),
cellular adhesion (i.e., Integrins, Cadherins), tissular
remodeling (i.e., Metalloproteases) and proteins related to
immune tolerance (Table 1) (19, 53). In addition to the
classical markers, other molecules including structural and
adhesion related proteins, proteins associated to invasion,
immunity, embryonic stem cell-associated transcription
regulators and oncogenes have been recently described as
markers of CTB, STB, iEVT or eEVT (54–58).

CTB and CCT but not EVT cells show proliferative activity
and generate cells that stop the proliferation and start to
differentiate (20). The process of proliferation and
differentiation of CTB into migratory, invasive EVT and
endothelial-like trophoblast shows similarities with the process
of tumor formation and metastasis of cancer cells. The main
similarities are: (i) tissue invasion, (ii) immune system
modulation and (iii) vascularization. Despite this, a crucial
Frontiers in Oncology | www.frontiersin.org
 3322
difference between trophoblast derived and cancer cells is that
while in trophoblast cells these processes are regulated, this
regulation is lost in cancer cells (4).

The physiological process of placentation responds to a
controlled program that results in changes in gene expression
and cell cycle. As such, when placentation is not kept under
control, malformation of the placenta, pregnancy pathologies
and abortions can occur (17, 20, 59). Different abnormal
placentation processes have been described, which are
characterized by abnormal trophoblast invasion such as
abnormally invasive placentas. Abnormal placentation
processes are: (i) placenta accreta (abnormal adherence with
direct contact to myometrium), (ii) placenta increta (placental
villi penetrate into the myometrium) and (iii) percreta (placental
villi penetrate trough myometrium to uterine serosa and into the
surrounding structures such as the bladder). It has been
suggested that trophoblast cells of this abnormally invasive
placentas lose their physiological regulation, leading to
increased proliferative activity during the invasion, behaving
like cancer cells (60, 61).
FIGURE 1 | The maternal fetal interface and trophoblast cells subtypes. The figure shows the placental cell types required for the early first trimester human
placentation as well as the route to migrate and invade the decidua and myometrium. The different trophoblast subtypes are villous cytotrophoblast (CTB),
synctiotrophoblast (STB), cell column trophoblast (CCT), extravillous trophoblast (EVT), endovascular EVT (evEVT), interstitial EVT (iEVT), placental giant trophoblast
(PGT). The complete description of the process is in the section “Development of the Human Placenta” of the review.
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SIMILARITIES AND DIFFERENCES
BETWEEN CANCER CELLS AND
TROPHOBLAST DERIVED CELLS

Cellular Proliferation, Migration,
and Invasion
Both cancer cells and trophoblast derived cells express different
molecules such as growth factors, proto-oncogenes, enzymes, cell
surface receptors, enzyme receptors, hormones and peptides,
whose activation mediates their high proliferative, migratory and
invasive capacity. During placentation, growth factors such as
Epidermal Growth Factor (EGF), Hepatocyte Growth Factor
(HGF), Vascular Endothelial Growth Factor (VEGF), Placental
Growth Factor (PLGF), Insulin-like Growth Factor (IGF),
Transforming Growth Factor (TGF) and their corresponding
receptors are among the main factors that regulate CTB
proliferation, acting in a paracrine and autocrine manner
(62). These growth factors bind to Tyrosine Kinase Receptors
to activate the Mitogen-activated Protein/extracellular
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Signal-regulated kinase/Extracellular Signal-Regulated
Kinase (MEK/ERK) prol i ferat ion pathway and the
Phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/Akt)
anti-apoptosis pathway (3). Moreover, proto-oncogenes play
an essential role in the etiology of cancer inducing its growth.
As cancer cells, trophoblast derived cells express several proto-
oncogenes; for example, CTB and STB exclusively express proto-
oncogenes that encode Growth Factor Receptor c-erbB1 (Human
Epidermal Growth Factor Receptor 1 (HER1), Epidermal
Growth Factor Receptor 1 (ERBB1 or EGF-receptor)) (63).
Also, trophoblast cells such as CTB, STB, and EVT encode for
a Receptor Tyrosine Kinase (RTK), namely c-erbB2 (HER2/neu,
ERBB2), c-fms (CSF1R), c-met (MET) and c-kit (KIT) (64–67),
as well as for transcription factors that have been implicated in
trophoblast invasion such as c-fos (FOS) and c-jun (JUN), in
addition to c-myc (MYC) and c-ets1 (ETS) (68–71).
Additionally, in iEVT, c-sis (SIS, Platelet-derived Growth
Factor Beta (PDGFB)) is expressed, which encodes for one of
the two chains (the B-chains) constituting Platelet-derived
TABLE 1 | Classical markers of trophoblast-derived cells in the human placenta and its expression in vasculogenic mimicry on human cancer.

Type of marker Marker CTB STB CCT evEVT iEVT Reference Expression in vasculogenic mimicry on human cancer Reference

Epithelial marker CK7 + + + NA + (22) –

Mesenchymal
marker

Vimentin – – – NA – (23) Hepatocellular, Colorectal, Ovarian, pancreatic, Large lung cancer, Non-
small cell lung cancer, renal cell carcinoma

(24–26)

Integrins
a1 b1 – – – + + (27) –

a5 b1 – NA – NA + (27) Glioblastoma, melanoma (26, 28,
29)

a6 b4 + – + NA – (27) –

av b5 + – + – – (30) –

av b3 – – – + + (30) Breast cancer, prostate, colon, melanoma (31)
Cell adhesion
molecules

VE-
Cadherin

– – – + + (32) Melanoma, hepatocellular, Non-small cell lung cancer, colorectal,
prostate, large-cell lung cancer, gastric

(26, 33),

E-
cadherin

+ + + – – (32) Ovarian, colorectal, pancreatic, large-cell lung cancer, hepatocellular,
Non-small cell lung cancer, melanoma

(26, 34),

PECAM + + + + – (32) Melanoma (31)
NCAM – – – + – (32, 35), –

Metalloproteases
MMP-2 NA NA + NA + (36) Melanoma, ovarian cancer (34, 37),
MMP-9 NA NA + NA + (36) Ovarian cancer, Hepatocellular (26, 34),
MMP-14
(MT1-
MMP)

+ + + – + (38–40) Melanoma (37)

Hormones
hCG a + + +/- +/- +/- (41) –

hCG b +/- + – – – (41) –

hPL – + + + NA (27) –

Growth factors
TGF b + + + NA – (42) Hepatocellular (26)
VEGF NA + NA NA + (43) Ovarian cancer (34)
sFLT-1 NA + NA NA + (43) –

Endoglin – + + NA – (44) –

Immune factors
HLA-G – – – NA + (23, 45), –
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Classical markers of trophoblast-derived cells in the human placenta and their expression in malign tumors are showed in the table. CK7, cytokeratin 7; VE-cadherin, Vascular endothelial-
Cadherin; PECAM, platelet endothelial cell adhesion molecule; NCAM, neural cell adhesion molecule; MMP-2, matrix metallopeptidase 2; MMP-9, matrix metallopeptidase 9; MMP-14,
matrix metallopeptidase 14; hCG a, human chorionic gonadotropin a; hCG b, human chorionic gonadotropin b; hPL, human placental lactogen; TGF b, transforming growth factor beta;
VEGF, vascular endothelial growth factor; sFLT-1, Fms-like tyrosine kinase-1; EGF, epidermal growth factor; HLA-G, human leukocyte antigen G.
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Growth Factor (PDGF) (72) and in EVT the c-ras family (Kirsten
rat Sarcoma viral oncogene (K-RAS), Neuroblastoma RAS viral
oncogene homolog (N-RAS), and Harvey rat sarcoma (H-RAS)) is
expressed encoding for Rat sarcoma (RAS) proteins that regulate
cellular proliferation and inflammation in the human placenta (73,
74). All the aforementioned proto-oncogenes are crucial in the
first step of malignant transformation and its physiological
expression occurs during the first week of pregnancy promoting
proliferation, migration, and invasion of the trophoblast (2).

The Telomerase is a factor that regulates the proliferative
capacity of a cell, as it maintains chromosome stability in actively
dividing cells (75). CTB expresses a functional Telomerase,
which is downregulated during differentiation, but expressed in
term placenta. During human pregnancy, Telomerase activity is
the highest during the first trimester, and decreases with the
maturation of the placenta (76). Telomerase activity ensures a
high rate of proliferation and could be a factor controlling
placental growth (77–79). Consistently, in cancer cells, the
Telomerase allows uncontrolled cell proliferation, which is
essential for tumor progression (80). Additionally, Survivin, a
protein overexpressed in many cancers (81), where it promotes
proliferation and inhibits apoptosis, is expressed in trophoblast
cells, however its role in this location has not been elucidated yet
(82, 83). Altogether these studies indicate that the Telomerase
and Survivin have an important role in cell proliferation in both
trophoblast and cancer cells.

As mentioned, placental development during the first
trimester occurs in a stable state of low oxygen concentration
(84); by comparison, in tumors, hypoxia is necessary to support
tumor growth and metastasis (85). In response to low oxygen
levels, cells upregulate Hypoxia-Inducible Factor (HIF), a family
of transcription factors that functions as a Heterodimer with a
regulatory a subunit (HIF-a) and a constitutive b subunit (HIF-
b) (86, 87). The activation of the different HIF isoforms leads to
the transcription of genes involved in several processes such as
metabolism, angiogenesis, and immunomodulation (86). Thus,
this low oxygen concentration environment in trophoblast and
cancer cells could be considered as key to stimulate proliferation,
invasion, and vasculogenesis in host tissues (88).

During placentation and cancer growth, invasion is required
to provide blood and nutrient supply. Different events need to
occur for a successful invasion process: (i) changes in the
expression of Cell Adhesion molecules (ii) secretion of
Proteases, and (iii) availability of Growth Factors (5). One
feature shared by both cell types is the process of epithelial to
mesenchymal transition (EMT), which leads to the loss of cell-
to-cell contact inhibition, and to the increased expression of
proteins that degrade the extracellular matrix. During EMT the
Integrin expression pattern changes, and the expression of E-
cadherin decreases, enhancing cell movement through tissues by
reducing cell polarity (89, 90).

EVT and invasive cancer cells also share enzymes required for
the degradation of the basal membrane that allow the process of
invasion. Among those there are Serine Proteases, Cathepsins
and Matrix Metalloproteinases (MMPs), the Heparan Sulfate-
degrading Endoglycosidase, the Protease-Activated Receptor
Frontiers in Oncology | www.frontiersin.org 5324
(PAR) and the Receptor of Thrombin (91, 92). These enzymes
are expressed transiently in the trophoblast, in a very regulated
manner, while in cancer cells their expression becomes
constitutive (2, 4). As an example, the expression of MMP-2
and MMP-9 is increased during trophoblast invasion, promoting
proteolysis and therefore invasion. Importantly, when the
invasion is completed, decidual cells inhibit MMP-2 and
MMP-9 activity by the release of protease inhibitors (53, 93,
94). When the control of the protease activity is lost abnormally
invasive placentas develop, consistently, this regulation
disappears in cancer invasive cells (60).

Additionally, Placenta-Specific Protein 8 (PLAC-8) is a
placental protein implicated in embryo implantation, which is
expressed in iEVT on the feto-maternal interface promoting
trophoblast invasion and migration (57, 95) nevertheless PLAC-
8 is also expressed in cells from different cancers such as lung
adenocarcinoma, pancreatic cancer, colorectal cancer,
gastrointestinal cancer, and cervical cancer (96–100), where it
is involved in malignant tumor progression by regulating cell
differentiation (100), proliferation (101), apoptosis (102) and
autophagy by mediating autophagosome/autolysosome
fusion (103).

In conclusion, for the physiological invasion of iEVT and for
the pathological metastasis of cancer cells similar mechanisms
are used. However, despite the similarities between them, they
show a key difference: while the trophoblast follows an organized
pattern of proliferation, differentiation and invasion without
metastasizing to new tissues; cancer cells spread through the
host tissue with a high proliferation rate, with the final objective
of being able to metastasize to other tissues (3, 5).

Vasculogenic Capacity
The vascularization capacity is also a common feature between
trophoblast and cancer cells as an abundant blood supply is
necessary both for the growth of the tumor nodule, and for the
implanting embryo. To date, three processes of vessel growth
have been described: vasculogenesis, angiogenesis and vascular
mimicry (104, 105). Vasculogenesis is the process of new blood
vessel formation from angioblast precursor cells; angiogenesis is
the process of growth and development of new capillary blood
vessels from pre-existing vessels like new branches; vascular
mimicry corresponds to vessel growth from adult cells into a
vascular-like phenotype (105, 106).

During the first trimester of pregnancy, vasculogenesis and
angiogenesis are consecutive processes. Mesenchymal stem cells
differentiate to become hemangiogenic stem cells, then, in a
paracrine manner, the CTB induces the formation of the first
vessels via induction of VEGF signaling. After that, the existing
vessels become longer, a process mediated by VEGF and PLGF
(107). In cancer, angiogenesis is crucial for the newly formed
tumor nodule, since it provides blood continuously to initiate
progression and tumor growth (108). This process involves
molecular and cellular interactions between cancerous cells,
endothelial cells, and some components of the Extra-Cellular
Matrix (ECM), such as matrix proteins (Fibronectin, Laminin,
Collagen), receptors (Integrins) and enzymes that degrade the
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4

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Carvajal et al. Autophagy in Placentation and Cancer
ECM [MMP and Tissue Inhibitor of Metalloproteinase (TIMP)].
Specific proteins such as VEGF and FGF are secreted by cancer
cells to stimulate the proliferation of capillary endothelial cells
leading to the sprout and branching of them through the ECM
(109). Recent evidence suggests that in tumors resistant to
different anti-angiogenic drugs, in addition to angiogenesis,
other processes that contribute to tumoral vascularization
occur, namely vasculogenesis and vascular mimicry (110, 111).

Interestingly, human EVT and invasive cancer cells have
similar patterns of integrins expression (Table 1), which allows
the EVT to adopt a vascular phenotype capable of invading
maternal spiral arterioles, a process similar to what occurs in
endothelial cells when they migrate towards the tumor (5). This
turnover of endothelial cells to form new vessels requires
different angiogenesis regulators that are similar between EVT
and cancer cells (3). Among those, VEGF and PLGF promote
angiogenesis and are regulated by hypoxia and Fibroblast
Growth Factor (FGF) can initiate angiogenesis in both cell
types. Conversely, Angiostatin, Fibronectin, and Tissue
inhibitor of Metalloproteinases act as angiogenesis inhibitors
(109, 112, 113).

Additionally, both cell types are able to directly contribute to
their own blood supply by inducing vascular mimicry (88),
enhancing gene expression patterns and signaling pathways
shared by the two cell types (5). As an example, the Galactose-
binding protein Galectin-3, which is known to provide a vascular
phenotype, is highly expressed in EVT (114) and is also a key
factor for the development of aggressive melanomas (115).

In summary, the process of angiogenesis is essential both
in trophoblast and cancer cells. In cancer it drives tumor growth
and metastasis, and in pregnancy it allows proper embryo
implantation and placentation. However, while trophoblast
cells create new blood vessels inducing a controlled process of
vasculogenesis, the angiogenesis in cancer is uncontrolled (3).

Immune Evasion
For proper development, trophoblast and cancer cells evade the
immune response of the host. During placentation, for the
development of the maternal-fetal interface, the maternal
decidua basalis, where the maternal immune cells are located,
interacts with the fetal derived placental iEVT. Additionally the
placenta produces anti-inflammatory Cytokines, TGF-b2,
Interleukin (IL)-4 and IL-10, which reduce the deleterious
effects of pro-inflammatory cytokines (4). Fas Ligand (Fas-L)
expression on trophoblast promotes apoptosis of Fas-expressing
lymphocytes of maternal origin, having a role in placental
invasion during implantation (116). The position of
trophoblast cells in the placenta encasing the embryo produces
a barrier between maternal and fetal cells, finally being the
placenta the main separation of fetal and maternal blood and
lymphatic systems, preventing the immune system of the mother
to perceive fetal antigens. During the first trimester the immune
cells located in the decidua basalis are Natural Killer (NK, 70%),
Macrophages (20-25%) and T Lymphocytes [3-10%, (117–119)].
It has been suggested that the presence of progesterone and TGF-
b1 in the decidua promotes the differentiation of these NK into
mature Uterine Natural Killers (uNK) (120, 121). uNK cells are
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more immunomodulatory than cytotoxic, they secrete Growth
factors, Angiogenic factors and Cytokines facilitating immune
tolerance which suggests uNK play a role in implantation,
invasion and vascular remodeling of spiral artery remodeling,
regulating EVT invasion (122) by a mechanism that has not
yet been totally clarified (49, 123, 124). Additionally,
macrophages have been shown as capable of regulating the
process of spiral artery remodeling, metabolic regulation of
lipids, tissue regeneration, inflammation and fetal antigen
recognition (125). Furthermore, they can influence EVT
function as they are more abundant at the invasive front and
implantation site (126, 127). Despite these studies, their role in
placentation, as support of trophoblast cells, has not been fully
elucidated. The role of T lymphocytes is also poorly understood,
however, it has been described that they could have a role in
controlling infections caused by bacteria located at the maternal-
fetal interface (119).

In cancer, NK cells are known to contribute to tumor
development via secretion of Cytokines (128, 129). Additionally,
cancer cells express tumor-associated Macrophages, which can
have an inflammatory and immunosuppressive role, being key in
tumor progression and metastasis (130). Fas-mediated apoptosis
and the expression of Fas-L allow many cancers to attack
the immune system (131, 132). Regulatory T cells are implicated
in mediat ing to lerance in cancer and pregnancy ;
immunophenotypically expressing Cluster of differentiation
(CD); CD4, CD25 and Forkead Box P3 (FOXP3) (133). In
pregnancy, regulatory T cells are induced by paternal/fetal
alloantigens (134), which is crucial for maternal-fetal tolerance.
In cancer, regulatory T cells are implicated in impaired antitumor
immunity, suppression of effector T lymphocytes proliferation,
and increased tumor blood vessel density, suggesting an essential
link between immunity and angiogenesis (5). iEVT express
Human leukocyte antigen- G (HLA-G) (19), which suppresses
cytolytic killing by NK and cytotoxic T cells inducing apoptosis of
immune cells (49). HLA-G regulates cytokine production in blood
mononuclear cells, reducing stimulatory capacity and impairing
the maturation of dendritic cells (5). In tumors, HLA-G promotes
immune evasion by interacting with NK cells via Inhibitory
receptors and Killer cell Immunoglobulin-like receptor (KIR)
(135). This molecule can directly mediate immune tolerance by
inhibiting receptors, predominantly Immunoglobulin-like
Transcript (ILT) 2 and 4 expressed on immune effectors (136).
Finally, HLA-G has been detected in melanoma and solid tumors
including cervical cancer, gastrointestinal cancer and breast cancer
(137–139).

In conclusion, both trophoblast and cancer cells actively
modulate the host immune response by different mechanisms
that are induced by similar cells and molecules, finally promoting
cell invasion.
AUTOPHAGY

Autophagy is a catabolic process highly conserved among
eukaryotic organisms, which allows the lysosomal-mediated
degradation of cytoplasmic components, thus contributing to
April 2021 | Volume 11 | Article 637594
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cell homeostasis. Three types of autophagy have been described
based on the mechanism by which the cargo is delivered to the
lysosome: (i) microautophagy, where the cytosolic material is
delivered to the lysosome by a direct invagination or protrusion
of the lysosomal membrane (140) (ii) chaperone-mediated
autophagy, where unfolded soluble proteins containing a
specific consensus motif translocate across the lysosomal
membrane (141–143), and macroautophagy, herein referred to
as autophagy, where the cargo is sequestered in a special double
membrane organelle known as autophagosome and then
delivered to the lysosome. Briefly, during autophagy the
autophagosome fuses to lysosome, forming the autolysosome,
where the cargo is degraded (144) (Figure 2). The new
metabolites derived from the degradation return then back to
the cytosol and will be used for the synthesis of new
macromolecules and/or energy production (145). Different
autophagy-related (ATG) proteins are required for autophagy
to occur, these are organized in protein complexes that are
necessary in the different steps of the autophagic process.
These can be divided into five stages (initiation, nucleation,
elongation, fusion with the lysosome, and cargo degradation)
(Figure 2). During “initiation” the unc-51-like kinase 1 (ULK1)/
focal adhesion kinase family interacting protein of 200 kDa
(FIP200)/ATG13 complex (ULK1 complex) is activated, in
response to the metabolic status of the cell (146). Once active,
the ULK1 complex translocates to membranous sites, known
as omegasomes, where the autophagosome will form
Frontiers in Oncology | www.frontiersin.org 7326
(i.e. endoplasmic reticulum and mitochondria contact sites) (147,
148). Then, during the “nucleation”, the isolation membrane of
the new autophagosome is generated. This process is mediated
by the kinase complex formed by Vacuolar Sorting Protein (VPS)
34 (VPS34), Beclin-1, and VPS15 and Autophagy related 14-like
protein (ATGL14), which generates phosphatidylinositol 3-
phosphate (PI3P), necessary for the recruitment of the
machinery required for the generation of the new
autophagosome (146, 149). ATG9-containing vesicles cycle
between the omegasome and the Golgi/endosomes, and they
contribute to the recruitment of membranes for the nucleation of
the phagophore (147, 150, 151). Then, the phagophore extends
during the “elongation stage”, a process that is tightly regulated
by two ubiquitin-like systems: the microtubule-associated
protein 1A/1B-light chain 3 (MAP1LC3A, also known as
LC3-I) system and the ATG5–ATG12 system (152) and by the
ATG5–ATG12 complex. The ATG5–ATG12 complex then
interacts with ATG16L, forming a new complex that works
like an E3 enzyme, assisting the incorporation of LC3-II into
the membrane of the phagophore (153). In parallel with the
elongation the autophagic cargo is selected. Proteins targeted for
autophagy are labeled with the receptor p62/Sequestosome-1
(p62/SQSTM1), which interacts with LC3 through an LC3
interacting region (LIR) (154, 155). Following elongation, the
elongated phagophore is finally closed forming the
autophagosome. This step is completed by a membrane
abscission process mediated by the endosomal-sorting complex
FIGURE 2 | Autophagy process and principal proteins involved in the different steps. The figure shows the principal proteins required for autophagy process, the
different steps of the process are described in the section “Autophagy” (initiation, nucleation, elongation, fusion with the lysosome, and cargo degradation and
recycling). Figure (1) corresponds to phagophore formation that includes initiation and nucleation. (2) Autophagosome maturation includes the elongation process.
(3) Autophagosome and lysosome fusion. (4) Represent the structure of the autolysosome, and (5) corresponds to degradation and recycling. In each step are
indicated the main proteins required: ULK1/2 complex, LC3 I, LC3II, ATG7, ATG3, ATG12-ATG5-ATG16L, Class III Ptdlns3K, ATG9 and p62/SQSTM1. The yellow
semi-circumferences and circumferences correspond to the phagosome membrane. See the main text for further details.
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required for transport (ESCRT) (156, 157). Upon closure, the
nascent autophagosome dissociates from the assembly site and
undergoes maturation (158). The mature autophagosome then
fuses with the lysosome generating autolysosomes (159), a
process mediated by Rab GTPases, membrane-tethering
complexes and soluble N-ethylmaleimide-sensitive factor
attachment protein receptors (SNAREs) (160). The inner
membrane of the autolysosome breaks down and the process
of autophagosomal cargo degradation begins (161). The
degradation products are recycled and turn back to the cytosol
for being reused (162, 163) (Figure 2).

Autophagy is a complex and highly regulated process that
under stress conditions such as hypoxia, low glucose
concentration and oxidative stress is triggered to promote cell
survival or leads to cell death. Physiologically autophagy
maintains cellular and energy homeostasis, cooperates with the
immune system to promote adaptation, and represents a
quality control system for proteins and organelles (164).
Impaired autophagy contributes to the development of
neurodegenerative (165), infectious (166) and metabolic
diseases (167, 168), due to the accumulation of abnormal and
damaged proteins and/or organelles, forming intracellular
aggregates that induce cellular stress, finally promoting
cell death.

During placentation it has been reported that autophagy
could be relevant for different processes required for a proper
development of the placenta; however, how this occurs is still
under investigation (7). On the other hand, in the context of
cancer, autophagy has a dual role, where it could be tumor-
suppressive or tumor-promoting depending on the stage of
cancer development and the type of cancer considered (10).
ROLE OF AUTOPHAGY IN IMMUNE
EVASION AND VASCULAR REMODELING:
DIFFERENCES BETWEEN PLACENTATION
AND CANCER

As previously described, the processes of placentation and tumor
development share similarities and autophagy activation has
been described in both (6, 7). The role of autophagy in cancer
has been widely explored, however, as previously mentioned, its
role has not completely been elucidated (169). On the other
hand, how modulation of autophagy affects trophoblast function
is still largely unknown.

Role of Autophagy in Placental and
Cancer Immune Evasion
The role of autophagy in the placentation process remains
unclear, and its contribution to immune evasion is still
unknown (170). It has been described that autophagy is highly
activated in decidualized endometrium of early pregnancy,
which increases NK cell adhesion and retention in the decidua.
Also, when autophagy is inhibited, decidual NK (dNK) cell
residence is decreased, contributing to spontaneous abortion
(171). Tan et al. described that autophagy levels are highly
Frontiers in Oncology | www.frontiersin.org 8327
reduced in cases of recurrent miscarriage. Indeed, suppression
of autophagy in an in vitro model of trophoblast cells enhances
the cytotoxicity activity of dNK, impairing trophoblast invasion,
finally causing abortion (172).

On the other hand, autophagy has been describes as an
important regulator of cancer immunity in the tumor
microenvironment; however, the exact mechanisms involved
remain unclear (173, 174). The tumor microenvironment
contains different factors that promote autophagy, such as
hypoxia or inflammation (166, 175). Remarkably, it has been
described that autophagic activation correlates with immune
evasion (176, 177). Conversely, inhibition of autophagy
associates with NK-dependent immune responses. In breast
cancers, in tumors presenting hypoxia, blocking autophagy
restores NK-mediated lysis in vitro, facilitating breast tumor
elimination by NK cells in mice (178). Inhibition of autophagy
also reduces NK cell-mediated cytotoxicity in melanoma (175),
non-small cell lung cancer (179) and liver cancer (180). In
contrast, the role of autophagy is dual in the response to
immune cell recognition, being a suppressor or inductor of
tumorigenesis depending on the specific context (181).
Altogether these data suggest that autophagy actively
participates and regulates the immune evasion of dNK in
placental development and NK activity in cancer cells.
However, the mechanism involved in both phenomena
remains to be elucidated, a crucial aspect that needs to be
studied for the development of immunotherapy in each field.
Role of Autophagy in Placental Vascular
Remodeling
As indicated, trophoblast invasion and vascular remodeling
allows the replacement of the endothelial layer of the maternal
spiral arteries, which is essential for proper placental perfusion
and adequate fetal growth. It has been described that activation
of autophagy occurs in human placentas from normal
pregnancies at weeks 8 to 12 of gestation, as indicated by LC3
and Beclin-1 protein in CTB and STB cells (182) (Table 2).
Moreover, autophagosomes have been identified in human
placentas throughout gestation from early (8 weeks) (189, 194)
to term pregnancies (39 weeks) (189, 194, 261).

The key role of autophagy in implantation was demonstrated
by studies in ATG5-deficient mouse oocytes, where pre-
implantation cannot occur correctly. Indeed, autophagy
increases in the oocytes after fertilization, and it is necessary
for pre-implantation development, which is essential to allow the
differentiation from zygote to blastocyst in mammals (262). In
different mouse models it has been shown that proteins of
the LC3 family are expressed in the labyrinth zone and in the
decidua basalis, which suggests a possible role in the placentation
process (263).

In vitro assays in the trophoblast cell line HTR8/SVneo (i.e., a
first-trimester human trophoblast cell line) showed increased
LC3 lipidation and LC3 puncta in cells cultured in 2% of oxygen,
which mimics the physiological O2 concentration in the early
pregnancy period (186, 189, 192). In the same cell line, higher
LC3 and Beclin-1 expression was determined in conditions of
April 2021 | Volume 11 | Article 637594
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TABLE 2 | Changes in protein involved in the autophagic process described in human placental tissues and trophoblast cell lines.

Study model
Human placental tissue Cell line Autophagy marker Reference

CS vs VD – ↑LC3 (183)
PES vs N – ↑LC3, ↑Beclin-1 (184)
IUGR vs N – ↑LC3, ↑Beclin-1 (185)
– HTR-8/SVneo inhibition of Hypoxia inducible factor (HIF)-1a ↑LC3, ↓Beclin-1 (186)
CTB exposed to hypoxia vs normoxia – ↑LC3, ↑p62 (187)
MC sIUGR vs MC – ↑LC3 (188)
EVT exposed to hypoxia vs normoxia HTR-8/SVneo exposed to hypoxia vs normoxia ↑LC3, ↓p62 (189)
FTP, N – LC3, Beclin-1 (182)
SP vs IL – ↑LC3 (190)
NE vs N – ↑LC3 (191)
– HTR-8/SVneo exposed to Cobalt chloride (CoCl2) ↑LC3 (192)
PE vs N JEG-3 ↑LC3 (193)
FTP,MD, N, CS, VD – = LC3, = Beclin-1 (194)
N ↑LC3, ↑ATG5-12 (195)

JEG-3 ↑LC3
PIH vs N – ↑LC3, ↓p62 (196)
PE vs N
HUVEC

HTR-8/SVneo ↑LC3, ↑Beclin-1 (197)

Early placenta-SM vs Normal-early placenta – ↑LC3 (198)
– JEG-3 with ASAH1 inhibition or ceramide treatment ↑LC3, ↑p62 (199)
Fetal membrane SP vs Fetal membrane N – ↓Beclin-1, ↓ ATG3, ↓ATG5, ↓ATG7,

↓ATG12, ↓AT16L1
(200)

– BeWo treated with dexamethasone ↑LC3 (201)
PE vs N – ↑p62 (202)
STB treated with punicalagin – ↓ LC3, ↓p62 (203)
OB vs N – ↑Beclin-1, ↑ATG3, ↑ATG7, ↑LC3 (204)
– BeWo exposed to an increase in reactive oxygen species ↑ATG5, ↑ATG7, ↑LC3, ↓p62 (205)
PE vs N JEG-3 ↓LC3, ↓Beclin-1 (206)
PTD vs N ↓LC3, ↑p62, ↓ ATG6L, = Beclin-1, = ATG7 (207)

BeWo ↑LC3
PES vs N HTR-8/SVneo, JEG-3 ↑LC3, ↑ATG4B (208)
PTD with/without inflammatory lesions – ↑LC3 (209)
EOPE vs N – ↑LC3 (210)
GDM vs N – ↓Beclin-1, ↑LC3, ↑p62 (211)
FGR vs N – ↑LC3, ↑ Beclin-1, ↓ p62 (212)
GDM vs N ↑LC3, ↓ p62 (213)

HTR-8/SVneo ↑LC3, ↓ p62, ↑ATG5
FTP vs N – ↓LC3 (214)
IUGR, EOPE vs N – ↑LC3, ↑ Beclin-1 (215)
Placenta with Malaria vs N – ↑LC3, = ATG4B, = p62 (216)
– BeWo exposed to overexpression of CYP11A1 gene ↑LC3, ↑ Beclin-1 (217)
IUGR vs N – ↑LC3, ↓ p62 (218)
PE vs N – ↑Beclin-1, ↑p62 (219)
– JEG-3 exposed to cigarette smoke ↑LC3, ↑p62 (220)
FTP Primary trophoblast BeWo ↑LC3, ↑p62 (221)
– Sw.71 exposed to saturated fatty acids ↑p62, ↑LC3 (222)
– BeWo exposed to cobalt and chromium nanoparticles ↑LC3, ↑p62 (223)
PE vs N – ↑LC3, ↑p62 (224)
PES vs N – ↑LC3, ↓ p62 (225)
CTB – ↑LC3, ↑ Beclin-1 (226)
ICP vs N HTR-8/SVneo ↑LC3, ↑ATG5, ↑ ATG7, ↑Beclin-1 (227)
– HTR-8/SVneo exposed to Titanium dioxide nanoparticles ↑LC3, ↑p62 (228)
Early miscarriage vs N – ↑ LC3, ↑ATG5, ↑Beclin-1 (229)
– HTR-8/SVneo exposed to Titanium dioxide nanoparticles ↑LC3, ↑p62 (230)
– HTR-8/SVneo, JEG-3 associated to long noncoding RNA H19

downregulation
↑LC3, ↑Beclin-1, ↓ p62 (231)

CTB BeWo ↑ATG16, ↑ATG5-ATG12, ↑ATG7, ↑LC3,
↓p62

(232)

– HchEpC1b, HTR-8/SVneo exposed to platinum nanoparticles
(npt)

↑LC3, ↓ p62 (233)

HDCP vs N HPVEC ↓Beclin-1,↓LC3 (234)
Placenta accrete vs N – ↑LC3, ↑Beclin-1, ↑p62 (235)

(Continued)
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enhanced oxidative stress (264). Additionally, using a model of
autophagy-deficient EVT cells (cells expressing a ATG4B-
negative mutant), the relevance of autophagy in the
trophoblast in the process of invasion was shown, as the
process was impaired in autophagy-deficient cells (189).
Consistently, in a mouse model where the ATG7 gene was
deleted only in trophoblast (not in fetuses), the placentas were
smaller than in wild type, due to reduced trophoblast invasion
and low vascular remodeling. Remarkably, this result needs to be
compared with those described in cancer cells lacking ATG7,
which is described in the next section. Altogether, these studies
demonstrate that autophagy plays a key role in trophoblast
function, especially in invasion and vascular remodeling during
placentation (Table 2). Despite this, how modulation of
autophagy affects trophoblast function in pathological
conditions has not been elucidated.
Frontiers in Oncology | www.frontiersin.org 10329
Importantly, even if previous research indicates a positive
correlation between autophagy and cell invasion and vice-versa
(192, 264), the role of the whole autophagic process, intended as
autophagic flux, defined as the whole process from
autophagosome formation up to its fusion with lysosome and
cargo degradation (7), in the development of pregnancy-
associated diseases such as preeclampsia (PE), gestational
diabetes, or fetal growth (FGR) is still controversial. Indeed, for
example, in homogenized tissue from PE placenta and in
trophoblast cells obtained from PE placentas has been
described that LC3 and Beclin-1 are increased (197, 215),
suggesting that increased markers of autophagy correlate with
a poor placentation process (187). However, another study in PE
placenta and in the cell line JEG-3 showed an increase in LC3
without changes in Beclin-1 (265). Furthermore, additional work
showed, in homogenized tissue from PE placentas, a decrease in
TABLE 2 | Continued

Study model
Human placental tissue Cell line Autophagy marker Reference

– HchEpC1b exposed to oxidative stress ↑p62, (236)
– JEG-3 exposed to Cadmium ↑LC3, ↑p62 (237)
CTB BeWo ↑LC3 (238)
Plasmodium falciparum-infected women vs
non infected

– ↓Beclin-1,↓LC3 (239)

– HTR-8/SVneo with inhibition of Death-associated protein
kinase-3

↑LC3, ↑p62,↑ATG5 (240)

– HTR-8/SVneo exposed to hypoxia ↑LC3 (241)
– HTR-8/SVneo exposed to oxidative stress ↓Beclin-1,↓LC3, ↑p62 (242)
– HTR-8/SVneo with knockdown of plasmacytoma variant

translocation 1
↓Beclin-1,↓LC3, ↑p62 (243)

– HTR-8/SVneo exposed to Hydrogen peroxide ↑LC3, ↑Beclin-1 (244)
GDM vs N
CTB

– ↓Beclin-1, ↓ATG5, ↓LC3, ↓p62 (245)

Anemic vs polycythemic territories in TAPS – ↑LC3, ↑p62 (246)
– BeWo under hyperglycemic conditions reduce ↓LC3, ↓p62 (247)
With vs without Probiotic supplementation in
SP

– ↓Beclin-1 (248)

OB vs N – ↓LC3 (249)
– HTR-8/SVneo with overexpression of homeobox protein A7 ↑LC3, ↓p62 (250)
PE vs N – ↑LC3 (251)
– HTR-8/SVneo exposed to high glucose ↑LC3, ↓p62 (252)
GDM vs N – ↑LC3, ↑ATG7 (253)
DMSC from EPSM vs DSC normal
pregnancy

– ↑P62, ↓ LC3, ↓ATG5 (171)

– JAr exposed to cyclopamine and/or Gant61 ↑LC3 (254)
With vs without mycophenolic
Acid treatment in DMSC normal pregnancy

– ↑LC3, ↓p62 (255)

FGR vs N BeWo ↑LC3, ↑Beclin-1 (256)
N exposed to hypoxia BeWo exposed to hypoxia ↑LC3, ↑p62 (257)
– HTR-8/SVneo exposed to a-solanine ↑LC3, ↑Beclin-1↑ATG13, = p62 (258)
PE vs N – ↑p62, = LC3 (259)
– HTR-8/SVneo and Jar with Placenta specific 8 (PLAC8)

overexpression
↑ATG5-ATG12, ↑Beclin-1, ↓LC3 (260)
April 2021 | Volume 11 | Art
Changes in protein involved in the autophagic process described in human placental tissues and trophoblast cell lines are showed in the table. Human placental tissue abbreviations: N,
normal term pregnancy; FTP, first trimester placenta; MD, midgestation; CS, cesarean section; VD, vaginal delivery; PE, preeclampsia; PES, severe preeclampsia; IUGR, intrauterine
growth restriction; FGR, fetal growth restriction; CTB, cell primary culture from human placenta cytotrophoblasts; STB, cell primary culture from human placenta syncytiotrophoblasts; MC,
monochorionic twin; MC sIUGR, monochorionic twin with selective intrauterine growth restriction; EVT, cell primary culture first trimester extravillous trophoblast; SP, spontaneous labor;
IL, induced labor; NE, neonatal encephalopathy; EOPE, early-onset preeclampsia; HUVEC, human umbilical vein endothelial cells; PIH, pregnancy-induced hypertension; EPSM,
spontaneous miscarriage; OB, maternal obesity; PTD, preterm delivery; GDM, gestational diabetes mellitus; HDCP, hypertensive disorder complicating pregnancy; ICP, intrahepatic
cholestasis of pregnancy; TAPS, monochorionic twin anemia-polycythemia sequence; DMSC, decidua mesenchymal stromal cells from human placenta. Cell line abbreviations: HTR-8/
SVneo, human first-trimester extravillous trophoblast cell line; JEG-3, human choriocarcinoma JEG-3 cell line; BeWo, human placental choriocarcinoma cell line; Sw.71, human first
trimester trophoblast cell line; HPVEC, human placental microvascular endothelial cells; HchEpC1b, extravillous trophoblast cell line; JAr, human choriocarcinoma trophoblast cell line.
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LC3 and Beclin-1 (206) and an increase in Beclin-1 and p62/
SQSTM1 (219). These controversial results could be due to
different factors: (i) the placenta is a complex organ, with
different cell types that perform different functions, so it is not
appropriate to use placenta homogenates and evaluate autophagy
in these samples, as the levels of autophagy can be different in the
different cell types. (ii) The time at which the analysis is
performed is important. Indeed, as reported, it has been
described that autophagy plays different roles in embryogenesis
and implantation, while its role in the later stages of pregnancy is
still unknown (8). (iii) It is key to evaluate a set of autophagic
markers to study the autophagic flux to reach a conclusion (at
least LC3 and an autophagic receptor such as p62/SQSTM1),
unfortunately, some of the studies only evaluate a single
autophagic protein, which is not sufficient to clearly indicate
what is happening in autophagy but only suggest that the
condition reported might affect this cellular process (Table 2).
Thus, the available information related with the role of
autophagy in placentation in terms of specific cells involved,
cellular processes affected beyond migration of invasion (i.e.,
processes of differentiation to endothelial phenotype,
angiogenesis, vasculogenesis or immune control) and the
modulation of autophagy according to gestational age, as well
as the complete autophagic flux in these different processes still
needs to be elucidated.

Role of Autophagy in Vascular Remodeling
in Cancer
As mentioned, the role of autophagy in tumor development is
controversial and dependent of the tumor characteristics and
stage of tumor development (266). Briefly, it has been suggested
that autophagy could promote aggressive characteristics of
cancer cells such as increased cellular invasion (11, 12), but it
also represents a barrier for cancer proliferation (13–15).

In cancer cells, the inhibition of autophagy results in impaired
metabolism proliferation, survival, and spontaneous tumor
malignancy depending not only on the tumor type but also of
its temporal development (267). This has been demonstrated in
different types of cancers using genetically engineered mouse
models with ablation of ATGs and consequently autophagy. For
instance, in pancreatic ductal adenocarcinoma, loss of ATG5
increases tumor initiation but avoids invasive cancer progression
(268). Consistently, in prostate cancer, lack of ATG7 delayed
tumor cell proliferation (269) and in lung cancer driven by
oncogenic Kras, the deletion of ATG7 reduces cell proliferation
and tumor weight compared with mice with intact ATG7 (270).
Conversely, Rao et al. show that ATG5 deletion accelerates early
oncogenesis, increasing the number of tumor foci and the
transition from hyperplasia to adenomas; however as cancer
develops, lack of ATG5 reduces the progression from adenoma
to adenocarcinoma, resulting in a decrease of tumors mass and
enhanced lifespan in mice (271). Altogether, these studies
demonstrate that autophagy plays a crucial role in cancer cells.

According to the stage, during the early phases of solid tumor
formation, autophagy plays an anti-tumorigenic (272) effect
because it limits the production of DNA damaging agents [i.e.
Frontiers in Oncology | www.frontiersin.org 11330
Reactive Oxygen Species (ROS)], it promotes the elimination
of oncogenic proteins, and stimulates the induction of the
immune response in response to cellular stress (273).
Additionally, it has been shown that autophagy could promote
senescence in tumor cells in response to oncogenic stress, which
results in decreased tumor growth (274, 275). On the other hand,
it has been described that during tumor progression, autophagy
increases the tolerance to stressful conditions such as metabolic
changes and hypoxia within the tumor microenvironment,
leading to enhanced tumor cell survival and playing a pro-
tumorigenic role (276, 277). Autophagy can also increase
metastasis, supporting tumor growth, interacting with
pathways involved in cell motility and invasion (6), including
the promotion of Focal Adhesion (FA) turnover, which is a
component of the cell migration machinery, being Paxillin the
essential FA protein degraded by autophagy (278) and ECM
proteins. For example, in pancreatic ductal adenocarcinomas
hypoxia induces autophagy resulting in degradation of Lumican,
an extracellular matrix protein highly upregulated in different
cancers (279). Autophagy is also enhanced upon oncogenic
RAS activation (280, 281) and is required for the production
of multiple secreted factors, which include IL-6 and MMP2
in tumors bearing RAS mutations, facilitating cancer cell
invasion (282). All the described data indicate that cancer
cell migration could be molecularly regulated by autophagy
and vice versa, providing metabolites and nutrients in stress
conditions to the different cell types that form the tumor
microenvironment (169).

Thus, autophagy has a dual role in cancer since in tumor
initiation limits DNA damage agents such as ROS and increases
tumor cell senescence leading to an anti-tumorigenic
environment, preventing tumor promotion. However, in
established tumors autophagy provides the necessary
conditions for tumors to growth, regulating the invasion
and migration process enhancing tumor cell survival increasing
resistance to stressful conditions (176). Something similar
occurs in trophoblast cells, where it has been suggested that
autophagy regulates invasion, migration and vascular
remodeling of trophoblasts, allowing the optimal development
of the placenta (7). One difference between both processes is
that autophagy has a role in the promotion of the placentation
process from fertilization, whereas, as mentioned above, at
the beginning of tumor development autophagy exerts
anticarcinogenic functions protecting the host tissue, but as
the tumor progresses, autophagy supports tumor metastasis,
enhancing tumor cell survival by increasing the resistance
to stressful conditions (283). Finally, the role of autophagy
in cancer cells and trophoblast derived cells appears
quite similar, since it provides the conditions to carry out
cellular functions depending on the timing or stage in
cancer, promoting or stopping tumor growth, while in the
trophoblast autophagy could favor optimal placentation.
Nevertheless, the precise role of autophagy in modulating
the described cellular processes involved in vascular
remodeling in cancer progression or placentation needs to be
fully studied.
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CONCLUSION

In conclusion, the physiological placentation process of
trophoblast and the pathological metastasis of cancer cells
share similar mechanisms to proliferate, migrate, and invade
both trophoblast and cancer cells, modulating host immune
response. However, the main difference is that trophoblast
follows an organized pattern without metastasizing new tissues.
On the other hand, another shared process is autophagy, which is
required for invasion of trophoblast, and it has been shown in
cancer has a dual role being a tumor promoter and inhibitor,
depending on the stage and tumor considered. Nevertheless, the
precise role of autophagy in cancer progression or placentation
needs to be thoroughly studied. These studies could give a new
insight in cancer biology by evaluating the similarities with
Frontiers in Oncology | www.frontiersin.org 12331
trophoblast cells and the highly regulated behavior they have
in placentation.
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93. Hamutoğlu R, Bulut HE, Kaloğlu C, Önder O, Dağdeviren T, Aydemir MN,
et al. The regulation of trophoblast invasion and decidual reaction by matrix
metalloproteinase-2, metalloproteinase-7, and metalloproteinase-9
expressions in the rat endometrium. Reprod Med Biol (2020) 19(4):385–
97. doi: 10.1002/rmb2.12342

94. Plaks V, Rinkenberger J, Dai J, Flannery M, Sund M, Kanasaki K, et al.
Matrix metalloproteinase-9 deficiency phenocopies features of preeclampsia
and intrauterine growth restriction. Proc Natl Acad Sci U S A (2013)
110:11109–14. doi: 10.1073/pnas.1309561110

95. Li M, Liu D, Wang L, Wang W, Wang A, Yao Y. Expression of placenta-
specific 8 in human oocytes, embryos, and models of in vitro
implantation. Fertil Steril (2016) 106(3):781–9.e2. doi: 10.1016/
j.fertnstert.2016.05.018

96. Huang CC, Shen MH, Chen SK, Yang SH, Liu CY, Guo JW, et al. Gut
butyrate-producing organisms correlate to Placenta Specific 8 protein:
Importance to colorectal cancer progression. J Adv Res (2020) 22:7–20.
doi: 10.1016/j.jare.2019.11.005

97. Hung CS, Wang YC, Guo JW, Yang RN, Lee CL, Shen MH, et al. Expression
pattern of placenta specific 8 and keratin 20 in different types of
gastrointestinal cancer. Mol Med Rep (2020) 21(2):659–66. doi: 10.3892/
mmr.2019.10871

98. Zeng X, Liu Q, Yang Y, Jia W, Li S, He D, et al. Placenta-specific protein 8
promotes the proliferation of lung adenocarcinoma PC-9 cells and their
tolerance to an epidermal growth factor receptor tyrosine kinase inhibitor by
activating the ERK signaling pathway. Oncol Lett (2019) 18(5):5621–7.
doi: 10.3892/ol.2019.10911

99. Ma X, Liu J, Wang H, Jiang Y, Wan Y, Xia Y, et al. Identification of
crucial aberrantly methylated and differentially expressed genes related to
cervical cancer using an integrated bioinformatics analysis. Biosci Rep (2020)
40(5):BSR20194365. doi: 10.1042/BSR20194365

100. Kaistha BP, Lorenz H, Schmidt H, Sipos B, Pawlak M, Gierke B, et al. PLAC8
localizes to the inner plasma membrane of pancreatic cancer cells and
regulates cell growth and disease progression through critical cell-cycle
regulatory pathways. Cancer Res (2016) 76(1):96–107. doi: 10.1158/0008-
5472.CAN-15-0216

101. Tatura M, Schmidt H, Haijat M, Stark M, Rinke A, Diels R, et al. Placenta-
Specific 8 Is Overexpressed and Regulates Cell Proliferation in Low-Grade
Human Pancreatic Neuroendocrine Tumors.Neuroendocrinology (2020) 110
(1–2):23–34. doi: 10.1159/000500541

102. Mao M, Chen Y, Jia Y, Yang J, Wei Q, Li Z, et al. PLCA8 suppresses breast
cancer apoptosis by activating the PI3k/AKT/NF-kB pathway. J Cell Mol
Med (2019) 23(10):6930–41. doi: 10.1111/jcmm.14578
April 2021 | Volume 11 | Article 637594

https://doi.org/10.1038/labinvest.3780334
https://doi.org/10.1007/bf02857672
https://doi.org/10.1093/MOLEHR/GAU053
https://doi.org/10.1093/MOLEHR/GAU053
https://doi.org/10.1093/BIOLRE/IOZ110
https://doi.org/10.1210/en.2014-1871
https://doi.org/10.1074/jbc.M113.523746
https://doi.org/10.1016/0092-8674(85)90083-2
https://doi.org/10.1016/0002-9378(86)90677-0
https://doi.org/10.1155/2018/3645386
https://doi.org/10.1371/journal.pone.0004622
https://doi.org/10.1006/bbrc.1997.7767
https://doi.org/10.1093/humrep/17.2.463
https://doi.org/10.1093/humrep/17.2.463
https://doi.org/10.3892/mmr.2016.5231
https://doi.org/10.1016/S0303-7207(01)00550-0
https://doi.org/10.3892/ol.2020.11659
https://doi.org/10.3892/ol.2020.11659
https://doi.org/10.1007/s12015-020-09995-4
https://doi.org/10.1016/S0029-7844(01)01131-0
https://doi.org/10.1371/journal.pone.0073337
https://doi.org/10.1016/j.placenta.2017.01.130
https://doi.org/10.1186/s13578-020-00453-9
https://doi.org/10.1186/s13578-020-00453-9
https://doi.org/10.3390/ijms21165611
https://doi.org/10.1073/pnas.92.12.5510
https://doi.org/10.1073/pnas.92.12.5510
https://doi.org/10.1016/j.placenta.2017.03.010
https://doi.org/10.1016/j.placenta.2017.03.010
https://doi.org/10.1016/j.devcel.2008.05.009
https://doi.org/10.1080/19336918.2016.1170258
https://doi.org/10.1080/19336918.2016.1170258
https://doi.org/10.1016/j.placenta.2013.10.012
https://doi.org/10.1016/j.placenta.2004.03.007
https://doi.org/10.1002/rmb2.12342
https://doi.org/10.1073/pnas.1309561110
https://doi.org/10.1016/j.fertnstert.2016.05.018
https://doi.org/10.1016/j.fertnstert.2016.05.018
https://doi.org/10.1016/j.jare.2019.11.005
https://doi.org/10.3892/mmr.2019.10871
https://doi.org/10.3892/mmr.2019.10871
https://doi.org/10.3892/ol.2019.10911
https://doi.org/10.1042/BSR20194365
https://doi.org/10.1158/0008-5472.CAN-15-0216
https://doi.org/10.1158/0008-5472.CAN-15-0216
https://doi.org/10.1159/000500541
https://doi.org/10.1111/jcmm.14578
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Carvajal et al. Autophagy in Placentation and Cancer
103. Kinsey C, Balakrishnan V, O’Dell MR, Huang JL, Newman L, Whitney-
Miller CL, et al. Plac8 links oncogenic mutations to regulation of autophagy
and is critical to pancreatic cancer progression. Cell Rep (2014) 7(4):1143–55.
doi: 10.1016/j.celrep.2014.03.061

104. Demir R, Kayisli UA, Cayli S, Huppertz B. Sequential steps during
vasculogenesis and angiogenesis in the very early human placenta.
Placenta (2006) 27(6–7):535–9. doi: 10.1016/j.placenta.2005.05.011

105. Fernández-Cortés M, Delgado-Bellido D, Oliver FJ. Vasculogenic Mimicry:
Become an Endothelial Cell ‘But Not So Much’. Front Oncol (2019) 9
(AUG):803. doi: 10.3389/fonc.2019.00803

106. Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel
growth. Cardiovasc Res (2001) 49(3):507–21. doi: 10.1016/S0008-6363(00)
00281-9

107. Demir R, Seval Y, Huppertz B. Vasculogenesis and angiogenesis in the early
human placenta. Acta Histochem (2007) 109(4):257–65. doi: 10.1016/
j.acthis.2007.02.008

108. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer.
Vasc Health Risk Manage (2006) 2(3):213–9. doi: 10.2147/vhrm.2006.2.3.213

109. Murray MJ, Lessey BA. Embryo implantation and tumor metastasis:
Common pathways of invasion and angiogenesis. Semin Reprod
Endocrinol (1999) 17(3):275–90. doi: 10.1055/s-2007-1016235

110. Brown JM. Vasculogenesis: A crucial player in the resistance of solid tumours
to radiotherapy. Br J Radiol (2014) 87(1035):20130686. doi: 10.1259/
bjr.20130686

111. Testa U, Pelosi E, Castelli G. Endothelial Progenitors in the Tumor
Microenvironment. In. Advances in Experimental Medicine and Biology
Springer (2020) Vol. 1263, pp. 85–115.

112. Li X, Sun X, Carmeliet P. Hallmarks of Endothelial Cell Metabolism in
Health and Disease. Cell Metab (2019) 30(3):414–33. doi: 10.1016/
j.cmet.2019.08.011

113. Zecchin A, Kalucka J, Dubois C, Carmeliet P. How endothelial cells adapt
their metabolism to form vessels in tumors. Front Immunol (2017) 8:1750
(DEC). doi: 10.3389/fimmu.2017.01750

114. Maquoi E, Van den Brule FA, Castronovo V, Foidart JM. Changes in the
distribution pattern of galectin-1 and galectin-3 in human placenta correlates
with the differentiation pathways of trophoblasts. Placenta (1997) 18(5–
6):433–9. doi: 10.1016/S0143-4004(97)80044-6

115. Mourad-Zeidan AA, Melnikova VO, Wang H, Raz A, Bar-Eli M. Expression
profiling of galectin-3-depleted melanoma cells reveals its major role in
melanoma cell plasticity and vasculogenic mimicry. Am J Pathol (2008) 173
(6):1839–52. doi: 10.2353/ajpath.2008.080380

116. Sagrillo-Fagundes L, Bienvenue-Pariseault J, Legembre P, Vaillancourt C. An
insight into the role of the death receptor CD95 throughout pregnancy:
Guardian, facilitator, or foe. Birth Defects Res (2019) 111(4):197–211.
doi: 10.1002/bdr2.1470

117. Liu S, Diao L, Huang C, Li Y, Zeng Y, Kwak-Kim JYH. The role of decidual
immune cells on human pregnancy. J Reprod Immunol (2017) 124:44–53.
doi: 10.1016/j.jri.2017.10.045

118. Manaster I, Mandelboim O. The Unique Properties of Uterine NK Cells. Am
J Reprod Immunol (2010) 63(6):434–44. doi: 10.1111/j.1600-0897.
2009.00794.x

119. Nancy P, Erlebacher A. T cell behavior at the maternal-fetal interface. Int J
Dev Biol (2014) 58(2–4):189–98. doi: 10.1387/ijdb.140054ae

120. Male V, Sharkey A, Masters L, Kennedy PR, Farrell LE, Moffett A. The effect
of pregnancy on the uterine NK cell KIR repertoire. Eur J Immunol (2011) 41
(10):3017–27. doi: 10.1002/eji.201141445

121. Sojka DK, Yang L, Yokoyama WM. Uterine natural killer cells. Front
Immunol (2019) 10:960. doi: 10.3389/fimmu.2019.00960

122. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-
Yaron S, et al. Decidual NK cells regulate key developmental processes at the
human fetal-maternal interface. Nat Med (2006) 12(9):1065–74.
doi: 10.1038/nm1452

123. Cartwright JE, James-Allan L, Buckley RJ, Wallace AE. The role of decidual
NK cells in pregnancies with impaired vascular remodelling. J Reprod
Immunol (2017) 119:81–4. doi: 10.1016/j.jri.2016.09.002

124. Lash GE, Naruse K, Robson A, Innes BA, Searle RF, Robson SC, et al.
Interaction between uterine natural killer cells and extravillous trophoblast
Frontiers in Oncology | www.frontiersin.org 15334
cells: effect on cytokine and angiogenic growth factor production. Hum
Reprod (2011) 26(9):2289–95. doi: 10.1093/humrep/der198

125. Ning F, Liu H, Lash GE. The Role of Decidual Macrophages During Normal
and Pathological Pregnancy. Am J Reprod Immunol (2016) 75(3):298–309.
doi: 10.1111/aji.12477

126. Helige C, Ahammer H, Moser G, Hammer A, Dohr G, Huppertz B, et al.
Distribution of decidual natural killer cells and macrophages in the
neighbourhood of the trophoblast invasion front: A quantitative
evaluation. Hum Reprod (2014) 29(1):8–17. doi: 10.1093/humrep/det353

127. Lash GE, Pitman H, Morgan HL, Innes BA, Agwu CN, Bulmer JN. Decidual
macrophages: key regulators of vascular remodeling in human pregnancy.
J Leukoc Biol (2016) 100(2):315–25. doi: 10.1189/jlb.1a0815-351r

128. Morvan MG, Lanier LL. NK cells and cancer: You can teach innate cells new
tricks. Nat Rev Cancer (2016) 16(1):7–19. doi: 10.1038/nrc.2015.5

129. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune
evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer
Biol (2015) 35:S185–98. doi: 10.1016/j.semcancer.2015.03.004

130. Wu K, Lin K, Li X, Yuan X, Xu P, Ni P, et al. Redefining Tumor-Associated
Macrophage Subpopulations and Functions in the TumorMicroenvironment.
Front Immunol (2020) 11:1731. doi: 10.3389/fimmu.2020.01731

131. Modiano JF, Bellgrau D. Fas Ligand Based Immunotherapy: A Potent and
Effective Neoadjuvant with Checkpoint Inhibitor Properties, or a Systemically
Toxic Promoter of Tumor Growth? - Jaime F Modiano - Discovery Medicine
(2016). Available at: http://www.discoverymedicine.com/Jaime-F-Modiano/
2016/02/fas-ligand-based-immunotherapy-a-potent-and-effective-
neoadjuvant-with-checkpoint-inhibitor-properties-or-a-systemically-toxic-
promoter-of-tumor-growth/ (Accessed Jul. 14, 2020).

132. Houston A, O’Connell J. The Fas signalling pathway and its role in the
pathogenesis of cancer. Curr Opin Pharmacol (2004) 4(4):321–6.
doi: 10.1016/j.coph.2004.03.008

133. Wilczynski JR, Kalinka J, Radwan M. The role of T-regulatory cells in
pregnancy and cancer. Front Biosci (2008) 13(6):2275–89. doi: 10.2741/2841

134. Zhao JX, Zeng YY, Liu Y. Fetal alloantigen is responsible for the expansion of
the CD4+CD25+ regulatory T cell pool during pregnancy. J Reprod Immunol
(2007) 75(2):71–81. doi: 10.1016/j.jri.2007.06.052
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There are no effective strategies for the successful treatment of glioblastomas (GBM).
Current therapeutic modalities effectively target bulk tumor cells but leave behind marginal
GBM cells that escape from the surgical margins and radiotherapy field, exhibiting high
migratory phenotype and resistance to all available anti-glioma therapies. Drug resistance
is mostly driven by tumor cell plasticity: a concept associated with reactivating
transcriptional programs in response to adverse and dynamic conditions from the
tumor microenvironment. Autophagy, or “self-eating”, pathway is an emerging target for
cancer therapy and has been regarded as one of the key drivers of cell plasticity in
response to energy demanding stress conditions. Many studies shed light on the
importance of autophagy as an adaptive mechanism, protecting GBM cells from
unfavorable conditions, while others recognize that autophagy can kill those cells by
triggering a non-apoptotic cell death program, called ‘autophagy cell death’ (ACD). In this
review, we carefully analyzed literature data and conclude that there is no clear evidence
indicating the presence of ACD under pathophysiological settings in GBM disease. It
seems to be exclusively induced by excessive (supra-physiological) stress signals, mostly
from in vitro cell culture studies. Instead, pre-clinical and clinical data indicate that
autophagy is an emblematic example of the ‘dark-side’ of a rescue pathway that
contributes profoundly to a pro-tumoral adaptive response. From a standpoint of
treating the real human disease, only combinatorial therapy targeting autophagy with
cytotoxic drugs in the adjuvant setting for GBM patients, associated with the development
of less toxic and more specific autophagy inhibitors, may inhibit adaptive response and
enhance the sensibility of glioma cells to conventional therapies.

Keywords: autophagy, glioblastoma, intratumoral heterogeneity (ITH), drug resistance, cell invasion, pro-tumoral
INTRODUCTION

Glioblastoma (GBM, grade IV astrocytoma) is the most frequent, life-threatening malignant brain
tumor and one of the most resilient of all human malignancies. Those tumors are classified and
subtyped based on histopathological traits, clinical presentation, and molecular status (1). The
current treatment for GBM includes gross neurosurgical resection with the oral use of alkylating
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agent temozolomide (TMZ), which is given concurrently with
radiotherapy (RT) and as an adjuvant monotherapy. Despite
aggressive treatments, patients have a low median survival of ~12
months (2–4).

One of the key factors in GBM’s aggressiveness and resilience
is their high cell plasticity: a concept associated with phenotype
switching, based on the reactivation of transcriptional programs
related to the acquisition stem cell properties and the migratory
phenotype (5). In the context of anti-glioma therapies, cell
plasticity enables tumor cells to change to a cell phenotypic
identity, enabling them to survive the dynamic changes of the
tumor microenvironment (TME) and to escape surgery and
radiotherapy margins by migration. A remarkable example of
this plasticity in GBM cells was conceptualized in the “go-or-
grow” dichotomous concept in gliomas. It is based on the notion
that phenotypically distinct GBM cells (at the “go” or “grow”
states) coexist and cooperate to promote tumor growth and
clinical relapse: chemoradiation effectively eliminates the bulk
population of highly proliferative cells (at the “grow” state),
leaving behind a subpopulation of dormant/migratory cells (at
the “go” state). “Go” and “grow” states are completely reversible
insofar as GBM cells change their phenotypes without genetic
mutations. This plasticity is controlled by different signaling
pathways that drive adaptive responses and emerge as a non-
genetic source of functional intratumoral heterogeneity that,
ultimately, mirror tumor resiliency and high patient mortality
(2, 6, 7).

Autophagy (greek “self-eating”) is a good example of
signaling pathway associated with the phenotype switching and
metabolic flexibility of GBM cells. It is primarily a degradative
pathway characterized as a fast route by which damaged
cytoplasmic materials (collectively named ‘cargo’) are delivered
to the lysosomes for recycling. Autophagy can be categorized
into 3 subtypes called, micro-autophagy, macro-autophagy, and
chaperone-mediated autophagy (for more detailed insights into
the different autophagic pathways see (8–10).

Macroautophagy (hereafter referred to as autophagy) must
take place on a baseline in each cell to withdraw damaged and
functionless organelles, providing metabolites to synthetic
pathways and sustaining energetic homeostasis. In the brain,
baseline autophagy is important as a clearance mechanism of
disease-related proteins in neurons and also in astrocytes, and
autophagy dysfunction may contribute to the progression of
neurodegenerative diseases (11). However, a selective activation
of autophagy can be observed in various pathophysiological and/
or stress situations (12–15). For example, in normal brain Beclin-
1 (BECN1), a gene with a central role in autophagy induction
(16), was not expressed by neurons or glial cells, but showed
strong cytoplasmic overexpression in primary GBM cells (17).
Moreover, in response to standard of care in patients with GBM
(radio- and chemotherapy), the autophagy pathway is
upregulated giving tumor cells an advantage for survival. In a
series of clinicopathological studies, cancer cells exhibit an
increased autophagy activity linked with poor prognosis and
aggressive clinical behavior (17–19). Those are emblematic
examples of the ‘dark-side’ of autophagy, acting as a therapy-
Frontiers in Oncology | www.frontiersin.org 2340
responsive mechanism associated with a pro-tumoral adaptive
response (20–25).

On the other hand, there are numerous reports, mostly from
in vitro cell-based studies, showing an anti-tumoral function of
autophagy. Those reports have clearly shown that excessive
activation of the autophagy by prolonged or supraphysiological
doses of stress signals, may lead to massive removal of cytosolic
material, leading to a specific type of non-apoptotic cell death,
named type II programmed cell death, or autophagic cell death
(ACD). ACD is characterized by large-scale autophagic
vacuolization of the cytoplasm in the absence of chromatin
condensation and can be specifically blocked by the inhibition
of autophagy-related genes (ATG) (26, 27). Due to this ‘dual’ role
in human cancers cells, autophagy is, therefore, often been
described metaphorically as a ‘double-edged sword’ in cancers.
Importantly, the studies that explore the mechanisms of ACD are
mostly from in vitro cell-based approaches, which provide us a
precious source of mechanistic insights, but are of limited
translational relevance. Of note, there is no doubt that GBM
cells activate autophagy shortly before or during their death in
according to the external cues or internal stimuli received, but it
is still controversial whether this activation contributes to cell
death or rather represents a last attempt of survival.

So, to understand the real effect of autophagy in GBM disease is
necessary to analyze cancer cells under normal pathophysiological
conditions and therapeutic doses. In the next sections, we will focus
on the specific extracellular signals that surround tumors and play
an important role in controlling autophagy in GBM cells. Important
is the notion that our particular emphasis was given to studies that
evaluate the relationship between autophagy and GBM from a
perspective of understanding and treating human disease.
Therefore, studies using in vitro cell-based models, inducing ACD
by excessive stress signals, were not fully considered here, except for
the mechanistic data.
AUTOPHAGY ACTIVATION AS A
RESPONSE TO PATHOPHYSIOLOGICAL
STRESS

Necrosis and acidic stress are the most important stress signals in
GBM microenvironment related with autophagy activation.
Tumor necrosis is a histological hallmark of grade IV
astrocytic tumors with prevalence in almost 90% of patients
with GBM (1, 28, 29). Necrosis appears as either multifocal areas
(micronecrosis) or broad necrotic areas surrounded by
hyperproliferative zones of tumor cells, called perinecrotic
niches (PNN), which is visible as a soft, gray rim surrounding
necrotic areas by magnetic resonance imaging (MRI). During
disease progression and treatment response, GBM cells have to
change their metabolism to survive in PNN, characterized by
intermittent hypoxia (defined by low oxygen levels, pO2 < 3%)
and starvation conditions due to poor functional vasculature (30,
31). This configuration is indirectly linked to poor patient
outcome and associated with radio and TMZ resistance (32,
33). Hypoxia, per se, is well known to create radiation and
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chemotherapy resistances (34). As part of the physiological
adaptive response, the PNN stimulates the stabilization of
hypoxia-induced factors (HIFs), HIF1a and HIF2a, resulting in
a driving force for activation of anti-apoptotic and pro-migratory
transcriptional programs, supporting angiogenesis (35, 36), and
re-expression of markers and properties typical of glioma stem
cells (GSCs) (30, 37–42). Interestingly, hypoxia, starvation and
conventional anti-glioma therapies stimulate the onset of
autophagy above baseline levels in GBM cells.

Hypoxic conditions also shift GBM cells towards aerobic
g l y co l y s i s , r a t h e r t h an m i t o chond r i a l o x i d a t i v e
phosphorylation, promoting an acidic environment, potentially
favoring tumor invasion by pH-dependent activation of
proteinases (e.g. heparanases and cathepsins) (43). Heparanase
(HPSE) is an endo-b-D-glucuronidase that has both enzymatic
and non-enzymatic functionalities in a pH-dependent manner.
HPSE expression is intrinsically correlated with GBM
progression, worse prognosis (44), and cell invasion (45).
Intriguingly, autophagy is one of the cellular mechanisms
regulated by heparanase activity in various tumors, including
brain tumors (46). Notably, autophagy induced by starvation in
GBM cells was prevented by the use of a potent heparanase
inhibitor. Moreover, in these cells the pro-tumorigenic function
of heparanase is mediated by autophagy activation, enhancing
chemotherapy resistance in nutrition-stressed environments.
The mechanism underlying heparanase-induced autophagy is
not fully understood but appears to involve mTOR1 inhibition,
which plays a pivotal role in nutrient-sensing and autophagy
regulation in vitro (47).

Cathepsins belong to a class of cysteine proteinases that is
mainly expressed by GSC subpopulations of IDH wild-type
GBM patients (48). Cathepsins can be secreted into the
extracellular space and have an optimum activity on acidic
environments to further activate MMP proenzymes (49), with
have an important role in controlling tumor cell invasion, stem
cell phenotypes (50–53) and tumor progression (54). Cathepsin
D levels, for example, are strongly and positively correlated with
LC3A and LC3B expression in GBM patients (markers for
autophagosome levels) (17). Moreover, inhibition of Cathepsin
D attenuates autophagy, leading to increased radiosensitivity in
GBM cells. In radioresistant cells, Cathepsin D has been
positively correlated with LC3-II and negatively correlated with
p62 (55), a protein that targets specific cargoes for autophagy
(56). The expression levels of another member of family, the
Cathepsin L, are higher in GBM compared to low-grade gliomas
(57), exerting an important role in migratory phenotype (51, 52,
58, 59) and g-radiation-induced GBM cell invasion (59).
Interestingly, autophagy inhibition by trifluoperazine induces
radiosensitivity in GBM cells mediated by Cathepsin L
downregulation (60).

Interestingly, at PNN (i.e. under physiological hypoxia),
autophagy activation via BNIP3/BNIP3L is a survival
mechanism that promotes GBM progression and resistance to
anticancer therapies in vivo (61). Recently, a global analysis
conducted by Bronisz et al. that included 41 GBM patient’s
cohort identified the autophagy pathway as the unique de-
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regulated pathway in PNNs of primary GBMs (32). These
analyses indicate that poorly perfused tumor regions are likely
to have increased baseline autophagic levels and, therefore, under
hypoxic conditions, the increased autophagic flux may play an
adaptive role (62, 63). Under hypoxia, autophagy is activated by
BECN1 phosphorylation via the HIF-1a/BECN1 signaling
pathway, one of the initial steps in the assembly of
autophagosomes from pre-autophagic structures (64–66).
Moreover, PNN in GBM disease also show the overexpression
of interleukin 6 (IL6), an inflammatory cytokine that is essential
for hypoxia-induced autophagy and induction of invasive
programs in GBM cells (67–71). At this point, is important to
notice that under in vitro prolonged hypoxic stress (48-72h, <1%
pO2), the gene BNIP3 (Bcl-2/adenovirus E1B 19kDa-interacting
protein 3), a pro-apoptotic Bcl-2 family member, is upregulated,
leading to hypoxia-dependent ACD in GBM cells (72).
Mechanistically, BNIP3 upregulation releases BECN1 from the
complexes with Bcl-2 or Bcl-xL, allowing BECN1 to activate
autophagy (73). It becomes especially critical to note that the
nature of the autophagic response to hypoxia - a cytoprotective
or cytotoxic output - depends on the extent and duration of the
microenvironmental stressor, on the experimental design, as well
as, on the genetic background of the tumor cells.

Alternative forms to GBM cells to adapt or to avoid poor
oxygenation and hostile microenvironment are through the
vasculogenic mimicry (VM) phenomenon (74) and the
activation of migratory programs by altering the composition
of the TME (75–77). VM represents an impressive example of a
higher phenotype flexibility of GBM cells. GBM cells capable of
VM formation organize themselves into functional vascular-like
structures, ensuring tumor blood supply independently of
normal blood vessels or angiogenesis. In this scenario, it has
been shown that VM formation in glioma patients was associated
with the expression of BECN1 (16).

Moreover, as a part of adaptive programs, VM formation is
also promoted by Bevacizumab (BVZ)-induced autophagy in
GSC, an anti-VEGF antibody that received accelerated approval
by the FDA to treat recurrent GBM (78), which is associated with
tumor resistance to antiangiogenic therapy (see below) (79). VM
was also associated with high expression of HIF-1a (80) and
upregulation of the IL-8/CXCR2 pathway (81). It is also
conceivable that autophagy may contribute to the increased
production of multiple pro-invasive cytokines, including
interleukin-6 (IL-6) and -8 (IL-8), which, in turn, may
reactivate a pro-invasive and GSC transcriptional programs,
leading GBM cells to the “go” state, allowing them to migrate
away from cytotoxic niches towards a support ive
microenvironment (69, 82).

Decorin (DCN), a member of the small leucine-rich
proteoglycans (PGs) family, has a vital role in the hypoxia-
dependent activation of autophagy and anti-glioma therapy
resistance, mainly due to their binding to VEGFR2 expressed
by vECs, particularly in PNNs of glioma samples, or with the
binding to c-Met and EGFR receptors expressed by GBM cells
(83, 84). High levels of c-Met or DCN correlate with shorter
progression-free survival (PFS) and overall survival (OS) in
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patients with GBM (85–88). The high-affinity DCN/receptor
interaction leads to increased expression of paternally expressed
gene 3 (Peg3), that physically associates with BECN1, recruiting
LC3 into autophagosomes (89, 90). Complementarily, in GSC-
enriched environments, GBM cells produce a high amount of
PGs, such as DCN and Lumican, promoting chemotherapy
resistance and cell survival (91). Curiously, as observed in
several types of non-central nervous system tumors (92, 93),
soluble DCN potently induces autophagy in GBM cells and
contributes to an impairment of GBM cell migration in vitro
experiments (94). Other extracellular matrix (ECM) proteins,
such as endostatin, perlecan, and endorepellin, can influence
tumor progression by regulating autophagy levels in endothelial
cells, controlling vessel formation and neo-angiogenesis in
response to hypoxia (95, 96).
AUTOPHAGY ACTIVATION AS A
RESPONSE TO PHYSIOLOGICAL SIGNALS

Once PNN and other stress signals reactivate migration
programs to drive plasticity and invasiveness in GBM cells,
invasive growth along specific anatomical structures, especially
at the vasculature and white matter tracts, is regarded as the main
cause of poor therapeutic outcome of patients with GBMs. The
migration occurs at perivascular niches (PVN), besides PNN,
and considered the preferred and fastest route for GBM cell
invasion through brain tissue (97). PVNs are fluid-filled spaces,
continuous to the subarachnoid space, surrounding all blood
vessels in the brain, including capillaries and arterioles. Based on
histological information and in situ experiments, a widely
accepted idea is that GBM cells actively seek out PVNs and
migrate along with them (98, 99). For example, bradykinin,
produced by cerebral vascular endothelial cells (vEC), acts as a
strong chemotactic signaling peptide, guiding GBM cells toward
PVN. Therefore, when injected into mice brain, the vast majority
(over 85%) of human GBM cells move into contact with a blood
vessel (100). At PVN, cerebral vECs are in the closest proximity
to tumor cells. This heterotypic interaction induces a GSC
transdifferentiation, which is critical for the malignant traits of
the disease and supports the notion that stemness is a temporary
reversible trait of GBM cells. The GSC phenotype is maintained
by vECs via mediators, such as nitric oxide (NO), cyclic
guanosine monophosphate (cGMP), and Notch1 ligands (97,
101–104). The stemness phenotype has been recently associated
to autophagy activation and is one of the most important
processes in the PVN responsible for the maintenance of GSC
status besides PNN (105, 106). Additionally, the interaction
between GBM cells and pericytes at PVN leads to chaperone-
mediated autophagy in normal pericytes, building an
immunosuppressed microenvironment that induces GSC
phenotype and tumor growth (107). Interestingly, activation of
protective autophagy in cerebral vECs is one of the essential
physiological processes responsible for maintaining vascular
homeostasis, and playing an important role in vECs
proliferation, migration, and tube formation (108, 109). Other
Frontiers in Oncology | www.frontiersin.org 4342
types of vEC-derived molecules also promote autophagy and
correlate with stemness in GBM cells. For example, osteopontin
(OPN), derived from the vEC, plays an oncogenic role and
initiates a stem-promoting cascade and enhances autophagy
through an integrin-CD44 dependent activation of HIF genes
at PVNs (110, 111). OPN-elicited autophagy could promote
cancer cell survival, resistance to chemotherapy drugs, and has
been associated with increased glioma grade and migratory
potential (112).

The melanoma-differentiation associated protein 9 (MDA-9,
also called Syntenin-1) is another ECM protein that sponsors
tumor invasion mainly by regulating the cell surface receptor
Syndecan (113). In GBM, MDA-9 expression is an important
regulator of cell invasion (114), stemness phenotype, and
survival of GSCs through STAT3 and Notch1 pathways,
respectively (115). Interestingly, the MDA-9 is responsible for
activating protective autophagy in GSCs in vitro through the
EGFR/FAK and EGFR/PKC axis, inhibiting anoikis (a
s u s p en s i on - i ndu c ed f o rm o f a pop t o s i s ) b y t h e
hyperphosphorylation of Bcl-2 (116). In this scenario,
autophagy often is activated in these cells as a compensatory
pro-survival adaptation to detachment stress. In such cases,
autophagy precedes (and usually avoids) anoikis by removing
pro-apoptotic proteins in the cytosol. For example, depletion of
ATG5 or ATG7 inhibits detachment-induced autophagy and
enhances anoikis (117, 118). A higher expression of MDA-9 has
been linked to higher glioma grade and short-term
survival (119).
AUTOPHAGY ACTIVATION AS A
RESPONSE TO ANTI-GLIOMA THERAPIES

RT plus concomitant and maintenance TMZ is the gold standard
treatment and represent a major advance in the field of therapy
for high-grade gliomas (7, 120). The addition of BVZ to standard
treatment revealed an improvement in progression-free interval
but had no effect on OS (121). Intriguingly, virtually all glioma
therapies, including RT, TMZ and/or BVZ, are stronger inducers
o f au tophagy pa thway : s e v e r a l p r e - c l i n i c a l and
clinicopathological studies indicate that increased autophagy
activity help to desensitize GBM cells to treatment and it is
linked with poor prognosis in different cancers (21). Inversely,
others observations shown that excessive intensification of
autophagic process lead to cell exhaustion and death (26, 62,
72, 122). So, despite the potential ‘dual’ role of autophagy has
been clearly observed in cell-based studies, in ‘real’ disease, the
predominant data conduct to the idea that therapy-induced
autophagy is acting as an adaptive response and a protective
mechanism in GBM cells instead of eliciting cell death.

The study of Natsumeda et al. (2011) is probably the first to
show the induction of autophagy by TMZ in glioma cells and in
reactive astrocytes of glioma patients by immunohistochemical
analysis, indicating some type of stress response in tumor and
normal cells (22). The addition of chloroquine (CQ) and its
derivative hydroxychloroquine (HCQ) – both inhibitors of
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autophagy by blocking autophagosome fusion and degradation -
to TMZ-treated glioma cells attenuates autophagy flux, induces
accumulation of the proautophagy proteins (LC3-II) and
promotes endoplasmic reticulum stress and cleavage of PARP
(a marker of apoptosis) (123). Many other studies observed that
blocking autophagosome formation enhances TMZ cytotoxicity,
indicating that the autophagy pathway may protect GBM cells
from TMZ-induced cytotoxicity (25, 123). For example, it has
been demonstrated that CQ plus TMZ significantly increased the
amounts of cleaved PARP (a marker for apoptosis) over those
cells treated with TMZ alone. The pharmacological inhibition of
autophagy by CQ also negatively dictates the migratory capacity
of GBM cells, corroborating the role of autophagy with other
aspects of adaptive phenotype and cell plasticity (124). While
other authors have suggested that autophagy is the main
component of TMZ-induced cytotoxicity and that inhibition of
the autophagy significantly influences the antitumor effect of
TMZ in vitro (20).

Ionizing radiation is the gold-standard adjuvant treatment for
GBM. Radiotherapy also results in enhanced autophagy in GBM
cells in vitro (125). When irradiated, many GBM cells undergo
cell death by apoptosis, whereas GBM cells that do not undergo
apoptosis activate autophagy, suggesting a protective mechanism
(24, 125).

It has also been demonstrated that CQ treatments can increase
radiosensitivity in GBM cells (25). Moreover, CQ worked
synergistically with radiotherapy for induction of apoptosis in
GSC; thereby acting as a protective mechanism (126). Another
study showed that DNA-protein kinase-deficient GBM cells (DNA-
PK), an enzyme that plays a critical role in DNA double-strand
breaks repair, underwent massive ACD even after low doses of g-
radiation in cell lines in vitro. Intact DNA-PK pathway prevented
ACD, but cells still exhibited a low apoptotic tendency, indicating
that genetic background takes a leading role on the sensitivity of
treatment and cell fate determination (127).

Another example of therapy-induced autophagy occurs after
the use of antiangiogenic therapies in GBM. The addition of BVZ
to conventional chemoradiation improved the PFS but did not
affect OS (121). At the TME level, BVZ induces a hypoxic niche
that results in protective autophagy sponsoring GBM cell
resistance and survival. Alternatively, BVZ induced autophagy
directly in GBM cells by suppressing the Akt-mTOR signaling
pathway (128). Furthermore, BVZ-mediated autophagy is also
dependent on interferon regulatory factor 1 (IRF1) expression in
gliomas (129). Moreover, GBM cells expressing the stem cell
markers CD133 and Sox2, and residing in the PVN, internalize
BVZ through micropinocytosis, leading to autophagy activation
and cell survival (130). Autophagy inhibition by ATG7 silencing
rescued GBM sensitivity to BVZ treatments (131).
AUTOPHAGY ACTIVATION AS A
RESPONSE TO INTERNAL STIMULI

Autophagy in GBM cells is triggered in response to external or
internal stimuli. Internal stimuli is manifested directly by
Frontiers in Oncology | www.frontiersin.org 5343
alterations in ATG or indirectly by oncogenic proteins
commonly found aberrantly expressed in GBM and lower-
grade gliomas. The following subsections cover the most
important genetic events for gliomagenesis and their specific
genetic aberrations associated with autophagy activation.

There are 16 known ATG in humans, four of which (ATG2B,
ATG5, ATG9B and ATG12) are frequently mutated in gastric
and colorectal cancers, and in hepatocellular carcinoma, and
may be causally associated with cancer development by
deregulating the autophagy process (132, 133). Large-scale
genomic analysis indicates that core autophagy genes are
generally not mutated in patients of 11 human cancers,
including GBM, suggesting that the autophagy machinery is
functional in cancer types investigated (134, 135). At a clinical
perspective, several ATG signatures have been emerging as
important prognostic factors for GBM patients, and autophagy
high scores have been related to worse outcomes (136–138). For
example, Wang and colleagues described that a robust 14-mRNA
prognostic signature was an independent prognostic factor
associated with OS in GBM’s patients (HR=1.9, 95% CI =
1.013-3.644, p value = 0.045) (136). Moreover, several other
research groups have correlated the higher expression of ATGs
with glioma aggressiveness, including patient’s poor survival and
tumor progression (139–143). Despite their prognostic
relevance, for future clinical applications, it is also important to
integrate with other types of s ignatures (such as
protein signatures).

Large-scale genomic studies showed that primary GBM arises
from defects in three main molecular signaling pathways
involving p53, Rb, and phosphoinositide 3-kinase (PI3K)
(144). The phosphatidylinositol 3-kinase (PI3K)/Akt/
mammalian target of rapamycin (mTOR) cascade is recognized
as an important sensor of nutrient/growth factor availability and
a major pathway regulating autophagy in human cancers. In a
permissive microenvironment, active PI3K/Akt/mTOR cascade
constitutively suppresses autophagosomes biogenesis by
inactivating the ATG1/ULK1 complex or by sequestration and
inactivation of BECN1, both considered key initiators of the
autophagic pathway (145, 146). Inhibitors of Akt/mTOR activity,
such as rapamycin analogs, intensify the autophagic process
(147). However, under stressful conditions, PI3K/Akt/mTOR
cascade is normally inactivated through extracellular signals,
like intermittent hypoxia and depletion of nutrients, leading to
the extrinsic activation of protective autophagy. Nevertheless, in
GBM samples, activation of PI3K/Akt/mTOR cascade is
observed in almost 90% of the cases, and caused by the
overexpression of upstream activators, like epidermal growth
factor receptor (EGFR) or c-Met, activating mutations of PI3CA
(p110) or PIK3R1 (P85) (148–150), and inactivating mutations
in the phosphatase and tensin homolog (PTEN), a negative
regulator of PI3K activity (loss-of-function mutations in PTEN
are present in almost 60-85% of GBMs) (151, 152). Moreover,
the use of a potent PI3K inhibitor promotes autophagy activation
at the expense of invasion and angiogenesis impairment in GBM
cells. Furthermore, PI3K inhibition also restrained tumor growth
and significantly prolonged mouse survival (153). In addition,
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GBM cells harboring mTOR hyper-activation, showed an
increment of autophagy after the use of rapamycin (154).

The deregulation of the tumor protein p53 (TP53) pathway
accounts for approximately 85% of GBMs, including alterations
on CDKN2A, MDM2 and TP53 genes (155). Members of this
signaling pathway have been described as modulators of
migration, invasion, proliferation, and stemness, leading to
poor prognosis in GBM patients (155). Regarding autophagy
activation, nuclear p53 induces the expression of the ATGs:
DRAM, and Sestrins 1/2. Indeed, DRAM1 is considered the
regulator of the autophagy activation mediated by nuclear p53
(156–158), promoting migration and invasion of glioma stem
cells (141). Interestingly, cytoplasmic p53 inhibits autophagy, but
external stressors, such as nutrition starvation, induces the
destruction of cytoplasmic p53, sustaining autophagy
activation (159, 160). More recently, it has been shown that
combined therapy with TMZ and CQ synergistically reduces cell
proliferation and enhances apoptosis in p53-wild type cells.
Overexpression of mutant p53 abolishes the autophagic
vacuoles (161).

The Retinoblastoma gene (RB1) is a tumor suppressor gene
commonly mutated or deleted in GBM and correlated with lower
survival rates in astrocytomas patients (162, 163). Functionally,
Rb inhibits cell cycle progression and promotes cell survival by
controlling the function of the E2F transcription factor (164).
Besides cell cycle transition control, Rb also influences tumor cell
differentiation, senescence, apoptosis, and autophagy (165).
Indeed, Rb downstream effector E2F1 directly mediates the
expression of the autophagy-related genes LC3, ATG1, and
DRAM (166). In GBM cells, it has been shown that Rb binds
to E2F, repressing its activity, and leading to autophagy
induction. Indeed, Rb activity or E2F1 silencing induced
autophagic flux through increased autophagosome formation
(167). Interestingly, while the binding of Rb to E2F promotes the
activation of autophagy, Rb phosphorylation represses its
binding to E2F and leads to apoptosis activation (168). In this
scenario, it has already been shown that the Rb-E2F axis
regulates the expression of the BNIP3 gene, an essential gene
that mediates hypoxia-induced autophagy, promoting
autophagosome formation in nutrient-deficient environments
(169). Rb-induced autophagy is considered a resistance
mechanism in GBM cells treated with etoposide or cisplatin
(170, 171).

The most relevant and frequent oncogenic alterations in
GBM patients involve the Epidermal growth factor receptor
(EGFR), comprising 57% of patients. These alterations include
mutations, rearrangements, amplifications, and splicing variants
that lead to enhanced tumor growth, angiogenesis, survival, and
stemness (148, 172). Intriguingly, due to the functional impact of
EGFR alterations on tumor aggressiveness, lower- grade gliomas
harboring EGFR amplification are considered “GBM-like
tumors” due their aggressive phenotypic behavior (173).
Beyond the known pathological role of EGFR on GBMs, their
functions in autophagy regulation are emerging, indicating that
it directly acts as a controller of the autophagic flux by mTOR
signaling modulation (174, 175). EGFR-mediated autophagy
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exerts relevant roles in gliomagenesis, tumor progression, and
therapy resistance (176). Clinically, GBM patients with low levels
of EGFR and high expression of BECN1 have a median overall
survival of 30 months, presenting a favorable response to
radiotherapy (177). Therapeutically, the combination of
tyrosine kinase inhibitors (TKI), such as erlotinib, with CQ
increases the antineoplastic effect of the TKI on apoptosis-
resistant GBM cells (178). Surprisingly, another EGFR
inhibitor, called BIBU, impaired Akt and STAT3 activation,
induced apoptosis death, and activated protective autophagy
(179). The constitutively active mutant allele of EGFR, known
as EGFRvIII is an important mediator of autophagy (180). It
occurs in 20–30% of all human GBM, making it the most
common EGFR mutant in GBM (181, 182). EGFRvIII-
expressing GBMs are intrinsically resistant to apoptosis
induced by radio- and chemotherapy (183, 184). Interestingly,
these tumors have autophagy over-activation under hypoxic
conditions and patients benefit from the use of CQ (180).
Intriguingly, GBM cells harboring EGFRvIII alterations are
more sensitive to the pharmacological inhibition of mTOR (185).

c-MET (also called HGFR) is a type of Receptor Tyrosine
Kinase mutated in 6% and amplified in 4% of patients with GBM,
leading to constitutive activity. Patients harboring c-MET gain-
of-function alterations present a shorter survival and poor
response to treatment (186). The enhancement of c-Met
activity induces GBM cell survival, proliferation, invasion,
angiogenesis, and stemness (187). The intracellular pathway
triggered by c-MET is PI3K/Akt signaling. Additionally, cell
invasion mediated by c-MET relies on Focal Adhesion Kinase
(FAK) activity (188). Interestingly, c-MET expression was
correlated with autophagy activation in GSCs, positively
regulating their migratory and invasive capacity (141). c-MET
expression abrogation by epigenetic silencing in glioma cells
suppresses Akt pathway activation and up-regulates the
expression of the autophagy-related protein Atg5, resulting in
tumor growth reduction (189).

Isocitrate dehydrogenase 1 and 2 (IDH1/2) mutations are the
most important molecular markers in diffuse gliomas due to
their high impact on patient survival improvement and tumor
development (190, 191). IDH1 mutations (IDHmut) are present
in more than 80% of low-grade gliomas (grades II-III) and in
secondary GBMs, but are rare in primary GBMs (190, 192).
Mutations in IDH2 have been found in fewer than 3% of glial
tumors. Patients with lower-grade gliomas (grades II-III) and
glioblastoma show significantly longer OS in the presence of
IDH1 or IDH2 mutations (192). The prognostic importance of
IDHmutation is independent of other known prognostic factors,
including age, grade, and MGMT methylation status. IDH
mutations promote a metabolic reprogramming mainly due to
the accumulation of the oncometabolite 2- hydroxyglutarate (2-
HG), which, in turn, induces the epigenetic silencing of several
genes from the glycolytic pathway (193, 194). Moreover,
IDH1mut is associated with a distinct hypoxia/angiogenesis
transcriptome signature and stabilization of HIF-1a levels in
glioma cells (195), important autophagy regulators (see above).
Recently, four different groups identified distinct autophagy
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signatures with prognostic value in GBMs. High autophagy risk
signatures were correlated with patients’ worse outcomes.
Besides the absence of gene intersection between the
signatures, all four achieve the same results: patients with
IDHmut tumors presented a lower autophagy-related risk
signature compared to IDH wild-type (IDHwt) gliomas,
denoting an increased autophagy activation in IDHwt GBMs
(136, 137, 196, 197). In the same direction, beyond the gene
signatures, it has been shown that higher expression levels of the
ATG proteins: LC3, Beclin-1, and p62 are more prevalent in
IDHwt gliomas in than IDHmut gliomas (139).

Promoter methylation of the O-6-Methylguanine-DNA
Methyltransferase (MGMT) gene is a prognostic marker in
patients with glioma because MGMT methylation leads to better
response to alkylating agents, such as TMZ (198). Indeed, patients
harboring MGMT-methylated GBMs had a 10-month and 4-
month higher median overall and PFS, respectively, compared
with MGMT-non-methylated patients (199). Interestingly, two
different groups showed that MGMT-methylated gliomas
presented a lower autophagy risk score compared with MGMT-
non-methylated patients (136, 137). In agreement with these data,
GBM cell lines that naturally do not express MGMT, highly activate
autophagy after TMZ treatment. However, when cells were stably
transfected with MGMT, the number of autophagic vacuoles was
abrogated after TMZ treatment (122).

Finally, beyond the role of oncogenes, tumor suppressor genes
and their downstream signaling molecules, the control of autophagy
activation in GBM also relies on the signaling pathways involved in
stemness (200). These pathways are mainly involved in the
acquisition and maintenance of the GSC phenotype, including
Notch, Wnt/b-catenin, and Hedgehog pathways. In gliomas, the
activation of Notch signaling correlates with more aggressive tumor
phenotypes (201). Besides activation of the Notch pathway, its
members and ligands are rarely mutated in GBMs (202). The
connection between the Notch pathway and autophagy was first
described in U87MG and U251 GBM cell lines. When the Notch1
receptor was genetically silenced in these cells, they showed reduced
proliferation and viability. GBM growth impairment was correlated
with the augmented expression of the autophagy-related proteins
Beclin-1 and LC3-II in NOTCH1-silenced cells (203).
Complementarily, when autophagy was induced in GSCs by
mTOR inhibition, the Notch1 receptor was degraded. Indeed, the
impairment of Notch1 signaling induced by autophagy activation
led to a decreased tumorigenicity and self-renewal capacity of GSCs
(204). Interestingly, the degradation of Notch1 by autophagy is
mediated via autophagosome-precursor vesicles positively
expressing the autophagy-related protein ATG16L1 (205), and by
the direct binding of p62 to Notch1 Intracellular Domain (NICD)
(206). In contrast, the pharmacological blockage of Notch1 induces
cytoprotective autophagy in GBM cells. However, when these cells
were exposed to the combination of Notch1 and autophagy
inhibitors, treatment resistance was overcome, thus augmenting
apoptotic cell death (207). Interestingly, Notch1 signals can be
regulated by autophagy activation via ATG16L1-positive
autophagosomes, modulating stem cell development, and
neurogenesis (205).
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Wnt signaling plays a critical role in GSC phenotype,
therapeutic resistance and invasiveness (208, 209). Mutations
in the members of Wnt signaling pathway are not common, but
epigenetic alterations are frequently observed in GBMs (210).
The inhibition of Wnt signaling by the IWR-1 inhibitor leads to
an augment of the expression of the autophagy-related proteins,
LC3-II, and Beclin-1 (211). Complementarily, another group
showed that the silencing of the intracellular players of Wnt
signaling, TCF4, and CTNNB1/b-catenin, induced the up-
regulation of SQSTM1/p62, increasing the autophagy flux.
Interestingly, Wnt pathway inhibition sensitizes GBM cells to
autophagy inhibition with CQ (212). Regarding chemotherapy
response to TMZ, the blocking of theWnt/b -catenin pathway by
the activity of the DAB2IP protein is responsible for TMZ
resistance through the expression of the autophagy-related
protein ATG9B. Interestingly, the combination of TMZ with a
Wnt signaling inhibitor can overcome this resistance (213).
Indeed, autophagy activation mediated by nutrient starvation
in GBM cells down-regulates several mediators Wnt signaling,
including activated b-catenin (214).

Hedgehog (Hh) signaling enhances the migratory and invasive
capacity of cells through the activation of PI3K/Akt pathway in
GBM cells (215). Moreover, it stimulates the growth and
tumorigenicity of gliomas, mainly by controlling stemness status
(216). Besides the lack of mutations on Hh pathway components in
GBMs, it has been shown that the glioma-associated oncogene
homolog 1 (GLI1) zinc-finger transcription factors, terminal
effectors of the Hh pathway, presents two tumor-specific splicing
isoforms, which directly influences tumor malignancy (217).
Intriguingly, the activation of Hh signaling is correlated with the
modulation of autophagy in several cancer types. Indeed, the
inhibition of the Hh pathway negatively controls tumor
proliferation by activating autophagy (218). In GBM cells, the use
of GANT-61, a specific inhibitor of Gli1 and Gli2, activates
autophagy, inducing LC3-II expression, and by negatively
modulating the expression of stemness markers and tumor
proliferation (219). Pharmacologically, the use of GANT-61
enhances the cytotoxic effect of TMZ by the increment of acid
vesicles and Beclin-1 expression (220). Furthermore, the regulatory
domain of PTCH1, the main receptor of the Hedgehog pathway,
interacts physically with the autophagy-related protein ATG101 in a
nutrient starvation microenvironment, inhibiting the autophagic
process (221). Additionally, GBM cells overexpressing the stem
marker SOX3 showed an upregulation in Hh pathway activity and
suppression of autophagy, leading to an increment in proliferation
and invasion (222).
THE LAST FRONTIER: THE THERAPEUTIC
POTENTIAL OF AUTOPHAGY INHIBITORS
FOR THE TREATMENT OF GBM

GBM retains a poor prognostic value and remains incurable.
Despite our growing understanding of the mechanisms
underlying drug resistance, the standard therapy has not
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changed over the last 16 years (7). Up to date, no new therapies
improve OS when added to standard therapy, with an exception
for the recent Tumor Treating Fields (TTFields) in GBM (223).
As we see above, under pathophysiological circumstances,
autophagy is a key driver of GBM resistance, allowing cellular
adaptive survival towards extrinsic (e.g. hypoxia, drugs or
ionizing radiation) or intrinsic (genetic aberrations) stress
stimuli (Figure 1). Accordingly, from a standpoint of treating
GBM disease, targeting autophagy emerge as a new potential
therapy and it has been considered a potential candidate to
improve the treatment of patients with GBM (224, 225). In this
scenario, the use of the autophagy inhibitors, such as CQ or
HCQ, has been explored in clinical studies. Those trials mainly
focused on the therapeutic potential of autophagy inhibition
combined to standard therapies for GBM patients.

A small phase III trial observed a median overall survival of 24
months for patients treated with CQ plus conventional therapy
(i.e. surgery, radiotherapy, and carmustine-based chemotherapy)
compared to 11 months for patients treated with conventional
therapy (226). In a single institutional study with 123 patients,
the same authors showed that the addition of CQ to surgery,
radiotherapy, and carmustine-based chemotherapy consistently
FIGURE 1 | Autophagy can be triggered by intrinsic and/or extrinsic GBM cells signa
resistance to therapies. Thus, autophagy may function as a mechanism of tumor cell
activating autophagy in GBM consist of specific gene expression levels alterations (lik
rise to the active mutant EGFRvIII) and/or specific signaling pathways perturbations (s
activation in GBM cells are: 1) the perinecrotic niches (PNN), composed by highly pro
cellular adaptive response to hypoxia; 2) the perivascular niche (PVN), where the vasc
stemness phenotype of those tumor cells; 3) the brain extracellular matrix (bECM), wh
which can activate autophagy as a cytoprotective mechanism.
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exerts an adjuvant effect, adding more than 13 months in
patients’ median survival in comparison to control patients
(227). However, despite the favorable results in GBM patients
treated with CQ combined to surgery, radiotherapy, and
carmustine, a phase I/II trial combining HCQ with
radiotherapy and TMZ-based chemotherapy showed that the
maximum tolerated dose of HCQ was unable to consistently
inhibit autophagy and showed no improvement in patient OS
(228). To transpose those issues, a new phase I/II trial
(NCT02432417) was designed to compare patients treated with
concurrent ionizing radiation and TMZ- based chemotherapy
with patients treated with this combination plus a most
appropriate CQ dose. Indeed, recent data published by the
group showed that 200 mg of CQ is a feasible dose to use in
those patients, since 400 mg of CQ induced several severe
adverse events. Moreover, preliminary data analysis showed an
improvement of more than 9 months in the OS of GBM patients
harboring EGFRvIII alterations compared with patients without
this genetic variant (229). The International Cooperative Phase
III Trial is an active clinical trial that evaluates the use of CQ or
Valproic acid as an adjuvant to conventional therapy in high-
grade gliomas (NCT03243461).
ls, contributing to tumor cell proliferation (grow state), invasion (go state) and
survival and progression in a hostile microenvironment. The intrinsic signals
e in the cMET gene), mutations (like the mutation in the EGFR gene that gives
uch as in the Wnt pathway). The extrinsic signals associated with autophagy
liferative GBM cells and where the autophagy activation may function as a
ular endothelial cells can interact with the GBM ones, inducing autophagy and a
ose components may regulate autophagy; and 4) the anticancer therapies,
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Due to these positive results in the early clinical trials, it is
essential to invest in studies to evaluate CQ effects on GBM
patients’ survival using larger cohorts. Moreover, it is also
necessary to determine HCQ efficacy and tolerated doses and
invest in discovering new drugs with similar action mechanisms.
FUTURE DIRECTIONS: CROSSING THE
VALLEY OF DEATH

The discrepancy between pro- and anti-tumor functions of
autophagy, modulating GBM cell plasticity or alternative
mechanism of cell death, emphasizes a question that has
emerged as critical in translational science: how wide gap exists
between basic and clinical biomedical data? The establishment of
interdisciplinary research institutes stimulating collaborations
between clinicians, physician-scientists, and basic biologists are
critical to bring these areas together, but the importance of the
critical interpretive reviews of literature data is also fundamental.

By examining carefully the literature we realize that
explanations for the controversies of whether the autophagy
pathway promotes survival or death are still elusive. Sometimes
the balance between autophagic-dependent pro-survival or pro-
death signals depends greatly on the quantitative relationship
between them: over to moderate level of autophagy activation is
cytoprotective, whereas high levels of autophagy are cytotoxic.
Sometimes there are even conflicting reports with the same drug
treatment in the same experimental model. Pre-clinical and
clinical data indicate that autophagy is an emblematic example
of a rescue pathway that contributes profoundly to a pro-tumoral
adaptive response. On the other hand, high levels of activation
lead to cytotoxic autophagy, which seems to be exclusively
induced by excessive and homogeneous stress signals from in
vitro cell-based studies.

From a standpoint of understanding the real GBM disease,
the spatial and temporal heterogeneity of the external and
internal stimuli must be considered. Steep gradients in pO2,
pH, nutrient availability and drug perfusions ranging from
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pathological/therapeutic conditions to those found in normal
tissues, added to the high levels of genetic intratumoral
heterogeneity, are hallmark features of GBM. Thus, it implies
that the levels of autophagy activation may also show extensive
spatial heterogeneity in subpopulations from the same tumor
determining divergent cell fates.

Despite the ability of many compounds, like CQ and HCQ,
to inhibit autophagy and demonstrated good efficacy in
preclinical studies, clinical trials for GBM continue showing no
significant survival or clinical benefit, due to sparse anti-glioma
activity or severe side effects. Thus, the last frontier to test
the therapeutic potential of autophagy pathway in GBM
awaits the development of compounds that can achieve more
consistent inhibition.

Finally, only combinatorial therapy targeting autophagy with
cytotoxic drugs in the adjuvant setting for GBM patients,
associated with the development of less toxic and higher
specific autophagy inhibitors, may inhibit adaptive response
and enhance the sensibility of glioma cells to conventional
therapies. In the context of an incurable human disease,
pharmacological inhibition of autophagy would represent a
promisor therapeutic target for radio- and chemosensitization
of GBM cells.
AUTHOR CONTRIBUTIONS

EHFJ, MB, and LTI wrote the review and designed the figures.
FBF and AAC critically revised the final version and ETC edited
and supervised the whole work. All authors contributed to the
article and approved the submitted version.
FUNDING

This work was supported by grants from FAPESP (16/07463-4,
16/06857-9), Ludwig Institute for Cancer Research and Hospital
Sírio-Libanês.
REFERENCES

1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D,
Cavenee WK, et al. The 2016 World Health Organization Classification of
Tumors of the Central Nervous System: A Summary. Acta Neuropathol
(2016) 131(6):803–20. doi: 10.1007/s00401-016-1545-1

2. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al.
Malignant Astrocytic Glioma: Genetics, Biology, and Paths to Treatment.
Genes Dev (2007) 21(21):2683–710. doi: 10.1101/gad.1596707

3. Lowe S, Bhat KP, Olar A. Current Clinical Management of Patients With
Glioblastoma. Cancer Rep (Hoboken) (2019) 2(6):e1216. doi: 10.1002/
cnr2.1216
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N, et al. Autophagy Inhibition Cooperates With Erlotinib to Induce
Glioblastoma Cell Death. Cancer Biol Ther (2011) 11(12):1017–27.
doi: 10.4161/cbt.11.12.15693

179. Ghildiyal R, Dixit D, Sen E. EGFR Inhibitor BIBU Induces Apoptosis and
Defective Autophagy in Glioma Cells. Mol Carcinog (2013) 52(12):970–82.
doi: 10.1002/mc.21938

180. Jutten B, Keulers TG, Peeters HJM, Schaaf MBE, Savelkouls KGM, Compter
I, et al. EgfrvIII Expression Triggers a Metabolic Dependency and
Therapeutic Vulnerability Sensitive to Autophagy Inhibition. Autophagy
(2018) 14(2):283–95. doi: 10.1080/15548627.2017.1409926

181. Sugawa N, Ekstrand AJ, James CD, Collins VP. Identical Splicing of Aberrant
Epidermal Growth Factor Receptor Transcripts From Amplified Rearranged
Genes in Human Glioblastomas. Proc Natl Acad Sci USA (1990) 87
(21):8602–6. doi: 10.1073/pnas.87.21.8602

182. Frederick L, Wang XY, Eley G, James CD. Diversity and Frequency of
Epidermal Growth Factor Receptor Mutations in Human Glioblastomas.
Cancer Res (2000) 60(5):1383–7.

183. Nagane M, Levitzki A, Gazit A, Cavenee WK, Huang HJ. Drug Resistance of
Human Glioblastoma Cells Conferred by a Tumor-Specific Mutant
Epidermal Growth Factor Receptor Through Modulation of Bcl-XL and
caspase-3-like Proteases. Proc Natl Acad Sci USA (1998) 95(10):5724–9.
doi: 10.1073/pnas.95.10.5724

184. Chakravarti A, Chakladar A, Delaney MA, Latham DE, Loeffler JS. The
Epidermal Growth Factor Receptor Pathway Mediates Resistance to
Sequential Administration of Radiation and Chemotherapy in Primary
Human Glioblastoma Cells in a RAS-dependent Manner. Cancer Res
(2002) 62(15):4307–15.

185. Gini B, Zanca C, Guo D, Matsutani T, Masui K, Ikegami S, et al. The mTOR
Kinase Inhibitors, CC214-1 and CC214-2, Preferentially Block the Growth of
EGFRvIII-activated Glioblastomas. Clin Cancer Res (2013) 19(20):5722–32.
doi: 10.1158/1078-0432.Ccr-13-0527

186. Lee JK, Joo KM, Lee J, Yoon Y, Nam DH. Targeting the Epithelial to
Mesenchymal Transition in Glioblastoma: The Emerging Role of MET
Signaling. Onco Targets Ther (2014) 7:1933–44. doi: 10.2147/ott.S36582
Frontiers in Oncology | www.frontiersin.org 14352
187. Cheng F, Guo D. MET in Glioma: Signaling Pathways and Targeted
Therapies. J Exp Clin Cancer Res (2019) 38(1):270. doi: 10.1186/s13046-
019-1269-x

188. Cruickshanks N, Zhang Y, Yuan F, Pahuski M, Gibert M, Abounader R. Role
and Therapeutic Targeting of the HGF/MET Pathway in Glioblastoma.
Cancers (Basel) (2017) 9(7):87. doi: 10.3390/cancers9070087

189. Lee JS, Oh E, Yoo JY, Choi KS, Yoon MJ, Yun CO. Adenovirus Expressing
Dual c-Met-specific shRNA Exhibits Potent Antitumor Effect Through
Autophagic Cell Death Accompanied by Senescence-Like Phenotypes in
Glioblastoma Cells. Oncotarget (2015) 6(6):4051–65. doi: 10.18632/
oncotarget.3018

190. Cohen AL, Holmen SL, Colman H. IDH1 and IDH2 Mutations in Gliomas.
Curr Neurol Neurosci Rep (2013) 13(5):345. doi: 10.1007/s11910-013-0345-4

191. Barthel FP, Johnson KC, Varn FS, Moskalik AD, Tanner G, Kocakavuk E,
et al. Longitudinal Molecular Trajectories of Diffuse Glioma in Adults.
Nature (2019) 576(7785):112–20. doi: 10.1038/s41586-019-1775-1

192. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1
and IDH2 Mutations in Gliomas. N Engl J Med (2009) 360(8):765–73.
doi: 10.1056/NEJMoa0808710

193. Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, et al. IDH Mutation in
Glioma: Molecular Mechanisms and Potential Therapeutic Targets. Br J
Cancer (2020) 122(11):1580–9. doi: 10.1038/s41416-020-0814-x

194. Braun Y, Filipski K, Bernatz S, Baumgarten P, Roller B, Zinke J, et al. Linking
Epigenetic Signature and Metabolic Phenotype in IDH Mutant and IDH
Wildtype Diffuse Glioma. Neuropathol Appl Neurobiol (2020) 47(3):379–93
doi: 10.1111/nan.12669

195. Kickingereder P, Sahm F, Radbruch A, WickW, Heiland S, Deimling A, et al.
IDH Mutation Status is Associated With a Distinct Hypoxia/Angiogenesis
Transcriptome Signature Which is non-Invasively Predictable With rCBV
Imaging in Human Glioma. Sci Rep (2015) 5:16238. doi: 10.1038/srep16238

196. Fan Y, Peng X, Li B, Zhao G. Development of Autophagy Signature-Based
Prognostic Nomogram for Refined Glioma Survival Prognostication. BioMed
Res Int (2020) 2020:1872962. doi: 10.1155/2020/1872962

197. Xu Y, Li R, Li X, Dong N, Wu D, Hou L, et al. An Autophagy-Related Gene
Signature Associated With Clinica l Prognosis and Immune
Microenvironment in Gliomas. Front Oncol (2020) 10:571189.
doi: 10.3389/fonc.2020.571189

198. Binabaj MM, Bahrami A, ShahidSales S, Joodi M, Joudi Mashhad M,
Hassanian SM, et al. The Prognostic Value of MGMT Promoter
Methylation in Glioblastoma: A Meta-Analysis of Clinical Trials. J Cell
Physiol (2018) 233(1):378–86. doi: 10.1002/jcp.25896

199. Alnahhas I, Alsawas M, Rayi A, Palmer JD, Raval R, Ong S, et al.
Characterizing Benefit From Temozolomide in MGMT Promoter
Unmethylated and Methylated Glioblastoma: A Systematic Review and
Meta-Analysis. Neurooncol Adv (2020) 2(1):vdaa082. doi: 10.1093/noajnl/
vdaa082

200. Ryskalin L, Gaglione A, Limanaqi F, Biagioni F, Familiari P, Frati A, et al.
The Autophagy Status of Cancer Stem Cells in Gliobastoma Multiforme:
From Cancer Promotion to Therapeutic Strategies. Int J Mol Sci (2019) 20
(15):3824. doi: 10.3390/ijms20153824

201. Bazzoni R, Bentivegna A. Role of Notch Signaling Pathway in Glioblastoma
Pathogenesis. Cancers (Basel) (2019) 11(3):292. doi: 10.3390/
cancers11030292

202. Takebe N, Nguyen D, Yang SX. Targeting Notch Signaling Pathway in
Cancer: Clinical Development Advances and Challenges. Pharmacol Ther
(2014) 141(2):140–9. doi: 10.1016/j.pharmthera.2013.09.005

203. Yao J, Zheng K, Li C, Liu H, Shan X. Interference of Notch1 Inhibits the
Growth of Glioma Cancer Cells by Inducing Cell Autophagy and Down-
Regulation of Notch1-Hes-1 Signaling Pathway. Med Oncol (2015) 32
(6):610. doi: 10.1007/s12032-015-0610-2

204. Tao Z, Li T, Ma H, Yang Y, Zhang C, Hai L, et al. Autophagy Suppresses Self-
Renewal Ability and Tumorigenicity of Glioma-Initiating Cells and
Promotes Notch1 Degradation. Cell Death Dis (2018) 9(11):1063.
doi: 10.1038/s41419-018-0957-3

205. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies FM, et al.
Autophagy Regulates Notch Degradation and Modulates Stem Cell
Development and Neurogenesis. Nat Commun (2016) 7:10533.
doi: 10.1038/ncomms10533
June 2021 | Volume 11 | Article 652133

https://doi.org/10.4161/auto.6.8.13695
https://doi.org/10.1128/mcb.02246-06
https://doi.org/10.1038/cddis.2013.283
https://doi.org/10.1016/j.neulet.2016.04.001
https://doi.org/10.1038/s41388-017-0045-7
https://doi.org/10.1093/neuonc/noy201
https://doi.org/10.1042/ebc20170091
https://doi.org/10.1002/1878-0261.12155
https://doi.org/10.1016/j.canlet.2019.10.030
https://doi.org/10.1016/j.canlet.2019.10.030
https://doi.org/10.1155/2015/208076
https://doi.org/10.4161/cbt.11.12.15693
https://doi.org/10.1002/mc.21938
https://doi.org/10.1080/15548627.2017.1409926
https://doi.org/10.1073/pnas.87.21.8602
https://doi.org/10.1073/pnas.95.10.5724
https://doi.org/10.1158/1078-0432.Ccr-13-0527
https://doi.org/10.2147/ott.S36582
https://doi.org/10.1186/s13046-019-1269-x
https://doi.org/10.1186/s13046-019-1269-x
https://doi.org/10.3390/cancers9070087
https://doi.org/10.18632/oncotarget.3018
https://doi.org/10.18632/oncotarget.3018
https://doi.org/10.1007/s11910-013-0345-4
https://doi.org/10.1038/s41586-019-1775-1
https://doi.org/10.1056/NEJMoa0808710
https://doi.org/10.1038/s41416-020-0814-x
https://doi.org/10.1111/nan.12669
https://doi.org/10.1038/srep16238
https://doi.org/10.1155/2020/1872962
https://doi.org/10.3389/fonc.2020.571189
https://doi.org/10.1002/jcp.25896
https://doi.org/10.1093/noajnl/vdaa082
https://doi.org/10.1093/noajnl/vdaa082
https://doi.org/10.3390/ijms20153824
https://doi.org/10.3390/cancers11030292
https://doi.org/10.3390/cancers11030292
https://doi.org/10.1016/j.pharmthera.2013.09.005
https://doi.org/10.1007/s12032-015-0610-2
https://doi.org/10.1038/s41419-018-0957-3
https://doi.org/10.1038/ncomms10533
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jandrey et al. Autophagy and GBM Resilience
206. Zhang T, Guo L, Wang Y, Yang Y. Macroautophagy Regulates Nuclear
NOTCH1 Activity Through Multiple P62 Binding Sites. IUBMB Life (2018)
70(10):985–94. doi: 10.1002/iub.1891

207. Natsumeda M, Maitani K, Liu Y, Miyahara H, Kaur H, Chu Q, et al.
Targeting Notch Signaling and Autophagy Increases Cytotoxicity in
Glioblastoma Neurospheres. Brain Pathol (2016) 26(6):713–23.
doi: 10.1111/bpa.12343

208. Lee Y, Lee JK, Ahn SH, Lee J, Nam DH. WNT Signaling in Glioblastoma and
Therapeutic Opportunities. Lab Invest (2016) 96(2):137–50. doi: 10.1038/
labinvest.2015.140

209. Tompa M, Kalovits F, Nagy A, Kalman B. Contribution of the Wnt Pathway
to Defining Biology of Glioblastoma. Neuromolecular Med (2018) 20(4):437–
51. doi: 10.1007/s12017-018-8514-x

210. Zuccarini M, Giuliani P, Ziberi S, Carluccio M, Iorio PD, Caciagli F, et al. The
Role of Wnt Signal in Glioblastoma Development and Progression: A
Possible New Pharmacological Target for the Therapy of This Tumor.
Genes (Basel) (2018) 9(2):105. doi: 10.3390/genes9020105

211. Wang T, Chen Z, Zhang W. Regulation of Autophagy Inhibition and
Inflammatory Response in Glioma by Wnt Signaling Pathway. Oncol Lett
(2017) 14(6):7197–200. doi: 10.3892/ol.2017.7103

212. Nàger M, Sallán MC, Visa A, Pushparaj C, Santacana M, Macià A, et al.
Inhibition of WNT-CTNNB1 Signaling Upregulates SQSTM1 and Sensitizes
Glioblastoma Cells to Autophagy Blockers. Autophagy (2018) 14(4):619–36.
doi: 10.1080/15548627.2017.1423439

213. Yun EJ, Kim S, Hsieh JT, Baek ST. Wnt/b-Catenin Signaling Pathway
Induces Autophagy-Mediated Temozolomide-Resistance in Human
Glioblastoma. Cell Death Dis (2020) 11(9):771. doi: 10.1038/s41419-020-
02988-8

214. Colella B, Faienza F, Carinci M, D’Alessandro G, Catalano M, Santoro A,
et al. Autophagy Induction Impairs Wnt/b-Catenin Signalling Through b-
Catenin Relocalisation in Glioblastoma Cells. Cell Signal (2019) 53:357–64.
doi: 10.1016/j.cellsig.2018.10.017

215. Chang L, Zhao D, Liu HB, Wang QS, Zhang P, Li CL, et al. Activation of
Sonic Hedgehog Signaling Enhances Cell Migration and Invasion by
Induction of Matrix Metalloproteinase-2 and -9 Via the Phosphoinositide-
3 Kinase/AKT Signaling Pathway in Glioblastoma. Mol Med Rep (2015) 12
(5):6702–10. doi: 10.3892/mmr.2015.4229

216. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A.
Hedgehog-GLI1 Signaling Regulates Human Glioma Growth, Cancer Stem
Cell Self-Renewal, and Tumorigenicity. Curr Biol (2007) 17(2):165–72.
doi: 10.1016/j.cub.2006.11.033

217. Carpenter RL, Lo HW. Hedgehog Pathway and GLI1 Isoforms in Human
Cancer. Discovery Med (2012) 13(69):105–13.

218. Tang X, Deng L, Chen Q, Wang Y, Xu R, Shi C, et al. Inhibition of Hedgehog
Signaling Pathway Impedes Cancer Cell Proliferation by Promotion of
Autophagy. Eur J Cell Biol (2015) 94(5):223–33. doi: 10.1016/j.ejcb.
2015.03.003

219. Carballo GB, Ribeiro JH, Lopes GPF, Ferrer VP, Dezonne RS, Pereira CM,
et al. GANT-61 Induces Autophagy and Apoptosis in Glioblastoma Cells
Despite Their Heterogeneity. Cell Mol Neurobiol (2020). doi: 10.1007/
s10571-020-00891-6
Frontiers in Oncology | www.frontiersin.org 15353
220. Honorato JR, Hauser-Davis RA, Saggioro EM, Correia FV, Sales-Junior SF,
Soares LOS, et al. Role of Sonic Hedgehog Signaling in Cell Cycle, Oxidative
Stress, and Autophagy of Temozolomide Resistant Glioblastoma. J Cell
Physiol (2020) 235(4):3798–814. doi: 10.1002/jcp.29274

221. Chen X, Morales-Alcala CC, Riobo-Del Galdo NA. Autophagic Flux is
Regulated by Interaction Between the C-terminal Domain of PATCHED1
and ATG101. Mol Cancer Res (2018) 16(5):909–19. doi: 10.1158/1541-
7786.Mcr-17-0597

222. Marjanovic Vicentic J, Drakulic D, Garcia I, Vukovic V, Aldaz P, Puskas N,
et al. SOX3 can Promote the Malignant Behavior of Glioblastoma Cells. Cell
Oncol (Dordr) (2019) 42(1):41–54. doi: 10.1007/s13402-018-0405-5

223. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al.
Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs
Temozolomide Alone for Glioblastoma: A Randomized Clinical Trial. JAMA
(2015) 314(23):2535–43. doi: 10.1001/jama.2015.16669
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Accumulating evidence suggests that extracellular signal-regulated kinase (ERK) is a
valuable target molecule for cancer. However, antitumor drugs targeting ERK are still in
their clinical phase and no FDA-approved medications exist. In this study, we identified
an ERK inhibitor (ERKi; Vx-11e) with potential antitumor activities, which was reflected by
the inhibition in the survival and proliferation of Osteosarcoma (OS) cells. Mechanistically,
the ERKi regulated autophagic flux by promoting the translocation of transcription factor
EB (TFEB) in OS cells, thereby increasing the dependence of OS cells on autophagy
and sensitivity to treatment with autophagy inhibitors in OS. Besides, we also found
that the ERKi could regulate mitochondrial apoptosis through the ROS/mitochondria
pathway and aerobic glycolysis in OS, which also increases the dependence of OS
cells on autophagy to clear metabolites to a certain extent. These results may provide
a reference for the clinically improved efficacy of ERKis in combination with autophagy
inhibitors in the treatment of OS and indicate its potential as a therapeutic agent.

Keywords: ERK, transcription factor EB, autophagy, osteosarcoma, energy metabolism

INTRODUCTION

Osteosarcoma (OS) is a highly malignant bone tumor characterized by early metastasis. The
incidence of OS is rising rapidly, and it is known to have the highest mortality rate among
all cancer types, especially in children and adolescents (Zhang, 2019). With the development of
several therapies such as surgery, chemotherapy, radiation, targeted therapy, and immunotherapy,
the survival rate of OS patients has increased; however, this rate still is unsatisfactory
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(Ritter and Bielack, 2010). There are several problems that need
to be overcome among the current treatment strategies, such
as effective inhibition of the metastasis, and the reduction
in severe side effects and drug resistance caused by single-
drug chemotherapy. Therefore, it is necessary to explore new
treatment methods and strategies to treat OS. Particularly,
therapies focusing on combination therapy are urgently needed.

As an important cellular recycling mechanism, autophagy is
responsible for the degradation of unnecessary or dysfunctional
proteins and organelles within cells (Glick et al., 2010).
Autophagy promotes the growth and survival of various cancer
cells as it increases their ability to support cellular metabolism.
Studies have shown that activation of autophagy is beneficial
for cellular growth and survival in breast cancer (Wei et al.,
2011), glioblastoma (Jawhari et al., 2016), and hematological
malignancies (Karvela et al., 2016) by the maintenance of
glycolytic capacity. Autophagy restricts oxidative stress, prevents
intra-tumoral necrosis and local inflammation in response
to stress, and regulates glycolysis to promote tumor growth
(Mowers et al., 2018). However, in OS, autophagy acts as
both a pro-tumoral and antitumoral process. A previous
study suggests that autophagy facilitates glycolytic metabolism
and increases lung colonization by OS cells via upregulating
the expression of intercellular adhesion molecule-1 (ICAM-1)
and enhancing tumor metastasis (Itoh et al., 2018). Another
study has shown that autophagy induces cell apoptosis in OS
(Meschini et al., 2008). Based on these studies, the role of
autophagy in the growth of OS cells poses several challenges
that need to be further explored. Transcription factor EB
(TFEB) is a subfamily of the MiT/TFE basic helix–loop–helix
leucine-zipper (bHLH-Zip) family of transcription activators
(Sardiello, 2016). TFEB regulates various cellular processes,
including autophagy (Martini-Stoica et al., 2016), lysosomal
biogenesis (Chao et al., 2018), and energy metabolism (Pastore
et al., 2017). TFEB activity is tightly controlled through TFEB
nuclear translocation. Multiple environmental stimuli, including
proinflammatory agents, mitochondrial and oxidative stress, can
promote TFEB nuclear translocation to increase its transcription
activity. However, its mechanistic interaction with autophagy in
OS remains elusive.

Mitochondria are the primary sites of energy metabolism in
eukaryotic cells that provide energy for cell growth, proliferation,
and other biological activities (Horbay and Bilyy, 2016). However,
given that the “Warburg effect” is one of the basic characteristics
of tumor cells, the activity in mitochondria is also necessary for
many tumor cells (Hsu et al., 2016). Additionally, mitochondria
control calcium homeostasis and redox reactions and participate
in transcriptional regulation (Hsu et al., 2016; Porporato et al.,
2018). Moreover, a dysregulated mitochondrial respiratory chain
or exposure to certain chemicals affects the mitochondrial DNA
in cancer cells, thereby inducing mitochondrial dysfunction and
promoting cancer progression to a chemoresistant or invasive
phenotype (Giang et al., 2013; Hsu et al., 2016). Therefore,
mitochondria are a potential target for the development of new
anticancer drugs. Mitochondria exist in dynamic equilibrium
by continuous fusion and fission events. During this process,
mitochondrial morphology changes, resulting in the elimination

of damaged mitochondria and the production of new ones
(Horbay and Bilyy, 2016). Studies have shown that the induction
of mitochondrial dysfunction in OS cells is associated with the
modulation of mitochondrial fission/fusion proteins that exert
anticancer effects (Huang et al., 2014). However, another study
shows that the suppression of mitochondrial function contributes
to the Warburg effect in OS cells (Giang et al., 2013; Gorska-
Ponikowska et al., 2018). Hence, the role of mitochondria in OS
remains slightly controversial and needs to be further explored.
Mitogen-activated protein kinases (MAPKs) regulate the growth,
proliferation, and apoptosis of cells (Cuadrado and Nebreda,
2010; Santos and Crespo, 2018), and the excessive activation of
MAPKs is found in several tumors (Wagner and Nebreda, 2009;
Yong et al., 2009). Extracellular signal-regulated kinase (ERK)1/2
is one of the main members of the MAPK family (Kim and
Choi, 2010). The expression level of ERK is increased in various
human tumors, and interferences with the ERK pathway may be a
potential therapeutic strategy for treating these cancers (Samatar
and Poulikakos, 2014; Santos and Crespo, 2018). Activation of
the ERK pathway has been confirmed to promote autophagy
in cancer cells, and some literature suggests that the inhibition
of ERK inhibits aerobic glycolysis and induces stress, leading
to the death of cancer cells (Marchetti et al., 2018; Aloia et al.,
2019). However, similar findings have rarely been reported in OS.
Therefore, whether ERK has an effect on the metabolism in OS is
not fully understood and therefore warrants the elucidation of its
underlying mechanism.

MATERIALS AND METHODS

Cell Culture and siRNA Transfection
The human OS cell lines (HOSs), U2-OS (U2), 143B, and
MG-63, and the murine spontaneous OS cell line K7M2
were obtained from the Cell Bank of the Chinese Academy
of Sciences (Shanghai, China1) and maintained at 37◦C
and 5% CO2 in a humid environment. The cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM),
supplemented with 10% fetal bovine serum and antibiotics
(1% penicillin/streptomycin). TFEBsiRNA was delivered into
the OS cell line using Lipofectamine 2000. TFEB siRNA was
constructed by TSINGKE (Beijing, China). The sequences were
as follows: TFEBsiRNA1, F:GAUGUCAUUGACAACAUUATT;
R:UAAUGUUGUCAAUGACAUCTT and TFEBsiRNA2, F:CC
AAGAAGGAUCUGGACCUTT; R:AGGUCCAGAUCCUUCU
UGGTT. Vx-11e (APExBiO) was dissolved in dimethyl sulfoxide
(DMSO), and the NC group (DMSO) was treated with the same
amount of DMSO. Hydroxychloroquine (HCQ) was purchased
from Aladdin. LysoTracker was obtained from Solarbio. Lactic
Acid assay kit and Glucose Uptake assay kit were obtained from
Nanjing JianCheng Bioengineering Institute.

Cell Proliferation and Cytotoxicity Assays
Cells were seeded into a 96-well plate and treated with different
drugs. After 24 h of coculture, the Cell Counting Kit-8 (Dojindo,

1http://www.cellbank.org.cn
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Japan) dye was added. For colony formation, cells were seeded
into a six-well plate at a density of 500–1,000 cells/well. The
plate was then shaken well to maintain sufficient distance
between individual cells and incubated under different treatment
conditions for 14–21 days. The colonies were visualized under a
microscope and photographed.

Cell Invasion and Migration Assays
The wound-healing assay was used to detect cell migration.
A wound was made using a pipette tip when the cell proliferation
reached approximately 80% confluence in the six-well plate. The
cells were then visualized and photographed. Transwell chambers
(Corning Life Science, United States) were used to determine cell
invasion and migration abilities.

Determination of Glutathione Peroxidase
(GPx), Glutathione (GSH), and Reactive
Oxygen Species (ROS)
Oxidative conversion of 2′,7′-dichlorodihydrofluorescein
diacetate (DCFH-DA) (Beyotime Biotech) was used to investigate
the levels of intracellular ROS. The detailed procedure was
performed as per the manufacturer’s instructions. Briefly, the
cells were plated in a 6-well plate and subjected to different
drug treatments for 6 h and 24 h and then incubated with
DCFH-DA for 15 min. Next, the cells from each well were
detected using fluorescence microplate assay. Samples were
harvested for the measurement of GPx and GSH content
spectrophotometrically using the respective assay kits (Beyotime
Biotech Inc., Jiangsu, China).

Mitochondrial Transmembrane Potential
Assay
To detect the loss of mitochondrial transmembrane potential
(19m), the fluorescent probe, JC-1 (Beyotime, Jiangsu, China),
was used. Briefly, the cells were seeded in six-well plates, stained
with JC-1 staining solution for 15 min at 37◦C, and washed
with phosphate-buffered saline (PBS). Thereafter, images were
obtained using fluorescence microscopy (Olympus).

Transmission Electron Microscopy (TEM)
Analysis
Cells were collected and fixed in 2.5% glutaraldehyde for 24 h
at 4◦C, and the intracellular and morphological changes in the
subcellular ultrastructure were investigated by TEM. Next, the
cells were again fixed with 1% osmium tetroxide for 2 h at room
temperature and then dehydrated in different concentrations and
gradients of alcohol. The sample was then finally embedded
in Spurr’s resin to form pellets. Ultrastructural analysis was
performed using TEM (Hitachi H-7650, Japan).

Flow Cytometry
Flow cytometry was performed as per the manufacturer’s
protocols. Thereafter, the cells were harvested and stained with
Annexin V conjugated with APC and 7-aminoactinomycin D

(Multi-Sciences, China). Next, FACScan flow cytometry (Becton-
Dickinson, United States) was used to analyze the samples and
measure the percentage of apoptotic cells.

Glycolysis Measurement
Glucose Uptake Assay Kit and Lactic Acid Assay Kit were
used to measure glucose utilization and glycolysis, respectively.
Mitochondrial respiration was tested by measuring the oxygen
consumption rate (OCR) in OS cells. In brief, cells were added
to a 2-mL chamber (3–4 × 106 cells/chamber). The oxygen flux
(pmol O2/min) of cells is proportional to oxygen consumption,
which was recorded continuously using oxygraphy (Oroboros
Oxygraph-2k). Data were analyzed using one-way ANOVA and
Student’s t-test in DatLab software 7.

In vivo Experiments
All animal experiments complied with the guidelines and
followed a protocol approved by the Research Ethics Committee
of Zhejiang University, China. Nude mice (4-weeks-old, male,
Shanghai Laboratory Animal Center, Chinese Academy of
Sciences, Shanghai, China) were raised under specific pathogen-
free conditions. The mice were inoculated with 2 × 106 K7M2
cells via the marrow cavity of the right tibia. After 7 days,
these mice were randomized into three groups. The mice
received daily ERKi (50 mg/kg, p.o) and HCQ (60 mg/kg, p.o).
Tibial tumors were harvested 2 weeks after treatment, and each
tumor was weighed. The tumor sizes were calculated as volume
(cm3)= [π× width2 (cm2)× length (cm)]/6.

Western Blotting and
Co-immunoprecipitation (IP)
Cellular proteins (60 µg) were separated using 10% SDS-PAGE
and transferred onto a polyvinylidene fluoride membrane (Bio-
Rad Laboratories). After blocking (5% fat-free milk) for 1.5 h
at room temperature, the membranes were incubated with the
following primary antibodies: active-caspase-3 (1:1,000, Cst),
Bcl-XL (1:1,000, Cst), C-MYC (1:1,000, Proteintech Group,
Inc), Bax (1:500, bioss), Beclin-1 (1:500, Bioss), LC3 (1:1,000,
Proteintech Group, Inc), ERK (1:1,000, Cst), p-ERK (1:1,000,
Cst), and GAPDH (Cat: RT1210-1, Huabio) overnight at 4◦C.
The membranes were then washed with TBST and incubated
with a secondary antibody for 1 h at room temperature. The
signals were visualized with the ChemiDocTM XRS + Imaging
System (BioRad Laboratories, Hercules, CA, United States),
and the densities of the immunoreactive bands were analyzed
using ImageJ software (NIH, Bethesda, MD, United States).
For IP, the commercial antibody was added to whole-cell
lysates (WCLs), followed by co-incubation at 4◦C for 12 h.
Subsequently, the protein A/G agarose beads were added to
the cell lysate and co-incubated at 4◦C for 2 h. Western
blotting was performed to detect the precipitated and co-
precipitated proteins.

Immunofluorescence
Cells were placed on a coverslip and fixed with 4%
paraformaldehyde at room temperature. After blocking with 5%
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bovine serum albumin (BSA) in PBS for 30 min, the samples
were incubated with the following primary antibodies: active-
caspase-3 (1:100, CST), active-caspase-9 (1:100, CST), LC3B
(1:300, Proteintech Group, Inc), and Mff (1:300, Proteintech
Group, Inc) at 4◦C overnight. After washing three times with
PBS, the samples were incubated with the secondary antibody
(1:1,000, Huabio), and the sections were then re-stained with
anti-fluorescent quench sealant (Yeasen). The fluorescence
images were captured using confocal laser microscopy (Nikon,
A1PLUS, Tokyo, Japan).

Hematoxylin and Eosin (H&E)
Tissues were collected and fixed in 4% (w/v) paraformaldehyde
for 24 h and embedded in paraffin wax. Sections were
then prepared and mounted on slides for histopathological
examination. H&E staining and Cresyl violet staining were
performed according to the manufacturer’s instructions. Images
were obtained using light microscopy.

Statistical Analysis
Data are presented as means ± SEM. Differences between two
groups were determined using Student’s t-test, whereas one-
way ANOVA followed by Dunnett’s post hoc test was used to
determine differences among multiple groups. A p < 0.05 was
considered significant.

RESULTS

ERK Inhibition Elevates Autophagic Flux
Through TFEB
To determine the effect of ERK on the growth of OS cells,
we treated OS cells with an ERK-selective inhibitor, Vx-
11e (3 µM). As shown in Figure 1A, Vx-11e restrained the
phosphorylation of ERK in the OS cell line, resulting in an
increase in the conversion of LC3 from LC3-I to LC3-II
(Figures 1C,D). Results from western blotting showed that
the expression of Beclin-1 protein was increased after Vx-
11e treatment (Figure 1B), and the knockdown of TFEB by
small interfering RNA reversed the expression of Beclin-1
protein (Figures 1G,I); however, bafilomycin A1 (BafA1, 100
nM), a lysosomal function inhibitor, increases the expression
of the protein (Figure 1B). The lysosomes expand in Vx-11e-
treated cells, as indicated by the lysosome-associated membrane
protein 1 (Lamp1) and LysoTracker staining, but not in TFEB-
knockdown cells (Figures 1E,F). Further, we also found that
Vx-11e treatment triggered the nuclear translocation of TFEB
(Figures 1H,J,K) and abolished the 14-3-3/TFEB complex
formation in OS cells (Figure 1L).

ERK Inhibition Restrains the Activity of
OS Cells
The survival rate of OS cells treated with ERKi gradually
decreased in a time-dependent manner (Figure 2A). Cellular
apoptosis was detected using flow cytometry after annexin
V-APC/7-AAD (MultiSciences, China) double staining. The

apoptotic abilities of OS cells were significantly higher than
those of NC cells (Figure 2B). We obtained similar results for
the expression of cleaved caspase-3, cleaved poly-ADP-ribose
polymerase (PARP), and PARP protein levels using western
blotting and immunofluorescence assay (Figures 2C,E,G). The
invasion and migration of the ERKi groups were significantly
abrogated in OS cells compared with those in NC cells
(Figures 2D,F,H), which was similar to the results observed in
the wound-healing assay (Figure 2I).

ERK Inhibition Impairs Mitochondrial
Activity
The level of ROS in OS cells increased evidently when
the cells were exposed to ERKi for an extended duration
(Figures 3A,B). As shown in Figures 3C–F, at 24 h post-
treatment, NC cells stained with JC-1 emitted red fluorescence
and some green fluorescence; compared to this group, the ERKi-
treated group produced more green fluorescence, showing an
increased green/red fluorescence ratio. ERKi also suppressed
the amount of intracellular GSH and the activity of glutathione
peroxidase (GPX) in OS cells (Figure 3G), and GSH precursor
antioxidant NAC and mitochondrial membrane PT pore
inhibitor cyclosporine A (CsA, 5 µM) pre-treatment in OS
cells significantly reversed ERKi-induced cell death (Figure 3I).
Compared with the control group, the treatment group showed
spotty fluorescent aggregation of the mitochondria (Figure 3H).
Microstructural changes in the mitochondria of OS cells observed
using TEM showed that in the early stages of ERKi treatment,
numerous mitochondria were present that were small in size.
With an extension in treatment with ERKi, the number of
mitochondria decreased, edema occurred, and mitochondrial
ridges became blurred (Figure 4A). The expression levels of
Bax (Figures 4B,F) and active-caspase9 protein (Figures 4C,D)
were significantly upregulated during ERKi treatment, and
the expression of BCL-XL protein showed the opposite trend
(Figures 4B,E); in contrast, no such difference was observed in
the early stage of OS cell treatment with ERKi (Figures 4B,E).
Our data also showed that ERKi suppressed the aerobic glycolytic
capacity (Figure 4J) and induced a decrease in c-myc protein
level in OS cells (Figure 4I). Besides, ERKi does not affect
the oxygen consumption of OS cells in the early stages as
reflected by OCR measurement (Figures 4G,H). In summary,
ERKi induced mitochondrial apoptosis and abnormal glycolysis
in OS cells. In the early stage, OS cells demonstrate an energy
intake disorder. Thus, there were compensatory increases in
mitochondrial activity, but no productivity was found.

Effect of HCQ on OS Cells
To explore the effect of HCQ on OS cells, we examined cellular
morphology and survival. The survival rate of OS cells treated
with HCQ gradually decreased in a concentration-dependent
manner (Figure 5B). The morphological changes in cells were
consistent with the results of survival rate. With an increase
in HCQ concentration, the morphology of OS cells shrank and
became deformed (Figure 5A). The morphology of OS cells
was observed using TEM. The number of autophagosomes was
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FIGURE 1 | ERKi treatment increases the autophagic flux through TFEB in OS cells. (A) Protein expression of p-ERK and ERK after ERKi treatment. (B) Protein
expression and densitometric quantification of beclin-1 after ERKi and bafilomycin A1 treatment. GAPDH was used as a loading control and for band density
normalization. (C,D) Immunofluorescence staining of LC3B (green) in OS cells 24 h after ERKi treatment. (E,F) Immunofluorescence staining of mitochondria. (G–I)
Western blotting. (K) Immunofluorescence staining of TFEB. (J) Immunoblots for TFEB in the cytoplasmic/nuclear fractions of OS cells treated with ERKi. (L) ERKi
disrupts TFEB interaction with 14–3–3. WCLs of OS cells immunoprecipitated (IP) with anti-TFEB, followed by immunoblotting (IB) with antibodies against 14–3–3
and TFEB (n = 5 per group; **p < 0.01 versus NC group; *p < 0.05 versus NC group).
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FIGURE 2 | ERK inhibition restrains the activity of OS cells. (A) CCK8 proliferation analysis. (B) Flow cytometry to determine the total proportion of apoptotic cells in
OS. (C) Protein expression of caspase3, c-caspase3, c-PARP, and PARP after treatment with ERKi. GAPDH was used as a loading control and for band density
normalization. (E,G) Immunofluorescence staining of c-caspase3 (green) in OS cells 24 h after ERKi treatment. (D,F,H) Migration and invasion. (I) Wound-healing
assay in different groups. (J) Schematic representation of ERKi effect on autophagy in OS cells. Scale bar = 50 µm (n = 5 per group; ***p < 0.001 versus NC group;
**p < 0.01 versus NC group; *p < 0.05 versus NC group).
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FIGURE 3 | ERK inhibition regulates the mitochondrial activity of OS cells. (A,B) ROS fluorescence probe analysis. (C–E) JC-1 staining for comparing mitochondrial
depolarization of OS cell lines among groups. (F) Flow cytometry was used to measure JC-1 of OS cells. (G) Effect of ERKi on GPx and GSH levels in OS cells.
(H) Immunofluorescence co-staining of mitochondria in OS cells 24 h post-ERKi treatment (I) Cell-survival rate in different groups (n = 5 per group; **p < 0.01
versus NC group; *p < 0.05 versus NC group).

significantly increased after treatment with HCQ compared with
the number in the NC group (Figure 5E). Simultaneously, we also
found that the number of lysosomes did not decrease. Moreover,
we performed immunofluorescence co-staining analysis of

autophagy-related proteins LC3B and Lamp-1 in OS cells. Our
findings indicated that co-localization of LC3B and Lamp-1
proteins was significantly reduced in the HCQ-treated OS cells
compared with the untreated cells (Figures 5C,D). Furthermore,
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FIGURE 4 | ERK inhibition promotes apoptosis and regulates aerobic glycolysis in OS cells. (A) TEM images of ERKi-treated OS cells after 6 h and 24 h of treatment
(black arrows). (B) Protein expression of Bax and BCL-XL after treatment with ERKi; GAPDH was used as the loading control and for band density normalization.
(C,D) Immunofluorescence staining of c-caspase9 after 24 h of treatment with ERKi. (E,F) Optical density of Bax and BCL-XL proteins. (G,H) Diagram of OCR
results obtained by OROBOROS Oxygraph-2k. (I) Western blotting and densitometric quantification. (J) Glucose uptake and production of lactic acid in OS cell lines
in different groups (n = 5 per group; **p < 0.01 versus NC group; *p < 0.05 versus NC group).
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FIGURE 5 | HCQ inhibits the activity of OS cells. (A) Cell morphology. (B) CCK8 proliferation analysis. (C,D) Immunofluorescence co-staining of Lamp-1 (red) and
LC3B (green) in OS cells 24 h post-HCQ treatment. (E) TEM images of HCQ-treated OS cells after 6 h and 24 h. Autophagosomes are indicated by white arrows.
(F,G) Western blotting and densitometric quantification (n = 5 per group; **p < 0.01 versus NC group; *p < 0.05 versus NC group).

HCQ treatment increased the expression of LC3B and Beclin-1
proteins (Figures 5F,G) in early autophagy.

Combination of ERKi and HCQ
Synergistic Inhibition of OS Cell Activity
To verify the synergistic inhibition of OS cell activity by HCQ and
ERKi, the growth, proliferation, migration, and apoptosis of OS
cells were investigated. In CCK8 analysis, compared with OS cells
treated with ERKi alone, the combined use of HCQ had a more
pronounced inhibitory effect on OS cell growth (Figure 6A).

The synergism or antagonism of the drug combination of ERKi
and HCQ in OS was analyzed using CompuSyn software. The
combination of ERKi and HCQ in OS indicated a favorable
dose reduction (Figures 6B,D) and played a synergistic role
(Figures 6C,E). To further characterize the highly tumorigenic
capacity of OS cells, we conducted a colony-formation assay.
A large and well-spread colony had formed in the NC group.
Further, ERKi restrained colony formation, but the combination
of ERKi and HCQ had a more potent antitumor effect than ERKi
alone (Figure 6J). Furthermore, proliferation results indicated
that the combination of ERKi and HCQ had more inhibitory
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FIGURE 6 | Synergistic inhibitory effect of ERKi and HCQ combined treatment on OS cell activity. (A) OS cells were treated with ERKi and HCQ (20 µM) for 24 h.
Proliferation was assessed using live-cell counting. (B,D) Dose reduction index (DRI) for each drug for a given effect (Fa). DRI of > 1, 1, and < 1 indicate a favorable
dose reduction, no dose reduction, and a negative dose reduction, respectively. (C,E) Combination index (CI) values as a function of the effect levels (Fa), where CI
values of > 1, 1, and < 1 indicate synergism, an additive effect, and antagonism, respectively. (F,G,I) Flow cytometry to determine the percentage of total apoptotic
OS cells. (H,J) Colony-forming assay for OS cells. (K) Schematic representation of the synergistic effects of ERKi and HCQ on OS cells (n = 5 per group;
***p < 0.001 versus NC+ERKi group; **p < 0.01 versus NC group).
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effects than ERKi alone on OS cell proliferation (Figure 6H).
Cell apoptosis was detected using flow cytometry after annexin
V-APC/7-AAD (MultiSciences, China) double staining. Both the
percentage of early apoptotic properties and the total apoptotic
properties were higher in the group with ERKi treatment than in
the NC group; the combined HCQ and ERKi treatment showed
an accelerated apoptotic effect (Figures 6F,G,I).

Combination of ERKi and HCQ
Synergistic Inhibition of OS in vivo
We used a right tibial tumor model in mice and performed the
treatment process shown in Figure 7A. The physical photos of
these excised tibial tumors and corresponding volume and weight
charts (Figures 7B,D) indicated that there was a difference in
tumor sizes and weights among the three groups; the data showed
that the combination of ERKi and HCQ significantly inhibited
tumor growth in vivo. H&E staining revealed more tumor cell
death in the ERKi + HCQ group (Figure 7E) compared to
the other groups. Immunohistochemical quantitative analysis
confirmed that the expression level of LC3B was higher in
the ERKi group than in the NC group, indicating that ERKi
promoted autophagic flux of OS in vivo. Furthermore, the
expression levels of C-MYC were downregulated in the ERKi
group compared to the NC group (Figure 7C). Moreover, as
shown in Figure 7F, H&E staining indicated that no histological
damage had been observed in multiple organs in the ERKi group
and ERKi+HCQ group.

DISCUSSION

ERK is a key downstream protein in the RAS-RAF-MEK-ERK
signaling pathway, and its overactivation has been demonstrated
in various tumors (Asati et al., 2016). At present, antitumor
drugs targeting this pathway, including BRAF inhibitors
(vemurafenib, sorafenib, and dabrafenib) as well as MEK
inhibitors (such as selumetinib, trametinib, and cobimetinib),
have been marketed and have shown to be efficacious in
clinical trials. However, it is inevitable that the tumor cells
will acquire drug resistance during treatment with this kind of
drug. ERK signaling pathways are associated with a variety of
substrates such as kinases and transcription factors, and once
drug-resistant mutations occur in cells, it causes cell death.
Thus, acquired mutations of ERK1/2 are almost absent in
tumor cells. Therefore, ERK-targeting drugs are undoubtedly a
promising anticancer agent. Previous studies have shown that
innate resistance to MEK or RAF inhibitors was reactivated
through ERK1/2 in tumor cells (Kidger et al., 2018). Based
on the abovementioned studies, compared with RAF inhibitors
and MEK inhibitors, ERKis have antitumor effects and can
prevent tumor cells from developing drug resistance to a
certain extent; thus, they have a broader application prospect
in clinical practice. Although no ERK1/2 inhibitor has been
officially approved for use, a number of small molecules of ERKis,
including Ulixertinib (Sullivan et al., 2018), KO-947, and MK-
8353 (Moschos et al., 2018), are currently in the preclinical
development phase.

The relationship between autophagy and tumor is
complicated: on the one hand, in human tumors, autophagy
genes are frequently silenced or mutated, leading to increased
stress and tumor progression and indicating that autophagy
plays a tumor-suppressor role (Kung et al., 2011; Mowers et al.,
2018); however, on the other hand, given the characteristics
of abnormal proliferation of tumor cells, their environment
has a higher degree of metabolism and other pressures than
normal cell environment, making them more dependent
on autophagy for their survival (Srinivasan et al., 2017).
Furthermore, research on the regulation of autophagy to
combat antitumor drug resistance is expanding and becoming
increasingly important. TFEB, as a regulatory tool for lysosomal
biogenesis, plays an important role in autophagy. TFEB
phosphorylation forms a 14–3–3 docking target, resulting
in a deactivated TFEB trapped in the cytoplasm (Xu et al.,
2019). When TFEB is activated for nuclear transfer, it transmits
information about the lysosomal state to the nucleus to trigger
a transcriptional response, thereby stimulating autophagy.
Further, TFEB nuclear translocation, in association with
MAPK/ERK, has been confirmed in a steatohepatitis model
(Kim et al., 2017). We found that acute ERK inhibition increases
rather than decreases the autophagic flux in OS cells. We
believed that this phenomenon may have occurred because
acute ERK inhibition regulates TFEB nuclear translocation
in OS (Figure 2J). As expected, ERKi exacerbated TFEB
nuclear translocation in OS cells (Figures 1H,I). The molecular
mechanisms underlying autophagy inhibition were extremely
complex and involved multiple molecules. To further explore
this specific mechanism, we used HCQ, an FDA-approved
late-stage autophagy inhibitor used in clinical trials, to block
the fusion of autophagosomes with lysosomes to inhibit the
late stage of autophagy. As expected, HCQ exacerbated the
death of ERKi-treated OS cells. In other words, autophagy was
activated by ERKi as a compensatory response to maintain cell
homeostasis, which in turn further enhanced the dependence of
OS cells on autophagy.

Although tumor cells prefer glycolysis as the main
mode of energy production and are more dependent on
autophagy to remove metabolic waste (Levy et al., 2017),
mitochondria still play an important role in the occurrence
and development of tumors. In response to the presence
of abundant oxygen, the mitochondrial phosphoric acid
oxidation is still active. Furthermore, some enzymes
needed for glycolysis are located in the mitochondria
(Porporato et al., 2018). Moreover, mutations, alterations,
and deletions in mitochondrial DNA have been reported in
many cancers (Nikolaev, 2018). Recent studies suggest that
mitochondrial dynamics and dysfunction are the links among
mitochondrial DNA defects, excessive fission, mitochondrial
retrograde signaling, and cancer progression (Srinivasan
et al., 2017). Mitochondrial oxidative phosphorylation is
not impaired in tumor cells and plays an important role
in the malignant progression of tumors. A previous study
pointed out that mitochondrial dysfunction and oxidative
stress trigger a niche favoring cholangiocellular overgrowth
and tumorigenesis (Yuan et al., 2017). Moreover, the
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FIGURE 7 | Synergistic inhibitory effect of ERKi and HCQ combined treatment on OS in vivo. (A) Schematic representation of treatment regimen and surgery. (B,D)
Tumor formation in different groups. (C) Immunofluorescence staining to determine the levels of LC3B and CMYC. (E) H&E staining of OS tissue among groups.
(F) H&E staining of organ tissues of mice administered ERKi or HCQ (n = 5 per group; **p < 0.01 versus NC group; *p < 0.05 versus NC group; #p < 0.05 versus
ERKi group).
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regulation of ROS plays a very important role in the treatment
of cancer. Therefore, some chemoradiotherapy drugs interfere
with the outcome of tumors by regulating ROS (Sosaa et al.,
2013). Our data showed that ERKi treatment inhibited the activity
of OS by increasing the expression of ROS and damaging the
antioxidant system. Additionally, ERK induces mitochondrial
translocation of phosphoglycerate kinase1 (PGK1) to regulate
cancer metabolism and tumorigenesis (Li et al., 2016). Our results
showed that in the early stages of ERKi treatment in OS cells,
the mitochondria showed a compensatory state, including the
increased number and increased expression of fission factors.
Later, mitochondrial apoptosis seems to have occurred. This
may be the case in the ERKi-treated OS cells: glycolysis activity
was suppressed, causing an intake energy disorder in OS
cells; thus, there were compensatory increases in mitochondrial
activity (Figure 6K). However, such compensation is impossible
following ERKi-treatment, which may induce mitochondrial
apoptotic-related gene expression in OS cells.

CONCLUSION

In this study, we found that inhibition of ERK signaling
via pharmacological methods could lead to enhanced anti-
OS activity of the autophagy inhibitor. Mechanistically, ERK
inhibition directly regulated the nuclear translocation of TFEB
to increase autophagy flux and promote mitochondrial apoptosis
through the ROS/mitochondria pathway and indirectly increased
the dependence of OS cells on autophagy. In addition, we found
changes in the mitochondrial dynamics in OS cells during the
early stages of ERKi treatment. This may be a manifestation of
mitochondrial compensatory tumor promotion, caused by the
restraining of aerobic glycolysis by ERKi and the subsequent OS
energy-intake disorder.
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