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Estimation of Trunk Muscle Forces
Using a Bio-Inspired Control
Strategy Implemented in a
Neuro-Osteo-Ligamentous Finite
Element Model of the Lumbar Spine
Alireza Sharifzadeh-Kermani1, Navid Arjmand1* , Gholamreza Vossoughi1,
Aboulfazl Shirazi-Adl2, Avinash G. Patwardhan3, Mohamad Parnianpour1 and
Kinda Khalaf4

1 Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran, 2 Division of Applied Mechanics,
Department of Mechanical Engineering, Polytechnique Montréal, Montreal, QC, Canada, 3 Musculoskeletal Biomechanics
Laboratory, Edward Hines, Jr. VA Hospital, Hines, IL, United States, 4 Department of Biomedical Engineering, Khalifa
University of Science and Technology, Abu Dhabi, United Arab Emirates

Low back pain (LBP), the leading cause of disability worldwide, remains one of the
most common and challenging problems in occupational musculoskeletal disorders.
The effective assessment of LBP injury risk, and the design of appropriate treatment
modalities and rehabilitation protocols, require accurate estimation of the mechanical
spinal loads during different activities. This study aimed to: (1) develop a novel 2D
beam-column finite element control-based model of the lumbar spine and compare its
predictions for muscle forces and spinal loads to those resulting from a geometrically
matched equilibrium-based model; (2) test, using the foregoing control-based finite
element model, the validity of the follower load (FL) concept suggested in the
geometrically matched model; and (3) investigate the effect of change in the magnitude
of the external load on trunk muscle activation patterns. A simple 2D continuous
beam-column model of the human lumbar spine, incorporating five pairs of Hill’s
muscle models, was developed in the frontal plane. Bio-inspired fuzzy neuro-controllers
were used to maintain a laterally bent posture under five different external loading
conditions. Muscle forces were assigned based on minimizing the kinematic error
between target and actual postures, while imposing a penalty on muscular activation
levels. As compared to the geometrically matched model, our control-based model
predicted similar patterns for muscle forces, but at considerably lower values. Moreover,
irrespective of the external loading conditions, a near (<3◦) optimal FL on the spine was
generated by the control-based predicted muscle forces. The variation of the muscle
forces with the magnitude of the external load within the simulated range at the L1
level was found linear. This work presents a novel methodology, based on a bio-inspired
control strategy, that can be used to estimate trunk muscle forces for various clinical
and occupational applications toward shedding light on the ever-elusive LBP etiology.

Keywords: spine, model, controller, muscle force, follower load, stability
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INTRODUCTION

Low back pain (LBP) as the leading cause for work loss
and years lived with disability emerges also as the most
common and costliest problem in occupational musculoskeletal
disorders (Clark and Horton, 2018; Hartvigsen et al., 2018).
In the United States alone, the annual cost of LBP was
estimated at ∼$200 billion in 2006 (Katz, 2006). This asserts
the important role of biomechanical investigations to mitigate
and manage the associated risk of injury through quantitative
assessment of the mechanical loads on the spine during
various daily and occupational activities. In the absence of
adequate non-invasive in vivo measurement techniques, a
number of musculoskeletal spine models, with different degrees
of complexities, have been developed to estimate the internal
loads in the active-passive structures of the trunk (Dreischarf
et al., 2016; Ghezelbash et al., 2020). Due to the large
number of trunk muscles spanning the intervertebral joints, the
available equations are insufficient to solve this mechanically
indeterminate system toward a unique solution, i.e., joint kinetics
redundancy. The kinematic redundancies in the multi-joint
spinal column, while providing flexibility in performing a specific
task, add further complexity to the motor control strategies
(Parnianpour, 2013). They can be viewed as the abundance
to manage the conflicting objectives due to alterations in
the environmental conditions and/or changes in task demand
priorities (Latash et al., 2010).

Two distinct approaches are generally used to resolve the
redundancies in such musculoskeletal models: inverse (e.g.,
equilibrium- and equilibrium-stability-based) and forward (e.g.,
control-based) dynamic. Equilibrium-based models leverage
the available kinematics and governing equilibrium equations
at various levels/joints/directions, and employ an optimization
algorithm [often combined with limited recording of surface
muscle electromyography (EMG)], to compute muscle forces
and internal loads (Cholewicki and McGill, 1996; Parnianpour
et al., 1997; Sparto and Parnianpour, 1998; Gagnon et al.,
2011; Mohammadi et al., 2015; Dreischarf et al., 2016). In
these models, the system, maintains equilibrium (static and/or
dynamic) with no attention to crucial stability requirements.
Imposing stability, in addition to the equilibrium, has led to
the development of multi-criteria equilibrium-stability-based
models, in which the kinetics redundancy can once again be
resolved either by using an optimization/control theory-based
algorithm (Hemami and Katbab, 1982; Granata and Orishimo,
2001; Zeinali-Davarani et al., 2008; Vakilzadeh et al., 2011;
Hajihosseinali et al., 2014), or an EMG-driven algorithm (Samadi
and Arjmand, 2018). The stability criterion in these models
is typically investigated through the positive definiteness of
the Hessian matrix of the system’s potential energy (Crisco
and Panjabi, 1991; Cholewicki and McGill, 1996; Shirazi-Adl
et al., 2005), or equivalently by the eigenvalues of the dynamic
system (Hemami and Katbab, 1982; Bazrgari et al., 2008, 2009;
Zeinali-Davarani et al., 2008; Shahvarpour et al., 2015). In
general, considering stability requirements when calculating
trunk muscle forces yields stronger correlation between
predicted muscle activation and experimentally measured EMG

data (Granata and Orishimo, 2001; Hajihosseinali et al., 2014;
Samadi and Arjmand, 2018).

Unlike the inverse dynamics approaches, forward control-
based dynamic models assign forces to muscles, either
individually or synergistically grouped, in alignment with
the central nervous system’s (CNS) neural control strategies
applied in trunk movements. The controller used in these models
commonly adjusts muscle forces in search of target postural
trajectories, while maintaining dynamic equilibrium and stability
requirements (Dariush et al., 1998). Predictions of control-based
models have been successfully validated against EMG data
(Sedighi et al., 2011; Nasseroleslami et al., 2014). Due to the
challenging geometrical complexity and intricate multi-joint
structures in the human trunk, previous control-based models
have mainly simplified the upper trunk as an inverted pendulum
with a single ball-and-socket (spherical) joint fixed at its base
[i.e., the lumbosacral (L5/S1) junction]. This approach neglects
relative deformations at the upper levels, translational degrees of
freedom (DoFs), and changes in the centers of rotation (CoRs)
under varying motions/loading conditions (Nasseroleslami
et al., 2014). Recent investigations have demonstrated the
variable effects of both the joint positioning (Ghezelbash et al.,
2018) and joint translational DoFs (Cashaback et al., 2013;
Ghezelbash et al., 2015) on the kinematics, as well as, muscle
forces and spinal loads. While a control-based model of the
whole body is used to provide more geometrical details, it is
based on multi-body simulations of the spine thus neglecting
the intervertebral joint complexities (Rupp et al., 2015). Up to
date, however, only one control-based FE model of the entire
body included translational DoFs (with movement restricted to
the sagittal plane), while using a simplistic proportional-integral-
derivative (PID) controller, to determine muscle activations
(Östh, 2010; Andersson, 2013). To provide more geometrical
details, deformable elements, based on fitting a curve on the
forces and moments previously obtained by a finite element
model of the intervertebral disc, were added to the multi-body
model of the lumbar spine; again neglecting the intervertebral
joint complexities (Karajan et al., 2013, 2014; Rupp et al.,
2015). Moreover, a previous study included active muscle
models in a reduced musculoskeletal finite element model of
the lumbar spine to explore possible functional relationships
between muscle function and intervertebral disc condition
(Toumanidou and Noailly, 2015).

The objectives of the present study are as follows:
(1) To develop a novel 2D beam-column control-based model

of the lumbar spine and compare its muscle force predictions
with an existing geometrically matched equilibrium-based model
(Patwardhan et al., 2001). The model incorporate (1) the DoFs at
all levels of the spine [via implementing the controller in a finite
element model of plant (passive spine)] thus also approximating
changes in the joint CoRs, (2) force-length and force-velocity
relationships in muscles using a Hill-based muscle model (Zajac,
1989), and (3) a bio-inspired control strategy to estimate muscle
forces using fuzzy neuro-controllers with an emotional learning
algorithm that adequately mimics the adaptive mechanism of
the CNS. The controller minimizes kinematic deviations between
actual and target postures, while calculating muscle activations
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by penalizing the controller unit for muscle activation level
(Nasseroleslami et al., 2014).

(2) To investigate, using the foregoing control-based finite
element model, the follower load (FL) concept as suggested in the
geometrically matched equilibrium-based model (Patwardhan
et al., 2001). In that model, the muscle forces were estimated
based on the premise that the resultant compressive load on the
spine behaves as a follower load (FL) (i.e., a load that follows
the curvature of the lumbar spine, at all lumbar levels and
postures), thus providing inherent spinal stability, as observed
in in vitro studies. This strategy implicitly leverages the stability
requirement by minimizing horizontal translations/rotations
along the spine. We hypothesize that our control strategy
(selected to mimic the role of the CNS in resolving the
kinetic redundancy) automatically leads to trunk muscle forces
consistent with a FL on the spine, thereby maximizing the
mechanical stability of the spine. This suggests that the controller
used in our model would learn to activate muscles in a manner
that not only minimizes the kinematic deviations, but also the
destabilizing shear forces and moments.

(3) To investigate the effect of external load magnitude
on the trunk muscle activation patterns. It is hypothesized
that the predicted pattern of muscle activation is scaled with
the external load magnitude, thus providing evidence for a
synergistic activation.

MATERIALS AND METHODS

Geometry and Musculature of the
Lumbar Spine Model
For the sake of comparison and hypothesis testing, the geometry
of our deformable beam-column model of the lumbar spine and
musculature were selected to be identical to those introduced
in a previous work (Patwardhan et al., 2001). A simple 2D
model of the lumbar spine, as a continuous elastic beam-
column in the frontal plane, was constructed in LS-DYNA R©

(Livermore Software Technology Corporation, Livermore, CA,
United States) (Figure 1). Five distinct pairs of muscles were
attached to a fixed base (representing the pelvis/sacrum) of the

FIGURE 1 | Geometry and musculature of the lumbar spine model in a
laterally flexed posture in the frontal plane (Patwardhan et al., 2001).

deformable beam at various L1–L5 lumbar levels. The simulation
at the steady-state condition was quasi-static; upper body masses
and inertias were hence neglected. The gravitational effect of
masses was, however, accounted for by either a concentrated
force at the L1 or distributed forces at various nodes (Table 1).
The exact beam geometry, flexural rigidity (EI = 1.9 Nm2), and
coordinates of upper/lower muscle insertions were all adopted
from earlier work (Table 2; Patwardhan et al., 2001). The cross
sectional area of the column was assumed constant at 1225
mm2. The model was fixed at the sacrum (lower node) and
restricted elsewhere to solely move in the frontal plane. The
lumbar spine model consisted of five Hughes-Liu beam elements.
The Hughes-Liu beam is a degenerated 8-node solid element
(linear displacement and rotation field) with high computational
efficiency and robustness (Hallquist, 2006). Sensitivity of the
model predictions to the number of beam elements in the model
(i.e., mesh refinement) was verified.

Hill’s Muscle Model
A Hill muscle model (Zajac, 1989) is used as follows:

F = fmax

(
α.fl

(
l
)
.fv

(
l̇
)
+ fp

(
l
))

(1)

f l
(
l
)
= 5.1− 29

(
l
l0

)
+ 56

(
l
l0

)2
− 41

(
l
l0

)3
+ 10

(
l
l0

)4

(2)

fv(l̇) =
0.1433

0.1074+ exp
(
−1.409 sinh

(
3.2 l̇

l̇max
+ 1.6

)) (3)

fp
(
l
)
= exp

(
−10.671+ 7.675

l
l0

)
(4)

In the above equations, F, f l
(
l
)

(Nussbaum and Chaffin, 1998),
fv(l̇) (Hatze, 1977), and fp

(
l
)

(McGill and Norman, 1986) are
muscle force, as well as force-length, force-velocity and passive
force-length relationships, respectively. Moreover, fmax, α, l, l̇,
l0, l̇max represent muscle maximum force, muscle activation
level, muscle length, muscle velocity, muscle resting length and
maximum muscle velocity, respectively. The value of l̇max =

l0
0.1s

is assumed in this study (Zajac, 1989). fmax is assumed to be
800 N in all muscles. In muscles, the damping is represented

TABLE 1 | Simulation cases.

Loading case P1 (N) P2 (N) P3 (N) P4 (N) P5 (N) D (mm)

1 635 0 0 0 0 50

2 350 50 50 50 50 50

3 110 110 110 110 110 50

4 110 110 110 110 110 25

5 110 110 110 110 110 75

Pi represents the gravitational force of the upper trunk acting on the lumbar vertebra
Li . Gravitational loads increase from zero to Pi during 0.2 s. D represent the lateral
distance of muscle origins.
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TABLE 2 | Nodal coordinates of the deformed lumbar spine model (see Figure 1).

L1 L2 L3 L4 L5

X (mm) 190 150 105 80 38

Z (mm) 10.0 6.2 3.0 1.7 0.4

intrinsically by the force-velocity relationship (Eq. 3), while the
stiffness alters with the current length according to the force-
length relationships (Eqs. 2 and 4). Inspection of the Hill type
muscle response used (Eq. 1) reveals that the muscle activation
affects the system response by modulating the muscle force and
stiffness (Hogan, 1990). The spine structural stiffness matrix
consists of contributions from both active and passive systems.

Controller
One single-input and single-output (SISO) controller for each
muscle was used to control the continuous beam model. The
main idea behind the control structure assumes that each pair of
bilateral muscles attached to a particular point increases the active
stiffness at that point. The SISO controller used in this study is
a fuzzy neuro-controller whose weights are tuned according to
two critic signals (Figure 2; Lucas et al., 2004). The purpose of
the controller is to minimize the general error function displayed
below (Eq. 5) with the steepest descent algorithm:

E = Ee + Eα =
1
2
ke

(
h1e+ h2ė+ h3 ∫ e

)2
+

1
2
kα

(
abs (α)

)2 (5)

In the above equation, e, ė, and ∫ e represent the error (difference
between the actual and target kinematics), error rate, and the
integral of error, where h1, h2, and h3 represent error, error rate
and error integral coefficients. Moreover, ke and kα represent
the weighting functions for the priority of the error signal
components. α is the level of muscle activation (between 0 and
1). As can be seen in Eq. 5, the error function consists of two
parts Ee and Eα, where Ee represents the kinematics error, while
Eα penalizes the controller for the control activation signal and
plays an essential role in resolving the system redundancy in
terms of muscle forces (Nasseroleslami et al., 2014). The above
cost function is defined for each muscle, where the error terms

are based on the Z-coordinates of the nodes to which muscles
are attached. Eq. (6), formulated below, is defined as the Jacobian
of the SISO controller. In MIMO applications, it is necessary
to calculate the exact value of the Jacobian. However, in SISO
systems, only the sign of the Jacobian is sufficient for control
(Nasseroleslami et al., 2014). The overall weight tuning rule can
be calculated from Eq. 7.

j =
∂Z
∂α

(6)

1wi = −η.
∂E
∂wi

(7)

Where wi is the ith neuron weight of the neural controller and η
(learning rate) represents the rate of change in weights. Finally,
by using the chain derivative rule and combining the relevant
equations, Eq. (7) is rewritten as Eq. (10):

∂Ee
∂wi
=
∂Ee
∂re

.
∂re
∂Z

.
∂Z
∂α

.
∂α

∂wi
= −ke.h1.re.j.

∂α

∂wi
(8)

∂Eα

∂wi
=
∂Eα

∂rα
.
∂rα
∂α

.
∂α

∂wi
= kα.sgn(α).rα.

∂α

∂wi
(9)

1wi = η
(
ke.h1.re.j− kα.rα

)
.
∂α

∂wi
(10)

In these equations, re = h1e+ h2ė+ h3 ∫ e and rα = abs (α). h1,
h2, h3, kα, are assumed as 2, 2, 2, and 0.2, respectively. ke = 15,
7, 2.5, 1, and 0.1 for levels L1 through L5, respectively. Each
muscle is considered as a SISO controller, thus the Jacobian
sign would be adequate for control. Each controller-muscle unit
minimizes the kinematic error of the node to which it is attached
while minimizing its muscle activation. Initial muscle activations
were neglected as the muscle forces were adjusted through a
feedback strategy.

Simulations
A total of five simulations (loading cases 1–5), based on the
external load distributions and lateral distances of the muscle
origins, were considered in this study (Patwardhan et al., 2001;

FIGURE 2 | Feedback control loop with SISO fuzzy neuro-controller unit. C1 and C2 are the critics of the system that generate re = h1e+ h2ė+ h3 ∫ e and
rα = abs (α), respectively. αj is the level of activation of muscle (j) attached to Li and e is the difference between desired (Zid ) and actual (Zi ) Z-coordinate of the node
Li (Figure 1).
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Table 1). Gravitational loads attained their values in 0.2
s. All simulation cases were modeled with and without
the muscle/controller. Identical boundary conditions were
considered for all simulated cases. The purpose of the controller
in this study (i.e., target posture), was to maintain the primary
Z-coordinates (minimize lateral deviations between the target
and actual positions to remain bounded within 2 mm during
the learning process) of the beam, as specified in Table 2.
It is noteworthy that the foregoing restrictions on the lateral
translations automatically limit any changes in the nodal lateral
rotations. The vertical (X direction) displacement of the beam as
well as the orientation of the vertebrae were left free to change
under the external loads and muscle forces. In addition, in order
to investigate the effect of the external load magnitude on the
pattern of trunk muscle activations in loading case 2 (Table 1),
the muscle forces were recalculated for different external vertical
loads (150-750 N) applied at the L1 level.

RESULTS

Comparison With the Matched
Equilibrium-Based Model
In the absence of any controller (i.e., without any muscle
activation), the simulated system, expectedly, exhibited large
deformations and became unstable. In all five loading cases
(Table 1), the controllers in the model successfully learned,
over time, to maintain the model close to the target kinematics
at equilibrium under the estimated muscle exertions and
applied external loads (Figure 3). The actual and target nodal
Z-coordinates were different by <0.2 mm during the steady-
state condition after 20 s. Initially in the transient period,
when the controller was not fully trained, the model deviated
slightly (Figure 3) from its target kinematics, and the muscle
forces substantially increased. By training the controller, the
muscle forces subsequently considerably decreased, and the
model reached its steady state. In all five loading conditions, the
controllers unilaterally activated only one muscle at each level
(i.e., no coactivation). As compared to the matched equilibrium-
based model mentioned earlier (Patwardhan et al., 2001), our
model predicted similar patterns for muscle forces (i.e., the
muscles were activated unilaterally, and their forces decreased
going downwards from the upper levels, although generally at
lower values (RMSE = ∼41, 16, 12, 44, and 9 N for loading cases
1 through 5, with an overall normalized (to mean) RMSE of
121% for all loading cases) (Figure 4). Consequently, our control-
based model predicted smaller compressive loads as compared to
its matched equilibrium-based model (Patwardhan et al., 2001;
Table 3). However, the equilibrium-based model predicted near
zero shear loads in keeping with its own strategy to use the joint
reaction forces as an FL (Table 3).

Follower Load (FL) Hypothesis
By minimizing the errors between the actual and target nodal
Z-coordinates, the control-based model, predicted muscle forces
that also generated a near FL on the spine (Figure 5). Regardless
of the loading case, the angle between the resultant force on

the lumbar spine in our model and an optimal hypothetical FL
remained<3◦.

Effect of External Load on Muscle
Activations
The controllers activated the trunk muscles unilaterally (no
bilateral co-activation) regardless of the magnitude of the external
loads (Figure 6). Both models produced similar, although not
identical activation patterns in the five loading cases. Variation of
the muscle forces with the magnitude of external loading within
the range simulated at the L1 was found linear.

DISCUSSION

This study developed a novel geometrically simple control-based
model of the lumbar spine and compared its predictions for
a slightly bent posture in the frontal plane with those of a
geometrically matched equilibrium-based model (Patwardhan
et al., 2001). Moreover, the FL concept suggested as an input
constraint in the matched equilibrium-based model, as well as,
the effect of changes in the externally applied loads on muscle
forces, were investigated. The present learning algorithm is
classified as a reinforcement-based one, where the controller
tends to decrease the defined cost function based on the critic’s
signals (Figure 2). The findings indicated that, similar to the
equilibrium-based model, the fuzzy neuro-controllers balanced
the spine at a given deformed posture using a unilateral muscle
force pattern, albeit with generally smaller muscle forces (the
sums of muscle forces in our model were smaller by ∼ 159, 40,
−11, 132, and −8 N for loading cases 1 through 5, and hence,
the L5-S1 compression forces were smaller by ∼ 145, 33, −14,
127, and −12 N for loading cases 1 through 5, respectively).
This unilateral muscle activation pattern did not change with
the variation of the magnitude of external loads (i.e., the spine
was balanced by the controllers without bilateral coactivations).
Moreover, for the loading conditions at a slightly laterally
bent posture (i.e., quiet standing posture) considered in this
study, and consistent with the objective function, the controllers
activated the muscles such that the net load on the lumbar spine
approached an ideal FL condition. In the future, our control-
based approach will be applied to our 3D musculoskeletal model
of the spine (Arjmand and Shirazi-Adl, 2006) while simulating
various physiological tasks. This model incorporates a realistic
geometry of the spine, including ∼80 thoracolumbar muscles,
and 6 degrees-of-freedom intervertebral joint with non-linear
passive properties. The controllers will aim to determine optimal
muscle forces accounting for all the degrees-of-freedom in all
anatomical planes. In particular, it would also be interesting
to simulate, amongst others, some passive-active injuries and
pathological conditions (e.g., altered passive stiffness-muscle
coordination/muscle areas).

Interpretations
Application of the external loads in 0.2 s resulted in an increase
in the initial position and velocity beyond those in the target
condition (Figure 3). In response, and to maintain equilibrium
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FIGURE 3 | Error, error rate, and muscle forces at different lumbar levels vs. time (up to 0.5 s) for the loading case 1 (with controllers and muscles). Gravitational
loads increase from zero to Pi (see Table 1) during 0.2 s. The controller tries to maintain the primary Z-coordinates of beam (Table 2) with a penalty on muscle
activation level. For the sake of a clarified visualization, the horizontal axis is cut at 0.5 s while the convergence occurs at ∼20 s.
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FIGURE 4 | Predicted muscle forces in the current study (middle) as compared to those predicted by a matched equilibrium-based model (Patwardhan et al., 2001)
(right) for different loading cases (left) (Table 1).
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TABLE 3 | Predicted spinal loads (compression and shear) in the current control-based model as compared to those predicted by a matched equilibrium-based model
(Patwardhan et al., 2001) for different loading cases (Table 1).

Loading case 2 Loading case 3 Loading case 4 Loading case 5

Load (N) Levels Control Equilibrium Control Equilibrium Control Equilibrium Control Equilibrium

Shear L1–L2 −5.1 0.6 −7.6 0.2 −6.4 1.1 −7.4 0.1

L2–L3 −5.6 −2.0 0.6 −0.9 −5.6 −1.1 0.6 −0.8

L3–L4 26.2 2.8 16.7 1.6 23.8 3.1 15.3 1.5

L4–L5 3.6 −0.3 2.5 −0.2 6.5 0.0 2.9 −0.2

L5–S1 −13.7 0.0 −8.8 0.0 −10.7 0.1 −7.6 0.0

Compression L1–L2 522 564 191 175 292 423 161 146

L2–L3 619 638 325 300 433 541 285 267

L3–L4 690 707 435 410 575 667 396 378

L4–L5 752 774 547 526 701 802 507 491

L5–S1 804 837 658 644 811 938 618 606

Negative shear forces are toward left (Figure 1). Results for Loading case 1 are not reported in the equilibrium-based model; hence no comparison was made.

FIGURE 5 | The absolute value of angle between the resultant force on the spine and a hypothetical follower load (FL).

and stability, the controllers bilaterally and significantly activated
the muscles at all levels. Following a transient period with large
fluctuations, the controllers succeeded in reducing the errors,
such that at the final steady state conditions, the velocity errors
completely disappeared, while the position errors diminished to

less than 1 mm (Figure 3). At this final static configuration, and
in agreement with the matched equilibrium-based model, the
controllers activated the muscles unilaterally with no coactivation
to balance the spine (Figure 4). The only difference between
the two models was observed in loading cases 3 and 5, during
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FIGURE 6 | Predicted muscle forces for different external compressive loads acting on the L1 and the distributed loads of 50 N at the L2 to L5 similar to loading
Case 2 (Table 1). External force increases from zero to its final value in 0.2 s.

which the unilaterally opposite muscles were activated at the L2
level (Figure 4). The control-based model generally balanced the
external loads at smaller muscle forces (differences reached∼159,
40, −11, 132, and −8 N for loading cases 1 through 5). This
in in alignment with objective functions minimizing the sum
of linear, squared, or cubed muscle forces/stresses, commonly
considered in optimization-driven models. While at some levels
in the loading cases 3 and 5, our model predicted larger muscular
forces, as compared to its matched equilibrium-based model, the
sums of muscle forces in these loading conditions, were only
moderately larger (11 and 12% increase for loading case 3 and
5, respectively) (Table 3 and Figure 4). This suggests that the
cost function used by the CNS to assign forces to muscles may
additionally depend on loading conditions and posture. It is to
be noted that even smaller total (resultant) spinal loads were
estimated in our model when compared to the equilibrium-based
model. This highlights the crucial role of our controller (Eq. 5).

Interestingly, without imposing any constraints on the
magnitude or direction of muscle or reaction forces in the
lumbar spine, a near FL condition was found in various cases
(Figure 5). This was in agreement with the matched equilibrium-
based model, which constrained activation in muscles to generate

an FL on the spine at all levels. It appears, therefore, that the
controllers (i.e., the CNS) learned to balance and stabilize the
spine by generating conditions approaching that under an FL.
This is also in agreement with findings from another detailed
musculoskeletal equilibrium-based model of the spine, in which
the muscle forces were predicted to create compressive FLs on
the spine during a quiet standing posture (Han et al., 2011).
The outcome in internal loading is also consistent with the
minimization of changes in horizontal translations. Moreover,
unlike the equilibrium-based model which predicted no shear
loads on the spine, small spinal shear loads were predicted
in our model (Table 3). The structure and nature of the
constitutive components of the objective function in our model
(Eq. 5) allow for diverse simulation possibilities to explore the
competing goals of the system toward emulating the sophisticated
physiological system and its intricate strategies. The addition of
more state variables can be another intriguing motivation for
future investigation.

The recruitment of trunk muscles has been shown to be
strongly direction dependent (Nussbaum et al., 1995; Hadizadeh
et al., 2014; Sedaghat-Nejad et al., 2015; Eskandari et al., 2016).
In quasi-static conditions the emergent synergies responsible
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FIGURE 7 | External compressive force, error, error rate and muscle forces at L1 vs. time (up to 2.2 s) for the loading case 1 under application of −100 N and 100 N
vertical force at L1 during [0.5 s, 1 s] and [1.5 s, 2 s] time intervals, respectively, in order to model perturbations (with controllers and muscles). The controller tries to
maintain the primary Z-coordinates of beam (Table 2) with a penalty on muscle activation level.

for a direction of external load will be linearly scaled. The
invariance in set of activated muscles under varying magnitude
of external load (Figure 6) is in line with the theories of
using muscle synergy in multiple muscle systems across the cost
functions (Moghadam et al., 2013; Eskandari et al., 2016). Future
studies must test this in more physiological models with realistic
posture/loading and non-linear properties. Future studies can
also benefit by incorporating more physiologically based detailed
architectural/geometrical muscle models and structure/function
data obtained from neuroimaging studies.

Limitations
This model was idealized in terms of the geometry of the active-
passive tissues, material properties, and loading conditions in the
frontal plane, as we primarily aimed to (1) implement a novel bio-
inspired control strategy that mimics the adaptive mechanism of
the CNS and (2) compare its predictions with an existing matched
equilibrium-based model. As the current model was idealized
based on simplifying assumptions in terms of the geometry
of the spine, loading, boundary conditions, and musculature,
caution should be exercised when extrapolating results to clinical
applications. The maximal force in all muscles was considered

to be 800 N, in order to accommodate large fluctuations in
muscle forces during the transient period (Figure 3). In the
final steady-state, however, much smaller muscular forces were
estimated (Figure 4). Non-zero muscle pre-activation values
(initial values) could subdue the fluctuations observed in the
transient state. While the stability was not formally examined
in our model, different perturbations (e.g., the addition of a
moment at the L1 and the reduction of Young’s modulus of
the beams; Nasseroleslami et al., 2014) did not cause instability,
as the controllers prevented large deformations and maintained
the final steady-state position. For example, Figure 7 depicts
the model response under a perturbation, where the addition
and removal of a 100 N load to impose external compression of
635 N at L1 for a duration of 0.5 s, caused the muscle force to
appropriately rise and fall, respectively, to maintain the required
objective posture (Z coordinates). The error terms, which
approached nil at the end of the 20 s simulation, are not shown
in Figure 7 for clarity. The closed loop response could include
multiple loops with varying gains and time delays (Zeinali-
Davarani et al., 2008). We have neither considered the spindle
nor the reflexive responses in the feedback loop, and we have
not used an internal model to assist with the initial exploration
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of activation selection (Dariush et al., 1998; Shadmehr and
Mussa-Ivaldi, 2012), all warranting future investigation. The
objective function should be designed considering stability in
the Lyapunov sense, while setting the performance criterion to
maintain the system within the safe normal physiological limits of
the passive and active spinal structures. This provides an envelope
with margins of safety to avoid pain, discomfort, muscle fatigue,
instability and ultimately failure/injury.

CONCLUSION

This work presents a new method to estimate muscle forces
using a control-based FE model of the lumbar spine. The
model incorporates a control strategy that mimics the adaptive
mechanism of the CNS to adjust muscle forces. Steady state
muscle forces have similar patterns to a geometrically matched
equilibrium-based model and spine reaction forces resemble a FL
on the spine. Additionally, controllers linearly scale muscle forces
in a specific loading condition with varying magnitude of external
load. The phenomenon of FL is the predicted behavior of this
adaptive neuro-fuzzy control system and not the explicit objective
of the mathematical theory or conjecture. That creates a fertile
paradigm to consider clinical ideas (i.e., spinal injuries and/or
fusion) to be investigated in future studies with a more detailed
architecture for muscles under more general loading conditions
during daily activities at work, leisure and sport.
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It is well-established that cyclic, but not static, mechanical loading has anabolic
effects on bone. However, the function describing the relationship between the loading
frequency and the amount of bone adaptation remains unclear. Using a combined
experimental and computational approach, this study aimed to investigate whether
trabecular bone mechano-regulation is controlled by mechanical signals in the local
in vivo environment and dependent on loading frequency. Specifically, by combining
in vivo micro-computed tomography (micro-CT) imaging with micro-finite element
(micro-FE) analysis, we monitored the changes in microstructural as well as the
mechanical in vivo environment [strain energy density (SED) and SED gradient] of mouse
caudal vertebrae over 4 weeks of either cyclic loading at varying frequencies of 2, 5, or
10 Hz, respectively, or static loading. Higher values of SED and SED gradient on the local
tissue level led to an increased probability of trabecular bone formation and a decreased
probability of trabecular bone resorption. In all loading groups, the SED gradient was
superior in the determination of local bone formation and resorption events as compared
to SED. Cyclic loading induced positive net (re)modeling rates when compared to sham
and static loading, mainly due to an increase in mineralizing surface and a decrease in
eroded surface. Consequently, bone volume fraction increased over time in 2, 5, and
10 Hz (+15%, +21% and +24%, p ≤ 0.0001), while static loading led to a decrease
in bone volume fraction (−9%, p ≤ 0.001). Furthermore, regression analysis revealed a
logarithmic relationship between loading frequency and the net change in bone volume
fraction over the 4 week observation period (R2

= 0.74). In conclusion, these results
suggest that trabecular bone adaptation is regulated by mechanical signals in the
local in vivo environment and furthermore, that mechano-regulation is logarithmically
dependent on loading frequency with frequencies below a certain threshold having
catabolic effects, and those above anabolic effects. This study thereby provides valuable
insights toward a better understanding of the mechanical signals influencing trabecular
bone formation and resorption in the local in vivo environment.

Keywords: bone adaptation, mechanical loading, in vivo micro-CT imaging, frequency dependency, micro-finite
element analysis
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INTRODUCTION

It is well-established that cyclic, but not static loading has
anabolic effects on bone (Hert et al., 1971; Lanyon and Rubin,
1984; Turner et al., 1995; Robling et al., 2001). This clear-cut
discrepancy in osteogenic responses to both loading patterns
highlights the key role of loading frequency in mechano-
regulation of bone modeling and remodeling, collectively
referred to as (re)modeling, the coordinated process by which
bone is continuously formed and resorbed. Yet, the exact
relationship between loading frequency and bone (re)modeling
and bone adaptation remains unclear. While both experimental
(Rubin and Mcleod, 1994; Turner et al., 1994; Hsieh and Turner,
2001) and theoretical studies (Turner, 1998; You et al., 2001) have
suggested a dose-response relationship such that bone formation
increases with higher loading frequencies, Warden and Turner
have shown this relationship to be non-linear (Warden and
Turner, 2004) using an axial loading model of mouse ulnae. Using
this model, they showed that cortical bone adaptation increased
with frequencies up to 5 and 10 Hz, but then plateaued thereafter.
In line with these results, more recent in silico studies have found
non-linear relationships between loading frequency and bone
adaptation both in cortical (Tiwari and Kumar, 2018) as well as in
trabecular (Kameo et al., 2011) bone. In the latter study, a single
trabecula was subjected to cyclic uniaxial loading at frequencies
of either 1, 3, 5, 10 or 20 Hz. Similar to the study by Warden et al.,
bone volume fraction increased up to 10 Hz but then plateaued
thereafter (Kameo et al., 2011). However, owing to the lack of
in vivo studies investigating the effects of loading frequency on
trabecular bone adaptation, the validity of such in silico studies
remains unclear. Furthermore, as frequency effects have been
shown to vary depending on the anatomical region investigated
(Zhang et al., 2007), the optimal frequency must be identified for
every specific loading model.

Using a tail-loading model, we have previously shown that
cyclic loading at a frequency of 10 Hz over 4 weeks elicits
anabolic responses in mouse caudal vertebrae (Webster et al.,
2008). Furthermore, by combining time-lapsed micro-computed
tomography (micro-CT) imaging with micro-finite element
(micro-FE) analysis, we were able to demonstrate that bone
(re)modeling in the trabecular compartment is controlled by local
mechanical signals at the tissue level (Schulte et al., 2013; Lambers
et al., 2015; Webster et al., 2015). Specifically, by registering
consecutive time-lapsed in vivo micro-CT images onto one
another (Schulte et al., 2011), sites of bone formation and
resorption were quantified in three dimensions and subsequently
linked to corresponding mechanical signals calculated in the local
in vivo environment (LivE) (Schulte et al., 2013; Lambers et al.,
2015; Webster et al., 2015). Herein, simulating the distribution of
strain energy density (SED)—defined as the increase in energy
associated with the tissue deformation per unit volume (i.e.,
a measure of direct cell strain) —within the caudal vertebrae
revealed that bone formation was more likely to occur at sites
of high SED, whereas bone resorption was more likely to
occur at sites of low SED (Schulte et al., 2013; Lambers et al.,
2015). While SED is widely used as a mathematical term to
describe the mechanical signal influencing bone (re)modeling

(Huiskes et al., 2000; Schulte et al., 2013; Birkhold et al., 2017;
Cheong et al., 2020), other mechanical signals, such as interstitial
fluid flow through the lacuna-canalicular network (LCN), are also
known to play a major role in determining the local mechanical
environment surrounding osteocytes, the main mechanosensors
in bone (Fritton and Weinbaum, 2008; Weinbaum et al., 2011;
Klein-Nulend et al., 2013). In this respect, it has been suggested
that measures of fluid flow, such as the gradient in SED,
would allow improved predictions of adaptive bone (re)modeling
events (Webster et al., 2015; Tiwari et al., 2018). In this study,
we therefore aimed to (1) investigate the effects of varying
loading frequencies on the mechano-regulation of trabecular
bone in mouse caudal vertebrae, (2) assess whether adaptive bone
(re)modeling can be linked to mechanical signals in the local
in vivo environment and (3) compare the modeling performance
of SED and the gradient in SED for the prediction of local bone
formation and resorption events on the tissue level. Specifically,
we used time-lapsed in vivo micro-CT imaging to monitor
bone adaptation over time in individual animals in response to
cyclic loading at frequencies of 2, 5, and 10 Hz as well as in
response to static loading. In comparison to conventional two-
dimensional (2D) histomorphometric techniques, which have
previously been used to investigate effects of varying frequencies
on bone adaptation (Lanyon and Rubin, 1984; Hsieh and Turner,
2001; Robling et al., 2001; Zhang et al., 2007), the ability to
quantify not only bone formation but also resorption over time
could elucidate contrasting effects observed after static and cyclic
loading. Furthermore, the analysis of various mechanical signals
in the local in vivo environment by means of micro-FE analysis
provided a better understanding of these signals influencing
bone forming and resorbing cells on the local level. Finally, by
determining the conditional probabilities for bone formation and
resorption events to occur as a function of these mechanical
signals (Schulte et al., 2013), this study contributed toward the
description of the relationship between local mechanical signals
and the subsequent mechano-regulation of bone adaptation. In
future, these results will be highly beneficial for in silico studies
aiming to predict the mechano-regulation of bone adaptation in
response to various interventions.

RESULTS

Trabecular Bone Adaptation to Load Is
Dependent on Loading Frequency
In order to investigate the effects of varying loading frequencies
on bone adaptation, we used an in vivo micro-CT approach
(Lambers et al., 2011) to monitor bone adaptation of the
sixth caudal vertebrae of C57BL/6J mice subjected to a 4-
week loading regime of either sham (0 N), 8 N static or 8 N
cyclic loading with frequencies of 2, 5, or 10 Hz, respectively.
Table 1 shows the difference between the first and last time
point (i.e., bone parameterweek4-week0) of the bone structural
parameters in the trabecular and cortical bone. In the trabecular
bone compartment, the difference of bone volume fraction
(BV/TV) and trabecular thickness (Tb.Th) between the first
and last time point was significantly different between groups
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TABLE 1 | Difference between week 0 and week 4 for bone structural parameters in the trabecular and cortical compartments.

Morphometric parameter Sham Static 2 Hz 5 Hz 10 Hz p-value

BV/TV (%) −0.93 ± 0.789 −1.408 ± 1.392 2.333 ± 1.315**** 3.240 ± 1.692**** 3.680 ± 1.084**** ≤0.0001

Tb.Th (mm) 0.006 ± 0.005 0.006 ± 0.005 0.021 ± 0.01*** 0.020 ± 0.007** 0.021 ± 0.006*** ≤0.0001

Tb.N (1/mm) 0.263 ± 0.122 −0.286 ± 0.076 −0.234 ± 0.127 −0.341 ± 0.082 −0.295 ± 0.221 >0.05

Tb.Sp (mm) 0.034 ± 0.019 0.037 ± 0.009 0.031 ± 0.024 0.043 ± 0.013 0.034 ± 0.027 >0.05

Ct.Ar/Tt.Ar (%) 0.507 ± 1.187 0.524 ± 1.931 2.746 ± 0.950* 3.838 ± 2.209** 3.496 ± 1.733** ≤0.0001

Ct.Th (mm) 0.004 ± 0.005 0.005 ± 0.005 0.013 ± 0.005* 0.014 ± 0.013* 0.014 ± 0.009* ≤0.01

P-values denote a significant difference between groups determined by one-way ANOVA, while “*” denotes significant difference to sham as assessed by multiple
comparisons Dunnett’s test (*p < 0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001).

(p ≤ 0.0001), whereas no significant differences were detected
between groups for the trabecular number and separation (Tb.N
and Tb.Sp, p > 0.05). Whereas, the sham and static loading
groups showed a net decrease in BV/TV and Tb.Th, the cyclic
loading groups at 2, 5, and 10 Hz displayed increases in BV/TV
and Tb.Th, with all of them being significantly different to the
sham group (Table 1). With respect to the structural parameters
of cortical bone, differences between the first and last time
point were significantly different between groups for cortical
area fraction (Ct.Ar/Tt.Ar, p ≤ 0.0001) and cortical thickness
(Ct.Th, p ≤ 0.01), where the cyclic loading groups showed
significantly greater increases compared to the sham-loaded
group (Table 1).

Figure 1 shows the relative changes in trabecular bone
morphometric parameters over the 4-week loading period for
the different loading groups. BV/TV developed differently over
time between the loading groups (interaction effect, p ≤ 0.0001).
Compared to the sham-loaded group, which showed no change
in BV/TV over time (−6%, p > 0.05), cyclic loading at
all frequencies (2, 5, and 10 Hz) led to a dose-response
increase in BV/TV with higher frequencies resulting in higher
increases in BV/TV (Figure 1A). Herein, the 5 and 10 Hz
groups showed a significant increase compared to baseline
already 2 weeks after the start of loading (p ≤ 0.001 and
p ≤ 0.0001), while the 2 Hz group showed a significant
increase relative to baseline only after 3 weeks (p ≤ 0.001).
At the end of the 4-week loading regime, these groups
showed a 15, 21, and 24% higher BV/TV relative to baseline
(p ≤ 0.0001 for 2, 5, and 10 Hz). Static loading on the
other hand, had catabolic effects resulting in significantly lower
BV/TV (−9%, p ≤ 0.01) at the last time point relative to
baseline. In line with the changes in BV/TV, Tb.Th developed
differently over time between the loading groups (interaction
effect, p ≤ 0.0001, Figure 1B). By the end of the 4-week
loading intervention, all cyclic loading groups showed significant
increases in Tb.Th (p ≤ 0.0001), which was not observed in
the static and sham-loaded groups (p > 0.05). Although the
number of trabeculae (Tb.N) decreased and trabecular separation
increased (Tb.Sp) over time (Figures 1C,D, p ≤ 0.001), no
relative differences were observed between the groups (p >
0.05). These results thus suggest that increases in BV/TV due
to cyclic loading were mainly driven by thickening of the
trabeculae rather than by the inhibition of the reduction in the
number of trabeculae.

By plotting the relative changes in BV/TV as a function of
loading frequency, regression analysis revealed a logarithmic
relationship between bone adaptation and loading frequency
as a best fit to the data (R2

= 0.74, Figure 1F) with loading
frequencies above 0.36 Hz ± 0.08 having anabolic effects,
and frequencies below this threshold having catabolic
effects. Although there were no significant differences
between the cyclic loading groups, loading at 10 Hz had
the earliest and largest anabolic effects compared to the
other frequencies.

Aside from providing information on changes in bone
structural parameters over time, in vivo micro-CT also
provided the possibility to assess dynamic bone formation
and resorption activities such as bone formation/resorption rate
(BFR/BRR), mineral apposition/resorption rate (MAR/MRR)
and mineralizing/eroded surface (MS/ES) (Schulte et al., 2011).
The net (re)modeling rate (BFR-BRR), which gives an indication
whether there was overall bone gain (i.e., BFR-BRR>0)
or loss (i.e., BFR-BRR<0) occurring within the trabecular
compartment, tended to develop differently between groups
(p ≤ 0.10). Compared to the static and sham-loaded groups,
which had an overall negative (re)modeling balance, the 2,
5, and 10 Hz had an overall positive (re)modeling balance
(p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001, Figure 2A). The net
(re)modeling rate did not significantly change over time. When
bone formation and resorption rates were analyzed separately,
the main differences in the cyclic loading groups were in the
reduced BRR as compared to the sham and static groups. While
BFR did not significantly differ between groups (p > 0.05,
Figure 2B), BRR was 35% (p ≤ 0.01), 50% (p ≤ 0.0001) and
44% (p ≤ 0.0001) lower in the 2, 5, 10 Hz groups, respectively,
compared to the sham-loaded group (Figure 2C). The static
group on the other hand had a similar BRR (−2%, p > 0.05) as
the sham-loaded group (Figure 2C).

A difference between the cyclic and static loading groups
was also apparent when investigating the surfaces of formation
(mineralized surface, MS, interaction effect p < 0.05) and
resorption (eroded surface, ES, interaction effect p > 0.05)
sites with the cyclic loading groups having a higher MS and
lower ES compared to the static and sham-loaded groups
(Figure 2D). On average, formation sites occupied 2, 2.5, and
2.6 more surfaces than resorption sites for the 2, 5, and 10
Hz groups, and only 1.4 times more for the control and static
groups, respectively.
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FIGURE 1 | Relative changes of structural bone morphometric parameters in the trabecular compartment over the 4-week loading period as assessed by in vivo
micro-CT. (A) Bone volume fraction (BV/TV), (B) trabecular thickness (Tb.Th), (C) trabecular number (Tb.N), and (D) trabecular spacing (Tb.Sp). (Data represent
mean ± standard deviation (SD) for n = 5–8/group, p-values for interaction effect between group and time are shown as determined by linear mixed effects model).
(E) The relative change from week 4 relative to baseline (BV/TVweek4/week0) (F) was fitted with a logarithmic regression line. (Data represent mean ± SD for
n = 5–8/group, p-value for main effect of group determined by one-way ANOVA, ****p ≤ 0.0001 denotes significant difference between groups determined by
post hoc Tukey’s multiple comparisons test).
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FIGURE 2 | Dynamic bone morphometric parameters in the trabecular compartment in the different loading groups as assessed by in vivo micro-CT. (A) Changes in
the net (re)modeling rate shown as the difference between bone formation rate (BFR) and bone resorption rate (BRR) over the 4-week loading period. Overall
difference between groups of (B) BFR and (C) BRR. (D) Mineralized surface (MS) and eroded surface (ES) over the 4-week loading period. Overall difference
between groups of (E) MS and (F) ES. (G) Mineral apposition rate (MAR) and mineral resorption rate (MRR) over the 4-week loading period. Overall difference
between groups of (H) MAR and (I) MRR. [Data represent mean ± SD for n = 5–8/group, p-values for interaction effect between group and time are shown as
determined by linear mixed effects model (A,D,G), boxplots showing the differences between groups as determined by Tukey’s post hoc multiple comparisons test
*p < 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 (B,C,E,F,H,I)].

Furthermore, the 2, 5, and 10 Hz groups had a 18%
(p ≤ 0.01), 25% (p ≤ 0.001) and 26% (p ≤ 0.0001) higher
mineralized surface (MS) and a 22% (p ≤ 0.0001), 32%
(p ≤ 0.0001) and 26% (p ≤ 0.0001) lower eroded surface (ES)
compared to the sham-loaded group, while the static group
had similar MS and ES compared to sham-loading (p > 0.05,
Figures 2E,F). The mineral apposition and resorption rates
(MAR and MRR), which represent the thicknesses of formation
and resorption packages, respectively, did not develop differently
between groups (interaction effects p > 0.05). Furthermore,
the MAR and MRR were similar between groups (p >
0.05), thus suggesting that they are not affected by loading
(Figures 2G–I). This indicates that cyclic loading had a greater

effect on surface than on thickness of formation as well as
resorption sites.

Trabecular Bone Adaptation to Load Is
Controlled by Mechanical Signals in the
Local in vivo Environment
In order to assess whether bone (re)modeling events—namely
formation, quiescence [i.e., where no (re)modeling occurred]
and resorption—can be linked to the corresponding mechanical
signals in the local in vivo environment, we performed micro-
finite element (micro-FE) analysis to calculate the strain
distribution within the tissue. As deformation (direct cell strain)
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and interstitial fluid flow (shear stress) are hypothesized to
be the main mechanical stimuli that regulate load-induced
bone adaptation (Rosa et al., 2015), we quantified the strain
energy density (SED) magnitudes as a measure of mechanical
deformation and the spatial gradient thereof (OSED), as a
measure of fluid flow (Kufahl and Saha, 1990; Webster et al.,
2015). Figure 3 displays a representative visualization of a section
of the vertebrae of the 10 Hz group showing sites of bone
(re)modeling (Figure 3A) as well as the corresponding maps of
SED (Figure 3B) and OSED (Figure 3C). From this qualitative
analysis, it is apparent that bone resorption occurs at sites of lower
SED and OSED, respectively, whereas bone formation occurs at
sites of higher SED and OSED (Figure 3).

To establish a quantitative description of the mechano-
regulation of bone (re)modeling, we calculated the conditional
probabilities for a given (re)modeling event to occur as a function
of the mechanical stimuli, also known as (re)modeling rules
(Schulte et al., 2013). Figure 4 shows the conditional probability
curves for formation (orange), quiescence (gray) or resorption
(purple) to occur at a given value of SED (Figures 4A,C,E) or
OSED (Figures 4B,D,F) for the different groups averaged over all
time points. For all groups, the conditional probability for bone
formation to occur was higher at higher values of SED and OSED,
respectively (SED/SEDmax > 0.18) whereas bone resorption was
more likely to occur at lower values (SED/SEDmax < 0.18). The
probability curves for all groups were fit by exponential functions
(Supplementary Table S1), of which the coefficients provide

FIGURE 3 | Qualitative visualization linking bone (re)modeling sites (formation,
quiescence, resorption) with the mechanical environments in vivo. (A) Overlay
of time-lapsed micro-CT images showing sites of bone formation (orange),
quiescence (gray) and resorption (purple). Corresponding map of the (B) strain
energy density (SED) and (C) gradient thereof (OSED) showing sites of higher
(red) and lower (blue) SED/OSED values obtained by micro-finite element
(micro-FE) analysis.

information on the functioning of the mechanosensory system
as described previously (Schulte et al., 2013). When comparing
the slopes of the formation probability curves (parameter a,
Figures 4A,B and Supplementary Table S1), which can be
interpreted as the mechanical sensitivity of the system, there was
a gradual increase of the mechanical sensitivity with increasing
frequency with the 10 Hz group showing the highest mechanical
sensitivity [a(SED) = 0.217, a(SEDgrad) = 0.316]. For the resorption
probability curves (Figures 4E,F and Supplementary Table S1),
the 5 and 10 Hz groups showed similar mechanical sensitivity
to SED [a(SED) = 0.284], while the 5 Hz group showed
highest sensitivity to OSED [a(SEDgrad) = 0.264 compared to
a(SEDgrad) = 0.252 in 10 Hz group]. The probability of the
quiescence however, was not influenced by loading frequency
(Figures 4C,D). The presence of an offset-parameter y0 in
all loading groups indicates a certain probability for bone
formation and resorption to occur over the full range of
mechanical stimuli. These results thus suggest a baseline of
bone (re)modeling, which is independent of mechanical stimuli,
also referred to as non-targeted (re)modeling (Parfitt, 2002;
Schulte et al., 2013). Compared to the sham and static loading
groups, cyclic loading lowered the probability for non-targeted
bone formation to occur as shown by lower y0 values in
these groups (Figures 4A,B and Supplementary Table S1).
Regarding the probability for non-targeted bone resorption to
occur, only minor differences between loading groups were
observed. The static loading group showed the highest y0 values
[y0(SED) = 0.269, y0(SEDgrad) = 0.275, whereas the 10 Hz group
showed the lowest values (y0(SED) = 0.232, y0(SEDgrad) = 0.258,
Figures 4E,F and Supplementary Table S1]. When comparing
between SED and OSED as mechanical stimuli driving bone
(re)modeling events, it seems that in all groups, formation was
more sensitive to OSED shown by the higher slopes [a(SED)
< a(SEDgrad)] of the probability curves (Figures 4A,B and
Supplementary Table S1). In contrast, resorption seemed to be
more sensitive to SED [a(SED) > a(SEDgrad), Figures 4E,F and
Supplementary Table S1].

To better compare the modeling performance of SED vs.
OSED for the prediction of bone (re)modeling events, an area
under the receiver operator characteristic curve (AUC) approach
was used (Figure 5). For all groups, the AUC values for formation
(for all groups p ≤ 0.0001, Figure 5A) and resorption (for all
groups p < 0.05 except for 5 Hz p≤ 0.10, Figure 5C) events were
higher for the OSED compared to SED. No difference between
SED and OSED was observed for quiescence (Figure 5B). These
results suggest that OSED has a better modeling performance
compared to SED for determining the probability of bone
formation and resorption events.

DISCUSSION

In this study, the effects of cyclic loading at varying frequencies
as well as of static loading on trabecular bone adaptation
in mouse caudal vertebrae were investigated. Furthermore,
using a combination of in vivo micro-CT and micro-FE
analysis, we assessed whether local bone (re)modeling events
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FIGURE 4 | Conditional probabilities connecting SED (left side) and SED gradient (OSED, right side) with (re)modeling events. The plots show the exponential fitting
functions for (A,B) bone formation (top row), (C,D) quiescence (middle row), and (E,F) resorption (bottom row) in all the loading groups averaged over all time points.

(formation and resorption) can be linked to diverse mechanical
environments in vivo.

While static loading had catabolic effects, cyclic loading at 2,
5, and 10 Hz had anabolic effects on trabecular bone. In line
with previous studies using the tail loading model (Lambers
et al., 2011, 2015), cyclic loading over 4 weeks led to an increase
in BV/TV, which was driven by the thickening of individual
trabeculae rather than a prevention of loss in trabecular number.
Furthermore, by registering consecutive time-lapsed images onto

one-another, we were able to quantify both bone formation as
well as bone resorption activities in three dimensions (Lambers
et al., 2011), which to the best of our knowledge, has not yet been
used to assess the effects of static loading regimes. Specifically,
we showed that cyclic loading mainly affects the surfaces of
the bone formation and resorption sites (MS and ES), rather
than the thickness of these (re)modeling packets (MAR and
MRR). In agreement with previous studies (Lambers et al., 2011;
Schulte et al., 2011), these results suggest that cyclic loading
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FIGURE 5 | Area under the curve (AUC) values for the comparison of the modeling performance of SED and SED gradient. (A) Formation (orange), (B) quiescence
(gray), and (C) resorption (purple) sites for the different loading groups comparing modeling performance of SED (solid bars) and SED gradient (OSED, striped bars).
(Boxplots for n = 5–8/group, ∗p < 0.05, ∗∗∗∗p ≤ 0.0001 differences between groups determined by Tukey’s multiple comparisons test).

promotes osteoblast recruitment, while simultaneously inhibiting
osteoclast recruitment. Ultimately, cyclic loading results in larger
mineralized surfaces and smaller eroded surfaces while keeping
the thickness of the (re)modeling packets constant.

Notably, this study showed a logarithmic relationship between
loading frequency and load-induced trabecular bone adaptation
with frequencies above a certain threshold having anabolic effects
and those below having catabolic effects. That cyclic, but not static
loading, has anabolic effects on cortical bone has been shown
in various animal models including rabbits (Hert et al., 1971),
turkeys (Lanyon and Rubin, 1984) and rats (Turner et al., 1995;
Robling et al., 2001). However, to the best of our knowledge, the
effect of static loading has not yet been assessed in trabecular
bone in mice. In line with the existence of a frequency threshold
(0.36 Hz ± 0.08) to elicit anabolic responses as demonstrated
in this study, Turner et al. (1994) found that bone formation
rate in rat tibiae only increased with frequencies above 0.5 Hz,
followed by a dose-response increase up to 2 Hz. Using a similar
design as our study, Warden and Turner (2004) showed increased
cortical bone adaptation with increasing loading frequencies
up to 5–10 Hz with no additional benefits beyond 10 Hz. In
a theoretical study, Kameo et al. (2011) furthermore showed
similar results by subjecting individual trabeculae to uniaxial
loading at frequencies ranging from 1 to 20 Hz. Although one
would expect higher loading frequencies to lead to higher cellular
stimulation and a consequent greater anabolic response, it has
been suggested that frequencies above a certain threshold (10 Hz)
reduce the efficiency of fluid flow through the LCN, thus resulting
in inefficient mechanotransduction (Warden and Turner, 2004;
Kameo et al., 2008). More recently, by monitoring Ca2+ signaling
in living animals, Lewis et al. (2017) have shown that osteocyte
recruitment was strongly influenced by loading frequency.
Another physiological system, for which the relationship between
frequency and mechanotransduction is widely studied, is the
inner ear (Vollrath et al., 2007; Jaalouk and Lammerding, 2009).
Hair cells, the cells responsible for transducing mechanical
forces originating from acoustic waves to neural signals, are
sensitive to frequency (Jaalouk and Lammerding, 2009; Salvi
et al., 2015). Furthermore, the sensitivity of the ear varies with
the frequency of sound waves resulting in a limited range of
frequencies that can be perceived. Hence, drawing an analogy

to the theory of sound pressure level, which also displays
logarithmic laws (Beranek and Mellow, 2012), it is possible that
bone’s response to frequency is similar to the perception of sound
in human hearing.

Using the combined approach of time-lapsed in vivo micro-
CT imaging and micro-FE analysis, we showed that bone
(re)modeling activities were correlated to the local mechanical
environment at the tissue level. In agreement with previous
studies (Schulte et al., 2013; Lambers et al., 2015), bone formation
was more likely to occur at sites of higher SED whereas bone
resorption was more likely to occur at sites of lower SED.
Nevertheless, as is also evident in the qualitative visualization in
Figure 3, a one-to-one relationship between (re)modeling and
the local mechanical environment cannot always be found. In this
respect, we observed that in all loading groups, a certain amount
of (re)modeling occurred independent of mechanical stimuli
[i.e., non-targeted (re)modeling], in agreement with previous
studies (Schulte et al., 2013; Lambers et al., 2015). Indeed,
it is well-established that the regulation of bone (re)modeling
is not limited to mechanical stimuli, and that various other
factors such as systemic hormones [e.g., parathyroid hormone
(PTH), estrogen] and growth factor signals (e.g., IGFs, BMPs)
need to be considered (Siddiqui and Partridge, 2016). While
our analysis does not allow to distinguish between mechanical
and other stimuli as the major factor influencing one single
(re)modeling site, we were able to show that the probability
for such an event to occur changes with the mechanical
signal. Specifically, compared to static loading, cyclic loading
decreased the probability of non-targeted bone (re)modeling,
which led to an increase in bone formation and a decrease
in bone resorption. As the amount of non-targeted bone
(re)modeling is expected to be the same in all mice, these results
suggest that cyclic loading increases the amount of mechanically
driven (re)modeling, thus leading to the clearer SED and SED
gradient dependency. Furthermore, considering the number
of (re)modeling sites per animal as well as the number of
mice within the different loading groups, we believe that the
quantification of the probabilities for certain (re)modeling events
to occur at a given mechanical signal represents a suitable method
to investigate the relationship between the (re)modeling and the
local mechanical environments.
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By comparing various mechanical stimuli as drivers for bone
(re)modeling, we showed that the SED gradient was better at
predicting bone formation and resorption events compared to
SED. That the SED gradient, a measure of fluid flow through the
LCN, can improve predictions of (re)modeling events compared
to SED, a measure of direct cell strain, has been suggested
previously (Webster et al., 2015). Furthermore, as the SED
gradient encompasses the neighboring SED voxels, it provides
information of a broader mechanical environment, which could
explain the higher modeling performance observed with the SED
gradient compared to SED.

There are a number of limitations to consider in this study.
Firstly, as the strain magnitude and duration of individual loading
bouts were the same for all loading groups, the number of
cycles and strain rate differed between the different loading
groups. From this study design, it therefore remains impossible
to know whether the number of cycles or the loading frequency
are the main factors driving load-induced bone adaptation.
Furthermore, loading at low (1 Hz) and higher (>10 Hz)
frequencies was not assessed in this study. Indeed, mechanical
stimulation at very high frequencies (between 20 and 90 Hz),
but at low magnitude, also referred to as “low magnitude
high frequency vibration (LMHFV)” has been shown to elicit
beneficial effects in bone during growth (Xie et al., 2006),
disuse (Ozcivici et al., 2007), aging (Judex et al., 2007), and/or
regeneration (Goodship et al., 2009 ; Gómez-Benito et al., 2011 ;
Wehrle et al., 2014 ; Zhang et al., 2020). Herein, studies in
ovariectomized rats (Judex et al., 2007) as well as in fractured
sheep tibiae (Gómez-Benito et al., 2011) have shown frequency
dependent effects with higher frequencies (90 Hz) being more
beneficial compared to moderate frequencies (45–50 Hz). More
recently however, Wehrle et al. (2014) showed anabolic effects on
trabecular mouse bone in response to 35 Hz, whereas no effects
were observed at 45 Hz. Interestingly, when the same LMHFV
protocol was applied in fractured bones, no effects were observed
at 35 Hz, whereas 45 Hz impaired the healing process. It therefore
seems that frequency dependent effects of LMHFV differ not only
between species but also between fractured and non-fractured
bones. However, given the relatively high force magnitude (8
N) used in our cyclic loading protocol, the results obtained in
this study cannot be directly compared with those observed with
LMHFV applications. From a technical point of view, loading
at much higher frequencies while maintaining such high forces
would not be possible in our experimental set-up as the energy
that is put into the system would be very high. Additionally,
our results suggest that loading at higher frequencies would
not be beneficial, as the system seems to be self-limiting at
around 10 Hz, which has previously also been shown in a similar
model of ulna loading (Warden and Turner, 2004). Nevertheless,
whether bone’s osteogenic response to loading is indeed limited
to a specific range of frequencies, below and above which bone
becomes less osteogenic, requires further in vivo experiments.

A further limitation of this study is that the micro-FE
analysis used to simulate the local mechanical environments
was based on several assumptions. Specifically, the bone tissue
was assumed to be an isotropic, homogenous material with
all the bone elements having the same Young’s modulus

(14.8 GPa) and Poisson’s ratio (0.3). Hence, the different degrees
of mineralization within trabecular bone were not taken into
account, which could influence the results observed in this study.
This limitation could be overcome by including the evaluation of
the dynamic mechanical properties of the bone samples by means
of nanoindentation (Ozcivici et al., 2008). Alternatively, micro-
FE models from gray-scale micro-CT images would allow to
assign different values of Young’s moduli to voxels with different
gray values, which could provide insight on the effects of loading
frequency on mineralization both on a global and local level.
In order to improve the micro-FE prediction of mechanical
stimuli in a bone healing environment, Tourolle né Betts et al.
(2020) recently developed a “multi-density threshold approach”
to identify and quantify the spatial and temporal changes in
local mineralization during fracture healing. Though a much
smaller range of densities is expected in a model of adaptation
compared to a model of regeneration, the integration of a multi-
density approach could allow comparisons of variations of local
mineralization in response to varying loading frequencies.

An additional major limitation of this study was that the
micro-FE analysis did not take into account the component of
frequency. Previous numerical studies have used poro-elastic
finite-element (FE) models to account for lacunar-canalicular
fluid motion and ultimately predict bone adaptation in response
to varying loading frequencies (Kameo et al., 2011; Malachanne
et al., 2011; Chennimalai Kumar et al., 2012; Pereira and
Shefelbine, 2014). More recent applications of poro-elastic FE
models have furthermore shown load-induced fluid velocity as
an accurate predictor of local (re)modeling activities in mouse
tibiae (Pereira et al., 2015; Carriero et al., 2018). In the later
study, a combination of novel high-resolution techniques—
known as “3D fluorochrome mapping” was used to link bone
(re)modeling activities in the cortical bone both to strains
(strain energy density) as well as to fluid flow velocities
engendered by tibial loading. While high SED was able to
predict periosteal bone formation, high fluid flow was able to
predict bone formation on both the endosteal and periosteal
surface. Hence, the incorporation of cellular mechanosensing and
intercellular communication within our micro-FE models would
be highly useful to improve our understanding of the relationship
between loading frequency and trabecular bone adaptation across
multiple scales.

Lastly, as cyclic loading has been shown to induce microscopic
tissue damage (micro-damage) in human (Green et al., 2011;
Lambers et al., 2013; Goff et al., 2015) and bovine (Lee et al.,
2000; Moore and Gibson, 2004; Thurner et al., 2006) trabecular
bone, it is possible that cyclic loading at varying frequencies
results in different degrees of tissue micro-damage. We have
previously imaged mouse caudal vertebrae subjected to cyclic
loading at 10 Hz using high-resolution micro-CT (1.2 µm)
and could not detect any micro-damage at the local level, and
therefore, we do not expect the lower frequencies to cause
local micro-damage either. Nevertheless, the incorporation of
techniques to visualize bone micro-damage—ranging from 2D
histology and 3D micro-CT imaging (Poundarik and Vashishth,
2015) to more advanced methods such as an automated step-
wise micro-compression device for dynamic image-guided failure
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(Levchuk et al., 2018) —could provide novel insight into the
initiation and propagation of micro-damage in response to cyclic
loading in trabecular mouse bone.

In conclusion, these results suggest that bone adaptation is
regulated by mechanical signals in the local in vivo environment
and furthermore, that mechano-regulation is logarithmically
dependent on loading frequency with frequencies below a certain
threshold having catabolic effects, and those above anabolic
effects. This study thereby provides valuable insights toward a
better understanding of the mechanical signals influencing bone
formation and resorption in the local in vivo environment.

MATERIALS AND METHODS

Study Design
To investigate the effect of loading frequency on mouse caudal
vertebrae, 11-week old female C57BL/6J mice were purchased
(Charles River Laboratories, France) and housed at the ETH
Phenomics Center (12 h:12 h light-dark cycle, maintenance
feed and water ad libitum, three to five animals/cage) for 1
week. To enable mechanical loading of the 6th caudal vertebrae
(CV6), stainless steel pins (Fine Science Tools, Heidelberg,
Germany) were inserted into the fifth and seventh caudal
vertebrae of all mice at 12 weeks of age. After 3 weeks of
recovery, the mice received either sham (0 N), 8 N static or 8
N cyclic loading with frequencies of 2, 5, or 10 Hz and were
scanned weekly using in vivo micro-CT. All procedures were
performed under isoflurane anesthesia (induction/maintenance:
5%/1–2% isoflurane/oxygen). All mouse experiments described
in the present study were carried out in strict accordance with
the recommendations and regulations in the Animal Welfare
Ordinance (TSchV 455.1) of the Swiss Federal Food Safety and
Veterinary Office (license number 262/2016).

Mechanical Loading
The loading regime was performed for 5 min, three times per
week over 4 weeks as described previously (Webster et al., 2008).
For the cyclic loading groups, sinusoidally varying forces (8 N
amplitude) were applied at 2, 5 or 10 Hz resulting in cycle
numbers of 600, 1,500, and 3,000, respectively. For the static
loading group, the force was maintained at 8 N during the 5 min.
For the sham-loaded group, the tails were fixed in the loading
device for 5 min, but no loading was applied (0 N).

Micro-CT Imaging and Analysis
In vivo micro-CT (vivaCT 40, Scanco Medical AG, isotropic
nominal resolution: 10.5 µm; 55 kVp, 145 µA, 350 ms integration
time, 500 projections per 180◦, scan duration ca. 15 min,
radiation dose per scan ca. 640 mGy) images of the CV6
were acquired every week. Micro-CT data was processed and
standard bone microstructural parameters were calculated in
trabecular, cortical and whole bone by using automatically
selected masks for these regions as described previously (Lambers
et al., 2011). To calculate dynamic morphometric parameters,
micro-CT images from consecutive time-points were registered
onto one another. The voxels present only at the initial time

point were considered resorbed whereas voxels present only
at the later time point were considered formed. Voxels that
were present at both time points were considered as quiescent
bone. By overlaying the images, morphometrical analysis of
bone formation and resorption sites within the trabecular
region allowed calculations of bone formation rate (BFR), bone
resorption rate (BRR), mineral apposition rate (MAR), mineral
resorption rate (MRR), mineralizing surface (MS), and eroded
surface (ES) (Schulte et al., 2011).

Micro-Finite Element (micro-FE) Analysis
For each mouse at each time point, segmented image data was
converted to 3D micro-FE models, with additional voxels added
to the proximal and distal ends of the vertebrae mimicking
intervertebral disks. All voxels were converted to 8 node
hexahedral elements and assigned a Young’s modulus of 14.8 GPa
and a Poisson’s ratio of 0.3 (Webster et al., 2008). The bone was
assumed to have linear elastic behavior, which allowed for static
loading in the micro-FE analysis (Huiskes, 2000). The top was
displaced by 1% of the length in z-direction (longitudinal axis),
while the bottom was constrained in all directions. The micro-FE
model was solved using a micro-FE solver (ParOSol). The results
were then rescaled to an applied force of 8 N for the loaded groups
and 4 N (physiological loading) for the sham-loaded group (0 N)
as described previously (Christen et al., 2012).

Mechanical Environment
The mechanical stimuli, which are hypothesized to drive load
induced bone adaptation are deformation (direct cell strain)
and interstitial fluid flow (shear stress) (Rosa et al., 2015).
Furthermore, the flow velocity surrounding osteocytes has been
shown to be dominant in the neighborhood of the bone
surfaces (Kameo et al., 2008). As a measure of the mechanical
deformation, strain energy density (SED) magnitudes, defined
as the increase in energy associated with the tissue deformation
per unit volume, were analyzed on the bone surface on the
marrow-bone interface. Furthermore, based on the assumption
that spatial differences in tissue deformation induce fluid flow, the
spatial gradient of the SED was analyzed on the marrow side of
the marrow-bone interface (Kufahl and Saha, 1990). The spatial
gradients in x, y, and z-direction were calculated as follows:

∂fi
∂x, y, z

=
fi+1 − fi−1

2a
for voxel 1 < i < Nx

Where fi is the SED of a voxel at x, y, z-position i, Nx,y,z
the number of voxels in the x, y, z-direction and a the
nominal resolution. The norm of the gradient vector (OSED)
was used as a quantity for the fluid flow as described previously
(Webster et al., 2015).

OSED =

√(
∂fi
∂x

)2
+

(
∂fi
∂y

)2
+

(
∂fi
∂z

)2

The conditional probabilities for a certain (re)modeling event
(formation, quiescence, resorption) to occur at a given value
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of SED and OSED were calculated as described previously
(Schulte et al., 2013). Briefly, the surface SED and OSED values
were normalized within each animal and measurement by the
maximal SED or OSED (chosen as the 99th percentile of the
values present at the surface and in the volume of interest
(VOI)) in order to remove the variance due to temporal
bone adaptation, applied force in FE analysis and individual
animals. For each region (formation, quiescence and resorption),
a frequency density histogram with 50 bins and equal bin
width was created. In order to rule out the dependence on
the imbalance between bone formation and resorption, all
(re)modeling events were assumed to have the same occurrence
probability (i.e., formation, resorption and quiescent regions
were rescaled to have the same amount of voxels). The
(re)modeling probabilities were fitted by exponential functions
using non-linear regression analysis.

To quantify the modeling performance of SED and OSED,
respectively, the area under the curve (AUC) of a receiver
operating characteristic (ROC) curve was used. The AUC can
be defined as the probability that a randomly selected case
(“true”) will have a higher test result than a randomly selected
control (“false”) (Mason and Graham, 2002). The ROC curve is
a binary classifier, therefore the three different surface regions
were analyzed separately and only voxels and mechanical
quantity values on the bone or marrow surface were used for
the classification.

Statistical Analysis
Data are represented as mean ± standard deviation (SD). For
analysis of the longitudinal measurements of bone structural
parameters, repeated measurements ANOVA implemented as
a linear mixed model was used using the lmerTEST package
(Kuznetsova et al., 2017) in R [R Core Team (2019), R
Foundation for Statistical Computing, Vienna, Austria]. The
between subjects effect was allocated to the different groups
(sham, static, 2, 5, 10 Hz) while the within-subjects effects
were allocated to time and time-group interactions. Random
effects were allocated to the animal to account for the natural
differences in bone morphometry in different mice. In cases
where a significant interaction effect (group∗time) was found,
a Tukey post-hoc multiple comparisons test was performed.
For comparisons between groups one-way ANOVA analysis
followed by Tukey’s or Dunnet’s multiple comparisons test
were performed as stated in the corresponding figure legends
using SPSS (IBM Corp. Released 2016. IBM SPSS Statistics
for Windows, Version 24.0. Armonk, NY, United States).
The plots were created using GraphPad Software (GraphPad
Prism version 8.2.0 for Windows, GraphPad Software, La Jolla

California, United States). Significance was set at α < 0.05 in
all experiments.
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In this paper, we investigate the progression of Ascending Thoracic Aortic Aneurysms

(ATAA) using a computational model of Growth and Remodeling (G&R) taking into

account the composite (elastin, four collagen fiber families and Smooth Muscle

Cells—SMCs) and multi-layered (media and adventitia) nature of the aorta. The G&R

model, which is based on the homogenized Constrained Mixture theory, is implemented

as a UMAT in the Abaqus finite-element package. Each component of the mixture is

assigned a strain energy density function: nearly-incompressible neo-Hookean for elastin

and Fung-type for collagen and SMCs. Active SMCs tension is additionally considered,

through a length-tension relationship having a classic inverted parabola shape, in order to

investigate its effects on the progression of ATAA in a patient-specific model. A sensitivity

analysis is performed to evaluate the potential impact of variations in the parameters of

the length-tension relationships. These variations reflect in variations of SMCs normal

tone during ATAA progression, with active stress contributions ranging between 30%

(best case scenario) and 0% (worst case scenario) of the total wall circumferential stress.

Low SMCs active stress in the worst case scenarios, in fact, affect the rates of collagen

deposition by which the elastin loss is gradually compensated by collagen deposition

in the simulated ATAA progression, resulting eventually in larger aneurysm diameters.

The types of length-tension relationships leading to a drop of SMCs active stress in our

simulations reveal a critical condition which could also result in SMCs apoptosis.

Keywords: finite element, constrained mixture theory, growth and remodeling, smooth muscle cells, active

stresses

1. INTRODUCTION

Nowadays, the paramount importance of mechanobiology is widely acknowledged in
morphogenesis and pathogenesis (Humphrey, 2008). The adaptation ability of soft tissues relies
on the existence of a preferred load-bearing mechanical state, the so-called homeostasis, across
multiple length/time scales. At the tissue scale, this is exhibited through continuous mass changes
of the components of the Extracellular Matrix (ECM), such as elastin, collagen, and proteoglycans
in blood vessels (Humphrey and Rajagopal, 2002; Cyron et al., 2016). Mechanobiology implies
that Growth and Remodeling (G&R) of the biological tissues is mediated by mechanical stresses
(Grossman, 1980; Humphrey, 2008).

30

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2020.587376
http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2020.587376&domain=pdf&date_stamp=2020-11-03
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:a.ghavamian2@gmail.com
mailto:jamal.mousavi@emse.fr
mailto:avril@emse.fr
https://doi.org/10.3389/fbioe.2020.587376
https://www.frontiersin.org/articles/10.3389/fbioe.2020.587376/full


Ghavamian et al. G&R in Aortic Aneurysms

In order to numerically simulate G&R in arteries, the
constrainedmixture model (CMM) was developed by Humphrey
and Rajagopal (2002) and, thereafter, has been increasingly
utilized (Watton et al., 2004; Baek et al., 2006; Zeinali-Davarani
and Baek, 2012; Valentín et al., 2013; Cyron et al., 2016;
Braeu et al., 2017; Lin et al., 2017; Famaey et al., 2018;
Latorre and Humphrey, 2018b). Baek et al. (2006) proposed a
two-dimensional CMM for arterial G&R. A three-dimensional
representative straight cylindrical artery was also introduced
by Kars̆aj et al. (2010) with evolving geometry, structure, and
mechanical properties under changes in hemodynamics (i.e.,
mean blood flow/pressure). Valentín et al. (2013) established a
non-linear model using the Finite Element Method (FEM) on
the basis of the Constrained Mixture Theory (CMT) aimed at
facilitating numerical analyses of arterial adaptation and mal-
adaptation. They could predict changes in fiber orientations and
quantities, degradation of elastin and loss of SmoothMuscle Cells
(SMCs), including disease progression and evolving geometries.
Famaey et al. (2018) implemented the same model in Abaqus
(Hibbit et al., 2011) and predicted adaptation of a pulmonary
autograft. Cyron et al. (2016), and then Braeu et al. (2017),
introduced the homogenized CMM framework for G&R using
an informal temporal averaging approach, bringing simplicity
and computational efficiency. Lin et al. (2017) combined
homogenization and the CMT to simulate the dilatation of
abdominal aortic aneurysms. Their methodology could capture
important aspects, such as mass turnover in arterial walls with
a low computational cost. Recently, Latorre and Humphrey
(2018a) introduced a new rate-based CMM formulation suitable
for studying mechanobiological equilibrium and stability of soft
tissues exposed to transient or sustained changes, permitting
direct resolution of G&R problems with a quasi-static approach.

Despite the significant insight of the CMM methodology in
arterial G&R, it has generally been employed in the case of
canonical problems (Baek et al., 2006; Cyron et al., 2016; Laubrie
et al., 2020) or single-layer thick-wall axisymmetric (Braeu
et al., 2017; Lin et al., 2017) approximations. The extension
to ATAAs was challenging due to simultaneous and region-
specific evolutions of geometry, material properties (Farzaneh
et al., 2019), and hemodynamic loads (Humphrey and Holzapfel,
2012; Condemi et al., 2017). Only recently, Mousavi et al. (2019)
proposed a non-linear FEM solution based on the homogenized
CMT to simulate G&R in a layer-specific and patient-specific
ATAA. They showed that elastin loss leads to a transfer of
stress to the adventitia and continuous adaptation of the stress
distribution through changes in ATAA shape.

Nevertheless, the significant role of SMCs in regularizing the
wall tension of hollow organs should not be neglected. This
occurs through contraction and relaxation of SMCs which is
regulated by phosphorylation of the myosin motors associated
with the smooth muscle contractile units. SMCs also help
to control the arterial wall stiffness (e.g., during a cardiac
cycle) and, then, regularizing the blood pressure (Murtada
et al., 2010b). It is reported by Murtada and Holzapfel (2014)
that the large elastic deformations of arteries undergoing a
physiological loading cannot rely only on a passive response.
The active contribution (contractility) of SMCs can generate

significant tension. Rachev and Hayashi (1999) proposed a
phenomenological model for SMCs in the arterial wall with
a length-tension relationship depending on the circumferential
stretch. Similarly, Schmitz and Böl (2011) proposed a steady-
state model of SMCs activation containing a phenomenological
explanation of the active length–tension behavior. Zulliger et al.
(2004) extended this method, but this time for a vascular
SMCs. They investigated the pressure-radius curve for three
different SMC states (i.e., fully relaxed, maximally contracted,
normal tone) under physiological and pathological conditions
with varying levels of SMCs tone. Standley et al. (2002)
proposed a thermodynamically consistent constitutive model
as a function of stretches, a variable accounting for the SMC
state (free unphosphorylated myosin, phosphorylated cross-
bridges, phosphorylated and dephosphorylated cross-bridges
attached to actin), a variable related to the Ca2+ concentration,
and temperature. They illustrated how SMCs contraction and
related stretch are co-dependent. This work inspired Murtada
et al. (2010a) to propose a structural description of the SMCs
contractile unit including elastic elongation of the cross-bridges
(Hai and Murphy, 1988; Yang et al., 2003) and myofilament
sliding. They showed that the driving stress, in general, depends
on the state of the muscle and, during contraction, depends only
on the attached cycling cross-bridges. The model was extended
(Murtada et al., 2010a, 2012) to capture the active length-tension
relationship, the evolution law of filament sliding and the isotonic
force-shortening velocity relationship. Murtada and Holzapfel
(2014) studied the role of SMCs in large elastic arteries using
a FEM simulation and demonstrated that, yet, changes in the
intracellular calcium amplitudes barely affect the circumferential
stress. An increase in the mean intracellular calcium value and,
then, in the medial wall thickness, clearly results in changes in
stress distribution and the overall deformation. Murtada et al.
(2015) investigated the active tone of SMCs in the specific case
of murine descending thoracic aortas undergoing acute loading
changes and showed the variation in active SMCs tone depending
on different induced stretches. They realized that the active tone
was reduced when the artery adapted below the optimal stretch
with no significant change in passive behavior.

Although the aforementioned accomplished contributions
have brought a significant insight on the active role of SMCs
into soft tissues undergoing physiological loading, there is still
a pressing need to have computational models investigating the
possible variations of SMCs contractility in realistic multi-layer
patient-specific geometries with irregular boundary conditions
and complex deformations. In this work, the G&R model
developed by Mousavi et al. (2019) is extended to include the
variations of SMCs contractility and a sensitivity analysis is
performed to evaluate their impact on ATAA progression in a
patient-specific model.

2. MATERIALS AND METHODS

2.1. Mathematical Model
2.1.1. Kinematics
We consider the three dimensional deformation of a continuum
(e.g., in vivo healthy configuration of a blood vessel) moving
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from its initial undeformed configuration, say before any G&R
happens, occupying a volume �0, of boundary ∂�0, to a time
dependent deformed configuration occupying a volume �(t),
of boundary ∂�(t) at time t. The motion of the continuum is
defined through a deformation mapping, such as x = φ(X, t)
by which a solid particle at the reference state is transformed to
the spatial configuration. The total deformation gradient F of a
mixture, consisting of different constituents (e.g., elastin, collagen
fiber families, and SMCs), can be expressed as

F(X, t) =
∂φ(X, t)

∂X
. (1)

The deformation gradient essentially relates a fiber at material
configuration to its spatial counterpart (dx = FdX).
Additionally, the volume map J is defined as

J = det(F), (2)

linking a reference volume element into the deformed states
(d� = Jd�0, J > 0).

Twomain assumptions are made for the deformation gradient
on the basis of CMT, namely, (1) all constituents deform together
resulting in a unified deformation gradient F and (2) the
deformation gradient of each constituent i of the mixture (i ∈

{e, cj, m}, where e stands for elastin, cj stands for collagen family j
where j ∈ {1, 2, 3, 4} and m stands for SMCs) is decomposed into
an elastic Fi

el
and an inelastic Figr part as

F = F
i
elF

i
gr = F

i
elF

i
rF

i
g, (3)

where the elastic deformation gradient F
i
el

is responsible for
the generation of the stress field and the inelastic deformation
gradient Figr considers the differential mass turnover in F

i
g and

the changes in the microstructure in F
i
r.

Initially F(t0) = I where I is the identity tensor, each
constituent i of the mixture has an individual elastic deformation
gradient Fi

el
(t0) corresponding to its deposition stretch F

i
el
(t0) =

G
i
h

=
(

F
i
r(t0)

)−1
(Mousavi and Avril, 2017) in which G

i
h
are

second order tensors defined, such as

G
e
h = diag

[
1

λe0θ
λe0z

, λe0θ , λ
e
0z

]

, (4a)

G
i
h = λi0a

i
0 ⊗ a

i
0 +

1
√

λi0

(I − a
i
0 ⊗ a

i
0); i ∈ {cj, m}, (4b)

where λe0θ
and λe0z represent the initial (in the undeformed

configuration before any G&R) deposition stretches of elastin in
the circumferential and longitudinal directions, respectively, and
λi0 stands for the initial deposition stretch of constituent i in the
fiber direction whose unit vector is denoted by ai0.

2.1.2. Balance of Linear Momentum
The G&R deformation process is typically governed by the
balance of the linear momentum equation

DIV(P)+ ̺0b0 = 0, (5)

in which DIV is the material divergence operator, P denotes
the first Piola-Kirchhoff stress tensor, b0 is the body forces per
unit mass and ̺0 =

∑

i ̺
i
0 represents the mass density (per

unit undeformed volume) of the mixture, which is equivalent to
the sum of mass densities (per unit undeformed volume) of all
constituents. Note here that the dynamic effects (i.e., inertia or
viscoelasticity) are neglected since the G&R progression occurs
at very slow time scales (days to months) (Braeu et al., 2017).

2.1.3. Mechanobiological Constitutive Model
A strain energy density function W (per unit undeformed
volume) is introduced (Braeu et al., 2017; Mousavi and Avril,
2017)

W = ̺e
0(t)W

e

︸ ︷︷ ︸

elastin

+

n
∑

j=1

̺
cj
0 (t)W

cj

︸ ︷︷ ︸

Collagen fiber families

+ ̺m
0 (t)W

m

︸ ︷︷ ︸

SMCs

. (6)

In the above equation, ̺i
0(t) and Wi (i ∈

{

e, cj, m
}

) represent,
respectively, the mass densities and strain energy densities (per
unit mass) of each individual constituent.

A nearly incompressible Neo-Hookean material model is
introduced for elastin as (Holzapfel et al., 2000; Mousavi and
Avril, 2017)

We = We(I
e
1, J) =

µe

2
(I
e
1 − 3)

︸ ︷︷ ︸

We
Deviatoric

+
κ

2
(Jeel − 1)2

︸ ︷︷ ︸

We
Volumetric

, (7)

where µe and κ stand for the shear modulus and the bulk
modulus (stress per unit mass dimensions) of the elastin,
respectively. Je

el
denotes the elastic contribution of the Jacobian

for elastin and I
i
1 is the isochoric first invariant of the elastic

Cauchy-Green tensor, defined, such as

I
e
1 = tr(C

e
el), (8)

where C
e
el = F

e
el
T
F
e
el is the elastic part of the isochoric right

Cauchy-Green tensor for elastin. The isochoric deformation

gradient is defined as F
e
el =

(

Je
el

)−1/3
F
e
el
.

The strain energy density of collagen families is described with
a Fung-type exponential expression (Mousavi and Avril, 2017)

Wcj (I
cj
4 ) =

k
cj
1

2k
cj
2

[

exp
(

k
cj
2 (I

cj
4 − 1)2

)

− 1
]

, (9)

where k
cj
1 and k

cj
2 are stress per unit mass and dimensionless

material parameters, respectively, taking different values
depending whether the fibers are under compression or tension

(Bersi et al., 2016; Mousavi and Avril, 2017), and I
cj
4 is the fourth

invariant which may be written, such as

I
cj
4 = C

cj
el
:(acj ⊗ a

cj ) = (λ
cj
el
)2; a

cj =
F
cj
gra

cj
0

‖ F
cj
gra

cj
0 ‖

, (10)
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where C
cj
el
is the elastic part of the right Cauchy-Green stretch

tensor, acj is the unit vector along the fiber direction in the

inelastically deformed intermediate configuration and λ
cj
el
is the

elastic stretch of collagen fibers.
The passive and active strain energy density of SMCs is also

introduced as (Wilson et al., 2013; Murtada and Holzapfel, 2014;
Murtada et al., 2015)

Wm(Im4 , λact) =
km1
2km2

[

exp
(

km2 (I
m
4 − 1)2

)

− 1
]

︸ ︷︷ ︸

Wm
pass

+
σactmax

̺0

(

λact +
1

3

(λmax − λact)
3

(λmax − λ0)
2

)

︸ ︷︷ ︸

Wm
act

, (11)

where km1 and km2 are similar to the k
cj
1 and k

cj
2 parameters, Im4 is

also identical to I
cj
4 defined in Equation (10) (replacing cj by m)

and λact = λmλm0 is the active stretch in the fiber direction, where

λm =‖ Fa
m
0 ‖=

√

C :

(

a
m
0 ⊗ a

m
0

)

.

Moreover, σactmax denotes the maximal active Cauchy stress
and λmax and λ0 are parameters denoting the active stretches at
maximum and zero active stresses, respectively.

It is worthwhile noting that the same strain energy density
functions are assumed all across the aorta. However, different
material properties and mass densities of the individual
constituents are assigned to each layer (media and adventitia).
Note that the intima layer is disregarded in this work, due to its
relatively thin thickness.

2.1.4. Stress Evaluation
Having Equation (6), it is now possible to evaluate the second
Piola-Kirchhoff stress tensor using the following relations

S = 2
∂W

∂C
= 2

∑

i

̺i
0

∂Wi

∂C
=
∑

i

ϕi
S
i (12)

where S
i is the Piola-Kirchhoff stress of constituent i and ϕi

its volume fraction in the current configuration, which may be
written, such as

ϕe
S
e = ̺e

0(t)

[

(Jeel)
−2/3µe

(

(Ce
gr)

−1 −
1

3
tr
(

C
e
el

)

C
−1

)

+ κJeel(J
e
el − 1)C−1

]

; (13a)

ϕcjS
cj = ̺

cj
0 (t)

2
[

k
cj
1 (I

cj
4 − 1) exp

(

k
cj
2 (I

cj
4 − 1)2

)]

‖ F
cj
gra

cj
0 ‖2

a
cj
0 ⊗ a

cj
0;

(13b)

ϕm
S
m = ̺m

0 (t)
2
[

km1 (I
m
4 − 1) exp

(

km2 (I
m
4 − 1)2

])

‖ Fmgra
m
0 ‖2

a
m
0 ⊗ a

m
0

(13c)

+
̺m
0 (t)

̺0(0)

σactmax
[

C :

(

a
m
0 ⊗ a

m
0

)]

(

1−
(λmax − λact)

2

(λmax − λ0)
2

)

a
m
0 ⊗ a

m
0 .

The obtained second Piola-Kirchhoff stress can simply be pushed
forward in order to compute the Cauchy stress tensor

σ
i =

1

J
FS

i
F. (14)

Therefore, the Cauchy stress for each individual constituent can
be expressed as

ϕe
σ
e = ̺e(t)(Jeel)

−2/3µe

(

B
e
el −

1

3
tr
(

C
e
el

)

I

)

+ ̺e
0(t)(J

e
gr)

−1κ(Jeel − 1)I; (15a)

ϕcj
σ
cj = 2̺cj (t)

[

k
cj
1 (I

cj
4 − 1) exp

(

k
cj
2 (I

cj
4 − 1)2

)] (Fa
cj
0 )⊗ (Fa

cj
0 )

‖ F
cj
gra

cj
0 ‖2

;

(15b)

ϕm
σ
m = 2̺m(t)

[

km1 (I
m
4 − 1) exp

(

km2 (I
m
4 − 1)2

]) (Fam0 )⊗ (Fam0 )

‖ Fmgra
m
0 ‖2

(15c)

+
̺m(t)

̺0(0)
σactmax

(

1−

(

λmax − λmλm0
)2

(λmax − λ0)
2

)

(Fam0 )⊗ (Fam0 )

‖ Fa
m
0 ‖2

.

where Be
el
= F

e
el
F
e
el
T is the elastic part of the left Cauchy-Green

stretch tensor for elastin.
In Equation (15c), λact was replaced by λmλm0 , which means

that we assume there is a continuous increase of the active stretch
of SMCs during ATAA progression (λ̇m > 0). This is a different
assumption of the one made by Braeu et al. (2017) who assumed
fast remodeling of SMCs, which implied that SMCs were able
to keep the same active stretch throughout the G&R process
(λact = 1 meaning that λ̂act = λm). In the current work, we
want to investigate computationally the opposite situation, where
SMC would proliferate at an extremely low rate (Owens et al.,
2004), which implies that the active stretch has to accommodate
ATAA expansion.

2.1.5. Growth and Remodeling
In this work, a two-layer arterial model was considered where the
rate of mass degradation or deposition of collagen in both layers
was computed, such as

˙̺
cj
0 (t) = ̺

cj
0 (t)k

cj
σ

σm − σm
h

σm
h

+ Ḋ
cj
g in the media, (16a)

˙̺
cj
0 (t) = ̺

cj
0 (t)k

cj
σ

σ cj − σ
cj
h

σ
cj
h

+ Ḋ
cj
g in the adventitia, (16b)

where k
cj
σ stands for (typically constant) collagen growth

parameter, σm
h

and σ
cj
h

denote the average SMCs and collagen
fiber stresses at homeostasis, σm and σ cj are the current stress
of the extant SMCs and collagen fibers, respectively. Moreover,
it is assumed that elastin can be only subjected to degradation if
its mass loss cannot be compensated by new elastin deposition
( ˙̺ e0(t) = Ḋe

g). In this case, Ḋe
g is the so-called generic function of

the local elastin degradation rate, defined as

Ḋe
g(X, t) = −

̺e
0(X, t)

Te
−

Dmax

tdam
̺e
0(X, 0)e

− t
tdam , (17)
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whose objective is to describe additional mass deposition or
mass degradation (e.g., as a result of any damage) in elastin.
Dmax is the maximum damage length, X is the material position,
Ldam and tdam are the spatial and the temporal damage spread
parameters, respectively, and Te is the average turnover time for
elastin constituent.

Having mass turnover relationships, it is now possible to
capture the inelastic deformation induced by G&R. The evolution
of the inelastic remodeling deformation gradient of constituent
i at time t can be evaluated by solving the following system of
equations (Cyron et al., 2016; Braeu et al., 2017)

[

˙̺ i0(t)

̺i
0(t)

+
1

Ti

]
[

S
i − S

i
pre

]

=

[

2
∂Si

∂Ci
el

:

(

C
i
elL

i
r

)

]

Fmix,F
i
g

, (18)

where S is the second Piola-Kirchhoff stress tensor, Lir = Ḟ
i
r F

i
r
−1

is the remodeling velocity gradient, Ti is the period within
which a mass increment is degraded and replaced by a new
mass increment, known as the average mass turnover time. It
is worthwhile noting that Sipre denotes the deposition pre-stress,
the net mass production rate is already defined in Equation (16).
In the case of elastin, it is assumed that this constituent is
not produced any longer during adulthood and it undergoes a
slow degradation with a half-life time of several decades (Cyron
and Humphrey, 2016; Braeu et al., 2017). Consequently, the
remodeling velocity gradient and, subsequently, the remodeling
deformation gradient are zero (Ler = F

e
r = 0). Hence,

elastin growth can essentially be computed on the basis of its
degradation rate Ḋe

g, defined at Equation (17).
The inelastic growth deformation gradient is derived by

summing the growth-related deformation gradient rates of each

FIGURE 1 | The computational domain of the ATAA geometry composed of

the localized elastin degradation region, media layer and adventitia layer

shown in yellow, gray, and green colors, respectively.

individual constituent, such as

Ḟ
i
g = Ḟg =

n
∑

i=1

˙̺ i0(t)

̺0(t)
[

Fig
-T

: aig ⊗ aig

]a
i
g ⊗ a

i
g, (19)

where a
i
g is a unit vector along the growth direction per

individual constituents which, for instance, can represent an
anisotropic growth across the direction of the arterial wall
thickness and ̺0(t) =

∑

i ̺
i
0(t).

2.2. Numerical Implementation
A three-dimensional (3D) structural mesh, made of hexahedral
elements, is reconstructed across the arterial wall using the
Abaqus finite-element package (Hibbit et al., 2011). Each element
has a regionally different mass density and contains a mixture of
elastin, collagen fiber families and SMCs. The structural mesh
implies the edge of each element is locally aligned with the
material (i.e., radial, circumferential, and axial) directions of the
arterial wall. In the case of non-perfectly cylindrical geometries,
the radial direction is defined as the outward normal direction to
the luminal surface and the axial direction is considered parallel
to the luminal centerline along the blood flow stream. Finally, the
circumferential direction is defined perpendicularly to the other
two introduced directions.

TABLE 1 | Material parameters employed for two-layer patient-specific human

ATAA model adapted from Mousavi et al. (2019).

Parameters Values Units

αcj , j = 1, 2, 3, 4 {0, π
2 ,±

π
4 } [Rad]

µe 82 [J/kg]

κ 100µe [J/kg]

k
cj ,c

1 = km,c
1 15 [J/kg]

k
cj ,c

2 = km,c
2 1.0 [–]

k
cj ,t

1 105 [J/kg]

k
cj ,t

2 0.13 [–]

km,t
1 10 [J/kg]

km,t
2 0.1 [–]

̺e
0 250 [kg/m3 ]

̺
cj
0 460 [kg/m3 ]

̺m
0 280 [kg/m3 ]

λe
0z 1.3 [–]

λc
0 j 1.1 [–]

λm
0 1.1 [–]

λ0 0.8 [–]

λmax {1, 1.1, 1.4} [–]

σactmax 54 [kPa]

Te 101 [Years]

Tcj 101 [Days]

Tm 101 [Days]

tdam {20, 40, 80} [Days]

Dmax 0.5 [–]

αc1 , αc2 , αc3 , and αc4 are axial, circumferential, and two diagonal directions of collagen
fiber families, respectively.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 November 2020 | Volume 8 | Article 58737634

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Ghavamian et al. G&R in Aortic Aneurysms

The proposed model is implemented in Abaqus, through
a coupled User-defined MATerial subroutine (UMAT) (Hibbit
et al., 2011). The evolution of the arterial wall deformation is
obtained by approximating the solution of the non-linear system
of equations using the FEM approach, incremented through
the Newton-Raphson method. Each time step of the simulation
represents 1 month in the real (physical) timescale. The G&R
deformation gradients are obtained at each time step on the basis
of the stresses assessed at the previous step. It is worthwhile
noting that the initial time step is only assumed to satisfy
homeostatic conditions and the next time step is triggered by
arterial dilatation through the G&R progression.

2.3. Description of the Case Study
Here, the model of Mousavi et al. (2019) is applied on a real
human ATAA geometry in order to predict G&R of a patient-
specific arterial wall. To do so, the preoperative Computerized
Tomography (CT) scan of the patient as obtained after informed
consent from a donor undergoing elective surgery for ATAA
repair at CHU-SE (Saint-Etienne, France). Although the lumen
of the aneurysm was clearly visible in the Digital Imaging and
COMmunications (DICOM) file, it was not trivial to detect the

aneurysm surface. A non-automatic segmentation of the CT
image slices was performed using MIMICS (v. 10.01, Materialize

NV) to reconstruct the ATAA geometry. The obtained geometry

was assigned as the reference configuration and was structurally
meshed with 7,700 hexahedral elements. A wall thickness of 2.38

mm was defined evenly in the reference configuration, yielding

an average thickness of 2.67 mm at zero pressure state as the

measured thickness in the supplied sample (Farzaneh et al.,
2019). Figure 1 shows the computational domain in which the

localized elastin degradation region is illustrated along with the

media and adventitia layers.
The material parameters (Table 1), such as deposition

stretches of collagen and other material parameters are the ones

reported in references (Bellini et al., 2014; Braeu et al., 2017) or
result from previous calibration against experimental data (Davis

et al., 2016). Note that 97% of total elastin, 100% of total SMC,

and 15% of total axial and diagonal collagen fibers are assigned to

the media layer. Conversely, 3% of total elastin, 85% of total axial

and diagonal collagen, and 100% of total circumferential collagen

are assigned to the adventitia layer (Bellini et al., 2014; Mousavi

and Avril, 2017; Mousavi et al., 2018).

FIGURE 2 | The evolution of the stress ratios {Rm,Rt} with respect to physical time t. The dotted lines denote the average value for each color line correspondingly.

The results obtained for a two-layer thick-wall patient-specific human ATAA responding to a regional elastin degradation for 15 years. Different rates of collagen

deposition k
cj
σ /Tcj are considered depending on the (column-wise presentation of the) maximum SMCs contractility (I) λmax = 1.4; (II) λmax = 1.1; and (III) λmax = 1.0

for a fixed value of tdam = 40.
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FIGURE 3 | The evolution of the stress ratios {Rm,Rt} with respect to physical time t. The dotted lines denote the average value for each color line correspondingly.

The results obtained for a two-layer thick-wall patient-specific human ATAA responding to a regional elastin degradation for 15 years. Different damage times tdam are

considered depending on the (column-wise presentation of the) maximum SMCs contractility (I) λmax = 1.4; (II) λmax = 1.1; and (III) λmax = 1.0 for a fixed value of

k
cj
σ = 0.05.

FIGURE 4 | SMCs stress-stretch (σm
22act

–λm) curve: the results obtained for a two-layer thick-wall patient-specific human ATAA responding to a regional elastin

degradation for 15 years. Different rates of collagen deposition k
cj
σ /Tcj are considered depending on the (column-wise presentation of the) maximum SMCs

contractility (I) λmax = 1.4; (II) λmax = 1.1; and (III) λmax = 1.0 for a fixed value of tdam = 40 [days].
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The geometry is subjected to a luminal pressure of
80 mmHg (diastole), an axial deposition stretch of λe0z =

1.3 defined for elastin while the deposition stretches of

collagen families and SMCs are set to λ
cj
0 = λm0 = 1.1.

The spatially varying circumferential deposition stretch of
elastin is determined to ensure equilibrium with the luminal
pressure using the iterative algorithm presented in Mousavi
and Avril (2017). The applied boundary conditions to the
geometry are defined as fixed at ends of the ATAA model
in axial and circumferential directions (z and θ) while free
(no-traction) boundary condition are assigned in the radial
direction (r).

Guzzardi et al. (2015) found that regions of the aortic wall
subjected to the localized effects of the jet flow expelled
from the heart underwent greater elastin degradation
associated with localized vessel wall remodeling. Therefore,
and on the basis of these findings, a localized elastin
degradation is considered here and its G&R effects are
numerically simulated on the patient-specific ATAA geometry.
The localized region of elastin degradation is shown
in Figure 1.

2.4. Sensitivity Analysis
A parametric study was carried out about the effects of three
parameters on G&R progression:

• the time at which the artery is maximally damaged (tdam),

• the rate of collagen deposition (k
cj
σ /Tcj ),

• the maximum contractility of SMCs (λmax).

The different values for tdam follow the assumption that patient-
specific G&R strongly relates to the temporal and spatial
distributions of elastin degradation (Watton et al., 2004; Bellini

et al., 2014; Braeu et al., 2017). Different values of k
cj
σ /Tcj were

considered since the rate of collagen deposition determines how
fast the tissue adapts to elastin loss (Mousavi et al., 2019). As
the focus of this work is on the active contribution of SMCs on
G&R, different values were also considered for λmax, possibly
corresponding to possibly pathologic variations of intracellular
filament structure in SMCs (Liu et al., 2008; Mantella et al., 2015).

3. RESULTS

3.1. SMCs Active Stress Contribution
In order to quantify the contribution of SMCs active tone in
the stress distribution field, two ratios were considered, namely
(1) the ratio of the SMCs active stress with respect to the SMCs
(active and passive) stresses (Rm); and (2) the ratio between the
SMCs active stress and the total stress field (Rt).

Rm =
σm
act

σm
; Rt =

σm
act

σ t
. (20)

These ratios are shown in percentage depending on the
maximum SMCs active stretches for different rates of collagen
deposition (Figure 2) and damage times (Figure 3) due to
elastin degradation.

Figure 2 shows that these ratios are different depending on
the amount of collagen deposition. The active stress includes
an average value (dotted-lines in Figure 2) between 25 and
85% of the total SMCs stresses. However, this average value
has reduced to an approximate value of Rm = 20% in the
case of λmax = 1.0 when the SMCs lose their functionality.
This contribution of active stress with respect to the total stress
field of the mixture is the average value between 14 and 28%.
Indeed, the SMCs contribution to the total stress field has reduced
down to Rt = 4% in the critical condition of λmax = 1.0.
Notice here that, in general, the solution has computationally

FIGURE 5 | SMCs stress-stretch (σm
22act

–λm) curve: the results obtained for a two-layer thick-wall patient-specific human ATAA responding to a regional elastin

degradation for 15 years. Different damage times tdam [days] are considered depending on the (column-wise presentation of the) maximum SMCs contractility (I)

λmax = 1.4; (II) λmax = 1.1; and (III) λmax = 1.0 for a fixed value of k
cj
σ = 0.05.
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converged faster by increasing the rate of collagen deposition
as the artery becomes thicker and less displacement is expected.
The convergence criteria state that the average value of the artery
dilation should not exceed 10−5m with respect to the previous
time step and reads

(uAve)
n − (uAve)

n−1 < 0.01; uAve = 100×

∑Ne
i=1 ||ui||

Ne × T
,

(21)
where uAve is the average displacement of all mesh elements of

the artery, ||ui|| =

√

u21 + u22 + u23 is the norm of elemental

displacement, n stands for the time step, T = 2.5 × 10−3

denotes the thickness of the artery and Ne is the number of
Hexahedral elements.

A similar behavior of SMCs active contribution can be
observed in Figure 3 for different values of damage time tdam.
In this case, the active stress has averagely represented between
25 and 45% of SMCs stresses and between 13 and 17% of the

total stress. This has reduced to <10% in the critical condition
of λmax = 1.0.

3.2. SMCs Stress-Stretch Curve
Figure 4 shows SMCs stress-stretch curves. In fact, the SMCs
active stress in the circumferential direction is plotted vs.
the SMCs stretches for different values of maximum SMCs
contractility (λmax). The curves are comparatively depicted in

Figure 4A for various speeds of collagen deposition (k
cj
σ /Tcj )

when the maximum active stretch is larger than the initial
deposition stretch (λmax > λm0 ). It can be observed that the
active stress is initially increased while the artery is stretched due
to G&R. This monotonically increasing trend remains up to the
point in which SMCs reach their maximum contractility and,
then, as expected from their Hill functional behavior, it begins
to decrease depending on the amount of collagen deposition.

Figure 4B illustrates the stress-stretch curve for various rates

of collagen deposition (k
cj
σ /Tcj ) when themaximum active stretch

FIGURE 6 | Principal stresses: the stress distributions are comparatively shown at the final physical time (180 months). The results obtained for a two-layer thick-wall

patient-specific human ATAA responding to a regional elastin degradation for 15 years. Different damage times tdam [days] are considered depending on the

(column-wise presentation of the) maximum SMCs contractility (I) λmax = 1.4; (II) λmax = 1.1; and (III) λmax = 1.0 for a fixed value of k
cj
σ = 0.05. Each column shows

the stress distributions, from left to right, for the interior of the arterial wall (cut in half) and for the media layer, respectively. The range of principal stress distributions

are (A) [6.4e4–3.3e5]; (B) [7.1e4– 3.6e5]; (C) [7.2e4–6.3e5]; (D) [8.2e4–6.2e5]; (E) [7.3e4–7.4e5]; (F) [7.4e4–8.8e5]; (G) [1.1e5–8.1e5]; (H) [7.3e4–8.9e5]; (I)

[8.0e4–1.0e6] in [Pa].
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is larger than the initial deposition stretch (λmax ≃ λm0 ). The
above-mentioned explanations regarding SMCs behavior still
hold by noting that the stress has almost reached its maximum

value for all values of k
cj
σ . Moreover, the decrease in maximum

contractility (λmax) has led to a larger decrease in active stress
in comparison to the previous case, once reaching the maximum
active stress value.

Interestingly, the active stress even drops and reaches zero
(see Figure 4III). In this case, SMCs may fail to adhere onto and
pull the extracellular matrix and eventually go into apoptosis.
This critical situation happens no matter what rate of collagen
deposition is applied.

Figure 5 depicts the SMCs stress-stretch curves compared
for different values of maximum SMCs contractility (λmax) and
plotted for various damage times tdam. As clearly shown in
Figure 5I, the larger damage time has led to more active stress
since the artery is allowed to be more dilated, and then develop
more stress, before it is damaged due to elastin degradation. In

this case in which the maximum active stretch is larger than the
initial deposition stretch, the active stress has an increasing trend

from the beginning and all curves reach their corresponding

maximum stresses and retain it. This behavior can still be related
to the inverted parabola shape in Figure 5II when the maximum
SMCs contractility is equivalent to the initial deposition stretch.
This is evident as the first step (homeostasis) shows no change
in developed stress (horizontal line). As shown in Figure 5III,
the critical condition of a zero active stress is reached again after
some time of G&R.

Figure 6 shows the distribution of the first principal
stress distribution in the arterial wall for different values
of SMC maximum contractility and damage time. The
enlargement of the stress range in the artery is evident
as the maximum SMCs stretches are reduced. Increasing
the damage time results in increasing the stress values as
well, with maximum values reached in the region of local
elastin degradation.

FIGURE 7 | Normalized collagen density: the mass distributions are comparatively shown at the final physical time (180 months). The results obtained for a two-layer

thick-wall patient-specific human ATAA responding to a regional elastin degradation for 15 years. Different rates of collagen deposition k
cj
σ /Tcj are considered

depending on the (column-wise presentation of the) maximum SMCs contractility (I) λmax = 1.4; (II) λmax = 1.1; and (III) λmax = 1.0 for a fixed value of tdam = 40

[days]. Each column shows the stress distributions, from left to right, for the interior of the arterial wall (cut in half) and for the adventitia layer, respectively. The range of

normalized collagen density distributions are (A) [0.95–1.6]; (B) [0.99–1.8]; (C) [1.0–1.8]; (D) [0.99–1.0]; (E) [1.0–1.9]; (F) [1.1–4.5]; (G) [1.1–4.2]; (H) [1.5–4.3]; (I)

[5.1–3.2].
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FIGURE 8 | The evolution of the SMCs stretch and stress fields with respect to physical time t. The results obtained for a two-layer thick-wall patient-specific human

ATAA responding to a regional elastin degradation for 15 years. Different rates of collagen deposition k
cj
σ /Tcj are considered depending on the (column-wise

presentation of the) maximum SMCs contractility (A) λmax = 1.4; (B) λmax = 1.1; and (C) λmax = 1.0 for a fixed value of tdam = 40 [days].
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FIGURE 9 | The evolution of the SMCs stretch and stress fields with respect to physical time t for a column-wise presented values of (A) λmax = 1.4; (B) λmax = 1.1;

and (C) λmax = 1.0. The results obtained for a two-layer thick-wall patient-specific human ATAA responding to a regional elastin degradation for 15 years. Different

damage times tdam [days] are considered depending on the (column-wise presentation of the) maximum SMCs contractility λmax for a fixed value of k
cj
σ = 0.05.
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FIGURE 10 | Principal stresses evolution: the results obtained for a two-layer thick-wall patient-specific human ATAA responding to a regional elastin degradation

during 15 years. The stress distribution are shown in t = {20, 80, 120} [Months] depending on the (column-wise presentation of the) maximum SMCs contractility (I)

λmax = 1.4; (II) λmax = 1.1; and (III) λmax = 1.0 for a fixed value of k
cj
σ = 0.05 and tdam = 40 [days]. Each of the columns shows the stress distributions, from left to

right, for the adventitia and media layers, respectively. The range of principal stress distributions are (A) [6.1e4–5.6e5]; (B) [3.7e4–3.8e5]; (C) [6.5e4–5.4e5]; (D)

[6.7e4–7.6e5]; (E) [5.8e4–5.1e5]; (F) [8.9e4–6.2e5]; (G) [6.9e4–8.3e5]; (H) [8.3e4–6.6e5]; (I) [2.3e5–8.3e5] in [Pa].

The distribution of the normalized collagen density (with
respect to the arterial wall thickness) is depicted in Figure 7 for

different values of λmax and k
cj
σ .

3.3. Stress Evolution
Figure 8 shows the evolution of stretches, active stresses and
total stresses of SMCs along with the total stress field of the
mixture. The solutions are compared for different values of
maximum SMCs active stretches and for different rates of
collagen deposition, all for a fixed value of tdam = 40. The stretch
evolution shows that the ATAA dilation evolves in the opposite
direction of the rate of collagen deposition. This occurs as more
collagen is deposited for compensating elastin degradation: the
thicker the artery and the smaller the displacement. This can
be related to the evolution of the active stresses in which the
inverted parabola behavior is more evident for the bigger value

of k
cj
σ . In fact, when deposited collagen has a larger contribution

to the stress field, SMCs stresses reach a maximum and, then,
decrease afterwards.

The evolutions shown in Figure 9 are similar to the ones
shown in Figure 8, but this time for different values of damage
time tdam. In this case, increasing the damage time increased the
developed stretch due to G&R in the artery.

The absolute value of the principal stress distributions are

shown in Figure 10 for the representative case of k
cj
σ = 0.05 and

tdam = 40. The results are compared for different values of the
maximum SMCs stretches shown in media and adventitia layers.
In fact, the longer G&R occurs, themore stress is transferred from
the media to the adventitia layer.

3.4. Aneurysm Growth
Figure 11 depicts the evolution of the aortic diameter and
thickness during G&R. The results are compared for different
values of λmax where various rates of collagen deposition are
investigated. As expected, faster collagen deposition results in
less dilation of the aortic wall and, therefore, faster convergence
of the numerical solution. This trend can be observed for both
diameter and thickness whose opposite trend is inevitable. In
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FIGURE 11 | Evolution of arterial diameter with respect to the physical time. The results obtained for a two-layer thick-wall patient-specific human ATAA responding to

a regional elastin degradation for 15 years. Different rates of collagen deposition k
cj
σ /Tcj are considered depending on the (column-wise presentation of the) maximum

SMCs contractility (I) λmax = 1.4; (II) λmax = 1.1; and (III) λmax = 1.0 for a fixed value of tdam = 40 [days].

addition, the effects of SMCs maximum contractility, especially
in the case of diameter, is evident as a smaller λmax has led
to an increase in the diameter. However, this increasing trend
of diameter does not completely agree with the thickness of
the artery. It seems that thickness decreased in the critical
condition (λmax = 1.0).

The same behavior can be observed in Figure 12 for different
values of damage time. However, it can be generally concluded
that whatever the conditions of SMCs active stress, the change
in the rate of collagen deposition or damage time does not have
a major influence on changing the diameter/thickness of the
arterial wall.

The contour plot of the arterial wall thickness and
displacement distributions are shown in Figure 13 for the

representative case of k
cj
σ = 0.05 and tdam = 40 in the media

layer for different values of maximum SMCs contractility.
Figure 14 also illustrates the arterial wall dilation compared to

its initial state through thickness and displacement distributions
after 15 years of G&R progression. The maximum displacement
and minimum thickness occurred at the location of the localized
elastin loss.

4. DISCUSSION

In this paper, growth and remodeling of a patient-specific
aortic geometry has been computationally modeled using the
homogenized CMT in order to predict ATAA evolution while the
artery has undergone proteolysis of elastin localized in regions of
deranged hemodynamics. To the best of the authors’ knowledge,
it is the first time that the effects of possible variations in SMC
contractility on ATAA progression are simulated in a multi-
layer patient-specific model. The results reveal a possible critical

condition in which the active stress of SMCs can reduce to
zero, which can be interpreted as if SMCs do not pull onto the

extracellular matrix anymore, potentially leading to apoptosis.

The paramount importance of the SMCs role in short- and

long-term changes of arterial responses is reported in Cox

(1975, 1978), Humphrey and Rajagopal (2002), Liu et al. (2008),

and Murtada et al. (2012, 2015). The active tension of SMCs,
produced over a large range of muscle lengths, can be described
through a length-tension relationship (Dorbin, 1973; Rachev and
Hayashi, 1999; Gunst et al., 2003; Zulliger et al., 2004; Carlson
and Secomb, 2005; Herrera et al., 2005; Syyong et al., 2008; Yamin
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FIGURE 12 | Evolution of artery thickness with respect to physical time t. The results obtained for a two-layer thick-wall patient-specific human ATAA responding to a

regional elastin degradation for 15 years. Different damage time tdam [days] are considered depending on the (column-wise presentation of the) maximum SMCs

contractility (I) λmax = 1.4; (II) λmax = 1.1; and (III) λmax = 1.0 for a fixed value of k
cj
σ = 0.05.

and Morgan, 2012). In this work, the classic inverted parabola
shape is used for the length-tension relationship as it, specifically,
describes the overlap between the actin and myosin filaments
(Murtada et al., 2012).

Compared to the well-known model proposed by Zulliger
et al. (2004), our model, which stems from the work of Murtada
et al. (2012), has a number of differences which are:

1. Zulliger et al. (2004) have a multiplicative split between
the active and passive stress of SMCs whereas we use an
additive split;

2. Zulliger et al. (2004) considered effects of the change of
calcium concentration with the stretch, which we disregarded,
as these effects mainly manifest for fast deformations, whereas
we modeled deformations over large timescales;

3. for the length tension relationship, Zulliger et al. (2004)
used a Heaviside function whereas we used an inverted
parabola function.

It is worth noting that it is the first time that variations of
the active stress are investigated in G&R progression through
computational modeling. The situations that we have considered

for these variations of the active stress remain partly fictitious
because there are no in vivo measurements of the active stress
in vivo.

In this work, a parametric study has been performed on the
basis of the time at which the artery is maximally damaged

(tdam), the rate of collagen deposition (k
cj
σ /Tcj ) and themaximum

contractility of SMCs (λmax) in order to study the effects of active
SMCs on G&R of a patient-specific ATAA geometry. Results
illustrate the importance of damage time on the expansion rate
of the artery such that the larger value of tdam leads the higher
rate of G&R. Note that elastin degradation during ATAA growth
may be related to multiple biological and mechanical parameters
including abnormal distribution of Wall Shear Stress (WSS)
(Guzzardi et al., 2015) and circumferential stress (Humphrey and
Rajagopal, 2002). Our simulations highlight some dependence
between the active stress and damage time, especially when
the maximum active stretch was larger than the deposition
stretch. However, this dependency is dramatically reduced in
the other two cases when the maximum SMCs contractility is
equal or less than the deposition stretch. The evolution of the
SMCs total (active and passive) stresses indicates that the passive

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 15 November 2020 | Volume 8 | Article 58737644

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Ghavamian et al. G&R in Aortic Aneurysms

FIGURE 13 | Arterial wall thickness and displacement evolutions: the results obtained for a two-layer thick-wall patient-specific human ATAA responding to a regional

elastin degradation during 15 years. The wall thickness distributions are shown at t = {20, 80, 120} [Months] depending on the (column-wise presentation of the)

maximum SMCs contractility (I) λmax = 1.4; (II) λmax = 1.1; and (III) λmax = 1.0 for a fixed value of k
cj
σ = 0.05 and tdam = 40 [days]. Each column shows, from left to

right, the thickness [0.78–1.3] and displacement [5.5e-4–3.5e-3] in [mm], of the arterial wall in the media layers, respectively.

contribution is increasing all the time. In fact, increasing both the
damage time and maximum SMCs contractility have resulted in
an increase in SMCs stresses and in total stresses of the mixture.

It appeared that active stress decreases more when the rate of

collagen deposition increases. This makes sense as collagen can

take over a part of the stresses borne by SMCs. For instance, in

the case of k
cj
σ = 0.05, the active stress increases and remains

at its maximum value since the amount of collagen deposited in
the media layer is not sufficient to compensate the loss of active
tone in SMCs. This is an opposite trend compared to the case

k
cj
σ = 0.30 in which the fast deposition of collagen prevents the
SMCs to reach their maximum contractility and a comparative
fast decrease in active stress can be observed. It must be noted
that SMC contractility does not dramatically affect the arterial
dilation. Considering the evolution of the SMCs total (passive
and active) stresses, themonotonically increasing trend of passive

stresses can be acknowledged. In some cases (say k
cj
σ > 0.15),

though, the active stresses dominate the behavior of SMCs total
stresses. This can also be observed on the evolution of the total
mixture stresses which begin to increase once the G&R starts.
The decrease in total mixture stresses indicates that if the rate
of collagen deposition reaches a certain threshold, the artery
becomes thick enough to enable a dramatic reduction of the
wall stress. This certainly affects the speed of convergence of the

numerical solutions as the computational time was significantly
lengthened for these situations.

It must be noted that there are still several limitations and
technical challenges associated with the presented model:

• The presented model relies on a number of assumptions.
One of these assumptions, stating that initial reference is at
homeostasis, is typical of G&R (Kassab, 2008). Although this
assumption may be actually satisfied globally at the scale of an
organ, we also assume that it is satisfied point-wisely in our
G&R model of the arterial wall.

• Considering a uniform thickness for the arterial wall is
a limitation of the current work since the distribution
of material and structural parameters (e.g., thickness, fiber
orientations) of a patient-specific geometry should be
consistent with in vivo data.

• In this work, the constitutive parameters for the patient-
specific model were estimated by curve fitting from the ex
vivo bulge inflation data of an ATAA segment excised after the
surgical intervention of the same patient. However, the in vivo
material properties of ATAAs (Farzaneh et al., 2019) should be
identified non-invasively in clinical applications.

• We have generated fictitious situations where the active stretch
of SMCs evolves with the actual stretch of the tissue and
have echoed this evolution onto the active stress through
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FIGURE 14 | The thickness and displacement distributions of the arterial wall: the results obtained for a two-layer thick-wall patient-specific human ATAA responding

to a regional elastin degradation for 15 years. In this representative case, the collagen deposition gain is k
cj
σ = 0.05, the maximum SMCs contractility is λmax = 1.4 and

the damage time is tdam = 40 [days]. From left to right, the thickness [0.78–1.3] and displacement [5.9e-4–3.5e-3] in [mm], of the arterial wall are depicted.

the inverted parabola function. Although these situations
can be justified if SMC proliferate at an extremely low rate
and do not adapt to aneurysm progression, they remain
fictitious and there is a pressing need to characterize the
evolution of SMCs length-tension relationships in aortic
aneurysms in vivo in order to improve the predictions of G&R
computational models.

• Several biological pathways may be activated during aneurysm
development and induce adaptation mechanisms of SMCs
that were not considered in this work. More specifically, the
distribution of WSS is complex in ATAAs (Condemi et al.,
2017) and this may have an impact on SMCs which should be
included in future developments of the model.

5. CONCLUSION

In this work, the contribution of SMCs contractility during
aneurysmal growth and remodeling has been computationally
investigated with a multi-layer patient-specific model of the
human aorta subjected to localized elastin degradation. The
model relies on the homogenized constrained mixture theory.
The results show that the active contribution of SMCs is
of paramount importance in analyzing the total stress field
of the mixture. It, in fact, affects the rates of collagen
deposition by which the elastin loss is gradually compensated.
Interestingly, a critical condition has been observed, under which
the active stress of SMCs could drop and possibly result in
apoptotic conditions. Future work will carry on investigating
the major role of SMCs contractility on G&R in aneurysm
development, considering supplemental biological pathways

in our computational model in order to account for actual
adaptation mechanisms undergone by SMCs.

DATA AVAILABILITY STATEMENT

The original contributions presented in the
study are included in the article/supplementary
material, further inquiries can be directed to the
corresponding author/s.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by CHU Saint-Etienne. The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

AG: software implementation, simulations, validation,
analysis of results, and writing—original draft presentation.
All authors supervision of the research, methodology,
funding, analysis of results, reviewing, and editing
of manuscript.

FUNDING

This work was supported financially by the European
Research Council ERC through grant ERC-2014-
CoG BIOLOCHANICS.

REFERENCES

Baek, S., Rajagopal, K. R., and Humphrey, J. D. (2006).

A theoretical model of enlarging intracranial fusiform

aneurysms. J. Biomech. Eng. 128, 142–149. doi: 10.1115/1.21

32374

Bellini, C., Ferruzzi, J., Roccabianca, S., Di Martino, E. S., and Humphrey, J.

D. (2014). A microstructurally motivated model of arterial wall mechanics

with mechanobiological implications. Ann. Biomed. Eng. 42, 488–502.

doi: 10.1007/s10439-013-0928-x

Bersi, M. R., Bellini, C., Di Achille, P., Humphrey, J. D., Genovese, K., and Avril,

S. (2016). Novel methodology for characterizing regional variations in the

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 17 November 2020 | Volume 8 | Article 58737646

https://doi.org/10.1115/1.2132374
https://doi.org/10.1007/s10439-013-0928-x
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Ghavamian et al. G&R in Aortic Aneurysms

material properties of murine aortas. J. Biomech. Eng. 138:0710051-07100515.

doi: 10.1115/1.4033674

Braeu, F. A., Seitz, A., Aydin, R. C., and Cyron, C. J. (2017).

Homogenized constrained mixture models for anisotropic volumetric

growth and remodeling. Biomech. Model. Mechanobiol. 16, 889–906.

doi: 10.1007/s10237-016-0859-1

Carlson, B. E., and Secomb, T. W. (2005). A theoretical model for the myogenic

response based on the length-tension characteristics of vascular smoothmuscle.

Microcirculation 12, 327–338. doi: 10.1080/10739680590934745

Condemi, F., Campisi, S., Viallon, M., Troalen, T., Xuexin, G., Barker, A. J., et al.

(2017). Fluid- and biomechanical analysis of ascending thoracic aorta aneurysm

with concomitant aortic insufficiency. Ann. Biomed. Eng. 45, 2921–2932.

doi: 10.1007/s10439-017-1913-6

Cox, R. H. (1975). Arterial wall mechanics and composition and the

effects of smooth muscle activation. Am. J. Physiol. 229, 807–812.

doi: 10.1152/ajplegacy.1975.229.3.807

Cox, R. H. (1978). Regional variation of series elasticity in canine arterial smooth

muscles. Am. J. Physiol. 234:H542. doi: 10.1152/ajpcell.1978.234.5.C146

Cyron, C. J., Aydin, R. C., and Humphrey, J. D. (2016). A homogenized

constrained mixture (and mechanical analog) model for growth and

remodeling of soft tissue. Biomech. Model. Mechanobiol. 15, 1389–1403.

doi: 10.1007/s10237-016-0770-9

Cyron, C. J., and Humphrey, J. D. (2016). Growth and remodeling of loadbearing

biological soft tissues.Meccanica 52, 645–664. doi: 10.1007/s11012-016-0472-5

Davis, F. M., Luo, Y., Avril, S., Duprey, A., and Lu, J. (2016). Local mechanical

properties of human ascending thoracic aneurysms. J. Mech. Behav. Biomed.

Mater. 61, 235–249. doi: 10.1016/j.jmbbm.2016.03.025

Dobrin, P. B. (1973). Influence of initial length on length-tension

relationship of vascular smooth muscle. Am. J. Physiol. 225, 664–670.

doi: 10.1152/ajplegacy.1973.225.3.664

Famaey, N., Vastmans, J., Fehervary, H., Maes, L., Vanderveken, E., Rega, F., et al.

(2018). Numerical simulation of arterial remodeling in pulmonary autografts.

Z. Angew. Math. Mech. 98, 2239–2257. doi: 10.1002/zamm.201700351

Farzaneh, S., Trabelsi, O., Chavent, B., and Avril, S. (2019). Identifying local arterial

stiffness to assess the risk of rupture of ascending thoracic aortic aneurysms.

Ann. Biomed. Eng. 47, 1038–1050. doi: 10.1007/s10439-019-02204-5

Grossman, W. (1980). Cardiac hypertrophy: useful adaptation or pathologic

process? Am. J. Med. 69, 576–584. doi: 10.1016/0002-9343(80)90471-4

Gunst, S. J., Tang, D. D., and Opazo Saez, A. (2003). Cytoskeletal remodeling

of the airway smooth muscle cell: a mechanism for adaptation to

mechanical forces in the lung. Respir. Physiol. Neurobiol. 137, 151–168.

doi: 10.1016/S1569-9048(03)00144-7

Guzzardi, D. G., Barker, A. J., van Ooij, P., Malaisrie, S. C., Puthumana, J. J., Belke,

D. D., et al. (2015). Valve-related hemodynamics mediate human bicuspid

aortopathy: insights from wall shear stress mapping. J. Am. Coll. Cardiol. 66,

892–900. doi: 10.1016/j.jacc.2015.06.1310

Hai, C., M., and Murphy, R. A. (1988). Cross-bridge phosphorylation and

regulation of latch state in smooth muscle. J. Appl. Physiol. 254, C99–C106.

doi: 10.1152/ajpcell.1988.254.1.C99

Herrera, A. M., McParland, B. E., Bienkowska, A., Tait, R., Paré, P. D., and Seow,

C. Y. (2005). Sarcomeres of smooth muscle: functional characteristics and

ultrastructural evidence. J. Cell Sci. 118, 2381–2392. doi: 10.1242/jcs.02368

Hibbit, Karlson, and Sorensen. (2011). Abaqus-Theory Manual, 6.11-3 Edn.

Holzapfel, A. G., Gasser, C. T., and Ogden, R. W. (2000). A new constitutive

framework for arterial wall mechanics and a comparative study of material

models. J. Elast. 61, 1–48. doi: 10.1023/A:1010835316564

Humphrey, J. D. (2008). Mechanisms of arterial remodeling in hypertension:

coupled roles of wall shear and intramural stress. Hypertension 52, 195–200.

doi: 10.1161/HYPERTENSIONAHA.107.103440

Humphrey, J. D., and Holzapfel, G. A. (2012). Mechanics, mechanobiology, and

modeling of human abdominal aorta and aneurysms. J. Biomech. 45, 805–884.

doi: 10.1016/j.jbiomech.2011.11.021

Humphrey, J. D., and Rajagopal, K. R. (2002). A constrained mixture model for

growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12,

407–430. doi: 10.1142/S0218202502001714
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Vascular clamping often causes injury to arterial tissue, leading to a cascade of

cellular and extracellular events. A reliable in silico prediction of these processes

following vascular injury could help us to increase our understanding thereof, and

eventually optimize surgical techniques or drug delivery to minimize the amount of

long-term damage. However, the complexity and interdependency of these events

make translation into constitutive laws and their numerical implementation particularly

challenging. We introduce a finite element simulation of arterial clamping taking into

account acute endothelial denudation, damage to extracellular matrix, and smooth

muscle cell loss. The model captures how this causes tissue inflammation and deviation

from mechanical homeostasis, both triggering vascular remodeling. A number of cellular

processes are modeled, aiming at restoring this homeostasis, i.e., smooth muscle

cell phenotype switching, proliferation, migration, and the production of extracellular

matrix. We calibrated these damage and remodeling laws by comparing our numerical

results to in vivo experimental data of clamping and healing experiments. In these same

experiments, the functional integrity of the tissue was assessed through myograph tests,

which were also reproduced in the present study through a novel model for vasodilator

and -constrictor dependent smooth muscle contraction. The simulation results show

a good agreement with the in vivo experiments. The computational model was then

also used to simulate healing beyond the duration of the experiments in order to exploit

the benefits of computational model predictions. These results showed a significant

sensitivity to model parameters related to smooth muscle cell phenotypes, highlighting

the pressing need to further elucidate the biological processes of smooth muscle cell

phenotypic switching in the future.

Keywords: phenotype switch, vascular remodeling, smooth muscle cells (SMC), vascular clamping, myograph,

finite elements

1. INTRODUCTION

Multiple studies indicate that arterial occlusion by almost any type of clamp systematically leads
to intimal injury at the site of application. For example, endothelial denudation is a widely known
effect of clamping (Slayback et al., 1976; Barone et al., 1989; Margovsky et al., 1997, 1999; Hangler
et al., 2008; Vural et al., 2008; Famaey et al., 2010; Geenens et al., 2016a,b). Several studies also report
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damage to the extracellular matrix (ECM) in the media with
flattened elastic lamellae (Barone et al., 1989; Margovsky et al.,
1999; Famaey et al., 2010; Geenens et al., 2016a). Moreover,
healing after arterial clamping usually implies some degree of
inflammation and subsequent tissue remodeling (Geenens et al.,
2016a).

The tonicity of vascular smooth muscle cells (SMC) after
clamping was also studied extensively (Barone et al., 1989;
Famaey et al., 2010; Geenens et al., 2016b). Experimental data on
the effects of arterial clamping were collected in mice (Geenens
et al., 2016a,b). In this study, descending thoracic aortas were
clamped at different levels of loading. Then, the aorta was
either excised immediately or excised after a fixed duration of
healing. After excision, rings were cut and tested with amyograph
to measure the vascular tone under vasoconstriction and
vasodilatation stimulations, followed by histological analyses.
An acute decline of endothelium-dependent vasodilatation was
observed just after clamping, but the functional response was
restored after 1 month (Geenens et al., 2016b). Arterial clamping
was also followed by an inflammatory response leading to some
degree of fibrosis.

The role of mechanobiology in the response to arterial
clamping is not clearly understood. It is known that in many
conditions, vascular remodeling is mediated by the mechanical
stimuli sensed by vascular SMCs, permitting to maintain wall
stresses at homeostasis (Humphrey, 2002). SMCs modulate
their phenotype in response to changing local environmental
cues (Epstein et al., 1994), possibly performing biosynthetic,
proliferative, and contractile roles in the vessel wall (Thyberg
et al., 1995). Contractile SMCs react to environmental changes
on the short term by contracting and relaxing to restore a
homeostatic state. On the longer term, biosynthetic vascular SMC
produce, and degrade the extracellular matrix, thus enabling
growth and remodeling (Owens et al., 2004).

In order to decipher the role of mechanobiology in the
response to arterial clamping, in silico predictive models can
be helpful. A number of computational models for damage
through overloading of soft tissues have been developed and
tested by Balzani et al. (2006, 2012), Rodríguez et al. (2006),
Gasser (2011), Peña (2011, 2014), Sáez et al. (2012), Famaey
et al. (2013), Forsell et al. (2013), Schmidt and Balzani (2016),
and Li and Holzapfel (2019). Most of these models are based on
continuum damage mechanics (Kachanov, 1986; Simo and Ju,
1987), where the amount of damaged tissue is determined by
a damage parameter. These models were successfully applied to
predict acute damage after arterial clamping. However, most of
them focused on short term fiber damage and modeled neither
the active behavior of vascular SMCs nor the healing process
occurring on the longer term.

Modeling the active behavior of vascular SMCs has been a
topic of extensive investigation (Murtada et al., 2017), combining
continuum mechanics (Murtada et al., 2010, 2012), and the
kinetics of pathways involved in the active behavior (Hai and
Murphy, 1988; Schmitz and Böl, 2011; Böl et al., 2012; Kida
and Adachi, 2014; Liu, 2014; Bouklas et al., 2018; Ferreira
et al., 2018), including phosphorylation of myosin light chain,
variations of intracellular calcium concentration and membrane

depolarization (Sharifimajd and Stålhand, 2014). However, to
our best knowledge, none of these models depend on the
concentration of specific vasoreactive agents used in myograph
testing: phenylephrine (PE), acetylcholine (ACh), and sodium
nitroprusside (SNP) as nitric oxide (NO) donor.

Modeling vascular healing is also rather recent. Comellas
et al. (2016) presented a computational model of tissue healing
after mechanical overload, in which temporal evolutions of
damage are homeostasis-driven. However, no discrimination
was made between the different tissue constituents (elastin,
collagen, cells) in terms of damage and mechanical behavior.
This can be addressed by microstructurally-motivated growth
and remodeling models based on the constrained mixture
model introduced by Humphrey and Rajagopal (2002). In the
constrained mixture theory, the different constituents of the
tissue are constrained to move together in a mixture but
all have different biologically relevant stress-free states. Tissue
remodeling is governed by laws of production and degradation
for each constituent based on stress states. This type of model
has been used to predict different tissue adaptations such as
aneurysm growth for instance by Baek et al. (2006), Alberto
Figueroa et al. (2009), Watton and Hill (2009), Zeinali-Davarani
and Baek (2012), Valentín et al. (2013), Cyron et al. (2016),
Braeu et al. (2017), Famaey et al. (2018), Latorre and Humphrey
(2018b), andMousavi et al. (2019) or wound healing by Zuo et al.
(2020). However, to the best of our knowledge, the constrained
mixture theory has never been used to model healing after
arterial clamping.

In the present work, we aim to computationally capture the
mechanobiological effects of arterial clamping. Therefore, we
introduce a chemomechanical model in a constrained mixture
framework, considering inflammation, collagen deposition, SMC
proliferation, SMC active response as well as SMC switch
from contractile to synthetic phenotype, all depending on the
mechanical and chemical environment. After introducing the
details of themodel, we simulate the response to arterial clamping
after 1 and 2 months of healing and compare the results to
experimental data.

2. MATERIALS AND METHODS

2.1. Mouse Experiments
As reported by Geenens et al. (2016a), 108 wildtype mice were
subjected to a surgical procedure, in which the descending
thoracic aorta was isolated and clamped in vivo with a non-
serrated, 2 mm wide clamp at either a loading level of 0.0 N
(control group), 0.6 N or 1.27 N. The clamped tissue was then
either immediately excised, or in vivo healing was allowed for 6
h, 2 weeks, or 1 month. After these four time points, histological
analyses were carried out to assess the structural integrity of
the tissue through CD105, CD45, Verhoeff’s-Van Gieson, and
osteopontin—α-SMA stainings. After the immediate excision or
after 1 month, myograph tests were carried out to assess the
functional integrity of the tissue. The aorta segment wasmounted
onto two rods in an organ bath and, upon stretching of the
tissue, a stable pre-load of 20 mN was reached. Afterwards, the
vasoactive substances PE, ACh, and SNP were subsequentially
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added to the solution to assess endothelium dependent and
independent vasodilation. In total, all mice that underwent
surgery were divided into eighteen groups corresponding to a
particular condition, depending on the clamping force and the
healing time, and on the type of assessment, i.e., histology or
myograph. More details on these animal experiments are given
in Geenens et al. (2016a).

2.2. Constitutive Model
2.2.1. Passive Material Behavior
The anisotropic and nonlinear passive mechanical behavior of
arterial tissue is often represented by a Gasser-Ogden-Holzapfel
(Gasser et al., 2006) hyperelastic formulation. The deviatoric
strain energy function is decomposed in an isotropic Neo-
Hookean part, representing the elastin fibers in the tissue,
and an exponential, anisotropic part, representing two collagen
fiber families running in two symmetric directions. Assuming
a fully incompressible material and ignoring the volumetric
contribution, the strain energy function of the elastin and
collagen contribution is respectively written as

9̂elas = C10(Ī
elas
1 − 3),

9̂coll
i =

k1

2k2
exp

{

k2[(κ Ī
coll
1 + (1− 3κ)Īcolli )− 1]2

}

− 1, i = 4, 6,

(1)
where C10 and k1 represent the stiffness of elastin and collagen.
k2 determines the exponential collagen behavior and κ quantifies
the fiber dispersion. Īelas1 and Īcoll1 are the first invariants or traces

of the deviatoric right Cauchy-Green stretch tensors tr(C̄elas) =

tr(J−2/3
F
elasT

F
elas) and tr(C̄coll) = tr(J−2/3

F
collT

F
coll), where

F
elas and F

coll are the deformation gradients of elastin and
collagen respectively and J is the Jacobian of the deformation
gradient F. More information on these different deformation
gradients follows in section 2.2.4. Īcoll4 and Īcoll6 are the fourth and

sixth invariants of C̄coll andMi, representing the stretch along the
preferred fiber direction, written as

Īcolli = Mi · (C̄
coll

Mi), i = 4, 6, (2)

with Mi the undeformed fiber vector defined by the fiber angle
αi with respect to the circumferential direction. Therefore,Mi =

[0 cosαi sinαi]
T , assuming that the radial direction is the first

direction, the circumferential direction the second and the axial
the third.

2.2.2. Active Material Behavior
Contractile SMCs in the media actively generate vascular tone.
An active component to the strain energy function, as described
by Murtada et al. (2010) and used by Famaey et al. (2013) takes
the form

9̂csmc =
µsmc

2
(n3 + n4)

(√

Īsmc
4 + urs − 1

)2

, (3)

where µsmc is a stiffness-like material parameter, n3 and n4
together are the fractions of the smooth muscle filaments in
the force-producing states. urs represents the normalized sliding

between the filaments arising from the difference between the
stress in the surrounding matrix Pmat and the driving stresses
of the cross-bridges of the filaments Psmc. Murtada et al. (2010)
give an in-depth explanation of these variables. This is also
further elaborated in section 2.5. Īsmc

4 is the fourth invariant of

Msmc and C̄
smc = J−2/3

F
smcT

F
smc, the deviatoric right Cauchy-

Green stretch tensor of the smooth muscle fibers associated
with the smooth muscle deformation gradient F

smc. Īsmc
4 can

be written similarly to Equation (2), where Msmc represents the
orientation of the cells. Assuming that the cells are aligned along
the circumferential direction, we writeMsmc = [0 1 0]T .

2.2.3. Strain Energy Function
Similarly to Famaey et al. (2018), the overall strain energy density
stored in the material is calculated with a mass-averaged rule as

9 = 9elas + 9coll + 9csmc

= ρelas
(

k
)

9̂elas
(

k
)

+

k
∑

τ=0

ρcoll
(

k, τ
)

9̂coll
i

(

k, τ
)

+ ρcsmc
(

k
)

9̂csmc
(

k
)

,

(4)

where ρelas
(

k
)

represents the elastin density at the current time
step k. ρcsmc

(

k
)

is the density of SMCs in their contractile

phenotype and ρcoll
(

k, τ
)

is the density of collagen cohort τ .
These considered densities and constituent specific strain energy
densities relate to the reference configuration. The deposition of
collagen is discretized, such that different collagen cohorts can be
identified, depending on the time of production. We consider all
the initially present collagen as one cohort deposited at k = 0. On
top of that, at every discrete time step, one cohort per collagen
family is produced. At every time step, all existing cohorts,
for example previously deposited at time step τ , are degraded
through a slowly decaying survival fraction. In the present study,
we consider two symmetric fiber families, each divided into k+ 1
cohorts at every time step k.

2.2.4. Deformation Gradient
The strain energy defined in Equation (4) depends on the
deformation gradients of the considered constituents. According
to the constrained mixture growth and remodeling theory, the
total deformation gradient of elastin F

elas is written as

F
elas = FG

elas, (5)

where Gelas is a deformation gradient containing the deposition
stretches of elastin in the in vivo homeostatic reference state of
the artery and F represents any deformation of the mixture as a
whole with respect to this reference.

The total deformation gradient of a certain collagen cohort τ

is

F
coll (τ ) = FF

coll
dep (τ )−1

G
coll. (6)

G
coll represents the deformation of the collagen cohort at

deposition. Fcoll
dep (τ ) is the deformation of the mixture at the

time of deposition with respect to the homeostatic reference state
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and F is the current deformation. In a steady state regime, the
deformation at deposition of all collagen still present is equal
to the current deformation, such that Fcoll

dep
= F and that Fcoll

is simply equal to G
coll, the collagen deposition stretch tensor.

Collagen is assumed to be deposited at a constant stretch gcoll

(Bellini et al., 2014) along the main fiber direction. Therefore, for
a particular fiber directionM (Cyron et al., 2016),

G
coll = gcollM ⊗M +

1
√

gcoll
(I −M ⊗M). (7)

Contractile SMCs are assumed to only feel the deformation with
respect to the state at which they were deposited. Therefore, their
deformation gradient is

F
csmc (τ ) = FF

csmc
dep (τ )−1 , (8)

where Fcsmc
dep (τ ) is the deformation gradient of the mixture at the

time of deposition τ of the considered cohort.
All deformations are considered fully incompressible.

Moreover, volumetric changes due to mass addition or loss
are neglected, such that no deformation is observed as a result
of growth.

2.3. Damage Model
Figure 1 gives an overview of the considered damage effects.
A short-term damage model for contractile SMCs and collagen
inspired by Famaey et al. (2013) and Balzani et al. (2006) is
considered. The fraction of damaged cells is modeled as a damage
parameter dcsmc, calculated as

dcsmc = 1− exp
(

−β/mcsmc
)

, (9)

wheremcsmc is a damage constant and

β = max abs (λθθ − 1) , (10)

where λθθ is the local circumferential stretch with respect to the
in vivo reference stretch, assuming that the deformation gradient
is known in a predefined local coordinate system whose axes are
aligned with the local radial, circumferential, and axial directions.

The fraction of damaged collagen dcoll becomes

dcoll = 1− exp
(

−1ζ/mcoll
)

, (11)

where again mcoll is a constant. 1ζ is calculated as the difference
between the current and homeostatic fiber stresses (see also
Equation 13).

We assume that endothelium can be damaged as a result
of overloading of the inner elastin of the media, since the
endothelium itself bears almost no load. As stated by Jufri et al.
(2015), endothelial cells react differently to physiological and
pathological ranges of mechanical stretch, where the latter may
induce apoptosis (Kou et al., 2009). We therefore assume that the
local endothelium dies if a certain threshold mec of the local β

is exceeded.

2.4. Remodeling Model
A remodeling algorithm is defined considering six main
components. In the following sections, remodeling pathways are
introduced for the two main passive load-bearing constituents
elastin and collagen. Two SMC phenotypes are considered, active
load-bearing contractile cells and non-load-bearing synthetic
cells that produce extracellular matrix. We also consider the
healing of the endothelium and the infiltration of inflammatory
agents. The scheme on Figure 2 is an overview of the remodeling
pathways with the corresponding equations introduced in the
following sections.

2.4.1. Elastin
We assume that the production or degradation of elastin is
negligible over the considered time frame and that new elastin
cannot be produced. The elastin density at each time point is
therefore equal to the homeostatic density ρelas

0 .

FIGURE 1 | Schematic representation of the damage effects presented in section 2.3.
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FIGURE 2 | Schematic representation of the remodeling pathways presented from Equations (13) to (22).

2.4.2. Collagen
The density at time step k of a collagen cohort deposited at time
τ is (Valentín et al., 2013; Famaey et al., 2018)

ρcoll
(

k, τ
)

= mcoll (τ ) qcoll
(

k, τ
)

. (12)

mcoll (τ ) represents the amount of collagen of the specified cohort
at the time of deposition τ and qcoll

(

k, τ
)

is the fraction of this
cohort that survives until time k.

The degradation of collagen depends on the current fiber
stress. Upon discretization of Equation (8) in Famaey et al. (2018)
or (53) in Valentín et al. (2013), the survival fraction of a certain
collagen cohort is

qcoll
(

k, τ
)

= exp



−

k
∑

τ̃=τ

Kcoll
qh 1t

(

1+ 1ζ
(

k, τ̃
)2

)



 , (13)

where Kcoll
qh

is the homeostatic decay constant and 1ζ
(

k, τ̃
)

represents the difference between the current and homeostatic
fiber stresses as defined in Valentín et al. (2013) and Famaey et al.
(2018).

The production of new collagen cohorts is proportional to the
current density of synthetic cells. The rate at which they produce
collagen depends on the presence of contractile cells and on the
mechanical stimulus 1λ felt by these latter cells. The production
rate at time τ is written as

mcoll (τ ) = mcoll
0 Ŵ (τ) , (14)

where

Ŵ (τ) =

(

1+
ρcsmc (τ )

ρcsmc
0

Kcoll
m 1λ

)
ρssmc (τ )

ρssmc
0

. (15)

ρcsmc and ρcsmc
0 are the current and homeostatic densities of

contractile cells and ρssmc and ρssmc
0 are the corresponding

densities of the synthetic cells. Kcoll
m is a remodeling parameter

and the mechanical criterion for remodeling is written as

1λ = λθθ − 1. (16)

Note that1λ is very similar to βcsmc. It can however be positive or
negative for circumferential stretch or compression, respectively.

2.4.3. Contractile Smooth Muscle Cells
Contractile SMCs dedifferentiate into synthetic cells upon
mechanical triggering, for example as observed by Wang et al.
(2018) or when losing grip to the surrounding extracellular
matrix. We assume that these cells react to stretch in the
circumferential direction as

dρcsmc

dt
= −1λKsmc

dd ρcsmc. (17)

Through numerical integration, this becomes

ρcsmc
(

k
)

= ρcsmc
(

k− 1
) (

1− 1λKsmc
dd 1t

)

, (18)

where Ksmc
dd

is a rate parameter for cell differentiation and 1t the
considered time step. Regardless of this equation, the maximum
relative amount of contractile cells ρcsmc/ρcsmc

0 is bounded by the

relative amount of elastin ρelas/ρelas
0 since we assume that cells

cannot be contractile if they are unable to grip the extracellular
environment. The increase of contractile SMCs is also bounded
by the available amount of synthetic cells to differentiate from.

2.4.4. Synthetic Smooth Muscle Cells
Whereas, contractile cells are quiescent in their normal state,
synthetic SMCs are more proliferative (Hao et al., 2003).
We therefore assume that their density can increase through
dedifferentiation or proliferation based on the mechanical
environment (Mantella et al., 2015). Moreover, their proliferation
also increases as a reaction to inflammation (Yang et al., 2018).
We write the evolution law of these cells as

dρssmc

dt
=

(

1λKsmc
pl + Ksmc

ic φic
)

ρssmc + 1λKsmc
dd ρcsmc. (19)
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Therefore, in discretized form, the current synthetic cell density is

ρssmc
(

k
)

= ρssmc
(

k− 1
)
(

1λKsmc
pl 1t + 1+ Ksmc

ic 1tφic
)

+ ρcsmc
(

k− 1
)

− ρcsmc
(

k
)

, (20)

where Ksmc
pl

and Ksmc
ic are rate parameters related to the

mechanical and inflammatory stimulus, respectively and φic is
the current fraction of inflammation.

2.4.5. Endothelial Cells
After degradation, the endothelium heals following the logistic
growth law

dφec

dt
= Kec

(

1− φec
)

φec (21)

or

φec
(

k
)

=
(

Kec1t
(

1− φec
(

k− 1
))

+ 1
)

φec
(

k− 1
)

, (22)

in which Kec is a rate parameter and φec is the total fraction of
endothelium present. φec = 1means that the endothelium is fully
recovered. If φec = 0 and no endothelial cells are present at all,
no recovery is possible.

2.4.6. Inflammation
Wemodel inflammation provoked when platelets and leukocytes
adhere to the de-endothelialized artery and send inflammatory
agents in the tissue. We therefore assume that the inflammation
is directly related to the fraction of intact endothelium:

φic = 1− φec, (23)

where φic represents a relative level of inflammation with a
maximum of 1.

2.5. Contractility Model
Equation (3) describes the energy generated by SMCs. As stated
before, this energy depends on the muscle filament sliding and on
the fraction of the filaments in their force-producing states.

Similarly to Murtada et al. (2010) and Famaey et al. (2013),
the driving equation for the evolution of the relative sliding of
the myofilaments urs is

u̇rs =
1

η
(Psmc − Pmat) , (24)

with

Pmat =
∂9csmc

∂λθ

= J−2/3µcsmc (n3 + n4)

(√

Īcsmc
4 + urs − 1

)

,

(25)
and

Psmc =









κcn3, for Pmat < κcn3

Pmat , for κc (n3 + n4) ≥ Pmat ≥ κcn3

κc (n3 + n4) , for Pmat > κc (n3 + n4)

(26)

In a steady-state or homeostatic condition, urs is evolved to
a situation where Psmc = Pmat . Mathematically, three situations
can be discerned. Potentially, the urs value from a previous state
already allows κc (n3 + n4) ≥ Pmat ≥ κcn3 to be true in the new
steady-state, such that Psmc = Pmat already holds, as can be seen
from Equation (26). urs then does not evolve further in the new
steady-state. The previous urs may also cause Pmat to be smaller
than κcn3. In that case, urs evolves until Pmat = κcn3. At the final
steady-state, urs is then written as

urs =
κcn3

µsmc (n3 + n4)
+ 1−

√

Īcsmc
4 . (27)

Alternatively, if the previous urs causes Pmat to be greater than
κc (n3 + n4), urs evolves to

urs =
κc

µsmc
+ 1−

√

Īcsmc
4 . (28)

The steady-state configuration of the muscle filaments can
therefore be calculated at any level of deformation, quantified
by Ī4.

As defined by Hai and Murphy (1988) and Murtada et al.
(2010), the myofilaments switch between their states n1, n2, n3,
or n4 by the set of differential equations







ṅ1
ṅ2
ṅ3
ṅ4







=







−k1 k2 0 k7
k1 −

(

k2 + k3
)

k4 0

0 k3 −
(

k4 + k5
)

k6
0 0 k5 −

(

k6 + k7
)













n1
n2
n3
n4






,

(29)
where n1 and n2 represent the fractions of myofilaments in their
detached state, while n4 and n3 represent the fractions of attached
filaments, dephosphorylated, and phosphorylated, respectively.
As explained by Murtada et al. (2010), the rate parameters k1
and k6 are dependent on the calcium concentration [Ca2+] using
Michaelis-Menten kinetics as

k1 = k6 =
[CaCaM]2

[CaCaM]2 + K2
CaCaM

s−1, [CaCaM] = αCa[Ca
2+].

(30)
The second equation represents the formation of Calcium-
Calmodulin complex, where αCa is a positive constant. KCaCaM

in the first equation, inspired by Yang et al. (2003) is a CaCaM-
dependent phosphorylation rate parameter.

We assume that [Ca2+] represents the intracellular calcium
contraction. This concentration can be influenced by vasoactive
agents, such as the vasodilator NO and the vasoconstrictor PE.
The response to these agents is normalized with respect to the
maximal possible response by the Hill equation:

RNO =
[NO]

[NO]+ KNO
(31)

and

RPE =
[PE]

[PE]+ KPE
, (32)
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where [NO] and [PE] are the respective extracellular
concentrations of NO and PE. KNO and KPE determine the
inflection points of the Hill curves. PE causes an increase of the
calcium concentration, whereas NO decreases it. The current
intracellular calcium concentration is determined as

[Ca2+] = [Ca2+]hom + αPERPE − αNORNO, (33)

where [Ca2+]hom is the homeostatic intracellular calcium
concentration and αPE is the maximum extra calcium
concentration in response to PE. αNO is the maximal calcium
concentration that is removed in response to NO. Plugging
the resulting [Ca2+] back into Equation (30), a NO and PE
dependency of the rate parameters k1 and k6 is observed.

k2 and k5, that define the rate of dephosphorylation, are also
directly affected by the NO concentration since NO activates
myosin light chain phosphatase (Carvajal et al., 2000). We write

k2 = k5 = k2,hom + α2RNO, (34)

where k2,hom is the homeostatic rate of dephosphorylation and α2

is the maximal increase in response to NO.
NO is produced by a healthy endothelium in response to, for

example, the vasodilating agent acetylcholine (ACh) or wall shear
stress (WSS). Cohen et al. (1997) measured the NO concentration
in response to ACh. Their findings are approximated with
the equation

[NO]ec = 2.8 · 10−7 ·
log10

(

[ACh]/1M
)

+ 8.2

0.9+ log10
(

[ACh]/1M
)

+ 8.2
· 1M, (35)

where [NO]ec is the extracellular concentration of NO produced
by the endothelium, [ACh] is the extracellular concentration of
ACh and 1M refers to a concentration of one molar.

In summary, the whole dependency of the contractile state of
the contractile cells on the vasoactive agent PE, NO, and ACh is
schematically represented in Figure 3.

2.6. Finite Element Model
The material, damage and remodeling models explained above
are used for an in silico reproduction of the experiments carried
out by Geenens et al. (2016a). A finite element model is set up in
Abaqus/Standard 2017 to represent a mouse aorta. The diastolic
geometry of the aorta is represented as a half cylinder with inner
diameter 0.65 mm and thickness 0.04 mm (Bersi et al., 2016).
Due to symmetry, only a length of 0.04 mm of the cylinder
is modeled. The geometry consists of 12,852 full integration,
hexahedral, hybrid elements (C3D8H). The simulation goes
through a number of steps explained below, according to the
steps followed in the actual experiments. An overview is also
shown in Figure 4.

2.6.1. Homeostasis
In order to model the in vivo, mechanobiologically homeostatic
condition of the mouse aorta, the prestressing algorithm
explained in Mousavi and Avril (2017), Famaey et al. (2018), and
Maes et al. (2019) is used. This algorithm looks for a suitable
deposition stretch deformation gradient for elastin G

elas in order
to balance the diastolic in vivo reference geometry with the
intraluminal diastolic pressure p = 10 kPa, while the top and
bottom of the arterial section are fixed in axial direction. The
collagen deposition stretch gcoll and the axial elastin deposition
stretch gelasax are fixed as prior knowledge. This simulation is
shown in Figure 4 as step 1.

2.6.2. Clamping
As shown in step 2 of Figure 4, the clamping of the aorta is
simulated using two undeformable parallel plates, similarly to
Famaey et al. (2013) and as shown Figure 4. Self-contact of the
inner surface of the artery is defined, as well as contact between
the plates and the outer surface of the artery. The plates first move
toward each other until reaching the desired clamping force,
while no damage to the material is allowed. Two different clamp
forces are discerned: 0.6 or 1.27 N per 2 mm length of the clamp,
respectively named load 1 and load 2. In a few next steps, the
clamps are held at a constant distance and the damage model
explained in section 2.3 is activated. When the damage to the

FIGURE 3 | Schematic representation of the pathways presented from Equations (29) to (35). A green arrow with a plus sign represents a positive influence, a red

arrow with a minus sign represents a negative influence.
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endothelium and contractile SMC has stabilized, the damage is
held constant again, while the clamp plates are removed. During
the whole process the intraluminal pressure is fixed at mouse
aortic level p = 10 kPa.

2.6.3. Remodeling
After the releasing of the clamp, the remodeling algorithm
explained in section 2.4 is activated, while keeping the pressure
constant. This is shown as step 3 in Figure 4. The local collagen
and SMC densities are initialized based on the previously
calculated local damage. The initial value of φec is defined as
the percentage of intact endothelial layer in the entire considered
segment. Therefore, this is not a locally defined variable, and the
same value is attributed to every integration point.

Due to the initial loss of contractile SMC and collagen,
a dilatation of the artery is observed. This non-homeostatic
mechanical state drives remodeling. Every remodeling step
corresponds to 1 day of remodeling. During this process, all
nodes are constrained to only move in the radial direction in
order to avoid excessive shearing between the layers and failure
of the simulation.

2.6.4. Myograph Test
After 31 days of remodeling (cases R1 and R2 for loads 1 and
2), immediately after clamping (cases A1 and A2 for loads 1 and
2) or immediately after obtaining the homeostatic configuration
(cases A0 and R0), a myograph test is simulated, as in the mouse

experiments explained in section 2.1. For further reference, an
overview of these six cases is given in Table 1.

During the simulation, first, the axial boundary condition
is released, as well as the intraluminal pressure to simulated
excision, as shown by step 4 in Figure 4. Step 5 depicts the
simulation of a myograph experiment as explained in section 2.1
similarly to Famaey et al. (2013). An undeformable rod with a
radius of 0.15 mm in Abaqus is pushed into the arterty until
the approximate required preload of 0.0133 N per mm length of
the arterial segment is reached, assuming that the preload was
set at 0.02 N for a length of approximately 1.5 mm in the actual
experiments carried out by Geenens et al. (2016a). The rod is then
fixed at this position, while 10−6 M PE, 10−5 M ACh, or 10−6 M
NO is virtually added through field variables. A contact definition
is prescribed between the rod and the inner surface of the artery.
Pre-constriction due to PE and relaxation due to ACh or NO can
then be observed according to the smooth muscle contraction
model described in section 2.5.

TABLE 1 | Clarification of the codes of the six cases for which a myograph

experiment is modeled: A0, R0, A1, R1, A2, and R2.

Immediately after clamping After 1 month healing

Clamp load of 0.0 N A0 R0

Clamp load of 0.6 N A1 R1

Clamp load of 1.27 N A2 R2

FIGURE 4 | Overview of all simulation steps. Step 1: obtaining homeostatic configuration, step 2: clamping the artery while allowing damage to the constituents, step

3: remodeling of the tissue after damage, step 4: releasing intraluminal pressure and axial tension, step 5: simulation of a myograph experiment. Steps 4 and 5 are

done after step 1 (cases A0 and R0), after step 2 (cases A1 and A2) and after step 3 (cases R1 and R2).
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2.6.5. Remodeling Beyond 31 Days
In order to further examine the behavior of the remodeling
model, the finite element analysis of section 2.6.3 was extended
to a remodeling period of 91 days. The effect of slight adaptations
to the model was investigated as well. The first adaptation is the
assumption that synthetic SMCs do not redifferentiate into their
contractile phenotype, such that Equations (17) and (19) only
hold when 1λ is greater than or equal to zero. In the opposite
case, only the inflammation level influences the SMC densities:

dρcsmc

dt
= 0

dρssmc

dt
= Ksmc

ic φicρssmc.

(36)

The second adaptation is the assumption that collagen
production is solely dependent on the amount of synthetic
SMCs, while their production rate is not directly affected by the
mechanical environment. Equation (15) then simplifies to

Ŵ (τ) =
ρssmc (τ )

ρssmc
0

. (37)

2.7. Model Parameters
An overview of all used parameter values is given in Tables 2,
3. A code number from 1 to 5 is attributed to every parameter,
explaining the way its value was determined. We either used
an exact value from the specified reference (1), or used a
representative value from the reference, when for example a
range was given based on the results of tests on multiple samples
(2). Some parameter values are estimated (5), or the parameter is
manually fitted to the experimental myograph data (see section
2.1), either with an idea of the order of magnitude from literature
(4), or without (3).

3. RESULTS

3.1. Damage Due to Clamping
Figure 5 shows the distribution of β (see Equation 10), defining
the local loss of contractile SMC due to clamping. The highest
damage is concentrated at the inner side of the wall at the edge of
the clamp.

Table 4 gives an overview of the relative collagen, contractile
SMC, and endothelium content acutely after clamping at the
three different clamp loads (cases A0, A1, and A2). From this
table it can be concluded that the difference between clamping
at 0.6 and 1.27 N is small in terms of acute damage. There is
approximately 70% loss of endothelium, 9% collagen loss, and
28% contractile SMC loss in both cases. The small difference
in damage is due to a minimal required clamp displacement to
increase the reaction force from 0.6 to 1.27 N, yielding only small
stretch differences.

3.2. Remodeling
Table 4 also shows the situation after the simulated in
vivo healing period of 31 days (cases R0, R1, and R2)
using the presented remodeling model, taking into account

TABLE 2 | Overview of parameter values for constituent densities, passive and

active material properties, pre-stretch values, damage parameters and remodeling

parameters.

Parameter Value References

INITIAL DENSITIES

ρelas
0 0.35 Bersi et al., 2016 (2)

ρcoll
0 0.30 Bersi et al., 2016 (2)

ρcsmc
0 0.30 Bersi et al., 2016 (2)

ρssmc
0 0.05 Bersi et al., 2016 (2)

PASSIVE MATERIAL PARAMETERS

C10 0.04 MPa Bersi et al., 2016 (2)

k1 1.0 MPa Bersi et al., 2016 (2)

k2 1.5 Bersi et al., 2016 (2)

κ 0.1 (5)

α π/8 rad (5)

SMC PARAMETERS

µcsmc 0.42 MPa Murtada et al., 2010 (4)

κc 1.55 MPa Murtada et al., 2010 (4)

PRESTRETCHES

gax 1.67 Bersi et al., 2016 (1)

gc 1.1 Bellini et al., 2014 (2)

DAMAGE PARAMETERS

mcsmc 1.0 (3)

mcoll 20.0 (3)

mec 0.38 (3)

REMODELING PARAMETERS

Kcoll
qh log (2.0) /100 day−1 (3)

Kcoll
m 26.64 (3)

Ksmc
pl 4.0 day−1 (3)

Kec 0.08 day−1 (3)

Ksmc
dd 1.6 day−1 (3)

Ksmc
ic 0.01 day−1 (3)

(1) The exact value from the reference is used. (2) A representative value from the reference
is used. (3) The parameter is manually fitted. (4) The parameter is manually fitted in the
same order of magnitude as the reference. (5) The parameter is estimated.

TABLE 3 | Overview of parameter values for the SMC contractility model.

Parameter Value References

SMC CONTRACTILITY PARAMETERS

k3 0.4 s−1 Hai and Murphy, 1988 (1)

k4 0.1 s−1 Hai and Murphy, 1988 (1)

k7 0.01 s−1 Hai and Murphy, 1988 (1)

η 60.0 MPa·s Murtada et al., 2010 (1)

KNO 8.0e-8 M (3)

KPE 2.0e-7 M (3)

[Ca2+]hom 2.7e-7 M Utz et al., 1999 (2)

αNO 1.4e-7 M (3)

αPE 1.28e-7 M (3)

αCa 0.24 (3)

KCaCaM 1.78e-7 M Murtada et al., 2010 (1)

k2,hom 0.5 s−1 Hai and Murphy, 1988 (1)

α2 0.1 s−1 (3)

(1) The exact value from the reference is used. (2) A representative value from the reference
is used. (3) The parameter is manually fitted.
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FIGURE 5 | Distribution of β during clamping at a load level of 1.27 N, causing contractile SMC and endothelial damage.

TABLE 4 | The fraction of overall elastin, collagen, contractile SMC (cSMC),

synthetic SMC (sSMC), and endothelium content with respect to their normal

content.

Case A0 R0 A1 R1 A2 R2

Elastin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Collagen 1.0000 1.0000 0.9076 1.6123 0.9071 1.6157

cSMC 1.0000 1.0000 0.7170 0.6539 0.7190 0.6575

sSMC 1.0000 1.0000 1.0000 1.7225 1.0000 1.7253

Endothelium 1.0000 1.0000 0.3113 0.8463 0.2719 0.8184

Inflammation 0.0000 0.0000 0.6887 0.1537 0.7281 0.1816

Note that the level of inflammation is zero in the normal artery wall state, and has a maximal
value of 1. Cases A0, A1, and A2 refer to the acute situation after clamping at three load
levels (0.0, 0.6, and 1.27 N). R0, R1, and R2 correspond to the respective cases after 31
healing days.

cell differentiation, ECM production by synthetic cells and
inflammation after clamping injury.

Figure 6 shows the evolution of the total content of each
constituent relative to its normal amount over a remodeling time
of 31 days after damage due to clamping at 1.27N. In other words,
it shows the evolution from case A2 to case R2. Due to the similar
level of damage at cases A1 and A2, as is clear from Table 4,
the evolution from cases A1 to R1 resembles the one depicted in
this figure.

There is an initial dedifferentiation of the cells from their
contractile to synthetic phenotype due to an initial overstretching
of the wall. Along, with the high initial inflammation level, this
also causes the synthetic cells to proliferate, such that the collagen
content increases. At about 14 days, the initial stiffness loss is
compensated, and the collagen, synthetic, and contractile cell
contents slowly return to their normal levels.

3.3. Myograph Test
Figure 7 shows the normalized reaction force in the simulated
rod while it moves toward the pre-load position before the
addition of vasoactive substances. It indicates the overall stiffness

of eachmaterial for each case. There was no discernible difference
between cases A1 and A2 on the one hand and cases R1 and R2
on the other hand, as can be observed in Figure 7. Furthermore,
the simulations do not show differences between cases
A0 and R0.

Figure 8 gives an overview of the results of the simulated
myograph experiments upon the addition of vasoactive
substances, compared to the results obtained on mouse arteries,
as explained in section 2.1. The figure shows how the isometric
force changes upon addition of PE, NO and ACh. PE drives an
increased phosphorylation rate k1 = k6 of the myofilaments
through an increased intracellular calcium level, inducing a
vasoconstrictive effect. NO has the reverse effect on calcium
and it also increases the dephosphorylation rate k2 = k5. ACh
does not act directly on the contractile SMC, but triggers the
endothelium to produce NO. Therefore, the vasodilating effect
of ACh is smaller than that of NO.

3.4. Remodeling Beyond 31 Days
The evolution of relative collagen, synthetic cells, and contractile
cells density over a remodeling period of 91 days is shown in
Figure 9, for the original remodeling model (A) and two adapted
models (B and C) as explained in section 2.6.5. Beyond 1 month,
unnatural periodic behavior emerges when using the original
model, caused by the initial extra loss of contractile SMC upon
overstretching, causing an extra stiffness loss, and a delay in
the increased collagen production through the proliferation of
synthetic cells.

When synthetic cells do not redifferentiate into the contractile
phenotype, a more rapid stabilization of the remodeling is
observed (Figure 9B). However, the loss of contractile cells due
to clamping overload will never be compensated in this case.

The results of the last variant of the remodeling model are
shown in Figure 9C and show an increased oscillation of the
synthetic cell density. Collagen production is not dependent on
a mechanical stimulus anymore, such that a bigger increase in
synthetic cell count is required to restore the collagen density, and
along with it, restore the homeostatic mechanical environment.
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FIGURE 6 | Thirty-one days evolution of the relative content of all considered constituents in the arterial wall during healing after damage due to clamping at

load level 2.

FIGURE 7 | Normalized force vs. rod displacement for the six cases. Three

different zones are discerned. From 0 to approximately 0.35 mm of

displacement, the rod does not touch the sample yet, such that the force is

zero. From approximately 0.35 to 0.44 mm, the cylindrical shape of the sample

is straightened out. Finally, after approximately 0.44 mm, the sample is further

stretched.

4. DISCUSSION

The aim of this study is to introduce a computational model
predicting healing in arterial tissues subjected to mechanical
overloading and damage, for instance after clamping. Three
models are introduced for the in silico simulation of the
experiments carried out by Geenens et al. (2016a): a damage
model for clamping, a remodeling model to predict healing and a
contractility model to simulate myograph experiments.

The contractility model is original as it is the first to take
the vasoactive substances PE, NO, and ACh into account.
Their respective influence on the rate of phosphorylation and
dephosphorylation of myosin light chain leads to a reliable
response in the simulation of a myograph experiment, as shown
in Figure 8. The model is based on signaling pathways on the
cellular level, dependent as well as independent on intracellullar
calcium, as shown in Figure 3. The approach is different from
the recent model presented by Murtada et al. (2016), in which
the smooth muscle tone prediction was based on a structurally
motivated model of the contractile unit. In their implementation,
the response to an external factor, such as a change in loading
or in the concentration of a vasoactive agent, is modeled as an
evolving scaling factor for the myosin filament length. Before
us, the continuum mechanics-based model of Murtada et al.
(2017) was the only one that accounted for the dependency of
the phophorylation rates on the diffusion of the vasoconstrictor
potassium chloride (KCl) from the adventitia, although diffusion
itself is neglected in the present study.

The remodeling model includes novel aspects of cell
differentiation upon mechanical stimulus and the production
of extracellular matrix by synthetic SMCs. This production
is also dependent on a certain level of tissue inflammation,
as for example done by Latorre and Humphrey (2018b).
In the present approach however, the inflammation level is
directly related to the damage and healing of the endothelium.
Inflammation increases the synthetic cell proliferation, thus
indirectly enhancing collagen production (Davis et al., 2003), as
summarized in Figure 2. Hence, our remodeling model includes
all the relevant biological processes and pathways, in contrast
to more phenomenological models, where collagen turnover is
directly related to a mechanical stimulus, such as in Baek et al.
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FIGURE 8 | Overview of the results of the simulated (red squares) and experimental (boxplot) myograph results. (A) Representative scheme of the isometric force

measured in the simulated myograph upon addition of vasoactive substances. (B) Force increase due to PE addition. (C,D) Subsequent force decrease after addition

of NO and ACh, respectively. All forces are normalized with the axial length of the sample. The boxplots show the median values, the 25th and 75th percentiles, the

total extent of the measurements without outliers (whiskers) and the outliers (crosses).

FIGURE 9 | Evolution of the relative density of collagen, synthetic SMC, and contractile SMC during 91 days of healing for the original remodeling model (A) and two

adapted versions (B,C). (A) Original model as described in section 2.4. (B) The mechanical trigger that regulates the number of synthetic cells can only act by

increasing the number of cells, and is otherwise deactivated. (C) The production of collagen is only related to the number of synthetic cells, not to the mechanical

environment.
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(2006), Alberto Figueroa et al. (2009), Valentín et al. (2013),
Cyron et al. (2016), Braeu et al. (2017), Famaey et al. (2018), and
Mousavi et al. (2019).

This more detailed description of SMC behavior in vascular
healing and remodeling comes at an increased computational
cost. Moreover, Figure 9 shows stability issues of the model in
the form of unnatural temporal oscillations of the densities at
longer time scales. A solution could be to neglect the transient
effects and only consider the steady state, such as done by
Latorre and Humphrey (2018a). Alternatively, we can include
damping in the model to obtain a critical or overdamped
dynamic system in order to avoid unnatural periodic behavior.
From a mathematical point of view, the main limitation is the
high number of parameters, as summarized in Tables 2, 3. Some
parameters are determined based on previous works or based
on their physical meaning, others were set in order to match
experimental findings, mainly based on the tissue properties at
0 and 31 days of healing, which were however not sufficient to
uniquely determine the parameter values.

Unfortunately, the currently available experimental data is not
sufficient to proof its pilot application. It is likely that other
parameter combinations would amount to the same results as
shown in Figure 8. Nevertheless, the phenomenological nature
of this new model is strongly reduced as compared to state-of-
the-art models. A high number of parameters can be qualified as
physics-based, such that their values can be obtained through the
design of dedicated biochemical experimental set-ups. This will
allow these parameter values to be measured with more certainty,
or with smaller confidence intervals, capturing the individual
differences and differences between tissue types, allowing a better
focus of the parameter fitting process.

Constrained mixture models are generally computationally
expensive due to their high memory use, inversely related
to the length of the time step. To ensure the feasibility, we
chose to use a time step of 1 day, where a time convergence
study showed errors of <5% with respect to the situation with
a time step of half a day. Also in an attempt to limit the
computational cost, only a very short segment of artery is
modeled and the defined boundary conditions cause a plane
strain situation. Considering a longer segment, possibly along
with a more realistic patient-specific geometry, would improve
the reliability of the model, mainly near the edges of the
clamp and near the edges of the excised sample during the
myograph simulation. Using this very short artery segment
allows to use a non-localized variable φec that represents the
overall intactness of the endothelium in the segment. Localizing
the endothelial damage would greatly affect the complexity of
the model, since diffusion of inflammatory agents and NO
would need to be integrated. Similarly, taking into account
the migration of SMC as an important mechanism in vascular
remodeling, would increase the complexity as the remodeling
in a certain integration point would be affected, not only by
all variables defined in that specific location, but also by its
surroundings. In a similar way, one could also consider re-
endothelialization as a non-localized process of proliferation
and migration of nearby endothelial cells. Including all these

processes would increase the biofidelity of the model, although
it is unclear to what extent, given the already many unknowns in
the present version.

Furthermore, to further improve the remodeling model,
an improved understanding of biological and biochemical
phenomena is required. To this day, some unknowns,
uncertainties and controversies remain. For example, it is
unclear to what kind of mechanical stimulus cells react. There
are indications that SMCs and fibroblasts have a preferred
structural stiffness of the extracellular matrix and react based on
deviations from this ideal value (Humphrey, 2008). On the other
hand, certain signaling pathways are thought to be triggered by
so-called baroreceptors, sensitive to mechanical stretch (Lacolley
et al., 2017). Multiple studies have investigated the effects of cyclic
straining of arterial tissue, as reviewed by Mantella et al. (2015).
Some apparently contradictory results emerge. For example,
Chang et al. (2003) observed an increased SMC proliferation
under in vitro cyclic strain, while Morrow et al. (2005) and Guha
et al. (2011) observed a decreased proliferation, potentially due
to a different experimental design that mimics in vivo loading
conditions better (Mantella et al., 2015). The widely accepted
theory that precursor cells differentiate into synthetic cells and
subsequently become fully differentiated contractile cells has
been challenged recently as well, given that both phenotypes can
be present in healthy tissues while maintaining vascular tone and
tissue architecture (Rensen et al., 2007).

In summary, the presented models provide a detailed
description of vascular SMC behavior under conditions of
damage as well as at different concentrations of vasoactive agents.
This allows us to study tissue healing and the effects of, for
example, vasoactive or anti-proliferative drugs. However, there
are still many unknowns regarding these phenomena, which
is why more detailed and carefully designed experiments are
needed in order to fully capture SMC behavior in all its aspects.

To conclude, in this study, a damage model, as well as
a remodeling and cell contractility model were introduced,
taking into account endothelial damage and healing, tissue
inflammation, mechanosensing, extracellular matrix production
and phenotype switching of SMCs. Using these models, in vivo
clamping tests on mice aortas and subsequent healing and
myograph tests, were simulated through finite element modeling.
The results of the simulated myograph tests showed great
resemblance to the results of the actual experiments. This detailed
mechanobiological description of vascular SMC behavior can
be clinically relevant to enable in silico investigations of
drug effects. However, the results show that there is still a
need for an improved biological and biochemical fundamental
understanding to reliably capture vascular SMCmechanobiology
at all the relevant spatio-temporal scales.
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The orientation of vascular cells can greatly influence the in vivo mechanical properties
and functionality of soft vascular tissues. How cell orientation mediates the growth
response of cells is of critical importance in understanding the response of soft tissues
to mechanical stimuli or injury. To date, considerable evidence has shown that cells align
with structural cues such as collagen fibers. However, in the presence of uniaxial cyclic
strain on unstructured substrates, cells generally align themselves perpendicularly to the
mechanical stimulus, such as strain, a phenomenon known as “strain avoidance.” The
cellular response to this interplay between structural cues and a mechanical stimulus
is poorly understood. A recent in vitro experimental study in our lab has investigated
both the individual and collective response of rat aortic smooth muscle cells (RASMC)
to structural (collagenous aligned constructs) and mechanical (cyclic strain) cues. In this
study, a 2D agent-based model (ABM) is developed to simulate the collective response
of RASMC to varying amplitudes of cyclic strain (0–10%, 2–8%, 4–6%) when seeded on
unstructured (PDMS) and structured (decellularized collagenous tissue) constructs. An
ABM is presented that is fit to the experimental outcomes in terms of cellular alignment
and cell growth on PDMS substrates, under cyclic strain amplitudes of (4–6%, 2–8%, 0–
10%) at 24 and 72 h timepoints. Furthermore, the ABM can predict RASMC alignment
and change in cell number on a structured construct at a cyclic strain amplitude of
0–10% after 10 days. The ABM suggests that strain avoidance behavior observed in
cells is dominated by selective cell proliferation and apoptosis at these early time points,
as opposed to cell re-orientation, i.e., cells perpendicular to the strain increase their
rate of proliferation, whilst the rate of apoptosis simultaneously increases in cells parallel
to the strain direction. The development of in-silico modeling platforms, such as that
presented here, allow for further understanding of the response of cells to changes
in their mechanical environment. Such models offer an efficient and robust means to
design and optimize the compliance and topological structure of implantable devices
and could be used to aid the design of next-generation vascular grafts and stents.

Keywords: agent-based model, mechanobiology, collagen, vascular smooth muscle cells, stretch-avoidance,
reorientation
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INTRODUCTION

Cardiovascular disease is the leading cause of death in the
US and is attributed to one in every three deaths (Benjamin
et al., 2017). Stenting is the most common treatment for
stenosed arteries, with over one million procedures performed
annually in the US alone (Benjamin et al., 2019). However in-
stent restenosis occurs in 5–10% of cases (Byrne et al., 2015).
Interventions such as stenting can change the arrangement of
collagen fibers within the vessel. A study carried out on sheep
found that after implanting self-expanding heart valve stents,
regional differences were found in the collagen organization
with collagen fibers near the strut aligning in the direction of
the strut and random collagen orientation observed between
struts (Ghazanfari et al., 2016). These changes in the collagen
alignment alter the cell environment and the structural cues
experienced by the cells. Previous research has demonstrated
how mechanical and structural cues regulate the alignment of
cells and collagen in vitro (Dickinson et al., 1994; Lee et al.,
2008; Melvin et al., 2011; Rouillard and Holmes, 2012), and there
is a need to better understand how cells integrate these cues
as they remodel the extracellular matrix in biological processes
like in-stent restenosis (Nolan and Lally, 2018), vascular graft
repopulation (Zahedmanesh and Lally, 2012), and wound healing
(Rouillard and Holmes, 2012). To date, research has shown that
the orientation of cells greatly influences the in vivo mechanical
properties and functionality of soft tissues (Ristori et al., 2018).
In particular, cells excrete collagen along their primary direction
(Sawhney and Howard, 2002; Wang et al., 2003; Matsugaki
et al., 2013). As collagen is the main load-bearing component
(Ristori et al., 2018), an understanding of cellular orientation
is of huge importance in understanding the response of soft
tissues to mechanical stimuli or injury. Previous experimental
studies have demonstrated that cells align to topographical
cues provided by collagen (Guido and Tranquillo, 1993) with
numerous studies demonstrating that cells seeded in differentially
constrained collagenous constructs align in the direction of
the constraints (Huang et al., 1993; Thomopoulos et al., 2005;
Henshaw et al., 2006; Foolen et al., 2012, 2018; Ristori et al.,
2018). However, in the presence of uniaxial or cyclic strain, cells
prefer to align themselves perpendicularly to the mechanical
stimulus, known as “strain avoidance” (Foolen et al., 2012, 2014;
de Jonge et al., 2013). Further to this, the ability of cells to
reorient in response to mechanical stimuli is dependent on
the density of the collagen fibers (Foolen et al., 2012, 2014).
This interplay between collagen fibers and cells is not yet
fully understood with further research required (Foolen et al.,
2012; Ristori et al., 2018). A study by Rouillard and Holmes
(Rouillard and Holmes, 2012) developed an agent-based model
(ABM) to examine healing in infarcts that included structural,
mechanical and chemical cues. This study, however, did not
include strain avoidance demonstrated by cells under cyclic
loading conditions.

Recent experimental studies in our lab examined the strain
response of Rat Aortic Smooth Muscle Cells (RASMC) to
varying amplitudes of cyclic strain on both unstructured
dimethylpolysiloxane (PDMS) (Figure 1) substrates (Mathieu
et al., 2020) and on decellularized collagenous tissue substrates

(Figure 2) which presented topographical cues to the cells
(Mathieu, 2020). It was found that RASMC seeded on PDMS
exhibited a strain avoidance response that increased as the
strain amplitude increased (additional experimental data can
be found in the Supplementary Material). It was also found
that RASMC strain avoid to a greater degree after 72 h.
Furthermore, a strain-induced decrease in cell number was
observed for the RASMC (Mathieu et al., 2020). When seeded
on decellularized collagenous tissue substrates RASMC aligned
with the topographical cues in two of the four samples while
two samples exhibited strain avoidance behavior. The cells that
remained aligned parallel to the strain direction showed a greatly
reduced cell number in compared to the samples in which
cells reoriented perpendicular to the strain direction. Figure 2
demonstrates that cells aligned with the direction of collagen
fibers irrespective of the direction of strain (Mathieu, 2020).

The objective of this study is to investigate the combined
response of cells to both structural and mechanical cues using
a numerical framework and verify this framework using this
aforementioned experimental data. Combining these agent-based
modeling techniques with the existing experimental data allows
us to generate a greater understanding of cellular behavior. This
work aims to develop a modeling framework that can be used to
investigate this response in a manner which cannot be assessed
in vitro/in vivo.

MATERIALS AND METHODS

A 2D ABM was developed in MATLAB (R2018b, MathWorks)
to simulate the collective response of RASMC to varying
amplitudes of cyclic strain (0–10%, 2–8%, 4–6%) when seeded
on an unstructured (PDMS) and a structured (decellularized
collagenous tissue) substrate. It is known that smooth muscle
cells are spindle-like in shape (Zhou et al., 2018). However, in
this model, each individual vascular smooth muscle cell (VSMC)
was represented as a circle agent with a radius, Rc and the cell
direction is defined by a vector with angle, θcell,t . In vitro and
in vivo cells can move and change their shape to accommodate
cells around them in highly dense populations. Cells in this model
will only proliferate if there is space to do so. It was found that
using a cell radius of 12.96 µm (Zahedmanesh and Lally, 2012;
Zahedmanesh et al., 2014) lead to artificial over confluence at
high cell densities. Therefore, to accurately represent the cell
turnover at higher cell densities a value of 0.3888 µm was
chosen as Rc. Further information on this can be found in the
Supplementary Material.

VSMC agents were seeded randomly as a monolayer on 2D
constructs representing PDMS and decellularized collagenous
tissue based on (Mathieu et al., 2020) and (Mathieu, 2020) with
seeding densities of 5.5× 103 cells/cm2 and 1.33× 104 cells/cm2

on each of the respective constructs. Each VSMC agent was then
randomly assigned an angle between π

2 and−π
2 radians.

Cell Reorientation Algorithm
An external cyclic strain was applied divided into its x, y and shear
components. The mean strain, ε, and the strain amplitude, 4ε,
were calculated using a Mohr’s circle approach. The maximum
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FIGURE 1 | Images of RASMC cultured on PDMS after 24 h (A,C) and 72 h (B,D) of no strain (A,B) or 0–10% 1 Hz cyclic tensile strain (C,D). Blue—DAPI nuclei,
Red—Phalloidin f-actin (Mathieu, 2020).

(εmax) and minimum (εmin) principal strains and the direction of
the maximum principal strain (θp) were calculated from both4ε

and ε respectively, using Mohr’s circle. The maximum principal
strain amplitude (εmax) was assumed to be the strain amplitude
experienced by the cell while the direction of principal strain is
represented by θp. Based on previous studies (Zhu et al., 2011;
Mathieu et al., 2020) demonstrating strain avoidance the cell
strain avoid direction (θcsa) was calculated as:

θcsa = θp +
π

2

Figure 3 demonstrates how the model predicts cell reorientation
over time in the absence of apoptosis or proliferation. It must
be noted that as apoptosis and proliferation are not present this
is not representative of a physiological phenomenon and cannot
be calibrated to a group of cells. Therefore, ticks are used as a
phenological representation of time in the model in lieu of a unit
of time.

Structural Cues (Fibers)
The average direction of the bundle of fibers (θfb) was input into
the model as parallel or perpendicular to the strain direction.
A fiber dispersion term (κ) was also assigned to describe the
dispersity of fibers on the 2D patch of tissue. The 2D patch was
assigned a fiber pattern based on the average fiber direction.

A random von Mises distribution was created with a mean
direction, θfb and the concentration parameter κ, using the
circular statistics toolbox function circ_vmrnd (Berens, 2009).
Using Delaunay triangulation, the grid was split into triangles
with a number, n of vertices. A corresponding number, n of
values were pulled from the von Mises distribution and each of
the values were assigned to each vertex of the triangles. Shape
functions were then used to interpolate fiber angle at given points
within the triangles to give a smooth continuous distribution
of fibers with a known mean angle and distribution (Figure 4),
similar to distributions seen in biological tissue (Figure 5).

Combined Mechanical and Structural
Response
Once the fiber directions and the cell strain avoidance angles were
calculated the combined response of cells to both mechanical and
structural cues was calculated using:

θcell,final = θf +
(θcsa − θf )

1+M10(φf −φThres)

where θcell,final is the angle the cell desires to achieve or final cell
angle, θf is the angle of the closest corresponding fiber to the
cell, φf , and is a linear (0–1) representation of the density of the
fibers, 1 being where the fibers dominate the cell direction and
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FIGURE 2 | Representative images of RASMC on decellularized porcine carotid artery samples (A–D) left unstrained, (A,C) or strained parallel (B) or perpendicular
(D) to the direction of collagen fibers. Blue—Nuclei, Red—F-actin (Mathieu, 2020).

0 meaning strain is dominant and there are no fibers present.
The φThres is the point at which fibers begin to influence cell
reorientation (Figure 6) while M controls the slope of the curve.
Figure 7 demonstrates cellular response to fibers alone in the
absence of strain.

It was assumed the speed at which the cells reorient in
response to structural and mechanical cues differ. This was
represented in the model using the ratio of φf to the φThres as
an indicator for the rate at which a cell reorients whereby:
For φf < φThres:

δθcell = Zeff Krot,c

For φf > φThres:

δθcell =
∣∣sin(θf − θcell,t)

∣∣Krot,f

where θcell,t is the current cell angle in radians and Krot,c and
Krot,f are variables that are calibrated to each individual cell type
that dictate the rate at which cells reorient for a given time point.

Zeff is the effective stimulus and refers to the amount of stimulus
experienced by a given cell. This can be calculated using:

Zeff =
εeff − εThres

εMax − εThres

whereby, εMax is the maximum strain that will influence
reorientation. Above this, a cell is already reorienting as quick
as possible. εThres is the threshold of strain below which the
strain is too low to influence the cell reorientation. εeff is the
effective strain i.e., the strain experienced by the cell based on its
orientation and can be described by:

εeff = 1εx′cos αcp

αcp = θcell,t − θp

A direction (Dirc) of reorientation was assigned to each
individual cell to ensure the cell took the shortest path from its
current orientation to its desired orientation. Dirc was assigned
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FIGURE 3 | Quiver plot demonstrating the change in orientation of cells in response to 0–10% strain predicted by the model (pre-calibration to experimental data)
without the inclusion of apoptosis or proliferation.

FIGURE 4 | Flow chart demonstrating workflow used to create a fiber distribution.

based on the value of the angle βdc, the difference in the current
cell angle (θcell,t) and the desired cell angle (θcell,final) whereby:

βdc = θcell,final − θcell,t

and if:

βdc ≥ 0 Dirc = 1

βdc < 0 Dirc = −1

The new cell angle was calculated using:

θcell,t+1 = θcell,t + Dircδθcell

Upon developing an algorithm to predict cell reorientation based
on mechanical and structural cues. The model was expanded

to include apoptosis and proliferation of cells based on the
mechanical stimulus experienced by individual cells.

Apoptosis
As the cells were cultured in vitro it was assumed that they had
a synthetic phenotype. The apoptosis rate was dictated by the
value of cyclic strain experienced by the cells (Colombo, 2009).
The probability of apoptosis was defined as a function of cyclic
strain (Colombo, 2009; Zahedmanesh and Lally, 2012):

PAP = Aapopεcyc + Bapop

where PAP is the percentage probability of apoptosis and Aapop,
and Bapop were calibrated based on the experimental results.
Based on the methods outlined in Zahedmanesh and Lally (2012)
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FIGURE 5 | (A) Collagenous arterial tissue, (B) an image tracking the fiber orientation in the tissue created using MatFiber (Fomovsky and Holmes, 2010), (C) a
representative distribution created by the model.

FIGURE 6 | Graphical representation of the influence of φThres on the desired cell angle, assuming both the strain and fiber direction are at 0◦, when (A) φThres is 0.3
and (B) φThres is 0.1.

a logical statement was defined within each cell using a random
number generator. If the statement was found to be true, the cell
was removed from the simulation.

Proliferation
Proliferation was modeled based on the doubling time for each
individual cell in line with approaches previously used in Peirce
et al. (2004) and Zahedmanesh and Lally (2012). The doubling

time of each cell was defined for each individual cell based on
a function of cyclic strain based on an experimental study by
Colombo (Colombo, 2009) and the modeling framework present
in Zahedmanesh and Lally (2012), described by:

Td = Aprolif ε
2
cyc + Bprolif εcyc + Cprolif

where Td is the doubling time of a given cell and Aprolif , Bprolif
and Cprolif are constants calibrated to fit cellular alignment and
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FIGURE 7 | Quiver plot demonstrating the change in orientation of cells, in response to the influence of fibers alone, predicted by the model (pre-calibration to
experimental data) without the inclusion of apoptosis or proliferation.

cell growth on PDMS substrates, under cyclic strain amplitudes
of (4–6%, 2–8%, 0–10%) at 24 and 72 h timepoints.

Using methods developed in Nolan and Lally (2018) a
cumulative Gaussian distribution function is then introduced to
determine the probability of a cell to proliferate based on the cell
age and the doubling time of a given cell calculated by:

PDT(tage) =

1+ erf

 tage − Td√
2σ2

prolif


where tage is the age of the VSMC agent, Td is the doubling time of
a cell with a standard deviation of σprolif . This is a sigmoid shaped
probability function where at age zero there is zero probability
of cell proliferation and as the age of the cell increases so does
its probability of proliferating until it is ultimately equal to 1. At
the beginning of the model, each cell was randomly assigned an
age between 0 and Cprolif σprolif . If it is determined that a cell
should proliferate, a daughter cell of the same size may be created
tangentially to the parent cell. The parent cell searches a full 360◦
range at 1◦ increment and checks whether a daughter cell may
be created at that location without overlapping an existing cell.
Once a list of angles where the daughter cell can successfully
be produced without overlap is determined, a random number
generator is used to pick a single location from the list where the
daughter cell is ultimately created. The age of both the parent and
daughter cells are set to 0. A more in-depth description of how the
ABM determines the presence of surrounding cells can be found
in Nolan and Lally (2018). Figure 8 demonstrates a flowchart
further outlining the algorithm used.

Parameter Calibration and Investigation
Once the model was set up it was used to understand the influence
of the various parameters on the cellular response and compare
the results of the model to the experimental data. The unknown
parameters are listed in Table 5. The parameters were calibrated
to experimental data examining the response to a) a control
where no strain or structure was present and b) cyclic strain

amplitudes of (4–6%, 2–8%, 0–10%). These parameters were then
used to investigate the combination of cyclic strain and structure
and compare the results to the experimental data of cells on
parallel and perpendicularly aligned structured construct at a
cyclic strain amplitude of 0–10% after 10 days.

Calibration to Response in the Absence of External
Stimulus
Firstly, the influence of Bapop, Cprolif , and σprolif on cell
behavior was investigated. These parameters investigated the
response of cells in the absence of external stimuli. The
parameters were compared and calibrated to the change in
cell density of unstrained cells cultured on PDMS for 3 days
(Table 1). As the strain was zero during this time the remaining
unknown parameters were not involved in calculating the cell
density at day 3.

Based on (Endlich et al., 2000) where the doubling time of rat
aortic VSMCs was found to be 71 ± 9 h, Cprolif and σprolif were
set as 71 and 9, respectively. Once Cprolif and σprolif were assigned
in this way, Bapop was calibrated using an iterative approach
changing the value in increments of 0.01 and it was found that
only a value of 1.64 could predict all three cell densities.

Calibration in Response to Cyclic Strain
Once the values Bapop, Cprolif and σprolif were calibrated, the
response of cells to cyclic strain when seeded on PDMS was
modeled. The parameters relating to the influence of cyclic strain
are outlined in Table 2.

An initial guess of Aprolif , Bprolif , Aapop, εMax, and εThres
that was found to accurately predict the fold change observed
experimentally at 0–10% strain at 24 and 72 h was used to
investigate the influence of krot,c (Figure 9).

Further investigation examining how the change of
krot,c influenced the fold change of the cells at 24 and 72 h
time points can be found in Table 3. It was found a krot,c of 0.001
was most suitable in predicting cell behavior.

The parameters εMax and εThres were investigated examining
the strain alone and it was found that a value of εMax of 0.4 and
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FIGURE 8 | Flowchart describing the implemented algorithm.

εThres of 0.0 to the experimental data, details on these parameters
are further expanded upon in the discussion. Once the influence
of krot,c was understood and εMax and εThres were defined the role
of apoptosis and proliferation in response to cyclic strain was
examined. The model was used to investigate all combinations of
Aprolif from 0 to 3,500 in increments of 500, Bprolif from -100 to
500 in increments of 50 and Aapop from 0 to 20 in increments
of 1 to predict fold change in cell number and compare the
predicted values to the experimentally obtained fold change for
the strained cells cultured on PDMS. Values of Aprolif 3, 500,
Bprolif 450 and Aapop 1 gave the best fit to the experimental data
of cellular alignment and cell growth on PDMS substrates, under

cyclic strain amplitudes of (4–6%, 2–8%, 0–10%) at 24 and 72 h
timepoints. Table 4 shows the model predictions for fold change
in cell number vs. the values observed experimentally.

Cellular Response to Structure
In this model, it was not assumed that cells responded at the same
rate to structure and strain. Therefore, the response rate of cells
to structure without the influence of strain was investigated. The
model is designed to create a new structure each time it runs
based on an input of an average fiber direction using random
von Mises distribution. This is done to account for variability in
different pieces of structured decellularized tissue. However, to
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TABLE 1 | Change in cell density at day 3 (unstrained) (Mathieu, 2020; Mathieu
et al., 2020).

Experimental cell density
day 0 (cell/mm2)

Experimental day 3
(unstrained)

Model prediction day
3 (unstrained)

305.21 ± 204.64 682.81 ± 166.21 516.86

798.74 ± 379.51 1375.57 ± 810.3 1339.00

457.92 ± 70.875 746.11 ± 20.95 763.38

TABLE 2 | Parameters relating to cyclic strain.

Variable Symbol

Strain threshold εThres

Max strain εMax

Cell rotation constant krot,c

Apoptosis constant Aapop

Proliferation constants Aprolif

Bprolif

examine the influence of krot,f a constant fiber distribution was
used in Figure 10A. Figure 10 shows the influence of changing
krot,f on the reorientation of cells after 10 days as they align
with the structure.

RESULTS

Model calibration found the following parameters (Table 5) to
best fit the experimental data.

Predicting the Combined Response to
Strain and Structure
Once the model was calibrated to the experimental data on
PDMS substrates, under cyclic strain amplitudes of (4–6%, 2–8%,
0–10%) at 24 and 72 h timepoints it was used to predict the

response of VSMC to both strain and structure and compare the
results to those predicted in the experimental data investigating
the fold change in cell number after 10 days of 0–10% cyclic strain
when seeded on decellularized collagenous constructs aligned
perpendicular and parallel to strain. Due to the fact that the levels
of dispersion in the experimental collagenous constructs were
unknown, the model was used to investigate different degrees
of dispersion (κ); 2, 5, 8, 100. The fiber alignments generated
for different variations of κ can be seen in the Supplementary
Material. Table 6 shows the results of the model’s prediction for
fold change after 10 days when aligned parallel and perpendicular
to strain. It can be observed from the experimental data that cell
fold change increases when cells are aligned perpendicular to the
strain and decreases when cells are aligned with the direction
of strain. This behavior is captured in the model. Furthermore,
the model predicted that as fiber alignment increases fold change
increases when fibers are perpendicular to strain and decreases
when fibers are aligned parallel to strain.

DISCUSSION

In this study, a 2D ABM is presented to investigate the influence
of cell behavior in response to cyclic strain and structure. This
model was calibrated to experimental data of cell behavior to
cyclic strain and used to predict cell growth when subjected
to the combined influence of strain and structure. While the
model was able to predict the trends in fold change in response
to the combined response of strain and structure, it was
somewhat limited by the lack of experimental data necessary
to calibrate certain parameters in the model. By combining
further experimental work with this model, a more robust
design tool could be developed. This could be implemented
to better understand cellular behavior and also as an efficient
means to design and optimize the compliance and topological

FIGURE 9 | Influence of krot,c on cell reorientation (Mathieu, 2020; Mathieu et al., 2020).
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TABLE 3 | The influence of krot,c on cell fold change.

krot,c Foldchange (72 h)

0 0.88

0.0005 0.92

0.001 0.88

0.01 0.91

0.05 1.03

Experiment 0.939 ± 0.12

TABLE 4 | Fold change for cells at 24 and 72 h when seeded on PDMS and
subject to different levels of cyclic strain (Mathieu et al., 2020).

24 H 72 H

Strain Experimental Model Experimental Model

4–6% 1.22 ± 0.19 1.44 1.34 ± 0.95 1.37

2–8% 0.99 ± 0.29 1.04 0.44 ± 0.15 1.08

0–10% 0.80 ± 0.14 0.87 0.939 ± 0.12 0.83

structure of implantable devices. Furthermore, a model such as
this with further experimental calibration could be used to aid
the design of next-generation vascular grafts and stents. Below
is a comprehensive discussion of each of the model parameters,
how they individually influence cellular response and suggestions
for further experimentation that could lead to a more accurate
representation of cellular behavior.

The first assumption of the model was a reduction in cell
radius that is found for RASMC in literature. Using the RASMC
cell radius value from literature it was found that the model
could not predict the high cell densities seen in the experimental
data. This is due to the fact that in vitro cells can change their
shape to conform to cells around them. However, in the model
cells were a strict circular shape and could not conform. It was

TABLE 5 | Parameters calibrated against experimental data.

Variable Symbol Calibrated value

Threshold fiber density φThres Undefined

Slope M Undefined

Strain threshold εThres 0.0

Max strain εMax 0.4

Cell rotation constant krot,c 0.001

Fiber rotation constant krot,f 0.1

Apoptosis constant Aapop 1

Bapop 1.64

Proliferation constants Aprolif 3,500

Bprolif 500

Cprolif 71 (Endlich et al., 2000)

σprolif 9 (Endlich et al., 2000)

TABLE 6 | The fold change of cells a 0–10% cyclic strain when seeded on
structured constructs aligned perpendicular or parallel to strain.

Fold change (10 days) κ Perpendicular Parallel

Experiment Unknown 1.23 ± 1.714 0.458 ± 0.035

Model 100 1.72 0.19

8 1.28 0.21

5 1.11 0.22

2 0.72 0.48

observed at higher cells densities even though the total free area
on the construct would allow for further proliferation, due to the
rigidity of the cell shape in the model there was not adequate
space for cells to double. Therefore, the model would achieve
confluence earlier than the experimental data. Performing a
sensitivity analysis, it was found that a cell radius of 0.3888 µm

FIGURE 10 | Histogram of predicted cell orientation after 10 days for different values of krot,f when seeded on the same distribution of fibers; (A) fiber angles in fiber
distribution, (B) krot,f = 0.01 (C) krot,f = 0.05 (D) krot,f = 0.1 (E) krot,f = 0.5 (F) krot,f = 1.
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allowed proliferation to higher cell densities. Further information
on this can be found in the Supplementary Material.

Another assumption was Cprolif was chosen based on the
experimental study (Endlich et al., 2000). However, doubling time
is calculated as the time it takes cells to double in number and
consequently the balance between Bapop and Cprolif needs to be
carefully considered. This ratio of cell death to cell growth will
ultimately dictate the final cell density. Although understanding
the ratio of cell death to growth can give an insight to cell
behavior, further studies are required to understand the influence
of these two parameters individually. Using stains like Ki67 as
in Mathieu et al. (2020) could give further insight into the
degree of cell proliferation occurring, however, Ki67 stains for
a section of the mitosis cycle, whereas in the ABM mitosis
is modeled as instant cell division making markers like this
difficult to use for calibration. Future studies into the degree
of proliferation and cell death occurring at hourly time points
may give further insight into the individual influence of these
two parameters on the collective behavior of this cell population.
Furthermore, the mechanics of PDMS and collagenous tissue
are different and this must be noted as substrate stiffness
can influence cell properties leading to increased proliferation,
migration and decreased cell contractility (Dieffenbach et al.,
2017; Yi et al., 2019). However, the levels of strain induced are
comparable between the two materials and as most variables
were calibrated to the change in strain, the only assumption
made between the two different substrates is that the cells had a
similar doubling time and rate of apoptosis when left unstrained.
Given the cells are the same cell type and this parameter was
based on values taken from literature the authors feel this is a
reasonable assumption.

Once the ABM performance had been calibrated by
comparison to experimental data of cells without any strain or
structural stimulus the model was used to investigate how the
cells responded to cyclic strain. The rate of response of cells to
cyclic strain (krot,c) is a factor that the model has shown to be key
in representing the correct reorientation of the cells. The model
suggests that although cell reorientation appears to influence the
overall cell alignment there is also a bias of cells proliferating in
areas of low cyclic strain and cell death occurring in areas of high
cyclic strain. Therefore, more apoptosis and less proliferation
inherently occur in areas where cells are aligned with strain
and conversely, less apoptosis and more proliferation occur
where cells are aligned perpendicular to strain. One of the most
interesting findings of this model is that even in the absence of cell
reorientation (i.e., krot,c 0) we can still see that when predicting
the same fold change as seen in the experimental data we observe
similar reorientation plots due to the effective strain-based bias
of apoptosis and proliferation. This finding leads the authors to
two hypotheses (1) that cell reorientation is not occurring to any
significant level in these experiments and that the “reorientation”
observed is due to a greater extent to the bias of effective strain,
or (2) that the rate of cell reorientation does not dominate
the final cell position and it is the bias of effective strain and
cells slowly reorienting combined that give us this overall result
of cells aligned perpendicular to strain. Further experimental
studies such as live-cell images of cell reorientation in response

to cyclic strain could answer these questions concerning the rate
of cell reorientation more definitively. Understanding the rate of
cellular response and how cells respond to cyclic strain can have a
huge impact on phenomena such as in-stent restenosis and other
cascading events. Further insight into whether cell reorientation
itself or whether the effective strain bias is dominating the
beginning of this cellular response could provide further insight
into these phenomena.

Additionally,krot,f could be investigated using a similar live-
cell imaging approach to assess the rate of response of cells
to structure. Currently, in this model depending on the strain
rate the cells reorient at 0.007◦ per hour in response to strain
and 2.8◦ per hour in response to structure, however, this would
need to be verified through further experimentation examining
more regular time points. Furthermore, the influence of fiber
dispersion can be observed in the model, it was predicted
that with an increase in fiber alignment, fold change increases
when fibers are perpendicular to strain and decreases when
fibers are aligned parallel to strain. This can be explained due
to the fact that an increase in overall fiber alignment would
lead to a greater number of cells aligning in the predominant
fiber direction meaning in the case of perpendicular collagen
alignment a greater proportion of cells would experience less
strain leading to decreased apoptosis and increased proliferation
generating an increase in foldchange. The opposite would be seen
when collagen is aligned with strain, that is, a greater proportion
of cells would experience more strain and therefore increased
apoptosis and decreased proliferation would occur leading to
the lower fold change as predicted in the model. The alignment
and dispersion of the construct prior to cell seeding and cell
alignment should be examined in future experiments. In the
results shown here, a dispersion of κ between 2 and 5 seems most
likely for the experimental constructs, however, this would need
to be quantified.

In this model some terms were included that could not be
calibrated from the existing experimental data and would require
further experimental research to be able to accurately quantified.
Firstly, the model contains a threshold fiber density parameter,
φThres, and M, the slope, that dictates the density at which fibers
begin to influence cellular behavior over other cues like cyclic
strain. This may vary from cell type to cell type depending on the
size of the cells relative to the space between fibers on a structured
construct. In the model, φThres and M are used to represent the
point at which fibers begin to dominate the influence of cell
behavior based on the normalized cell density (0–1) where 0
means no fibers are present and 1 represents a dense collagenous
tissue. In the model, it was assumed PDMS has a fiber density
of zero and collagen tissue has a fiber density of 1. Therefore,
in the experiments used to calibrate the model φThres and M
cannot be quantified and remain undefined. These parameters
were included to allow for the improvement of the model with
further experimentation. Experiments with different structured
constructs of different density are necessary to calibrate these
parameters. Furthermore, the maximum strain that can influence
cell behavior, εMax, was briefly examined in the paper and
assigned a value of 0.4, however, experiments examining higher
levels of strain must be carried out to quantify this parameter.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 April 2021 | Volume 9 | Article 64179475

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-641794 April 14, 2021 Time: 15:11 # 12

McGee et al. ABM for VSMC Growth

Similarly, to correctly identify the threshold strain, εThres, lower
levels of cyclic strain must be examined experimentally.

Finally, the influence of Aprolif , Aapop, and Bprolif are
parameters that are challenging to quantify experimentally as
separating the influence of proliferation and apoptosis in cellular
experiments is very difficult. The calibration shown does not
capture the experimental data at all three levels of cyclic strain.
However, having a better understanding of other parameters in
the model would lead to increased accuracy in the prediction of
these parameters and a better understanding of cell behavior in
relation to cyclic strain.

CONCLUSION

In conclusion, this paper presents an ABM that can be used to
predict cell behavior in response to cyclic strain and structural
cues. The model was calibrated against existing experimental data
and used to predict the fold change in cell number after 10 days
of 0–10% cyclic strain when seeded on structured constructs
aligned perpendicular and parallel to the direction of cyclic
strain. The model successfully captured the trends in cell growth
seen experimentally. This model gives insight into the role of
different factors influencing cells that cannot easily be examined
experimentally, such as highlighting the role of effective strain
bias in influencing cell alignment. Tools such as this ABM can
be used in conjunction with in vitro experimental data to further
enhance the understanding of cellular behavior in response to
intravascular medical devices.
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Denosumab has been shown to increase bone mineral density (BMD) and reduce the

fracture risk in patients with post-menopausal osteoporosis (PMO). Increase in BMD

is linked with an increase in bone matrix mineralisation due to suppression of bone

remodelling. However, denosumab anti-resorptive action also leads to an increase in

fatigue microdamage, which may ultimately lead to an increased fracture risk. A novel

mechanobiological model of bone remodelling was developed to investigate how these

counter-acting mechanisms are affected both by exercise and long-term denosumab

treatment. This model incorporates Frost’s mechanostat feedback, a bone mineralisation

algorithm and an evolution law for microdamage accumulation. Mechanical disuse

and microdamage were assumed to stimulate RANKL production, which modulates

activation frequency of basic multicellular units in bone remodelling. This mechanical

feedback mechanism controls removal of excess bone mass and microdamage.

Furthermore, a novel measure of bone local failure due to instantaneous overloading

was developed. Numerical simulations indicate that trabecular bone volume fraction and

bone matrix damage are determined by the respective bone turnover and homeostatic

loading conditions. PMO patients treated with the currently WHO-approved dose of

denosumab (60 mg administrated every 6 months) exhibit increased BMD, increased

bone ash fraction and damage. In untreated patients, BMD will significantly decrease,

as will ash fraction; while damage will increase. The model predicted that, depending

on the time elapsed between the onset of PMO and the beginning of treatment, BMD

slowly converges to the same steady-state value, while damage is low in patients treated

soon after the onset of the disease and high in patients having PMO for a longer period.

The simulations show that late treatment PMO patients have a significantly higher risk of

local failure compared to patients that are treated soon after the onset of the disease.

Furthermore, overloading resulted in an increase of BMD, but also in a faster increase of
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damage, which may consequently promote the risk of fracture, specially in late treatment

scenarios. In case of mechanical disuse, the model predicted reduced BMD gains due

to denosumab, while no significant change in damage occurred, thus leading to an

increased risk of local failure compared to habitual loading.

Keywords: post-menopausal osteoporosis, bone turnover, bone mineralisation, denosumab, PK-PD modelling,

bone mineral density, risk of failure, damage

1. INTRODUCTION

Denosumab treatment of patients with post-menopausal
osteoporosis (PMO) has been shown to increase bone mineral
density (BMD) as assessed by dual-energy X-ray absorptiometry
(DXA) and it was observed that denosumab reduced the risk
of new radiographic vertebral fractures by 68%, with the risk
of hip fractures and non-vertebral fractures decreasing by 40
and 20%, respectively (Cummings et al., 2009). The increase in
BMD has been attributed to a decrease in bone turnover and
the associated increase in the degree of bone mineralisation
(Dempster et al., 2018), as the osteoclastic activity dissolves the
bone matrix and prevents it from being mineralised further.
Despite its high efficacy in the treatment of PMO, long-term (i.e.,
> 4 years) treatment with denosumab has also been linked with
certain risks. Among those, development of atypical femoral
fractures (AFF) is of significant concern and has been associated
with the accumulation of microcracks in the bone matrix due
to suppression of bone remodelling (Aspenberg, 2014), which
is detected by a decrease in the levels of bone turnover markers
(Miller et al., 2008).

Action of anti-resorptive drugs has been extensively studied
experimentally and linked to decreases in bone turnover and
suppression of osteoclastic activity together with observed
changes in BMD (Langdahl, 2020). Riggs and Parfitt (2005)
suggested that there are potentially three mechanisms on how
anti-resorptive drugs exert increases in BMD: (i) increases of
bone mineralisation, (ii) accumulation of microcracks in the
bone matrix, and (iii) positive bone balance due to net increase
of osteoblasts compared to osteoclasts. The latter mechanism
which theoretically could lead to overfilling of resorption cavities
in trabecular bone has more recently been ruled out due to the
fact that bone remodelling is a coupled process, and suppression
of osteoclastic activity also leads to reduction of osteoblastic
activity (Sims and Martin, 2015). Hence, understanding on how
the first two mechanisms interact and regulate BMD is central
to understanding action of anti-resorptive drugs. However, it
is currently not known to which extent the two mechanisms
of increases of bone mineralisation and accumulation of
microcracks contribute to net BMD increases. The aim of the
current paper is to add to our understanding of the relative
contributions of these competing mechanism which can provide
new insights into the efficacy and safety of long-term treatment
of OP with denosumab (and other anti-resorptive drugs). In
particular, this new knowledge would help design new treatment
regimens with respect to drug duration, dose magnitude, and
dosing intervals.

Increases in BMD due to anti-resorptive treatments are
explained by the conceptual model of bone mineralisation. This
model links the rate of bone remodelling (i.e., bone turnover)
with the degree of bone tissue mineralisation (BTM) (Bala
et al., 2013; Boivin and Meunier, 2002). Bone mineralisation
has two phases: a fast primary phase, which takes place over
several days to weeks and achieves a degree of mineralisation of
approximately 70% and a slow secondary phase, which can take
from months to years and may achieve degrees of mineralisation
of up to 95%. On the other hand, mineral is removed from the
bone matrix by osteoclastic action, which dissolves it, returning
it to the bloodstream. In this manner, the model predicts that
bone sites undergoing high turnover are characterised by a lower
BTM (and BMD) based on the fact that continuous remodelling
prevents excessive secondary mineralisation. On the contrary,
at sites of low turnover there is sufficient time for secondary
mineralisation to occur and the mineral content is quite high, as
occurs for example in interstitial bone (O’Brien et al., 2000).

The mechanism of targeted remodelling was first discovered
in the late 90s looking at histological sections of normal,
healthy cortical bone which showed microcracks around osteons
which have been associated with exposure to dynamic habitual
loading (e.g., walking) (Burr et al., 1985; Parfitt, 2002). In
engineering, these microcracks are commonly referred to as
fatigue microcracks, which accumulate in a material exposed
to dynamic loading, eventually coalescing into macrocracks
and leading to fracture (i.e., structural failure). Targeted bone
remodelling is the process by which these microcracks are
removed from the bone matrix in order to avoid development of
fatigue failure or occurrence of stress fractures. While originally
observed mostly in cortical bone, fatigue damage may also
occur in trabecular bone (Dendorfer et al., 2006; Rapillard
et al., 2006). However, in trabecular bone microcracks cannot
easily accumulate due to the fact that cancellous bone exhibits
a higher bone turnover compared to cortical bone. Fatigue
loading induces formation of microcracks in areas of cortical
bone which are subsequently resorbed (Verborgt et al., 2000).
Furthermore, it was shown that both mechanical disuse and
fatigue loading increase osteocyte apoptosis in specific bone
regions (Verborgt et al., 2000; Aguirre et al., 2006). Indeed,
tail-suspension stimulates osteocyte apoptosis, which is followed
by bone resorption targeted to areas containing the apoptotic
osteocytes in mice (Aguirre et al., 2006).

Bone remodelling has been also shown to play a key role
in calcium and phosphorus homeostasis (Peterson and Riggs,
2010). The osteoclastic action that returns bone mineral into
the bloodstream is enhanced by the secretion of parathyroid
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hormone (PTH), which controls calcium homeostasis at several
levels and is increased if calcium deficiency is detected in the
serum. In such case, calciummust be retrieved from bone matrix,
where it is stored. Martínez-Reina et al. (2008) hypothesised
that calcium retrieval is potentially more effective if it takes
place at highly mineralised bone sites. This fact could be linked
to targeted bone remodelling, as highly mineralised bone also
accumulates a larger amount of damage (O’Brien et al., 2000;
Qiu et al., 2005). Thus, the target of bone remodelling would
not only be repairing damage, but also returning calcium to the
bloodstream as efficiently as possible.

The mechanobiological link between microdamage and
remodelling was established via discovery of increased
remodelling around apoptotic osteocytes in rat ulnar fatigue-
loading experiments (Verborgt et al., 2000). In the latter case,
inhibition of osteocyte apoptosis prevents the intra-cortical
resorption that occurs in response to microcracks (Cardoso et al.,
2009), suggesting that osteocyte apoptosis controls osteoclast
recruitment to the damaged area. Consistent with this idea,
Tatsumi et al. (2007) have demonstrated that stimulation of
osteocyte apoptosis, in and of itself, is sufficient to stimulate
bone resorption that is associated with an increase in RANKL
production in bone, but the cellular source of the RANKL was
not determined.

There are limited data on bone quality for patients treated
with denosumab compared to other anti-resorptive drugs. The
pharmacodynamics of denosumab is different to that of other
drugs, but it is their anti-resorptive action on bone remodelling
that results in similar effects on bone quality. A recent study
on the use of bisphosphonate (BP) treatment showed that the
anti-resorptive therapy did not result in a detectable mechanical
benefit in the trabecular bone specimens (from hip fracture
patients) examined (Jin et al., 2017). Instead, BP use was
associated with substantially reduced bone strength. This low
strength may be due to the greater accumulation of microcracks
and a lack of any discernible improvement in bone volume or
microarchitecture. That study suggested that the clinical impact
of BP-induced microcrack accumulation may be significant.
Major current limitations on detecting significant effects of anti-
resorptive treatments on microcrack density in bone is due to
the fact that bone biopsies are only taken at non-load bearing
bone sites, e.g., iliac crest, hence, masking the effect of mechanical
loading and anti-resorptive therapy. However, it is very plausible
from a material science point of view to hypothesise that a
higher mineralised bone matrix (as observed with anti-resorptive
treatment) will accumulate more microcracks during dynamic
loading.

Based on the above described mechanisms observed
for action of denosumab treatment of PMO, we have
developed a comprehensive model of bone remodelling
incorporating the effect of bone mineralisation, microdamage,
and mechanobiological feedback. The current model of bone
remodelling is an extension of our previous mechanistic PK-
PD model of the effects of denosumab treatment on PMO
(Martínez-Reina and Pivonka, 2019; Martínez-Reina et al., 2021)
with respect to accounting for the accumulation of microdamage
in the bone matrix. This model incorporates the relation between

bone turnover and BMD, together with the bone mineralisation
process and the formation of microdamage in the bone matrix.
The evolution law for damage accumulation is formulated
within the framework of continuum damage mechanics
(Lemaitre and Chaboche, 1990). The bone remodelling model
accounts for bone cell interactions via the RANK-RANKL-OPG
pathway, the action of TGF–β and mechanobiological feedback
(Martínez-Reina and Pivonka, 2019; Martínez-Reina et al., 2021;
Pivonka et al., 2008, 2010; Scheiner et al., 2013). Mechanical
overuse is simulated via increase of osteoblast precursors
proliferation (Pivonka et al., 2012; Scheiner et al., 2013, 2014),
while mechanical disuse is simulated via RANKL production by
osteoblast precursor cells. Furthermore, bone matrix damage
was linked to increased RANKL production by (apoptotic)
osteocytes. The mineralisation model takes into account the
balance of mineral within bone tissue and is based on the work
of Martínez-Reina et al. (2008). As in previous studies, the PK
model of denosumab is a one compartment model including a
drug saturation term for high doses (see Marathe et al., 2011).

Utilising this model, we investigate a variety of treatment
scenarios with emphasis on combined effects of mechanical
loading (including overuse and disuse) together with denosumab
treatment in PMO.

2. MECHANISTIC PK-PD MODEL OF BONE
ADAPTATION INCLUDING DAMAGE

2.1. Model of Bone Cell Interactions in
Bone Adaptation
A brief description of the mathematical model describing bone
cell interactions is provided. As in previous models, the RANK-
RANKL-OPG pathway, together with the action of several
regulatory factors on bone cells, including TGF–β, PTH, and
mechanobiological feedback is given (for details on original
models see Pivonka et al., 2008, 2010; Scheiner et al., 2013;
Pivonka et al., 2012; Martínez-Reina and Pivonka, 2019). The
new model has been designed following the structure of the
original model, adding the population of osteocytes, as done in
Martin et al. (2019), slightly modifying the mechanoregulation
feedback and adding new features relevant to the formulation
of damage, the last two modifications being dealt with in
subsections 2.3 and 2.4, respectively.

Following the approach taken by Pivonka et al., the bone
adaptation process can be described as cell balance equations.
The bone cell types (i.e., state variables) considered in the
current model are: (i) osteoblast precursor cells (Obp), (ii) active
osteoblasts (Oba), (iii) active osteoclasts (Oca), and (iv) osteocytes
(Ot). The cell pools of uncommitted osteoblasts (Obu) and
osteoclast precursors (Ocp) are assumed constant:

dObp

dt
= DObu ·5

TGF−β
act · Obu + PObp ·5

ψbm
act · Obp

− DObp ·5
TGF−β
rep · Obp;

(1)

dOba

dt
= DObp ·5

TGF−β
rep · Obp − AOba · Oba; (2)
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dOca

dt
= DOcp ·5

RANKL
act · Ocp − AOca ·5

TGF−β
act · Oca; (3)

dOt

dt
= η

d fbm

dt
(4)

where DObu , DObp , and DOcp are the differentiation rates of Obu,
Obp, and Ocp respectively. The second term in the right-hand
side of Equation (1) corresponds to proliferation of osteoblast
precursors and PObp gives the maximum proliferation rate. AOba
and AOca are the apoptosis rates of Oba and Oca respectively.

The variables 5
TGF−β
act , and 5

TGF−β
rep represent activator and

repressor functions related to the binding of TGF–β to its
receptor. Similarly, 5RANKL

act is the activator function related

to the RANK-RANKL binding. 5
ψbm
act is a function of the

mechanical stimulus that regulates the anabolic part of the
mechanobiological feedback in the proliferation term and will
be addressed in section 2.3. Finally, η is the concentration of
osteocytes in bone matrix, which is assumed constant as in
Martin et al. (2019), thus leading to proportional variations of
osteocytes population and fraction of bone matrix volume per
total volume, fbm (Equation 4). The variation of fbm over time is
precisely one of the main outcomes to be derived from the set
of cell population equations and is defined through the balance
between resorbed and formed tissue:

dfbm

dt
= −kres · Oca + kform · Oba; (5)

where kres and kform are, respectively, the bone matrix volume
resorption rate and osteoid volume formation rate. This
distinction is important with regard to the mineralisation
algorithm, since the bone matrix resorbed by active osteoclasts
is mineralised, while the osteoid deposited by active osteoblasts
contains no mineral. Cell balance equations (Equations 1–4) are
composed of a production term and a degradation one, which
describes differentiation of one cell type into another (or terminal
cell fate, i.e., apoptosis). A schematic figure of the mechanistic
PK-PD model is presented in Figure 1. Model parameters of the
cell population model are given in Table A1.

2.2. Denosumab Action on
RANK-RANKL-OPG: Competitive Binding
The action of denosumab on bone adaptation is included via
competitive binding reactions within the RANK-RANK-OPG
pathway (Marathe et al., 2008, 2011; Scheiner et al., 2014). In
these models, action of denosumab is taken into account via
the RANKL activator function 5RANKL

act (Equation 3, first term
on the right). Denosumab competes with RANK (and OPG) for
binding to RANKL. Thus, higher concentrations of denosumab
give rise to lower concentrations of RANKL-RANK complexes
and, hence, lower values of 5RANKL

act . Adapting the approach of
Scheiner et al. (2014),

RANKL = RANKLeff
βRANKL + PRANKL

βRANKL + D̃RANKL RANKLeff
·

·

[

1+
OPG

Kd,[RANKL−OPG]
+

RANK

Kd,[RANKL−RANK]

+
ζ Cp,den

Kd,[RANKL−den]

]−1

; (6)

where Kd,[RANKL−OPG], Kd,[RANKL−RANK], and Kd,[RANKL−den] are
the equilibrium dissociation binding constants for binding of
OPG, RANK and denosumab to RANKL. OPG, RANK, and
RANKL are the concentrations of respective regulatory factors in
the bone tissue compartment, while Cp,den is the concentration
of denosumab in the central compartment (see Equation 36
in Appendix) and ζ is the accessibility factor of denosumab
from the central compartment to the bone tissue compartment1.
In the original model (Lemaire et al., 2004) all concentrations
were formulated with respect to a pseudo central compartment
and, consequently, no distinction between site-specific bone
tissue compartments was needed. However, formulation of
mechanobiological PK-PD models requires specification of a
particular bone site which is exposed to physiological mechanical
loading. D̃RANKL is the RANKL degradation rate, PRANKL
provides the RANKL production rate induced by PMO and
mechanical underloading. βRANKL is the production rate of
endogenous RANKL on the surface of osteoblasts precursors and
osteocytes. We have assumed that RANKL is expressed by those
cells, following experimental evidence (Nakashima et al., 2011;
Xiong and O’Brien, 2012) and a previous model (Martin et al.,
2019). So, RANKLeff is the total effective carrying capacity of
those cells that controls the maximum expression of RANKL:

RANKLeff = RRANKL · Obp ·5
PTH
act + RRANKL · Ot ·5

dam
act (7)

where RRANKL is the carrying capacity of the individual cells of
both types, that we have assumed equal. We have also assumed
that the expression of RANKL on the surface of osteoblast
precursors is upregulated by PTH, following previous models
(Pivonka et al., 2008, 2010), and we have introduced in the
present model an upregulation factor of RANKL expression by
osteocytes due to damage, through a sigmoidal function:

5dam
act =

dξ

dξ + δ
ξ
50

(8)

where d denotes the damage variable, described more in detail in
section 2.4. The shape factor, ξ = 3, and the value of damage
leading to a 50% of the maximum response, δ50 = 0.1, were
chosen in such a way that both terms in Equation 7 are typically
of the same order of magnitude2. Verborgt et al. (2000) showed

1ζ = 1 represents unrestricted access to denosumab, whereas ζ < 1 reflects

restricted access, for example due to bone marrow being present or low blood

perfusion. Hence, the denosumab concentration is bone site specific.
2Typical values of variable d are around 0.01. This makes 5dam

act ∼ 10−3, while

in Equation 7 5PTH
act ∼ 10−2 (see Pivonka et al., 2008). With these values, the
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FIGURE 1 | Schematic representation of the mechanistic PK-PD model: bone cell differentiation stages along with biochemical and biomechanical interactions are

presented. Subcutaneous injection of denosumab leads to distribution of the drug into the central compartment where it interacts with the RANK-RANKL-OPG

pathway (red arrow between Obp and Ocp). The latter interactions are accounted for via competitive binding reactions. The mineralisation of osteoid is shown in

orange.

that osteocyte apoptosis occurs after fatigue induced bone matrix
damage. Moreover, they found that osteocyte apoptosis was
highly localised to sites of microdamage that are subsequently
remodelled. Osteocytes in the vicinity of a microcrack would
express both Bax (a proapoptotic gene product) and Bcl-2 (an
antiapoptotic gene product), with the peak of Bax expression
observed immediately at the microcrack locus and the peak of
Bcl-2 expression at some distance (1–2 mm) from microcracks
(Verborgt et al., 2002). Seemingly, distant osteocytes would
protect themselves frommatrix injury induced cell death, thereby
exercising an additional level of control in the regulation of
osteocyte apoptosis and bone remodelling. This expression of
apoptotic signals would be related to the expression of come and
eat me signals (Jin and El-Deiry, 2005) to attract macrophages to
the site of apoptotic osteocytes. Kurata et al. (2006) showed later
that focal wounding of osteocyte-like cells (MLO-Y4) in vitro
triggered release of RANKL and macrophage-colony stimulating
factor (M-CSF), although whether these key signaling molecules
come from dying cells or the non-apoptotic surviving cells was

contributions of both terms in Equation (7) are similar given that the population of

osteocytes (Ot) is typically one order of magnitude greater than that of osteoblasts

precursor cells (Obp).

not examined. Here we have assumed by using Equation (7) that
apoptotic osteocytes near microcracks would express RANKL so
causing their surrounding bone matrix to be resorbed.

In Equation (6), the RANKL production rate PRANKL is
given by two terms that define the contribution of mechanical
underloading, Pmech

RANKL, and a disease-related increase in RANKL
production over time, PPMO

RANKL:

PRANKL = Pmech
RANKL + PPMO

RANKL (9)

The first term is explained in section 2.3, while the term PPMO
RANKL

is a consequence of the onset of menopause though increasing
gradually over time, through the following sigmoidal function:

PPMO
RANKL(t) = PPMO,max

RANKL

(t − tonset)
2

(t − tonset)2 + δ
2
PMO

for t > tonset

(10)

where PPMO,max
RANKL is the maximum (long-term) RANKL

production rate due to PMO, tonset is the time of onset of
the disease and δPMO is a time constant that establishes when the
50% of PPMO,max

RANKL is reached.
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Finally, the activator function of RANKL in Equation (3) can
be expressed as:

5RANKL
act =

RANKL · RANK

Kd,[RANKL−RANK] + RANKL · RANK
; (11)

The concentrations of denosumab, RANK, OPG, PTH, and
TGF−β along with themodel parameters of the binding reactions
are provided in the Appendix.

2.3. Mechanoregulation
The model includes the mechanical feedback regulation of bone
through the Mechanostat Theory proposed by Frost (2003) (see
Figure 2). This theory postulates the existence of 4 zones or
“windows” in Frost’s terminology: (1) disuse window, where net
bone loss is observed for a low level of “Minimally Effective
Strains” (MES) or other stimuli; (2) adapted window, where no
net effect of BMUs on bone mass is seen for intermediate values
of MES; (3) mild overload window, where net bone formation
occurs for high MES, and (4) pathologic overload window,
leading to fracture, for very high values of MES. This last window
is not directly considered in the mechanical regulation through

the definition of 5
ψbm
act (see Figure 3), but indirectly through the

accumulation of microstructural damage.
Mechanical disuse is assumed to enhance the production of

RANKL on osteoblasts precursors, through the term Pmech
RANKL,

which is modulated by the strain energy density (SED) of bone
matrix, designated as ψbm:

Pmech
RANKL =

{

Pmech,max
RANKL

(

1−
ψbm
ψr

)

for ψbm < ψr

0 for ψbm ≥ ψr

(12)

where ψr is the SED below which underuse increases RANKL

production and Pmech,max
RANKL is the maximum RANKL production

rate due to underuse. RANKL production is upregulated by PTH
and downregulated by nitric oxide (NO), which is produced
by osteocytes and, in turn, upregulated by mechanical stimulus.
However, this process is only indirectly considered through
Equation (12), which assumes a maximum RANKL production
rate for total disuse.

Overload is assumed to promote bone formation by
proliferation of osteoblasts precursors through the activator

function 5
ψbm
act , which is given by the piecewise linear function

of SED defined in Figure 3. The less steep piece of the function
would correspond to the disuse and adapted windows of the
Mechanostat Theory, where bone formation is not particularly
promoted. In the case of the disuse window, this would be
added to the increased RANKL production (Pmech

RANKL). Obviously,

the steepest piece of function 5
ψbm
act would correspond to the

overload window.
The SED, ψbm, was used as a measure of the mechanical

stimulus sensed by bone cells to drive bone adaptation, as
traditionally done in the literature (Beaupré et al., 1990; Huiskes
et al., 1987). ψbm was used here as an alternative to the strains

MES, used in the Mechanostat Theory (Frost, 2003). In a uniaxial
stress state they are related by:

ψbm =
1

2
E ·MES2 (13)

being E the Young’s modulus. The parameter ψr in Equation
(12) as well as ψbm 1 and ψbm 2, used in Figure 3 to define

function 5
ψbm
act , were defined using Equation (13), respectively

with MESr = 1,000µε, MES1 = 800µε, and MES2 = 1,600µε.

These values and the values of5
ψbm
act corresponding to ψbm 1 and

ψbm 2 were adjusted to reproduce the Mechanostat Theory along
with the Principle of Cellular Accomodation (see Appendix).

2.4. Damage of Bone Matrix
In this section we address how to estimate microstructural
damage, that we assumed to drive bone remodelling through
Equation (7) and to affect mechanical properties as will be
discussed shortly. It has long been hypothesised that one of the
major functions of bone remodelling is to remove microcracks
from the bone matrix and so to avoid accumulation of the
latter, which could result in macroscopic failure. One way to
describe the accumulation of microcracks in a particular volume
ofmaterial is via use of ContinuumDamageMechanics (Lemaitre
and Chaboche, 1990). The latter theory introduces a damage
variable, d, which is linked to the density of microcracks in a
volume of material and to the loss of stiffness through Equation
(14). This is variable is such that d ∈ [0, 1], with d = 0
corresponding to an undamaged state and d = 1 to a local
fracture or failure situation:

C = (1− d)C0 (14)

whereC andC0 are, respectively, the stiffness tensors of damaged
and undamaged bone (Lemaitre and Chaboche, 1990)3.

Microdamage accumulates in the bone matrix due to fatigue
loading and is repaired by bone remodelling, as osteoclasts
resorb the damaged tissue while the osteoid deposited by
osteoblasts is initially intact. The evolution law for damage can be
expressed as:

ḋ = ḋA − ḋR (15)

where ḋA is the rate of damage accumulation by fatigue
loading and ḋR is the rate of damage removal by bone
remodelling. The latter is assessed by assuming that damage
is uniformly distributed throughout the representative volume
element (RVE). Thus, the amount of damage repaired by
remodelling is proportional to the damage present in that volume
and to the volume of tissue being resorbed (see Equation 5),

3In the isotropic damage theory, Equation (14) can be similarly written in terms

of the respective Young’s moduli, E and E0, as E = (1 − d)E0 (Pattin et al., 1996;

Zioupos, 1998). Subsequently, we will use the latter formulation.
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FIGURE 2 | The Mechanostat Theory (adapted from Frost, 2003).

through the fraction that this volume represents within the bone
matrix volume:

ḋR = d
kres · Oca

fbm
(16)

Damage accumulation is evaluated following the procedure
described in Martínez-Reina et al. (2008) and Martínez-Reina
et al. (2009), which, in turn, are based on the works by Pattin
et al. (1996) and García-Aznar et al. (2005). Experimental fatigue
tests provide the evolution of d with the strain or the stress level
and the number of cycles (Pattin et al., 1996), as well as fatigue
life, Nf , which is typically given by expressions such as:

Nf =
Ki

εδi
i = c(compresion), t(tension) (17)

where Ki and δi stand for constants that are different in tension
and compression and ε is the uniaxial strain expressed in µε =

µm/m. García-Aznar et al. (2005) correlated Equation (17) with
the experimental results obtained by Pattin et al. (1996) to get:
Kc = 9.333 · 1040 and δc = 10.3 in compression, and Kt = 1.445 ·
1053 and δt = 14.1 in tension. The loss of stiffness E/E0 was also
experimentally measured by those authors as a function of the
applied constant strain and the number of cycles. Again, García-
Aznar et al. (2005), fitted the experimental curves obtained by
Pattin and co-workers with the following expressions:

dc = −
1

γc

[

ln(1− Cc ε
δcN)

]

(18a)

dt = 1−

[
1

Ct2
ln(eCt2 − Ct1 ε

δtN)

] 1
γt

(18b)

FIGURE 3 | Function of proliferation of osteoblasts precursors that establishes

the relation between the anabolic factor 5
ψbm
act and the SED.

where N is the number of cycles and Ct2 = −20 was fitted from
the experimental curves along with:

γc = −5.238(ε − 6100)10−3 + 7;

Cc =
1− e−γc

Kc
in compression (19)

γt = −0.018(ε − 4100)+ 12; Ct1 =
eCt2 − 1

Kt
in tension

In the damage model proposed by Martínez-Reina et al. (2009),
cracks were assumed to grow normal to the maximum strain
direction and only under tensile strains. This allows to apply the
model to a general strain state, by replacing ε with the maximum
principal strain, εmax. The tests performed by Pattin et al. (1996)
and fitted with Equation (18) were conducted under constant
strain. However, they can be applied to a general loading history
using the procedure described inMartínez-Reina et al. (2009) and
explained next.
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Let us assume that, at a given moment, damage is equal to d
and a maximum principal strain εmax is applied N cycles in the
next step. Let us calculate the increment of damage accumulated
by fatigue,1dA, with those cycles. Likely, the current damage was
not produced by a constant strain εmax, but we can assume that
it was so without loss of generality. Then, we can use Equation
(18b) to work out the number of cycles Ñ that would have been
needed to reach the current damage d with the current strain
εmax.

d = 1−

[
1

Ct2
ln(eCt2 − Ct1 ε

δt
maxÑ)

] 1
γt

H⇒ Ñ (20)

The increment of damage1dA would have been reached with the
additionalN cycles applied at the present step and can be assessed
from:

d +1dA = 1−

[
1

Ct2
ln

(

eCt2 − Ct1 ε
δt
max(Ñ + N)

)
] 1
γt

(21)

This procedure allows working out the increment of damage,
1dA, but requires that Equation (15) be rewritten in incremental
form and integrated using an explicit integration scheme, as done
in Martínez-Reina and Pivonka (2019) and Martínez-Reina et al.
(2021).

2.5. Degradation of Fatigue Properties With
the Mineral Content
The mineral phase contributes to increase the stiffness of bone,
but also makes it more brittle (Currey, 2004). As far as we
know, no experimental study has provided a correlation between
mineral content and bone fatigue properties, though some
studies have confirmed that interstitial bone, with the highest
mineral content, is where microcracks can be more easily found
(Boyce et al., 1998; O’Brien et al., 2000; Qiu et al., 2005). For this
reason, we have followed the damage model previously proposed
by Martínez-Reina et al. (2009) in which fatigue properties are
degraded as the mineral content rises. According to this idea
the following assumptions are made in the model (see Martínez-
Reina et al., 2009 for more details):

1. The shape of d−N curves, expressed by the Equations (18), is
maintained regardless of the mineral content.

2. Only the fatigue life is affected by the mineral content, by
redefining Kt in Equation (17), while keeping constant the
exponent δt . This modifies the d − N law, as Ct1 depends on
Kt . In this way, increasing Kt results in a longer fatigue life and
a slower damage accumulation rate.

3. A life of 107 cycles was assigned to the fatigue limit. This
fatigue limit is usually assumed to occur for a given fraction of
the ultimate tensile strain, εu/β, where the parameter β may
depend on the type of material (Juvinall, 1967). So, Kt was
obtained from Equation (17) as:

Kt([Ca]) = 107
(
εu([Ca])

β

)δt

(22)

Here, the most typical value β = 2 was chosen following
Martínez-Reina et al. (2009).

4. As Currey showed (Currey, 2004), εu depends on the calcium
concentration of bone matrix, [Ca]. The following regression
εu = εu([Ca]) was fitted in Martínez-Reina et al. (2009) from
the experimental results presented by Currey (2004):

log εu = 31.452− 11.341 log [Ca] (23)

where εu is expressed in µε and the concentration [Ca] is
expressed in mg of calcium per g of bone matrix and is related
to the ash fraction, α, the ratio between the ash mass and
the dry mass (see Appendix for details). More precisely, the
relation [Ca] = 398.8 ·α was assumed, based on the molecular
weigths of hydroxyapatite and type I collagen. Equations (20),
(22), and (23) allowed to define Ct1 as a function of α to be
used in (18b) and the related equations.

The value fitted by García-Aznar et al. (2005), Kt = 1.445 · 1053,
corresponds to a normal value of ash fraction, α = 0.72. The
importance of the degradation of fatigue properties with the
mineral content on the risk of local failure will be evaluated in
a simulation in which two cases will be compared: (1) a model
implementing Equations (22) and (2) a model using Kt = 1.445 ·
1053 constant.

2.6. Bone Apparent Density and Stiffness
Bone apparent density changes as a consequence of the variation
of porosity, accounted by Equation (5), and mineralisation. The
latter process controls tissue density, ρt , given by:

ρt =
m

Vbm
= ρm vm + ρo vo + ρw vw (24)

where m and Vbm are, respectively, the mass and volume
occupied by bone matrix, while vm, vo, and vw stand for the
specific volumes of the three phases that compose bone matrix
(namely, mineral, organic, and water) and ρi stand for the
corresponding densities. While vo can be assumed constant,
vm and vw vary throughout the mineralisation process (see
Appendix for details). Bone apparent density is then given by
porosity (or alternatively bone volume fraction) and bone tissue
density:

ρ =
m

Vbm

Vbm

VRVE
= ρt fbm (25)

Finally, bone stiffness is needed to assess SED. In this study, we
have assumed that bone tissue is an isotropic material with a
Poisson’s ratio ν = 0.3 and a Young’s modulus given in MPa by
the following correlations:

E(ρ, d) =

{

2014 ρ2.5 (1− d) if ρ < 1.2 g/cm3

1763 ρ3.2 (1− d) if ρ ≥ 1.2 g/cm3 (26)

These expressions are based on the correlations experimentally
obtained by Jacobs (1994), which are multiplied by the factor
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(1 − d), to consider microstructural damage as usually done in
Continuum Damage Mechanics (Lemaitre and Chaboche, 1990)
(recall Equation 14).

2.7. Estimation of the Risk of Local Failure
The likelihood of osteoporotic patients suffering a fracture
depends onmany factors, such as: bone apparent density, amount
of microstructural damage, mineral content and brittleness
of bone matrix, trabecular microarchitecture, magnitude and
orientation of the load, among many others. For this reason,
evaluating the risk of fracture or the strength of a certain bone
is a complex task. Several works have addressed this problem
at a structural level, estimating the bone strength and/or failure
patterns using a FE modelling approach (Hambli, 2013a,b;
Harrison et al., 2013; Fan et al., 2016; Hambli et al., 2016), but
it is out of the scope of the present work.

Having recognised this limitation, it would be interesting,
however, to have a tool to compare the risk of failure in different
scenarios, at least at a local, i.e., material point of view. To this
end, we have defined a variable to estimate the risk of failure by
taking into account only bone apparent density, damage, mineral
content and magnitude of the load from the factors referred to
above. In order to define that variable we have used the equations
presented in subsection 2.4.

More precisely, we have defined the variable NDtF(σ , t),
which gives the number of days needed to reach local failure
(d = 1) at a given instant, t, if an overload consisting in a uniaxial
stress σ is applied from that moment on. We use the variables
fbm(t), d(t), Oca(t), and α(t) corresponding to that instant and
assume that all of them, except damage, remain constant until
failure, which is a strong simplification, especially if NDtF yields
a high value. Next, we define a time variable τ commencing at the
instant t and describing the evolution that damage would follow
until failure if the conditions at time t were kept constant, i.e.,
d(t + τ ). NDtF is the number of days that fulfills the following
equation d(t + NDtF) = 1.4 The algorithm used to assess
NDtF(σ , t) consists of the following steps:

1. Start from fbm(t), d(t), Oca(t), and α(t).
2. Apparent density, ρ(t), is obtained from fbm(t) and α(t) (see

Appendix).
3. For a given instant t+τ , d(t+τ ) is known (commencing with
τ = 0 and d(t)). Thus, evaluate the Young’s modulus from
Equation (26), so to obtain E

(

ρ(t), d(t + τ )
)

.
4. Assuming a uniaxial stress state, calculate the maximum

principal strain:

εmax =











σ

E
(

ρ(t), d(t + τ )
) if σ ≥ 0

−
ν σ

E
(

ρ(t), d(t + τ )
) if σ < 0

(27)

5. With d(t + τ ) and εmax, use Equation (20) to work out Ñ.

4In practical terms this condition was replaced by d(t + NDtF) = 0.999 to avoid

the negative stiffness that could arise from d > 1 (see Equation 26).

6. Equation (15), (16), and (21) are used to update damage when
N additional cycles (corresponding to 1τ = 1 day) are
applied:

d(t + τ +1τ ) = 1−

[
1

Ct2
ln

(

eCt2 − Ct1 ε
δt
max(Ñ + N)

)
] 1
γt

− d(t + τ )
kres · Oca(t) ·1τ

fbm(t)
(28)

7. If d(t + τ + 1τ ) ≥ 0.999, then assign NDtF(σ , t) = τ + 1τ

and exit the algorithm. Otherwise, go to step 3 and commence
a new iteration.

It must be emphasised that NDtF is related to the risk of local
failure (within the RVE) and that the risk of fracture at the organ
level is influenced by other factors, such as the microstructure
and the distribution of loads, mechanical properties, density,
damage and mineral content throughout the bone among others.
This makes it necessary to take into account the whole organ,
for example with a FE model, in order to assess the true risk of
fracture of the specific organ.

2.8. Homeostatic Initial Conditions
All the simulations started from an equilibrium point
corresponding to a homeostasis situation under physiological
(healthy) conditions. The governing equations constitute a set of
differential-algebraic equations whose equilibrium points could
be assessed by setting the derivatives equal to zero in Equations
(1)-(5) and solving the resulting set of algebraic equations.
However, the equations that model the mineralisation process
are recursive and cannot be solved either in closed form or
numerically. Alternatively, the equilibrium point was obtained
by running a simulation for a given stress state and letting
the system to reach homeostasis in the long-term. For a given
stress, initial conditions were arbitrarily set in a first iteration.
The values at the end of an iteration were used as the initial
conditions in the next one and the process was repeated until
convergence (two successive iterations producing differences less
than 0.1% in every variable). We have assumed here a uniaxial
stress state, which completely defines the homeostatic condition
for a given value of the applied stress.

3. RESULTS

The procedure outlined in subsection 2.8 was used to obtain the
equilibrium (homeostatic) points for a range of tensile uniaxial
stress. Figure 4 shows the homeostatic values of fbm, strain and
damage d for each value of the stress. Analogous graphs can
be obtained for the rest of variables of the model and for
compressive stress.

A tensile stress of 12 MPa was chosen and the homeostatic
state for that stress was obtained as explained above. This
homeostatic state was used to define the set of initial conditions
for all the simulations.
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FIGURE 4 | Homeostatic values of fbm, strain and damage d for different values of uniaxial tensile stress.

PMO was simulated by a gradual increase in the RANKL
production rate (see Equation 10) where the parameter PPMO,max

RANKL
controls the degree of incidence of the disease, starting from
600 pM day−1 to simulate a moderate degree of incidence.
The WHO-approved denosumab dosage for the treatment of
osteoporosis is 60 mg administered every 6 months (60Q6) via
subcutaneous injection, being higher doses restricted for the
treatment of other diseases such asmultiple myeloma or giant cell
tumor. Figure 4 shows the evolution of bone apparent density
when the treatment is commenced 3 years after the onset of the
disease5 and the results are compared with the evolution in a
non-treatment group. Patient’s body weight (BW) influences the
concentration of denosumab present in the central compartment
(Marathe et al., 2011) and strongly affects the results. For this
reason, a BW= 60 kg has been taken as the reference value.

In order to evaluate the risk of local failure that anti-resorptive
treatments may cause in the long-term, the temporal evolution of
microstructural damage, ash fraction andNDtF are also shown in
Figure 5. It can be seen that damage and ash fraction increase
simultaneously at the beginning of the treatment. This makes
the risk of local failure to rise as well6. After a given time,
as the mineral content gets stabilised, damage is slowed down
and the risk of failure falls below the values obtained for the
non-treatment group.

The time elapsed from the onset of disease to the beginning
of the treatment was varied from 1 to 10 years in a set of
simulations (see Figure 6) aimed at highlighting the importance
of starting the treatment as early as possible. It can be seen how
late treatments can notably increase the risk of failure.

Figure 7 compares the effect of changes in the mechanical
loading (i.e., physiological exercise), hereafter denoted as
overloading, through the applied stress. Six cases were analysed,

5We will identify the onset of the disease with the instant when the increase in

RANKL production starts, though the disease is likely not evident at that point.
6It must be recalled that NDtF is inversely related to the risk of failure: the fewer

days are needed to reach d= 1, the higher is the risk of failure.

all except one (case 6, “no treatment”) including the 60Q6
treatment. In all the cases with treatment, this starts 3 years after
the onset of the disease, except for case 5, and the change of
load coincides with the beginning of the treatment. The cases are:
(1) the nominal case with no change in mechanical load; (2) a
stepwise increase of 1.2 MPa (10% of the homeostatic load) in
the applied tensile stress; (3) a stepwise decrease of 1.2 MPa; (4)
a stepwise increase of 3.6 MPa; (5) a stepwise increase of 3.6 MPa
in a late treatment, commencing 10 years after the onset of the
disease; (6) no treatment7. The results show that bone density
rises with the increase of applied stress, though damage can also
rise. In this regard, damage can be reduced with a decrease of
the applied stress, but this does not imply an improvement of
bone quality, since bone density and consequently stiffness may
drop significantly, as in case 3, which exhibits a very low NDtF.
In general, the simulations predicted that an increment of stress
coincident with the treatment reduces the risk of local failure,
though an excessive increment of stress could be dangerous in
a late treatment, in which the initial bone condition can be very
deteriorated by the prolonged disease.

The importance of accumulation of unrepaired damage and
degradation of fatigue properties with the mineral content on
the risk of failure is compared next (see Figure 8). To this
end, two cases were compared: (1) the model implementing
the degradation of fatigue properties through Equation (22),
as in the previous simulations, and (2) a model using Kt =

1.445 · 1053 constant. In the latter, only the accumulation of
unrepaired damage plays a role; while in the former, both factors
are important. This will be done for a late treatment 60Q6
beginning 10 years after the onset of the disease and coinciding
with a stepwise increase of stress of two different magnitudes: (a)
3.6MPa (30% of the nominal value) and (b) 4.8MPa (40%). It can

7These changes of load must not be confused with the overload considered in

the assessment of NDtF. For example, in case 3 the load does change from the

homeostatic value to 90% of that value at the moment the treatment begins. Then,

NDtF(σ , t) is calculated for the hypothetical case that the load were increased to σ .
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FIGURE 5 | Evolution of density (top left), damage (bottom left), mineral content (bottom right), and NDtF corresponding to an overload σ = 24 MPa (top right) for the

WHO-approved treatment 60Q6 and comparison with the non-treatment group.

be seen that the embrittlement of bone matrix due to an excessive
mineral content plays a key role in the failure experienced with
a 30% overload, as the simulation without the degradation of
properties does not predict that failure. However, in the case of
a 40% overload, the accumulation of unrepaired damage seems
to play a more important role, as the simulation without the
degradation of properties also predicts that failure.

4. DISCUSSION

4.1. General Comments
Hernandez et al. (2001b) developed a computational model
of bone remodelling to compare the contributions of focal
bone balance and mineralisation on BMD by simulating
alendronate treatment using a bone balance method (decreased
remodelling space, increased focal bone balance, uniform
bone mineralisation) and a mineralisation method (decreased
remodelling space, neutral focal bone balance, varying bone
mineralisation). Their results suggested that the mineralisation

method is more descriptive of long-term alendronate treatment
indicating that adequate modelling of the mineralisation process
is essential to explain observed BMD changes caused by
alendronate. While the authors suggest that this model may be
used to identify improved dosing regimens and to predict which
osteoporosis treatments are more effective, we note that the
latter model did not include mechanical loading and microcrack
formation explicitly. Hence, the combined effects of physical
exercise and treatment with anti-resorptive agents cannot be
adequately investigated.

A previous study by Nyman et al. addressed a similar question
as we posed in the current paper, i.e., how does mechanical
loading and long-term anti-resorptive treatment affect BMD
and risk of fracture (Nyman et al., 2004). They utilised a
bone remodelling model incorporating micro-damage formation
due to mechanical loading together with simulating effects of
bisphosphonate treatment. Both disuse and fatigue microdamage
were assumed to stimulate the activation frequency of basic
multicellular units (BMUs) such that bone remodelling served
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FIGURE 6 | Influence of the time elapsed between the onset of disease and the beginning of the treatment. Evolution of density (left, solid lines), damage (left, dashed

lines), and NDtF-σ = 24 MPa (right) for treatment 60Q6.

FIGURE 7 | Influence of an increment in the applied stress coinciding with the beginning of the treatment. Evolution of density (left, solid lines), damage (left, dashed

lines), and NDtF-σ = 24 MPa (right) for treatment 60Q6. Four cases of changes in the applied stress are compared with the nominal case (no change) and the

non-treatment group.

to remove excess bone mass and microdamage. Bisphosphonate
effects were simulated as suppression of BMU activation
frequency either without a change in resorption by the BMU
or with an independent decrease in resorption while the
bone formation process was unaffected (i.e., formation initially
exceeded resorption). We note that the initial increase of bone
formation with respect to resorption is only temporarily and
a very small contributor to increase in BMD in the long
term (Martínez-Reina and Pivonka, 2019; Martínez-Reina et al.,
2021). Based on the fact that the work of Nyman et al. did
not include the mineralisation process they had to include the
overfilling of resorption cavities as a mechanism of action of
bisphosphonates in order to obtain BMD increases. Their model
predicted a plateau in the bone mass gain that typically occurs

in clinical studies of bisphosphonate treatment. However, the
mechanism of overloading and the mineralisation process were
not incorporated into that model.

The above limitations are overcome in the present study
in which a new model has been developed based upon a
previous one (Martínez-Reina et al., 2021) to include the
level of microstructural damage as a new parameter regulating
mechanobiological feedback. The also new proliferation function
(see Figure 3) was calibrated to reproduce the Mechanostat
Theory and the Principle of Cellular Accomodation. Once the
new model was calibrated, it was used to simulate the response
of bone to PMO, modelled as a gradual increase in RANKL
expression, and subsequent treatments with denosumab. As
discussed in a previous work (Martínez-Reina and Pivonka,
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FIGURE 8 | Influence of the degradation of fatigue properties with the mineral content. Evolution of density (left, solid lines), damage (left, dashed lines), and

NDtF-σ = 24 MPa (right) for treatment 60Q6. Two scenarios are considered: (a) a stepwise increase of 30% of the nominal stress coinciding with a late treatment and

(b) a stepwise increase of 40%; and two models with and without considering the degradation of fatigue properties with the mineral content. Note: the red and blue

solid lines in the left figure coincide, respectively, with the cyan and green solid lines.

2019), bone density gain in denosumab treatments is mainly
explained by the bone mineralisation process, which makes the
mineral content to reach abnormally high values once bone
turnover is blocked by the drug. But such a high mineral content
jeopardises bone integrity as it makes bone matrix more brittle.
Moreover, microstructural damage begins to accumulate and
remains unrepaired due to the suppression or decrease of bone
resorption. Figure 5 (bottom) showed how mineral content and
damage rise simultaneously after the treatment commences,
which is probably due to the concurrence of both factors:
increased brittleness and unrepaired damage. In fact, damage is
greater in the treatment group than in the non-treatment one for
a long time, despite the greater BMD reached with the treatment,
which increases stiffness and reduces strains. In the long-term,
this reduction of strains predominates over the two negative
factors commented before and damage falls below the values of
the non-treatment group.

The risk of suffering an atypical femoral fracture (AFF)
might also be enhanced by other factors not considered in
this work. For example, at the micro (local) level, it could
be affected by alterations of bone microarchitecture or by
the higher concentrations of advanced glycation end-products
within the extracellular collagenmatrix, which can also raise bone
brittleness (Vashishth et al., 2001). At the macro (organ) level,
AFF might be affected by a redistribution of loads, mechanical
properties, density, damage and mineral content. For example,
the increased thickness of the femoral cortex observed in patients
who have suffered an AFF (Larsen and Schmal, 2018) has been
associated to an augmented strength and stiffness of the bone,
which makes the skeletal structure more brittle at the same time
(Donnelly et al., 2012). The consideration of these factors requires
the use of FEmodels in combination with PK-PDmodels, as done
byHambli et al. (2016). In the present work, the risk of failure was
only estimated at the local level throughNDtF, but this limitation

could be overcome by applying the present algorithm to such
FE models.

4.2. Disease and Treatment 60Q6
The simulation of the non-treatment case predicted that the onset
of the disease triggers the risk of local failure after a couple of
years (see black line in Figure 5 top right). This occurs because
damage is initially reduced by an increasing bone turnover rate
(bone resorption is able to repair damage quite efficiently) and
this decrease in damage compensates for the decrease in bone
density, making NDtF to be approximately constant. In the mid-
term, density has fallen somuch that bone stiffness is significantly
diminished. Strain increases and consequently damage rises, with
bone resorption unable to repair the large amount of damage.
The concurrence of damage increase and density decrease makes
NDtF fall abruptly (higher risk of failure). In the long-term,
though there is still an increasing risk of failure, NDtF reaches
a stable value.

Anti-resorptive treatments lead to a decrease of bone turnover
rate entailing an increase of mineral content and a subsequent
increase of damage (see red line in Figure 5 bottom left), which is
initially even higher than in the non-treatment group. However,
in the long-term, bone density gain counteracts this effect by
increasing stiffness and reducing strains, making damage slow
down and, eventually, reducing the risk of failure.

4.3. Time Elapsed From the Onset of
Disease to the Beginning of the Treatment
One factor that could limit the benefits of the treatment is
the delay in its commencement. As stated before, non-treated
patients could suffer a rapid bone loss right after the onset of
disease, which would get stabilised after 10–12 years. However,
damage did not stop rising in our simulations (though it did quite
slowly in the long-term) and this made the risk of failure increase
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a little. This result highlights the importance of starting the
treatment as soon as possible, before damage goes up excessively.
Figure 6 analysed the effect of the time elapsed from the onset of
disease to the beginning of the treatment. It could be seen how
a late treatment can have severe consequences, as bone density
gain is lower than in early treatments and, more importantly,
because damage may rise even above the values reached in non-
treated patients. This damage increase is quite remarkable in late
treatments and is probably due to the deterioration of fatigue
properties, the decrease of damage repairing and an insufficient
increase of bone density and stiffness. NDtF shows how the
combination of all these effects increased the risk of failure in late
treatments. Although all of the NDtF curves seemed to converge
to the same evolution, the period right after the start of the
treatment was significantly more dangerous in late treatments.

4.4. Combination of Treatment and
Exercise
The influence of exercise in combination with the denosumab
treatment was analysed to conclude that, in general, an increment
of the applied stress coincident with the commencing of the
treatment is beneficial since it produces a greater bone density
gain while keeping damage under control. The simulations
showed that an increment of exercise is followed by a decrease
of the risk of failure. On the contrary, a decrease of mechanical
loading reduces the effectiveness of the treatment and this could
seriously compromise bone integrity [see case 3 (dark blue line),
in Figure 7]. In this case, bone formation is not promoted by
the low stress and cannot compensate the bone density fall at
the end of every treatment cycle, when bone turnover is slightly
reactivated.

Case 5 (cyan in Figure 7) involved a strong increase of the
stress in a late treatment and was analysed to illustrate three
important ideas: (1) how dangerous late treatments can be;
(2) the enhanced risk of failure that a significant increase of
stress might produce and (3) how apparently small values of
d ∼ 0.05 are indeed high and can easily lead to failure in a
few number of cycles. Late treatments were shown in Figure 6

to enhance damage accumulation and produce a limited bone
density gain. This effect, in combination with a strong increment
of stress, that also contributes to increase damage, led to a fatigue
failure (d = 1 and NDtF = 0) soon after the beginning of
the treatment.

It must be noted that all the cases analysed in Figure 7 implied
overloads resulting in normal/moderate constant stresses. No
high overloads or traumatic events were considered, which could
cause significantly higher stresses, eventually leading to high-
energy fractures. These high overloads were indeed considered in
the calculation of NDtF, which provided the remaining fatigue
life if the stress was increased up to 24 MPa, i.e., in case of
an extra overload. In this regard, it is interesting to note that
case 3 (underload by 10%) presented the highest risk of failure
up to day 5,000 and yet case 5 was the only one to undergo
failure. This is explained by the different performance of bone
in both situations. In case 3, the risk of failure was determined
by a low stiffness and seemed to be not so sensitive to overloads.

Meanwhile, in case 5 it was determined by the high amount of
unrepaired damage, which made bone more prone to failure in
the event of a sudden overload, at least in the local scale, at the
RVE. Certainly, the situation could be different at the organ level,
as the reduction of stiffness of case 3 could redistribute the loads
within the bone, what could initiate fracture elsewhere in the
same bone.

The choice of 24 MPa as the overload to calculate NDtF was
arbitrary, but allowed an easier comparison of the presented
results and a more comprehensive analysis of the different factors
that affect the risk of failure. The results were qualitatively
similar for overloads around 24MPa. For higher overloads,NDtF
was very small regardless of the case, while lower overloads
did not lead to a significant increase of the risk of failure
in any case.

4.5. Importance of Brittleness vs.
Unrepaired Damage in the Risk of Failure
Decrease in bone turnover due to anti-catabolic treatments has
been associated to the development of AFF (Saita et al., 2015), due
to the alteration of the tissue repair process (Mashiba et al., 2000).
The accumulation of unrepaired microstructural damage results
in unimpeded crack progression and may eventually lead to that
type of fracture (Ettinger et al., 2013). However, another factor
could also contribute to that increased occurrence of AFF, as
hypothesised in a recent work (Martínez-Reina et al., 2021). This
factor is bone mineral content, which increases as a consequence
of the suppression of bone turnover, i.e., while mineral is not
prevented from being accumulated within bone matrix and is
not returned to blood serum by bone resorption. The mineral
phase makes bone matrix more brittle, increasing the stiffness
but reducing the fracture toughness of bone (Bala et al., 2013).
This fact was confirmed by experimental studies that measured
a higher amount of microstructural damage in interstitial bone,
which has a higher BMC (Boyce et al., 1998; O’Brien et al., 2000;
Qiu et al., 2005) and it wasmodelled in subsection 2.5 through the
degradation of bone fatigue properties with the mineral content.
In the above-mentioned work (Martínez-Reina et al., 2021), the
risk of failure was not assessed and it was only associated to a
high BMC. The presentmodel was intended to evaluate the risk of
failure by adding the damage level to the previous model as a new
variable and considering damage accumulation by fatigue and
damage repair by resorption. The new hypothesis is that it must
be the concurrence of both factors (accumulation of unrepaired
damage and increased brittleness) what would explain the high
risk of AFF in antiresorptive treatments. The comparison made
in Figure 6 aimed at discerning the relevance of those factors on
the risk of AFF. From those simulations it could be concluded
that both would play a role in the occurrence of AFF. If the stress
is increased by 30%, the degradation of fatigue properties plays
a key role in the occurrence of failure, as it only occurs if those
properties are degraded. However, if the stress is increased by
40%, the accumulation of unrepaired damage is more important,
as it is so fast that failure would occur regardless of whether the
fatigue properties are degraded or not.
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4.6. Limitations of the Study and Final
Comments
The main limitation of this study is that the model was applied
at the RVE level and the equations were solved only at this local
level, without any interaction with the surroundings. Apart from
diffusive terms of cell populations and biochemical factors, the
distribution of stresses would play a key role in the behaviour
at the organ level. Local changes in porosity, mineral content
and damage would produce local changes in stiffness that might
redistribute loads and affect the organ globally. To consider
this, the model could be implemented in a Finite Element (FE)
code. This would allow to evaluate that redistribution, which is
particularly important in damage propagation and consequently
in the assessment of the risk of fracture at the organ level.
Moreover, the FE model would allow to simulate stress states
more general than the simplistic uniaxial state modelled here.
Nonetheless, this is out of the scope of the present paper and is
left for future studies.

The risk of failure was also evaluated in a simplistic way: by
estimating the remaining fatigue life of the RVE at a given time
point in case of a constant overload and if all the variables except
damage remained constant until failure. This estimated risk of
failure should be considered only for the purpose of qualitative
comparisons, as done here, and making a clear distinction
between the risk of local failure, assessed at the RVE, and the risk
of fracture, assessed at the organ level. As stated above, damage
propagation and redistribution of stresses at the organ level
would have a fundamental influence on the true risk of fracture
of a given bone, but other factors such as microstructure or the
multiaxiality of loads, not considered here, would also have it.

In our mineralisation algorithm, calcium (and phosphorus)
availability is unlimited for deposition in bone matrix. This
is only a simplification, as its availability depends on calcium
(and phosphorus) homeostasis at the body level. Peterson and
Riggs (2012) developed a model that accounted for calcium
balance in blood serum. This process is controlled mainly
by three mechanisms: (1) absorption in the intestine, (2)
filtration/recirculation in the kidneys, and (3) deposition or
retrieval from bone matrix through bone resorption. That
balance is affected by numerous factors that could reduce mineral
availability for bone deposition, among which there could be
dietary restrictions and pathologies such as hypoparathyroidism
or renal dysfunction. The incorporation of these mechanisms
into the present model is currently under development.

Clinical results of bone density gain in denosumab treatments
for PMO (Miller et al., 2008) exhibit a great variability that
could be explained by the high number of factors that affect
bone response. The present model is based on a previous
one (Martínez-Reina et al., 2021) that was validated with
the mentioned clinical results. Though not shown here, the
algorithmic novelties incorporated into the present model did
not produce significant changes in the model predictions and,

particularly, the predicted bone density gain remained within the
commented variability. Among the factors that may explain this
variability we have investigated two of them: time elapsed from
the onset of the disease and level of physical activity, though
other factors such as treatment dose and frequency, incidence of
the disease, patient’s age and body weight, etc. could also have a
great impact on the evolution of bone density gain and should be
analysed in future studies.

Another aspect that this variability suggests is the need for a
patient specific treatment, provided that this variability comes
from patients’ features that can be identified and measured.
Obviously, this specific treatment should not conflict with WHO
recommendations and therefore, they could not include dosage
and frequency as variables, because these are fixed to 60Q6 for
the treatment of PMO; however, other variables such as the
activity level certainly could. For example, a gradual increase in
activity level could be prescribed to old women who commence
the treatment late. The parameters of the training regimen could
be optimised as a function of patient’s age, body weight, recent
DEXA scans, etc. For this reason, it is of paramount importance
to analyse the influence of more factors in order to design patient
specific anti-resorptive treatments, which is the global aim of the
present study.
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APPENDIX

Algorithm of Bone Mineralisation
Bone tissue is made up of bone matrix and pores. Thus,
the representative volume element, VRVE, can be divided into
the bone matrix volume, Vbm, and the volume of vascular
pores, Vvas. In turn, bone matrix volume is divided into
inorganic (mineral), organic (mainly collagen), and water phases,
respectively designated as Vm, Vo, and Vw:

VRVE = Vbm + Vvas = Vm + Vo + Vw + Vvas (29)

The volume fractions of extravascular bone matrix and
vascular pores are respectively given by fbm = Vbm/VRVE and
fvas = 1 − fbm = Vvas/VRVE. The mineral content is usually
measured by the so-called ash fraction, the ratio between mass
of mineralmm (or ash mass) and dry mass (the sum of inorganic
and organic mass):

α =
mm

mm +mo
=

ρm Vm

ρm Vm + ρoVo
(30)

where density of hydroxyapatite is taken for ρm = 3.2 g/cm3

(Currey, 2004). Organic phase is mainly composed of type I
collagen, but other non-collagenous proteins are also present.
Thus, ρo = 1.2 g/cm3 was adjusted to provide a tissue density
ρt = 2.1 g/cm3 for the completely mineralised tissue α = 0.73
(García-Aznar et al., 2005).

Specific volumes are defined by: vo = Vo/Vbm, vm =

Vm/Vbm, and vw = Vw/Vbm, which implies that vo+vw+vm = 1.
Then, Equation (30) can be given in terms of the specific volumes:

α =
ρm vm

ρm vm + ρo vo
(31)

Bone tissue density is given by:

ρt =
m

Vbm
= ρm vm + ρo vo + ρw vw (32)

Mineral accumulates by displacing water present in bone
matrix (Hernandez et al., 2001a). Therefore, the volume ratio
of organic phase is assumed constant during the mineralisation
process, vo = 3/7 (Martin, 1984); while the variations of
mineral and water volume ratios hold 1vm = −1vw. We have
followedHernandez et al. (2001a) to assess the increase of vm with
time, by distinguishing the mineralisation lag time; the primary
phase, with a linear increase, and the secondary phase, with an
exponentially decreasing rate:

vm(t) =















0 if t ≤ tmlt

vmprim
t − tmlt

tprim
if tmlt < t ≤ tprim + tmlt

vmmax − (vmmax − vmprim)

e−κ·(t−tprim−tmlt) if tprim + tmlt < t

(33)

where tmlt and tprim are, respectively, the length of the
mineralisation lag time and the primary phase; vmprim is the

TABLE A1 | Values taken for the constants of the PK-PD model.

Parameter Value Units

kres 2 day−1

kform 0.4 day−1

Obu 0.01 pM

Ocp 0.001 pM

DObu 6.3 · 10−4 day−1

DObp 1.657 · 10−1 day−1

PObp 0.211 day−1

DOcp 2.1 day−1

AOba 0.211 day−1

AOca 5.65 day−1

βRANKL 168.4 pM day−1

D̃RANKL 10.13 day−1

RRANKL 2.7 · 106 -

RRANK 1 · 104 -

βOPG 1.625 · 108 pM day−1

D̃OPG 0.35 day−1

OPGmax 2 · 108 pM

ζ 0.02 -

Kd,[RANKL−OPG] 1000 pM

Kd,[RANKL−RANK] 29,31 pM

Kd,[RANKL−den] 3 pM

η 4.143 · 10−2 pM

σ 12 MPa

Pmech,maxRANKL 500 pM day−1

PPMO,maxRANKL 600 pM day−1

δPMO 2 years

D̃TGF−β 2 day−1

αTGF−β 1 -

KTGF−β

act 5.633 · 10−4 pM

KTGF−β
rep 1.754 · 10−4 pM

KPTH
act 150 pM

KPTH
rep 0.223 pM

ka 0.17 day−1

kel 1.15 · 10−2 day−1

Vc 779 ml kg−1

F 1 -

Km 411 ng ml−1

Vmax 2672 ng kg−1 day−1

BW 60 kg

tmlt 12 days

tprim 10 days

vmprim 0.121 -

vmmax 0.442 -

κ 0.005 -

tR 3000 days

mineral specific volume at the end of the primary phase,
corresponding to α = 0.45 (Hernandez et al., 2001a); vmmax

is the mineral specific volume corresponding to the maximum
calcium content, 300mg/g (Currey, 2004); and κ is a parameter
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FIGURE 9 | FIFO (first in - first out) queue algorithm used to update the distribution of tissue patches of different ages within the RVE.

measuring the rate of mineral deposition during the secondary
phase (see Table A1). Note that, with the assumptions made
above, Equations (31) and (32) establish a biunivocal relation
between α and ρt . Also, according to Equation (25), apparent
density is univocally determined by fbm and α.

The amount of mineral contained in a RVE depends on the
age of the tissue through Equation (33), but the RVE can be made
up of tissue patches formed in the recent history, viz. of different
ages. Moreover, the tissue within the RVE can be resorbed, which
puts the mineral back into the blood flow. The amounts of tissue
of different ages contained in the RVE are estimated using the
algorithm depicted in Figure 9 (Martínez-Reina et al., 2009).
V form(t, τ ) provides the bone volume formed τ days ago and still
present (not yet resorbed) at time t. Knowing the distribution
of tissue patches of different ages at day t (left column) and the
volume formed (Vform(t) = kform Oba(t)) and resorbed that day
(Vres(t) = kres Oca(t)), the distribution at day t+1 (right column)
can be estimated:

V form(t + 1, i+ 1) = V form(t, i)− Vres(t)
V form(t, i)

Vbm(t)
(34)

Finally, the mineral content of each patch is summed to
estimate the average mineral content of the RVE at day t + 1.

vm(t + 1) =

∑tR
i=0 V form(t + 1, i) · vm(i)

Vbm(t + 1)
(35)

where the mineral contents of the patches, vm(i), are calculated
through Equation (33). tR represents the residence time, e.g., the
typical time the patch tissue remains within the bone before being
resorbed. This residence time can be very large but the queue can

be truncated at a shorter time to reduce the computational cost.
See (Martínez-Reina and Pivonka, 2019) for more details.

It must be noted here that the recursive character of this
mineralisation algorithm makes it necessary to integrate the set
of differential equations that governs the model using an explicit
integration scheme.

Adjustment of Mechanoregulation
The points that delimit the piecewise linear function 5

ψbm
act in

Figure 3 were adjusted to accomplish the Mechanostat Theory
and the Principle of Cellular Accommodation. The Mechanostat
Theory establishes and “adapted window” between 800 and 1,200
µε (Frost, 2003), as were the homeostatic strains obtained in
Figure 4.

The Principle of Cellular Accommodation establishes that
bone cells react strongly to variations in their environment, but
eventually “accommodate” to steady state signals (Turner, 1999),
in such a way that those variations in the stress would produce
a transient response to adapt to the new environment. To check
if the proposed model accomplished with that principle, a set of
simulations were run starting from the homeostatic situation and
implementing variations of the stress that were kept constant to
let bone reach a new steady state (see Figure 10). Increments of
stress lead to an increase in bone density and stiffness (reversely
in the case of decrements of stress), while strains lie out of the
“adapted window” defined by the Mechanostat Theory. Bone
tends to return to that strain range and accommodates to the
new environment when the “adapted window” is reached. The

limits established in Figure 3 to define 5
ψbm
act were adjusted to

achieve the behaviour of Figure 10, with an equilibrium strain
around 1,200 µε, as stated before, and a slope for the adaptation
response small enough not to produce numerical instabilities and
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FIGURE 10 | Variation of density and strain under uniaxial loading simulating underuse and overuse states.

large enough to achieve a new equilibrium in a reasonable time
(70% of the total change reached after 8–10 years).

One Compartment PK Model of
Denosumab
Among the pharmacokinetic (PK)models of denosumab that can
be found in the literature, we have followed the one proposed
by Marathe et al. (2011). This is a one-compartment model
withMichaelis-Menten kinetics that estimates serum denosumab
profiles. This model includes a first-order rate process (constant
ka) governing the absorption of the drug (input parameter
Doseden) from the subcutaneous injection site into the central
compartment (variableCP,den and constantVc). Drug elimination
from the central compartment is described by a combination
of a linear first-order process (constant kel) and a non-linear
saturation process (constants Vmax, Km):

dCp,den

dt
= ka

Doseden

Vc/F
· e−ka t −

Cp,den

Km + Cp,den

Vmax

Vc/F
− kel · Cp,den

(36)

where, Vc is the volume of the central compartment and the
factor F is the bioavailability, which is equal to 1 when the
drug is administered intravenously, as assumed here. In Equation
(36) Doseden is given in ng of denosumab per kg of body
weight8. Cp,den is the concentration of denosumab in the central
compartment, calculated (in ng/ml) as a function of time by
solving the differential equation (36) and subsequently converted
into pmol/l, through the molecular weight of denosumabMden =

149 kDa (Amgen). The initial condition for Equation (36) is set
to zero, indicating the absence of drug. The prolonged absorption
phase and the absence of intravenous data precludes the need

8The WHO-approved dose of 60 mg administered to a 60 kg patient would result

in Doseden = 106 ng of denosumab per kg of body weight.

for including distribution of the drug to a non-specific tissue
compartment and thus reduces the number of parameters in this
model.

Biochemical Regulatory Factors
TGF–β is stored in the bone matrix and released during
resorption by osteoclasts. Its concentration is calculated
following Pivonka et al. (2008):

TGF − β =
αTGF−β kres Oca

D̃TGF−β

(37)

where αTGF−β is the concentration of TGF–β in bone matrix
and D̃TGF−β is the TGF–β degradation rate. The concentration
of TGF–β is used to define the activator/repressor functions in
Equations (1)–(3):

5
TGF−β
act =

TGF − β

K
TGF−β
act + TGF − β

(38)

5
TGF−β
rep =

K
TGF−β
rep

K
TGF−β
rep + TGF − β

(39)

with K
TGF−β
act and K

TGF−β
rep the activation and repression

constants, respectively. RANK is expressed by osteoclasts
precursors:

RANK = RRANK · Ocp (40)

where RRANK is the carrying capacity. Concentration of OPG is
downregulated by PTH and is calculated following Pivonka et al.
(2012):

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 20 June 2021 | Volume 9 | Article 63505697

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Martínez-Reina et al. Exercise and Denosumab in PMO

OPG =
βOPG Oba 5

PTH
rep

D̃OPG +
βOPG Oba 5

PTH
rep

OPGmax

(41)

where βOPG and D̃OPG are, respectively, the production and
degradation rates of OPG and the activator/repressor functions
that govern PTH regulation on the RANKL-RANK-OPG
signaling pathway (Equations 41, 7) are given by:

5PTH
act =

PTH

KPTH
act + PTH

(42)

5PTH
rep =

KPTH
rep

KPTH
rep + PTH

(43)

where the concentration PTH = 2.91 pM has been
assumed constant in this case (Pivonka et al., 2008) and
KPTH
act and KPTH

rep are the corresponding activation and
repression constants.

The values of the constants of the PK-PD model are given in
Table A1. A detailed discussion of these values can be consulted
in (Martínez-Reina and Pivonka, 2019; Marathe et al., 2011;
Scheiner et al., 2014).
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The in vivo mouse tibial loading model is used to evaluate the effectiveness
of mechanical loading treatment against skeletal diseases. Although studies have
correlated bone adaptation with the induced mechanical stimulus, predictions of bone
remodeling remained poor, and the interaction between external and physiological
loading in engendering bone changes have not been determined. The aim of this study
was to determine the effect of passive mechanical loading on the strain distribution in
the mouse tibia and its predictions of bone adaptation. Longitudinal micro-computed
tomography (micro-CT) imaging was performed over 2 weeks of cyclic loading from
weeks 18 to 22 of age, to quantify the shape change, remodeling, and changes
in densitometric properties. Micro-CT based finite element analysis coupled with an
optimization algorithm for bone remodeling was used to predict bone adaptation
under physiological loads, nominal 12N axial load and combined nominal 12N axial
load superimposed to the physiological load. The results showed that despite large
differences in the strain energy density magnitudes and distributions across the tibial
length, the overall accuracy of the model and the spatial match were similar for
all evaluated loading conditions. Predictions of densitometric properties were most
similar to the experimental data for combined loading, followed closely by physiological
loading conditions, despite no significant difference between these two predicted
groups. However, all predicted densitometric properties were significantly different for
the 12N and the combined loading conditions. The results suggest that computational
modeling of bone’s adaptive response to passive mechanical loading should include the
contribution of daily physiological load.

Keywords: micro-FE, bone remodeling, micro CT analysis, longitudinal imaging study, mechanical loading effect

INTRODUCTION

Bone is a dynamic tissue that adapts its mass and geometry to mechanical and biological factors.
Its adaptive nature is governed by processes of modeling and remodeling in response to the
stimulus (Kim et al., 2003; Meakin et al., 2017), collectively known as bone (re)modeling or bone
adaptation. Bone adaptation is key for bone homeostasis (Javaheri et al., 2020). Age and diseases
such as osteoporosis disrupt this balance by causing a net bone loss and deterioration in mechanical
properties (Birkhold et al., 2014; Razi et al., 2015b; Meakin et al., 2017; Roberts et al., 2019).
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Preclinical models are useful in elucidating the mechanisms
behind the regulation of bone adaptation, and the mouse tibial
axial compression loading model is frequently used due to the
non-invasive application of loads through the knee and ankle
joints (Main et al., 2020). By controlling the applied axial load
on the tibia, this animal model has the goal of increasing the
local deformation of the bone tissue, similar to what happens
in impact exercises (De Souza et al., 2005; Main et al., 2020).
Cross-sectional and longitudinal studies have demonstrated that
increased passive loading on the skeleton is effective at inducing
increased bone formation in aged (Birkhold et al., 2014; Razi
et al., 2015a,b) and ovariectomized (Roberts et al., 2019) mouse
tibiae, albeit with lower adaptive response than in healthy mice
(Melville et al., 2014). In vivo imaging and dynamic 4D (time
and space) assessment of bone adaptation enable the detailed
evaluation of the lasting benefits of mechanical loading on
healthy (Javaheri et al., 2020) and ovariectomized (Roberts et al.,
2020) mouse tibia during treatment and after its withdrawal.
An understanding of how mechanical loading modifies baseline
bone adaptation in response to normal physiological loading
will benefit the optimization of treatment strategies to arrest
bone loss, improve fracture healing and enhance rehabilitation
(Cheong et al., 2020a; Main et al., 2020).

The coupling of experimental studies with computational
models has enabled the processes governing the mechanical
regulation of bone adaptation to be explored (Schulte et al.,
2013a; Cheong et al., 2020b; Javaheri et al., 2020). Bone
adaptation measured from the comparison of in vivo micro-CT
images or endpoint histology is correlated with the mechanical
environment computed from micro-CT based micro finite
element (micro-FE) models, to determine the role of the
mechanical stimulus in enhancing bone formation (Webster
et al., 2012; Carriero et al., 2018). The challenge is to replicate the
bone adaptation in response to passive mechanical loading. Most
studies have simulated the nominal condition imposed during
the tibial loading experiment by fully constraining the distal end,
and applying a pure axial load to the proximal end (Yang et al.,
2014; Pereira et al., 2015; Razi et al., 2015b), after alignment of the
bone to the experimental loading configuration. Bone remodeling
algorithms can then be coupled to the local mechanical stimuli
to better understand the process of bone adaptation. Several
categories of bone remodeling algorithms have been proposed,
including those based on a global optimality criterion (Jang
and Kim, 2010), achieving a state of homeostasis (Schulte
et al., 2013b), damage repair (Hambli, 2014), and mechano-
chemo-biological models (Lerebours et al., 2016). In the mouse
model, predictions of bone adaptation have largely centered on
attaining homeostasis, based on Frost’s mechanostat (Schulte
et al., 2013b; Levchuk et al., 2014; Pereira et al., 2015; Carriero
et al., 2018). Nevertheless, no study has analyzed the contribution
of physiological loading in understanding the response of passive
mechanical loading, with studies applying the peak external
load in FEA models coupled with a bone remodeling algorithm.
Different mechanical stimuli have been investigated, including
fluid flow, strain energy density (SED), strain gradient and
maximum principal strain, and have shown spatial match of
over 47%, less than 9% errors in densitometric parameters in

the mouse tail model (Schulte et al., 2013b) and a Kendall’s
τ rank coefficient of 0.51 in cortical thickening for the mouse
tibia (Pereira et al., 2015). Recently, a combined optimality- and
mechanostat-based model using SED as the mechanical stimulus
and minimizing the error between the predicted and measured
change in geometrical properties between 2 weeks of scans was
developed (Cheong et al., 2020a). The results showed that this
methodology was able to achieve an overall spatial match of over
60% for healthy, and mechanically loaded tibia after ovariectomy
(OVX) (Cheong et al., 2020a,b) at the organ level, and similar
bone mineral content (BMC) and bone mineral density (BMD) in
healthy or OVX whole tibiae. Physiological loading was applied in
those models (Cheong et al., 2020a,b), but the predictive ability of
the bone remodeling algorithm under different simulated loading
conditions has not been assessed.

The purpose of this study was to evaluate the influence
of the organ-level load on the local strain distribution across
the length of the mouse tibia, and on the accuracy of the
predictions of spatial patterns of bone adaptation, morphometric
and densitometric properties spatio-temporally with a multi-
scale approach. The analyses were conducted on mouse tibiae
that had been mechanically loaded after OVX (Cheong et al.,
2020b; Roberts et al., 2020) using physiological load and/or
nominal passive load as applied in the experiments. The novelty
of this paper is the comparison among predictions of a micro-
FE mechanoregulation pipeline driven by physiological load,
applied passive load, and combined physiological-passive load
as the source of the mechanical stimulus for bone remodeling.
In particular, no previous study has investigated the potential
influence of physiological loading that the bone is subjected
to under daily activities, in addition to the subjected passive
load applied during the tibial loading experiments, on bone
adaptation and on the predictive ability of the models. We
hypothesize that the ability of the multi-scale models in
predicting bone changes over time would be similar due to the
form-function relationship of bone to withstand loading due to
daily physical activities.

MATERIALS AND METHODS

Experimental in vivo Data
The experimental data used in this study were collected in a
previously published longitudinal study (Roberts et al., 2020).
Six 14-week-old female C57BL6/J were ovariectomized at week
14 of age and underwent in vivo micro-CT scans of the whole
right tibia at weeks 14, 16, 18, 20, and 22 (VivaCT80, Scanco
Medical, Bruettisellen, Switzerland) with a scanning procedure
(55 kVp, 145 µA, 10.4 µm voxel size, 100 ms integration time,
32 mm field of view, 750 projections/180◦, no frame averaging,
and 0.5 mm Al filter) that has minimal effects on the bone
remodeling (Oliviero et al., 2019). The images were reconstructed
by using a beam-hardening polynomial correction based on a
1,200 mgHA/cc wedge phantom (provided by the manufacturer).
Mechanical loading was applied to the right tibia in vivo at weeks
19 and 21 with a 12N peak load, 40 cycles/day and 3 days/week
on alternate days.
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Image Registration
All micro-CT images were rigidly registered to a reference bone
following virtual removal of the fibula (Amira 6.3.0, Thermo
Fisher Scientific, France), using normalized mutual information
as the optimization criterion (Lu et al., 2016, 2017). Following
geometrical alignment, a cropping plane perpendicular to the
longitudinal axis (z-axis) was used to crop the images to 80%
of the tibial length starting from the slice below the proximal
growth plate. The gray value histogram of the images was
used to compute a global threshold, equidistance between the
background and bone peaks, that was used to segment the bone
geometry and binarize the cropped images (Oliviero et al., 2017).

Micro-FE Analysis
The segmented images were used to build micro-FE mesh by
converting all bone voxels into linear brick elements (element
size: 10.4 µm). To determine the changes in structural properties
due to changes in bone morphology, tissue homogeneity was
assumed (Razi et al., 2015b) and an elastic modulus of 14.8 GPa
and Poisson’s ratio of 0.3 was assigned to all element following
previous validation studies (Oliviero et al., 2018, 2021a). Micro-
FE analysis was performed (Abaqus 2017, Dassault Systèmes
Simulia, United States) to obtain the local strain distribution,
by applying a load through the centroid of the most distal
slice kinematically coupled to the distal surface, while the nodes
on the proximal surface were fully constrained (Cheong et al.,
2020a). The distal surface was restricted from rotation. This
methodology provides a consistent approach to compare changes
in the structural properties of bone and has been validated to
reproduce the displacement and stiffness under compression
using digital volume correlation (DVC) (Oliviero et al., 2018).
The images from the treatment period of weeks 18–22 were used
for this study and three different types of loading were evaluated:
(1) physiological load; (2) nominal 12N axial load; (3) combined
nominal 12N axial load superimposed to the physiological load
(Figure 1). A peak physiological walking load of 0.01355∗BW N/g
along the superior-inferior direction and 0.00289∗BW N/g along
the posterior-anterior direction scaled according to the body
weight (BW) of the mouse at each week was applied, calculated
using force plate data collected by Charles et al. (2018). The effect
of the medial-lateral load was not modeled as its effect on strain
energy density was minimal (Cheong et al., 2020a).

Computational Algorithm and Selection
of Parameters
The local mechanical stimulus (strain energy density, SED)
was used as input to a linear mechanoregulation algorithm
(Figure 1B), applied at the organ-level to predict changes
in local tissue mineral density (TMD) as detailed previously
(Cheong et al., 2020a). The algorithm is based on Frost’s
mechanostat theory, which hypothesizes that bone tissue adapts
to the mechanical stimulus by bone formation/resorption until
bone is resorbed or the TMD is at equilibrium. Following
a sensitivity analysis (Cheong et al., 2020a), a “lazy zone”
where net remodeling is zero (Christen et al., 2014) was not
implemented as it did not significantly improve the predictions.

Gray values of the images were converted to TMD as inputs
to generate the predicted micro-CT images at the next time
point, using a calibration equation from the manufacturer
based on weekly quality checks with a five-rod densitometric
phantom. Comparisons of the local SED with the remodeling
law was used to compute the mean change in TMD (Cheong
et al., 2018), and applied to the background and bone voxels.
The updated TMDs were converted back to gray values to
generate the pseudo micro-CT images for validation with the
experimental dataset. A total of three parameters defined the
mechanoregulation algorithm (SED threshold, bone apposition
rate and bone resorption rate). The parameters were optimized
by computing the change in volumetric second moment in the
medial-lateral and anterior-posterior directions between 2 weeks
in the binarized experimental and predicted datasets across 10
sections of the bone, and minimizing the difference between the
experimental and simulation results using sequential quadratic
programming (MATLAB 2018A, The MathWorks Inc., Natick
MA, United States).

Spatial Analyses and Model Accuracy
To identify the sites of bone remodeling, the follow-up images
of each mouse were superimposed by aligning their volumetric
centroid and cropped to the same length (Cheong et al., 2020b).
Surface voxels were determined by locating the endosteal and
periosteal outlines of the segmented images. The following
densitometric parameters were computed and compared against
the in vivo dataset, as detailed in Lu et al. (2016): bone volume
(BV), bone volume fraction (BV/TV), bone mineral content
(BMC) and volumetric bone mineral density (BMD). Bitwise
operations were applied to classify increases in TMD on the
surface voxels as bone apposition and decreases in TMD as
resorption. BV sums the total volume of the binarized bone
voxels, while TV sums the volume enclosed by the periosteal
surface. BMC for each voxel was computed as the product of
the TMD and voxel volume. BMD is obtained by normalizing
BMC by TV. To account for measurement uncertainties, the
results were computed for the whole bone and averaged across
10 longitudinal sections of the tibia at the tissue level.

Two evaluation metrics were used to determine the accuracy
of the model in predicting local bone changes: (1) spatial match,
which was defined as the amount of bone changes that has the
same state change in the experimental and predicted datasets,
normalized by the total number of voxels with the state change
in the predicted dataset and (2) prediction accuracy, which was
defined as the number of voxels with the same state change in
both dataset, normalized by total number of voxels with the state
change in the experimental dataset. The prediction accuracy was
computed separately for apposition and resorption, and on the
endosteal and periosteal surfaces.

Statistical Analysis
The effect of loading within subjects at each time point was
assessed using the non-parametric Wilcoxon signed rank test
due to the small sample size. Statistical significance was set at
p < 0.05 (two-tailed). Heat maps were used to summarize the
p-values resulting from the comparison of SED in the different

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 June 2021 | Volume 9 | Article 676867101

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-676867 June 5, 2021 Time: 17:13 # 4

Cheong et al. Mechano-Regulated Bone Adaptation

FIGURE 1 | (A) Schematic of the in vivo loading experiment. (B) Overview of the workflow used in determining the parameters of bone adaptation and the
computational algorithm used. (C) The evaluated loading and boundary conditions.

sub-regions of the tibia. All data analysis and graph plotting
were conducted in Origin 2019 (OriginLab Corp., Northampton,
MA, United States).

RESULTS

The results in Figure 2 show the large differences in SED
magnitudes and distributions induced in the bone tissue by
the passive 12N axial load compared to those induced by the

physiological load (physio). At week 18, the SED was significantly
different between the 12N load case and the combined case
(12N + physio) at the distal (section 1) and proximal tibia
(sections 7–10) (Wilcoxon signed ranked test, p < 0.05). At week
20, only sections 1, 9, and 10 were significantly different between
the 12N and 12N + physio case. Physiological loading caused
high SED in both the medial and lateral aspects of the tibia.
The 12N axial load causes high SED only on the lateral aspect
of the tibia. The posterior region immediately above the distal
tibiofibular joint also displayed high SED which was not observed
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FIGURE 2 | Average strain energy density (SED) in the cross section of the tibia (N = 6) due to different loading conditions (Distal: 0%, Proximal: 100%) at (A) week
18 and (B) week 20. 3D view of SED distribution in a typical mouse tibia (mouse 4) at (C) week 18 and (D) week 20. Physio: physiological load, 12N: nominal 12N
axial load, 12N + physio: combined nominal 12N axial load superimposed on the physiological load. Heat map indicate significant difference between the loading
conditions (Wilcoxon signed ranked test; p < 0.05: orange; p < 0.01: blue). Note the difference in scale for the color maps in the FEA plots.
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TABLE 1 | Bone adaptation parameters obtained from optimizing the predicted
and experimental images under different loading conditions.

Time period Load Apposition
rate (mg/cc-
Pa-2 weeks)

Resorption
rate (mg/cc-
Pa-2 weeks)

SED threshold
(Pa)

Week 18–20 Physio 2.1 ± 2.2* 2.1 ± 2.0 15.2 ± 11.9*#

12N 10.6 ± 9.4* 4.0 ± 2.8 134.1 ± 95.3*

12N + physio 5.8 ± 4.2 2.8 ± 2.2 281.1 ± 270.3#

Week 20–22 Physio 2.6 ± 3.0* 0.7 ± 0.2*# 1.7 ± 2.1*#

12N 22.5 ± 30.2* ˆ 6.4 ± 3.9* 152.7 ± 87.7*

12N + physio 6.8 ± 4.7ˆ 5.9 ± 2.6# 253.7 ± 170.9#

Physio: physiological load, 12N: nominal 12N axial load, 12N + physio: combined
nominal 12N axial load superimposed on the physiological load. *, #, and ˆ indicate
significant differences between the different groups (Wilcoxon signed rank test:
p < 0.05).

in the physiological loading case. A similar SED distribution was
also observed in the 12N + physio loading condition, but with
slightly higher SED on the medial tibia.

The boundary conditions simulating the passive loads in the
experiments and the combined passive and physiological loads
resulted in differences in the SED threshold by 1–2 orders of
magnitude compared to the physiological case (Table 1). The SED
thresholds between weeks 18–20 were approximately equivalent
to 40.5 ± 22.5, 129.0 ± 42.2, and 179.8 ± 82.3 microstrains
for the physiological, 12N and combined load case, respectively.
At weeks 20–22 the equivalent strain values were 12.8 ± 9.0,
138.9 ± 40.0, and 175.0 ± 66.3 microstrains, respectively. At
both weeks 18–20 and weeks 20–22, the SED thresholds were not
significantly different for the 12N and 12N + physio load cases
(p > 0.05), but the apposition rate was different at week 20–22
(p = 0.036).

Figure 3 shows that the overall densitometric calculations,
spatial match and accuracy of the model were similar despite
differences in the load magnitudes and distribution in the models.
At week 20, the predicted densitometric values were significantly
different between the groups, as the 12N axial load condition
systematically predicted the highest densitometric values, when
compared against the physiological loading (p = 0.0036) or
combined loading case (p = 0.036). At week 22, only the 12N case
systematically predicted higher values than the combined loading
case (p = 0.036). The combined loading condition predicted the
closest densitometric values to the experimental data. Regional
analysis across 10 sections of the tibia shows that the ability of the
combined loading model in predicting the bone changes remains
in most cases similar or slightly worse than the predictions
with the physiological load alone. At weeks 20–22, the higher
apposition and resorption rates in the 12N and 12N + physio
case led to a poorer spatial match in resorption, but similar
spatial match in apposition compared to the physiological load
case (Figure 3).

DISCUSSION

The overall goal of this study was to assess the effect of the
inclusion of physiological loading to the experimental load,

in computer simulations of bone adaptation due to in vivo
axial compression loading. A multi-scale mechanoadaptation
model that assumes that local bone adaptation is regulated by
the load at the organ level, and determines the parameters of
bone remodeling by minimizing the difference in the shape
change between the predicted and experimental dataset was
used. This is the first time different loading conditions based on
nominal passive mechanical loading, physiological loading or a
combination of them is implemented. Combined in vivo micro-
CT and micro-FE analyses were used to assess differences in
the strain distribution, the densitometric parameters and local
predictions of bone adaptation in the whole bone, and across 10
sections of the tibia.

The SED distributions showed that the induced mechanical
stimulus in the proximal and distal tibia were most sensitive
to the applied load (Figure 2). The passive axial load applied
in the experiments (12N) was approximately 40 times and 200
times larger than the axial and anterior-posterior components
of physiological loading, respectively. However, the average
SED under 12N axial load was about 6 times higher than
when it is under physiological loading, hence demonstrating
the large contribution of bending moment induced by the
anterior-posterior load. As the strain environment in the
mouse tibia is due primarily to bending (Prasad et al.,
2010), the absence of anterior-posterior load in the 12N
load case may have caused the model to compensate with
a higher apposition rate (Table 1). The uncertainties in
the boundary and loading conditions have previously been
documented at the organ level (Giorgi and Dall’Ara, 2018),
but this study shows for the first time the local regions that
are most affected by small variations in the passive loading
condition. This region-dependence could be due to variations
in the second moment of area, which are highest in the
proximal 30% of the tibia (Carriero et al., 2018), whereas
differences in the distal section of the tibia may be due
to the global minimum in cortical area between sections
1 and 2 (Meakin et al., 2017) and its proximity to the
boundary conditions.

The strain equivalent threshold (calculated from the SED
thresholds) under 12N axial load alone or combined with
physiological load was approximately 7–11 times lower than
the target peak strain of 1,200–2,000 microstrains (De Souza
et al., 2005; Main et al., 2020), measured using strain gauges in
mouse tibial loading experiments. This is within the range of
8–12 times difference between the strain equivalent threshold
(Cheong et al., 2020a) and the recorded peak tensile strain
of <300 microstrain under physiological loading (De Souza
et al., 2005). It is difficult to compare the obtained threshold
values with literature as previous mouse tibia model utilized
poroelastic material properties and SED-based fluid flow to
predict locations of bone adaptation under 12N load (Pereira
et al., 2015; Carriero et al., 2018). Thresholds of 0.01–0.016 Pa
have been used in micro-FE models of the loaded caudal
vertebra, selected by matching BV/TV between the predicted
and experimental results (Schulte et al., 2013b). Hence the
threshold values obtained in this study are considerably lower
even after accounting for differences in bone architecture
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FIGURE 3 | Comparison of the accuracy of different loading conditions on the accuracy of the model prediction. Densitometric parameters were evaluated for:
(A) Bone volume (BV), (B) Bone volume fraction (BV/TV). (C) Bone mineral content (BMC), (D) Bone mineral density (BMD). The ability of the model to predict the
spatial distribution of bone adapation were assessed along the longitudinal axis of the tibia from distal (1) to proximal (10): (E) Spatial match on the endosteal surface,
(F) Spatial match on the periosteal surfaces, (G) Prediction accuracy on the endosteal surface, (H) Prediction accuracy on the periosteal surfaces. Exp: experimental
data, Physio: physiological load, 12N: nominal 12N axial load, 12N + physio: combined nominal 12N axial load superimposed on the physiological load. Solid lines
indicate apposition while dashed lines indicate resorption. * and # indicate significant differences between the different groups (Wilcoxon signed rank test: p < 0.05).
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(primarily trabecular bone) and material properties (E = 5.3 GPa,
v = 0.3) in their study. Nevertheless, the micro-FE models
used in this study have previously been validated for local
predictions of displacement using digital volume correlation
(DVC) (Oliviero et al., 2018).

The 12N axial loading condition systematically predicted
higher apposition rates than when physiological loading
conditions were used at both weeks 18–20 and 20–22 (Table 1).
This led to better predictions of BMC at week 20, but
over-predictions of BV and BV/TV at week 20 and higher
overestimation of the densitometric parameters at week 22
compared to the case with physiological loading (Figure 3).
The prediction accuracy in apposition was lower at week 22
for the 12N and combined loading conditions. This was due
primarily to the stress distribution induced by the 12N axial
load concentrating on the lateral regions (Figure 2), even though
the experimentally measured apposition was found on both
lateral and medial sections (Cheong et al., 2020b). The combined
load case improved the predictions of global densitometric
properties of the tibia but, surprisingly, without affecting the
overall ability of predicting the spatial distribution of TMD
changes. The prediction accuracy in resorption for the two
cases where the 12N axial load was included were improved,
as higher resorption rates were estimated by the algorithm.
The significant difference in all densitometric parameters at
weeks 20 and 22 for 12N and combined loading shows that
the presence of a small anterior-posterior load has a large effect
on the minimization of the volumetric second moment in the
optimization step.

There are some limitations in this study. Firstly, the growth
plate and tibiofibular joint have not been modeled, but sensitivity
analysis has shown that the fibula affects the overall bone
stiffness and cortical strain distribution (Yang et al., 2014).
However, the material properties of the growth plate and soft
tissues at the tibiofibular joint are currently not known, and the
models could not be validated with the available experimental
data. Hence, the focus was on the region of the tibia below
the proximal growth plate (Prasad et al., 2010). Homogenous
material properties were used in the models to isolate changes
in strain distribution due to modifications in shape. The use
of heterogeneous material properties would help to understand
the role of TMD changes in strain distribution, but would alter
the strain profile especially in the trabecular regions (Webster
et al., 2012). However, this was not conducted due to the small
increment to predictions of structural failure in the murine
caudal vertebra (Webster et al., 2012) and mouse tibia (Oliviero
et al., 2021b) at the expense of a large computational cost.
Although the use of tetrahedral mesh would capture the strain
distribution at the surface more smoothly in principle (Cheong
et al., 2020a,b), both hexahedral and tetrahedral models of the
mouse tibia were found to yield similar results in stiffness, failure
load and local strain distributions in the cortical bone (Oliviero
et al., 2021b). Moreover, simple loading was applied to quantify
the changes to the micromechanical properties, rather than
determine the mechanical environment induced by the loading.
The influence of the load location in improving predictions of
bone remodeling should be explored in further studies. A time

period of 2 weeks was used in this study to match with the
experimental study. While future work could investigate the use
of smaller time steps and to separate the contribution of the
12N axial load and physiological loads, limitations about the
number of scans and induced radiation should be considered
to maximize the impact of 3Rs (Replacement, Refinement and
Reduction of the usage of animals in research; in particular
Refinement) in in vivo studies (Oliviero et al., 2019). The use
of volumetric second moment as the optimization algorithm at
the global level biases the algorithm to form bone which resists
fracture, and the current algorithm does not optimize changes in
TMD. Future work should explore multiple optimization criteria,
region-dependency in bone remodeling and inclusion of non-
linear mechanoregulation laws. SED was the only mechanical
stimulus considered here in line with other studies (Schulte
et al., 2013b; Levchuk et al., 2014), as it predicted bone
formation better than maximum principal strains (Cheong
et al., 2020a). Other stimuli and other mechanisms of bone
remodeling, such as micro-damage (Hambli, 2014), fluid flow
(Pereira et al., 2015; Carriero et al., 2018), and cell numbers
(Lerebours et al., 2016), which have been studied in other
models to give realistic predictions in bone adaptation, should
also be considered.

In conclusion, predictions of bone adaptation were similar
under stimulated physiological loading, external loading, and
combined loading despite differences in the SED distribution.
This shows that the optimization-based bone adaptation
algorithm used in this study, which compares the outputs
of multi-scale models combined with longitudinal assessment
of bone changes over time in the mouse tibia, is primarily
driven by changes in the geometrical form of the bone.
The combined 12N axial and physiological loading conditions
marginally improved the densitometric predictions compared
to physiological loading alone. Thus, the results show that
the form-function relationship of bone is due to both the
12N axial load and daily physiological load. The similarity in
the ratio of peak strain to the SED threshold for simulated
loading and simulated physiological loading (without passive
loading), suggests that part of bone’s response to applied
load, specifically the SED threshold, can be estimated from
the induced peak strains in the midshaft under different
passive loads. However, the apposition and resorption rates
will be linked to the presence of tibia positioning and other
experimental uncertainties.
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In this work, we propose a mechanobiological atheroma growth model modulated by

a new haemodynamic stimulus. To test this model, we analyse the development of

atheroma plaques in patient-specific bifurcations of carotid arteries for a total time of 30

years. In particular, eight geometries (left or right carotid arteries) were segmented from

clinical images and compared with the solutions obtained computationally to validate

the model. The influence of some haemodynamical stimuli on the location and size of

plaques is also studied. Plaques predicted by the mechanobiological models using the

time average wall shear stress (TAWSS), the oscillatory shear index (OSI) and a new

index proposed in this work are compared. The new index predicts the shape index of

the endothelial cells as a combination of TAWSS and OSI values and was fitted using

data from the literature. The mechanobiological model represents an evolution of the

one previously proposed by the authors. This model uses Navier-Stokes equations to

simulate blood flow along the lumen in the transient mode. It also employs Darcy’s law

and Kedem-Katchalsky equations for plasma and substance flow across the endothelium

using the three-pore model. The mass balances of all the substances that have been

considered in the model are implemented by convection-diffusion-reaction equations,

and finally the growth of the plaques has been computed. The results show that by

using the new mechanical stimulus proposed in this study, prediction of plaques is, in

most cases, better than only using TAWSS or OSI with a minimal and maximal errors on

stenosis ratio of 2.77 and 32.89 %, respectively. However, there are a few geometries

in which haemodynamics cannot predict the location of plaques, and other biological

or genetic factors would be more relevant than haemodynamics. In particular, the

model predicts correctly eleven of the fourteen plaques presented in all the geometries

considered. Additionally, a healthy geometry has been computed to check that plaque

is not developed with the model in this case.

Keywords: atheroma plaques, atherosclerosis, carotid artery, convection-diffusion-reaction equations,

mechanical stimulus, mechanobiological model, patient-specific
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1. INTRODUCTION

Atherosclerosis is a disease that causes the formation of atheroma
plaques in arterial walls. The effect of atheroma plaques is that the
thickness of the arterial wall increases-due to an accumulation
of some substances such as low density lipoproteins (LDL) and
foam cells (FC) in it-and, therefore, the lumen area decreases and
blood cannot flow properly. It can derive in several events, such
as heart attacks, ischaemias or strokes, and currently it is one of
the main causes of mortality in developed countries (Gaziano
and Gaziano, 2012). Although this pathology has been widely
studied, it has not yet been completely understood. Therefore, it
is relevant to study the process of formation of atheroma plaques
and to foresee the locations that are susceptible to the emergence
of plaques in arteries.

It has been accepted that some mechanical stimuli can
cause shape changes of endothelial cells (Dai et al., 2004), and
depending on it, they can induce LDL transport into the arterial
wall through the endothelium, initiating the growth of atheroma
plaques in the vessel. These mechanical stimuli can depend on
several factors such as cyclic stretches, cardiac cycle, geometry of
the arteries and oscillatory shear stress (Ohayon et al., 2011).

One of these mechanical stimuli is the wall shear stress (WSS)
caused by blood flow in the endothelium. It is an index that has
been widely used to predict the location of plaques; however, it
has the limitation of being calculated for stationary blood flow
and does not consider the cardiac cycle. It is well known that
areas with physiological WSS promote endothelial cells to have
an elongated shape, so pores between them are small and limit the
flow of substances across the endothelium. In contrast, for areas
with very low WSS, endothelial cells are more circular, so pores
are larger and allow flow of substances between them, resulting
in plaque emergence. The threshold of WSS below which plaques
grow depends on the considered artery (Olgac et al., 2008;
Filipovic et al., 2013). In the case of carotid arteries, areas with
WSS lower than 2 Pa could be considered atheroprones, while
areas of higher WSS are atheroprotectives (Zhao et al., 2002;
Younis et al., 2004; Filipovic et al., 2013).

To avoid the limitation of not considering transient blood
flow, other studies use the time averaged wall shear stress
(TAWSS) instead of WSS to take into account the cardiac cycle
and to improve the accuracy of the prediction (Sáez et al., 2015;
Alimohammadi et al., 2017). Another index that has also been
used in some studies is the oscillatory shear index (OSI). There is
some evidence about the influence of this mechanical stimulus on
cell shape, and therefore in the emergence of plaques, being areas
of high OSI susceptible to developing plaques (Alimohammadi
et al., 2017). This index also considers the complete cardiac
cycle. However, most of these studies only take into account
TAWSS or OSI to predict the location of plaques and do not
consider the inflammatory process to reproduce the growth
of plaques.

There are other indices that have been investigated recently
such as Cross-flow index (CFI) (Arshad et al., 2020), Transverse
Wall Shear Stress (transWSS) (Peiffer et al., 2013) and
Topological Shear Variation Index (TSVI) (Morbiducci et al.,
2020), but their implementation into the model was not possible

due to that there are not enough experimental data correlating SI
of endothelial cells with them (Morbiducci et al., 2020).

Finally, some studies use patient-specific geometries and
calculate blood flow in the transient mode with growth of
plaques, but they do not consider all the substances that take
part in the disease progression and do not add volume to the
final plaque (Filipovic et al., 2013; Díaz-Zuccarini et al., 2014;
Alimohammadi et al., 2017).

In this study we use patient-specific geometries with different
degrees of atheroma plaques in carotid arteries to fictitiously
reconstruct healthy arteries and to computationally reproduce
the inflammatory process of the emergence of plaques in
them. We use transient blood flow, taking into account the
cardiac cycle, and analyse plaque growth under three different
hypotheses considering distinct mechanical stimuli: TAWSS,
OSI, and a combination of them that we propose as a
new stimulus.

The aim of this study is to analyse the predictability of
the different mechanical stimuli to estimate the emergence of
plaques, improving a previous model developed by the authors
under an axisymmetric hypothesis (Cilla et al., 2014). Finally,
we compare the plaques predicted using the computational
mechanobiological model with the real plaques of patients in
clinical images in order to determine which haemodynamical
stimulus can better predict the location and size of plaques.

2. MATERIALS AND METHODS

The mechanobiological model proposed by Cilla et al. (2014) was
improved by the introduction of a new mechanical stimulus and
some terms were simplified in order to improve the numerical
convergence, see section 2.5. The endothelium was modelled
as a thin layer of endothelial cells, which change their shape
as a function of the haemodynamical stimulus -TAWSS, OSI
and a combination of them- by becoming rounder or elongated
according to the stimulus and thus allowing more or less
substance transport along the endothelium. The arterial wall
was modelled as a single layer (intima-media) with a permeable
membrane (endothelium).

2.1. Patient-Specific Geometries
Clinical images of four different male patients with
atherosclerosis and one healthy volunteer were segmented
using the software Materialise Mimics (Materialise N. V.,
Leuven, Belgium) to obtain eight different patient-specific
geometries of carotid artery bifurcations, including common,
internal and external carotid arteries (CCA, ICA and ECA,
respectively). The clinical images were provided by the Hospital
Clinico Universitario in Zaragoza, Spain, according to ethics
guidelines of the hospital. One geometry corresponds to a
healthy volunteer without pathology, and the others correspond
to four patients with developed atheroma disease. Carotid images
are shown in Figure 1, with their respective plaques indicated by
arrows. The images in Figure 1 correspond to the real geometries
of the patients, without making changes in them, to show the
differences between the real carotids and the computed ones,
that can be observed in Figure 7. These differences are due to
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FIGURE 1 | Images the carotid geometries of all patients with atheroma plaque (A–G) and the healthy volunteer (H).

the simplifications that are necessary to compute the model,
e.g., the small side branches of the carotids were eliminated in
the computed geometry to simplify the model and it could have
some influence on the blood flow distribution.

A thresholding segmentation technique was used to
reconstruct the lumen of the vessel from the clinical images.
Once the thresholding was done, the plaques of the carotids
were located, and plaques were digitally removed to obtain
geometries that we considered healthy arteries previous to the
development of the pathology. The geometry corresponding to
the healthy volunteer was not modified. Finally, the arterial wall
was extruded with the software Rhinoceros (Robert McNeel &
Associates, Seattle, WA, United States) from the lumen to obtain
a 3D geometry with variable thickness, imposing a thickness
of 0.7 mm for the CCA and 0.53 mm to the ICA and ECA.
Finally, the thickness in the area close to the bifurcation was
progressively reduced when advancing from the CCA to de ICA
and ECA according to their respective thicknesses (Sommer
et al., 2010).

The different geometries were coded from “A” to “H.” The
patient-specific geometry “A”was used to estimate the parameters
not found in the literature to computationally reproduce the

location and size of the real plaque. Once done these estimations,
these parameters were used for the rest of geometries. The
healthy volunteer, named “H,” was used to demonstrate that the
mechanobiology model can also predict a healthy case without
relevant growth of plaques. The total time of the numerical
simulations implemented was 30 years (Insull, 2009) and patients
were supposed to have a high level of hypercholesterolemia with

an LDL concentration in blood of 6.98 mol
m3 , equivalent to 270

mg
dL

(Goldstein and Brown, 1977).

2.2. Numerical Methods
The geometries were meshed using triangular elements. Mesh
sensitivity analysis was performed for both the lumen and
the arterial wall, including the number of boundary layers, to
determine optimal meshes to finally compute the whole process.
The final mesh had a total of 850,000 elements for the lumen, with
two boundary layers near the endothelium, and 550,000 elements
for the arterial wall, with boundary layers near the endothelium
and the adventitia to ensure the correct calculation of fluxes
across the arterial wall.

The software COMSOL Multiphysics (COMSOL AB,
Burlington, MA, USA) was used to computationally solve the
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FIGURE 2 | Workflow of the computational process.

model following four consecutive stationary and transient
steps. A first transient step was used to simulate the blood flow
along three cardiac cycles. Then, a second step under stationary
hypothesis was performed to solve the plasma flow across the
endothelium. Afterwards a third step was computed in transient
mode to calculate the concentrations of all the substances in all
the arterial wall during 30 years, and finally, a fourth and last
stationary step was made to compute the growth of the plaques
from the concentration of all the substances at 30 years. In
Figure 2 there is a scheme with the followed workflow.

A direct linear solver (PARDISO) was used to solve the
transient blood flow along the lumen. Another direct linear solver
(MUMPS) was employed to compute the plasma flow through
the endothelium, the inflammatory process of all the substances
(in an iterative way, using different segregated steps for groups of
substances) and finally the growth of the plaques.

The development of the mathematical model is presented
in the following sections, separating the equations referring to
the blood flow, plasma flow, inflammatory process and growth
of plaques.

2.3. Blood Flow Model
According to Caro et al. (1978) and Perktold et al. (1991), blood
was modelled as a Newtonian and incompressible fluid because
the lumen diameter of the considered arteries is higher than
0.5 mm. Additionally, blood flow was considered laminar due
to the Reynolds number in carotid arteries under physiological
conditions. Blood is basically composed of a liquid component
called plasma, but it also contains solid particles. Nevertheless,
these particles are very small in comparison to the lumen

TABLE 1 | List of parameters necessary to calculate blood flow along the lumen.

Blood flow parameters

Parameter Description Value Reference

ρb Blood density 1050 kg
m3 Milnor, 1989

µb Blood viscosity 0.0035 Pa · s Milnor, 1989

T Cardiac cycle period 0.85 s Malvè et al., 2014

diameter. Therefore, blood was considered a homogeneous fluid
(Malvè et al., 2014).

Blood flow in the lumen is governed by Navier-Stokes and
continuity equations:

ρb(ul · ∇)ul = ∇ · [−PlI + µb(∇ul + (∇ul)
T)]+ Fl (1)

ρb∇ · ul = 0, (2)

where subscripts b and l refer to blood and lumen, respectively,
so parameters ρb and µb are the density and dynamic viscosity of
blood, respectively, while ul and Pl are the velocity and pressure
of blood flow in the lumen, respectively. Finally, Fl corresponds
to internal forces of the fluid, which are negligible in comparison
with the friction between blood flow and the arterial wall. All
parameters necessary to calculate blood flow along the lumen are
shown in Table 1.

Blood flow was modelled in the transient mode. Therefore, an
analysis of the number of cardiac cycles necessary to model blood
flow was performed, obtaining that a total number of three cycles
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FIGURE 3 | Blood mass flow at the inlet of the CCA of the first patient (black

line) and pressure at outlets of both ICA and ECA, (blue continuous and blue

dashed lines, respectively).

is sufficient to completely develop blood flow and establishing
the validity of the results of flow obtained for the third cardiac
cycle. At the inlet of the lumen, transient mass flow was imposed,
and transient pressures were imposed at the two outlets of the
lumen. Transient flow and pressures were imposed following
their respective shapes along a cardiac cycle obtained fromMalvè
et al. (2014). Additionally, Murray’s law was applied in all the
geometries to establish the correct division of blood flow at the
bifurcations, with an average pressure at the outlet of the ICA of
100 mmHg. In Figure 3, blood flow at the inlet of the CCA and
pressures at the outlets of ICA and ECA imposed at geometry
A can be seen. Finally, a non-slip condition was imposed at
the endothelium.

2.4. Plasma Flow Across the Endothelium
The arterial wall is permeable; therefore, some elements
contained in the blood flow can cross the arterial solid wall. In
particular, there is a plasma flow through the endothelium from
the lumen that can be modelled with Darcy’s Law:

uw =
kw

µp
∇pw, (3)

where uw and kw are the velocity of the plasma on the arterial wall
and its permeability, respectively. ∇pw is the pressure gradient
in the arterial wall, and finally, µp is the dynamic viscosity
of plasma.

Furthermore, continuity of plasma flow has to
be accomplished:

∂(ρpǫw)

∂t
+ ρp∇ · uw = Jv, (4)

where ρp and ǫw are the density of plasma and the porosity
of the arterial wall, respectively. The last term, denoted as
Jv, is the plasma flow through the endothelium. It can be
calculated with Kedem-Katchalsky equations, considering three

different types of pores in the endothelium by which plasma
flow is allowed: normal junctions, leaky junctions and vesicular
pathways. However, plasma flow through vesicular pathways is
very small related to the other two, so it is negligible (Olgac et al.,
2008). Total plasma flow throughout the endothelium (Jv) can be
calculated as:

Jv = Jvnj+ Jvlj+��Jvv = Jvnj+ Jvlj = Lpnj ·1P · (1−8lj)+Lplj ·1P,
(5)

where Jvnj, Jvlj, and Jvv are plasma flows across normal junctions,
leaky junctions and vesicular pathways, respectively. Finally,
Lpnj and Lplj are the hydraulic conductivities of normal and
leaky junctions, respectively. The value of Lpnj depends on the
thickness of the arterial wall (and, therefore, of the artery that
we consider) and of the intraluminal pressure (Tedgui and
Lever, 1984). 1P is the pressure drop in the endothelium, which
depends on the intraluminal pressure and takes values of 18 and
28 mmHg for an intraluminal pressure of 70 and 180 mmHg,
respectively, Tedgui and Lever (1984). Finally, 8lj is the fraction
of leaky junctions and is defined as the ratio of the number of
leaky cells and the total number of cells (Weinbaum et al., 1985;
Huang et al., 1994; Huang and Tarbell, 1997), and in our model,
it depends on the haemodynamical stimulus and the number of
mitotic cells, see section 2.6.

Following Weinbaum et al. (1985) and Yuan et al. (1991),
hydraulic conductivity of leaky junctions can be calculated as:

Lplj =
Ap

S
· Lpslj =

4wl

Rcell
· 8lj · Lpslj, (6)

where
Ap
S is the fraction of total area occupied by leaky junctions,

Lpslj is the hydraulic conductivity of a single leaky junction,
Rcell the radius of endothelial cells, and wl the half-width of
a leaky junction (Weinbaum et al., 1985; Yuan et al., 1991;
Huang et al., 1994). For more details about the derivation of (6),
see Appendix A.

The total number of mitotic cells in the endothelium
depends on the haemodynamical stimulus that we are using.
In experimental studies, the number of mitotic cells (MC) was
determined in areas of the known shape index (SI) (Chien, 2003),
so it was developed in the next experimental correlation with a
unit area of 0.64mm2:

MC = 0.003797 · e(14.75·SI) (7)

In addition, based on experimental studies, the next correlation
between the number of leaky cells (LC) and mitotic cells for the
unit area of 0.64mm2 is defined (Lin et al., 1989; Olgac et al.,
2008):

LC = 0.307+
0.805 ·MC

0.453
(8)

8lj is defined as the ratio between the area of leaky cells and the
area of all the cells, and it can be calculated as:
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TABLE 2 | List of parameters necessary to compute plasma flow across the

endothelium.

Plasma flow parameters

Parameter Description Value Reference

Rcell Endothelial cell radius 15 µm Weinbaum et al., 1985

wl Half-width of a leaky

junction

20 nm Weinbaum et al., 1985

llj Leaky junction length 2 µm Weinbaum et al., 1985

ρp Plasma density 1050 kg
m3 Milnor, 1989

µp Plasma viscosity 0.001 Pa · s Milnor, 1989

kw Darcian artery

permeability

1.2 · 10−18 m2 Vargas et al., 1979

ǫp Intima porosity 0.96 Ai and Vafai, 2006

Lp,nj Normal junction

conductivity

1.984 · 10−12 m
s·Pa Tedgui and Lever, 1984

1Pr Endothelial pressure

difference

20.727mmHg Tedgui and Lever, 1984

Aunit Unit area for the

experimental correlations

0.64mm2 Chien, 2003

Padv Pressure of the adventitia 17.5mmHg Olgac et al., 2008

8lj =
LC · π · R2

cell

Aunit
, (9)

taking as Aunit the unit area considered in all the anterior
experimental correlations of 0.64 mm2. By using all the
experimental correlations, it is now possible to obtain 8lj and,

therefore,
Ap

S . Consequently, knowing the SI that it is computed
by Equations [(32)–(35)] for our model, we can compute 8lj and
the hydraulic conductivity Lplj.

Finally, the hydraulic conductivity of a unique leaky junction,
Lpslj, is defined following Olgac et al. (2008):

Lpslj =
w2
l

3 · µp · llj
, (10)

whereµp is the dynamic viscosity of the plasma, andwl and llj the
width and the length of a leaky junction, respectively. Therefore,
with this derivation, plasma flow through the endothelium is
completely determined. The parameters necessary for the plasma
flow calculation are depicted in Table 2.

The normal velocity of plasma flow through the endothelium
is Jv, which has already been defined in section 2.4. Additionally,
the pressure at adventitia defined in Olgac et al. (2008) is also
prescribed (17.5 mmHg).

2.5. Inflammatory Process of the Arterial
Wall
Once plasma flow across the endothelium has been modelled,
we can compute the inflammatory process that takes place on
the arterial wall. There are many substances involved in this
process, among which we consider LDL, oxidized LDL (LDLox),
monocytes (m), macrophages (M), cytokines (C), contractile and

synthetic smooth muscle cells (CSMC and SSMC), foam cells
(FC), and collagen (G).

The behaviour of cells and substances on the arterial wall
obeys convection-diffusion-reaction equations of the form:

∂Xi

∂t
︸︷︷︸

time

+∇ · (−DXi∇Xi)
︸ ︷︷ ︸

diffusion

+Klag · uw · ∇Xi
︸ ︷︷ ︸

convection

= fXi(· · · ,Xi, · · · )
︸ ︷︷ ︸

source−sink

,

(11)
where Xi is the concentration of the considered substance and
DXi its diffusion coefficient on the arterial wall. Klag is the
solute lag coefficient. The first term of the equation corresponds
to temporal variations of the cells or the substances on the
arterial wall, while second and third terms are, respectively,
diffusion and convection of the cells or substances. Finally, the
reaction term represents the interaction between cells and/or
substances (chemotaxis, proliferation, differentiation, apoptosis,
degradation or generation), and they are different for each of
the considered cells or substances. All the parameters for the
inflammatory process are collected in Table 3.

On the other hand, flow of substances across the arterial wall
can be defined as:

N = −DXi∇Xi + uwXi (12)

Initial concentrations of all the substances at the artery wall are
null, except for the case of CSMCs, by which all of the arterial
wall is composed at the beginning of the inflammatory process.
In addition, we suppose a hypercholesterolemia level for all the
patients, and their concentrations of LDL and monocytes at the
lumen are CLDL,l and Cm,l, respectively.

The specification of these equations for each of the substances
and cells of the process is as follows.

2.5.1. Evolution of LDL Concentration
Due to their small size, LDL molecules suffer convection due
to plasma flow across the arterial wall. They additionally have
diffusion. Once LDL molecules are on the arterial wall, they are
oxidized, so their reaction term is:

fCLDL,w (CLDL,w) = −dLDLCLDL,w, (13)

where dLDL is the degradation ratio of LDL on the arterial wall,
and CLDL,w its concentration at each time. LDL flow through
the endothelium can be calculated with the Kedem-Katchalsky
equation (Olgac et al., 2008).

JS,LDL = CLDL,l · LDLdep · Papp, (14)

where CLDL,l is the LDL concentration at the lumen, LDLdep the
quantity of LDLmolecules that are deposited into the arterial wall
and Papp the coefficient of apparent permeability of the arterial
wall, which is composed of the permeability of normal junctions,
leaky junctions and vesicular pathways (Papp,nj, Papp,lj and Papp,v,
respectively):
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TABLE 3 | List of parameters necessary to calculate the inflammatory process on

the arterial wall.

Inflammatory process parameters

Parameter Description Value Reference

DLDL,w LDL 8 · 10−13 m2

s Prosi et al., 2005

Dm,w Monocytes 8 · 10−15 m2

s Budu-Grajdeanu et al.,

2008

DLDLox,w Oxidized LDL 8 · 10−13 m2

s Prosi et al., 2005

DM,w Macrophages 1 · 10−15 m2

s Budu-Grajdeanu et al.,

2008

dLDL LDL oxidation 2.85 · 10−4 s−1 Ai and Vafai, 2006

dm Monocyte differentiation 1.15 · 10−6 s−1 Bulelzai and

Dubbeldam, 2012

md Monocyte natural death 1
60 d

−1 Bulelzai and

Dubbeldam, 2012

LDLox,r Oxidized LDL uptake 2.45 · 10−23 m3

cells·s Zhao et al., 2006

nFC Maximum oxidized LDL

uptake

2.72 · 10−11 mol
cells Estimated

Cr Cytokine production 3 · 10−10 m3

cells·s Siogkas et al., 2011

dc Cytokine degradation 2.3148 · 10−5 s−1 Zhao et al., 2005

Sr CSMC differentiation 0.0036 s−1 Chamley-Campbell

et al., 1981

pss SSMC proliferation 0.24 d−1 Boyle et al., 2011

Gr Collagen production 2.472 · 10−21 kg
cells·s Zahedmanesh et al.,

2012

dG Collagen degradation 1
30 d

−1 Humphrey, 2002

wl Half-width of a leaky

junction

20 nm Weinbaum et al., 1985

llj Leaky junction length 2 µm Weinbaum et al., 1985

RLDL LDL radius 11 nm Prosi et al., 2005

Cth
m,w Monocyte mitosis 550 · 109 cells

m3 Khan, 2009

Cth
c,w Cytokines 1.235 · 1013 mol

m3 Estimated

Cth
SSMC,w Smooth muscle cells 4.764 · 1013 cells

m3 Boyle et al., 2011

C0,LDL LDL initial concentration 6.98 mol
m3 Schwenke and Carew,

1989

C0,m Monocyte initial

concentration

550 · 109 cells
m3 Khan, 2009

C0,CSMC CSMC initial

concentration

3.16 · 1013 cells
m3 Boyle et al., 2011

TAWSS0 Reference TAWSS 1 Pa Estimated

CLDL,adv LDL concentration at

adventitia

11.6‰ · CLDL,l Meyer et al., 1996

kc Cytokine threshold factor 0.65093 Estimated

LDLdep LDL deposited at the

endothelium

10−2 · CLDL,l Meyer et al., 1996

mr Monocyte recruitment 6.636 · 10−4 m4

mol·day Steinberg et al., 1997

rapop SSMCs apoptosis rate 0.087 s−1 Bennett et al., 1995

ρLDL LDL density 1063 kg
m3 Ivanova et al., 2017

MwLDL LDL molecular weight 386.65 g
mol Guarino et al., 2006

klag Solute lag coefficient of

LDL

0.893 Dabagh et al., 2009

Papp = Papp,lj +���Papp,nj + Papp,v (15)

Molecule transport through endothelium occurs in different
ways depending on the size of the particles. For molecules

with a size lower than 2 nm, transport is allowed through
all the possible ways, but for greater molecules (such as LDL,
whose size is approximately 11 nm), transport across normal
junctions is not allowed, so for this case, molecular transport
through the endothelium only occurs by leaky junctions and
vesicular pathways.

According to Olgac et al. (2008), molecular transport of
LDL through vesicular pathways is 0.1 of the flux through
leaky junctions.

Papp,v = 0.1 · Papp,lj (16)

The apparent permeability of leaky junctions can be defined as:

Papp,lj = PljZlj + Jv,lj · (1− σf ,lj), (17)

where Plj, Zlj and σf ,lj are, respectively, diffusive permeability
of leaky junctions, a factor of reduction of the concentration
gradient of LDL at the entrance of flow and the solvent-drag
coefficient of leaky junctions. Therefore, LDL flux across the
endothelium can be written as:

JS,LDL = 1.1 · CLDL,l · LDLdep · (PljZlj + Jv,lj(1− σf ,lj)) (18)

Diffusive permeability of leaky junctions is defined as:

Plj =
Ap

S
χPslj, (19)

where χ is the difference between the total area of endothelial
cells and the area of cells separated by leaky junctions, where LDL
flux is allowed:

χ = 1− αlj, (20)

where αlj is the ratio between the radius of an LDLmolecule (am)
and the half-width of a leaky junction (wl):

αlj =
am

wl
(21)

Finally, Pslj is the permeability of a leaky junction that can be
computed using the equations of Appendix B.

In addition, we have to impose as an additional boundary
condition the LDL concentration at adventitia (CLDL,adv) which
is obtained from experimental data of Meyer et al. (1996) to
comply with the experimental LDL distribution of LDL across the
arterial wall.

2.5.2. Evolution of Oxidized LDL Concentration
We considered that once LDL becomes oxidized, it does not
experiment convection, but it has the diffusion term. Their
reaction terms are due to two factors: the first one refers to LDL
that becomes oxidized in the arterial wall, and the second one
refers to oxidized LDL that is absorbed by macrophages:

fCLDLox,w (CLDL,w,CLDLox,w ,CM,w) = dLDLCLDL,w−LDLox,rCLDLox,wCM,w,

(22)
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where CLDLox,w and CM,w are oxidized LDL and macrophage
concentration at each point of the arterial wall, respectively.
LDLox,r is the ratio of the quantity of oxidized LDL that a single
macrophage absorbs.

2.5.3. Evolution of Monocyte Concentration
Monocytes are cells, so they do not have convection. The first
reaction term of the equation corresponds to the monocytes that
disappear because of their differentiation into macrophages. The
second term is due to apoptosis of monocytes:

fCm,w (Cm,w) = −dmCm,w −mdCm,w, (23)

where Cm,w is monocyte concentration on the arterial wall, dm a
parameter that represents the rate of monocytes that differentiate
into macrophages, andmd monocyte rate of death.

2.5.4. Evolution of Macrophage Concentration
Similar to monocytes, macrophages are cells, so they do not have
convection. Their reaction terms are:

fCM,w (CM,w,Cm,w,CLDLox,w ) = dmCm,w −
LDLox,r

nFC
· CLDLox,wCM,w,

(24)
where the first term is the differentiation of monocytes into
macrophages and the second one their apoptosis.

LDLox,r is the constant rate of oxidized LDL taken up by
macrophages, and nFC is the maximum amount of oxidized LDL
that a single macrophage has to ingest to turn into a foam cell. To
obtain this value, it was considered that these cells are capable
of ingesting particles up to 1.44 times their radius (Cannon
and Swanson, 1992), taking into account that the density and

molecular weight of LDL are 1,063
kg

m3 (Ivanova et al., 2017) and

386.65
g

mol
(Guarino et al., 2006), respectively.

2.5.5. Evolution of Cytokine Concentration
Cytokines are proteins, so we did not consider convection
for them. In addition, they are surrounded by macrophages,
so their diffusion can be considered negligible (Cilla et al.,
2014). Cytokine reaction terms are due to their degradation
and production:

fCc,w (Cc,w,CLDLox,w ,CM,w) = CrCLDLox,wCM,w − dcCc,w, (25)

where Cc,w is cytokine concentration on the arterial wall. Cr is
the ratio of cytokine production due to the presence of oxidized
LDL and macrophages on the arterial wall, and dc the cytokine
degradation rate.

2.5.6. Evolution of Contractile Smooth Muscle Cell

Concentration (CSMC)
Due to the size of CSMCs, they have neither convection nor
diffusion. At the beginning of the inflammatory process, all the
muscle cells on the arterial wall are of a contractile phenotype,
but the presence of cytokines on the arterial wall make them

change into a synthetic phenotype, so the reactive term of CSMCs
is expressed as follows.

fCCSMC,w (CCSMC,w,Cc,w) = −CCSMC,w · Sr ·

(

Cc,w

kc · Cth
c,w + Cc,w

)

(26)
CCSMC,w is CSMC concentration at the arterial wall. Sr is the
CSMC differentiation rate due to the presence of cytokines on
the arterial wall, and finally, Cth

c,w is the maximum cytokine
concentration allowed at the arterial wall.

2.5.7. Evolution of Synthetic Smooth Muscle Cell

Concentration (SSMC)
Analogous to CSMCs, SSMCs have neither convection nor
diffusion. Their reaction terms in the arterial wall are due
to differentiation of CSMCs into SSMCs, proliferation and
apoptosis of SSMCs:

fCSSMC,w (CSSMC,w,CCSMC,w,Cc,w) =

CCSMC,w · Sr ·

(

Cc,w

kc · Cth
c,w + Cc,w

)

+

(

pssCc,w

Cth
c,w/2 + Cc,w

)

CSSMC,w

(

1−
CSSMC,w

Cth
SSMC,w

)

− rApop · CSSMC,w, (27)

where CSSMC,w and Cth
SSMC,w are SSMC concentration and

their maximum allowed concentration at the arterial wall,
respectively, pss the SSMC proliferation rate and rApop the SSMC
apoptosis rate.

2.5.8. Evolution of Foam Cell Concentration (FC)
Foam cells have neither convection nor diffusion given that
they are large cells. The reaction term is due to apoptosis of
macrophages into foam cells and can be written as:

fCFC,w (CLDLox,w ,CM,w) =
LDLox,r

nFC
· CLDLox,wCM,w (28)

All parameters in Equation (28) have already been defined.

2.5.9. Evolution of Collagen Fibres
Finally, collagen fibres are composed of many molecules, so they
cannot move between arterial wall pores. Therefore, collagen
fibres have neither convection nor diffusion. Reaction terms of
collagen fibres are due to collagen segregation due to SSMC
presence on the arterial wall and by collagen degradation.

fCG,w (CG,w,CSSMC,w) = Gr · CSSMC,w − dG · CG,w, (29)

where Gr and dG are the collagen secretion and degradation rate,
respectively, and CG,w its concentration on the arterial wall.

2.6. Haemodynamical Stimuli to Initiate the
Inflammatory Process
Three different mechanical stimuli were analysed in this study as
potential triggers for the inflammatory process and predictors to
foresee the position and growth of atheroma plaques.
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FIGURE 4 | Correlation between the shape index and time average wall shear

stress based on experimental data from Levesque et al. (1986) (A) and

between the shape index and oscillatory shear index based on data from Sáez

et al. (2015) (B).

The first one is TAWSS, which is defined as:

TAWSS =
1

T

∫ T

o
|τ (t)| · dt, (30)

where T is the period of a cardiac cycle and |τ (t)| the magnitude
of WSS dependent on time, with WSS defined as:

WSS =
√

τx2 + τy2 + τz2, (31)

where τx, τy and τz are components of the tangential stress vector
appearing in the lumen-wall interface of the model.

The shape index of endothelial cells directly depends on
TAWSS, being proximal to 1 in the case of low TAWSS,
meaning that endothelial cells are almost circular. To determine
the behaviour of endothelial cells with TAWSS, we propose
a numerical correlation based on the experimental results of
Levesque et al. (1986). This correlation is shown in Figure 4. The
endothelial shape index (SI) is:

SI = k1 · e
(k2·TAWSS) + k3 · e

(k4·TAWSS) (32)

It is well accepted that areas of low TAWSS are atheroprones. In
particular, for carotid arteries, areas below 2 Pa are susceptible
to the emergence of atheroma plaques (Zhao et al., 2002; Younis
et al., 2004; Filipovic et al., 2013).

TABLE 4 | List of parameters necessary for the correlations of SI as a function of

TAWSS, OSI, and the proposed combination of them.

Adjustment parameters

Parameter Value

k1 0.6296

k2 −0.8709

k3 0.2145

k4 0.03938

k5 1.53

k6 0.4688

k7 0.1631

k8 0.0264

k9 5.647

k10 0.5513

k11 −0.1815

The values of the parameters k1, k2, k3, and k4 are shown in
Table 4.

The second mechanical stimulus that we considered is OSI:

OSI = 0.5 ·

(

1−
| 1T

∫ T
o τ (t) · dt|

TAWSS

)

(33)

SI can be considered directly dependent on OSI; therefore,
to determine this behaviour, we propose the next correlation
obtained from the experimental data of Levesque et al. (1986).
The graphical correlation is shown in Figure 4.

SI = k5 · OSI
2 + k6 · OSI + k7 (34)

Areas with high OSI are areas in which atheroma plaques are
more likely to appear. To estimate the OSI threshold, we first
calculated the value of SI corresponding to a value of TAWSS
of 2 Pa [Equation (32)], assuming that for this value of SI, the
LDL molecules can pass through the endothelium. Therefore, by
replacing this SI value in Equation (34), we can estimate that
atheroma plaques will grow in areas of OSI higher than 0.1910.
The values of the parameters k5, k6, and k7 are shown in Table 4.

Finally, we proposed a new index to calculate the growth of
plaques as a combination of TAWSS and OSI to take into account
the effect of both stimuli. For that, we used pseudo-experimental
data from Sáez et al. (2015) to approximate the variable SI as a
function of TAWSS and OSI, obtaining:

SI = k8 · e
k9·OSI + k10 · e

k11·(TAWSS)2, (35)

using thresholds obtained before for TAWSS and OSI to
determine areas of plaque growth with this new index. The
approximation surface is shown in Figure 5. All the adjustment
parameters used in the analysis, namely, k8, k9, k10 and k11, are
shown in Table 4.

Monocytes flow from the lumen into the arterial wall
and through the endothelium, which also depends on the
haemodynamical stimulus that we consider.
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FIGURE 5 | Correlation surface among the shape index, time average wall

shear stress and oscillatory shear index based on data from Sáez et al. (2015).

For TAWSS, it can be modelled with the Kedem-Katchalsky
equation as (Malek and Alper, 1999; Gijsen et al., 2008):

Js,m(TAWSS) =
mr

(

1+ TAWSS
TAWSS0

) · CLDL,ox,wCm,l, (36)

where mr is monocyte recruitment from the lumen to the
endothelium. TAWSS was modelled as a sigmoid function with
maximal and minimal values equal to 2 and 0 Pa, respectively, to
allow LDL flux across the endothelium. To completely define the
sigmoid, an average value called TAWSS0 of 1 Pa is necessary.

For the case of using OSI as the mechanical stimulus, another
equation was developed in terms of the maximal and minimal
fluxes of monocytes obtained with the TAWSS equation:

Js,m(OSI) = mr ·(8.503·OSI
2−3.741·OSI+0.7449)·CLDL,ox,wCm,l

(37)
The same procedure was done for the combination of TAWSS
and OSI:

Js,m(TAWSS,OSI) = mr · (0.8588 · e
−0.6301·TAWSS

+ 0.1295 · e3.963·OSI) · CLDL,ox,wCm,l (38)

2.7. Plaque Initiation and Growth
The mass balance for open systems can be written as:

∂ρi
o

∂t
= 5i −∇ ·Mi, (39)

where ρo is the total density of the tissue in the reference
configuration (Garikipati et al., 2004), 5i are the source/sinks
and Mi the mass fluxes of the i arbitrary species. 5i are related
to migration, proliferation, differentiation and apoptosis of the
cells and secretion and degradation of the substances. The
concentrations of each species have the property ρi

o, where ρo =
∑

i ρ
i
o is the total material density of the tissue as the sum over

all i. The densities, ρi
o, change as a result of mass transport and

inter-conversion of species, implying that the total density in the
reference configuration, ρo, changes with time.

As mass transport alters the reference density, ρi
o, assuming

that these volume changes are isotropic, it leads to the following

growth kinematics Ḟig =
ρ̇i
o

ρi
orig

I where ρi
orig means the original

concentration of a specie in the undeformed configuration
(Garikipati et al., 2004) and I is the second-order unit tensor. For
a small strain hypothesis and isotropic growth, we can write:

∇ · vi =
ρ̇i
o

ρi
orig

, (40)

where v is the velocity of the material points.
Finally, knowing all substance distributions in the arterial wall,

we can compute the growth of plaques. The arterial wall change of
volume is due to the contribution of all the cells and substances
that are present in the inflammatory process, but the influence
of most of them is negligible, so we considered that only larger
cells and collagen contribute to plaque formation. Therefore, only
FCs, SSMCs and collagen fibres contribute to plaque volume in
our model.

In addition, we considered isotropic growth of plaques, so
atheroma plaque volume change can be written as:

∇·v =
∂CFC,w

∂t
·VolFC+

∂1CSSMC,w

∂t
·VolSSMC+

∂CG,w

∂t
·
1

ρG
, (41)

where ∂Ci,w is the concentration variation with respect to the
initial concentration of the considered substance. VolFC and
VolSSMC are volumes of an FC and an SSMC, respectively,
which can be calculated by knowing their radius. Finally, ρG is
collagen density.

Foam cells were assumed to have a spherical geometry,
whereas synthetic smooth muscle cells were modelled
as ellipsoids, so their volumes can be calculated with
Equations (42), (43).

VolFC =
4

3
πRFC

3 (42)

VolSSMC =
4

3
πRSSMC

2 · lSSMC, (43)

where RFC and RSSMC are the FC and SSMC radii, respectively,
and lSSMC its length. The parameters for the growth of plaques
process are shown in Table 5.

To validate the results, the stenosis ratio (SR) in the areas with
maximumplaque was computed, defining the stenosis ratio as the
percent area stenosis in a section. It relates the area of the healthy
lumen without the presence of plaque with the area of the lumen
with plaque, and can be calculated as:

SR(%) =

(

1−
Lumen area with plaque

Lumen area without plaque

)

· 100 (44)
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TABLE 5 | List of parameters necessary to compute plaque growth in the carotids.

Plaque growth parameters

Parameter Description Value Reference

RFC Foam cell radius 15.264 µm Krombach et al., 1997

RSSMC SSMC radius 3.75 µm Martini, 2012

lSSMC SSMC length 115 µm Martini, 2012

ρG Collagen density 1, 000 kg
m3 Sáez et al., 2013

As can be seen, although the geometries are patient-specific, the
parameters are based in literature due to the impossibility of
determine their value for each patient. Therefore, there is some
variability in them, which was checked to see how it can affect
to the model. The parameters that are related to LDL have more
influence in the plaque growth given that LDL is the substance
that initiates all the process. These parameters were calibrated
with the patient “A” and used later for the rest of geometries. In
other cases, such as the parameters referred to the cell size, an
average value of the parameters given in literature was taken.

Regarding measurable parameters for each patient, the most
important parameters whose variation would suppose a different
behaviour of the model are LDL and monocytes concentration in
blood, as well as the arterial pressure of the patient since there are
studies that correlate changes in the endothelial permeability as
a function of the arterial pressure (Tedgui and Lever, 1984), and
other factors, e.g., if the patients are taking medication or not.

In the case of different vascular regions with the same
arterial pressure, the parameters that could vary are the hydraulic
conductivity of the normal junctions, Lp, nj (Tedgui and Lever,
1984), the monocytes recruitment, mr (Steinberg et al., 1997),
as well as the thickness of the arterial wall (Olgac et al., 2008;
Sommer et al., 2010).

3. RESULTS

In Figure 1, we can see the seven real geometries with their
corresponding plaques indicated by arrows and the healthy one
without plaque. All the geometries, with the exception of E, have
large atheroma plaques at both the CCA close to the bifurcation
and at the ICA. Geometry E presents a unique plaque in
the ICA.

First, we analysed the haemodynamical stimuli effect and the
growth on the healthy artery. The results of the simulation for
SI and growth of plaques computed with TAWSS, OSI and the
new proposed variable are presented in Figure 6. As we expected,
small areas with high SI are usually accepted as atheroprones
- presented in the healthy geometry - and the corresponding
growth is reduced. In particular, for OSI stimulus, negligible
growth is presented.

The SI obtained with TAWSS, OSI and the new variable
is represented for all the pathological carotid bifurcations in
Figure 7. As seen, OSI predicts these areas with high values near
the bifurcation but lower than TAWSS, which also predicts areas
of high SI in the CCA close to the bifurcation as well as in some

areas of ICA and ECA. Finally, the new index also predicts high
SI in these areas but in a more localized way than TAWSS. Note
that for E geometry, none of the stimuli predicts the location of
the plaque.

In Figure 8, growth of plaques after 30 years of the
inflammatory process is represented for all the geometries
considering the different haemodynamical stimuli. Generally, the
location of plaques was better estimated using the new proposed
stimulus. For all cases, OSI underestimates the area of the plaques
and shows the worst prediction of the location. TAWSS predicts
non-physiological growth on the CCA due to the very low values
of WSS in this area. For patients A, C and D, the location of the
plaque matches the clinical evidence using only the new stimulus
and the prediction fails for TAWSS and OSI. For patient B, the
new index predicts the location of the plaque of the ICA but
fails on the length of the disease. For patient C, the new stimulus
matches the location of the plaques on ICA and ECA; however,
it predicts plaque on CCA that it is not presented on the clinical
images, likely due to an excessive influence of TAWSS in this area.
Plaques on the ICA where not predicted by any of the stimuli for
patients E and G.

Finally, Table 6 shows the computational stenosis ratio
obtained using our mechanobiological model for all the carotid
bifurcations and compared with the real ones taken from the
clinical images. It can be observed that the stenosis ratio after
30 years was better predicted using the new variable than the
other two for the seven studied patients. For example, the stenosis
ratio predicted with the new variable for patient C were 52.65
and 22.71 % for the CCA and ICA, respectively, and the real
values are 61.14 and 32.91 % for the CCA and ICA, respectively,
showing differences of 8.49 and 10.2 % of stenosis, respectively.
In general, for all geometries, the new variable has values of
maximal and minimal errors of estimated stenosis of 32.89 and
2.77 %, respectively. TAWSS overestimates the stenosis ratio with
a maximal and minimal error of 45.74 and 3.58 %, respectively.
In contrast, OSI underpredicts the stenosis ratio with an error
higher than 9.53 % for all cases.

4. DISCUSSION

This work extends the mechanobiological model developed by
Cilla et al. (2014) from an axisymmetric to a 3D model and
is essential as a prior step to its application to patient-specific
images. It is worth highlighting that atheroma plaques are
usually eccentric, and this feature cannot be captured with 2D
axisymmetric models. This works also updates some terms of the
equations to enhance its convergence (apoptosis of macrophages
into foam cells, differentiation of CSMCs into SSMCs and
proliferation of SSMCs, and adding a new term in SSMCs due
to their apoptosis) and is solved in 3D instead an axisymmetric
formulation. However, the computational cost is higher, and
some simplifications are necessary. Another improvement of this
model is the computation of blood flow in the transient mode.

This transient mode for the blood flow allows us to analyse
and compare some of the most common mechanical stimuli
that are normally used for predicting atheroma plaque locations,
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FIGURE 6 | Shape index distribution (first row) and detail of the growth of plaque in the bifurcation area (second row) in the healthy geometry with the different

mechanical stimuli studied. The first column depicts the use of TAWSS, the second column the OSI and the last column the proposed combination of TAWSS and OSI.

TAWSS and OSI. We also propose a new mechanical stimulus as
a combination of TAWSS andOSI to better predict the location of
plaques. Themodel was used to check whichmechanical stimulus
is more appropriate to predict the location of atheroma plaques
on carotid geometries.

The model was computed in a healthy geometry without
significant plaque in which there is no relevant haemodynamical
stimuli to develop atheroma plaques to verify that the model
is stable and plaques only grow when there is an atheroprone
stimulus. Additionally, atheroma plaque growth was computed
in different geometries obtained from pathological patient-
specific images in order to obtain the equivalent healthy
geometries to validate the results of the model.

As we can see in Figure 8, plaques predicted with different
haemodynamical stimulus growth in different locations

and present distinct stenosis ratio; thus, the choice of the
haemodynamical stimulus to predict the location of plaque
results crucial. TAWSS predicts excessively large plaques in the
CCA branch of the carotids, far from the bifurcation, that do not
match with the real ones. On the other hand, TAWSS adequately
predicts the size of plaques appearing in its own bifurcation
location compared with the real geometries. In contrast, OSI
locates plaques with a better precision than TAWSS, but the
growth ratio is very low in comparison to the actual ones. Finally,
the new variable proposed in this study combines the results
achieved with TAWSS and OSI, predicting in a more adequate
way the location of atheroma plaques as in OSI - limiting the
growth in areas of the CCA far from the bifurcation- and its
growth is similar to the real one observed in the clinical images,
similar to TAWSS.
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FIGURE 7 | Shape index distribution in all the geometries (A–G) with the

different mechanical stimuli studied. The first column depicts the use of

TAWSS, the second column the OSI and last column the proposed

combination of TAWSS and OSI.

The growth model fails to predict the location and size
when haemodynamics cannot predict high SI on the location

of the plaques. Although most of plaques predicted with the
model correspond to the ones clinically observed, there are
a few plaques that cannot be explained with this model. For
patients E and G, the stenosis appears in a zone where no
haemodynamical disturbance is observed; therefore in these
patients, haemodynamics are not the main trigger of the disease
and could be due to other systemic or genetic conditions of
the patient in this location, e.g., external lesion or pathological
weakness of the intimal layer.

Even though the model correctly predicts the plaques
appearing in the specific bifurcation and the ECA, some plaques
presented at the ICA are not very well predicted by any
mechanical stimulus studied in this work. We hypothesized that
it could be due to the uncoupled form between haemodynamics
and growth, where fluid is computed at the beginning of the
process and it is not updated with the plaque growth. First,
plaques appear at the CCA branch, and then they cause a change
of the blood flow downstream and the variable stimuli -TAWSS
and OSI- could be affected at an area behind them and a new
plaque is likely to appear in the ICA. To validate this hypothesis,
we computed the growth of B geometry until 15 years, and
then we actualized the geometry and computed it again. In
Figure 9, we can see the different images that represent growth
for a total of 30 years, growth for only half of the time (15
years), reconstruction of an updated geometry of the bifurcation
including the stenosis for 15 years, growth for 30 years with the
updated geometry and finally the actual clinical image. It can
be observed that the plaque in the ICA better matches the real
plaque. Due to the high computational cost of the 3D version of
our mechanobiological model, full FSI for 3D real carotid images
is not available.

As seen, the location of plaques was better predicted than the
stenosis ratio, which was predicted with errors between 2.77 and
32.89 %, depending on the analysed geometry. This could be
because the location of plaques only depends on haemodynamics,
while the stenosis ratio also depends on specific parameters of
the patients that are unknown, such as real concentration of
LDL in the blood and the time that they have had high LDL
levels. Moreover, it is also dependent on specific parameters
of the inflammatory model. It could obviously rely on other
factors not taken into account in the model that could affect
plaque growth, e.g., age, gender, blood pressure level or genetic
conditions. However, in general, our model using the new
haemodynamic stimulus should predict the location and the
growth of the plaques.

Apart from the LDL molecules, many studies have focused on
the governing mechanics interaction of the different biological
species that play a role in the atheroma plaque development from
a computational (see e.g., Ougrinovskaia et al., 2010; Di Tomaso
et al., 2011, among others) point of view. Furthermore, there
are greatly varying degrees of complexity in these computational
studies depending on the number of species considered and the
development of the equations proposed. (Zohdi et al., 2004)
modelled the adhesion of monocytes to the endothelial surface,
which is controlled by the intensity of the blood flow and
the adhesion molecules stimulated by the excess of LDL, the
penetration of the monocytes into the intima and subsequent
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FIGURE 8 | Growth of plaques in all the geometries (A–G) with the different

mechanical stimuli studied. The first column depicts the use of TAWSS, the

second column the OSI, the third column the proposed combination of

TAWSS and OSI and the last column the real plaques of the patients.

inflammation of the tissue, and the rupture of the plaque
accompanied by some degree of thrombus formation or even
subsequent occlusive thrombosis. Their modelling approach
predicts a priori the time to rupture as a function of arterial
geometry, diameter of the monocyte, adhesion stress, bulk
modulus of the ruptured wall material, blood viscosity, flow rate
and mass density of the monocytes. Di Tomaso et al. (2011)
considered the interaction between just two species, LDL and
monocytes, but the monocyte behaviour was modelled in a
very simple way. Fok (2012) proposed a mathematical model of
intimal thickening, posed as a free boundary problem. Intimal
thickening was driven by damage to the endothelium, resulting
in the release of cytokines andmigration of SMCs. More complex
studies were presented by Siogkas et al. (2011), who included
in their model oxidized LDL, macrophages and cytokines,
considering that all the LDL molecules and the monocytes were
oxidized and differentiated, respectively, at the instant in which
these agents pass through the endothelium. A similar study
was presented by Calvez et al. (2009) from a mathematical
point of view, but their study also included the foam cell.
Ougrinovskaia et al. (2010) explored the uptake of cholesterol
by different scavenger receptors of macrophages during early-
stage atherosclerosis using an ordinary differential equation
(ODE) model. It was found that macrophage proliferation
rather than an increased influx of LDL particles drives lesion
instability. Finally, Bulelzai and Dubbeldam (2012) presented
a qualitative mathematical model consisting of a number
of ordinary differential equations for the concentrations of
the most relevant constituents of the atherosclerotic plaque:
macrophages, monocytes, foam cell and oxidized LDL. More
complex 2D mechanobiological models have been presented
by other authors. For example, Filipovic et al. (2011) used
axisymmetric models and thus they could not obtain eccentric
plaques. In other studies, such as Filipovic et al. (2013), they used
three-dimensional carotid geometries with Kedem-Katchalsky
equations and convection-diffusion-reaction equations, but they
only considered three substances on the arterial wall and
focused the study in the location of plaques and not in
their growth. Alimohammadi et al. (2017) and Díaz-Zuccarini
et al. (2014) used the aortic bifurcation and the left femoral
artery, respectively, in their studies and focused more on the
location of plaques than on their growth. Only Alimohammadi
et al. (2017) analysed the typical haemodynamical stimuli
TAWSS or OSI and proposed a combined index, termed
HOLMES, to emphasize regions of highly oscillatory and
low-magnitude WSS; however, they focused only on the location
of calcifications.

Moreover, it is important to highlight the advantages and
disadvantages of our model versus agent-based models (Bhui
and Hayenga, 2017; Corti et al., 2020). The main advantage of
our model against versus agent-based models is that using a
continuum model allows us to simulate the plaque growth in
a real complex 3D geometry with an accessible computational
cost. Moreover, average values of the parameters and sensitivity
analysis are easily implemented. However, the disadvantage is
that with the continuum models we cannot take into account
the random behaviour of the cells and relation with micro-
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constituents, which is the one of the main strengths of agent-
based models.

The findings of this study should be interpreted within the
context of its limitations. For example, our model would be
improved by implementing a fluid-structure interaction to better
approximate the real pathology. Concerning the mathematical
model, only the main processes were included in the model,
while other important processes in the development of the
atheroma plaque, such as the degradation of collagen with age,
were considered. The haemodynamics were considered the main
trigger of atherosclerosis initiation. Thus, the cyclic stretch effects
of vessel compliance or curvature were disregarded. Another
limitation of our model is that we did not have the geometries
before plaques were developed, so the real geometries without

TABLE 6 | Stenosis ratio computed for all the geometries with all the mechanical

stimuli and the corresponding ratio on the clinical images.

Stenosis ratio (%)

Location TAWSS OSI New variable Real

Geom. A CCA 59.57 6.49 39.35 13.82

ICA 30.50 2.82 25.30 70.45

Geom. B CCA 47.42 2.98 36.12 18.41

ICA 28.15 1.93 20.22 39.56

Geom. C CCA 47.10 10.30 52.65 61.14

ICA 36.49 1.33 22.71 32.91

Geom. D CCA 63.03 8.61 47.05 52.39

Geom. E CCA 23.61 1.81 15.84 19.61

Geom. F CCA 63.55 2.44 36.28 33.51

Geom. G CCA 42.14 0.02 21.45 9.55

ICA 26.44 2.33 12.91 45.81

plaques were unknown. It is a limitation because the real healthy
geometries can have some differences with the reconstructed
ones and it can have an influence in the obtained results. We did
not have real plaque growth monitoring to see plaque geometry
evolution, and, in the same way, we also did not have real data
from each patient, e.g., blood pressure and flow, LDL levels and
number of years with high LDL levels and other pathologies that
they may have, so we did not use patient-specific parameters
to solve the problem. A fixed plaque growth of 30 years was
considered for our analysis based in literature (Insull, 2009).
In addition, there are no experimental data about OSI and
TAWSS and OSI combination influences on SI, and we used a
simplified model in which we only consider the more important
substances for plaque growth and do not consider different
kinds of cytokines (IL-4, IL-10, IL-13, or TFG beta) or T-cells
or free radicals that oxidize LDL. Adjusted parameters come
from different species and vessels in which the studies were
developed, and they were not all human carotids. We also did
not consider other processes that may have an important role in
atherosclerosis, such as mechanotaxis. This model assumes that
the substances can move from the lumen to the arterial wall, but
not in the reverse direction, and the transport properties are set
as constant, but in fact, they are very likely to change during
plaque formation.

In conclusion, despite the limitations, our model can predict
the location and the growth of plaques in the main cases. The
results show that prediction of plaques is, in most cases, better
using the new mechanical stimulus proposed in this study than
using TAWSS or OSI, with a maximal error of 32.89 % on
the stenosis ratio computed at the areas of higher occlusion
of the lumen due to the plaques. Based on the results, it can
be concluded that the functional regulation of the endothelium
by local haemodynamic shear stress provides a model for

FIGURE 9 | Results for plaque growth in patient B with 30 and 15 years of continuous process (A,B, respectively), the updated geometry after 15 years of the growth

process (C), the growth after 30 years in the updated geometry (D) and the real plaque of the patient (E).
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understanding the focal propensity of atherosclerosis in the
setting of systemic factors and this may help to guide future
therapeutic strategies.

In the future, the model could be used to predict if a patient is
susceptible to develop atheroma plaques and if so, to determine
the places where plaques are likely to appear. In this way, it
would be possible to take the necessary treatment to prevent
atheroma plaque development and all the consequences derived
from atherosclerosis.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

MC, MM, and EP conceived and designed the study. PH-L, MC,
MM, and EP development of the mathematical model. PH-L
computational implementation of the model and postprocesing
the results. PH-L, MC, MM, and EP writing, review, and editing.

FUNDING

Support was obtained from the Spanish Ministry of Science
and Technology through research projects DPI2016-76630-
C2-1-R and PID2019-107517RB-I00 and financial support to
PH-L from the grant BES-2017-080239, and the regional
Government of Aragón support for the funding of the research
project T24-20R.

ACKNOWLEDGMENTS

We thank the research support from the CIBER initiative.
CIBER Actions are financed by the Instituto de Salud
Carlos III with assistance from the European Regional
Development Fund.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fbioe.
2021.690685/full#supplementary-material

REFERENCES

Ai, L., and Vafai, K. (2006). A coupling model for macromolecule transport

in a stenosed arterial wall. Int. J. Heat Mass Trans. 49, 1568–1591.

doi: 10.1016/j.ijheatmasstransfer.2005.10.041

Alimohammadi, M., Pichardo-Almarza, C., Agu, O., and Díaz-Zuccarini, V.

(2017). A multiscale modelling approach to understand atherosclerosis

formation: a patient-specific case study in the aortic bifurcation. Proc.

Inst. Mech. Eng. H J. Eng. Med. 231, 378–390. doi: 10.1177/09544119176

97356

Arshad, M., Ghim, M., Mohamied, Y., Sherwin, S. J., and Weinberg, P. D. (2020).

Endothelial cells do not align with the mean wall shear stress vector. J. R. Soc.

Interf. 18:20200772. doi: 10.1098/rsif.2020.0772

Bennett, M. R., Evan, G. ., and Schwartz, S.M. (1995). Apoptosis of human vascular

smooth muscle cells derived from normal vessels and coronary atherosclerotic

plaques 2274.) key words: apoptosis * atherosclerosis * vascular smooth muscle

* bcl-2. Clin. Invest 95, 2266–2274. doi: 10.1172/JCI117917

Bhui, R., and Hayenga, H. N. (2017). An agent-based model of leukocyte

transendothelial migration during atherogenesis. PLoS Comput. Biol. 13, 1–23.

doi: 10.1371/journal.pcbi.1005523

Boyle, C. J., Lennon, A. B., and Prendergast, P. J. (2011). In silico prediction of the

mechanobiological response of arterial tissue: application to angioplasty and

stenting. J. Biomech. Eng. 133, 1–10. doi: 10.1115/1.4004492

Budu-Grajdeanu, P., Schugart, R. C., Friedman, A., Valentine, C., Agarwal,

A. K., and Rovin, B. H. (2008). A mathematical model of venous

neointimal hyperplasia formation. Theor. Biol. Med. Model. 5, 1–9.

doi: 10.1186/1742-4682-5-2

Bulelzai, M. A. K., and Dubbeldam, J. L. A. (2012). Long time evolution of

atherosclerotic plaques. J. Theor. Biol. 297, 1–10. doi: 10.1016/j.jtbi.2011.11.023

Calvez, V., Ebde, A., Meunier, N., and Raoult, A. (2009). Mathematical

modelling of the atherosclerotic plaque formation. ESAIM Proceedings 28,

1–12. doi: 10.1051/proc/2009036

Cannon, G. J., and Swanson, J. A. (1992). The macrophage capacity for

phagocytosis. J. Cell Sci. 101, 907–913. doi: 10.1242/jcs.101.4.907

Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A. (1978). The Mechanics of

the Circulation. Oxford, UK: Oxford University Press.

Chamley-Campbell, J. H., Campbell, G. R., and Ross, R. (1981). Phenotype-

dependent response of cultured aortic smooth muscle to serum mitogens. J.

Cell Biol. 89, 378–383. doi: 10.1083/jcb.89.2.379

Chien, S. (2003). Molecular and mechanical bases of focal lipid

accumulation in arterial wall. Progr. Biophys. Mol. Biol. 83, 131–151.

doi: 10.1016/S0079-6107(03)00053-1

Cilla, M., Peña, E., and Martínez, M. A. (2014). Mathematical modelling of

atheroma plaque formation and development in coronary arteries. J. R. Soc.

Interface 11:20130866. doi: 10.1098/rsif.2013.0866

Corti, A., Chiastra, C., Colombo, M., Garbey, M., Migliavaca, F., and

Casarin, S. (2020). A fully coupled computational fluid dynamics - agent-

based model of atherosclerotic plaque development: multiscale modeling

framework and parameter sensitivity analysis. Comput. Biol. Med. 118:103623.

doi: 10.1016/j.compbiomed.2020.103623

Dabagh, M., Jalali, P., and Konttinen, Y. T. (2009). The study of wall

deformation and flow distribution with transmural pressure by three-

dimensional model of thoracic aorta wall. Med. Eng. Phys. 31, 816–824.

doi: 10.1016/j.medengphy.2009.03.005

Dai, G. H., Kaazempur-Mofrad, M. R., Natarajan, S., Zhang, Y. Z., Vaughn,

S., Blackman, B. R., et al. (2004). Distinct endothelial phenotypes evoked

by arterial waveforms derived from atherosclerosis-susceptible and -resistant

regions of human vasculature. Proc. Natl. Acad. Sci. U.S.A 101, 14871–14876.

doi: 10.1073/pnas.0406073101

Di Tomaso, G., Diaz-Zuccarini, V., and Pichardo-Almarza, C. (2011). A multiscale

model of atherosclerotic plaque formation at its early stage. IEEE Trans.

Biomed. Eng. 58, 3460–3463. doi: 10.1109/TBME.2011.2165066

Díaz-Zuccarini, V., Di Tomaso, G., Agu, O., and Pichardo-Almarza,

C. (2014). Towards personalised management of atherosclerosis via

computational models in vascular clinics: Technology based on patient-specific

simulation approach. Health. Technol. Lett. 1, 13–18. doi: 10.1049/htl.2013.

0040

Filipovic, N., Rosic, M., Tanaskovic, I., Parodi, O., and Fotiadis, D. (2011). in the

Arteries. 1986, 195–198.

Filipovic, N., Teng, Z., Radovic, M., Saveljic, I., Fotiadis, D., and Parodi, O.

(2013). Computer simulation of three-dimensional plaque formation and

progression in the carotid artery. Med. Biol. Eng. Comput. 51, 607–616.

doi: 10.1007/s11517-012-1031-4

Fok, P. W. (2012). Mathematical model of intimal thickening in atherosclerosis:

Vessel stenosis as a free boundary problem. J. Theor. Biol. 314, 23–33.

doi: 10.1016/j.jtbi.2012.07.029

Garikipati, K., Arruda, E. M., Grosh, K., Narayanan, H., and Calve, S.

(2004). A continuum treatment of growth in biological tissue: The coupling

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 16 June 2021 | Volume 9 | Article 690685124

https://www.frontiersin.org/articles/10.3389/fbioe.2021.690685/full#supplementary-material
https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.041
https://doi.org/10.1177/0954411917697356
https://doi.org/10.1098/rsif.2020.0772
https://doi.org/10.1172/JCI117917
https://doi.org/10.1371/journal.pcbi.1005523
https://doi.org/10.1115/1.4004492
https://doi.org/10.1186/1742-4682-5-2
https://doi.org/10.1016/j.jtbi.2011.11.023
https://doi.org/10.1051/proc/2009036
https://doi.org/10.1242/jcs.101.4.907
https://doi.org/10.1083/jcb.89.2.379
https://doi.org/10.1016/S0079-6107(03)00053-1
https://doi.org/10.1098/rsif.2013.0866
https://doi.org/10.1016/j.compbiomed.2020.103623
https://doi.org/10.1016/j.medengphy.2009.03.005
https://doi.org/10.1073/pnas.0406073101
https://doi.org/10.1109/TBME.2011.2165066
https://doi.org/10.1049/htl.2013.0040
https://doi.org/10.1007/s11517-012-1031-4
https://doi.org/10.1016/j.jtbi.2012.07.029
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Hernández-López et al. Effects of Haemodynamic Stimuli on Atheroma Plaques

of mass transport and mechanics. J. Mech. Phys. Solids 52, 1595–1625.

doi: 10.1016/j.jmps.2004.01.004

Gaziano, T., and Gaziano, J. M. (2012). “Chapter 1: global burden of cardiovascular

disease,” in Brunwald’s Heart Disease: A Textbook of Cardiovascular Medicine,

9th Edn., eds R. Bonow, D. Mann, D. P. L. Zipes, et al. (Philadelphia,

PA: Elsevier).

Gijsen, F. J., Wentzel, J. J., Thury, A., Mastik, F., Schaar, J. A., Schuurbiers, J. C.,

et al. (2008). Strain distribution over plaques in human coronary arteries

relates to shear stress. Am. J. Physiol. Heart Circ. Physiol. 295, 1608–1614.

doi: 10.1152/ajpheart.01081.2007

Goldstein, J. L., and Brown, M. S. (1977). The low-density lipoprotein pathway

and its relation to atherosclerosis. Anual Rev. Biochem. 46, 897–930.

doi: 10.1146/annurev.bi.46.070177.004341

Guarino, A. J., Tulenko, T. N., and Wrenn, S. P. (2006). Sphingomyelinase-

to-LDL molar ratio determines low density lipoprotein aggregation

size: biological significance. Chem. Phys. Lipids 142, 33–42.

doi: 10.1016/j.chemphyslip.2006.02.020

Huang, Y., Rumschitzki, D., Chien, S., and Weinbaum, S. (1994). A fiber matrix

model for the growth of macromolecular leakage spots in the arterial intima. J.

Biomech. Eng. 116, 430–445. doi: 10.1115/1.2895794

Huang, Z. J., and Tarbell, J. M. (1997). Numerical simulation of mass transfer in

porous media of blood vessel walls. Am. J. Physiol. Heart Circ. Physiol. 273,

42-41. doi: 10.1152/ajpheart.1997.273.1.H464

Humphrey, J. D. (2002).Cardiovascular SolidMechanics: Cells, Tissues, andOrgans.

Berlin: Springer.

Insull, W. (2009). The pathology of atherosclerosis: plaque development and

plaque responses to medical treatment. Am. J. Med. 122(1 Suppl.), S3–S14.

doi: 10.1016/j.amjmed.2008.10.013

Ivanova, E. A., Myasoedova, V. A., Melnichenko, A. A., Grechko, A. V.,

and Orekhov, A. N. (2017). Small dense low-density lipoprotein as

biomarker for atherosclerotic diseases. Oxid. Med. Cell. Longev. 2017:1273042.

doi: 10.1155/2017/1273042

Khan, F. H. (2009). The Elements of Immunology. Delhi: Pearson Education.

Krombach, F., Münzing, S., Allmeling, A.M., Gerlach, J. T., Behr, J., andDörger,M.

(1997). Cell size of alveolar macrophagues: an interspecies comparison. Environ

Health Perspect 105, 1261–1263. doi: 10.1289/ehp.97105s51261

Levesque, M. J., Liepsch, D., Moravec, S., and Nerem, R. M. (1986). Correlation of

endothelial cell shape and wall shear stress in a stenosed dog aorta. Am. Heart

Assoc. J. 6, 220–229. doi: 10.1161/01.ATV.6.2.220

Lin, S. J., Jan, K. M., Weinbaum, S., and Chien, S. (1989). Transendothelial

transport of low density lipoprotein in association with cell mitosis in rat aorta.

Arteriosclerosis 9, 230–236. doi: 10.1161/01.ATV.9.2.230

Malek, A. M., and Alper, S. L. (1999). Hemodynamic Shear Stress and Its Role in

Atherosclerosis. Stress 282, 2035–2042. doi: 10.1001/jama.282.21.2035

Malvè, M., Chandra, S., García, A., Mena, A., Martínez, M. A., Finol, E. A.,

and Doblaré, M. (2014). Impedance-based outflow boundary conditions for

human carotid haemodynamics. Comput. Methods Biomech. Biomed. Eng. 17,

1248–1260. doi: 10.1080/10255842.2012.744396

Martini, F. H. (2012). “Ch. 10: Muscle tissue,” in Fundamentals of Anatomy and

Physiology. Upper Saddle River, NY: Pearson Education.

Meyer, G., Merval, R., and Tedgui, A. (1996). Effects of pressure-induced stretch

and convection on low-density lipoprotein and albumin uptake in the rabbit

aortic wall. Circ. Res. 79, 532–540. doi: 10.1161/01.RES.79.3.532

Milnor, W. R. (1989).Hemodynamics. 2nd Edn. Baltimore, MD.

Morbiducci, U., Mazzi, V., Domanin, M., Nisco, G. D., Vergara, C.,

Steinman, D. A., et al. (2020). Wall shear stress topological skeleton

independently predicts long-term restenosis after carotid bifurcation

endarterectomy. Ann. Biomed. Eng. 48, 2936–2949. doi: 10.1007/s10439-020-0

2607-9

Ohayon, J., Gharib, A. M., Garcia, A., Heroux, J., Yazdani, S. K., Malvè, M.,

et al. (2011). Is arterial wall-strain stiffening an additional process responsible

for atherosclerosis in coronary bifurcations?: an in vivo study based on

dynamic CT and MRI. Am. J. Physiol. Heart Circ. Physiol. 301, H1097–H1106.

doi: 10.1152/ajpheart.01120.2010

Olgac, U., Kurtcuoglu, V., and Poulikakos, D. (2008). Computational modeling of

coupled blood-wall mass transport of LDL: Effects of local wall shear stress.Am.

J. Physiol. Heart Circ. Physiol. 294, 909–919. doi: 10.1152/ajpheart.01082.2007

Ougrinovskaia, A., Thompson, R. S., and Myerscough, M. R. (2010). An ODE

model of early stages of atherosclerosis: Mechanisms of the inflammatory

response. Bull. Math. Biol. 72, 1534–1561. doi: 10.1007/s11538-010-9509-4

Peiffer, V., Sherwin, S. J., and Weinberg, P. D. (2013). Computation in the

rabbit aorta of a new metric-the transverse wall shear stress-to quantify the

multidirectional character of disturbed blood flow. J. Biomech. 46, 2651–2658.

doi: 10.1016/j.jbiomech.2013.08.003

Perktold, K., Resch, M., and Florian, H. (1991). Pulsatile non-newtonian flow

characteristics in a three-dimensional human carotid bifurcation model. J.

Biomech. Eng. 113, 464–475. doi: 10.1115/1.2895428

Prosi, M., Zunino, P., Perktold, K., and Quarteroni, A. (2005). Mathematical

and numerical models for transfer of low-density lipoproteins through

the arterial walls: A new methodology for the model set up with

applications to the study of disturbed lumenal flow. J. Biomech. 38, 903–917.

doi: 10.1016/j.jbiomech.2004.04.024

Sáez, P., Malvè, M., and Martínez, M. A. (2015). A theoretical model of the

endothelial cell morphology due to different waveforms. J. Theor. Biol. 379,

16–23. doi: 10.1016/j.jtbi.2015.04.038

Sáez, P., Peña, E., Ángel Martínez, M., and Kuhl, E. (2013). Mathematical

modeling of collagen turnover in biological tissue. J. Math. Biol. 67, 1765–1793.

doi: 10.1007/s00285-012-0613-y

Schwenke, D. D., and Carew, T. E. (1989). Initiation of atherosclerotic lesions

in cholesterol-fed rabbits, II: selective retention of LDL vs. selective increases

in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9:908–918.

doi: 10.1161/01.atv.9.6.908

Siogkas, P., Sakellarios, A., Exarchos, T. P., Athanasiou, L., Karvounis,

E., Stefanou, K., et al. (2011). Multiscale-Patient-specific artery and

atherogenesis models. IEEE Trans. Biomed. Eng. 58(12 Part 2), 3464–3468.

doi: 10.1109/TBME.2011.2164919

Sommer, G., Regitnig, P., Költringer, L., and Holzapfel, G. A. (2010). Biaxial

mechanical properties of intact and layer-dissected human carotid arteries

at physiological and supraphysiological loadings. Am. J. Physiol. Heart Circ.

Physiol. 298, 898–912. doi: 10.1152/ajpheart.00378.2009

Steinberg, D., Khoo, J. C., Glass, C. K., Palinski, W., and Almazan, F. (1997). A

new approach to determining the rates of recruitment of circulating leukocytes

into tissues: Application to the measurement of leukocyte recruitment

into atherosclerotic lesions. Proc. Natl. Acad. Sci. U.S.A. 94, 4040–4044.

doi: 10.1073/pnas.94.8.4040

Tedgui, A., and Lever, M. J. (1984). Filtration through damaged and

undamaged rabbit thoracic aorta. Am. J. Physiol. Heart Circ. 247, 784–791.

doi: 10.1152/ajpheart.1984.247.5.H784

Vargas, C. B., Vargas, F. F., Pribyl, J. G., and Blackshear, P. L. (1979). Hydraulic

conductivity of the endothelial and outer layers of the rabbit aorta. Am. J.

Physiol. Heart Circ. 236, 56–60. doi: 10.1152/ajpheart.1979.236.1.H53

Weinbaum, S., Tzeghai, G., Ganatos, P., Pfeffer, R., and Chien, S. (1985). Effect of

cell turnover and leaky junctions on arterial macromolecular transport. Am.

Physiol. Soc. 248, 945–960. doi: 10.1152/ajpheart.1985.248.6.H945

Younis, H. F., Kaazempur-Mofrad, M. R., Chan, R. C., Isasi, A. G., Hinton,

D. P., Chau, A. H., et al. (2004). Hemodynamics and wall mechanics

in human carotid bifurcation and its consequences for atherogenesis:

Investigation of inter-individual variation. Biomech. Model. Mechanobiol. 3,

17–32. doi: 10.1007/s10237-004-0046-7

Yuan, F., Chien, S., and Weinbaum, S. (1991). A new view of convective-diffusive

transport processes in the arterial intima. J. Biomech. Eng. 113, 314–329.

doi: 10.1115/1.2894890

Zahedmanesh, H., Van Oosterwyck, H., and Lally, C. (2012). A multi-

scale mechanobiological model of in-stent restenosis: deciphering the

role of matrix metalloproteinase and extracellular matrix changes. Comp.

Methods Biomech. Biomed. Eng. 17, 813–828. doi: 10.1080/10255842.2012.

716830

Zhao, B., Li, Y., Buono, C., Waldo, S. W., Jones, N. L., Mori, M., et al.

(2006). Constitutive receptor-independent low density lipoprotein uptake

and cholesterol accumulation by macrophages differentiated from human

monocytes with macrophage-colony-stimulating factor (M-CSF). J. Biol. Chem.

281, 15757–15762. doi: 10.1074/jbc.M510714200

Zhao, S. Z., Ariff, B., Long, Q., Hughes, A. D., Thom, S. A., Stanton,

A. V., et al. (2002). Inter-individual variations in wall shear stress

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 17 June 2021 | Volume 9 | Article 690685125

https://doi.org/10.1016/j.jmps.2004.01.004
https://doi.org/10.1152/ajpheart.01081.2007
https://doi.org/10.1146/annurev.bi.46.070177.004341
https://doi.org/10.1016/j.chemphyslip.2006.02.020
https://doi.org/10.1115/1.2895794
https://doi.org/10.1152/ajpheart.1997.273.1.H464
https://doi.org/10.1016/j.amjmed.2008.10.013
https://doi.org/10.1155/2017/1273042
https://doi.org/10.1289/ehp.97105s51261
https://doi.org/10.1161/01.ATV.6.2.220
https://doi.org/10.1161/01.ATV.9.2.230
https://doi.org/10.1001/jama.282.21.2035
https://doi.org/10.1080/10255842.2012.744396
https://doi.org/10.1161/01.RES.79.3.532
https://doi.org/10.1007/s10439-020-02607-9
https://doi.org/10.1152/ajpheart.01120.2010
https://doi.org/10.1152/ajpheart.01082.2007
https://doi.org/10.1007/s11538-010-9509-4
https://doi.org/10.1016/j.jbiomech.2013.08.003
https://doi.org/10.1115/1.2895428
https://doi.org/10.1016/j.jbiomech.2004.04.024
https://doi.org/10.1016/j.jtbi.2015.04.038
https://doi.org/10.1007/s00285-012-0613-y
https://doi.org/10.1161/01.atv.9.6.908
https://doi.org/10.1109/TBME.2011.2164919
https://doi.org/10.1152/ajpheart.00378.2009
https://doi.org/10.1073/pnas.94.8.4040
https://doi.org/10.1152/ajpheart.1984.247.5.H784
https://doi.org/10.1152/ajpheart.1979.236.1.H53
https://doi.org/10.1152/ajpheart.1985.248.6.H945
https://doi.org/10.1007/s10237-004-0046-7
https://doi.org/10.1115/1.2894890
https://doi.org/10.1080/10255842.2012.716830
https://doi.org/10.1074/jbc.M510714200
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Hernández-López et al. Effects of Haemodynamic Stimuli on Atheroma Plaques

and mechanical stress distributions at the carotid artery bifurcation of

healthy humans. J. Biomech. 35, 1367–1377. doi: 10.1016/S0021-9290(02)0

0185-9

Zhao, W., Oskeritzian, C. A., Pozez, A. L., and Schwartz,

L. B. (2005). Cytokine production by skin-derived mast cells:

endogenous proteases are responsible for degradation of

cytokines. J. Immunol. 175, 2635–2642. doi: 10.4049/jimmunol.175.

4.2635

Zohdi, T. I., Holzapfel, G. A., and Berger, S. A. (2004). A phenomenological model

for atherosclerotic plaque growth and rupture. J. Theor. Biol. 227, 437–443.

doi: 10.1016/j.jtbi.2003.11.025

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Hernández-López, Cilla, Martínez and Peña. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 18 June 2021 | Volume 9 | Article 690685126

https://doi.org/10.1016/S0021-9290(02)00185-9
https://doi.org/10.4049/jimmunol.175.4.2635
https://doi.org/10.1016/j.jtbi.2003.11.025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Hernández-López et al. Effects of Haemodynamic Stimuli on Atheroma Plaques

APPENDIX A

Hydraulic conductivity of leaky junctions can be calculated with
the equation (A1):

Lplj =
Ap

S
· Lpslj, (A1)

where
Ap
S is the fraction of total area occupied by leaky junctions

and Lpslj is the hydraulic conductivity of a single leaky junction.
To determine the value of these parameters, we considered that
the spaces between endothelial cells have a cylindrical shape,
while leaky junctions have a ring shape and they are evolving
the leaky cells (Weinbaum et al., 1985; Yuan et al., 1991). We
assumed that leaky junctions are aleatory distributed with a
distance between them of 2ǫlj, where 2ǫlj is the permeability
of a leaky junction (Weinbaum et al., 1985; Yuan et al.,
1991). Therefore, the circumferences of radius ǫlj can be traced
periodically with a leaky cell in their centre.

According to this, the fraction of area occupied by leaky
junctions can be defined as:

Ap

S
=

Aslj

π · ǫlj
2
, (A2)

where π · ǫlj
2 is the total area that corresponds to leaky junctions

(because they are separated by a distance of 2ǫlj) and Aslj is the
area of a single leaky junction that can be calculated with equation
(A3), assuming a simplification for reduced thickness:

Aslj = 2π · Rcell · 2wl, (A3)

where Rcell is the radius of endothelial cells, and wl the half-width
of a leaky junction (Weinbaum et al., 1985; Yuan et al., 1991;
Huang et al., 1994).

On the other hand, the ratio of the area occupied by leaky cells
and the total of cells, 8lj, can be defined as (Weinbaum et al.,
1985; Huang et al., 1994):

8lj =
Rcell

2

ǫlj
2

(A4)

Therefore, combining the equations (A2) (A3) and (A4), we can
obtain the expression to calculate the area occupied by leaky
junctions (A5):

Ap

S
=

4wl

Rcell
· 8lj (A5)

Nevertheless, the ratio 8lj is not known because ǫlj is also not
known, but it is known that it is a function of the considered
mechanical stimulus, which can be calculated by knowing
different tangential stresses in the arterial wall caused by blood
flow during a cardiac cycle.

APPENDIX B

Pslj is the permeability of a leaky junction, which can be calculated
with the diffusion coefficient of LDL in a leaky junction (Dlj) and
the length of a leaky junction (llj):

Pslj =
Dlj

llj
(A6)

The diffusion coefficient of a leaky junction is related to the
LDL diffusion coefficient with the following empirical correlation
(Olgac et al., 2008):

Dlj

Dl
= F

(

αlj

)

= 1− 1.004αlj + 0.418α3
lj − 0.16α5

lj (A7)

The reduction factor of the concentration gradient of LDL
depends on a modified Peclet number:

Zlj =
Pelj

e(Pelj) − 1
, (A8)

which is defined as:

Pelj =
Jv, lj · (1− σf ,lj)

Plj
(A9)

Finally, the solvent-drag coefficient of leaky junctions is given by
(Olgac et al., 2008) V

σf ,lj = 1−
2

3
α2
lj(1− αlj) · F(αlj)− (1− αlj)

(

2

3
+

2αlj

3
−

7α2
lj

12

)

(A10)
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Cortical Thickness Adaptive
Response to Mechanical Loading
Depends on Periosteal Position and
Varies Linearly With Loading
Magnitude
Corey J. Miller1, Silvia Trichilo2, Edmund Pickering1, Saulo Martelli1, Peter Delisser3,
Lee B. Meakin3 and Peter Pivonka1*

1 School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia,
2 St. Vincent’s Department of Surgery, University of Melbourne, Melbourne, VIC, Australia, 3 School of Veterinary Sciences,
University of Bristol, Bristol, United Kingdom

The aim of the current study was to quantify the local effect of mechanical loading
on cortical bone formation response at the periosteal surface using previously obtained
µCT data from a mouse tibia mechanical loading study. A novel image analysis algorithm
was developed to quantify local cortical thickness changes (1Ct.Th) along the periosteal
surface due to different peak loads (0N ≤ F ≤ 12N) applied to right-neurectomised
mature female C57BL/6 mice. Furthermore, beam analysis was performed to analyse
the local strain distribution including regions of tensile, compressive, and low strain
magnitudes. Student’s paired t-test showed that 1Ct.Th in the proximal (25%),
proximal/middle (37%), and middle (50%) cross-sections (along the z-axis of tibia) is
strongly associated with the peak applied loads. These changes are significant in a
majority of periosteal positions, in particular those experiencing high compressive or
tensile strains. No association between F and 1Ct.Th was found in regions around
the neutral axis. For the most distal cross-section (75%), the association of loading
magnitude and 1Ct.Th was not as pronounced as the more proximal cross-sections.
Also, bone formation responses along the periosteum did not occur in regions of
highest compressive and tensile strains predicted by beam theory. This could be
due to complex experimental loading conditions which were not explicitly accounted
for in the mechanical analysis. Our results show that the bone formation response
depends on the load magnitude and the periosteal position. Bone resorption due to the
neurectomy of the loaded tibia occurs throughout the entire cross-sectional region for
all investigated cortical sections 25, 37, 50, and 75%. For peak applied loads higher
than 4 N, compressive and tensile regions show bone formation; however, regions
around the neutral axis show constant resorption. The 50% cross-section showed
the most regular 1Ct.Th response with increased loading when compared to 25 and
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37% cross-sections. Relative thickness gains of approximately 70, 60, and 55% were
observed for F = 12 N in the 25, 37, and 50% cross-sections. 1Ct.Th at selected points
of the periosteum follow a linear response with increased peak load; no lazy zone was
observed at these positions.

Keywords: cortical bone, adaptation, mechanical loading, local adaptation, cortical thickness, periosteal
apposition, tibia loading, mouse model

INTRODUCTION

Osteoporosis is a degenerative bone disease characterised by
long-term bone loss and fragility (Black and Rosen, 2016).
To counter osteoporosis, several drugs have been developed
to either reduce or reverse the bone loss process. Despite
the success in reducing the degeneration of osteoporosis, drug
treatments can have significant side effects, and the positive
effect on the bone mass is often lost upon discontinuation
of the drug dosing regimen (McClung, 2016; Minisola et al.,
2019). Pharmacologically, drug treatments such as PTH are
generalised therapies and do not target specific bones. Exercise,
on the other hand, has been identified as a safe alternative
to restore bone mass (Bliuc et al., 2013; Ebeling et al.,
2013; Beck et al., 2017); mechanical loading interventions
can act as a potent anabolic stimulus with the ability to
strategically restore bone mass in regions of bone that undergo
significant loading, both in animal models and humans
(Ozcivici et al., 2010).

Bone tissue adapts its mass and structure to the habitual
mechanical loading environment (Rubin and Lanyon, 1985;
Ozcivici et al., 2010; Pivonka et al., 2018). Several animal
loading models have been developed to investigate the relations
between the applied mechanical load, the changes in bone
mass, and the bone cells involved in mechano-transduction
(Meakin et al., 2014; Javaheri et al., 2019). Among these
models, the mouse tibia loading model is commonly used to
assess both trabecular and cortical bone adaptation responses
(De Souza et al., 2005; Sugiyama et al., 2010, 2012). In
this model, the tibia is subjected to cyclic, compressive load,
while the contralateral tibia serves as an internal control.
Common metrics used to assess bone adaptation to mechanical
loading consider global morphological variations at either
the entire bone level (e.g., bone volume change), or at
the entire bone slice level (e.g., cross-sectional area change,
moment of area change). A comprehensive study by Sugiyama
et al., 2012 (Sugiyama et al., 2012) explored the influence of
peak dynamic load on bone adaptation. The primary focus
was to analyse the effect of peak dynamic loads (ranging
from 0 to 14 N) on changes in cortical area (1Ct.Ar),
determined through µCT endpoint imaging. They concluded
that changes in cortical bone cross-sectional area are linearly
related to the peak applied load. However, bone adaption
is a local (i.e., site-specific) phenomenon governed by the
local strain (Fritton et al., 2005; Razi et al., 2015). As such,
metrics operating on the entire bone or on a slice level
are unable to provide detailed insights into a load-adaptation
response law. While the study of Sugiyama et al. did observe

site-specific adaptation, the load-adaptation response was not
explored this in a quantitative manner. A more detailed
evaluation of bone’s adaptive response to local strain can
be obtained by analysing the local cortical thickness change
(1Ct.Th).

To this end, several studies have explored the local
cortical thickness variation (1Ct.Th) (Halloran et al., 2002;
Stadelmann et al., 2011; Sugiyama et al., 2012; Galea et al.,
2015; Birkhold et al., 2016; Roberts et al., 2020), commonly
using a minimum distance metric (i.e., the shortest distance
between periosteal and endosteal surfaces) (Hildebrand and
Rüegsegger, 1997; Bouxsein et al., 2010). Pereira et al.
(2015) used the same method to analyse 1Ct.Th but instead
considered spatially discrete locations, reporting 1Ct.Th in a
polar coordinate system around the centroid. This technique
provided promising results for the majority of the tibial
cross-sections analysed; however, it is inadequate for bony
protrusions such as the tibial ridge. Furthermore, while new
tissue forms normal to the bone surface (Graham et al.,
2012; Pereira et al., 2015; Zhang et al., 2019), the use of
a minimum distance technique does not accurately capture
1Ct.Th when the direction of adaptation (i.e., normal to the
surface) is highly offset from the radial direction. Similarly,
radial coordinates create issues when determining periosteal
and endosteal edges, where in some cases up to four cortical
intersection points can be identified for a given radial direction
(Bab et al., 2007).

To account for the irregular shape of the mouse tibia,
this study proposes a new technique for measuring cortical
thickness variations. A novel image post-processing algorithm
was developed to allow the calculation of the local 1Ct.Th
around the perimeter of the tibia using a combined minimum
distance and normal distance approach. The experimental
results of Sugiyama et al. (2012) were re-analysed to quantify
local cortical thickness changes and their association to the
peak load applied. The analysis was conducted for four
commonly studied cross-sections in the mouse tibia loading
model (i.e., 25, 37, 50, 75%). Furthermore, mechanical analysis
using beam theory was performed in order to relate the
obtained cortical thickness changes to the local mechanical
loading environment and identify regions of high and low
strains, respectively.

MATERIALS AND METHODS

The endpoint imaging data used in this study was previously
reported by Sugiyama et al. (2012). As such, we have provided
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a brief summary of the experimental design and imaging
process here; for a more complete description see (Sugiyama
et al., 2012). Following this, a detailed description of the
newly developed image processing algorithm used to extract
local 1Ct.Th measurements of tibial cross sections at selected
regions is presented.

Experimental Design
A total of 48 female C57BL/6 mice were divided evenly
into eight groups, with each group assigned to one of eight
peak load magnitudes (F = 0, 2, 4, 6, 8, 10, 12 or 14 N)
(Sugiyama et al., 2012). For the purpose of our study, the
F = 14 N loading case was excluded due to the formation
of woven bone in several animals. Each mouse was subjected
to a right sciatic neurectomy at 17 weeks of age, in order to
minimise the natural loading in their right tibiae (i.e., muscle
contraction forces) and simulate a condition of mechanical
disuse. From day 5 after neurectomy, every second day, and
for two weeks, the right tibia of each mouse was subjected to
external mechanical loading. A non-invasive servo hydraulic
loading machine applied 40 cycles of intermittent loading, with
each cycle consisting of: (i) 0.5 N static preload, (ii) 500
N/s ramp up to target peak load, (iii) a 0.05 second hold
at peak load, (iv) −500 N/s ramp down to static preload,
(v) 10 s rest interval. This has been shown to significantly
stimulate loading-related bone gain (Rubin and Lanyon, 1984;
Fritton and Rubin, 2001; Robling et al., 2001; Srinivasan et al.,
2002; De Souza et al., 2005; Sugiyama et al., 2010, 2011;
Moustafa et al., 2012). The left tibia of each mouse was
used as contralateral control (Sugiyama et al., 2010; McKenzie
and Silva, 2011). At day 21 after neurectomy, the mice were
sacrificed, and both left and right tibiae were scanned using
µCT imaging. Whole tibiae were imaged using the SkyScan
1172 (SkyScan, Kontich, Belgium) with an isotropic resolution of
4.78 µm. An X-ray voltage of 50 kV was applied, with 0.5 mm
aluminium filtration. The scans were over 180 degrees with a
0.5-degree rotation step.

Beam Theory Analysis of Tibia
The mechanical analysis presented in this paper aims to
link the strains in the cortical cross section to the observed
thickness changes. We assume that the tibia represents a
slender beam structure and, consequently, can be analysed
using Euler-Bernoulli beam theory (Hjelmstad, 2005; Bauchau
and Craig, 2009; Buenzli et al., 2013; Lerebours et al.,
2016; Trichilo, 2018; Ashrafi et al., 2020). The purpose of
this analysis is not to provide a direct link between strain
magnitudes and the adaptive response, but rather to identify
compressive and tensile regions of strain and to observe
general trends of strain magnitude across a given cross-
section.

The load F was assumed to act on the tibial plateau in the z-
direction between the tibial condyles; this location was previously
suggested from strain gauge studies (Pickering et al., 2021). In
a particular cross section (z), F induces a normal force (F = N)
and bending moments Mx ( = F · Iy) and My ( = F · Ix), where
Iy and Ix represents the distance of the load F to the x and y

axis respectively. Knowing the internal beam quantities once can
calculate the axial strain according to:

ε
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x, y

)
=

1
E

σ
(
x, y

)
=

1
E

(
N
A
−

My Ix +Mx Ixy

Ix Iy − I2
xy

x+
Mx Iy +My Ixy

Ix Iy − I2
xy

y

)
(1)

where Ix and Iy are the second moments of area with respect to
the x- and y-axis, respectively and Ixy is the product moment of
area. In Eq. 1 bone was assumed to be a linear-elastic material
with a Young’s modulus E = 17 GPa (Kohles et al., 1997).
A maximum load of F = 12 N was applied to aid in differentiation
of strain magnitudes, aligning with the peak load used in the
experimental protocol.

To compute the second moments of area Ix, Iy, and Ixy of each
cross-section, a customised algorithm to automatically segment
µCT images was developed in MATLAB. µCT images were first
binarised using Otsu’s thresholding method. A filter was then
applied to the images to close any small holes in the tibial cross-
section (representing blood vessel channels), and to smooth the
tibial boundaries. The second moments of area were calculated
using parallel axis theorem, treating each white pixel (i.e., bone)
in the image as a square of area 22.84 µm2.

Image Post-processing Algorithm
Each stack of tibial µCT images was normalised along the
proximal-distal direction of the tibia (i.e., z-axis), with z = 0%
referring to the most proximal slice and z = 100% referring to
the most distal slice. In this study, the response to mechanical
loading was analysed on a single cross-sectional slice taken from
the z = 25% (proximal), z = 37% (proximal-middle), z = 50%
(middle), and z = 75% (distal) locations of the tibia. Note that we
also performed the following methodology over a representative
stack of images spanning approx. 0.5 mm of the tibia (±0.25 mm
from selected slice), as has been commonly done in previous
works (see Sugiyama et al., 2012). A comparison of the results
from using a single slice and the representative stack can be found
in Supplementary Figure 1; measurements in a single slice were
found to not differ significantly from the representative stack. The
selected µCT images were grouped based on peak load applied,
cross-section analysed and control/loaded tibia.

Following the binarisation process described above, pixels
along the periosteal and endosteal envelopes were identified and
mapped into an array. In order to compare the thickness along
the periosteum between different limbs, periosteal position (Pper)
distributions were aligned across all tibiae at a given z cross-
section through the location of a characteristic point (i.e., pixel)
on the tibial periosteum (Pper = 0). This characteristic point was
identified as the intersection between the tibia periosteum and
the line connecting the tibia and fibula centroids (Figure 1A).
Starting at Pper = 0 and following a clockwise direction, the pixels
along the periosteal surface were re-arranged and normalised
between 0 and 1. In the case of the distal cross-section (z = 75%)
where the fibula is absent, a faux fibula centroid was projected
onto the plane from the 50% section.
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FIGURE 1 | Measurement methodology used to analyse the cortical thickness of mice tibia (z = 25% section). (A) Pre-processing – the cortical boundaries are
located (periosteum and endosteum), and a characteristic periosteal point is determined as the intersection of a line connecting the centroids of the tibia and fibula
(red dot). The periosteal length (perimeter) is normalised between 0 and 1. Ct.Th measurements at each periosteal point are taken clockwise around the tibial
perimeter. (B) Thickness measurement case 1: minimum distance method (red) and surface-normal blue) measurements around the cortex. Similar results with
minimum distance providing shorter measurements. (C) Thickness measurement case 2: thickness measurements along the tibial ridge, showing major differences
between measurement methods with tangent-normal providing shorter measurements. (D) Combination of the two measurement methods, selecting the smallest
distance determined by either measurement method, to create the most representative cortical thickness distribution of the tibial image. Combined Results are then
filter using a 2nd order Butterworth filter.

When defining the local cortical thickness two types of
measurements were used, as shown in Figures 1B,C: (i) a
minimum distance measurement (shown in blue) and (ii)
a perpendicular distance measurement (shown in red). The
minimum distance method measured the distance between each
periosteal pixel and the nearest endosteal pixel. The normal
method measured the distance from each periosteal pixel to
the next cortical edge (endosteal or periosteal) along a line
perpendicular to the periosteum. In cross-sectional regions with
approximately constant curvature of periosteum and endosteum,
both techniques provided a similar result, as shown in Figure 1B.
The more distally located cross-sections (z = 50 and 75%)
confirm this trend for the majority of the periosteal surface.
However, in regions with large curvature changes such as the
tibial ridge (i.e., z = 25 and 37%), a large discrepancy between
the two measurement techniques was observed, as highlighted in
Figure 1C. In order to generate a thickness measurement which
best represented bone adaptation in these sections [i.e., normal to
the surface (Graham et al., 2012)], both thickness measures were
calculated for each periosteal pixel and the smaller of the two
measurement values was used to define the representative local
cortical thickness Ct.Th (Figure 1D). This result was then filtered
using a 2nd order lowpass Butterworth filter to remove high-
frequency noise due to the measurement combination technique.

Since the results across images were different in length due
to the variability between animals and the adaptation process
of the loaded limbs, each Ct.Th distribution was re-sampled

so that Pper contained n = 750 periosteal points. A further
consideration was made when comparing cortical thickness
distributions of the loaded and control limbs. As mentioned, the
loaded limb presented a longer periosteum due to the adaptation
process, therefore, to ensure an accurate comparison of the same
cortical regions, a further alignment step was required. For the
approximately circular cross-sections (z = 50 and 75%), cross-
covariance was used to circularly shift one of the two thickness
signals, to maximise the alignment with the other one. In the cases
of the z = 25 and 37% cross-sections, where the growth/resorption
along the tibial ridge had a significant effect on the alignment
of Pper points between loaded and control tibia, a customised
re-sampling methodology was developed. Four common peaks
and/or troughs in the Ct.Th measurement distribution were
identified in all the limbs analysed that correlated with key bony
features, e.g., the tip of the tibial ridge. Thickness measurements
between these key-points were re-sampled based on a fixed
number of points, resulting in an optimal and consistent
alignment between the peaks for all slices at that particular cross-
section. This process was repeated for each mouse limb (right
and left tibiae). It should be noted that the thickness along the
periosteum was measured for both right and left limbs starting
from Pper = 0 and following a clockwise direction in the cross-
section. To be able to make left vs. right comparisons, all the left
limb signals needed to be reversed. The thickness distributions
were then compared between the right and the left tibiae of
a mouse at each cross-section (z), for all considered loading
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conditions. The relative change in cortical thickness (1Ct.Th) for
each periosteal point was calculated as:

1Ct.Th(Pper) [%] =
Ct.Th(Pper)right − Ct.Th(Pper)left

Ct.Th(Pper)left
· 100

(2)
where Pper identifies the periosteal position at which the cortical
thickness is evaluated at the right and left tibia. Eq. 2 is an
extension of the equation used for calculating cortical area
changes (see Sugiyama et al., 2012 for details) with respect to
considering localised cortical thickness changes.

Statistical Analysis
Mean values (1Ct.Th) and standard deviations (SD) of 1Ct.Th
were calculated across the six specimens within a loading
condition at each point Pper . For simplicity of notation, the
symbol 1Ct.Th will denote mean cortical thickness changes
throughout the rest of the manuscript. The results were evaluated
through Student’s paired t-tests for each loading condition
per tibial cross section, considering the link between the local
thickness change at each periosteal surface position and the
mechanical loading. For this investigation, a p-value <0.05 was
considered statistically significant.

RESULTS

For clarity, results will first be presented for the middle region
(z = 50%) as this section consists of an approximately circular
cross-section and embodies the greatest strains. Results for the
remaining three sections will be presented thereafter.

Figure 2 shows the results of the Student’s paired t-tests for
the 12 N loading case in the middle cross-section of the tibia.
From Figure 2A one can see that the mean 1Ct.Th reaches values
greater than 50% at selected positions along the periosteum
(Pper ≈ 0.02), whereas other regions show zero or negative
thickness change (0.3 < Pper < 0.35 and 0.7 < Pper < 0.80).
Furthermore, mice within each loading group showed variable
response to mechanical loading, with the standard deviation
being approximately ±10% at the majority of periosteal surface.
The results of the paired t-test indicate that local changes in
cortical thickness were statistically significant (p < 0.05) over a
large portion of the periosteal surface (Figure 2B), and the only
regions demonstrating no significance were those with near zero
cortical thickness change.

Figure 3 shows the adaptation response along the periosteal
surface in the z = 50% section for all peak loads investigated. For
low peak loads (i.e., 4 N and lower), resorption was observed at
most locations around the periosteal surface (negative 1Ct.Th,
Figure 3A). At peak loads of 6 N and higher, positive 1Ct.Th
(i.e., bone formation) begins to show along the periosteum. The
region on the periosteum with bone formation increases with
the increasing peak load. Note that the 1Ct.Th vs. F response
is quasi linear, while the slope of the response depends on the
periosteal position.

At approximately Pper = 0.33 and Pper = 0.75, consistent
resorption was observed with little to no dependence on the

FIGURE 2 | Local cortical thickness variation for the 12 N loading case at the
middle tibial region (z = 50%): (A) Mean (black line) and standard deviation
(Shaded area) along the periosteum 1Ct.Th ± SD vs Pper and (B) p-value
using a student-paired t-test at each periosteal position (statistical significance
indicated by values below the dashed line, i.e., p < 0.05).

applied load. In contrast, periosteal locations at approximately
Pper = 0.05 and Pper = 0.5 show a large dependence on load
magnitude, exhibiting near maximum changes in 1Ct.Th. To
explore the load dependency further, 1Ct.Th has been reported
in Figure 3B as a function of applied load for the four periosteal
locations identified above, i.e. Pper = 0.05, 0.33, 0.50, 0.75. At
locations Pper = 0.33 and Pper = 0.75 a nearly constant reduction
of 1Ct.Th, independent of the magnitude of the applied peak
load, is noted. At locations Pper = 0.05 and Pper = 0.50, a
quasi-linear relationship between load magnitude and 1Ct.Th is
observed. The Pper = 0.05 location (i.e., posterior-lateral surface)
was noted to experience greater 1Ct.Th when compared to
Pper = 0.50 (i.e., anterior-medial surface).

To test if there is a correlation between the thickness change
along the periosteum and the axial strain (εz) encountered in the
cross section, beam theory was used to calculate εz in the middle
cross-section (Figure 3C). Comparing the 1Ct.Th distribution
(Figure 3A) and the axial strain (Figure 3C), apparent trends
of the load-adaptation response can be observed; to investigate
this further, four locations around the periosteum [posterior
(Pper = 0.05), lateral (Pper = 0.33), anterior (Pper = 0.5), medial
(Pper = 0.75)] were extracted and explored in Figure 3B.
The posterior region experienced a higher strain magnitude
compared to the anterior region (−8,198 and 6,075 µε,
respectively), coinciding with a higher 1Ct.Th along the
periosteum in the same region. Likewise, the load independent
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FIGURE 3 | (A) Mean cortical thickness changes (1Ct.Th) along the normalised periosteal position at the middle tibial cross-section (z = 50%) for all loading cases.
Regions of interest have been identified at Pper = 0.05 (posterior surface), 0.33 (lateral), 0.50 (anterior), and 0.75 (medial). (B) Mean cortical thickness changes at
selected regions of interest across all loading conditions. (C) Finite element results (F = 10 N) within the 50% cross-section.

locations on the periosteum (Pper = 0.33 and Pper = 0.75) appear
to coincide with near zero axial strain. This region is commonly
referred to as the neutral bending axis or neutral axis.

Figure 4 shows the mean cortical thickness changes, i.e.,
1Ct.Th curves of the proximal (z = 25%), proximal-middle
(z = 37%), and distal (z = 75%) cross-sections of the tibia, as
well as the respective strain distribution εz generated by a 12
N load for the corresponding cross sections. The proximal and
proximal-middle cross-sections show similar trends in 1Ct.Th
to the middle region discussed above (Figures 4A,B), with
bone gain or loss responses occurring at different periosteal
positions. In the proximal cross-section, the maximum bone
formation response occurs in the tensile region of the cross-
section (0.35 < Pper < 0.65). Cortical growth response to
compressive loading produced up to a 55% increase in cortical
thickness at Pper = 0.9 for 12 N peak load. The proximal-middle
cross-section follows similar trends to the proximal one. Bone
gain is higher in the tensile region (maximum change of 80%
at Pper = 0.49 for 10 N peak load) than it is in compression
(maximum 53% at Pper = 0.96 for 12 N peak load).

In both the proximal and proximal-middle cross-sections,
bone resorption was observed around the medial neutral axis
under all loading conditions (0.25 < Pper < 0.33 in the proximal
region, 0.15 < Pper < 0.3 in the proximal-middle region). The
lateral side of the neutral axis was observed to show smaller
rates of resorption with increased load (0.6 < Pper < 0.7 in the
proximal region, 0.65 < Pper < 0.75 in the proximal-middle
region). Under the 12 N load, the proximal-middle region shows
no loss of bone at the lateral side of the neutral axis.

The adaptive response in the distal cross-section of the tibia
differs significantly from the other three regions (Figure 4C).
Bone gains are the lowest of all the four investigated cross-
sections, showing a maximum cortical thickness increase of 21%
at Pper = 0.17. The anterior surface (0.35 < Pper < 0.65) shows that
the cortical surface remains relatively stable with zero change to
cortical surface for F≥ 4 N. Significant bone gain was observed in
the posteromedial section of the cross-section (0 ≤ Pper < 0.35)
for F ≥ 6 N, whereas the posterolateral section experienced
resorption across all loading conditions. The neutral axis of
the distal region cannot be clearly identified from the obtained
thickness results.

The results of the beam analysis revealed peak tensile
strains of 2,583, 4,187, and 964 µε at Pper ≈ 0.5 for the
proximal (Figure 4D), proximal-middle (Figure 4E), and distal
(Figure 4F) cross-sections, respectively. Peak compressive strains
were −6,875, −9,994, and −3,381 µε at Pper ≈ 0.05. This
is consistent with the middle region, where higher strain
magnitudes were observed on the posterior side when compared
to the anterior. It should also be noted that the majority of the
distal cross section is under compressive loading with only a small
tensile region (Figure 4F).

DISCUSSION

Bone adaptation is a local phenomenon. This has been
demonstrated previously along the axis of the tibia or in discrete
segments of the tibia (Sugiyama et al., 2010; Lu et al., 2016;
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FIGURE 4 | (A–C) Mean cortical thickness changes (1Ct.Th) vs. normalised periosteal position (Pper ) at the: (A) proximal, (B) proximal-middle, and (C) distal tibial
cross-section for all different loading cases. Vertical dashed lines represent the approximate Pper position of the expected neutral axis (NA). (D–F) Beam theory results
for the: (D) proximal, (E) proximal-middle, and (F) distal tibial cross-sections. Dashed lines represent the approximate physical locations of the neutral axis (ε = 0).

Galea et al., 2020; Roberts et al., 2020; Scheuren et al., 2020).
However, this work is the first to demonstrate the link between
magnitude of axial load and adaptive response around the
periosteum of the tibia at a cross-section level. Our results clearly
show that the cortical thickness change around the periosteal
surface varies linearly with loading magnitude. Furthermore, the
slope of this adaptive response depends on the periosteal position.

Quantifying the adaptive response through 1Ct.Th provides
important insights into understanding the localised changes
compared to other metrics (e.g., 1Ct.Ar). Shown in Figure 3B,
the bone’s adaptive response was found to have a quasi-
linear relationship between load magnitude and bone formation.
This observation supports previous findings, such as those of
Sugiyama et al. (2012) who found 1Ct.Ar increased linearly
with the applied load. However, the use of such metrics (i.e.,
non-localised) mask the true magnitude of adaptation. Under a
peak load of 12 N at the 50% section, Sugiyama et al. (2012)
recorded an average 1Ct.Ar of 15.5 ± 2.1% (Sugiyama et al.,
2012). However, for the same load, at the same section, we show
that 1Ct.Th can vary between −20 and +60%; this suggests that
broad metrics such as 1Ct.Ar are insufficient to fully describe the
adaptation response to mechanical stimuli.

Many studies have shown a link between local adaptive
response and local strain magnitude (Fyhrie and Carter, 1986;
Robling et al., 2006; Webster et al., 2012; Schulte et al., 2013;

Lambers et al., 2015; Pereira et al., 2015; Carriero et al., 2018;
Tiwari et al., 2018). However, none of these studies have looked
at the effect of different loading magnitudes on the observed
local changes. Here we compared the local adaptive response
as a function of loading magnitude in different cortical cross-
sections. Focusing on the 50% cross-section, the posterior surface
(Pper = 0.05) experienced larger bone formation as a function of
peak load (i.e., larger slope of the F vs. 1Ct.Th curve) compared
to the anterior surface (Pper = 0.5), as shown in Figures 3A,B.
The increased response in this region correlates to the strain
magnitude resulting from combined bending and axial load.
The peak compressive strain is greater than the peak tensile
strain. As such, the compressive surface experiences a larger bone
formation response. The same trend is seen in the 25 and 37%
cross sections, shown in Figures 4A,B.

Regions of low strain (i.e., those near the neutral axis)
experienced bone resorption. In the 50% cross-section, the medial
and lateral surfaces (Pper ≈ 0.75, 0.33, respectively) experienced
resorption, independently of the load applied. This finding stands
in contrast to the study performed by Pereira et al. (2015).
Most notably, in non-neurectomised C57BL/6 mice, adaptation
to loading of F = 13 N was all positive, i.e., no bone resorption
occurred (Pereira et al., 2015; Trichilo, 2018). One explanation
for the observed bone loss in the neurectomised mice is the
fact that muscle action comprises a significant portion of the
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habitual strain state. Without the continual influence of muscle
activation to maintain mechanical homeostasis at the neutral axis,
these regions will undergo bone resorption to readjust to their
new habitual state.

This same trend of resorption around the neutral axis is
observed in the 25 and 37% sections. In the case of the 75% cross-
section, however, a more general trend of resorption is observed,
with up to half of the cross-section experiencing resorption
under the highest peak loads. Strains in this cross-section were
noticeably smaller than the strains in the other three. This might
be related to this cross-section of the tibia being aligned with the
longitudinal axis, resulting in low bending moments, and thus
axial compression dominates.

The bone adaptive response observed in Figures 3A, 4A,B
can be further viewed through the lens of beam theory and
second moment of area. A higher second moment of area leads to
lower overall strain; the most efficient way to increase the second
moment of area is by adding new material furthest away from
the neutral axis. In doing so, bone maximises its strength while
optimising the distribution of mass. This is a demonstration of
Wolff ’s law (Wolff, 1893). While a detailed mechanical analysis
of the tibia using finite element analysis is beyond the scope
of this paper, we are confident that the utilised beam theory
predicted the location of the null axis and peak strains in the cross
section well. Estimation of the exact magnitude of peak strain as
a function of load is not the focus of the current paper.

Early understandings of bone’s adaptive response suggested a
range of strain levels which would not elicit an adaptive response,
often referred to as the lazy zone (Carter, 1984; Huiskes et al.,
1987). More recent studies have suggested that this region is non-
existent in both animal models and in human tissue (Sugiyama
et al., 2012; Ellman et al., 2013; Schulte et al., 2013; Christen et al.,
2014). Likewise, in this work, a lazy zone is not observed. In line
with previous studies, the results presented here suggest that no
lazy zone exists in adaptive bone (re)modelling.

A limitation of this study is that the measurement technique
does not determine if adaptation has occurred on the periosteal
or endosteal surface, rather it only determines the net
thickness change. Furthermore, the neurectomy performed on
the mice removes habitual loading and induces some amount
of resorption, with loading inducing additional bone formation
subsequently. Due to this phenomenon, we are unable to
quantitatively determine the amount of new bone material
formed or resorbed on each surface, only the total difference
after completion of the experiment. Longitudinal imaging would
provide a significant benefit in this regard. Comparing a single
limb at different time points, differences on both the endosteum
and periosteum could be tracked to provide deeper insights into
the mechanisms of bone adaptation.

Effects of loading on neurectomised vs. non-neurectomised
mice were also not considered in the original study. While
the left limb was left intact, performing a sciatic neurectomy
on the right limb may have affected the gait of the mouse,
potentially altering the habitual strains experienced in the healthy
limb. Without such a control, it is difficult to answer several
questions such as how bone adapts to mechanical loads from a
standard habitual state (i.e., healthy gait), what are the bone loss

effects of neurectomy, and what are the differences in adaptation
response between healthy versus mechanically deficient (i.e.,
neurectomised) mice. Answering these questions would help to
provide a more complete understanding of bone adaptation and
should be investigated in future studies.

In this paper, we presented a novel image processing algorithm
to measure cortical thickness of the mouse tibia loading model
and compared the results across several loading magnitudes.
We identified that discrete locations around the periosteum
were shown to follow a quasi-linear cortical thickness adaptation
response with increased loading, while points at areas of near-
zero strain (i.e., neutral bending axis) experienced resorption
regardless of loading magnitude; the correlation between strain
and bone formation was shown to follow the adaptation
principles of Wolff ’s Law.

The ultimate purpose of animal adaptation studies is to derive
mechanistic insights into the link between applied mechanical
loads and the observed organ- or tissue-scale changes of
(cortical) bone. The work conducted here has established a
statistically significant association of mechanical loading and
bone adaptation responses in discrete periosteal regions of
cortical bone. The fact that these regions also experienced
high compressive and tensile strains obtained from beam
theory provides confidence that a mechanistic relationship exists
between a particular mechanical quantity (such as principal
strain, strain energy density, etc.) and the local cortical thickness
changes. These findings may be useful in the development of
treatments that aim to increase bone strength, informing specific
mechanical loading routines that would provide targeted bone
formation in areas of high fracture risk. Results we have obtained
here will help develop novel bone adaption algorithms which
are able to predict cortical thickness changes which is the scope
of a future study.
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Injurious mechanical loading of articular cartilage and associated lesions compromise
the mechanical and structural integrity of joints and contribute to the onset and
progression of cartilage degeneration leading to osteoarthritis (OA). Despite extensive
in vitro and in vivo research, it remains unclear how the changes in cartilage
composition and structure that occur during cartilage degeneration after injury, interact.
Recently, in silico techniques provide a unique integrated platform to investigate
the causal mechanisms by which the local mechanical environment of injured
cartilage drives cartilage degeneration. Here, we introduce a novel integrated Cartilage
Adaptive REorientation Degeneration (CARED) algorithm to predict the interaction
between degenerative variations in main cartilage constituents, namely collagen fibril
disorganization and degradation, proteoglycan (PG) loss, and change in water content.
The algorithm iteratively interacts with a finite element (FE) model of a cartilage explant,
with and without variable depth to full-thickness defects. In these FE models, intact and
injured explants were subjected to normal (2 MPa unconfined compression in 0.1 s) and
injurious mechanical loading (4 MPa unconfined compression in 0.1 s). Depending on
the mechanical response of the FE model, the collagen fibril orientation and density,
PG and water content were iteratively updated. In the CARED model, fixed charge
density (FCD) loss and increased water content were related to decrease in PG content.
Our model predictions were consistent with earlier experimental studies. In the intact
explant model, minimal degenerative changes were observed under normal loading,
while the injurious loading caused a reorientation of collagen fibrils toward the direction
perpendicular to the surface, intense collagen degradation at the surface, and intense
PG loss in the superficial and middle zones. In the injured explant models, normal loading
induced intense collagen degradation, collagen reorientation, and PG depletion both on
the surface and around the lesion. Our results confirm that the cartilage lesion depth
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is a crucial parameter affecting tissue degeneration, even under physiological loading
conditions. The results suggest that potential fibril reorientation might prevent or slow
down fibril degradation under conditions in which the tissue mechanical homeostasis is
perturbed like the presence of defects or injurious loading.

Keywords: mechanobiological modeling, finite element method, cartilage degeneration, osteoarthritis, adaptive
modeling, in silico techniques, articular cartilage, regulatory algorithm

INTRODUCTION

Osteoarthritis (OA) is a complex multi-faceted joint disease of
which articular cartilage degeneration is a hallmark. OA is a
prevalent disease in the elderly, but younger patients can be
affected by mechanically induced OA due to an injury or chronic
overloading of the tissue (e.g., due to sports activities) (Mukherjee
et al., 2020). OA compromises the biological and mechanical
integrity of articular cartilage, whose main role is to reduce the
friction between articulating bone surfaces and transmit loads to
the underlying subchondral bone (Da Silva et al., 2009; Eskelinen
et al., 2019). Despite extensive studies, as detailed in the following
paragraphs, so far, the mechanisms behind mechanically induced
OA are not fully understood. The focus of this paper is to propose
an integrated in silico cartilage degeneration model including
key features of cartilage damage. The model predictions are
compared with previous experimental observations on the role
of injurious mechanical loading and the presence of focal defects
in cartilage degeneration.

Articular Cartilage Composition
Articular cartilage is an avascular tissue composed of
chondrocytes embedded within their self-produced extracellular
matrix (ECM). The biphasic ECM is composed of water and a
solid phase (Mohammadi et al., 2013). The main constituents
of the solid phase are collagen fibrils and proteoglycans (PGs).
The collagen fibrils form an arcade-shaped fibril network which
is organized into three layers known as superficial, middle and
deep zones. The PGs control water content through variations
in the hydrophilic negatively charged glycosaminoglycan (GAG)
content, these produce a negative fixed charge density (FCD)
within the tissue (Roughley and Lee, 1994; Hosseini et al.,
2014; Orozco et al., 2018). The FCD causes osmotic pressure
differences within the tissue and subsequently, cartilage swelling.
The collagen network resists the swelling through the tensile
strength of the collagen fibrils and prevents the extrusion of
PGs from the ECM during interstitial fluid flow (Julkunen et al.,
2013; Gardiner et al., 2016). In the macro-scale, this swelling
behavior is critical in resisting compressive loads and therefore
maintaining the unique mechanical properties of cartilage
(Fox et al., 2009).

Mechanically Induced OA Onset and
Progression
Cartilage homeostasis maintains the structural properties and
unique mechanical behavior of the tissue through sustained
ECM synthesis. Injurious loading to the articular cartilage and
consequent lesions (Dulay et al., 2015) may change the stress

and strain distribution within the tissue (Wilson et al., 2006a;
Speirs et al., 2014; Ferizi et al., 2017; Tanska et al., 2018).
These alternations are often associated with or followed by
chondrocyte dedifferentiation and apoptosis, PG depletion, as
well as collagen fibril disorganization and degradation (Loening
et al., 1999; Horton et al., 2006; Wilson et al., 2006a; Ferizi
et al., 2017; Tanska et al., 2018). Local PG depletion will cause
FCD loss and consequently FCD will attract less water into the
tissue. Conversely, loss (and disorganization) of solid contents
due to PG depletion increases tissue hydration (Sah et al., 1991;
Setton et al., 1999; Men et al., 2017). An increase in tissue
hydration was found to be a major contributor to collagen
network disorganization (Saarakkala et al., 2010) and a decrease
in tissue stiffness (Buckwalter, 1992). Therefore, a chain of
degenerative mechanisms (i.e., fibril network disorganization,
PG depletion and fibril degradation) is suggested to underly
OA development following injurious cartilage loading, however,
their exact interactions and in particular the roles of fibril
disorganization and increased tissue hydration are not clear.

Understanding the various mechanisms behind the onset and
progression of mechanically induced OA and their interactions is
crucial to elucidate their role and optimize treatment methods.
However, in vivo and in vitro studies face several limitations
to evaluate the interactive roles of collagen disorganization
and degradation, FCD loss and increase in tissue hydration in
OA onset and progression. These are related to limited access
to samples and test data, the need for specific experimental
facilities, and high costs. Indeed, in in vivo and in vitro
experiments, multiple processes occur simultaneously and their
mutual influence and unique contribution to OA onset and
progression cannot be isolated.

In silico Models to Predict OA Onset and
Progression
In silico models provide a unique platform to incorporate insights
from in vivo and in vitro experiments. These models leverage
enhanced understanding of the local mechanical environment
in cartilage tissue under injurious loading and around structural
defects as well as its contribution to cartilage damage. To this
end, several in silico models were introduced in the literature
(Keenan et al., 2013; Wu et al., 2016; Koh et al., 2019; Wang
et al., 2019). Among the proposed models, a fibril-reinforced
poro-viscoelastic swelling (FRPVES) finite element (FE) model
introduced by Wilson et al. (2005) accounts for different ECM
constituents (i.e., collagen content, fibril orientation, PG content,
and water content) and therefore allows studying the effect of
variations in cartilage composition due to the altered mechanical
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environment. To simulate cartilage degeneration and load-
dependent changes in the contents of ECM constituents, several
adaptive algorithms have previously been introduced in the
FRPVES model. These adaptive algorithms have been used to
predict the individual effect of collagen network disorganization
(Wilson et al., 2006a; Tanska et al., 2018), PG depletion (Orozco
et al., 2018, 2020; Eskelinen et al., 2019), collagen degradation
(Wilson et al., 2006b; Mononen et al., 2016; Liukkonen et al.,
2017), and combined PG depletion and collagen degradation
(Julkunen et al., 2013; Quiroga et al., 2017; Mononen et al.,
2018). Aside from a previously proposed model that predicts
the individual effect of PG depletion in cartilage degeneration
through a decrease in FCD content (Orozco et al., 2018, 2020;
Eskelinen et al., 2019), all other adaptive cartilage degeneration
models predict tissue degradation through a decrease in material
properties associated to PG or collagen content but do not change
the introduced PG and collagen contents to the model.

Although these studies provide insights into local degenerative
changes in cartilage tissue, they fail to predict changes in the
contents of cartilage constituents and their isolated role in
different degeneration mechanisms as well as their interactions.
More specifically, existing cartilage degeneration algorithms lack
biofidelity as they fail to (i) predict the changes in the contents
of cartilage constituents (i.e., collagen and water contents) due to
degeneration, (ii) account for experimentally observed effect of
fibril disorganization (Makela et al., 2012), in combination with
other degenerative mechanisms, and (iii) model the local increase
in tissue hydration as a consequence of cartilage degeneration.
The integration of these different degeneration mechanisms (in
particular collagen fibril reorientation and degradation, FCD
loss and increase in water content due to PG depletion) and
their interaction into an integrated FE framework would allow
a more mechanistic insights into cartilage degeneration. This
would fulfill a currently unmet need clearly identified in literature
(Wilson et al., 2006a; Tanska et al., 2018; Eskelinen et al., 2019;
Mukherjee et al., 2020).

In this study, for the first time, we present an integrated
adaptive FE framework that predicts the cartilage degenerative
behavior through variations in cartilage constituents (i.e.,
collagen, FCD and water contents). In this framework, the
previously developed algorithms for collagen fibril reorientation
(Wilson et al., 2006a; Tanska et al., 2018) and degradation
(Valentín et al., 2013; Famaey et al., 2018) were adapted and
integrated with a novel PG depletion algorithm to predict
the interactive effect of different degenerative mechanisms in
cartilage degeneration: the collagen fibril degradation algorithm
was adopted from an existing arterial degradation model
(Valentín et al., 2013) and implemented to predict the decrease
in collagen content due to cartilage degeneration. Furthermore,
PG depletion was coupled to a decrease in the FCD content
and a consequent increase in tissue hydration as part of the
cartilage degeneration processes. This is in contrast to previous
implementations where PG depletion was primarily modeled
through a decrease in FCD content (Orozco et al., 2018,
2020; Eskelinen et al., 2019) or variations in cartilage material
properties (Julkunen et al., 2013; Quiroga et al., 2017; Mononen
et al., 2018). The performance of the novel Cartilage Adaptive

REorienetation Degeneration (CARED) algorithm was evaluated
with FE models of (i) an intact cartilage explant under normal
loading, (ii) an intact cartilage explant under injurious loading,
and (iii) cartilage explants with focal defects in accordance with
the International Cartilage Regeneration and Joint Preservation
Society (ICRS) grades 1, 2, and 3 under normal loading. This
provides unique insights into the complex cascade/interactions
of the different processes that affect the cartilage constituents
and drive cartilage degeneration following injurious loading and
cartilage injury.

MATERIALS AND METHODS

Finite Element Modeling
A 3D description of the FRPVES material with Donnan osmotic
swelling (Wilson et al., 2005; Eskelinen et al., 2019) was used
to simulate the mechanics of articular cartilage. The structural,
compositional and material parameters of the FRPVES model for
healthy bovine articular cartilage were adopted from Tanska et al.
(2018) and Eskelinen et al. (2019). Detailed descriptions of the
material model, initial cartilage composition and parameters are
provided in Supplementary Table 1. In the 3D description of the
FRPVES model, the collagen network consists of four arcade-
shaped primary fibrils and 13 randomly oriented secondary
fibrils. Experimental observations show that the primary fibrils at
the superficial layer are oriented in two directions in most parts of
the articular cartilage tissue (Clark, 1985; Mononen et al., 2012).
Therefore, the primary fibrils were oriented in two directions
forming split-lines at the model surface (+x and –x directions in
Figure 1A).

Three groups of FE models of cartilage explants were created
(Figure 2): (Figure 2A) reference model: intact explant with
normal gait loading assumed to be a 2 MPa ramp load in 0.1 s
(Kłodowski et al., 2016; Tanska et al., 2018; Eskelinen et al.,
2019), (Figure 2B) injurious loading model: intact explant with
injurious loading assumed to be a 4 MPa ramp load in 0.1 s
(Loening et al., 1999, 2000; Quinn et al., 2001), and (Figure 2C)
injury model: three explant models each included a 20 µm wide
and either a 100, 380, or 750 µm deep lesion throughout the
explant (Tanska et al., 2018) mimicking the ICRS defect grades
1, 2, and 3, respectively. Explants of this group were subjected
to normal gait loading response (approximated with 2 MPa
ramp load in 0.1 s).

The FE models of cartilage explants were created with
cylindrical geometries (thickness h = 1.5 mm and radius
r = 1.5 mm, Figure 1B). The bottom surface of the explant
was restricted against vertical translation but allowed radial
expansion. First, the cartilage explant was allowed to swell freely
to reach mechanical equilibrium. During the free swelling step,
the fluid was able to flow through the side and top surfaces
(pore pressure = 0). The free swelling step was followed by a
compression loading that was applied using a rigid platen on
the top surface of the explant. During the compression step, the
fluid flow through the top surface was restricted. The friction
coefficient between the rigid platen and explant surface was set
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FIGURE 1 | (A) Primary collagen fibril orientation and (B) Geometry, loading, boundary conditions and layers of the cartilage explant defined in the finite element
model (see Supplementary Material for details about cartilage layers and depth-dependent properties).

to 0.05 to simulate cartilage-to-cartilage contact (McCann et al.,
2009; Eskelinen et al., 2019).

Intact cartilage explants and cartilage explants with focal
defects corresponding to ICRS grades 1, 2, and 3 were meshed
by 12,960, 15,176, 14,816, and 14,100 linear pore pressure
continuum elements (element type C3D8P), respectively. Mesh
convergence was ensured by modeling cartilage explant using
half, twice, and four times of the selected element numbers.
Simulations with higher mesh densities showed no substantial
differences in deformation gradient distributions (the FE
simulation output used in the adaptive algorithm of section
“CARED Model”).

CARED Model
To predict the interaction between collagen fibril disorganization
and degradation, as well as PG depletion, a novel integrated FE-
based framework (CARED model) was introduced. The CARED
model input parameter is the deformation gradient tensor (F) of
the FE simulation that iteratively determines the mechanically
induced fibril reorientation and degradation, as well as the PG
depletion in the articular cartilage. In this study, the reorientation
and degenerations were assumed to take place with respect to
the undeformed state, and thus, the strain in the cartilage tissue
was evaluated in a Lagrangian frame from the Green–Lagrangian
strain tensor E (Tanska et al., 2018):

E =
1
2

(C−I) , (1)

where C is the right Cauchy-Green strain tensor:

C = FT · F. (2)

The principal values (λj) and directions (nj) of
E were calculated and used in the reorientation and
degeneration algorithms.

Figure 2 shows a general overview of the CARED adaptive
model, where the fibril reorientation, fibril degradation, and PG
depletion algorithms are highlighted with green, orange, and blue
frames respectively. Besides the novelty regarding integrating

a fibril reorientation algorithm with collagen degradation and
PG depletion mechanisms, the magenta frames and arrows in
Figure 2 highlight the novelties in (i) adapting the collagen
degeneration theory from arterial tissue (Valentín et al., 2013;
Famaey et al., 2018) to cartilage, (ii) using a non-localization
theory for PG depletion, (iii) introducing a novel algorithm for
the increase in tissue hydration, and (iv) relating the increase
in tissue hydration and FCD loss to PG depletion (details are
given in the following paragraphs). The fibril reorientation, FCD
loss, and non-localization theories were adopted from previous
studies: (Wilson et al., 2006a; Tanska et al., 2018), (Orozco
et al., 2018; Eskelinen et al., 2019) and (Quiroga et al., 2017),
respectively. The procedure was repeated in 50 consecutive
iterations of arbitrary time after which the reorientation and
degeneration values reached an equilibrium.

Collagen Fibril Reorientation Algorithm
A previously developed collagen fibril reorientation algorithm
was integrated to predict the fibril network disorganization in
mechanically altered cartilage tissue, as observed experimentally
(Makela et al., 2012). This algorithm assumes that collagen fibrils
align according to a tensile strain direction, also confirmed by
other computational and experimental studies (Driessen et al.,
2005; Makela et al., 2012; Nagel and Kelly, 2013). This algorithm
was initially introduced for arterial tissue by Driessen et al.
(2003) and adapted for cartilage by Wilson et al. (2006a) and
Tanska et al. (2018).

In our CARED model, we integrated the reorientation
algorithm from Tanska et al. (2018). This algorithm proposes that
the fibrils reorient toward a preferred fibril direction:

ep =
g1n1 ± g2n2 ± g3n3√

g2
1 + g2

2 + g2
3

, (3)

where nj are the principal strain directions and gj are the
functions of principal values of Green–Lagrangian strain tensor:{

gj = λj,λj > 0
gj = 0,λj ≤ 0

(4)
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Therefore, only positive principal strains contributed to the
fibril reorientation. Equation (3) may result in up to four
preferred fibril directions, among which the closest preferred
direction to the current fibril direction (ef_i) was used to

determine the fibril reorientation around a rotation axis
defined as:

er =
ef_i × ep

‖ ef_i × ep ‖
(5)

FIGURE 2 | Cartilage explant geometries and applied loadings for the finite element model and the adaptive algorithm: (A) the reference model, (B) the injurious
loading model, and (C) the focal defect models of ICRS grades 1, 2, and 3. After finite element simulation, the obtained deformation gradient was used to calculate
principal values and directions of strain tensor at each element. These values were used to calculate the fibril reorientation [green frames, adopted from Tanska et al.
(2018)], fibril degradation [orange frames, adopted from the studies on arterial tissue (Valentín et al., 2013; Famaey et al., 2018) and changed for cartilage] and PG
depletion [blue frames, partially adopted from Eskelinen et al. (2019) and Quiroga et al. (2017)]. The magenta frames and arrows highlight the novelties in (i) adapting
the collagen degeneration theory from arterial tissue to cartilage, (ii) using a non-localization theory for PG depletion, (iii) introducing a new algorithm for the increase
in tissue hydration, and (iv) relating hydration variations and FCD loss to PG depletion. The definitions of preferred fibril directions and the angle between current and
preferred fibril direction can be found in section “Collagen Fibril Reorientation Algorithm”.
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The new fibril direction was calculated as:

ef_i+1 = exp
(
dθ
dt

K̂
)
ef_i, (6)

where K̂ is cross-product matrix of er and dθ
dt is the angular

velocity of reorientation defined as:

dθ
dt
= κα = κ arccos ‖ ef_i · ep ‖, (7)

where α is the angle between the current (ef_i) and preferred (ep)
fibril directions and κ is the reorientation rate, which was defined
as: {

κ = 0.3, if α ≥ 1◦ and εf > 0
κ = 0, if α < 1◦ or εf ≤ 0

, (8)

i.e., the fibril reorientation was only allowed if α ≥ 1◦ and
fibril experiences tension (εf is the strain in fibril direction- see
Supplementary Material). The value of 0.3 was selected based
on previous studies (Wilson et al., 2006a; Tanska et al., 2018).
In this study, this value is a computational parameter without
a physical time scale and it controls the reorientation rate for
optimal convergence.

To optimize model convergence, the aforementioned
calculations were performed for one of the four primary
fibrils. One of the remaining primary fibrils was assumed to
reorient in the same direction as the first fibril and the two
others were assumed to reorient symmetrical to the calculated
reorientation (symmetry was calculated concerning the y-z plane
in Figure 1A).

Collagen Fibril Degradation Algorithm
To develop an algorithm for collagen degradation, a theory
originally introduced for arterial tissue was used (Valentín
et al., 2013; Famaey et al., 2018). The theory suggests that the
contribution of collagen fibril in tissue stiffness in the next
iteration (Collcontrib,i1) can be obtained from its contribution to
the current iteration (Collcontrib,i) as follows:

Collcontrib, i+1 = Collcontrib, iDcoll, (9)

where Dcoll is the collagen degradation rate calculated in relation
to a damage function (β) and a material damage parameter
(mcoll):

Dcoll = 1−exp
(
−

β

mcoll

)
(10)

Computational findings suggest that the tensile stimulus to the
collagen network needs to be considered in the adaptive modeling
of the collagen fibril degradation in cartilage (Wilson et al., 2006b;
Hosseini et al., 2014; Tanska et al., 2018). Therefore, tensile strain
in the fibril was used as a threshold for the fibril degradation (i.e.,
the fibril degradation occurs if εf > K0,f) (Hosseini et al., 2014;
Famaey et al., 2018). The threshold was assumed to be K0,f = 10%
(Famaey et al., 2018). To adapt the collagen degradation model
for cartilage, β was estimated with:

β =
∣∣εf−K0,f

∣∣ , (11)

and for simplicity and to reduce the number of model
parameters it was assumed that mcoll = 1. In the FRPVES model,
the contribution of collagen fibrils to tissue stiffness was assumed
with depth-dependent collagen fibril density (Collcontrib,i = ρz,i-
see Supplementary Table 1). Therefore, the collagen fibril
degradation theory for cartilage tissue was calculated as:

ρz,i+1 =

{
ρz,i if εf ≤ K0,f[
1−exp

(
−
∣∣εf−K0,f

∣∣)] ρz,i if εf > K0,f
(12)

The greater the εf, the collagen fibril density decreases more
with consecutive loading iterations of arbitrary time. More details
about the collagen fibril density parameter can be found in
Supplementary Material.

Proteoglycan Depletion Algorithm
We implemented a PG depletion algorithm developed by
Eskelinen et al. (2019). They conducted a parameter sensitivity
analysis study on the different threshold parameters and values
for adaptive FE modeling of the PG depletion in articular
cartilage. The results show that maximum shear strain (Equation
13) with a threshold value of K0,PG = 30% can predict the
FCD loss in cartilage explants with focal defect most accurately
compared to experiments.

εmax = max
{∣∣εp,1−εp,2

∣∣ , ∣∣εp,1−εp,3
∣∣ , ∣∣εp,2−εp,3

∣∣} , (13)

where εp,1, εp,2 and εp,3 are the principal strains of Green–
Lagrangian strain tensor E.

Within the CARED model, a non-localized version of the PG
depletion algorithm proposed by Eskelinen et al. (2019) was used,
as mesh-dependent localization of damage is a known problem
in mechanical modeling of tissue damage (Hosseini et al., 2014;
Mukherjee et al., 2020). In damage theories, this is solved by
using non-localizing methods for the damage evolution. First,
εmax was non-localized (εmax, nl) using a previously introduced
non-localizing theory for cartilage degeneration (Quiroga et al.,
2017). The non-localized maximum shear strain at each intended
integration point (ip) was obtained as:

εmax,nl,ip =

∑nip
intp=1 ωip, intp(εmax,ip)∑nip

intp=1 ωip, intp
, (14)

where intp and nip are the index and the total number
of integration points in the FE model and ωip, intp is the
Gauss weighting function at the intended integration point (ip)
concerning each of other integration points (intp) and was
obtained as:

ωip, intp =
1

(2π)3/2l3

exp

−
√(

xintp−xip
)2(yintp−yip)2(zintp−zip)2

2l2

 , (15)

where xj, yj, and zj are the coordinates of intended and
other integration points and l is the characteristic length,
which is a property related to the scale of the microstructure.
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FIGURE 3 | The results of the intact explant model subjected to injurious loading showing the degeneration of main constituents and comparison to previous
experimental results: (A) fibril reorientation compared to (1) (Makela et al., 2012; Mononen et al., 2018), (B) fibril degradation compared to (2) (Lin et al., 2004), (C,D)
the FCD loss and increase in tissue hydration compared to (3) (Mononen et al., 2018), and (4) (Lin et al., 2004). The curves of progression of the degeneration
aspects vs. remodeling iterations in each of the three cartilage layers and over the whole tissue are shown.

TABLE 1 | Equilibrium moduli of the simulated explants before and after degeneration obtained from in silico stress-relaxation tests.

Injury models Initial equilibrium
modulus (MPa)

Equilibrium modulus
after degeneration (MPa)

Change in equilibrium
modulus (%)

Injurious loading in the intact explant model 1.62 1.08 −33

Normal loading in the focal defect models ICRS grade 1 defect 1.61 1.60 −1

ICRS grade 2 defect 1.60 1.57 −2

ICRS grade 3 defect 1.58 1.41 −11

This parameter was selected to be l = dsup (superficial
layer thickness = 0.12 × explant height, see Supplementary
Table 1) (Quiroga et al., 2017). To make the damage
progress independent of element size, the mesh was refined
until the element size was smaller than the characteristic

length and no mesh dependency was observed with more
mesh refinement.

The obtained non-localized maximum shear strain at the
integration points (εmax,nl,ip) was averaged over the element and
the non-localized maximum shear strain at each element was
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FIGURE 4 | The defect model results showing color maps of degeneration aspects of the CARED model before degeneration (only for ICRS grade 3 model) and
after degeneration (for the three ICRS grades models): (A) fibril reorientation, (B) fibril degradation, (C,D) the FCD loss and the increase in the tissue hydration and
(E) the maximum shear strain.

obtained (εmax,nl,el). εmax,nl,el was then used to define the relative
change in the PG content in each element as (Mononen et al.,
2018; Eskelinen et al., 2019):

PGel_i+1

=

{
PGel_i

(
1− 1

3
√

εmax,nl,el_i−K0_PG
)
if εmax,nl,el_i > K0_PG

PGel_i if εmax,nl,el_i ≤ K0_PG
,

(16)

where i is the number of the current iteration and PGel is
the relative PG content at each element with PGel_0 = 1. The
higher the εmax,nl,el_i, the faster the PG content coefficient
decreases via consecutive loading iterations of arbitrary time
(Eskelinen et al., 2019).

The relative PG content was used to linearly modulate the
FCD content as:

FCDel_i+1 = FCDel,0PGel_i+1, (17)
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where FCDel,0 is the initial FCD content at the element (see
Supplementary Table 1). Subsequently, the relative PG content
was also used to modulate tissue hydration as:

nf,el_i+1 = 1+ PGel_i+1
(
1−nf,el_0

)
, (18)

where nf,el_0 is the initial fluid volume fraction at the element (see
Supplementary Table 1).

Characterization of Degeneration Effect
on the Overall Mechanical Response of
the Cartilage Explants
To evaluate the combined effect of the above-described
degenerative changes on the overall mechanical response of
cartilage explants, the equilibrium modulus before and after
degeneration was characterized for all explant models. To this
end, a stress-relaxation test was simulated: after a free swelling
step, a 10% compressive strain at 10%/s was applied to the top
surface followed by a 60 min relaxation. This simulation was
repeated for the different explants in each of FE model groups
A (reference model), B (injurious loading model), and C (focal
defect models) in Figure 2 presenting the initial FCD, water
and collagen contents and initial fibril orientation as well as the
contents and orientation obtained after the adaptive degeneration
modeling (detailed above). The equilibrium modulus of the
explant was obtained by dividing the equilibrium reaction
stress at the explant bottom surface with the applied strain on
the top surface.

RESULTS

CARED Model Results
Reference Model (Normal Loading of the Intact
Explant Model)
The reference CARED model under normal loading (Figure 2)
showed negligible fibril reorientation and degradation, FCD
loss and change in tissue hydration. The obtained results were
similar to the shown constituents for the intact model before
degeneration in Figure 3.

Injurious Loading of the Intact Explant Model
Curves of degeneration progression vs. remodeling iterations
(Figure 3) show the progression of the degeneration in each
constituent (Eskelinen et al., 2019) in every cartilage layer and
bulk tissue. The degeneration in each constituent reached a
stable value after 50 iterations. The FCD loss and increase in
tissue hydration had slower convergence compared to collagen
fibril-related parameters (fibril reorientation and change in fibril
density) which converged after 10 iterations.

Injurious loading (4 MPa compression in 0.1 s) caused
horizontal fibrils in the superficial layer to reorient up to 30
degrees toward perpendicular direction of the explant surface
(Figure 3A). The maximum degree of collagen fibril degradation
occurred in the superficial and middle zones. More intense fibril
degradation was observed in the superficial zone and in the
direction perpendicular to the initial fibril orientation (compare

the blue zone in Figure 3B and fibril orientation in the superficial
zone in Figure 1A). The FCD loss and increase in tissue hydration
initiated from the superficial layer and propagated to the middle
and deep layers (Figures 3C,D). After 50 iterations, the largest
FCD loss and increase in tissue hydration occurred in the middle
layer. As a result, the equilibrium modulus of the explant was
reduced by 33% after the simulated degeneration (Table 1).

Normal Loading of the Focal Defect Models
The explant models with focal defects mimicking lesions of
ICRS grade 1, 2, and 3 experienced moderate fibril reorientation
around the defects in the superficial and middle zones and at
the interface between the middle and deep zones (Figure 4A).
The reorientation in the superficial zone of the ICRS grade
2 model occurred over a larger homogeneous area. On the
other hand, more intense, non-homogeneous fibril degradation
was observed in the superficial layers of ICRS grades 1 and
3 models (Figure 4B). The FCD loss and increase in tissue
hydration (coupled to PG depletion) around the crack were more
pronounced in the ICRS grade 3 model (Figures 4C,D). Tissue
degeneration decreased the equilibrium modulus by 1, 2, and
11% in the ICRS grade 1, 2, and 3 models, respectively. The
maximum shear strain (the parameter used as a threshold for PG
depletion in CARED model) was higher around the bottom of the
lesion, where strain concentration occurred, and the area of high
maximum shear strain increased as a function of tissue depth for
deeper lesions (Figure 4E).

DISCUSSION AND CONCLUSION

The proposed CARED model in this paper provides a unique
tool to overcome earlier limitations of cartilage degeneration
algorithms allowing the elucidation of the contribution of
different cartilage constituents to the onset and progression
of OA. This was made possible through the following novel
improvements:

1. Integrating the different aspects of articular cartilage
degeneration (fibril reorientation and degradation and
PG depletion) in a unique FE framework. Specifically
integrating the fibril reorientation mechanism with
other degradation mechanisms that allows studying
interactive effects.

2. Using an adaptation algorithm to change the contents
of cartilage constituents (collagen, FCD, and water
contents) instead of changing the material properties, as
implemented in earlier studies (Wilson et al., 2006a,b;
Liukkonen et al., 2017; Quiroga et al., 2017; Mononen et al.,
2018; Tanska et al., 2018).

3. Integrating collagen degradation by adapting a collagen
degradation theory from arterial tissue (Valentín et al.,
2013; Famaey et al., 2018) to cartilage.

4. Using a non-localization theory for PG depletion.
5. Coupling PG depletion, FCD loss and increase in

tissue hydration.
6. Introducing a novel algorithm for the increase in tissue

hydration. Variations in tissue hydration is an important
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parameter in fibril disorganization and may play a central
role in the progression of OA (Sah et al., 1991). To the
author’s knowledge, the CARED model is the first cartilage
adaptive model to include variations in tissue hydration.
The CARED model was integrated into a validated
FRPVES material model of cartilage to predict the
degeneration in intact cartilage explants subjected to
normal and injurious loading and explants with defects
corresponding to ICRS grades 1, 2, and 3 subjected to
normal loading. In the following, the CARED model results
for the different applications are discussed in comparison
to earlier experimental observations.

CARED Model Qualitative Validation in
Comparison With Experiments and Other
Modeling Approaches
Reference Model (Normal Loading of the Intact
Explant Model)
As expected, the implementation of CARED model on the FE
simulation of the intact cartilage explant under normal loading
(reference model in Figure 2) caused minimal degenerative
changes in the contents of main constituents of the explant
(i.e., less than five degrees change in fibril orientation and
almost no change in fibril and PG contents). Similarly, minimal
or no variations in the fibril orientation and FCD content
were observed in other computational studies, where either
reorientation of fibrils or FCD loss of intact explant under normal
loading was adaptively simulated (Tanska et al., 2018; Eskelinen
et al., 2019).

Injurious Loading of the Intact Explant Model
The CARED model can predict collagen fibril reorientation
and its protective role during injurious loading. Indeed, this
study simulates the fibril reorientation in a cartilage explant
subjected to injurious loading which caused horizontal fibrils
in the superficial layer to reorient toward the perpendicular
direction of the explant surface (Figure 3A). This is in agreement
with experimental results that confirm the tendency of the fibrils
to reorient toward the perpendicular direction of the cartilage
surface in OA cartilage (Makela et al., 2012) (Figure 3A). Based
on our model results, this reorientation can be interpreted as
a protective behavior to avoid fibrils degradation. This is a
speculation based on the model results and should be verified
with experiments. Indeed, during cartilage compression, the
tissue expands in the horizontal direction and tensile strain is
applied to horizontally oriented fibrils in the superficial layer.
In the case of injurious compression, this tensile strain may
pass the fibrils strength threshold and causes fibril degradation.
The predicted reorientation of fibrils toward the perpendicular
direction of the explant surface during injurious compression
caused less tensile strain to be applied to the fibrils and therefore
protect fibril degeneration.

The intense collagen degradation predicted in the superficial
layer of the injurious loading model (Figure 3B) is in agreement
with earlier experimental and computational observations.
Earlier experiments show that 5 MPa compression loading

of bovine cartilage explants for 24 h caused intense collagen
breakdown in the superficial layer (Lin et al., 2004) (Figure 3B).
Interestingly, the intense fibril degradation in the surface of our
model propagated perpendicular to the initial splitline direction
(compare the blue zone in Figure 3B and initial fibril orientation
in the superficial zone in Figure 1A), where the tissue has less
tensile stiffness.

In the CARED model, FCD loss and increase in tissue
hydration as consequences of PG depletion started from the
superficial layer and propagated to the middle and deep
layers with a sharp transition between PG-rich and PG-poor
tissue (Figures 3C,D). This is in agreement with experimental
studies that suggest PG depletion begins at the articular
surface. Comparable to our simulation results, experimental data
confirmed that the PG depleted area increased with increased
loading, however, a sharp transition remains between the PG-rich
and the PG-poor tissue (Lin et al., 2004; Mononen et al., 2018;
Figures 3C,D). Comparable to our model results (Figure 3D),
other experimental studies indicate that high amplitude static
or cyclic loadings increase overall tissue hydration (Sah et al.,
1991). In addition, our model provides the opportunity to study
factors affecting the local increases in tissue hydration, which is
challenging experimentally. One should note that the changes in
tissue hydration shown in Figure 3D is the cumulative effect of
increase in hydration as a result of solid PG loss and decrease in
water content as a result of FCD loss. However, since the loading
was relatively fast (0.1 s) and decrease in water content due to
FCD loss is a time-dependent behavior, an overall increase in
tissue hydration was predicted by the model.

In agreement with the CARED model results, earlier
experimental observations suggest that an injurious mechanical
loading changes the orientation of fibrils from parallel to
the surface toward perpendicular to the surface followed by
fibrillation and collagen fibril degradation, especially at the
cartilage surface (Makela et al., 2012; Goldring and Goldring,
2016). In our model, the fibrillation mechanism is indirectly
covered with including the fibril degradation algorithm. Since the
change in orientation of the fibrils in the model is a consequence
of the high rate traumatic loading (4 MPa compression in 0.1 s),
it simulates an instantaneous reorientation. This instantaneous
change in fibrils orientation affected the strain field in the
cartilage and consequently the fibril degradation, which was
suggested by experimental studies (Karsdal et al., 2008; Bay-
Jensen et al., 2010) to be an irreversible permanent phenomena
due to the long half-life of collagen fibrils (Verzijl et al., 2000).
Furthermore, in early OA and especially in the superficial layer,
high water content, elevated strains, disorganized collagen fibrils
and decreased FCD content are found (Wong et al., 2008;
Saarakkala et al., 2010). The proposed adaptive model by Hosseini
et al. (2014) predicted more ground substance softening over
a larger area than collagen damage. Comparing Figures 3B,C,
a similar conclusion can be made based on the results of the
CARED model. According to our model results, the maximum
reduction in PG and fibril contents occurred in the middle layer
(compare differences between initial and final iterations in curves
of different layers in Figures 3B–D) in agreement with recent
experimental results (Durney et al., 2020). In the CARED model,
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the equilibrium modulus of the simulated explant was reduced
by 33% following the degeneration (Table 1). Time-dependent
reduction in mechanical properties with the progression of
cartilage damage is known to occur experimentally and clinically
(Kempson et al., 1973; Buckwalter et al., 1994; McCormack and
Mansour, 1998; Hosseini et al., 2014).

The predicted fibril and PG degenerations in this study are
closer to experimental results compared to earlier degeneration
modeling approaches. In the model proposed by Hosseini et al.
(2014) the fibril and PG degenerations only occurred locally and
around the point of injurious indentation loading, while our
model predicted variable degradation levels in the superficial,
middle and deep zones of the explant (curves in Figures 3B–
D). This is in agreement with experimentally observed fibril and
PG degenerations in cartilage explants subjected to injurious
loading (Lin et al., 2004) (see Figures 3B,D: green points showing
fibril degradation and blue zones showing PG depletion in
different layers). This difference in model predictions may be
related to the 2D geometry, local indentation loading, different
implementation of degeneration algorithm (changing material
properties instead of cartilage constituents), using a local PG
depletion algorithm (in comparison with the non-local algorithm
used in CARED model) and neglecting the fibril reorientation
effect in the model proposed by Hosseini et al. (2014). Similar
geometry, material model and degeneration algorithm to our
model were used by Eskelinen et al. (2019) to predict FCD loss in
a cartilage explant under different loading conditions. However,
in their model under injurious loading (4 MPa compression
in 0.1 s, comparable to the current study) FCD loss was only
detected at the edges of the superficial layer of the explant. This
is in contrast with the experimental results suggesting more
homogeneous PG depletion over the superficial and middle
layers, with a higher concentration in the superficial edges (Lin
et al., 2004). This difference can be explained by neglecting
the degenerative changes related to fibrils degradation and
disorganization and an increase in tissue hydration. Integrating
all these degenerative changes in the CARED model resulted in
more consistent prediction of FCD loss location with experiments
in comparison with the earlier adaptive degeneration models
that do not account for one or more of the main cartilage
degenerative changes included in the CARED model (see color
map in Figure 3C). In particular, the CARED model predicted
FCD loss in the middle of the superficial layer of the explant
(indicated in green color in Figure 3C) and more concentrated
FCD loss in the edges and middle layer (indicated in blue
color in Figure 3C), which was also observed experimentally
(Lin et al., 2004).

Normal Loading of the Focal Defect Models
The integration of both fibril reorientation and degradation
algorithms in the CARED model allowed the investigation of
the interaction between fibril reorientation and degradation
by comparing the relative results (Figures 4A,B). All models
of explants with ICRS grades 1, 2, and 3 experienced fibril
reorientation around the defects in the superficial, middle and
at the interface between middle and deep layers (Figure 4A).
This is in agreement with previous experimental results showing

the fibrillation of the collagen fibril network to occur near
the experimentally produced partial-thickness defects (Lyman
et al., 2012). Similarly, in the fibril reorientation model
proposed by Tanska et al. (2018) disorganization of collagen
fibrils was observed around the focal defects in the modeled
explant (Tanska et al., 2018) presumed that this breakdown of
the collagen fibrils could be the reason for the reorientation
of fibrils. However, the model with ICRS grade 2 defect
presented maximum fibril reorientation over a large area in
the explant surface and around the crack, with only minimal
fibril degradation at the same location of fibril reorientation.
This suggests that fibril reorientation may prevent or slow down
fibril degradation.

Cartilage lesion depth is a crucial parameter affecting the
fibril degradation behavior. The model with ICRS grade 1 defect
experienced more intense fibril degradation in the superficial
layer than the models with deeper defects (ICRS grades 2 and
3 in Figure 4B). This can be explained by the fact that in the
ICRS grade 1 model, the bottom of the crack, where strain
concentration occurs (see strain results of grade 1 model in
Figure 4E), was located in the superficial layer with less collagen
density and fibrils oriented parallel to the surface and normal to
the crack direction. This caused a higher strain in the direction
of fibrils in a zone with minimal fibril density thereby increasing
fibril degradation. The fibril degradation in the model with the
ICRS grade 3 defect exceeded fibril degradation in the ICRS
grade 2 model. Although in both models the cracks were outside
the superficial zone, the deeper crack in the ICRS grade 3
model caused more deformation in the superficial zone under
compressive loading. This increased the strain applied to the
fibrils in the superficial zone with minimum fibrils density and
resulted in more fibril degradation in the ICRS grade 3 model.

Maximum PG depletion in all the focal defect models was
observed around the cracks as reflected by the FCD loss and
increase in hydration in Figures 4C,D. These predictions are
similar to the experimental observations suggest concentration
of FCD loss around cartilage defects (Orozco et al., 2018). The
maximum shear strain fields in the models that determine PG
depletion (Figure 4E) show that the PG depletion threshold,
here set at maximum shear strain = 30%, was passed around
the crack bottom and opening in the superficial zone. More
deformation caused by the compressive load in the model with
ICRS grade 3 defect in comparison with grades 1 and 2 cracks
caused maximum FCD loss and increase in tissue hydration in
this model, which decreased the equilibrium modulus of this
model more than the others (Table 1). This shows that the
explant equilibrium stiffness is more dependent on PG content
(FCD and fluid contents in the model) than collagen content
and organization.

Predicted Interaction Between Collagen
and PG Degeneration by the CRAED
Model
The degeneration rates in CARED model (fibril reorientation
rate in Equation 7, fibril degradation rate in Equation 12 and
PG depletion rate in Equation 16 were selected in agreement
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with previous computational studies and based on experimental
observations (Valentín et al., 2013; Famaey et al., 2018; Tanska
et al., 2018; Eskelinen et al., 2019). These degeneration rates
present the changes in the contents of cartilage constituents
over an arbitrary time. To accurately validate the model, the
degeneration rates need to be further calibrated based on in vitro
or in vivo experiments. To this end, the specific experimentally
applied cartilage loading must be replicated in the FE model.
In the absence of this information, in our implementation, each
iteration in the CARED model reflects an arbitrary time step
of cartilage loading until response convergence. Given the very
simple loading conditions (compressive pressure of 2 or 4 MPa in
0.1 s) this is acceptable, however, this will cause the model results
to most likely reflect the extreme course of degeneration as there
is no constituent recovery due to intermittent relative unloading.

Experimental observations suggest the presence of interaction
between PG and collagen degradations in cartilage (Inamdar
et al., 2019). The CARED model explicitly integrates the
degenerative changes in the contents of collagen and PG
constituents and therefore allows the elucidation of the
interaction between the degenerative changes in the contents of
individual constituents. To this end, the curves of degeneration
aspects vs. iterations under injurious loading (Figure 3) can
be used. These curves show that most of the degenerative
variations in the collagen fibril network (fibril reorientation and
degradation) occurred in the first iteration, while the variations
in the PG related contents (FCD and water contents) occurred
over the progression of 50 iterations with a relatively slower rate
in the first iteration than between subsequent iterations. This
shows that during the first time iteration of the specific applied
injurious loading, collagen fibril reorientation and degradation
are occurring at higher rates than PG depletion. Then, the fibril
variations increased the FCD loss and tissue hydration in the next
iterations, which shows the amplifying effect of fibril degradation
on PG depletion. However, following these first iterations, despite
the continued decrease in FCD content and increase in water
content (Figures 3C,D), no additional change in collagen content
and orientation was observed (Figures 3A,B). Fibril degradation
induced by the increased strain in fibrils direction in the first
iteration due to the fast injurious loading (4 MPa in 0.1 s),
may explain this effect. Indeed, the initial decrease in fibril
density caused more pronounced tissue deformation after the
first iteration and increased the maximum shear strain in the
tissue, thereby inducing even more FCD loss and an increase in
tissue hydration. In other words, as the fibrils support the tensile
load in their direction during pressurization, the initial increase
in fibril degradation accelerates PG depletion.

Limitations
The current degeneration model has been validated comparable
to other modeling approaches in the literature and experimental
results. Although our results present good agreement with
experimental results and sometimes better agreement compared
to previous modeling approaches, several knowledge voids exist.
The proposed values for the defined degeneration thresholds are
largely variable in the literature. Here we used thresholds that are
in agreement with the earlier experimental observations and are

proven to affect cartilage tissue degeneration. Accurate validation
of the model requires a set of experiments to characterize the
material, structural and compositional properties of cartilage
explants and determine the thresholds for each of the PG and
collagen degeneration algorithms. Another set of experiments
would be required to validate the CARED model by measuring
the fibril reorientation and degradation as well as PG depletion in
cartilage explants after going through similar loading conditions
as applied to the model. Previously reported sensitivity analysis
of the damage threshold values (Hosseini et al., 2014; Eskelinen
et al., 2019) shows their effect in terms of the size of the affected
area and the severity of the damage. However, damage location,
time-dependent damage progression patterns and the nature of
the interaction between damage in the PG and the collagen fibrils
are insensitive to these parameters. Therefore, the results of the
CARED model with the current threshold values can be used
to further elucidate the degenerative behavior of the cartilage
tissue under mechanical loading. Furthermore, the purpose of
this research was not to mimic the individual degeneration of
a cartilage explant and validate the predictions but to merely
proposing a model which can be used to look at the interaction
between different degeneration mechanisms.

Unconfined compression was used as the loading
configuration in our FE models, since it is often used in
in vitro experimental studies (Gratz et al., 2009; Szarko and
Xia, 2012; Li et al., 2013) due to its easy experimental setup.
Therefore, more validation experiments are available in literature
than other loading setups. Yet, we acknowledge that the loading
in unconfined geometry can be considered as an idealization
and limitation, and in vivo loading on cartilage is more complex.
In future, other types of loading conditions (e.g., confined
compression, indentation or physiological joint loading) should
be used to validate the proposed model.

Finally, although the applied loadings on the explant FE
models were justified by in vitro literature, they do not
simulate precise in vivo normal or injurious loading for the
different explants from various species or patients. More accurate
definitions for normal and injurious loadings have to be
determined using in vivo experimental results. Similarly, the
rates of fibril reorientation and degradation and PG depletion
(Equations 7, 12, 16) need to be optimized to reflect a
physiological timescale according to experimental results, instead
of arbitrary time scale. By scaling one iteration step to correspond
to the fibril degradation and PG depletion in one loading step as
observed in an in vitro experiment, this would enhance the in vivo
use as the degeneration rate could then be scaled, for example, to
the degeneration in half a year of walking (Eskelinen et al., 2019).

In conclusion, CARED model proposed an in silico integrated
framework to predict the cartilage degeneration through changes
in the contents of its constituents. This framework includes
the degenerative changes in collagen fibril content (adapted
from arterial tissue to cartilage) and orientation (implemented
from a previous study), FCD and water contents (increase in
water content was introduced for the first time and together
with a previously developed FCD loss model were linked to
PG depletion). Our model allows the observation of local
degenerative changes in 3D geometry of cartilage, which is
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challenging in in vitro and in vivo experiments in particular
for local increase in tissue hydration. The reorientation and
degeneration algorithms implemented in the CARED model
show a good agreement with experiments reported in the
literature in terms of the trend and location of changes within
the tissue following injurious loading and presence of defects.
In addition, the proposed integrated model enabled the study
of the interaction between the degenerative changes in the
contents of cartilage constituents following injurious loading of
intact cartilage tissue as well as physiologic loading of defect
cartilage. The model confirms the role of fibrils degradation
as a key parameter in the irreversible progression of cartilage
degeneration and OA, as it was suggested by previous studies
(Karsdal et al., 2008; Bay-Jensen et al., 2010; Tanska et al., 2018).
Using the CARED model, different aspects of cartilage tissue
degeneration under different mechanical conditions (e.g., under
injurious compressive or shear loadings) or in the presence
of various defects can be studied. As a next step, the model
will be used together with a whole knee joint FE simulation
to study the cartilage degeneration in comparison with in vivo
longitudinal experiments.
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Patients at high risk of fracture due to metabolic diseases frequently undergo long-
term antiresorptive therapy. However, in some patients, treatment is unsuccessful in
preventing fractures or causes severe adverse health outcomes. Understanding load-
driven bone remodelling, i.e., mechanoregulation, is critical to understand which patients
are at risk for progressive bone degeneration and may enable better patient selection or
adaptive therapeutic intervention strategies. Bone microarchitecture assessment using
high-resolution peripheral quantitative computed tomography (HR-pQCT) combined
with computed mechanical loads has successfully been used to investigate bone
mechanoregulation at the trabecular level. To obtain the required mechanical loads that
induce local variances in mechanical strain and cause bone remodelling, estimation
of physiological loading is essential. Current models homogenise strain patterns
throughout the bone to estimate load distribution in vivo, assuming that the bone
structure is in biomechanical homoeostasis. Yet, this assumption may be flawed
for investigating alterations in bone mechanoregulation. By further utilising available
spatiotemporal information of time-lapsed bone imaging studies, we developed a
mechanoregulation-based load estimation (MR) algorithm. MR calculates organ-scale
loads by scaling and superimposing a set of predefined independent unit loads to
optimise measured bone formation in high-, quiescence in medium-, and resorption in
low-strain regions. We benchmarked our algorithm against a previously published load
history (LH) algorithm using synthetic data, micro-CT images of murine vertebrae under
defined experimental in vivo loadings, and HR-pQCT images from seven patients. Our
algorithm consistently outperformed LH in all three datasets. In silico-generated time
evolutions of distal radius geometries (n = 5) indicated significantly higher sensitivity,
specificity, and accuracy for MR than LH (p < 0.01). This increased performance
led to substantially better discrimination between physiological and extra-physiological
loading in mice (n = 8). Moreover, a significantly (p < 0.01) higher association
between remodelling events and computed local mechanical signals was found using
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MR [correct classification rate (CCR) = 0.42] than LH (CCR = 0.38) to estimate human
distal radius loading. Future applications of MR may enable clinicians to link subtle
changes in bone strength to changes in day-to-day loading, identifying weak spots in
the bone microstructure for local intervention and personalised treatment approaches.

Keywords: bone loading estimation, mechanoregulation, finite element analysis, bone remodelling, human distal
radius, mouse caudal vertebra

INTRODUCTION

Considerable patient variability in bone structure, strength, and
day-to-day external mechanical load poses a severe problem
in the clinical assessment and treatment of metabolic bone
diseases such as osteoporosis. Diagnosis and bone strength
assessment rely heavily on radiographic measures of bone
mineral density (BMD). However, sources of error in BMD
measurements, i.e., intra- and interpatient variability, make
it challenging to attribute measured BMD changes to the
actual biological change (Nguyen et al., 1997). Accordingly, the
sensitivity and specificity of predicting individual patient’s risk
for fracture are low (Trémollieres et al., 2010; Cervinka et al.,
2017), especially at the hip where falls play a major role. As a
consequence, patients may receive treatment, although only a
minority would have suffered from a bone fracture. Although
these medications are well-tolerated and safe during large-scale
clinical trials, anti-resorptive therapies can result in rare and
severe adverse events, including osteonecrosis, hypocalcaemia,
and thromboembolism (Chen and Sambrook, 2012). Moreover,
current diagnostic approaches fail to identify the specific weak
spots in the bone. Therefore, they do not estimate where and how
fractures will occur and how a local intervention could prevent
them (Schultz and Wolf, 2019).

High-resolution peripheral quantitative computed
tomography (HR-pQCT), an emerging diagnostic modality of
the peripheral skeleton, allows assessing three-dimensional (3D)
bone structure and strength at the trabecular level (MacNeil and
Boyd, 2007; Melton et al., 2007; Boutroy et al., 2008; Kazakia et al.,
2008; Burghardt et al., 2010; Seeman et al., 2010; MacDonald
et al., 2011). More recently, complementary methods have been
proposed to computationally monitor 3D bone microstructure
changes over time (time-lapse) and calculate local mechanical
loading using micro-finite element (micro-FE) analysis. This
has been demonstrated in mice (Schulte et al., 2013; né Betts
et al., 2020; Malhotra et al., 2021) and patients (Christen et al.,
2014; Mancuso and Troy, 2020) at such high spatial resolution
that cellular behaviour—in the form of bone remodelling
sites—can be studied and the corresponding mechanical
loading can be calculated. Subsequently, these methods can
be used to investigate bone’s underlying mechanoregulated
remodelling process, which may be the key to the development
of patient-specific therapeutic or pharmacological interventions
for various bone diseases.

Typically, when investigating bone mechanoregulation under
controlled experimental conditions, micro-FE models disregard
subject-specific variations in external loading conditions
using simplified uniaxial compressive displacement boundary

conditions (SC) (Schulte et al., 2013; Mancuso and Troy,
2020; né Betts et al., 2020; Malhotra et al., 2021). However,
when investigating mechanoregulation in patients, variations
in day-to-day external loading are more substantial due to
habitual differences and patient-specific variability in the
musculoskeletal system’s performance. Distinctive tensile
forces and moments are applied to joints on a routine basis
to stabilise under gravitational and other external loads and
create unique loading patterns (Watkins, 2009). Consequently,
to investigate mechanoregulation under day-to-day loading in a
personalised medicine approach, patient-specific physiological
loading patterns and boundary conditions need to be estimated
(Galibarov et al., 2010; Yosibash et al., 2020).

In an effort to quantify in vivo loading patterns using
biomechanical models, several load estimation algorithms have
been developed. Artificial neural network-based approaches have
been proposed (Garijo et al., 2014, 2017; Mouloodi et al., 2020)
but lack interpretability, which is critical for moving to diagnostic
use in patients to guide local therapeutic interventions. As a
result, an algebraic method introduced by Christen et al. (2012)
has been widely implemented to approximate the internal load
history based on bone morphology (Christen et al., 2014; Badilatti
et al., 2017; Synek et al., 2019; Cheong et al., 2020; né Betts
et al., 2020). This algorithm superimposes and scales a finite
number of loading cases until a target tissue load of homogeneous
strains is found. Christen et al. (2012) demonstrated the
capabilities of such a reverse-engineering approach using an
extra-physiological tail-loading animal model, predicting the
applied compressive loading in mouse caudal vertebra. However,
the remaining signal inhomogeneity remained high, ranging
between 20% and 67%, indicating that no homogeneous tissue
load could be found (Christen et al., 2012). This suggests that
only part of the bone structure may be load adapted. The actual
in vivo load distribution might differ systematically from the
homogeneous assumption in humans (Christen et al., 2016;
Johnson and Troy, 2018) and mice (Christen et al., 2012).
By modelling homogenised strain patterns, the conventional
algorithm may reduce mechanical signal inhomogeneities that
have been recognised as drivers for the mechanoregulated
remodelling process in bone (Frost, 1987, 2003). Thus, this
model’s assumptions may not be optimal and do not fully utilise
all available information in time-lapsed data of longitudinal bone
imaging studies.

This study had two goals. First, to derive an in silico-validated,
robust, and specific method to estimate in vivo loading. Second,
to apply this algorithm to examine in vivo mechanoregulation
(Schulte et al., 2013) in humans and mice. We hypothesised
that by extracting bone remodelling sites from time-lapsed
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imaging data, the relationship between bone formation in
high-strain regions, quiescence in medium-strain regions, and
resorption in low-strain regions could be used in a reverse-
engineering optimisation approach to determine organ-level
loads. We verified our mechanoregulated approach (MR) using
three unique datasets and benchmarked it with an existing load
history (LH) algorithm (Christen et al., 2012). First, to calculate
sensitivity, specificity, and accuracy, MR and LH algorithms were
applied to synthetic remodelling data derived from HR-pQCT
images (Badilatti et al., 2016; Ohs et al., 2020a). Second, to test
whether the algorithms are capable of predicting the loading
conditions in a controlled experimental setup, both algorithms
were applied to micro-CT scans of two groups of mice that
had their caudal vertebra either loaded (8 N) or sham loaded
(0 N) from a previous study (Scheuren et al., 2020b). Third, to
assess the method’s fidelity in patients, MR and LH algorithms
were applied to time-lapsed HR-pQCT scans and compared to
patient-specific handgrip force measured using a dynamometer.
Finally, to quantify the association between bone remodelling
and mechanical stimulus, we derived a correct classification rate
(CCR) (né Betts et al., 2020).

MATERIALS AND METHODS

Human HR-pQCT Images in vivo
HR-pQCT images (XtremeCT II, 60.7 µm voxel size, 68 kV,
1,470 µA, integration time of 43 ms) were acquired from
the database of a prior Innsbruck Medical University fracture
study (Atkins et al., 2021). Patients gave informed consent
and participated in an examination approved by the Medical
University of Innsbruck Ethics Committee (UN 0374344/4.31).
For each patient, scans of the intact contralateral radius
were taken at six time points (1, 3, 5, 13, 26, and 52 weeks)
post-fracture, 9 mm proximal to the endplate of the distal radius
(Figure 1). As a functional indicator of daily mechanical load,
handgrip strength was measured at 3, 6, and 12 months post-
fracture using a hydraulic handgrip dynamometer. Grip strength
was taken in a seated position with the elbow bent 90 degrees in
flexion, measured three times and averaged. Measurements were
recorded in kilograms and converted to Newtons (1 kg ↔ 9.81
N). Images were graded by two skilled operators using a standard
visual grading score (VSG) ranging from 1 (no visible motion
artefacts) to 5 (major horizontal streaks) (Whittier et al., 2020).
Distal radius images of seven patients (three males, four females)
were included in the study by applying the following inclusion
criteria. Only males or premenopausal female patients without
a fracture history of their non-dominant left distal radius were
included. Only patients for whom all scans met a minimum VSG
of 3 (some artefacts) and a VGS of less than or equal to 2 (very
slight artefacts) in four out of the six total follow-up scans were
included. The median age of the included patients was 33 years
and ranged between 27 and 65 years.

Murine Micro-CT Images in vivo
Micro-CT images (vivaCT 40, 10.5 µm voxel size, 55 KVp,
145 µA, integration time of 350 ms, 500 projections) were

acquired from a previously published mouse tail loading study
(Scheuren et al., 2020b). Two groups (n = 8, each) of 15-week-
old female C57BL/6J strain mice were scanned at the sixth
caudal vertebra (CV6) at weekly intervals for 5 weeks. The
sixth caudal vertebra of the animals in the loaded group was
subject to mechanical loading through stainless steel pins inserted
into the adjacent vertebrae (Figure 1). Compressive loading was
applied three times per week for 5 min at 10 Hz and 8 N.
Animals in the control group were subject to sham loading (0 N)
(see Scheuren et al., 2020b).

Image Processing
After rigid image registration (Schulte et al., 2014), distal radius
images were upscaled to 30.5 µm (Ohs et al., 2020a), and caudal
vertebra images were kept at 10.5 µm native resolution. Images
were Gauss filtered to reduce noise (sigma 1.2, support 1). Human
distal radius and mouse vertebra scans were binarised using
a threshold of 320 and 580 mg/cm3, respectively (Hosseini
et al., 2017; Scheuren et al., 2020a). Trabecular regions were
automatically contoured from binarised images. For the human
distal radius images, an approach described by Ohs et al. (2020b)
was used; for the mouse vertebra images, a method described
by Kohler et al. (2007) was used. FE meshes were generated by
converting all voxels to 8 node hexahedral elements and assigning
a Poisson’s ratio of 0.3 as well as Young’s modulus of 6.8 GPa
for the human distal radius (Christen et al., 2013) and 14.8 GPa
(Webster et al., 2008) for the mouse vertebra. Remaining interior
voxels located within the bone cavity were assigned a value of
2 MPa and a Poisson’s ratio of 0.3 (Webster et al., 2008). For
the mouse caudal vertebra, intervertebral discs with a Young’s
modulus of 14.8 GPa were approximated and added to the
proximal and distal ends of the vertebra (Webster et al., 2008;
Schulte et al., 2013).

Micro-Finite Element Analysis
Axial and shear forces were applied to the target tissue’s distal and
proximal surfaces using a 1% displacement boundary condition.
Torsion and bending moments were applied, centred around
their corresponding axis, with a 1-degree displacement. The
point of reference was the centre of the minimal bounding
box enclosing the bone geometry. Six loading directions were
defined: compressive force in the axial direction (C, Z-axis),
lateral shear force (SX, X-axis), dorsal shear force (SY, Y-axis),
axial moment around the long axis (MZ, Z-axis), lateral bending
moment (BX, X-axis), and dorsal bending moment (BY, Y-axis).
Models averaged 20 million elements for the mouse vertebrae
and 380 million elements for the distal radii at the upscaled
resolution (30.5 µm voxel size). Linear FE calculations were
carried out using ParOsol (Flaig and Arbenz, 2011) at the Swiss
National Supercomputing Centre (CSCS, Lugano, Switzerland).
Using 128 CPUs, the solver converged in under 10 min for
distal radii and under 1 min for caudal vertebrae. Strain
energy density (SED) was used as a mechanical signal for bone
remodelling. Unit load cases were derived by rescaling applied
force magnitudes to 1 N, moment magnitudes to 1 Nmm, and
resulting SED distributions accordingly (Christen et al., 2012).
Three multiaxial loads were defined using a method of scaling
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FIGURE 1 | Representative fluoroscopic images of in vivo scanning sites. The C6 mouse caudal vertebra (dashed box, left) was scanned by micro-CT. Black lines
indicate sites of loading pins in the C5 (clamped) and C7 (loaded) vertebra. A representative loading scenario is indicated below for physiologically loaded (phys.) and
extra-physiologically loaded (loaded) groups throughout the study (t0–t4). The human distal radius (dashed box, right) was scanned using high-resolution peripheral
quantitative computed tomography (HR-pQCT; Xtreme CT II). Annotations indicate the manufacturer’s recommended scanning site, 9 mm proximal to the reference
line, and the arrows represent the line of action of the joint forces on the radius as a result of physiological loading. The box below indicates representative loading
throughout appointments t0–t5.

and superimposing unit load cases modelling the aggregated
effect of physiological load over time: combined compression and
shear (CS = 0.5 C+ 0.25 SX+ 0.25 SY), combined compression
and bending (CB = 0.5 C+ 0.25 BX+ 0.25 BY), and a combined
6-degree freedom load (6DoF) with equal proportions of load in
all six uniaxial directions.

Mechanoregulation-Based Load
Estimation
The mechanoregulation-based load estimation (MR)
was performed in two steps and followed established
mechanoregulation principles (Wolff, 1892). Using a two-
step procedure instead of additional constraints to the optimiser
reduced computational cost and led to faster convergence of
the optimiser within 2,000 iterations in under a minute. The
algorithm operated on the bone surface S(x), which was defined
as the interface between the bone and the background using
a 3D von Neumann neighbourhood with a radius of 1 voxel.
New bone was presumed to be formed in high mechanical signal
regions, quiescent in regions of medium mechanical signal,
and resorbed in regions of low mechanical signal (Figure 2).
Regions of formation RVf, quiescence RVq, and resorption
RVr were calculated by overlaying two subsequent binary
images aligned using rigid registration. Each surface voxel
was assigned a rank rgRS according to its remodelling event
(resorption = 1, quiescence = 2, and formation = 3). Accordingly,
an ordinal definition of the mechanical signal rgSED was specified
with increasing rank for increasing signal magnitude. Equal

observations were assigned the mean rank for their positions.
The monotonic relationship between rgRS and rgSED represents
a mechanoregulated behaviour between surface remodelling
events and mechanical signal.

In the first optimisation step, Spearman’s rank-order
correlation between rgRS and rgSED was maximised by scaling
a set of previously defined unit load cases U(i,unit)(x) with load
composition factors ci (with ci ∈ [0, 1]), where U(i,unit)(x) is the
SED distribution due to unit load i on the bone surface S(x).
The superimposed unit loads defined a potential compounded
mechanical stimulus with known unit load proportions within
each iteration. A gradient-free Nelder–Mead method with a
tolerance of 10−4 was used to optimise the following resulting
equivalent minimisation objective function r. A non-negative
linear least-squares solution of homogeneous tissue loading
(k = 0.02 MPa) was used to initialise the optimiser.

min r (ci) = − corr

(
rgSED

( n∑
i = 0

ci ∗ Ui,unit (x)

)
, rgRS

)

The resulting load composition ci determined the best
combination of unit loads (C, SX, SY, MZ, BX, and BY) to
associate bone formation in regions of high, quiescence in
areas of medium, and resorption in regions of low signal
for two subsequent images. However, no assumptions on the
magnitude of the mechanical signal were made. To derive the
final mechanical load, a second optimisation procedure matching
the compounded signal with the bone’s overall remodelling
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response was performed on the entire bone volume. Bone
formation rate (BFR), bone resorption rate (BRR), and net
remodelling response (NRR = BFR - BRR) were calculated
from the registered binary images (Lambers et al., 2011;
Schulte et al., 2011). To calculate NRRSED as predicted by the
mechanical signal, we defined a ternary classifier function fj
considering two thresholds for sites of formation Tf and sites of
resorption Tr according to né Betts et al. (2020). The thresholds
Tf = 0.0204 MPa and Tr = 0.0196 MPa were chosen based on
average bone loading values of 0.02 MPa from previous studies
(Christen et al., 2012, 2013). To observe both, formation and
resorption, in the simulations, a narrow 4%-wide lazy zone
was implemented. At each iteration, NRRSED was calculated by
scaling the compounded mechanical signal using a second scaling
factor r, and the prediction of the classifier function fj (r ∗ 6ci ∗

Ui,unit[x]) within was used in the current study. A gradient-free
Nelder–Mead method with a tolerance of 10−4 was used to
minimise the difference between NRRSED and NRRGT using the
following objective function k(r).

min k (r) = |NRRSED(r)− NRRGT |

For consistency with Christen et al. (2013), scaling factors ci and
r were incorporated into a single scaling factor si = r ∗ ci, which
combines magnitude and number of load cycles applied over
time. Assuming each load case acted equally long over time and
was applied sequentially, loading magnitude αi was calculated as
αi =
√

(6 ∗ si) for the six applied unit load cases.

Morphology-Based Load History
Estimation
Following a previously published approach (Christen et al., 2013),
we implemented an LH algorithm. Unit load cases were scaled
using load composition factors si until the most homogeneous

distribution is found (k = 0.02 MPa) (Figure 2). Scaling factors
si were calculated using a non-negative linear least-squares
optimisation technique, and load magnitudes αi were calculated
as previously described. Furthermore, a calibrated version of
LH was implemented (cal. LH). In its native implementation,
LH evaluates the load history before the imaging time point. In
longitudinal studies, physiological loading during the study may
change compared to loading before the study. To reduce this
initial bias from prior loading, the scaling factors estimated by LH
αi,t−1 from the previous baseline image were subtracted from the
estimated scaling factors αi,t of the current timestep. To derive
applied loading magnitudes from cal. LH, linear regressions
between cal. LH and the applied load were calculated.

Study Design
First, in silico geometries were derived from HR-pQCT images
and adapted using a model of load-adaptive remodelling.
Receiver operating characteristics (ROCs) were used to compare
simulated to estimated loads and calculate sensitivity, specificity,
and accuracy. Second, MR and LH algorithms were applied
to longitudinal micro-CT scans of the sixth caudal vertebra
in mice loaded extra-physiologically and sham-loaded controls.
Root mean square error (RMSE) between experimentally derived
and estimated SED was calculated. Third, MR and LH algorithms
were applied to longitudinal HR-pQCT scans of the distal radius
from patients whose handgrip force was measured using a
dynamometer. Pearson’s correlation (R) between predicted load
and grip strength was calculated, assessing the method’s fidelity.
Finally, bone mechanoregulation was investigated for all three
image data sets using MR, LH, and simplified compression loads
as input for the boundary conditions. Conditional probabilities
(CP) were calculated, associating surface remodelling events with
SED levels. To quantify the proportion of mechanoregulated
remodelling, a maximum CCR was used.

FIGURE 2 | Overview of the mechanoregulation-based load estimation (MR) algorithm and morphology-based load history (LH) algorithm. (Top left) In vivo loading is
assessed by MR between two consecutive images, outlining the algorithm’s field of view (FOV). By overlaying registered longitudinal images, remodelling regions are
identified to find a loading scenario maximising the correlation between formation (F) in regions of high strain, quiescence (Q) in regions of medium strain, and
resorption (R) in regions of low strain. (Bottom left) In comparison, load history (LH) estimates the complete in vivo load history with no option to limit its FOV and
targets a homogeneous strain distribution of medium strain (0.02 MPa). (Center) For the optimisation in both algorithms, micro-finite element (FE) models are created
covering all physiologically possible loading directions. During the optimisation, unit loads are scaled until the optimisation target is achieved, providing (Top right)
individual load components (i.e., forces and moments) as well as (Bottom right) a combined load distribution.
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Generation of Adapted Bone Geometries in silico
For the in silico experiments, five patients (four females, one
male) with VGS lower than 2 were randomly selected from the
initial patient cohort due to the high computational cost of the
remodelling simulation. Geometries derived from baseline HR-
pQCT scans were adapted toward previously defined uniaxial (C,
SX, SY, MZ, BX, and BY) and multiaxial (CS, CB, and 6DoF)
loads using a modified advection-based remodelling algorithm
(Badilatti et al., 2016; Ohs et al., 2020a). In short, a regularised
density that matched binary bone volume fraction (BV/TV) while
preserving greyscale value on the bone surface was converted
to Young’s modulus using a linear relationship (Mulder et al.,
2007) and used as input for the remodelling algorithm (Ohs
et al., 2020a). The advection-based remodelling process, as
described in Figure 3, was limited to the trabecular region and
performed for each of the nine in silico loading experiments
for 40 remodelling steps. SED and applied force magnitudes
derived from micro-FE analyses were rescaled to target sample-
specific homoeostatic remodelling with comparable amounts
(< 2% difference) of bone formation and resorption. Changes
in voxel-by-voxel intensity between subsequent remodelling
steps were quantified using Pearson correlation. From each
simulation, six time points were subsampled by increasing the
time interval between selected time points until a Pearson
correlation of at least 0.95 was reached between subsequent
scans. This subsampling procedure was performed to model
a change in tissue volume comparable to our in vivo HR-
pQCT data.

Sensitivity, Specificity, and Accuracy in silico
A multiclass ROC averaging approach was used to assess
the accuracy of the in silico load estimation. For moments
(Nmm), a corresponding torque force (N) applied at the
minimum bounding box and about the point of reference was

calculated to allow comparison between loadings. Specifically,
the torque lever arm was half the stack height for bending;
for torsion, the torque lever arm was half the dorsal length
of the minimum bounding box of the distal radius geometry.
The Euclidean distances between the estimated and all possibly
applied force vectors [N] were calculated. A percentage error
was calculated by dividing the Euclidean distance by the
applied force as a scalar error quantification. The multiclass
prediction of all nine in silico loading scenarios was reduced
to multiple sets of binary predictions (true, false) for each
scenario. A ROC curve for each loading was computed in a
one-vs.-all manner. All other classes are considered negative
examples, and only the examined loading was considered
positive. This yielded a different ROC curve for each loading.
A true positive rate (TPR) was assessed over a false positive
rate (FPR) at different thresholds, and the area under the
curve (AUC) was calculated. Following Mandrekar (2010), AUC
of 0.5 suggested no discrimination, 0.7–0.8 was considered
acceptable, 0.8–0.9 was deemed excellent, and larger than
0.9 was considered outstanding. The ROC was calculated
for each scenario, and the results were averaged to calculate
a macro average (mac). Furthermore, a prevalence-weighted
micro average (mic) was calculated treating data as aggregated
results. These averages describe the overall performance of the
multiclass classification (Asch, 2013). Sensitivity, specificity, and
accuracy were calculated based on the mac, where a common
threshold was applied.

Subject-Specific Load in the Mouse Caudal Vertebra
in vivo
Mechanoregulation-based load estimation and load history
algorithms were applied to the processed longitudinal micro-CT
scans. The resulting forces and moments act on different
scales and are not directly comparable in magnitude. However,

FIGURE 3 | Schematic workflow to derive bone geometries from advection-based remodelling simulations. Input, greyscale high-resolution peripheral quantitative
computed tomography (HR-pQCT) images of the distal radius were first Gauss-filtered and regularised before finite element modelling. Strain energy density (SED)
was derived from a linear finite element analysis (FEA), and cell sensing was mimicked through mechanical signal dilation with a fixed radius of 50 µm. Tissue was
remodelled using a SED-dependent velocity of ± 8,000 µm/year/MPa and a maximum velocity of ± 12 µm/month in regions where SED exceeded or fell short of
the average tissue load (0.02 MPa) by ± 2%, and the growth direction was simulated normal to the bone surface. An advection step performed the surface
movement, either resorption (R, purple) or formation (F, yellow), and a remodelled output regularised image was derived. Quiescence (Q) was modelled as no surface
movement. This process repeats with the regularised output image as input for the next iteration (n).
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their resulting strain distributions may help understand their
impact on tissue scale. In contrast to the in silico data, in
the in vivo data, no ground truth was available to validate
the results directly. For the animal data, an anticipated SED
distribution was derived based on the experimental assumptions
in order to conditionally validate the MR algorithm. The loaded
group was subject to an 8 N cyclic load; consequently, a local
reference SED distribution was derived for an 8 N load for
the loaded group. In accordance with Christen et al. (2012),
a 4 N compressive load was assumed for unloaded animals,
and the associated SED distribution was derived. The error
between LH’s and MR’s load distributions to the reference
distributions was calculated for each voxel by subtracting the
target’s estimated distribution for each subject at each time
point. Voxels were binned according to derived remodelling
regions, resulting in error distributions for areas of formation,
resorption, and quiescence.

Local Mechanoregulation in silico and in vivo
Conditional probability (CP) curves were calculated for
the previously identified remodelling events on the bone
surface, in accordance to Schulte et al. (2013), to connect
the mechanical environment (SED) as estimated by the
algorithms with remodelling sites. Load distribution, resulting
from the estimated loads, was normalised using the 99th
percentile and binned at 1% steps for each remodelling
event. Group-wise normalisation and bin-wise normalisation
were used to calculate CP curves for each data set (Schulte
et al., 2013). A CCR adapted from né Betts et al. (2020)
was calculated to summarise mechanoregulation. This CCR
measures the fraction of correctly identified remodelling events
using the CP curves.

Statistics
Statistical analysis was performed using Python 3.8.0, NumPy
1.19.2, and SciPy 1.5.3. Data were tested using an omnibus test
of normality based on D’Agostino (1971) and D’Agostino and
Pearson (1973) that combines skew and kurtosis. Non-normal
parameters were presented as median ± 95% confidence interval
(CI) and compared using nonparametric tests: the Wilcoxon–
Mann–Whitney test was used for independent and the Wilcoxon
signed rank test was used for matched samples. To measure the
association between MR and LH predictions and their correlation
with grip strength, linear regression analysis was performed;
for non-normal parameters, Spearman’s rank-order correlation
coefficients were computed to assess the relationship between
variables. Normal parameters were presented as mean ± 95%
CI and compared using parametric methods: the Student’s
t-test was used for independent samples, and a paired t-test
was used for matched samples. For linear regression analysis
of normal parameters, Pearson product-moment correlation
coefficients were computed. Holm–Bonferroni correction was
used for multiple comparisons to reduce the possibility of
a type I error. For all tests, a p-value smaller than 0.05
was regarded statistically significant. Otherwise, significance
levels are reported.

RESULTS

Generation of Adapted Bone Geometries
in silico
For the in silico experiments, the goal was to generate
adapted bone geometries with constant remodelling rates and
known mechanical loads to benchmark the algorithms. The
in silico-applied force magnitudes were varied until homeostatic
remodelling was achieved, resulting in forces between 100 and
600 N. Average BV/TV of the baseline trabecular geometries
was 0.12 ± 0.06 and increased to 0.13 ± 0.06 at step 40. An
initial drop in BV/TV was observed within the first eight steps
of the simulation’s initialisation period and was excluded from
further analysis. The temporal resolution between the resulting
advection steps needed to be reduced to achieve physiological
and constant remodelling rates comparable to in vivo follow-
up periods. Linear regression analysis showed a significant
negative correlation (R2 = 0.97, p < 0.01) between remodelling
rates and Pearson’s R between two subsequent images. Hence,
Pearson’s R was regarded as a reliable subsampling criterion.
Time points were included when a threshold of 0.95 was reached
between images resulting in six to eight scans for each geometry
and loading scenario. The last six subsampled time points for
each experiment and patient were selected for further analysis.
This procedure provided highly controlled remodelling rates of
13.79%± 0.13% between scans.

Sensitivity, Specificity, and Accuracy
in silico
A multiclass ROC analysis was used to assess sensitivity,
specificity, and accuracy. Average AUCs were high for
MR calculated using micro (AUC = 0.98) and macro
(AUC = 0.97) averaging. This high value was due to an
outstanding performance when classifying uniaxial loads
(AUC = 1) (Table 1) and dropped for multiaxial loading
cases (AUC = 0.91). An overshadowing of the shear
component by compression was observed for CS, resulting
in a considerable AUC drop (Table 1). Still, MR exceeded
the performance of LH in all categories (Figure 4). Overall,
LH only resulted in acceptable micro (AUC = 0.61) and
macro (AUC = 0.73) averages, and a below random prediction
(AUC = 0.45) was observed for the 6DoF load case. Overall,
AUC improved for the calibrated implementation for macro
(AUC = 0.79) and micro (AUC = 0.71) averages; however,
it was not consistently higher in all categories. At the
optimal macro-averaged ROC cut point, load configurations
were correctly identified with a high sensitivity of MR.
Additionally, the ratio of correctly identified mismatches
manifested in high specificity, resulting in an outstanding
overall accuracy of MR (Figure 4, upper left panel). In
comparison, sensitivity, specificity, and accuracy of LH were
significantly lower (p < 0.01), yielding only an acceptable
differentiation between the applied loading. The calibrated
implementation of LH did not achieve significantly higher
accuracy compared to the native LH approach and was not
further investigated.
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TABLE 1 | Receiver operating characteristic (ROC) derived area under the curve (AUC) for mechanoregulation-based load estimation (MR), load history (LH), and
calibrated LH (Cal. LH) for uniaxial loading cases and multiaxial loading.

Uniaxial Multiaxial Average

C SX SY T BX BY CS CB 6DoF Micro Macro

MR 0.98 1 1 1 1 1 0.82 0.98 0.93 0.98 0.97

LH 0.83 0.81 0.83 0.71 0.70 0.68 0.69 0.82 0.45 0.61 0.73

Cal. LH 0.87 0.74 0.85 0.96 0.78 0.75 0.66 0.82 0.66 0.71 0.79

Averages were calculated based on aggregated averaging (macro) and a prevalence-weighted average (micro).
C, compressive force in the axial direction; SX, lateral shear force; SY, dorsal shear force; BX, lateral bending moment; BY, dorsal bending moment; CS, combined
compression and shear; CB, combined compression and bending; 6DoF, 6-degree freedom load

FIGURE 4 | Classification accuracy and ROC for load estimation. Loads of in silico-adapted bone geometries (n = 5) with nine different loading boundary conditions
were estimated and compared to the simulated target load serving as ground truth. Accuracy, sensitivity, and specificity for estimated optimal thresholds were
calculated (upper left). Bars show mean, and error bars show 95% confidence interval. All differences between means with p < 0.05 are indicated (∗∗p < 0.01;
∗∗∗∗p < 0.0001; two-tailed paired t-test). Thresholds were derived from multiclass receiver operating characteristic (ROC) for mechanoregulation-based load
estimation (MR, upper right), load history LH (lower left), and calibrated LH (lower right).

Association Between Different Load
Estimation Algorithms in silico
Linear regression between MR and the target load of the nine
in silico loading experiments resulted in αtarget = 1.28 ∗ αMR
+ 2.64 (R = 0.83, p < 0.05), slightly underestimating loading
magnitude. In comparison, LH showed a weaker correlation and

overestimated loads (αtarget = 0.86 ∗ αMO – 1.80, R = 0.45,
p < 0.05). The calibrated version of LH showed a slightly higher
correlation; however, loading magnitudes were underestimated
by orders of magnitude indicating that the calibrated version of
LH should only be used in combination with a valid calibration
equation (αtarget = 8.36 ∗ αcalMO + 36.18, R = 0.5, p < 0.05).
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Subject-Specific Load in the Mouse
Caudal Vertebra in vivo
One animal of the loaded group was excluded from the analysis
due to convergence issues during the FE analysis. The axial
compressive force was predicted as the most dominant loading
component for all time intervals using MR (loaded 6.11 ± 1.15
N, control 4.40 ± 1.37 N). Estimations in the loaded group were
consistently higher compared to those in the unloaded group
(3.73 ± 2.13 N), reaching significantly (p < 0.05) higher levels
after 2 weeks (Figure 5A). In comparison, the estimations of the
axial compressive force by LH only reflected the experimental
conditions in the loaded group after the 2-week time point,
predicting 5.24 ± 1.42 N in control and 6.40 ± 3.72 N in
the loaded group. Using MR, a non-negligible Mx moment
was predicted in both the loaded (3.97 ± 4.00 Nmm) and
control (3.17 ± 1.03 Nmm) groups. Notably high bending

moments (> 4 Nmm) in the loaded group were only observed
for individual mice, causing large CIs in the predicted Mx
component of the loaded group. In comparison, Mz was the
largest moment load component indicated by LH for loaded
(13.41 ± 0.51 Nmm) and control (14.97 ± 0.33 Nmm) groups
and was significantly (p< 0.05) higher compared to Mz indicated
by MR in the loaded (1.41± 0.58 Nmm) and control (4.56± 1.04
Nmm) groups. Errors for loading estimated by MR were normally
distributed (Figure 5B). In comparison, errors for loading
estimated by LH were skewed left in regions of resorption
resulting in a systematic overestimation of strain in these areas
(Figure 5C), indicating a bias of the LH model. Additionally,
mean absolute error was significantly (p < 0.01) smaller for
estimations by MR (f: 0.0051± 10−5 MPa, q: 0.0057± 10−5 MPa,
r: 0.0042 ± 10−5 MPa) compared to LH (f: 0.0071 ± 10−5 MPa,
q: 0.0070± 10−5 MPa, r: 0.0081± 10−5 MPa).

FIGURE 5 | Load components and error as predicted by mechanoregulation-based load estimation (MR; solid) and load history (LH; dashed) for mouse caudal
vertebra (n = 8) subjected to physiological (Contr) and extra-physiological loading (Loaded). Bar plots in panel A show mean predicted load and standard error (SE)
for each component of a 6DoF. Significant differences in prediction between MR and LH with p < 0.05 are indicated (∗p < 0.05; Mann–Whitney–Wilcoxon,
Bonferroni). By MR and LH, predicted strain energy density (SED) distributions were compared to an anticipated target load case and distribution was derived from
the experimental conditions (contr: 4 N in Fz, loaded: 8 N in Fz). Local error distribution was assessed between estimated and target SED for MR (B) and LH (C) and
grouped in regions of formation, resorption, and quiescence, as derived from time-lapsed micro-CT images. Histograms were truncated at the 98th percentile SED
error.
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Patient-Specific Load in the Human
Distal Radius in vivo
Compressive force, Fz, was the largest loading component
compared to the other unit load cases in the distal radii using
both MR (Fz = 0.43 ± 0.33 kN) and LH (Fz = 0.42 ± 0.27 kN);
however, Fz did not reach a significantly higher magnitude than
Fx (0.14± 0.09 kN) or Fy (0.28± 0.13 kN) (Figure 6A). This may
be attributed to the large variations in Fz predicted by MR and
LH across subjects. Mean estimated Fz was in good agreement
between LH and MR. Using MR, estimated loading was consistent
over the 12-month interval, showing no significant difference
between time points. Loads estimated using MR showed more
considerable variation than LH, which may be due to registration
artefacts or variations in image quality between time points.

Grip strength of individuals was assessed to investigate these
variations in compressive force between subjects. Simple linear
regression was calculated to predict loads estimated by MR
(moment M in Nm and force F in kN) based on grip strength
G in kN (Figure 6B). For F, a significant regression equation
(F[G] = 3.22 ∗ G - 0.30) was found (p < 0.01) with R2 = 0.72.
This correlation between grip strength and forces in the distal
radius has been found before and may explain variations among
subjects as F increased 3.22 kN for each kN of grip strength.
For M, a significant regression equation (M[G] = 0.77 ∗ G +
0.15) was found (p = 0.01) with R2 = 0.18. As such, moment
load in the distal radius was less associated with grip strength
compared to forces. Simple linear regression for loads estimated
by LH reflected a similar trend with a slightly weaker association
(Figure 6C). For F, a significant regression equation (F[G] = 2.61

FIGURE 6 | Load as predicted by mechanoregulation-based load estimation (MR; solid) and load history (LH; dashed) of physiological load in the human distal
radius (n = 7). In panel A, line plots show mean predicted load and 95% confidence intervals for each component of a six-degree freedom load. No significant
differences were found between MR and LH (p < 0.05, paired t-test). Linear regressions between grip strength and total force 6Fi and moment 6Mi as predicted by
MR (B) and LH (C) were calculated. Significant correlations indicated (∗p < 0.05; ∗∗∗∗p < 0.0001).
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∗ G - 0.16) was found (p < 0.01) with R2 = 0.70. For M, a
significant regression equation (M[G] = 0.26 ∗ G + 0.11) was
found (p = 0.03) with R2 = 0.14. A lower correlation between Fz
and grip strength was found for MR and LH.

Local Mechanoregulation in silico and
in vivo
Mechanoregulation analysis of MR and LH was conducted
between subsequent time points for subjects in vivo and
in silico and compared to the results of a commonly used
simple compression FE analysis (SC). SED distributions
were normalised using the 99th percentile resulting in
median normalisation values of 0.071 ± 0.06 MPa for MR,
0.04 ± 0.01 MPa for LH, and 5.28 ∗ 10−7

± 0.01 MPa for
SC. Mechanoregulation curves (Figure 7A) showed systematic
bone remodelling behaviour, where bone was most likely to
be formed in high SED regions, quiescent in medium SED
areas, and resorbed in regions of low SED as visually indicated
in Figure 8. The in silico model’s purely mechanically driven
gaussian process was only fully recovered using MR. This
anticipated distribution can be seen in the lower-left panel
of Figure 7A, showing models generated and analysed using
the same SC boundary condition. In comparison, LH’s cp
indicated an unphysiological change in curvature localised just
above 50% strain.

To quantify the overall remodelling behaviour, CCR was
calculated, measuring correctly classified remodelling events.
CCR was significantly higher in the in silico data (Figure 7B) than
in vivo data (p < 0.01) as seen in Figure 7C. For the in silico data,
MR achieved significantly higher CCR (CCR = 0.81) compared
to LH (CCR = 0.55, p < 0.01). Comparison between the SC
(CCR = 0.80) benchmark and MR (CCR = 0.81) showed no
significant differences, demonstrating high in silico performance
of MR. Within the in vivo mouse data, no significant differences
in CCR were found in the unloaded group (CCR = 0.40) between
approaches. However, in the loaded group, CCR predicted using
MR (CCR = 0.43) was significantly higher compared to LH
(CCR = 0.40, p < 0.01) and significantly higher compared to
the unloaded group. Finally, within the human distal radius,
significantly larger association was found between strain derived
from MR (CCR = 0.42) compared to LH (CCR = 0.38, p < 0.01)
and a higher trend compared to SC (CCR = 0.41).

DISCUSSION

With the increasing prevalence of bone mechanoregulation
studies, this work aimed to extend a previously developed load
estimation algorithm (LH) (Christen et al., 2012) by allowing
for tissue strain inhomogeneities in our mechanoregulated
load estimation approach (MR). These localised differences
in mechanical signal may drive bone’s remodelling response
and help understand bone mechanoregulation. We provided
validation for both algorithms using in silico-generated data,
in vivo HR-pQCT images in humans, and micro-CT images
in mice. These experiments indicate the portion of bone
remodelling that can be attributed purely to mechanics

and establish a baseline for futures studies evaluating
mechanoregulation in patients.

Importantly, a combined in silico validation and in vivo
verification, as shown in this study, has not yet been carried
out. As such, algorithmic performance quantification was able
to be carried out in human radius geometries and mice.
Previous studies provided validation using in vivo mouse
loading experiments (Christen et al., 2012). However, this
did not enable the demonstration of algorithmic functionality
for load directions other than uniaxial compression, such as
those observed in the human distal radius and the mouse
vertebra. The consistent results between our in silico and in vivo
loading experiments indicate the validity of the MR algorithmic
assumptions under diverse loading conditions. Corroborating the
necessity for algorithmic validation in all six degrees of freedom,
our in silico experiments identified possible performance deficits
when applied to complex loading regimes. Despite using the
inverse mechanoregulation rules of the advection simulation,
MR’s in silico accuracy was not perfect for several reasons.
First, only six selected time points (out of 40 simulated
remodelling steps) were used to generate an in silico HR-
pQCT scan series that reflected our in vivo data. Consequently,
the inverse optimisation was challenged to recover loading
from an iteratively adapted structure in a single step. Second,
the advection simulation’s force-controlled setup caused slight
differences in remodelling rates due to the initial anisotropy of
the physiological load-adapted bone structure. Here, CS resulted
in slightly higher average SED and BV/TV values by favouring
bone formation compared to other load scenarios. In contrast to
MR, the advection model limits the maximum bone formation
rates, which may partially explain the performance deficits
within this group.

Although MR’s performance was excellent for simulated
adaptation, in vivo bone remodelling is not purely load-driven.
Predicted in vivo loading patterns in the mouse model were
in good agreement with a previous study (Christen et al.,
2012). Compared to the dataset used by Christen et al.
(2012), our LH results showed slightly larger moments while
MR predictions were overall in good agreement with the
previous study. Our LH results suggest a sizeable torsional
component was induced in the caudal vertebra during daily
activity, conflicting with the fact that the intervertebral discs
limit the transmission of axial moments. Following the model
proposed by Schulte et al. (2013), the intervertebral discs of
the mouse FE analysis were modelled as stiff tissue (14.8 GPa),
which may have resulted in slightly more uniaxial loading.
The torsional moment may be affected by this assumption
combined with the homogeneous strain simplification of LH
as it was not detected using MR. LH-predicted in vivo forces
in the distal radius model were consistent with a previous
study (Christen et al., 2013); however, predicted moments varied
by order of magnitude. Christen et al. (2013) used layers of
soft-tissue padding at the proximal and distal ends, which
may have resulted in further homogenisation of the strains
throughout the radius. As such, this step may have limited the
transmission of moment load at the interface between calcified
tissue and soft tissue. When comparing our results with a
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FIGURE 7 | Conditional remodelling probabilities (CPs) connecting the mechanical environment [strain energy density (SED)] as estimated by
mechanoregulation-based load estimation (MR), load history (LH), and simple compression (SC) with remodelling sites for SC, in silico loading (IS), in vivo vertebra
(CV), and distal radius (DR) datasets. Normalised SED distributions were used to calculate the CP (A) for events of formation, quiescence, and resorption to occur at
distinct strain levels. Remodelling sites as predicted by the estimated SED were compared to the ground truth, and a correct classification rate (CCR) for in silico
data (B) and in vivo data (C) was calculated. Boxplots indicate the median and interquartile range. Observations outside the 9–91 scope plotted as outliers.
Differences in prediction within and between groups with p < 0.05 are indicated (∗∗p < 0.001; ∗∗∗∗p < 0.0001; ns p > 0.05, two-tailed paired t-test within groups,
two-tailed individual t-test between groups).

cadaveric study investigating distal radius load during various
wrist motions (Smith et al., 2018), we find similar load-to-
moment ratios, indicating that additional padding may lead to
an overestimation of momentum load. Finally, processes such
as calcium homeostasis, wherein random bone remodelling may
occur, will influence MR estimations. However, the findings of
our mechanoregulation analysis reveal that the strain patterns
overlap with the pattern observed by natural bone remodelling

activity and can be used to estimate in vivo loading through our
MR reverse engineering approach.

Our data also suggest that estimates in the distal radius may
vastly vary from patient to patient. Despite the variance, an
increase in loading was associated with increases in grip strength
among patients. Such a relationship has been previously reported
in cadaveric studies correlating grip strength with joint forces. In
agreement with our results, models showed that approximately
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FIGURE 8 | Comparison of remodelling sites with the mechanical environment. Longitudinal in vivo high-resolution peripheral quantitative computed tomography
(HR-pQCT) scans identified bone formation, quiescence, and resorption and were directly compared to the local mechanical environment. The inset shows an
enlarged view of the correspondence between bone formation and high signal and low signal resorption.

26.3 N of force needs to be transmitted through the radius to
obtain 10 N of grip strength (Putnam et al., 2000). Although
this correlation was significant for loads estimated by MR and
LH in the current study, this relationship was largely driven
by single individuals with high grip strength. For future distal
radius studies, grip strength should be considered as an inclusion
parameter. Overall, our results indicate that the internal loads
estimated by MR and LH are in good agreement with previous
studies and can be linked to external factors such as grip
strength in patients.

The principal algorithmic differences between approaches
establish different future applications for LH and MR. MR
prioritises remodelling sites, which are derived from two
subsequent time-lapsed images. Accordingly, MR’s estimation is
limited to the time frame between scans. LH estimates loading
based on the bone morphology and is therby a cumulative
estimate of all prior loadings (load history). Loading during
immobilisation treatment (Lill et al., 2003; Clayton et al., 2009;
Spanswick et al., 2021), exercise (Troy et al., 2020), or loading
interventions (Hughes et al., 2018) may differ from a patient’s
load history, which is defined by everyday and occupational
activities. Thus, cumulative estimates of LH may be biased by the
initial conditions. We showed that initial calibration of LH tends
to improve differentiation between loading scenarios; however,
this does not allow LH to achieve the same performance as
MR. For the mouse loading experiment, this was evident in the
delayed detection of significant differences between the loaded
and control groups using LH compared to MR. For the present
distal radius dataset, patients were skeletally mature adults and
did not participate in a specific loading intervention. As a result,
there was good agreement between MR and LH estimates. Note

that the intact, contralateral radii used in the present study were
taken from a patient cohort that had experienced a distal radius
fracture. As such, loading in the unfractured arm may have
increased, particularly in cases involving fracture of the dominant
arm. The resulting change in day-to-day loading may explain
slightly higher predictions of MR compared to LH throughout
the study. While our results indicate that MR is more sensitive to
changes in loading, the algorithm is also more affected by imaging
bias than LH. By utilising two subsequent HR-pQCT images,
MR is subject to higher noise levels, movement artefacts, and
registration errors compared to LH (MacNeil and Boyd, 2008;
Sode et al., 2011). LH may be more suited to mouse studies,
which can assess lifetime changes, but not for the time frame
of most clinical studies of antiresorptive therapies that often
assess changes in BMD over a study duration of less than 2 years
(Chen and Sambrook, 2012). Overall, our results have confirmed
MR’s and LH’s capabilities for various applications using well-
defined in silico loading and controlled experimental conditions.
Accordingly, MR should be used when investigating designated
time intervals in a longitudinal analysis and LH to assess the
loading history in a cross-sectional fashion or when confronted
with low image quality.

To quantify mechanoregulation, we have used a CCR similar
to the approach described by né Betts et al. (2020). Here, we
show that by using the boundary condition derived by MR, we
achieve significantly higher CCR values than LH for simulated,
physiological, and extra-physiological loading. Furthermore, our
results indicate that these differences are more pronounced
when an extra-physiological load was induced. Our results also
show that using the simplified compressive boundary condition
may be an acceptable choice when investigating trabecular
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bone mechanoregulation of the healthy human distal radius.
However, Johnson and Troy (2018) have shown that this
simplified compression boundary condition may alter cortical
and trabecular loading sharing. Therefore, the authors caution
that such a simplified boundary condition may not be adequate
for future studies investigating cortical and trabecular bone
mechanoregulation. Although our results indicate a higher trend
in CCR for loads estimated by MR, we cannot entirely rule out
the possibility that inherent parallels between mechanoregulation
analysis and MR synthetically inflate CCR within human distal
radius data. However, our analysis of an in vivo loading model has
provided experimental ground truth showing that estimations
by MR reflected experimental conditions properly in mice.
Furthermore, our in silico validation showed that MR is highly
sensitive, specific, and accurate. Overall, our results indicate
that mechanoregulation tends to be higher when analysing
physiological loading derived by MR and thrives on a wealth
of extra-physiological loading. Interestingly, our results also
show that simple compression is an adequate simplification
for the in vivo loading environment in the distal radius
considering current limitations. Furthermore, the results of
our mechanoregulation analysis revealed a pronounced positive
correlation between bone resorption and low strains for our
mouse and a human model. This is in agreement with a previous
study by né Betts et al. (2020) investigating mechanoregulation
in a rodent femoral defect model, which indicated that
mechanoregulated bone resorption mainly occurred within the
distal and proximal fragments early during recovery. This
relationship would indicate that osteoclastic activity may be more
sensitive to local strain, and mechanoregulation may differ locally
throughout the bone.

The proposed MR algorithm is subject to several limitations
attributable to model assumptions as well as experimental
and computational constraints. The performed multiclass ROC
analysis weighted percent deviations in loading between forces
and moments expressed as a reference force, equally. Where
forces and moments may have a different impact on tissue
level SED, the underlying in silico experiments (C, SX, SY,
MZ, BX, BY, CS, CB, and 6DoF) were performed at equal
loading magnitudes for each geometry, making this method a
reasonable in silico performance measure. Regarding the animal
experiments, the adjacent vertebra’s pinning procedure is limited
in precision, and vibrations during the vertebra loading may
create slight variations in loading direction and explain the
observed higher variability in lateral bending. However, our
results are comparable to a previous study (Christen et al., 2012)
and represent the experimental setup sufficiently to provide
validation for MR and LH. Regarding computational aspects, the
method used to determine remodelling sites may include artefacts
from scanning, such as beam hardening, motion artefacts, and
partial volume effects or numerical inaccuracies of the image
registration. However, in vivo micro-CT and HRp-QCT have
been shown to have sufficient reproducibility for longitudinal
bone structure assessment (Ellouz et al., 2014; Scheuren et al.,
2020a). Additionally, MR used a Nelder–Mead optimiser that
is not a true global optimisation algorithm and may converge
in a local solution. However, in practise, it tends to work

reasonably well for nonlinear, multimodal, inherently noisy
functions. To further counteract this effect, we initialised the
optimiser using a least-squares solution (as derived by LH).
Future studies confronted with lower image quality may consider
using Bayesian Global Optimisation techniques, which come
at a higher computational cost but exhibit statistical methods,
to address this problem. According to previous work, SED
was used as a mechanical signal (Christen et al., 2012, 2013,
2014). More recent studies (né Betts et al., 2020; Malhotra
et al., 2021) have identified an effective strain as a preferred
candidate for bone mechanoregulation analysis using multi-
density FE analysis. However, previous research has shown
that these signals are strongly correlated (Pistoia et al., 2002;
Ruimerman et al., 2005). Also, the FE model used was linear
regarding material and geometry, and load cases were scaled
and superimposed linearly during the optimisation to model
the compounded loading effect. These simplifications would
not capture any nonlinear behaviour or viscoelastic effects;
however, only small linear-elastic deformations are expected to
occur during day-to-day activity. Future studies may expand
this model with increasing computational power and investigate
nonlinear effects above yield strength that lead to bone failure
(Schwiedrzik and Zysset, 2015).

CONCLUSION

We have shown that MR is an enhanced load estimation
algorithm tailored for longitudinal bone remodelling studies,
achieving high sensitivity, specificity, and accuracy in silico
by employing acknowledged mechanoregulation principles. The
combined in silico validation and in vivo verification approach
presented in this study proved to be a powerful benchmarking
tool for the development of time-lapsed bone imaging analysis
methods. Moreover, our results indicate that future studies
may use grip strength as a functional surrogate to verify
estimated patient-specific physiological distal radius loads.
Finally, our mechanoregulation analysis revealed considerable
amounts of mechanically driven remodelling activity driven
in human bone that may enable future studies to understand
osteodegenerative disease.
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A Coupled Mechanobiological Model
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Cerebral palsy is a neuromusculoskeletal disorder associated with muscle weakness,
altered muscle architecture, and progressive musculoskeletal symptoms that worsen with
age. Pathological changes at the level of the whole muscle have been shown; however, it is
unclear why this progression of muscle impairment occurs at the cellular level. The process
of muscle regeneration is complex, and the interactions between cells in the muscle milieu
should be considered in the context of cerebral palsy. In this work, we built a coupled
mechanobiological model of muscle damage and regeneration to explore the process of
muscle regeneration in typical and cerebral palsy conditions, and whether a reduced
number of satellite cells in the cerebral palsy muscle environment could cause the muscle
regeneration cycle to lead to progressive degeneration of muscle. The coupled model
consisted of a finite element model of a muscle fiber bundle undergoing eccentric
contraction, and an agent-based model of muscle regeneration incorporating satellite
cells, inflammatory cells, muscle fibers, extracellular matrix, fibroblasts, and secreted
cytokines. Our coupled model simulated damage from eccentric contraction followed
by 28 days of regeneration within the muscle. We simulated cyclic damage and
regeneration for both cerebral palsy and typically developing muscle milieus. Here we
show the nonlinear effects of altered satellite cell numbers on muscle regeneration, where
muscle repair is relatively insensitive to satellite cell concentration above a threshold, but
relatively sensitive below that threshold. With the coupled model, we show that the fiber
bundle geometry undergoes atrophy and fibrosis with too few satellite cells and excess
extracellular matrix, representative of the progression of cerebral palsy in muscle. This
work uses in silico modeling to demonstrate how muscle degeneration in cerebral palsy
may arise from the process of cellular regeneration and a reduced number of satellite cells.

Keywords: agent-based modeling, mechanobiology, finite element modeling, FEM, skeletal muscle, satellite cell

INTRODUCTION

Cerebral palsy (CP) is a neuromusculoskeletal disorder arising from a static neural lesion but leading
to musculoskeletal and gait impairments that can give rise to long-term degradation of musculature
(Fridén and Lieber, 2003; Smith et al., 2011; Larkin-Kaiser et al., 2019). CP is the most common cause
of physical disability in children and manifests as spasticity, contractures, poor control of muscles,
and altered reflexes and posture (Graham et al., 2016). Depending on disease severity, muscles in
individuals with CP are often smaller and weaker than typically developing (TD) counterparts;
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additionally, muscle size and strength decline over time (Elder
et al., 2003; Handsfield et al., 2016; von Walden et al., 2017;
Sahrmann et al., 2019). The macroscale changes to CP muscle are
well-known; however, cellular level studies of muscle
regeneration are only commonly performed for TD muscle, as
opposed to CPmuscle. Of the few recent studies performed on CP
muscle, cellular level differences between CP and TDmuscle have
been found and include increased collagen deposition in the
extracellular matrix (ECM) (Booth et al., 2001; Fridén and Lieber,
2003; De Bruin et al., 2014), decreased number of muscle stem
cells (Smith et al., 2013), decreased stem cell activity
(Domenighetti et al., 2018), and an increase in pro-
inflammatory gene expression compared to TD muscle (Von
Walden et al., 2018).

Skeletal muscle is a post-mitotic tissue capable of repair and
regeneration. Muscle regeneration and repair may be triggered by
different cues including trauma, muscle use and strain, and
chronic degenerative diseases, which over time lead to tissue
adaptation (Artrong et al., 1991; Järvinen et al., 2008; Chen et al.,
2020). Typically, eccentric exercise stimulation of muscles
attenuates age-related muscle loss and promotes myofiber
hypertrophy (Chen et al., 2020). Stimuli such as eccentric
lengthening exercises cause mechanical strains in the muscle
that damage cell membranes and lead to a cascade of chemical
signals and cellular responses. Following damage, the muscle fiber
environment undergoes a tightly regulated adaptive repair
process which is often categorized according to a series of four
phases of regeneration: 1) damage in the form of membrane
rupture, 2) acute inflammatory response from macrophages and
neutrophils, which involves breakdown and clearance of necrotic
tissue, 3) regeneration orchestrated by activation, proliferation,
differentiation of myogenic precursor cells and fusion of
myoblasts to the debrided region of the myofiber, and 4)
repair and remodeling of the ECM by fibroblasts (Partridge,
2002; Mourkioti and Rosenthal, 2005; Chargé and Rudnicki,
2009; Novak et al., 2014; Laumonier and Menetrey, 2016).
During the first step, the breakdown and necrosis of myofibers
is triggered via the disruption of the sarcolemma and subsequent
increase in permeability. Creatine kinase is released into the
serum and is a common marker of post-mechanical stress or
muscle degeneration. Loss of calcium homeostasis and calcium
influx, due to damage of the sarcolemma, then drives tissue
necrosis. The result of injury is focal or total autolysis of fibers
(Chargé and Rudnicki, 2009). Step two is marked by degeneration
that occurs within hours of damage with the activation of myeloid
and secretory cells that predominantly release cytokines.
Neutrophils invade injured muscle within 1–6 h and reach
peak concentration 6–24 h post-injury. At 48 h post-injury,
macrophages become the predominant inflammatory cell types
at the injury site. Macrophages phagocytose cellular debris and
activate myogenic cells, ready for the regeneration process
(Novak et al., 2014). Their importance in skeletal muscle
regeneration is due to their phagocytic and antigen-presenting
roles (Tidball and Villalta, 2010). Arnold et al., 2007 postulate
that phagocytosis of muscle cell debris induces a switch of pro-
inflammatory macrophages toward an anti-inflammatory
phenotype, releasing TGF-β. This also suggests that

inflammatory macrophages stimulate myogenic proliferation
while anti-inflammatory macrophages exhibit differentiating
activity.

The damaged environment activates quiescent satellite cells
(SCs) and fibroblasts that remodel the affected tissue. SCs are a
mononucleated, progenitor cell population pivotal to
physiological muscle repair and regeneration. In an uninjured
state, SCs sit between the plasma membrane of the muscle fiber
and the basal lamina. SC content of muscle differs between age
groups and activity levels. Increased SC density is observed at the
neuromuscular junction and adjacent to capillaries. This suggests
the muscle environment created by and surrounding these
structures may attract SCs or regulate the distribution of the
SC pool. The regulation of SC density is also observed down to the
single myofiber level and during regeneration, activation of SCs is
not restricted to the site of injury on the myofibre. Mechanical
stimulation through endurance and resistance exercise can also
accelerate the turnover of ECM components in skeletal muscle.
The ECM is primarily composed of collagens, laminins,
fibronectin and proteoglycans. Fibroblasts synthesize and
assemble most of the ECM in skeletal muscle, while other
components are responsible for degradation of the ECM (Lu
et al., 2011). Collagen synthesis is increased post-exercise and
transcriptional analysis shows increased encoding of collagen
types I, III and IV post-endurance training (Grzelkowska-
Kowalczyk, 2016). A loss of balance in terms of fibroblast
secretion of ECM and clearance of collagen may result in
perturbed muscle regeneration and fibrosis.

The muscle regeneration process builds new healthy muscle
under optimal conditions and can be organized and considered as
a four step process (Chargé and Rudnicki, 2009). It should be
noted that perturbation of this process may lead to fatty
infiltration and fibrotic tissue (Joe et al., 2010; Uezumi et al.,
2010; Wang et al., 2015). While regeneration in skeletal muscle
occurs at the cellular level, degeneration of CP muscle over time
leads to both cellular and observable macroscale changes
(Graham et al., 2016). In light of this, it bears considering
whether the process of muscle regeneration may lead to
degeneration in CP primarily as a result of changes to the
cellular environment. The regeneration process is complex
however, and exploration of this problem requires
understanding interactions at multiple scales among multiple
cellular agents.

Agent-based modeling (ABM) is a technique capable of
probing complex adaptive systems from the bottom-up. In
ABM, autonomous agents are situated in an environment with
changeable relationships. ABM is well-suited for biology as
bottom-up modeling enables cells to act and react to one
another and to local stimuli without an a priori macroscale
outcome. This is achieved through its representation of
multiple levels of biological organization, capturing of
intracellular dynamics between large populations of cells, and
its ability to integrate cell-signaling events (An et al., 2009).
Furthermore, both cellular and non-cellular components of an
agent-based model can be programmed to perform biologically
relevant behaviors such as proliferation, apoptosis and migration
(Gorochowski, 2016). The macroscale behavior observed is then
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either a directed or an emergent effect of the local cellular actions
and interactions; thus, ABM is a useful tool for capturing the
complex, nonlinear, and multiscale nature of physiology (North
et al., 2013; Wilensky and Rand, 2015), and is a promising
approach to model the process of muscle regeneration. The
ABM approach has previously been applied to studies of
tumor formation, cardiac modeling, vascular remodeling, bone
tissue regeneration, wound healing, signaling, and metabolic
processes (Bailey et al., 2009; Flegg et al., 2015; Borgiani et al.,
2017).

ABM has been used previously to explore muscle-related
pathologies such as Duchenne muscular dystrophy (Virgilio
et al., 2018) and disuse atrophy (Martin et al., 2015). Here, we
develop an ABM that simulates typical muscle regeneration based
on physiological properties and rules derived from literature. To
simulate a muscle’s response to mechanical stimulus, we built a
3D finite element (FE) model of a muscle fiber bundle that
underwent active eccentric contraction. The resultant areas of
high strain and thus mechanical damage in the FE model serve as
cues for remodeling in the agent-based model. This coupled
model links mechanical stimulus and damage to its
physiological response in skeletal muscle. We use this model
to simulate the mechanobiological feedback loop of muscle repair
over 3 months and investigate chronic regeneration and
degeneration in TD and CP muscles. The purpose of this
study was to simulate active eccentric contraction of muscle to
obtain local strain data, then to seed the highest localized strain
points into the agent-based model of muscle regeneration and
evaluate the sensitivity of fibril recovery post-injury after altering
SC concentration.

The pathological differences in muscle geometry and
deformation that may lead to changes in the tissue
microstructure can be observed by coupling ABM and FE
modeling. Firstly, the FE analysis is used to determine areas of
high strain and to localize tissue injury. These areas direct cell
migration in the agent-based model as it is used to simulate a
cycle of repair following injury. Secondly, following the repair
time course, the resultant agent-based model geometry and cell
counts can inform the reconstruction of the FE model geometry,
thereby providing progressive morphological data. Lastly, as the
two models provide repeated feedback, the effect of pathological
muscle morphology on chronic injury and regeneration can be
observed and compared to typical muscle regeneration and
muscle morphology. By coupling FEM with ABM in an
iterative fashion, the biological processes of tissue adaptation
can be explored over time. This coupled model investigates how
impairment in the muscle regeneration process can influence
pathological muscle degeneration in CP. There is a need to better
understand this process in individuals with CP over time.

METHODS

This study coupled an agent-based model and FE model of a
human skeletal muscle fiber bundle to simulate muscle
regeneration in response to eccentric contraction in CP and
TD muscle. Initial geometry for all models was built from a

single human muscle fiber cross-section obtained from the
literature (Mackey et al., 2017), where this group undertook
antibody staining of muscle biopsies from four young healthy
male human participants. The vastus lateralis is a frequently used
muscle in biopsy studies since it is a large, easily accessed muscle
(Baczynska et al., 2016). In this case, we used a histological image
from human vastus lateralis as a representative of fiber bundle
architecture for human lower limbmuscle. The histological image
of muscle fiber bundle cross-section was segmented to distinguish
20 muscle fibers from the extracellular matrix (ECM) (Figure 1)
using the Statistics and Machine Learning Toolbox™ in
MATLAB (The MathWorks, Inc., Natick, MA). The 20 muscle
fibers form a fiber bundle with each fiber surrounded by ECM and
allows the study of cell-cell and cell-ECM interactions. Briefly,
color-based K-means clustering was used to distinguish ECM
from fibers, labeling every pixel in the image with a cluster index
(1 or 0). The following sections discuss the agent-based model
and FE model construction separately.

Agent-Based Modeling
The agent-based model was implemented in Repast Simphony
(North et al., 2013), a Java-based modeling platform. Pixel values
of the initial geometry were loaded onto a grid at the
corresponding coordinate points in Repast Simphony
(Figure 1A). The agent-based model contains 20 muscle fibers
and represents a cross-sectional slice thickness of 50 µm. The
ABM rules were developed based on literature descriptions of
physiological interactions (see subsections below) (Figure 2). The
model was built to simulate the progression of events during
muscle regeneration known to take place over 4 weeks following
injury (Laumonier and Menetrey, 2016).

Cell populations modeled as agents in the agent-based model
include muscle fibers, macrophages and neutrophils, SCs,
fibroblasts, and ECM components. Extracellular guidance cues
influenced the behavior of agents. These extracellular guidance
cues comprised the cytokines and growth factors IGF-1, TGF-ß,
HGF, IL-6 and TNF-α (Eqs. 1–5). Cytokine levels were based on
cell-type specific secretions or generalized cell secretions. The
agent-based model simulated muscle regeneration over 28 days
following 10% damage to muscle fibrils. Initial agent-based model
geometry consisted of 11719 2D grid elements. The model
simulated 28 days of regeneration with each tick representing
1 hour of cell activity. Each pixel represents 6.45 µm2 of tissue.
Each simulation was run 150 times, unless otherwise stated, and
simulation results are shown as mean ± standard deviation (SD).

Two ABM environments were developed to represent the
muscle milieu in (1) a healthy TD skeletal muscle and (2) a CP
skeletalmuscle. Typical SC concentration in young adultmales and
children is reported as ∼0.10 SC per fiber for 10 µm slice thickness
(Verdijk et al., 2014; Snijders et al., 2015; Mackey et al., 2017). A
decrease in SC concentration ∼60% has been found in muscle
biopsies from children with CP compared to typical adolescents
(Smith et al., 2013). Therefore, SC density for 10 µm slice thickness
was 0.10 SC per fiber for the healthy skeletal muscle and 0.04 SC
per fiber for the CP muscle, representing a 60% decrease. For
50 µm slice thickness, the equation for SC counts was
SC density for 10µm × number of fibers × slice thickness

10 . Initial SC
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counts were set to 0.1 × 20 × 5 � 10 for the TD muscle and 0.04 ×
20 × 5 � 4 for CP muscle. We additionally conducted a sensitivity
analysis to assess the impact of variation in SC count on the
resulting fibril count over time.

Fibers and Extracellular Matrix
The creation of fiber and ECM geometry has been described
above. Each agent was initialized to a coordinate point on a 2D
grid based on the segmentation results. Damage was assigned to
fiber and ECM regions in the agent-based model based on regions
of high strain in the FE model (described in detail below).
Following eccentric contractions, regions of strain above a
certain threshold in muscle indicate the locations of injury
(Best et al., 1995; Garrett, 1996). In the agent-based model,
fibril agents with the highest 10% of strain values from FE
modeling were regarded as damaged in the agent-based model.
Neighbor fiber and ECM agents were also set to damaged, where
neighbors were defined by searching the von Neumann
neighborhoods of damaged fiber agents. This extended area of
damage simulated necrotic tissue (Laumonier and Menetrey,
2016). Damaged ECM had collagen density set to a lower
value and signaled for fibroblasts to initiate the repair process
(Schoenrock et al., 2018). When average fibril count per fiber was
repaired to pre-injury levels, fiber borders were re-formed and
additional fibrils could be added, consistent with the “ghost fiber”
phenomenon previously observed (Webster et al., 2016); at this
point, hypertrophy could occur if any of the remaining circulating
SCs were still active.

Neutrophils
For initial time steps of the agent-based model, neutrophils were
distributed randomly on ECM grid points. Once damage had
occurred, neutrophils searched their neighborhoods for damaged
ECM and moved towards these points by updating their location
to points where collagen density had declined since the previous
time step. Neutrophils peak within 24 h (Smith et al., 2008).
When neutrophils encountered damaged ECM or fibers, they
proliferated, released IL-6 (Xue et al., 2015), and marked objects
as needing repair. Neutrophils then broke down nearby damaged
objects.

Macrophages
At initial time points, macrophages were localized to ECM.
Once damage had occurred in the model, macrophages
searched a Moore neighborhood for the highest IL-6
concentration and moved towards the corresponding grid
location. Once damage was located, the angle of movement
was computed, and the macrophages moved in this angular
direction towards the damage. This method simulates the
behavior of chemical factors that attract macrophages
(Serrano et al., 2008;Muñoz-Cánoves et al., 2013). When a
macrophage encounters a damaged fiber, the fiber is set to
“needs repair” and is eligible for phagocytosis (Tidball, 1995;
Oishi and Manabe., 2018). Phagocytosis allows for
macrophage proliferation and increases in the levels of
TNF-α present due to the proliferation of pro-
inflammatory M1 macrophages in the model (Ostrowski

FIGURE 1 | Geometry for both the agent-based models and FE models were generated from a single histological section. The coordinates for each pixel were
extracted in MATLAB and used to recreate (A) pixels on ABM grid, and (B) to extrude muscle fibers for the FE models.
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et al., 1998; Xue et al., 2015; Wynn and Vannella, 2016). After
clearing damage, M1 macrophages switch their phenotype to
anti-inflammatory M2 macrophages which release TGF-β
(Delaney et al., 2017; Dort et al., 2019).

Satellite Cells
In our simulations, SCs are seeded according to physiological values
of approximately 0.10 SCs per fiber per 10 µm thick section (Verdijk
et al., 2014; Snijders et al., 2015; Mackey et al., 2017). During
initialization, SCs are randomly assigned to border fibrils to
represent their location between the sarcolemma and basement
membrane of muscle fibers. The activation of quiescent SCs
requires the presence of hepatocyte growth factor (HGF)
(O’Reilly et al., 2008). SC division can take place after 18 h for
each agent (Zammit et al., 2002). The proliferation of active SCs then
occurs to mimic the transit-amplifying cells present during repair
(Hsu et al., 2014). This process took place in a timeframe when the
gradient of IGF-1 was greater than zero (Zanou and Gailly, 2013).

Both symmetric and asymmetric division occurred. Symmetric
division resulted in two satellite cells or two myoblasts, while
asymmetric division produced one quiescent and one active
satellite cell (Kuang et al., 2008). The chance of division
decreased 20% after each of the first three divisions for a single
SC, before decreasing by 40% at the fourth division (Siegel et al.,
2011). Active SCs searched Moore neighborhoods for fibers that
need repair and placed a myoblast at these locations.

Fibroblasts
Fibroblast levels were seeded according to Mackey et al. (2017).
Fibroblasts became activated myofibroblasts in the presence of a
positive TGF-β gradient (Ismaeel et al., 2019). Myofibroblasts
searched the area for empty cells that neighbored ECM
components. Myofibroblasts competed with myoblasts to
regenerate tissue by depositing collagen near damaged ECM
edges. When there were no SCs present in the muscle,
fibroblasts deposited collagen in any remaining spaces.

FIGURE 2 | Overview of agent-based model steps. FE model resultant strains are mapped from each element center coordinate to the corresponding pixel
coordinates of fibrils in the agent-based model. Fibers, SCs, neutrophils, macrophages, fibroblasts and ECM components work to regenerate damaged tissue.
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Secreted Factors
Levels of secreted factors IGF-1 (Martin et al., 2015), HGF
(Leuning et al., 2018), IL-6, TNF-α (Kim et al., 2011; Martin
et al., 2015; Xue et al., 2015) and TGF-β (Vignola et al., 1996) per
hour were represented by the following equations:

dIGF
dt

� 2(8.8 e−5 AM) (1)

dTNF
dt

� 3.21e−12 + 5.8e−12 N + 1.25e−9 PM + 4.9e−18 Fb (2)

dTGF
dt

� 8.75e−3 AM (3)

dHGF
dt

� 1.49e−7 DE (4)

dIL6
dt

� 2.91e−12 + 1.25e−12N + 1.25e−12PM (5)

where AMwas the number of anti-inflammatory macrophages, N
was the number of neutrophils, PM was the number of pro-
inflammatory macrophages, Fb was the number of fibroblasts,
and DE was the number of damaged ECM components.

Finite Element Modeling
The initial FEmodel was built from the same cross-sectional geometry
that informed the initial agent-based model’s creation. Each
subsequent FE model was built from the endpoint agent-based
model geometry resulting from each ABM simulation. For the
initial model, coordinate points from the segmented histological
image were imported to Inventor® (Autodesk., San Rafael, CA).
The coordinates were then connected, and the muscle fiber bundle
cross-section was extruded to represent 1 cm of muscle (Figure 1B).
FE simulations were conducted in FEBio (Maas et al., 2012) and
included muscle fibers and ECM. Muscle fibers were modeled with
superposed active and passive stress, to simulate muscle activation in
the fiber direction, where Cauchy stress is given by:

σ � σp + σa

Muscle fiber stress, Ta, was modeled using the time-varying
elastance model in FEBio:

Ta � Tmax
Ca20

Ca20 + ECa250
C(t)

ECa50 � Tmax
(Ca0)max��������������

exp[B(l − l0)] − 1
√

Where tension of maximum isometric contraction
Tmax � 135.7kPa, peak intracellular calcium concentration
(Ca0)max � 4.35μM, B � 4.75μm−1, l is the sarcomere length, and
the length at which there is no active sarcomere tension is l0 � 1.58μm.
ECM and the passive component of themuscle fibres weremodeled as
nearly incompressible, hyperelastic materials, based on the following
strain energy function for biological soft tissues (Weiss et al., 1996):

Ψ � F1(Ĩ1, Ĩ2) + F2(λ̃) + K
2
[ln(J)]2

whereΨ is the strain energy functional, expressed uncoupled as the
superposition of the ground substance Mooney-Rivlin response,

F1, the response of the fiber family, F2, and the dilatational
response where K is the bulk modulus and J is the Jacobian of
the deformation tensor. The Mooney-Rivlin response is defined as:

F1(Ĩ1, Ĩ2) � c1(Ĩ1 − 3) + c2(Ĩ2 − 3)
where Ĩ1 and Ĩ2 are the first and second invariant of the deviatoric
right Cauchy-Green deformation tensor, c1 and c2 are material
parameters. The fiber response is

F2(λ̃) �
⎧⎪⎪⎨⎪⎪⎩

0, λ̃≤ 1
c3(e−c4(Ei(c4λ̃) − Ei(c4)) − ln λ̃), 1≤ λ̃≤ λm
c5(λ̃ − 1) + c6ln λ̃, λ̃≥λm

where Ei denotes the exponential integral function, defined for
real non-zero values below:

Ei(x) � ∫
x

−∞

et

t
dt

λ̃ is deviatoric fiber stretch; and c3, c4, c5 and c6represent material
constants of the constitutive relations. Parameters are provided in
Table 1. Fiber stress response is defined as:

λ̃ zF2
zλ̃

�
⎧⎪⎪⎨⎪⎪⎩

0, λ̃≤ 1
c3(ec4(λ̃−1) − 1), 1≤ λ̃≤ λm
c5λ̃ + c6, λ̃≥ λm

Note that we used one set of constitutive parameters for both
CP and TD FE models. Eccentric contraction was simulated by
imposing a fiber stretch of 30% with one end of the muscle fiber
bundle held fixed. Fibers underwent maximum voluntary active
contraction during eccentric load. Activation parameters are
given below (Table 2). At the end of FE simulations, element
centers were calculated based on average coordinates for node
points. Strain values were then matched with element centers

TABLE 1 | Material properties for ECM and fibers in the FE models of the muscle
fiber bundle. Properties were unchanged across all iterations.

Properties ECM Fiber

material model trans iso Mooney Rivlin trans iso Mooney Rivlin
density 1 1
c1 0.5 15
c2 0 0
c3 2 2
c4 60 60
c5 600 600
K 1,000 1,000

TABLE 2 | Active contraction properties.

Properties ECM Fiber

ascl 1 1
ca0 4.35 4.35
beta 4.75 4.75
I0 1.58 1.58
refl 2.04 2.04
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before being mapped onto the 2D coordinate points of the agent-
based model (Figure 3). Inhomogeneous strain values over the
area of the fibers were parsed into the agent-based model.

Coupled Model
Coupling of these models was achieved by simulating eccentric
contraction and damage via strain using the FE models, followed
by simulation of regeneration using ABM, where the endpoint
geometry was then used for a new FE model. The strain values
from the FEmodel were mapped to coordinate points of the ABM
and the highest 10% of strain values were used to mark fibrils at
relevant locations as damaged in the ABM following initialization
(Figure 2). Two agent-based models were used for two separate
simulation series: one agent-based model representing CP muscle
and another representing TD muscle. Each agent-based model in
our framework simulated 28 days of regeneration. The two
seeded initial ABM environments represented TD muscle with
an initial SC count of 10, or CP muscle with an initial SC count of
4. These simulation environments were run separately, and
results from each agent-based model were used to create
separate endpoint geometries: CP post-regeneration vs TD
post-regeneration. Each endpoint geometry was exported to
generate new FE meshes for the coupled simulation’s next
iteration (Figure 4). FE constitutive properties were kept
consistent across iterations. After each FE simulation, strain
values were exported and parsed to the agent-based model,
where they were registered with the correct coordinates
(Figure 3). We chose a representative ABM geometry output
near the mean, which was used to create the next FE model. This
process was repeated three times to simulate 3 months of muscle
damage and regeneration. Three months is the time it takes to
investigate three full cycles of regeneration following injury,
without the added complexity of increased simulation time
and physiological processes such as growth. Since constitutive
properties remained unchanged—across iterations and between

TD and CP models—this approach probed the role that SCs have
in muscle regeneration and the potential for chronic degeneration
in the case of impaired SC density.

RESULTS

Each agent-based model simulated 672 h (28 days) of muscle
regeneration. Figure 5 illustrates the progression of regeneration
following injury as simulated by our agent-based model. At t � 1,
10% of fibers were damaged, and neutrophil invasion began and
lasted 24 h. This was followed by macrophage invasion over the
first 3 days. Once macrophages cleared the necrotic tissue, SCs
began the repair process. Fiber repair was completed at 216 h
post-injury; hypertrophy occurred in cases where the
environment was suitable, i.e., when there were still active SCs
in the environment after the damaged fibers were replaced and
boundaries re-formed. In these cases, border fibrils were re-
formed by recalculating the final fibrils that were next to
ECM, to accommodate hypertrophy. In the last stages of
repair, fibroblasts acted to fill the remaining gaps with ECM.

FE material parameters (c1, c3, c4, c5, K and density) were
altered by ±10% to investigate changes in strain due to different
input values for the material properties (Table 3). For both ECM
and Fiber materials, a 10% increase in parameter c5 decreased the
maximum strain value by 7.07%; a 10% decrease in c5 increased
the maximum strain value by 7.29%. Percentage change in
minimum strain was also altered by c5 where a 10% increase
in c5 decreased the minimum strain by 2.16%, and a 10% decrease
in c5 increased the minimum strain by 2.17%. For parameters c1,
c3, c4, K and density, ± 10% variations in input values resulted in
less than 1% change in maximum and minimum strain values.

Damage levels with additional necrosis were varied from 0 to
20% at 5% increments to explore the range in which efficient
muscle regeneration can be simulated (Figure 6A). At 5 and 10%

FIGURE 3 |Mapping FE element centers into ABM coordinate space. (A) FE element centers were calculated based on nodal points. (B) ABMpixels were imported
with associated X, Y coordinates. (C) Element center coordinates and associated strain per element were then registered to ABM coordinates.
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damage levels, the clearance of damaged fibrils was completed
within 90 h post injury and recovery of original fibril count was
achieved. 5% damage led to endpoint fibril count of 10,020 ± 80
(mean ± SD) and 10% led to endpoint fibril count of 9,954 ± 206
(mean ± SD). 15% on average was able to clear the damage but
unable to reach original fibril levels (endpoint mean ± SD 9785 ±
385). With extensive damage of 20%, there was insufficient
clearance of damaged fibrils (Figure 6B, arrows), and repair
that occurred around those damaged fibrils did not reach the
original count of 9,864 fibers.

We compared our simulated SC with literature values from
Snijders et al. (2015) and Mackey et al. (2017), and inflammatory
cell counts withWosczyna and Rando (2018) (Figure 7). For SCs,
initial and average peak values at 72 h are comparable; however,
SC proliferation did not occur at the same initial rate compared to
the Snijders et al. Simulated proliferation stalled for the first 24 h
and then rose sharply while literature data showed a gradual rise
in SCs. Simulated SC counts started to decline at 120 h, which was
similar to the literature (Figure 7A). Average neutrophil counts

in the agent-based models peaked at 20 h under typical ABM
conditions, while macrophages peaked around 40 h. The decrease
in macrophage count in the ABM simulations occurred in sync
with the generalized time course for M1 macrophages, as
evidenced from Wosczyna and Rando (2018) (Figures 7B,C).
However, simulated macrophage count did not perfectly replicate
the time course for M2 macrophages. This is partially due to the
nature of the ABM, where the macrophage count combined both
M1 andM2macrophages as one cell population that underwent a
switch at the appropriate time.

Fibril counts over the three iterations demonstrate the
divergent outcomes between the TD and CP muscle milieu
(Figure 8). In the first iteration ABM simulation for both CP
and TD environments, the initial geometries were identical, and
the initial fibril count was 9,864 for both models (Figure 8A).
Damage was cleared at approx. t � 50 h and regeneration began
at t � 70 h when SCs were activated. In the TD scenario, recovery
over initial fibril count occurred at t � 200 h and a 0.79%
increase in fibril count above original count (9,942 ± 108)
was observed. In the CP seeded agent-based models, recovery
peaked at 200 h but the model was not able to recover to original
fibril count (9,296 ± 289). In the second iteration ABM
simulation (Figure 8B), TD and CP environments were
seeded with 10,000 and 9,515 fibrils, respectively, due to
altered geometry that resulted from the first iteration. For
both scenarios, a 10% damage threshold was applied again.
Over the 28 days of simulated regeneration, the TD
environment repaired its fibril count to just above original
levels (0.02%; fibril count � 10,002 ± 130). Over the same
28 days, the CP environment did not repair to original levels
of fibrils and reached a final fibril count of 9,081 ± 331. The
initial fibril counts for the third iteration (Figure 8C) of the
ABM simulations were 10,060 (TD) and 9,272 (CP). For both
cases, repair began at t � 78 h. TD fibril count reached a fibril
count of 10,080 ± 260, which is above the initial fibril count for
the third iteration. CP recovery was again unable to repair to
original counts, completing its regeneration cycle at a fibril
count of 8,763 ± 301.

The coupled agent-based model and FE model simulated
cyclic damage and regeneration in TD and CP muscle, which
manifested as progressive degeneration in the CP model. When
the FE model geometry simulated eccentric lengthening of
muscle, the regions of highest strain occurred on outer fibers,
particularly those located on the corners of the geometry. These
regions were then assigned high strain and damage in the agent-
based model. For the TD coupled model, i.e., the model in which
the simulated muscle milieu represented TD muscle, the agent-
based model repaired all of the damage and grew larger than the
initial geometry with an increase in mean muscle fraction from
84.1 to 84.7% (p<<0.001), demonstrating emergent hypertrophy
in these simulations. For the CP coupled model, i.e. the model in
which the simulated muscle milieu represented CP muscle, the
agent-based models were unable to repair the damage induced by
the FE model (Figure 9) and the mean muscle fraction declined
from 84.1 to 79.2% (p<<0.001). In the second TD iteration, the FE
model displayed more widely distributed high strain values on
outer fibers compared to the first iteration. In this second

FIGURE 4 | ABM and FE modeling coupling workflow. The initial pixel
values and coordinates were used to build both starting ABM and FE
modeling geometry. (A) FE simulations were run to model active eccentric
contraction of a fiber bundle. (B) FE strain values were recorded with
associated coordinate points. (C) Points of high strain were imported into the
agent-based models as local damage. The agent-based models were run,
and mean endpoint geometry (D) was used to generate a new FE geometry.
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iteration of the TD model, the agent-based models again showed
an increase in size of fibers affected by damage (muscle fraction �
85.2%, p<<0.001), again simulating emergent hypertrophy. In
contrast, in the second iteration of the CP model, the highest
strain in the FE model was concentrated on the smallest outer

fibers, and in the ABM simulations, this damage was not entirely
repaired, failing to restore the geometry to its original geometry
and further decreasing muscle fraction to 77.3%. In the third
iteration, fiber geometry showed a marginal increase in size in the
TDmodel. The CP fibers continued to decrease in size in the third

FIGURE 5 | ABM simulation of muscle regeneration over time. At the first time point, regions of the muscle fiber bundle show damage. This damage signals for the
mobilization of macrophages, neutrophils, satellite cells and fibroblasts, which interact in themuscle regeneration process. Note that the dominant change from t � 216 to
t � 672 is ECM remodeling.
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iteration, where muscle fraction fell to 79.6% and three fibers in
particular demonstrated considerable atrophy (Figure 9 arrows).
Average fiber cross sectional area increased to 3,251 µm2 for TD
scenario, and decreased to 2,533 µm2 for CP, from original area of
3,182 µm2, over 3 months.

Sensitivity analysis for SC counts of 4 (CP), 5, 7, 10 (TD) and
13 were performed and evaluated with respect to fibril recovery

(Figure 10). Mean fibril recovery increased with seeded SC count.
SC counts of 4, five and seven had greater variance compared to
SC counts of 10 and 13. Higher seeded SC count was inversely
related to the number of hours required for recovery of initial
fibril count. A 50% reduction of SCs reduced average fibril
recovery count by only 110 fibrils while a 30% reduction in
seeded SC count led to mere marginal decreases in endpoint fibril

TABLE 3 | Sensitivity analysis of FE material model parameters for ECM and Fibers. Model values were varied by ±10% (input values) and percentage changes to the
maximum and minimum strain in each FE simulation are shown.

Material Parameter Model value Input value % Change maximum strain % Change minimum strain

ECM c1 0.5 0.45 0.0490 0.1160
0.55 −0.0473 −0.1029

c3 2 2.2 0.0001 0.0000
1.8 0.0001 0.0000

c4 60 66 0.0001 0.0000
54 0.0001 0.0000

c5 600 660 −7.0741 −2.1556
540 7.2902 2.1744

k 1,000 1,100 -0.6683 -0.2091
900 0.5573 0.1748

density 1 1.1 0.0001 0.0000
0.9 0.0001 0.0000

Fiber c1 15 16.5 0.0490 0.1160
13.5 −0.0473 −0.1029

c3 2 2.2 0.0001 0.0000
1.8 0.0001 0.0000

c4 60 66 0.0001 0.0000
54 0.0001 0.0000

c5 600 660 −7.0741 −2.1556
540 7.2902 2.1744

k 1,000 1,100 −0.6683 −0.2091
900 0.5573 0.1748

density 1 1.1 0.0001 0.0000
0.9 0.0001 0.0000

FIGURE 6 | Fibril recovery post injury at varied damage levels of 0% fibrils to 20% with 5% steps. (A) Fibril recovery at 5 and 10% showed average end fibril count
increase. At 15% clearance of damaged cells was effective and repair was close to recovery, however, at 20% damage, the clearance of damaged fibrils did not reach
20% (arrow) and therefore (B) inflammatory cells and damaged fibrils remain within the fibers.
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recovery. An SC count of 4, however, resulted in a more dramatic
decrease of 523 fibrils compared to an SC count of 5.

Endpoint ECM count was measured after the third month
of regeneration for CP and TD environments (Figure 11A).
The CP environment had an endpoint ECM count of 2,240 ±
176 and the TD environment had a lower endpoint count of
1,932 ± 139. Tissue composition was from the initial
simulation was calculated and compared to both the third
month averages for CP and TD simulations (Figure 11B). The
third month endpoint CP ECM made up 20.4% of the tissue,
increased from 15.8%. In comparison, the third month
endpoint TD ECM increased marginally to 16.1% from

initial. While the TD ECM fraction and muscle fractions
were stable over 3 months, the CP muscle fraction
decreased from 84.2% to 79.6%.

DISCUSSION

In this work, we coupled agent-based modeling with finite
element modeling of a muscle fiber bundle to explore the
interaction of muscle damage and regeneration in the context
of altered satellite cells and supporting cells in the muscle fiber
environment. We were particularly interested in whether this

FIGURE 7 | ABM simulated cell counts over time. (A) SC simulation results (mean ± SD) compared to Snijders et al. (Snijders et al., 2015) (B) Simulated
inflammatory cell counts of neutrophil and macrophage (mean ± SD) over time (solid line) compared to the generalized time course of when neutrophil, M1 macrophage
and M2 macrophage cell counts are above 20% from baseline (dashed line), adapted from (Wosczyna and Rando, 2018).

FIGURE 8 | ABM cell counts over time (mean ±SD) seeded with CP (SC � 4) or TD (SC � 10) initial conditions. (A) Iteration one cell counts over the first 672 h, based
on initial geometry. TD fibril count exceeded initial count whereas CP fibril recovery was impaired. (B) ABM cell counts (mean ± SD) using TD and CP iteration two
geometry and strain values seeded with CP (SC � 4) or TD (SC � 10) conditions. TD fibril recovery continued to exceed initial counts and CP fibril recovery was further
impaired. (C) Iteration three of the ABM cell counts. TD fibril count peaked above the original value during repair however stabilised to just below initial values by the
end of the simulation. CP fibril recovery decreased to 8,763 ± 315 (mean ± SD).
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framework could demonstrate a progressive degeneration of the
muscle fiber bundle consistent with the progression of
cerebral palsy.

Our coupled model demonstrates the canonical process of
muscle regeneration after several bouts of damage from eccentric
contraction (Charge and Rudnicki, 2004; Toumi et al., 2006;
Järvinen et al., 2008; Wang and Rudnicki, 2012; Novak and Koh,
2013). Over the course of 672 h, our simulations showed damage,
inflammation, clearance of damaged tissue, repair of muscle
tissue regions, and remodeling of the extracellular matrix. The
regeneration model includes quiescence, activation, and
proliferation of satellite cells; M1 and M2 macrophages and
neutrophils; fibroblasts; muscle fibers and extracellular matrix
agents; and secreted factors of TNF-α, TNF-β, IGF-1, and HGF.
Each of these factors and agents interacts with one another in a
bottom-up and nonlinear approach. The timeframe for repair in
the typical scenario was 14–21 days, in line with active muscle
regeneration studies where repair peaks at 2 weeks and
subsequently declines (Ambrosio et al., 2009). Here, we
imposed 10% damage at the initiation of each simulated
iteration. It is possible that more extensive damage would have

FIGURE 9 | In the coupled ABM-FE modeling mechanobiological simulations, the initial geometry leads to two unique endpoint geometries, according to whether
the agent-based models had a cellular milieu based on CP or TD muscle. Each of those endpoint geometries then leads to a new FE model geometry and simulation,
where high strains differ based on the geometry from the previous step. Ultimately, divergent geometries emerge, reflecting the different CP vs TD muscle outcomes,
where TD muscle regenerates fully each cycle and CP muscle fibers cyclically degenerate.

FIGURE 10 | Sensitivity analysis for SC count and the effect on fibril
count (mean ± SD) over simulation time course. SC count was set to 4 (CP), 5,
7, 10 (TD), and 13. Mean fibril count increased with increase in seeded
SC count.
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required a longer simulation time frame to repair fully; however,
consistent in the literature are specific timeframes for different
stages of repair. This suggests that the cellular response may scale
in magnitude with the level of damage, rather than with the
response timeframe. With this said, there are certainly practical
limits on the extent of damage that can be repaired in skeletal
muscle that is shown by incomplete clearance of damaged tissue
in the 20% damage scenario. Prolonged presence of damaged
fibers and resultant cellular debris due to insufficient
inflammatory cell response has been shown to delay muscle
regeneration (Summan et al., 2006). Our choice of 10%
damage is thought to represent a reasonable level of
mechanical damage that does not exceed skeletal muscle’s
typical ability to mount the repair process.

Our models were consistent with literature reports of peak
satellite cell concentrations and timing of inflammatory cell
concentrations (Snijders et al., 2015; Wosczyna and Rando,
2018), and demonstrate other well-characterized phenomena
observed in skeletal muscle regeneration such as ghost fibers
(Webster et al., 2016) and fibrosis (Booth et al., 2001; Peterson
et al., 2012; Kinney et al., 2017). The rules for the present model
focus on post-injury cell counts during regeneration in healthy
individuals after exercise-induced mechanical damage (McKay
et al., 2010; Mackey and Kjaer, 2016; Kim and Lee, 2017;
Nederveen et al., 2017). While this is a suitable model for
exploring typical muscle injury and regeneration, this remains
a largely unexplored area in the context of CP. Additionally,
directional cues for non-cellular systemic agents such as cytokines
have not been well-described in the literature. Lacking this
information, the present models relied on cytokines that were
concentrated at damage sites. Future models might consider
using geometrical features to inform directional cues for the
diffusion of signaling factors. For example, the inclusion of

capillary location within the geometry could enhance the
spatial localization of satellite cells and systemic cytokines
within the model. However, at this stage, the functions of
systemic and local signaling factors on muscle repair are yet to
be fully explained (Chargé and Rudnicki, 2009); future
experimental exploration and inclusion in computational
models will be an exciting area in this field.

Sensitivity analysis demonstrated relative insensitivity of fibril
count to satellite cell concentration between SC levels of 5 and 13;
however, the level of five was such that, on average, simulations
did not fully repair the damage induced in them and fibril count
was lower at the end of the simulation. SC counts below five had
drastically impaired ability to repair damage. The behavior of
satellite cells in our model suggests a threshold of satellite cell
concentration, above which is sufficient to repair 10% damage,
and below which the damage repair falls off sharply. We
performed additional sensitivity analyses on the constitutive
parameters in our finite element model. While strain values
were relatively insensitive to perturbations in most constitutive
parameters, predictably we found a larger dependence of strain
on c5, the along-fiber modulus. Overall, since the role of the finite
element model was to identify regions of high strain within the
geometry, the exact values of constitutive parameters are not
thought to be of central importance to this goal. In this coupled
modeling framework, we used strain as the mechanical parameter
associated with damage in the muscle fiber bundle. Several prior
studies reinforce this association (Lieber and Friden, 1993; Best
et al., 1995; Lieber and Fridén, 1999). Mechanobiology is an active
field, however, and it is unclear how other parameters such as
strain rate, repeated loading, shear, and stress may contribute to
the signaling and processes of muscle regeneration. Future
modeling and experimental work may explore this area in
finer detail.

FIGURE 11 | (A) ECM recovery over the third month 28 days post injury simulation. CP muscle environment (SC � 4) had higher end point ECM count of 2,240 ±
176 and the TD environment had a lower endpoint count of 1932 ± 139. (B) Tissue composition changed from initial simulations to the end of the third month. ECM
percentage increased by 4.6% in the CP scenario and marginally increased by 0.3% in the TD scenario.
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Our framework involving FE modeling and ABM
demonstrated a progressive degeneration of muscle fibers in
the simulations resembling cerebral palsy muscle. The cerebral
palsy muscle here was denoted by a reduced satellite cell
concentration. Here, for simplicity and direct comparison, we
did not alter material properties between the CP and TD FE
models, and we did not change material properties over the
course of simulations. It is arguable that CP muscle would have
different constitutive properties compared to TD, such as stiffer
muscle, or that changes over time to the muscle could well be
captured with changes to material properties. The mode of injury
used in this model was also limited to eccentric lengthening.
Concentric exercise can result in hypertrophy; however, eccentric
exercise is more efficient at eliciting hypertrophy and muscle
growth (Schoenfeld et al., 2017). In any case, given the same form
and extent of injury, whether by concentric or eccentric loading,
the repair mechanism would likely remain the same.

In this model, we chose eccentric contraction as a standard
model that causes fiber damage (and initiates the muscle repair
process) and is physiologically relevant. From that stimulus, we
simulate and observe the regeneration process. Damage frequency
from eccentric strain may be caused more than once per month,
however this time course was used to explore the entire four step
process of muscle regeneration that is commonly referred to in the
literature. Additionally, it is known that strain is localised during
eccentric contraction and subsequent injury occurs in the areas of
highest strain (above a threshold) (Lieber and Friden, 1993; Best
et al., 1995; Garrett, 1996). In a test case, random damage was
seeded across the same agent-basedmodel (Supplementary Figure
S1). This model was unable to clear cellular debris at 10% damage
level and prevented ECM remodeling. This suggests that muscle
repair in response to eccentric contraction vs inflammatory
myopathies require different responses, the latter of which is
beyond the scope of this study.

The purpose of the current model was to demonstrate if the
process of muscle regeneration could lead to degeneration with
reduced SC numbers. Under this proposition alone, our model
illustrated this phenomenon, and the endpoint geometries
observed here are similar to those seen in the literature for
cerebral palsy muscle cross-sections (Marbini et al., 2002;
Foran et al., 2005; De Bruin et al., 2014), namely reduced
muscle fiber cross-sections and increased area fraction of
ECM. To make a more robust geometry selection for the
subsequent iterations, an average pixel geometry could be
generated in the future versions of this model. Over 3 months,
the muscle fraction declined in cerebral palsy simulations by
4.6%. In these simulations, the change in muscle geometry due to
decrease in fiber size of damaged fibers represents atrophy at the
fiber level. Under the framework that we have presented here, this

degenerated muscle architecture characteristic of CP emerges
from the same initial muscle geometry as in the TD model. The
only difference was themuscle milieu, i.e. number of satellite cells,
and thus the regeneration process of the muscle after injury.

CONCLUSION

Coupled modeling is a powerful tool in its ability to connect tissue
and organ level behaviors to simple cellular interactions. This
model demonstrated growth over time in a TD muscle
environment that experienced strain similar to that which
would occur from active eccentric lengthening. In simulations
of CP muscle environment, the same strains led to gradual
degradation of size and shape of muscle fibers over time.
Overall, this work suggests a plausible connection consistent
with the physiological mechanisms that are observed in the
clinical manifestation of cerebral palsy.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

SK developed and analyzed all models presented in this work, is
the author of the code associated with model development and
analysis, and was the principal author of this manuscript; JF
collaborated on modeling approaches, overall conceptualization
of this work, and contributed insight and critical review; GH is
the corresponding and supervising author, developed initial
concept, oversaw modeling, and contributed insight and
critical review.

FUNDING

Funding for this work was generously provided by the Robertson
Foundation Aotearoa Fellowship Award Number 3715249.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbioe.2021.689714/
full#supplementary-material

REFERENCES

Ambrosio, F., Kadi, F., Lexell, J., Fitzgerald, G. K., Boninger, M. L., and Huard, J.
(2009). The Effect of Muscle Loading on Skeletal Muscle Regenerative Potential.
Am. J. Phys. Med. Rehabil. 88, 145–155. doi:10.1097/PHM.0b013e3181951fc5

An, G., Mi, Q., and Dutta-moscato, J. (2009). Agent-based Models in Translational
Systems Biology doi:10.1002/wsbm.045

Armstrong, R. B.,Warren, G. L., andWarren, J. A. (1991).Mechanisms of Exercise-Induced
Muscle Fibre Injury. Sports Med. 12, 184–207. doi:10.2165/00007256-199112030-00004

Arnold, L., Henry, A., Poron, F., Baba-Amer, Y., van Rooijen, N., Plonquet, A., et al.
(2007). Inflammatory Monocytes Recruited after Skeletal Muscle Injury Switch

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2021 | Volume 9 | Article 68971414

Khuu et al. Mechanobiological Model of Muscle Regeneration

183

https://www.frontiersin.org/articles/10.3389/fbioe.2021.689714/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2021.689714/full#supplementary-material
https://doi.org/10.1097/PHM.0b013e3181951fc5
https://doi.org/10.1002/wsbm.045
https://doi.org/10.2165/00007256-199112030-00004
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


into Antiinflammatory Macrophages to Support Myogenesis. J. Exp. Med. 204,
1057–1069. doi:10.1084/jem.20070075

Baczynska, A.M., Shaw, S., Roberts, H. C., Cooper, C., Aihie Sayer, A., and Patel, H.
P. (2016). Human Vastus Lateralis Skeletal Muscle Biopsy Using the Weil-
Blakesley Conchotome. JoVE 2016, 53075. doi:10.3791/53075

Bailey, A. M., Lawrence, M. B., Shang, H., Katz, A. J., and Peirce, S. M. (2009).
Agent-based Model of Therapeutic Adipose-Derived Stromal Cell Trafficking
during Ischemia Predicts Ability to Roll on P-Selectin. Plos Comput. Biol. 5,
e1000294. doi:10.1371/journal.pcbi.1000294

Best, T. M., McElhaney, J. H., Garrett, W. E., and Myers, B. S. (1995). Axial Strain
Measurements in Skeletal Muscle at Various Strain Rates. J. Biomech. Eng. 117,
262–265. doi:10.1115/1.2794179

Booth, C. M., Cortina-Borja, M. J. F., and Theologis, T. N. (2001). Collagen
Accumulation in Muscles of Children with Cerebral Palsy and Correlation with
Severity of Spasticity.Dev. Med. Child. Neurol. 43, 314–320. doi:10.1111/j.1469-
8749.2001.tb00211.x

Borgiani, E., Duda, G. N., and Checa, S. (2017). Multiscale Modeling of Bone
Healing: Toward a Systems Biology Approach. Front. Physiol. 8, 287.
doi:10.3389/fphys.2017.00287

Chargé, S. B. P., and Rudnicki, M. A. (2004). Cellular and Molecular Regulation of
Muscle Regeneration. Physiol. Rev. 84, 209–238. doi:10.1152/
physrev.00019.2003

Chargé, S. B. P., and Rudnicki, M. A. (2004). Cellular and Molecular Regulation of
Muscle Regeneration. Physiol. Rev. 84, 209–238. doi:10.1152/
physrev.00019.2003

Chen, W., Datzkiw, D., and Rudnicki, M. A. (2020). Satellite Cells in Ageing: Use it
or Lose it. Open Biol. 10, 200048. doi:10.1098/rsob.200048

De Bruin, M., Smeulders, M. J., Kreulen, M., Huijing, P. A., and Jaspers, R. T.
(2014). Intramuscular Connective Tissue Differences in Spastic and Control
Muscle: A Mechanical and Histological Study. PLoS One 9, e101038.
doi:10.1371/journal.pone.0101038

Delaney, K., Kasprzycka, P., Ciemerych, M. A., and Zimowska, M. (2017). The Role
of TGF-B1 during Skeletal Muscle Regeneration. Cell Biol. Int. 41, 706–715.
doi:10.1002/cbin.10725

Domenighetti, A. A., Mathewson, M. A., Pichika, R., Sibley, L. A., Zhao, L.,
Chambers, H. G., et al. (2018). Loss of Myogenic Potential and Fusion Capacity
of Muscle Stem Cells Isolated from Contractured Muscle in Children with
Cerebral Palsy. Am. J. Physiology-Cell Physiol. 315, C247–C257. doi:10.1152/
ajpcell.00351.2017

Dort, J., Fabre, P., Molina, T., and Dumont, N. A. (2019). Macrophages Are Key
Regulators of Stem Cells during Skeletal Muscle Regeneration and Diseases.
Stem Cell Int. 2019, 1–20. doi:10.1155/2019/4761427

Elder, G. C. B., BSc, G. S., Pt, K. C., MSc, D. W., Marshall, A., Leahey, L., et al.
(2003). Contributing Factors to Muscle Weakness in Children with Cerebral
Palsy. Dev. Med. Child. Neurol. 45, 542–550. doi:10.1111/j.1469-
8749.2003.tb00954.x

Flegg, J. A., Menon, S. N., Maini, P. K., and McElwain, D. L. S. (2015). On the
Mathematical Modeling of Wound Healing Angiogenesis in Skin as a
Reaction-Transport Process. Front. Physiol. 6, 1–17. doi:10.3389/
fphys.2015.00262

Foran, J. R., Steinman, S., Barash, I., Chambers, H. G., and Lieber, R. L. (2005).
Structural and Mechanical Alterations in Spastic Skeletal Muscle. Dev. Med.
Child. Neurol. 47, 713–717. doi:10.1017/S0012162205001465

Fridén, J., and Lieber, R. L. (2003). Spastic Muscle Cells Are Shorter and Stiffer
Than normal Cells. Muscle Nerve 27, 157–164. doi:10.1002/mus.10247

Garrett, W. E. (1996). Muscle Strain Injuries.
Gorochowski, T. E. (2016). Agent-based Modelling in Synthetic Biology. Essays

Biochem. 60, 325–336. doi:10.1042/EBC20160037
Graham, H. K., Rosenbaum, P., Paneth, N., Dan, B., Lin, J.-P., Damiano, D. L., et al.

(2016). Cerebral Palsy. Nat. Rev. Dis. Primers 2, 19–20. doi:10.1038/
nrdp.2015.82

Grzelkowska-Kowalczyk, K. (2016). “The Importance of Extracellular Matrix in
Skeletal Muscle Development and Function,” in Composition And Function Of
the Extracellular Matrix In the Human Body, 3–24. doi:10.5772/62230

Handsfield, G. G., Meyer, C. H., Abel, M. F., and Blemker, S. S. (2016).
Heterogeneity of Muscle Sizes in the Lower Limbs of Children with
Cerebral Palsy. Muscle Nerve 53, 933–945. doi:10.1002/mus.24972

Hsu, Y.-C., Li, L., and Fuchs, E. (2014). Transit-amplifying Cells Orchestrate Stem
Cell Activity and Tissue Regeneration. Cell 157, 935–949. doi:10.1016/
j.cell.2014.02.057

Ismaeel, A., Kim, J.-S., Kirk, J. S., Smith, R. S., Bohannon, W. T., and Koutakis, P.
(2019). Role of Transforming Growth Factor-β in Skeletal Muscle Fibrosis: A
Review. Ijms 20, 2446. doi:10.3390/ijms20102446

Järvinen, T. A., Kääriäinen, M., Äärimaa, V., Järvinen, M., and Kalimo, H. (2008).
“Skeletal Muscle Repair after Exercise-Induced Injury,” in In Skeletal Muscle
Repair And Regeneration. Editors S. Schiaffino and T. Partridge (Springer),
217–242. doi:10.1007/978-1-4020-6768-6

Joe, A. W. B., Yi, L., Natarajan, A., Le Grand, F., So, L., Wang, J., et al. (2010).
Muscle Injury Activates Resident Fibro/adipogenic Progenitors that Facilitate
Myogenesis. Nat. Cel Biol. 12, 153–163. doi:10.1038/ncb2015

Kim, H., Kim, H.-S., Youn, J.-C., Shin, E.-C., and Park, S. (2011). Serum Cytokine
Profiles in Healthy Young and Elderly Population Assessed Using Multiplexed
Bead-Based Immunoassays. J. Translational Med. 9, 113. doi:10.1186/1479-
5876-9-113

Kim, J., and Lee, J. (2017). Role of Transforming Growth Factor-β in Muscle
Damage and Regeneration: Focused on Eccentric Muscle Contraction. J. Exerc.
Rehabil. 13, 621–626. doi:10.12965/jer.1735072.536

Kinney, M. C., Dayanidhi, S., Dykstra, P. B., McCarthy, J. J., Peterson, C. A., and
Lieber, R. L. (2017). Reduced Skeletal Muscle Satellite Cell Number
Alters Muscle Morphology after Chronic Stretch but Allows Limited
Serial Sarcomere Addition. Muscle Nerve 55, 384–392. doi:10.1002/
mus.25227

Kuang, S., Gillespie, M. A., and Rudnicki, M. A. (2008). Niche Regulation ofMuscle
Satellite Cell Self-Renewal and Differentiation. Cell Stem Cell 2, 22–31.
doi:10.1016/j.stem.2007.12.012

Larkin-Kaiser, K. A., Howard, J. J., Leonard, T., Joumaa, V., Gauthier, L., Logan,
K., et al. (2019). Relationship of Muscle Morphology to Hip
Displacement in Cerebral Palsy: A Pilot Study Investigating Changes
Intrinsic to the Sarcomere. J. Orthop. Surg. Res. 14, 1–9. doi:10.1186/
s13018-019-1239-1

Laumonier, T., and Menetrey, J. (2016). Muscle Injuries and Strategies for
Improving Their Repair. J. Exp. Ortop 3, 1–9. doi:10.1186/s40634-016-
0051-7

Leuning, D. G., Beijer, N. R. M., du Fossé, N. A., Vermeulen, S., Lievers, E., Van
Kooten, C., et al. (2018). The Cytokine Secretion Profile of Mesenchymal
Stromal Cells Is Determined by Surface Structure of the Microenvironment. Sci.
Rep. 8. doi:10.1038/s41598-018-25700-5

Lieber, R. L., and Fridén, J. (1999). Mechanisms of Muscle Injury after Eccentric
Contraction. J. Sci. Med. Sport 2, 253–265. doi:10.1016/S1440-2440(99)
80177-7

Lieber, R. L., and Friden, J. (1993). Muscle Damage Is Not a Function of Muscle
Force but Active Muscle Strain. J. Appl. Physiol. 74, 520–526. doi:10.1152/
jappl.1993.74.2.520

Lu, P., Takai, K., Weaver, V. M., and Werb, Z. (2011). Extracellular Matrix
Degradation and Remodeling in Development and Disease. Cold Spring
Harbor Perspect. Biol. 3, a005058. doi:10.1101/cshperspect.a005058

Maas, S. A., Ellis, B. J., Ateshian, G. A., and Weiss, J. A. (2012). FEBio: Finite
Elements for Biomechanics. J. Biomech. Eng. 134, 011005. doi:10.1115/
1.4005694

Mackey, A. L., and Kjaer, M. (2017). Connective Tissue Regeneration in Skeletal
Muscle after Eccentric Contraction-Induced Injury. J. Appl. Physiol. 122,
533–540. doi:10.1152/japplphysiol.00577.2016

Mackey, A. L., Magnan, M., Chazaud, B., and Kjaer, M. (2017). Human Skeletal
Muscle Fibroblasts Stimulate In Vitro Myogenesis and In Vivo Muscle
Regeneration. J. Physiol. 595, 5115–5127. doi:10.1113/JP273997

Marbini, A., Ferrari, A., Cioni, G., Bellanova, M. F., Fusco, C., and Gemignani, F.
(2002). Immunohistochemical Study of Muscle Biopsy in Children with Cerebral
Palsy. doi:10.1016/S0387-7604(01)00394-1

Martin, K. S., Blemker, S. S., and Peirce, S. M. (2015). Agent-based
Computational Model Investigates Muscle-specific Responses to Disuse-
Induced Atrophy. J. Appl. Physiol. 118, 1299–1309. doi:10.1152/
japplphysiol.01150.2014

McKay, B. R., Toth, K. G., Tarnopolsky, M. A., and Parise, G. (2010). Satellite Cell
Number and Cell Cycle Kinetics in Response to Acute Myotrauma in Humans:

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2021 | Volume 9 | Article 68971415

Khuu et al. Mechanobiological Model of Muscle Regeneration

184

https://doi.org/10.1084/jem.20070075
https://doi.org/10.3791/53075
https://doi.org/10.1371/journal.pcbi.1000294
https://doi.org/10.1115/1.2794179
https://doi.org/10.1111/j.1469-8749.2001.tb00211.x
https://doi.org/10.1111/j.1469-8749.2001.tb00211.x
https://doi.org/10.3389/fphys.2017.00287
https://doi.org/10.1152/physrev.00019.2003
https://doi.org/10.1152/physrev.00019.2003
https://doi.org/10.1152/physrev.00019.2003
https://doi.org/10.1152/physrev.00019.2003
https://doi.org/10.1098/rsob.200048
https://doi.org/10.1371/journal.pone.0101038
https://doi.org/10.1002/cbin.10725
https://doi.org/10.1152/ajpcell.00351.2017
https://doi.org/10.1152/ajpcell.00351.2017
https://doi.org/10.1155/2019/4761427
https://doi.org/10.1111/j.1469-8749.2003.tb00954.x
https://doi.org/10.1111/j.1469-8749.2003.tb00954.x
https://doi.org/10.3389/fphys.2015.00262
https://doi.org/10.3389/fphys.2015.00262
https://doi.org/10.1017/S0012162205001465
https://doi.org/10.1002/mus.10247
https://doi.org/10.1042/EBC20160037
https://doi.org/10.1038/nrdp.2015.82
https://doi.org/10.1038/nrdp.2015.82
https://doi.org/10.5772/62230
https://doi.org/10.1002/mus.24972
https://doi.org/10.1016/j.cell.2014.02.057
https://doi.org/10.1016/j.cell.2014.02.057
https://doi.org/10.3390/ijms20102446
https://doi.org/10.1007/978-1-4020-6768-6
https://doi.org/10.1038/ncb2015
https://doi.org/10.1186/1479-5876-9-113
https://doi.org/10.1186/1479-5876-9-113
https://doi.org/10.12965/jer.1735072.536
https://doi.org/10.1002/mus.25227
https://doi.org/10.1002/mus.25227
https://doi.org/10.1016/j.stem.2007.12.012
https://doi.org/10.1186/s13018-019-1239-1
https://doi.org/10.1186/s13018-019-1239-1
https://doi.org/10.1186/s40634-016-0051-7
https://doi.org/10.1186/s40634-016-0051-7
https://doi.org/10.1038/s41598-018-25700-5
https://doi.org/10.1016/S1440-2440(99)80177-7
https://doi.org/10.1016/S1440-2440(99)80177-7
https://doi.org/10.1152/jappl.1993.74.2.520
https://doi.org/10.1152/jappl.1993.74.2.520
https://doi.org/10.1101/cshperspect.a005058
https://doi.org/10.1115/1.4005694
https://doi.org/10.1115/1.4005694
https://doi.org/10.1152/japplphysiol.00577.2016
https://doi.org/10.1113/JP273997
https://doi.org/10.1016/S0387-7604(01)00394-1
https://doi.org/10.1152/japplphysiol.01150.2014
https://doi.org/10.1152/japplphysiol.01150.2014
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Immunohistochemistryversusflow Cytometry. J. Physiol. 588, 3307–3320.
doi:10.1113/jphysiol.2010.190876

Mourkioti, F., and Rosenthal, N. (2005). IGF-1, Inflammation and Stem Cells:
Interactions during Muscle Regeneration. Trends Immunol. 26, 535–542.
doi:10.1016/j.it.2005.08.002

Muñoz-Cánoves, P., Scheele, C., Pedersen, B. K., and Serrano, A. L. (2013).
Interleukin-6 Myokine Signaling in Skeletal Muscle: a Double-edged Sword?
FEBS J. 280, 4131–4148. doi:10.1111/febs.12338

Nederveen, J. P., Snijders, T., Joanisse, S., Wavell, C. G., Mitchell, C. J.,
Johnston, L. M., et al. (2017). Altered Muscle Satellite Cell Activation
Following 16 Wk of Resistance Training in Young Men. Am.
J. Physiology-Regulatory, Integr. Comp. Physiol. 312, R85–R92.
doi:10.1152/ajpregu.00221.2016

North, M. J., Collier, N. T., Ozik, J., Tatara, E. R., Macal, C. M., Bragen, M., et al.
(2013). Complex Adaptive Systems Modeling with Repast Simphony. Complex
Adapt. Syst. Model. 1, 1–26. doi:10.1186/2194-3206-1-3

Novak, M. L., and Koh, T. J. (2013). Phenotypic Transitions of Macrophages
Orchestrate Tissue Repair. Am. J. Pathol. 183, 1352–1363. doi:10.1016/
j.ajpath.2013.06.034

Novak, M. L., Weinheimer-Haus, E. M., and Koh, T. J. (2014). Macrophage
Activation and Skeletal Muscle Healing Following Traumatic Injury.
J. Pathol. 232, 344–355. doi:10.1002/path.4301

O’Reilly, C., McKay, B., Phillips, S., Tarnopolsky, M., and Parise, G. (2008).
Hepatocyte Growth Factor (HGF) and the Satellite Cell Response Following
Muscle Lengthening Contractions in Humans. Muscle Nerve 38, 1434–1442.
doi:10.1002/mus.21146

Oishi, Y., and Manabe, I., (2018). Macrophages in Inflammation, Repair and
Regeneration. doi:10.1093/intimm/dxy054

Ostrowski, K., Rohde, T., Zacho, M., Asp, S., and Pedersen, B. K. (1998).
Evidence that Interleukin-6 Is Produced in Human Skeletal Muscle during
Prolonged Running. J. Physiol. 508, 949–953. doi:10.1111/j.1469-
7793.1998.949bp.x

Partridge, T. A. (2002). Cells that Participate in Regeneration of Skeletal Muscle.
Gene Ther. 9, 752–753. doi:10.1038/sj.gt.3301764

Peterson, M. D., Gordon, P. M., Hurvitz, E. A., and Burant, C. F. (2012). Secondary
Muscle Pathology and Metabolic Dysregulation in Adults with Cerebral Palsy.
Am. J. Physiology-Endocrinology Metab. 303, E1085–E1093. doi:10.1152/
ajpendo.00338.2012

Sahrmann, A. S., Stott, N. S., Besier, T. F., Fernandez, J. W., and Handsfield, G. G.
(2019). Soleus Muscle Weakness in Cerebral Palsy: Muscle Architecture
Revealed with Diffusion Tensor Imaging. PLoS One 14, e0205944–16.
doi:10.1371/journal.pone.0205944

Schoenfeld, B. J., Ogborn, D. I., Vigotsky, A. D., Franchi, M. V., and Krieger, J. W.
(2017). Hypertrophic Effects of Concentric vs. Eccentric Muscle Actions: A
Systematic Review and Meta-Analysis. J. Strength Cond. Res. 31, 2599–2608.
doi:10.1519/JSC.0000000000001983

Schoenrock, B., Zander, V., Dern, S., Limper, U., Mulder, E., Veraksitš, A., et al.
(2018). Bed Rest, Exercise Countermeasure and Reconditioning Effects on the
Human Resting Muscle Tone System. Front. Physiol. 9, 810. doi:10.3389/
fphys.2018.00810

Serrano, A. L., Baeza-Raja, B., Perdiguero, E., Jardí, M., and Muñoz-Cánoves, P.
(2008). Interleukin-6 Is an Essential Regulator of Satellite Cell-Mediated
Skeletal Muscle Hypertrophy. Cel Metab. 7, 33–44. doi:10.1016/
j.cmet.2007.11.011

Siegel, A. L., Kuhlmann, P. K., and Cornelison, D. (2011). Muscle Satellite Cell
Proliferation and Association: New Insights from Myofiber Time-Lapse
Imaging. Skeletal Muscle 1, 7. doi:10.1186/2044-5040-1-7

Smith, C., Kruger, M. J., Smith, R. M., and Myburgh, K. H. (2008). The
Inflammatory Response to Skeletal Muscle Injury. Sports Med. 38, 947–969.
doi:10.2165/00007256-200838110-00005

Smith, L. R., Chambers, H. G., and Lieber, R. L. (2013). Reduced Satellite Cell
Population May lead to Contractures in Children with Cerebral Palsy. Dev.
Med. Child. Neurol. 55, 264–270. doi:10.1111/dmcn.12027

Smith, L. R., Lee, K. S., Ward, S. R., Chambers, H. G., and Lieber, R. L. (2011).
Hamstring Contractures in Children with Spastic Cerebral Palsy
Result from a Stiffer Extracellular Matrix and Increasedin
Vivosarcomere Length. J. Physiol. 589, 2625–2639. doi:10.1113/
jphysiol.2010.203364

Snijders, T., Nederveen, J. P., McKay, B. R., Joanisse, S., Verdijk, L. B., van Loon, L.
J. C., et al. (2015). Satellite Cells in Human Skeletal Muscle Plasticity. Front.
Physiol. 6, 283. doi:10.3389/fphys.2015.00283

Summan, M., Warren, G. L., Mercer, R. R., Chapman, R., Hulderman, T., Van
Rooijen, N., et al. (2006). Macrophages and Skeletal Muscle Regeneration: A
Clodronate-Containing Liposome Depletion Study. Am. J. Physiology-
Regulatory, Integr. Comp. Physiol. 290, R1488–R1495. doi:10.1152/
ajpregu.00465.2005

Tidball, J. G. (1995). Inflammatory Cell Response to Acute Muscle Injury.Med. Sci.
Sports Exerc. 27, 1022–1032. doi:10.1249/00005768-199507000-00011

Tidball, J. G., and Villalta, S. A. (2010). Regulatory Interactions between Muscle
and the Immune System during Muscle Regeneration. Am. J. Physiology-
Regulatory, Integr. Comp. Physiol. 298, R1173–R1187. doi:10.1152/
ajpregu.00735.2009

Toumi, H., F’guyer, S., and Best, T. M. (2006). The Role of Neutrophils in Injury
and Repair Following Muscle Stretch. J. Anat. 208, 459–470. doi:10.1111/
j.1469-7580.2006.00543.x

Uezumi, A., Fukada, S.-i., Yamamoto, N., Takeda, S. i., and Tsuchida, K. (2010).
Mesenchymal Progenitors Distinct from Satellite Cells Contribute to Ectopic
Fat Cell Formation in Skeletal Muscle. Nat. Cel Biol. 12, 143–152. doi:10.1038/
ncb2014

Verdijk, L. B., Snijders, T., Drost, M., Delhaas, T., Kadi, F., and Van Loon, L. J. C.
(2014). Satellite Cells in Human Skeletal Muscle; from Birth to Old Age. Age 36,
545–557. doi:10.1007/s11357-013-9583-2

Vignola, A. M., Chanez, P., Chiappara, G., Merendino, A., Zinnanti, E., Bousquet,
J., et al. (1996). Release of Transforming Growth Factor-Beta (TGF-Beta) and
Fibronectin by Alveolar Macrophages in Airway Diseases. Clin. Exp. Immunol.
106, 114–119. doi:10.1046/j.1365-2249.1996.d01-811.x

Virgilio, K. M., Martin, K. S., Peirce, S. M., and Blemker, S. S. (2018). Agent-based
Model Illustrates the Role of the Microenvironment in Regeneration in Healthy
and Mdx Skeletal Muscle. J. Appl. Physiol. 125, 1424-1439. japplphysiol.
doi:10.1152/japplphysiol.00379.2018

Von Walden, F., Gantelius, S., Liu, C., Borgström, H., Björk, L., Gremark, O., et al.
(2018). Muscle Contractures in Patients with Cerebral Palsy and Acquired
Brain Injury Are Associated with Extracellular Matrix Expansion, Pro-
inflammatory Gene Expression, and Reduced rRNA Synthesis. Muscle Nerve
58, 277–285. doi:10.1002/mus.26130

von Walden, F., Jalaleddini, K., Evertsson, B., Friberg, J., Valero-Cuevas, F. J., and
Pontén, E. (2017). Forearm Flexor Muscles in Children with Cerebral Palsy Are
Weak, Thin and Stiff. Front. Comput. Neurosci. 11, 1–8. doi:10.3389/
fncom.2017.00030

Wang, Y., Wehling-Henricks, M., Samengo, G., and Tidball, J. G. (2015). Increases
of M2a Macrophages and Fibrosis in Aging Muscle Are Influenced by Bone
Marrow Aging and Negatively Regulated by Muscle-derived Nitric Oxide.
Aging Cell 14, 678–688. doi:10.1111/acel.12350

Wang, Y. X., and Rudnicki, M. A. (2012). Satellite Cells, the Engines of Muscle
Repair. Nat. Rev. Mol. Cel Biol. 13, 127–133. doi:10.1038/nrm3265

Webster, M. T., Manor, U., Lippincott-Schwartz, J., and Fan, C.-M. (2016).
Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding
Myogenic Progenitors during Regeneration. Cell Stem Cell 18, 243–252.
doi:10.1016/j.stem.2015.11.005

Weiss, J. A., Maker, B. N., and Govindjee, S. (1996). Finite Element
Implementation of Incompressible, Transversely Isotropic Hyperelasticity.
Comp. Methods Appl. Mech. Eng. 135, 107–128. doi:10.1016/0045-7825(96)
01035-3

Wilensky, U., and Rand, W. (2015). An Introduction to Agent-Based Modeling.
The MIT Press. Available at: https://mitpress.mit.edu/books/introduction-
agent-based-modeling.

Wosczyna, M. N., and Rando, T. A. (2018). A Muscle Stem Cell Support Group:
Coordinated Cellular Responses in Muscle Regeneration. Dev. Cel 46, 135–143.
doi:10.1016/j.devcel.2018.06.018

Wynn, T. A., and Vannella, K. M. (2016). Macrophages in Tissue Repair,
Regeneration, and Fibrosis. Immunity 44, 450–462. doi:10.1016/
j.immuni.2016.02.015

Xue, Q., Lu, Y., Eisele, M. R., Sulistijo, E. S., Khan, N., Fan, R., et al. (2015). Analysis
of Single-Cell Cytokine Secretion Reveals a Role for Paracrine Signaling in
Coordinating Macrophage Responses to TLR4 Stimulation. Sci. Signal. 8, ra59.
doi:10.1126/scisignal.aaa2155

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2021 | Volume 9 | Article 68971416

Khuu et al. Mechanobiological Model of Muscle Regeneration

185

https://doi.org/10.1113/jphysiol.2010.190876
https://doi.org/10.1016/j.it.2005.08.002
https://doi.org/10.1111/febs.12338
https://doi.org/10.1152/ajpregu.00221.2016
https://doi.org/10.1186/2194-3206-1-3
https://doi.org/10.1016/j.ajpath.2013.06.034
https://doi.org/10.1016/j.ajpath.2013.06.034
https://doi.org/10.1002/path.4301
https://doi.org/10.1002/mus.21146
https://doi.org/10.1093/intimm/dxy054
https://doi.org/10.1111/j.1469-7793.1998.949bp.x
https://doi.org/10.1111/j.1469-7793.1998.949bp.x
https://doi.org/10.1038/sj.gt.3301764
https://doi.org/10.1152/ajpendo.00338.2012
https://doi.org/10.1152/ajpendo.00338.2012
https://doi.org/10.1371/journal.pone.0205944
https://doi.org/10.1519/JSC.0000000000001983
https://doi.org/10.3389/fphys.2018.00810
https://doi.org/10.3389/fphys.2018.00810
https://doi.org/10.1016/j.cmet.2007.11.011
https://doi.org/10.1016/j.cmet.2007.11.011
https://doi.org/10.1186/2044-5040-1-7
https://doi.org/10.2165/00007256-200838110-00005
https://doi.org/10.1111/dmcn.12027
https://doi.org/10.1113/jphysiol.2010.203364
https://doi.org/10.1113/jphysiol.2010.203364
https://doi.org/10.3389/fphys.2015.00283
https://doi.org/10.1152/ajpregu.00465.2005
https://doi.org/10.1152/ajpregu.00465.2005
https://doi.org/10.1249/00005768-199507000-00011
https://doi.org/10.1152/ajpregu.00735.2009
https://doi.org/10.1152/ajpregu.00735.2009
https://doi.org/10.1111/j.1469-7580.2006.00543.x
https://doi.org/10.1111/j.1469-7580.2006.00543.x
https://doi.org/10.1038/ncb2014
https://doi.org/10.1038/ncb2014
https://doi.org/10.1007/s11357-013-9583-2
https://doi.org/10.1046/j.1365-2249.1996.d01-811.x
https://doi.org/10.1152/japplphysiol.00379.2018
https://doi.org/10.1002/mus.26130
https://doi.org/10.3389/fncom.2017.00030
https://doi.org/10.3389/fncom.2017.00030
https://doi.org/10.1111/acel.12350
https://doi.org/10.1038/nrm3265
https://doi.org/10.1016/j.stem.2015.11.005
https://doi.org/10.1016/0045-7825(96)01035-3
https://doi.org/10.1016/0045-7825(96)01035-3
https://mitpress.mit.edu/books/introduction-agent-based-modeling
https://mitpress.mit.edu/books/introduction-agent-based-modeling
https://doi.org/10.1016/j.devcel.2018.06.018
https://doi.org/10.1016/j.immuni.2016.02.015
https://doi.org/10.1016/j.immuni.2016.02.015
https://doi.org/10.1126/scisignal.aaa2155
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Zammit, P., Heslop, L., Hudon, V., Rosenblatt, J. D., Tajbakhsh, S.,
Buckingham, M. E., et al. (2002). Kinetics of Myoblast Proliferation
Show that Resident Satellite Cells Are Competent to Fully Regenerate
Skeletal Muscle Fibers. Exp. Cel Res. 281, 39–49. doi:10.1006/
excr.2002.5653

Zanou, N., and Gailly, P. (2013). Skeletal Muscle Hypertrophy and Regeneration:
Interplay between the Myogenic Regulatory Factors (MRFs) and Insulin-like
Growth Factors (IGFs) Pathways. Cell. Mol. Life Sci. 70, 4117–4130.
doi:10.1007/s00018-013-1330-4

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Khuu, Fernandez and Handsfield. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2021 | Volume 9 | Article 68971417

Khuu et al. Mechanobiological Model of Muscle Regeneration

186

https://doi.org/10.1006/excr.2002.5653
https://doi.org/10.1006/excr.2002.5653
https://doi.org/10.1007/s00018-013-1330-4
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Porous Geometry Guided
Micro-mechanical Environment Within
Scaffolds for Cell Mechanobiology
Study in Bone Tissue Engineering
Feihu Zhao1,2,3, Yi Xiong4, Keita Ito1,2, Bert van Rietbergen1 and Sandra Hofmann1,2*

1Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven,
Netherlands, 2Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands,
3Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea,
United Kingdom, 4School of System Design and Intelligent Manufacturing, Southern University of Science and Technology,
Shenzhen, China

Mechanobiology research is for understanding the role of mechanics in cell physiology and
pathology. It will have implications for studying bone physiology and pathology and to guide
the strategy for regenerating both the structural and functional features of bone.
Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to
cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a
three-dimensional (3D) culturing environment. Such scaffolds usually have different pore
geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore
geometries can affect the internal micro-mechanical environment that the cells experience
when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical
environment on cells, researchers can tune either the applied load and/or the design of
the scaffold pore geometries. This review will provide information on how the micro-
mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is
affected by various scaffold pore geometries within different bioreactors. It shall allow
researchers to estimate/quantify the micro-mechanical environment according to the
already known pore geometry information, or to find a suitable pore geometry according
to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial
intelligent – assisted techniques, which can achieve an automatic design of solid porous
scaffold geometry for tuning/optimising the micro-mechanical environment are suggested.

Keywords: micro-mechanical environment, mechanical stimulation, scaffold porous geometry, mechanobiology,
bone tissue engineering

DEFINITION

Scaffold pore geometry that is presented in this review involves the following parameters:

• Pore shape: the architecture or shape of the scaffold micro-pores, which can be irregular or
regular (cubic, spherical, gyroid, etc.);

• Pore dimension: also called pore size or pore diameter, which is a measure of the (maximal)
distance between two neighbouring struts, usually has a value around 100–2000 µm for bone
tissue engineering applications;

Edited by:
Stefan Scheiner,

Vienna University of Technology,
Austria

Reviewed by:
Jose Manuel Garcia-Aznar,

University of Zaragoza, Spain
Farnaz Ghorbani,

University of Erlangen Nuremberg,
Germany

*Correspondence:
Sandra Hofmann

S.Hofmann@tue.nl

Specialty section:
This article was submitted to

Biomechanics,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 05 July 2021
Accepted: 27 August 2021

Published: 14 September 2021

Citation:
Zhao F, Xiong Y, Ito K,

van Rietbergen B and Hofmann S
(2021) Porous Geometry Guided

Micro-mechanical Environment Within
Scaffolds for Cell Mechanobiology
Study in Bone Tissue Engineering.

Front. Bioeng. Biotechnol. 9:736489.
doi: 10.3389/fbioe.2021.736489

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org September 2021 | Volume 9 | Article 7364891

MINI REVIEW
published: 14 September 2021

doi: 10.3389/fbioe.2021.736489

187

http://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2021.736489&domain=pdf&date_stamp=2021-09-14
https://www.frontiersin.org/articles/10.3389/fbioe.2021.736489/full
https://www.frontiersin.org/articles/10.3389/fbioe.2021.736489/full
https://www.frontiersin.org/articles/10.3389/fbioe.2021.736489/full
https://www.frontiersin.org/articles/10.3389/fbioe.2021.736489/full
http://creativecommons.org/licenses/by/4.0/
mailto:S.Hofmann@tue.nl
https://doi.org/10.3389/fbioe.2021.736489
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2021.736489


• Porosity: also called void fraction, which is a measure of the
void (i.e. “empty”) spaces in scaffolds, and has a value in the
range of 0–100%.

INTRODUCTION

In the field of bone tissue engineering (BTE), a primary challenge
is to recapitulate both the structural and functional features of
bone (Amini et al., 2012). Mechanobiology research seeks to
understand the role of mechanics in cell physiology and
pathology. Bone cells are known as mechanosensitive cells that
respond to their mechanical environment in vivo and in vitro
(Klein-Nulend et al., 2003; Giorgi et al., 2016). Mechanobiology
research in BTE aims at getting insight into how the scaffolds or
the application of mechanical loads affect the development of
tissue-engineered bone tissue, which is intended to be used for
bone disease research, drug testing, etc. (García-Aznar et al., 2021;
Kim et al., 2021). In vitromechanobiology includes the creation of
either static or dynamic micro-mechanical environments. The
cellular mechanical environment is then transduced into
biochemical signals through mechano-transduction protein
networks, which therefore influence the cellular behaviours,
such as osteogenic differentiation of stem cells in BTE
(Delaine-Smith and Reilly, 2012; Jansen et al., 2015; Paluch
et al., 2015; Wittkowske et al., 2016; Naqvi and McNamara,
2020). A static micro-mechanical environment refers to the
use of biomaterials with different mechanical properties to
which the cells attach. The effect of mechanical properties
inherent to biomaterials on bone cell behaviour have been
widely reviewed, e.g. by Janmey et al. (2020), Klein-Nulend
et al. (2012), Lin et al. (2020), Selig et al. (2020) or Janmey
et al. (2020), to name a few. This review will focus on the dynamic
micro-mechanical environment on cells that is guided by the
scaffold pore geometry when loading is applied through the use of
bioreactors.

Various bioreactors are being applied in BTE. For example,
flow perfusion bioreactors, spinner flasks or rotating wall vessels
can be used which all apply a fluid induced wall shear stress
(WSS) on cells (Granet et al., 1998; Sikavitsas et al., 2002; Bancroft
et al., 2003). Mechanical compression and stretching bioreactors
can be used for applying mechanical strain to cells that are
attached on scaffold struts (Zhang et al., 2008; Bilgen et al.,
2013). For cell culturing in 3D, scaffolds are used for housing and
supporting the seeded cells. Scaffolds used in the experiments
usually have different porous geometries, for example some have
irregular pore shapes (Mccoy et al., 2012), and some have regular
pores but with different porosities or pore dimensions
(Bartnikowski et al., 2014). With improvements in 3D
printing/additive manufacturing technology, scaffolds with
well-defined geometries can be manufactured, and this will
probably be the standard for scaffold manufacturing in the
near future (Bahraminasab, 2020). To investigate the influence
of scaffold pore geometry on the internal micro-mechanical
environment, computational approaches are commonly used,
thanks to the capability of such approaches to calculate/
simulate the mechanical environment at the micro (or even

sub-micro) scale with low cost, which is challenging for
experimental measurements (García-Aznar et al., 2021). It has
been found that the scaffolds’ pore geometry can largely influence
the micro-mechanical environment within the scaffolds (Olivares
et al., 2009). Previous examples are the computation of the fluid
flow induced micro-mechanical environment when applying flow
perfusion-, spinner flask- or rotating wall vessel bioreactors by the
application of computational fluid dynamics (CFD). Or the
mechanical deformation (such as stretching/compression) of
the cells within scaffolds in compression/stretching bioreactors
(Brunelli et al., 2017), where finite element (FE) models based on
fluid-structure interaction (FSI), biphasic poro-elasticity, etc.
have been used for simulating/quantifying the resultant WSS
and/or mechanical strain on scaffold struts (Zhao et al., 2016;
Castro and Lacroix, 2018).

This review aims at providing insight into the role of scaffold
pore geometry parameters (i.e. porosity, pore dimension and pore
shape) based on previous theoretical studies, in order to better
understand their complex effect on the micro-mechanical
environment of bone cells. It will benefit the BTE/bone
organoids fields for cellular mechanobiology research. For
example, this information is expected to allow researchers to
estimate the micro-mechanical environment depending on
scaffold geometry information, or to find/design a suitable
pore geometry providing a desirable micro-mechanical
environment to the cells. The limitations of the current
computational approaches in automatically achieving a
scaffold geometry design that is driven by micro-mechanical
environment will be discussed. An outlook and suggestions for
future research in terms of artificial intelligence (AI) – assisted
techniques for addressing the limitations in scaffold geometry
design will be presented.

THE ROLE OF SCAFFOLD PORE
GEOMETRY ON THE CELL
MICRO-MECHANICAL ENVIRONMENT
This section will present the influence of the scaffold pore
geometry, more specifically pore shape, pore dimension and
porosity on the resultant WSS and mechanical strain within
empty scaffolds in perfusion, spinner flask and compression
bioreactors.

Assumptions for Calculating the Cell
Micro-mechanical Environment Within
Scaffolds
The calculation of fluid – induced WSS within empty scaffolds is
based on the assumption that the WSS at the scaffold surface is a
good representation of the WSS sensed by the cells that are
attached to the scaffold surfaces. It also assumes that the cells
attach mostly flat to the scaffold surface in the initial state, with a
minimal cell volume with respect to the pore volume. This
assumption has been shown to be met for some experiments/
scaffold materials (Figure 1A), but not for all (Figure 1B). For
calculating the mechanical strain in empty scaffolds, it is assumed
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that the cells are subjected to the strain magnitude at the location
of the scaffold that they are attached to (Olivares et al., 2009;
Laurent et al., 2014). Such assumptions can be reasonable if the
scaffold material is much stiffer than the cell and no substantial
ECM has been formed yet.

Porosity
Porosity is the main determinant for scaffold permeability and
thus the amount of flow through the scaffold in perfusion/stirring
bioreactors and was found to be an important parameter
determining the results of BTE (e.g. seeded cell density, cell
proliferation, ECM production, etc.) (Grayson et al., 2008;
Panseri et al., 2021). The effect of porosity on the permeability
of the scaffold, which describes the amount of flow through the
scaffold, can be calculated by the Kozeny-Carman Equation (Eq.
1) (Van Bael et al., 2012; Egan, 2019):

κ � ( 1
Ck
) · φ

S2s
(1)

where, κ is the permeability, φ is the porosity, ck is the Kozeny
constant and Ss is the specific surface area calculated as the surface
area divided by the total volume of the struts.

This equation demonstrates that scaffold permeability linearly
increases with porosity. This has also been demonstrated by
experimental measurements (Zhang et al., 2019). The
relationship between the permeability, the fluid velocity and
the WSS, however, is complex and also depends on the pore
geometry. Ali and Sen (2018) employed a CFD approach to
investigate the influence of porosity on the permeability andWSS,
and they found that under a fluid velocity of 0.7 mm/s, the
average WSS decreased from 131 to 27 mPa with an increase
in porosity from 65 to 90% for the gyroid pore shape (Figure 2H).

FIGURE 1 | Scanning electron microscopy (SEM) images of MC3T3-E1 cells that (A) flatly attach on the Poly-lactic acid (PLLA) scaffold struts on day 7 of culturing,
re-produced from (Xue et al., 2019); or (B) bridge over the collagen glycosaminoglycan (CG) scaffold struts on day 6 of culturing, re-produced from (Mccoy et al., 2012).

FIGURE 2 | (A–H) scaffold units with various regular pore shapes, re-produced from (Lu et al., 2020; Deng et al., 2021; Prochor and Gryko, 2021); (I) scaffold with
irregular pores, re-produced from (Zermatten et al., 2014).
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This trend also happened for a diamond pore shape (Figure 2F)
(Ali and Sen, 2018). Melchels et al. (2011) designed and
manufactured a scaffold (gyroid pores in Figure 2H) with
different porosities (40–85%) in different regions. This resulted
in different shear rates (SRs) in the regions with different
porosities under perfusion flow, e.g. 10–40 s−1, i.e. higher SR
in the region with higher porosity (Melchels et al., 2011).

Porosity is also the main determinant for the amount of strain
in the scaffold when an external force is applied according to both
micro-FE analyses and experimental characterisation (Hannink
and Arts, 2011; Castro et al., 2020). If under pressure/compressive
force loading through bioreactors, a scaffold with a lower porosity
(i.e. higher overall structural stiffness) will show less deformation,
thus cells that attach on the struts will receive lower strain. Not
only for overall structural stiffness, the porosity also can influence
the local stress/strain concentration under compression loading.
For instance, in the computational study by Hendrikson et al.
(2017), scaffolds that had a cubic pore shape, a pore dimension of
151 μm, but different porosities (74 vs 64%) were compared in
terms of octahedral shear strain under a compressive strain of
10%. It was found that the scaffold with higher porosity (74%)
had a larger strut area in the low strain range (e.g. <10%) than the
one with lower porosity (64%) (Hendrikson et al., 2017). Similarly
to section 2.2 and 2.3, under dynamic compression, the porosity
will also have an influence on the resultantWSS that is induced by
fluid flow due to compression. Zhao et al. (2016) compared
scaffolds with porosities of 60–90% and found that a higher
porosity resulted in lower WSS under dynamic compression. By
increasing the pore dimension, the influence of porosity on WSS
became smaller, e.g. for cubic pore, dimension � 100 µm: average
WSS � 3.5 mPa when porosity � 60%, average WSS � 2.5 mPa
when porosity � 90%; for cubic pore, dimension � 300 µm:
average WSS � 1.5 mPa when porosity � 60%, average
WSS � 1.1 mPa when porosity � 90% under dynamic
compression (strain � 1%, frequency � 1 Hz) (Zhao et al.,
2016). So, under dynamic compression, the lower porosity and
pore dimension can result in higher fluid flow-induced WSS.

Pore Dimension
Pore dimension is the main factor that determines fluid-induced
WSS under perfusion flow (Fu et al., 2021). Also, pore
dimension is one of the factors that can influence cell
attachment (e.g. flatly attached on struts/bridging over struts
in Figure 1) (Guo et al., 2015; Yamashita et al., 2016). Previous
mechanobiological studies have investigated cell responses via
tuning the scaffold pore dimensions while keeping the pore
shape constant (Bartnikowski et al., 2014; Ouyang et al., 2019).
For example, Bartnikowski et al. (2014) quantified the WSS
within the scaffolds that had cubic pores (with rounded profile
in Figure 2G) and a porosity of 60% but with different pore
dimensions (625 vs 1250 µm). It was found that the scaffold with
smaller pore dimension provided a higher WSS: maximum
WSS � 1979 mPa/average WSS � 500 mPa (pore dimension �
625 µm) vs maximumWSS � 837 mPa/average WSS � 120 mPa
(pore dimension � 1250 µm) under a flow rate of 1 ml/h
(0.61 µm/s). These scaffolds were then applied in an in vitro
cell experiment where it was found that the DNA amount was

significantly higher in the cell seeded scaffold with larger pore
dimension (1250 µm) (Bartnikowski et al., 2014). Whereas the
accurate calculation of the actual WSS requires performing a
CFD analysis for the (often complex) scaffold pore geometries,
simple mathematical equation can be used to estimate the WSS
(Zhao et al., 2016):

τa
v
� a1 · (d

Lc
)

b1

(2)

Where, τa is the average WSS within the scaffold, v the applied
fluid velocity, d the pore dimension, Lc is the characteristic length
(Lc � 1 µm), and a1 and b1 constants that depend on the pore
shape and porosity. A limitation of this approach is that the
equations are only a good approximation for a limited set of pore
shapes (i.e. cube with flat profile and sphere in Figures 2C,E) and
porosities (i.e. 60%–90%).

Dynamic compression not only generates mechanical strains
in the struts but can also result in WSS on the strut surfaces,
which was mostly ignored in previous mechanobiological
studies regardless of the compressive strain magnitude or
frequency. It was found that the resultant average WSS was
proportional to the applied compressive strain (Milan et al.,
2009). Moreover, it was highly dependent on the scaffold pore
dimensions (Zhao et al., 2016). Here also, simple equations were
introduced to estimate the WSS due to compression (Zhao et al.
(2016)):

τa
εapp

� a2 · (d
Lc
)

b2

(3)

where, τa is the average WSS within the scaffold, εapp is the
applied compressive strain by bioreactor, d the pore dimension,
Lc is the characteristic length (Lc � 1 µm), and a2 and b2
constants that depend on the pore shape and porosity.
Similar as in Eq. 2, one of the limitations of this approach is
that the equations are a good approximation only for a limited
set of pore shapes (i.e. cube with flat profile and sphere in
Figures 2C,E) and porosities (i.e. 60%–90%). Also, this Eq. 3 is
only applicable for a dynamic compression frequency of 1.0 Hz
and needs to be adapted to other frequencies. For all other cases
beyond the aforementioned ones, a FSI analyses will be needed
to accurately calculate the WSS.

Under mechanical compression, the stress/strain
distribution can be influenced by the pore dimension. Ribeiro
et al. (2017) investigated this based on the scaffolds with pore
dimensions of 740 and 370 µm using an FE model. There, an
unconfined compression loading with a strain of 15% was
applied on both scaffolds. Their results showed that the
maximum value of compressive stress was similar between
the two scaffolds with different pore dimensions, i.e.
maximum compressive stress � 27.7 MPa in pore dimension
of 740 µm vs maximum compressive stress � 25.9 MPa in pore
dimension of 370 µm. However, the scaffold with larger pores
(pore dimension � 740 µm) had more regions (area) with higher
stress than the one with smaller pores (pore dimension �
370 µm) (Panadero et al., 2015).
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Pore Shape
The effect of pore shape on the fluid-induced WSS in flow
perfusion and spinner flask bioreactors is difficult to predict.
Some scaffolds with different regular pore shapes (but same pore
size and porosity) have similar WSS, but some do not. The
commonly (designed) regular pore shapes include sphere,
cube, gyroid, prism, etc. (Figures 2A–H), which can be
manufactured by 3D printing/additive manufacturing
technology. Prochor and Gryko (2021) quantified the WSS
within scaffolds that have different regular pore shapes (e.g.
triangular prism with rounded and flat profiles, cube,
octagonal prism and sphere in Figures 2A–E) under perfusion
flow. It was found that the scaffold with triangular prism (with
rounded profile) experienced the highest WSS, whereas the
scaffold with spherical pores experienced the lowest WSS
under the same flow rate. The maximum WSS within
spherical pores and cubical pores were identical. However, this
can be different within different bioreactors that generate fluid –
induced WSS. In a combined experimental and computational
BTE study by Rubert et al. (2020), the average WSS within the
scaffolds with spherical pores (average pore diameter � 330 μm,
porosity� 84.7%) and cubical pores (average pore diameter� 330 μm,
porosity � 92.8%) were 0.42 and 0.81mPa respectively in a spinner
flask (70 RPM). This was associated to upregulated osteoblast cell
differentiation and ECM formation within cubic pores, while ECM
mineralisation was enhanced within the spherical pores (Rubert et al.,
2020).

Porous scaffolds also can have irregular pore shapes, which are
for example obtained from more traditional fabrication methods
such as porogen leaching (Figure 2I). Studies have found that the
irregularity of the pore shape does not have a distinct influence on
the fluid – induced WSS, once the pore dimensions and porosity
are similar. For example, Zermatten et al. (2014) investigated the
influence of the pore irregularity on the internal WSS using
scaffolds with regular cubical pores (with rounded profile) and
highly irregular pores (Figures 2G,I). Although the other two
parameters, pore dimensions (regular: 0.22 mm vs irregular:
0.16 mm) and porosity (regular: 38% vs irregular: 55%) were
not exactly the same, the average WSS within irregular and
irregular pores have high similarity (regular: 3.08 mPa vs
irregular: 3.68 mPa) under a perfusion fluid velocity of
0.066 mm/s (Zermatten et al., 2014). One limitation of
simulating the micro-fluidic environment within these highly
irregular pores (at whole scaffold level) was the high
computational cost (Santamaría et al., 2013; Zermatten et al.,
2014). To address this challenge, Zhao et al. (2019) developed a
more versatile technique, creating a multiscale and multiphasic
CFD model. In this approach, small but representative parts of
the scaffold are being used for the generation of a microstructural
model of the pore environment, which are then coupled with a
macro-model representing the whole scaffold in which the
microstructure is homogenised. The macro-model can be used
to calculate the fluid flow at larger length scales, that then can be
applied to the micro-model to calculate the local WSS at the cell
level. As only small parts of the scaffold need to be modelled in
detail, this approach can reduce the computational costs while
still providing results at the cell-level. It has been shown that with

this multiscale and multiphasic CFD model, calculations of
resulting WSS within any scaffold with highly irregular pore
shape is possible even using a normal computer (e.g. 16 GB RAM,
Intel i7 CPU). However, this technique requires that the Reynolds
(Re) number should less than 1 when using Darcy’s law for
homogenisation (Chaudhary et al., 2011).

Under mechanical compression, the pore shape can have a
distinct influence on the overall structural stiffness of the
scaffold (Castro et al., 2020; Jahir-Hussain et al., 2021).
According to their calculations, the triangular pore shape
resulted in the highest structural stiffness of the scaffold and
the spherical pore shape resulted in the lowest stiffness among
the various pore shapes (spherical, cubic, hexagonal and
triangular). Under pressure/compressive force, scaffolds with
a lower structural stiffness (e.g. with spherical pores) will have a
higher strain in the struts than the ones with a higher structural
stiffness (e.g. with cubic/hexagonal/triangular pores). This
difference will translate to differences in strain sensed by
cells attached to the struts. In cell culture experiments
applying compression to stimulate cells, usually dynamic
compression is applied. As mentioned in sections 2.2 and
2.3, this dynamic compression also generates WSS within
the pores of the scaffold. A FSI approach for quantifying the
WSS during dynamic compression has found that the WSS was
higher within spherical pores than that within cubical pores,
e.g. 5.5 mPa within spherical pores (pore diameter � 100 μm,
porosity � 60%) and 3.5 mPa within cubical pores (pore
diameter � 100 μm, porosity � 60%) under an applied
compressive strain of 1.0% and at a frequency of 1.0 Hz
(Zhao et al., 2016). Therefore, to precisely quantify the WSS
due to dynamic compression, the pore shape needs to be
explicitly reflected in the computational model.

Some scaffolds have extremely anisotropic pores, such as
those with unidirectional channels or holes, as shown in
(Deville et al., 2006, 2007; Munch et al., 2009;
Pourhaghgouy et al., 2016). For this type of scaffolds, the
above discussed influence of porosity, pore dimension and
pore shape on the internal micro-mechanical environment is
still applicable for external loading in the unidirectional
orientation (e.g. fluid perfusion/unidirectional mechanical
compression/stretching), but not for external loading in
non-unidirectional directions (e.g. spinner flask/non-
unidirectional compression/stretching).

EFFECT OF CELL/TISSUE GROWTH ON
THEMICRO-MECHANICAL ENVIRONMENT
WITHIN SCAFFOLD PORES
A major limitation of all studies above is that they do neither
consider the cells nor the tissue within the scaffold pores. In these
studies, it is assumed that the cells lie flatly attached to the scaffold
surface and that their volume is small compared to the pore
volume. In other situations, e.g. when cells can bridge across the
pores (Figure 1B) (Mccoy et al., 2012), this assumption no longer
holds and can lead to large errors when calculating the WSS.
Moreover, once tissue starts to form within the scaffold, its
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porosity, and consequently the micro-mechanical environment,
can dramatically change (Sandino and Lacroix, 2011). The
influence of scaffold pore geometry on the micro-mechanical
environment when considering cell/tissue growth has not been as
rigorously investigated as within empty scaffolds. In this section,
some computational models which can simulate the micro-
mechanical environment while considering cell/tissue within
scaffolds are reviewed.

Cells Within Scaffold Pores
In some BTE experiments, dynamic cell seeding is used for
improving the seeding efficiency and/or distribution of seeded
cell in the porous scaffolds. Perfusion flow is usually used for
dynamic seeding. During this process, the fluid force can also
mechanically stimulate the cells through cell deformation which
consequently can promote cellular processes (Rüberg and Aznar,
2016; Serrano-Alcalde et al., 2017).

For seeded cells, Jungreuthmayer et al. (2009) and Mccoy et al.
(2012) modelled cells as flatly attached and as bridged
morphologies within collagen glycosaminoglycan (CG)
scaffolds, which had irregular pore shapes (Figure 3A). It was
found that the influence of cell morphology (attached/bridged)
on the cellular WSS depends on the locations within scaffolds
(Guyot et al., 2016b). Furthermore, in the study by Mccoy et al.
(2012), three CG scaffolds with different pore dimensions (85,
120 and 325 µm) but equal porosity (90%) were compared in
terms of resultant WSS on cells. It was found that the average
WSS on all cells (both bridged and attached morphologies) was
165, 176 and 155 mPa, respectively for the pore dimensions of 85,
120 and 325 µm under a perfusion fluid velocity of 235 µm/s, and
the WSS was proportional to the fluid velocity (Mccoy et al.,
2012).

Tissue Growth Within Scaffold Pores
To investigate the influence of scaffold pore geometry on the
changing micro-mechanical environment over time, tissue
growth models have been introduced. These are coupled with
FE/CFD models. To account for tissue growth, various studies
have developed mathematical models to describe neo-tissue
formation assuming appositional growth in static conditions
(Nava et al., 2013; Guyot et al., 2014; Herklotz et al., 2015;
Egan et al., 2018). In the mathematical model, the cells and
ECM are usually homogenised (Figure 3B). One of the most
commonly used models for describing the tissue growth kinetics
is based on the level set (LS) method, which is available in both
commercial and open-source software packages (e.g. COMSOL,
ANSYS, OPENFOAM, etc.). It allows to model appositional
tissue growth as illustrated in Figure 3B. The governing
equation is (Guyot et al., 2014):

zψ

zt
+ (VG · nΓ) · ∇ψ � 0 (4)

where, nΓ is the normal unit vector to the interface between neo-
tissue and medium domains, ψ is the LS function and VG is neo-
tissue growth velocity governed by local the struts curvature κc in
Eq. 5:

VG � {−λ · κc (κc > 0)
0 (κc ≤ 0) (5)

Where, λ is the tissue growth rate.
To investigate the influence of the micro-mechanical

environment changes during neo-tissue growth within
scaffolds that have different pore geometries, the tissue growth
model needs to be coupled with the FE/CFD model by
introducing a WSS-dependent term into Eq. 5. The WSS (τ)

FIGURE 3 | Illustrations of (A) cells within the scaffold in computational model, re-produced from (Jungreuthmayer et al., 2009); (B) appositional tissue growth in
computational model, re-produced from (Zhao et al., 2020a); (C) interstitial tissue within unit scaffold in computational model, re-produced from (Zhao et al., 2020b).
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in Eqs 6, 7 by Guyot et al. (2015, 2016a) then is computed by a
CFD model:

VG � { −A · κ · f (τ) κ > 0
0 κ ≤ 0

(6)

f (τ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5 + 0.5τ
a1

0≤ τ ≤ a1

1 a1 ≤ τ ≤ a2
τ − a3
a2 − a3

a2 ≤ τ ≤ a3

0 τ ≥ a3

(7)

Where, a1 and a2 are the minimal and maximal shear stresses
enhancing neo-tissue formation and a3 the critical shear stress.

Then the computational model is applied to scaffolds that
have different pore geometries. For instance, Guyot et al. (2015)
applied the model on scaffolds with two different pore shapes
(i.e. cubic shape with rounded profile and pore dimensions of
650 µm vs diamond shape and pore dimension of 750 µm in
Figures 2F,G). It was found that under the same amount of
tissue produced within the scaffolds higher shear stress
occurred in the neo-tissue within the scaffold with diamond
shape than that in the scaffold with cubic shape, e.g. when 30%
of the porous volume was filled with neo-tissue, the average
shear stress in the neo-tissue was 175 mPa within the diamond
pores, while it was 80 mPa within the cubic pores (Guyot et al.,
2015).

One of the limitations of these computational models is the
uncertainty of the parameter values (such as λ, a1, a2 and a3 in
Eqs 5–7). As these are empirically determined constants, they
may need to be changed depending on parameters that influence
tissue formation (e.g. the number of cells in the culture, the type
of cells, scaffold-related attachment of cells, the density of the
deposited ECM and whether or not it is mineralised). Whereas
after fitting these constants to experimental results these
equations thus may well describe the effect of changes made
within that specific experiment, they may not well describe the
outcome of other experiments. To reduce the number of
parameters in the tissue growth model, recent computational
studies have employed second order diffusion equations to
model tissue growth kinetics (Buenzli et al., 2020; Zhao et al.,
2020a). The main advantage of using this diffusion equations
over the LS method is that fewer parameters need to be
determined. For example, diffusion equations can already
model the curvature – dependent tissue growth without
adding the curvature parameter κ in the equation as that in
LS method (Buenzli et al., 2020). Therefore, in modelling the
scaffold pore geometry for tissue growth kinetics, if the
curvature is not a parameter that needs to be explicitly
assessed, a computational model based on a diffusion
equation will be a good choice. Otherwise, a computational
model based on LS method is suggested. Another limitation is
that these computational models assume appositional tissue
formation towards the centre of the pores. In reality,
however, interstitial formation, in which the tissue is
infiltrated within the pores rather than being attached on the

struts surfaces is also observed in many cases (Li et al., 2009) (as
illustrated in Figure 3C). The resultant WSS on cells under
interstitial tissue formation was quantified and compared to
appositional tissue formation (Zhao et al., 2020b). Distinct
difference in WSS between two cases were found, even if the
same amount of newly formed tissue was present. This implies
that computational models that assume appositional tissue
growth cannot well predict the micro-mechanical
environment in case of substantial interstitial tissue
formation. Estimating the influence of scaffold pore geometry
on the micro-mechanical environment by taking the tissue into
account also needs to consider whether the cell/tissue growth is
appositional or interstitial. Even then, this remains challenging
due to the high variability in tissue formation.

Different from LS method and diffusion equation, some other
computational studies employed a simple voxel – FE based
method to simulate the tissue growth within scaffolds (Adachi
et al., 2006; Nasello et al., 2021). In this method, modelling the
neo-tissue generation within scaffolds was achieved by adding
elements on the scaffold surfaces according to the applied stress
in elements where the cells are located. Therefore, this voxel – FE
based method does not require mathematical functions for tissue
growth kinetics. However, this method is limited to simulate the
neo-tissue growth under mechanical stimulation only, and not
under static conditions.

OUTLOOK

This review provides an insight on how scaffold pore geometry
influences the micro-mechanical environment within scaffold
pores, i.e. the environment that cells are subjected to. This
information would allow researchers to estimate/quantify the
micro-mechanical environment according to the already
known pore geometry information, or to find a suitable pore
geometry according to the desirable micro-mechanical
environment to be applied. It also indicates which
computational technique could be used for modelling the
scaffold in each specific circumstance (e.g. under perfusion
flow/spinner flask/compression). So far, these investigations
are still in their infancy, in which a large number of scaffold
geometries need to be computationally modelled, from which
then the users can select suitable ones. A truly automatic
optimisation of the scaffold design would obviously involve a
much more rigorous approach involving search algorithms.
Considering the large number of variables involved, the
complexity of the design space, and the time-dependent
behaviour of the problem, classical optimisation procedures
are not well suited for this task. New techniques, such as an
AI-assisted design pipeline centred around the computational
methods/tools) could be used for addressing these limitations. To
establish an AI-assisted design pipeline, several steps are needed.
First, a generative computer-aided design method that can model
both periodic and stochastic scaffolds will be needed to greatly
enlarge the design space (Tang et al., 2020). These scaffolds with
complex biomimetic designs may possess enormous potential to
advance the performance of mimicking the in vivo condition.
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Second, model order reduction methods, which have been used
for designing additive manufacturing products (e.g. by Xiong
et al. (2019)) are needed to speed up the computer simulations,
such that large training sets become available. Third, a systematic
method to determine the relationship between multiple factors
(e.g. scaffold geometry parameters, mechanical properties of
scaffold material, chemical composition, cell attachment sites
etc.) during the experimental cell mechanobiology study are
needed for developing an AI-assisted design pipeline. To do
this, we suggest a combination of experimental methods (e.g.
adaptive sampling) and a data-driven modelling approach, which
will enable the application of more advanced tasks, such as multi-
task/purpose and active learning. After training, it then would be
possible to suggest an optimal scaffold for a specified set of
requirements with no or minimal additional computational
analyses.
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Towards in silico Models of the
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Fracture Healing
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1Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium, 2Prometheus: Division of Skeletal
Tissue Engineering, KU Leuven, Leuven, Belgium, 3Biomechanics Research Unit, GIGA in silico Medicine, University of Liège,
Liège, Belgium, 4Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium

In silico modeling is a powerful strategy to investigate the biological events occurring at
tissue, cellular and subcellular level during bone fracture healing. However, most current
models do not consider the impact of the inflammatory response on the later stages of
bone repair. Indeed, as initiator of the healing process, this early phase can alter the
regenerative outcome: if the inflammatory response is too strongly down- or upregulated,
the fracture can result in a non-union. This review covers the fundamental information on
fracture healing, in silicomodeling and experimental validation. It starts with a description of
the biology of fracture healing, paying particular attention to the inflammatory phase and its
cellular and subcellular components. We then discuss the current state-of-the-art
regarding in silico models of the immune response in different tissues as well as the
bone regeneration process at the later stages of fracture healing. Combining the
aforementioned biological and computational state-of-the-art, continuous, discrete and
hybrid modeling technologies are discussed in light of their suitability to capture adequately
the multiscale course of the inflammatory phase and its overall role in the healing outcome.
Both in the establishment of models as in their validation step, experimental data is
required. Hence, this review provides an overview of the different in vitro and in vivo set-ups
that can be used to quantify cell- and tissue-scale properties and provide necessary input
for model credibility assessment. In conclusion, this review aims to provide hands-on
guidance for scientists interested in building in silico models as an additional tool to
investigate the critical role of the inflammatory phase in bone regeneration.

Keywords: bone regeneration, fracture healing, inflammatory response, in silico modeling, multiscale approach,
experimental validation

1 INTRODUCTION

Bone healing is a complex, well-coordinated process that starts autonomously when a bone fracture
occurs. Bone fractures are one of the most common injuries and their incidence in Europe is expected
to increase by 23% over the coming decade due to ageing, as average life expectancy rises (Borgström
et al., 2020). Owing to the bone tissue characteristics, successful healing is usually achieved within
weeks (Marsh, 1998). However, up to 10% of bone fractures result in delayed healing or non-union
(Zura et al., 2016). This risk rate is influenced by anatomical location, fracture severity and host
factors such as age, smoking or the presence of comorbidities (Zura et al., 2016; Mills et al., 2017;
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Stewart, 2019). Current treatment options to prevent or cure
these incidences present many drawbacks. Autologous bone
grafting remains the gold standard procedure to treat non-
unions, but this technique has limitations such as significant
donor site morbidity and limited volume of available tissue (Pape
et al., 2010). Alternative approaches to support the healing
process, such as bone tissue engineering strategies, are still
being tested in clinical trials or under development (Amini
et al., 2012; Lammens et al., 2012; Papantoniou et al., 2021).
These approaches mainly target the skeletal system and the repair
phase of fracture healing, whereas recent findings have
demonstrated that the skeletal and immune system are closely
interacting through a carefully coordinated cross-talk between
inflammatory and bone forming cells. Hence, inflammatory cells,
such as macrophages, are believed to play a critical, but yet
incompletely understood role in bone healing (Schlundt et al.,
2018; Pajarinen et al., 2019).

In the last two decades, computational modeling has
developed into a powerful technique to complement and
reinforce traditional in vitro and in vivo experimentation, as it
can provide an integrated view of the many events happening
during the bone healing process and hence lead to a deeper
understanding of said process. Moreover, computational models
aim to reduce animal experimentation, although in vivo studies
are often still required for validation purposes. Despite the
importance of the inflammatory phase in bone fracture
healing (Könnecke et al., 2014; Loi et al., 2016; Schmidt-Bleek
et al., 2016), most computational models of bone regeneration
focus on the repair phase, ignoring inflammation and its impact
on the regenerative outcome. Therefore, modeling inflammation
is a necessary inclusion in the current state-of-the-art, as it will
allow to elucidate the mechanisms regulating the early phase of
bone healing and their effect on the final regenerative outcome.
This inclusion is not only needed, but it also starts now to be
possible, as an increasing amount of experimental data regarding
the inflammatory response is becoming available in the literature
(Könnecke et al., 2014; Kovach et al., 2015; Schlundt et al., 2018;
Wagar et al., 2018; Maruyama et al., 2020).

To date, despite the advances in the experimental work on the
inflammatory phase of bone healing, no in silicomodels exist that
capture the spatiotemporal dynamics of the process. In this
review, we bring together the necessary components required
to build a validated computational model able to predict the
inflammatory response in bone healing and study the interaction
of this phase with the subsequent phases of the healing process.
First, Section 2 describes the overall bone fracture healing process
with a strong focus on the inflammatory phase. Then, Section 3
revisits the current computational models describing the immune
and the skeletal system responses after an injury. Next, Section 4
presents an overview of the experimental techniques that can be
used throughout the development of computational models, from
calibration to validation. Finally, the concurrence of biology,
computational methods and experimental validation is
discussed in Section 5. Taken together, this review aims to
provide the necessary information and tools to build in silico
models, which can provide an additional perspective to study the
critical role of the inflammatory phase in bone regeneration.

2 THE BIOLOGY OF BONE FRACTURE
HEALING

Bones support the body, enable its mobility and protect vital
organs. Moreover, bones produce hematopoietic cells and
contribute to mineral storage within the bone marrow. Bone
tissue is highly dynamic: bones adapt themselves to changes in the
body, accommodating mechanical and biological requirements,
and are constantly renewed in a process of remodeling. However,
when stress and compression forces overcome bone tissue
tolerance, bone fracture occurs (Oryan et al., 2015) and the
process of fracture healing starts.

Bone fracture healing is described in Subsection 2.1.
Subsection 2.2 focuses in more detail on the inflammatory
response during fracture healing, paying special attention to
cellular activity, cytokines and mechano-regulation.

2.1 Bone Fracture Healing Process
Bone can regenerate autonomously without fibrous scar
formation after most cases of injury or fracture, eventually
restoring its original state. This healing capacity is orchestrated
by the complex fracture healing process, which involves multiple
different cell types and is regulated by several biochemical,
physical and mechanical factors (Einhorn, 1998). Depending
on the mechanical stability of the fracture, direct or indirect
healing will occur. Direct or primary fracture healing leads to
restoration of the bone through a remodeling process. However,
primary fracture healing is rather exceptional as it requires
complete stability at the fracture site (Marsell and Einhorn,
2011), which is typically not achieved (Perren, 2002; Harwood
et al., 2010; Claes et al., 2012). On the contrary, indirect or
secondary fracture healing, the most common form of fracture
healing (Marsell and Einhorn, 2011), is stimulated by
interfragmentary motion (Harwood et al., 2010; Claes et al.,
2012). In secondary fracture healing, bone repair advances via
a multi-staged process involving both intramembranous and
endochondral ossification (Loi et al., 2016), in which bone is
formed directly from mesenchymal tissue or from intermediate
cartilaginous tissue, respectively. However, high interfragmentary
motion inhibits bone healing progression (Claes et al., 2012),
resulting in compromised healing.

The classic phases of secondary fracture healing are
inflammation, repair and remodeling (Figure 1). This simple
classification is further elaborated in the contemporary literature,
where additional overlapping substages have been proposed:
hematoma formation, acute inflammation, granulation tissue
formation, angiogenesis, fibrous tissue formation,
fibrocartilage, soft callus development, cartilage mineralization,
hard callus development, and, finally, remodeling (Kolar et al.,
2010; Loi et al., 2016). Following Figure 1, these key events are
briefly described below.

Immediately after the trauma, the fracture hematoma is
formed due to the blood vessels disruption, which triggers the
blood coagulation cascade, thus creating a fibrin network. This
fibrin network serves as provisional extracellular matrix for the
influx of inflammatory cells as well as the progenitor cells from the
periosteum and the bonemarrow (Kolar et al., 2010; Loi et al., 2016).
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Although this phase of bone healing is mostly defined as the
invasion of inflammatory cells, the hematoma also contains
immune cells present in the blood released from the disrupted
vessels (Kolar et al., 2010). The healing process is then initiated
with the activation of neutrophils, monocytes and macrophages
(Kolar et al., 2010), leading to an acute inflammation reaction and
the release of growth factors and cytokines. The initial fracture
hematoma (Grundnes and Reikerås, 1993; Kolar et al., 2010) and
subsequent inflammatory response (Bastian et al., 2011; Claes
et al., 2012; Hoff et al., 2016) are critical for fracture healing
(Schlundt et al., 2015). The hematoma is cleared in several days by
the action of macrophages, which remove the fibrin matrix and
necrotic cells at the bone ends via phagocytosis (Loi et al., 2016).
A hypoxic environment remains within the fracture site, since
neovasculature has not been developed yet.

At the end of the inflammatory phase, granulation tissue
replaces the hematoma fibrin network due to the recruitment
and proliferation of skeletal progenitor cells (SPCs) and
fibroblasts (Harwood et al., 2010; Marsell and Einhorn, 2011).
Granulation tissue favors angiogenesis, which is the formation of
new blood vessels from pre-existing ones (Carano and Filvaroff,
2003). The vascularization process of the fracture site is promoted
with interfragmentary motion during the early stages of fracture
healing (Claes et al., 2012) and enhanced with angiogenic factors,

such as fibroblast growth factor (FGF), platelet-derived growth
factor (PDGF) or vascular endothelial growth factor (VEGF)
(Barnes et al., 1999; Carano and Filvaroff, 2003; Tsiridis et al.,
2007). Meanwhile, the hypoxic environment in the central region
of the fracture site induces the differentiation of SPCs into
chondrocytes (Tsiridis et al., 2007; Claes et al., 2012), starting
the repair phase. Chondrocytes produce cartilage to connect the
fractured bone ends, forming a soft callus that wraps the fracture
gap. The soft callus provides initial mechanical stability and
serves as scaffold for endochondral ossification during the
repair phase (Harwood et al., 2010; Marsell and Einhorn,
2011; Loi et al., 2016). At the same time, SPCs differentiate
into osteoblasts in the periosteal region away from the fracture
site, hence creating woven bone via intramembranous
ossification (Malizos and Papatheodorou, 2005; Claes et al.,
2012; Loi et al., 2016). Both ossification events are regulated
by growth factors, such as bone morphogenetic protein (BMP)
and transforming growth factor beta (TGF-β), which control
proliferation, differentiation and apoptosis of both chondrocytes
and osteoblasts (Barnes et al., 1999; Tsiridis et al., 2007). As soft
callus chondrocytes proliferate, they become hypertrophic and
secrete VEGF, generating the rightful environment to attract
blood vessels. Hypertrophic chondrocytes will finally undergo
apoptosis and blood vessels will recruit progenitor cells that will

FIGURE 1 | Bone fracture healing process. Timeline of secondary bone healing phases: inflammation, repair and remodeling. Tissue, cellular and subcellular levels
are represented. Inflammation (left): hematoma formation triggers the invasion of inflammatory cells (neutrophils, monocytes and macrophages) and the release of pro-
inflammatory (IL-1, IL-6, TNF-α) and anti-inflammatory (IL-4, IL-10, IL-11, IL-13) cytokines. Unactivated macrophages differentiate into classical (M1) and alternative (M2)
activated macrophages. Repair (center): revascularization (endothelial cells), soft callus formation (fibrocartilage) and subsequent hard callus formation (woven
bone) are regulated by repair cells (SPCs, fibroblasts, chondrocytes and osteoblasts) and growth factors (VEGF, FGF, BMP, TGF-β). Remodeling (right): restoration of
the bone original shape by osteoblasts, osteocytes and osteoclasts, regulated by RANKL/OPG balance. These three phases are not rigidly defined over the timeline but
overlap, as represented by the curves at the bottom of the image.
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differentiate into osteoblasts, leading to cartilage mineralization
and generating the hard callus (Marsell and Einhorn, 2011). The
formation of the hard callus entails the end of the repair phase of
bone healing, leaving a solid and mechanically rigid fracture site,
which has been revascularized and repopulated with bone cells.
This stage is reached within several weeks or even months after
the trauma (Loi et al., 2016) and generates the mechano-
biological conditions to initiate the process of bone remodeling.

The remodeling phase is the final stage of the bone healing
process and takes years to complete. Bone remodeling involves
the resorption of immature woven bone and underlying cartilage
matrix by osteoclasts, replacing these tissues with lamellar bone,
as well as the decay of osteoblasts, undergoing apoptosis, or their
maturation and embedding into the bone matrix as osteocytes.
The cellular functions of osteoclasts and osteoblasts are regulated
by cytokines such as receptor activator of nuclear factor kappa B
ligand (RANKL) and osteoprotegerin (OPG). While RANKL
promotes cell activation, differentiation and survival, OPG
inhibits cell activation and induces apoptosis (Steeve et al.,
2004; Tsiridis et al., 2007); leading to bone remodeling being
controlled by the RANKL/OPG ratio (Steeve et al., 2004). The
remodeling process establishes the osteon structure and
Haversian system of the bone, restoring the bone’s original
shape, strength and stability (Oryan et al., 2015; Loi et al., 2016).

2.2 Inflammatory Response to Bone
Fracture
The inflammatory response is the immediate reaction to a trauma
that starts when pathogenic agents enter the body due to a wound,
generating undesired living conditions for the injured organism
(Ward and Lentsch, 1999; Bastian et al., 2011; Loi et al., 2016). The
inflammatory response consists of an automated cascade of signals
that activates the innate immune system to contrast the invasion
(Osuka et al., 2014). Cells of the innate immune system can directly
attack the pathogen or trigger a second wave of signaling by
releasing specific factors that can support the response
(Stoecklein et al., 2012). Environmental conditions, such as
swelling and temperature increase, are generated within the
injured zone due to external attack encouraging a quicker
inflammatory response (Evans et al., 2015; Loi et al., 2016).

The inflammatory response has a primary role on the overall
bone healing process, and immune restricted patients are more
prone to experience impaired healing (Hoff et al., 2017). For
example, cytokines and growth factors released from
macrophages recruit SPCs, promoting their capacity to
colonize the fracture zone and differentiate, thus progressing
the healing (Loi et al., 2016). Slower completion of bone fracture
healing is observed in case of reduced influx of macrophages
(Alexander et al., 2011; Schlundt et al., 2018). However, a
continuously activated inflammatory response may incur a
chronic state, which is also detrimental to successful healing
(Osta et al., 2014). This chronic inflammatory fate was observed
in numerous cases of delayed bone healing, where the prolonged
exposition of the healing tissue to cytotoxic T cells extended the
pro-inflammatory stage to the detriment of a fast and successful
healing (Schmidt-Bleek et al., 2012). Adequate treatment of bone

fracture healing should therefore generate a balanced response
from the inflammatory stage. While it is known that the anti-
inflammatory environment generates the conditions for a
successful repair phase (Godwin et al., 2017), the prolonged
use of nonsteroidal anti-inflammatory drugs was observed
experimentally to alter the healing process (Lisowska et al.,
2018). Inflammation involves a large number of agents that
cooperate at different time and length scales to guarantee an
adequate response. In the following subsections, we will describe
the characteristics and functions of the principal immune cells
and cytokines that are involved in this process.

2.2.1 Cells of the Immune System
The cells involved in the inflammatory response can be divided
into two groups according to their belonging to the innate or
adaptive immune system (Medzhitov and Janeway, 1997). The
cells of the innate immune system, which include monocytes,
macrophages, neutrophils, natural killer cells and dendritic cells,
constantly monitor the organism and provide the first response to
the pathogens (Medzhitov and Janeway, 2000; Bouchery and
Harris, 2019). The adaptive immune system guarantees the
second pathogen-specific reaction and is mainly regulated by
the migration of T and B lymphocytes, also referred to as T and
B cells, within the infected region. This response is not immediate
and requires more time to process and enter into action.
However, the adaptive immune system can keep a copy of the
antigen to accelerate the response in case of a future attack from
the same pathogen. A full characterization of immune cells and
their role in the inflammatory response is beyond the scope of the
review and it is already well described elsewhere (Mosser and
Edwards, 2008; Chaplin, 2010).

Cells of both the innate and adaptive immune system are
present in the fracture site during the inflammatory stage of bone
healing (Baht et al., 2018). For example, circulating neutrophils
and monocytes migrate to the healing region in the first hours
after the injury (Hoff et al., 2016; Kovtun et al., 2016). Neutrophils
are the first cells to be recruited in the healing region to promote
the formation of the fibrin thrombus to stabilize the fracture
(Bastian et al., 2016). Monocytes circulate within the
bloodstream, ready to extravasate from the capillaries to the
surrounding tissues when the inflammatory response is
triggered (Maslin et al., 2005). In the bone healing scenario,
monocytes are also recruited from the bone marrow and they
invade the fracture region to clean it from debris and to
upregulate the pro-inflammatory response (Soltan et al., 2012).
Once in the fracture site, monocytes will turn into adherent cells
and differentiate into macrophages. The macrophages present
within the fracture gap in the early stage of the inflammatory
response are activated by the pro-inflammatory environment.
Traditionally, macrophages were described to be activated into
two states, named classically (M1) and alternatively (M2)
activated, depending on whether they promote or inhibit the
inflammatory response. Macrophage activation within the two
states is fundamental for the right course of the inflammatory
phase of bone healing. M1 macrophages regulate the initial pro-
inflammatory response and clean up the region from dead cells
and pathogenic agents through phagocytosis (Mescher, 2017).
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Additionally, they promote the recruitment of other pro-
inflammatory cells through the secretion of specific cytokines
(Gu et al., 2017). At the end of the inflammatory phase, the
macrophages differentiate into M2 macrophages, which
downregulate the inflammatory response to create the right
environment for the following repair phase. The release of
adequate anti-inflammatory cytokines provokes the
recruitment of repair cells, such as SPCs and fibroblasts, which
will start the rebuild of the fractured bone. The importance of the
role of macrophages as initiators of the repair phase has been
shown by Schlundt et al. (2018), who observed altered
endochondral ossification in cases where the macrophages
within the fracture site were depleted. Recently, experimental
work has shown that macrophage activation is rather like a
spectrum than a two-state system, with specific signatures
depending on the location within the spectrum (Mosser and
Edwards, 2008; Harasymowicz et al., 2021).

The adaptive response in fracture healing starts when T cells
sense the molecular signals released from the cells of the innate
immune system within the injury region. If the injury is
characterized by infection from an external pathogen, specific
antibodies are produced and released from B cells to accelerate
the neutralization of the threat. The adaptive response in fracture
healing follows a two-wave dynamics as it is observed to peak
both after the fracture and later during the cartilage
revascularization (Könnecke et al., 2014). Contrasting ideas are
reported on the role of the adaptive immune response on the
overall bone regeneration process: while fracture healing is
observed to be accelerated when the adaptive reaction is
suppressed (Toben et al., 2011), the positive effect of certain
categories of T cells on bone regeneration has been also reported
(Sadtler et al., 2016; Jahn and Weidinger, 2017). Furthermore, T
and B cells promote the differentiation and recruitment of
osteoclasts, which shift the balance of the later remodeling
phase to favor bone resorption over formation (Manabe et al.,
2001; Gillespie, 2007).

2.2.2 Cytokines
Besides cells, the inflammatory response is mediated at
subcellular level by molecular signals called cytokines.
Cytokines are small proteins released from the inflammatory
cells to regulate the inflammatory response, thus playing a role in
the correct development of the early stages of bone healing.
According to their ability to enhance or inhibit the
inflammatory response, cytokines are typically divided into
pro-inflammatory or anti-inflammatory, respectively.

Pro-inflammatory cytokines, such as interleukin 1 and 6 (IL-
1, IL-6) and tumor necrosis factor alpha (TNF-α), are observed
to peak their expression in the healing region within the first
24 h post-injury (Dimitriou et al., 2005). At subcellular level,
TNF-α regulates the correct development of the inflammatory
phase and, furthermore, it enhances the recruitment of SPCs to
initiate the subsequent repair stage (Karnes et al., 2015).

Anti-inflammatory cytokines, which include different
interleukins such as IL-4, IL-10, IL-11 and IL-13, are released
to reduce inflammation when the first wave of pro-inflammatory
response is over. Anti-inflammatory cytokines downregulate the

inflammatory response and prevent chronic inflammation, which
would be detrimental to fracture healing (Zhang and Yao, 2019).

2.2.3 Mechano-Regulation
Although cells and cytokines are the major biological regulators
of the inflammatory response in bone fracture healing, the
micromovement in the interfragmentary region also regulates
bone healing at cellular level. The early stage of bone healing is
particularly sensitive to changes in mechano-stimulation, hence
establishing an adequate mechanical environment at the injury
site is necessary from the beginning of the inflammatory phase
(Klein et al., 2003).

Monocytes, for example, express a stronger pro-inflammatory
response under shear or compressive loading (Fahy et al., 2019).
Mechano-regulation also affects the behavior of macrophages
during the inflammatory phase as tissue stiffness influences their
activation status, shape, mobility and phagocytic capacity
(McWhorter et al., 2013; Adams et al., 2019; Jain et al., 2019;
Gruber and Leifer, 2020). Elongation of macrophages under
influence of mechanical loading induces anti-inflammatory
activation and initiates the repair phase in the healing process
(McWhorter et al., 2013). Thus, adequate fracture mechanical
support is decisive to shape the macrophages and move from the
inflammatory to the repair phase (Ballotta et al., 2014).

3 IN SILICO MODELING

With the term in silico, scientists refer to the wide field of research
that benefits from the use of computer modeling and simulation
to investigate intricate and complex systems. This approach is
becoming established in the biomedical field, as an additional
resource to obtain a detailed understanding of the organism or its
individual components. The flexibility provided by the
computational approach favors the unveiling of aspects and
insights that would be otherwise challenging to monitor
experimentally. For this reason, the use of in silico clinical
trials in all stages of the research and development pipeline
has progressively gained more attention in the last decades
(Viceconti et al., 2016). One of the more recent applications of
in silico models is the execution of in silico clinical trials. In this
context, the use of in silicomodels (e.g. through the use of Monte
Carlo methods or the Bayesian approach) allows to quantify the
parametric uncertainty in large data sets obtained from the results
of the computational simulations. This is one way in which the
effect of population variation can be captured in silico. To date,
this approach is used by researchers to investigate the
mechanisms behind neuron activation (Marder and Taylor,
2011), action potential stimuli in cardiac cells (Britton et al.,
2013; Lawson et al., 2018), or mechanical properties of skeletal
muscles (Sierra et al., 2015), among others.

There is a wide range of in silico models available in the
literature to investigate different aspects of bone regeneration in
silico (see Doblaré et al., 2004; Giorgi et al., 2016; Borgiani et al.,
2017; Ghiasi et al., 2017 for recent reviews), but most of them
focus only on the repair and remodeling phases, thus ignoring the
inflammation phase. At the same time, many approaches
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modeling immune and inflammatory responses in other tissues
have been presented in the last two decades (see Section 3.2). The
inflammatory response is already a complex process to simulate
and, certainly, additional complexity arises when it is included in
the bone healing model, as interactions and processes at different
biological levels (tissue, cellular and subcellular) have to be
considered. Besides, there are different computational
approaches (continuous, discrete or hybrid) to model these
different levels over their relevant time and length scales. The
main characteristics of each approach are discussed in
Subsection 3.1 and illustrated in Figure 2A, in order to
elucidate which approach might be best to use depending on
the biological goal of the research. Next, an overview is provided
of the most relevant models to investigate the inflammatory
response (Subsection 3.2) and the bone regeneration process
(Subsection 3.3). In addition, Subsection 3.4 introduces the only
in silico model that is, to the best of the authors’ knowledge,
currently investigating the inflammatory response in bone
fracture healing.

3.1 In silico Approaches to Model Biological
Processes
There are different mathematical approaches to model a given
biological situation: deterministic or stochastic, continuous or

discrete over time and length scales, phenomenological or
mechanistic. The appropriate approach is determined by the
question that needs to be answered, the context of use, the
available data and the computational resources. Even then,
various models can produce qualitatively similar behavior
(Anderson and Chaplain, 1998; Alber et al., 2006). Since the
interest of an in silicomodel of the inflammatory response in bone
fracture healing lies in understanding the biological events
happening within the fracture region, we will focus here on
models that incorporate physiological processes. To build such
type of model, a common framework in mathematical biology is
the so-called compartmental model.

A compartmental model is a system with different
compartments and transitions between them (Figure 2B). In
Figure 2B, specific biological entities (chemical factors, cells and
extracellular matrices) have been assigned to one compartment
depending on their type and can interact with entities in other
compartments by transitions equipped with rates. As a result of
interacting compartments, a coupled system of conservation
equations is derived, in which each compartment is
represented by one equation. Transitions between
compartments represent biological processes such as
migration, differentiation or apoptosis. Rates often follow the
law of mass action and are modeled using rate formulations such
asMichaelis-Menten kinetics or the Hill function. If the biological

FIGURE 2 | In silico approaches to model the bone healing process and the inflammatory response. (A) Overview of in silico techniques to describe biological
processes and predict their different outcomes. The choice of the in silico model depends on the research goal. Continuous models are often used to describe general
dynamics at tissue and cellular scales, such as bonemechanics, in which different tissuematrices interplay (figure adapted fromWang and Yang, 2018). Discretemodels are
mostly used to represent individual behavior at (sub)cellular scales, such as the immune response, which comprises a high number of cells and cytokines. The hybrid
approach combines the advantages of both continuous and discrete techniques, providing comprehensivemultiscalemodels that allow to investigate, for instance, sprouting
angiogenesis during the bone regeneration process (figure obtained with the model described in Carlier et al., 2016). (B) Flow diagram summarizing the macrophage-
mediated inflammation in bone fracture healing described in Trejo et al. (2019). Cells are represented by squares: unactivatedmacrophages (M0), classical macrophages (M1),
alternative macrophages (M2), SPCs (cm) and osteoblasts (cb). Pro-inflammatory (c1) and anti-inflammatory (c2) cytokines are represented by circles. Tissue matrices are
represented by hexagons: fibrocartilage (mc) and woven bone (mb). Debris (D) is represented by a diamond. Adapted from Trejo et al. (2019).
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TABLE 1 |Overview of the biological agents and processes in bone fracture healing and the way they can be captured in silico in continuous-time or discrete-timemodels. In
keeping with the description in Section 3.1, the spatial scale (if present) is mentioned. Examples are provided of experimental setups to use during the calibration phase
of in silico models. Units of quantitative parameters that can be extracted from experiments are in squared brackets. For those experiments that lead to qualitative
observations, this is mentioned explicitly.

Type Activity Continuous-time models Discrete-time models Experimental techniques

Cells Random
motility

1) Fick’s second law, e.g. diffusion
coefficient estimated from molecular
weight or experimental dataa; 2)
Haptokinetic process, e.g. influenced
by total matrix density such that cells
cannot move in absence or abundance
of ECM densityb

Each agent moves in one of the empty
surrounding positions chosen randomly
by the algorithmi,j,m–q

Brightfield microscopy can quantify cell
migration in organ-on-chip systemsr [cell
velocity: distance/time]

Chemotaxis Receptor-ligand kinetics, e.g.
maximum chemotactic response at
certain growth factor concentrationc

The selection of the surrounding position
during migration is not random but it is
biased by the concentration of the
chemotactic factori,o,q

Organ-on-chip systems facilitate the
application of chemical gradientsr

[diffusion of the leading edge of
chemical: distance/time]

Haptotaxis Haptotactic process, e.g. based on a
kinetic analysis of a model mechanism
for the cell-surface-receptor-
extracellular-ligand binding dynamicsb

The selection of the surrounding position
during migration is not random but it is
biased according to the composition
and fiber orientation of ECMa,f,k

Organ-on-chip systems facilitate the
application of density gradientsr [binding
concentration: mass/volume]

Differentiation Concentration-dependent curve, e.g.
Hill function regulated by the
concentration of growth factorse or
oxygenf up to a saturation level

The agent changes its phenotype status
according to the surrounding
environmental conditionsj,n,q

Analysis of cell surfacemarkers (e.g. flow
cytometry) [% of positive cells], gene
expression profiles (e.g. qPCR and
RNA-seq) [fold change in gene
expression] and stainings (e.g. Alizarin
Red for osteogenic differentiation)s

[qualitative observation]

Polarization/
activation

Concentration-dependent curve, e.g.
Hill function regulated by the
concentration of cytokines up to a
saturation levelg

The agent changes its activation status
according to the surrounding
environmental conditionsi,m,o,p

Analysis of cell surfacemarkers (e.g. flow
cytometry) (% of positive cells) and gene
expression profiles (e.g. qPCR and
RNA-seq) (qualitative observation)t

Proliferation Fisher equation and logistic growth
function such that rate of cell division
decreases linearly with cell density, e.g.
regulated by ECM densityb or oxygen
tensiond

A proliferative agent creates a copy of
itself in one of the empty surrounding
positions chosen randomly by the
algorithmj,l–q

Proliferation assays based on DNA
synthesis (e.g. EdU assay) [% of
proliferating cells] or metabolic activity
(e.g. MTT assay) (arbitrary units)s

Apoptosis 1) Rate estimated from experimental
datae; 2) Concentration-dependent
curve, e.g. Hill function regulated by
oxygen tension up to a saturation leveld

The apoptotic agent is removed from the
modeli,j,l,m,o,p,q; nutrient-related survival
conditions are applied by increasing the
apoptosis ratio in undesired conditionsn

Depending on the apoptosis stage,
fluorimetric assays detecting mito-
chondrial degradation, caspase
activation or DNA fragmentation [% of
viable cells]

Senescence Cell differentiation as evolutionary
process, e.g. cells gain properties of
another cell type gradually over timeg

The senescent agent gradually reduces
its cellular activity to zero (not performing
actions, but not removed from the
model)

Staining of SA-β-gal [qualitative
observation]

Chemical agents
(cytokines, growth
factors, hormones, etc.)

Diffusion Fick’s second law, e.g. diffusion
coefficient estimated from molecular
weight or experimental dataa

Discretized Fick’s first law: the amount of
substance exchanged between two
adjacent patches is proportional to
concentration difference, diffusing from
patch of higher concentration to patch of
lower onei,p,q

The biomolecule distribution across an
hydrogel can be quantified with
immunoassays (e.g ELISA) [biomolecule
concentration: mass/volume]r

Production 1) Rate estimated from experimental
dataa; 2) Concentration-dependent
curve, e.g. Hill function to model a
threshold-like behaviore

Substance concentration increases in
function of the number of agents present
in the patch according to a defined
production ratioi,n,p,q

Immunoassays to quantify protein
synthesis (e.g. ELISA)u [biomolecule
concentration: mass/volume]

Consumption Michaelis-Menten kinetic law, e.g.
oxygen consumption by cellsh

Substance concentration decreases in
function of the number of agents present
in the patch according to a defined
consumption ratioq

Metabolites labeled with stable isotope
tracers (e.g glucose consumption or
fatty acid uptake) [normalized metabolite
consumption: molarity/(time · mass)]t

Denaturation Rate estimated from experimental dataa Substance decay within patch
decreases by following a time-
dependent exponential functioni,o,p,q

Biomolecule half-life estimation (e.g.
pulse-chase analysis for cellular
proteins) [time]

(Continued on following page)
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entities migrate either randomly or directed up to a gradient
(such as chemotaxis or haptotaxis), a diffusion term is considered
in the equation, providing a solution as function of time and
space. Additionally, density-dependent models include growth
dynamics by using e.g. a logistic-growth function (Murray, 1989).
More details about common principles to model biological
processes (in bone fracture healing) can be found in Table 1.
Compartmental models can be translated into deterministic or
stochastic models, using continuous- or discrete-time
approaches. In most cases, the solution of the resulting system
of equations is impossible to solve and represent using analytical
techniques and hence it is approximated with numerical
methods.

Continuous-time models use differential equations to describe
mechano-biological processes. Differential equation models,
whether ordinary (ODE), delay (DDE), partial (PDE) or
stochastic (SDE), imply a continuous overlap of generations
(Murray, 1989), thus describing the chronological time of
biological phenomena. ODEs often describe how spatial-
average biological entities change over time, simulating e.g.
inflammatory responses (Kumar et al., 2004; Reynolds et al.,
2006; Vodovotz et al., 2006; Trejo et al., 2019) or the bone healing
process (Trejo et al., 2019; Lo et al., 2020) at tissue and cellular
levels, and individual intracellular dynamics (Warrender et al.,
2006; Peiffer et al., 2011) at subcellular level. DDEs model
biological processes that not only depend on the current time,
but also on an earlier time; representing e.g. hematopoiesis
regulation (Mackey and Glass, 1977; Faria and Oliveira, 2020)
or inflammatory responses (Nagaraja et al., 2014). PDEs describe
the spatiotemporal evolution of biological entities, using e.g.
reaction-diffusion equations to model bone healing within the
fracture area (Bailón-Plaza and Van Der Meulen, 2001; Lacroix

and Prendergast, 2002; Gómez-Benito et al., 2005; Isaksson et al.,
2006; Geris et al., 2008 among others, see section 3.3) or
angiogenesis (Olsen et al., 1997; Anderson and Chaplain,
1998). SDEs introduce random parameters in the model and
are used to investigate e.g. bone remodeling (Sun et al., 2012; Jerez
et al., 2018). One main advantage of continuous-time models is
that they have been studied exhaustively in the last centuries,
leading to many well-known numerical methods to determine
their solutions, such as the finite element (FE) method
(Zienkiewicz et al., 1977, used e.g. in Zysset et al., 2013;
Coquim et al., 2018), the finite difference method (Liszka and
Orkisz, 1980, used e.g. in Nagatani et al., 2006) and the method of
lines (Hundsdorfer and Verwer, 2003, used e.g. in Geris et al.,
2008). Some main disadvantages are that they usually fail to
capture heterogeneous behaviors (Van Dyke Parunak et al., 1998;
Wilkinson, 2009) and that the incorporation of new biological
aspects is often not trivial (Yates et al., 2001; Fachada et al., 2007).

Discrete-time models use difference equations to study small-
scale biological processes at (sub)cellular levels. Difference
equations do not consider overlap between successive
generations as they are solved for each time increment, involving
an inherent delay to register changes (Murray, 1989). Discrete
models are characterized by a stochastic nature, allowing the
introduction of probabilistic rules, such as Monte Carlo methods
(Lux, 2018), to describe each biological entity with its own
properties and not as part of a population (Alber et al., 2006).
The most common discrete approaches in biomedicine are agent-
based (AB) and cellular automata (CA)models. ABmodels simulate
the behavior of agents that can evolve generation after generation by
changing their spatial position and internal properties. AB models
are typically used to investigate cellular dynamics in response to
environmental conditions, finding many applications in

TABLE 1 | (Continued) Overview of the biological agents and processes in bone fracture healing and the way they can be captured in silico in continuous-time or discrete-time
models. In keeping with the description in Section 3.1, the spatial scale (if present) is mentioned. Examples are provided of experimental setups to use during the calibration
phase of in silico models. Units of quantitative parameters that can be extracted from experiments are in squared brackets. For those experiments that lead to qualitative
observations, this is mentioned explicitly.

Type Activity Continuous-time models Discrete-time models Experimental techniques

Extracellular matrix Synthesis Rate estimated from experimental datab Matrix percentage increases within the
patch where the cell is localized
according to a synthesis ratioj,q

Cells/ECM growth can be evaluated with
a Live-Dead viability/cytotoxicity staining
[volume fraction: %]v

Degradation Rate estimated from experimental datab Matrix percentage decreases within the
patch where the cell is localized
according to degradation ratioq

Level of biomolecules associated to
degradation (e.g. hydroxyproline for
collagen matrix) [biomolecule
concentration: mass/volume]

Debris Phagocytosis Concentration-dependent curve, e.g.
Hill function to model engulfing rateg

Phagocytic agent reduces the debris
concentration within a defined radius of
actionl,o

Phagocytes culture (e.g. macrophages)
with cellular debris or pathogens
[cytokine concentration: mass/volume]w

Angiogenesis Vessel
formation

Migration (random and directed)a and
proliferationc of endothelial cells, finally
producing vascular matrix

Development of vasculature according
to tip endothelial cell movementa,f,k,n

Microscopy imaging, brightfieldx or
confocaly, of an endothelial cell
monolayer during sprouting [sprout
displacement: length

References: aAnderson and Chaplain (1998), bOlsen et al. (1997), cGeris et al. (2008), dCarlier et al. (2015), eBailón-Plaza and Van Der Meulen (2001), fCarlier et al. (2012), gTrejo et al.
(2019), hProkharau et al. (2012), iMi et al. (2007), jCheca et al. (2011), kPeiffer et al. (2011), lMartínez et al. (2012), mPennisi et al. (2013), nOReilly et al. (2016), oShi et al. (2016), p Gong et al.
(2017), qBorgiani et al. (2021), rMoreno-Arotzena et al. (2014), sGroeneveldt et al. (2020), tVats et al. (2006), uZhang et al. (2017), vGuyot et al. (2014), wFraser et al. (2009), xDel Amo et al.
(2016), yVaeyens et al. (2020), Abbreviations: SA-β-gal, senescence-associated β-galactosidase; ELISA, enzyme-linked immunosorbent assay; qPCR, quantitative polymerase chain
reaction; ECM, extracellular matrix; RNA-seq, RNA-sequencing.
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immunology (Martínez et al., 2012; Shi et al., 2016; Pappalardo
et al., 2020 among others, see section 3.2) and bone healing (Checa
et al., 2011; OReilly et al., 2016; Borgiani et al., 2019 among others,
see section 3.3). CA models are a subgroup of AB models, hence
they are often referred to as AB. However, while AB models are
more focused on the single agent behavior to explore its impact on
the overall scenario, the CA method is based on nearest-neighbor
interactions governed by phenomenological rules (Anderson and
Chaplain, 1998), meaning that interactions in CA models regard
only neighbor regions. CA models are typically used to describe
angiogenesis (Bentley et al., 2008; Peiffer et al., 2011; Carlier et al.,
2012). One advantage of discrete-time modeling is its capacity to
model each single element as an individual entity, allowing
heterogeneous behaviors (Van Dyke Parunak et al., 1998;
Wilkinson, 2009). Some main disadvantages are that the number
of unknown parameters is usually high, and these rely crucially on
the biological parameters obtained from experimental data
(Murray, 1989). This often entails a reduction of precision and
accuracy, resulting in model simplifications and approximations
(Shi et al., 2016).

Continuous and discrete models can complement each other
in hybrid models. In hybrid models, continuous- and discrete-
time approaches are coupled through input/output variables to
provide multiscale models describing mechano-biological
processes at tissue, cellular and/or subcellular levels. The most
common hybrid formulation in biomedicine couples a PDE
system of reaction-diffusion equations with AB or CA models
(Stéphanou and Volpert, 2016). The PDE system is often used to
capture biomechanical stimuli and tissue mechanical properties
(Checa et al., 2011; Zahedmanesh and Lally, 2012; Virgilio et al.,
2015; Ceresa et al., 2018), which regulate the spatial distribution
of cells modeled with an AB model. CA models are often used to
describe angiogenesis, and coupled to PDE systems describing the
spatiotemporal evolution of cells, tissue matrices and chemical
factors (Peiffer et al., 2011; Carlier et al., 2012). It is also common
to use continuous formulations to regulate the subcellular
behavior of individual cells within a discrete model. For
instance, ODEs regulating the intracellular behavior of
endothelial cells (Peiffer et al., 2011; Carlier et al., 2012) or
PDEs determining the molecular environment of individual
cells (Warrender et al., 2006). The reader is referred to
Stéphanou and Volpert (2016) for a review of hybrid
modeling in biology.

3.2 Modeling the Inflammatory Response
Computational models describing the immune response, also
known as computational immunology, can be broadly classified
into two groups: those describing generic inflammatory responses
after infection or trauma, and those simulating immune
responses in specific tissues. Most approaches of the former
group are continuous, whereas the latter are often simulated
using discrete or hybrid models. Starting with the models
describing generic inflammatory responses, Kumar et al.
(2004) proposed a three-equation ODE model to simulate a
simplified acute inflammatory response, able to predict healthy
and negative outcomes. This model describes the relationships
between the pathogen, which instigates the innate immune

response, and early and late pro-inflammatory mediators
(Kumar et al., 2004). Reynolds et al. (2006) considered three
subsystems for different biological situations (non-specific local
immune response, resting phagocytes and activated phagocytes)
and merged them into a four-equation ODEmodel describing the
generic acute inflammatory response to a pathogen. A bifurcation
analysis of the model identified when the outcome was
compromised depending on the administration of anti-
inflammatory mediators (Reynolds et al., 2006). In the same
year, Vodovotz et al. (2006) introduced a more elaborate
mathematical model to simulate a non-specific acute
inflammatory response after trauma, infection or hemorrhagic
shock. This ODE system described the dynamics of cells and
cytokines and included the effect of tissue dysfunction,
coagulation elements and blood pressure. In addition, it was
the first model validated with animal and human experimental
data (Vodovotz et al., 2006). Almost a decade later, Nagaraja et al.
(2014) presented a comprehensive mathematical model to
represent the local inflammation process in a wound and
characterize the indicators triggering chronic inflammation.
This model was validated with experimental data and
consisted of fifteen ODEs and one DDE: the ODEs described
inflammatory cells, cytokines and growth factors, whereas the
DDE represented monocyte differentiation into pro-
inflammatory macrophages, driven by chemotaxis with a 12 h
delay (Nagaraja et al., 2014).

Within in silico models of tissue-specific immune responses,
the popularity of AB methods is clear (Fachada et al., 2007; Shi
et al., 2016). Several AB models of the immune system can be
found in the literature, together with a large variety of simulators
to develop them. Some models are implemented in custom AB
simulators, such as ImmSim (Celada and Seiden, 1992; Seiden
and Celada, 1992) and UISS (Pappalardo et al., 2010), whereas
other models use generic open-source simulators that allow for
the implementation of AB models such as NetLogo (Mi et al.,
2007; Brown et al., 2011; Pennisi et al., 2013; Shi et al., 2016).
ImmSim was the first AB model and framework to simulate the
immune system, focusing on the processing of antigens and their
effects on the different cell types (Celada and Seiden, 1992; Seiden
and Celada, 1992; Fachada et al., 2007). Mi et al. (2007) presented
an AB model focused on the interrelation between inflammation
and skin wound healing in a physical domain. Skin injury and the
subsequent inflammatory response were simulated to examine
the general healing progression in terms of cells and cytokines
dynamics. Brown et al. (2011) described a model of inflammation
simulating the response of macrophages and fibroblasts to
particulate exposure in the lung, as well as their interactions
within the simulated environment, such that cytokines
production, tissue damage and collagen deposition are
represented. Martínez et al. (2012) developed a model of
macrophage action on endocrine pancreas, focused on
modeling the activation of the innate immune system upon
stimulation by necrotic or apoptotic cell death in the first step
of type 1 diabetes autoimmune response. Wendelsdorf et al.
(2012) designed the ENISI simulator to represent mucosal
inflammatory and regulatory immune pathways in the gut. Shi
et al. (2016) proposed an integrated-mathematical-AB model to
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simulate the hepatic inflammatory response to Salmonella
infection in mouse, which might cause a severe immune
response and result in sepsis. Pennisi et al. (2013) and
Pappalardo et al. (2020) investigated the cause of chronic
inflammation in relapsing remitting multiple sclerosis using
AB techniques. This framework was further developed into the
Universal Immune System Simulator (UISS), which is now also
used to investigate immunotherapy in cancer (Gianì et al., 2018)
and the development of vaccines for Tuberculosis (Russo et al.,
2020b) and Sars-Cov2 (Russo et al., 2020a).

Warrender et al. (2006) described a hybrid model of early
Mycobacterium infection, the causative agent of tuberculosis, and
the subsequent inflammatory response using a simulator called
CyCells. With this approach, cells are represented explicitly and
extracellular molecular components are represented by their
concentration. More recently, Ceresa et al. (2018) presented a
multiscale model coupling FE and AB techniques to simulate the
immunological and biomechanical implications of emphysema,
one of the major obstructive lung diseases. This model provided a
detailed description of inflammation and tissue remodeling, since
the AB part was based on existing ODE models of inflammation
and immunological response and the FE part captured the
biomechanical effects of repeated strain on the biological tissue
(Ceresa et al., 2018).

3.3 Modeling the Repair and Remodeling
Phases in Bone Healing
The use of computer models to simulate bone healing can be
dated back to Carter et al. (1988), who investigated in silico the
role of intermittent stress on the revascularization and tissue
differentiation processes in the initial stages of bone healing. In
the following years, many other studies exploited the
computational power to study the mechano-regulation of the
bone healing process (Prendergast et al., 1997; Carter and
Beaupré, 1998; Claes and Heigele, 1999; Bailón-Plaza and Van
Der Meulen, 2003; Isaksson et al., 2006; Geris et al., 2010; Checa
et al., 2011; Burke and Kelly, 2012; Vetter et al., 2012; Borgiani
et al., 2015;Wang and Yang, 2018). Another common application
of computational methods is the simulation of the
revascularization process on bone healing to highlight the role
of angiogenesis and relative oxygen supply on disrupted tissues
(Geris et al., 2008; Peiffer et al., 2011; Carlier et al., 2012; Carlier
et al., 2015; OReilly et al., 2016). Moreover, different in silico
models have been developed to investigate critical healing
therapeutic strategies, such as the use of bone graft with a
scaffold support (Perier-Metz et al., 2020), the transplant of
stem cells (Geris et al., 2010; Carlier et al., 2016) or the
provision of exogenous growth factors (Moore et al., 2014;
Ribeiro et al., 2015) within the healing region. Different
biomechanical studies employed in silico approaches to
evaluate the impact of fracture stabilization (Gómez-Benito
et al., 2006), gap size (Gómez-Benito et al., 2005) and nature
of mechanical stimuli (Epari et al., 2006; García-Aznar et al.,
2007; Steiner et al., 2013).

Most of the aforementioned studies use FE analyses to
reproduce the mechanical environment (e.g. stress/strain

distribution, tissue mechanical properties, bone density) within
the injury. However, to date, many studies in this field started to
additionally employ AB models to acquire a different point of
view on the investigation of the mechano-biological relationships
driving bone fracture healing. The supporting AB models are
commonly employed to simulate the dynamics of repair cells
(Byrne et al., 2011; Checa et al., 2011; Borgiani et al., 2019, 2021)
and angiogenesis (Peiffer et al., 2011; Carlier et al., 2012; OReilly
et al., 2016). Carlier et al. (2012) developed the hybrid MOSAIC
model to simulate sprouting angiogenesis in a discrete
environment. The behavior of the discrete endothelial cells
was regulated by their protein levels and their relationship
with cells, tissue and growth factors present in the global
continuous environment. The multiscale model from Checa
et al. (2011) investigated the inter-species differences in bone
fracture healing between small and large animals within a
mechano-regulated environment. They used an AB model to
simulate how the spatial distribution of specialized bone repair
cells (microenvironment) is regulated according to the
mechanical stimulus predicted with FE (macroenvironment).
Multiscale in silico modeling is a successful approach to
explore the bone healing process at the levels of tissues, cells
and subcellular agents by simulating their response to mechano-
biological stimuli.

3.4 First Model of the Inflammatory
Response in Bone Healing
The in silico studies of the repair and remodeling phases reported
in the previous section do not include the simulation of the early
stages of bone fracture healing, thus ignoring the role of the
inflammatory response. Inflammation is characterized by
numerous actors whose role in the overall scenario is worthy
to be investigated. However, due to its complex nature, the
inflammatory response to bone injury has been rarely
simulated with a computer model. To the best of the authors’
knowledge, only one in silico model describing the inflammatory
response in bone fracture healing has been reported in the
literature. The model was first introduced by Kojouharov et al.
(2017) and further updated within the same research group by
Trejo et al. (2019).

Kojouharov et al. (2017) developed an eight-equation ODE
model to simulate the temporal dynamics of debris, cells,
cytokines and tissues from the first hours post-fracture,
capturing the interaction between biological elements acting at
multiple levels. Debris removal was modeled with a constant rate
depending on the debris and macrophage densities, while the
macrophages density depended on migration and emigration
rates. The concentration of pro- and anti-inflammatory
cytokines was simulated using Hill functions to capture a
saturation effect, which depended on the concentration of
debris and macrophages and of SPCs, respectively. Finally, the
dynamics of SPCs, osteoblasts, fibrocartilage and woven bone was
described as in Bailón-Plaza and Van Der Meulen (2001). The
model simulated the biological time-dynamics in different case
scenarios, highlighting the influence of a controlled cytokine
concentration level as treatment to obtain an overall successful
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healing. Moreover, the model was employed to propose cytokine-
based treatment in challenging healing conditions. For example,
the model showed faster acceleration when an optimized dose of
anti-inflammatory cytokines was administered at the beginning
of the healing process.

Two years later, Trejo et al. (2019) incorporated two additional
equations to simulate the distinction between classical and
alternatively activated macrophages, and the ODE system was
adapted accordingly (Figure 2B). Other biological processes were
upgraded as well, the most relevant being debris removal,
modeled now by a Hill function to represent the saturation of
phagocytosis by macrophages, and macrophages migration,
described now by a logistic growth function. The updated
model allowed to analyze the role of macrophage activation
status in the inflammatory phase to generate a successful
signaling cascade initiating the subsequent repair phase. The
model endorsed macrophages as promoters of tissue
production during healing, giving further merit of this
enhancement to the alternatively activated ones (M2).
However, no spatial distribution of the different biological
agents was modeled, as only temporal evolutions were
reported as results.

The spatiotemporal evolution is of upmost importance to
further explore the dynamics of all the involved actors during
the progress of the inflammatory response, as it represents the
heterogeneous distributions within the region of interest. For
example, one hypothesis would be that macrophage migration to

the fracture zone will initially have a bigger impact in the
peripheral area and less effect in the central area, generating
different spatial dynamics in the healing process. Therefore, we
believe that the next generation of in silico fracture healing
models should include both temporal and spatial evolution of
the densities and concentrations of the different biological agents
related to the inflammation phase. Moreover, many experimental
studies investigate the immune response nowadays, as presented
in Section 4. The incorporation of the spatial description in silico
would allow a stronger validation of the future computational
models investigating bone fracture healing from the initial
inflammatory response to the later remodeling phase.

4 EXPERIMENTAL VALIDATION OF IN
SILICO MODELS

Experimental techniques are continuously evolving to study the
inflammatory response on multiple scales, ranging from micro-
scale in vitro systems to large in vivo animal models. These results
provide important information also in view of validating the
predictive capacity of bone healing in silico models. Each
modeling technique has its unique advantages and provides
essential information about the inflammatory process
(Figure 3A). In vitro models allow the culture of human cells
in a controlled environment outside of living organisms, although
they are poorly suited for long-term studies. Moreover, in vitro

FIGURE 3 | Validation of in silicomodels of the inflammatory response in bone healing. (A) Summary of in vitro and in vivo experimental techniques to validate the
predictive capacity of in silicomodels. The choice of the experimental model depends whether the validation regards a specificmechanism or the global response. In vitro
models investigate single biological mechanisms, such as the chemoattractant effect of inflammatory markers or specific cell types. In vivomodels evaluate the effects of
individual factors, such as the depletion of a cell type, on the complete biological response. (B) Experimental techniques for the validation of in silicomodels can be
broadly divided into cell and tissue-scale techniques. The former validate in silicomodels of molecular mechanisms regulating cell function and models of cell migration
dynamics. The latter validate in silico models of the repair and remodeling phase, by quantifying bone histomorphometric parameters, and models describing cellular
composition in the fracture site.
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models may fail in recapitulating a clinically relevant
environment due to the absence of all factors present in vivo
(Boussommier-Calleja et al., 2016), which motivates the use of
animal models. The resemblance of the human biological
environment is the reason why in vivo models are an absolute
requirement for translational studies of human immunology
(Wagar et al., 2018). However, biological mechanisms may
differ between animal models and humans (Mestas and
Hughes, 2004).

Hereafter, both traditional and advanced in vitro and in vivo
systems to model the inflammatory response in bone healing are
discussed in Subsection 4.1 and Subsection 4.2, respectively. In
Subsection 4.3 we describe different assays to extract both
qualitative and quantitative data for the validation of in silico
predictive models.

4.1 In vitro Models of the Inflammatory
Response in Bone Healing
4.1.1 Source of Inflammatory Cells
Human blood is the most frequently used source of immune cells
for in vitro experiments since peripheral blood samples are easy to
obtain. Immune cells with a single nucleus can be isolated from
the whole peripheral blood by density centrifugation (Dagur and
McCoy, 2015). These cells, named peripheral blood mononuclear
cells (PBMCs), are a heterogeneous cell population mainly
composed of lymphocytes and monocytes. Lymphoid cells
account for 85% of all human PBMCs and consist of T cells
(∼60%), B cells (∼10%) and natural killer (NK) cells (∼10%).
Monocytes constitute around 15% of the total PBMCs count,
while other cell types, such as dendritic cells, are less than 1%
(Bittersohl and Steimer, 2016).

In general, in vitro experiments study specific cellular
functions and require the isolation of single cell types. While
monocytes are traditionally isolated from the rest of PBMCs and
differentiated into macrophages by cell adhesion to tissue culture
plastic (Rios et al., 2017), every cell type in PBMCs can be
separated by labeling with magnetic beads. Immunomagnetic
cell separation consists of binding magnetic beads to cell surface
antigens using specific antibodies (Plouffe et al., 2015). The
characteristic surface molecules, named cluster of
differentiation (CD) molecules, of each PBMC type are
known: CD3+ for T cells, CD22+ for B cells, CD56+/CD16+ for
NK cells and CD14+ for monocytes (Bittersohl and Steimer,
2016).

Although human PBMCs are routinely used to answer
fundamental questions about the immune cell functions, their
choice has some drawbacks. First, immunomagnetic cell
separation requires expensive reagents, such as antibodies.
Secondly, in vitro results obtained from primary human cells
are affected by natural immune variations between individuals,
which is related to genetic variations, environmental exposure
and aging (Patin et al., 2018). A variable immune response is
crucial in the context of patient-specific models of the immune
response, but it might obscure the effects related to the
mechanisms under investigation. Therefore, in search of a
stable phenotype, human cell lines are an attractive solution

for many in vitro experiments aiming to validate in silico
models. As an example, THP-1 is an established monocytic
cell line isolated from a patient affected by acute monocytic
leukaemia (Tsuchiya et al., 1980). Compared to human
primary monocytes, THP-1 cells can be cultured in vitro for
an almost indefinite time, while maintaining monocytic
characteristics. On top of that, there is limited genetic
variation between THP-1 cells, thus their phenotype is stable
during culture. Nevertheless, the polarization profile of THP-1
cells does not coincide with the one of primary monocytes
isolated from PBMCs. It is suggested to use THP-1 cells to
validate in silico models involving phagocytosis and M1
activation (Shiratori et al., 2017).

4.1.2 Mono-Culture vs. Co-Culture
Single immune cell types have been extensively investigated in
traditional mono-culture systems such as tissue culture plastics.
Macrophages, for example, are routinely derived frommonocytes
and activated using standard activators, such as IL-4, IL-10, TGF-
β, interferon gamma (IFN-γ) and lipopolysaccharide (LPS). Each
standard activator, or their combination, is associated with a
specific activation state within theM1-M2 spectrum, identified by
specific markers (Murray et al., 2014). Once isolated and seeded
on well plates, macrophages can be used as models of the
inflammatory response and as phagocytosis assay (Fraser et al.,
2009; Westman et al., 2020). As for the in vitro mono-culture of
SPCs, well plates are routinely used to culture cells and evaluate
properties such as cellular proliferation, differentiation,
metabolism and senescence following standard protocols
(Groeneveldt et al., 2020). Co-culture systems study the
interaction between the immune cells and SPCs to model the
inflammatory response in bone healing. Traditional co-culture
systems consist of both direct co-culture, where cells are in direct
contact with each other on cell culture plastics, and indirect co-
culture, where transwell inserts are added to culture plates to keep
the two cell types separated from each other (Goers et al., 2014).
By tuning the pore size of the transwell insert, indirect co-culture
models were employed to study the paracrine cell-cell signaling
(pore size 0.4 μm, Zhang et al., 2017) or the chemoattractant
effect of immune cells on SPCs (pore size 8 μm, Anton et al.,
2012). Recent reviews discuss in vitro models of the interaction
between SPCs and T cells (Kovach et al., 2015) or macrophages
(Maruyama et al., 2020), as well as their implications for bone
healing.

4.1.3 Advanced in vitro Models
Besides traditional cell culture plastics, novel in vitro systems enable
higher control of the culture environment and cellular interaction.
Recent developments of the organ-on-chip technology provide
confined engineered microenvironments where biochemical and
physical stimuli can be finely tuned over space and time (Zhang
et al., 2018). By changing the culture chambers design, organ-on-
chips can incorporate multiple cell types cultured both in 2D, as the
endothelial monolayer (Del Amo et al., 2016), or in 3D, as cells
embedded in a hydrogel (Nasello et al., 2020). The optical
transparency of organ-on-chip devices facilitates live cell imaging
and monitoring. Compared to traditional transwell inserts, organ-
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on-chips provide a more physiological environment to study the
transendothelial migration of inflammatory cells (Han et al., 2012)
and the recruitment of SPCs (Eng et al., 2013). In addition, these
systems facilitate the application of both chemical (Moreno-
Arotzena et al., 2014) and mechanical cues (Middleton et al.,
2017) during culture (Occhetta et al., 2019). Therefore, the
combination of inflammation-on-chip (Irimia and Wang, 2018)
and bone-on-chip (Nasello et al., 2021) would offer a unique
alternative to validate in silico models of bone healing by
replicating key cellular and environmental interactions of the
inflammatory phase.

4.2 In vivo Models
Despite ethical concerns, validation with animal models is still an
essential step for any preclinical study of both the immune system
(Wagar et al., 2018) and the bone repair process (Mills and
Simpson, 2012; Lammens et al., 2021). Based on the size, in vivo
models are generally divided into small and large animals. Their
use depends on the biological process under investigation and the
translational stage of the study (Figure 3A). Here, we discuss the
most common small and large animal models used when focusing
on the role of the immune system in bone fracture healing. The
main results are commented from the modeler’s perspective, in
view of creating in silico counterparts of these studies. When
modelers retrospectively collect data from animal studies to
estimate input parameters, they should be aware of the
physiological differences between anatomical regions of the
skeleton. Besides differences in developmental origins,
structural variations in bone composition and direct changes
in the biomechanical environment (Cointry et al., 2016), there are
regional specializations in cellular composition and
differentiation potential. For example, the differentiation
potential of skeletal progenitor cells varies between different
anatomical sites both in small and large animals (Groeneveldt
et al., 2020; Sivaraj et al., 2021).

4.2.1 Small Animal Models
Murine models are widely used to study human diseases and
physiology. Despite the differences in the immune system
(Mestas and Hughes, 2004) and in the fracture healing process
(Haffner-Luntzer et al., 2016) of rodents and humans, murine
models can provide clinically relevant results. For instance,
murine models were used to validate the clinical observation
that fracture healing rate is correlated to higher levels of CD8+

T cells in the peripheral blood (Reinke et al., 2013). By depleting
or introducing CD8+ T cells in a mouse model, the authors
observed that fracture regeneration was enhanced or impaired,
respectively. Therefore, when modeling the immune effect on
bone healing, the levels of CD8+ T cells in peripheral blood might
be used as a marker of the patient-specific immune reactivity
(Reinke et al., 2013).

As for the murine model choice, conventional mouse inbred
strains are commonly used since animals share an almost identical
genotype, thus leading to higher consistency in the experimental
results (Wagar et al., 2018). The lack of genetic variability between
individuals is the reason why researchers prefer inbred strains to
investigate the fundamental effects of the inflammatory response

during fracture healing. The depletion of specific immune cell types,
such asmacrophages (Schlundt et al., 2018) and T cells (Reinke et al.,
2013), was assessed in the mouse inbred strain named C57BL/6N.
Moreover, the same inbred strain was used to demonstrate that T
and B cells invade the fracture site during the inflammatory phase
and the callus mineralization (Könnecke et al., 2014).

4.2.2 Large Animal Models
Large animal models are the most realistic experimental models
of human biology and therefore an essential pre-clinical step in
translational research (Ribitsch et al., 2020). While nonhuman
primates are the most representative model of the human
immune system (Wagar et al., 2018), pigs and sheep are
normally used to model bone repair since their bone anatomy,
mineral composition, regeneration capacity and biomechanical
properties are relatively similar to human’s (Sparks et al., 2020).
Moreover, compared to mice, their immune system is closer to
the human one (Lüthje et al., 2018). As a consequence, pigs and
sheep are the first choices as large animal models of the
inflammatory response in bone fracture healing.

Compared to small animal models, the biological responses of
large animal models are more heterogeneous. While small animal
models mostly provide mechanistic insights, such as the effect of
depleting a specific cell type, research using large animal models
tends to explore the complete biological response and the effects
on the entire organism, namely the systemic effects. An in vivo
study on pigs showed temporal differences in the upregulation of
pro-inflammatory cytokines at the fracture site and in the
peripheral blood (Horst et al., 2015). Therefore, the validation
of in silico models using the cytokine levels in blood as input is
intrinsically related to a large animal study.

Another key advantage of using large animal models is the
possibility to apply clinically relevant mechanical loads to the
fracture site. Schmidt-Bleek et al. (2012) showed that mechanical
loads delaying bone healing corresponded to a higher presence of
T cells in the fracture site, a prolonged inflammatory signaling in
the periosteum and reduced angiogenesis. Hence, large animal
models should be chosen to assess the interplay between the
immune system, bone repair and mechanical loads.

4.3 Laboratory Techniques for Experimental
Evaluation
Experimental cell-scale techniques can validate in silico models
describing cellular functions and their response to external
stimuli. Therefore, this subsection discusses the quantification
of molecular mechanisms behind cell processes which could be
applied to both in vitro and in vivo experiments. Additionally, live
imaging techniques are discussed to calibrate cell invasion
parameters with in vitro migration assays.

As for extracting tissue-level information, standard imaging
methods consist of micro-computer tomography (micro-CT),
histology and immunohistochemistry. While their use in
preclinical models of bone defects has been recently described
elsewhere (Sparks et al., 2020), the present subsection shows
examples of tissue-level data extracted from images that could
validate in silico models.
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4.3.1 Cell-Scale Techniques
The structural and functional characterization of biological
molecules belongs to the scientific fields named omics. To
explore cellular processes in bone biology, omics technologies
characterize, among others, DNA modifications (epigenomics),
RNA transcriptions (transcriptomics), protein synthesis
(proteomics) and metabolic activity (metabolomics) (Reppe
et al., 2017). Transcriptomics, proteomics and metabolomics
provide a direct measure of cell survival, proliferation,
differentiation and phenotype (Calciolari and Donos, 2020).
Therefore, omics technologies can validate in silico models of
bone healing by coupling cellular function to tissue adaptation
(Figure 3B).

Regarding transcriptomics, RNA sequencing (RNA-seq)
technologies measure whole transcriptomes, thus they
simultaneously analyze the gene expression profile of thousands
of genes (Stark et al., 2019; Calciolari and Donos, 2020). When
applied to fracture healing, RNA-seq revealed differences in gene
expression associated to skeletal and vascular formation between
two mice strains, which was correlated to differences in
endochondral bone formation (Grimes et al., 2011). Full and
stress fractures revealed different transcriptional profiles during
repair, with higher expression of inflammatory and immune-
related genes in full fractures (Coates et al., 2019). In addition,
RNA-seq can measure the dynamic changes in the transcriptome.
For example, RNA-seq showed that bone marrow stromal cells
upregulate pro-inflammatory gene expression during aging,
supporting the hypothesis of a regulatory effect on
hematopoietic stem cells (Helbling et al., 2019).

As for proteomics, multiplex immunoassays use specific
detection antibodies to measure the level of target proteins.
Therefore, immunoassays can quantify a large set of
inflammatory cytokines from serum or hematoma samples
(Horst et al., 2015), as well as cytokines and osteogenic factors
synthesized by macrophages and osteoprogenitor cells in vitro
(Zhang et al., 2017). Another analytical tool in proteomics is mass
spectrometry, which can be used to evaluate the protein
composition of the SPC secretome and its variation in a pro-
inflammatory environment (Maffioli et al., 2017).

Concerning metabolomics, cell metabolism is continuously
altered in bone healing (Loeffler et al., 2018) and experimental
techniques can measure both the metabolites produced and the
metabolic pathway activities. Glucose and lactate levels are
routinely measured in cell culture media, while glucose
consumption and lactate secretion can be calculated by
comparison with the unspent medium. An increase in glucose
uptake and lactate secretion is associated with the M1
macrophages (Galván-Peña and O’Neill, 2014), but their direct
calculation from the cell culture media cannot be related to the
specific metabolic pathway producing lactate from glucose.
Variations in metabolite levels in the media might be related
to faster uptake or lower secretion, rather than to a switch in the
metabolic routes. To quantify the activity of each metabolic
pathway, glucose is labeled with isotope tracers and
incorporated radioactivity is measured. Therefore, isotope
tracing reveals differences in glucose uptake for M1 and M2
macrophages (Vats et al., 2006).

It is important to mention that traditional omics technologies
consist of analyzing the bulk sample, meaning that the quantified
data refers to the whole cell population or tissue. Therefore, bulk
omics technologies lose the information regarding RNA
transcription, protein synthesis and metabolic activity of
individual cells. To maintain the biological information of
individual cells, novel advances in the omics field separate and
analyze single cells from the population (Barh and Azevedo,
2019). For example, high-throughput techniques for RNA-seq
allow to measure the whole transcriptome of single cells (scRNA-
seq) (Goodwin et al., 2016). By using multiplexed and parallel
detection systems, scRNA-seq is generating data that can be used
to construct cell atlases from animal and human tissues, both
from pathological and physiological conditions (Camp et al.,
2018). Although the majority of scRNA-seq methods do not
preserve the spatial information of transcriptomic data, novel
methods are arising to first localize cells in tissue sections and
then sequence RNA (Camp et al., 2018). It is clear that the
calibration and validation of in silico models, especially discrete
models, would benefit from cell atlases reporting the variations of
the transcriptome in bone fractures over space and time.

Besides omics technologies to quantify the molecular
mechanisms, migration assays are relevant experimental
techniques to measure cell-scale parameters in bone healing. For
instance, cell culture inserts can assess SPC migration in vitro and
already quantified higher migration capacity under inflammatory
conditions (Anton et al., 2012). However, the in vitro environment of
a cell culture insert does not represent the 3D extracellular matrix in
which cells are embedded in vivo. In search of a more representative
structural and biological environment, organ-on-chip systems offer
confined 3D culture chambers to monitor the migration of
inflammatory and osteoprogenitor cells throughout the
experiment (Del Amo et al., 2018; Irimia and Wang, 2018). By
tuning themicrostructural properties in the culture chamber, such as
using fibrin or collagen hydrogels, the organ-on-chip can mimic the
different extracellular matrices during bone repair. By changing the
cell types and themechano-chemical stimuli in the device, the organ-
on-chip can selectively identify the role of different factors in cell
migration. Therefore, in silicomodelers can use cell migration assays
in organ-on-chips both to calibrate and validate their predictions.

4.3.2 Tissue-Scale Techniques
Experimental methods to evaluate bone repair at tissue level are
widely applied to animal studies and they mostly rely on imaging
techniques. Imaging techniques provide qualitative and
quantitative information about the analyzed tissue, thus they
can validate bone healing in silico models (Figure 3B). For
example, micro-CT provides metric and non-metric
parameters of the bone tissue, such as the mineral density of
the bone matrix and trabecular morphology (Müller, 2009).
Micro-CT imaging has been applied recently for the non-
invasive monitoring of fracture healing in mice. By registering
time-lapsed scans of the fracture, micro-CT facilitates the
assessment of bone parameters throughout the healing process,
without altering the callus properties (Wehrle et al., 2019). This
imaging technique has already been coupled to FE models of the
mechanical in vivo environment, as it substantially contributed to
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the creation of a personalized bone regeneration model (Tourolle
né Betts et al., 2020). Moreover, the combination of micro-CT
images and FE models reveals the influence of mechanics on the
processes of bone formation and resorption (Birkhold et al.,
2014), which can be used to validate in silico models of bone
adaptation (Schulte et al., 2013).

While micro-CT imaging allows to quantify the newly formed
mineralized tissue, histological sections provide
histomorphological parameters of the regenerated bone. The
histomorphometrical analysis of the Movat Pentachrome
staining quantifies the relative area of bone marrow and
connective, cartilaginous and osseous tissue (Schlundt et al.,
2018). Additionally, immunohistochemical analyses can be
used to stain specific cells in a tissue and quantify their
density, thus they can identify the different cell types within
the fracture site. The output of immunohistochemical analyses is
the fraction of the target cell type, such as CD8+ T cells, M1
macrophages or osteoblasts, in the stained section (Wendler et al.,
2019).

5 TOWARDS THE NEXT GENERATION OF
BONE HEALING IN SILICO MODELS

Considering all the computational models of bone healing that
have been developed in the last years, it is surprising that almost
none of them describe the early inflammatory phase. As the
initiator of the bone healing process, inflammation has a
considerable impact in the later stages of bone repair: if the
inflammatory response is too strongly down- or upregulated, the
fracture can result in non-union. To our knowledge, only one in
silico model of the inflammatory response in bone healing was
developed, which captured the effect of pro- and anti-
inflammatory pathways on the healing outcome (Kojouharov
et al., 2017; Trejo et al., 2019). Although this model laid a strong
foundation within the field of computational bone fracture
healing, it still has limitations, among them the lack of spatial
distribution of cells and cytokines within the healing region.
Therefore, this review aims to guide the design and the validation
of the next generation of bone fracture healing in silico models,
which will include the inflammatory phase.

The biological problem was initially defined by exploring the
process of bone healing, with particular attention to the
inflammatory phase and its cellular and subcellular
components. The inflammatory reaction after bone fracture is
a highly complex process, as there is an interplay between
different levels (tissue, cellular and subcellular) and systems
(musculoskeletal and immune). However, while the mechano-
biological activities at cellular and subcellular levels are usually
challenging to investigate experimentally, the in silico approach
can be employed to unveil the hidden events happening at
different time and length scales. Following the current trend of
developing hybrid multiscale models (Checa et al., 2011; Carlier
et al., 2012; Ceresa et al., 2018; Borgiani et al., 2019) to integrate
individual (sub)cellular contributions to tissue dynamics, it seems
straightforward that the computational research of the
inflammatory phase in bone healing should take advantage

from similar methodologies. Hybrid multiscale models benefit
from both continuous models, which capture the mechano-
regulation of tissue and cellular dynamics, and discrete
models, which describe the stochastic interactions at cellular
and subcellular level occurring during the immune response.

At the current state-of-the-art, numerous in silico models of
the inflammatory response for different organ systems have been
developed within the field of computational immunology (see
Subsection 3.2). Since the inflammatory response always tends to
follow an analogous cascade of events, these in silico models
generate the basis to simulate the inflammatory phase in bone
healing. Within computational immunology there is a clear
preference to use discrete approaches, such as agent-based
models or cellular automata, to represent the stochasticity of
the immune system. Discrete models can capture better the
cascade of cells and subcellular factors that characterize the
inflammatory response in bone healing at different time and
length scales. However, continuous algorithms capture the
dynamics of tissue formation during the subsequent repair and
remodeling phases. The development of a comprehensive model
that can simulate the mechano-regulation of tissues and the
dynamics of large cell populations, while accounting for the
probabilistic rules dominating the biological events at
subcellular level, requires the combination of continuous and
discrete models. For this reason, we believe that the next
generation of in silico bone healing models will rely on hybrid
approaches to include inflammatory regulation.

In order to guarantee the credibility of in silico models results
in a clearly defined context of use, verification, validation and
uncertainty quantification analysis (VVUQ) (ASME, 2018;
Parvinian et al., 2019) are essential. Verification ensures the
accuracy of the model implementation and validation confirms
the correspondence between simulation results and experimental
reality. The correspondence between computational outputs and
physical reality is intrinsically related to in vitro and in vivo
experiments; as the in silicomodeling of biological processes, like
the ones listed in Table 1, requires thorough parameter
estimation. Computational modelers should take advantage of
different experimental setups able to provide data for the time
and length scales simulated. Table 1 presents a proposal to
validate certain biological activities happening during the bone
healing process using in vitro techniques to replicate specific
biological mechanisms in a laboratory, thus providing
quantitative data to estimate model parameters. In general,
in vitro models and multi-omics approaches can validate in
silico models describing signaling pathways involved in cell
fate decision or the response of different cell types under
external cues. Therefore, in vitro models and omics
approaches are highly recommended for the validation of
discrete computational models simulating biological events at
cellular or subcellular levels. In vivo models and imaging
techniques are more suitable to validate continuous or hybrid
in silicomodels describing the biological response at higher scales,
such as histomorphometrical parameters or tissue mineralization.
As a result, multiscale or hybrid models covering different time
and length scales might require both in vitro and in vivo models,
as well as both cell and tissue level experimental techniques, for
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their validation. Furthermore, in vitro experimental studies are
performed to calibrate in silico models during their design. The
possibility to isolate single biological mechanisms in vitro and
introduce them as calibrated parameters within the in silico
model allows to simulate behaviors that resemble the ones
observed experimentally and investigate their role in the
overall outcome of the simulation. The impact of each
parameter on the simulation can be quantified with
uncertainty quantification methods.

Uncertainty quantification is tested with sensitivity analyses
using e.g. Design of Experiments (DOE) or Machine Learning
approaches (Mehrian et al., 2018) to assess whether the uncertainty
in model assumptions and parameter values does not lead to non-
physiological results. The use of these methodologies to investigate
and evaluate the inference of the different parameters can result in
valuable information about the most realistic values to describe
mechano-biological events. For instance, Isaksson et al. (2008)
used DOE to evaluate the significance of multiple factors in bone
fracture healing. Parametric uncertainty was addressed by
evaluating the outcome of different experiments (simulations, as
the study was performed in silico) characterized by organized
combinations of parametric values assigned to the factors that
describe the bone fracture healing process at cellular level (Isaksson
et al., 2008). Another class of optimization techniques is the one
used by Steiner et al. (2013), namely evolutionary computation.
They calibrated their in silico model by using the Particle Swarm
Optimization (PSO) method to achieve the optimal
characterization of the mechanical properties of the tissues in a
bone fracture healing scenario. The PSO algorithm evaluated
combinations of parameters equally distributed in a stochastic
way to find the best combination to describe the tissue mechanics
(Steiner et al., 2013).Machine Learning techniques can also be used
to evaluate the best value fitting of specific parameters or to
categorize certain outputs. An Artificial Neural Network was
used by Cilla et al. (2017) to evaluate the geometrical features
for the design of a patient-specific short-stem hip implant to

contrast the mechanical side effect of prosthetic stress-shielding
(Cilla et al., 2017).

The inflammatory response in bone fracture healing has a
noteworthy complexity, but in silicomodels help us to understand
the principles regulating the diverse events occurring at tissue,
cellular and subcellular level. Certainly, the experimental
validation of such in silico models is mandatory if we aim to
go from bench to bedside. With this review, we aimed to highlight
the potential of using multiscale in silico approaches to tackle
bone healing intricacy. Based on the current state-of-the-art, we
conclude that hybrid models are particularly suited to simulate
adequately the multiscale course of events of the inflammatory
phase and its overall role in the healing outcome.We furthermore
described possible in vitro and in vivo methodologies that can be
employed to experimentally calibrate the parametric description
of the in silico model during its development and, afterwards, to
validate the computational results and support their bench to bed
transition. We believe that the next generation of in silicomodels
of bone regeneration should account for inflammatory events to
guarantee a more realistic investigation of the process, favoring its
employment within a clinical context.
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Fiber Rearrangement and Matrix
Compression in Soft Tissues:
Multiscale Hypoelasticity and
Application to Tendon
Claire Morin1*, Christian Hellmich2, Zeineb Nejim1 and Stéphane Avril 1,2

1Mines Saint-Etienne, Univ. Lyon, Univ. JeanMonnet, INSERM, U1059 Sainbiose, Centre CIS, Saint-Etienne, France, 2Institute for
Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Vienna, Austria

It is widely accepted that the nonlinear macroscopic mechanical behavior of soft tissue is
governed by fiber straightening and re-orientation. Here, we provide a quantitative
assessment of this phenomenon, by means of a continuum micromechanics
approach. Given the negligibly small bending stiffness of crimped fibers, the latter are
represented through a number of hypoelastic straight fiber phases with different
orientations, being embedded into a hypoelastic matrix phase. The corresponding
representative volume element (RVE) hosting these phases is subjected to
“macroscopic” strain rates, which are downscaled to fiber and matrix strain rates on
the one hand, and to fiber spins on the other hand. This gives quantitative access to the
fiber decrimping (or straightening) phenomenon under non-affine conditions, i.e. in the
case where the fiber orientations cannot be simply linked to the macroscopic strain state.
In the case of tendinous tissue, such an RVE relates to the fascicle material with 50 μm
characteristic length, made up of crimped collagen bundles and a gel-type matrix in-
between. The fascicles themselves act as parallel fibers in a similar matrix at the scale of a
tissue-related RVE with 500 μmcharacteristic length. As evidenced by a sensitivity analysis
and confirmed by various mechanical tests, it is the initial crimping angle which drives both
the degree of straightening and the shape of themacroscopic stress-strain curve, while the
final linear portion of this curve depends almost exclusively on the collagen bundle
elasticity. Our model also reveals the mechanical cooperation of the tissue’s key
microstructural components: while the fibers carry tensile forces, the matrices undergo
hydrostatic pressure.

Keywords: multiscale hypoelasticity, micromechanics, homogenized stiffness, fiber decrimping, scale-dependent
strain

1 INTRODUCTION

With the advent of mechanobiology (Van der Meulen and Huiskes, 2002), it has been widely
accepted that the behavior of cells and tissues is not only governed by genetic and chemical, but also
by mechanical stimuli, such as mechanical stress (“force per area” typically expressed through
Cauchy’s stress tensor) or mechanical strain (“length and angle changes,”mathematically expressed
by any strain measure of the Seth-Hill family (Seth, 1962, 1966; Hill, 1968; Farahani and Naghdabadi,
2000), including the Green-Lagrange strain tensor representing “engineering strain” and the
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logarithmic strain tensor representing “true strain”). However,
observing the mechanical stimuli may turn out as tricky, as they
strongly depend on the length scale on which they are defined, i.e.
on the size of the relevant areas and lengths. Hence, it is advisable
to quantify the mechanical environment directly felt by the
biological cells. By example, the oscillating hydrostatic pore
pressure in bone stimulates osteoblasts and osteocytes (Klein-
Nulend et al., 1995). These cell types, in turn, regulate tissue
metabolism, i.e. the apposition of new bone tissue, or the
resorption of old bone tissue, thereby changing the tissue
morphology, in particular so the vascular porosity (Pastrama
et al., 2018). This is the classical epitome of a mechanobiological
process: mechanics-driven tissue regulation.

At the same time, there exists a more direct and even more
profound type of mechanics-driven changes in tissue
morphology, not even involving explicit cellular activities: the
fiber reorientation and recruitment processes occurring in soft
tissues (Lake et al., 2009; Gusachenko et al., 2012), with the
aforementioned fibers being embedded in a gel-type substance
(Weiss and Gardiner, 2001). These processes, in general, cannot
be traced back to macroscopic deformations measured at the
tissue scale (i.e. that of hundreds of micrometers in the case of
tendons or arteries), but they are inherently linked to the
mechanical environment of the fibers themselves, and of the
soft gel-type matrix in-between theses fibers. Still, the fiber re-
orientation and recruitment processes do not involve any explicit
cellular activity, but merely the reaction of the hierarchically
organized microstructure to mechanical forces. However, this
reaction is a truly complex one, having challenged biomaterial
mechanicians for decades now. In this context, a major challenge
lies in the proper choice of a suitable deformation measure itself.
The widely used Green-Lagrange strain tensor links any energetic
state of the material microstructure to its initial configuration
(Holzapfel et al., 2000), and corresponding material behaviors are
often classified as “affine” (Gasser et al., 2006; Li et al., 2018), with
interesting ranges of applicability (Holzapfel et al., 2002,
Holzapfel et al., 2005; Kiousis et al., 2009; Pierce et al., 2010).
Still, various experimental data on stress-strain behavior of soft
tissues cannot be represented as explicit functions of the Green-
Lagrange strain tensor (Criscione et al., 2003a; Criscione et al.,
2003b) - this highlights the limitations of macroscopic
hyperelasticity. As a remedy, Freed and coworkers (Freed,
2008, Freed, 2009, Freed, 2010; Freed et al., 2010; Freed and
Einstein, 2012) proposed the use of macroscopic hypoelasticity
for soft tissues: then objective, i.e. observer-independent, rates of
macroscopic stress and strain tensors are linked to each other.
The hypoelasticity concept was introduced by Truesdell (1955),
and triggered intensive discussions (Bernstein, 1960b; Bernstein,
1960a; Xiao et al., 1997) on the integrability of relationships
between stress and strain rates into either Cauchy-elasticity
(where the Cauchy stress is a function of the deformation
gradient) or Green-elasticity (also called hyperelasticity -
where strain energy function depends on the Green-Lagrange
strain tensor). As a rule, both Cauchy-elasticity and Green-
elasticity turned out as special cases of hypoelasticity (Noll,
1955; Xiao et al., 1999), so that the physical nature of the
latter remained somewhat open at that point in time. A major

step forward was taken by Rajagopal and co-workers since 2003,
by resorting to the thermodynamic definition of elasticity, i.e. to
mechanical stress-driven, dissipation-free deformations
(Rajagopal, 2003, Rajagopal, 2007; Rajagopal and Srinivasa,
2007, Rajagopal and Srinivasa, 2009; Rajagopal, 2011). They
identified a class of non-dissipative, non-hyperelastic material
models - with the hypoelastic models just being a subclass of
those. As it was already the case in (Morin et al., 2018), this
thermodynamic perspective on hypoelasticity is a major
theoretical ingredient of the present paper. While being
assured of the absence of any type of dissipation, this
modeling approach does without the deformation gradient or
the Green-Lagrange strain tensor. Accordingly, the current
material behavior exclusively depends on the “here and now”,
without any reference to the initial configuration.

Driving this philosophy to the next level of refinement, Morin
et al. (2018) introduced hypoelasticity already at the
microstructural level, thereby adopting an objective,
thermodynamically consistent formulation based on the Gibbs
potential (Rajagopal and Srinivasa, 2009, Rajagopal and Srinivasa,
2011): Strain rate and stress average rules (Hashin, 1983; Zaoui,
2002) arising from kinematic compatibility and mechanical
equilibrium of material volumes representing soft tissue
microstructures, together with Eshelby’s matrix-inclusion
problem reformulated for velocity gradients (Morin et al.,
2018), allowed for translating fiber deformations and re-
orientations into macroscopically non-affine material behavior,
in line with experimental observations (Goulam Houssen et al.,
2011; Screen et al., 2004b; Gupta et al., 2010; Jayyosi et al., 2017;
Krasny et al., 2017, Krasny et al., 2018). The present contribution
tackles the next logical step: elucidating the nature of the
associated macroscopic stiffness linking macroscopic Eulerian
strain rates and objective stress rates; and hence, allowing for the
establishment of hierarchical multiscale models, where the
“macroscopic” stiffness properties arising from the
homogenization over one (smaller) representative volume
element (RVE) enter as (microstructural) phase properties
within yet another (larger) RVE. At the same time, the
micromechanical formulation allows for downscaling the
strains subjected to an RVE, not only to fiber strains and re-
orientations, but also to matrix strains. This allows for the
detection of “unusual” material behavior, such as matrix
compression under an overall uniaxial tensile stress state
applied to the RVE. Accordingly, the paper is organized as
follows: First, a continuum micromechanics framework for
evolving elastic microstructures under large strains is
established, with the following key ingredients: a representative
volume element (RVE) obeying the scale separation principle and
being subjected to homogeneous strain rate boundary conditions,
thermodynamically consistent hypoelastic constitutive laws at the
phase level; and matrix-inhomogeneity problems used for
hypoelasticity upscaling (see Section 2). The following steps
are then taken by example of tendinous tissue: After
describing an algorithm for a hierarchical two-step
homogenization scheme (see Section 3), micromechanical
model results are presented in terms of sensitivity analyses
and predictions of experimentally observed stress-strain
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relations, together with corresponding fiber re-orientations, fiber
stretches, matrix stresses, and overall transverse stretches (see
Section 4). The paper is concluded by a Discussion (see Section 5).

2 CONTINUUM MICROMECHANICS OF
EVOLVING ELASTIC MICROSTRUCTURES
UNDERGOING LARGE STRAINS

2.1 Kinematics and Equilibrium
Continuum micromechanics provides estimates for the
“homogenized” constitutive behavior of materials, from
geometrical and mechanical information associated to their
microstructures. Accordingly, these materials are considered to
be, at the same time, micro-heterogeneous and macro-
homogeneous. In this context, the material is seen as the matter
filling a so-called representative volume element (RVE) of volume

Ω, which satisfies the separation of scales principle, reading as (Hill,
1963; Drugan and Willis, 1996; Zaoui, 1997, Zaoui, 2002):

d≪ ℓ≪L (1)

whereby d, ℓ, and L are respectively the characteristic lengths of
the (micro-)heterogeneities, of the RVE, and of the structure built
up by this material or of the loading applied to this structure. The
latter “structural length” may be quantified through the spatial
fluctuations of the macroscopic stresses Σ assigned to the
macroscopic material points making up the structure,
according to (Auriault et al., 2009);

L � ‖Σ‖
‖zΣ/zX ‖ (2)

withX as the position vector labeling macroscopic material points
within the given structure, e.g. within the considered organ.

Next, we adopt a statistical description of the microstructural
morphology found within the RVE, in terms of homogeneous
subdomains with given shape, volume fraction, and mechanical
properties. These subdomains are called the material phases and
provide an approximate description of the RVE. For the present
case, illustrated in Figure 1, we consider Nf cylindrical phases
with a length-to-diameter ratio going to infinity. These phases
represent fibers (with volume fraction fr, r � 1, . . ., Nf), and they
are embedded into a soft matrix phase, with volume fraction
fm � 1 − ∑Nf

r�1fr. The fiber orientations are quantified in terms of
two Euler angles θ and ϕ, which define a local spherical
coordinate system attached to the cylinder, as seen in Figure 2.

On the surface zΩ of the RVE, the macroscopic strain rate is
prescribed in terms of a microscopic velocity field v , reading
mathematically as (Hashin, 1983; Morin et al., 2018):

∀x ∈ zΩ: v x( ) � D · x (3)

with x as the microscopic location vector, zΩ as the external
boundary of the RVE with volume Ω, v as the prescribed velocity
field, andD as the (Eulerian) macroscopic strain rate associated to
macroscopic pointX - a dependency which we will not explicitly
indicate in the following developments, in order to keep the
notation relatively compact. At the same time, we emphasize that
D is independent of the microscopic location vector x (hence,
Eq. 3 is referred to as “homogeneous boundary conditions”). We
let the microscopic velocity field prescribed at the RVE’s boundary
induce a continuous and differentiable velocity field v inside the
RVE; and we express the corresponding velocity gradient in terms
of strain rate and spin tensor fields, in accordance with their
customary definitions as the symmetric and the skew-symmetric
parts of the velocity gradient (Salençon, 2001):

∀x ∈ Ω: d x( ) � 1
2

z v

z x
x( ) + z v

z x
[ ]

T

x( )⎛⎝ ⎞⎠ (4)

∀x ∈ Ω: ω x( ) � 1
2

z v

z x
x( ) − z v

z x
[ ]

T

x( )⎛⎝ ⎞⎠ (5)

The local spin and strain rates give access to the evolution of
arbitrarily chosen local base vectors e attached to microscopic
material points, via (Salençon, 2001):

FIGURE 1 | Representative volume element with characteristic length ℓ,
subjected to homogeneous boundary conditions in terms of a microscopic
velocity field arising from one macroscopic strain rate.

FIGURE 2 | Definition of the local reference system e r , e θ , e ϕ associated
with a specific fiber phase; and associated Euler angles θ and ϕ.
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_e x( ) � d x( ) + ω x( )[ ] · e x( ) (6)

with the dot operator referring to the time derivative.
The microscopic definitions of the Eulerian strain rate and

spin, Eqs 4, 5, together with the homogeneous strain rate
boundary condition Eq. 3, entail the following average rules
(Hashin, 1983; Morin et al., 2018):

1
Ω∫Ω

d x( ) dΩ � 〈d〉 � ∑
Nf

r�1
frdr + fmdm � D, (7)

1
Ω∫

Ω
ω x( ) dΩ � 〈ω〉 � ∑

Nf

r�1
frωr + fmωm � 0, (8)

whereby the angular bracket notation 〈·〉 denotes the spatial
average over the volume of the RVE; dr and ωr are the averages
of d andω overΩr, the volume of the r-th fiber phase, while dm and
ωm are the averages of d and ω over Ωm, the volume of the matrix
phase. Moreover, the microscopic strain rates are considered to
generate microscopic traction forces t at the boundary of the RVE
and microscopic Cauchy stresses σ within the RVE. All these force
quantities are equilibrated, which mathematically reads as:

∀ x ∈ Ω: div σ(x ) � 0
∀ x ∈ zΩ: t x( ) � σ x( ) · n x( ) (9)

with div as the divergence operator and n as the outward normal
to the boundary at location x . The volume-normalized power of
the external (traction) forces on the RVE, referred to in the sequel
as external power density pext, reads as (Morin et al., 2017):

pext � 1
Ω∫

zΩ
t x( ) · v x( ) dS

� 1
Ω∫zΩ

D · x( ) · σ x( ) · n x( )[ ]dS
� D: 1

Ω∫
Ω
σ x( ) dΩ (10)

where use of the strain rate boundary condition Eq. 3 and of the
equilibrium conditions Eq. 9 was made. Equation 10 induces a
force quantity performing power (density) on the macroscopic
strain rate D, namely the macroscopic Cauchy stress Σ:

pext � Σ: D5 Σ � 1
Ω∫Ω

σ x( ) dΩ � ∑
Nf

r�1
frσr + fmσm � 〈σ〉,

(11)

with σr and σm as the averages of σ over Ωr and Ωm,
respectively. For the forthcoming developments, it is useful
to consider all stress tensors appearing in Eq. 11 as being
expressed in terms of components with respect to a fixed base
frame e 1, e 2, e 3, see Figure 1, with indices written as
superscripts,

∀r ∈ {1, ‥, Nf,m}: σr � ∑3
i�1

∑3
j�1

σ ijr e i ⊗ e j

Σ � ∑3
i�1

∑3
j�1

Σij e i ⊗ e j

(12)

and then derive these components with respect to time, yielding a
stress rate component average law of the format

∀{i, j} ∈ {1, 2, 3}2: ∑
Nf

r�1
fr _σ

ij
r + fm _σ ijm � _Σij

(13)

2.2 Hypoelasticity
The matrix phase and the Nf different fiber phases making up the
RVE exhibit a hypoelastic constitutive behavior (Truesdell, 1955).
In more detail, the microscopic strain rate tensor d is linked to an
objective rate of the microscopic stress tensor σ△. For the sake of
simplicity (Morin et al., 2018), we here choose the Jaumann rate,
reading mathematically as (Jaumann, 1911; Szabó and Balla, 1989)

σ△ � _σ + σ · ω − ω · σ (14)

since alternative, yet mathematically more laborious objective rates
deliver, as a rule, very similar results (Morin et al., 2018). The link
between strain and stress rate follows from the requirement of zero
dissipation for elastic processes, which, when written as function of
the Gibbs free energy per unit mass, Gρ(σ), reads as (Rajagopal and
Srinivasa, 2009, Rajagopal and Srinivasa, 2011; Morin et al., 2018):

D � σ: d − σ: ρ
z2Gρ

zσzσ
( ): σ△ � 0 (15)

implying the following expression for the strain rate;

d � ρ
z2Gρ

zσzσ
: σ△ (16)

Equation 16 can be recast into the form originally given by
Truesdell (1955):

σ△ � C: d (17)

with the microscopic hypoelasticity (or stiffness) tensor being
derived from the microscopic Gibbs free energy as:

C � ρ
z2Gρ

zσzσ
( )

−1
(18)

Considering homogeneous stiffness properties across the Nf

fiber phases and the matrix phase,

∀r ∈ {1, ‥, Nf}: Cr � 〈C〉Ωr

Cm � 〈C〉Ωm

(19)

we arrive at the following hypoelastic phase behavior:

∀r ∈ {1, ‥, Nf}: σ△
r � Cr: dr

_σm � Cm: dm
(20)

whereby we anticipated the vanishing spin of the matrix phase,
ωm � 0, which, when specifying Eq. (14) for the matrix phase,
yields:

σ△
m � _σm (21)

2.3 Upscaling Hypoelasticity
The question arises of how to upscale the microscopic hypoelastic
law Eq. 17 to the macroscopic level, i.e. to a relation linking
macroscopic stress and strain measures. As a first step in this
direction, we extend the reasoning of Zaoui (2002), by observing
the linearity of the differential Equations 9, 17, which, together
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with boundary condition Eq. 3, imply a multi-linear relation
between the macroscopic and microscopic strain rates:

∀r ∈ {1, ‥, Nf}: dr � Ar: D
dm � Am: D

(22)

with Ar and Am as the fourth-order strain rate concentration
tensors associated with the r-th fiber phase and with the matrix
phase, respectively. The aforementioned linearity implies the
existence of a similar relation for the spin, reading as:

∀r ∈ {1, ‥, Nf}: ωr � Rr: D (23)

with Rr as the fourth-order strain rate-to-spin concentration
tensor associated with the r-th fiber phase.

Following again the tradition of continuum micromechanics
(Zaoui, 2002), the mechanical interactions within the RVE
depicted in Figure 1 are estimated by coupling a number of
matrix-inhomogeneity problems in the sense of the famous paper
of Eshelby (1957). Accordingly, the strain rate and strain rate-to-
spin concentration tensors are estimated by means of a Mori-
Tanaka scheme (Mori and Tanaka, 1973; Benveniste, 1987),
following a strategy given in greater detail in (Morin et al., 2018):

∀r ∈ {1, ‥, Nf} : Ar � A
∞
r : ∑

Nf

i�1
fiA

∞
i + fmA

∞
m

⎡⎢⎣ ⎤⎥⎦
−1

∀r ∈ {1, ‥, Nf} : Rr � R∞
r : ∑

Nf

j�1
fjA

∞
j + fmA

∞
m

⎡⎢⎢⎣ ⎤⎥⎥⎦
−1

with ∀r ∈ {1, ‥, Nf} : A
∞
r � I + Pr : Cr − Cm( )[ ]−1

∀r ∈ {1, ‥, Nf} :
R∞

r � −REsh
r : C−1

m : I + Cr − Cm( ): Pr[ ]−1: Cr − Cm( ) (24)

In Eq. 24, the following physical quantities are introduced: I is the
fourth-order unity tensor, Pr � SEshr : C−1

m is the Hill tensor of the r-th
fiber phase. SEshr is the classical Eshelby tensor: within an infinite 3D
domain exhibiting the elastic properties of the matrix, this fourth-
order tensor relates an eigenstrain rate acting on an inclusion
representing the r-th fiber phase, with the corresponding total
strain rates in that inclusion. REsh

r is an Eshelby-like tensor
extending Eshelby’s original ideas towards spins: it relates an
eigenstrain rate acting on an inclusion representing the r-th fiber
phase with the corresponding spin of that inclusion. In a base frame
e r, e θ, e ϕ, being aligned with the direction of the r-th fiber phase, see
Figure 2, the non-zero components of the aforementioned tensors
read as (Eshelby, 1957; Morin et al., 2018):

SEshθθθθ � SEshϕϕϕϕ �
5 − 4]m
8(1 − ]m)

SEshθθϕϕ � SEshϕϕθθ �
−1 + 4]m
8(1 − ]m)

SEshθθrr � SEshϕϕrr �
]m

2(1 − ]m)
SEshϕrϕr � SEshrϕrϕ � SEshrϕϕr � SEshϕrrϕ � SEshrθrθ � SEshθrθr � SEshθrrθ � SEshrθθr �

1
4

SEshθϕθϕ � SEshϕθϕθ � SEshϕθθϕ � SEshθϕϕθ �
3 − 4]m
8(1 − ]m)

(25)

REsh
θrrθ � REsh

ϕrrϕ � REsh
θrθr � REsh

ϕrϕr � −1
4

REsh
rθrθ � REsh

rϕrϕ � REsh
rθθr � REsh

rϕϕr �
1
4

(26)

where ]m � −(C−1
m )θθϕϕ/(C−1

m )θθθθ refers to the elastic Poisson’s
ratio of the isotropic matrix into which the fiber phase
oriented in direction e r is embedded. The strain
concentration tensor of the matrix phase, Am, follows from
evaluation of Eq. 241 and Eq. 243 for r � m, yielding in
particular A∞

m � I. It is also helpful to evaluate Eq. 244 for r �
m, yielding R∞

m � Rm � 0, a result which we have already
anticipated in Eqs 20, 21.

Inserting the two concentration relations Eq. 21 and Eq. 23, as
well as the Jaumann rate Eq. 14, into the constitutive relation
Eq. 17, yields a relation which links the microscopic phase-
specific stress tensor components with respect to a fixed base
at the current time instant, to both the macroscopic strain
rate tensor and the microscopic stresses themselves. This
reads mathematically as:

∀r ∈ {1, ‥, Nf} : _σr � Cr: Ar: D − σr · Rr: D( ) + Rr: D( ) · σr

_σm� Cm: Am: D (27)

It is useful and illustrative to recast the expression Eq. 27 in index
notation (with the indices being written as superscripts):

∀{i, j} ∈ {1, 2, 3}2:
∀r ∈ {1, ‥, Nf} : _σ ijr � cijklr Alkmn

r − σ ikr R
kjmn
r + Rikmn

r σkj
r[ ]Dnm

_σ ijm � cijklm Alkmn
m Dnm (28)

whereby the Einstein convention on repeated indices is
adopted. Insertion of this expression into the stress
component rate average law Eq. 13 yields an expression
linking macroscopic stress rates to macroscopic strain
rates, reading as:

∀{i, j} ∈ {1, 2, 3}2 :
_Σij � ∑Nf

r�1
fr cijklr Alkmn

r − σ ik
r R

kjmn
r + Rikmn

r σkjr( ) + fmc
ijkl
m Alkmn

m[ ]Dnm (29)

which induces a homogenized stiffness tensor with the following
components (indices written as superscripts):

∀{i, j, m, n} ∈ {1, 2, 3}4 :
Cijmn

hom � ∑
Nf

r�1
fr cijklr Alkmn

r − σ ikr R
kjmn
r + Rikmn

r σkj
r( ) + fmc

ijkl
m Alkmn

m

(30)

This homogenized stiffness Chom exhibits several peculiar,
particularly non-classical features: It shows only minor
symmetry properties, i.e. Cijkl

hom � Cijlk
hom � Cjikl

hom � Cjilk
hom,

associated with the symmetry of the involved stress and
strain tensors. Moreover, it depends not only on
morphological features and microscopic stiffness
properties, as quantified through the first term of the
right-hand side of Eq. 30, but also on the microscopic
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stress states, in conjunction with the strain rate-to-spin
concentration tensors Rr. The latter are symmetric with
respect to the two first indices and skew-symmetric with
respect to the two last indices, i.e. Rijkl

r � Rjikl
r � −Rijlk

r .

3 HIERARCHICALLYORGANIZED FIBROUS
MICROSTRUCTURES IN TENDINOUS
TISSUE

3.1 Sequence of RVEs and Phase Properties
The fibers introduced as phases within an RVE may not exhibit
invariant material properties, but properties arising from yet
another fibrous microstructure found within the
aforementioned fiber phases. This is the case with tendinous
tissue where parallel fibers called fascicles, with lengths spanning
over several millimeters and 200 microns diameter (Niven et al.,
1982; Kastelic et al., 1978), are made up by crimped collagen
bundles, with lengths spanning over several millimeters and
100–300 nm diameter (Kastelic et al., 1978; Birk and Trelstad,
1986; Provenzano and Vanderby, 2006). Both types of fibers, the
fascicles and the collagen bundles, are embedded into a gel-type
matrix. This situation calls for the introduction of two types of
RVEs at different scales, see Figure 3: An RVE with a
characteristic size of ℓtis � 500 microns is associated with
tendinous tissue (labelled by the subscript tis), and made up of
parallel fibers making up a fascicle phase (labelled by the subscript
fas) with a characteristic size of � 200 microns, being
embedded into a matrix phase (labelled by the subscript m).
The material making up the fascicle phase is represented by yet
another RVE with a characteristic size ℓfas. The latter needs to
fulfill the size condition ℓfas ≤ (Fritsch and Hellmich, 2007),
as this RVE exhibits the homogeneous material properties of the

fascicle phase. This fascicle-related RVE is made up of collagen
bundles (labelled by the subscript col) with a characteristic size
of � 100. . .300 nm embedded in a soft matrix (labelled by
the subscript μ). The collagen bundles are crimped (Abrahams,
1967; Kastelic et al., 1978; Hansen et al., 2002), and in order to
represent this situation in the framework of the RVE seen in
Figure 1, we introduce differently oriented straight fiber
phases, all associated with mean initial crimping angle
θfascol (t � 0), with t � 0 indicating the start of the mechanical
loading. The relevance of this modeling strategy arises from
the very low bending stiffness of collagen bundles. In more
detail, AFM-based micromechanical bending tests on single
electron-spun or bovine Achilles tendon-derived collagen type
I fibrils exhibit an apparent bending modulus of 0.1 . . .0.3 MPa
(Yang et al., 2008b,a). Values of this magnitude are negligible
with respect to the stretching stiffness of collagen type I
bundles, amounting to 500 MPa according to X-ray-assisted
tensile testing (Sasaki and Odajima, 1996a).

The larger RVE is subjected to tissue-related macroscopic
strain rates Dtis, while the smaller RVE is subjected to fascicle-
related macroscopic strain rates Dfas, which are identical to the
fascicle phase-related strain rates dtis

fas; hence, D
fas ≡ dtisfas.

This hierarchical representation is complemented by the
following phase properties (concerning elasticity, volume
fractions, and fiber orientations):

• The bundle phase and both matrix phases exhibit a
hypoelastic constitutive behavior according to Eq. 17.
Moreover, for the sake of simplicity, they are considered
to behave isotropically, so that:

C � 3k J + 2 μK (31)

with k and μ as the bulk and shear moduli, and J and K as the
spherical and deviatoric parts of the fourth-order identity tensor
respectively. The elastic isotropic constants k and μ can also be
expressed in terms of the Young’s modulus E and of the Poisson’s
ratio ], through:

k � E

3(1 − 2])
μ � E

2(1 + ])
(32)

The collagen bundles exhibit a Young’s modulus of Ecol �
500 MPa, according to the X-ray-assisted tensile tests of Sasaki
and Odajima (1996a) on hydrated collagen fibrils of a bovine
tendon; and a Poisson’s ratio of ]col � 0.34, as obtained from
acoustic experiments (Cusack and Miller, 1979; Vass et al., 2017;
Morin et al., 2018). The two matrices are characterized by the
same elastic constants, defined through a Young’s modulus of
Em � Eμ � 2.5 MPa, arising from a few micrometer deep
nanoindentations in hyaline cartilage, a tissue with a large gel-
type matrix volume fraction and non-recruited, disordered fibers
(Franke et al., 2007). Motivated by the aforementioned acoustic
tests as rare examples of Poisson’s ratio measurements on soft
tissues at low length scales, we assign the value of ]m � 0.34 also to
the two matrix phases, depicted in Figure 3. As a further
justification for this choice, we refer to Poisson’s ratio

FIGURE 3 | Two-scale micromechanical representation of tendinous
tissue: (top) RVE of tendinous tissue, made up by fascicle phase embedded
into gel-type matrix phase; (bottom) fascicle-related RVEmade up by straight
collagen bundle phases oriented in different directions and also
embedded into a gel-type matrix phase.
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measurements on polymer gels and polyvinylalcohol gels, which
indeed deliver similar experimental values (Li et al., 1993;
Urayama et al., 1993).

• Image processing allows for the determination of the
volume fraction of each phase: at the lower scale,
processing transmission electron microscopy (TEM)
images showing cross-sections of fascicles give access to
the volume fraction of collagen bundles inside a fascicle,
ftis
fas; amounting to 0.95 according to Figure 3 of

(Patterson-Kane et al., 2012). A collection of TEM

results, as documented in Table 1, shows that the
volume fraction of the bundles within a fascicle-related
RVE, ffas

col , ranges between 0.6 and 0.9.
• Finally, image processing also gives access to the orientation
of the fiber-type fascicle and bundle phases: Within an RVE
of tendinous tissue, the fascicles are initially parallel and
oriented in the axial direction, i.e. θtisfas(t � 0) � 0, with time
point t � 0 referring to a (still unloaded) situation at the
beginning of the mechanical loading. In this case, the value
of the longitudinal angle ϕ does not matter. Within the
fascicle-related RVE, the angle θfascol corresponds to the crimp

TABLE 1 | Volume fractions of collagen bundles within a fascicle-related RVE, determined from transmission electron micrographs (TEM) of transverse cross sections taken
across different species and anatomical locations.

Reference Tendon Species Segmentation procedure Volume fraction [−]

Screen et al. (2005) tail rats tophat filter and contrast enhancement 0.83
Goh et al. (2008) tail mice (1.6) None 0.56
Goh et al. (2008) tail mice (2.6) None 0.79
Goh et al. (2008) tail mice (4) None 0.85
Goh et al. (2008) tail mice (11.5) None 0.78
Goh et al. (2008) tail mice (23) None 0.76
Goh et al. (2008) tail mice (29) None 0.81
Goh et al. (2008) tail mice (31.5) None 0.78
Goh et al. (2008) tail mice (35.3) None 0.76
Juneja and Veillette (2013) tail mice tophat filter 0.80
Patterson-Kane et al. (2012) SDFT horse median filter 0.72
Parent et al. (2011) tail adult rats None 0.54
Pingel et al. (2014) Achilles human median filter 0.62
Hansen et al. (2010) ACL human tophat filter and contrast enhancement 0.68
Hansen et al. (2009) PT human contrast enhancement and median filter 0.76

SDFT, superior digital flexor tendon; PT, patellar tendon; ACL, anterior cruciate ligament. Age of the mice in months is reported between brackets.

FIGURE 4 | Microscopic images of tendinous tissue: (A) rat tail tendon in transmitted light, copied from the Figure 3 copied from (Dlugosz et al., 1978), copyright
granted by Elsevier LTD, scale bar: 25microns; (B) forward second harmonic generation (SHG) image of amature Sprague-Dawley rat tail tendon, copied from the Figure
5C of (Williams et al., 2005), copyright granted by Elsevier LTD, scale bar: 10 microns; (C) SHG polarization from individual bundles analyzed with an analyzer oriented
parallel to the rat tail tendon bundle, copied from the Figure 2C of (Williams et al., 2005), copyright granted by Elsevier LTD, scale bar: 50 microns; (D,E) histological
longitudinal-sections of a rat tail tendon fascicle, copied from the Figures 4A,B of (Niven et al., 1982), copyright granted by Elsevier LTD, respective image width: 530 and
740 microns; (F) SHG imaging of the rat tail tendon fascicle microstructure after few cycles preconditioning, copied from Figure 2C of (Goulam Houssen et al., 2011),
copyright granted by Elsevier LTD, scale bar: 50 microns; (G) porcine knee posterior cruciate ligament SHG image, copied from Figure 3 of (Lee et al., 2017), copyright
granted by SPIE and agreement from the corresponding author, image width: 90 microns.
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angle, which can be measured via image processing as
reported in Figure 4. Accordingly, this latitudinal angle
θfascol ranges between 15 and 45°. In this context, the
longitudinal angle does matter. Since the fibers are
crimped in the 3D space (De Campos Vidal, 2003; Kalson
et al., 2012), four different values are introduced,
ϕfascol,r � 0, 90, 180, 270°; and they are associated with four
collagen bundle phases, the behavior of which is fully
identical.

3.2 Algorithm for Two-step Homogenization
The large deformation and the morphology evolution render the
problem highly non linear and require the development of an
incremental algorithm. Therefore the time line is discretized into
time increments Δt. These increments are bounded by time
points tn, n � 1, ‥, Nt, so that:

Δt � tn+1 − tn for n � 1, ‥, Nt (33)

The implicit dependence of the concentration operators on the
orientation of the fiber phases asks for an explicit scheme for all
time derivatives, which is defined as follows:

_a tn( ) � a tn+1( ) − a tn( )
Δt (34)

Assuming that the problem has been solved until time step tn
(with a known corresponding configuration), we have to
determine the configuration at time step tn+1, as well as all
associated mechanical and morphological quantities, and we
proceed as follows:

1. We collect properties and operators known at time point tn: for
the tendinous tissue-related RVE, we have Atis

fas(tn),Rtis
fas(tn),

and Atis
m (tn), they all depend on the stiffnesses Ctis

fas(tn) and
Ctis

m (tn) as well as on the orientation θtisfas(tn). However, in the
present paper, we abstain from modeling fascicle re-
orientation due to unusual load cases. Such reorientation
modeling would require the introduction of multiple
fascicle phases, which is beyond the scope of the present
paper. On the other hand, for the fascicle-related RVE, we
have collagen bundle phase-specific concentration tensors
A

fas
col,r(tn) and R

fas
col,r(tn), as well as the matrix-related

concentration tensor Afas
μ (tn); all these tensors depend on

the latitudinal angles θfascol,r(tn).
2. This allows for estimating the phase-related strain rates and

spins, by specifying Eq. 22 and Eq. 23 for the two-step
homogenization scheme depicted in Figure 3:

dtis
fas tn( ) � A

tis
fas tn( ) : Dtis tn( )

dtis
m tn( ) � A

tis
m tn( ) : Dtis tn( ) (35)

dfas
col,r tn( ) � A

fas
col,r tn( ) : dtis

fas tn( )
ωfas
col,r tn( ) � R

fas
col,r tn( ) : dtis

fas tn( )
dfas
μ tn( ) � A

fas
μ tn( ) : dtis

fas tn( )
(36)

3. As a direct consequence, the orientation change of
each collagen bundle phase within a fascicle-related RVE

can be estimated based on discretized versions of Eq. 6,
reading as:

∀ e j attached to the r − th collagen bundle phase

e j tn+1( ) � e j tn( ) + dfas
col,r tn( ) + ωfas

col,r tn( )( ) · e j tn( ) Δt (37)

4. The constitutive relation Eq. 20, in combination with Eq. 14, is
discretized and specified for the two-step homogenization scheme of
Figure 3, providing access to the updated stress state in the phases, at
time tn+1. This reads for the tendinous tissue-related RVE as:

σtis
fas tn+1( ) � σtis

fas tn( ) +
C

tis
fas tn( ) : dtis

fas tn( ) − σtis
fas tn( ) · ωtis

fas tn( ) + ωtis
fas tn( ) · σtis

fas tn( )( )Δt
σtis
m tn+1( ) � σtis

m tn( ) + C
tis
m tn( ) : dtis

m tn( )Δt
(38)

and for the fascicle-related RVE as:

σfas
col,r tn+1( ) � σfas

col,r tn( ) +
C

fas
col tn( ) : dfas

col,r tn( ) − σfas
col,r tn( ) · ωfas

col,r tn( ) + ωfas
col,r tn( ) · σfas

col,r tn( )( )Δt
σfas
μ tn+1( ) � σfas

μ tn( ) + C
fas
μ tn( ) : dfas

μ tn( )Δt
(39)

In these equations, we identified the material derivative with the
partial derivative, according to the first-order approximations
detailed in (Morin et al., 2018).

5. In addition, the homogenized stiffness according to Eq. 30 is
specified for both the fascicle-related and the tendinous tissue-
related RVE, reading as:

Cijmn
fas tn+1( ) � ffas

μ Cijkl
μ tn+1( )Afas,lkmn

μ tn+1( ) +∑
Nf

s�1
ffas
col,s Cijkl

col,s tn+1( )Afas,lkmn
col,s tn+1( )[

− σfas,ikcol,s tn+1( )Rfas,kjmn
col,s tn+1( ) + Rfas,ikmn

col,s tn+1( )σfas,kj
col,s tn+1( )]

Cijmn
tis tn+1( ) � ftis

m C
ijkl
m tn+1( )Atis,lkmn

m tn+1( ) + ftis
fas Cijkl

fas tn+1( )Atis,lkmn
fas tn+1( )[

− σtis,ikfas tn+1( )Rtis,kjmn
fas tn+1( ) + Rtis,ikmn

fas tn+1( )σtis,kj
fas tn+1( )] (40)

whereby Cfas ≡ Ctis
fas.

6. Finally, the macroscopic stress is computed at time tn+1
according to:

Σtis tn+1( ) � Σtis tn( ) + Ctis tn( ): Dtis tn( )Δt (41)

In case the macroscopic stress Σtis, rather than the
macroscopic strain rate Dtis, is prescribed, an estimate of the
corresponding effective strain rate is computed as:

Dtis,est tn( ) � 1
Δt Ctis tn( )[ ]−1 : Σtis tn+1( ) − Σtis tn( )( ) (42)

This estimate then enters the aforementioned algorithm, namely via
Eq. 35, and the resulting stress according to Eq. 41 is compared to the
applied stress. If the corresponding stress difference exceeds a
prescribed error threshold, a new estimate for Dtis is computed by
means of amodified verison of Eq. 40, where the latest estimate for the
tissue stiffness according toEq. 40 is used. This process is repeated until
the aforementioned stress difference becomes negligibly small.

It is illustrative to document corresponding model predictions
in terms of stretches. The stretch associated with a line element
which is originally oriented in direction e i, is computed from the
deformation gradient tensor, F, as follows:
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λi tn, e i( ) � e i · FT tn( ) · F tn( ) · e i( )1/2 (43)

whereby the deformation gradient tensor itself is computed from
the strain rate and spin tensors (respectively D and Ω):

F tn( ) � D tn−1( ) +Ω tn−1( )[ ]Δt + 1( ) · F tn−1( ) (44)

These equations can be specialized for the cases of the axial and
transverse stretches of tendinous tissue undergoing a uniaxial
stress of the form Σtis � Σtis

33e 3 ⊗ e 3, yielding:

λtisaxial tn, e 3( ) � e 3 · Ftis,T tn( ) · Ftis tn( ) · e 3( )1/2
λtistransverse tn, e 1( ) � e 1 · Ftis,T tn( ) · Ftis tn( ) · e 1( )1/2 (45)

where the base vectors e 1 and e 3 are those depicted in Figure 2.
We are also particularly interested in the stretches of the collagen
bundle phases, reading as:

λcolaxial tn, e r t0( )( ) � e r t0( ) · f col,T tn( ) · f col tn( ) · e r t0( )( )1/2 (46)

where the base vector e r is also seen in Figure 2.

4 MICROMECHANICAL MODELING
RESULTS

4.1 Sensitivity Analysis: Uniaxial
Stress-stretch Behavior Governed by
Collagen Bundle Properties
First, the algorithm of Section 3.2 was used for analyzing the
sensitivity of the micromechanical model responses to changes in
three model input quantities associated with the collagen bundle
phases: the Young’s modulus Ecol, the initial crimping angle
θfascol (t � 0) � θinicol - here we consider the same initial value for
all collagen bundle phases - and for the volume fraction ffas

col .
Three different values for Ecol, seven different values for θinicol, and
four different values forffas

col have been chosen, see Table 2. These
values cover the ranges of experimental data described in Section
3.1. Correspondingly, Nsim � 3 × 7 × 4 � 84 micromechanical
simulations based on the algorithm of Section 2.3 were
performed. Guided by stress-stretch experiments which are
customary in soft tissue research (see Section 4.2 for further
details), the aforementioned simulations concerned uniaxial
stress states, and corresponding stretches in the longitudinal
tissue direction. Focusing on fiber re-orientation rather than
fiber volume changes, a limited interval of stresses was
investigated, ranging from 0 to 10 MPa (see Section 5 for a
more detailed discussion on this aspect). This nonlinear behavior

was quantified in terms of initial and final tangents. Thereby, the
initial tangent was defined as the average, over the first 25 kPa of
stress, of the tangents to the uniaxial stress-stretch curve; and the
final tangent was defined as the average, over the last 500 kPa of
stress, of the tangents to the uniaxial stress-stretch curve.
Moreover, the coordinates of their intersection point in the
stress-stretch plane are referred to as intersection stress and
intersection stretch, respectively. Based on these quantities,
and on the evolving crimping angle, the following metrics
were used to analyze the model response, see also Figure 5:

• the slope of the initial tangent, referred to as initial slope;
• the slope of the final tangent, referred to as final slope;
• the intersection stretch;
• the intersection stress;
• the straightening angle, defined as the difference between
the values for the crimping angle at the beginning and the
end of each of the 84 simulations.

A metric-specific hypersurface over the hyperplane spanned
by the normalized parameters

x1 � Ecol − EMIN
col

EMAX
col − EMIN

col

x2 � θinicol − θini,MIN
col

θini,MAX
col − θini,MIN

col

x3 � ffas
col − ffas,MIN

col

ffas,MAX
col − ffas,MIN

col

(47)

was fitted by means of second-order polynomial with first-order
interactions, reading mathematically as (Tinsson, 2011):

TABLE 2 | Parameters studied in the sensitivity analysis.

Parameter Minimum value Step value Maximum value

Ecol [GPa] 0.3 0.2 0.7

θinicol [°] 15 5 45

f fascol
0.6 0.1 0.9

FIGURE 5 | Model-predicted stress-stretch curve for tendinous tissue
subjected to uniaxial tensile stress state; for Ecol � 500 MPa, Em � Eμ �
2.5 MPa, θinicol � 27.5°, f fascol � 0.6, and f tisfas � 0.95; with indication of metrics
used in sensitivity analysis: initial slope (see red tangent), final slope (see
blue tangent), tangent intersection point (see circular mark) - the coordinates
of the latter quantify intersection stress and intersection stretch.
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Y � β0 +∑3
i�1

βixi + ∑3
i,j�1,j>i

βijxixj +∑3
i�1

βiix
2
i (48)

where xi, with i � 1, 2, 3, refers to the normalized parameters
according to Eq. 47, Y is one of the five previously cited output
metrics of the model, β0 covers the portion of the metric Y which
is not depending on x1, x2, and/or x3; and where βi, βij, and βii,
with i, j � 1, 2, 3, reflect the sensitivity of the model with respect to
the parameters x1, x2, and x3. It turns out that the polynomial
expression Eq. 48 represents the micromechanical model results
very well, quantified by a coefficient of determination amounting
to 99% for all the tested metrics. The corresponding coefficients
βi, βij, βii, with i � 1, 2, 3, are depicted in Figure 6, where three
stars indicate a significant contribution of the corresponding
normalized parameter on the micromechanical model result,
as tested by a Student’s t test with (Nsim − 3) parameters. The
following observations are noteworthy:

1. Intersection stress and intersection strain are very sensitive to
the initial crimping angle, while the effect of bundle volume
fractions is much less pronounced, and the bundle elasticity
remains even insignificant in this context.

2. A similar situation is encountered with the initial slope, while
the final slope, profoundly driven by the bundle modulus,
shows some dependence on the bundle volume fraction and
on the initial crimping angle.

3. The straightening angle is virtually exclusively driven by the
initial crimping angle.

4.2 Comparison to Stress-stretch
Experiments
Next, micromechanical model results are directly compared to
the experimental data stemming from uniaxial stress-stretch tests
on bovine, human, and murine tendons (see Table 3 as well as
Figures 7,8). These tests had been performed in vitro at (high)
strain rates of 10–100%/s, suggesting a subordinate role of viscous
effects. Therefore, bundle-related parameters within the ranges
given in Table 3 were adopted, targeting high coefficients of
determination R2 and small residual errors ϵ:

R2 � 1 − ∫Σmax

Σ�0 Λmod(Σ) − Λexp(Σ)[ ]2dΣ
∫Σmax

Σ�0 Λexp(Σ) − �Λexp[ ]2dΣ ; (49)

ϵ � 1
Σmax

∫Σmax

Σ�0
Λmod(Σ) − Λexp(Σ)
∣∣∣∣ ∣∣∣∣dΣ; (50)

whereby the integrals are computed on the whole stress history,
Λmod(Σ) and Λexp(Σ) being the longitudinal stretches
corresponding to a uniaxial stress Σ, respectively computed
by the model or reached experimentally, and �Λexp being the
average, over the entire load history, of the experimentally
measured stretches. We note that the stress-stretch curves
reported by Screen et al. (2004b) show an unusual start of
the so-called toe region in the stress-stretch curve, involving
decreasing slopes at small strains. Such effects cannot be
explained by fiber re-orientation, and may rather result from
instrumental challenges. We abstain from a deeper analysis of
this issue, and simply start considering corresponding

FIGURE 6 | Sensitivity coefficients βi, βij, βii according to Eqs 47, 48, with the indices 1, 2, and 3 relating to modulus, crimping angle, and volume fraction,
respectively; determined for five metrics Y associated with the uniaxial stress-stretch behavior on the level of the tendinous tissue. The stars denote the significance level
of the coefficients: three (resp. two and one) stars for a p-value below 10–3 (resp. 10–2 and 0.05); n.s. stands for non significant.
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experimental data whenever a minimum slope has been reached
in the toe region.

For all simulations, the modulus value Ecol of Sasaki and
Odajima (1996a), amounting to 500 MPa, was taken as
reference, being able to represent all considered experimental
data in a satisfactory manner, see Table 3 and Figure 7.
Optimization of the values taken for fcol

fas and θinicol was guided
by the sensitivity analysis of Section 4.1, leading to the results of
Table 3. As observed in the experiments of (Abrahams, 1967;
Hansen et al., 2002), the pseudo-linear portion of the stress-
stretch curve is associated with the crimping angle approaching
an almost constant level.

5 DISCUSSION AND CONCLUSION

In this study, we have traced back the non-linear behavior of
soft tissues in general, and more specifically of tendons, to
normal and shear deformations as well as to rigid body motions
(rotations) of straight, elongated, long, and stiff fibers

(representing collagen bundles in the case of tendons)
embedded in soft matrices.

The corresponding micromechanical representation directly
reflects the extreme lengths of the 50 μm thick collagen bundles,
spanning over several millimeters. This was evidenced by a series
of transmission electron micrographs (TEM) (Provenzano and
Vanderby, 2006; Craig et al., 1989; Parry and Craig, 1984;
Svensson et al., 2017) showing tens of thousands of bundles
over test domains spanning several milimeters, without any
indication of ending bundles or bundle joints. Also the
mechanical role of the gel-type matrix, the deformation of
which is essential for the behavior of the overall fascicle and
tendinous tissue-related RVEs, is consistent with experimental
observations: Inhibiting the binding of matrix-proteins like
decorin to the collagen fibrils changes the stress-strain
behaviors by leaving more deformational freedom to the
fibers, which eventually results in tendon lengthening with
respect to untreated control tissues (Caprise et al., 2001). Our
model also accounts for the crimped nature of the bundles;
however, in a simplified manner: the collagen bundle phases

TABLE 3 | Collection of experimental references for stretch-stress data given in Figures 7, 8, together with optimized values for initial fiber orientation and collagen volume
fraction, in order to reach the coefficients of determination and the residual errors in the last two columns; all other model input data are found in Table 4.

Reference Tendon Species θinicol ffascol R2 ε (%)

0 Sasaki and Odajima (1996b) Achilles bovine 25 0.75 0.951 0.20
1 Lewis and Shaw (1997) Achilles young human 22.5 0.675 0.983 0.13
2 Hashemi et al. (2005) PT young human 17.5 0.65 0.990 0.09
3 Hashemi et al. (2005) PT young human 27.5 0.6 0.984 0.22
4 Butler et al. (1986) PT young human 12.5 0.725 0.894 0.16
5 Butler et al. (1986) ACL young human 17.5 0.675 0.990 0.08
6 Butler et al. (1986) LCL young human 17.5 0.625 0.979 0.14
7 Butler et al. (1986) PCL young human 17.5 0.6 0.993 0.09
10 Screen et al. (2004b) tail Wistar rats 30 0.8 0.914 0.29
12 Screen et al. (2004b) tail Wistar rats 35 0.8 0.770 0.57
13 Screen et al. (2004b) tail Wistar rats 37.5 0.8 0.738 0.55
14 Screen et al. (2004b) tail Wistar rats 32.5 0.725 0.788 0.53

PT, patellar tendon; ACL, anterior cruciate ligament; LCL, lateral colateral ligament; PCL, posterior cruciate ligament.

TABLE 4 | Input values for the micromechanical model.

Angles

θfascol [°] [15–45] see Figure 4

θtiscol [°] 0 Kastelic et al. (1978)

ϕfascol [°] 0, 90, 180, 270 De Campos Vidal (2003); Kalson et al. (2012)

ϕtiscol [°] 0 Kastelic et al. (1978)

Volume fractions

f fascol [0.6–0.9] see Table 1
f tiscol 0.95 Patterson-Kane et al. (2012)

Mechanical parameters

Ecol [MPa] 500 Sasaki and Odajima (1996b)
Em [MPa] 2.5 Franke et al. (2007)
Eμ [MPa] 2.5 Franke et al. (2007)
]col 0.34 Cusack and Miller (1979)
]m 0.34 Cusack and Miller (1979); Urayama et al. (1993); Li et al. (1993)
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FIGURE 7 |Comparison of the experimentally-measured (crosses) and predicted (solid line) stress-stretch curve; and evolution of the collagen fibril inclination angle
θcol (dashed line). Numbering of the subfigures refers to Table 3. Note that stress and angle values are labelled at the left and right sides of the diagrams, respectively.
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are not wavy, but straight - still, they are oriented in different
direction in space: this is consistent with the helical, rather than a
planar, nature of crimping, as seen from the microcopic observations
of (De Campos Vidal, 2003). As mentioned before, the omission of
actual curvature modeling is consistent with the low bending stiffness
of the bundles (Yang et al., 2008b,a): what counts upon decrimping is
the recruitment of stretching stiffness in combination with matrix
shearing - a mechanism which is explicitly considered by our model.
This renders our model as a prime candidate for making larger scale
finite element models more realistic and reliable, in the same way as
already shown for arterial tissue in greater detail (Bianchi et al.,
2020).

It is very illustrative to study the model-predicted microscopic
stresses prevailing in the collagen bundles and in the matrix
inbetween, see Figure 9: Under uniaxial macroscopic tensile
loading, all the bundle phases are loaded in tension, while the
matrix undergoes compression. This fits perfectly with the
experimental observation of fluid being pressed out of
tendinous tissue upon macroscopic uniaxial tensile load (Lanir
et al., 1988; Hannafin and Arnoczky, 1994; Thornton et al., 2001).
We also observe that the fibrillar stretch is much smaller than the
tendon stretch. Accordingly, toe region-related stretching is
microstructurally accomodated by rigid body movements
(rotations) of the fibers, a mechanism already described in the
landmark work of Diamant et al. (1972). In this context, we also

note that the order of magnitude of model-predicted stretches at
the collagen bundle level agrees well with the measurements of
Screen et al. (2002, 2004a). This microstructurally modeled
mechanical behavior naturally avoids unphysical Poisson
effects including even auxetic behavior, as they are known
from traditional hyperelastic modeling (Skacel and Bursa,
2016; Volokh, 2017; Skacel and Bursa, 2019). As a remedy,
Fereidoonnezhad et al. (2020) introduced a formulation
involving “matrix strain stiffening.” By comparison, our model
does not introduce any fiber or matrix strain stiffening, but
constant hypoelastic values in accordance with experimental
data characterizing the microstructural components of soft
tissue. In more detail, instead of enforcing increased load
bearing of the matrix, and primarily so throughout the lower
stretch regime, our model reveals that already then, non-
negligible fiber stretches contribute to the overall tissue
response, see also Figure 9 (top left).

Still, our model exhibits several limitations. This first concerns
the fixation of the volume fractions used in the simulations
presented herein. This simplification may indeed restrict the
predictive potential of our micromechanical model, as follows
from the following deliberations:

• at low macroscopic stretch, the fibers re-orient and virtually
do not stretch; hence they hardly change their volume;

FIGURE 8 |Comparison of the experimentally-measured (crosses) and predicted (solid line) stress-stretch curve of fascicles of rat tail tendons; and evolution of the
collagen fibril inclination angle θcol (dashed line). Numbering of the subfigures refers to Table 3. Note that stress and angle values are labelled at the left and right sides of
the diagrams, respectively.
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• at high stretch, the fibers are elongated, and their volume
does change.

Such big differences in volume change between low and
high macroscopic stretch are not expected for the matrix.
Hence, remarkably changing fiber volume fractions may be
indeed expected; and such probably higher fiber volume
fractions at higher stretches are consistent with our model
underestimation for stresses reaching values between 5 and
10 MPa in several of the prediction curves (see curves (2), (3),
and (4) in Figure 7). The significance of considering the
actually load-dependent volume fractions would clearly
increase when modeling the tissue behavior under higher
stress levels than those seen in Figures 7, 8. For such stress
states, it would hence be advisable to update, not only the fiber
orientations, but also the fiber volume fractions after every
load step.

The second limitation of the model relates to its restriction to
elasticity, leaving out classical mechanical properties, in particular
viscous, plastic, and damage effects (Puxkandl et al., 2002; Weiss
et al., 2002; Haut and Haut, 1997). Potential inclusion of viscous
and viscoelastic effects into the herein presented model may start
with the extension of the hypoelastic constitutive Eq. 20 towards

suitable hereditary integrals similar of those proposed by
Boltzmann (1874) or Volterra (1909) for the small strain
regime (Gurtin and Sternberg, 1962). At higher stress levels,
extensions towards so-called non-linear viscoelasticity may be
necessary (Pipkin and Rogers, 1968; Johnson et al., 1996). As
concerns the upscaling of such a viscoelastic phase behavior, one
may take again inspiration from small strain homogenization
theory (Laws andMcLaughlin, 1978; Eberhardsteiner et al., 2014).
In more detail, Laplace-Carson transforms of the aforementioned
hereditary integrals may deliver sequences of formally (hypo-)
elastic problems to which the strategy of Section 2.3 remains fully
applicable. Potential inclusion of plastic effects into the herein
presented model may start with the extension of the hypoelastic
constitutive Eq. 20 towards eigenstrain rates the evolution of
which obeys suitable plastic flow rules. Thereafter, eigenstrain
rate upscaling may follow from extension of respective
homogenization theories developed for the small strain regime
(Dvorak, 1992; Pichler and Hellmich, 2010; Königsberger et al.,
2020), thereby extending recent developments for hard tissues
(Fritsch et al., 2009; Blanchard et al., 2016; Morin et al., 2017)
towards the realm of soft tissues.

The third limitation concerns the non-coverage of
multiphysics effects, such as mechano-electrochemical

FIGURE 9 | Micromechanical model predictions for tendinous tissue subjected to uniaxial tension: axial stretch in collagen bundle (top left), latitudinal angle of
collagen bundle (top right), mean stress in interfascicular matrix (bottom left), and transverse stretch in tendinous tissue (bottom right), as functions of axial stretch in
tendinous tissue.
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couplings including osmotic pressures (Wilson et al., 2005; Masic
et al., 2015), leading to phenomena which have been described as
“inverse poroelasticity” (Ehret et al., 2017). Again, we think that
eigenstrain upscaling appears as an interesting option to consider
such effects as well.

From a micromorphological viewpoint, one may also ask
whether the relatively simple micromechanical representation
sketched in Figure 3 may be another limitation of the present
model. Diagram (10) and (12) of Figure 8might indeed indicate a
situation where more than one fiber recruitment process takes
place; hence, the existence of more than one prominent initial
latitudinal fiber angle. However, these diagramsmight also simply
reflect experimental uncertainties rather than model limitations.

Conclusively, we presented a novel micromechanical model
providing a natural access to the non-affine, non-auxetic,
microstructurally driven elastic behavior of tendon; resting on
hypoelastic phase properties combined with an objective
kinematics, giving access to proper strain-to-strain and strain-
to-spin relations across the hierarchical organization of tendons. In
this context, our model may well be seen as an interesting,
computationally efficient, complement to the growing number
of fiber network models proposed for soft tissues (Chandran
and Barocas, 2006; Stylianopoulos and Barocas, 2007; Cyron
et al., 2013; Picu et al., 2018). With these models, we share the
explicit consideration of non-affine fiber re-orientations leading to
pronounced lateral contractions under uniaxial tensile loading.
Still, our present approach goes beyond the scope of the
aforementioned network models when it comes to the explicit
introduction of the mechanical behavior of the gel-type matrices.
Most remarkably, model-predicted hydrostatic pressures
prevailing in the interfascicular matrix (also known as the
endotenon, which hosts vascular cells according to (Kannus,
2000; Godinho et al., 2017)) exhibit a magnitude which
stimulates a variety of biological cells in the musculo-skeletal
system; see (Scheiner et al., 2016) for a compilation of various
experimental sources and data; and the stimulatory effect of
hydrostatic pressures in the tens of kilopascals range has been
shown explicitly for endothelial vascular cells as well (Ohashi et al.,
2007). This opens perspectives for extending the current fiber-

matrix interaction model towards the realm of tissue remodeling,
in a way already realized for bone (Pastrama et al., 2018).
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Pulmonary diseases, driven by pollution, industrial farming, vaping, and the infamous
COVID-19 pandemic, lead morbidity and mortality rates worldwide. Computational
biomechanical models can enhance predictive capabilities to understand fundamental
lung physiology; however, such investigations are hindered by the lung’s complex and
hierarchical structure, and the lack of mechanical experiments linking the load-bearing
organ-level response to local behaviors. In this study we address these impedances by
introducing a novel reduced-order surface model of the lung, combining the response of
the intricate bronchial network, parenchymal tissue, and visceral pleura. The inverse finite
element analysis (IFEA) framework is developed using 3-D digital image correlation (DIC)
from experimentally measured non-contact strains and displacements from an ex-vivo
porcine lung specimen for the first time. A custom-designed inflation device is employed to
uniquely correlate the multiscale classical pressure-volume bulk breathing measures to
local-level deformation topologies and principal expansion directions. Optimal material
parameters are found by minimizing the error between experimental and simulation-based
lung surface displacement values, using both classes of gradient-based and gradient-free
optimization algorithms and by developing an adjoint formulation for efficiency. The
heterogeneous and anisotropic characteristics of pulmonary breathing are represented
using various hyperelastic continuum formulations to divulge compound material
parameters and evaluate the best performing model. While accounting for tissue
anisotropy with fibers assumed along medial-lateral direction did not benefit model
calibration, allowing for regional material heterogeneity enabled accurate reconstruction
of lung deformations when compared to the homogeneous model. The proof-of-concept
framework established here can be readily applied to investigate the impact of assorted
organ-level ventilation strategies on local pulmonary force and strain distributions, and to
further explore how diseased states may alter the load-bearing material behavior of the
lung. In the age of a respiratory pandemic, advancing our understanding of lung
biomechanics is more pressing than ever before.
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INTRODUCTION

Respiratory diseases and disorders, such as asthma, emphysema,
bronchitis, pulmonary fibrosis, and lung cancer, collectively lead
as the global cause of morbidity and mortality (Centers for
Disease Control and Prevention, 2015; Eskandari et al., 2018).
These pulmonary illnesses impose strenuous social and economic
burdens, as seen with the recent lung-damaging COVID-19
outbreak (Atkeson, 2020). The acute and progressive
pathological inflammation and bronchoconstriction of the lung
obstruct and restrict airflow and oxygenation, inducing altered
mechanical properties (Suki and Bates, 2011; Eskandari et al.,
2016). This mechanical remodeling is multiscale, spanning the
destruction of alveolar sac elasticity in emphysema (Suki et al.,
2003), the over stiffening of the parenchymal tissue in pulmonary
fibrosis (Faffe and Zin, 2009), and the constriction and collapse of
airways in asthma (Bai and Knight, 2005; Eskandari et al., 2015;
Maghsoudi-Ganjeh et al., 2021). Thus, the hierarchical and
complex structure of the lung highlights the importance of
mechanics in respiratory health (Tawhai and Bates, 2011;
Eskandari et al., 2013).

Despite the growing body of literature on pulmonary
mechanics, the multiscale and multiphysics link between the
global pressure-volume behavior of the lung and the local-level
tissue deformation remains largely unexplored. There has been
notable progress to characterize the lung at the organ scale
through classical pressure-volume curves and at the tissue
level using indentation and uniaxial tensile tests (Lai-Fook
et al., 1976; Zeng et al., 1987; Fung, 1988; Eskandari et al.,
2018); however these investigations remain siloed at
disconnected scales. Amalgamating these multiphysics and
multiscale behaviors is central to understanding lung disease
mechanisms, predicting disease progression, and mitigating
ventilator-induced-lung-injuries (VILI) to eliminate tissue over
stretching (volutrauma) and stressing (barotrauma) (Dreyfuss
and Saumon, 1998; Vlahakis et al., 1999; Arora et al., 2017; Arora
et al., 2021). Unless an atlas for pulmonary kinetics and
kinematics can be established, current ventilation protocols
will continue to be subject to trial and error approaches and
hindered from advancements despite exigent demands instilled
by a worldwide pandemic (The Acute Respiratory Distress
Syndrome Network, 2000; Amato et al., 2015).

Advancements in biologically-oriented digital image
correlation (DIC) techniques have facilitated quantifying the
mechanical connections between organ-level breathing and
local tissue behavior for fast, large, and non-linear
deformations. DIC is a common full-field, non-contact
deformation characterization technique originally applied on
inert structures (Chu et al., 1985), and has now been
enhanced to study the behavior of intricate biological tissues,
such as the cornea (Boyce et al., 2008), arteries (Sutton et al.,
2008), knees (Mallett and Arruda, 2017), and most recently, the
lung (Mariano et al., 2020). In this method, sequential images of a

specimen’s speckled surface undergoing loading are used to
obtain the topological displacement field (Chu et al., 1985).
While DIC describes the kinematics, inverse finite element
analysis (IFEA) can be employed to divulge the kinetics. IFEA
yields specimen mechanical properties by minimizing the error
between the displacements predicted by the Finite Element (FE)
model and those measured via experiment (Birzle et al., 2019).

Here we construct the first in-silico IFEA structural
representation of the whole lung as informed and validated
from DIC resulting from applied evolutionary pressure-volume
loading controlled by a custom-designed breathing apparatus
(Mariano et al., 2020; Sattari et al., 2020). Based on the obtained
surface geometry and deformation map of the inflating lung, a
corresponding reduced-order 3-D FE model is constructed using
membrane elements undergoing the same experimental lung
pressures. Various constitutive models are explored, including
homogeneous isotropic hyperelastic, homogeneous anisotropic
hyperelastic, and heterogeneous isotropic linear-elastic
materials (Mooney, 1940; Holzapfel et al., 2000). The
parameters of the multiple FE models are calibrated
through a fully automated IFEA framework. Both classes of
derivative-based and gradient-free optimization algorithms
are implemented to predict the material response by
minimizing the error between model-predicted and DIC-
recorded displacements of the external surface of the lung.
The set of calibrated material parameters, along with local and
heterogeneous deformation results of the in-silico lung, are
presented, model performances are compared, and future
applications are discussed.

MATERIALS AND METHODS

Digital Image Correlation and
Pressure-Volume Experiments
Previously established extensive experimental DIC protocols and
pressure-volume tests were utilized for the ex-vivo specimen tests
conducted here and will be briefly summarized (Mariano et al.,
2020; Sattari et al., 2020). Fresh porcine lungs from an abattoir
were obtained (50 kg female domestic York farm minipigs,
Institutional Animal Care and Use Committee approval not
required) and a plastic tube was inserted through the trachea
to fully inflate the lung using an airline pressure system. A generic
exfoliator pad dipped in quick-drying white enamel paint (rust-
oleum) was used to create speckles (Mariano et al., 2020). The
specimen was loaded into our custom pressure-volume apparatus
for controlled inflation tests; this device consisted of two pistons
(a source and a response), a transparent tank, and a computerized
controller system (Sattari et al., 2020). 900 ml of air was applied to
the lung, and the real-time continuous pressure and actual
volumetric deformation of the lung (less than the applied
volume due to the compression of air) was measured. As in
previous studies, a preload of 5 cmH2O was used as the reference
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state. A rate of 15 breaths-per-minute was used and the specimen
was preconditioned three times to generate reproducible cycles
and the fourth inflation response was analyzed.

The 3-D stereoscopic DIC system (ARAMIS 12M, Trilion
Quality Systems) consisted of two optical cameras hovering over
the transparent tank, which recorded the dynamic deformation of
the lung at 10 Hz. For a measuring volume of 375 × 295 ×
295 mm, the calculated displacement measurement accuracy was
0.10875 mm (Jones and Iadicola, 2018). The images were
analyzed following standard DIC techniques to calculate the
displacement and strain of the exterior surface of the lung
relative to its uninflated state (Chu et al., 1985; Jones and
Iadicola, 2018) and are extensively detailed in Mariano et al.,
2020. Figure 1A showed the DIC strain map corresponding to
the peak pressure-volume inflation stage. Figure 1B showed
the corresponding pressure-volume curve obtained from the
inflation. Based on this curve and the inflation rate, the
pressure-time amplitude curve (Figure 1C) was extracted and
applied to the FE model as the loading step.

Inverse Finite Element Analysis Overview
The FE models were calibrated using the measured DIC
displacement of the ex-vivo lung. The algorithm (shown in
Figure 2) minimized the error by finding the optimal values
for unknown free material parameters. The inverse FE model
leveraged several known parameters: the surface geometry of the
lung from the uninflated stage obtained after three
preconditioning inflation-deflation cycles, the experimentally
measured pressure-time graph, and the DIC displacement field
of the lung surface. However, the type of constitutive model and
corresponding material parameters were unknown; these model
attributes were left to be determined by the optimization
algorithms. Before applying the model to the actual lung, we
verified that when applied on a simpler geometry with known
deformation field and material properties the model is able to
recover the given material parameters successfully.

Various constitutive relations were examined. The material
parameters were initialized from several distinct starting points
and the solution was generated multiple times to ensure
mathematical robustness. The error was calculated based on
the normalized squared sum of residuals. Material properties
were perturbed to calculate the sensitivity of the error, which
informed the alternate directions adopted by the optimization
algorithm. This incremental procedure was repeated to
progressively minimize the error until a pre-defined
convergence criterion was met (change in the error less than
10−6 of the initial value). Given the nonlinear lung pressure profile
(Figure 1C), the displacement error was evaluated at several
increments evenly spaced out throughout the inflation cycle and
not just at the full inflation point.

Finite Element Model Organization
The built-in stereo camera DIC system was used to capture the
exterior surface of the lung. The obtained geometry was
tessellated with 3-D triangular elements averaging 1 mm in
size. The DIC system could only detect and analyze the visible
portion of the lung lobes (Figure 1). The raw data from the
original DIC geometry was not suitable for the FE simulation as it
contained some elements with poor isoperimetric quality and
sharp surface discontinuities. To improve the mesh quality,

FIGURE 1 | (A) The right lung lobe was selected for analysis and DIC
strains are shown. (B) The pressure-volume data of the stabilized inflation
cycle was used to extract the (C) pressure-time data applied to the FE model.
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MeshLab (ISTI-CNR, Italy) was used to smoothen the surface
while preserving the original surface features (Cignoni et al.,
2008). Two fine and coarse meshed models, with ∼5,000 and 457
elements respectively, were exported as STL files which were then
converted to Abaqus input files using the built-in script plugin
(Dassault Systems, Providence, RI, United States). The fine and
coarse meshes were used to study the cases corresponding to
homogeneous and heterogeneous material models, respectively.
This approach reduced the number of unknown material
parameters in the heterogeneous case and was necessary to
substantially decrease the IFEA computational cost. After
confirming the mesh resolution was sufficient, both meshed
models were discretized using 3-D membrane elements
(M3D3). The recorded DIC experimental displacement values
of the nodes sitting on the perimeter of the surface geometry were
applied as displacement boundary conditions to the FEmodels; as
such, while the geometry of the model represented the visible
portions of the lung lobes, the role of the adjacent tissue was
represented through the application of these periphery nodal
displacements (as opposed to traditional boundary conditions).
The thickness of membrane elements were set to 1.0 mm.

One-to-one experimental to FEmodel nodal correspondence was
created for error calculations by probing the displacement from
∼7,000 evenly distributed points across the surface. During the
multiple inflation stages, where the displacement error between

the FE model and DIC nodes were to be calculated, there is not
a one-to-one correspondence between FE model nodes and DIC
probe points. Therefore, interpolationmust be used to find FEmodel
nodes corresponding to the DIC probe points so that the error could
be computed. An interpolation technique was used, utilizing theDIC
displacements and coordinates of the probe points to train the
k-nearest-neighbor algorithm (Altman, 1992). The performance of
the interpolationmodel was evaluated using 10-fold cross validation,
confirming the accuracy was above 0.95. The number of nearest
neighbors k was set to be five. The interpolation technique was
implemented using two Python scripts: one to access nodal
coordinates from Abaqus, and one to perform interpolation.

The FE model was solved using Abaqus dynamic implicit
solution scheme by subjecting the model to the experimental lung
pressure values at five deformation stages (Figure 1C). Nonlinear
geometry formulation was utilized, and the displacement and
strains were analyzed. In order to significantly accelerate the IFEA
process, all the scripts were parallel-coded such that multiple FE
simulations were running simultaneously in batch mode.

Constitutive Models
The best performing constitutive model was not known a priori.
We investigated three different material model cases to consider
homogeneity versus regional heterogeneity, preferential
orientation using an anisotropic versus isotropic response, and

FIGURE 2 | The overall algorithm for the IFEA framework implementation. The model started with an initial estimate for the material parameters, then the
optimization algorithm incrementally moved forward toward the optimal solution by minimizing the displacement error between model predictions and DIC
measurements. In this workflow, u refers to the nodal displacement, σ is the Cauchy stress, ε is the technical strain.
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the linear versus nonlinear cases to determine optimal
constitutive parameters as detailed below. It was important to
note the reduced-order nature of the model meant the parameters
of these constitutive models were not simply the material
properties of the lung; rather they are a pseudo-material
model, represented as a projected, averaged surface response
of tissue or compound material parameters of the
parenchyma, airways, and pleura layer consolidated together.

Homogeneous Isotropic Hyperelastic Case
Here the compressible Mooney-Rivlin hyperelastic model (Mooney,
1940) with the strain energy density defined as W � C10(�I1 − 3) +
C01(�I2 − 3) + 1

D1
(J − 1)2 was used. �I1, �I2 were the first and second

invariants of the deviatoric deformation tensor, Jwas the Jacobian of
deformation gradient F, and C10, C01 , and D1 were the three
unknown material parameters. The stress-stretch curve of this
model can span strain-hardening and strain-softening behaviors,
depending on the relative values of thematerial parameters, allowing
a versatile IFEA framework.

Homogenous Anisotropic Hyperelastic Case
The Holzapfel-Gasser-Ogden (HGO) formulation (Holzapfel
et al., 2000) with the strain energy density defined as W �
Wiso +Waniso was used here. Wiso and Wanisowere defined as
Wiso � C10(�I1 − 3) + 1

D (J
2−1
2 − ln J) and

Waniso � k1
2k2

[exp k2[k(�I1 − 3) + (1 − 3k)(�I4 − 1)]2 −1]}{ . The
five unknown material parameters were C10, D, k1, k2 and k.
The three strain-representing kinematic variables were �I1, �I4,
and J. In this formulation �I1 was the first invariant of the
deviatoric deformation tensor. In addition, �I4 was the pseudo-
invariant of �C and a0⊗a0 where �C � J−2/3C followed the
multiplicative decomposition of the deformation gradient F
and the deformation tensor C � FTF. The vector a0 was a unit
vector field defining the fiber direction in the undeformed
configuration. J was the Jacobian of deformation gradient F. �I4
represented the squared of the stretch ratio of the material fiber
λ in the direction of the fiber family defined by a0. The degree
of preferential alignment of the fiber family governing
anisotropy was controlled by the dispersion parameter
k ∈ [0, 1/3], where 0 indicated the family of fibers were fully
aligned and 1/3 indicated a completely random distribution of
the fiber family (reducing to isotropic form). For each element
in the mesh, the local z-direction was the outward normal to
the element surface, the local y-direction was specified in the
anterior-posterior direction, and the local x-direction was
subsequently determined based on the right-hand sign
convention for Cartesian coordinates. Given that strains
were smaller in the medial-lateral direction, a0 was aligned
with the defined local x-direction for each element. It should be
noted that even though we define x-axis for the main fiber
directions, since the parameter k is left free to be determined by
the optimization engine, the true fiber directions are not
strictly fixed in the model.

Heterogeneous Isotropic Linear-Elastic Case
In this case we considered a linear elastic isotropic material
model (Eskandari and Kuhl, 2015) with Young’s modulus E

and Poisson’s ratio υ. The regional heterogeneity of this model
meant each element of the mesh had its own two parameters
that were found by the optimization algorithm. The shear
modulus μ of each element was then calculated using μ � E

2(1+])
and regionally mapped onto the lung surface.

Optimization Algorithms for Extracting
Material Parameters
Gradient-based optimization algorithms are prone to returning
local optima in the neighborhood of the initial search point, while
the derivative-free optimization algorithms, such as meta-
heuristic algorithms, are more likely to return the global
optimal solution instead (Nocedal and Stephen, 2006).
Therefore, two broad classes of gradient-based and gradient-
free optimization algorithms were implemented to improve
global optimum acquisition. In the gradient-based approach,
the trust-region-reflective (TRR) algorithm (Steihaug, 1983),
available in Matlab lsqnonlin function (The MathWorks Inc.,
MA, United States), was used for the two homo/iso/hyper and
homo/aniso/hyper cases; and the sequential-quadratic-
programming (SQP) algorithm (Boggs and Tolle, 1995),
available in Matlab fmincon function, was used for the hetero/
iso/linear-elastic case. As for the gradient-free approach, we
implemented our own version of the particle swarm
optimization (PSO) algorithm (Kennedy and Eberhart, 1995)
in a Matlab script. This provided more flexibility to impose
custom constraints on our problem, such as bounds on the
position and velocity of particles, which may not be done so
freely in the built-in Matlab PSO algorithm. The IFEA
processes in both approaches were fully automated by
conjoining Matlab, Abaqus, and Python. To help avoid local
optima, the TRR and SQP algorithms were run from several
randomly selected initial estimate points within the search
space as given in Table 1 and Table 2. As a verification step, we
applied the IFEA framework to a test case model with a simpler
geometry and known deformation field and material
parameters. We confirmed that the optimization pipeline
was indeed successful in recovering the pre-known material
parameters.

The Adjoint Method to Calculate the Objective
Functional Gradient
In this study, the adjoint method was used to calculate the
gradient for the hetero/iso/linear-elastic case given that the
total number of unknown material parameters for this case was
much greater than that of the homo/iso/hyper (three
parameters) and homo/aniso/hyper (five parameters) cases;
In the former case there were 457 elements and two material
unknowns at each element, which rendered the total number of
unknown parameters to 914. If the classical objective function
gradient with finite difference methods were used, each
iteration of the optimization algorithm for the hetero/iso/
linear-elastic forward elasticity problem would have to be
solved 914 × 2 � 1828 times based on the central difference
method to approximate the sensitivity of the objective
function. As such, the optimization algorithm would be
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rendered prohibitively expensive and therefore, adjoint
methods for optimization were utilized (Oberai et al., 2003).
This effective method required solving the problem only twice;
once for the forward elasticity problem and once for the
adjoint problem.

The derivation of the adjoint method to formulate our IFEA
problem employed the objective functional below, (with the
predefined measure of error between simulation and experiment):

Π � Π(u, p), (1)

where Π was the objective functional, vector u was the global
displacement vector, and p was the set of unknown material
parameters. Note that uwas dependent on the p because knowing
the material parameters allowed us to run the forward elasticity
problem and solve for the nodal displacements. Therefore, the
dependence of Π to p was implicit. The size of the vectors u and
p were u: M × 1 and p: N × 1, where M was the total degrees of
the freedom of the FE model. Specifically, our mesh had 263
nodes where each node has three translational degrees of
freedom (no rotational degrees), and therefore,
M � 263 × 3 � 789. The size of vector p for 457 meshed
elements with two unknown material parameters E and ]
was N � 2 × 457 � 914. Since Π represented a measure of
error, it took the following form:

Π � 1
2
× ∑

nmax loading

n�1

����(usim
n − uexpn )���� + ρ(p), (2)

where the first term was the L-2 norm of the error, and the
second term as a regularization parameter to tackle the ill-

posed aspect of the inverse problem (Isakov, 2017). One
popular choice for ρ could be ρ � α

2 p, where α was a
regularization parameter selected to be a very small
number (10−6) selected based on the theory of residues
(Tikhonov et al., 2013). The regularization was only
applied to the heterogeneous model with the gradient-
based optimization. In our case, n max loading referred to
the five time points at which the error was calculated through
the full inflation path.

The derivative of Π for the optimization algorithm was
defined as:

dΠ � (zΠ
zp

)
T

dp + (zΠ
zu

)
T

(zu
zp

). (3)

The values for zΠ
zp and zΠ

zu were known given their
explicit definition in Eq. 1. In order to get the term zu

zp , the
forward elasticity problem had to be solved since in general we do
not have an analytical relation between u and p. The forward
elasticity problem was cast into the following standard discretized
format obtained from the FE model:

K(p)u � f(p), (4)

whereK: M ×Mwas the global stiffness matrix, and f : M × 1 was
the global load vector. From there the partial derivative of Eq.
4 was:

(zK
zp

)u + K(p)(zu
zp

) � zf
zp

, (5)

TABLE 1 | Sets of initial estimates and converged optimal material parameters for the homo/iso/hyper case. In order to avoid local minimum, the optimization routine was
repeated from seven different starting points.

Initial material parameters Optimal material parameters

Run # C10 (kPa) [1–200] C01 (kPa) [1–200] D1(×10−4) kPa−1 [10−4–10−2] C10 (kPa) C01 (kPa) D1 (×10−4) kPa−1

1 25 10 5 136.2 1.0 13.2
2 10 20 15 136.6 1.0 13.5
3 100 42 61 136.6 1.0 13.5
4 172 18 32 136.9 1.0 13.6
5 10 90 80 136.1 1.0 13.2
6 50 50 50 136.7 1.0 13.6
7 200 150 90 136.5 1.0 13.4

TABLE 2 | Sets of initial estimates and converged optimal material parameters for the homo/aniso/hyper case. In order to avoid local minimum, the optimization routine was
repeated from seven different starting points.

Initial material parameters Optimal material parameters

Run # C10 (kPa) [1–200] D (×10−4) kPa−1 [10−4–10−2] K1 (kPa) [1–200] K2 [0–1] κ [0–0.33] C10 D (×10−4) K1 K2 κ

1 18 42 8 0.30 0.11 116.5 42 1.0 0.05 0.33
2 51 28 14 0.70 0.05 116.6 28 1.0 0.24 0.33
3 80 12 100 0.45 0.2 116.2 12 1.0 0.09 0.33
4 150 10 76 0.62 0.3 116.0 10 1.0 0.13 0.33
5 7 100 35 0.90 0.17 116.3 100 1.0 0.15 0.33
6 180 63 22 0.10 0.17 116.5 63 1.0 0.07 0.33
7 100 50 150 0.18 0.25 116.5 50 1.0 0.13 0.33
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where

zu
zp

� K−1(p)[zf
zp

− (zK
zp

)u],
or in the index notation

zu
zp i � K−1(p)[zf

zp i − (zK
zp i)u].

Substituting zu
zp back into Eq. 3 yielded

dΠ
dpi

� zΠ
zp i + (zΠ

zu
)

T

K−1(p)[zf
zp i − (zK

zp i)u]. (6)

The only problematic term was zΠ
zu because it required solving

the forward elasticity problem each time a small change was made
to our unknown parameter pi. To address this issue, we wrote

λT � (zΠ
zu

)
T

K−1(p),
where λ was named the adjoint variable. Rearranging yielded

KT(p)λ � zΠ
zu

Note that zΠ
zu � usim − uexpfrom the definition, and KT � K

from the symmetry of stiffness matrix. Therefore, to solve the
adjoint equation, we applied the difference between the
simulation and experiment displacements to drive the forward
elasticity problem. Having solved for λ, the gradient was
written as

dπ
dpi

� zΠ
zp i − λT [(zK

zp i)u − zf
zp i], (7)

where λ acted as a Lagrange multiplier. For our simpler case with
no regularization (zΠzp i � 0) and the external load being
independent of the unknown material properties (zfzp i � 0), the
derivative of the objective functional was simplified to

dπ
dpi

� −λT [(zK
zp i)u]. (8)

To calculate this simplified objective functional gradient, the
FE problem was solved two times: one was the forward elasticity
problem to obtain u, and the second one was to solve the adjoint
set of equations to get λ. To obtain the term zK

zp i, we slightly
perturbed the material property pi and collected the assembled
stiffness matrix by using the matrix generation procedure
available in Abaqus.

Particle Swarm Optimization Algorithm
In this well-known algorithm (Kennedy and Eberhart, 1995) a
random population of nPop particles was initially generated. Each
particle was basically a point in our search space for the optimal
material properties. For example, in the homo/iso/hyper case, the
position of each particle was defined by its value of C10, C01,and
D1 randomly drawn from a specified range given in Table 1. The

FE model for each particle was solved and the corresponding
error was evaluated. In order to update the position of the
particles toward the location of the global minima, the velocity
of each particle was updated based on:

v � [w × v] + [c1 × rand()(pbest − ppresent)] + [c2
× rand()(globalbest − ppresent)]. (9)

This determined the direction along which the value of the
material properties was to be changed (i.e., increased or
decreased). In Eq. 9, w was a damping factor which reduced
the momentum of the particles as they iteratively progressed
towards finding the global optima (Kennedy and Eberhart, 1995);
it started from 1.0 and was multiplied by a constant of 0.99 after
each iteration. The parameters c1 and c2 controlled the local and
global search weights, respectively. pbest and ppresent referred to
the best score (smallest error) of a given particle throughout the
whole iterations passed thus far and the one within the current
iteration, respectively. The parameter globalbest referred to the
best score of the overall population. The particles position was
then updated by adding the calculated velocity to the current
position. FE simulations were then performed for the whole batch
of particles in an iterative fashion until the optimization
algorithm converged.

In implementing the PSO algorithm, it was important to
impose proper upper and lower bounds on the velocity and
position vectors of each particle to avoid local minima or
particles getting stuck in the neighborhood of each other or
worse yet, on the boundaries (Kennedy and Eberhart, 1995).
Prior to updating the position vectors using Eq. 9, any element of
the velocity vector that had values above vMax or below vMin
were set to vMax or vMin, respectively. Then we checked for the
position vectors: if a particle’s position was beyond the limits
defined by the range [varMin, varMax], we checked its velocity
vector; if it was pointing outside the position bound (meaning
adding the velocity to the position would have resulted in the
particle position landing outside of its permitted range), velocity
component was set to zero, and the particle position was set to the
corresponding upper or lower bound. The parameters c1 and c2 in
Eq. 9were set to be 2.0 (Kennedy and Eberhart, 1995). The ranges
for particle velocity ([vMin, vMax]) were set as [−5, 5] for the
homo/iso/hyper and homo/aniso/hyper cases, and as [−40, 40]
for the hetero/iso/linear-elastic case. The parameter nPop was set
as 24, 48, and 1,000 for the homo/hyper/iso, homo/aniso/hyper,
and hetero/iso/linear-elastic cases, respectively. These
hyperparameters maintained a wide parameter value range,
helped the algorithm converge better, and were tuned based
on our preliminary sensitivity analysis studies.

RESULTS

The Interpolated Deformation and Strain
Measures of the Lung
The experimental displacement values were imposed on the FE
model using the generic homo/iso/hyper case to confirm the
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validity of the interpolation technique and the strain orientations
against the DIC system calculations. The data matched nearly
identically for each of the five inflation stages (0.4, 0.8, 1.2, 1.6,
and 2.0 s) as shown in Figure 3, and was subsequently used in
the optimization scheme. The motion of the lung during
inspiration was substantially inhomogeneous: the anterior
region of the lobe exhibited the greatest distention and
pronounced aeration (as much as 25 mm). The imposed
displacements at the nodes along the lobe perimeter were
also non-zero and were interpolated to represent the actual
boundary conditions of the deforming surface properly. The
maximum and minimum in-plane principal strains (major
and minor strains) obtained at the full inflation stage were
shown in Figure 3B and Figure 3C, valuing no more than 0.5
and 0.15, respectively. The major strain predominantly
aligned with the medial-lateral direction while the minor
strain was preferentially aligned with the anterior-posterior
direction.

The Optimized Compound Material
Properties of the Lung
The set of optimal material properties for the homo/iso/hyper
and homo/aniso/hyper cases, and for a wide array of starting
points, was listed in Tables 1, 2, respectively. The three material

properties’ average ±standard deviation for the homo/iso/hyper
was C10 � 136.5 ± 0.25kPa, C01 � 1.0 ± 0.0kPa, and
D1 � (13.43 ± 0.16) × 10−4kPa−1. The calculated shear and

FIGURE 3 | DICmeasured displacements data, extracted at ∼7,000 evenly distributed points across the parenchymal surface were interpolated and applied to the
FE model. (A) Displacement magnitude contour maps corresponding to five increments of 20% inflation steps. Anterior regions of the lung exhibited the largest
distensions. Vector field map of major (B) and minor (C) strains were obtained from imposing interpolated DIC displacements to the model.

FIGURE 4 | The shear modulus map obtained for the hetero/iso/linear-
elastic case obtained from (A) the gradient-based and (B) derivative-free
optimization algorithms. Both methods consistently demonstrated strong
heterogeneity in the tissue elasticity distribution across the lung surface.
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FIGURE 5 | Comparison between the displacement (A–C) and major strain (D–F) of the DIC and IFEA with either homogeneous and heterogeneous material
models. The computed displacement and strain contours of the heterogeneous model agreed with the DIC data better than the homogeneous model. The
heterogeneous model results are based on the SQP algorithm, and the PSO algorithm yielded similar results.

FIGURE 6 | The displacement error (Cartesian components) of the IFEA predictions assuming (A) heterogeneous and (B) homogeneous material models. The
errors for the heterogenous model were consistently smaller. SQP algorithm shown for the heterogeneous model error and the PSO algorithm yielded similar results.
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bulk moduli were μ0 � 2(C10 + C01) � 275kPa, and
K0 � 2

D1
� 1.5MPa, respectively. The parameter C01, which

controlled the contribution of �I2, consistently converged to its
allowed lower bound of 1.0 kPa and was two order of magnitudes
smaller than C10. The smallness of C01 in comparison to C10
indicates that the strain energy function is largely controlled by the
stretch response of the tissue and not the distortion part. In ventilating
the lung, the DIC strains also suggested that shear strains were
minimal. Another consequence of C01 being very small is that the
stress-strain curve would start to look less nonlinear.

The optimal set of material properties calculated for the homo/
aniso/hyper case for seven optimization runs was
C10 � 116.4 ± 0.2kPa, D � (43.6 ± 29.2) × 10−4kPa−1,
k1 � 1.0 ± 0.0kPa, k2 � 0.12 ± 0.06, and κ � 0.33 ± 0.0
(Table 2). The shear modulus was μ0 � 2(C10) � 233 kPa,
comparable to the 275 kPa obtained for the previous homo/
iso/hyper case.

While the three material parameters C10, k1, and κ converged
to their optimal values, the model did not depend on D and k2.
The anisotropic hyperelastic formulation in Abaqus ignores the
compressibility coefficient and therefore, the objective function
was simply insensitive to this parameter and D remained
unchanged (Abaqus: Theory Manual, 2011). Conversely, k2,
which was a dimensionless parameter exponentially
controlling the contribution of the fibers in the overall strain
energy function, did not yield a specific value because κ always
converged to 0.33 and effectively zeroed out the anisotropic part
of the strain energy density function. Therefore, k2, contributing
to the anisotropic term, did not converge to a meaningful value
because it played no role in the strain density function. Despite
accounting for anisotropic lung behavior, the inverse
optimization framework found no anisotropic advantage over
the isotropic model. Given this observation, the homo/aniso/
hyper case was not pursued further, and the considered models
were limited to the homo/iso/hyper and hetero/iso/linear-
elastic cases.

For the hetero/iso/linear-elastic case, we plotted the shear
modulus map of the lung shown in Figure 4. In both SQP
and PSO optimization schemes, the resulting spatial
distribution of the shear modulus exhibited strong
heterogeneity. The value for shear and bulk moduli was
108–312 kPa and 144 kPa–17.2 MPa, respectively, with the
tissue softening from the posterior to anterior regions of the lobe.

The displacements and strains measured by DIC and
predicted by the homogeneous and heterogeneous IFEA model

were shown in Figure 5. The predictions of the heterogeneous
model better matched the DIC displacement fields compared to
that of the homogenous model. The overinflation of the lung at
the anterior region was particularly well predicted by the
heterogeneous model (Figure 5B).

The three components of displacement errors (percent
normalized with respect of the maximum tissue displacement)
for homogeneous and heterogeneous cases were shown in
Figure 6. The errors for the heterogeneous case were
consistently smaller than that of the homogeneous case and
greatest in the z-direction (i.e., the direction at which DIC
camera overlooked the lung), likely corresponding to the
largest displacement values also being in the z-direction.

The overall IFEA settings and results of the two optimization
algorithms applied to the homo/iso/hyper and hetero/iso/linear-
elastic cases were summarized in Table 3. The homogeneous
isotropic model returned an average error of 2.3 mm for both
gradient-based and non-gradient-based optimization schemes.
The average error for the heterogeneous lung model was
consistently smaller than the homogeneous case; the PSO
algorithm resulted in a slightly smaller error compared to the
SQP algorithm (1.3 vs. 1.6 mm). The relative computational cost
(CPU time normalized with respect to the fastest case) and
number of iterations to reach the optimal solution were also
given; the PSO algorithms for the homo/iso/hyper and hetero/iso/
linear-elastic models were the fastest and most expensive
simulations, respectively.

DISCUSSION

While a one-to-one comparison between our reduced-order
model and extracted pulmonary tissue specimen measures is
impractical, we strived to compare the compound material
parameters (averaging shear modulus of hundreds of kPa in
all three constitutive models) with the reported ranges for
parenchyma, airway, and pleura layer individual component
responses (Tables 1, 2 and Figure 4). Our shear modulus
values, representing the combined parenchyma, airway, and
pleura layer materials, are greater than those of isolated lung
parenchyma (0.17–0.27 kPa) and the alveolar wall (1.74 kPa),
comparatively estimated by converting the previously reported
elastic modulus with an assumed Poisson ratio of 0.43 (Lai-Fook
et al., 1976; Cavalcante et al., 2005). Similarly converting the
reported 10–70 kPa elastic moduli of isolated airway specimens

TABLE 3 | General IFEA settings and results.

Homo/Iso/Hyper Hetero/Iso/Linear-elastic

Gradient-based optimization Error (mm) 2.3 1.6
Relative cost 2.7 3.1
Algorithm TRR SQP
Iterations 17 7

Non-gradient-based optimization Error (mm) 2.3 1.3
Relative cost 1.0 68.0
Algorithm PSO PSO
Iterations 30 77
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(Eskandari et al., 2019) yields airway shear modulus range of
3.5–25 kPa, also less than our combined shear modulus results.
Conversely, the encapsulating visceral pleura layer is
approximated to have a shear modulus of ∼200 kPa at low
stretch ratios (Humphrey et al., 1986), similar to our values.

The ratio between the bulk and shear modulus (often used to
gage material compressibility) was nearly 5.5 for the homo/iso/
hyper case, and 0.5 for the hetero/iso/linear-elastic case. This is
significantly less than incompressible materials (with a ratio
greater than 1,000) and justifies the use of the compressible
material model, as previously suggested (Birzle and Wall,
2019). Our model suggests that lung elasticity is not
distributed evenly across the regions, but that the shear
moduli is smallest in the anterior region (Figure 4),
corresponding to the location of maximum deformation.
While literature substantiating this tissue heterogeneity across
the organ is not yet available, regionally extracted tissue subjected
to tensile or indentation tests can enable future comparisons.

Using this reduced-order model of the lung, our optimization
scheme finds the anisotropic material model can be interchanged
with an isotropic representation (since κ � 0.33) and still
sufficiently capture the experimental displacements. While this
finding is bound to the model limitation and calls for further
experimental works to validate, it still can be substantiated given
the isotropic material behavior of the parenchyma (Fung, 1988)
where collagen and elastin fibers are randomly oriented (Toshima
et al., 2004). However, the major strains were found to
predominantly align with the medial-lateral direction while the
minor strains were preferentially aligned with the anterior-
posterior direction (Figure 3); this indicates that the spatial
patterns and strain orientations were possibly a result of the
geometry and loading of the lung more so than the anisotropic
nature of the tissue material itself. An alternative hypothesis is the
embedded monopodial main bronchial airway, which delivers
oxygen from the anterior to posterior region and is twice as compliant
circumferentially than axially, enables greater stretch in the medial-
lateral direction (Sattari and Eskandari, 2020). Therefore, it is
plausible that larger collagen-enriched airways may contribute to
the anisotropic strain distribution in the lung to a great extent.
Including a model mapping of the major airway pathways may help
further differentiate the tissuematrix versus the effect of the structural
reinforcement. This hypothesis will be explored further in upcoming
mice and human lung experiments with differing bronchial
branching patterns and collateral ventilation compared to the pig.

This reduced-order in-silico model of the lung facilitates a
novel and much-needed class of inverse modeling approaches for
the respiratory system. Current pulmonary biomechanical
models of the lung can be categorized into two classes: 1)
models primarily based on in-vivo kinematics data obtained
from computed tomography (CT) or magnetic resonance
(MR) images (Al-Mayah et al., 2010; Eom et al., 2010; Li
et al., 2013; Ilegbusi et al., 2016; Ladjal et al., 2021), and 2)
classic models idealizing the lung as single/multi resistive
compartments calibrated with pressure-volume data (Bates,
2009). While these methods have been quite insightful, their
shortcomings have motivated the novel approach put forward in
this study. For instance, CT- and MR-based models (class 1)

utilize convoluted and tedious deformable image registration
(DIR), further challenged by the lack of a universal ground truth
of lung nodules which necessitates expert-determined anatomical
landmark detection and hinders model validation (Sotiras et al.,
2013; Sarrut et al., 2017). Additionally, compartmentalized models
(class 2) describe global bulk elastance and resistance behaviors and
neglect the intricate multiscale architecture of the lung, omitting the
local heterogeneities and strain risers responsible for inflammation
and damage (Vlahakis et al., 1999; Gattinoni et al., 2003). The
absence of controllable testing parameters and continuous measures
in-vivo limits basic lung kinetic and kinematic investigations, such as
exploring the role of ventilation volume and rate, and contrasting
physiological negative-versus artificial positive-pressure ventilation
(Eskandari et al., 2021). Our ex-vivo informed in-silico approach can
readily establish the mechanical science of breathing by merging
detailed data acquisition with computational predictions.

Forging a bridge between tissue-scale kinematics and organ-
level kinetics facilitates fundamental explorations of multiscale
characterization and inaugurates several applications.
Generalizing and informing the model with multiple lung data
sets and complete inhalation and exhalation breathing pressures
can empower surgical planning strategies based on minimizing
changes in strain patterns from lobectomies, segmentectomies,
and wedge resections to preoperatively improve patient outcomes
instead of postoperative evaluations (Charloux and Quoix, 2017).
Extending this framework to include diseased lungs categories,
such as fibrosis or asthma, will enable regional tissue remodeling
detection studies to discover load- and deformation-based
pathological deviations to guide therapies, as inspired by
similar FE-based models of the lung being used to better
aerosol deposition in asthmatic patients (Wall et al., 2010;
Soni and Aliabadi, 2013) and optimal radiation therapy
(Werner et al., 2009; Ilegbusi et al., 2016). Furthermore, this
model has potential applications for the design of ventilators:
many didactic (Anderson et al., 2009) or clinical ventilators
(Zuckerberg et al., 2020) contain a lung-replicating rubber
bladder or elastic balloon component with mechanical
properties that are not physiologically representative. Our FE
lung membrane-like model and optimized material properties
can enhance the design resemblance of these ventilator systems to
improve patient care.

This study has several limitations. Firstly, one animal was used
to demonstrate this IFEA framework and therefore, statistically
conclusive results regarding the material property values are not
warranted. Second, while the optimization algorithms minimized
the error, the final error was still not completely vanished; this
indicates lung-specific constitutive models are needed to better
replicate the DIC measurements, as concluded by earlier works
(Eskandari et al., 2019). Third, while DIC allows continuous and
evolutionary behaviors of the lung to be examined whereas digital
volume correlation techniques are at discrete snapshots (Arora
et al., 2021), DIC can only access the lung surface and the internal
structure of the lung and the volumetric strain distributions are
not represented; a potential enhancement to this technique could
be the use of mirrors and prisms to collect multi-angled views.
Fourth, the framework is built on ex-vivo setting, hence the predicted
material properties are likely to be influenced by the deformation
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and kinetics of the ribcage and diaphragm. Fifth, the anisotropic
formulation implemented in the FE-package used in this study does
not take into account the compressibility aspect of plane-stress
elements, such as membrane elements in our model and assumes
constant volume instead while still allowing for reduction in the
element thickness due to in-plane deformations. Thus, the
compressibility coefficient (parameter D in the HGO model) is
not optimized by the IFEA framework. New implementation of the
HGO formulation that do indeed account for the compressibility are
needed to further investigate the effects of this limitation and provide
insight into the compressibility of the anisotropic model. Lastly, for
simplicity and computational time considerations, the
heterogeneous model was a linear model whereas a nonlinear
model might result in a better calibrated model.

CONCLUSION

This study establishes a computational model representing local
lung kinetics by associating global organ-level pressures and
volumes to tissue-level kinematics. This is achieved by
developing a novel lung application IFEA framework informed
and verified by ex-vivo continuous DIC measurements from a
porcine lung controlled via a custom-designed respiration
apparatus. The resulting FE model introduces a model
constructed solely from the geometry and deformation of its
external surface as a result of the applied inflation load. This in-
silico reduced-order pulmonary surrogate consolidates complex
lung tissues (i.e., the visceral pleura, bulk parenchymal tissue, and
the airway tree) into a simplified 3-D surface model, yielding
compound material properties of a membrane representative of
pressure-deformation features of the lung. Furthermore, the
heterogeneous lung elasticity map presented in this study
empowers new avenues to improve characterization of
diseased states by enabling region-specific assessments of

mechanical remodeling, such as variations in tissue elasticity,
thus far critically absent in the field.
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The widespread incidence of cardiovascular diseases and associated mortality and
morbidity, along with the advent of powerful computational resources, have fostered
an extensive research in computational modeling of vascular pathophysiology field and
promoted in-silico models as a support for biomedical research. Given the multiscale
nature of biological systems, the integration of phenomena at different spatial and temporal
scales has emerged to be essential in capturing mechanobiological mechanisms
underlying vascular adaptation processes. In this regard, agent-based models have
demonstrated to successfully embed the systems biology principles and capture the
emergent behavior of cellular systems under different pathophysiological conditions.
Furthermore, through their modular structure, agent-based models are suitable to be
integrated with continuum-based models within a multiscale framework that can link the
molecular pathways to the cell and tissue levels. This can allow improving existing
therapies and/or developing new therapeutic strategies. The present review examines
the multiscale computational frameworks of vascular adaptation with an emphasis on the
integration of agent-based approaches with continuum models to describe vascular
pathophysiology in a systems biology perspective. The state-of-the-art highlights the
current gaps and limitations in the field, thus shedding light on new areas to be explored
that may become the future research focus. The inclusion of molecular intracellular
pathways (e.g., genomics or proteomics) within the multiscale agent-based modeling
frameworks will certainly provide a great contribution to the promising personalized
medicine. Efforts will be also needed to address the challenges encountered for the
verification, uncertainty quantification, calibration and validation of these multiscale
frameworks.

Keywords: cardiovascular system, vascular remodeling, computer models and simulations, multiscale models,
agent-based models (ABMs), continuum-based models, equation-based modeling
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INTRODUCTION

In the past two decades the widespread incidence of
cardiovascular diseases and associated mortality and morbidity
(Virani et al., 2021), together with the increase in computer
resources, promoted an extensive research in the field of
vascular pathophysiology computational modeling. The
vascular system lays on a hierarchical and multiscale structure
(Qu et al., 2011) with different spatial and time scales involved in
the pathophysiological processes (Figure 1): the molecular scale
typically spans from nanoseconds to microseconds, the cellular
one from seconds to hours, while the tissue/organ one from days
to months (Walpole et al., 2013; Gosak et al., 2018). Processes at
different scales influence each other through a complex network
that includes heterogeneous mechanisms (e.g.,
mechanotransduction, gene pattern alteration) and ultimately
leads to tissue and organ response (Kholodenko, 2006; Gosak
et al., 2018). In vascular medicine, a thorough understanding of
the complex network underlying vascular pathologies and the
maladaptive healing processes in response to endovascular or
surgical interventions is lacking. The analysis of the inter-scale
interaction, from molecular pathways to pathological phenotype,
is deemed crucial towards the delivery of personalized therapies
and therefore it is receiving great interest (Kramer et al., 2018).
Furthermore, since the shifting from reductionist to “systems
biology” approach (beginning of the 21st century), a biological
system is seen as a complex network involving environmental
conditions, feedback mechanisms and mutual interactions across
different scales, rather than as the mere sum of its components
(Kohl et al., 2010; Mazzocchi, 2012; Kesić, 2016). Multiscale
computational models are perfect tools for investigating these
complex systems since they potentially embed the systems
biology principles, making them suitable to bridge in-vitro
models of single-scale phenomena to in-vivo models of a
whole system of interest (Qu et al., 2011; Walpole et al.,
2013). A systems biology approach allows tracking the
propagation of a physical quantity across the multiscale
network and quantifying its effect at tissue/organ level. This is

fundamental to elucidate intracellular patterns, feedback
mechanisms and cause-effect relations that are difficult to
discern from in-vitro or in-vivo experiments, as well as from
single-scale in-silicomodels (Qu et al., 2011). Such a level of detail
offers a powerful instrument in the optic of personalized
medicine, which is thought to revolutionize the therapeutic/
diagnostic approach (Vogenberg et al., 2010). Accordingly, in-
silicomodels are establishing to drive the biomedical research in a
more robust fashion. This is supported by the progresses in
biomedical technologies (e.g., imaging, high-throughput
genomic sequencing) and the availability of high-performance
computational resources, which allow elaborating huge quantity
of data and integrating them in well-established computational
infrastructures (Schadt et al., 2010; Hoekstra et al., 2019).

Two main modeling classes are adopted in the field of
computational modeling of vascular pathophysiology, namely
equation-based models and agent-based models (ABMs).
Equation-based models are continuum models based on
systems of ordinary differential equations (ODEs) or partial
differential equations (PDEs). ODEs are used to describe the
temporal variation of system state variables, while PDEs capture
both temporal and spatial-related evolution of said variables. At
the molecular level, PDE systems (e.g., advection-diffusion-
reaction equations) are broadly implemented in the vascular
field to describe the transport of molecular species (e.g., low
density lipoproteins, inflammatory cytokines and other pro-
atherogenic species (Silva et al., 2020)). In addition to
transport phenomena, equation-based models are adopted to
evaluate the mechanical behavior or the fluid dynamics at
tissue/organ scale (e.g., to quantify stresses and strains in the
arterial wall or the hemodynamic variables following
endovascular procedures as percutaneous transluminal
angioplasty (PTA) with/without stenting (Chiastra et al.,
2021a; Chiastra et al., 2021b; Colombo et al., 2021a; Colombo
et al., 2021b)). Usually, given the complex geometry of the
vascular segments, numerical methods, such as finite
difference method, finite element method (FEM) or finite
volume method, are needed to solve PDE systems associated

FIGURE 1 | Multiscale vascular system. Adapted with permission from Wikimedia Commons, (public domain, https://commons.wikimedia.org/wiki/File:DNA_
simple2.svg, https://commons.wikimedia.org/wiki/File:Circulatory_System_no_tags.svg), Blausen.com staff (2014) (https://creativecommons.org/licenses/by/3.0/),
and from Blanco et al. (2017) (http://creativecommons.org/licenses/by-nc/4.0/).
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to solid mechanics or fluid dynamics problems (Walpole et al.,
2013). ABMs are suitable tools to model heterogeneous
populations and capture the behavior of systems with an
intrinsic discrete nature, as systems of cells (Bonabeau, 2002;
An et al., 2009). Moreover, ABMs effectively embed the systems
biology approach: the system behavior emerges from the
simulation of the 1) individual agent dynamics (e.g., cells), 2)
interaction among agents and 3) environmental effects.
Compared to continuum models, ABMs offer a natural
description of cellular systems through the definition of rules
governing the agent activities (e.g., mitosis, apoptosis (Hwang
et al., 2009)). Thanks to this bottom-up approach, a complete
understanding of the whole system is not needed, since its
behavior will naturally emerge from the imposed basic rules.
Moreover, while equation-based models tend to be mostly
deterministic, ABMs can more easily incorporate stochasticity.
Accordingly, multiple runs of the same ABM produce
heterogeneous outputs, consistently with real observations of
the phenomena, making ABMs closer to the reality. Finally,
ABMs easily capture spatial-related aspects as tissue
heterogeneity, composition and morphology, and can integrate
phenomena at different scales within multiscale frameworks
(Glen et al., 2019). Each modeling strategy introduced above
allows simulating phenomena at specific tiers of resolution
reaching a high-fidelity level. However, since biological
processes involve different spatio-temporal scales, the
integration of said tools into biological systems’ multiscale
models is required (Walpole et al., 2013; Norton et al., 2019).

Recently, several multiscale models were proposed to
capture the complex nature of vascular pathologies and
depict the driving mechanisms of response to endovascular
procedures or surgical interventions. The aim of the present
review is to point out works on multiscale modeling of
vascular remodeling, with special emphasis on those
frameworks integrating continuum models and agent-based
approaches in a systems biology perspective. Studies that
proposed ABMs as the core of said frameworks are
reviewed herein, highlighting the potentials of multiscale
agent-based modeling methodology in incorporating the
systems biology principles and capturing
mechanobiological processes in vascular pathophysiology.
In detail, the second section (Agent-Based Modeling:
Promising Tool for a Systems Biology Approach), provides a
description of the ABM strategy, focusing on relevant aspects
in the context of complex biological systems and multiscale
approach. The third section (Multiscale Agent-Based
Modeling Frameworks of Vascular Pathophysiology)
describes the state-of-the-art of computational multiscale
agent-based modeling framework of vascular
pathophysiology. Specifically, models of atherosclerosis, in-
stent restenosis (ISR) and vein graft adaptation will be
detailed, as well as studies focusing on other aspects of
vascular remodeling processes. The fourth section (Agent-
Versus Continuum-Based Multiscale Frameworks: Strengths
and Limitations) discusses the strengths and limitations of
agent-versus continuum-based frameworks. The subsequent
section (Challenges and Future Directions) presents the

current challenges of agent-based modeling strategies and
future perspectives in the field, while the last section
(Conclusion) the concluding remarks.

AGENT-BASED MODELING: PROMOSING
TOOL FOR A SYSTEMS BIOLOGY
APPROACH
ABMs belong to a class of computational models in which the
system of interest is replicated with a bottom-up approach, i.e.
through the discrete representation of its components, called
“agents”, as autonomous decision-making elements (Bonabeau,
2002; An et al., 2009). The behavior of each agent is described
through sets of rules, which can be either probabilistic or
deterministic and may depend on internal and external
variables: the former account for the intrinsic dynamics of the
agent and the latter for the effects of the surrounding
environment and neighboring agents (Bonabeau, 2002; An
et al., 2009). Doing so, the system behavior is not reduced to
the mere superimposition of its elementary components but it
emerges from the concurrent agent actions, interactions, mutual
influence with the environment, and feedback loops that
dynamically evolve throughout the simulation (Chavali et al.,
2008). Consequently, a simple ABM can give rise to complex,
non-linear phenomena that are counterintuitive or difficult to
predict from the analysis of its elementary components’ behavior
(emergent properties) (An et al., 2009).

Considering all the above, ABMs provide a simple but
effective and realistic representation of systems composed by
heterogeneous populations of active elements, in which the
interactions and the spatial-related aspects play a major role.
Translating these concepts to biology, ABMs present great
potentialities in modeling complex biological processes
through an intuitive and flexible framework (Bonabeau,
2002; An et al., 2009). Moreover, the basic principles of
these models make them suitable to express the systems
biology approach, since the concepts of emergence and the
holistic representation of systems are naturally implemented
(Kohl et al., 2010). The most common scale of representation of
biological systems through ABMs is the cell-tissue level, in
which each cell or extracellular matrix (ECM) component
constitutes an autonomous agent (Figure 2) (Hwang et al.,
2009). Cellular dynamics are replicated with dedicated rules
(Hwang et al., 2009), along with other phenotype-specific events
(e.g., production of chemicals, intracellular signaling (An et al.,
2009)). As mentioned above, all these rules can be an explicit
function of variables representing the concentration of
chemicals (e.g., drugs), local microenvironment (e.g.,
hypoxia, inflammation), mechanical stimuli (e.g., state of
stress), and agent-specific internal conditions (e.g., cell cycle
period) (Van Liedekerke et al., 2015). In such a scenario, rule-
based approaches are more intuitive than differential equations-
based systems, especially for non-mathematicians (Bonabeau,
2002), and this is a crucial aspect in the era of multidisciplinary
research. Accordingly, ABMs have the potential to abate the
background-derived roadblocks preventing biologists/clinicians
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FIGURE 2 | Example of agent-based model (ABM) of vascular wall at the cell-tissue scale implemented on a hexagonal lattice, as in Corti et al. (2020). (A) Three-
dimensional patient-specific vessel geometry. (B) Cell-tissue scale ABM of a vessel cross-section implemented on a hexagonal lattice. The vessel wall is composed by
the intima, media and adventitia layers. Each layer is populated by cell and extracellular matrix (ECM) agents, with each agent occupying one lattice site. (C) Examples of
ABM rules.
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from translating their conceptual model of the biological
process into an in-silico replica for further advancing their
research.

Different strategies are adopted to implement agent rules.
Among them, “if-then” conditions are often used to express
different behaviors according to specific situations (Bonabeau,
2002). Cell proliferation usually occurs only if specific conditions
hold, e.g., if the cell is in the mitotic phase, if there is physical
space for the new cell according to the contact inhibition
criterion, if inhibitory signals are deactivated (Hwang et al.,
2009). In addition, force-based or energy-based criteria can be
adopted to define agent and system equilibrium conditions (Zun
et al., 2017). Moreover, deterministic or stochastic rules can be
used. Stochastic rules are commonly implemented to incorporate
an intrinsic level of randomness (e.g., in the form of noise,
random switching between different states of the system
(Andrews et al., 2009)) that allows generating a population of
outputs consistent with the statistical observation of the real
phenomenon (An et al., 2009). Repeated simulations of the same
ABM (under identical initial and boundary conditions) will
exhibit different behaviors, resulting in multiple possible
evolutions of the system. This well reproduces the reality of
biological processes observed at a population level: for
example, the heterogeneous outcomes of in-vitro and in-vivo

experiments, as well as of clinical trials and, more in general, the
inter-subject variability encountered in any clinical study. The
embedded stochasticity may also lead to unexpected and rare
event combinations resulting in an unusual system evolution that,
although constituting an outlier from a statistical viewpoint, may
highlight counterintuitive and unpredictable processes that may
realistically occur. The stochasticity does not necessarily
represent a real stochastic event in the biological system (An
et al., 2009). In some cases, even though the underlying processes
may be intrinsically deterministic, it can be advantageous
describing the event itself as stochastic and based on a specific
probability density function derived from observations of the
exhibited phenomenon (An et al., 2009; Székely and Burrage,
2014). For example, cell proliferation is driven by a cascade of
deterministic sub-processes. However, if a detailed knowledge of
all the sub-processes is lacking or if their explicit modeling is
beyond the purpose of the work, the final event (i.e., cell
proliferation) can be replicated through a probabilistic rule
that follows a phenomenologically-derived probability density
function.

ABMs mainly divide in two classes depending on their
implementation on a lattice (lattice-based) or in the
continuum (lattice-free) space, as schematized in Figure 3
(Van Liedekerke et al., 2015). Within lattice-based ABMs, the

FIGURE 3 | Examples of lattice-free and lattice-based agent-based model (ABM) at the cell scale. (A) Lattice-free ABM. (B) Lattice-based ABMwith one lattice site
corresponding to a single agent, i.e., cell or extracellular matrix (ECM). (C) Lattice-based ABM with multiple agents (cells and ECM) at one lattice site. (D) Lattice-based
ABMwith agents (cells and ECM) occupying more than one lattice site. The lattice-based ABMs shown in (B–D) are implemented on a hexagonal lattice, as in Corti et al.
(2020).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org November 2021 | Volume 9 | Article 7445605

Corti et al. Multiscale Modeling of Vascular Adaptation

255

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


choice of the relative agent dimension with respect to the
lattice site may vary according to the model purposes (Van
Liedekerke et al., 2015). Focusing as example on the cell level
scale, the following three different strategies are possible
(Van Liedekerke et al., 2015): 1) one lattice site
corresponds to a single cell (Figure 3B), 2) one lattice site
contains multiple cells (Figure 3C) or 3) many lattice sites are
occupied by a cell (Figure 3D). The strategies 1) and 2) are
adopted when large systems of cells are simulated and
attention is given to cell activities (resulting in the
evolution of the system), rather than on local cell
deformation processes. The choice of 1) or 2) has minor
effects on results accuracy, but mainly affects the
computational time. Differently, the strategy 3) is
preferred if the local effects on cells (e.g., the explicit
representation of cell shape and deformation) are of
interest and a small cell system is considered, thus making
it more suitable for processes as tumor growth or
angiogenesis. Since in lattice-free ABMs agents can occupy
any position in the continuum space, these are usually the
first choice if the interactions among cells are pivotal to study
the trajectory of the system of interest (Randles et al., 2021).
They are typically embedded with immersed boundary
techniques to describe the mutual agent interaction
(Garbey et al., 2019) and usually force-based or energy-
based equations are solved to compute agent movement
(Van Liedekerke et al., 2015). However, a fine detail in
this direction comes with the price of a higher
computational cost.

ABMs are flexible and modular (Bonabeau, 2002; An et al.,
2009). Once the structure of the model is implemented, the
inclusion of new agent types (with their rule set) or new
events for existing agents is still possible and does not affect

the general body of the model. Accordingly, increasing levels
of complexity can be explored through a stepwise process and
a modular framework can be adopted, with the possibility to
switch on/off processes according to the goal of the planned
simulation. As downsides, 1) integrating an existent model
with additional components might implicate a re-calibration
of the model if some coefficients of the new agents are
unknown or not directly retrievable from dedicated
experimental data, and 2) the more the complexity of the
model increases, the more the model becomes unmanageable
and unusable in practice. Thanks to their flexibility, cell-scale
ABMs can be coupled with continuum models at tissue or
molecular scale, leading to multiscale agent-based modeling
frameworks of biological systems, in which the ABM
constitutes the main core (An et al., 2009; Van Liedekerke
et al., 2015). A bidirectional interaction between the ABM
and the continuum modules simulates the influence that the
external environment (at the tissue or molecular scales) has
on cellular dynamics and vice-versa. This allows capturing
the adaptation of cell behavior in response to molecular or
mechanical factors from one side, and the environment
modification as consequence of cell activities from the
other side. Many studies have demonstrated the potential
of multiscale agent-based modeling frameworks to model
biological systems in different areas of applications, such
as tissue remodeling (e.g., Rouillard and Holmes (2014),
Virgilio et al. (2015) and Chen et al. (2018)), tumor
growth (e.g., Wang and Vafai (2015) and Norton et al.
(2019)) and wound healing (e.g., Mi et al. (2007), Dutta-
Moscato et al. (2014) and Rikard et al. (2019)). In addition,
the application of similar multiscale frameworks for
modeling vascular adaptation processes is emerging, as
extensively discussed in the following section.

FIGURE 4 | Schematic representation of a general multiscale framework of vascular adaptation. The main simulated events at the different spatio-temporal scales
are: 1) structural mechanics and fluid dynamics, 2) cellular activity and 3) molecular transport. The modules receive proper inputs (red arrows) and generate suitable
outputs (green arrows).
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MULTISCALE AGENT-BASED MODELING
FRAMEWORKS OF VASCULAR
PATHOPHYSIOLOGY
Multiscale agent-based modeling frameworks of vascular
pathophysiology have been developed by several research
groups to predict vessel response to the alteration of the
environmental and operational conditions and to provide
insights into the driving mechanisms of post-intervention
vascular remodeling at different temporal and spatial scales.
To date, the most relevant applications of these computational
frameworks regarded the atherosclerotic plaque development and
the processes of restenosis following endovascular procedures
and of vein graft neointimal hyperplasia after bypass surgery, as
described in detail in, Multiscale Models of Atherosclerosis and
Multiscale Models of In-Stent Restenosis, respectively.
Furthermore, other vascular remodeling processes have been
modeled (i.e., the arterial response to the alteration of growth
factors, chemicals or mechanical stimuli and the remodeling
process of a vascular tissue engineering scaffold), as reviewed
in Multiscale Models of Other Vascular Applications.

A general computational approach characterizes most of the
reviewed studies (Figure 4), based on a framework integrating: 1)
a tissue-scale module (e.g., vascular segment), which simulates
the hemodynamics and/or the solid mechanics, usually with a
continuum approach; 2) a cell-scale module (e.g., vascular cells
and ECM), which replicates cellular activities in response to
hemodynamic, mechanical, chemical stimuli with a discrete
approach (i.e., ABM) and 3) a molecular-scale (subcellular)
module, which computes the transport of molecules (e.g.,
growth factors, chemicals, drugs) within the tissue or simulates
the expression profile of proteins and genes with a continuum
approach.

The ABM is the core of the multiscale framework. It is
initialized with hemodynamic, mechanical or molecular cues
and simulates vascular remodeling by implementing cellular
behaviors. The morphological and compositional tissue
changes, resulting from the ABM simulation, are used to
update the tissue and molecular scale configurations, which
undergo new simulations to compute the updated conditions
for the ABM re-initialization.

Multiscale Models of Atherosclerosis
Atherosclerosis is a multifactorial and inflammatory-driven
disease that leads to the narrowing of the arterial lumen due
to the formation of a plaque in the arterial wall (Bentzon et al.,
2014). The early pathological onset was attributed to the
accumulation of circulating low-density lipoproteins (LDL) in
the arterial wall, which, by triggering an inflammatory response
and a subsequent network of cause-effects events (involving e.g.,
monocytes recruitment, LDL oxidation, foam cell accumulation,
fatty streaks formation, smooth muscle cell (SMC) increased
synthetic activity), ultimately promotes atherosclerotic plaque
formation (Libby et al., 1992; Bentzon et al., 2014). The lipid-
rich plaque may also progress into advanced atherosclerotic
lesion, characterized by necrotic core formation, fibrosis and
calcification (Bentzon et al., 2014). The initial trigger of the

pathology, namely the increased endothelial permeability to
LDL, facilitating LDL accumulation in the intima, is associated
with endothelial dysfunction, which is promoted by several
factors as diabetes, hypercholesterolemia, hypertension,
smoking and obesity (Mudau et al., 2012). Moreover, evidence
of co-localization of plaque formation and luminal regions
exposed to altered hemodynamics, characterized by low and/or
oscillatory wall shear stress (WSS), suggested an implication of
disturbed blood flow in the development of the pathology
(Chatzizisis et al., 2007; Samady et al., 2011). Specifically, the
exposure of endothelial cells to disturbed blood flow triggers an
intracellular signaling pathway that reduces endothelial nitric
oxide synthase expression and the nitric oxide bioavailability,
promoting increased SMC synthetic activity and the activation of
atherogenic processes (Harrison et al., 2006).

Some of the aforementioned aspects of pathology initiation
and progression were considered in the available multiscale
agent-based modeling frameworks of atherosclerosis, as
presented in Table 1 and Supplementary Tables S1, S2, and
discussed below. Table 1 describes the pathology, the framework,
the agent types and the computational domain considered in each
study. Supplementary Table S1 details the module integration
and the software, while Supplementary Table S2 the ABM
strategies, namely the vessel wall compartments, and the agent
types and rules.

The available multiscale models of atherosclerosis (Bhui
and Hayenga, 2017; Corti et al., 2019; Corti et al., 2020)
captured the mutual influence between hemodynamics and
arterial wall remodeling during atherogenesis and plaque
development. The multiscale frameworks of Bhui and
Hayenga (2017), Corti et al. (2019) and Corti et al. (2020)
were based on the bidirectional coupling of a stochastic ABM
of cellular dynamics and a hemodynamics module for blood
flow computation. Additionally, in the framework of Bhui
and Hayenga (2017) a molecular module was included to
describe the transport of inflammatory cytokines and LDL
within the arterial wall.

The work by Bhui and Hayenga (2017) was applied to a three-
dimensional (3D) idealized coronary artery model and
investigated the role of WSS in the processes of leukocyte
trans-endothelial migration, LDL accumulation and,
consequently, atherosclerotic plaque progression.
Computational fluid dynamics (CFD) simulations were
performed to compute the WSS profile, used to initialize the
ABM. Given the ABM-simulated changes of luminal geometry
occurring during plaque growth, an ABM to CFD coupling was
performed to update the WSS distribution, by computing the
hemodynamics in the current vessel geometry. The ABM to CFD
coupling occurred after significant changes in the luminal
geometry rather than at a fixed time. A 3D ABM, constituted
by a uniform layer for the arterial wall (i.e., without intima, media
or adventitia separation) covered by a single layer of endothelial
cells, was implemented. Leukocytes were the only active agents
and specific rules for the endothelial adhesion, the trans-
endothelial migration, the chemotactic migration in the
arterial wall, the cytokines production, and the lifespan were
implemented. In particular, leukocyte adhesion probability was
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TABLE 1 | Multiscale agent-based modelling frameworks of vascular adaptation.

Authors (Year) Pathology Multiscale framework Agents Domain

Bhui and Hayenga (2017) Atherosclerosis Tissue-scale module (seconds) EC, SMC (inert agents),
Leukocytes (Neutrophils,
monocytes, macrophages,
foam cells and lymphocytes)

Simplified 3D model of coronary
arteryHemodynamics module: FEM. I: vessel

geometry; O: WSS
Cell-scale module (hours/days)
ABM; I: WSS; O: vessel geometry and wall
composition
Molecular-scale module (seconds)
Cytokine and LDL transport in the ABM

Corti et al. (2019), Corti
et al. (2020)

Atherosclerosis Tissue-scale module (seconds) SMC, ECM (collagen, elastin),
LDL, Fibroblasts

Idealized 3D model of superficial
femoral artery, with 2D ABM
cross-sections

Hemodynamics module: FVM. I: vessel
geometry; O: WSS
Cell-scale module (hours/days)
ABM; I: WSS; O: vessel geometry and wall
composition

Caiazzo et al. (2011);
Tahir et al. (2011); Tahir
et al. (2013); Tahir et al.
(2014); Zun et al. (2017);
Zun et al. (2019)

In-stent restenosis Tissue-scale module (seconds) SMC, IEL (Caiazzo et al.
(2011); Tahir et al. (2011);
Tahir et al. (2013); Tahir et al.
(2014)); SMC, IEL, EEL (Zun
et al. (2017)); SMC, ECM, IEL,
EEL (Zun et al. (2019))

2D longitudinal section of
idealized straight artery with 2
stent struts (Caiazzo et al.
(2011)),Tahir et al. (2011); Tahir
et al. (2013) - 6 stent struts (Tahir
et al. (2014)); 3D straight artery
(Zun et al. (2017)); Idealized
curved artery with stent
reconstructed from micro-CT.
(Zun et al. (2019))

Hemodynamics module: Lattice Boltzmann.
I: vessel geometry; O: WSS/OSI
Cell-scale module (hours/days)
ABM - physical solver: stent deployment
and structural cell dynamics. I: vessel
geometry; O: equilibrium position, vessel
geometry and structural stress
ABM - biological solver: SMC cell-cycle.
I: WSS/OSI, drug concentration, structural
stress. O: vessel geometry
Molecular-scale module (seconds)
Drug diffusion: FD. I: vessel geometry;
O: drug concentration in the tissue. Included
in (Caiazzo et al. (2011); Tahir et al. (2011))

Boyle et al. (2010) In-stent restenosis Tissue-scale module (seconds) SMC, EC ECM, matrix
degrading factors and growth
factors modeled as agent
internal variables

Solid mechanics module: artery
as 3D cylinder (symmetry: 1/8th

model circumferentially). Lattice-
based model: 2D longitudinal
section

Solid mechanics module: FEM. Stent
expansion. I: vessel geometry; O: vessel
geometry, minimum principal stress
Cell-scale module (hours/days)
ABM. I: vessel geometry, minimum principal
stress. O: updated vessel geometry and wall
composition

Boyle et al. (2011) In-stent restenosis Tissue-scale module (seconds) SMC ECM, matrix degrading
factors, growth factors and
damage modeled as agent
internal variables

2D cross-section of an ideal
cylindrical artery with 6 stent
struts. 1/6th of the model
considered for symmetry

Solid mechanics module: FEM. Stent
expansion. I: vessel geometry; O: vessel
geometry, von Mises stress
Cell-scale module (hours/days)
ABM. I: vessel geometry, damage, matrix
degrading factors, growth factors, ECM;
O: updated vessel geometry and wall
composition
Molecular-scale module (seconds)
Inflammation module: Set of ODEs. I: von
Mises stress. O: damage, matrix degrading
factors, growth factors, ECM

Zahedmanesh et al.
(2014)

In-stent restenosis Tissue-scale module (seconds) SMC, EC ECM, matrix
degrading factors and
damage modeled as agent
internal variables

2D longitudinal section
(axisymmetric model) of artery
and single stent strut

Solid mechanics module: FEM. Stent
expansion. I: vessel geometry; O: vessel
geometry, von Mises stress
Cell-scale module (hours/days)
ABM. I: vessel geometry, damage (sigmoid
function of von Mises stress); O: updated
vessel geometry and wall composition

Nolan and Lally (2018) In-stent restenosis Tissue-scale module (seconds) SMC, EC, ECM, matrix
degrading factors, growth
factors, phenotype and
damage modeled as agent
internal variables

2D quarter cylinder of artery in
the radial-circumferential planeSolid mechanics module: FEM. Stent

expansion. I: vessel geometry; O: vessel
geometry, von Mises stress
Cell-scale module (hours/days)

(Continued on following page)
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TABLE 1 | (Continued) Multiscale agent-based modelling frameworks of vascular adaptation.

Authors (Year) Pathology Multiscale framework Agents Domain

ABM. I: vessel geometry, damage, matrix
degrading factors, growth factors, ECM,
phenotype; O: updated vessel geometry
and wall composition
Molecular-scale module (seconds)
Inflammation module: Set of ODEs. I: von
Mises stress. O: damage, matrix degrading
factors, growth factors, ECM, phenotype

Li et al. (2019) In-stent restenosis Tissue-scale module (seconds) SMC, EC ECM, matrix
degrading factors, growth
factors, cell phenotype and
damage modeled as agent
internal variables

2D longitudinal section
(axisymmetric model) of artery
and single stent strut

Solid mechanics module: FEM. Stent
expansion and structural equilibrium
following geometrical changes. I: vessel
geometry; O: vessel geometry, von Mises
stress
Cell-scale module (hours/days)
ABM. I: vessel geometry, damage, matrix
degrading factors, growth factors, ECM;
O: updated vessel geometry and wall
composition
Molecular-scale module (seconds)
Inflammation module: set of ODEs. I: von
Mises stress. O: damage, matrix degrading
factors, growth factors, ECM, cell
phenotype

Garbey et al. (2015) Vein graft remodeling Tissue-scale module (seconds) SMC, ECM 2D circular vein graft model
Hemodynamics module: FVM and
immersed boundary implementation.
I: vessel geometry; O: WSS.
Solid mechanics module: FEM. I: vessel
geometry; O: loaded vessel geometry,
wall tension
Cell-scale module (hours/days)
ABM. I: WSS, wall tension; O: updated
unloaded vessel geometry and wall
composition

Garbey et al. (2017) Vein graft remodeling Tissue-scale module (seconds) SMC, ECM 2D circular vein graft model
Hemodynamics module: Analytical solution
(Poisson problem). I: vessel geometry;
O: WSS.
Solid mechanics module: Analytical solution
thick wall cylinder. I: vessel geometry;
O: wall tension
Cell-scale module (hours/days)
ABM. I: WSS, wall tension; O: updated
vessel geometry and wall composition

Garbey et al. (2019) Vein graft remodeling Tissue-scale module (seconds) SMC, ECM 2D circular vein graft model
Hemodynamics module: Analytical solution
(Poisson problem). I: vessel geometry;
O: WSS.
Solid mechanics module: Analytical solution
thick wall cylinder. I: vessel geometry;
O: wall tension
Cell-scale module (hours/days)
ABM. SMC/ECM activities. I: WSS, wall
tension; O: updated vessel geometry and
wall composition
IBM. SMC migration and wall remodeling.
I: ABM vessel geometry; O: updated vessel
geometry and composition
Molecular-scale module (seconds)
Diffusion of growth factor. PDE. I: WSS;
O: spatio-temporal evolution of growth
factor

(Continued on following page)
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defined as a function of WSS, circulating cytokine and leukocyte
concentration, while the trans-endothelial migration as a
function of arterial stiffness. Moreover, LDL transport and
accumulation in the arterial wall depended on WSS and
systemic LDL concentration. LDL diffusion in the arterial wall
was modeled through Fick’s law and rules defining LDL oxidation
and phagocytosis by monocyte-derived foam cells were applied.
Finally, Glagov’s remodeling was implemented, according to
which the lumen area was preserved in the initial phases of
atherosclerosis thanks to a compensatory outward remodeling
(Glagov et al., 1987). An example of the simulated plaque
progression is provided in Figure 5. According to Glagov’s
hypothesis, an outward enlargement of the arterial tissue was
produced until month 6 of simulation, without affecting the
lumen area. Then, further plaque growth led to lumen area
decrease. Consistently with experimental and clinical findings,
the framework simulated plaque growth at luminal regions
exposed to low WSS (Stone et al., 2012). Additionally, the
simulated mean lesion area was compared with observations
in pig models of atherosclerosis (Pelosi et al., 2014). While a
good agreement was found at 2 months, an underestimation of
the plaque area was observed at 4 months, compared to animal
data. This was attributed by the authors to the lack of SMC and
fibroblast dynamics (migration, proliferation and ECM synthesis)
in the model, which, if included, would have contributed to the
lumen area reduction. Although the promising computational
results, the assessment of their validity for human cases is
challenging, due to the paucity of human data of early
atherosclerosis. If translated to human cases, the simulated
growth rate, may result accelerated. This was attributed by the
authors to the use of in-vitro data for the conceptualization of
leukocyte adhesion and migration rules and to the lack of ECM
degradation processes. Considering all the above, it would be of
great interest to include SMC and ECM dynamics to better
appreciate their influence on plaque development.

A multiscale CFD-ABM framework was also proposed by Corti
et al. (2019) andCorti et al. (2020). Steady-state CFD simulations of a
3D idealized superficial femoral artery model were coupled with a
2D ABM of cellular dynamics implemented for 10 evenly spaced
vessel cross-sections. The ABM simulations were paused at a fixed
time to update the hemodynamics in the ABM-generated vessel
geometry. Ten ABM simulations were run for each plane to account
for stochasticity. At the defined coupling time, plaque location,
plaque size and lumen contour were retrieved as ABM outputs,
and their average (among the 10 simulations) taken as reference.
This procedure was repeated for each plane and the ABM
configuration (among 10) with the minimum deviation from the
average condition (computed for the specific plane in terms of the
above-mentioned geometrical features) was used to reconstruct the
resulting 3D vessel geometry. The influence of the ABM to CFD
coupling time was investigated by testing three coupling schemes for
14 simulated days: a fixed coupling time of 1) 7 days and 2) 3.5 days,
and 3) a variable frequency consisting in a first coupling after 7 days
and then every 3.5 days. Within the simulated period, the temporal
lumen area trend was not affected by the adopted coupling scheme,
although for some planes the shortest coupling time allowed
capturing a more frequent activation and deactivation of
pathologic processes. Their ABM simulated SMC, ECM and LDL
dynamics to replicate arterial wall remodeling and plaque formation
and progression over time as a function of WSS, computed by the
steady-state CFD simulation. Specifically, in case of at least oneWSS
value lower than 1 Pa (value chosen according to femoral artery data
(Schlager et al., 2011)) in the considered ABM plane, an atherogenic
condition was activated in the intimal layer, promoting LDL
infiltration and increasing SMC proliferation/ECM production
probabilities. The atherogenic threshold influence on the model
output should be assessed through a robust sensitivity and
uncertainty quantification analysis. Figure 6 shows relevant
results of the framework along 2months, obtained without any
intermediate CFD-ABM coupling. In agreement with experimental

TABLE 1 | (Continued) Multiscale agent-based modelling frameworks of vascular adaptation.

Authors (Year) Pathology Multiscale framework Agents Domain

Zahedmanesh and Lally
(2012)

Remodeling of a vascular
tissue-engineered scaffold

Tissue-scale module (seconds) SMC, ECM 2D longitudinal section
(axisymmetric model) of vascular
scaffold

Solid mechanics module: FEM. I: vessel
geometry and wall composition; O: vessel
geometry, cyclic strain, pore fluid velocity
Cell-scale module (hours/days)
ABM. I: vessel geometry, cyclic strain, pore
fluid velocity. O: updated vessel geometry
and wall composition

Keshavarzian et al.
(2018)

Arterial growth and
remodeling under different
conditions: growth factors,
chemicals, blood pressure

Tissue-scale module (seconds) EC, SMC, fibroblasts, ECM 3D model of coronary artery
Solid mechanics module: FEM. I: vessel
geometry and wall composition (use of a
content-based strain energy density
function); O: maximum principal stress and
strain under different loading condition
Cell-scale module (hours/days)
ABM. I: vessel geometry, stress, strain.
O: updated vessel geometry and wall
composition

ABM: agent-based model; FEM: finite element method; FVM: finite volume method; FD: finite difference; ODE: ordinary differential equation; PDE: partial differential equation; IBM:
immersed boundary method; I: input; O: output; WSS: wall shear stress; OSI: oscillatory shear index; SMC: smooth muscle cell; EC: endothelial cell; ECM: extracellular matrix; LDL: low
density lipoprotein; IEL: internal elastic lamina; EEL: external elastic lamina; 2D: bidimensional; 3D three-dimensional.
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and clinical evidence (Samady et al., 2011; Stone et al., 2012), the
model simulated greater plaque formation and lumen area reduction
at luminal regions exposed to low WSS. Moreover, the model
successfully resembled pathological characteristics, as the
development of an asymmetric plaque, characterized by the
presence of a well-defined lipid core and increased intimal ECM
and SMC content, coherently with experimental observations (Stary
et al., 1995).

Three major differences arise with respect to the model of Bhui
and Hayenga (2017). First, Glagov’s remodeling was not
implemented, and, consequently, an increase in the plaque

area was directly associated with lumen area reduction.
Second, inflammatory cell types and cytokines as well as foam
cell accumulation were not included, but a key role was attributed
to SMC and ECM dynamics, neglected in Bhui and Hayenga
(2017). Last, while in the work by Bhui and Hayenga (2017),
plaque formation was related to WSS and LDL/leukocyte blood
concentration, here only the WSS input was considered,
maintaining other risk factors as intrinsic. The models by Bhui
and Hayenga (2017), Corti et al. (2019) and Corti et al. (2020) did
not include several underlying pathological mechanisms, such as
the formation of fatty streaks, and the evolution to advanced

FIGURE 5 | Results of the multiscale computational fluid dynamics–agent-based model (CFD-ABM) framework of atherosclerosis by Bhui and Hayenga (2017).
The temporal evolution of the ABM geometry from the initial configuration (A) to the configuration at 6 months (B) and at 7 months (C) is shown, for the longitudinal (left)
and transverse (right) views, with the endothelial cells in green, the arterial cells in red and leukocytes in yellow. The initial condition (A) is characterized by the presence of
15 leukocytes in the arterial wall. Until 6 months (B), thanks to the compensatory Glagov’s remodeling, the plaque growth determined an outward remodeling, while
preserving the lumen area. At this point, the plaque area is 40%. At 7 months (C), the plaque growth provokes a reduction of the lumen area. Reprinted with permission
from Bhui and Hayenga (2017) (http://creativecommons.org/licenses/by/4.0/).
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atherosclerotic lesions with fibrous cap, necrotic core and
potential calcifications. Nonetheless, both the models nicely
outlined plaque formation at theoretical level and offered a
solid coupling infrastructure to combine hemodynamics and
cellular mechanics within the atherosclerosis development. The
proposed infrastructures promise to be agile enough to serve as
useful tool for clinical hypothesis testing and therapy outcome
prediction, provided that an effort towards the application to
realistic vessel geometries will be considered, together with a
quantitative calibration and validation of the model on
human data.

Multiscale Models of In-Stent Restenosis
ISR after endovascular intervention remains a major drawback
compromising the long-term outcome of the procedure (Mitra
and Agrawal, 2006; Chaabane et al., 2013). ISR consists in the re-
narrowing of the lumen mainly associated to an inflammatory-
driven overexpressed SMC activity, as consequence of multiple,
interrelated systemic, biologic and biomechanical factors (Mitra
and Agrawal, 2006; Chaabane et al., 2013). Most biomechanical
factors are attributable to the wall damage induced by PTA and
stent deployment, and to hemodynamic alterations caused by the
stent presence (Mitra and Agrawal, 2006; Koskinas et al., 2012;
Chaabane et al., 2013). Both of them may promote a maladaptive
healing process, involving the activation of an inflammatory

response and sustained SMC synthetic and proliferative
activity, potentially resulting in neointimal hyperplasia and
ISR (Chaabane et al., 2013). The current knowledge of the
mechanobiological processes governing ISR is still incomplete
(Mitra and Agrawal, 2006; Terzian et al., 2017). Lately, many
computational multiscale agent-based modeling frameworks
focused on the investigation of arterial response to PTA and
stent deployment to gain insights in the impact of the procedure
and the stent design on the intervention outcome (Table 1,
Supplementary Tables S1, S2).

Hoekstra’s research group proposed a modular multiscale
framework to dissect the hemodynamic and mechanical effects
of stenting on the pathological process of ISR and the eventual
benefit of eluting anti-proliferative drugs to reduce neointimal
regrowth (Caiazzo et al., 2011; Tahir et al., 2011; Tahir et al., 2013;
Tahir et al., 2014; Zun et al., 2017; Zun et al., 2019). Different
geometries with ascending complexity were investigated, namely
2D straight vessels (Caiazzo et al., 2011; Tahir et al., 2011; Tahir
et al., 2013; Tahir et al., 2014), a 3D straight cylinder (Zun et al.,
2017) and a 3D curved vessel (Zun et al., 2019). Their framework
was based on the integration of four modules: 1) a Lattice-
Boltzmann-based module for the computation of the
hemodynamics, 2) a finite difference scheme to solve the set of
PDEs for drug transport (activated only in (Caiazzo et al., 2011;
Tahir et al., 2011), when the effect of drug on SMC activity was

FIGURE 6 | Results of the computational fluid dynamics–agent-based model (CFD-ABM) framework of atherosclerosis by Corti et al. (2020). At the top, the
idealized 3D geometry of a superficial femoral artery is represented, with the wall shear stress (WSS) luminal distribution computed from steady-state CFD simulation. At
the bottom, the ABM temporal evolution of three representative cross-sections is presented at day 0, 30 and 60. Greater plaque formation and lumen area reduction is
obtained at luminal regions exposed to lowWSS, such as downstream from the curvature (planes B and C). The planes involved in the atherogenic process (planes
B and C) present an asymmetric plaque characterized by the presence of a well-defined lipid core (in yellow) and an increased intimal extracellular matrix (ECM) and
smooth muscle cell (SMC) content (blue and light-blue, respectively).
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considered), 3) an ABM of tissue mechanics to compute the state
of stress and strain within the arterial wall, and 4) an ABM of
cellular dynamics, which replicates SMC biological activities
(Caiazzo et al., 2011; Tahir et al., 2011; Tahir et al., 2013;
Tahir et al., 2014; Zun et al., 2017; Zun et al., 2019). The stent
deployment represents a perturbation from the model
equilibrium that propagates to the other sub-modules.
Specifically, the mechanical ABM simulates the stent
deployment procedure, computes the resulting state of stress
and determines the post-intervention configuration by
removing the overstressed agents. From this initial
perturbation, the ABM of cellular dynamics then regulates the
mitotic activity of SMCs according to the contact inhibition
criterion and in response to the mechanical, hemodynamic
and drug conditions, which are updated accordingly within
the fully-coupled framework. Specifically, following stent
deployment and agent removal, the potential exposure of
SMCs to blood flow activates the SMC mitotic phase and
makes SMC activity susceptible to WSS. In the first studies
(Caiazzo et al., 2011; Tahir et al., 2011), the WSS trigger was
based on a simple threshold condition. In later investigations
(Tahir et al., 2013; Tahir et al., 2014; Zun et al., 2017; Zun et al.,
2019), the authors introduced a probability of healthy
endothelium over time and a link between nitric oxide release
andWSS, allowing capturing enhanced restenosis at higher stent-
induced injury levels (not replicated in Tahir et al. (2011)).
Further improvement saw the inclusion of the ECM, along
with rules governing its production by synthetic SMCs, and a
validation against experimental data of porcine coronary arteries
(Zun et al., 2019). In this work, the framework was applied to
stented porcine coronary arteries (idealized curved vessel with
stent geometry reconstructed frommicro computed tomography)
and themodel predictions were compared with short-term (i.e., at
14 and 28 days) histological evaluations of the same stented
vessels. A good agreement between histology and simulations
in terms of overall extent of neointimal thickness was obtained
(Figure 7). However, some discrepancies in the local growth
distribution were observed between the simulated and
histological cross-sections. This was attributed by the authors
to the lack of correspondence between the model geometry (based
on the average characteristics of three similar porcine models)
and the real ex-vivo vessels analyzed in the study.

Although including also the mechanical factor, the stent-
derived hemodynamic-induced alteration was the main focus
of the above stream of works. On a different perspective, a deep
investigation of the damage induced during PTA and stenting
with a multiscale agent-based modeling framework was proposed
by Irish researchers (Boyle et al., 2010; Boyle et al., 2011;
Zahedmanesh et al., 2014; Nolan and Lally, 2018). Their
computational framework includes three modules, namely 1) a
FEM module of stent deployment, 2) an ODEs module to
compute the inflammatory cues and 3) an ABM module of
cellular dynamics. In their original model (Boyle et al., 2010),
the inflammation was triggered beyond a certain stress threshold
(on the minimum principal stress) and led to the ABM
initialization with growth and matrix degrading factors,
assumed to constantly decrease as the cellular growth

progressed. In further developments (Boyle et al., 2011;
Zahedmanesh et al., 2014), two formulations of the arterial
wall damage as function of the von Mises stress were
proposed as either cumulative along the loading cycles (cyclic
damage model) (Boyle et al., 2011) or instantaneous at the injury
time (instantaneous damage model) (Zahedmanesh et al., 2014).
Additionally, a more detailed model of the inflammatory
variables was pursued through a set of ODEs describing the
temporal variation of damage, matrix degrading and growth
factors, and ECM, computed at every ABM iteration for each
lattice site (Boyle et al., 2011; Zahedmanesh et al., 2014).

The ABM of cellular dynamics of the referenced works (Boyle
et al., 2010; Boyle et al., 2011; Zahedmanesh et al., 2014; Nolan and
Lally, 2018) was based on the same general hypotheses, although
some differences in the adopted rules were introduced
(Supplementary Table S2). A schematic representation of the
ABM rules is shown in Figure 8. Commonly, the intervention-
induced damage triggered SMCs to produce matrix degrading
factors, progressively reducing the content of ECM. In case the
ECM decreased below a certain value, SMCs switched to a synthetic
phenotype, whose proliferation depended on the contact inhibition,
growth factors (Boyle et al., 2010, 2011) and endothelial cells (when
included, in Boyle et al. (2010), Zahedmanesh et al. (2014) andNolan
and Lally (2018)). In Boyle et al. (2010), Zahedmanesh et al. (2014)
and Nolan and Lally (2018), a total or partial endothelial denudation
was assumed in proximity to the stent struts as initial configuration
(Figure 9). Then, a constant endothelial cell proliferation along
the luminal surface was modeled, potentially leading to complete re-
endothelialization and growth arrest (Figure 9, day 320). The
endothelium recovery had an inhibitory effect on SMC activity
through the release of nitric oxide. Specifically, a distance-based rule
was introduced, according to which a SMC agent switched back to a
contractile phenotype if an endothelial cell was present within a
radius of 60 μm (Zahedmanesh et al., 2014; Nolan and Lally, 2018),
determining intimal growth interruption after re-endothelialization.
Additionally, when SMCs were in their synthetic phenotype, they
produced ECM at constant rate and, once the ECM level reached the
physiologic value, they switched back to quiescence. Finally, with the
exception of the work by Nolan and Lally (2018), randommigration
of synthetic SMCs was implemented, regulated by the contact
inhibition criterion.

The framework of Zahedmanesh et al. (2014) predicted
enhanced SMC activation and intimal growth as well as
delayed stabilization for stents with larger diameter or thicker
struts, in agreement with the clinical evidence. Moreover, as
investigated by Nolan and Lally (2018), the instantaneous
damage model provided a more realistic replication of the ISR
process than the cyclic damage model. Finally, consistently with
in-vivo observations, in the instantaneous damage model a
greater endothelial denudation was associated with enhanced
lumen area reduction. Conversely, this key role of the
endothelial injury on ISR was not captured with the cyclic
damage model.

While the framework proposed by the Irish researchers (Boyle
et al., 2010; Boyle et al., 2011; Zahedmanesh et al., 2014; Nolan
and Lally, 2018) was based on a unidirectional coupling between
the solid mechanics module and the ABM, Li et al. (2019)
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FIGURE 7 | Results of the multiscale agent-based modeling framework of in-stent restenosis of Zun et al. (2019). At the top, the stent geometry is shown, with
indications on the position of the four analyzed cross-sections. At the bottom, the results at 28 days are shown for the four cross-sections. For each cross-section: 1) on
the left, a quantitative comparison of the predicted (in-silico) and in-vivo neointimal thickness is provided for the 6 struts locations (A–F), 2) in the middle, the in-vivo cross-
section is shown and 3) on the right, the in-silico cross-section is represented, with the smooth muscle cells (SMCs) in dark blue, the internal elastic lamina (IEL) in
light blue, the external elastic lamina (EEL) in beige, the extracellular matrix (ECM) in red and the stent struts in light grey. Both in the in-vivo and in-silicosilico cross-
sections the blue area represents the neointima estimation. Reprinted with permission from Zun et al. (2019) (http://creativecommons.org/licenses/by/4.0/).
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developed a bidirectional FEM-ABM framework in which the
information of the cell-scale module was delivered to the tissue-
scale module and vice-versa. The framework was implemented
considering the continuous damage model proposed by Boyle
et al. (2011), since it allowed accounting for time-varying stress.
Differently from Nolan and Lally (2018), in this work, through a
different model setting, reasonable results were obtained also with
the continuous damage model. As regards the ABM, both SMCs
and endothelial cells were included, and proliferation was the
only simulated agent activity. SMC proliferation was governed by
the cyclic damage model developed in Boyle et al. (2011), thus
depending on the level of ECM, matrix degrading factors and
damage. Moreover, similarly to Zahedmanesh et al. (2014) and
Nolan and Lally (2018), the presence of an endothelial cell within
a radius of 60 µm led to a synthetic to contractile SMC phenotypic
switching. Amonolayer of endothelial cells was introduced on the
lumen surface and, as consequence of the stent-induced damage,
endothelial cells in proximity to the stent struts were removed.
Finally, endothelial cells proliferated only if they had one
neighboring endothelial cell. The authors performed
simulations employing both unidirectional and bidirectional
coupling, with and without endothelial cells. From the results
of their study, it emerged that 1) the bidirectional coupling

produced a slower lumen area reduction and less dispersion
among the ABM repetitions than the unidirectional one and
2) the inclusion of endothelial cells led to the suppression of SMC
proliferation once the complete re-endothelialization was
achieved, thus resulting in a lower lumen area reduction
compared to the cases without endothelial cells. The
framework was only applied to a longitudinal section of an
idealized vessel geometry. Further investigation on a more
realistic 3D vessel geometry is required.

Multiscale Models of Bypass Graft
Remodeling
Alternatively to endovascular procedures, bypass surgery may be
preferred depending on lesion characteristics (e.g., lesion site,
length, severity, calcifications) and patient-specific conditions
(e.g., age, comorbidities) (Neumann et al., 2019). Bypass surgery
is a revascularization procedure consisting in the anastomose of a
vessel segment (either a healthy artery or vein, or an artificial graft)
above and below the blocked or narrowed artery to create a parallel
route for blood flow. Neointimal hyperplasia represents a critical
drawback of vein graft bypass surgery affecting the long-term
success of the procedure (Collins et al., 2012), for which switching

FIGURE 8 | Schematic representation of agent-based model (ABM) rules in Boyle et al. (2010), with contractile smooth muscle cells (SMCs) (green circles),
synthetic SMCs (blue circles) and endothelial cells (red circles). (A)When the endothelium and extracellular matrix (ECM) are intact, SMCs are contractile; (B) The injury
provoked by the stent placement induces endothelial denudation, ECM reduction and SMCs removal; (C) In the vicinity of degraded ECM, SMCs switch to the synthetic
phenotype; (D) Synthetic SMCs randomly migrate (arrows represent possible directions); (E) Synthetic SMCs proliferate (blue circles with dashed lines represent
daughter cells); (F) SMCs produce ECM; (G) Lesion formation; (H) Reendothelialization stops lesion growth. Reprinted with permission from Boyle et al. (2010) (http://
creativecommons.org/licenses/by/4.0/).
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from a venous to an arterial environment and the surgery
associated quando mettiamo stent-induced, hemodynamic-
induced. . . forse dovremmo mettere surgery-associated trauma
play a key role (Rehfuss et al., 2018). Neointimal hyperplasia
driving mechanisms in vein grafts are like those occurring in
arteries undergoing endovascular intervention. Among them are
the phenotypic contractile to synthetic switching of SMCs and the
subsequent excessive proliferation and ECM deposition in
response to the inflammatory activation (Collins et al., 2012).

A major contribution in multiscale agent-based modeling in
this field was provided by Garbey’s research group (Hwang et al.,
2013; Garbey et al., 2015; Garbey et al., 2017; Garbey et al., 2019)
(Table 1, Supplementary Tables S1, S2). An early investigation
of vein graft adaptation using ABM methodology was proposed
in Hwang et al. (2013), in which the authors implemented a 1D
(radial direction) and 2D (longitudinal section) ABM with rules
for SMC, ECM and monocyte dynamics based and validated on
experimental measurements (e.g., intimal thickness and fraction
of SMCs undergoing division and apoptosis) from rabbit vein
grafts under different flow conditions (Hwang et al., 2012).
Through the available experimental data, agent probabilities
were related to the WSS, analytically computed from the in-
vivo measured flow rate. The model finely replicated the
experimental intimal area growth over time at different WSS

conditions. In this model, the multiscale component was not
properly represented, because only events at the cell scale were
simulated while the WSS (tissue-scale quantity) was analytically
computed. In a further evolution (Garbey et al., 2015), the
authors proposed a multiscale model that integrates
hemodynamics and solid mechanics modules at the tissue
scale and an ABM module at the cell scale. The framework
was applied to a cross-section of an idealized vein graft model.
The ABM module replicated SMC and ECM dynamics as
function of the WSS and wall tension condition. The 2D
ABM configuration was then given in input to the 2D FEM
solid mechanics module, which computed the new structural
equilibrium and provided the deformed geometry to the
hemodynamics module and the wall tension to the ABM.
Finally, through a finite volume scheme, the hemodynamics
module computed the WSS in the current geometry and
provided said information to the ABM. In a later work
(Garbey et al., 2017), the analytical solutions of the WSS and
wall tension were considered for a simplified vessel geometry,
thus replacing the finite volume hemodynamics and FEM solid
mechanics modules, respectively. The diffusion of a generic
growth factor was solved through a finite difference scheme
within the 2D ABM domain, to account for the transfer of the
biomechanical inputs in the tissue. A further development was
introduced in Garbey et al. (2019), which included an additional
module for the replication of tissue remodeling, using an
immersed boundary, continuum-based approach (Peskin,
2002). SMCs were described as particles moving in a highly
viscous flow, allowing for cell-cell interactions.

The common key agents for the above-described ABMs are
SMCs and ECM, whose proliferation and synthesis are regulated
by WSS and wall tension (Supplementary Table S2).
Specifically, low WSS promoted SMC proliferation and ECM
production in the intima (inward remodeling), while high wall
tension promoted SMC proliferation and ECM production in
the media (outward remodeling). The results obtained in
terms of intimal and medial area over time, as well as SMC
and ECM content temporal evolution, were consistent with
experimental observations (Hwang et al., 2012; Hwang et al.,
2013; Garbey et al., 2015; Garbey et al., 2017; Garbey et al., 2019)
(Figures 10A,B). The ABM proposed in Garbey et al. (2017) was
limited in the capability to generate lumen morphologies
close to the pathophysiological reality. A smooth and regular
lumen contour was retrieved only under a circular symmetry
assumption (Figure 10C), while if the symmetry assumption
was removed, the lumen border assumed an irregular and
excessively discontinuous profile, not observed in histological
images (Conte et al., 2006). This limitation was overcome
introducing the immersed boundary approach (Garbey et al.,
2019).

Finally, an interesting aspect highlighted by Garbey’s research
group was related to the cross-validation of the agent-based
modeling framework with a previously developed dynamical
system, which described the same cellular events thorough a
set of ODEs (Garbey and Berceli, 2013). This procedure allowed
the researchers to choose one approach or the other depending on
the specific purposes of the study. The ODE approach guarantees

FIGURE 9 | Results of the multiscale finite-element method–agent-
based model (FEM-ABM) framework of in-stent restenosis by Boyle et al.
(2010). At the top, the stent expansion configuration obtained from FEM
analysis is shown and constitutes the initial condition of the ABM. At the
bottom, the ABM evolution along 320 days is provided for a longitudinal
section (dashed box). Contractile smooth muscle cells (SMCs) are
represented in green, synthetic SMCs in blue and endothelial cells in red. At
day 7, the ABM is characterized by a complete endothelial denudation and
synthetic SMCs in the injured region (in correspondence of the stent struts).
Lesion progression is shown at day 90 and 160. The endothelium starts
recovering, leading to a complete reendothelialization at day 320. The lesion
growth stops when complete reendothelialization occurs (arrow, day 160) or
when the SMCs switch back to a contractile phenotype (arrow, day 320).
Reprinted with permission from Boyle et al. (2010) (http://creativecommons.
org/licenses/by/4.0/).
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immediate computation but lacks a topological detail, while the
ABM approach provides detailed morphological and
compositional outputs but comes with higher computational
burden.

Multiscale Models of Other Vascular
Applications
Despite the great interest in atherosclerosis and post-intervention
vessel remodeling, multiscale ABMs were also proposed in other
vascular arenas (Table 1, Supplementary Tables S1, S2).

A coupled FEM-ABM framework was developed by
Keshavarzian et al. (2018) to simulate arterial remodeling
following transient increases in blood pressure and changes
in production of soluble factors (e.g., growth factors,
proteases) in a 3D idealized model of porcine left anterior
descending coronary artery. The model performance was
assessed by evaluating both the homeostatic stability and
the capability to recover transient pressure changes. In
addition, the framework was applied to a model of rabbit
common carotid artery to simulate the response of the vessel to
the placement of a cuff. The framework was based on the

bidirectional coupling between 1) a 3D FEM module,
computing the stress and strain values at the tissue scale,
based on the vessel morphology and composition (through
a content-based strain energy function (Zulliger et al., 2004;
Karšaj and Humphrey, 2012)) and 2) a 3D ABM module,
replicating the cellular activities in response to the mechanical
stimuli. The 3D ABM was based on a three-layered structure
(i.e., intima, media and adventitia layers) and was composed of
two main classes of agents, namely patch and cell agents. Each
patch agent contained cells, filling ECM and soluble factors
(e.g., chemokines and growth factors) and, depending on the
cell-type content, it was associated to an intimal, medial,
adventitial or boundary type. Endothelial cells, SMCs and
fibroblasts were modeled. Agent rules were defined to
replicate cell mitosis and apoptosis, production of soluble
factors, and production and degradation of ECM (collagen,
elastin and gelatin). Moreover, the diffusion equations in the
ABM were solved through a forward in time, centered in space,
discretization algorithm. The proposed framework and its
application captured the chemical-cellular-tissue interplay
governing vascular remodeling. First, the ability to replicate
vascular homeostasis and recover from a transient 30%

FIGURE 10 | Outputs of two multiscale agent-based modeling framework of vein graft adaptation by Garbey’s research group. (A) Results obtained by Garbey
et al. (2019), when an immersed boundary method (IBM) module was added to simulate the vessel wall remodeling. (B) Histological images of rabbit vein graft (Conte
et al., 2006). (C) Results obtained by Garbey et al. (2017). The results of panel (A) well resemble the histological images (B). The model captures different possible
patterns of neointimal hyperplasia, namely a vertical and horizontal configuration (panels (A,B)). Panel (C) shows a limitation of the model by Garbey et al. (2017). In
particular, when the symmetry condition is removed, a non-realistic configuration of the lumen contour is obtained (e.g., detached elements, holes). Figures 9A,B
Reprinted with permission from Garbey et al. (2019) (http://creativecommons.org/licenses/by/4.0/). Figure 9C reprinted with permission from Garbey et al. (2017)
(http://creativecommons.org/licenses/by/4.0/).
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increase in blood pressure was verified. Then, through a
sensitivity analysis, the pivotal role of collagen in stress-
induced arterial remodeling emerged. Indeed, changes in
the collagen mass led to modifications in the mechanical
stress, in turn affecting cell and ECM dynamics. Finally, the
placement of the cuff in the carotid artery model produced a
decrease in the mechanical stress, leading to a decrease of SMC
and collagen content, as observed in animal experiments
(Bayer et al., 1999).

Zahedmanesh and Lally (2012) developed a multiscale FEM-
ABM framework to investigate the remodeling mechanisms of
vascular tissue-engineered scaffolds. These constructs may
experience intimal hyperplasia due to an unfavorable
adaptation process that results in excessive SMC synthetic
activity. Mechanical factors (e.g., scaffold compliance) and
loading conditions influence SMC activity by affecting the
cyclic strain and the pore fluid velocity. In this context, the
framework of Zahedmanesh and Lally (2012) investigated the
effects of cyclic strain and pore fluid velocity, quantified
through a FEM module, on SMC and ECM dynamics,
simulated with a lattice-free ABM. Within an iterative
approach, the FEM module transferred the mechanical
inputs to the ABM, which simulated the subsequent tissue
growth and remodeling and provided the new geometry and
composition to the FEM module, that updated the mechanical
condition accordingly. The lattice-free ABM of cellular
behavior was implemented to replicate SMC migration,
proliferation, apoptosis and ECM production in response to
the cyclic strain and pore fluid velocity conditions. While a
random migration was assumed, the rules for cell mitosis,
apoptosis and ECM production were derived from
experimental studies. The framework was applied to a
longitudinal section of an axisymmetric geometry. As
outcome, the hypertension promoted greater SMC
proliferation, by reducing the cyclic strain, consistently with
clinical studies reporting arterial thickening and stiffening
under hypertensive conditions (London et al., 2004).
Moreover, a pulsatile flow allowed for less wall thickening,
less SMC proliferation, but more ECM synthesis, compared to
a static condition, in agreement with in-vitro studies (Jeong
et al., 2005). Additionally, under a physiologic pulsatile
loading condition, a lower scaffold compliance (associated
with lower cyclic strain) produced a greater increase of
SMCs, compared to an arterial compliant scaffold, thus
confirming the clinical observations (Salacinski et al., 2001).
Finally, the removal of the fluid pore velocity effect in the
arterial compliant scaffold under physiologic pulsatile loading
led to a slower SMC growth. In all the explored scenarios, the
simulated temporal trend of cell growth, characterized by a
rapid increase followed by a plateau and a reduction, was
consistent with in-vitro observations (Jeong et al., 2005). The
study highlighted the potentialities of the multiscale
framework in 1) investigating the isolated contributions of
mechanical factors (extremely difficult to be achieved with in-
vitro or in-vivo studies) and 2) indicating favorable scaffold
characteristics (e.g., an arterial-like compliance) and possible
loading conditions to obtain the desired cell growth.

AGENT- VERSUS CONTINUUM-BASED
MULTISCALE FRAMEWORKS:
STRENGTHS AND LIMITATIONS
Works described in Multiscale Agent-Based Modeling
Frameworks of Vascular Pathophysiology demonstrated that
coupling agent- with continuum-based models allows
successfully capturing biological information. The proposed
frameworks used each specific model for the task it is most
suitable for, thus taking advantages from its strengths and
minimizing its limitations. Generally, these frameworks were
based on 1) a continuum model for the molecular advection-
diffusion-reaction processes, 2) a discrete (agent-based) model at
the cellular level and 3) a continuum model for the tissue level
mechanics (solid mechanics or hemodynamics). Moreover, for a
more exhaustive vision related to the modeling of vascular
adaptation, the reader should be directed also to multiscale
frameworks entirely based on continuum models (which are not
the object of this review), implying that also the cell scale is
represented through ODE/PDE systems. Examples can be found
in models of atherosclerosis (e.g., Cilla et al. (2014), Di Tomaso
et al. (2015), Thon et al. (2018) and Pleouras et al. (2020)), ISR (e.g.,
Lally and Prendergast (2006), Escuer et al. (2019) and Maes et al.
(2021)), vein graft remodeling (e.g., Budu-Grajdeanu et al. (2008)
and Casarin et al. (2017)) and other vascular applications (see
Humphrey (2021) for an extensive review on constrained mixture
models of tissue growth and remodeling). The difference of these
works with those reviewed in Multiscale Agent-Based Modeling
Frameworks of Vascular Pathophysiology mainly regarded the
representation of the cell scale (through a ODE/PDE versus
ABM approach), which thus determined the nature of the
multiscale framework to be either hybrid (i.e., based on the
combination of continuum models with an ABM) or fully-
continuum. Accordingly, this section will focus on the strengths
and weaknesses of adopting agent-based versus continuum-based
approaches at the cell scale, within a multiscale framework.

Besides the works by Casarin et al. (2017) and Maes et al.
(2021), in which a set of ODEs was adopted to describe the
temporal dynamics of tissue growth and remodeling, in all the
other cited continuum-based studies PDE systems were
implemented to capture the spatio-temporal evolution of the
species of interest (e.g., growth factors, cells, ECM components,
LDL), and thus the subsequent tissue remodeling, in response to
fluid or mechanical stimuli. For example, in the patient-specific
atherosclerosis model by Pleouras et al. (2020), CFD simulations
were coupled with a PDE system describing mass transport of
monocytes, LDL, and high-density lipoproteins, and
inflammatory species’ dynamics in the arterial wall, ultimately
leading to plaque growth over time (Figure 11). The model
predictions well replicated the in-vivo follow-ups in terms of
plaque growth and lumen area reduction (accuracy of about
80%), thus supporting the potentialities of the proposed
framework. Another example is offered by the ISR model of
Escuer et al. (2019), in which the initial damage stimulus induced
by stenting triggered the biological response. This response was
characterized by endothelial cell denudation and subsequent
repopulation, and the dynamics of growth factors and matrix-
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degrading metalloproteinases, which in turn affected the
production and degradation of ECM, with effects on SMC
contractile to synthetic switching and on the following SMC
activity. Tissue growth was defined as a result of the change over
time of endothelial cells, SMCs and ECM. Also in this case, the
model predictions in terms of percentage of stenosis were in good
agreement with clinical data (Nobuyoshi et al., 1988).

The works by Pleouras et al. (2020) and Escuer et al. (2019)
provide good examples of how continuum-based frameworks
offer an alternative approach to model vascular adaptation
processes, with differences respect to agent-based frameworks
both in modeling perspectives (top-down versus bottom-up
approach) and in the obtained results (in terms of level of
information), as discussed below. About basic modeling
perspective, the systems behavior 1) emerges from the
simulation of individual components’ behaviors and
interactions in ABMs (bottom-up approach), and 2) is
described through aggregate differential equations
governing the population average behavior in PDE systems
(top-down approach). In principle, since the population
dynamics of cells and ECM derive from the behavior of
each entity, the PDEs should represent the collective
behavior emerging from the ABM. However, ABMs provide
a deeper level of detail, beyond the aggregate properties of the

system. Accordingly, as also observed from the comparison of
Figure 11 with Figures 5–10, spatial compositional
heterogeneity and morphological-related features (e.g.,
tissue composition and distribution of cells and ECM or
growth shapes and lumen irregularities) are more naturally
captured in ABMs than in PDE systems (even when
constrained mixture models are considered).

Moreover, in ABMs, cellular activities are often modeled
through “if-then” rules to describe different behaviors the
agents assume according to the specific scenario. This aspect
was not included in the aforementioned frameworks based on
PDEs. Indeed, although PDEs can embed discontinuous
behaviors through properly defined constraints, the individual
nonlinearities are more naturally captured through ABM rules
(Bonabeau, 2002). Generally, the set of cellular behaviors
described by ABMs easily span from a system of few simple
rules, in which only the key activities are simulated, as cell mitosis
and apoptosis, and ECM production and degradation (Garbey
et al., 2019; Corti et al., 2020), to numerous and complex activities
accounting for production of specific molecules and interaction
between cells (e.g., contact inhibition criterion or the silencing
effect of endothelial cells on SMC proliferation (Zahedmanesh
et al., 2014)). Since ABMs describe phenomena from the
perspective of the active component, adding a behavior to the

FIGURE 11 | Results of the continuum-based modeling framework of atherosclerosis by Pleouras et al. (2020). Panels (A,B) depict the artery geometry
reconstructed at the initial condition and follow-up, respectively. The contour maps of wall shear stress (WSS) (C), oxidized low-density lipoproteins (LDLs) (D),
macrophages (E) and plaque formation input (F) at the initial condition are shown. Panels (G,H) refer to the red dashed line in (A)with the initial input of plaque formation
(G) and the computed output cross-section (H). Panels (I,J) refer to the green dashed line in (A)with the initial input of plaque formation (I) and the computed output
cross-section (J). Adapted with permission from Pleouras et al. (2020) (http://creativecommons.org/licenses/by/4.0/).
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agent implies defining a new rule, without changing the basic set
of rules. ABMs can indeed replicate complex systems through a
stepwise process. Conversely, PDE systems become cumbersome
when an elevated number of equations is included, and the
inclusion of new equations is not as easy and intuitive as in ABMs.

Additionally, stochastic ABMs and deterministic continuum
models are usually developed, as also reflected by the studies
previously reviewed. The stochasticity in ABMs is often
introduced by defining probabilistic behavioral rules. This
allows embedding a certain degree of randomness resulting in
the generation of multiple possible evolution outputs of the
system from a given initial condition. Conversely, the
implementation of stochastic differential equations is less
common, although possible (Székely and Burrage, 2014), and,
to the best of the authors’ knowledge, it was never applied to the
modeling of vascular adaptation. In all the continuum-based
modeling frameworks, deterministic differential equations were
implemented, and a unique solution of the system was produced,
in agreement with the average of the observations of the specific
phenomenon. Differently, the stochastic agent-based modeling
frameworks reviewed in Multiscale Agent-Based Modeling
Frameworks of Vascular Pathophysiology generated multiple
solutions, thus reflecting a realistic scenario in which a
population of observations is usually obtained in biology-
related contexts (i.e., in-vitro or in-vivo animal and human
studies). An example of multiple outputs obtained from an
agent-based modeling framework of atherosclerosis is depicted
in Figure 12. The figure shows 9 ABM outputs of compositional
and morphological evolution of an idealized femoral artery cross-
section, being exposed to an atherogenic CFD-derived WSS
profile. All the configurations present similar stenosis degree
as well as plaque size and location. However, they express an
intrinsic variability due to the model stochasticity, consistent with
biological systems.

ABMs to simulate cellular behavior present some weaknesses.
The major limitation is related to the computational costs
associated with a discrete stochastic model (see also
Computational Speed-Up). The simulation of each agent
dynamics is computationally more expensive compared to that
of the aggregate population through PDE systems. ABM
simulations require hours up to days, while ODE/PDE-based
simulations typically run in the order of seconds. For instance, in
the work of Garbey et al. (2017), the re-vascularization dynamics
of a vein graft was simulated for a follow-up period of 6 months
with both an ABM and a dynamical system (ODE-based). The
computational burden was of 24 h (ABM) versus few seconds
(ODE). Additionally, ABM stochasticity imposes multiple runs to
reproduce the full population distribution and thus to obtain a
result comparable with the available data. Conversely,
deterministic models provide a unique solution, which
generally replicates a statistically meaningful representation of
the system trend (Székely and Burrage, 2014). Consequently, the
computational power required by discrete and stochastic models
might limit the spatial dimension of the model and the temporal
window of the simulated processes.

In summary, the integration of agent- and continuum-based
approaches in a multiscale agent-based modeling framework

constituted a successful choice to model vascular adaptation,
allowing 1) exploring the mechanobiological processes at a
deeper level of details, highlighting the importance of spatial
heterogeneity and local morphological peculiarities, 2) capturing
emergent properties of the system and 3) including randomness.
Moreover, such a hybrid scheme exalted the potentialities of
continuummodels at the molecular and tissue scales and of ABM
at the cell scale. Indeed, 1) PDEs are ideal for modeling the spatio-
temporal evolution of concentration profiles of molecules that are
transported through diffusion and/or convection in the tissue and
are subjected to well-defined reactions, 2) ABMs efficiently
describe “active” entities, as cells that proliferate, die or
produce and degrade ECM and 3) continuum models are
typically adopted at the tissue scale to model solid mechanics
and hemodynamics, generally through FEM or finite volume
method.

CHALLENGES AND FUTURE DIRECTIONS

Verification, Uncertainty Quantification,
Calibration and Validation
The advent of computational modeling in vascular pathologies
(and other) have fostered a deep discussion on how much we can
rely on the simulation outcome (Viceconti et al., 2021). Recently,
the American Society of Mechanical Engineers (ASME)
published a technical standard for the assessment of the
computational model credibility in the context of medical
devices, specifying the requirements in terms of context of use
of the model (i.e., the specific role and scope of the model), risk
assessment, verification, validation and uncertainty
quantification (ASME, 2018). Consequently, the model
credibility is obtained for the declared context of use. Similar
concepts were also reported in the European Medicines Agency
(EMA) guideline for the qualification of pharmacokinetic models
and simulations (EMA, 2018). These guidelines only refer to
medical devices and pharmacokinetics, thus future efforts are
needed to define suitable protocols and methods for wider
biomedical applications. The criticality of computational
model verification, uncertainty quantification, calibration and
validation in the biomedical field is also demonstrated by
recent publications (Marino et al., 2008; Luraghi et al., 2018;
Nikishova et al., 2018, 2019; Fleeter et al., 2020; Ye et al., 2021a;
Curreli et al., 2021; Groen et al., 2021; Luraghi et al., 2021;
Rapadamnaba et al., 2021).

Model verification consists in the demonstration that the
computational model behaves as expected from the
mathematical formulation, implying that there are not
implementation errors, the equations are correctly solved and
the introduced numerical errors do not significantly affect the
solution (ASME, 2018). Validation confirms that the
computational results well replicate the experimental
observations, and the model can reliably simulate the real
phenomenon (ASME, 2018). Finally, uncertainty quantification
analysis deals with 1) the measurement of the model uncertainty
in the output, related to the uncertainties in the input parameters
(epistemic uncertainty) or to the model stochasticity (aleatory
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uncertainty), and 2) the investigation of how the parameter
variations affect the model output, known as sensitivity analysis
(ASME, 2018; Ye et al., 2021b). The uncertainty and sensitivity
analyses can be performed either at early stages of model
development or at the end of the validation process. In the first
case (i.e., early development), uncertainty and sensitivity analyses are
useful instruments to gain insights into the functioning of the model
(e.g., how the model responds to variations in the inputs) and to
identify which are the most influencing model parameters, whose
accurate definition would allow improving the model prediction
(parameters associated with high uncertainty in the model output,
and whose variation determines a large oscillation of the model
response), as done for instance in Corti et al. (2020). In this context,
uncertainty and sensitivity analyses can be also preliminary tomodel
calibration, the process through which the model parameters are
tuned to fit experimental data. This is particularly useful if many
model parameters must be calibrated, so that first attentionmight be
paid to the most influencing parameters identified through
uncertainty and sensitivity analyses. In the second case (i.e., after
the validation process), an additional measure of the reliability of the
computational model would be provided. Indeed, the model might
agree with experimental data, meaning that it is validated, but, at the
same time it might have low credibility, due the large uncertainty
associated with the output (Viceconti et al., 2021).

All these processes are challenging, yet fundamental phases
of the modeling activity. When dealing with multiscale
frameworks integrating individual sub-models, it is good
practice to verify, analyze and validate each module first,
and then proceed with the whole multiscale framework
(Walpole et al., 2013). This increases the computational

efforts to achieve the model credibility compared to those
required in case of an individual, single-scale model.
Moreover, multiscale agent-based modeling frameworks
present more issues compared to their deterministic and
fully-continuum counterparts.

A strict definition of what the ABM verification implies, and
which are the suitable methods for this purpose, is lacking. While
verification methods for deterministic and continuum models
(based on ODE/PDE systems) are well documented, the literature
lacks rigorous methods for ABMs. A rare example of model
verification workflow for ABMs was proposed by Curreli et al.
(2021), and applied to a stochastic ABM of Mycobacterium
tuberculosis infection. Both deterministic and stochastic model
verifications were performed. In the first case, the random
variables were fixed and 1) the existence and uniqueness of
the solution, 2) the temporal discretization errors, 3) the
smoothness of the solution and 4) the model outputs at
different parameter sets were evaluated. In the second case,
the random variables were “activated”, and the input
parameters were fixed, thus the robustness of the model at
multiple runs was assessed and the minimum number of
simulation repetitions needed to achieve statistical significance
was computed.

Uncertainty and sensitivity analyses require an elevated
number of independent simulations to obtain a good
estimation of the uncertainties and to capture significant
correlations between input parameters and model outputs. In
addition, if the model is stochastic, characteristic of all the
multiscale agent-based modeling framework reviewed in
Multiscale Agent-Based Modeling Frameworks of Vascular

FIGURE 12 | Agent-based model (ABM) outputs at 2-months follow-up obtained from 9 independent simulations of the same ABM cross-section initialized with
equal WSS profile. Figure inspired from the work of Corti et al. (2020).
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Pathophysiology, a certain number of repetitions must be
performed to account for the aleatory uncertainty, typically
as many as to bring the standard deviation to a stable plateau.
Consequently, these tasks may become extremely time-
consuming and almost unfeasible. This roadblock can be
addressed by either employing ABM-suitable computational
languages that speed up the simulations, or by resorting to
surrogate models (or metamodels) that drastically reduce the
model complexity, as discussed in Computational Speed-Up.
Most of the studies reviewed in Multiscale Agent-Based
Modeling Frameworks of Vascular Pathophysiology analyzed
the response of the model to the variation of certain
parameters (e.g., stent deployment depth, stent strut
dimension, endothelial recovery rate) to explore the model
behavior under specific conditions, which can be easily
linked to meaningful considerations from a clinical/biological
viewpoint. For example, tuning the stent-related parameters
highlighted the potentiality of the model in providing a tool for
testing the arterial response to different stent designs. However,
a robust uncertainty quantification or sensitivity analysis is
generally lacking. Some contribution in this context derived
from Hoekstra’s research group (Nikishova et al., 2018;
Nikishova et al., 2019; Ye et al., 2021a), which proposed a
workflow for the uncertainty quantification of a multiscale
agent-based modeling framework of ISR. The authors
stressed the high computational effort needed for these
analyses if Monte Carlo methods are adopted and proposed
developing surrogate models either for a sub-module
(Nikishova et al., 2019) or the entire framework (Ye et al.,
2021a). Both approaches were up to 7-fold faster than the
Monte Carlo method and provided acceptable estimates of
the uncertainties, thus demonstrating their validity and
potentiality in case of computationally intensive analyses.

Uncertainty and sensitivity analyses can also be performed to
identify the most influencing parameters that drive the model
response, whose accurate estimation would result in a great
improvement of the model prediction reliability and associated
uncertainty reduction (Corti et al., 2020). Indeed, ABMs often
depend onmany parameters, and their calibration in a single-step
process may result ineffective, especially if it is based on the
evaluation of few outputs. For example, if the available patient
data is solely the lumen area over time (as generally occurs), the
calibration of many parameters in a single step may not be the
optimal choice. The calibration problem may be reduced to only
those parameters that are strongly associated with the output of
interest (i.e., the lumen area), achieving a good compromise
between computational efforts and model accuracy. These
considerations highlight the limited availability of patient data,
which makes both the model calibration and the subsequent
validation challenging, in particular when dealing with patient-
specific models. Indeed, to validate the model, a set of patient
data, different from the one used for the calibration, is necessary
to demonstrate that the model predictions agree with the
observations and thus that it can be reliably used for the
purpose it was designed (e.g., predicting the vascular
adaptation following intervention or a specific therapy). The
calibration and validation of idealized models is less

challenging than that of patient-specific models because
suitable comparable data can be more easily obtained from in-
vitro or in-vivo experiments. However, 1) experimental data used
for model calibration and validation are often obtained from
retrospective analyses of experiments that were not specifically
designed to support the computational modeling process, and 2)
most of the in-vitro studies refer to normal cells and not
pathological ones. Consequently, also for idealized models, the
availability of the data required to calibrate and validate the
model is not granted. The advantage of the ABMs reviewed herein
is that, since they replicate cellular behavior under specific
conditions, they can be more easily related to in-vitro or in-
vivo experiments. In this context, the work by Casarin et al. (2018)
offered an example of how their ABM of vein graft adaptation
could be used to wisely plan clinical experiments for retrieving the
parameters needed to optimize the model setup.

In summary, the field of multiscale agent-based modeling of
vascular adaptation still presents challenges in the area of
verification, uncertainty quantification, calibration and
validation that need to be fully addressed. Although these
processes are fundamental for the achievement of model
credibility and its potential application in the pre-clinical or
clinical decisional phase, they have been poorly explored for
multiscale agent-based modeling frameworks. Future works in
this area will be of great impact, since they will add value to this
promising approach for the study of vascular adaptation.

Computational Speed-Up
Amajor limitation ofmultiscale agent-basedmodeling frameworks
is the high computational demand required by ABM simulations.
ABMs are generally based on for and while loops that scan the
entire grid and evaluate each agent dynamics in response to
environmental conditions and mutual interactions with other
agents. Programming languages widely used in academia, such
as Matlab (MathWorks), NetLogo (http://ccl.northwestern.edu/
netlogo/, (Wilensky, 1999)), Repast (http://repast.sourceforge.
net/, (North et al., 2013)) etc., offer great visualization tools that
allow for an easier model development and testing but fail on
execution speed. Languages such as C/C++ or Java are way more
suitable to solve complex models laying on nested for and while
loops. However, they are also not always user-friendly for
computational biologists and they are poor in visualization
tools. Matlab has available a mid-way solution in the form of
the coder toolbox that allows “translating” a code developed in
Matlab into C language. The toolbox has an intuitive interface and
provides a remarkable gain in the computational runtime (Casarin
et al., 2018; Dondossola et al., 2019). Nevertheless, many pre-
implemented Matlab functions are not available in C language,
forcing the developer to build his own C-compatible function.

Surrogate models mimic the behavior of the original
computational model, by providing an estimation of the
outputs of interest, while getting rid of the original model
complexity and being computationally cheaper. They behave
as a black-box replicating only the input-output response of
the original model, without any detail of the inner system
dynamics and working mechanisms. Once validated, the
surrogate model can replace the original one thus allowing
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performing a huge number of simulations at a lower
computational cost. This is useful in tasks that require the
collection of an elevated quantity of outputs or model
evaluations, as in sensitivity analysis, uncertainty
quantification, or model calibration. An example of the latter
is offered by the work of Casarin and Dondossola (2020) through
the integration of machine learning-based random forest
algorithm in the pipeline of ABM calibration. Here, a deep
learning algorithm was fed with a certain (usually large)
number of ABM-generated data points to “learn” the intrinsic
model dynamics that depended on the unknown coefficients
(data-driven approach). The output of the surrogate model
was then compared with experimental data of reference and
their difference minimized with a genetic algorithm.

Other research groups focused more on code parallelization
combined with the use of supercomputers with a huge number of
central processing units (CPUs) and/or graphics processing units
(GPUs). In this direction, Randles et al. (2021) used a large-scale
supercomputer to run their ABM (36 million CPU hours on
131,072 cores). Although extraordinary, it is clear how this
approach is only feasible when massive, optimized parallel
computing resources are available.

Modeling of Molecular Pathways
In the emerging field of personalized medicine, the so-called
omics sciences, including genomics, proteomics, transcriptomics
and metabolomics, are recently receiving great interest. The
omics data allow identifying patient-specific pathophysiological
pathways, thus providing insights into the patient’s disease
mechanisms, and potentially leading to the development of
tailored therapies. The integration of multi-omics data in
multiscale models of vascular adaptation is thought to provide
a remarkable contribution in the understanding of cardiovascular
diseases (e.g., through the discovering of disease biomarkers) and,
as consequence, in the disease prevention, diagnosis and
treatment (e.g., pharmacogenomics and pharmacoproteomics)
(Ouzounian et al., 2007). For instance, a gene expression network
can be included to explicitly model the intracellular signaling
pathways and its effect on cellular activities and tissue
remodeling. Consequently, the vascular adaptation process
resulting from the up- or down-regulation of specific genes
may be predicted through a multiscale framework involving
the gene, molecular, cell and tissue scales. This was done by
Casarin et al. (2017), who proposed a fully-continuum multiscale
framework of vein graft adaptation, based on the following two
modules: 1) a system of ODEs replicating gene expression
dynamics and 2) a system of ODEs describing the temporal
dynamics of SMCs and ECM as function of gene expression
and WSS. The framework was calibrated on experimental data
(i.e., histomorphology measurements, gene expression, flow rate
measurements) obtained from a rabbit model of bilateral vein graft.
The proposed framework can be used to explore the impact of
specific perturbations of gene dynamics on the following vein graft
adaptation, thus providing a virtual platform to identify gene
therapeutic targets, whose manipulation would promote a
successful vein graft outcome. This constitutes a step forward
towards the future of personalized medicine.

Although continuum models of gene-protein networks were
successfully combined with ABMs of cellular behavior in the
context of cancer modeling (Mansury and Deisboeck, 2004;
Zhang et al., 2007; Zhang et al., 2009a; Zhang et al., 2009b), to
the best of the authors’ knowledge, similar approaches have not
been proposed in vascular adaptation yet. Such hybrid models
would promise to make a significant impact in vascular disease
drug development and therapy optimization. After all, most of
molecular therapy advancements today either originate from
already existing approaches (being so most of the time only
incremental), or they emerge unexpectedly from studies with a
different objective, or they arise from processes that are decades-
long, incredibly expensive and with no guarantee of success.
Accordingly, considering 1) the relevant findings of the
continuum gene-cellular framework of Casarin et al. (2017) and
2) the successful application of multiscale agent-based modeling
frameworks integrating multi-omics data in the cancer research
field, the authors’ opinion is that the development of multiscale
agent-based modeling frameworks of vascular adaptation
including gene or protein networks would be an extremely
interesting research area to be explored in the near future.

CONCLUSION

In this review, the state-of-the-art of computational
multiscale agent-based modeling frameworks of vascular
adaptation was presented, demonstrating that coupling
continuum- with agent-based models is a successful
approach for simulating the behavior of complex biological
systems, and especially for capturing the mechanobiological
mechanisms underlying vascular response to biological,
chemical and mechanical stimuli. First, a multiscale model
is deemed fundamental, being the nature of the system
inherently multiscale: the tissue/organ response is just the
tip of the iceberg, resulting from the complex network of
interactions across different spatio-temporal scales. Then,
each scale presents peculiar features, making it more
suitable for either a continuum or discrete model.
Specifically, while the extracellular molecular transport and
the solid mechanics or hemodynamics at the tissue scale are
well described by continuum models (ODE/PDE systems),
cellular behaviors are more naturally and effectively
replicated by ABMs, which, through a bottom-up and
systems biology approach, allow capturing the emergent
behavior of the system arising from the action and
interaction of individual entities (e.g., cells).

To the authors’ opinion, the inclusion of cell-scale ABMs in a
multiscale framework of vascular adaptation, compared to fully-
continuum frameworks, adds value to the description of the
biological system by providing greater details on
morphological-related features, tissue heterogeneity and by
capturing the intrinsic randomness. However, this approach is
not without limitations, which are mainly related to the high
computational costs, and challenges, as those regarding the
processes of verification, uncertainty quantification, sensitivity
analysis, calibration and validation, for which robust and efficient
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methods need to be developed. In fact, most of the studies
presented herein provided sophisticated methodologies to
model vascular adaptation processes but lacked in
calibration and validation. The assessment of the credibility
of these models is an essential requirement that should be
addressed before they can be used as a practical tool for the
improvement of current therapeutical approaches in vascular
medicine and the development of new ones. For example, the
computational frameworks discussed herein might be used to
test drugs acting on specific pathological processes, or different
stent designs (e.g., strut thickness, shape) or deployment
procedure (e.g., deployment depth) either on idealized
cases, as a preliminary study to exclude the worst solutions
and drive further experimental research on the most promising
ones, or on patient-specific cases, to optimize the personalized
therapy.

Finally, the present review, by addressing the state-of-the-art
of multiscale agent-based modeling frameworks of vascular
mechanobiological processes, aimed to inspire researchers for
future investigations of novel and unexplored scenarios within
the cardiovascular field. Multi-omics data, defining patients’
molecular signature, were never explicitly included in
multiscale agent-based model frameworks of vascular
pathophysiology. The integration of these data into the models
could markedly increase the understanding of vascular diseases
and improve the diagnosis, prognosis and treatment in the
context of personalized medicine, which is expected to

revolutionize the approach to cardiovascular diseases in the
near future.
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Evidence-Based NetworkModelling to
Simulate Nucleus Pulposus
Multicellular Activity in Different
Nutritional and Pro-Inflammatory
Environments
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Initiation of intervertebral disc degeneration is thought to be biologically driven. This reflects
a process, where biochemical and mechanical stimuli affect cell activity (CA) that
compromise the tissue strength over time. Experimental research enhanced our
understanding about the effect of such stimuli on different CA, such as protein
synthesis or mRNA expression. However, it is still unclear how cells respond to their
native environment that consists of a “cocktail” of different stimuli that might locally vary.
This work presents an interdisciplinary approach of experimental and in silico research to
approximate Nucleus Pulposus CA within multifactorial biochemical environments.
Thereby, the biochemical key stimuli glucose, pH, and the proinflammatory cytokines
TNF-α and IL1βwere considered that were experimentally shown to critically affect CA. To
this end, a Nucleus Pulposus multicellular systemwas modelled. It integrated experimental
findings from in vitro studies of human or bovine Nucleus Pulposus cells, to relate the
individual effects of targeted stimuli to alterations in CA. Unknown stimulus-CA
relationships were obtained through own experimental 3D cultures of bovine Nucleus
Pulposus cells in alginate beads. Translation of experimental findings into suitable
parameters for network modelling approaches was achieved thanks to a new
numerical approach to estimate the individual sensitivity of a CA to each stimulus type.
Hence, the effect of each stimulus type on a specific CA was assessed and integrated to
approximate a multifactorial stimulus environment. Tackled CA were the mRNA
expressions of Aggrecan, Collagen types I & II, MMP3, and ADAMTS4. CA was
assessed for four different proinflammatory cell states; non-inflamed and inflamed for
IL1β, TNF-α or both IL1β&TNF-α. Inflamed cell clusters were eventually predicted in a
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multicellular 3D agent-based model. Experimental results showed that glucose had no
significant impact on proinflammatory cytokine or ADAMTS4 mRNA expression, whereas
TNF-α caused a significant catabolic shift in most explored CA. In silico results showed that
the presented methodology to estimate the sensitivity of a CA to a stimulus type
importantly improved qualitative model predictions. However, more stimuli and/or
further experimental knowledge need to be integrated, especially regarding predictions
about the possible progression of inflammatory environments under adverse nutritional
conditions. Tackling the multicellular level is a new and promising approach to estimate
manifold responses of intervertebral disc cells. Such a top-down high-level network
modelling approach allows to obtain information about relevant stimulus environments
for a specific CA and could be shown to be suitable to tackle complex biological systems,
including different proinflammatory cell states. The development of this methodology
required a close interaction with experimental research. Thereby, specific experimental
needs were derived from systematic in silico approaches and obtained results were
directly used to enhance model predictions, which reflects a novelty in this research field.
Eventually, the presentedmethodology provides modelling solutions suitable for multiscale
approaches to contribute to a better understanding about dynamics over multiple spatial
scales. Future work should focus on an amplification of the stimulus environment by
integrating more key relevant stimuli, such as mechanical loading parameters, in order to
better approximate native physiological environments.

Keywords: intervertebral disc degeneration, multicellular systems, cell activity, inflammation, in vitro experiments,
evidence-based simulations, multifactorial environment, network modelling

INTRODUCTION

Intervertebral disc degeneration is a major cause of low back pain,
a disability that stands for one of the highest health burdens
worldwide (Hoy et al., 2014). The intervertebral disc is avascular
and consists of three specialized tissues: the Nucleus Pulposus
(NP), a proteoglycan-rich and highly hydrated structure in the
center of the disc, the Annulus Fibrosus, a juxtaposition of
concentric fibrous lamellae that surrounds the NP, and the
Cartilage Endplate, a thin layer of hyaline cartilage that
separates the NP and the inner Annulus Fibrosus from the
vertebral bodies. In each tissue, specialized cells regulate the
synthesis of a finely balanced extracellular matrix (ECM) by
synthesizing tissue proteins and proteases according to a
“cocktail” of mechanical and biochemical stimuli sensed by the
cells (reviewed in Baumgartner et al., 2021). Thanks to its
specialized structure and composition, the intervertebral disc
has a very high strength and classical tissue injury might
happen at internal pressures higher than 10 MPa (Veres et al.,
2008). Thus, organ failure is most likely a slow process, triggered
by an adverse cell (micro-) environment, leading to altered cell
activity (CA) that finally compromises the tissue composition and
strength. These mechanisms, where compromised CA occur in
response to undue biochemical and/or mechanical cues, among
others, are cornerstone in injury processes. We hereby refer to
these mechanisms as biologically-driven injury mechanisms.

Over the past decades, experimental studies have investigated
the impact of a broad variety of stimuli on NP CA. In addition to

mechanoregulatory stimuli, biochemical stimuli influence NP CA,
whereby nutrition-related stimuli and proinflammatory cytokines
have been investigated in most depth. The importance of nutrition-
related stimuli is a consequence of the avascularity of the disc, where
nutrient supply to the cells is diffusion-dependent. Consequently,
gradients of pH and glucose (glc) concentration emerge between the
peripheral vascular beds at the vertebral endplates and the mid-
transversal plane of the NP (Urban et al., 2004). The likely
consequences of these gradients in the mechanically loaded
intervertebral disc were captured by quantitative in silico
explorations (Malandrino et al., 2015; Baumgartner et al., 2021).
However, approximations of individual cell responses at the (multi-)
cellular level remain poorly investigated. At the micro-/nanoscale
level, cell environments are heterogenous, i.e. local cellular stimulus
environments vary, e.g. due to local, proinflammatory cytokine
expression. Proinflammatory cell stimulations were pointed out as
possible key factors in the catabolic shift of NP CA, and might
contribute to the development of different degenerative
phenotypes, e.g., herniated vs. non-herniated discs (Risbud and
Shapiro, 2014; Le Maitre et al., 2007; Johnson et al., 2015). Special
focus was thereby set on the proinflammatory cytokines
interleukin 1 beta (IL1β) and tumor necrosis factor alpha
(TNF-α), which have the potential to alter CA by activating
intracellular signaling pathways such as Notch, JNK or NF-κB
(Baumgartner et al., 2021). In agreement with that, it could be
shown that the amount of cells immunopositive for IL1β and TNF-
α rises as intervertebral disc degeneration progresses (Le Maitre
et al., 2005; Le Maitre et al., 2007).
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In order to cope with the overwhelming complexity of the
intracellular pathways and interactions thereof while enabling
interpretable representations of multifactorial cell regulation,
high-level physiological modelling is particularly appealing. A
new modelling approach was recently proposed in intervertebral
disc systems biology, focusing on the multicellular level where
stimuli identified to be relevant for NP cell regulations were
directly linked to CA (Baumgartner et al., 2020). Whereas the
cell per-se was considered as a black box, this methodology
admitted biological data as inputs, to approximate the integration
of the effects of individual stimuli on the effective CA in
multifactorial environments. Hence, in vitro studies were used to
provide detailed information about the relationship between
different stimulus concentrations and a corresponding CA.
Results were subsequently integrated to estimate effective CA in
multifactorial biochemical environments that would be closer to the
reality of native tissues. However, to approach cell responses within
native tissues the pre-processing of biological evidence for proper
and systematic integration into systems biology models requires
further investigation.

It could be experimentally shown that CA is influenced 1) by the
concentration of a stimulus within the cellular (micro-) environment,
and 2) by the type of a stimulus, i.e., the effect of different stimulus
concentrations affect different mRNA expression in a different way,
e.g., Rinkler et al., 2010; Neidlinger-Wilke et al., 2012; Gilbert et al.,
2016. In our recent work, we addressed the interpretablemodelling and
simulation of the combined effects of different stimulus concentrations
onNPCA (Baumgartner et al., 2020). The stimuliwe includedwere glc,
pH and IL1β, and the CA studied were the mRNA expressions of
Aggrecan (Agg), Collagen Types I & II (Col-I, Col-II) (the main ECM
components), and MMP3 and ADAMTS4 (key proteases involved in
tissue degradation). The simulated multicellular environment was
represented through an agent-based (AB) model and consisted of
non-inflamed and IL1β-inflamed NP cells. Normalized mRNA
expressions were estimated, depending on the predicted cell states
(CS) in terms of immunopositivity (non-inflamed; inflamed).

Considering that the impact of a stimulus on a CA does not only
depend on the stimulus concentration, but also on the sensitivity of
the CA to that stimulus type (e.g., IL1β proinflammatory cytokines
might not have the same effect onMMP3mRNA expression as TNF-
α proinflammatory cytokines), we hypothesize that further modelling
parameters are necessary to reflect this sensitivity and improve
numerical predictions, through a better integration of experimental
data. Hence, this publication is a methodological article that reports
on a new enabling technology to approximate the integrative effects of
multifactorial environments on disc cell stimulation within the NP.
Moreover, experimental research was conducted, specifically designed
based on modelling requirements, to gain additional evidences about
the effect of glc and TNF-α on CA. Based on these new evidences, the
modelling of the proinflammatory environment was extended.

METHODS

Methodological Approach – Overview
The computational model of the system of interest included the
nutrition-related stimuli glc, pH and the proinflammatory

cytokines TNF-α and IL1β, as regulatory variables able to lead
to four different proinflammatory CS; 1) non-inflamed cells, cells
immunopositive for 2) IL1β or 3) TNF-α or 4) for both
IL1β&TNF-α. For each CS, targeted CA were the mRNA
expressions of the key tissue proteins Agg, Col-I, Col-II and
proteases MMP3, and ADAMTS4 (Figure 1).

Glc concentration and pH are user-defined (1st order stimuli)
and regulate TNF-α and IL1β proinflammatory cytokine
expressions (2nd order stimuli). Glc concentration and pH
values could vary in physiologically relevant ranges of 0–5 mM
glc and a pH 6.5–7.4, respectively (Rinkler et al., 2010; Gilbert
et al., 2016). CA of non-inflamed cells (1st level CA) were
calculated based on the nutrition-related environment, whilst
CA of cells immunopositive for TNF-α and IL1β (2nd level CA)
were additionally influenced by their corresponding 2nd order
stimulus. Accordingly, 3rd level CA reflected cells with
immunopositivity for both proinflammatory cytokines. To sum
up, 1st level CA was defined by the combination of two stimuli,
2nd level CA by the combination of three stimuli and 3rd level CA
by the combination of four stimuli.

Each connection between a stimulus and a CA described the
individual stimulus-cell activity relationships (S-CA
relationships). It was determined by the sensitivity of a CA to
a stimulus type (subscript S), reflected by a weighting factor (θCAS )
and by the sensitivity of a CA to a certain stimulus concentration
(xCA

S ) (Figure 1). S-CA relationships were categorized according
to their activating or inhibiting nature (blue/red arrows,
Figure 1), and to their respective biological significance
(continuous vs. dashed arrows, Figure 1), based on
experimental evidence (Le Maitre et al., 2005; Rinkler et al.,
2010; Neidlinger-Wilke et al., 2012; Gilbert et al., 2016). In
Figure 1, repeated connections with the same characteristics
over different CA levels, were represented as grey lines to
make the network representation visually lighter. S-CA
relationships that were not found in the literature
(relationships A-D, Figure 1) were experimentally obtained
hereby through in-vitro experimental data (In-Vitro
Experiments section).

The data-based determination of xCAS was previously detailed
in Baumgartner et al., 2020. In short: to determine xCAS of
nutrition-related stimuli, continuous, sigmoidal functions were
built based on discrete experimental findings of x-fold changes in
mRNA expressions. Thereby, each stimulus concentration within
a physiologically relevant range was assigned to a normalized
value (xCAS ) that ranged from a minimum of 0 to a maximum of 1
(Figure 2).

xCA
S of proinflammatory cytokines was mathematically

approximated by an inflammation submodel (see
Determination of Inflammation section), because of a lack of
information about physiological ranges of proinflammatory
cytokine concentrations. Once determined, each xCA

S was
multiplied by a S-CA specific weighting factor (Figure 2), the
calculation of which is presented in Determination of Weighting
Factors section.

To eventually combine the respective effects of different S-CA
relationships and estimate effective CA in terms of individual
mRNA expressions, a methodology was developed to semi-
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quantitatively predict mRNA expressions within a system of
parallel networks (PN). The corresponding theoretical
framework is briefly described in Overview of the Parallel
Networks Methodology section to ensure the comprehensibility
of the predicted CA.

Eventually, the CA for each CS was computed with an AB
software (NetLogo, v. 6.0.2, Wilensky, 1999) (Figure 1) that

integrated the network calculations with the spatial dimension
of a multicellular system. The 3D AB model mimicked a
proinflammatory environment within a 1 mm³ volume of the
NP environment as previously explained (Baumgartner et al.,
2020). Thereby, 4,000 agents of a diameter of 10 μm were
randomly distributed, representing an average cell density of
NP cells (Maroudas et al., 1975). The inflammatory
environment is detailed in Determination of Inflammation
section.

In Vitro Experiments
To determine the unknown S-CA relationships, the effect of glc
on TNF-α, IL1β and ADAMTS4 mRNA expression (Figure 1,
relationships A - C), and the effect of TNF-α on the targeted
mRNA expressions (Figure 1, relationships D) were assessed
through in vitro experiments on bovine caudal NP cells.

Experimental protocols were established by considering both,
previous experimental research and in silico findings. To
determine CA under different glc concentrations, the
experimental setup was inspired by Rinkler et al., 2010, whose
data were previously used to determine the glc-CA relationships
within the system (Figure 1, Baumgartner et al., 2020).
Accordingly, bovine NP cells were seeded into alginate beads

FIGURE 1 | System of interest based on nutrition-related stimuli glucose (glc) and pH. Stimulus – cell activity (S-CA) relationships were either activating (blue) or
inhibiting (red) according to experimental findings. Dashed blue and red arrows marked non-significant (p > 0.05) relationships according to experimental findings and
brown dotted arrows unknown S-CA relationships. Respective connections between 1st order stimuli and 2nd/3rd level CA and 2nd order stimuli and 3rd level CA were
represented as grey lines to provide a better visibility. Each S-CA relationship is determined by the sensitivity of a CA to a stimulus type (weighting factor, θCAS ) and by
the sensitivity of a CA to a stimulus concentration (xCAS ) (exemplarily illustrated within the system of interest). Resulting CA for different inflammatory cell states were
calculated and displayed within a 3D Agent-based (AB) model.

FIGURE 2 | Illustration of stimulus-cell activity relationships by means of
the glucose (glc) – collagen type II (Col-II) relationship; continuous functions
assign physiologically relevant glc concentrations (i.e. 0 - 5 mM) to a
normalized Col-II mRNA expression, which was multiplied by an
individual weighting factor (θCAS ).
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and exposed to glc levels of either 0, 0.5 and 5 mM, whereby the
5 mM concentration served as control. Additional glc
concentrations of 0.8 and 1 mM were considered to reflect
hypothetical transitional nutritional conditions within the NP
that might differentiate normal and early degenerated
intervertebral discs, according to previous in silico findings
(Ruiz Wills et al., 2018).

To assess the effect of TNF-α on the targeted mRNA
expressions, a 5 mM glc medium was enriched with a TNF-α
protein concentration of 10 ng/ml, in agreement with previous
experimental research on proinflammatory cytokines (Le Maitre
et al., 2005; Millward-Sadler et al., 2009; Walter et al., 2015;
Likhitpanichkul et al., 2016; Yang et al., 2017). Cell cultures
exposed to 5 mM glc concentration without TNF-α served as
control.

In addition to the required S-CA relationships, cell viability
was measured for all the conditions. The effect of glc (partial)
deprivation on Agg, Col-I, Col-II and MMP3 and the effect of
TNF-α on the mRNA expressions of TNF-α and IL1β was also
assessed. Corresponding results are presented as Supplementary
Materials S1, S2.

Cell Isolation and Culture
NP cells were isolated from bovine tails (n � 5) by 0.3% Dispase II
(04942078001, Roche, Basel, Switzerland)/0.2% Collagenase NB4
(17454, Serva, Heidelberg, Germany) digestions with 3%
Antibiotics-Antimycotics solution in PBS as previously
described (Cambria et al., 2020; Sadowska et al., 2020). Cells
were then expanded in 2D conditions for around 14 days in
DMEM/F-12 (Thermo Fisher/Gibco 11320033) [25 mM glc],
with 10% fetal calf serum (FCS) (F7524, Sigma) and 1%
Antibiotics-Antimycotics solution. Three to 5 days prior to the
experiment, the medium was changed to DMEM (Thermo
Fisher/Gibco 11965092) with 10% FCS and 1% Antibiotics-
Antimycotics.

Cell Stimulation
All cell stimulation experiments were conducted on passage 2 NP
cells seeded into alginate beads as previously described (Krupkova
et al., 2014). Briefly, NP cells were transferred to a 1.2% alginic
acid sodium salt (180947, Sigma-Aldrich, St. Louis, MO,
United States) at a density of 4 × 106 cells per ml alginate
(reflecting the average cell density within the NP Maroudas
et al., 1975). A 21 G needle was used to create the alginate
beads. Eventually, an average of 101 ± 8 alginate beads with a total
of 8.5–9 × 106 NP cells was obtained from each donor. Beads were
cultured in 5 mM glc for 24 h, to allow the cells to adapt their
glycogen stores to a physiological glc environment. Subsequently,
each well of a six well plate was exposed for 48 h to one of the
aforementioned glucose concentrations or to a TNF-α enriched
medium (10 ng/ml human recombinant TNF-α (17.4 kDa,
PeproTech, 300-01A)), at 5 mM glc, under a normoxic
environment and pH 7.4. The different glc concentrations
were created by mixing DMEM high glc [Thermo Fisher
(Gibco) 11965092] and DMEM no glc [Thermo Fisher (Gibco)
11966025] in the respective ratios. The culture medium was
changed after 24 h in order to maintain the chosen glc

conditions under metabolic cell activity. Imposed culture
conditions were static and mRNA expression and cell viability
were assessed immediately after the 48 h of exposure to the
stimulus.

Cell Viability Measurement and mRNA Expression
Analysis
Cell viability was assessed by exposing one bead per condition to a
10 μm Calcein AM (CaAM)/1 μM Ethidium Homodimer
(EthHD) solution, for approximately 1 h. Afterwards, the bead
was gently squeezed between a microscope slide and its cover
glass, and cells were counted under a fluorescence microscope
(Olympus IX51, Tokyo, Japan). The number of cells was analyzed
within up to four different regions of the bead, and cells were
counted within a predefined area, using a grid of constant size for
each sample. Remaining alginate beads were dissolved during
30 min and occasional shaking in a dissolving buffer (55 mM
Sodium citrate solution (71406, Sigma, in 0.9% NaCl)). Isolated
cells were pelleted by centrifugation, washed 1× with PBS and
subsequently lysed in the specific lysis RLT buffer (plus 1% 2-
Mercaptoethanol) of the RNeasy Mini Kit 50 (QIAGEN, ID
74104). mRNA was extracted following the protocol provided
by the manufacturer, and the quality and quantity of RNA was
analyzed using a Nanodrop 1,000 Spectrophotometer (Thermo
Fisher Scientific). 1 μg of total RNA was finally reverse
transcribed into cDNA in a 30 μl volume using the Taqman
Reverse Transcription kit (#4374966, Applied Biosystems,
United States).

cDNA was then mixed with Bovine TaqMan primers (Primer
Seq. No. ADAMTS4: Bt03224693_m1, MMP3: Bt04259497_m1,
Agg: Bt03212186_m1, Col-I: Bt03214883_m1, Col-II,
Bt03251861_m1) to assess changes in the gene expressions of
Agg, Col-I, Col-II, ADAMTS4 and MMP3. As for TNF-α and
IL1β gene expressions, cDNA was additionally amplified, as initial
real-time qPCR showed a gene expression at high Cq.
Amplification was performed following the manufacturer’s
protocol. In short, cDNA was mixed with TaqMan PreAmp
Master Mix (2X) (#4391128, Thermo Fisher, Switzerland) and
pooled assay mix consisting of TaqMan Primers (Thermo Fisher,
Switzerland) diluted with 1X TE Buffer (AM9849, Thermo Fisher,
Switzerland) to a final concentration of 0.2X. For the gene
expression analysis 4.5 μL or 37.5 ng of amplified cDNA was
combined with 5 μL TaqMan Fast Universal PCR Master Mix
(2X) (#4352042, Thermo Fisher, Switzerland) and 0.5 μL TaqMan
primers (Life Technology, Primer Seq. No: TNF-α:
Bt03259156_m1, IL1β: Bt03212741_m1) to a total volume of
10 μL per well.

Gene expressions were measured by the real-time qPCR (CFX96
Touch™ Detection System, Biorad) and all conducted in duplicate.
Previous testing revealed YWHAZ (TaqMan Primer Seq. No:
Bt01122444_g1) as an appropriate housekeeping gene. The
−2ΔΔCt method was used to normalize and compare the mRNA
contents between treatments and the control sample (5 mM glc).

Statistics
Statistical analyses were performed using SPSS software version
23.0. Evaluations were done on the ΔCt values, i.e., on the
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difference of the targeted genes to the housekeeping gene,
leading to statistically reliable data by obtaining a variance as
well for control groups. Based on the small sample sizes, non-
parametric tests were performed, consisting of a Kruskall-Wallis
H test for the evaluation of the effect of different glc
concentrations on mRNA expressions, and a Mann-Whitney
U test to evaluate the effect of a TNF-α enriched medium. The
significance level was set to p < 0.05.

Overview of the Parallel Networks
Methodology
To mathematically provide interrelated results for many parallel
networks, a methodology was developed to 1) estimate the
activation of each CA by integrating the effect of each
corresponding S-CA relationship and 2) to relate the activation
of each CA to other concurrent CA. A network was defined as the
group of S-CA relationships that converges to a specific CA. From
now on, the methodology hereby defined is referred to as the
parallel networks (PN)-Methodology. It required the predefinition
of a system, i.e., the PN-system, of all the CA where a relative
interpretation is desired. In the system of interest presented in
Figure 1, these CA would be the 1st, 2nd and 3rd level CA.

To calculate a PN-system, an equation was developed, referred
to as the PN-equation Eq. 1.

ωCA,CS � ⎛⎝(1 +∑ θα∑ θα
)⎛⎝ ∑ θCAS,αx

CA
S,α

1 +∑ θCAS,αx
CA
S,α

⎞⎠⎞⎠ ·⎛⎝1 −⎛⎝⎛⎝ ∑ θCAS,β

∑ θCAS,α + ∑ θCAS,β
⎞⎠

⎛⎝⎛⎝1 +∑ θCAβ

∑ θCAβ
⎞⎠⎛⎝ ∑ θCAS,βx

CA
S,β

1 +∑ θCAS,βx
CA
S,β

⎞⎠⎞⎠⎞⎠⎞⎠
(1)

The PN-equation originated from the graph-based modelling
approach developed by Mendoza and Xenarios, 2006 that semi-
qualitatively describes biological network dynamics at a subcellular
scale, with integration of the simultaneous effects of different inputs
on the effective regulation of a specific node. Accordingly, the
overall activation of a CA of a certain CS, ωCA,CS, in Eq. 1, was
determined by an activating (subscripts α) and an inhibiting
(subscripts β) term. Thereby, θα are the weighting factors of all
activating S-CA relationships within the PN-system, and θCAS,α and
θCAS,β are respectively the activating and inhibiting weighting factors
of a specific network. Finally, θCAβ reflects all the inhibiting
connections within the same CA, independently of the CS.
ωCA,CS were bound between 0–1 and reflect PN-activities. These
provide activation levels for the individual, interrelated CA within
the PN-system. Hence, the PN-activity is a quantity that assesses the
CA. Accordingly, the lower a PN-activity is, the lower the activity of
a cell to express that respective mRNA.

The PN-activity is a scalar calculated with 4 decimals,
determined based on pilot network calculations. The
resolution was aimed to be sensitive enough to reflect small
changes in CA, which were often identified within three to four
decimal places (see Figure 10 in the Results section). Such
resolution makes sense with regard to the long-term
cumulative effect of small persistent perturbations, as it is
likely to happen in slowly developing disorders such as

intervertebral disc degeneration. Accordingly, the continuous
functions formerly determined (Baumgartner et al., 2020) to
define the sensitivity of a CA to a stimulus concentration (briefly
explained in the Methodological Approach–Overview section)
were refined to achieve this resolution. Functions are provided
as Supplementary Material S3.

Determination of Weighting Factors
To determine individual weighting factors, experimental
information about the capacity of a stimulus to alter CA was
used. This capacity is reflected by the maximal change in x-fold
mRNA expression (ϵ) found within the physiologically relevant
range of stimulus concentrations. Any change induced by a varying
stimulus concentration led to x-fold mRNA expressions either
higher (ϵ> 1) or lower (0< ϵ< 1) than the control level (1). To
mathematically achieve semi-bounded ranges for both increase and
decrease of x-fold mRNA, reciprocal proportional relationships,
f(ϵ) � ϵ and f(ϵ) � 1

ϵ, were implemented for ϵ> 1 and for
0< ϵ< 1, respectively (Figure 3). As such, f(ϵ), from now on
called the “cellular effort,” becomes infinite for both increased and
decreased mRNA expressions relative to control. Note that the
wording “cellular effort” does not refer to any biological intracellular
activity here.

To obtain θCAS , f(ϵ) was scaled by a constant scaling factor
(ϑθmax) (Eq. 2) to a predefined range of 0.01≤ θCAS ≤ 1. Hence
θmin � 0.01, θmax � 1 and, accordingly ϑθmax � ϑ1. Values of 0.01
(or lower) approximate a linear coupling between xCA

S and
ωCA,CS (Mendoza and Xenarios, 2006) (Figure 4).

f(ϵ)/ϑθmax � θCAS (2)

If a stimulus type did not significantly alter an x-fold mRNA
expression, θCAS was set to 0.01, approximating a linear
relationship between xCA

S and ωCA,CS. Experimental data about
x-fold mRNA expressions was obtained from literature and from
the actual study (see Results and Experimental Results and System
of Interest sections) (Table 1).

FIGURE 3 | Cellular effort (f(ϵ)) to compare augmentations and
decreases of x-fold mRNA expressions (ϵ).
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To explore the impact of individualized weighting factors on a
PN-activity, the respective effects of three physiologically relevant
nutritional environments in terms of pH and glc concentrations
were calculated: one optimal nutritional environment
(Nachemson, 1969; Rinkler et al., 2010), and two altered

nutritional environments in the mid-transverse plane. These
two mid-transverse plane environments were defined through
our in-house mechanotransport finite element (FE) simulations
(Ruiz Wills et al., 2018) and referred to the anterior region of the
NP where the most adverse nutrient conditions arose within the
mechanically loaded intervertebral disc. They respectively
reflected glc concentration and pH values for 1) non-
degenerated and 2) early degenerated cartilage endplate
conditions. The nutrient concentrations around the mid-
transverse plane of a non-degenerated mechanically loaded
intervertebral disc were referred to as borderline conditions
(Table 2).

A second set of calculations was run with all the weighting
factors set to 0.01, in order to assess the impact of a systematic
integration of stimulation strengths in the PN-system.

Determination of Inflammation
To estimate inflammatory parameters, an inflammation
submodel was developed, based on previous work reported in
Baumgartner et al., 2020. Based on the user-defined nutritional
environment, a global (i.e., not cell-specific) normalized CA for
TNF-α (ωTNF−α) and IL1β (ωIL1β) mRNA expressions was
predicted. This global normalized CA was used, moreover, to
estimate the amount of immunopositive cells and concentrations
of proinflammatory cytokines (Figure 5).

mRNA expressions of TNF-α and IL1β were estimated by
using the regulatory network (ωi) introduced by Mendoza and
Xenarios, 2006, and they were allowed to vary within a
normalized range, i.e., from 0 to 1. The proinflammatory
cytokine synthesis was programmed to be proportional to the
corresponding mRNA expression. The half-life of IL1β proteins
was set to 2 h (Baumgartner et al., 2020), whereas a half-life of 1 h

FIGURE 4 | Illustration of effect of the size of a weighting factor (θCAS ) of
the sensitivity of a CA to a certain stimulus concentration (xCAS ) on the overall
cell activity (ωCA,CS). Example of different values ranging from θCAS � 0.001 to
θCAS � 1.

TABLE 1 | Individual weighting factors for the tackled PN-system, i.e., 1st, 2nd and 3rd level CA (Figure 1), along with the scaling factors and cellular efforts. Individual
weighting factors were derived from the cellular effort [f(ϵ)], based on x-fold mRNA expressions (ϵ). The scaling factor ϑθmax � ϑ1 � 28.7 was determined by the S-CA
relationship pH-MMP3.

Stimulus mRNA ϵ f(ϵ) θCAS ( ϑ1 = 28.7) Source Cell type

Glc Agg NS, act — 0.0100 Rinkler et al. (2010) human
Col-I NS, act — 0.0100 Rinkler et al. (2010) human
Col-II NS, act — 0.0100 Rinkler et al. (2010) human
MMP3 NS, act — 0.0100 Rinkler et al. (2010) human
ADAMTS4 NS, act — 0.0100 Actual study bovine

pH Agg 0.37 2.7027 0.0942 Gilbert et al. (2016) human
Col-I NS, act — 0.0100 Gilbert et al. (2016) human
Col-II 0.63 1.5873 0.0553 Neidlinger-Wilke et al. (2012) bovine
MMP3 28.7 28.7000 1.0000 Gilbert et al. (2016) human
ADAMTS4 5.7 5.7000 0.1986 Gilbert et al. (2016) human

IL1β Agg 0.45a 2.2222 0.0774 Le Maitre et al. (2005) human
Col-I NS, act — 0.0100 Le Maitre et al. (2005) human
Col-II NS, inh — 0.0100 Le Maitre et al. (2005) human
MMP3 10.8a 10.8000 0.3763 Le Maitre et al. (2005) human
ADAMTS4 NS, inh — 0.0100 Le Maitre et al. (2005) human

TNF-α Agg NS, inh — 0.0100 Actual study bovine
Col-I 0.31 3.2258 0.1124 Actual study bovine
Col-II 0.06 16.6667 0.5807 Actual study bovine
MMP3 26.85 26.8500 0.9355 Actual study bovine
ADAMTS4 5.77 5.7700 0.2010 Actual study bovine

NS: Not significant; act: activating; inh: inhibiting.
aEstimated ϵ.
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was imposed for TNF-α chosen according to the distantly related
data of Oliver et al., 1993. 1 h corresponded to the time-step of
our AB model (Baumgartner et al., 2020) and was, therefore,
aligned with the shortest implementable half-life.

To estimate current amounts of inflamed cells, ωIL1β and
ωTNF−α were proportionally related to the percentage of
inflamed human NP cells as experimentally assessed for
degenerated and non-degenerated human intervertebral discs
(Le Maitre et al., 2007). Those authors found that the
percentage of inflamed cells ranges within approx. 10–59% for
IL1β and approx. 9–36% for TNF-α (mean values ± two standard
errors). For example: the percentages of IL1β inflamed cells are in
a range of 17% ± 7% for non-degenerated NP and in a range of
52% ± 7% for degenerated NP. Hence, the overall range
considered for IL1β inflamed cells was 10–59%.

To initialize the immunopositivity within the AB model, 30
out of 4,000 cells were randomly selected as nucleation points for

15 IL1β and 15 TNF-α immunopositive clusters. Clusters were
formed around those points according to the calculated
percentage of inflamed cells consistent with current nutrient
concentrations and considering the globally shortest distance
from an inflamed to a non-inflamed cell. Based on the
randomly chosen static position of each cell, unique forms of
proinflammatory cell clusters emerged for each model setup.

The number of cells immunopositive for both IL1β&TNF-α
was determined by the AB model, being the cells located in
overlapping areas of IL1β and TNF-α immunopositive cell
clusters (Figure 5B). Eventually, proinflammatory
environments were calculated for optimal, borderline and
early degenerated nutritional conditions (Table 2). Thereby,
average values were calculated out of ten AB-model simulations
per modelled microenvironment with the data set of S-CA
specific weighting factors. Slight differences in model
predictions leading to standard deviations are likely caused

TABLE 2 | Nutrition-related stimuli, input parameters.

Optimal conditions Borderline conditions Early degenerated conditions

Glucose [mM] 5 1.0293 0.8901
pH 7.1 6.9531 6.9349

FIGURE 5 | Inflammation submodel. (A): underlying network of the schematically represented inflammation submodel in Figure 1 (top), to approach mRNA
expressions and protein synthesis of TNF-α and IL1β. (B): illustration of the determination of NP cells immunpositive for both, TNF-α and IL1β by the agent-based (AB)
model. Prot: protein, glc: glucose, immunopos: immunopositive, n: normalized, N: number, t: time, lin. rel.: linear relationship.
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by AB solver stochasticity and do not have any impact on overall
interpretations (see Results and The Proinflammatory
Environment sections). Therefore, the percentage of inflamed
cells for the comparative simulations using invariant weighting
factors of 0.01 is based on one representative model simulation.

The weighting factors of the inflammation submodel, i.e., the
sensitivity of IL1β and TNF-α mRNA expressions to nutrients,
were obtained by using the scaling factor determined by the PN-
system (ϑ1 � 28.7). Note that θCAS might become larger than 1,
since ωIL1β and ωTNF−α are not part of the PN-system. Required
x-fold mRNA expressions to obtain the weighting factors were
received out of both the literature and the in vitro experiments of

the current study (see Results and Experimental Results and
System of Interest sections) (Table 3).

RESULTS

Experimental Results and System of
Interest
The complete or partial deprivation of glc did not have any
statistically significant effect on the mRNA expressions IL1β,
TNF-α and ADAMTS4 (Figure 6). Yet, all measured mRNA
expressions tended to decrease under complete glc deprivation.
Results for IL1β and TNF-α mRNA expressions at 0.5 mM glc
were based on four donors instead of five, due to experimental
issues.

In contrast, medium enrichment with 10 ng/ml TNF-α caused
a significant change in the mRNA expressions of Col-I (0.31 ±
0.09 -fold), Col-II (0.06 ± 0.02 -fold), ADAMTS4 (5.77 ± 2.50
-fold) (p < 0.01) and MMP3 (26.85 ± 15.43 -fold) (all p < 0.05),
but no significant change in the mRNA expression of Agg (0.47 ±
0.22 -fold) (p � 0.076) (Figure 7).

The obtained experimental measurements led to complete the
PN network description of the system of interest, with all
activating and inhibiting links (Figure 8).

In Silico Predictions
The Proinflammatory Environment
The average percentage of cells immunopositive for IL1β
(i.e., the sum of cells immunopositive for only IL1β and of
both, IL1β&TNF-α) was around 16%, in all three simulated
microenvironments, i.e., 15.76 ± 0.11% under optimal; 16.18 ±

TABLE 3 | Individual weighting factors for the inflammation submodel. ϵ: x-fold mRNA expression, θCAS : cell activity and stimulus-specific weighting factor.

Stimulus mRNA ϵ f(ϵ) θCAS Source Cell type

Glc IL1β NS, act — 0.01 Actual study bovine
TNF-α NS, act — 0.01 Actual study bovine

pH IL1β 81 81.0000 2.8223 Gilbert et al. (2016) human
TNF-α NS, act — 0.01 Gilbert et al. (2016) human

NS: not significant. act: activating.

FIGURE 6 | mRNA expression of the proinflammatory cytokines IL1β and TNF-α and the protease ADAMTS4 at 0, 0.5, 0.8 and 1 mM glucose concentrations
compared to control (1-fold). Data is displayed as mean values with a corresponding 95% confidence interval and individual values (round dots).

FIGURE 7 | Average mRNA expressions (logarithmic scale) and
standard deviations of extracellular matrix proteins and proteases after
exposing cells to 10 ng/ml TNF-α, 5 mM glc and pH 7.4. *: significantly (p <
0.05) different from control (1-fold).
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0.14% under borderline; 16.23 ± 0.16% under early
degenerated conditions. The percentage of TNF-α inflamed
cells rose from around 15% under optimal to 26% under
borderline up to 33% under early degenerated conditions.
Model predictions for cells immunopositive for both,
IL1β&TNF-α rose from approximately 1% under
physiological to around 2% under early degenerated
conditions. The numbers of inflamed cells for TNF-α only,
IL1β only or for both TNF-α&IL1β are displayed in Figure 9
for each nutrient condition.

The use of invariant weighting factors of 0.01 led to a cell
immunopositivity for IL1β ranging from around 19% for optimal
conditions to 35% for borderline and early degenerated
conditions. TNF-α immunopositivity did not change, since
S-CA specific weighting factors to determine TNF-α have a
value of 0.01 (Table 3).

Cell Activity
Using invariant weighting factors, predicted CA profiles of
different inflammatory CS are similar under optimal
nutritional conditions, leading to a higher variation under
progressively adverse nutrient environments (Figure 10A,
from top to bottom). The PN-activity for ADAMTS4 is
generally elevated throughout all CA profiles. PN-activities of
Agg and Col-II are the same or similar within a CA profile.

In contrast, an application of S-CA specific weighting
factors leads to distinct CA profiles for different
inflammatory CS and different nutritional conditions
(Figure 10B). This includes a pronounced difference
between the CA profiles of IL1β and TNF-α inflamed cells,
standing out in particular by an elevated protease mRNA
expression under the influence of TNF-α (Figure 10B). The
predicted PN-activity of ADAMTS4 is lower in non-inflamed

FIGURE 8 | Completed system of interest according to additional experimental data. Blue arrows: activating links; Red arrows: inhibiting links; Dashed arrows:
statistically non-significant tendencies.

FIGURE 9 | Model predictions for an inflammatory environment within an optimal, borderline and early degenerated nutritional environment. Average amount of
inflamed cells (square)with corresponding 95% confidence interval and individual values (grey dots) (n � 10 simulations per condition). ANOVA test showed significant
differences between conditions in the three groups studied (p-value < 0.001). Post-hoc analysis showed that the number of cells immunopositive for IL1β were
significantly lower in the degenerated conditions compared with the optimal and borderline conditions (p-value 0.000 and 0.017, respectively). On the other hand, in
the case of cells immunopositive for TNF-α and for IL1β&TNF-α, significant differences were observed between the three conditions (p-value < 0.001).
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and IL1β inflamed cells (Figures 10B vs 10A). Within
individual CA profiles, Col-II is generally predicted to be
lower than Agg due to an integration of S-CA specific
weighting factors (Figures 10B vs 10A). CA profiles of cells
immunopositive for both TNF-α&IL1β are similar to the ones
of TNF-α inflamed cells (Figure 10B).

DISCUSSION

Experimental Results and System of
Interest
The need for experimental research was defined by specific in
silico requirements, which reflects a novelty of this approach.
As a consequence, rather unexplored relationships between
nutrition-related stimuli and proinflammatory cytokine
mRNA expressions were investigated. Measurements
suggested non-significant effects of glc variations on the
tackled proinflammatory cytokines and on ADAMTS4
(Figure 6). Thus (partial) glc deprivation might not directly
trigger enhanced proinflammatory conditions, even though
both factors coexist under progressive degeneration (Le Maitre
et al., 2005; Le Maitre et al., 2007; Ruiz Wills et al., 2018).

Furthermore, experimental results could not confirm major
differences in mRNA expressions at 0.8 mM compared to 1 mM
glc concentration. This result suggests that 0.8 mM glc derived
from FE predictions (Ruiz Wills et al., 2018) with early
degenerated cartilage endplate, might not stand for a relevant
nutritional stress for the cells. Arguably, a drop of pH (around
6.9) predicted by the aforementioned FE simulations was not
imposed in the experimental setup. The reason for this was that
our experiments aimed to provide information about the effect of
the variation of a single stimulus at once on a CA, in order to
incorporate the measured data in the parallel network model.
However, we acknowledge the importance of accessing
experimental data with crossed variations of the micro-
environmental conditions. Furthermore, general limitations of
the experimental part of this study, especially the small sample
size, might have masked possible effects. However, for this
modelling approach, even non significant variations of mRNA
expressions were exploited. The underlying reason was that the
chronicity of marginal changes in cell responses might play an
important role in intervertebral disc degeneration. Such marginal
changes, however, might be masked in experimental research due
to pronounced standard deviations and tendentially low sample
sizes. Eventually, the impact of experimentally determined
significances was regulated by the S-CA specific weighting
factors (see Determination of Weighting Factors section).

Significant catabolic shifts in CA were observed due to a
TNF-α enriched culture medium. This was not surprising, as
strong catabolic shifts in cell responses are generally
attributed to TNF-α (Purmessur et al., 2013). Catabolic
cell responses under the influence of TNF-α could be
confirmed for concentrations as low as 1 ng/ml (Séguin
et al., 2005). In the current study, a proinflammatory
cytokine concentration of 10 ng/ml was applied to
facilitate comparability with data from IL1β stimulation
(Le Maitre et al., 2005). Although such concentrations
might be hyper physiological with physiological levels of
TNF-α possibly rather being in the order of pg/ml than
ng/ml (Takahashi et al., 1996; Gawri et al., 2014; Zou
et al., 2017), they are commonly used in vitro to model a
pronounced and measurable cell response, even with short
stimulation periods. Hence, current predictions about the

FIGURE 10 | Prediction of five target mRNA expressions for four
different proinflammatory cell states. Values were obtained for optimal,
borderline and early degenerated, nutritional stimulus combinations. Data was
obtained for two sets of weighting factors; an invariant weighting factor
of 0.01 (A) and an individual weighting factor (B).
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impact of inflammation on a CA might be disproportionate
compared to non-inflamed cell responses. Furthermore, this
study used bovine NP cells as a model for non-degenerated
human NP cells. This was done before (Rinkler et al., 2010),
but, of course, it contains a certain uncertainty regarding the
translation of findings between different species. Arguably,
because differences between the respective responses of cells
of degenerated and non-degenerated intervertebral discs are
known (Le Maitre et al., 2005; Le Maitre et al., 2008; Le Maitre
et al., 2009), the current experiments primarily targeted non-
degenerated intervertebral disc cells (human non-
degenerated disc cells are difficult to obtain), to inform the
computational model. Furthermore, the experiments were
conducted at normoxic conditions, which does not reflect the
conditions within an intervertebral disc NP. However, this
bias was constantly present throughout the experimental
setup, and is therefore considered to have not importantly
affected the relative effects of different glc concentrations or
TNF-α measured in this study.

More knowledge about the cell response to TNF-α exposure at
physiological concentrations might be highly relevant for further
model developments. This would allow to ideally estimate the
effect of proinflammatory cytokine concentrations as continuous
functions, as done for nutrition-related stimuli (Baumgartner
et al., 2020, Figure 2). This includes an overall confirmation of the
catabolic effect of TNF-α under physiological conditions,
especially in the light of experimental research with IL1β that
showed an anabolic effect on Agg mRNA expression within
0.001–0.1 ng/ml (Phillips et al., 2015).

Eventually, the experimental data obtained by the current
experimental research completed the biological data needed to
determine evidence-based S-CA relationships and allowed,
therefore, to complete the system of interest (Figure 8).

In Silico Predictions
The Proinflammatory Environment
Expected percentages of IL1β inflamed cells for non-degenerated
and degenerated intervertebral discs were provided from
literature. They range around 17% ± 7% under non-
degenerated and 52% ± 7% under degenerated conditions (Le
Maitre et al., 2007). Thereby, the cohort included patients with
severely degenerated tissues. Using S-CA specific weighting
factors, the range of IL1β immunopositive cells predicted by
the model ranges around 16% for all simulated conditions and
hereby lies within the range estimated for non-degenerated
conditions. The slight decrease of IL1β immunopositivity in
simulated early degeneration (Figure 9) is compensated by an
increased number of cells immunnopositive for both, IL1β&TNF-
α. Hence the overall amount of IL1β inflamed cells slightly rose
under progressively adverse nutritional environments, from 15.76
to 16.23%. Nevertheless, the inflammation within degenerated
conditions might be underestimated, given that early
degeneration did not lead to a stronger catabolic shift than
varying regions within the NP within a non-degenerated NP.
In contrast, without considering individualized weighting factors,
the values for borderline and early degenerated conditions, i.e.
35% of NP cells immunopositive for IL1β, might be

overestimated, and not enough differentiated between the two
conditions.

With regard to TNF-α, expected percentages of inflamed cells
range around 16% ± 7% in non-degenerated and 31% ± 5% in
degenerated conditions (Le Maitre et al., 2007). The model
predicted ranges of proinflammatory cytokines of around 15%
under optimal, around 26% under borderline and around 33%
under early degenerated conditions. Hence, the percentage of
TNF-α immunopositive cells under optimal conditions lied
within the expected range, whilst the TNF-α immunopositivity
under borderline and early degenerated conditions was
considered as a clear overestimation. TNF-α is assumed to be
an aggressive mediator in catabolic cell responses (Purmessur
et al., 2013), and an immunopositivity for TNF-α of 26 and 33%,
respectively, of the NP cells close to the mid transversal plane
might suggest accelerated local degenerations. With this regard, it
must be considered that current predictions of TNF-α rely on pH
and glc that both were found to have a non-significant effect
(Table 3). Accordingly, S-CA specific weighting factors coincide
with invariant weighting factors (i.e. 0.01). Hence, in silico
predictions of the proinflammatory environment reflect the
previous findings that nutrient-environments alone are not
sufficient to accurately predict inflammation (Experimental
Results and System of Interest section). A first step to tackle
such limitations is an integration of direct mechanotransduction
effects into the model with a subsequent evaluation of the model
performance (please check Cell Activity section. with this regard).

In contrast to in silico methodologies that consider vast
network interactions including many (sub) cellular
components, this approach only considers relatively few, key
relevant external stimuli to estimate overall cell responses at a
multicellular level. Hence, instead of using a bottom-up
modelling approach to estimate current CA, experimental
findings are used to directly link environmental stimulus
perturbations to a final CA. Therefore, it is crucial to use
external stimuli that are shown to influence the tackled CA. In
contrast to tissue proteins or proteases, nutrient-related stimuli
alone do not have a determinant impact on proinflammatory
cytokine regulations. As a consequence, the model responded
with an inaccurate prediction of inflammatory parameters.
Hence, this modelling approach seems to be able to sort out
the critical characteristics of multifactorial environments to
accurately capture a CA. At the same time, it allows high-level
and directional modelling, which is important for proper network
model interpretations in the light of available evidence.

As for the visualization of immunopositivity within the 3D
AB-model environment (Figure 11), it was assumed that
immunopositive cells were arranged in clusters. Thereby, the
location of each cluster was randomly set and the cell number
forming each cluster was determined according to the proximity
of the cells. Thus, the proinflammatory environment is different
for every new model setup. The computational cost to setup the
proinflammatory environment ranges around 8 min on an
“ordinary” personal computer [in this study: 16 GB RAM,
Intel(R) CoreTM i7-7500U CPU @ 2.70 GHz (dual core)]. To
our knowledge, this is the first approach that provides insights
on how a proinflammatory environment might look like within
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the NP. The idea of immunopositive clusters arise from a
combined effect of paracrine stimulation (Phillips et al., 2013;
Phillips et al., 2015), short half-life of proinflammatory cytokines
and low, diffusion-dependent travel velocities. Due to a lack of
data, these simulated clusters of inflammatory environments
could not yet be experimentally validated. Arguably, the initial
assumption of an independent seeding of IL1β and TNF-α cell
clusters might be revised in future model developments, because
of the mutual stimulatory effects between TNF-α and IL1β, e.g.,
the effect of TNF-α on IL1β mRNA expression (Supplementary
Material S2). Hence, the number of cells immunopositive for
both IL1β&TNF-α might be underestimated. More experimental
data about the inflammatory state of NP cells would be needed to
better approximate the prediction of proinflammatory
intervertebral disc environments. The decreasing costs of
transcriptomic and proteomic studies may soon lead to a
more comprehensive knowledge about the distribution and
type of immunopositive cells within the NP. Moreover,
additional information about the response of NP cells to
microenvironmental cues represents relevant input data for
the herein described model. While these data might help to
complement/refine network models (Melas et al., 2014), their
interpretation can further benefit from the current modelling
approach that uniquely integrates multiple S-CA
relationships.

Cell Activity
This novel methodological approach allows to tackle regional
heterogeneities within the NP, which complements information
from experimental research that usually obtains homogenic
values for the NP as a whole. Such spatial- and CS-specific
CA profiles (Figure 10) are defined by the (local)
multifactorial environment and are the result of the
interaction of three factors: the sensitivity to a stimulus
concentration (xCAS ), the sensitivity to a stimulus type (θCAS )
and their integration through the PN-equation. Hence, PN-
activities are constant for constant nutritional boundary

conditions and can be obtained within seconds with the
“ordinary” personal computer used in this study.

This work focuses on the approximation and the final effect of
the stimulus type, which is described with weighting factors.
Hence, results are discussed focusing on the impact of weighting
factors.

Without the integration of S-CA specific weighting factors, the
CA profiles are largely defined by xCA

S . This explains why CA
profiles look similar in Figure 10A. Hence, the impact of different
types of inflammation can only moderately be reflected
(Figure 10A, first row) and the effect of CS on CA profiles
increases with a progressively adverse nutrient environment
(i.e., from the first to the last row, Figure 10A). On the one
hand, changes due to nutrient deprivation are small, which
coincides with the slow progress of intervertebral disc
degeneration, i.e., the chronicity over time might be a major
risk factor to eventually compromise the tissue integrity. On the
other hand, small variations between different CS would not
reflect the strong effects of proinflammatory cytokines on tissue
proteins and proteases as suggested by experimental findings
(e.g., Figure 7, Le Maitre et al., 2005; Purmessur et al., 2013).

Thanks to an integration of S-CA specific weighting factors,
more pronounced differences between CA profiles were predicted
and the results show an improved, qualitative agreement with
experimental findings which will subsequently be illustrated.
Thereby, neither results from CA profiles with TNF-α
implication of borderline nutrient environments (situated in
Figure 10B, middle row) nor CA profiles with either TNF-α
or IL1β implication under early degenerated nutrient-conditions
(situated in Figure 10B, last row) will be used for argumentation
as a (possible) under- and overestimation of proinflammatory
cytokines (see The Proinflammatory Environment section) affect
corresponding CA-profiles (see Figure 5A).

An implementation of an S-CA specific weighting factor
predicts a highly anabolic CA profile of non-inflamed cells.
Hence, the ADAMTS4 mRNA expression that was enhanced
without the consideration of a weighting factor was decreased
(Figures 10A vs 10B, first rows). A low ADAMTS4 mRNA

FIGURE 11 | Examples of a inflammatory environments within the 3D Agent-based model under optimal (A) and early degenerated (B) nutrition conditions. Cell
clusters: red; cells immunopositive for IL1β, purple; cells immunopositive for TNF-α; green: cells immunopositive for both, IL1β&TNF-α.
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expression coincides with low ADAMTS4 levels in the
intervertebral disc NP (Molinos et al., 2015). Compared to the
non-inflamed CA-profile, a moderate catabolic shift was
predicted for IL1β inflamed cells, reflected by a slow
downregulation of Agg and an upregulation of MMP3 and
Col-I (Figure 10B). A moderate catabolic shift goes along
with the potential role of IL1β in the normal homeostasis of
the intervertebral disc (Le Maitre et al., 2007). Likewise, the
pronounced catabolic shift due to TNF-α, reflects a previously
described rather aggressive impact of TNF-α on CA (Purmessur
et al., 2013). Eventually, cells inflamed with both, TNF-α&IL1β
generally show a similar, but slightly more catabolic behavior
than cells only inflamed with TNF-α. This prediction might be
quite conservative, and possibly reflects the need for an
incorporation of cross-effects among stimuli. However, few is
known so far about cross-effects of different stimuli with regard
to mRNA expressions. To our best knowledge, cross-effects were
only particularly mentioned with regard to cell viability, where a
combination of low pH and a zero glc environment was found to
cause more cell death than it would be expected by a simple
addition of both individual effects (Bibby and Urban, 2004). The
modelling technique presented here can infer, however, on
parallel effects. Should nonlinearities of these parallel effects be
demonstrated experimentally, new experiment-based functions
could be incorporated in the network to eventually reflect cross
effects. For example, this could be achieved by formulating the
currently constant weighting factors as variables, to let them vary
within a predefined range in function of the concentration of
other stimuli.

Independently of the CS, an integration of S-CA specific
weighting factors led to a generally lower mRNA expression of
Col-II, compared to Agg within the same CA profile, whilst for
invariant weighting factors same or very similar mRNA
expressions of Agg and Col-II were predicted (Figures 10A vs
10B). For example, in case of optimal, nutrient conditions of non-
inflamed cells, both Agg and Col-II are maximally activated with a
PN-activity of 0.1266 and 0.0822, respectively (Figure 10B, first
row). A prediction of a lower, maximal expression of Col-II is in
agreement with the tissue composition of the NP, where Agg is
more abundant (e.g., reviewed by Baumgartner et al., 2021) and has
a faster turnover than Col-II in the (non-degenerated) NP (Sivan
et al., 2006; Sivan et al., 2008). This interpretation is valid if it is
assumed that 1) the amount of mRNA expression is (largely)
proportional to the amount of tissue proteins and 2) that the
maximum cell activity of Agg and Col-II mRNA expression is
quantitatively similar.

Within this methodological approach, PN-activities are
defined with four decimals. Such a numerical precision
contrasts with highly varying mRNA expressions among
donors and consequently among different studies. While the
relevance of this precision has been introduced in the
methods, one may question whether it would lead to some
over-interpretations of the calculation results. Yet, it is
important to highlight that adding numerical uncertainty, e.g.,
on the high resolution weighting factors, shall not alter
qualitatively the predicted CA and the interpretation thereof,
under specific simulated environments.

This modelling approach used a determined set of biological
data. Experimental findings, however, are sensitive to the
experimental setup, including cell types (e.g., human vs.
animal), passage numbers, 2D or 3D cultures or time points,
at which mRNA expressions were obtained. Given that this
network modelling approach is highly evidence-based,
discrepancies resulting from experimental differences would
consequently be reflected within model results. With this
regard, effort was made to use: 1) experimental data that is in
overall consensus with widely accepted assumptions of NP cell
responses (e.g., a general catabolic effect under rising acidity); 2)
studies with human cell culture data rather than animal cells, 3)
the measurement of as much required data as possible out of a
same experimental study and 4) data from 3D cultures rather
than 2D cultures. However, proper integration of possible
variations in mRNA expressions at different culture times
would become possible if a standardized history of mRNA
read-outs is integrated to the experimental protocols for all
stimuli. With this regard, focus was set to develop a model
design that allows for a straightforward exchange of biological
input data as soon as better suitable data is available. In the light
of different sets of biological input data in future and a general
presence of limitations, it would be suggested to interpret model
results stochastically. Hence, by feeding the model with a
variation of sets of experimental data, a final probability of the
behavior of NP cells under user-defined conditions could be
assessed.

Within the current model, mRNA expressions rather than
protein synthesis were considered, according to available,
experimental data. Unfortunately, a proportional relationship
between mRNA expression and protein synthesis is not
granted. Hence, the use of biological input data directly based
on protein synthesis might be recommendable as soon as such
experimental data is available.

The aimof thismethodological approach of data integration based
on in vitro experiments is to estimate cell responses under native
conditions. Accordingly, it could also be applied to improve the
interpretation of organ culture models such as presented by Ju et al.,
2009; Illien-Jünger et al., 2010; Lang et al., 2018. This includes both,
cell culture-based knowledge and cues transmitted to the cells
through the tissues. Related to the latter, finite element models
can be used to define the multiphysics boundary conditions that
tissues would impose on the presented AB and network models, as
done to define the nutrient environments for “borderline” and “early
degenerated” conditions. The metabolic microenvironments defined
for the simulated cell collection took into account the heterogeneous
deformation and degeneration status of the intervertebral disc tissues,
by simulating daily physical activity (Ruiz Wills et al., 2018). Hence,
whereas indirect mechanotransduction phenomena are implicitly
considered in the model, direct mechanotransduction phenomena
are not. Yet, as the present study demonstrates, new experimental
data can be aggregated to approach increasingly reasonable
predictions of cell activity. In the same way the model was
informed through new experiments about nutritional and pro-
inflammatory cell stimulation, the parallel networks can be
extended to integrate evidence about direct cell mechano-
stimulation effects, which are deemed to be cornerstone (Chan
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et al., 2011; Neidlinger-Wilke et al., 2012; Fearing et al., 2018; Hodson
et al., 2018; Saggese et al., 2018). In this work, a proof of concept was
presented that parallel networks were able to secure a reasonable
description of the apparent CA due to multifactorial biochemical
environments. The present study serves as a basis to tackle the
complex problem of direct mechanotransduction in the future.

This network modelling approach allows to assess local CA based
on given environmental conditions at sub-millimetric levels. As
mentioned before, our AB input parameters, i.e., local nutrient
concentrations, were obtained through the results at the element
level of mechanotransport FE simulations (Ruiz Wills et al., 2018).
Our predicted CA targets the differential regulation of extracellular
matrix turnover that can be used to update the properties of
composition-based disc tissue models (Barthelemy et al., 2016;
Ruiz Wills et al., 2016), leading to incremental perturbation of
local CA in a next iteration of FE-AB simulations. Hence, the
present model is deemed to importantly contribute to the
development of multiscale modelling approaches to explore
intervertebral disc degeneration, where biologically-driven tissue
injury includes dynamics over multiple spatial scales (Vergroesen
et al., 2015). Likewise, our modelling approach may address the
apparent limited capacity of phenomenological mechanobiology
models to capture the turnover of intervertebral disc tissues along
degeneration (Van Rijsbergen et al., 2018). Furthermore, the
networks that control our AB model might be coupled with
model developments at lower spatial scales, to integrate
mechanistic molecular contributions to intervertebral disc tissue
regulation (Figure 12), e.g., in terms of cell regulation pathway
signalling, as proposed in osteoarthritis (Melas et al., 2014;
Mukherjee et al., 2020).

CONCLUSION

This work reflects a multidisciplinary methodology consisting of
the integration of experimental (in vitro), mathematical

(weighting factors, network) and computational (AB) methods,
to present an evidence-based enabling technology to approximate
the complex multifactorial multicellular environments of the NP.
Thereby, biochemical stimuli were considered, and focus was set
on estimating proinflammatory environments and cell responses.
To duly feed the model, current experimental evidence was
completed through new in vitro experiments, the results of
which were directly incorporated into a novel method to
estimate individual CA under multifactorial environments.
Remarkably, the results of such integration indicated that
differential weighting of the effect of the stimulus
concentration was cornerstone to improve the confidence in
the simulations.

Experimental results suggest that low glc may not be a main
trigger for a catabolic shift in CA. TNF-α, in turn, caused significant
catabolic alterations in all mRNA expressions but Agg. The in silico
model predicted a maximal CA generally lower for Col-II compared
to Agg, according to known structural protein turnovers. Low levels
of protease mRNA expression were predicted under optimal
conditions and non-inflamed and IL1β inflamed cells.
Interestingly, the co-existence TNF-α dramatically increases the
catabolic shift of CA, with a strong overexpression of key
proteases specialised in ECM degradation. Though our number
of inflamed cells seemed over-predicted, model simulations indicate
that further knowledge and model developments are necessary to
capture additional regulators of inflammation. In particular, the
incorporation of direct mechanotransduction might be key relevant.

Regarding the prediction of inflammation, the 3D AB model
displayed the calculated number of inflamed cell clusters according
to the proximity of cells. On the one hand, the assumption that
inflammation within the NP is arranged in local cell clusters is
based on experimentally known paracrine effects of
proinflammatory cytokines, in combination with short half-lives
and low diffusivity. On the other hand, such a modelling is a clear
asset to quantitatively evaluate the capacity to predict
inflammation, for direct comparisons with local biochemical
measurements in intervertebral disc specimens. Such
quantitative comparisons are instrumental to target specific
needs both for model refinements in terms of additional
stimuli, and for guided acquisition of new experimental data.

All in all, the current methodology, from network hypothesis
to experiments and AB predictions, stands for a unique
framework to integrate refined models and new experiments,
and to generate, therefore, new contrastable knowledge.
Remarkably such process can be fully integrated into
multiscale modelling through couplings with FE simulations,
to combine both top-down and bottom-up descriptions of the
dynamics involved in intervertebral disc degeneration.

At the current stage of development, this model is able to
integrate key nutritional and pro-inflammatory cues in 3D
multifactorial environments, e.g., enabling more detailed
explorations of indirect mechanotransduction phenomena in
intervertebral disc degeneration. Further developments will be
facilitated by straightforward integration of new biological
datasets. Moreover, since the PN mathematical framework is
designed to be fully scalable, it allows to integrate any new
S-CA relationship based on further experimental evidence.

FIGURE 12 | Schematic integration of this modelling approach of the
multicellular level into multiscale approaches. Organ/tissue level (blue frame),
multicellular level (green frame) and subcellular level (orange frame).
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An ECHO of Cartilage: In Silico
Prediction of Combinatorial
Treatments to Switch Between
Transient and Permanent Cartilage
Phenotypes With Ex Vivo Validation
Sakshi Khurana1‡, Stefano Schivo1,2†‡, Jacqueline R. M. Plass1, Nikolas Mersinis1,
Jetse Scholma1, Johan Kerkhofs3†, Leilei Zhong1†, Jaco van de Pol2,4, Rom Langerak2,
Liesbet Geris5†, Marcel Karperien1 and Janine N. Post1*

1Technical Medicine Centre, Department of Developmental BioEngineering, University of Twente, Enschede, Netherlands,
2Department of Formal Methods and Tools, CTIT Institute, University of Twente, Enschede, Netherlands, 3Biomechanics
Research Unit, GIGA In Silico Medicine, ULiège, Liège, Belgium, 4Dept. of Computer Science, Aarhus University, Aarhus,
Denmark, 5Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium

A fundamental question in cartilage biology is: what determines the switch between
permanent cartilage found in the articular joints and transient hypertrophic cartilage that
functions as a template for bone? This switch is observed both in a subset of OA patients
that develop osteophytes, as well as in cell-based tissue engineering strategies for joint
repair. A thorough understanding of the mechanisms regulating cell fate provides
opportunities for treatment of cartilage disease and tissue engineering strategies. The
objective of this study was to understand the mechanisms that regulate the switch
between permanent and transient cartilage using a computational model of
chondrocytes, ECHO. To investigate large signaling networks that regulate cell fate
decisions, we developed the software tool ANIMO, Analysis of Networks with
interactive Modeling. In ANIMO, we generated an activity network integrating 7 signal
transduction pathways resulting in a network containing over 50 proteins with 200
interactions. We called this model ECHO, for executable chondrocyte. Previously, we
showed that ECHO could be used to characterize mechanisms of cell fate decisions.
ECHOwas first developed based on a Booleanmodel of growth plate. Here, we show how
the growth plate Boolean model was translated to ANIMO and how we adapted the
topology and parameters to generate an articular cartilage model. In ANIMO, many
combinations of overactivation/knockout were tested that result in a switch between
permanent cartilage (SOX9+) and transient, hypertrophic cartilage (RUNX2+). We used
model checking to prioritize combination treatments for wet-lab validation. Three
combinatorial treatments were chosen and tested on metatarsals from 1-day old rat
pups that were treated for 6 days. We found that a combination of IGF1 with inhibition of
ERK1/2 had a positive effect on cartilage formation and growth, whereas activation of
DLX5 combined with inhibition of PKA had a negative effect on cartilage formation and
growth and resulted in increased cartilage hypertrophy. We show that our model describes
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cartilage formation, and that model checking can aid in choosing and prioritizing
combinatorial treatments that interfere with normal cartilage development. Here we
show that combinatorial treatments induce changes in the zonal distribution of
cartilage, indication possible switches in cell fate. This indicates that simulations in
ECHO aid in describing pathologies in which switches between cell fates are
observed, such as OA.

Keywords: computational model, signal transduction, IGF, BMP7, PTHrP, chondrogenesis, hypertrophy

INTRODUCTION

Proper development of cartilage is important for the length of our
long bones by anatomical movement of growth plate cartilage and
supple joint movement through formation of articular cartilage.
Cartilage dysregulation occurs in a variety of diseases, including
growth disorders, rheumatic diseases, osteoarthritis, as well as in
chondrosarcomas. To understand cartilage disorders and identify
new biomarkers or therapies, insight into the dynamics of the
cellular networks that control chondrogenesis is necessary.

Cartilage formation is under control of the transcription factor
SOX9, that regulates expression of genes important for the
cartilage phenotype, including collagen 2 and aggrecan
(Goldring, 2012). Mutations in SOX9 are linked to various
diseases, including campomelic dysplasia (Foster et al., 1994).
Also, Sox9 is sufficient for cartilage formation, since Sox9
misexpression produced ectopic cartilage (Healy et al., 1999).
Moreover, loss of SOX9 activity and subsequent decrease in target
gene expression is observed in osteoarthritis (Kim et al., 2013)
and is correlated to osteoarthritis progression (Zhong et al.,
2016a).

In the growth plate, RUNX2 drives proliferative chondrocytes
into hypertrophic chondrocytes, which is a prerequisite for bone
formation. In these cells, RUNX2 aids bone formation by
regulating expression of collagen1, MMP13 and osteocalcin
(Ducy et al., 1997). Runx2 is required for bone formation
(Otto et al., 1997; Komori, 2010). A tight balance between the
activities of these transcription factors is therefore essential for
the correct development and maintenance of cartilage and bone
tissues. The activities of SOX9 and RUNX2 are regulated by an
intricate network of signal transduction pathways, including
IHH, PtHrP, FGF, WNT, BMP, TGFbeta, HIF and IGF
(Kronenberg, 2003; Zhong et al., 2015). Because of the
complexity of the signaling network, it is impossible to predict
the effect of network changes (mutations, overexpression, loss of
function, etc) on the system as a whole.

Computational models based on systems biology principles
may offer general alternatives to time-consuming analytical
laboratory experimentation, because the in silico execution of a
program provides a rapid evaluation of working hypotheses.
Effective models have the potential to 1) reduce the costs of
expensive in vitro and in vivo experiments, 2) prevent animal
suffering, and 3) allow description of biological processes in
humans in which deliberate biological experimentation cannot
be performed apart from highly regimented clinical trials.
Therefore, computational models have the potential to

transform experimental biology by describing and
understanding observations and ultimately to predict cell
behavior and to assist with the design of new biological
experiments. The outcomes of biological experiments will
either validate the model or will identify novel mechanisms
that can be incorporated in the model, and thus
computational modeling enhances the accuracy and predictive
potential of biological concepts (Kumar et al., 2006).

Mathematical modeling of the dynamics of biological
networks permits formal comparisons of new experimental
data to prior knowledge, because formal description of
molecular interactions enables assessment of matches between
network topology and experimental data. However, often a
thorough understanding of specific mathematical languages is
required for optimal use of the available tools.

We have previously described the development of a modeling
tool referred to as Analysis of Networks with Interactive
Modeling (ANIMO) (Schivo et al., 2012, 2014b; Scholma et al.,
2014; Schivo et al., 2016). Because ANIMO centers around a
visual network representation, it renders intuitive generation and
editing of models, and supports the formal exploration of
networks by users without a thorough training in
mathematical formalisms (Pavelin et al., 2012). For this
reason, we have implemented ANIMO as a plug-in to
Cytoscape (Shannon et al., 2003), a widely used open-source
software platform for static visualization of complex networks. In
Cytoscape, the network is drawn as a graph, with nodes and edges
representing molecules and interactions respectively. We have
previously validated the ANIMO modeling tool using both novel
new models and using models that were previously generated
using different mathematical formalisms (Schivo et al., 2012,
2014b; Scholma et al., 2014; Schivo et al., 2016).

While cellular networks are infinitely complex, we applied
ANIMO to build a dynamic protein activity network for articular
chondrocytes referred to as the Executable CHOndrocyte
(ECHO) model. Recently, we showed that ECHO predicts the
chondrogenic differentiation capacity of multiple relevant human
cell types, including pluripotent embryonic and somatic
multipotent mesenchymal stem cells (Schivo et al., 2019).
Here, we show the building of ECHO from a Boolean model
of growth plate cartilage (Kerkhofs et al., 2016). Using model
checking (Bartocci et al., 2009; David et al., 2015; Schivo and
Langerak, 2017) we prioritized model-predictions that were
tested in the wet-lab.

We show that simultaneous inhibition of ERK and activation
of the IGF pathway prevented bone formation while enhancing

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org November 2021 | Volume 9 | Article 7329172

Khurana et al. An ECHO in Cartilage

296

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


cartilage formation in rat metatarsal explants. In contrast,
simultaneous activation of DLX5 and inhibition of IGF via
GLI2 prevented cartilage formation and inhibited the growth
of metatarsals.

METHODS

Building Models Using the Tool ANIMO
The modeling tool ANIMO, which stands for Analysis of
Networks with Interactive MOdeling, has been developed in a
collaborative project between cell biologists and computational
scientists. The aim was to create a tool that would provide
biologists with the computational support needed to reason on
the dynamics of complex cell signaling networks. To make the
formal analysis layer implemented in ANIMO available to
biologists in a familiar environment, ANIMO is provided as a
plug-in to Cytoscape (Shannon et al., 2003), Supplementary
Figure S1. The network diagram that can be drawn with
Cytoscape’s tools provides the topological information; using
ANIMO we add activity information to the network (Schivo
et al., 2012, 2014b; Scholma et al., 2014; Schivo et al., 2016).
Activity in this case is a very broad term and is used to describe for
example active gene expression, but also post-translational
modifications such as an active kinase that phosphorylates its
target, or a ligand binding to a receptor thereby inducing receptor
dimerization and activation.

Nodes and Interactions
In the network diagram we have nodes, which represent
molecules such as ligands, kinases, mRNA, etc., that are
connected via edges, representing the interactions between the
nodes. Each node in the network represents the inactive and the
active state of the molecule, with the relative amounts of active
molecules as percentage of activity represented by the node color.
For example: a node with activity level of 30 out of 100 can
represent a kinase population, 30% of which is in its “active” state.
Nodes can interact through activations or inhibitions, which
define how an upstream node influences the activity of the
downstream node. This is exemplified as follows: the
interaction A → B (read “A activates B”) indicates that node
A, if active, will increase the activity level of node B. If we add a
second interaction to the example, Cx B (“C inhibits B”), with C
also active, then the activity level of B will change depending on
the activity levels of A and C, and on their quantitative influence.
Node activities range with integer values between 0 and 100,
unless otherwise noted, while interactions are described as
positive or negative influences.

k-Parameters
The influence of an interaction is quantified by a parameter k,
which defines the speed at which that interaction occurs: higher
values of k give faster interactions. These k-values are the only
parameters needed in an ANIMO model. The value of the
constant k can be either given as numeric, or chosen among a
pre-defined set of qualitative estimation, choosing from “very
slow,” “slow,” “normal,” “fast” and “very fast” (Schivo et al.,

2014a). Going back to the example with the interactions A → B
and C x B, suppose we have kA→ B � 0.5 and kC x B � 0.4 and
that both A and C have 100/100 activity. In this case, because
kA→ B > kC x B (i.e., A → B is “faster” than C x B), the activity
level of B will increase over time.

Kinetic Scenarios
In ANIMO, kinetic scenarios based onMichaelis-Menten kinetics
(Michaelis and Menten, 1913; Michaelis et al., 2011) are defined
for each interaction. In biochemical terms, a phosphorylation
reaction catalyzed by enzyme E on substrate S can be
represented as:

E + S + ATP%ES + ATP→ESP + ADP%E + SP + ADP

The same reaction is abstracted in our model by the
corresponding interaction E → S. Each occurrence of the
interaction E → S will increase the activity level of S by one
discrete step (e.g., from 30 out of 100 to 31 out of 100). The rate R
of occurrence of an interaction is defined by the user, who can
choose an abstract kinetic scenario from the three available:

1) R � k × [E]: the rate of occurrence depends only on the activity
level of the upstream node

2) R � k × [E] × [S]: the rate depends on the activity levels of both
participants

3) R � k × [E1] × [E2]: the rate depends on the activity levels of
two user-selected reactants. This scenario can be used to
represent the so-called AND gate kinetics, i.e., the case
when the activity of a downstream node depends on the
simultaneous presence of two upstream nodes. We have
shown that the abstraction proposed here preserves ample
descriptiveness to capture experimental data in meaningful
models (Schivo et al., 2016; Zhong et al., 2017; Schivo et al.,
2019).

Under ANIMO’s Hood: Timed Automata
All models built with ANIMO are analyzed using the
mathematical/formal language of Timed Automata (TA).
Technically, the TA models which we automatically produce
from an ANIMO model are built to approximate a set of
Ordinary Differential Equations (ODEs) in a discrete
manner (Schivo and Langerak, 2017). In order to get a
complete and precise description of how ANIMO models
are translated into TA and how those models approximate
ODEs, we refer the interested reader to our previous work
(Schivo et al., 2012; Schivo et al., 2014a; Schivo et al., 2014b;
Scholma et al., 2014; Schivo and Langerak, 2017), where we
show how nodes and interactions are represented, and how TA
are used to update the activities along the course of a model
simulation.

Node activity levels are represented in the TA model using
integer variables and are updated based on the interactions
influencing them. These integer variables are each managed by
one timed automaton: whenever an automaton reaches its
timeout, the corresponding variable is changed by +1 or −1.
This means that the corresponding activity level either increases
or decreases by 1 at that point in time. The amount of time that
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needs to pass before a timeout is reached needs to be kept
constantly updated and depends on the interactions
influencing the node represented by the automaton.

Consider again the example network made of the nodes A,
B and C, and the interactions A → B and C x B. Note that in
this network only the value of B can change, because no
interaction exists upstream of A or C. This means that
from this ANIMO model we will obtain only one timed
automaton, which will manage B’s activity level. The aspect
of this automaton is very similar to the one represented in
Supplementary Figure S1. The most important location of
the automaton is labelled “waiting” and is used to wait for the
next timeout. This is done by letting time flow and checking
the value of clock c. When c exceeds the threshold T, it is
possible to leave location waiting and reach a special location
(the one with a “C” inside): this allows to update the variable
representing B’s activity level [which is done by function reach
()], reset the clock c, and compute the value of the threshold T
for the next timeout. The new value of T is computed in
function update () taking into account all the interactions
influencing B. In this case, the update formula depends on the
current values of A’s and C’s activity levels, and on the
k-parameters kA → B and kC x B. It is in this function that
our discrete approximation of the ODEs representing the
network (Schivo and Langerak, 2017) is applied. The sign
of the next change to B’s activity level (+1 or −1) is also
decided by the update () function, taking into account the
current conditions. When performing the update we also
move back to the waiting location, and send an output
signal (denoted by !) on the reaching [1] channel: this
allows us to alert any automaton that may depend on B
that its activity level has changed. Note that it is also
possible to leave the waiting location before clock c has
reached its threshold T: this can happen when another
automaton has reached its timeout before the current one.
This event is detected by waiting for a signal on the reaching
[..] channel, using an input action (denoted by ?). In case of
such an event, we reach location “responding”: there, an
update to the value of T can be made to react to the
possibly changed environmental conditions. In our
example, location “responding” would be reached in case
other interactions had changed A’s or C’s activity levels.

Summarizing, an automaton in our TA model can be involved
in two types of events:

- Clock timeout: the value of the managed activity level is
updated, and a signal is sent to all interested automata;

- Change in conditions: other automata have changed
variables that may influence the value of T, so this needs
to be recomputed.

The initial location “start” is used to initialize the threshold T,
using the initial activity levels of the nodes.

Note that the behavior described here is deterministic:
i.e., given a set of k-parameters, the analysis of the TA model
will always return the same result over any number of
simulations. In case non-deterministic behavior needs to be

described, it is possible to introduce non-determinism in an
ANIMO model. However, we chose not to use this feature
when working on ECHO to reduce its complexity.

Here, we provided only an abstract description of how the TA
model works, without going into many of the details that make it
work. To get a more complete picture, we refer to (Schivo and
Langerak, 2017).

From Boolean Models to ANIMO Models
As already mentioned, ECHO is based on a previously existing
Boolean model (Kerkhofs et al., 2012), which was translated into
ANIMO and subsequently refined.

Boolean networks can be translated into ANIMO as follows:
Boolean OR gates, such as (A OR B)→C, will be translated into A
→ C and B→ C. This means that whenever either A or B is active,
C will be activated, so that reaction effects are always additive.
This representation of OR is thus non-exclusive, so C will be
activated also if both A and B are active, but in that case the
activation will proceed faster. A Boolean AND gate can be
explicitly represented with the “AND” approximation
described by scenario 3: with (A AND B) → C, C will be
activated only if both A and B are active.

It is of importance to note that in ANIMO all nodes that are
activated remain active until they are inactivated. To model
inactivation events, such as protein/mRNA degradation,
receptor internalization, dephosphorylation, etc., inhibitory
edges must be added to each node. The parameters for this
inhibition depend on the rate of the biochemical reaction that
is being represented. For example, dephosphorylation is a fast
process, but not faster than phosphorylation as we know that
when we quantify protein phosphorylation by for example
Western Blot, we identify a peak between 5 and 30 min after
cell stimulation that tapers off to zero after one to 2 h.

Combining these basic tools makes the representation of more
complex Boolean formulas also possible, even if not always in a
straightforward manner. Based on the truth table of the Boolean
formula, we made use of “dummy” nodes to define these special
behaviors. For example, to represent the inactivation of the
“Destruction complex” in the Wnt canonical pathway and the
influence that ERK exerts on it, the original model uses the
formula: (1-Dsh)*Min ((1.5 - ERK), 1). To obtain the same effect,
we defined the subnetwork in Supplementary Figure S2: note the
presence of the dummy nodes with fixed value that represent
constitutional activity of the Destruction complex.

k-Parameters in ECHO
Most precise modeling is based on Kd values that are obtained in
purified enzyme reactions (for example Kogan et al., 2012).
However, for many proteins in our network these values are
unknown. In addition, mechanisms such as subcellular
localization and competition with other proteins, are not
considered when determining the Kd values. What most
experimental biologists do know, is the speed of protein
phosphorylation observed in western blot experiments, or
functional assays. We have described for our cells, that
phosphorylation assays measure highest intensities around
15–30 min after stimulation (Scholma et al., 2014; Zhong
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et al., 2017). Work on protein phosphorylation has been
performed since the early 1900s, and enzymatic
phosphorylation of proteins has been described since the
1930s (reviewed in Pawson and Scott, 2005). As such, much
information exists about the speed of phosphorylation.
Textbooks, such as Essential Cell Biology (Alberts et al., 2019)
describe protein phosphorylation as a very fast process. Indeed, a
report using single cell measurements on a microfluidic chip, has
indicated that protein phosphorylation takes place within 30–200 s
after cell stimulation for the proteins measured (Blazek et al., 2015),
with differences between proteins and even the different
phosphorylation sites within the proteins. We therefore chose to
use this knowledge and applied it as follows: Protein
phosphorylation is represented as a “fast” process in ECHO,
thus all phosphorylation reactions, together with reactions with
a comparable speed, are represented with a k-value of 1. Those
reactions that involve gene transcription are represented as “slow”
using a k-value of 0.1. Due to this simplified approach, timing
information is not considered in ECHO: all the in silico
experiments illustrated here are based on letting the model
evolve for a time long enough to let it reach an attractor state.
The attractor states in ECHO are the same three as in the original
model and describe the possible configurations towards which the
model can naturally evolve.We named the attractor states based on
the activity of the two most important nodes: SOX9+ corresponds
to the state where the SOX9 node is active and RUNX2 is not,
RUNX2+ denotes RUNX2 activity and SOX9 inactivity, and Null
describes a state where all nodes in the network are at 0 activity.
Table 1 shows the activity levels of nodes SOX9 and RUNX2 in the
three stable states reached in ECHO.

Model Definition
The description of the model and the simulations is according to
the MIASE descriptions (Waltemath et al., 2011). The model
validation has been shown before in (Schivo et al., 2019). Model
parameters for the AC and GP models have been previously
described (Schivo et al., 2019).

A detailed description of the ANIMOmodelling approach was
published previously (Schivo et al., 2012, 2014b; Scholma et al.,
2014; Schivo et al., 2016), and is shortly illustrated in the previous
sections.

The base version of ECHO (Growth Plate, GP model) was
ported to ANIMO from pre-existing Boolean model and additive
models of the growth plate (Kerkhofs et al., 2012; Kerkhofs and
Geris, 2015; Kerkhofs et al., 2016). We converted the existing
Boolean model into an ANIMOmodel, which we then named the
executable chondrocyte, or ECHO.

The semi-quantitative model on which ECHO is based uses
additive functions to represent Boolean-like logic, with node
activities in the continuous [0,1] interval. This model is
translated into ANIMO’s kinetics by applying the following set
of rules:

• All nodes in ECHO have 100 discrete levels of activity. The
activity level of a node can be interpreted as concentration
on the arbitrary scale from 0 to 100, or as the percentage of
active (e.g., phosphorylated) molecules over the whole
population, depending on whether a node represents a
gene or a protein.

• Two classes of reactions can be identified: slow (e.g., gene
expression) and fast (e.g., post-translational modifications).
If a reaction can be directly identified as belonging to one of
these general categories, the corresponding interaction
strength factor k in ANIMO will be 0.1 and 1.0 for slow
and fast reactions respectively. No precise timing
information was added to the model: e.g.,
phosphorylation reactions are simply faster than gene
expression, but time scales are neither realistic nor
precise. This means that the model cannot faithfully
predict a particular phosphorylation spike to occur in the
first 20 min, nor can it show that a specific gene is expressed
within 4 h. What the model does show is that the
phosphorylation spike occurs much faster than the gene
expression. Because of this absence of timing information,
we preferred to avoid time-bound predictions and
concentrated only on the steady-state results.

• In the original model, the activity of a node that is not
activated is assumed to automatically revert to 0. This
assumption is made explicit in ANIMO by adding a self-
inhibition loop to each node in the network, with k equal to
0.1 or 1.0 depending on the type of reactions influencing the
node (i.e., “slow” or “fast”). Due to this self-inhibition, each
node will gradually revert to 0 activity in the absence of
upstream activations.

• Kinetics that use OR (additive) semantics are translated into
independent edges in ANIMO, with interaction strengths
balanced to match the original model. For example, node
“Ras” is activated from 4 different sources independently
(Wnt, BMP, FGFR1, FGFR3), all with strength k � 0.444.
The self-inhibition of Ras has strength k � 1.0, so having any
one of those four nodes at activity 100 with all others at 0
will lead to Ras activity 44 out of 100;

• Kinetics that use AND semantics are translated with
ANIMO’s AND kinetic scenario, which allows two nodes
to influence the activity of a single target. AnAND interaction
is only active when both upstream nodes are active.

• Reactions involving more complex logic rules were
modelled case-by-case, using dummy nodes when
necessary to faithfully reproduce the behavior of the
original model. As an example, see the dynamics of the
Destruction Complex (DC) in Supplementary Figure S2.
The nodes “DC dummy,” “DC canonical,” “DC
degradation” and their interactions are used to describe
the kinetic formula for the node “destruction complex.”

TABLE 1 | Node activity levels of SOX9 and RUNX2, in the three stable states that
can be reached in ECHO.

Stable state name SOX9
node activity level

RUNX2
node activity level

SOX9+ 88 0
RUNX2+ 0 100
Null 0 0
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• Some proteins in ECHO need to be both expressed and
post-translationally activated to perform their task. In those
cases, a three-node pattern is adopted that allows to
represent the two processes of protein production and
post-translational activation. As an example, consider the
dynamics of Sox9 in ECHO: expression and activation of
Sox9 are controlled separately through the nodes “Sox9
prot” and “Sox9 PTM” respectively. All influences on Sox9
expression affect “Sox9 prot” with “slow” kinetics, while all
post-translational modifications are modelled as influences
on “Sox9 PTM” with “fast” kinetics. Finally, Sox9 activity is
determined by the “Sox9 prot AND Sox9 PTM activate
Sox9” interaction. In this way, Sox9 must be both expressed
and post-translationally activated to be activated and exert
downstream effects. For several proteins, expression and
post-translational activation are regulated separately: AKT,
ATF2, CCND1, Dlx5, Ets1, FGFR1, FGFR3, IGF-1R, Lef/
Tcf, MEF2C, Msx2, PI3K, PPR, RUNX2, SOX9.

The model originally obtained from the translation contained
120 nodes and 343 interactions (see Supplementary Figure S3),
which were simplified by removing the nodes representing
expression or post-translational modification processes that are
not modelled in ECHO. In particular, the “prom” nodes (which
represented promotors on the DNA) have been removed, and the
influences on protein production have been redirected to the
“prot” nodes instead. The resulting first version of the ECHO
model (GP model) contained 92 nodes and 296 edges (See
Supplementary Figure S4). For Parameters of Nodes and
Edges, see Supplementary Table S3). We took this model as a
representation of a growth plate chondrocyte (GP). Through
further adaptations (see below) we obtained an articular cartilage
model (AC). Initial simulations in which all starting activities of
all nodes were randomly initialized revealed three possible stable
states: a SOX9-positive (SOX9+) state, a RUNX2-positive
(RUNX2+) state, and a NULL state in which neither SOX9+

or RUNX2+ was reached (see Table 1). Over 90% of all
initializations arrive at in a Null state in which all nodes
assume the activity value zero (see Table 2). Please note that
the SOX9+ and RUNX2+ states are mutually exclusive.

Validation of the Model
For validating the predictions, either existing literature or wet lab
experiments data can be used. In our case, we wanted to use a
system of developing cartilage, hence we selected rat metatarsals
from 1-day old rat pups. For interested readers, we would like to
refer to (Scholma et al., 2014; Schivo et al., 2016; Khurana et al.,

2021) for a systematic method to generate and validate a
computational model. We selected combinations of treatments
based on the computational model predictions that led to a switch
in SOX9 and RUNX2 active state. Previously, it has been shown
that a week of treatment is enough for observing changes in
longitudinal length and in other parameters of metatarsals, hence
we treated the metatarsals with selected molecules for 6 days
(Landman et al., 2013). Concentrations of molecules were used as
mentioned in (Huang et al., 2001; Zhang et al., 2009; Han et al.,
2011; Govindaraj et al., 2019) and described below.

Metatarsal Culture
Three medial metatarsals per hind leg were carefully dissected out
from 1-day old rat pups (Rj Han: WI Wistar rats purchased from
Janvier Labs). Animal experiments were approved by Instituut
Voor Dierenwelzijn (IVD) at University of Twente. After
isolation, metatarsals were individually cultured in 24-well
plates in 200 μl/well in Minimal Essential Medium (MEM) α
medium supplemented with 10% Fetal bovine serum (FBS), 100
U of penicillin-streptomycin and 1% GlutaMAX supplement for
48 h. After this, 6 metatarsals per treatment were treated with
various combinations of the small molecules (H-89 (30 μM),
Tanshinone IIA (6 μM), and PD98059 (25 μM), Recombinant
human IGF1 (100 ng/ml), Recombinant human BMP7 (100 ng/
ml), and Rh PtHrP (100 ng/ml) for 6 days.

Morphometric and Histological Analysis
Microscopic images were taken at different time points and the
longitudinal growth of the bones was measured along the sagittal
axis using ImageJ software. For histological examination,
metatarsals were fixed in 10% formalin and dehydrated in
ethanol series before embedding in paraffin. Five micrometer
sections were cut using a rotary microtome (Shandon). The
sections were dried for at least an hour at 65°C and stained
with Safranin O stain for proteoglycan quantification. The slides
were then deparaffinized in 100% xylene twice for 5 min and
rinsed in 100% EtOH. A hydration series of 2 × 100, 1 × 96, 1 × 90,
1 × 80 and 1 × 70% EtOH was done, each for 2 min. The sections
were then rinsed in demineralized water for 2 min and stained
with Gill #3 hematoxylin staining solution for 6 min after which
they were washed in running tap water for 15 min. The sections
were then stained with Fast Green (0.001 w/v % in dH2O) for
3 min and quickly rinsed with 1% v/v Acetic acid in dH2O for
10 s. After staining with Safranin O (0.1% w/v in dH2O) for 6 min
the slides were rinsed 2 times in 70% EtOH for 1 min each and a
dehydration series in 1 × 80, 1 × 90, 1 × 96, 2 × 100% EtOH. The
slides were then incubated twice for 5 min in 100% xylene after
which they were immediately mounted in GLC mounting
medium. The slides were kept in xylene while mounting.
Slides were counterstained with hematoxylin Gill #3 for 30 s
and mounted with GLC™ mounting medium (Sakura). Images
were taken using a Nanozoomer (Hamamatsu).

Quantification of GAG Staining
To quantify the intensity of histological staining ImageJ version
1.51 was used. The images were converted to 8-bit grayscale and
the plugin Image Inverter was then applied. The straight-line tool

TABLE 2 | Distribution of ECHO cell fates from 1,000,000 random initializations for
each model. Errors give the boundaries of 99% confidence intervals.

Model SOX9+ (%) RUNX2+ (%) Null (%) SOX9+/RUNX2+

1 (GP) 1.49 ± 0.03 6.95 ± 0.07 91.56 ± 0.07 0.21 ± 0.01
2 0.54 ± 0.02 0.19 ± 0.01 99.27 ± 0.02 2.8 ± 0.3
3 1.78 ± 0.03 0.81 ± 0.02 97.41 ± 0.04 2.2 ± 0.1
4 (AC) 0.61 ± 0.02 0.012 ± 0.003 99.37 ± 0.02 50 ± 13
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was then used to draw a line the length of the scalebar, and set
scale was used to apply a spatial calibration converting units from
pixels to mm. In set measurements area, mean grey value andmin
& max were selected. The polygon selection tool was then used to
select the cartilage portion of the metatarsal base, excluding the
hypertrophic zone and any tissue stained with fastgreen (such as
surrounding fibrotic tissue). Measure was then used to quantify
metatarsal base area, and average grey value of the metatarsal
base. The rectangle tool was then used to select areas from the
background. The average grey value was then measured, and this
background value was subtracted from the average grey scale
value of the metatarsal base to give an indication of the staining
intensity. The straight-line tool was finally used to measure the
length of the different zones after setting scale.

Statistical Analysis
Statistical analysis was performed in R, using the statistics
package ggpubr. A Welch Two Sample t-test was performed
between control and treatment as well as between individual
treatments using the code: stat_compare_means (method:
“t.test,” comparisons � my_comparisons). Differences were
considered significant when p < 0.05.

Reference to Materials
Minimal Essential Medium (MEM) α medium, Gibco/Life
Technologies, #22571-020.
Fetal bovine serum, 10%, Gibco/Life Technologies, #10270106.
Penicillin-Streptomycin, Gibco/Life Technologies, #15140-122.
GlutaMAX, Gibco, #35050-061.
H89 (30 μM), Merck, #B1427-5MG.
Tanshinone IIA (6 μM), #T4952-5MG, Merck.
PD98059 (25 μM), #S1177, Selleckchem.com.
Rh IGF1 (100 ng/ml), # 354-BP-010, R and D systems.
Rh BMP7 (100 ng/ml), #100-09, Peprotech.
Rh PtHrP (100 ng/ml), #100-09, Peprotech.

RESULTS

Modeling Growth Plate Cartilage Using
ANIMO
Chondrocytes, that secretes and shapes the extracellular matrix
necessary for the cartilage load-bearing properties, are
differentiated from mesenchymal stem cells in a sequence of
events following mesenchymal condensation. Chondrogenic
differentiation and hypertrophy are directly and tightly
regulated by the activity of two main transcription factors.
SOX9 is the master transcription factor for chondrogenic
development and a key inhibitor of hypertrophic
differentiation. RUNX2 is a transcription factor that facilitates
hypertrophic differentiation that occurs in the growth plate, and a
key factor for osteoblastogenesis during subsequent bone
formation (Mackie et al., 2008; Cheng and Genever, 2010).
The balance of the activities of these two factors controls the
switch between formation of permanent articular cartilage versus
transient hypertrophic cartilage in the growth plate (Eames et al.,
2004; Zhong et al., 2015). However, the complexity of the

signaling network that controls the activities of SOX9 or
RUNX2 prevents a thorough understanding of the
mechanisms that regulate formation of transient or permanent
cartilage.

To investigate the intricate signaling network in cartilage
we set out to build a computational model according to logical
rules we described previously (Scholma et al., 2014). To start,
we used pre-existing Boolean model and additive models of the
growth plate (Kerkhofs et al., 2012; Kerkhofs and Geris, 2015;
Kerkhofs et al., 2016). Seven signaling pathways known to be
important in cartilage development and maintenance: WNT,
BMP, TGFβ, IHH, IGF, PTHrP, and the FGF pathways are
described. In contrast to Boolean networks, ANIMO is based
on activity networks, where activity represents an integrated
value that accounts for modulations in gene expression at
posttranscriptional and post-translational levels. The rules we
used to translate the original model into ANIMO can be found
in the Methods. The resulting ANIMO network, which we
called ECHO (Executable CHOndrocyte), contains 120
proteins (nodes) and 343 interactions (edges) representing
the downstream signaling events that influence SOX9 and
RUNX2 (Supplementary Figure S3). For a number of these
proteins, expression and post-translational activation are
regulated separately (methods: model definitions
Supplementary Figure S4). Node activities range with
integer values between 0 and 100, while interactions are
described as positive or negative influences. Single-
parameter simplified kinetics describe the rate at which
each interaction influences its target node’s activity.

We defined the network configuration in a stable SOX9-active
state as a healthy articular chondrocyte or stable chondrocyte
phenotype, whereas a state in which RUNX2 is active is associated
to chondrocyte hypertrophy and bone formation. The adaptation
of the growth plate gene expression network to a protein activity
network in ANIMO is referred to as Model 1. The model enabled
us to obtain insight into the activities of the proteins in the
network leading to development of stable cartilage (SOX9+) or
transient hypertrophic cartilage as found in the growth plate
(RUNX2+).

A Model of Growth Plate Cartilage Is
Adapted Towards Articular Cartilage Based
on Global Gene Expression Microarrays of
Growth Plate and Articular Cartilage
Growth plate cartilage and articular cartilage share a common
lineage in development (reviewed in Onyekwelu et al., 2009;
Goldring, 2012). Many studies have been directed towards
identifying specific markers for transient and permanent
cartilage (Emons et al., 2011; Gelse et al., 2012; Leijten
et al., 2012; van Gool et al., 2012). We identified DKK1,
FRZB (WNT antagonists) and GREM1 (BMP antagonist) as
the natural brakes on hypertrophic differentiation and
regulation of the maintenance of the articular phenotype
(Leijten et al., 2012). We therefore incorporated DKK1,
FRZB and GREM1 into Model 1 to generate Model 2
(Figure 1A, Supplementary Figure S5) (Schivo et al., 2019).
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Differential gene expression analysis between growth plate
(GP) and articular cartilage (AC) further indicated subtle but
significant differences in the expression of four genes whose
corresponding proteins were already represented in our model:
ERK2, p38γ, GSK3β and Smad3 ((Leijten et al., 2012), Figure 1).
For the other nodes in the network, no changes in gene expression
between GP and AC were observed and these are therefore
unchanged. To represent the different expression of these four
genes in ECHO, we reasoned that the strength of effects directly
downstream of these factors is likely to correlate with their
expression level and subsequently the protein activity. We
therefore multiplied downstream interaction parameters with
the relative expression levels to take into account the
differences between tissues. For example, the microarray data
show that articular chondrocytes express less p38 than cells from
growth plate (Figure 1B AC/GP � 0.64). Hence, we adjusted
parameters of the interactions downstream of p38 by a factor of
0.64 to yield Model 3 (without DKK1, FRZB and GREM1, but
with modification of output parameters for ERK/p38/GSK3/
Smad3) and Model 4 (including DKK1, FRZB and GREM1
and modification of output parameters for ERK/p38/GSK3/
Smad3) (Figure 1B). To obtain detailed insight into the effects
of these adaptations on reaching a state in which either SOX9 or
RUNX2 are robustly active (i.e., SOX9+ or RUNX2+ states), all in
silico experiments were carried out for all four models
(Figure 1A).

As a first assessment of the properties of the four models, we
performed Monte Carlo simulations in which all nodes are
initially assigned a random, uniformly distributed activity level
over the entire range of theoretical values (i.e., the interval [0,
100]). Each initialized model is then simulated until a stable state
is reached. Analysis of the results of 1,000,000 simulations for

each model shows that three distinct stable states are possible for
ECHO Models 1–4 (Table 1). Over 90% of all initializations
arrive at a Null state in which all nodes assume the activity value
zero. This result is attributable to the fact that in ECHO protein
activities are programmed to taper off and reach baseline in the
absence of upstream activating factors. Only initializations of
essential network components that have activity patterns above
certain threshold levels will escape from returning to the
Null state.

More interesting from a biological perspective are the other
two stable states that are either SOX9+ and RUNX2+. In Model 1
(the original GP model), the RUNX2+ cell fate is about 5 times
more likely to occur than the SOX9+ cell fate, Table 2. Addition of
the genes that were highly expressed in articular, but not in
growth plate cartilage, DKK1/GREM1/FRZB (Model 2,
Supplementary Figure S5), causes an increase in the Null
state as expected, because those factors repress WNT and
BMP signaling, thus decreasing the fraction of initializations
capable of escaping the Null state. The RUNX2+ state is much
more affected by DKK1/GREM1/FRZB than the SOX9+ state, and
the latter becomes dominant. Adaptation of parameter settings
for ERK/p38/GSK3 (Model 3), to better represent protein
concentrations in articular chondrocytes, causes a decrease in
the RUNX2+ fate, while the adaptation of SMAD3 further
increases the fraction of SOX9+ fate. The two adaptations
together (addition of DKK1/GREM1/FRZB, and adaptation of
the parameters downstream of ERK/p38/GSK3/SMAD3, Model
4, Figure 1) virtually eliminate the RUNX2+ fate. In this respect,
its behavior resembles that of articular cartilage, which is under
stable control of SOX9. In the remainder of the paper, we will
consider Model 1 (Supplementary Figure S4) to be a growth
plate cartilage model (ECHO GP), while Model 4 (Figure 2)
represents an articular cartilage model (ECHO AC).

Constitutive Activation and Knock-Out of
Individual Nodes in the Network Provides
Information on the Role of Proteins in
Determining Cell Fate
To understand the role of each node in determining cell fate, we
individually perturbed the activity of the nodes by fixing their
activity to either 0 (in silico knock-out, K.O.) or at 100
(constitutive activation). The other nodes were randomly
initialized over the course of 10,000 simulations and cell fate
distributions were compared with the unperturbed situation
(Table 2) to assess the influence of each perturbation
(Figure 3). Given the bi-stable behavior of ECHO, one can
expect that the effects of perturbations follow three intuitive
“rules”: 1) If a node is more active in the SOX9+ fate than in
the RUNX2+ fate, then activation of this node will favor SOX9+
cell fate and knockout will favor RUNX2+ cell fate, and vice versa.
2) If a knockout or activation favors a specific cell fate, it is
detrimental to the other fate. 3) If the knockout of a node favors a
specific cell fate, activation of the same node is detrimental to
this fate.

WNT is more active in the RUNX2+ fate (activity 100) than in
the SOX9+ fate (activity 29 in the GP model, and 0 in the AC

FIGURE 1 | (A) Adaptation of ECHO resulted in 4 model versions,
depending on the presence or absence of DKK1, FRZB and GREM1 and the
changes in parameters of ERK1/2, GSK, p38 and SMAD3. (B) Model
parameters of ERK1/2, GSK3β, p38 and SMAD3 were adapted to
previously found differences in growth plate and articular cartilage mRNA
expression (Leijten et al., 2012; Schivo et al., 2019).
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model) and is an example that follows all the rules above.
Interestingly, a node that has activity 0 in a cell fate can still
affect the probability of reaching that fate when it is knocked
out. An example is PP2A, which has activity 0 in RUNX2+.
Knockout of PP2A increases the RUNX2+ state from 7 to 44%.
This happens because PP2A inhibits ERK, which in turn
activates RUNX2; thus: knocking out PP2A (indirectly)
activates RUNX2.

R-SMAD is an exception to rule 2, as a constitutively active
R-SMAD in the AC model makes both SOX9+ and RUNX2+

percentages rise significantly. In other cases, both activation and
K.O. of the same node have similar effect on a cell fate,
contravening rule 3. For example, keeping BMP inactive in the

GPmodel annuls the chance to reach a SOX9+ state, and the same
effect is observed if BMP is kept at 100% activity. Interestingly,
this does not occur in the AC model. These complex effects are
also known in the wet-lab, where BMP2 has a dose-dependent
effect on stem cell differentiation, and can stimulate both cartilage
and bone formation (Wang et al., 1993). Another interesting
exception to rule 3 is TGFβ: although it is more active in a
RUNX2+ state, its constitutive activation significantly increases
the chance of reaching a SOX9+ fate and prevents reaching
RUNX2+.

These complex effects recapitulate experimental findings,
where BMP2 has both transient and permanent dose-
dependent effects on stem cell differentiation, and can

FIGURE 2 | ECHO, executable chondrocyte, describes the development and maintenance of articular chondrocytes. The activities of the transcription factors
SOX9 and RUNX2 are regulated by an intricate network of signal transduction pathways, including IHH, PTHrP, FGF, WNT, BMP, TGFβ, HIF and IGF. The model is
depicted in the SOX9+ state and node. Activity is represented on a scale from red (inactive) via yellow to green (active).
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FIGURE 3 | Effects of node perturbations on cell fate. Each node in ECHO was set as either constitutively active (activity fixed at 100,C) or knocked-out (activity
fixed at 0, ○), while all other nodes were randomly initialized over the course of 10,000 simulations. The resulting percentages of cell fates were computed and compared
with the percentages in Table X1. The colors the cells in this table show themagnitude of deviation from the non-perturbed values and give an indication of the importance
of a node for a cell fate.
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stimulate both cartilage and bone formation (Wang et al., 1993).
TGFβ is also interesting because this signaling ligand is more
active in a RUNX2+ state, but its constitutive activation
significantly increases the chance of reaching a SOX9+ fate,
while preventing a RUNX2+ state.

Although the role of these proteins in relaying information to
the nucleus is known, knockout or constitutive activity for most
of these proteins in determining cell fate has not yet been
described. Published KO animal experiments (Yoon et al.,
2005; Jing et al., 2013; Jing et al., 2014; Chen et al., 2015)
validate the network topology and parameter settings for
ECHO. Our findings indicate that computational models offer
rationale outputs that can inform new in vivo and in vitro
experimentation to elucidate the molecular mechanisms
governing cartilage and bone development.

Using Literature to Validate Topology and
Dynamics of ECHO
In any computational model one wonders how much the model
represents biological situations with respect to the time
dependency of reactions and the topology of the model. Of
course, the Chinese proverb “Life is like an echo: What you
send out usually comes back to you.” could be quoted here, since
the model predictions should reflect the data that were put in. For
building ECHO, we did not use any model training and based the
topology of the cross-talk interactions of the various pathways on
different studies. It is therefore still useful and necessary to
validate whether the results of the in silico experiments in
ECHO reflect the literature. We therefore investigated whether
K.O. animal experiments that were not used for the model
building, validate the network topology and parameter settings
for ECHO. We aimed to validate some of the data of our KO and
overexpression experiments of Figure 3. Quite a few papers
discuss the double role of BMP in articular cartilage as well as
in chondrocyte hypertrophy and OA. We also observe this in the
model, where we find that the role of BMP is concentration
dependent. In conditional BMPR1a KO mice, the lack of Bmpr1a
leads to significant chondrodysplasia and almost eliminated the
chondrocyte phenotype with decreased SOX9, collagen II and
proteoglycan (Yoon et al., 2005; Jing et al., 2013; Jing et al., 2014).
In ECHO, BMP2 affects both RUNX2 and SOX9, which is also
seen in BMP2/4 double KO embryos where SOX9, ACAN and
collagen type II (COL2A1) mRNA levels were reduced and
RUNX2 protein expression was reduced in the proliferating
and pre-hypertrophic areas (Shu et al., 2011; Liao et al., 2014).
In addition, Shu et al. found that BMP2 induces RUNX2
expression at both transcriptional and post-transcriptional
levels (Shu et al., 2011). We showed in ECHO that PTHrP
and IHH overexpression increased the occurrence of stable
SOX9 states, while KO reduced the SOX9 phenotype. Indeed,
in IHH KO mice it was shown that expression of SOX9 and
RUNX2 as well as PTHrP was low and growth was inhibited in
the temporomandibular joint, indicating that IHH is
indispensable for proliferation and expression of
transcriptional regulators such as RUNX2 and SOX9
(Shibukawa et al., 2007; Ochiai et al., 2010).

This indicates that using a computational model offers
advantages to biologists that now depend on many mouse
models to elucidate the molecular mechanisms governing
cartilage and bone development.

Perturbation of Pairs of Nodes in the
Network Reveals New Pathways That can
Be Manipulated for Future Cartilage
Disease Therapy
Corresponding to the biological reality of cartilage diseases, such
as osteoarthritis, OA, in the AC model a switch from the SOX9+

to the RUNX2+ state is possible (Zhong et al., 2016a). This allows
interrogation of the model for conditions that cause a switch to
RUNX2+. Such conditions in the model could recapitulate
changes taking place in OA patients. Even more interesting
from a therapeutic perspective are interventions that could
reverse such a switch. We performed all-or-nothing
perturbations of all combinations of two nodes in the network
to find such conditions. A summary of the results showing
combinations of knockouts and/or overexpression that induce
switches between the RUNX2 and SOX9 positive states is given in
Figure 4. The complete analysis, also including nodes for which
knockout or overexpression had little to no effect on the state is
shown in Supplementary Figure S6.

There are nodes whose activities are linked with a switch from
a SOX9+ stable state to a RUNX2+ state. These nodes could
indicate mechanisms by which healthy articular cartilage
undergoes hypertrophy to become transient cartilage as occurs
in a subset of OA patients (Gelse et al., 2012; van der Kraan and
van den Berg, 2012; Zhong et al., 2015). Activation of theWNT or
FGF signaling pathways results in a switch from SOX9+ to
RUNX2+ (Figure 4A). This is not unexpected, as both WNT
and FGF signaling have been related to induction of hypertrophy
in cartilage (reviewed in (Zhong et al., 2015)). Combinations of
factors that induce a switch from SOX9+ to RUNX2+ are
simultaneous activation of WNT3a and PKA (but addition of
only WNT3a already induces a RUNX2+ state), DLX5 and
inhibition of PKA, combination of anti-DKK1 and anti-FRZB
(already described in (Zhong et al., 2016b)), and inhibition of IGF
via GLI2 and ERK. Since we could not find literature on the
combination of DLX5 and inhibition of PKA, we decided to
further investigate this.

Inversely, in addition to SOX9 activation, there are
combinations of factors that are sufficient to cause a transition
of the RUNX2+ state to the SOX9+ state in the AC model:
simultaneous addition of BMP7 and PTHrP, addition of TGFβ
(alone), simultaneous addition of IGF1 and PTHrP, and
simultaneous inhibition of ERK in combination with addition
of IGF. Using model-checking we further investigated some of
these combinations.

Using Model-Checking to Test and Refine
Candidate Treatment Conditions
Among the combinations shown in Figure 4, we selected a series
of interesting treatment conditions that could be tested in
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laboratory. Treatment conditions for which sufficient literature
was available, were omitted. Table 3 shows the treatment
conditions that were selected as most promising candidates.

For each of the selected treatment conditions, we used model
checking to ensure that the predicted behavior based on one
simulation run was not due to errors or artefacts of the model.
The formal technique of model checking allows to automatically
test all possible behaviors of a model against a given property. At
the end of the analysis, the property is found to be either true or
false for the given model (see Figure 5), providing a guarantee

that cannot be obtained by just observing one single simulation
run. Because model checking is computationally intensive, we
could apply it only to a restricted set of conditions.

Each of the selected treatments was tested in ANIMO using
the model checking feature, starting from both a SOX9+ and
RUNX2+ initial state. In case no change was expected (for
example, if we start from a RUNX2+ state and we expect that
no switch occurs), we tested a query such as “The state RUNX2+
must persist indefinitely,” which is automatically translated by
ANIMO into the formal language CTL as “A [] RUNX2 >� 60 &&

FIGURE 4 | Combination of perturbations that cause a SOX9+ to switch to a RUNX2+ state (A) or RUNX2+ state to switch to a SOX9+ state (B) in the AC model.
This figure shows combinations of knockout and overexpression that induce switches between the RUNX2 and SOX9 positive states. An overview of all combinations of
knockouts and overexpression can be found in the supplemental material. Each pair of nodes in the network was perturbed in all combinations of knock-out (○) and
constitutive activation (C), while all other nodes were initialized as in the RUNX2+ state. After one simulation, the resulting stable state was recorded. Single node
modifications are highlighted if they can be used alone to obtain the switch. (A) Switch from SOX9+ to RUNX2+, (B) Switch from RUNX2+ to SOX9+. The extended figure
can be found in the Supplementary Figure S6.
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SOX9 < 20” (� “node RUNX2 has always an activity of at least
60% while node SOX9 never reaches 20% activity, no matter what
happens in the model”). This is automatically tested with the
model checker UPPAAL, and the result (True/False) is shown to
the user. In case a change was expected, we tested a property such
as “It is always possible to reach the state SOX9+,” which was
translated into “A<> RUNX2 < 20 && SOX9 >� 60” (� “it always
guaranteed that we reach a configuration in which node RUNX2
has less than 20% activity while node SOX9 has at least 60%
activity”). If a change can occur only in some cases, while in
others no change is obtained, both the previous properties are
found to be false. In this situation, a property such as “It is
possible to reach state SOX9+” (translated into “E<> RUNX2 <
20 && SOX9 >� 60,” i.e., “it is possible, but not guaranteed, to
reach a configuration in which node RUNX2 has less than 20%
activity while node SOX9 has at least 60% activity”) is True, and
ANIMO additionally shows a trace (plot of the node activities) as
a proof that the requested state “SOX9+” can indeed be reached.

It is interesting to note that in one case the expected a result
shown in Table 3 is not coherent with what the model results
show in Figure 4: for treatment number 2 (ERK OFF, IGF1 ON)
the model shows that a RUNX2+ configuration does not switch to
SOX9+ (Figure 4), and this was confirmed with model checking.
Indeed, the query “It is possible to reach the state SOX9+” (in
CTL: “E<> SOX9 >� 60 && RUNX2 < 20”) evaluates to false,
which means that it is never possible to obtain a SOX9-positive
activity state starting with the given configuration. We note that
the only reachable configuration is Null, where both SOX9 and
RUNX2 (as well as most nodes in the network) are at 0 activity.
However, with some further investigation, we were able to
observe that a different timing in the treatment actually can
lead to a switch to SOX9+. We modified the model such that the
addition of IGF1 does not occur immediately: instead of being
completely active from the beginning, IGF1 can be added at a
later, purposefully left unspecified, point during the evolution of
the model. We then performed a model checking query to see
whether there is at least one way to reach a SOX9+ state (“It is
possible to reach the state SOX9+,” “E<> RUNX2 < 20 && SOX9
>� 60”): indeed, there is. However, the query “It is guaranteed
that a SOX9+ state occurs” (“A<> RUNX2 < 20 && SOX9 >�
60”) evaluates to false, because not all timing choices for the
addition of IGF1 can lead the model into a SOX9+ state. From the

first query, we gather that the addition of IGF1 needs to occur
later during the evolution of the model. From the second we
obtain that the addition should not come too late, otherwise the
model ends in a Null state. As the concept of time is present in
ECHO only in a very abstract way (“fast” vs. “slow” reactions), we
concluded that the knock-out of ERK causes some adjustment on
the signaling (“fast”) parts of the model, which need to be
completed before the addition of IGF1 can have the wanted
effect and activate the transition to SOX9+. Waiting too much
before adding IGF1 can lead to an unrecoverable situation, with
the model switching to the Null state instead.

It is also worth mentioning that Treatment number 3
(addition of PTHrP and BMP7) has a different effect in the
model than what is intuitively expected. In particular, if ECHO
starts in the RUNX2-positive state, the addition (overactivation)
of PTHrP and BMP does not directly cause a switch to the SOX9-
positive state. This happens because in the RUX2+ state the “PPR
Prot” node (which represents the presence of PTHrP receptors) is
not sufficiently active: this basically means that the PTHrP
pathway cannot be activated unless enough receptors are
produced first. Indeed, in Figure 4 the node that by itself can
cause a switch from RUNX2+ to SOX9+ is PTHrPR (written as
PPR in Figure 2), which is the node representing both the
presence and activation of the PTHrP receptor. In reality, we
expect that treatment of metatarsals with BMP7 will show
enhanced cartilage formation, independent of the PTHrP
stimulation (Haaijman et al., 1999).

Model checking of the condition where DLX5 is active and
PKA is inactive indeed confirmed the previous finding that AC-
model in SOX9 state would switch to a RUNX2+ state.

ERK Inhibition and IGF1 Overactivation
Leads to Increased Bone Growth and Good
Cartilage Formation
For testing the predicted switch from RUNX2 to SOX9 active
state with a combination of ERK inhibition and IGF addition,
metatarsals were treated with combination of PD98059 (ERK
inhibitor) and recombinant IGF1 for 6 days. For macroscopic
validation, longitudinal bone length, total length of both cartilage
area and length of mineralized bone area were measured. As per
the prediction by the model, it was expected that there would be

TABLE 3 |Model checking was performed on a selection of combinations of nodes that were predicted to switch cell fate to a preferred SOX9+ fate or a RUNX2+ state. All
treatments were tested using both the SOX9+ and RUNX2+ initial states. “No switch” means that the initial state is constantly preserved, i.e., that the property “[initial
state] must persist indefinitely” is true. “Always possible” means that the model is guaranteed to switch state, i.e., the property “[opposite state] can always be reached”
is true.

Treatment # Target 1 Target 2 Preferred state Model checking

1 No treatment No treatment N/A SOX9+: No switch
RUNX2+: No switch

2 ERK OFF IGF1 (later) ON SOX9+ SOX9+: No switch
RUNX2+ → SOX9+: Only with later addition of IGF1

3 PTHrPR ON BMP7 ON SOX9+ SOX9+: No switch
RUNX2+ → SOX9+: Always possible. Note: We are adding
PTHrPR (PPR). PTHrP addition is not strong enough.

4 DLX5 ON PKA OFF RUNX2+ SOX9+ → RUNX2+: Always possible
RUNX2+: No switch
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an increase in the cartilage area growth and inhibition of the
mineralized bone area growth over time. Indeed an increase in
longitudinal metatarsal length was already observed by day 3 and
slight length decrease was observed by day 6 (Figures 6A,B).
However, as compared to control the fold change in longitudinal
length was lower than that of the control samples at day 3 (not
significant, Figure 6C). Increase in cartilage length was observed

with time, however, the change was always lower than that in the
untreated control. Furthermore, an increase in mineralized bone
area was observed at day 3 which was decreased at day 6 even
lower than control levels (Figures 6B,C).

Microscopically, the validation of the effect of PD98059 and
IGF1 on the SOX9 active state was tested by determining the
length of the resting, proliferative and hypertrophic zones of

FIGURE 5 |Workflow of the model checking experiments. Model checking is used to ensure that the predicted behavior based on one simulation run is not due to
errors or artifacts of the model. The tested conditions were: 1. BMP7+PTHRP, 2. ERK inhibition and addition IGF1, and 3. DLX5 activation with inhibition of PKA off. We
used model checking to ensure that switches occur in the model as expected. If a formula of the type “[initial state] must persist indefinitely” is found to be true, no further
action is taken: we have the guarantee that the property is true in all possible future evolutions of the current configuration of the model. However, if the formula is
found to be false (or equivalently, the opposite formula “[opposite state] can be reached at least once” is found to be true), an example trace is automatically produced by
the UPPAAL tool, analyzed by ANIMO and represented as an activity graph in Cytoscape. This trace runs through one possible execution run of the model and illustrates
how it is possible that the tested property becomes false (resp. true).
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Safranin O-stained mid-sagittal sections of metatarsals cultured
up to 6 days (Figure 7). It was expected that there would be better
cartilage matrix formation, with increased proteoglycan
production and a decrease in the size of the hypertrophic
zone. Even though the staining intensity was strong, there was
no significant difference in the staining intensity as compared to

untreated control (Figure 7A). This indicates that overall
proteoglycan production was not further enhanced in the
presence of these molecules (Figure 7C). A significant increase
in cartilage surface area was observed at day 6 as compared to the
control (Figure 7C). Interestingly, an increase in the length of the
proliferation and resting zones was observed as compared to

FIGURE 6 | Treatment with a combination of PD98059 (ERK1/2 inhibitor) +IGF1 or a combination of BMP7+PTHrP slightly increases longitudinal length with time,
whereas the combination of Tanshinone (DLX5 activator) and H89 (PKA inhibition) decreases longitudinal length as compared to control. (A)Morphological changes of
representative rat pupmetatarsals caused by PD98059 (ERK inhibitor) +IGF1, BMP7+PTHrP and Tanshinone IIA (DLX5 activator) + H89 (PKA inhibitor) at day 0, 3 and 6.
(B) Change in metatarsal longitudinal length, cartilage length and mineralized bone area length at day 0, 3 and 6 of control and treated samples (C). Percentage
change in metatarsal length, cartilage length and mineralized bone length as compared to control. Data represent the mean of at least 6 metatarsals for each condition.
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control (not significant) even though there was a decrease in the
cartilage area length as compared to control (Figure 7A). In
addition, the length of the hypertrophic zone remained
unchanged as compared to the control. Overall, the base of
PD98059+IGF1 treated metatarsals was composed of large
resting zones, a relatively small proliferation zone and even
smaller hypertrophic zone, indicating differentiation towards a
SOX9 active state (Figure 7B).

BMP7 and PTHrP Overexpression Leads to
Increased Bone Growth but Poor Cartilage
Formation
Another combination of molecules was tested: overexpression of
BMP7 and PTHrP. For this purpose, metatarsals were treated

with a combination of BMP7 and PTHrP. For this combination,
we observed an increase in longitudinal metatarsal length and
total length of cartilage at all time points (Figures 6A,B). The
fold-change for both parameters was higher than that of the
control at day 3, but similar to control samples at day 6
(Figure 6C). In addition, a slight increase in cartilage surface
area was observed as compared to control at day 6 (Figure 7C). A
decrease in mineralized bone length as compared to the control
was observed at day 3, but it was restored to initial levels at day 6
(Figure 6C).

In contrast to the macroscopic parameters as well as ECHO
predictions, a decrease in staining intensity was observed as
compared to control. Despite the decreased staining intensity,
no changes were observed in length of the hypertrophic,
proliferative and resting zones as compared to the control

FIGURE 7 | Histological analysis of zonal length, ratio of zones to total cartilage length, proteoglycan production and cartilage surface area in base of rat pups
metatarsals (A). Representative Safranin O stained sections of control, PD98059 (ERK inhibitor) +IGF1, BMP7+PTHrP and Tanshinone IIA (DLX5 activator)+H89 (PKA
inhibitor) treated rat pups metatarsals at day 6 (left) and comparison of size of resting zone, proliferative zone and hypertrophic zone of stained samples (right) (B).
Comparison of ratio of size of resting zone (left), proliferative zone (middle) and hypertrophic zone (right) to total cartilage length of base of metatarsals (C).
Comparison of matrix production and cartilage surface area, Welch Two Sample t-tests were performed and differences were considered significant when p < 0.05.
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(Figure 7A). Overall, the base of BMP7+PTHrP bones was
composed of a large resting zone, small hypertrophic zone,
and even smaller proliferative zones (Figure 7B). Additional
simulations in ECHO verified that addition of PTHrP in the
AC-model when in the RUNX2 state, did only activate PKA to
about 20%, which is not enough to make a switch to SOX9+.
However, ECHO predicts partial node activity for Collagen 2,
which may explain the low matrix production observed in these
samples. Manual manipulation of the PKA activity to 100%
immediately switched the cell fate to SOX9+ (data not shown).
This corresponds to what was shown before in Figure 4B, where
both PPR and PKA have the power to switch cell fate if fully
active.

Combination of DLX5 Activation and PKA
Inhibition Indicate Poor Cartilage Formation
For testing the switch from a SOX9 active state to RUNX2 active
state, a combination of DLX activation and PKA inhibition was
used. Metatarsals were treated with a combination of Tanshinone
IIA (DLX activator) and H89 (PKA inhibitor). An increase in
mineralized bone growth was expected. Interestingly not much
change in longitudinal bone growth and cartilage length was
observed over time (Figures 6A,B). However, a decrease in fold-
change of longitudinal bone growth and total cartilage length
were observed as compared to control (Figure 6C). In contrast to
the prediction, no increase in mineralized zone was observed at
these time-points. Surprisingly, the fold-change in mineralized
zone was lower than that in the control (Figures 6B,C). Even
though the total cartilage length was not significantly changed, a
significant decrease in cartilage surface area was observed with
time (Figure 7C).

A significant decrease in staining intensity was observed as
compared to the control as well as to the other treatments,
indicating reduced matrix production. In addition to the
decreased staining intensity, the relative length of the
proliferative and resting zones was decreased, while the
relative length of the proliferative zone was significantly
increased as compared to control (Figure 7A). Overall,
metatarsals treated with these molecules had the largest
hypertrophic zone as compared to control as well as other
treatments (Figure 7B), indicating a switch to a RUNX2
positive state as predicted by ECHO.

DISCUSSION

Modeling in Biology
Signaling networks are traditionally represented as static graphs.
However, in the past years it has become obvious that the
temporal and spatial information in these networks confers
important dynamic behavior. As static networks do not allow
quick modifications to test hypotheses or to include novel
findings, a more widespread use of interactive exploration of
biological networks and their dynamics could cause a paradigm
shift in our understanding of biological networks. To support this
shift, we developed ANIMO (Analysis of Networks through

Interactive Modeling (Schivo et al., 2012, 2014b; Schivo et al.,
2016). ANIMO is a computational modeling tool that enables
executable modeling of network dynamics in order to mimic
biological phenomena in silico. We present here a versatile
modeling tool with a low experience threshold that can be
implemented used by investigators without formal
mathematical training in systems biology and that is based on
the intuitive graphic interface offered by Cytoscape. In addition,
ANIMO has the ability to predict biological responses, both by
manually testing hypotheses, as well as by using the model-
checking capabilities offered by the underlying mathematical
language UPPAAL (Bartocci et al., 2009; David et al., 2011).

In ANIMO we generated ECHO, Executable CHOndrocyte
based on previous models (Kerkhofs et al., 2012; Kerkhofs and
Geris, 2015; Kerkhofs et al., 2016). Kerkhofs has shown that these
large-scale models can be used to correctly capture the gene
expression network dictating chondrocyte hypertrophy in the
growth plate (Kerkhofs et al., 2016). Using ECHO, we were able to
simulate knock-out and overexpression of all individual nodes in
the network. This is something that can only be achieved using
computational models, as performing these experiments in the
wet-lab is both time consuming and very costly. Moreover, in
silico experiments provide information on the changes in activity
of all nodes in the network upon virtual KO mutations. These
very important experiments provide information about the
potential roles of, for example, miRNAs for targeting specific
factors in the network.

The interesting aspect of these types of experiments is that in
silico experimentation provides information on all possible
combinations and concentrations of the growth factors and
cytokines represented in our model. These experiments will
provide information on the activities of all biological entities
in our model at any time-point after stimulation. This is
impossible to achieve in wet-lab experiments and provides
detailed description of the biological system at hand.

Even though our computational model is a simple and
reusable tool to understand the complex mechanisms behind
the switch between SOX9 and RUNX2 activities, certain
boundaries are used. Firstly, the model is semi-quantitative,
i.e., its numbers do not necessarily reflect reality (in a linear
scale), and the concept of “time” in the model can only be seen as
a generic sequence of events (minutes/hours in this model have
little to no meaning). This is also due to our choice of simplifying
the k-parameters to the two main categories of “slow”
(transcription+translation) and “fast” (post-translational
modifications). Node activities themselves are thus “just
numbers,” so while we can see that an activity level of 100 is
higher than 10 and interpret this as “high (er) activity” for that
node, we cannot define a correspondence between activity levels
in the model and protein concentrations in the lab. Another thing
to keep inmind is that the a priori network topology and choice of
nodes in the network is based on existing literature and that
means that there is an over-representation of nodes/pathways
that are well described in literature. However, the in silico
experiments are in line with the findings in literature and we
therefore feel that the models describe the system well. Also due
to the computation restraints, it is not efficient to make large
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models, so we choose to generate models that are simplified
versions of complex networks. Hence, there is an intricate balance
between a computational model describing processes in large
detail and its prediction ability. Finally, when building a
computational model, it is always necessary to find the proper
balance between truthfulness (i.e., precision, closeness to reality)
and simplicity (abstraction from reality). We refer the interested
reader to (Mader et al., 2007; Schivo et al., 2016; Waters et al.,
2021). Overall, the precision of a model depends on availability of
data and computational tools and the need for detailed
information and one should be aware that the final outcome
of the computational model depends on these factors.

While computationally efficient models are usually less
detailed, they are, still, a great tool to understand network
behavior by just using the most important signaling molecules.
Computational models can be utilized as a tool to understand the
behavior of network especially, in this age, where we have high
amounts of proteomic and genomic data available, which will
take years to be utilized and validated by wet-lab experiments,
especially with regard to cell signaling pathways. Previously, we
found that model built with simplified network are sufficient to
predict the dynamics and cell fate and thus, can help in
prioritizing the wet lab experiments (Schivo et al., 2016;
Schivo et al., 2019). This prioritization is what we show in our
current publication.

ECHO as a Predictive Model for
Therapeutics and Tissue Remodeling
From a tissue engineering and/or therapeutic standpoint, we
wanted to know if it is possible to switch cell fate through
perturbation of any combination of 2 nodes in the network. It
is experimentally challenging to test these predictions in human
primary cells or tissue. This is especially the case for the switch of
a RUNX2+ to SOX9+ cell fate, since epigenetic regulation has
likely occurred in the process of osteoarthritis (reviewed in Ramos
and Meulenbelt, 2017). The resulting methylation of cartilage
specific genes, such as SOX9, will therefore prevent the actual
switch from a RUNX2+ to a SOX9+ phenotype in OA cells.
However, this strengthens the argument of using computational
modeling, since it allows us to simulate osteoarthritis
development, and as such provides insight into the molecular
boundaries that define therapeutic efficacy.

In addition, the combination of factors tested in our in silico
experiments have individually been described to have a role in
cartilage development and in OA, both by cell and in knock-out
animal studies (There are many excellent papers, but for more
information we refer to these excellent reviews (Kronenberg,
2003; Mackie et al., 2008; Kozhemyakina et al., 2015; Welting
et al., 2018 and references herein). However, the combined effects
of these factors have not yet been conclusively shown in tissue
engineering strategies or therapies. It is therefore likely that when
designing therapies for treatment of cartilage defects multiple
factors will have to be targeted to get the desired response.

In this study, we make use of metatarsals that are cultured ex
vivo for validating our model predictions in the wet-lab. We
prioritized the model predictions and limited the wet-lab

validation to 3 conditions that we compared to an untreated
control.

For the treatment consisting of inhibition of ERK with
addition of IGF (treatment 2) the model predicts a SOX9+
state. In contrast, ECHO predicts that activation of DLX5 +
inhibition of PKA (treatment 3) will switch the cell-fate towards a
RUNX2 state.

We assessed the effect of the treatments using various output
measures, including size of the metatarsal, as well as the cartilage
and mineralized areas. In addition, we assessed extracellular
matrix formation by staining glycosaminoglycans in
histological sections and measuring the distribution of the
different cartilage zones, the hypertrophic, the proliferative
and the resting zones. Overall, we see that activation of DLX5
with simultaneous inhibition of PKA leads to inhibition of growth
of the metatarsal, a smaller cartilage area, a decrease in matrix
production, and a significant increase in cartilage hypertrophy.
This may have been partially expected, since DLX5 was shown to
regulate osteogenesis in differentiating MSCs (Heo et al., 2017).

Inhibition of ERK while simultaneously adding IGF1 resulted
in increased length of metatarsals, especially of the cartilage area
as compared to the untreated control. In addition, we observe at
least the same levels of matrix production as in control cells, in
some metatarsals even higher. We have not quantified the
number of cells, as there are many cells in these metatarsals at
this developmental stage, but by eye it seems that there are more
cells in the metatarsals treated with PD98059+IGF, which is
reflected in the zone measurements that shows that the length
of all zones is increased in these metatarsals.

For treatments with BMP7 + PTHrP (treatment 1), ECHO
predicted that in the RUNX2+ state there is little to no receptor
for PTHrP (called “PPR” in ECHO): node activity of “PPR Prot”
is very low, about 11/100. So, because there are few receptors
available, just adding PTHrP to ECHO is not enough to activate
the PTHrP pathway (PPR activity stays at 0 even with 100%
activity of PTHrP). And indeed, we saw this already in Figure 4:
the PTHrP pathway is “strong enough” to change a RUNX2+
state into SOX9+ by itself, but we can activate it only by activating
PPR (PTHrP Receptor) directly. We also noted that BMP is
already fully active in the RUNX2+ state, but it is of note that the
BMP we have in ECHO represents both BMP2 and 7, with a bias
toward BMP2 effects as those are more often described in
literature.

PTHrP is a well-known regulator of cartilage development and
it is shown to inhibit the differentiation of proliferating
chondrocytes into pre-hypertrophic chondrocytes (Lanske
et al., 1996; Weir et al., 1996; Mackie et al., 2008; Welting
et al., 2018). The effect of PTHrP in regulating proliferation of
preventing hypertrophy is dependent on the dose (Loveys et al.,
1993). As compared to what others use, we used a very high
concentration of PTHrP (1 μM). At this concentration, we
expected to see an increase in proliferation, but less so in
prevention of hypertrophy (Loveys et al., 1993).

Seeing the current interest in BMP7 as a possible treatment for
OA (Caron et al., 2013; Huang et al., 2018; Caron et al., 2021) and
its role in cartilage development (Kronenberg, 2003; Mackie et al.,
2008; Kozhemyakina et al., 2015; Welting et al., 2018), we were
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especially curious to see the combined effect of BMP7 and PTHrP
on cartilage development of the metatarsal bone. Although we
observed an increase in growth as compared to our untreated
controls, histological staining showed a slight but unsignificant
decrease in proliferative zone and an increase in the size of the
hypertrophic zone as compared to our control. Interestingly, we
observed a significant decrease in matrix production as compared
to the controls albeit not as low as for the DLX5+/PKA-treatment.

Even though predicted by ECHO, this result was slightly
surprising as we had expected that both the use of BMP7 as
well as PTHrP would induce chondrocyte proliferation and
prevent hypertrophy, which has been shown before in
embryonic mouse metatarsals (Loveys et al., 1993; Haaijman
et al., 1999). This seemingly discrepant data can at least be
partially explained by the differences in the experiments.
While Haaijman et al. treated mouse embryonic (E15)
metatarsals, at which stage no endochondral ossification centre
is present, with 40 ng/ml BMP7 and showed that this was
independent on the expression of PTHrP, we treated rat new-
born metatarsals, which at that point already contain the
secondary ossification centre, with a 2.5 fold higher dose of
BMP7. At this developmental stage, the effect may not be as
severe as at earlier developmental stages, since terminal
differentiation has already occurred for at least a subset of
cells. Although we do not observe a relatively large
proliferative zone, we did observe the largest overall growth of
the metatarsals for this PTHrP +BMP7 treatment, most notably
in the cartilage zone, indicating that BMP7+PTHrP indeed
stimulated proliferation rather than cartilage matrix
production. To see the effect of these treatments on stem cell
fate choices, these experiments should be performed in
(mesenchymal or iPSC) stem cells, which was not possible due
to lab closures in this COVID-19 dominated year.

CONCLUSION

In this work, we describe ECHO as an executable model to
explore network dynamics, derive hypotheses, design
experiments, and predict the outcomes of these experiments.
Our manuscript shows that building activity-based signaling
networks of a cell provides important information the role of
signals in cell fate decisions. Moreover, in silico experiments allow
researchers to test many hypotheses before validating them in the
wet-lab, thereby reducing time and costs for experiments. We
used model-checking to prioritize combinatorial treatments that
were shown to induce a switch between transient and permanent
cartilage. We validated the model predictions that treatment with
IGF1, while inhibiting ERK1/2 has a positive effect on cartilage
formation and growth, with a relative decrease in hypertrophy as
compared to control samples, while activation of DLX5 while
inhibiting PKA results in impaired growth, increased cartilage
hypertrophy and prevented cartilage matrix formation.
Interestingly, ECHO predicted the combination of PTHrP
+BMP7 was not sufficient to switch from a RUNX2+ to a
SOX9+ state, even though we intuitively expected that this
combination of treatment would strongly enhance cartilage

formation. This shows that computational modelling can not
only be used for finding new mechanisms, but also for taking
away human bias by providing objective model predictions.
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