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Editorial on the Research Topic

Immunotherapy as an Evolving Approach for the Treatment of Breast Cancer

Novel therapies have improved outcomes of breast cancer (BC) patients, but still many progress
to the metastatic disease, which remains very difficult to cure. Hormonal and targeted therapies
including monoclonal antibodies against HER2 have become routine treatment in BC. In recent
years oncology has made great advances by tackling the immune system as a new pillar for cancer
therapy. Initial work exploring immunotherapy focused on triple-negative breast cancer (TNBC)
since it was known to have higher rates of PD-L1 expression, higher prevalence of tumor-infiltrating
lymphocytes (TILs), and higher mutational burden (1). Clinical trials for antibodies targeting PD-1/
PD-L1 in metastatic TNBC have demonstrated promising therapeutic outcomes (1, 2). Despite a
very modest response rate to checkpoint inhibition as monotherapy in TNBC, patients who
achieved response were found to have prolonged overall survival (1). Therefore, the main challenge
is to develop strategies to boost the tumor response to immunotherapy in order to increase the
percentage of patients benefiting from therapy. The beginning of 2019 witnessed the first FDA
accelerated approval of immunotherapy for the treatment of patients with metastatic PD-L1+
TNBC (3, 4). The first approved combination comprises atezolizumab (anti-PD-L1 monoclonal
antibody) together with nab-paclitaxel chemotherapy. This combination represented the first step of
introducing immunotherapy to the standard treatment protocol of breast cancer and revolutionized
the landscape of treatment for metastatic TNBC. We have since seen approval for pembrolizumab
in combination with chemotherapy for first line PD-L1+ metastatic TNBC based on the
KEYNOTE-355 study (5), and even more recently we now have approval for pembrolizumab
with chemotherapy for the treatment of early stage TNBC, based on results from the KEYNOTE-
522 trial (6). While there is a benefit in adding checkpoint inhibitors to chemotherapy in TNBC, not
all patients respond to immunotherapy. This has underscored the need for novel strategies to
expand the benefits of checkpoint inhibitors for broader populations of patients including patients
November 2021 | Volume 11 | Article 75268915
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with advanced hormone receptor-positive (HR+) BC as well as
HER-2 positive tumors that are refractory to the standard
therapy (2). Early data generated from immunotherapy studies
with those other BC subtypes showed clues of improved
therapeutic outcomes potentially within certain subsets of
patients (2). There are therefore several registration studies for
early-stage HR+ disease along with early and advanced HER2+
disease. Moreover, the development of biomarker predictors of
benefit and resistance to immunotherapy remains one of the top
research priorities for optimizing the application of cancer
immunotherapy in the different patient cohorts.

The articles published under this Research Topic fall into two
sections. Section I includes articles presenting basic research
outcomes or literature reviews highlighting molecular targets and
pathways to be tackled to enhance the tumor response to
immune checkpoint inhibitors, while section II comprises
articles providing rationale for newly established BC
immunotherapy clinical trials and/or preliminary outcomes.
SECTION I STUDIES

The articles under this section provide an overview of novel
approaches to be adopted in order to enhance the tumor
response to immunotherapy. In contrast to normal cells, cancer
cells display rapidly adaptive responses to the conditions of
oxygen and nutrient insufficiency in a cell survival tactic known
as “Metabolic Reprogramming” (7, 8). These changes of tumor
cellular bioenergetics include the switch to aerobic glycolysis, a
phenomenon known as Warburg effect, are essential for tumor
development, invasion, metastasis and resistance to therapies (8).
TNBC is known to be a highly glycolytic tumor, providing fuel for
growth-promoting biosynthetic pathways and exhibits elevated
glucose uptake and a glycolytic gene-expression signature (9, 10).
This cancer subtype generates an immunosuppressive tumor
microenvironment which is hostile for T-cells and contributes
to TNBC immune evasion (11). Thus metabolic reprograming is
an attractive approach to reshape the tumor immune environment
and bypass immune evasion (Naik and Decock). Moreover,
several studies offered an extensive overview for novel molecular
targets beyond PD-1/PD-L1 such as ITM2A, VEGFR, STING,
TLRs and others (Zhang et al.; Tabana et al.). Other studies
discussed the significance of cutting the crosstalk between the
tumor cells and other components within the tumor
microenvironment (TME) including immune cells, extracellular
matrix components and others (Salemme et al.; Deligne and
Midwood). Finally, two comprehensive literature reviews
underscored the promise of cellular immunotherapies as well as
a series of immunotherapy combinations under development for
TNBC (Fuentes-Antrás et al.; Thomas et al.).

Naik and Decock discussed how tumor metabolism shapes
the local immune environment, with particular emphasis on the
aerobic glycolysis-coupled lactate metabolism in TNBC. In
addition to the well-established role of metabolic reprograming
in accelerating tumor cell proliferation, invasion, metastasis and
angiogenesis, the review highlighted the immunosuppressive
effects of a lactate-rich microenvironment through modulation
Frontiers in Oncology | www.frontiersin.org 26
of tumor-infiltrating T-cells, natural killer (NK) cells, dendritic
cells, Tregs and myeloid-derived suppressor cells as well as
tumor-associated macrophages. These data support the
rationale for targeting intra-tumoral metabolic landscape to
augment the anti-tumor response to immunotherapy and
improve the outcomes in highly glycolytic tumors such as TNBC.

Zhang et al. contributed an original research article in which
they investigated the tumor suppressor role of the integral
membrane protein 2A (ITM2A) in BC and how it is correlated
to PD-L1 expression. This study showed that the differentially
expressed genes (DEGs) screened based on RNA-sequencing
data of MCF-7 cells overexpressing ITM2A were associated with
immune response. ITM2A was shown to induce PD-L1
expression in BC cells and boost TILs numbers in the tumor
microenvironment. The authors concluded that the
overexpression of ITM2A reduced the aggressiveness of BC
cells and had a favorable effect on outcomes in BC patients.

Tabana et al. reviewed novel immunological targets beyond
PD-1/PD-L1 axis that can be exploited to tune up the tumor
immune microenvironment and enhance the outcomes of
immunotherapies. Those included engaging stimulator of
interferon (IFN) genes (STING), toll like receptors (TLRs),
vascular endothelial growth factor receptor (VEGFR) signaling,
cytokines along with cyclooxygenase-II (COXII)/prostaglandin
E2 (PEG2) axis. Tackling CSF-1/CSF-1R axis as well as adenosine
signaling also showed promising outcomes. The modulation of
tryptophane and arginine catabolism using inhibitors for
indoleamine-2,3-dioxygenase (IDO1) and tryptophan-2,3-
dioxygenase (TDO), and arginase 1 was also covered.

Salemme et al. depicted the crosstalk between the tumor cells
and the immune TME in BC. In particular the authors presented
an updated view of the pro- and anti-tumor activities of the main
immune cell populations present in breast TME, with emphasis on
the role of cytokine-signaling, cell–cell contact- and microvesicle-
based mechanisms. Additionally, this review highlighted the
current clinical trials assessing the efficacy of investigational
strategies proposed to revert immunosuppression such as
chimeric antigen receptor (CAR)-T and CAR-NK cells, cancer
vaccination, immunogenic cell death-inducing chemotherapy,
DNA methyl transferase and histone deacetylase inhibitors,
cytokines or their inhibitors and other immunotherapies in BC.

Deligne and Midwood discussed the controversial role of
macrophages and extracellular matrix in BC. Extracellular matrix
(ECM) molecules such as tenascin-C, fibronectin and collagen
are commonly upregulated within the tumor stroma. Such
molecules were reported to exert a complex influence over the
behavior of tumor-associated macrophages (TAM). They can
either restrict or enhance TAMs intra-tumoral infiltration and
drive their polarization towards or away from a pro-tumoral
phenotype. On the other hand, TAMs can modulate the
production of matrix molecules within the tumor to augment
tumor growth and metastasis. The authors suggested that
targeting specific immunomodulatory domains of the ECM to
reinstate an efficient anti-tumor immune response, and
effectively control tumor growth and spread, is emerging as a
promising approach offering a new angle in the management
of BC.
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Fuentes-Antrás et al. outlined a clinically oriented overview of
preclinical and clinical data regarding the use of cellular
immunotherapies in BC. Cellular therapies aim to harness the
immune system as a tool against antigenic heterogeneity and the
broad repertoire of immune escape mechanisms occurring in
advanced BC. This approach encompasses multiple strategies
including the adoptive transfer of TILs, dendritic cells, NK cells,
and engineered immune components such as CAR constructs
and engineered T cell receptors.

Thomas et al. demonstrated multiple promising future
combinations of immune-checkpoint inhibitors in TNBC. The
article focused on assessing combinatorial approaches utilizing
immune checkpoint inhibitors to enhance both innate and
adaptive immune responses, or to establish a more immune
favorable environment for cancer vaccines. This article also
highlighted the limitations for predictive biomarkers of
immunotherapy response. The authors concluded that
combination of predictive biomarkers such as PD-L1 expression,
intra-tumoral TILs, and stromal TILs density together with tumor
mutational burden (TMB), TCR diversity and immune gene
signatures will more likely yield improved performance versus
each of these biomarkers alone which warrants further investigation.
SECTION II STUDIES

This section includes articles providing rationale for newly
established breast cancer immunotherapy clinical trials and/or
preliminary outcomes. Among those is the SOLTI-1805 TOT-
HER3 trial that focuses on patients with HR+/HER2- BC as
well as the PELICAN-IPC trial which focused on HER2-
inflammatory BC. This is in addition to the BrEAsT study
which investigated immunotherapy/HDACI combination in
both TNBC and HER2+ metastatic BC.

Pascual et al. presented the ongoing early phase 1 trial
“SOLTI-1805 TOT-HER3”. In this window-of-opportunity
study the human epidermal growth factor receptor 3 (HER3)-
directed antibody-drug conjugate (ADC) patritumab deruxtecan
is given to patients with early-stage hormone receptor-positive
(HR+)/human epidermal growth factor receptor 2-negative
(HER2-) breast cancer. The primary endpoint is the CelTIL
score, a novel tumor microenvironment (TME) biomarker based
on the percentage of tumor cellularity and stromal TILs.

Bertucci et al. contributed the rationale and design of the
PELICAN-IPC 2015-016/Oncodistinct-003 study (NCT03515798)
which is an open-label, randomized, non-comparative, phase II
study. PELICAN-IPC is assessing the efficacy, and safety of
pembrolizumab in combination with chemotherapy in the
neoadjuvant setting in HER2-negative inflammatory breast cancer
(IBC). This type of breast cancer is extremely aggressive and is
known for very low long-term survival. The mainstay for IBC
management was through deploying neoadjuvant chemotherapy
protocol. Adding panitumumab (anti-EGFR mAb) to the routine
chemotherapy backbone has shown promising outcomes in the
HR-/HER2- IBC (12). The PELICAN-IPC trial is the first one to
investigate the efficacy of immune checkpoint inhibitors specifically
Frontiers in Oncology | www.frontiersin.org 37
in patients with IBC which is a hard-to-treat form of BC. It is
noteworthy that the PELICAN-IPC 2015-016 trial is ongoing, and
the estimated study completion date is by 2022.

Gatti-Mays et al. presented the supporting preclinical data and
the design of the BrEAsT phase 1b clinical trial (NCT04296942).
The study is enrolling patients with advanced/metastatic TNBC or
HR-/HER2+ to receive a tetratherapy combination: BN-Brachyury
(a poxvirus vaccine encoding a tumor-associated antigen),
bintrafusp alfa (a bifunctional protein composed of the
extracellular domain of the TGF receptor fused to a human IgG1
anti-PD-L1), entinostat (a histone deacetylase inhibitor), and the
HER2-directed ADC ado-trastuzumab emtansine. The study is
designed to assess the safety and efficacy of the combination.

Kim et al. contributed a case series of 5 patients with
metaplastic BC treated with anti-PD-1-based therapy at a
single center. Metaplastic breast cancer (MBC) is known to be
a rare and chemo-refractory subtype of BC with poor prognosis
and limited treatment options. It is noteworthy that 3 out of the 5
cases demonstrated a response to therapy, albeit limited in
duration. One of the responding cases exhibited low-level
hormone receptor expression and pleomorphic lobular
features, whereas the other cases were TNBC. Responses were
observed in tumors with intermediate PD-L1 expression
(CPS 1-10). The extensive characterization of MBC was not
feasible due to the small sample size in this series. However, in
this series the authors also demonstrated a method of
interrogating for unique immunologic and/or genomic features
of individual tumor cases, relative to a parent cohort.

Schreiber et al. provided a retrospective analysis for the
clinical outcomes for patients with metastatic BC treated with
immunotherapy agents in Phase I clinical trials. A total of 43
patients with different BC subtypes were identified to be treated
with an immunotherapy agent as single agent (72.1%) or
combined with chemotherapy (27.9%). All patients had
received an average of 2 prior lines of chemotherapy in the
metastatic setting. The analysis showed that patients who had a
progression-free survival (PFS) of >6 months were more likely to
have been treated with a combination of immunotherapy plus
chemotherapy compared to patients with a PFS < 6 months
(77.8% v. 14.7%), demonstrating the added benefit of using
chemotherapy in combination with immunotherapy in
metastatic BC irrespective of BC subtype.

In summary, immunotherapy continues to represent an
attractive option for patients with TNBC, with emerging
strategies being explored in the different subtypes of BC. The
emerging data elucidated additional angles for the complex
interplay between the different components of the TME along
with the ECM and how that contributes to the tumor immune
escape. This largely contributes to developing promising
strategies that simultaneously target multiple key pathways in
order to enhance the therapeutic outcomes for immunotherapies.
Yet, further research is still necessary to determine the
mechanisms of resistance, identify predictive biomarkers, and
to develop optimal combination regimens. These efforts are
ongoing in order to provide the most effective, least toxic
regimens to the patients that are most likely to benefit.
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Jesús Fuentes-Antrás

jfuentesa@salud.madrid.org

Specialty section:
This article was submitted to

Women's Cancer,
a section of the journal
Frontiers in Oncology

Received: 12 September 2020
Accepted: 07 October 2020
Published: 27 October 2020

Citation:
Fuentes-Antrás J, Guevara-Hoyer K,
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José Ángel Garcı́a-Sáenz1, Pedro Pérez-Segura1,2, Atanasio Pandiella4 and Alberto Ocaña1,2

1 Breast Cancer Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain, 2 Experimental
Therapeutics and Translational Oncology Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain,
3 Clinical Immunology Department, San Carlos University Hospital, Madrid, Spain, 4 Institute of Molecular and Cellular Biology
of Cancer and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones
Científicas (CSIC), Salamanca, Spain

Immunotherapy has become a cornerstone in the treatment of cancer and changed the
way clinicians and researchers approach tumor vulnerabilities. Durable responses are
commonly observed with immune checkpoint inhibitors in highly immunogenic tumors,
while the infusion of T cells genetically engineered to express chimeric antigen receptors
(CARs) has shown impressive efficacy in certain types of blood cancer. Nevertheless,
harnessing our own immunity has not proved successful for most breast cancer patients.
In the era of genomic medicine, cellular immunotherapies may provide a more
personalized and dynamic tool against tumors displaying heterogeneous mutational
landscapes and antigenic pools. This approach encompasses multiple strategies
including the adoptive transfer of tumor-infiltrating lymphocytes, dendritic cells, natural
killer cells, and engineered immune components such as CAR constructs and engineered
T cell receptors. Although far from permeating the clinical setting, technical advances have
been overwhelming in recent years, with continuous improvement in traditional challenges
such as toxicity, adoptive cell persistence, and intratumoral trafficking. Also, there is an
avid search for neoantigens that can be targeted by these strategies, either alone or in
combination. In this work, we aim to provide a clinically-oriented overview of preclinical
and clinical data regarding the use of cellular immunotherapies in breast cancer.

Keywords: adoptive cell therapy, breast cancer, TIL, TCR, CAR, dendritic cell, natural killer cell, tumor antigen
INTRODUCTION

Breast cancer (BC) is a leading cause of death worldwide and remains mostly incurable in advanced
stages (1). Tumor initiation and progression is continuously controlled by innate and adaptive immune
cells, which falter as cancer cells undergo mesenchymal dedifferentiation and/or evolve different
mechanisms of tumor escape (2). In general, BC is not regarded as an inflamed tumor, triple
negative BC (TNBC) and HER2+ tumors being more immunogenic than the most common luminal
A-like subtype (3). Immunotherapeutic strategies against BC have traditionally been based on “passive
immunotherapy” such as the HER2 blocking antibody trastuzumab. Encouraged by the success of
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immune checkpoint inhibitors (ICIs) in melanoma and lung cancer,
numerous trials have tested the use of this “active immunotherapy”
in BC with overall disappointing results (4). In the metastatic
setting, the most significant achievement was observed in the
IMpassion130 phase III trial, which demonstrated an increase in
progression-free survival in TNBC patients receiving atezolizumab
plus nab-paclitaxel compared to nab-paclitaxel alone (7.2 vs 5.5
months) (5). This humble benefit did not lead to a better overall
survival and was not recapitulated when using paclitaxel as
concomitant chemotherapy nor consistently associated to any
predictive biomarker other than PD-L1 (6). Findings seem to be
more clinically meaningful in the neoadjuvant setting, in which an
increased pathological complete response rate has been reported in
patients receiving atezolizumab (58 vs 41% for total population, 69
vs 49% in PD-L1 positive tumors) (7). This body of evidence
underscores the need of a better understanding of the tumor-
immune interaction, escape mechanisms, and the role of the
microenvironment when a high tumor burden exists. Globally,
the use of ICIs in BC would at best provide a nonspecific
approach, guided by poorly understood biomarkers, to harnessing
a debilitated immune system against a cold tumor. Instead, the
development of omic-scale repositories and high-throughput
technologies enable us to decode the genomic traits of each
unique tumor and calls for the design of more specific and
flexible immunotherapies, capable of targeting oncogenic
addictions and overcoming temporal and spatial mutational
heterogeneities. Thus, the aim of our work is to bridge the
complex body of evidence on the different types of adoptive cell
therapy (ACT) and the clinicians who everyday care for BC patients.
T CELL THERAPY

Tumor-Infiltrating Lymphocytes
(TIL) Therapy
The adoptive transfer of lymphocytes to treat BC has been
attempted in numerous occasions. Allogeneic stem cell transplants
in addition to high-dose chemotherapy achieved successful long-
term outcomes but arouse significant safety concerns, whereas ACT
with autologous circulating lymphocytes conditioned in vitro was
better tolerated but showed less efficacy (8–11). Tumor-infiltrating
lymphocytes (TILs) include a subset of naturally occurring T cells
capable of targeting neoantigens encoded by genes harboring
nonsynonymus somatic mutations (12, 13). BC, particularly
HER2+ and luminal-like tumors, have been traditionally
considered as poorly immunogenic, with low numbers of TILs
and a limited burden of neoantigens (3, 14, 15). However, a robust
correlation exists between increased stromal TILs and a better
prognosis in TNBC (16–19).

Adoptive transfer of autologous TILs was first described as a
treatment modality by Rosenberg and colleagues in 1987 (Figure
1A) (20). Substantial objective responses have been observed in
patients with tumors with high mutation rates such as melanoma,
lung or bladder cancer (20–22). However, with few exceptions, the
infusion of unselected heterogenous TILs appears mostly ineffective
in epithelial malignancies (23–27). In order to boost tumor
Frontiers in Oncology | www.frontiersin.org 210
recognition and killing efficacy, TIL therapy has been refined by
selecting TILs reactive for tumor antigens (TAs) identified by
whole-exome sequencing and RNA sequencing. Zacharakis et al.
recently described the case of a 49 year-old woman with ER+/HER2-

metastatic BC refractory to multiple lines of chemotherapy, who
exhibited a complete durable regression after ACT with TA-specific
TILs in conjunction with IL-2 and an anti-PD1 agent (28). In this
particular case, the genomic analysis of a right breast subcutaneous
lesion revealed the presence of 62 nonsynonymous somatic
mutations, of which the mutant versions of 4 proteins rendered
the highest TIL reactivity. Further, a relevant impact of the
concomitant anti-PD1 therapy was unlikely since no expression
of PD-L1 was detected in tumor biopsies. A similar approach was
used for a pulmonary metastasis of a TNBC patient, where an
immunogenic mutation was found among 72 nonsynonymous
mutations (29). However, outcome data from this tailored TIL
therapy was not reported. Four clinical initiatives have been
registered to date in ClinicalTrials.gov and are briefly displayed in
Table 1. Notably, only two of them incorporate preconditioning
with non-myeloablative chemotherapy regimens, and one of them
will address the role of an anti-PD1 agent as concurrent medication.
In sum, the transfer of selected autologous TILs primed against
multiple MHC-restricted TAs may provide a safe and personalized
option for patients with advanced BC.

Engineered T Cell Receptor (TCR) and
Chimeric Antigen Receptor (CAR) Therapy
Gene transfer-based strategies have been developed to overcome
the main challenges of TIL therapy, including the low yield of
TIL expansion, the low affinity of human TCRs for TAs, and the
immune tolerance elicited by the downregulation of MHC
molecules and TAs (30). Both TCR and chimeric antigen
receptor (CAR) gene transfer endow polyclonal T cells with
reactivities that are not naturally present against TAs of choice
and thus provide an adaptable and highly subtle tool for
personalized medicine (Figures 1A, B) (31).

The majority of engineered abTCRs recognize epitopes presented
by MHC molecules, thereby narrowing down the group of potential
targets to those which are MHC-restricted, and exhibit an increased
specificity recognition and affinity for tumor cells (Figure 1A) (32,
33). Mounting clinical evidence on several tumor types along with
preclinical data on BC underscores the rationale for TCR use in BC
patients (34–37). Of note, in both hormone-dependent and
independent BC cell lines and in xenograft mice, Li et al. reported
a notable enhancement of anti-tumor cytotoxicity by CD8+ T cells
transduced with anMHC-A2-restricted placenta-specific 1 (PLAC1)-
TCR molecule (38). However, to the best of our knowledge, evidence
on humans is still lacking, with many ongoing clinical trials testing
intravenous infusions of TCR-engineered T cells against TAs such as
HER2, NYESO-1, and MAGE-A3 (Table 1). Interestingly, some of
them will assess the value of adding anti-PD1 therapy to enhance
immune reconstitution after lymphodepleting chemotherapy
and cytotoxicity.

In order to bypass the limitations of MHC restriction of
conventional abTCRs, intensive research has focused on the
development of CARs and, more recently, on the gdT cell
October 2020 | Volume 10 | Article 605633
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A

B

D

C

FIGURE 1 | Graphical representation of the main approaches of adoptive cell therapy in breast cancer. (A) In general, TILs are enzymatically isolated, activated with
high-dose IL-2, and eventually expanded for therapeutic use. More recently, they can also be screened for a high avidity for TAs. TCR transfer, usually using viral
vectors on circulating T cells, endows T cells with TCRs with high affinity for TAs. Further, to help condition the body for the T cell transplant, patients often receive a
non-myeloablative lymphodepleting chemotherapy regimen before IV infusion, which facilitates the access to growth-promoting cytokines and removes suppressor
cells. The role of concomitant immunomodulatory therapies is yet to be elucidated. In both approaches, recognition of cognate TAs is MHC-restricted. (B) CAR
engineering of circulating T cells has been progressively refined. First-generation CARs include only a CD3z chain as intracellular signaling domain; second-
generation CARs add a single co-stimulatory domain, such as CD28, 4-1BB (CD137), CD27, or OX40; third-generation CARs add two or three co-stimulatory
domains; fourth-generation CARs, also known as TRUCKs (T cells redirected for antigen‐unrestricted cytokine‐initiated killing) are further armored with potent
antitumor cytokines and co-stimulatory ligands. CARs target a wide range of surface TAs in an MHC-independent manner, and multiple trials are currently testing the
feasibility and efficacy of different administration routes. (C) DCs can be generated from PBMNC and HSPCs and become mature after being pulsed using a growing
set of TA loading mechanisms. In trials, DCs are infused IV but also as IT or IN vaccines. (D) NK cells for ACT can be obtained from clonal cell lines, primary NK
cells, or HSPCs. Whether they undergo CAR engineering or remain unmodified, NK cells ligate cognate TAs in an MHC-independent manner. After co-culture with
immune stimulants and feeder cells, NK cells are infused IV with or without prior lymphodepleting chemotherapy and/or immunomodulatory treatments. TILs, tumor-
infiltrating lymphocyte; IL, interleukin; TA, tumor antigen; TCR, T-cell receptor; MHC, major histocompatibility complex; CAR, chimeric antigen receptor; DC, dendritic
cell; PBMC, peripheral blood mononuclear cell; HSPC, hemopoietic pluripotent stem cell; NK, natural killer. IV, intravenous; IVC, intraventricular; IP, intraperitoneal; IN,
intranodal; IT, intratumoral; SC, subcutaneous. Figure created with BioRender.com.
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TABLE 1 | Clinical trials of ACT in breast cancer.

Antigen Coadjuvants Phase Stage Phenotype Route Precondition NCT Status

TIL therapy
Unselected TAs None I IV TN IV Yes NCT04111510 Recruiting
Unselected TAs None I IV Mixed IV No NCT01462903 Unknown
Unselected TAs Anti-PD1 II IV Mixed IV Yes NCT01174121 Recruiting
Unselected TAs Trastuzumab I IV HER2+ IV No NCT00301730 Completed
TCR therapy
Neoepitopes None II IV Mixed IV Yes NCT04102436 Recruiting
Neoepitopes Anti-PD1 I IV HR+ IV No NCT03970382 Recruiting
Neoepitopes Anti-PD1 II IV Mixed IV Yes NCT03412877 Recruiting
NYESO-1 None I IV Mixed. HLA-A0201+, NY-

ESO-1+
IV Yes NCT03159585 Completed

NYESO-1 None I IV Mixed. HLA-A0201+, NY-
ESO-1+

IV Yes NCT02457650 Unknown

MAGE-A3 None I/II IV HLA-DP0401/02+, MAGE-
A3+

IV Yes NCT02111850 Active, not
recruiting

NYESO-1 None II IV HLA-A2+, NYESO-1+ IV Yes NCT01967823 Completed
CAR-T cell therapy
HER2 None I IV HER2+ IV Yes NCT04511871 Recruiting
HER2, GD2,
CD44v6

None I/II III, IV GD2, CD44v6, HER2+ IV No NCT04430595 Recruiting

CD44v6 None I/II NR CD44v6 IV No NCT04427449 Recruiting
CEA None I/II IV CEA+ IV No NCT04348643 Recruiting
NKG2D None I IV TN IV No NCT04107142 Not yet

recruiting
MUC1 None I IV TN. MUC1+ IV Yes NCT04025216 Recruiting
MUC1 None I IV Mixed IV No NCT04020575 Recruiting
HER2 CAdVEC oncolytic

virus
I Unresectable, IV HER2+ IV No NCT03740256 Not yet

recruiting
HER2 None I IV (brain, leptomeningeal) HER2+ IVC No NCT03696030 Recruiting
CEA None I IV (carcinomatosis, malignant

ascites)
CEA + IP No NCT03682744 Active, not

recruiting
GD2 None I IV Mixed IV Yes NCT03635632 Recruiting
EpCAM None I Unresectable, IV EpCAM+ IV No NCT02915445 Recruiting
CEA Low dose IL-2 I IV (liver) CEA+ Hepatic

artery
No NCT02850536 Active, not

recruiting
CD70 None I/II Unresectable, IV CD70+ IV Yes NCT02830724 Recruiting
Mesothelin None I IV HER2-. Mesothelin+ IV Yes NCT02792114 Recruiting
ROR1 None I IV TN. ROR1+ IV Yes NCT02706392 Recruiting
CD133 None I/II IV CD133+ IV No NCT02541370 Completed
CEA Low dose IL-2 I IV (liver) CEA+ IV No. NCT02416466 Completed
Mesothelin Anti-PD1 I/II IV (pleural) Mesothelin+ Pleural Yes NCT02414269 Recruiting
cMet None I IV TN. cMet+ IT No NCT01837602 Completed
DC therapy
HER2/HER3 Anti-PD1, IFNa2b II IV TN, HER2+ SC No NCT04348747 Not yet

recruiting
Neoepitopes None 1 II, III TN NR No NCT04105582 Recruiting
NR None I IV Mixed IT No NCT03638765 Not yet

recruiting
HER2 None II I-III, IV in CR HER2+ IN No NCT03630809 Recruiting
NR None I/II IIA, III, IV Mixed NR No NCT03450044 Completed
HER2 None I II, III HER2+ IN No NCT03387553 Recruiting
GFBP2, HER2,
IGF1R

None II I-III HER2+ IN No NCT03384914 Recruiting

NR CIK, anti-PD1 I/II IV Mixed IV No NCT02886897 Unknown
NR CIK II IV Mixed NR No NCT02491697 Active, not

recruiting
TBVA None I IV Mixed SC No NCT02479230 Completed
MUC-1 None I IV Mixed NR No NCT02140996 Unknown
HER2 None I III (N2) HER2+ IN No NCT02063724 Active, not

recruiting
HER2 None I/II DCIS HER2+ IT, IN No NCT02061332 Completed
HER2 None I I-III HER2+ IN No NCT02061423 Active, not

recruiting

(Continued)
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compartment. gdT cells exhibit potent anti-tumor responses by
bridging innate and adaptive immunities, since they incorporate
both gdTCRs and killer cell immunoglobulin-like receptors (KIRs)
(39, 40). Also, gdT cell ligand recognition requires the expression of
accessory costimulatory molecules, whichmay prevent harmful self-
reactivity. Infiltration by gdT cells has been associated with
improved outcomes in a small cohort of TNBC patients (41).
Consistently, ACT of gdT cells together with trastuzumab
improved control of tumor growth as compared to trastuzumab
alone in a mouse model of HER2+ BC (42). However, the function
of the gdT cells may be extremely pleiotropic. In this regard, Peng et
al. described a BC-infiltrating gdT cell subset with strong
immunosuppressive effects on T cells and DCs regulated via the
Toll-like receptor 8, thus suggesting that its depletion or reversal
could enhance anti-tumor responses (43). ACT with unmodified or
engineered gdT cells emerges as an appealing prospect for BC
immunotherapy, but further functional characterization and data
on clinical interventions are still required (44).

On the other hand, CAR-T cells are T cells engineered to express
an artificial receptor with a modular design consisting of an
extracellular ligand-binding domain, usually a single-chain
antibody, a hinge, a transmembrane domain, and a cytoplasmic
signaling domain, with increasing complexity and functionality
across the four generations of CAR constructs (Figure 1B) (45–
47). Compared to TILs, CAR-T cells are not as affected by the
hurdles of isolation, expansion, and persistence limitation of natural
tumor-specific T cells. Moreover, CAR recognition occurs in an
MHC-independent manner, which helps overcome MHC
downregulation as a mechanism of tumor escape, and can also
Frontiers in Oncology | www.frontiersin.org 513
recognize carbohydrate and glycolipid antigens (46). Yet, cognate
antigens are consequently restricted to surface molecules.
Numerous preclinical studies in vitro and in vivo have evaluated
the use of CAR-T cells armed to specifically target TAs in BC, with
HER2-CAR constructs attracting the most attention and achieving
robust tumor regressions (48–60). To our knowledge, only one
phase I trial has been published testing a HER2-CAR in BC patients.
In the study by Lum et al., 23 metastatic BC patients independent of
their HER status received 8 infusions of anti-CD3/HER2 bispecific
antibody-armed T cells. In the evaluable patients at 14.5 weeks, 13
patients experienced clinical benefit, including 2 objective responses
(61). Notwithstanding, serious adverse events have been reported
following the use of HER2-CARs. The first evidence on the clinical
use of HER2-CAR-T cells was a case report of a patient with
metastatic HER2+ colon cancer in whom the administration of a 3rd

generation HER2-CAR was followed by multiple cardiac arrests,
respiratory distress, and multiorgan damage (62). This harm was
attributed to an inflammatory cytokine release elicited by the
immune-mediated recognition of HER2 in normal epithelial
tissues, which is referred to as “on-target, off-tumor” toxicity.

Besides HER2, the single injection of accessible lesions with
CAR-T cells targeting c-Met, a cell-surface protein tyrosine kinase
aberrantly expressed in BC, in a group of 6 patients with metastatic
BC comprised by two ER+ tumors and 4 TN tumors, did not render
measurable responses but elicited extensive tumor necrosis and loss
of c-Met immunoreactivity at the injection site, and also translated
into detectable levels of c-Met-CAR-T cell mRNA in peripheral
blood (63). Similarly, Specht et al. recently communicated
preliminary safety results of a phase I trial targeting ROR-1, a
TABLE 1 | Continued

Antigen Coadjuvants Phase Stage Phenotype Route Precondition NCT Status

Cyclin B1/WT-1/
CEF

None I/II II-III TN, ER+ IN, SC No NCT02018458 Completed

HER2 None I IV HER2+ SC No NCT01730118 Completed
HER2 None II II-III TN, ER+ NR No NCT01431196 Completed
WT1 None I/II III (N2), IV TN SC No NCT01291420 Unknown
p53 None I/II IV p53+ SC No NCT01042535 Completed
Survivin, hTERT,
p53

None I IV Mixed SC No NCT00978913 Completed

OFP/iLRP None I/II IV Mixed SC No NCT00879489 Unknown
NR None II II-III TN, ER+ IT, IN No NCT00499083 Completed
HER2 None I IV HER2+ SC No NCT00197522 Completed
HER2 None I Local relapse, IV HER2 NR No NCT00162929 Completed
HER2 None I DCIS HER2+ IN No NCT00107211 Completed
p53 None I/II III p53+ SC No NCT00082641 Completed
CEA None I IV Mixed IV No NCT00004604 Completed
NK cell therapy
HER2 None I/II IV HER2+ IV Yes NCT04319757 Recruiting
NR Anti-PD1/PD-L1 I IV Mixed IV Yes NCT03841110 Recruiting
NR None I/II All All IV No NCT03634501 Recruiting
NR Trastuzumab I IV HER2+ IV No NCT03319459 Active, not

recruiting
MUC1 None I/II IV TN, MUC1+ IV No NCT02839954 Unknown
HER2 Trastuzumab I/II IV HER2+ IV No NCT02030561 Unknown
NR None II IV Mixed IV Yes NCT01105650 Completed
October 2020 |
 Volume 10 | Ar
TA, tumor antigen; PD1, programmed death receptor 1; PD-L1, programmed death receptor ligand 1; CIK, cytokine-induced killer cell; TIL, tumor infiltrating lymphocyte; TCR, T-cell
receptor; DC, dendritic cell; NK, natural killer; TN, triple negative; HLA, human leukocyte antigen; HR, hormone receptor; IV, intravenous; IVC, intraventricular; IP, intraperitoneal; IN,
intranodal; IT, intratumoral; SC, subcutaneous.
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tyrosine kinase protein expressed in TNBC and associated with a
worse prognosis (64, 65). Interestingly, patients received a 2nd

generation ROR1-CAR engineered with a truncated EGFR
molecule to permit the elimination of infused cells in case of
toxicity (64). Only 6 patients had been enrolled with no adverse
events observed, but further update is expected to support this
innovative approach.

A considerable number of trials are testing CAR constructs
against multiple TAs in BC (Table 1). We expect that these
studies also convey relevant information about on-target, off-
tumor effects, and the benefits of the different administration
routes, preconditioning or concomitant immunomodulatory
therapies. In addition, it seems clear that a thorough genomic-
scale understanding of molecular vulnerabilities and antigenic
shifts will be of paramount importance in the design of CAR-
based strategies.
DENDRITIC CELL (DC) THERAPY

Dendritic cells (DCs) are particularly well-suited for BC
immunotherapy due to their ability to sensitize CD8+ T cells
and also CD4+ T cells capable of generating memory T cells and
contribute with additional cytotoxicity against tumors (66). DCs
have been found infiltrating BC specimens in nearly half of the
patients with either early or advanced disease, but are mostly
relegated to the periphery, functionally compromised, and show
a poor correlation with outcome (67–70).

Autologous DCs may be fused with tumor cells or pulsed with
tumor lysates or TAs to activate T cells against tumors (Figure
1C) (71–74). Across these strategies, DCs may be either exposed
to one particular neoantigen or to the entire repertoire of TAs,
including those yet to be identified. In contrast to what was
observed in TIL and TCR therapies, DCs can be obtained in large
numbers from bone marrow precursors and monocyte-derived
DCs from peripheral blood (75). The pioneering study by
Brossart et al. evaluated the vaccination with autologous DCs
pulsed with HER2 or MUC1-derived peptides in 7 BC patients.
Although the clinical outcomes were disappointing, peptide-
specific T cell responses could be detected even at 9 months
after initiation of vaccinations, and T cell responses against
epitopes not used for vaccination were identified as a result of
cross priming (76). More encouraging objective responses were
achieved by Avigan et al. in a phase I trial testing the vaccination
with DCs fused with autologous tumor cells in 16 patients with
metastatic BC (77). These included 2 patients attaining a partial
response and 6 patients attaining a stable disease, although the
anti-tumor effects were not maintained over time. In the neo/
adjuvant setting, vaccination with autologous HER2-pulsed DCs
achieved a modest rate of pathological complete responses in
HER2+ BC patients, which yet correlated poorly with immune
surrogates in peripheral blood (78). This study, however,
demonstrated that intralesional and intranodal routes of
administration may not substantially differ in terms of anti-
tumor efficacy, thus facilitating vaccination when tumor
locations are challenging. Likewise, the trial conducted by Qi et
Frontiers in Oncology | www.frontiersin.org 614
al. in stage II-IIIA ER-/PR- BC patients reported a 3-year relapse-
free survival of 71% versus 31%, with and without vaccination,
respectively (79). Other promising approaches consist of adding
cytokine adjuvants, such as IL-2, or targeting both the innate and
adaptive immune systems by complementing DCs with
cytokine-induced killer cells, although the response to these
strategies has so far been humble or confused by the effect of
concurrent chemotherapies (80–82). More than 20 trials are
registered to date testing DC vaccinations in BC patients of all
major pathological and most of them are designed to pulse DCs
with TAs of choice (Table 1). Although ACT with DCs has not
yet materialized in a relevant clinical benefit, we believe that the
role of DCs as stimulators of T-cell response and long-term
memory, and their safety and ease of manufacture, may justify
further development alone or in combination with other T
cell therapies.
NATURAL KILLER (NK) CELL THERAPY

Different from the previous approaches, NK cells represent an
attractive asset for cancer immunotherapy due to their innate
ability to eliminate cancer cells in an MHC-independent and
non-TA-restricted manner. The “loss of self” mediated by the
downregulation of MHC molecules as a mechanism of tumor
escape hinders the recognition of cancer cells by CD8+ T cells but
unleashes the activity of NK cells, which are regulated by the
interplay of activating and inhibitory receptors such as KIRs and
natural killer group 2D (NKG2D) (83, 84).

Activated NK cells can be manufactured in large numbers ex
vivo from primary NK cells, hemopoietic stem cells, and clonal
cell lines, of which the NK-92 is approved by the US FDA for use
in clinical trials (Figure 1D) (85–87). So far, adoptive transfer of
autologous NK cells has been tested in a wide range of solid
malignancies with poor clinical efficacy, which has been
explained by the immunosuppressive state of the host and
because the inhibitory receptors on autologous NK cells
matched molecules exhibited on the tumor cell surface (87–
89). Anecdotally, a report by Tian et al. described a partial
response in a patient with progressing metastatic HER2+ BC
who underwent treatment with trastuzumab-treated NK cells,
which was consistent with an increased activation and expansion
of NK cells mediated by trastuzumab in vitro (90). Allogeneic NK
cells, however, have not proved to do much better in BC patients,
with only one phase II trial published describing 4 patients with
stabilized disease from a total of 6 patients evaluated at 4–6 weeks
from infusion and after pre-conditioning with lymphodepleting
chemotherapy and total body irradiation (91).

In order to enhance their cytotoxic properties, NK cells are
also being modified with the addition of CARs against specific
TAs. Compared to CAR-T cells, CAR-NK cells are theoretically
less potent due to their lack of clonal expansion, relatively short
lifespan, and less cytotoxic cytokines (87). Although CAR-T cells
may mediate more incisive and long-term responses, the use of
CAR-NK cells would minimize the risk of cytokine release
syndrome and tumor-lysis syndrome, thereby increasing
October 2020 | Volume 10 | Article 605633
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overall treatment safety (92). Importantly, CAR-NK therapy is
expected to be much less expensive, considering that NK cells
can be derived from multiple sources. Encouraging results have
been reported in a phase I/IIa trial using cord blood-derived
CAR-NK cells targeting CD19 in patients with relapsed or
refractory non-Hodgkin’s lymphoma and chronic lymphocytic
leukemia, with up to 64% of patients achieving a complete
response (93). In BC, tissue factor (TF) was recently described
by Hu as a novel and common yet selective molecule on TNBC,
whose targeting by TF-CAR NK cells resulted in an increased
cytotoxicity against TNBC cell lines and was effective and safe for
the treatment of TNBC in an orthotopic mouse model (94). Chen
et al. recapitulated these findings when investigating the effect of
EGFR-CAR NK cells in TBNC cell lines and in mice pre-
inoculated with brain metastases (95). To the best of our
knowledge, there is not published data on human trials on BC
to date, although several initiatives can be found registered in the
Clinical Trials.gov repository including multiple trials evaluating
the intravenous infusion of ex vivo expanded, autologous NK
cells and also the administration of NK cells incorporating
HER2- and MUC1-CAR constructs (Table 1).
CONCLUDING REMARKS

ACT offers a growing toolkit to overcome antigenic
heterogeneity and the broad repertoire of immune escape
mechanisms occurring in advanced BC. To fully capitalize
these set of highly personalized treatments, we must address
both approach-specific and cross-cutting challenges. ACT with
autologous TILs may benefit from the standardization of TIL
assessment in routine biopsies and the effective expansion of
those TILs with the highest anti-tumor reactivity. Gene transfer-
based TCR therapies increase antigen specificity but still fail to
target those not presented by the MHC, whereas CAR
Frontiers in Oncology | www.frontiersin.org 715
engineering may provide additional versatility but entails
elevated costs and significant on-target, off-tumor toxicity.
Additionally, although DC and NK cell therapies may have
not achieved relevant tumor responses, their better safety profile
and reduced costs make them suitable companions for
multimodal strategies. The successful transition of the
different ACTs to the clinic poses a number of common
considerations. The discovery of TAs that can guide ACT
against BC is critically linked to its success and relies on
comprehensive strategies integrating genomic sequencing, in
s i l i co predic t ion , and immunogenic i ty eva luat ion.
Methodological refinement is also required to improve our
ability to isolate immune components and modify them ex
vivo and in vivo, and to enhance cell persistence and
intratumor trafficking. Finally, clinical trials testing ACTs will
progressively need to be more adaptable, explore the reliability
of predictive biomarkers, and generate quality data from small
sample sizes. Both puzzling and fascinating, this is the path
ahead to materialize ACT and transform the therapeutic
landscape of BC patients.
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Peŕez-Segura, Pandiella and Ocaña. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
October 2020 | Volume 10 | Article 605633

https://doi.org/10.1158/1078-0432.CCR-03-0683
https://doi.org/10.1158/1078-0432.CCR-11-1347
https://doi.org/10.3389/fimmu.2017.01426
https://doi.org/10.3109/14653249.2010.515582
https://doi.org/10.4161/onci.28147
https://doi.org/10.1056/NEJMoa1910607
https://doi.org/10.1038/s41598-020-59736-3
https://doi.org/10.1038/s41598-020-59736-3
https://doi.org/10.18632/oncotarget.8526
https://doi.org/10.18632/oncotarget.8526
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Cesar Augusto Santa-Maria,

Johns Hopkins Medicine,
United States

Reviewed by:
Russell B. McBride,

Icahn School of Medicine at Mount
Sinai, United States
Sangeetha Reddy,

University of Texas Southwestern
Medical Center, United States

*Correspondence:
Anthony Gonçalves
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Inflammatory breast cancer (IBC) is a highly aggressive entity with a poor outcome and
relative resistance to treatment. Despite progresses achieved during the last decades, the
survival remains significantly lower than non-IBC. Recent clinical trials assessing PD-1/PD-
L1 inhibitors showed promising results in non-IBC. Pembrolizumab, an anti-PD-1
monoclonal antibody, revolutionized the treatment of different cancers. Several recent
studies suggested a potential interest of targeting the immune system in IBC by revealing
a more frequent PD-L1 expression and an enriched immune microenvironment when
compared with non-IBC. Here, we describe the rationale and design of PELICAN-IPC 2015-
016/Oncodistinct-003 trial, an open-label, randomized, non-comparative, phase II study
assessing efficacy, and safety of pembrolizumab in combination with anthracycline-
containing neoadjuvant chemotherapy in HER2-negative IBC. The trial is ongoing. The
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primary endpoint is the pCR rate (ypT0/Tis, ypN0) in overall population and the co-primary
endpoint is safety profile during a run-in phase. Key secondary objectives include tolerability,
invasive disease-free, event-free and overall survivals, as well as collection of tumor and blood
samples for translational research.

Clinical Trial Registration: https://clinicaltrials.gov/ (NCT03515798).
Keywords: immune checkpoint inhibitor, inflammatory breast cancer, neoadjuvant therapy, PDL1, pembrolizumab
INTRODUCTION

Inflammatory breast cancer (IBC) is an uncommon (less than 5%
of all BC) and very aggressive form of locally advanced BC. IBC
has a clinical definition, which includes a rapidly (less than 6
months) enlarging, erythematous (which has to occupy at least
one-third of the breast) and edematous breast (known as “peau
d’orange”), which often presents without any underlying breast
mass (1–3). Women with IBC are typically diagnosed at a
younger age than patients with non-IBC (4, 5). IBCs are more
frequently ductal than non-IBCs, with more frequent high grade,
axillary lymph node involvement and metastases (more than
30%) at diagnosis (6, 7).

Biologically also, IBCs differs from non-IBCs, with more
frequent hormone receptor (HR)-negativity and HER2-
positivity (˜40% versus 15% in non-IBC) (8, 9), and a more
angiogenic phenotype (10). IBCs display higher vascularity and
an increased microvessel density (11, 12), and frequently include
the presence of dermal lymphovascular emboli (13, 14). During
the last two decades, IBC clinical tumor samples have been
profiled using high-throughput molecular profiling technologies,
mainly based on transcriptome analysis, in order to better
delineate the molecular biology of disease (15). In 2013, the
World IBC Consortium identified a robust 79-gene expression
signature discriminating IBCs versus non-IBCs samples
independently form the molecular subtypes (16). This
signature notably suggested that alterations in TGF-b and
immune response pathways are involved in the biology of IBC.
Therefore, a particular tumor immune microenvironment is
likely to participate into the unique biological patterns
associated with IBC. Such importance of the tumor stroma has
then been underlined by other research groups (17).

Significant therapeutic progresses were achieved during the past
50 years using a multidisciplinary approach, including neoadjuvant
chemotherapy (NACT), followed by surgery and radiation therapy,
and adjuvant anti-HER2 treatment and/or endocrine therapy –
when indicated. However, the survival of IBC patients, when
matched stage for stage, remains inferior to that of non-IBC
patients. Research efforts are ongoing for many years to improve
the treatment of disease. Due to the scarcity of the disease, its rapid
progression and its unfavorable outcome, IBC-specific clinical
trials have been rare. When they are not excluded, IBC patients
are included in non-specific studies, being considered as locally
advanced BC. Here, we present the rationale and the design of
PELICAN-IPC 2015-016/Oncodistinct-003 trial, an open-label,
multicentric, randomized, non-comparative, phase II study
in.org 220
evaluating efficacy and safety of pembrolizumab in combination
with neoadjuvant chemotherapy in HER2-negative IBC.

Neoadjuvant Chemotherapy in IBC
Historically, the long-term survival was dramatically low (<5%)
when patients were treated with loco-regional treatment only,
suggesting the strong metastatic potential of IBC. Incorporation
of multi-agent NACT in the therapeutic strategy significantly
improved the prognosis, and achievement of pathological
complete response after chemotherapy was identified as a
favorable prognostic factor.

Advances in IBC have been made paralleling locally advanced
non-IBC such as multi-agent NACT including anthracycline-
based regimen with addition of taxanes, and more recently with
incorporation of anti-HER2 targeted therapies (trastuzumab,
pertuzumab, neratinib, trastuzumab-emtansine) in HER2
amplified disease (18–22). Three IBC-specific trials evaluated
addition of bevacizumab in HER2-positive (23) and HER2-
negative (24) IBC in the neoadjuvant and adjuvant setting, and
panitumumab (an anti-EGFR monoclonal antibody) in HER2-
negative IBC in the neoadjuvant setting (25). Results were
promising with bevacizumab in HER2-positive and with
panitumumab in triple-negative (TN) IBC, but these drugs are
not recommended in routine. To our knowledge there is no
ongoing IBC-specific study further evaluating these agents.
Importantly, these trials showed the feasibility of IBC-
dedicated clinical trials, with more than 50 patients enrolled
per year in the two French multicentric trials (23, 24). However,
and despite the benefit of NACT, the results are insufficient, with
a 5-year survival remaining between 30% and 50%. Thus, it
remains crucial to improve the results by optimizing neoadjuvant
systemic regimen.

Immune Microenvironment in IBC
Escape from immune destruction is an important way set up by
cancers to promote cell transformation and favor tumor growth,
which has been known for decades in various tumor models. In
BC, this process was more recently enlightened. Thus, various
features associated with immune response have a significant
predictive impact on therapeutic efficacy and survival. In BC
and also IBC, tumor infiltrating lymphocytes (TIL) (26–28) and
immune gene expression signatures have shown a prognostic
impact, in particular for ER-negative and/or high proliferating
tumors (29–32). Interestingly, studies on small BC series have
also indicated that some NACT regimens, such as
anthracyclines-taxanes combinations, could favor the attraction
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of lymphocytes to the tumor bed (33, 34). The Programmed cell
death 1 (PD-1) receptor-ligand interaction is a major inhibitor
pathway hijacked by tumors to suppress immune control (35–
41). Under physiological conditions, when PD-1, which is
expressed on the cell surface of activated T-cells, is engaged by
its ligands, Programmed death-ligand 1 and 2 (PD-L1 and/or
PD-L2), it mitigates lymphocyte activation and promotes T-
regulatory cell development and function, allowing to terminate
the immune response. PD-L1 and PD-L2 are either constitutively
expressed or induced in various tissues, including different
neoplastic diseases. PD-L2 regulates T-cell activation in
lymphoid tissues, whereas PD-L1 serves to limit unneeded T-
cell function in peripheral organs and tissues. Several studies
have examined PD-L1 expression in BC at ARN and protein
levels, using different scoring systems: various expression rates
have been reported ranging from less than 2% to 55%, with
discordant prognostic impact (42–49). Our group retrospectively
analyzed PD-L1 mRNA expression in 45 BC cell lines and 5,454
clinical BC. Compared to normal tissue, we found PD-L1
expression as increased in 20% of clinical samples, and in
almost 40% of basal-like subtypes. Expression of PD-L1 was
associated with biological evidences of major cytotoxic immune
response, such as TCR-related gene expression, indicative of a
high T-cell infiltration. PD-L1 overexpression was not associated
with survival in the overall population, but with better
metastasis-free survival (MFS) and overall survival (OS) in
basal-like tumors, independently from the clinico-pathological
features. The pCR rate after NACT was higher in case of
increased PD-L1 expression (50% versus 21%) (48).

Few studies have been specifically dedicated to IBC. In the
World IBC Consortium series including 87 informative IBC
samples (50), we identified and validated a robust 107-gene
signature associated with pCR and strongly enriched for genes
involved in both adaptative and innate immunity. In a cohort of
306 BC samples (51), including 112 IBC samples, PD-L1 was
overexpressed in 38% of IBC samples compared to normal breast
tissue. Such overexpression correlated with aggressive molecular
subtypes (TNBC or basal-like and HER2-positive subtypes) and
with a higher pCR rate to NACT as well as biological signs of
antitumor T-cell cytotoxic response. There was no correlation
with MFS and specific OS. Microenvironment of “PD-L1-high”
IBC samples was in favor of a strong local cytotoxic immune
response, with higher expression of T-cell-specific and CD8+ T-
cell-specific gene signatures, and higher expression of T-cell
receptor-related genes. In addition, these tumors displayed
features of T-cell activation. However, some T-cells infiltrating
the tumor had a phenotype of exhausted T-cells. Similar
observations were reported at the protein level (52). In a recent
study including 143 patients with IBC and 142 control subtype-
matched patients with non-IBC, PD-L1 IHC expression on
immune cells (SP142 antibody) was more frequent in IBC
(42.9%) than in non-IBC (23.7%), and correlated with higher
pCR rate and stromal TIL infiltration (53). This later was
associated with improved overall survival in a multivariate
model. Finally, recent next-generation sequencing studies have
shown that IBC samples display higher tumor mutational burden
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(TMB) than non-IBC samples, independently from the
molecular subtypes and tumor stage (54, 55). Such increased
TMB in IBC might lead to increased tumor antigen-based
attraction of cytotoxic T-cells and better sensitivity to immune
checkpoint inhibitors.
Pembrolizumab and Other Anti-PD1/PD-L1
Agents in BC
Pembrolizumab, a humanized immunoglobulin (IgG4)
monoclonal antibody (mAb), binds PD-1 with a high
specificity, blocks the interaction with PD-L1 and PD-L2, and
reactivates inhibited T-cells, which is expected to increase the
antitumor immune response. This drug and other immune
checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis
showed evidences of antitumor activity in several cancers, with
a favorable toxicity profile compared to conventional
chemotherapy. They are already registered in various indications,
especially in the management of non-small cell lung cancer,
melanoma, renal carcinoma, and classical Hodgkin lymphoma.

When administered as single agent in advanced BC,
pembrolizumab, and other ICI such as atezolizumab or
avelumab generated moderate but detectable antitumor
activity, with objective response rate ranging between 3 to 18%
(56). Of note, efficacy was higher in patients with TNBC,
minimal pre-treatment exposure, and PD-L1- and/or TILs-
positive tumors. Yet, in the KEYNOTE119 randomized phase
III study involving pre-treated advanced TNBC, pembrolizumab
was not better than chemotherapy at physician’s choice (57).

There is also a solid rationale to combine anti-PD1/PD-L1
agents with chemotherapy in BC, which may have significant
immunomodulatory effects, and may in turn increase the
antitumor activity of PD-1 pathway inhibition (58, 59). Indeed,
even though cytotoxic drugs have historically been considered as
immunosuppressive, they can also have pro-immune properties
(60–67) by i) depleting immuno-suppressive cells, including
regulatory T-cells and myeloid-derived suppressor cells, which
stimulate a quiescent anti-tumor immune response, ii) inducing
an immunogenic cell death, iii) improving presentation of tumor
antigens by upregulating their expression or that of the major
histocompatibility complex (MHC) class I molecules, iv) up-
regulating co-stimulatory molecules (B7-1) or down-regulating
co-inhibitory molecules (PD-L1 or B7-H4) expressed on tumor or
immune cells, thus boosting the activity of T-cell effectors, and vi)
enhancing tumor cells sensitivity to T-cell–mediated lysis through
fas-, perforin-, and granzyme B–dependent mechanisms.

Recent results from clinical studies in TNBC have confirmed
the potential for combination of chemotherapy and ICI. First, in
the IMpassion130 phase III randomized study, first-line
atezolizumab plus nab-paclitaxel improved progression-free
survival over nab-paclitaxel alone in advanced TNBC. Benefit
was restricted to patients with PD-L1-positive tumors, in which a
strong numerical advantage in OS was suggested, leading to
approval by both FDA and EMA (68). Very recently, first results
of the KEYNOTE-355 phase III randomized trial (69), comparing
several chemotherapy regimens (nab-paclitaxel, paclitaxel or
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carboplatine plus gemcitabine) plus placebo versus chemotherapy
plus pembrolizumab in the same setting, have confirmed
IMPassion130 results in terms of progression-free survival for
patients with PD-L1 combined Positive Score (CPS) 10. However,
statistical significance was not achieved in PD-L1 CPS 1 patients
and OS data are still immature. In addition, IMpassion 131 failed
to demonstrate any advantage for atezolizumab in combination
with paclitaxel over paclitaxel alone (70). IMpassion 132, which
evaluates atezolizumab with capecitabine or carboplatin-gemcitabine
is still ongoing (71). Second, a significant improvement in pCR rate
was recently reported when pembrolizumab was added to NACT
(carboplatin/paclitaxel followed by AC) in non-metastatic TNBC,
while preliminary analysis suggested a possible and promising
advantage in event-free survival (72, 73). A similar improvement
in pCR was recently demonstrated with atezolizumab when
combined with anthracyclines/taxanes but carboplatin-free NACT
in IMpassion 031 trial (74). Yet, results from other studies evaluating
anti-PD-L1 antibodies such as durvalumab, another anti-PD-L1
antibody in combination with anthracyclines/taxanes (75), or
atezolizumab in combination with anthracyclines-free regimen
(NeoTripp trial: NCT002620280) NACT in TNBC failed to
significantly improve pCR rates (76). Thus, the role of ICI in
NACT of early BC remains to be defined. Of note, in both
advanced and early settings, no new signal of toxicity was
detected, and tolerance was similar to what expected with ICI in
other tumor types.
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METHODS OF PELICAN-IPC 2015-016/
ONCODISTINCT-003 STUDY

The currently insufficient results of NACT in IBC, the relatively
peculiar immune microenvironment of IBC when compared to
non-IBC, and efficacy of pembrolizumab in BC led us to launch
the PELICAN trial.

Study Design and Participants
PELICAN-IPC 2015-016/Oncodistinct-003 is a prospective,
multicenter, open-label, randomized, non-comparative, phase
II study evaluating pembrolizumab in combination with
NACT in HER2-negative IBC. The trial was registered in
ClinicalTrials.gov database (NCT03515798). The study,
promoted by Institut Paoli-Calmettes (Marseille, France) is
being conducted in up to 21 centers (13 in France, 8 in
Belgium), 10 of them being activated on January 2020. Patients
are eligible to the study, if they have a previously untreated,
histologically-confirmed diagnosis of HER2-negative IBC as
defined according to 8th American Joint Committee on Cancer
(AJCC) classification: breast erythema, edema and/or peau
d’orange, occupying at least 1/3 of the breast, with or without
underlying palpable mass, duration of history of no more than 6
months. The main other inclusion and exclusion criteria are
listed in Table 1. In PELICAN trial, all HER2-negative IBC
patients are eligible, resulting in a mixed population of triple-
TABLE 1 | Eligibility criteria of the PELICAN-IPC 2015-016/Oncodistinct-003 trial.

Inclusion criteria
- HER2 negative tumors by immunohistochemistry (IHC 0 or 1+) or fluorescent/chromogenic in situ hybridization (FISH- or CISH-)
- Hormone receptors status known
- Previously untreated, histologically confirmed diagnosis of breast cancer and confirmed inflammatory breast cancer
- No metastases
- No organ dysfunction, especially adequate cardiac, kidney, liver and hematologic function
- At least 18 years
- Performance status (ECOG) 0 or 1. ECOG 2 may be considered if good rationale provided and discussed
- A female participant if she is not pregnant, not breastfeeding, if she is a woman of childbearing potential (WOCBP), who agrees to the follow contraceptive guidance
during the treatment period and for at least 12 months after the last dose of cyclophosphamide and 4 months after the last dose of pembrolizumab, whichever come
last. Abstinence is acceptable
- A male participant must agree to use a contraception during the treatment period and for at least 6 months after the last dose of study treatment and refrain from
donating sperm during this period

Exclusion criteria
- Bilateral breast cancer
- Prior allogeneic stem cell or solid organ transplantation
- WOCBP who has a positive serum pregnancy test within 72 h prior to randomization
- Current participation in or recent participation in a study of an investigational agent or use of an investigational device within 4 weeks prior to the first dose of study
treatment
- Active CNS disease or carcinomatous meningitis
- Diagnosis of immunodeficiency or is receiving systemic steroid therapy (in dosing exceeding 10 mg daily of prednisone equivalent) or any other form of
immunosuppressive therapy within 7 days prior to the first dose of study drug,
- Known history of active bacillus tuberculosis
- Severe hypersensitivity (grade 3) to pembrolizumab and/or any of its excipients
- Known additional malignancy that is progressing or has required active treatment within the past 3 years. Note: participants with basal cell carcinoma of the skin,
squamous cell carcinoma of the skin, or carcinoma in situ (e.g., breast carcinoma, cervical cancer in situ) that have undergone potentially curative therapy are not
excluded.
- Active autoimmune disease that has required systemic treatment in the past 2 years
- Active infection requiring systemic therapy or history of Human Immunodeficiency Virus, Hepatitis B or C
- Delivery of a live vaccine within 30 days prior to the first dose of study drug
- Known psychiatric or substance abuse disorders that would interfere with cooperation with the requirements of the trial
- Prior therapy with an anti-PD-1, anti-PD-L1, or anti PD L2 agent or CTLA-4
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negative and hormone receptor-positive/HER2-negative tumors.
While we acknowledge that this is a significant limitation of the
study, this is justified by the rarity of the disease and the
anticipated difficulties of recruitment if restricted to a single
IBC subtype. In addition, previous studies in the field, which
provided the basis to our statistical hypothesis, were performed
in a similar setting. Moreover, the design includes stratification
on hormone receptor status and will allow a specific analysis in
triple negative subtype, the most likely to benefit according to
recent results (see Statistics section).
Study Procedures and Treatment
Patients are to be randomly assigned within 28 days from
initiation of screening with a 2/1 ratio between NACT without
(arm A) or with (arm B) pembrolizumab. The randomization
procedure is assessed with block and is stratified by centers and
hormone receptor status (positive HR is defined as tumor cell
staining by immunohistochemistry ≥10% for ER and/or PR). To
increase the randomness of the assignments, the permuted-block
randomization schedule is generated within varying block sizes.
A minimum and maximum number of patients of each
phenotype (TN/non-TN) are respected in order to keep the
adequate power.

In the experimental arm, pembrolizumab (intravenous
administration at a dose of 200 mg every 3 weeks starting on
cycle 2) is combined with conventional anthracycline/taxane-
based NACT. Since anthracyclines have been shown to strongly
induce immunogenic cell death, IFN gamma production and
dendritic and T-cell tumor infiltration in mouse models (60, 61,
64, 66, 67), pembrolizumab is started on cycle 2, assuming that it
should maximize potential sequential synergism. In addition,
differing pembrolizumab initiation on cycle 2 should help
evaluating the safety of the combination, by identifying patients
with specific chemotherapy-induced toxicities. In the initial version
of the protocol, the anthracyclines part of NACT was different
according to the HR status: non-TN IBC (HR-positive and HER2-
negative) patients were to receive 3-weekly 5-fluorouracil 500 mg/
m², epirubicin 100 mg/m², cyclophosphamide 500 mg/m²
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(FEC100) from C1 to C4, whereas TN IBC (HR-negative and
HER2-negative) were to receive epirubicin 90 mg/m² and
cyclophosphamide 600 mg/m² every 2 weeks with G-CSF
support, i.e., a dose dense (DD-EC) regimen from C1 to C4. A
subsequent amendment homogenized the anthracycline-based
schedule and all patients are now to receive DD-EC, whatever the
HR status. Following anthracyclines sequence, all patients receive
weekly paclitaxel for 12 injections (fromC5 to C8). Details of design
are shown in Figure 1.

Mastectomy with axillary lymph node dissection is to be
performed within 4–6 weeks after the last chemotherapy
administration. Pathological analysis is assessed by the local
pathologist of each center and by a centralized reviewer.
Radiotherapy starts 3 to 6 weeks after the surgery. Dose and
frequency are left to investigator’s discretion and according to
the site’s standard practice. Adjuvant endocrine therapy (if HR-
positive disease) and/or capecitabine (if residual disease in TN
IBC and no DPD enzyme deficit identified by plasma uracil
dosage) is to be given after radiotherapy completion according to
the site’s standard practice. After local treatment is completed,
patients are followed every 4 months (+/- 28 days) for 2 years,
then every 6 months for 3 years, and every year until the end of
the study.
Outcomes
The primary endpoint is a central evaluation of pCR rate (as
defined as ypT0/Tis, ypN0 following 8th AJCC classification) of
the resected breast specimen and all sampled ipsilateral lymph
nodes following NACT with/without pembrolizumab. A co-
primary endpoint of safety is also included to determine if
combining pembrolizumab and DD-EC exposes to significant
toxicity. Thus, a run-in safety phase is to be conducted in order
to stop the trial in case of unacceptable toxicity, as defined by the
incidence of dose limiting toxicities (DLTs).

The secondary endpoints include the safety profile and
tolerability of the combination, pCR rate by local assessment,
invasive disease-free, event-free, and overall survivals (iDFS, EFS,
and OS) in each arm. Since identification of predictive
FIGURE 1 | Design of PELICAN-IPC 2015-016/Oncodistinct-003 trial. BC, breast cancer; IBC, inflammatory breast cancer; HR, hormone receptor; pCR,
pathological complete response.
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biomarkers for pembrolizumab efficacy is of critical importance,
pharmacodynamics measurements and search for biological/
immunological correlates are planned on pre- and post-
treatment tissue and blood samples regularly collected before,
during, and after treatment.

Statistics
The PELICAN trial is designed and powered to demonstrate that
experimental group (arm B) achieves a pCR rate higher than a
predefined undesirable rate of 20%. To reject the null hypothesis
of a truly inefficient regimen (H0: p≤20%) at 5% error risk,
following a Simon’s 2-stage optimal procedure, a total of 54
patients in arm B is necessary to obtain a power of 90% assuming
a true pCR rate of 40%. Furthermore, to reach a power of 80% to
reject the null hypothesis at 5% error risk in HR-negative (arm
B), there must be at least 32 HR-negative patients and no more
than 25 HR-positive patients to be recruited in arm B. A total of
27 patients are planned to be enrolled in the control arm (arm
A), leading to a total of 81 patients planned. Predefined pCR of
20% was set-up according to several studies demonstrating a
pCR rate between 20% and 28% in HER2-negative IBC receiving
anthracyclines-taxanes NACT. The duration of enrolment is
planned to 24 months. The randomized phase II design was
selected to provide a control arm not directly compared to the
experimental arm but allowing verifying the expected pCR rate
with a conventional NACT in the selected population.

According to a 2-stage optimal design, an interim analysis is
planned when 19 patients will be evaluable for the primary
endpoint (pCR) in the experimental arm. At this interim
evaluation, the study will stop for futility if no more than 4
patients have a documented pCR. If the patient accrual
continues, the true pCR rate following NACT plus
pembrolizumab will be estimated at the end of study with 90%
confidence interval in all patients who received at least one dose
of pembrolizumab. The overall hypothesis of a truly ineffective
experimental arm will be accepted if the lower bound of the
above estimated 90% bilateral confidence interval (CI) is inferior
to 20%, or equivalently if no more than 15 patients out of a total
of 54 evaluable patients have a documented pCR. In addition, the
true pCR rate in patients enrolled in the HR-negative (TN IBC)
strata will also be estimated. In this subgroup analysis, the true
pCR rate will be estimated with 90% bilateral CI using an exact
method for binomial proportions in one-stage clinical trials. The
hypothesis of a truly ineffective experimental arm in this
subgroup of interest will be accepted if the lower bound of the
above estimated 90% exact bilateral CI is inferior to 20% and
rejected otherwise.

According to standard practice in phase I studies, run-in
phase conducted will enroll a maximum of 6 patients who
completed 21 days after the first administration in two
consecutive sub-cohorts (3+3). If at least 2 out of the 3
patients enrolled in the first sub-cohort report a DLT episode,
the accrual of patients will be stopped, and the combination will
be declared too toxic to warrant further investigation. If 1 or less
than 1 patient (≤1 patient) reported a DLT in the first sub-
cohort, 3 additional patients will be enrolled in the run-in phase.
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At the end, the combination will be declared sufficiently safe if
less than 2 patients report a DLT out of the 6 evaluable patients
enrolled in the run-in phase.

The incidence of reported adverse events during the treatment
period will be summarized according to the treatment arm, by
primary system organ class, CTCAE v5.0 severity grade, type of
adverse event, and relationship to the study drug. Locally assessed
pCR rate will be estimated with 90% exact confidence intervals.
Time-to-event outcomes will be censored at the time of last follow-
up visit. IDFS, EFS and OS will be estimated using the Kaplan-
Meier method. Pointwise estimations for 3-year and 5-year IDFS,
EFS, and OS will be provided with corresponding 90% asymptotic
confidence interval.
CONCLUSION

To our knowledge, the PELICAN-IPC 2015-016/Oncodistinct-
003 study (NCT03515798) is the first one to investigate the
efficacy of ICI in patients with IBC, a rare but difficult-to-treat
form of BC. Pembrolizumab is combined to chemotherapy in the
neoadjuvant setting. Even if the recent most promising results
remain modest in BC compared with more immunogenic
cancers such as lung cancer or melanoma, they are significant
notably in metastatic TNBC when combined to chemotherapy.
Furthermore, IBC display few molecular characteristics that may
suggest higher efficiency than in non-IBC: more frequent TN
subtype, more frequent PD-L1-positivity and higher TMB
independently from the molecular subtypes. Enrolment began
in July 2018 and the estimated study completion date is 2022.
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Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer
associated with poor prognosis, early recurrence, and the lack of durable
chemotherapy responses and specific targeted treatments. The recent FDA approval
for immune checkpoint inhibition in combination with nab-paclitaxel for the treatment of
metastatic TNBC created opportunity to advocate for immunotherapy in TNBC patients.
However, improving the current low response rates is vital. Most cancers, including TNBC
tumors, display metabolic plasticity and undergo reprogramming into highly glycolytic
tumors through the Warburg effect. Consequently, accumulation of the metabolic
byproduct lactate and extracellular acidification is often observed in several solid
tumors, thereby exacerbating tumor cell proliferation, metastasis, and angiogenesis. In
this review, we focus on the role of lactate acidosis in the microenvironment of glycolytic
breast tumors as a major driver for immune evasion with a special emphasis on TNBCs. In
particular, we will discuss the role of lactate regulators such as glucose transporters,
lactate dehydrogenases, and lactate transporters in modulating immune functionality and
checkpoint expression in numerous immune cell types. This review aims to spark
discussion on interventions targeting lactate acidosis in combination with
immunotherapy to provide an effective means of improving response to immune
checkpoint inhibitors in TNBC, in addition to highlighting challenges that may arise from
TNBC tumor heterogeneity.

Keywords: triple negative breast cancer, lactate acidosis, immunotherapy, tumor metabolism, Warburg effect,
metabolic reprogramming, anti-tumor immunity, immunosuppression
INTRODUCTION

Inter- and intra-tumor heterogeneity of breast tumors are a major causal factor for prognostic and
drug response disparities. Among the breast cancer molecular subtypes, triple negative breast cancer
(TNBC), accounting for 15–20% of all breast cancers, is defined by the absence of estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (Her-2)
expression (1). TNBCs are particularly characterized by poor prognosis, early recurrence, and
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increased risk of metastasis, cumulatively accounting for 25% of
all breast cancer-related deaths (2). In addition, the lack of
hormone receptor expression renders TNBC tumors refractory
to the targeted therapeutics currently being implemented for the
treatment of hormone receptor positive breast cancer subtypes,
essentially limiting treatment options to chemotherapy.
Al though TNBC tumors in i t ia l ly respond wel l to
chemotherapy, they develop resistance and display early
recurrence rates (3). In addition, the molecular heterogeneity
within TNBCs has led to its classification into several intrinsic
subtypes, further adding to the predicament of developing
personalized approaches to treat TNBCs (4, 5).

Immunotherapy has revolutionized the treatment of several
cancer types, particularly melanoma, lymphoma, renal cell cancer,
and non-small cell lung cancer (6). This treatment modality
involves activating the host immune system to recognize and
eliminate tumor cells. Numerous types of cancer immunotherapy
are being trialed and implemented, as reviewed in detail elsewhere
(7). Immune checkpoint blockade (ICB) has progressed most
prominently as an effective immunotherapy by targeting
inhibitory T cell regulatory molecules such as programmed cell
death-1 (PD-1), its ligands programmed cell death ligand 1/2 (PD-
L1/L2), and cytotoxic T-lymphocyte associated antigen-4 (CTLA-
4), thereby re-invigorating the anti-tumor immune response (8).
In 2019, the US Food and Drug Administration (FDA) approved
the use of Atezolizumab, a blocking antibody targeting PD-L1, in
combination with nab-paclitaxel chemotherapy for first-line
treatment of unresectable, PD-L1 positive, locally advanced, or
metastatic TNBC. Although this is the only immunotherapy
currently available to TNBCs, there are several clinical trials
evaluating the efficacy of ICB in TNBCs as monotherapy or in
combination with other treatment modalities (9).

Some key factors that influence the response to
immunotherapy in solid tumors include the extent of tumor
immune infiltration and the expression of immune checkpoint
molecules. Within the breast cancer subtypes, TNBCs are
considered to be the most immunogenic (10), in part due to
higher levels of tumor-infiltrating lymphocytes (TILs), and
higher tumor mutational burden and neoantigen load.
Concordantly, TNBCs are enriched in the expression of
immune checkpoint molecules, either on tumor cells or on
infiltrating immune cells (11, 12). These properties provide
rationale for the responsiveness of TNBCs to ICB compared to
other breast cancer subtypes. Nonetheless, considering the
heterogeneity of this subtype, only a small proportion of
TNBCs indicate an immunomodulatory phenotype amenable
to targeting with immunotherapy. Ali et al. reported that only
20% of TNBCs expressing core basal markers exhibit PD-L1
expression. Moreover, single-agent ICB response rates in
unselected metastatic TNBC patient cohorts still remain low
with limited durability (13).

Thus, improving the efficacy of immunotherapy in TNBCs
requires a better understanding of factors that influence tumor
immune infiltration and immune evasion. In this regard, tumor
metabolism is known to play a critical role in shaping the
tumor and immune microenvironment. Within the scope of
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this review, we will discuss the molecular factors driving the
glycolytic nature of TNBCs, and explore their role in lactate-
mediated modulation of the anti-tumor immune response.
Finally, we will assess the clinical benefit of combining
targeting of lactate metabolism with immune checkpoint
blockade to improve the efficacy of immunotherapy in TNBCs.
METABOLIC PLASTICITY IN TNBC

Under normal conditions, oxidative phosphorylation (OXPHOS)
is the preferred mode of energy generation in somatic cells,
including normal mammary epithelial cells. Particularly during
lactation, glucose uptake is significantly increased in the mammary
cells, the major proportion of which is metabolized to lactose in
the Golgi apparatus (14). Under circumstances of oxygen
deprivation, cells may switch from aerobic OXPHOS to
glycolytic metabolism to reduce the generation of reactive
oxygen species (ROS) and hence alleviate hypoxic stress (15).
Likewise, rapidly dividing tumor cells rewire cellular metabolism
to meet the high bioenergetic and anabolic demands of growing
tumors in a nutrient-deprived microenvironment. This tumor
characteristic or cancer hallmark is known as the ‘Warburg
effect’, whereby tumors shift their metabolic preference from
OXPHOS to aerobic glycolysis, even under oxygen-rich
conditions (16). The shift to aerobic metabolism is thought to
result from both intrinsic and extrinsic cues (17). Intrinsically,
oncogenic mutations, aberrant expression of microRNAs and
transcription factors, and cumulative mitochondrial defects in
tumor cells instigate metabolic reprogramming (18–20).
Extrinsic cues that promote metabolic reprogramming include
reduced oxygen and nutrient availability, decreased extracellular
pH, and microenvironment interactions with immune and
stromal cells and the extracellular matrix (ECM). TNBC tumors
often exhibit several of these features, rendering them more
sensitive to metabolic reprogramming. TNBC cells show
increased rates of glycolysis, as inferred from increased glucose
uptake, overexpression of glycolytic enzymes, and increased
oxygen consumption rate (OCR) and extracellular acidification
rate (ECAR), in comparison to other breast cancer subtypes (21–
23). Furthermore, TNBC cell lines display more glycolytic
dependence compared to luminal breast cancer cell lines
whereby treatment with the glycolysis inhibitor 2-deoxyglucose
(2-DG) markedly reduced cell proliferation in TNBC cells (24). To
gain insight into how the glycolytic nature of TNBCs may affect
anti-tumor immunity and how this can be exploited for
therapeutic purposes, it is important to identify the key
molecules involved in the metabolic adaptation. In this context,
we will explore any alterations in molecular determinants of
glucose uptake, lactate to pyruvate interconversion, and
lactate transport.

Aberrant Expression of Glucose
Transporters
The Warburg effect observed in tumors depends on the
availability of glucose as a substrate. Glucose uptake into the
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cell is mediated by GLUT transporters, a family of
transmembrane proteins, of which GLUT1 is the most widely
expressed isoform in cancers, particularly in basal-like TNBC
(25). In TNBC, GLUT1 overexpression correlates with higher
histological tumor grade (26). Interestingly, silencing of GLUT1
in TNBC models reduces both cell proliferation and invasive
potential, thus highlighting the role of GLUT1 and indirectly
glucose scavenging in supporting the aggressive tumor behavior
of TNBC (27). The expression of glucose transporters is
regulated by c-Myc, a basic region helix–loop–helix leucine
zipper (bHLHZip) transcription factor serving as a hub in
regulating a broad range of cancer-related signaling pathways
(28). Oncogenic mutations in c-Myc leading to overexpression
are often observed in TNBC tumors whereby c-Myc functions
antagonistically with MondoA, a nutrient-sensing transcription
factor allowing cells, to adapt to changes in glycolytic flux (18,
29). Mechanistically, c-Myc upregulation in TNBCs directly
suppresses the MondoA-dependent induction of thioredoxin-
interacting protein (TXNIP), an inhibitor of glucose uptake and
glycolysis, through competitive binding of the TXNIP promoter
region (29). As TXNIP regulates the mRNA expression and
protein stability of GLUT1, its suppression by c-Myc eventually
results in enhanced glucose metabolism (30). In concordance, a
Mychigh/TXNIPlow signature correlates with poor clinical
outcome in TNBC but not in non-TNBC subtypes (31).
Moreover, this correlation was more prominent in the
presence of p53 mutations which are frequently found in
TNBC tumors, suggesting an indirect association between
tumor mutation status and metabolism (19). Of interest, a
familial genetics study reported a homozygous point mutation
in the TXNIP gene that completely suppressed its expression,
leading to lactate acidosis in the affected individuals (32). The
presence of mutant TXNIP variants in breast cancer is yet
unknown. Expression of GLUT1 can also be regulated through
hypoxia response elements by hypoxia-inducible factor (HIF)-1a
whose expression is correlated with BRCA1 and basal
phenotypes in breast cancer such as those observed in TNBC
(33, 34). Another mechanism that supports GLUT1 stabilization,
specifically in basal-like TNBC cells, involves the suppression of
GLUT1 endocytosis and Akt-mediated degradation by the
GTPase-activating protein USP6NL (35). Thus, TNBC tumors
are intrinsically primed for enhanced glucose uptake to support
their glycolytic phenotype. Although several long non-coding
RNA, such as ANRIL and HOTAIR, have been shown to regulate
GLUT expression in various tumor types, no reports are available
yet for breast cancer (36).

Upregulation of Lactate Dehydrogenases
Lactate dehydrogenases (LDHs) are key enzymes in glycolysis,
regulating the interconversion of pyruvate to lactate. There are
five L-lactate dehydrogenase isoforms that are composed of
different combinations of LDH-M (M for muscle) and LDH-H
(H for heart) subunits: LDH-1 (H4), LDH-2 (H3M1), LDH-3
(H2M2), LDH-4 (H1M3), and LDH-5 (M4) (37). The LDH-M
and LDH-H subunits are encoded by the LDHA and LDHB
genes and are alternatively denoted as LDHA and LDHB, hence,
Frontiers in Oncology | www.frontiersin.org 330
LDH-5 (M4) and LDH-1 (H4) are often referred to as LDHA and
LDHB respectively. The LDH isoforms are associated with
different tissue specificity with LDH-1/LDHB predominantly
being expressed in the heart, LDH-5/LDHA in striated muscle,
LDH-2 in the reticuloendothelial system, LDH-3 in the lungs,
and LDH-4 in the kidneys. Additionally, there is a sixth isoform,
LDHC or LDHX, that is composed of four LDHC subunits and is
exclusively expressed in testis tissue (38). LDHA and LDHC
preferentially catalyze pyruvate to L-lactate conversion, while
LDHB has a higher affinity for lactate, thus collectively
determining the rate of glycolysis.

In addition to their widespread expression in normal tissues,
LDHA and LDHB are often overexpressed in tumor tissues,
including TNBC. Furthermore, elevated circulating total LDH
levels have been found to predict clinical outcome and treatment
response to chemotherapy in advanced TNBC patients (39).
LDHA expression is significantly upregulated in TNBC tumors
compared to non-TNBC tumors and is associated with shorter
overall- and disease-free survival (40). Increased tumoral and
serum LDHA levels have also been correlated with brain
metastasis and poor survival in patients with TNBC (41). In
line with this finding, knocking down LDHA expression in the
syngeneic 4TI TNBC mouse model decreased tumor-derived
lactate levels, tumor growth rate and metastases (42). LDHB is
also upregulated in TNBC (24) and PAM50 basal-like subtypes
(43). The function of LDHB in breast cancer or more specifically
TNBC remains ambiguous. The role of LDHB in promoting
lysosomal acidification required for autophagy-associated vesicle
maturation and protease activation has been reported as a
mechanism by which LDHB can promote tumor cell
proliferation and survival in some cancer types (44). High
LDHB expression in basal-like breast cancer has been
associated with better pathological complete response rates to
neoadjuvant chemotherapy (43). LDHB has been reported to
complement the role of LDHA in colon adenocarcinoma and
melanoma models with metabolic pressure (45). More
specifically, knockout of both LDHA and LDHB was required
to suppress glycolysis under hypoxic conditions and hence, curb
tumor growth, but under normoxic conditions the tumor cell
metabolism shifted to OXPHOS as an energy source. Although
the substrate preference of LDHA and LDHB differs, these
observations indicate that substrate affinity and the extent of
metabolic adaptation in tumors may vary depending on both
tumor-specific intrinsic and extrinsic cues. The LDHC
isoenzyme is an immunogenic germline-specific antigen that is
re-expressed in a wide variety of cancer types (46, 47).
Particularly, high levels of circulating LDHC in serum and
tumor-derived exosomes are negatively correlated with breast
cancer prognosis (48). Expression of LDHC has been reported to
play a role in propagating TNBC tumor cell invasion and
migration (49). To date, LDHC has been implicated in
glycolysis and energy metabolism of sperm only (50).

From the current literature, LDHA appears to be a key
enzyme in TNBC-associated lactate acidosis. Studies in
different cancer types have reported that LDHA overexpression
stems from mechanisms involving transcriptional, post-
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transcriptional, and post-translational regulation (37). For
instance, HIF-1a, c-Myc and the forkhead box M1 (FOXM1)
transcription factor have been shown to bind to the LDHA
promoter region to regulate its transcription (51). However, it
remains to be understood if these regulatory mechanisms are
ubiquitous across different cancers or alternative modes of
regulation exist in TNBC. Moreover, the metabolic role of
LDHB and LDHC in TNBC require thorough investigation.

Dysregulation of Lactate Transport and
Metabolic Symbiosis
The concentration of lactate in solid tumors has been reported to
be chronically high (up to 50 mM) in comparison to
physiological levels in the blood (up to 2 mM) (15).
Quantification of lactate concentration in freshly excised
tumors from a small cohort of 30 breast cancer patients using
double quantum filtered magnetic resonance spectroscopy
indicated that a higher tumor grade was associated with
increased lactate concentration (52). A trend of increased
mean lactate concentration (8.4 mM) was also reported in a
small group of six TNBC tumors compared to nine non-TNBC
tumors (7.2 mM) in the same study, however this observation
needs confirmation in a larger population. Lactate was initially
thought to be a mere waste metabolite from aerobic glycolysis.
However, we now know that lactate has an active tumorigenic
role as a biosynthetic precursor, signaling molecule and regulator
of extracellular acidosis, and has therefore been referred to as an
“oncometabolite” (53). Considering the excessive rate of
glycolysis in tumors, the intracellular concentration of lactate
can accumulate rapidly, serving as a rate-limiting step within the
glycolysis pathway and impairing enzymatic function and cell
proliferation. To avoid excessive pools of intracellular lactate,
lactate is transported across the plasma membrane by the
monocarboxylate family of transporters (MCTs) that are
encoded by solute carrier 16 (SLC16) genes. Among these
transporters, MCT1 (SLC16A1) and MCT4 (SLC16A3) have
been extensively characterized in multiple tumors (54). MCTs
are passive symporters transporting lactate anions in
conjunction with protons, implying their function in
equilibrating the lactate concentration and pH gradient across
the intra- and extra-cellular compartments. Generally, MCT1 is
involved in lactate import or export depending on the cell type
and context while MCT4 primarily functions in lactate efflux
from glycolytic cells into the microenvironment.

According to the Warburg effect, tumor cells undergo a
metabolic switch to aerobic glycolysis whereby glycolytic
tumor cells expressing MCT4 export lactate and oxidative
tumor cells or stromal cells with high MCT1 expression import
lactate to use as an energy source through OXPHOS. In contrast,
the reverse Warburg effect offers a state of metabolic symbiosis
with reciprocal interactions between tumor and stromal cells,
whereby glycolytic stromal cells provide lactate as a fuel to
oxidative tumor cells (55). The existence of the reverse
Warburg effect in TNBC tumors is under debate with some
studies advocating for the traditional Warburg effect or a mixed
model while others provide experimental evidence for the
Frontiers in Oncology | www.frontiersin.org 431
presence of the reverse Warburg phenotype (Figure 1). In
support of the former, an immunohistological study by Choi et
al. classified 740 breast cancer cases into different metabolic
subgroups based on the expression of metabolic markers such as
GLUT1 and MCT4 (56). Tumors were either considered to be of
the Warburg type (glycolytic tumor cells and non-glycolytic
stromal cells), reverse Warburg type (non-glycolytic tumor
cells and glycolytic stromal cells), mixed type (glycolytic tumor
cells and stromal cells), or null type (non-glycolytic tumor cells
and stromal cells). Based on this classification, the majority of
TNBC tumors displayed a Warburg or mixed metabolic
phenotype, both characterized by high MCT4 expression, while
luminal-type breast tumors mainly belong to the reverse
Warburg or null metabolic phenotype, consistent with their
metabolically inactive and less aggressive clinical presentation.
In accordance, MCT4 expression strongly correlates with worse
survival in TNBC as compared to luminal-type breast cancer (23,
56). TNBC tissue microarrays indicated that basal-like TNBC
tumors in particular expressed glycolysis markers such as
GLUT1 and MCT4, whereas non-basal-like TNBCs were
represented by a glutaminolysis or mitochondrial metabolism
phenotype (57). Furthermore, MCT4 ablation in the TNBC cell
line MDA-MB-468 reduced cell viability and lactate secretion,
enhanced OXPHOS, sensitized cells to mitochondrial respiration
inhibitors, and impeded orthotopic tumor growth (58).

In support of the reverse Warburg phenotype, Witkiewicz et
al. identified that MCT4 expression in stromal cells, but not
tumor cells, was associated with poor survival in TNBC (59). In
addition, loss of stromal caveolin-1, an indicator of hypoxia, has
been associated with selective MCT4 stromal and MCT1 tumor
expression and poor clinical outcome in TNBC (60). Combining
positive stromal MCT4 with negative stromal Caveolin-1
expression improved stratification of TNBC cases with a high
risk of recurrence and metastasis. Moreover, MCT1 expression
in tumor cells showed a strong positive correlation with LDHB
expression in TNBC tumors, corroborating the presence of the
reverse Warburg effect (24). More specifically, basal-like TNBC
tumors demonstrate increased MCT1 expression that is
associated with a high proliferative index and histological
grade (61). Of note, silencing of MCT1 in basal-like TNBC
models disrupted lactate export and tumor growth in vivo (62),
suggesting that MCT1 can adapt for bidirectional lactate
transport in tumors.

In addition to the classical Warburg, reverse Warburg and
mixed metabolic phenotype models, few studies have suggested
the existence of a hybrid metabolic state in TNBC tumors and
metastatic lesions (Figure 1) whereby tumor cells exhibit both
high glycolytic and OXPHOS activity, allowing these tumors to
switch between metabolic phenotypes for their bioenergetic
demands in response to microenvironmental cues (63, 64).
Targeting both glycolysis and OXPHOS in metastatic TNBC
cells was required to eliminate this metabolic plasticity and
hence, reduce their proliferation and survival.

Mechanistically, elevated MCT1 in TNBCs has been
attributed to low levels of its regulatory miRNA miR-342-3p
(65). In addition, the stability and localization of MCT1 and
November 2020 | Volume 10 | Article 598626
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MCT4 are regulated by the chaperone glycoprotein CD147 that
is upregulated in TNBCs compared to other breast cancer
subtypes. CD147 expression is directly correlated with high
tumor grade, basal markers, shorter progression-free and
overall survival, and poor response to chemotherapy in TNBC
(66, 67). Furthermore, the lactate sensing G-protein-coupled
receptor 81 (GPR81), also known as hydrocarboxylic acid
receptor 1 (HCAR1) has been implicated in an autocrine
feedback loop that regulates MCT1 and/or MCT4 expression
and their chaperone CD147 (68–70). GPR81 is highly expressed
in many tumor types including breast cancer, in particular
hormone receptor positive breast cancers where it is associated
with improved overall survival and lower risk of distant
metastasis (69, 71, 72). Silencing of GPR81 in hormone
receptor positive breast tumor cells reduced the expression of
Frontiers in Oncology | www.frontiersin.org 532
specifically MCT1 but not of MCT2 or MCT4, resulting in
decreased lactate uptake, extracellular acidification, and
inhibition of tumor cell proliferation and survival (69). Hence,
GPR81 may support the OXPHOS phenotype in these breast
tumors by sensing and regulating influx of extracellular lactate.
However, the role of GPR81 in TNBC-associated lactate
signaling has not yet been reported and mandates future
investigation. It is plausible that the high levels of lactate in the
TNBC micromilieu constitutively activate GPR81, resulting in a
negative feedback loop yielding reduced levels of GPR81 in
glycolytic TNBC tumors. Alternatively, additional previously
unidentified lactate-sensing GPCRs may play a role in TNBCs.
Expression of GPR81 in tumor cells can be regulated through an
autocrine feedback loop of lactate by the induction of Signal
transducer and activator of transcription 3 (STAT3) that directly
FIGURE 1 | Metabolic phenotypes observed in triple negative breast cancer (TNBC). According to the classic Warburg theory, glycolytic TNBC cells expressing high
levels of the lactate transporter MCT4 export lactate, which is taken up by MCT1-expressing stromal cells to generate energy through oxidative phosphorylation
(OXPHOS). Alternatively, MCT4 expressing glycolytic stromal cells can export lactate that is used by oxidative tumor cells in a phenomenon called the reverse
Warburg effect. The mixed model represents metabolic symbiosis in heterogeneous tumors whereby glycolytic tumor and stromal cells generate lactate to feed
oxidative tumor cells. Lastly, the hybrid model depicts metabolic plasticity in TNBC tumor cells that can switch between a glycolytic and oxidative phenotype based
on extrinsic cues and glucose availability in the tumor microenvironment (TME).
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binds to the GPR81 promoter to induce its expression (73).
Interestingly, lactate-induced expression of GPR81 has been
shown to trigger the tumor expression of the immune
checkpoint ligand PD-L1, indicating an additional dimension
of lactate-mediated immune dysregulation in the tumor milieu to
dampen anti-tumor immunity (74), as will be discussed in the
following section.
LACTATE-RICH ENVIRONMENT
MEDIATES IMMUNOSUPPRESSION

Normal mammary gland architecture comprises of diverse cell
types, including immune cells, which are essential at various stages
of mammary organogenesis (75, 76). During malignant
transformation, the mammary gland undergoes considerable
reorganization of the tissue architecture as well as changes in
cellular composition and cellular properties (77). Likewise, the
tumor microenvironment of breast tumors is comprised of
numerous cell types, including tumor cells, cancer-associated
fibroblasts, various cell types forming vascular networks and
Frontiers in Oncology | www.frontiersin.org 633
immune cells. The composition and functionality of this complex
landscape is ultimately shaped by a network of interacting
extracellular cues such as lactic acid, subsequently influencing the
anti-tumor immune response (Table 1) (93). Here, we will
specifically discuss lactate-mediated changes in anti-tumor
immunity in TNBC, focusing on pro-inflammatory immune cell
subsets such as T lymphocytes, natural killer cells, dendritic cells, as
well as immune suppressive myeloid-derived suppressor cells, T
regulatory cells, and tumor-associated macrophages.

T Lymphocytes
The number of tumor infiltrating lymphocytes (TILs) has
consistently been identified as a prognostic and predictive
biomarker in early stage TNBC (94). However, as tumors
progressively grow larger, metabolic competition ensues and
impairs the activity of various immune cell subpopulations
(95). Cytotoxic CD8+ lymphocytes (CTLs) profoundly rely on
glycolysis for proliferation and activation of their effector
function (96). Thus, high rates of glycolysis in TNBCs offer a
competitive advantage for tumor cells by restricting cytotoxic T
cell metabolism and functionality. In addition, there is a
feedforward mechanism whereby the lactate-rich environment
TABLE 1 | Impact of lactate acidosis on immune cells in the tumor microenvironment.

Immune cell Effect of lactate acidosis References

T lymphocytes - Diminished lactate export
- Decreased glycolysis, proliferation, and cytotoxicity
- Inhibited expression of IFN-g and IL-2 cytokines
- Enhanced mitochondrial dysfunction and ROS production
- Increased apoptosis
- Polarization to iTregs

(78–80)

NK cells - Decreased tumor infiltration, proliferation, and cytotoxicity
- Inhibited expression of activation receptors NKG2D and NKp46
- Dampened expression of IFN-g, perforin, and granzyme
- Enhanced mitochondrial dysfunction and ROS production
- Impaired proliferation and differentiation of NKT cells

(81–83)

DCs - Lactate sensed by GPR81 and imported by MCTs
- Decreased glycolysis
- Hindered maturation, activation, and antigen presentation
- Impaired priming of T cells
- Inhibited expression of IFN-a, IL-6, and IL-12 cytokines
- Upregulated expression of IL-10
- Increased production of kynurenine that induces Tregs

(72, 84, 85)

MDSCs - Increased proliferation and immunosuppressive activity
- Induced development by tumor-derived G-CSF and GM-CSF

(81, 86)

Tregs - Metabolic adaptation to suppress glycolysis and increase OXPHOS
- Increased survival and proliferation

(87, 88)

Monocytes - Diminished lactate export
- Decreased glycolysis
- Inhibited expression of IFN-g and TNF-a cytokines
- Upregulated expression of IL-17 and IL-23 cytokines

(89, 90)

TAMs - Lactate sensed by GPR132 and imported by MCTs
- Polarization from M1 to anti-inflammatory/pro-tumorigenic M2
- Increased OXPHOS
- Upregulated expression of pro-tumorigenic ARG1, VEGF, and CCL5
- Enhanced secretion of immunosuppressive cytokines that subdue TIL
cytotoxicity and promote Treg induction

(91, 92)
November 2020 | Volume 10 | A
ARG1, arginase 1; CCL5, CC chemokine ligand 5; DCs, dendritic cells; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte macrophage colony-stimulating factor; GPR,
G-protein receptor; IFN-g, interferon gamma; IL, interleukin; MCT, monocarboxylate transporters; MDSC, myeloid-derived suppressor cells; NK, natural killer cells; NKG2D, natural killer
group 2 member D; NKT, natural killer T cells; OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; TAMs, tumor-associated macrophages; TIL, tumor infiltrating
lymphocyte; TNF- a, tumor necrosis factor alpha; Treg, T regulatory cell; VEGF, vascular endothelial growth factor.
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of glycolytic tumors interferes with lactate export in cytotoxic T
cells, which depends on an active lactate gradient, therefore
resulting in increased intracellular lactate levels that inhibit
metabolism, proliferation, and production of interferon (IFN)-g
(78). In concordance, Lim et al. observed that epidermal growth
factor receptor (EGFR) signaling in TNBC cells and murine
models promoted aerobic glycolysis and lactate efflux,
subsequently dampening the activation of CTLs and the
production of IFN-g and interleukin (IL)-2 (79). Similar
observations have also been reported for highly glycolytic
melanomas, wherein LDHAhigh tumors dampen IFN-g-
producing CD8+ T cells due to lactate acidosis (80). Conversely,
reducing LDHA-mediated lactic acid production has been found
to enhance T cell-mediated tumor killing, improve IFN-g-
producing T cell infiltration, and reduce melanoma tumor size
(97–99). Furthermore, tumor-derived lactate enhances
mitochondrial dysfunction and excess ROS production in naïve
T cells, leading to apoptosis, by a mechanism involving the
inhibition of focal adhesion kinase (FAK) family-interacting
protein of 200 kDa (FIP200), a suppressor of the pro-apoptotic
Bcl-2 family of proteins (100).

Molecular mechanisms driving this phenomenon involve the
ability of lactic acid to inhibit IFN-g transcription by preventing
the upregulation of nuclear factor of activated T cells (NFAT),
which is required for T cell and natural killer (NK) cell activation
(80). Additionally, suppressed IFN-g production has been linked
to diminished mitogen-activated protein kinase (MAPK)/p38
and c-Jun N-terminal kinase (JNK) activity stemming from
impaired T-cell receptor (TCR) activation under conditions of
lactate acidosis in tumors (97). Finally, lactate acidosis, resulting
from increased release of protons during lactate transport, has
been shown to directly affect CTL cytolytic activity, cytokine
secretion, and TCR activation, by lowering the pH in the tumoral
niche (101).

Natural Killer Cells
NK cells are innate effector lymphoid cells with anti-tumor
cytolytic activity that is orchestrated by the secretion of pro-
inflammatory cytokines and cytotoxic granules. In TNBC, NK
cell infiltration has been associated with improved survival
(102, 103). The inhibitory effect of lactate on NK cell cytotoxic
activity has been reported for numerous cancers and involves
downregulation of the expression of IFN-g, perforin,
granzyme, and the activating receptor NKp46 (81, 104). In
line with this observation, glycolytic melanomas with high
LDHA expression and lactate secretion show reduced NK cell
activity and infiltration (80). In breast cancer specifically,
tumor-infiltrating NK cells display decreased expression of
the NKG2D activating receptor as compared to their
counterparts in normal tissue (82). Inhibition of the lactate
transporter MCT1 in the syngeneic 4T1 TNBC mouse model
reduced lactate efflux and tumor growth, accompanied by an
increased frequency of NKG2D/perforin/CD107a-expressing
NK cells with improved cytotoxicity. Lactate-rich colorectal
cancer liver metastasis exhibits a scarcity of NK cells with
mitochondrial dysfunction and excessive ROS production
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leading to apoptosis, which could be recapitulated by
treating healthy liver resident NK cells with lactic acid in
vitro (105).

Invariant NKT cells, with properties of both NK and T cells,
can also elicit an anti-tumor immune response by rapidly
producing pro-inflammatory and immunomodulatory
cytokines and cytotoxic perforin/granzyme B granules.
Activation of NKT cells entails glucose uptake via the GLUT1
transporter and a glycolytic switch in metabolism, which is
dependent on mTOR complex (mTORC) signaling (106).
Exposure to high lactate levels inhibits NKT survival and
proliferation. Mechanistically, acidosis induced by tumor-
derived lactic acid inhibits the mTOR pathway and nuclear
translocation of promyelocytic leukemia zinc-finger (PLZF), a
regulator of NKT expansion and functional differentiation,
resulting in impaired production of IFN-g and IL-4 (83). The
role, functional status, and prognostic value of NKT cells in
TNBC remain to be investigated.

Dendritic Cells
Dendritic cells (DCs) are a specialized class of antigen presenting
cells involved in antigen processing and cross-presentation to
CD8+ T cells. DC-mediated tumor rejection has been attributed
to their ability to sense tumor-derived nucleic acids and
activation of the type-I IFN system. Similar to CTLs, DCs rely
on a metabolic switch from OXPHOS to glycolysis for activation,
thus potentially ensuing metabolic competition within the tumor
microenvironment (107). Lactic acid was shown to impair DC
maturation, activation, cross-presentation, type-I IFN response,
and antigen degradation (84, 108). In a syngeneic 4T1 TNBC
mouse model, MCT-mediated lactate uptake by plasmacytoid
DCs (pDCs), natural type I interferon–producing cells with
antigen-presenting potential, inhibited their glycolysis capacity
and thus IFN-a production while inducing the production of
tryptophan-derived kynurenine and subsequent proliferation of
T regulatory cells (Tregs) (85). In addition, GPR81 expressed on
pDCs senses extracellular lactate and mobilizes intracellular
calcium, which further has an inhibitory effect on DC
activation and IFN-a expression. Lactate-dependent acidosis
also inhibits DC differentiation through the induction of IL-10
production with concomitant loss of IL-12 (109). Similarly,
lactate-mediated activation of GPR81 in DCs was found to
abrogate antigen presentation, secretion of pro-inflammatory
cytokines IL-6 and IL-12 and T cell function, and was
associated with increased tumor growth in murine breast
cancer models (72). In line with these findings, one study
reported a high frequency of tumor-derived DCs with
suppressed IFN-a production in aggressive, highly proliferative
TNBC tumors, enabling the sustenance and expansion of Tregs
and priming of anti-inflammatory IL-10-secreting CD4+ T
cells (110).

Thus, the lactate-induced tolerogenic phenotype of tumor-
infiltrating DCs indirectly impacts the priming of T
lymphocytes and promotes an immunosuppressive cytokine
profile and Treg expansion, collectively reinforcing tumor
immune escape.
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Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSC) are immunosuppressive
immune cells that restrict T cell function, proliferation, and TCR
signaling, and promote differentiation of Tregs (111). In TNBC
tumors, glycolytic gene expression profiles (including LDHA)
correlate with MDSC gene signatures and both associate with
reduced survival (86). Increased glycolysis and hence lactate
production was found to induce MDSC development and
immunosuppression in murine TNBC models through the
activation of the LDHA/AMP-activated protein kinase (AMPK)-
Unc-51 Like Autophagy Activating Kinase 1 (ULK1)/autophagy
axis, thereby promoting the expression of granulocyte colony-
stimulating factor (G-CSF) and granulocyte macrophage colony-
stimulating factor (GM-CSF) (86). Conversely, glycolytic restriction
enhanced T cell immunity, reduced tumor growth and metastasis,
and prolonged survival in the TNBCmurine model (86). Depletion
of LDHA to lower lactate production also decreased the frequency
and immunosuppressive activity of MDSCs in a highly glycolytic
murine pancreatic tumor model (81). This effect was directly
attributed to lactate-mediated induction of MDSC proliferation,
as observed by in vitro experiments supplementing lactate to
human peripheral blood mononuclear cell co-cultures.
Interestingly, as MDSCs rely on glycolysis for proliferation and
their immunosuppressive activity by evading ROS-mediated
apoptosis and enhancing mTOR pathway activation (112, 113), it
remains to be understood how MDSCs thrive with metabolic
competition in glycolytic tumor environments.

T Regulatory Cells
Immunosuppressive Tregs undergo metabolic adaptation in low-
glucose, lactate-rich tumor microenvironments. Specifically, an
upregulation of the Treg-specific transcription factor forkhead
box P3 (FOXP3) mediates induction of OXPHOS, alongside
suppression of c-Myc expression and glycolysis (87). This
metabolic reprogramming in Tregs, which are particularly
enriched in TNBC tumors (114), makes them less dependent
on glycolysis and enables the cells to efficiently turnover lactate
into pyruvate. In addition, an increased nicotinamide adenine
dinucleotide (NAD):NADH ratio in Tregs compensates for the
lack of glycolytic activity and hence, renders them resistant to the
inhibitory anti-glycolytic effects of lactate observed in T cells, and
can polarize conventional T cells into induced Tregs (iTregs) that
thrive on the metabolic symbiosis with glycolytic tumor
cells (88).

Tumor-Associated Macrophages
Tumor-associated macrophages (TAMs) are abundant in
tumors, wherein extracellular stimuli guide their polarization
between the pro-inflammatory “M1” subtype and anti-
inflammatory “M2” subtype (115). In comparison to the
glycolytic metabolism in M1 macrophages, M2 TAMs rely on
OXPHOS to meet their bioenergetic demands—a trait that may
additionally support the metabolic symbiosis between highly
glycolytic TNBC tumor cells and M2 TAMs (116). Indeed,
several studies have reported that M2 TAMs in TNBC tumor
stroma positively associate with higher grade, larger tumor size,
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and poor survival whereas an inverse correlation has been
observed in luminal A breast tumors that primarily depend on
OXPHOS (117, 118). Moreover, co-culturing monocytes
(precursors of macrophages and DCs) with the TNBC cell line
MDA-MB-231 induced an M2 macrophage phenotype (119).
Taken together, it can be envisaged that the lactate-rich
landscape in TNBC tumors drives re-education of TAMs to an
M2 phenotype. Indeed, tumor-derived lactate can induce TAM
polarization to the M2 immunosuppressive phenotype by
binding to the lactate-sensitive receptor GPR132 (91, 120). In
turn, the M2 TAMs promote breast tumor cell migration and
invasion in vitro and metastasis in vivo, thus supporting a
positive feedback loop between tumor cells and pro-
tumorigenic M2 TAMs. Concordantly, high GPR132
expression in breast cancer tumors correlated with the
expression of M2 macrophage markers and low metastasis-free
and relapse-free survival. Moreover, abrogating the lactate/
GPR132 axis impedes M2 polarization and breast cancer
metastasis in mice. In addition to lactate sensing by GPR132,
lactate uptake by MCTs in TAMs also mediates M2 polarization
(91). Lactate-induced TAM polarization and its pro-tumorigenic
effects in breast cancer has been attributed to TAM-specific
extracellular signal-regulated kinase (ERK)/STAT3 activation,
stimulated expression of vascular endothelial growth factor
(VEGF) and arginase-1 (ARG1), and stabilization of HIF-1a
(91, 121, 122). Another mode of lactate-associated paracrine
signaling between TAMs and breast tumor cells was reported by
Lin et al., who showed that tumor cell-derived lactate induced
the Notch pathway in TAMs to generate CC chemokine ligand
5 (CCL5) which then binds to its receptor CCR5 on breast
tumor cells to promote aerobic glycolysis, migration, and
epithelial-to-mesenchymal transition (EMT) (123). Besides
driving tumorigenesis, M2 macrophages also secrete
immunosuppressive cytokines that subdue the cytotoxicity of
TILs and promote the differentiation of Tregs (92).

Furthermore, elevated levels of extracellular lactate prevent
the expulsion of lactate generated in macrophage precursor
monocytes, prompting a negative feedback mechanism for
glycolysis and tumor necrosis factor (TNF) release (89). In toll-
like receptor (TLR)-activated monocytes, lactic acid was also
observed to induce the IL-23/IL-17 pathway, thus polarizing the
immune response towards a pro-tumorigenic Th17 profile while
suppressing the anti-tumor Th1 response (90, 124). Consistent
with this observation, Th17 cytokines are upregulated in TNBCs
compared to other breast cancer subtypes, especially in
“immune-cold” tumors that are devoid of TILs (125). Thus,
lactate imposes adverse effects on not only macrophage function
and polarization, but also on its precursor monocytes.
TARGETING LACTATE-MEDIATED
IMMUNE EVASION IN TNBC: POTENTIAL
STRATEGIES AND CHALLENGES

Metabolic reprogramming, lactate accumulation, and metabolic
competition promotes immunosuppression in the tumor
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microenvironment and is thus capable of modulating the efficacy
of immunotherapy. In line with this, elevated tumor glycolysis has
been reported as a negative prognostic indicator in
immunotherapy. For instance, melanoma tumors that are
refractory to adoptive T cell therapy (ACT) display high rates of
glycolysis and reduced TILs (98). Likewise, elevated baseline
serum LDH levels are associated with limited clinical benefit
from ICB treatment in several tumor types including TNBC
(126–128). Nevertheless, ICB therapy has shown promising
results in certain glycolytic cancers such as TNBC. The success
of ICB in these tumors might be in part the result of an anti-
metabolic effect on both tumor and immune cells. PD-L1
expression on tumor cells has been found to support tumor
glycolysis via the activation of mTOR/Akt pathway (95). Hence,
anti-PD-L1 ICB may not only release T cell inhibition but also
impair tumor glycolysis, lactate production, and metabolic
competition between immune and tumor cells. In addition, ICB
therapy may induce a shift in the metabolic needs of cytotoxic
immune cells. While activation of T cell effector function relies on
glycolysis, ligation or inhibition of PD-1 on T cells inhibits
glycolysis and instead switches to fatty acid oxidation, which is
crucial for maintaining T cell memory function and long-term
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anti-tumor activity (129). This phenomenon further allows T
memory cells to thrive by reducing their dependence on glucose
and hence avoiding metabolic competition within the tumor
microenvironment. In addition to harnessing the anti-metabolic
potential of ICBs, there is also evidence supporting exploiting
tumor acidity to improve treatment response to ICB. In a
preclinical study, Johnston et al. show that activation of the
checkpoint molecule V-domain immunoglobulin suppressor of
T cell activation (VISTA) was more prominent under acidic
conditions such as those found in highly glycolytic tumors with
lactate acidosis (130). Blocking VISTA with a monoclonal
antibody could reverse the immunosuppressive activity,
particularly in combination with anti-PD-1, leading to enhanced
T cell infiltration, dampened expression of checkpoint receptors
on T cells (PD-1, LAG-2, and TIM-3), and subsequent increased
anti-tumor activity in MC38 colorectal carcinoma-bearing mice.
Further investigation in mice and cynomolgus macaque models
showed that acidic pH-selective anti-VISTA antibodies
preferentially accumulated in tumor tissue, suggesting minimal
risk of off-target effects even though VISTA is expressed by
leukocytes. Therefore, combining immunotherapy with strategies
to either mitigate tumor glycolysis and lactate levels or specifically
FIGURE 2 | Strategies to target lactate biogenesis and acidosis to enhance immunotherapy response in triple negative breast cancer (TNBC). TNBC tumor cells
display enhanced rates of glycolysis. This metabolic phenotype is supported by the increased expression of glucose transporters (GLUTs) that import glucose into
the cell, and of lactate dehydrogenase A (LDHA) that converts the glycolytic intermediate pyruvate into lactate. The augmented production of lactate in TNBC tumors
is also associated with higher expression of monocarboxylate transporters (MCTs), which shuttle lactate coupled to protons (H+) out of the tumor cell resulting in
excessive levels of lactic acid in the tumor microenvironment (TME) and reduced pH. Lactate acidosis in the TME creates an immunosuppressive milieu, which can
antagonize the efficacy of immunotherapy. Thus, anti-metabolic strategies could alleviate lactic acid-induced immunosuppression and potentiate immunotherapy
such as Adoptive T cell therapy (ACT), Chimeric Antigen Receptor T cell (CAR-T) therapy, and Immune Checkpoint Blockade (ICB), thereby synergistically inhibiting
tumorigenesis. Potential strategies to abrogate lactate biogenesis and acidosis include specific targeting of GLUTs, LDHA, MCTs, and the lactate-receptor GPR81
with small molecule inhibitors, inhibition of glucose-pyruvate conversion, systemically lowering the availability of glucose by treatment with biguanides, and buffering
the intra-tumoral pH with bicarbonate therapy or proton pump inhibitors (PPIs).
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render immune cells resistant to the hostile tumor
microenvironment may prove advantageous in improving
therapeutic response in TNBCs (Figure 2). Here, we speculate
on the potential of anti-metabolic strategies to enhance the efficacy
of immunotherapy and their associated challenges.

Targeting Molecular Mediators of the
Warburg Phenotype
Inhibiting tumor glucose uptake, glycolysis and lactate transport
have been proposed to reduce both tumor growth and
immunosuppression, thus rendering these strategies compelling
candidates for combination therapy. Specific and potent
inhibitors of the GLUT transporters have been identified and
investigated for their anti-tumor activity in pre-clinical studies
(131). For instance, BAY-876 and WZB117 GLUT-1 inhibitors
have shown anti-proliferative effects in breast tumor cells (132).
In particular, a subset of TNBC tumors expressing the
retinoblastoma (Rb) tumor suppressor with high glycolytic
activity and low OXPHOS are sensitive to GLUT1 inhibition
with BAY-876 (133). Since GLUTs are ubiquitously expressed,
the impact of their inhibition at peripheral organs still needs to
be well documented. Treatment with 2-DG, a non-metabolizable
glucose analog and inhibitor of hexokinase, restricts tumor
glycolysis and growth. Furthermore, combining 2-DG with
mitochondria-targeting agents synergistically eradicates
metabolic plasticity and enhances tumor regression in a TNBC
xenograft model (134). Inhibition of glycolysis by 2-DG also
dampens tumor cell production of G-CSF and GM-CSF in
TNBC models, thus restricting MDSC development (86).
Similarly, Dichloroacetate (DCA), an agent that shifts
metabolic flux from glycolysis to OXPHOS, has shown efficacy
in restricting tumor growth, specifically in tumor types with
dysfunctional mitochondrial function such as TNBC (135).
However, glycolysis inhibition beyond tumor cells could
adversely affect T cell activation and trigger the induction of
immunosuppressive Tregs and M2 TAMs (136). Notably, it has
been argued that inhibiting glycolysis could drive T cells to a
memory phenotype, a silver lining for long-term anti-tumor
response (137, 138). Another approach to reduce glucose uptake
in tumor cells and improve ICB response involves limiting
glucose availability using anti-hyperglycemic biguanide drugs
such as metformin and phenformin and glucose-limiting dietary
interventions (139, 140). In murine B16 and MC38 melanoma
models, combining anti-PD-1 treatment with metformin
significantly reduced tumor growth by metabolic remodeling,
reduced tumor hypoxia and improved T cell infiltration and
function, as compared to either treatment alone (141). This
combination treatment is currently under investigation in
human clinical trials for advanced melanoma and non-small
cell lung cancer (NSCLC) (NCT04114136) (142). Further,
metformin can induce PD-L1 glycosylation and degradation
thereby enhancing CTL activity and improving the efficacy of
immunotherapy (143). While these studies appear promising, it
should be noted that the effects of systemic interventions are
pleiotropic and require careful investigation for off-target effects
in combination with immunotherapy.
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Targeting lactate dehydrogenases, in particular LDHA, offers
another lucrative approach to alter the balance in tumor
metabolic needs and to shape the composition and orientation
of the immune microenvironment. Treatment with LDHA
inhibitors such as oxamic acid, FX11, galloflavin, and 1-
(phenylseleno)-4-(trifluoromethyl) benzene (PSTMB)
demonstrate anti-proliferative effects in TNBC and other
cancer models (144–146). Furthermore, treatment with oxamic
acid enhanced CTL IFN-g production, promoted DC
differentiation, improved TNF secretion in monocytes, and
abrogated M2 macrophage polarization in in vitro co-culture
models (78, 89, 109, 120). Similarly, LDHA knockdown
enhanced T cell infiltration and reduced the number of TAMs,
leading to improved survival in the murine 4T1 TNBC model
(147). LDHA depletion was also found to decrease MDSC
development, improve NK cell cytotoxicity and hence, enhance
anti-tumor immune response in multiple murine tumor models
(81, 86). Interestingly, LDHA and PD-L1 are both negatively
regulated by miR-34a and correlate with poor prognosis in
TNBC, providing rationale for combining ICB therapy with
LDHA inhibition (148). In accordance, lactate-mediated
upregulation of PD-L1 has been observed in lung cancer and
melanoma (74, 149). LDHA abrogation in the murine B16F10
melanoma model improved response to anti-PD-1 treatment,
accompanied by an increase in tumor infiltration of CD8+ T cells
and NK cells, increase in production of IFN-g and granzyme B,
and decrease in Treg infiltration (149). Moreover, combining the
LDHA inhibitor GSK2837808A with ACT in a syngeneic murine
melanoma model profoundly improved the anti-tumor response
and survival compared to either LDHA inhibition or ACT alone
(98). However, LDHA inhibitors have not yet successfully
transitioned into clinical trials due to limited membrane
permeability and on-/off-target toxicity (150). Moreover, the
impact of LDHA inhibition on the viability and cytotoxicity of
TILs needs to be explored extensively considering their need of
glycolysis for activation.

As lactate transporters also play a key role in metabolic
adaptation, their inhibition may provide another way to induce a
metabolically favorable TME for immune cells. Indeed, MCT1/4
inhibition improved CD8+ T cell functionality in vitro, and the
MCT4 inhibitor 7acc1 enhanced NK cell cytotoxicity and
attenuated tumor growth in the murine 4T1 TNBC model (147).
Although the MCT1/2 inhibitor AR-C155858 did not show any
effect on tumor growth in the murine 4T1 TNBC model (151), its
analogue AZD3965 is currently being assessed in a phase I clinical
trial in solid tumors, diffuse large B cell lymphoma, and Burkitt’s
lymphoma (NCT01791595). Interestingly, the non-steroidal anti-
inflammatory drug (NSAID) diclofenac was found to be a potent
inhibitor of MCT1/4 and to reduce intra-tumoral lactate levels,
concomitant with inhibition of tumor growth and Treg infiltration
in a glioma model (152). A more recent study explored the
molecular mechanisms of diclofenac-mediated tumor inhibition
using various co-culture and murine tumor models (153). Of
note, the authors found that diclofenac alone or in combination
with theMCT1/2 inhibitor AZD3965 didn’t negatively impact T cell
viability and effector functions despite reducing the glycolytic
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activity of the cells due to their metabolic adaptability and shift to
OXPHOS. Treatment of 4T1 cells with diclofenac reduced the
expression of MCT1 and LDHA, while increasing major
histocompatibility complex (MHC)-I and MHC-II surface
expression. Furthermore, diclofenac increased tumor infiltration
of activated T cells and IFN-g+ NK cells and delayed tumor
growth in the 4T1 TNBC mouse model. Combining diclofenac
treatment with single anti-PD-1 or dual checkpoint blockade (anti-
PD-1 plus anti-CTLA-4) inhibited tumor growth and increased
treatment response in two murine models, 4T1 TNBC and B16F10
melanoma. Although encouraging, the efficacy and safety profile of
this combination treatment remains to be confirmed. Recent pre-
clinical reports have also hypothesized that pharmacological
blockade of GPR81 may prove advantageous in improving
response to immunotherapy by enhancing DC antigen
presentation and dampening PD-L1 expression in lactate-rich
environments (72). Blocking GPR81-mediated lactate signaling by
gallein decreased the frequency of intra-tumoral Tregs and delayed
tumor growth in the murine 4T1 model (85). Of importance,
Gpr81-null mice did not exhibit any detrimental phenotypes,
indicating that off-target effects of targeting GPR81 may be
minimal. Nevertheless, high affinity GPR81 inhibitors are yet to
be identified.

Collectively, the promising findings of the aforementioned
studies suggest that inhibition of glycolysis through LDH and/or
MCT inhibition may improve treatment response to ICB.
However, it is paramount to minimize the risk of off-target
effects since it has become evident that immune cells and tumor
cells exploit common metabolic mechanisms and display an
overlap in expression of the major players in lactate biogenesis
and export. Moreover, ubiquitous expression of candidate targets
such as LDHA and MCT1/4 in normal tissues necessitates
extensive risk assessment of small-molecule inhibitors before
considering combination with immunotherapy.

Targeting of Metabolic Lactate Acidosis
One important aspect of lactic acid-mediated immunosuppression
within solid tumors is the detrimental effect of the accompanying
acidosis. Thus, repurposing drugs that modulate systemic
metabolism may represent an opportunity to improve the
response to immunotherapy. Oral bicarbonate therapy has been
extensively used to treat metabolic acidosis associated with chronic
kidney disease. Pre-clinical evidence for its utility in cancer therapy
was provided by a study that demonstrated its ability to buffer intra-
tumoral pH and inhibit tumor growth, concomitant with increased
CD8+ T cell infiltration in murine melanoma and pancreatic tumor
models (154). In addition, oral bicarbonate improved NK cell
infiltration and IFN-g production in a murine lymphoma model,
resulting in delayed tumor growth (104). Moreover, combining
bicarbonate therapy with anti-PD-1 or anti-CTLA-4 checkpoint
blockade or ACT improved tumor regression in comparison to
either treatment alone in murine cancer models. The efficiency of
bicarbonate therapy to improve cancer immunotherapy response in
humans remains to be confirmed.

Likewise, multiple proton pump inhibitors (PPIs), commonly
used as antacids, are being clinically investigated for their ability to
modulate intra-tumoral pH in solid tumors (155). PPIs can be
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administered as prodrugs that are activated in low pH
microenvironments to subsequently interact with and inhibit the
activity of H+/K+-ATPase, thus making them well-tolerated and
safe even at high doses. Treatment with the PPI Esomeprazole
showed an increase in tumor pH and improved effector function
of TILs in B16 melanoma xenografts without increasing activation
of T cell subsets isolated from peripheral organs (101). Combining
PPI treatment with ACT enhanced the anti-tumor effect and
overall survival. Surprisingly, several clinical studies assessing the
efficacy of PPIs in combination with anti-PD-1/PD-L1 therapy
have shown either no effect or an adverse effect on ICB response in
melanoma and NSCLC patients (156, 157). It is important to note
here that individual PPIs have different acid neutralizing abilities,
and therefore reduce the diversity of the gut microbiome at
varying degrees, which in turn is known to affect the response to
ICB. It may be prudent to assess gut microbiome diversity and
consider history of antibiotics use prior to treatment of cancer
patients with acidosis-reducing agents and ICB.

Targeting Immunometabolism
In addition to reducing the hostility of the TME, an alternative
strategy involves engineering autologous T cells to optimize
metabolic adaptation and confer more resistance to glucose-
limiting, lactate-rich conditions (158, 159). For example,
overexpression of phosphoenolpyruvate carboxykinase 1
(PCK1), a regulator of gluconeogenesis, could increase the
production of phosphoenolpyruvate (PEP) that is required for
sustained T cell effector function (160). Mechanistically, PEP
suppresses sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)
activity in glucose-deprived T cells and improves Ca2+ flux
and NFAT signaling required for T cell cytotoxicity.
Adoptive transfer of PCK1-overexpressing T cells into the
B16 murine melanoma model demonstrated improved
production of CD4+ T cell derived IFN-g and increased
expression of the M1 macrophage CD86 marker on TAMs,
collectively suppressing tumor growth and improving survival.
Similarly, overexpression of PPAR-gamma coactivator 1a
(PGC1a) restores mitochondrial dysfunction and biogenesis in
tumor-infiltrating T cells supporting enhanced anti-tumor
efficacy in B16 melanoma mice (161). Engineering chimeric
antigen receptor (CAR) T cells to include the 4-1BB/CD137
signaling domain promotes the development of CD8+memory T
cells with an OXPHOS phenotype that may be beneficial to
withstand metabolic competition within glycolytic TNBC
tumors, as opposed to inclusion of the CD28 domain that
induces a glycolytic phenotype in T cells (162). Thus,
metabolic preconditioning of immune cells by ACT can
enhance their persistence and effector function within the TME.
CONCLUSION

Anti-cancer therapy has proven most effective in combinatorial
settings, as tumors can quickly adapt to extrinsic cues. As such,
improving long-term response rates to immunotherapy requires
both direct and indirect modulation of anti-tumor immunity
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through a better understanding of the tumor-immune cell
interface. One of the many unanswered questions pertains to
the feasibility of targeting tumor cell metabolism without
negatively affecting immune cell metabolism in order to
enhance immunotherapy response. Ideally, metabolic
interventions should aim to target unique vulnerabilities of
tumor cells, without dampening anti-tumor immune function
and eliciting undesirable effects on peripheral organs—the
paradigm of “cellular selectivity based on demand” (136).
Although direct intra-tumoral injection of anti-metabolic
agents and immunotherapy in solid tumors such as breast
tumors is lucrative in principle (163), the effect of this mode of
delivery on normal mammary function requires investigation.
This is particularly relevant in the case of lactating breast cancer
patients since mammary epithelial cells considerably rely on
glucose uptake for lactose biosynthesis. In this regard, gaining
insight into the potential role of tumor-specific antigens, such as
LDHC, in cancer metabolism could aid the development of
specific inhibitors to circumvent the risk of adversely
impacting normal cells. Alternatively, small molecules
inhibiting lactate biogenesis or export could be delivered
specifically to tumor cells using polymeric nanocarriers that
are responsive to tumor-specific cues such as pH-sensitive
nanoparticles that could facilitate drug delivery to lactate-rich
tumor microenvironments (164).

The timing and sequence of the combinatorial approach also
requires optimization. For instance, targeting glycolysis or lactate
transport in tumor cells prior to ACT may reduce unfavorable
effects on immune function. As anti-metabolic therapies are
developed for cancer treatment, their efficacy and effects on anti-
tumor immune response requires close monitoring. Moreover, the
impact of metabolic heterogeneity as observed between TNBC
subtypes in addition to intra-tumoral heterogeneity, on the
response to immunotherapy and combinatorial approaches
requires in-depth investigation (165). Lastly, well-designed
interventional studies examining intra-tumoral or systemic
biomarkers to enable stratification of TNBC patients that may
benefit from combining immunotherapy with anti-metabolic
strategies are essential. Such biomarkers could include genetic
mutations or variants that have been associated with metabolic
reprogramming in TNBC (166) such as mutant p53 (19), BRCA1
mutations (167, 168), c-Myc amplification (169), and Rb
expression (133). Notably, investigation of congenital lactic
acidosis has identified distinct genetic variants that result in
defective mitochondrial function and drive the pathogenesis of
the disease (170) and hence, assessment of the effect of these
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genetic alterations on tumor metabolic phenotype would be of
interest in the search for prognostic biomarkers.

Although this review focuses on TNBC, it is important to note
that endocrine-resistant luminal breast cancer and trastuzumab-
resistant HER2+ breast cancer also exhibit metabolic
reprogramming, whereby the glycolysis rate and associated
lactate acidosis are increased (17, 171–173). Hence, in analogy
with the observed metabolic changes in TNBC, it is likely that the
glycolytic TME in treatment-resistant luminal and Her2+
tumors could disrupt immune surveillance and negatively
affect the response to immunotherapy. However, in
comparison to TNBC tumors, HER2+ and in particular
luminal or hormone receptor positive tumors display a
significantly lower infiltration of TILs (174), potentially
explaining the inferior efficacy of immunotherapy in these
tumors. Moreover, in contrast to TNBC, the presence of a
sparse TIL infiltration in hormone receptor positive tumors
has been associated with worse clinical outcome (175, 176).
These observations highlight the importance of considering the
immune landscape characteristics of each breast cancer subtype
as well as the auxiliary role of lactate acidosis in modulating anti-
tumor immunity in order to predict immunotherapy response.
Immunotherapy strategies such as ACT and CAR-T therapy
have shown great potential to improve the immune
permissiveness of luminal breast tumors (177), and could likely
be used in combination with anti-metabolic strategies in
endocrine-resistant tumors.

To conclude, identification and development of the next
generation of immune-based therapeutic approaches that can
improve the intra-tumoral metabolic landscape and hence
augment the anti-tumor response is gaining interest and
necessitates extensive research in this direction.
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Background: High expression of integral membrane protein 2A (ITM2A) was reported to
be associated with favorable prognosis in several solid tumors including breast cancer.
This study aimed to investigate the role of ITM2A in breast cancer, especially in respect to
tumor microenvironment.

Methods: ITM2A expression was evaluated based on qRT-PCR results on breast cancer
specimens, as well as TCGA and GEO datasets. The influence of ITM2A expression on
breast cancer cell proliferation and tumor growth were evaluated by CCK-8 assay,
clonogenic assay, and murine xenograft models. Transwell assay was performed to
observe the changes of invasion and migration capacity in breast cancer cells. To
determine the biological functions of ITM2A, differentially expressed genes (DEGs) were
screened based on RNA-sequencing data of MCF-7 cells overexpressed ITM2A. Then,
functional annotation on DEGs was given by Gene Ontology and KEGG analysis. The
stimulation on programmed cell death ligand 1 (PD-L1) expression when ITM2A
overexpressed was determined by flow cytometry. Meanwhile, the correlation on
expression levels between PD-L1 and ITM2A was tested via qRT-PCR on 24 breast
cancer tissues, as well as public database.

Results: We demonstrated that ITM2A was frequently downregulated in breast cancer.
Patients with high expression levels of ITM2A had longer overall survival and relapse free
survival. Overexpression of ITM2A inhibited proliferation and impaired cells capacity of
invasion and migration in vitro and in vivo. The DEGs in breast cancer cells overexpressed
ITM2A were found to be associated with immunity responses. Moreover, ITM2A was
found to facilitate breast cancer cells to express PD-L1. The correlation between PD-L1
and ITM2A was verified with both qRT-PCR assay and public database. Additionally, it
was found that breast cancer had higher ITM2A expression frequently had more tumor-
infiltrating lymphocytes (TILs).

Conclusion: In summary, we found that high expression of ITM2A reduced the
aggressivity of breast cancer cells and had a favorable effect on outcomes of patients
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with breast cancer. Moreover, ITM2A induced PD-L1 expression in breast cancer cells
was accompanied with higher TILs numbers in tumor microenvironment.
Keywords: ITM2A, breast cancer, prognosis, PD-L1, immune infiltration
INTRODUCTION

Integral membrane protein 2A (ITM2A) belongs to the Type II
Integral Membrane protein (ITM2) family, along with ITM2B
and ITM2C (1). This family belongs to the BRICHOS
superfamily. ITM2A is preferentially expressed in T lineage
cells among hematopoietic cells (2). Now we concentrate on
the biological functions that ITM2A performs in breast cancer.

Breast cancer is frequently diagnosed among females globally.
In the United States, it is estimated that 281,550 new cases of
invasive breast cancer will be diagnosed in females in 2021 (3).
Simultaneously an estimated 43,600 breast cancer deaths will
occur. The treatments targeting breast cancer have been
continually developed and advanced for more than 100 years.
Those treatments include mastectomy, conserving surgery,
endocrine therapy, and common anti-tumor regimens—
chemotherapy and radiation therapy. Currently, the 5-year
survival of patients with breast cancer is over 90% (4).
Nevertheless, the survival of patients with triple-negative breast
cancer (TNBC) is quite poor, resulting from lack of robust
treatment strategies (5). The remarkably heterogeneous TNBC
tumor microenvironment has added disadvantage to treatments.
Whenever the clinical stage, chemotherapy is the primary
established treatment option for patients with TNBC (5). In
addition, metastatic breast cancer frequently has poor clinical
outcomes with a 5-year survival rate at 26% (4). It is urgent to
explore robust regiments to improve outcomes of patients with
TNBC or metastatic breast cancer.

As a novel therapeutic approach that releases the brake on
effector T cells activation, immune checkpoint blockade (ICB)
therapy has achieved success in several solid malignancies. The
most deeply investigated ICBs, including anti-cytotoxic T
lymphocyte associated antigen 4 (CTLA-4), anti-programmed
death 1 (PD-1), and anti-programmed death ligand 1 (PD-L1),
are developed to bypass the immune checkpoint, with the aim of
rescuing and enhancing the functions of antitumor T effector
cells (6). Pembrolizumab is a representative reagent of anti-PD-1
monoclonal antibody. There was a phase 2 trial that
demonstrated that women with high risk, stage II/III, ERBB2-
negative breast cancer had improvement in pathological
complete response (pCR) rate when pembrolizumab was added
to standard neoadjuvant chemotherapy over patients who
received chemotherapy alone (7). Pembrolizumab also has
showed durable antitumor activity as first-line therapy for
patients with PD-L1-positive metastatic TNBC (mTNBC) (8),
as well as demonstrated durable antitumor activity in a subset of
patients with previously treated mTNBC (9). Currently, a phase
3 clinical trial showed that among patients with stage II/III
is Free Survival; RFS, Relapse Free
e Specific Survival.
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TNBC, patients who received pembrolizumab plus neoadjuvant
chemotherapy had a significantly higher rate of pCR than those
who received placebo plus neoadjuvant chemotherapy (10).
Normally, the response rate in patients with other solid tumors
when receiving anti-PD-1/PD-L1 antibodies hangs on
multifactorial parameters, including PD-L1 expression, tumor
mutational load/microsatellites status, and intensity of
intratumoural CD8+ cytotoxic T cells (11–13). In breast
cancer, PD-L1 expressed on the surface of tumor cells as well
as infiltrating lymphocytes (14). Meanwhile, PD-L1 expression
associated with tumor-infiltrating lymphocytes (TILs) was found
to be a positive prognostic feature in breast cancer (14, 15).

In this study, we explored if ITM2A could influence the
proliferation and aggressivity of breast cancer cells. Meanwhile,
RNA-sequencing (RNA-seq) of breast cancer cells that
overexpressed ITM2A was conducted. We found ITM2A was
associated with immunity responses. More importantly, ITM2A
was found to induce PD-L1 expression as well as be associated
with TILs.
METHODS

Public Database Analysis
For comparing ITM2A expression between breast cancer
samples and normal samples, gene expression profiles
(GSE29413 containing 12 normal tissues and 54 breast cancer
samples; GSE61304 containing 4 normal tissues and 58 breast
cancer tissues) were downloaded from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
In addition, gene expression date of n = 110 breast cancer tissues
and paired normal tissues were selected from TCGA (https://
portal.gdc.cancer.gov/). Tumor Immune Estimation Resource
(TIMER; https://cistrome.shinyapps.io/timer/) was utilized to
exam the correlation between ITM2A expression and TILs (16).

Specimens Collection and Processed
Human tumor samples were obtained from patients diagnosed with
invasive breast cancer who had not received neoadjuvant
chemotherapy. A total of 24 breast cancer tissues and paired
adjacent tissues were obtained during surgery at the Department of
Thyroid andBreast Surgery, TongjiHospital, TongjiMedical College
of HUST. Specimens were immersed in cold RNA later solution
overnight and then stored at -80°C. Each informed consent was
signed by patients and approval of experiment on human specimens
was received from the Ethics Committee of Tongji Hospital.

Survival Analysis
For survival analysis, the online tools—Kaplan-Meier Plotter
(http://kmplot.com/) (17) and PrognoScan (http://www.
February 2021 | Volume 10 | Article 581733
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prognoscan.org/) (18)—were used to detected the overall
survival (OS), progression free survival (PFS), and distant
metastasis free survival (DMFS) of patients grouped by the
median of ITM2A mRNA.

Cell Culture
MCF-7 and MDA-MB-231 cells were obtained from the Chinese
Academy of Science cell bank (Wuhan, China). The cell lines
were authenticated by using short tandem repeat (STR) DNA
profiling (ABI 3730XL Genetic Analyzer, Life Technologies,
Waltham, MA, USA). MCF-7 cells were cultured in DMEM
supplemented with 10% FBS and 1% penicillin/streptomycin
(Invitrogen, USA) at 37°C with 5% CO2. MDA-MB-231 cells
were cultured in L-15 (HyClone, USA) supplemented with 10%
fetal bovine serum (FBS) and 1% penicillin/streptomycin
(Invitrogen, USA) at 37°C. These cells passaged less than 30
times during our experiment.

Transfection
The MCF-7 and MDA-MB-231 cells were grown in 6-well plate
to arrive at 50%–60% or 70%–80% confluence respectively. Then
cells were transfected with 2.0 ug empty vector or ITM2A
plasmid using X-tremeGENE HP DNA Transfection Reagent
(Roche, USA) according to the manufacturer’s instructions.
After transfection for 48 h, cells were harvested or passaged for
subsequent experiments.

Quantitative Real-Time PCR
Total RNA was extracted from tissues or cell pellets using Trizol
reagent (Invitrogen, USA) and reversely transcribed using
PrimeScript RT Reagent Kit (Takara Bio Inc.). The expression
levels of interested genes were measured in triplicate using SYBR
Green qPCRMix (Toyobo, China). Primer sequences were as follows.
ITM2A Forward: 5´-ATCCTGCAAATTCCCTTCGTG-3´, Reverse:
5´- CAGGTAAGCAGTCATTCCCTTT-3´; PD-L1 Forward: 5´- CT
GTCACGGTTCCCAAGGAC -3´, Reverse: 5´-GGTCTTCCTC
TCCATGCACAA-3´; GAPDH Forward: 5´- CTCACCGGATG
CACC AATGTT -3´ Reverse: 5´-CGCGTTGCTCACAAT
GTTCAT -3´. Relative mRNA expression was calculated using the
2-DDCT method, and GAPDH was used as an internal control (19).

Immunoblotting Analysis
For immunoblotting, cells were lysed in iced RIPA buffer
supplemented with protease and phosphatase inhibitors
(Roche, USA). After centrifuging in high speed, the lysates
were purified and then were separated in 5–12% SDS-PAGE
gels. The lysates were transferred to PVDF membranes and
blocked for 1 hour with 5% bevor serum albumin (BSA). The
primary antibodies we used were as follows: anti-ITM2A
(Proteintech, Wuhan, China); anti-a-Tubulin (Proteintech,
Wuhan, China). Membranes were incubated with a species-
matched HRP-conjugated secondary antibody for 1 h. a-
Tubulin was used as loading controls to quantify the results.

Clonogenic Assay
For clonogenic assay, cell lines transduced with empty vector or
ITM2A were seeded in 6-well plates (1,000 cells per well),
Frontiers in Oncology | www.frontiersin.org 347
typically for 14 days. Cells were fixed with 4% formaldehyde
for 15 min followed by crystal violet staining for 15 min.

Cell Counting Kit-8 (CCK-8) Assay
Cell viability was determined using CCK-8 (DOJINDO, Japan)
assay. Briefly speaking, cells transfected with indicated plasmid
were plated in 96-well plates and cultured for 24–72 hours. Then
the medium in each well was replaced with 100 ul fresh culture
medium supplemented with 10 ul CCK-8. After incubation for 2
hours at room temperature in the dark, the absorbance at 450 nm
wave length was read by microplate reader (Bio-Rad, USA). Cell
viability was evaluated based on the absorbance value relative to
wells plating no cells.

Transwell Migration and Invasion Assay
Migration and invasion assay were performed according to the
manufacturer’s instructions (Corning, USA). Briefly, about 5 ×
104 MDA-MB-231 cells transfected with empty vector or ITM2A
plasmid were plated into upper chamber coated with 200 ul L-15
with 10% FBS. In the lower chamber, 500 ul medium with 40%
FBS was used as a chemotactic agent. Nineteen hours later, the
insert was removed. Cells in the microporous membrane were
washed with PBS and then stained with crystal violet at room
temperature for 10–15 min. As invasion assay, the upper
chamber was coated with Matrigel besides medium and 10%
FBS, and the incubation time was 36 hours. Cells in the
microporous membrane were counted in five random fields
per chamber.

Flow Cytometric Analysis
The FITC Annexin V Apoptosis Detection Kit I (BD Biosciences,
USA) was used to detect apoptosis rate of cells. The collected fresh
cell pellets were washed using cold PBS and then suspended by 1 ×
binding buffer. Next, 5 ul of Annexin V and 5 ul of PI was added
into 300 ul of 1 × binding buffer contained around 1 × 105 cells.
Cells were gently mixed and then incubated for 15 min at room
temperature in the dark. Then cells were analyzed on the FACS
Calibur System (Beckman Coulter). The PE Mouse Anti-Human
PD-L1 (Cat 329706; BioLegend, Inc.), APC Mouse Anti-Human
PD-L2 (Cat 345507; BioLegend, Inc.), and PerCP/Cyanine5.5
Mouse Anti-Human B7-H3 (Cat 351009; BioLegend, Inc.) were
used to detect PD-L1, PD-L2, and B7-H3 in MCF-7 and MDA-
MB-213 cells. First, fresh cell pellets were collected and washed
with PBS, then were suspended in 300 ul of PBS containing 1‰
BSA and incubated with corresponding antibody for 30 min on ice
in the dark. Finally, staining cells were washed and then analyzed
on FACS Calibur System (Beckman Coulter). FlowJo (ver. 10.0)
was used for data acquisition and analysis.

Mouse Xenograft Studies
Female BALB/c null mice between the ages of 4–6 weeks were
purchased from the Beijing HFK Bio-Technology Co., Ltd. The
mice were bred in a specific-pathogen free facility. Prepared
MCF-7 cells were inoculated subcutaneously under axilla (1 ×
106 cells per mouse). Once the tumors were tangible, its volume
was calculated using the formula 0.5 × (minor tumor axis)2 ×
(major tumor axis) once in 3 days. Before the nude mice were
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sacrificed, magnetic resonance imaging examination (plain scan
and enhanced) was conducted to check the growth of tumors in
the body. All animal procedures were performed in accordance
with the approved Guide for the Care and Treatment of
Laboratory Animals of Tongji Hospital and approved by the
Ethics Committees of Tongji Hospital.

RNA Sequencing on MCF-7 Cells and
DEGs Screening
MCF-7 cells were transfected with 2.0 ug empty vector or ITM2A
plasmid as above described. Three days after transfection, theMCF-
7 cells were collected using trypsin (Cat 0458-250G; Lifescience).
Then total RNA was derived from cells pellets using Trizol
(Invitrogen, USA) according to the manufacturer’s protocol. A
total amount of 2 ug RNA per samples was sent to BerryGenomics
(Beijing, China) for next generation sequencing. Briefly, mRNAwas
purified from total RNA and cDNA was synthesized. Then the 3’
ends of DNA fragments were adenylated and adaptor with hairpin
loop structure were ligated. After PCR, the libraries were sequenced
on an Illumina NovaSeq platform to generate 150 bp paired-end
reads, according to the manufacturer’s instructions. The DEGs
between ITM2A overexpressed cells and nature control cells were
identified using the DEGseq R package according to below criterions:
the adjusted p < 0.05 and |log2-fold-change| > 2.

Functional Annotation and Enrichment
Analysis
Gene Set Enrichment Analysis (GSEA) was performed on RNA-
Seq profiles of 1,053 breast cancer stratified by ITM2A mRNA
expression levels using GSEA software as previously described
(20). For DEGs derived from ITM2A overexpressed cells, the R
packages “clusterProfiler” and “enrichplot” were used to conduct
Gene Ontology (GO) function and Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis (21). It was
considered statistically significant when the adjusted p < 0.05.

Statistical Analysis
Statisticsanalysis inthisexperimentwasconductedbySPSS22.0and
GraphPad 8.0. Comparisons between two groups were determined
by two tailed Student’s t-test or chi-square test. The data were
expressed as mean ± standard deviation from at least three
independent experiments. The correlation of gene expression was
accessed by Pearson’s correlation coefficient. P-value < 0.05 was
taken as statistically significant and “ns” representedP-value≥ 0.05;
“*” represented P-value < 0.05, and “**” represented P-value < 0.01.
RESULT

ITM2A Was Decreased in Breast Cancer
and Positively Associated With Favorable
Survival
First, we analyzed ITM2A expression in collected specimens and
found that ITM2A was decreased in breast cancer compared to
normal tissues (Figure 1A). The down regulation of ITM2A in
Frontiers in Oncology | www.frontiersin.org 448
breast cancer tissues was further verified in GEO and TCGA
datasets (Figures 1B, C). This result was square with the research
performed by Cefan Zhou et al. (22). Additionally, ITM2A was
observed to be decreased in acute myeloid leukemia (23), cervical
cancer (24), and ovarian cancer (25). Based on the TIMER
database, there were more than 10 types of cancer with lower
expression of ITM2A (Supplementary Figure 1). We then
evaluated the prognostic value of ITM2A mRNA in patients
with breast cancer. It was proved that patients with increased
ITM2A had longer overall survival (OS) (HR = 0.57 [0.46–0.71],
Log-rank P = 2.4×10-7) (Figure 1D), disease free survival (DFS)
(HR = 0.67 [0.60–0.75], Log-rank P = 1.3×10-12) (Figure 1E),
and distant metastasis free survival (DMFS) (HR = 0.64 [0.53–
0.78], Log-rank P = 8.1×10-6) (Figure 1F). PrognoScan is a
database for met-analysis of the prognostic value of genes (26). In
PrognoScan, high expression of ITM2A in BC was found to be
associated with longer relapse free survival (RFS), disease specific
survival (DSS), as well as OS and DMFS (Table 1). Collectively,
we found that ITM2A was positively associated with
favorable survival.

ITM2A Inhibited Migration and Promoted
Apoptosis of Breast Cancer Cells
To get an in-depth understanding of the role of ITM2A in the
tumorigenicity of breast cancer, plasmid encoding ITM2A (OE-
ITM2A) or empty vector was transfected into two frequently
used breast cancer cell lines: MCF-7 and MDA-MB-231 cells.
Overexpression of ITM2A by OE-ITM2A transfection was
validated by qRT-PCR (Figure 2A) and immunoblotting
(Figure 2B). Meanwhile, ITM2A overexpressed cells had a
reduced capacity to immigrate and invade (Figures 2C, E).
Moreover, we observed a higher apoptosis rate in OE-ITM2A
transfected cells than in empty vector transfected cells using
FASC (Figures 2D, F). Our findings demonstrated that ITM2A
could inhibit the migration and invasion of breast cancer cells. At
the same time ITM2A had the ability to promote apoptosis in
breast cancer cells.

Overexpression of ITM2A Decreased the
Proliferation of Breast Cancer In Vitro and
In Vivo
To validate the inhibitory proliferation in breast cancer cells with
ITM2A overexpression in the long term, we then seeded cells
transfected with plasmid into 6-well plates and counted the
number of clones 14 days later. It was proved that both MCF-7
and MDA-MB-231 formed fewer clones when OE-ITM2A was
transfected (Figures 3A, B). Meanwhile, cell viability assays showed
that proliferation of breast cancer cells was significantly attenuated
after OE-ITM2A transfection (Figures 3C, D) at 72 hours. To
explore how the ITM2A expression influence the breast cancer
growth in vivo, we then planted MCF-7 cells that transfected with
OE-ITM2A or empty vector under axilla of female BALB/c null
mice. Those mice did not receive any treatments and were sacrificed
20 days later. It was proved that ITM2A overexpressed tumors were
notably smaller than ITM2A normally expressed tumor with
respect to MRI test and tumor size (Figures 3E–G). These results,
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in summary, demonstrated that ITM2A could impair the
proliferation of breast cancer in vitro and in vivo.

Overexpression of ITM2A Induced
Immunity Relate Responses
In order to understand the biological role of ITM2A in breast
cancer cells, we performed RNA sequencing (RNA-seq) on
Frontiers in Oncology | www.frontiersin.org 549
MCF-7 cells that transfected with OE-ITM2A plasmid or
vectors. The differentially expressed genes (DEGs) were derived
(Supplementary Figure 2) and then mapped to GO terms and
KEGG pathways. The most DEGs that map to GO terms were
chemokine and interleukin, such as CCL3, CXCL8, IL24, and
TNF (Figure 4A), which indicated a pro-inflammatory effects
(27, 28). Consistent to these genes, the top ranked GO terms
A B C

D E F

FIGURE 1 | ITM2A was down-regulated in breast cancer and positively associated with favorable outcomes. (A) Comparison of ITM2A expression in breast cancer
tissues with that of paired adjacent normal tissues. (B) Boxplot showing expression level of ITM2A in cancer tissues and normal tissues in the breast profile
GSE29431 and GSE61304. (C) Comparison of ITM2A expression in cancer tissues with that of paired adjacent normal tissues in the breast TCGA dataset. (D-F)
Kaplan-Meier survival curves depicting the OS (D), RFS (E), and DMFS (F) of patients with breast cancer stratified by ITM2A mRNA levels. ***p < 0.001. OS, overall
survival; RFS, relapse free survival; DMFS, distant metastasis free survival.
TABLE 1 | Survival analysis of ITM2A mRNA in breast cancer patients (the PrognoScan database).

Dataset Endpoint Probe ID Number COX P-value HR [95% CI-low CI-up]

GSE19615 DMFS 202747_s_at 115 0.0342 0.39 [0.16–0.93]
GSE19615 DMFS 202746_at 115 0.0166 0.43 [0.22–0.86]
GSE11121 DMFS 202747_s_at 200 0.0370 0.70 [0.51–0.98]
GSE11121 DMFS 202746_at 200 0.0080 0.57 [0.37–0.86]
GSE2034 DMFS 202747_s_at 286 0.0042 0.75 [0.62–0.91]
GSE2034 DMFS 202746_at 286 0.0241 0.75 [0.58–0.96]
GSE1456 RFS 202747_s_at 159 0.0050 0.66 [0.49–0.88]
GSE1456 OS 202746_at 159 0.0005 0.40 [0.26–0.62]
GSE1456 DSS 202747_s_at 159 0.0031 0.60 [0.43–0.84]
GSE1456 OS 202747_s_at 159 0.0017 0.63 [0.47–0.84]
GSE1456 RFS 202746_at 159 0.0001 0.43 [0.28–0.66]
GSE1456 DSS 202746_at 159 0.0001 0.37 [0.22–0.62]
GSE3494 DSS 202746_at 236 0.0361 0.68 [0.47–0.98]
GSE3494 DSS 202747_s_at 236 0.0266 0.74 [0.57–0.97]
GSE49226 DFS 202747_s_at 249 0.0433 0.80 [0.65–0.99]
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concentrated on cell chemotaxis (Figure 4A). When matched
with KEGG pathway, the DEGs enriched in immunity related
response (Figure 4B). The top three ranked pathways were
cytokine-cytokine receptor interaction, NF-Kappa B signaling
pathway, and viral protein interaction with cytokine and
cytokine receptor. Additionally, GSEA analysis implied ITM2A
was active in immunity related pathways (Supplementary
Figure 3). To our knowledge the association between ITM2A
and immunity response in breast cancer has never been reported.
Thus, we focused on the role of ITM2A in breast cancer on
context of immunity.

ITM2A Increased PD-L1 Expression in
Breast Cancer Cells
Anti-PD-L1 therapy has been approved in TNBC treatment and
PD-L1 expression levels were related to clinical response to these
therapies (8). In addition, some evidence demonstrated other
Frontiers in Oncology | www.frontiersin.org 650
signaling roles of the PD-L1 molecule, including pro-survival,
reducing mTOR activity, and glycolytic metabolism (29). We
then explored if the ITM2A expression is associated with PD-L1
expression. Analysis based on the TIMER database revealed a
positive correlation between ITM2A and PD-L1 in lumina and
basal subtypes (Figure 5A). In addition, this correlation was
verified by qRT-PCR, which quantified the relative expression
levels of ITM2A and PD-L1 of 24 breast cancer specimens
(Figure 5B). Furthermore, ITM2A could significantly
upregulate the PD-L1 expression in both MCF-7 and MDA-
MB-231 cel l s (Figures 5C, D) , a long with PD-L2
(Supplementary Figures 4A, B) and B7-H3 (Supplementary
Figures 4C, D). PD-L2 is the second ligand for PD-1 and was
reported to be associated with PD-L1 expression in melanoma,
lung, and kidney cancer (30). Those results demonstrated that
ITM2A could upregulate PD-L1, PD-L2, and B7-H3 expression
in breast cancer cells.
A B

C D

E F

FIGURE 2 | Overexpression of ITM2A inhibited migration and promoted apoptosis of breast cancer cells. MCF-7 and MAD-MB-231 cells were transfected with the indicated
plasmid. qRT-PCR (A) and immunoblotting (B) were used to test ITM2A expression in mRNA and protein levels 48 hours after transfection. (C, E) Migration and invasion
assay in MDA-MB-231 cells. (D, F) Apoptosis rate in MCF-7 and MDA-MB-231 cells 48 hours after transfection. *p < 0.05, **p < 0.01.
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ITM2A Expression Was Positively
Correlated With TILs Quantity
The TILs have been considered as reliable biomarkers to predict
breast cancer patients’ response to chemotherapy, aswell as ICB (31,
32). Above results indicated the correlation between ITM2A and
immunity response, aswell as PD-L1 expression.We then examined
if the ITM2A could predict the TILs intensity. The correlation
between ITM2A expression and six TILs types (B cells, CD8+ cells,
CD4+ cells, macrophage, neutrophil, and dendritic cell) were
analyzed based on TIMER database. A positive correlation ranged
from intermediate to high between ITM2A and CD8+ T cells was
frequently observed over all subtypes of breast cancer (Figures 6A–
D). The similar results were found in another five common cancer
types, including lung adenocarcinoma (SupplementaryFigure 5A),
lung squamous cell carcinoma (Supplementary Figure 5B),
Frontiers in Oncology | www.frontiersin.org 751
colon adenocarcinoma (Supplementary Figure 5C), head and
neck cancer (Supplementary Figure 5D), and prostate
adenocarcinoma (Supplementary Figure 4E).
DISCUSSION

Before this study, there were a handful of studies that investigated
the functions of ITM2A in tumor. A previous study found that
ITM2A could inhibit ovarian cancer growth and induce G2/M cell
cycle arrest, indicating that ITM2Awas a novel tumor suppressor in
ovarian cancer (25). Another study demonstrated that ITM2A
inhibited breast cancer cells growth via enhancing autophagy
induction through a mTOR-dependent manner (22). In this
study, we explored the roles that ITM2A played in breast cancer.
A

C D

E F

G

B

FIGURE 3 | ITM2A overexpression decreased proliferation of breast cancer in vitro and vivo. (A, B) Clone formation was stained with crystal violet 14 days after
seeded. (C, D) Growth curves of MCF-7 (left) and MDA-MB-231 cells (right) transfected with the indicated plasmid were measured by CCK-8 assay. (E-G) ITM2A
expression inhibited the proliferation of breast cancer cells in vivo. (E) Photographs of dissected tumors from sacrificed mice. (F) Growth curves of indicated tumors
in BALB/c null mice. (G) Representative images of enhanced MRI in transverse section. “L” represents the major tumor axis and “W” represents the minor tumor
axis. *p < 0.05, **p < 0.01.
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It was confirmed that ITM2A was decreased in breast cancer
tissues. ITM2A inhibited breast cancer cells growth in vitro and
in vivo, and reduced the aggressivity of breast cancer via impairing
its immigratory and invading capacity. We also found that high
expression of ITM2A was associated with a longer OS and RFS, etc.
However, ITM2B or ITM2C expression has no correlation with OS
and PFS of patients with breast cancer (data not shown). With
studies that reported that loss of ITM2A was a poor OS factor of
cervical cancer (33), hepatocellular carcinoma (34), and acute
myeloid leukemia (23), together with the fact that ITM2A has
been observed to significantly decrease in those carcinoma types, we
implied that ITM2A might be a novel tumor suppressor in those
carcinomas that included breast cancer. Consistent to this point,
our study demonstrated that upregulation of ITM2A reduced the
aggressivity of breast cancer cells. Also, we found that ITM2A was
correlated with immune response. Additionally, it was observed
that ITM2A not only positively correlated with intensity of TILs
Frontiers in Oncology | www.frontiersin.org 852
and PD-L1 expression but also stimulated expression of PD-L1,
PD-L2, and B7-H3 in breast cancer cells.

It is contentious to consider how critical the ITM2A is for the
development of T effector cells (T effs). Tzong-Shyuan Tai et al.
demonstrated that ITM2A plays a minimal role in development
of T cells. On the other hand, other studies reported that
overexpression of ITM2A in murine thymocytes resulted in a
partial downregulation of CD8 in the CD4+CD8+ double
positive thymocytes (35). What’s more, a study reported that
ITM2A might be a susceptibility gene for graves’ disease (GD) in
the Xq21.1 locus, strengthening the role of ITM2A in the
immune system. This provoked our concentration on the
association between ITM2A and tumor immunity in breast
cancer. On the one hand, existing evidence demonstrated an
association between ITM2A and immunity although this
association was unclear. On the other hand, ITM2A is
probably closely related to TILs and shapes the tumor
A

B

FIGURE 4 | Overexpression of ITM2A induced immunity related response. (A) DEGs were derived based on RNA-seq data on MCF-7 cells that overexpressed
ITM2A. Then the DEGs were mapped to GO terms and the top 10 ranked GO terms are showed. (B) The top-10 ranked KEGG pathways in which DEGs enriched.
DEGs, differentially expressed genes; RNA-seq, RNA-sequencing; GO, gene ontology.
February 2021 | Volume 10 | Article 581733

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. ITM2A With PD-L1 in BC
microenvironment, which influences patients’ outcomes and
treatment strategy once it is proved to play roles in T cells
development. There are abundant studies showing that TILs can
provide prognostic value for patients with breast cancer. For
Frontiers in Oncology | www.frontiersin.org 953
example, a pooled analysis of 3,771 patients treated with
neoadjuvant therapy evaluated the correlation between TILs
and prognosis in different subtypes of breast cancer. It was
proved that increased TILs were associated with longer DFS in
A B

C D

FIGURE 5 | ITM2A increased PD-L1 expression in breast cancer cells. (A) Correlations between PD-L1 and ITM2A expression in lumina breast cancer (left) and basal
breast cancer (right) based on TIMER database. (B) Correlation between PD-L1 and ITM2A expression in collected 24 breast cancer specimens. (C, D) MCF-7 and MDA-
MB-231 cells were transfected with indicated plasmid. PD-L1 expression in these cells 48 hours after transfection was tested by flow cytometric analysis. ***p < 0.001.
A

B

C

D

FIGURE 6 | ITM2A expression was positively correlated with TILs quantity. Correlations between ITM2A expression and six TILs types in breast cancer were
evaluated based on TIMER database. Analysis in all subtypes of BC (A), basal (B), HER-2 (C), and luminal subtypes (D).
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TNBC and HER2-positive breast cancer, longer OS in TNBC,
and shorter OS in luminal B tumors (36). Our study
demonstrated the positive correlation between ITM2A
expression and TILs in breast cancer. Additionally, TILs and
PD-L1 are helpful to choose patients who will receive more
benefits from anti-PD-1/PD-L1 therapy. Patients with breast
cancer that has over 1% cells stained with anti-PD-L1 antibody
have higher rate of pRC than patients who expressed less than
1% anti-PD-L1 stained cells (8). Thus, we evaluated the relevance
between ITM2A and TILs and PD-L1 expression based on
TIMER. Importantly, we confirmed that ITM2A could
stimulate PD-L1 expression in breast cancer cells. Collectively,
high expression of ITM2A in breast cancer was accompanied
with high intensity of TILs and abundant PD-L1 expression. This
work provokes further study about predictive value of ITM2A in
patients when they receive ICB treatments.

There are many limits in our study. We evaluated the
correlations between ITM2A expression and TILs basing on a
single database without verification. We did not explore the
mechanism that ITM2A overexpression upregulates the PD-L1
expression. Those questions remain to be answered in
further study.
CONCLUSION

In summary, we found that ITM2A played a tumor suppressor role
in breast cancer aggressivity, and had favorable effects on outcomes
of patients with breast cancer. Meanwhile, ITM2A induced PD-L1
expression in breast cancer cells while accompanied with higher
TILs numbers in the tumor microenvironment.
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Supplementary Figure 1 | ITM2A expression levels in different cancers. ITM2A
expression levels in different human cancers from TCGA database were shown by
TIMER database. **p < 0.01, ***p < 0.001. TCGA, the Cancer Genome Atlas;
TIMER, the Tumor Immune Estimation Resource.

Supplementary Figure 2 | DEGs between MCF-7 cells that overexpressed
ITM2A and expressed ITM2A normally. Volcano plot shows the 511 up-regulated
genes (red) and 190 down-regulated genes (green) in ITM2A overexpression MCF-7
cells (A). Heatmap of DEGs (B).

Supplementary Figure 3 | GSEA analysis implied ITM2A was active in immunity
related response. GSEA was performed on RNA-Seq profiles of 1,053 breast
cancer stratified by ITM2A mRNA expression levels and the top-10 ranked KEGG
pathways were showed. GSEA, Gene Set Enrichment Analysis.

Supplementary Figure 4 | ITM2A increased PD-L2 and B7-H3 expression in
breast cancer cells. MCF-7 and MDA-MB-231 cells were transfected with indicated
plasmid. PD-L2 (A, B) and B7-H3 (C, D) expression in these cells 48 hours after
transfection were tested by flow cytometric analysis. ***p < 0.001.

Supplementary Figure 5 | ITM2A expression was positively correlated with TILs
quantity across common cancers. TIMER database was used to assess the
correlation between ITM2A expression and six types of TILs enrichment cross five
common cancers. TIMER analysis in lung adenocarcinoma (A), lung squamous cell
carcinoma (B), colon adenocarcinoma (C), head and neck cancer (D), and prostate
adenocarcinoma (E). TIMER, the Tumor Immune Estimation Resource; TILs, tumor
infiltration lymphocytes.
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Solid cancers such as breast tumors comprise a collection of tumor, stromal and immune
cells, embedded within a network of tumor-specific extracellular matrix. This matrix is
associated with tumor aggression, treatment failure, chemo- and radio-resistance, poor
survival and metastasis. Recent data report an immunomodulatory role for the matrix in
cancer, via the creation of niches that control the migration, localization, phenotype and
function of tumor-infiltrating immune cells, ultimately contributing to escape of immune
surveillance. Macrophages are crucial components of the immune infiltrate in tumors; they
are associated with a poor prognosis in breast cancer and contribute to shaping the anti-
tumor immune response. We and others have described howmatrix molecules commonly
upregulated within the tumor stroma, such as tenascin-C, fibronectin and collagen, exert a
complex influence over macrophage behavior, for example restricting or enhancing their
infiltration into the tumor, and driving their polarization towards or away from a pro-tumoral
phenotype, and how in turn macrophages can modify matrix production in the tumor to
favor tumor growth and metastasis. Targeting specific domains of matrix molecules to
reinstate an efficient anti-tumor immune response, and effectively control tumor growth
and spread, is emerging as a promising field offering a new angle for cancer therapy. Here,
we review current knowledge on the interactions between tumor-associated
macrophages and matrix molecules that occur within the tumor microenvironment of
breast cancer, and discuss how these pathways can be targeted for new
immunotherapies for hard to treat, desmoplastic tumors.

Keywords: extracellular matrix, macrophages, breast cancer, tumor microenvironment, immunotherapy,
immune infiltrate
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INTRODUCTION

The extracellular matrix (ECM) is a complex network of secreted
molecules that, in healthy conditions, serves to define tissue
architecture and stiffness, and program cell behavior including
supporting cell adhesion, survival and migration. The matrix
comprises collagens, proteoglycans and glycoproteins (including
fibronectin, laminin, osteopontin, tenascin-C), along with a variety
of matrix-associated molecules such as glycosaminoglycans,
enzymes such as proteases, cross-linkers and kinases, and
soluble factors such as chemokines, growth factors and
cytokines (1). The study of the stroma during neoplasia reveals a
deeply reorganized composition compared to healthy tissues, at
both the cellular and molecular levels. In particular, tumors
comprise a highly heterogeneous and dysregulated ECM
network, embedding tumor cells and cancer-associated
fibroblasts (CAF), as well as newly developed blood vessels (2).
In breast cancer, ECM accumulation and desmoplasia in general
are associated with a poor prognosis (3), and increased matrix
deposition can predict breast tumor formation (4). Well-studied
changes in the breast TME include abnormal matrix molecule
expression, permanent remodeling, destruction by proteolytic
enzymes and concomitant repair (5). Moreover, changes in
individual matrix constituents have also been associated with
breast cancer aggressiveness and metastasis. For example,
tenascin-C, a protein which is not detected in most healthy
adult tissues is notably re-expressed during tumorigenesis (6),
deposition of collagen types I, III and V is particularly affected,
with progressive fibril linearization and thickening over time
during breast carcinogenesis (7–9), and epithelial upregulation
of the ubiquitous matrix glycoprotein fibronectin (10) as well as
enrichment of specific splice variants containing the oncofetal
extra domain A (EDA) or extra domain B (EDB) (11) are
observed. At the functional level, the unique matrix composition
of tumors can influence all aspects of carcinogenesis, from
angiogenesis, EMT, metastasis to immune surveillance (12).
However, the molecular mechanisms defining cell-matrix
interactions in the TME are not yet completely understood,
highlighting the need for a better understanding of the role of
the ECM during cancer evolution.

Macrophages have a central role in cancer immune
surveillance in general (13) and in breast cancers in particular,
where they are associated with a poor prognosis (14) and with
negative hormone receptor status and malignant phenotype (15).
However the prognostic role of tumor-associated macrophages
(TAM) is not as clear cut as reported for other immune subsets,
such as Th1 or Treg cells (16), as TAM may be also associated
with a positive outcome in some cancers like colorectal
Abbreviations: CAF, cancer-associated fibroblasts; CCL, chemokine ligand; CCR,
chemokine receptor; DAMP, damage associated molecular pattern; ECM,
extracellular matrix; EDA, Extra Domain A; FBG, fibrinogen-like globe domain;
GM-CSF, granulocyte-monocyte colony stimulating factor; IFNg, interferon
gamma; IL, interleukin; M-CSF, macrophage colony stimulating factor; MMP,
matrix metalloproteinase; NF-KB, nuclear factor kappa b; TAM, tumor-associated
macrophages; TGFb, transforming growth factor beta; TLR, toll like receptor;
TNBC, triple negative breast cancer; TNFa, tumor necrosis factor alpha; TME,
tumor microenvironment.
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carcinoma (14). This discrepancy may be explained by the
extraordinary phenotypic plasticity of these cells, which are
easily modified depending on local stimuli from the tumor
microenvironment (TME). TAMs with a “M1-like” phenotype
are characterized by tumor-killing functions, inflammatory
cytokines production such as TNFa, IL-1b, IL-6, and IL-8,
nitric oxide (NO) and reactive oxygen species (ROS), as well as
improved priming capacities towards T cells via upregulated
MHC class I and II presentation and associated co-stimulatory
molecules (17). On the other extremity of this spectrum, “M2-
like” alternatively activated macrophages present tumor-
facilitating characteristics, characterized by secretion of
immunosuppressive effectors such as TGFb and IL-10,
promotion of tissue remodeling and expression of inhibitory
checkpoint molecules such as PD-1 (18). However, the
phenotypic spectrum of TAM is much more complex than
initially described. In breast cancer, TAM can express in the
same cells a combination of M1-like and M2-like signature genes
that correlate along the same activation trajectory (19), and TAM
subsets that exert pro-angiogenic capacities via the expression of
pro-angiogenic factors and vascular promotion (20), or favor the
formation of pre-metastatic niches in breast cancer (21), have
been identified.

A close relationship between TAM and the tumor-specific
ECM network has been known for almost 40 years (22), with
more recent studies reporting an increasingly complex crosstalk
between these two components of the TME, comprising multiple
layers of molecular and cellular cues reciprocally influencing
both TAM biology and ECM composition. In this review, we will
describe how the tumor-specific ECM can modify TAM
phenotype, function and migration in breast cancer and how
in turn TAM can influence the ECM network to favor tumor
growth and spread. We will explore how the understanding of
these mechanisms can be exploited to offer novel therapeutic
solutions for cancers in need of novel treatments, drug resistant
or poorly immune infiltrated “cold” tumors.

ECM Favoring Macrophage Infiltration
in the Tumor
The prognostic impact of the immune infiltrate in tumors has
historically been defined by cell density (23). The density of the
TAM infiltrate varies between different cancer types, but these
cells are particularly abundant in breast cancers, where they can
represent up to 50% of the tumor mass (24). Correlative data
suggest an association between the composition of the tumor-
specific ECM and TAM infiltrate. For example, a higher
deposition of hyaluronan, a glycosaminoglycan of the ECM,
correlated with higher macrophage counts and poor outcome
in a cohort of 278 people with breast cancer, regardless of their
tumor subtype (25, 26). Moreover, ECM stiffness and activation
of TGFb signaling, classically associated with fibrosis, both
positively correlated with the number of macrophages at the
invasive front in 20 breast cancer patients (9). Similar
associations have also been observed in murine models of
breast tumorigenesis. For example, when Pten, a gene involved
in tumor growth regulation, is inactivated in the stromal
fibroblasts of mice mammary glands, in MMTV-ErbB2/neu
February 2021 | Volume 11 | Article 620773
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mice, the spontaneous tumorigenesis observed in mice
expressing wild type levels of stromal Pten was decreased
compared to mice lacking stromal Pten, a phenomenon
associated with both collagen I deposition and increased
macrophage infiltration (27). Furthermore, in a MMTV-
PyMT/colla1 tm1 jae model of spontaneous mammary
tumorigenesis, increased collagen deposition within the tumor
was associated with higher TAM numbers, an effect dependent
on COX2 expression, and in which COX2 blockade limited TAM
and collagen levels (28). Similarly, constitutive expression of
CCL2 in the mammary epithelium, which leads to increased
macrophage infiltration, was associated with increased stromal
deposition of collagen, that could elevate the risk of cancer
development (29). Also, the overexpression of CCL2 by breast
stromal cells transplanted into mouse mammary glands leads to
enhanced TAM infiltration, concomitant with increased collagen
expression. Both of these effects were ablated by depletion of
CD11b expressing cells (30). These data suggest that tumors can
manipulate the CCL2/CCR2 pathway to facilitate the infiltration
of tumor prone collagen-producing macrophages.

Together these studies demonstrate a positive correlation
between TAM density, ECM remodeling and tumor progression,
although it is difficult to distinguish cause and effect. The
underlying reasons for altered TAM density are also not known;
Frontiers in Oncology | www.frontiersin.org 358
it is possible that this phenomenonmay result directly from higher
TAM infiltration, but could also arise from changes in monocyte
infiltration and subsequent differentiation, and/or changes in
monocyte and macrophage survival (Figure 1).

More information has come from colocalization studies, which
imply direct matrix-TAM interactions within the TME in
experimental breast cancer. For example, using an orthotopic
mammary tumor model, in which grafted tumor cells were
engineered to express high or low levels of tenascin-C, we
observed not only more numerous TAM in tenascin-C high
tumors, but that TAM were exclusively present inside “tracks”
formed by tenascin-C deposition. Treatment of mice with function
blocking anti-tenascin-C antibodies caused TAM to accumulate at
the edge of the tumor, compared to higher numbers within the
tumor stroma in untreated mice (Figure 2) (31). These data
indicate the capacity of ECM molecules to promote TAM
infiltration during tumorigenesis, and demonstrate a role for the
tumor specific-matrix in controlling the spatial positioning of
TAM once within the TME. Conversely, matrix molecules may
also restrict TAM infiltration; for example, blockade of the EDA
domain of fibronectin in a mouse colon cancer model reduced
tumor growth and led to increased infiltration of macrophages in
the tumor (32), with a direct interaction of Fn-EDA with
macrophages demonstrated by immunofluorescence (33). These
FIGURE 1 | Interactions between the ECM and macrophages in the tumor microenvironment. The tumor-specific ECM network has a panel of possible interaction
pathways with macrophages, all of which ultimately impact the evolution of cancer growth and prognosis. ECM molecules including tenascin-C, collagen, fibronectin,
osteopontin, hyaluronan, versican, and thrombospondin, are highly upregulated in primary and metastatic breast cancer and embed epithelial tumor cells, and are
produced by tumor cells, CAF, or immune cells. The ECM presence is associated with an increased migration of macrophages to the tumor site, with which they
directly interact via the expression of integrins including aMb2, a2b2, a2b1, avb5, or a9b1, or are guided by patterns of chemokine-matrix gradients. On site,
macrophages are able to degrade the ECM fibers by secreting MMP2, 9, 13, and 14, and reorganize the collagen fibers. Together with their capacity to help cancer
cell migration, intra- and extravasation, and initiating the EMT process, ECM help TAM contribute to accelerated metastasis. The ECM network is able to drive TAM
towards either pro-angiogenic, anti-tumor M1-like or anti-tumor M2-like phenotype depending of the local contexture. Moreover, the EDA and FBG domains of
fibronectin and tenascin-C respectively are TLR4 ligands that can trigger inflammatory responses in myeloid cells.
February 2021 | Volume 11 | Article 620773
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data reveal not only the versatility of the effect of ECM molecules
on TAM infiltration, but also indicate that this function may be
limited to specific domains of these large multimodular molecules.
However, little is known at the molecular level as to if, and if so
how, these matrix molecules directly control TAM migration and
positioning in the breast TME, or whether changes in the matrix
indirectly affect immune cell infiltration.

Several cellular and molecular pathways have been brought
forward from studies outside of breast cancer to explain how
matrix molecules can interact with macrophages to promote
their infiltration. TAM adhere directly to fibronectin and
collagens in the ECM via integrins such as aMb2 and a2b2
(34). These interactions have been shown to contribute to TAM
motility and functions within breast (35), lung and colon (36),
and prostate (37) cancers. However, binding to other matrix
components, using other integrins, may also play a role. For
example avb5, expression by TAM in glioblastoma serves as a
receptor for the matrix glycoprotein osteopontin, whose
interaction provides a chemotactic signal that is essential for
macrophage recruitment (38). In addition to cell-matrix
adhesion directly mediating TAM infiltration, the ECM also
serves as a reservoir for soluble factors including chemokines.
Chemokine-matrix interactions, in particular chemokine
binding to matrix-resident glycosaminoglycans, are important
in controlling not only local concentrations of these soluble
factors, but also their oligomerization state, resistance to
proteolysis, activity and signaling capabilities (39, 40). As such
changes in the tumor-specific matrix may alter the capacity to
bind and retain secreted molecules classically produced by tumor
cells, thus impacting cell infiltration. For example, CCL2, a major
player responsible for monocyte/macrophage infiltration into
tumors, is known to rely on glycosaminoglycans within the
extracellular matrix to effectively signal (41, 42). Moreover,
other matrix-chemokine mediated mechanisms may also be at
play in modifying TAM migration. In a mouse model of bladder
cancer, versican, a large extracellular matrix proteoglycan,
enhances lung metastasis in a manner dependent on the
presence of CCL2 and of macrophages in the TME (43). One
Frontiers in Oncology | www.frontiersin.org 459
could argue that signals from the TME could induce parallel
production of both versican and CCL2 by tumor cells, which
signals could synergize in favor of metastasis colonization.

Together, these studies demonstrate that in breast cancer,
there is a correlation between changes in expression levels of
ECM molecules such as hyaluronan, collagen, fibronectin or
tenascin-C with intratumoral TAM density, linked to disease
outcome (Table 1). Moreover, data are emerging that the tumor-
specific ECM creates sub-tumoral niches or tracks to control the
distribution of TAM within the TME. Studying other cancer
models has revealed a number of proposed mechanisms to
explain how the ECM network may promote TAM infiltration,
which includes providing an adhesive substrate for cells to attach
to, and move along, and the patterning of TAM-attracting
chemokines to provide migration permissive gradients. Their
evaluation offers new clues for a better understanding of the
mechanisms at stake in breast cancer.

ECM as a Modulator of TAM Phenotype
in the TME
As the complexities of macrophage biology continue to emerge, it is
clear that moving beyond a simple consideration of intra-tumoral
TAM density, to take into account the nature of the TAM infiltrate,
is essential. If the tumor-specific ECM network is able to modulate
the infiltration of myeloid cells in the tumor tissue, it can also
directly impact their polarization and activation status, by driving
them either towards tumor-facilitating or anti-tumor phenotype. In
vitro, the impact of matrix on cultured macrophages and
macrophage cell lines has been well documented, and most report
that the ECM drives anM2-like phenotype. This was first noted in a
historical paper from 1983, where Kaplan demonstrated the
immunomodulatory role of collagen by cultivating human
primary monocytes on collagen, which blunted their capacity to
kill cancer cells (22). Similarly, overexpression of the anti-
inflammatory transcription factor ATF3 (activating transcription
factor 3) in RAW264.7macrophage cell line lead to an upregulation
of tenascin-C, which was directly responsible for subsequent M2
differentiation and increased migration (54), whilst a hyaluronan
FIGURE 2 | In vivo blockade of the FBG domain of tenascin-C diminishes TAM numbers and restrict their presence to tumor edge in a mammary tumor model.
Mammary tumors from mice that were treated with a blocking anti-FBG antibody (upper panels) or a control isotype (lower panels) were collected 21 days after
engraftment and stained with anti-CD206 (light blue), anti-F4/80 (red), and anti-TNC (green) antibodies.
February 2021 | Volume 11 | Article 620773
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and collagen mix drove the upregulation of the hyaluronan receptor
CD44 in THP-1 macrophage cell line, together with the
upregulation of a group of M2-related genes like CD163, IL-10
and CCL22 (55).

These studies support the idea that in breast cancer, tumors
can manipulate ECM production to highjack the immune
infiltrate, and switch the phenotype of TAM from efficient
tumor killing cells to tumor-facilitating cells, further helping
the tumor to thrive. But driving macrophages towards M2-like
polarization is not the only impact induced by the ECM; these
external signals can also affect another major pro-tumoral
function of macrophages in tumors - to enhance or accelerate
the neoangiogenesis required for the growth of cancer (56). The
culture of macrophages with conditioned media of breast
carcinoma cells in the presence of high molecular weight
hyaluronan lead to an increased production of angiogenic
factors such as VEGF, and increased endothelial cell migration.
In line with this, macrophages primed with high molecular
weight hyaluronan increased the number of blood vessels in
breast carcinoma xenograft models (26, 45). Similarly, the
chemical inhibition of CYP4A (Cytochrome P450 4A) in TAM
in mouse models of breast cancer skewed their phenotype away
from M2-like, and decreased the recruitment of VEGFR1+
myeloid cells and the expression of fibronectin by fibroblasts,
altogether contributing to the metastatic process (21).

The molecular mechanisms by which the tumor-specific ECM
may orientate the activation and polarization of macrophages and
the immune response in the TME includes a variety of secreted
Frontiers in Oncology | www.frontiersin.org 560
factors, in particular those controlled by toll-like receptors (TLR)
and NF-kB dependent inflammatory signaling. Indeed, it has been
known for a long time that not only infectious triggers can drive a
TLR-dependent responses in myeloid cells expressing these
receptors, but endogenous triggers, or DAMPs (damage
associated molecular pattern), also activate these cells during
“sterile” inflammation. DAMP-mediated TLR signaling is
involved in the pathogenesis of inflammatory diseases such as
auto-immune diseases, atherosclerosis and cancer, where it can
initiate and maintain a deleterious chronic immune response (57).
ECM domains that are highly expressed in cancer have been
identified as TLR-engaging DAMPs, and are likely to be involved
in the skewing of the TAM phenotype and functions. For example,
the fibrinogen-like globe (FBG) domain of tenascin-C was
identified more than 10 years ago as a ligand of TLR4, and is
able to engage aberrant inflammatory responses in TLR4-
expressing myeloid cells via the release of TNFa, IL-6, and IL-8
(58), that are distinct from LPS-dependent responses (59),
prolonging inflammation in arthritis models. Recently, we used
an orthotopic grafting murine model of breast cancer to
demonstrate that the tumor-derived tenascin-C is able to switch
the phenotype of TAM towards a M2-like, pro-tumoral
polarization, in a FBG/TLR4 dependent fashion (31). The
triggering of this pathway generated a deleterious inflammatory
contexture that helped the tumor escape from immune
surveillance and supported a pro-metastatic environment,
demonstrating a role for the TLR4 engagement by tenascin-C
for tumor growth and spread. Similarly, a pro-tumorigenic role for
TABLE 1 | TAM and ECM interactions described in breast cancer studies.

Effect Disease or model ECM Effect of ECM Ref

ECM favoring macrophage infiltration in the tumor
Correlation TAM infiltration and
ECM

Human breast cancers COLL TAM number, TGFb signaling and ECM stiffness all positively correlate (9)
MMTV-ccl2 model COLL CCL2 epithelial overexpression leads to increased TAM and increased COLL (29)
Human breast cancers HA HA and TAM correlate with a poor outcome (25)
MMTV-ErbB2/neu model COLL Inactivation of Pten leads to COLL remodeling and TAM infiltration (27)
MMTV-PyMT/colla1tm1jae model COLL Increased COLL deposition leads to higher TAM number in the TME (28)

Colocalization of TAM and ECM NT193 TNC+/- cells orthotopic TNC TAM in the TME are trapped in TNC tracks (31)
Linked TAM infiltration ECM CCL2+/- cells orthotopic COLL CCL2-attracted TAM directly lead to stromal COLL deposition in tumor (30)
ECM as a modulator of TAM phenotype in the TME
ECM driving M2 TAM 4T1 cells orthotopic COLL IL-6 and COLL drive TAM towards wound healing phenotype (44)

NT193 TNC+/- cells orthotopic TNC TNC drives pro-tumoral M2-like TAM phenotype via TLR4-FBG interaction (31)
ECM driving pro- angiogenic
TAM

4T1 cells orthotopic FN TAM drive metastasis by recruiting VEGFR+ myeloid cells and promoting FN
expression

(21)

Breast carcinoma cells, breast
xenograft

HA High molecular weight HA drives pro-angiogenic behavior in breast TAM (45)

Macrophages as shapers of the tumor ECM
TAM reorganize collagen fibers E0771 cells orthotopic COLL TAM reorganize COLL fibers to favor metastasis (46)
TAM as ECM producers Her2+/- and ccl5+/- cells orthotopic COLL CCL5 leads to the recruitment of TAM expressing COLL (47)

4T1 cells orthotopic OPN MDSC drive metastasis and immune suppression by producing OPN (48)
The regulation of EMT and metastasis by ECM and TAM
Cell migration promoting TAM MMTV-PyMT model COLL TAM by COLL-rich tumor border support tumor cell intravasation (49)

4T1 cells orthotopic SPARC TAM-derived SPARC favors metastasis via integrin-dependent tumor cell
invasion

(50)

EMT promoting TAM MMTV-PyMT model VSC Myeloid cells-derived versican drives EMT and favor lung metastasis (51)
SPARC+/- breast cancer cells SPARC Tumor cells derived SPARC induces EMT via the immunosuppressive functions

of MDSC
(52)

The need for CAF in the TAM-ECM relationship
CAF-TAM-ECM crosstalk MMTV-PyMT model COLL Fibroblast-derived FAP signaling cleaves collagen and increases TAM adhesion (53)

NT193 TNC+/- cells orthotopic TNC Tumor-derived TNC switches TAM phenotype, but not CAF-derived TNC (31)
February 2021 | Volume 11 | Article 620
COLL, collagen; FN, fibronectin; HA, hyaluronan; OPN, osteopontin; SPARC, secreted protein acidic and rich in cystein; TNC, tenascin-C; VSC, versican.
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versican-mediated TLR activation has been reported. When
produced by lung lewis carcinoma tumor cells, versican acts as a
ligand for TLR2 and TLR6 expressed by macrophages, generating
a strong TNFa response from these cells, and ultimately acting as
a help for metastasis (60), via mechanisms that could include
TNFa-dependent stimulation of cancer cells proliferation,
intravasation and extravasation.

However, little is still known about the impact of ECM-driven
inflammation on macrophages phenotypes and functions in
breast cancer, including the role of other TLR-binding ECM
proteins and the importance of the local microenvironment. It is
however noteworthy that matrix-mediated TLR ligation is not
always tumor supportive. For example, fibronectin, in which the
alternatively spliced EDA domain is also able to bind TLR4 (61),
activates inflammatory responses in TLR4-expressing cells. This
has led to the use of the EDA domain as an adjuvant for a protein
vaccine derived from HPV (human papillomavirus) against HPV
+ cervical carcinoma, which was able to generate antigen-specific
CD8 T cells and eradicate tumors (62) via the activation and
maturation of myeloid cells, hence triggering anti-tumor
responses. Another example of matrix being able to modulate the
orientation of tumor immunity one way or another is
thrombospondin-1. Thrombospondin-1 can indeed generate
enhanced expression of TNFa in bone marrow derived
macrophages upon triggering of its receptor CD36, via signaling
mediated by TLR4 and NF-kB (63), and the addition of exogenous
thrombospondin-1 to a murine macrophage cell line in vitro
blocked IL-10 production induced upon ionizing radiations (64),
suggesting a tumor-facilitating role. But on the other hand,
thrombospondin-1 can also exert a protective activity against
carcinogenesis in vivo, as its absence during skin carcinogenesis
limits cancer growth via its anti-inflammatory properties, including
decreasing the levels of IL-6 and IL-12 and limiting the local
infiltration of neutrophils and macrophages (65), highlighting a
dual and probably context-dependent role of this protein
during carcinogenesis.

Matrix-mediated pro- and anti-tumoral effects may be
accounted for by the fact that different stimuli have different
effects, despite using the same receptor, or receptor family.
However, for one TLR4 ligand, the story is more complex,
exerting distinct effects depending on the disease model or even
the cellular source. Whilst we showed that tumor-derived
tenascin-C drives M2 macrophage polarization in experimental
mammary tumors, contradictory findings to ours have been found
in glioblastoma. The absence of expression of CD47 on tumor cells
increased the expression of tenascin-C in the TME, which in turn
triggered TLR4-dependant inflammation in macrophages,
characterized by high levels of TNFa secretion and activation of
STAT-3 dependent signaling, together with an increased
phagocytosis of tumor cells, suggesting an anti-tumor role for
this ECMmolecule in this model (66). Data frommouse models of
cardiac pathologies show that up-regulation of tenascin-C during
disease was associated with the shifting of macrophage phenotype
towards M1-like via the engagement of TLR4 (67). However in
hepatocellular carcinoma, Nong et al. demonstrated that
macrophage-derived TNFa induces the production of tenascin-
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C by cancer cells in an NF-kB dependent pathway, promoting cell
migration and tumor aggressiveness (68). Indeed, when we deleted
host tenascin-C we found that, in contrast to deletion of tumor-
derived tenascin-C, this resulted in diminished M1-like
macrophage behavior (31). These data suggest that whilst host-
derived matrix can be used to trigger TLR-mediated anti-tumoral
immune responses, tumor-derived matrix can trigger TLR-
mediated tumor supportive phenotypes, which may explain why
pre-clinical global TLR4 blockade has provided mixed results
to date.

These data highlight how the cell source of the matrix, the local
microenvironment and specific tissue pathology can influence the
pro- or anti-tumoral role of the ECM on immunity. Moreover, it is
however important to note that the in vitro impact of any single
matrix molecule on macrophage phenotype may be more complex
than a black and white dichotomy, as highlighted by Huleihel et al.
This group exposed macrophages to ECM bioscaffolds (69) and
observed that macrophages turned either M1-like or M2-like
depending on the tissular origin of the ECM. Moreover, pre-
activation of macrophages with IFNg and LPS lead to a decrease
of inflammatory responses in all ECM stimuli tested, altogether
indicating that not only the ECM network composition can
influence macrophage activation status, but that the
inflammatory contexture may also orientate their polarization.

Together, these studies reveal the role of the immunomodulatory
properties of the ECM to be a double edged sword in the shaping of
the immune response, as ECM molecules can drive an M2
phenotype in TAM as well as triggering TLR and NF-kB
dependent inflammatory responses based on the specific cues of
the local cellular and tissular microenvironment. Understanding the
mechanisms by which the ECM network shape the TAM
phenotype may offer clues about events occurring during breast
cancer. Although it is likely that the levels of ECM expression and
the number of macrophages may modulate these responses, the
cellular source of ECM molecules, which alternatively spliced
domains can be differentially expressed by different cell types, is
also an important factor to take in account for the capacity of ECM
to modulate macrophages, and will be discussed below.

Macrophages as Shapers of the
Tumor ECM
Whilst the tumor-associated matrix is able to modify
macrophage infiltration, organization and phenotype, in turn,
macrophages are also capable of directly modulating the
organization and composition of the ECM network. This
phenomenon has been well described in particular via the
capacity of macrophages to secrete matrix metalloproteinases
(MMP), enzymes that are able to degrade ECM proteins and that
are key determinants for facilitating cell migration (70). In breast
cancer, MMP-2, 9, 13 and 14 are involved in a broad spectrum of
actions including the remodeling of the ECM, cell migration and
metastasis, as well as neo-angiogenesis (71). Several studies
further suggest that macrophages have a crucial role in the
organization of the ECM. In CSF-KO mice, where numbers of
circulating and mammary glands resident macrophages are
greatly reduced due to their dependency on CSF, mammary
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tissue levels of collagen were unaffected, however collagen
fibrillogenesis into long fibers was impaired (72). Moreover,
the depletion of TAM dramatically altered collagen fibrillar
microstructure in the tumor, changes that were associated with
an increase in the number of lung metastases in an orthotopic
engraftment breast tumor model (46). This could be explained by
the involvement of macrophage-derived MMPs, contributing to
the degradation of the matrix and as a consequence help for
cancer cell intravasation and extravasation. These data suggest a
role for TAM in the organization, or re-organization, the matrix,
but other studies show that TAM may also play a role in de novo
synthesis of the tumor specific ECM.

Macrophages can directly secrete ECM components. For
example, this was demonstrated by an RNA expression study
in primary human cells, showing that most myeloid cells are able
to secrete tenascin-C upon activation (73). Similarly,
macrophages are also able to produce different types of
collagen upon a TLR4-dependent activation (59), further
demonstrating the importance of TLR triggers is this crosstalk.
Moreover, the presence of IL-6 and collagen in a triple negative
mammary tumor model drove TAM towards a “wound healing”
phenotype characterized by the production of effectors of the
inflammatory phase of wound healing IL-1b, IL-6 and
osteopontin in that in this context facilitated the trans-
endothelial migration of tumor cells (44). Whilst a link
between macrophage residence in the TME and matrix
synthesis in the breast remains to be further explored, data are
available from other tumor sites. For example, using an
orthotopic model of colorectal carcinoma, Afik et al. showed
that the ECM composition in tumors is markedly different in
TAM high or deficient tumors as TAM activate matrix
remodeling programs upon their differentiation from
monocytes (74). In particular, TAM were able to express
unique ECM and ECM-associated genes in the TME, including
collagen type I VI and XIV, collagen synthesis and assembly as
well as matrix cross linkers gene sets, leading to an impaired
deposition, cross-linking and linearization of the matrix in
presence of TAM, and altogether shaping the tumor
invasiveness (74). The idea has been broached that TAM have
a unique impact on ECM remodeling compared to other
macrophage subsets. This was investigated in a study showing
that TAM from ovarian carcinoma are remarkably similar at the
transcriptomic and protein expression levels to resident
peritoneal macrophages, sharing features such as phagocytic
and antigen presentation capabilities levels (75). However,
TAM had a non-overlapping gene expression signature not
shared with monocyte-derived macrophages and resident
peritoneal macrophages, mainly composed of matrix-
remodeling genes and collagen fiber organization. These data
indicate that these macrophage subpopulations acquire
particular capacities to manipulate the ECM in tumors (75).
How these cells acquire these novel capabilities remains unclear
but this re-programming may be induced by tumors cells in
order to aid tumor escape from immunosurveillance.

In a model of mammary tumor engraftment by tumor cells
with a conditional Her2 downmodulation inducible by
Frontiers in Oncology | www.frontiersin.org 762
doxycycline which leads to tumor regression, the following
tumoral recurrence is associated with an increased tumor
production of CCL5, a chemokine involved in many aspects of
tumor progression in breast cancer (76). The authors link this
secretion with the recruitment of CCR5 expressing macrophages
that express genes of collagen and collagen-deposition factors
such as procollagen C-endopeptidase enhancer 1 and asporin
(47), suggesting that the CCL5/CCR5 pathway can be
manipulated by tumors to provoke macrophage to directly
deposit collagen into the tumors, favoring their recurrence.

The functional implications of TAM-derived ECM networks
are also emerging, with data showing that immune cell-mediated
matrix synthesis directly contribute to tumor growth. For
example, in mouse models of mammary tumors cell lines
orthotopic engraftment, the use of osteopontin wt or ko mice
showed that myeloid derived suppressor cells (MDSC) exerted a
more immunosuppressive impact at the metastatic site in
presence than in absence of osteopontin (48). In non-small cell
lung cancer, the concomitant tissue detection and quantification
of macrophages and osteopontin revealed that osteopontin
produced by TAM is also associated with progression and poor
survival (77) and in colorectal cancer co-culture models, the
expression by cancer cells of osteopontin receptor CD44 drives
its production by TAM, which in turn favors tumor cells
tumorogenicity (78). On the contrary, Szulzewsky et al. showed
that glioblastoma-associated monocytes are the main producers
of osteopontin in the TME and that it exerts an anti-tumor effect,
as opposed to tumor-derived osteopontin which has little impact
(79). This suggests that TAM-derived osteopontin can be used as
a communication tool by macrophages to interact with cancer
cells and impact the TME. This idea of an intermediate signal
used by macrophages to shape the ECM in breast cancer can also
be applied to TGFb, which not only can be produced by tumor-
facilitating M2-like TAM and is a key regulator of carcinogenesis
in tumors such as breast cancer (80), but is also a key signal
involved in fibrosis and ECM production (81). Moreover, TGFb
in conjunction with tenascin-C are associated with an epithelial
to mesenchymal transition (EMT) of breast cancer cells (82), and
stimulation of macrophages by TGFb force them to produce type
VI collagen (83). Finally, although not in models of
tumorigenesis, but during experimental dermal remodeling,
CCR2 expressing macrophages directly degraded collagen and
fibrins, and the addition of GM-CSF selectively enhanced their
collagen endocytosis capacities, likely via the proliferation-
inducing capacities of this cytokine (84). These data suggest an
involvement of the CCL2/CCR2 axis in matrix remodeling and
tissue repair mechanisms, in favor of a positive reinforcement
loop between the ECM and macrophages; it is for example
known that collagen degradation products can play a
chemotactic role towards macrophages, which may contribute
to their recruitment to the tumor site (85).

These data demonstrate how macrophages can modify the
composition and the organization of the ECM network in tumors
by producing specific ECM or ECM associated components or by
reshaping collagen fibers, showing that TAM-ECM crosstalk
occurs in both directions.
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The Regulation of EMT and Metastasis by
ECM and TAM
One of the best studied roles of the ECM network in breast
cancer is its contribution to driving metastatic transition (86).
The role of TAM in this process have also been extensively
studied via their capacity to secrete matrix metalloproteinase
MMPs that are critical for the digestion of ECM prelaminar to
the migration of cancer cells outside the primary tumor site (87),
and this has been reviewed elsewhere (88, 89). However, other
mechanisms of interplay between TAM and ECM have also been
reported in breast cancer models, such as in driving epithelial to
mesenchymal transition (EMT). For example, versican, a matrix
proteoglycan, is produced by monocytes in pre-metastatic
lesions where it aids breast cancer cell transformation in
MMTV-PyMT mice (51), whilst expression of the ECM
glycoprotein SPARC (secreted protein acidic and rich in
cysteine) by breast tumor cells induces EMT dependently on
the presence of MDSC (52) in breast cancer cell engraftment, and
expression of SPARC by macrophages induces cell migration and
metastasis in triple-negative breast cancer cells engraftment (50).
Moreover, Wyckoff et al. elegantly used intravital microscopy in
a MMTV-PyMT model to show that the cancer cell intravasation
observed by live imaging in mammary tumors was helped by
perivascular macrophages that accumulated by collagen-rich
tumor border in association with the EGF and CSF-1 pathways
(49). Together, these data provide clues for a better
understanding of one of the tumor-facilitating roles of the
ECM-TAM collaboration, which is the promotion of early
events crucial for metastasis in epithelial cancers including
EMT and cancer cell migration.

The Need for CAF in the TAM-ECM
Relationship
The presence of a specific ECM network within tumors is the
result of the contribution of many cellular players including not
only tumor cells and immune cells, but also CAF. CAF are
critical for breast cancer evolution and important producers of
extracellular matrix in tumors (90, 91). The interactions between
CAF and TAM are becoming increasingly well characterized, for
example co-culture of monocytes with pancreatic tumor cells
with CAF drives monocytic differentiation into cells with an M2-
like macrophage phenotype (92). Moreover, CAF and TAM
crosstalk can synergize to increase the invasiveness of the
tumor by increasing cell mobility, as well as favoring
neoangiogenesis programs (93). Indeed, a role for the ECM in
this intercellular interplay is also emerging; endogenous
fibroblasts and TAM may also matrix molecules as a means to
communicate with one another in the breast TME. For example,
fibroblast synthesis of FAP (fibroblast activation protein), a
membrane-bound serine protease that can cleave collagen
fibers and thus increase TAM adhesion in an MMTV-PyMT
breast cancer model (53). In our work, using a syngeneic
orthotopic grafting model of breast cancer, the absence of
tenascin-C production by tumor cells was compensated by
CAF-derived tenascin-C, meaning that total tumor levels of
this matrix protein were not altered when grafting tumors with
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high or low tenascin-C expression levels. However, tenascin-C
derived from each cellular source had a dramatically different
impact on the TAM phenotype; only tumor-derived tenascin-C
could induce a pro-tumor TAM phenotype, as opposed to CAF-
derived tenascin-C (31). These data together pinpoint CAF as
contributors of the TAM-ECM crosstalk in the breast TME and
potential target to block these pro-tumor processes.
CONCLUSIONS AND PERSPECTIVES

A growing number of studies report ever increasingly complex
interactions between the ECM and the tumor myeloid
compartment. These extend beyond the degradation of ECM
by TAM-derived MMPs and integrin-mediated TAM-matrix cell
adhesion. As discussed here, tumor-specific ECM and TAM
crosstalk has multiple faces; the ECM can shape macrophage
infiltration, positioning and phenotype, driving cells towards
anti- to pro-tumoral, inflammatory, pro-angiogenic or pro-
metastatic depending on the local tissue contexture, whilst
macrophages can systematically modify the organization of
ECM fibers, as well as the composition of the ECM network
(Figure 1, Table 1). The coordination of the ECM–TAM
crosstalk ultimately impacts the orientation and strength of the
innate and adaptive anti-tumor immune response, and thus
modulates the rate of the primary tumor growth and
metastasis. The importance of these interactions for cancer
evolution therefore represents a pool of promising biomarkers
and myriad of potential therapeutic targets for new anti-cancer
immunotherapies in breast cancer.

Moreover, the interaction between the ECM and TAMs is not
static, but constantly changing. As the tumor develops, grows,
and spreads, changes in the tumor microenvironment brought
by cooperative anabolism and catabolism of CAFs, proliferating
tumor cells and infiltrating immune cells contribute to
dynamically modify the biochemical and mechanical signals
mediated by the ECM that shapes cell behavior. At present, we
have a limited understanding of the complexities of this evolving
TAM-ECM relationship, despite the recent increase in the
number of interactions being discovered and functionally
characterized, and with it the perspective of novel biomarkers
(94). Furthermore, more detailed investigation into pathways
that are universal amongst tumors, compared to tumor-, or
tissue-, specific changes will be of importance. This approach
may indeed shape our understanding of how the crosstalk
between ECM and TAM may have a different impact on
cancer evolution depending on disease stage, tumor type and
contexture as well as articulation with co-treatments, and
become critical for the success of new immunotherapies.

The field of immunotherapies in general, and in cancer in
particular, is indeed evolving in giant strides, as represented by
the success of T-cell targeting immune checkpoints inhibitors anti-
PD1, anti-PD-L1 and anti-CTLA4, that revolutionized treatment of
cancer patients (95). But immune checkpoints inhibitors face
limitations, due to induced resistance, lack of target expression, or
lack of immune infiltrate in “cold” tumors (96, 97). In breast cancer,
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in particular, we see highly heterogeneous pathology (98), with a
complex organization of the therapeutic landscape. Triple negative
breast cancer (TNBC) that are defined by their lack of expression of
progesterone receptor, estrogen receptors and Her2-neu particularly
suffer from an absence of viable long-term therapeutic options, and
although anti-PD-L1 immune checkpoints inhibitors have recently
given promising results after a phase III clinical trial (99). To this
end, and because of the importance of macrophages in this cancer,
several macrophage-targeting options have been extensively
explored, mainly including blocking the CCL2/CCR2 or the
CSF1/CSFR1 pathways (100, 101), but they have faced mitigated
success. Targeting specific domains of the tumor-specific ECM in
order to reorient the immune response is in this context an
emerging option which efficacy has been explored in different
situations. In our model of mammary tumor expressing or not
tenascin-C, the blockade of the TLR4-binding domain of tenascin-
C, FBG, with a neutralizing antibody (102) lead to a reversion of the
TAM phenotype towards a tumor-killing type, and was associated
with decreased tumor growth and smaller lung metastases (31).
Moreover, the therapeutic combination of this FBG-targeting
therapy with an anti-PD-L1 antibody further diminished the
tumor growth. Similar options were investigated against the EDA
alternatively spliced domain of fibronectin, by developing a fusion
protein with an anti-EDA sequence and calreticulin, an alarmin
serving as a pro-phagocytosis signal towards myeloid cells. In a
colon cancer model, its therapeutic use helped slow down tumor
growth and this treatment worked synergistically with an anti-PDL1
antibody (32), confirming the interest for combining this type of
matrix-targeting therapy modulating the macrophage innate
response with T-cell targeting with immune checkpoints
inhibitors to unlock different levels of tumor-associated immune
suppression. Arribillaga et al. used the capacity of the EDA domain
of fibronectin to activate myeloid cells via binding TLR4 (61) to
develop an immunogenic antigen delivery tool by coupling EDA
with proteins, activating dendritic cells, which were then able to
effectively prime specific T cells (103), highlighting again the dual
role of ECM domains of the activation of innate immune cells.
Other options have been explored to use the immunomodulatory
properties of fibronectin, including against the alternatively spliced
EDB domain, which neutralizing sc-Fv fragment L19 was coupled
with IL-2 to trigger immunogenicity (104). Thrombospondin-1
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could also be used as a target, and its neutralization blocked the
osteoclast differentiation from monocytes formation occurring
during myeloma bone (105). Another way by which therapies
investigate the blocking or enhancement of the ECM-
macrophages interaction consists in targeting membrane-bound
molecules serving as receptors for ECM or ECM-associated
proteins. It is the case for CD47, a ligand of thrombospondin-1,
which can be expressed by cancer cells and act as a “don’t eat me”
signal towards macrophages, hence a good target for cancer (106).
Anti-CD47 neutralization has shown promising anti-tumor
properties by promoting the phagocytosis of cancer cells by TAM,
and evidenced potential to synergize with other tumor-targeting
therapies (107). Finally, the blockade of the interaction between
ECM and TAM can be performed via integrin blockade. a4b1 in
particular, is an integrin expressed by monocytes and necessary to
their homing into the tumor as well as a receptor for the EDA
domain of fibronectin (108) and its blockade on TAM limited the
macrophage-induced neoangiogenesis (36), helping control the
tumor growth. Finally, it is noteworthy that CSFR1 inhibitors
were able to block the migration of macrophages induced by
fibronectin (109). The exploration of how macrophages and the
matrix work together to shape the TME provides a large panel of
pathways that leads the tumor growth and spread, and the
understanding of these signaling is still at its beginning. The
majority of these studies report the tumor-facilitating roles of the
TAM and ECM crosstalk, and these pathways constitute powerful
and relatable predictive biomarkers for cancer evolution and
metastasis. But they also provide invaluable indications for new
pathways to target in novel therapy for cancers that are lacking
options, like the TNBC. Preclinical studies suggest that targeting
immunomodulatory domains of the ECM can be an efficient and
safe way to reinstate an efficient innate immune response, and is
working well as combination therapies, at a time where multi-hit
therapy paves its way in the cancer therapeutic landscape.
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Immunotherapy has emerged as the fifth pillar of cancer treatment alongside surgery,
radiotherapy, chemotherapy, and targeted therapy. Immune checkpoint inhibitors are the
current superheroes of immunotherapy, unleashing a patient’s own immune cells to kill
tumors and revolutionizing cancer treatment in a variety of cancers. Although breast
cancer was historically believed to be immunologically silent, treatment with immune
checkpoint inhibitors has been shown to induce modest responses in metastatic breast
cancer. Given the inherent heterogeneity of breast tumors, this raised the question
whether certain breast tumors might benefit more from immune-based interventions
and which cancer cell-intrinsic and/or microenvironmental factors define the likelihood of
inducing a potent and durable anti-tumor immune response. In this review, we will focus
on triple negative breast cancer as immunogenic breast cancer subtype, and specifically
discuss the relevance of tumor mutational burden, the plethora and diversity of tumor
infiltrating immune cells in addition to the immunoscore, the presence of immune
checkpoint expression, and the microbiome in defining immune checkpoint blockade
response. We will highlight the current immune checkpoint inhibitor treatment options,
either as monotherapy or in combination with standard-of-care treatment modalities such
as chemotherapy and targeted therapy. In addition, we will look into the potential of
immunotherapy-based combination strategies using immune checkpoint inhibitors to
enhance both innate and adaptive immune responses, or to establish a more immune
favorable environment for cancer vaccines. Finally, the review will address the need for
unambiguous predictive biomarkers as one of the main challenges of immune checkpoint
blockade. To conclude, the potential of immune checkpoint blockade for triple negative
breast cancer treatment could be enhanced by exploration of aforementioned factors and
treatment strategies thereby providing promising future prospects.
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INTRODUCTION

Breast cancer constitutes a major health problem worldwide,
accounting for 30% of all female cancer cases and 15% of female
cancer-related deaths (1). Clinically, breast tumors are
categorized into hormone receptor positive (HR+) tumors
expressing the estrogen (ER) and/or progesterone (PR)
receptors, Human Epidermal Receptor 2 (Her2)-enriched
tumors with overexpression of Her2 in the absence of HR
expression, and triple negative tumors lacking expression of all
three receptors. Standard treatment of these clinical subtypes
consists of surgery, radiotherapy, chemotherapy, hormonal
therapy, anti-Her2 targeted therapy or a combination thereof.
In recent years, with -omics based profiling becoming more
accessible and affordable, molecular profiling of tumors has
started to enter clinical routine such as the multigene
OncotypeDX, Mammaprint and ProSigna tests (2–4). Each of
these assays uses distinct gene signatures to predict the risk of
recurrence of early stage, hormone receptor positive (and
negative) breast cancer. In addition, the OncotypeDX test helps
to predict the likely benefit of adjuvant chemotherapy in early
stage HR+ cancer. The more recent Prosigna test not only
provides a 10-year risk of recurrence score but also classifies
breast tumors into distinct prognostic molecular subtypes based
on the Prediction Analysis of Microarray 50 (PAM50) gene
signature. This signature forms the basis of the PAM50
classifier that has provided major insights into the molecular
heterogeneity of breast tumors (5, 6). More specifically, the
classifier categorizes breast tumors into four distinct molecular
subtypes with different response to treatment and clinical
outcome: luminal A (LA), luminal B (LB), Her2-enriched
(Her2+), and basal-like (BL). Furthermore, stratification of
breast tumors based on the presence of tumor infiltrating
lymphocytes (TILs) and differential expression of immune-
related genes revealed further heterogeneity with prognostic
significance (6–9). Using a gene signature composed of
immune-regulatory genes, chemokine ligands and genes
involved in T helper 1 (Th1) signaling and effector immune
functions, approximately 30% of basal-like and Her2-enriched
breast tumors can be classified as tumors with an immune
favorable phenotype as compared to 5–10% of luminal type
tumors (9). In this review, we will look into cancer cell-intrinsic
and/or microenvironmental factors that have a likely effect on
shaping the tumor immune phenotype, and will discuss the
emerging potential of immune checkpoint inhibitors (ICIs) in
triple negative breast cancer treatment in particular.
POTENTIAL OF IMMUNOTHERAPY IN
(TRIPLE NEGATIVE) BREAST CANCER:
PARAMETERS TO BE CONSIDERED

Cancer immunotherapy is considered the new pillar of cancer
treatment, shifting the focus from the tumor to the tumor
microenvironment and was awarded the Nobel Prize for
physiology or medicine in 2018. Numerous immunotherapy
Frontiers in Oncology | www.frontiersin.org 269
approaches have proven effective in generating durable clinical
responses, with the greatest success stories to date coming from
treatment with immune checkpoint inhibitors (10–13). It is well
known that tumors adopt various mechanisms to evade
detection and eradication by the immune system, including the
activation of inhibitory pathways governed by immune
checkpoints. Treatment with ICIs releases the immune system
from these inhibitory signals and reinvigorates the anti-tumor
immune response as demonstrated by numerous studies and
clinical trials using monoclonal antibodies against cytotoxic T-
lymphocyte associated antigen-4 (CTLA-4), programmed death-
1 (PD-1), and programmed death ligand-1 (PD-L1) (14–18). In
breast cancer, especially triple negative breast cancer, treatment
with ICIs has been found to improve clinical outcome (18).
Overall, immune checkpoint inhibition is well tolerated and is
associated with a relatively mild toxicity profile. However,
immune-related adverse events may develop and need to be
closely monitored, including the development of colitis, thyroid
dysfunction, hypophysitis, skin rash, pneumonitis, and
inflammatory arthritis (19).

The success of immunotherapy largely depends on the
immunogenic nature of the tumor, exemplified by the higher
response rates in malignant melanoma and non-small cell lung
carcinoma (20, 21). Traditionally, breast cancer has been
considered an immune silent cancer type that is less likely to
benefit from immunotherapy. Increasing evidence, however,
indicates that breast cancer constitutes a varied spectrum of
tumors with different degrees of immunogenicity whereby triple
negative breast cancer is believed to be a more immunogenic
subtype (7–9, 22, 23). Moreover, multiple factors derived from
tumor cells or from within the tumor micro- or macro-
environment dictate the immune contexture of a tumor and
hence responsiveness to immunotherapy, including the tumor
mutational burden (TMB) and neoantigen load, diversity of the
immune infiltrate and the microbiome.

Tumor Mutational Burden and
Neoantigen Load
The tumor mutational burden is defined as the total number of
somatic nonsynonymous mutations in the coding region of
genes that may result in the generation of abnormal proteins
or neoantigens (24, 25). A high TMB and number of predicted
neoantigens has been associated with a better response to
immune checkpoint inhibitor therapy in various cancer types
(26–30). In breast cancer, most tumors harbor a low TMB
(1mut/Mb) and only 5% of all tumors are characterized by a
high tumor mutational burden (≥ 10 mut/Mb) of which most are
metastatic (31, 32). More specifically, TNBCs have a higher TMB
compared to Her2-enriched and HR+ tumors (33, 34). Analysis
of the TCGA and METABRIC breast cancer datasets
demonstrate an improved overall survival (OS) for patients
with tumors featuring a high TMB and favorable immune-
infiltrate disposition (FID), irrespective of the type of
treatment. Luminal A tumors with a high TMB/FID phenotype
were associated with the best survival rates, whereas TNBCs with
a high TMB and poor immune-infiltrate disposition were
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associated with the worst prognosis (25). Conversely, immune-
rich TNBC tumors with lower mutation and neoantigen counts
have been associated with better prognosis, likely due to a reduced
clonal heterogeneity as a result of immunosurveillance (35).

Furthermore, tumors with somatic or germline BRCA1/2
mutations are believed to be more immunogenic due to the
dysregulation of homologous recombination-based DNA repair,
leading to increased genomic instability and higher mutational
burden (36). However, BRCA1/2 mutation-associated breast
tumors display a great variability in immunogenicity with
approximately 50% of tumors displaying an absent or mild tumor
lymphocyte infiltrate andmoderate neoantigen load, suggesting that
only a subset of BRCA1/2 breast tumors may benefit from immune-
based therapy (37). In line with this, at best 1 out of 5 patients with
triple negative breast cancer, the most common form of BRCA1
mutation-associated breast cancer, has been shown to benefit from
single agent PD-1 blockade (38–40). Interestingly, genomic analysis
of 115 BRCA1/2 breast tumors revealed an inverse association
between homologous recombination deficiency (HRD) and
immunogenicity despite a higher mutational burden and
neoantigen load (41). Moreover, hormone receptor status further
stratified BRCA1/2 breast tumors with low-HRD TNBC tumors
being more immunogenic than high-HRD HR+ tumors (41). This
unexpected inverse correlation of high TMB, resulting from
homologous recombination deficiency, and immunogenicity is
supported by a pan-cancer analysis that demonstrated that large
somatic copy number alterations are associated with reduced
immunogenicity, possibly due to disruption of genes involved in
the regulation of immune cell recruitment (42). In accordance,
PTEN, another important regulator of DNA damage repair and
hence mutational burden, is frequently impaired in tumors and loss
of PTEN has been associated with poor response to PD-1 blockade
(43, 44). For instance, patients with metastatic TNBC (mTNBC)
who carry PTENmutations had a significant lower response rate to
PD-1/PD-L1 inhibitors (45). Moreover, in the absence of PTEN-
mediated inhibition of the PI3K-Akt pathway, the use of an Akt
inhibitor combined with chemotherapy and PD-L1 blockade
significantly improved the overall response rate of metastatic
TNBC patients compared to combination treatments of
chemotherapy with PD-L1 blockade or Akt inhibition (46).
Together, these findings suggest that in a proportion of breast
tumors ICI response is not dictated by TMB per se but rather by
specific genomic events that disrupt a functional immune response.

Diversity of Immune Infiltrate
In addition to cancer cell-intrinsic features, the tumor
microenvironment plays a prominent role in determining anti-
tumor immunity and response to immunotherapy. Understanding
the complexity of the interplay between tumor cells and
components of the immune system offers a unique opportunity to
explore combination treatments that can help to reshape the tumor
microenvironment into an immune favorable phenotype.
Immunohistochemical analyses of tumor immune infiltrates has
resulted in the classification of tumors into distinct immune
phenotypes: “hot”, “cold-immune desert”, and “cold-excluded”
tumors (47–49). Immunological “hot” tumors often have a high
Frontiers in Oncology | www.frontiersin.org 370
TMB and number of neoantigens, and have a high likelihood of
provoking an anti-tumor immune response. They are also called
“inflamed tumors” as they are characterized by a considerable
infiltration of T cells although these are not fully functional.
Overall, hot tumors are associated with a better response to ICIs
through the activation of the present immune infiltrate (50) and
examples include melanoma, non-small cell lung cancer, head and
neck cancer, kidney, liver, and bladder cancer. Immunological
“cold” tumors either exhibit a lack or paucity of a T cell infiltrate,
the so-called “immune desert” tumors, or feature a phenotype
whereby T cells have been excluded from the tumor core and
aggregate at the tumor boundaries, the so-called “immune
excluded” tumors. Tumors with an “immune excluded”
phenotype reflect the ability to induce a T cell- mediated immune
response, however, the response is impaired by the inability to
penetrate the tumor tissue. The presence of immunosuppressive
immune cell subsets within the tumor or tumor microenvironment
can alter both the infiltration and functional status of the T cell
infiltrate and hence reduce the potential benefit from ICI therapy
(48). Many studies are looking into ways to turn “cold” tumors into
“hot” tumors to achieve higher responsiveness to immune
checkpoint blockade. Here, we will discuss some of the factors to
be considered in addition to the density and localization of the
immune infiltrate such as the cellular composition and functional
orientation of the immune cell infiltrate and of tertiary lymphoid
structures (TLS), the expression of immune checkpoints, and the
enrichment of prognostic immune gene signatures.

Tumor infiltrating lymphocytes or TILs represent the major
infiltrating immune cell subpopulation defining a favorable
immune microenvironment in tumors. The density of TILs is
indicative of the magnitude of anti-tumor immunity and is
emerging as a prognostic and predictive biomarker for
immunotherapy response in a wide range of cancers (51–53).
The seminal work by Galon et al. introduced the immunoscore
concept in colorectal cancer, an immunohistochemically-based
scoring system of CD8+ TILs in the center and invasive margin of
a tumor with independent prognostic connotation (47).
Subsequent work consolidated the prognostic value of the
immunoscore in colorectal cancer and multiple other cancers
(53–56). A recent study on the predictive value of the
immunoscore in colorectal cancer patients suggests that patients
with a low immunoscore do not benefit from a longer treatment
with oxaliplatin-based chemotherapy as opposed to patients with
intermediate or high immunoscore values (55). This observation
seems counterintuitive as one could argue that patients with low
immunoscore and higher risk of recurrence would more likely
benefit from longer treatment. However, it is important to
consider the interactions of the chemotherapeutic agents with
the immune response. Oxaliplatin is known to elicit bona fide
immunogenic cell death and 5-fluorouracil decreases the number
of myeloid derived suppressor cells (MDSCs) while enhancing the
cytotoxic T cell function, however, these effects depend on the
presence of an active tumor immune microenvironment.
Therefore, tumors with a low immunoscore and weak cytotoxic
T cell activity may not experience additional benefit from
increasing the treatment duration. More studies are needed to
February 2021 | Volume 10 | Article 600573
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validate these findings as the follow-up time of the current study
was rather short with 4.3 years. In breast cancer, the immunoscore
has not yet been established as a prognostic and/or predictive
biomarker, however, a plethora of studies supports the importance
of the tumor immune microenvironment in defining breast cancer
clinical outcome. Numerous studies have demonstrated an
association of breast tumor infiltration by cytotoxic T
lymphocytes with better survival (57–60). In particular, TNBC
and Her2-enriched tumors feature high TIL counts, which are
associated with better clinical outcome, and suggest greater
immunogenicity and likely benefit from immune-based
interventions (61, 62). Higher densities of TILs have also been
associated with greater response rates to chemotherapy (62–65).

In line with the immunoscore concept, spatial distribution of
lymphocytes beyond intratumoral lymphocytes could provide
added value for predicting survival and treatment response in
breast cancer. High densities of stromal T lymphocytes have been
associated with improved breast cancer specific survival of
patients with TNBC and Her2-enriched tumors (66).
Moreover, one study expanded the immunoscore concept by
quantifying the density of immunosuppressive FoxP3 T
regulatory cells (Treg) in addition to CD3+ and CD8+ T cells
(67). Interestingly, they were able to develop a prognostic scoring
system that could distinguish molecular breast cancer subtypes.
Joint analysis of immunosuppressive CD163+ tumor associated
macrophages (TAMs) with cytotoxic CD8+ T lymphocytes
resulted in a novel immune infiltrate scoring model with
favorable prognosis, as defined by high CD8+ and low CD163+
cell counts in the tumor center and low CD8+ and high CD163+ in
the invasive tumor margin (68, 69). These findings highlight the
importance of capturing a complete picture of the tumor immune
microenvironment, accounting for both cytotoxic T cells and
immunosuppressive immune cell populations. This notion is
further supported by the ongoing discussion on the prognostic
value of tertiary lymphoid structures within the tumor or tumor
microenvironment. Several studies in a range of cancer types have
reported a favorable outcome for patients with a high number of
TLS, irrespective or in addition to a high TIL count (70, 71). In
TNBC, high TIL counts in combinationwithmoderate to high TLS
counts have been associated with improved disease free survival
(DFS) (70). On the other hand, a number of studies have reported
conflicting data that do not support a favorable prognostic value for
TLS (69). Notably, TLS can exert a dual effect on anti-tumor
immunity, serving as an in situ niche of cytotoxic T cells as well
as of immunosuppressive cells such as T regulatory cells and hence
high TLS counts can be associated with better or worse prognosis
(72). High TLS counts have been associated with better DFS in
patients with Her2-enriched tumors whereas no prognostic value
was observed in Her2-negative breast cancer patients. Therefore, it
is clear that the current definition of the tumor immune
microenvironment needs to be revisited in order to account for
TLS cellular composition and functional orientation.

This brings us to the pivotal role of the activation status of the
tumor immune infiltrate which is partly controlled by the
expression of immune checkpoints. The presence of infiltrating
T lymphocytes has been associated with elevated expression of
Frontiers in Oncology | www.frontiersin.org 471
PD-L1 (73–75), corroborating the therapeutic potential of
immune checkpoint blockade in tumors with a high T cell
immune infiltrate density. In accordance, high TIL scores in
patients with TNBC and Her2-enriched tumors predict a better
response to PD-1 inhibitors, counteracting the increased PD-L1
expression (51, 76, 77). In a study involving more than 3,000
breast cancer patients, the relevance of TILs for chemotherapy
response and prognosis in patients of different breast cancer
subtypes was assessed (78). Increased TIL counts were associated
with a survival benefit and better response to neoadjuvant
chemotherapy in Her2-enriched breast cancer and TNBC. In
contrast, a different role for TILs was observed in luminal breast
cancer where an increase in TILs was associated with adverse
prognostic effects. Furthermore, combined analysis of TIL
density and PD-L1 tumor expression indicated that the DFS of
TNBC patients with low-TIL tumors (< 30% stromal) was
significantly worse compared to patients with high-TIL tumors,
with the most unfavorable DFS and OS for patients with low-TIL
and high PD-L1 (> 50%) (75). Furthermore, the presence of
specifically tissue resident memory T cells in the TIL infiltrate of
TNBC tumors has been associated with better response rates and
overall survival in patients who received chemotherapy or PD-1
inhibition (51, 79, 80). Interestingly, characterization of TILs
after treatment with PD-1/PD-L1 inhibitors revealed an increase
in expression of various immune checkpoints including PD-1,
CTLA-4, T cell immunoglobulin and mucin domain-containing
protein 3 (Tim3) and Lymphocyte-activation gene 3 (Lag3) in
CD4+ T cell subsets suggesting the presence of a compensatory
inhibitory mechanism mediated by CD4+ T regulatory cells (81).
These findings underscore the need to identify, quantify, and
phenotype all components of the immune microenvironment
including immunosuppressive regulators. Great efforts are
expended to develop strategies to deplete immunosuppressive
cells from the tumor microenvironment, to impede their
infiltration and to impair their functionality, or to induce
cytotoxic T cell expansion, survival and function by
modulating cytokine levels (82–84). Importantly, any of these
strategies could be combined with immune checkpoint
inhibitors. In this context, it is important to note that PD-1
and CTLA-4 are not only expressed on activated T cells, but also
on T regulatory cells. Hence, treatment with anti-PD-1 and/or
anti-CTLA4 antibodies may result in the additional release of
Treg-mediated suppression of T cell activation, strengthening the
anti-tumor immunity (85–88). Of note, additional factors besides
immune checkpoint expression probably affect ICI response and
clinical outcome as for instance, only a small proportion of
metastatic PD-L1 positive TNBC patients (8–20%) respond to
PD1/PD-L1 therapy (76).

In an attempt to comprehensively capture the immune
contexture of a tumor, numerous immune gene signatures
have been developed. The first prognostic immune signature
describing the functional orientation of the tumor immune
microenvironment was established in colorectal cancer and
was composed of genes involved in Th1 and cytotoxic T cell
function, including interferon- g (IFN-g), granulysin (GNLY),
perforin (PRF1), and granzymes (GZMs) (47). This signature
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was subsequently validated in other cancer types including breast
cancer (89, 90). In addition, Hendrickx et al. demonstrated that
the Immunologic Constant of Rejection (ICR) 20-gene signature
can differentiate immune favorable and immune unfavorable
breast cancer subtypes, and recently refined and validated its
prognostic value in a pan-cancer study (9, 91) Furthermore, they
showed that MAPK pathway regulation could modulate the
intratumoral response in breast cancer (9). A meta-analysis of
approximately 18,000 human tumors identified complex
associations between 22 distinct leukocyte subsets and cancer
survival (92). Using the CIBERSORT algorithm for relative
immune cell abundance, the authors demonstrated that tumor-
associated neutrophil and plasma cell signatures are significant
but opposite predictors of survival in breast cancer. Further, a T
cell- inflamed gene expression profile exhibited predictive value
to identify pan-cancer patients that will more likely benefit from
PD-1 inhibition (93). Paradoxically, subsets of breast cancer
patients with high expression of immune-associated signatures
have been identified to experience poor outcome (94), suggesting
the presence of additional complexity beyond the current
information provided by bulk tumor immune signatures.
Moreover, some studies have demonstrated differences in
spatial distribution of immune gene signatures (95). For
instance, integration of CD8+ T cell localization and matched
stromal and epithelial tumor gene expression signatures revealed
distinct, spatial, tumor immune microenvironment-subtypes of
treatment-naive TNBC tumors, each characterized by a specific
metagene signature (96).

Gut and Breast Microbiome
The gut microbiome is a recognized master modulator of the
development and maintenance of a healthy immune system (97,
98). Perturbation of the normal microbiota—dysbiosis—is often
observed in disease and changes the interactions between the gut
microbiota, intestinal epithelium, and host immune system (99).
Many studies have shown that gut microbiota shape the immune
system and the host metabolism. In addition to regulating local,
intestinal immune responses, changes in gut microbiota can have
systemic effects on the innate and adaptive immunity. While the
encounter of microbial molecules by Toll-like receptors provoke
a local immune response in the gut, the escape of microbial
factors from the gut can modulate immune function, causing
systemic infection or inflammation which favors the
development of immune-mediated and metabolic diseases
(100). Thus, understanding how the gut microbiota impact
anti-tumor immunity could provide insight into how it might
influence tumor development, progression and treatment
response. In breast cancer, a collection of microbial genes
known as the estrobolome has been shown to affect estrogen
metabolism, resulting in higher circulating levels of estrogen and
hence an increased risk of hormone-dependent breast cancer
(101). Furthermore, the gut microbiome has been found to be
involved in the regulation of tumor progression and the response
to anticancer therapies (102–106). For instance, gut microbiome
dysbiosis has been shown to promote cancer cell dissemination
in a HR+ breast cancer mouse model through increased fibrosis
and collagen deposition (107). Several studies have identified
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distinct microbial signatures in breast cancer patients, however,
further studies are needed to define their diagnostic and
therapeutic implications (108–110). Furthermore, few studies
demonstrated that the composition of the gut microbiota could
influence the response to immunotherapy, including immune
checkpoint. For instance, comparing the gut and oral
microbiome of melanoma patients treated with anti-PD-1
immunotherapy revealed significant differences in the diversity
and composition of gut microbiota in patients that responded to
treatment versus non-responders (103, 105). Furthermore,
exposure to broad-spectrum combination antibiotics
(fluoroquinolones, ß-lactam+/- or macrolides) during anti-PD1/
PD-L1 treatment has been shown to significantly decrease
progression-free survival (PFS) and OS of patients with
advanced non-small cell lung, renal cell carcinoma, and
urothelial carcinoma, suggesting that the overall diversity of
the microbiota and the presence of specific clades determines
the responsiveness to immunotherapy (104).

Historically, breast tumor tissue has been considered a sterile
environment, however, recent studies suggest the existence of a
local, breast microbiome. Indeed, the composition of breast
tissue with abundance of fatty tissue, extensive vasculature, and
lymphatic drainage makes it a favorable environment for the
growth of bacteria (111). Comparison of microbial signatures
across multiple cancer types revealed cancer type specific
microbial signatures that differ between the respective tumors
and adjacent normal tissues whereby breast cancer was
associated with a particularly rich and diverse microbiome.
Furthermore, the breast microbiome has been shown to differ
from normal to benign to malignant tissues, as well as between
breast cancer subtypes, and in relation to response to
immunotherapy (112, 113).
IMMUNE CHECKPOINT INHIBITION IN
TRIPLE NEGATIVE BREAST CANCER

ICI therapy has become the most successful immune-based
intervention to generate durable responses in a variety of
tumors. Monoclonal antibodies against PD-1/PD-L1 and
CTLA-4 have emerged as powerful tools to release the
inhibitory regulation of T cell activation (114, 115). To date,
multiple blocking monoclonal antibodies have been approved by
the US Food and Drug Administration (FDA) including the anti
CTLA-4 antibody ipi l imumab, anti-PD1 antibodies
pembrolizumab, nivolumab and cemiplimab and anti-PD-L1
antibodies atezolizumab, avelumab and durvalumab (116, 117).
Treatment response to immune checkpoint inhibitors varies
greatly with only a small proportion of patients experiencing
better survival rates (118, 119). Hence, there is a growing need
for predictive biomarkers of ICI response. Furthermore, few
preclinical studies are investigating the benefit of targeting
multiple immune checkpoints including PD-1, CTLA-4, Tim3,
and Lag3 (120). Currently, the majority of breast cancer studies
focus on inhibition of the PD1/PD-L1 pathway. A single-arm
pilot study investigating the combination of PD1/PD-L1
blockade with CTLA-4 inhibition reported an objective
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response rate (ORR) of 43% in patients with metastatic TNBC,
whereas no responses were observed in patients with HR+ breast
cancer (121). We will focus our discussion on anti-PD1/PD-L1
mono- and combination therapy in TNBC (Figure 1) given that
it is the most immunogenic breast cancer subtype and hence will
more likely benefit from treatment with ICIs.

PD1/PD-L1 Antibody Monotherapy
PD1/PD-L1 monotherapy has demonstrated promising durable
responses in patients with advanced, metastatic TNBC (Table 1).
The safety profile and clinical activity of the anti-PD1 inhibitor
pembrolizumab was first studied in heavily pretreated patients
with advanced, PD-L1 positive triple negative breast cancer, head
and neck cancer, urothelial cancer or gastric cancer in the
KEYNOTE-012 (NCT01848834) clinical trial. Interim analysis
revealed an overall response rate of 18.5% in mTNBC patients
with the median duration of response ranging from 15.0 to 47.3
weeks (38). In a subsequent phase II clinical trial, KEYNOTE-
086 (NCT02447003), PD-L1 positive mTNBC patients who
received no prior systemic treatment for metastatic disease
showed the highest ORR of 21.4% with a median duration of
response of 10.4 months at data cut-off, and PFS and OS of 2.1
and 18.0 months, respectively (80). In comparison, heavily
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pretreated, PD-L1 positive mTNBC patients experienced an
ORR of 5.7% with median PFS and OS of 2.0 and 9.0 months,
respectively (122). Both studies demonstrated a manageable
safety profile and durable clinical activity of single agent
pembrolizumab treatment in PD-L1 positive mTNBC, in
particular in the first-line setting. Next, the randomized phase
3 KEYNOTE-119 trial (NCT02555657) investigated the efficacy
of pembrolizumab monotherapy versus chemotherapy
(capecitabine, gemcitabine, eribulin, vinorelbine) in pretreated,
PD-L1 positive mTNBC. Initial results revealed no significant
improvement in PFS (HR = 1.35) nor in OS (HR = 0.86) for
patients receiving pembrolizumab, although there was a trend for
better survival with higher PD-L1 score (123). At the date of data
cut-off (11th April 2019), the median follow-up time was 9.9
months for the pembrolizumab cohort and 10.9 months for the
chemotherapy cohort, hence, differential survival outcomes may
become more apparent as the study matures. However, these
findings may also suggest that pembrolizumab monotherapy is
more effective as first line treatment in mTNBC.

In addition to blocking PD-1, antibodies have been developed
that target PD-L1, thereby disrupting PD-L1/CD80 binding in
addition to PD-L1/PD1 and resulting in an augmented anti-
tumor immune response by both T cells and antigen presenting
FIGURE 1 | Current Approaches for PD-1 and PD-L1 immune checkpoint inhibition in TNBC. The efficacy of PD-1 and PD-L1 therapy may be hampered due to
cancer cell-intrinsic interactions and/or microenvironmental factors along with the expression of immune checkpoint molecules such as PD-L1 that define a potent
and durable anti-tumor immune response. Immune checkpoint blockade could be used as monotherapy or in combination with different therapeutic approaches,
including chemotherapy, PARP inhibitors with or without VEGFR/CDK/MEK inhibitors, cancer vaccines, and NK cell therapy.
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cells (125). In breast cancer, studies have investigated the safety
profiles and efficacy of two anti PD-L1 antibodies, atezolizumab
and avelumab. The clinical activity of single agent atezolizumab
treatment was evaluated in a multi-cohort phase I study
(NCT01375842) involving patients with locally advanced or
metastatic solid malignancies or hematologic malignancies. In
mTNBC, the ORR in first line atezolizumab treatment reached
24% with a median OS of 17.6 months compared to 6% in
pretreated patients (124). PD-L1 expression in at least 1% of
tumor infiltrating immune cells was associated with higher ORR
(12 versus 0%) and better OS (10.1 versus 6.0 months). Further,
higher levels of PD-L1 positivity (> 10%) were associated with
better ORR and OS, albeit not significantly. The phase 1b
JAVELIN trial (NCT01772004) on avelumab reported an ORR
of 3.0% in metastatic breast cancer, and an ORR of 5.2% in
mTNBC (40). In line with previous reports, higher response rates
were observed in PD-L1 positive versus negative patients (16.7 vs
1.6%) using a PD-L1 cutoff of 10%, in particular in TNBC
patients (22.2 vs 2.6%). To conclude, although the response
rates of single agent ICIs in mTNBC may be modest, the
durable responses of a subset of PD-L1 positive patients
suggest that combination treatment of immune checkpoint
blockade with other treatment modalities may provide a
favorable outcome.

PD1/PD-L1 Antibody-Chemotherapy
Combination Treatment
Chemotherapy has been shown to increase tumor cell antigen
release, induce the expression of MHC Class I molecules,
neoantigens and PD-L1, and promote dendritic cell activation
thus potentially augmenting the released immune response
following or during ICI treatment (126–128). In line with this
rationale, combination regimens of PD1/PD-L1 inhibitors with
chemotherapy have shown promising results in metastatic,
locally advanced and early stage TNBC (Table 2).
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The majority of studies on PD1 inhibition in TNBC has
investigated the safety profile and clinical activity of
pembrolizumab. Interim analysis of the phase 3 KEYNOTE-
355 (NCT02819518) study reveals a significant improvement of
PFS (5.6 vs 9.7 months) in strong PD-L1 positive, untreated
mTNBC patients who received pembrolizumab in addition to
chemotherapy (nab-paclitaxel, paclitaxel, gemcitabine/
carboplatin) (129). Results from the phase 2 BR-076
(NCT02755272) clinical trial on pembrolizumab in
combination with gemcitabine/carboplatin in mTNBC are
pending. The KEYNOTE-150/ENHANCE 1 (NCT02513472)
trial of pembrolizumab plus the microtubule inhibitor eribulin
mesylate demonstrated an ORR of 25.6% with a median PFS of
4.1 months (130). The phase 2 TONIC trial (NCT02499367)
evaluated the efficacy of PD1 blockade with nivolumab in pre-
treated mTNBC (cyclophosphamide, cisplatin, doxorubicin). Of
note, nivolumab therapy preceded by doxorubicin resulted in an
ORR of 35 compared to 23% for cisplatin and 17% for patients
without preceding chemotherapy, suggesting that pretreatment
with chemotherapy can induce an inflamed tumor
microenvironment (117). In comparison with metastatic
TNBC, significant more studies have been conducted in locally
advanced or early stage TNBC. In the phase 2 I-SPY 2
(NCT01042379) study the addition of pembrolizumab to
taxane- and anthracycline-based neoadjuvant chemotherapy
doubled the estimated pathological complete response (pCR)
rates of early stage patients with Her2-negative breast cancer
including triple negative breast cancer (131). These promising
results provided the rationale for the phase 1 KEYNOTE-173
(NCT02622074) trial to investigate the toxicity and anti-tumor
activity of adding pembrolizumab to six commonly used
neoadjuvant chemotherapy regimens in untreated, locally
advanced TNBC. The toxicity profile of the combination
treatments were similar to what has been observed for the
individual treatments, suggesting a manageable safety profile.
TABLE 1 | PD1/PD-L1 antibody monotherapy in metastatic TNBC.

NCT Number Other IDs Intervention Trial status/interim results Ref

NCT01848834 KEYNOTE-012/MK-3475-012, 2012-005771-14, 142453, 3475-012 pembrolizumab completed
ORR 18.5%

(38)

NCT02447003 KEYNOTE-086/MK-3475-012, 3475-086, 2015-000294-13, 152987 pembrolizumab completed
ORR 5.7%
PFS 2.0 mths, OS 9.0 mths
first line setting:
ORR 21.4%
PFS 2.1 mths, OS 18.0 mths

(80, 122)

NCT02555657 KEYNOTE-119/MK-3475-119, 3475-119, 2015-001020-27, 153082 pembrolizumab vs chemotherapy active
no difference in PFS and OS

(123)

NCT01375842 PCD4989g, 2011-001422-23, GO27831 atezolizumab completed
ORR 6% (12 vs 0%*)
OS (10.1 vs 6.0 mths*)
first line setting:
ORR 24%
OS 17.6 mths

(124)

NCT01772004 JAVELIN/EMR 100070-001, 2013-002834-19 avelumab completed
ORR 5.2% (22.2 vs 2.6%**)

(40)

NCT02926196 A-Brave, 2016-000189-45 avelumab recruiting
Feb
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ORR, overall response rate; OS, overall survival; PFS progression free survival.
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Furthermore, combination treatment showed promising clinical
activity with pCR rates of 60% across all treatment cohorts (132).
In accordance with other studies, higher pre-treatment PD-L1
expression was associated with better outcome. Similarly, interim
analysis of the phase 3 KEYNOTE-522 trial (NCT03036488)
demonstrated that addition of pembrolizumab to paclitaxel-
carboplatin chemotherapy in the neoadjuvant setting, followed
by adjuvant pembrolizumab increased the pCR rates from 51.2 to
64.8% in untreated, locally advanced TNBC patients (133). Of
note, the trial design does not allow the comparison of adjuvant
pembrolizumab versus placebo treatment following neoadjuvant
chemotherapy alone.

In addition to PD1 blockade, several clinical trials aim to
study the safety and efficacy of PD-L1 inhibition in combination
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with chemotherapy, in particular in metastatic TNBC patients.
The phase 1b clinical study NCT01633970 reported an ORR of
39.4% with a median PFS of 5.5 months for locally advanced or
metastatic TNBC patients treated with atezolizumab plus nab-
paclitaxel (134). PD-L1 positive mTNBC patients showed a non-
significant higher ORR (41.4 vs 33.3%), PFS (6.9 vs 5.4 months)
and OS (21.9 vs 11.4 months), irrespective of treatment history.
Furthermore, although not statistically significant, patients who
received the treatment regimen in first line setting experienced a
higher ORR (53.8 vs 30.0%), longer PFS (8.6 vs 5.1 months) and
OS (24.2 vs 12.4 months), providing evidence for a more
favorable outcome compared to atezolizumab monotherapy
where an ORR of 24% and median PFS of 1.6 months was
observed (124, 134). The phase 3 randomized IMpassion130 trial
TABLE 2 | PD1/PD-L1 antibody chemotherapy combination treatment in TNBC.

NCT Number Other IDs Intervention Disease setting Trial status/interim results Ref

NCT02819518 KEYNOTE-355/MK-3475-355,
3475-355, 2016-001432-35,
163422

pembrolizumab + nab-paclitaxel or
paclitaxel or gemcitabine/carboplatin

metastatic active
first line setting:
PFS 9.7 mths

(129)

NCT02755272 BR-076 pembrolizumab + gemcitabine/
carboplatin

metastatic recruiting

NCT02513472 KEYNOTE-150, ENHANCE 1,
E7389-M001-218

pembrolizumab + eribulin mesylate metastatic active
ORR 25.6%
PFS 4.1 mths

(130)

NCT02499367 TONIC, N15TON cyclophosphamide, cisplatin or
doxorubicin followed by nivolumab

metastatic active
ORR 35% (doxorubicin)
first line setting:
ORR 17%

(117)

NCT01042379 I-SPY 2, 097517 neoadjuvant pembrolizumab +
paclitaxel, followed by AC

locally advanced recruiting (131)

NCT02622074 KEYNOTE-173/MK-3475-173,
3475-173, 2015-002405-11

neoadjuvant pembrolizumab +
chemotherapy combination (nab-
paclitaxel, paclitaxel, doxorubicin,
cyclophosphamide, carboplatin)

locally advanced completed
first line setting:
pCR 60%

(132)

NCT03036488 KEYNOTE-522/MK-3475-522,
3475-522, 2016-004740-11,
173567

neoadjuvant pembrolizumab +
paclitaxel-carboplatin followed by
adjuvant pembrolizumab

locally advanced active
first line setting:
pCR 64.8%

(133)

NCT01633970 GP28328, 2012-001422-10 atezolizumab + nab-paclitaxel locally advanced, metastatic active
ORR 39.4%
PFS 5.5 mths

(134)

NCT02425891 IMpassion130, WO29522, 2014-
005490-37

atezolizumab + nab-paclitaxel metastatic active
first line setting:
ORR 53%
OS 25 mths

(135)

NCT03125902 IMpassion131, MO39196, 2016-
004024-29

atezolizumab + paclitaxel locally advanced, metastatic active
first line setting

NCT03371017 Impassion132, MO039193, 2016-
005119-42

atezolizumab + gemcitabine/carboplatin
or capecitabine

locally advanced, metastatic recruiting

NCT02685059 GeparNuevo, GBG89 neoadjuvant durvalumab + nab-
paclitaxel + EC

early stage unknown
pCR 53%

(136)

NCT02620280 NeoTRIPaPDL1, FM-14-B02, 2014-
005017-23

neoadjuvant atezolizumab + nab-
paclitaxel + carboplatin, followed by AC
or EC or FEC

early high risk, locally advanced active (137)

NCT03197935 Impassion031, WO39392, 2016-
004734-22

neoadjuvant atezolizumab + nab-
paclitaxel, followed by AC

early stage active
pCR 57.6%

(138)

NCT03281954 NSABP B-59/GBG 96-GeparDouze,
2017-002771-25, MO39875

neoadjuvant atezolizumab + paclitaxel +
carboplatin, followed by adjuvant
atezolizumab + AC or EC

early stage recruiting

NCT03498716 Impassion030, WO39391, 2016-
003695-47, BIG 16-05, AFT-27,
ALEXANDRA

atezolizumab + paclitaxel, followed by
atezolizumab + AC or EC

locally advanced recruiting
February
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(NCT02425891) supports these findings, demonstrating a
clinically meaningful improvement in OS of 7 months (25.0 vs
18.0 months) for PD-L1 positive mTNBC patients who received
first line atezolizumab plus nab-paclitaxel treatment (135).
Interim results show that addition of pembrolizumab increased
the ORR from 33 to 53% (128). In 2019, the FDA and European
Medicines Agency (EMA) granted accelerated approval for the
use of atezolizumab plus nab-paclitaxel as first line treatment of
PD-L1-positive, unresectable, locally advanced or metastatic
TNBC. The subsequent phase 3 IMpassion131 trial
(NCT03125902) will evaluate the safety and efficacy of
atezolizumab plus paclitaxel as a first-line therapy in patients
with either locally advanced or metastatic TNBC. The
IMpassion132 trial (NCT03371017) will investigate whether
atezolizumab plus chemotherapy (gemcitabine/carboplatin,
capecitabine) may benefit pretreated, inoperable locally
advanced or metastatic TNBC patients who were not eligible
for the IMpassion130 trial. So far, limited information is
available on the effect of PD-L1 blockade in combination with
chemotherapy for early stage TNBC. Results from the
randomized phase 3 GeparNuevo study (NCT02685059)
suggest that combining durvalumab with taxane-anthracycline
based neoadjuvant chemotherapy provides clinical benefit in
early TNBC with an increase in pCR from 44 to 53% (136). As
of July 2020, no interim results are available for the phase 3
NeoTRIPaPDL1 (NCT02620280) clinical trial that aims to
evaluate the anti-tumor activity of neoadjuvant atezolizumab
plus carboplatin and nab-paclitaxel, followed by adjuvant
chemotherapy in early stage high risk or locally advanced
TNBC. Preliminary results were presented at the San Antonio
Breast Cancer Symposium 2019 and revealed slightly higher pCR
rates with pembrolizumab addition (137). The phase 3 NSABP
B-59 (NCT03281954) trial of neoadjuvant chemotherapy
(paclitaxel plus carboplatin) with atezolizumab, followed by
adjuvant atezolizumab and chemotherapy is currently in the
recruiting stage. A recent study released interim results from the
Impassion031 (NCT03197935) trial on the combination
treatment of neoadjuvant atezolizumab with sequential nab-
paclitaxel and anthracycline-based chemotherapy in early stage
Frontiers in Oncology | www.frontiersin.org 976
TNBC. Patients who received atezolizumab plus chemotherapy
showed a pathologic complete response rate of 57.6 versus 41.1%
in patients who received chemotherapy plus placebo (138). In
PD-L1 positive patients, the pathologic complete response
reached 69% for patients who received atezolizumab plus
chemotherapy and 49% for patients treated with chemotherapy
plus placebo. Of note, there are two ongoing studies in locally
advanced TNBC that evaluate the effect of chemotherapy with
PD-L1 blockade in adjuvant setting. The Impassion30
(NCT03498716) trial will study the efficacy of atezolizumab in
combination with adjuvant chemotherapy, while the A-Brave
(NCT02926196) study focuses on avelumab.

PD1/PD-L1 Antibody-Targeted Therapy
Combination Treatment
Triple negative tumors feature a higher tumor mutational
burden and extensive genomic instability with defects in the
DNA damage response (139). As such, combination therapy
strategies targeting distinct oncogenic pathways in conjunction
with immunotherapy could offer a promising approach for
TNBC treatment. The current clinical trials exploring such
combination therapies are summarized in Table 3. For
instance, Poly (ADP-Ribose) Polymerase inhibitors (PARPi)
that target the homologous recombination repair pathway and
induce synthetic lethality in BRCA1/2 mutation carriers have
been approved for the treatment of TNBC patients with germline
mutations in BRCA1/2 (143). The use of PARPi in combination
with immune checkpoint blockade in this subset of TNBC
patients has the potential to trigger a stronger anti-tumor
immune response as a result of the activation of infiltrating
T cells following the release of tumor antigens by PARPi-
induced cell death. Furthermore, PARPi have been shown to
upregulate PD-L1 expression in cell line and animal models
providing further rationale for combining treatment with PD1/
PD-L1 inhibitors (144). The KEYNOTE-162/TOPACIO
(NCT02657889) study reported an ORR of 29% in mTNBC
patients treated with a combination of pembrolizumab and the
PARPi niraparib. The presence of BRCA mutations was
associated with a higher ORR of 67% (140). Of note, the ORR
TABLE 3 | PD1/PD-L1 antibody-targeted therapy combinations in locally advanced or metastatic TNBC.

NCT Number Other IDs Intervention Trial status/interim
results

Ref

NCT02657889 TOPACIO/KEYNOTE-162 pembrolizumab + niraparib active
ORR 29% (67%*) (140)

NCT03167619 DORA, 3000-PN162-01-001 durvalumab + olaparib recruiting
NCT03801369 STUDY00018504, NCI-2019-00388, STUDY00018504 durvalumab + olaparib recruiting
NCT02849496 NCI-2016-01130, 1608018258, 10020, UM1CA186644/86/88/89/91,

UM1CA186709
atezolizumab + olaparib recruiting

NCT02484404 150145, 15-C-0145 durvalumab + olaparib +
VEGFRi

recruiting

NCT02734004 MEDIOLA, D081KC00001, 2015-004005016 durvalumab + olaparib +/-
VEGFRi

active
(141)

NCT02322814 COLET, WO29479, 2014-002230-32 atezolizumab + taxanes +
MEKi

active
ORR 29–34% (142)

NCT03106415 MC1632, NCI-2017-00496, P30CA015083 pembrolizumab + MEKi recruiting
NCT03971409 187519, NCI-2019-01531, TBCRC 047, BRE16-279, avelumab + MEKi recruiting
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was higher than what has been reported for anti-PD1
monotherapy in similar patient populations (122, 124).
Additionally, several clinical trials have been designed to
evaluate the combination of PD-L1 inhibition with PARPi in
mTNBC, including two phase 2 studies combining durvalumab
with the PARPi olaparib (DORA/NCT03167619 and
NCT03801369), and a phase 2 study on atezolizumab plus
olaparib (NCT02849496). Furthermore, triplet combination
treatments of PD-L1 inhibition with PARPi and VEGF
inhibitors are currently on the way. For instance, the doublet
or triplet combination of durvalumab with olaparib and the
VEGFR inhibitor cediranib is the focus of a phase 1/2 study
(NCT02484404) in advanced or recurrent solid cancer.
Preliminary results show that the recommended dose was
tolerable and yielded a 67% clinical benefit rate in nine women
with pretreated recurrent solid tumors of which 1 TNBC (141).
Results from the MEDIOLA (NCT02734004) clinical trial are
pending. This open basket study aims to compare the safety and
efficacy of durvalumab in combination with the PARPi olaparib
or in combination with olaparib plus the VEGF inhibitor
bevacizumab in patients with advanced solid tumors including
BRCA1/2-deficient breast cancer. Furthermore, it would be of
interest to study the clinical benefit of combining PARPi, PD1/
PD-L1 blockade and cyclin dependent kinase (CDK) inhibitors.
Cyclin dependent kinases are well known master regulators of
cell cycle progression and DNA repair pathways, and CDK
inhibitors have been shown to sensitize breast cancer cells to
PARPi which may further augment the treatment response to
immune checkpoint blockade (145). Furthermore, CDK4/6
inhibitors have been found to promote anti-tumor immunity
through the stimulation of effector T cell activity, inhibition of
proliferation of immunosuppressive regulatory T cells, induction
of fibroblast-derived pro-inflammatory cytokines and increased
cell surface antigen presentation (146, 147). Another strategy to
combine immune checkpoint blockade with targeted therapy
involves the inhibition of the MAPK pathway, which is often
dysregulated in TNBC and is associated with increased cell
proliferation and resistance to apoptosis (148). The phase 2
COLET (NCT02322814) study evaluated the added benefit of
combining the MEK1/2 inhibitor cobimetinib with atezolizumab
and paclitaxel/nab-paclitaxel as first line treatment in locally
advanced or metastatic TNBC. Interim analysis reveals an ORR
of 34% in combination with paclitaxel and 29% with nab-
paclitaxel (142). In addition, clinical trials using the MEK
inhibitor binimetinib in combination with pembrolizumab
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(NCT03106415) or avelumab (InCITe/NCT03971409) in
locally advanced or metastatic TNBC are currently ongoing.

PD1/PD-L1 Antibody-Vaccine
Combination Treatment
The use of peptide vaccines for the treatment of metastatic
cancer patients has been challenged by low response rates,
however, using a multi-peptide vaccine approach the response
rates have increased to 9.9% in different cancer types (149, 150).
Moreover, combining cancer vaccines with immune checkpoint
inhibitors may enhance the anti-tumor immune response elicited
by the vaccine. The current clinical trials using PD/PD-L1
antibody-vaccine combination treatments are summarized in
Table 4. Few ongoing trials are investigating the efficacy of
combining cancer vaccines with pembrolizumab, using either
the multi-peptide vaccine PVX-410 (NCT03362060), or specific
vaccine targeting p53 (NCT02432963) or WT1 (NCT03761914)
in advanced TNBC. Additionally, there are few clinical trials
exploring the efficacy of combining durvalumab with the multi-
peptide vaccine PVX-410 (NCT02826434) or with a neoantigen
vaccine (NCT03199040, NCT03606967), and of atezolizumab
with a neoantigen vaccine (NCT03289962).

PD1/PD-L1 Antibody-Natural Killer
Cell Combination Treatment
Natural killer (NK) cells form the first line natural defense
against abnormal cells and infection with a wide range of
pathogens. However, tumor cells have found ways to escape
NK cell-mediated immunosurveillance such as the shedding of
stress-inducible ligands MHC class I polypeptide–related
sequence A (MICA) and MICB, which are exclusively
expressed in stressed or transformed cells (151, 152). This
results in downregulation of the activating Natural killer group
2 member D (NKG2D) receptor and reduced susceptibility to
NK cytotoxicity due to reduced cell surface density of the ligands.
NK-based immunotherapy studies are investigating the use of
vast numbers of ex vivo expanded autologous NK cells, strategies
to boost NK cell activity or target inhibitory NK receptors, and
the development of genetically engineered NK cells to overcome
the immunosuppressive environment (153–155). NK-based
immunotherapy in combination with PD-1/PD-L1 immune
checkpoint blockade is relatively less studied, with only two
clinical trials in TNBC as shown in Table 5. The combination of
avelumab with iPSC-derived NK cells (FT-516) expressing a
high-affinity, non-cleavable variant of the NK activating receptor
TABLE 4 | PD1/PD-L1 antibody-vaccine combination treatment in locally advanced or metastatic TNBC.

NCT Number Other IDs Intervention Trial status

NCT03362060 17-328 pembrolizumab + PVX-410 recruiting
NCT02432963 15002, NCI-2015-00653 pembrolizumab + p53-specific vaccine active
NCT03761914 SLS17-201/MK3475-770 pembrolizumab + WT1-specific vaccine recruiting
NCT02826434 16-132 durvalumab + PVX-410 active
NCT03199040 201710109, 1R01CA240983-01 durvalumab + neoantigen DNA vaccine recruiting
NCT03606967 NCI-2018-01581, 10146, UM1CA186704 durvalumab + Nab-paclitaxel+ neoantigen vaccine unknown
NCT03289962 GO39733, 2017-001475-23 atezolizumab + neoantigen vaccine recruiting
February 2021 | Volume 10 | A
PVX-410, multi-peptide vaccine (XBP1 US184-192; XBP1 SP367-375; CD138260-268; and CS1239-247).
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CD16 (hnCD16) is currently under investigation in multiple
advanced solid cancers, including TNBC (NCT04551885).
Furthermore, the ongoing landmark trial QUILT-3.067
(NCT03387085) evaluates the safety and efficacy of NK cell
combination immunotherapy in patients with refractory,
metastatic or unresectable TNBC tumors. The study is unique
in design as it combines the use of immune checkpoint inhibition
(avelumab) with high-affinity NK (haNK) cell therapy, IL-15
cytokine administration, cancer vaccines and metronomic
chemoradiation to stimulate both the innate and adaptive
immune system. Interim results of nine patients demonstrate
an overall response rate of 67% with a disease control response
rate of 78% and complete response rate of 22% (156). Notably,
the duration of the treatment responses with a median PFS of
13.7 months is very promising in comparison to the historical
PFS of 3 months.
PREDICTIVE BIOMARKERS IN IMMUNE
CHECKPOINT INHIBITION

Immune checkpoint blockade has entered clinical practice as first- or
second-line treatment for a number of cancers, however, it remains a
challenge to select patients that will benefit the most. PD-L1
expression is widely used as predictive biomarker due to its
association with better response rates to PD1/PD-L1 blockade for
patients with mTNBC. As described above, stronger PD-L1 positivity
has been associated with better overall response rates, progression-
free, and overall survival inmetastatic TNBC patients treated with ICI
monotherapy or in some cases with a chemotherapy combination
(40, 124, 129, 134). Routine clinical testing of PD-L1 expression is
currently conducted using five distinct FDA-approved companion
diagnostic immunohistochemistry tests (157). Nevertheless, the use of
different antibody clones (22C3 for pembrolizumab, 28-8 for
nivolumab, SP263 for durvalumab, SP142 for atezolizumab, and
73-10 for avelumab), biomarker staining platforms, scoring systems
and cut-off values for PD-L1 positivity makes it very difficult to
consolidate the predictive value of PD-L1 expression across tumor
types and across studies. Moreover, some assays define PD-L1
positivity solely based on tumor cell surface expression while others
quantify cytoplasmic plus cell surface PD-L1 expression of tumors
and immune cells. The prospectivemulti-institutional Blueprint study
compared the performance of all five PD-L1 antibody clones in non-
small cell lung cancer specimens (158). They reported good
concordance among three antibodies (22C3, 28-8, and SP263),
while the fourth antibody clone (73-10) demonstrated superior
sensitivity and the fifth clone (SP142) underperformed with lower
Frontiers in Oncology | www.frontiersin.org 1178
sensitivity. Similarly, high concordance has been reported between
clones 22C3, 28-8, and SP142 in primary and metastatic urothelial
carcinomas with the lowest sensitivity again being associated with
SP142 (159). PD-L1 scoring of head and neck squamous cell
carcinoma, urothelial carcinoma and breast cancer revealed a
higher inter-observer variability for clone SP142 as compared to
clones SP263 and 22C3 (160). In TNBC, few studies compared the
performance of the FDA-approved assays and corroborated the
previous findings in which SP142 detected significant less PD-L1
positivity compared to SP263 and 22C3 (161–163). A recent study
involved 19 pathologists from 14 different institutions to evaluate the
sensitivity and reproducibility of SP142 and SP263 staining in
advanced TNBC (164). This study reported PD-L1 positivity in
58% of cases using SP142 and in 78% with SP263, with decreased
observer agreement of 41% at eight observers for SP142 and 46% at
10 observers for SP263. Despite the lower performance of SP142, the
SP142-based Ventana test currently remains the companion
diagnostic test for the first FDA-approved immunotherapy regimen
of atezolizumab plus nab-paclitaxel treatment of patients with
metastatic, locally advanced or unresectable tumors, based on the
results from the Impassion130 trial (128, 135). Of note, soluble PD-L1
(sPD-L1) has been detected in the peripheral blood of patients with
advanced non-small cell lung cancer, multiple myeloma, diffuse large
B-cell lymphoma, and renal cell carcinoma whereby high levels are
associated with poor prognosis (165–168). High pre-treatment sPD-
L1 levels were associated with worse outcome in melanoma patients
treated with ipilimumab or pembrolizumab, which could possibly
reflect a larger tumor burden and/or an exhausted immune response
that cannot be reinvigorated by immune checkpoint blockade (168).
In contrast, an increase in post-treatment sPD-L1 was associated with
partial response. These findings highlight the need for less ambiguous,
more reproducible predictive biomarkers for immune
checkpoint inhibition.

Two emerging predictive biomarkers are the number of
tumor infiltrating lymphocytes and the tumor mutational
burden. Increased number of TILs have been associated with
better overall survival in TNBC patients treated with ICI
monotherapy or in combination with chemotherapy (117,
136). The relative importance of intratumoral TILs (iTILs)
versus stromal TILs (sTILs) has not clearly been defined yet
and might differ between tumor types. In breast cancer, both
iTILs and sTILs have been correlated with clinical outcome and
chemotherapy response (59, 60, 63, 78, 169). Moreover, in
metastatic TNBC sTILs have been correlated with treatment
response to pembrolizumab, atezolizumab, and nivolumab (117,
124). Thus, the International Immuno-Oncology Biomarker
Working Group published guidelines for the assessment of
stromal and intra-tumoral TILs in a wide range of solid tumor
TABLE 5 | PD1/PD-L1 antibody-NK cell combination treatment in advanced or metastatic TNBC.

NCT Number Other IDs Intervention Trial status Ref

NCT04551885 FT516-102 Avelumab + FT-516 Recruiting
NCT03387085 QUILT-3.067 Avelumab + haNK + IL-15 +

vaccine + chemoradiation
Active
ORR 67%
PFS (13.7 mths)

(156)
F
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FT-516, iPSC-derived NK cells with hnCD16; IL-15, interleukin 15; NK, natural killer cell; ORR, overall response rate; PFS, progression free survival.
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types (170). However, robust scoring of sTILs is hindered by
differences in relative iTIL and sTIL distribution, inaccurate
delineation of tumor boundaries, small areas of intratumoral
stroma, presence of necrosis and extracellular mucin (171).
Furthermore, tumor mutational burden has been correlated
with higher objective response rates to anti-PD1 or anti-PD-L1
monotherapy across 27 solid tumor types (29). Interestingly, in
breast cancer lower response rates were observed than expected
based on TMB suggesting that TMB might not be a good
predictive biomarker in these tumors. We believe that a
combination of predictive biomarkers such as PD-L1
expression, iTIL and sTIL density together with TMB, TCR
diversity and immune gene signatures will more likely yield
improved performance over each of these biomarkers alone,
therefore warranting further investigation.
CONCLUSION

To conclude, the results of immune checkpoint blockade clinical
trials in TNBC are promising, in particular in metastatic setting.
The FDA-approval of atezolizumab plus nab-paclitaxel for
metastatic TNBC marks the first licensed immunotherapy
regimen for breast cancer. Combining immune checkpoint
Frontiers in Oncology | www.frontiersin.org 1279
inhibition with chemotherapy, PARP inhibitors, cancer
vaccines or NK cell therapy holds great potential to increase
the clinical benefit in TNBC. Nevertheless, we highlight here that
the selection of patients with the highest likelihood of benefit
from these treatments requires reliable predictive biomarkers as
well as a better understanding of cancer cell-intrinsic and/or
microenvironmental factors that define a potent and durable
anti-tumor immune response.
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KEYNOTE-119: Phase III study of pembrolizumab (pembro) versus
single-agent chemotherapy (chemo) for metastatic triple negative breast
cancer (mTNBC). Ann Oncol (2019) 30(Supplement 5):v859–60.
doi: 10.1093/annonc/mdz394.010

124. Emens LA, Cruz C, Eder JP, Braiteh F, Chung C, Tolaney SM, et al. Long-
term Clinical Outcomes and Biomarker Analyses of Atezolizumab Therapy
for Patients with Metastatic Triple-Negative Breast Cancer: A Phase 1 Study.
JAMA Oncol (2019) 5(1):74–82. doi: 10.1001/jamaoncol.2018.4224

125. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed
Death-1 Ligand 1 Interacts Specifically with the B7-1 Costimulatory
Molecule to Inhibit T Cell Responses. Immunity (2007) 27(1):111–22.
doi: 10.1016/j.immuni.2007.05.016

126. Emens LA, Middleton G. The interplay of immunotherapy and
chemotherapy: Harnessing potential synergies. Cancer Immunol Res
(2015) 3(5):436–43. doi: 10.1158/2326-6066.CIR-15-0064

127. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of
cancer chemotherapy. Nat Rev Immunol (2008) 8(1):59–73. doi: 10.1038/
nri2216

128. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al.
Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer.
N Engl J Med (2018) 379(22):2108–21. doi: 10.1056/NEJMoa1809615

129. Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im S-A, Yusof MM, et al.
KEYNOTE-355: Randomized, double-blind, phase III study of
pembrolizumab + chemotherapy versus placebo + chemotherapy for
previously untreated locally recurrent inoperable or metastatic triple-
negative breast cancer. J Clin Oncol (2020) 38:1000 doi: 10.1200/
jco.2020.38.15_suppl.1000
February 2021 | Volume 10 | Article 600573

https://doi.org/10.1136/jitc-2020-000617
https://doi.org/10.1038/nm.3909
https://doi.org/10.1126/science.aar3593
https://doi.org/10.1126/science.aar3593
https://doi.org/10.1016/j.celrep.2014.08.073
https://doi.org/10.1016/j.cell.2018.08.039
https://doi.org/10.1172/JCI96313
https://doi.org/10.1038/nature11234
https://doi.org/10.1002/eji.201444972
https://doi.org/10.1038/nrc.2017.13
https://doi.org/10.1038/cti.2016.91
https://doi.org/10.3390/ijerph15081747
https://doi.org/10.1053/j.gastro.2017.08.022
https://doi.org/10.1126/science.aan4236
https://doi.org/10.1126/science.aan4236
https://doi.org/10.1126/science.aan3706
https://doi.org/10.1126/science.aan3706
https://doi.org/10.1126/science.aao3290
https://doi.org/10.1126/science.aao3290
https://doi.org/10.1007/s11912-020-00913-y
https://doi.org/10.1158/0008-5472.CAN-18-3464
https://doi.org/10.1158/0008-5472.CAN-18-3464
https://doi.org/10.1093/jnci/djv147
https://doi.org/10.1128/AEM.01235-16
https://doi.org/10.1038/srep15162
https://doi.org/10.1016/j.bbcan.2019.04.001
https://doi.org/10.1126/science.aay9189
https://doi.org/10.1126/science.aay9189
https://doi.org/10.3389/fonc.2016.00239
https://doi.org/10.1038/nrc3239
https://doi.org/10.1126/science.aar4060
https://doi.org/10.1038/s41591-019-0432-4
https://doi.org/10.1016/j.cell.2017.01.017
https://doi.org/10.3390/cancers11121822
https://doi.org/10.1038/bjc.2017.136
https://doi.org/10.1038/bjc.2017.136
https://doi.org/10.18632/oncotarget.24867
https://doi.org/10.1093/annonc/mdy517
https://doi.org/10.1093/annonc/mdz394.010
https://doi.org/10.1001/jamaoncol.2018.4224
https://doi.org/10.1016/j.immuni.2007.05.016
https://doi.org/10.1158/2326-6066.CIR-15-0064
https://doi.org/10.1038/nri2216
https://doi.org/10.1038/nri2216
https://doi.org/10.1056/NEJMoa1809615
https://doi.org/10.1200/jco.2020.38.15_suppl.1000
https://doi.org/10.1200/jco.2020.38.15_suppl.1000
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Thomas et al. Immune Checkpoint Blockade in BC
130. Tolaney S, Kalinsky K, Kaklamani V, Savulsky C, Olivo M, Aktan G, et al.
Abstract PD6-13: Phase 1b/2 study to evaluate eribulin mesylate in
combination with pembrolizumab in patients with metastatic triple-
negative breast cancer. Cancer Res (2018) 78(4 Supplement):PD6–13.
doi: 10.1158/1538-7445.sabcs17-pd6-13

131. Nanda R, Liu MC, Yau C, Shatsky R, Pusztai L, Wallace A, et al. Effect of
Pembrolizumab Plus Neoadjuvant Chemotherapy on Pathologic Complete
Response in Women with Early-Stage Breast Cancer: An Analysis of the
Ongoing Phase 2 Adaptively Randomized I-SPY2 Trial. JAMA Oncol (2020)
6(5):676–84. doi: 10.1001/jamaoncol.2019.6650

132. Schmid P, Salgado R, Park YH, Muñoz-Couselo E, Kim SB, Sohn J, et al.
Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk,
early-stage triple-negative breast cancer: results from the phase 1b open-
label, multicohort KEYNOTE-173 study. Ann Oncol (2020) 31(5):569–81.
doi: 10.1016/j.annonc.2020.01.072

133. Schmid P, Cortes J, Pusztai L, McArthur H, Kümmel S, Bergh J, et al.
Pembrolizumab for early triple-negative breast cancer. N Engl J Med (2020)
382(9):810–21. doi: 10.1056/NEJMoa1910549

134. Adams S, Diamond JR, Hamilton E, Pohlmann PR, Tolaney SM, Chang CW,
et al. Atezolizumab Plus nab-Paclitaxel in the Treatment of Metastatic
Triple-Negative Breast Cancer with 2-Year Survival Follow-up: A Phase 1b
Clinical Trial. JAMA Oncol (2019) 5(3):334–42. doi: 10.1001/jamaoncol.
2018.5152

135. Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, et al.
Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable,
locally advanced or metastatic triple-negative breast cancer (IMpassion130):
updated efficacy results from a randomised, double-blind, placebo-
controlled, phase 3 trial. Lancet Oncol (2020) 21(1):44–59. doi: 10.1016/
S1470-2045(19)30689-8

136. Loibl S, Untch M, Burchardi N, Huober J, Sinn BV, Blohmer JU, et al. A
randomised phase II study investigating durvalumab in addition to an
anthracycline taxane-based neoadjuvant therapy in early triple-negative
breast cancer: Clinical results and biomarker analysis of GeparNuevo
study. Ann Oncol (2019) 30(8):1279–88. doi: 10.1093/annonc/mdz158

137. Gianni L, Huang C-S, Egle D, Bermejo B, Zamagni C, Thill M, et al. Abstract
GS3-04: Pathologic complete response (pCR) to neoadjuvant treatment with
or without atezolizumab in triple negative, early high-risk and locally
advanced breast cancer. NeoTRIPaPDL1 Michelangelo randomized study.
Cancer Res (2020) 80(4 Supplement):GS3–04. doi: 10.1158/1538-7445.
sabcs19-gs3-04

138. Mittendorf EA, Zhang H, Barrios CH, Saji S, Jung KH, Hegg R, et al.
Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel
and anthracycline-based chemotherapy versus placebo and chemotherapy in
patients with early-stage triple-negative breast cancer (IMpassion031): a
randomised, double-blind, phase 3 trial. Lancet (2020) 396(10257):1090–100.
doi: 10.1016/S0140-6736(20)31953-X

139. Couch FJ, Hart SN, Sharma P, Toland AE, Wang X, Miron P, et al. Inherited
mutations in 17 breast cancer susceptibility genes among a large triple-
negative breast cancer cohort unselected for family history of breast cancer.
J Clin Oncol (2015) 33(4):304–11. doi: 10.1200/JCO.2014.57.1414

140. Vinayak S, Tolaney SM, Schwartzberg L, Mita M, McCann G, Tan AR, et al.
Open-label Clinical Trial of Niraparib Combined with Pembrolizumab for
Treatment of Advanced or Metastatic Triple-Negative Breast Cancer. JAMA
Oncol (2019) 5(8):1132–40. doi: 10.1001/jamaoncol.2019.1029

141. Zimmer AS, Nichols E, Cimino-Mathews A, Peer C, Cao L, Lee MJ, et al. A
phase i study of the PD-L1 inhibitor, durvalumab, in combination with a
PARP inhibitor, olaparib, and a VEGFR1-3 inhibitor, cediranib, in recurrent
women’s cancers with biomarker analyses. J Immunother Cancer (2019) 7
(1):197. doi: 10.1186/s40425-019-0680-3

142. Brufsky A, Kim S-B, Zvirbule Z, Dirix LY, Eniu AE, Carabantes F, et al. Phase
II COLET study: Atezolizumab (A) + cobimetinib (C) + paclitaxel (P)/nab-
paclitaxel (nP) as first-line (1L) treatment (tx) for patients (pts) with locally
advanced or metastatic triple-negative breast cancer (mTNBC). J Clin Oncol
(2019) 37(Supplement 15):1013. doi: 10.1200/jco.2019.37.15_suppl.1013

143. McCann KE, Hurvitz SA. Advances in the use of PARP inhibitor therapy for
breast cancer. Drugs Context (2018) 7:212540. doi: 10.7573/dic.212540

144. Jiao S, Xia W, Yamaguchi H, Wei Y, ChenMK, Hsu JM, et al. PARP inhibitor
upregulates PD-L1 expression and enhances cancer-associated
Frontiers in Oncology | www.frontiersin.org 1683
immunosuppression. Clin Cancer Res (2017) 23(14):3711–20. doi: 10.1158/
1078-0432.CCR-16-3215

145. Johnson N, Li YC, Walton ZE, Cheng KA, Li D, Rodig SJ, et al.
Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP
inhibition. Nat Med (2011) 17(7):875–82. doi: 10.1038/nm.2377

146. Goel S, Decristo MJ, Watt AC, Brinjones H, Sceneay J, Li BB, et al. CDK4/6
inhibition triggers anti-tumour immunity. Nature (2017) 548(7668):471–5.
doi: 10.1038/nature23465

147. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, et al. CDK4/6
inhibition augments antitumor immunity by enhancing T-cell activation.
Cancer Discov (2018) 8(2):216–33. doi: 10.1158/2159-8290.CD-17-0915

148. Hoeflich KP, O’Brien C, Boyd Z, Cavet G, Guerrero S, Jung K, et al. In vivo
antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in
basal-like breast cancer models. Clin Cancer Res (2009) 15(14):4649–64.
doi: 10.1158/1078-0432.CCR-09-0317

149. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: Moving
beyond current vaccines. Nat Med (2004) 10(9):909–15. doi: 10.1038/
nm1100

150. Sasada T, Noguchi M, Yamada A, Itoh K. Personalized peptide vaccination:
A novel immunotherapeutic approach for advanced cancer. Hum Vaccines
Immunother (2012) (98):1309–13. doi: 10.4161/hv.20988
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The burden of breast cancer is imposing a huge global problem. Drug discovery research

and novel approaches to treat breast cancer have been carried out extensively over the

last decades. Although immune checkpoint inhibitors are showing promising preclinical

and clinical results in treating breast cancer, they are facing multiple limitations. From

an immunological perspective, a recent report highlighted breast cancer as an “inflamed

tumor” with an immunosuppressive microenvironment. Consequently, researchers have

been focusing on identifying novel immunological targets that can tune up the tumor

immune microenvironment. In this context, several novel non-classical immune targets

have been targeted to determine their ability to uncouple immunoregulatory pathways

at play in the tumor microenvironment. This article will highlight strategies designed to

increase the immunogenicity of the breast tumor microenvironment. It also addresses the

latest studies on targets which can enhance immune responses to breast cancer and

discusses examples of preclinical and clinical trial landscapes that utilize these targets.

Keywords: breast cancer, immunotherapy, therapeutic agents, immune targets, PD-1, PD-L1

INTRODUCTION

The Global Cancer Statistics (GLOBOCAN 2018) report of 2018 flags breast cancer as the
second most diagnosed cancer, with a prevalence of ∼11.6% of all cancer cases (1). Breast
cancer is the first diagnosed cancer and the leading cause of death among women, with
over 450,000 mortalities annually (2). Based on the status of the tumor receptors, three types
of breast cancers have been reported: estrogen/progesterone receptor-positive (ER+), human
epidermal growth factor receptor 2-positive (HER2+), and triple-negative (TNBC) breast cancer
(3). ER+ breast cancer is the most diagnosed breast cancer, with an incidence rate of ∼80%
(4, 5). Recently, the reactivation of the immune system has emerged as a strategy for cancer
treatment other than traditional methods (6). Due to the immunological quiescent nature
of breast tumors, immunotherapy has not been considered as a strategy for breast cancer
treatment. However, this strategy has been reconsidered following the identification of tumor
immune infiltrates. Since tumor-infiltrating lymphocytes (TILs: CD8+ cytotoxic T cells and
helper CD4+ cells, regulatory T cells, B cells, NK cells), tumor-associated macrophages and
myeloid-derived suppressor cells (MDSCs) are observed in some breast tumors (7, 8). Hence,
the alteration and manipulation of the immune responses are now the focus of breast cancer
therapeutic strategies (9). The discovery of inhibitory immune checkpoints has revolutionized
cancer treatment (10). Understanding their role in promoting immunosuppression in the
tumor microenvironment (TME) has resulted in the use of checkpoint inhibitors (generally
monoclonal antibodies), which can reactivate immune cells (11, 12). Checkpoint inhibitors
that target PD-1 or CTLA-4 have been used for treating metastatic breast cancer (13).
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However, the response rates were lower than other types of
cancers; the overall response rate to anti-PD-1 (Pembrolizumab)
was only 18.5% when used as monotherapy for patients with
advanced triple-negative breast cancer (TNBC) (14). However,
the KEYNOTE 355 study was initiated in 2016 to compare
the effectiveness of using pembrolizumab in combination with
chemotherapy with placebo plus chemotherapy for treating
patients with unresectable locally advanced or metastatic PD-
L1-positive TNBC (ClinicalTrials.gov Identifier: NCT02819518).
Reports from this study indicated that pembrolizumab
combined with several chemotherapy agents showed a
statistically significant and clinically meaningful improvement
in progression-free survival with 9.7 months vs. only 5.6 months
with using chemotherapy alone in these patients. Pembrolizumab
combined with chemotherapy showed adverse event rates 68%
while 67% with chemotherapy. This combination was generally
well-tolerated, with no safety concerns (15, 16). Based on the
results of this trial, the FDA approved the use of pembrolizumab
(anti-PD1) in combination with chemotherapy for the treatment
of unresectable locally advanced or metastatic PD-L1-positive
TNBC, in November 2020.

Nevertheless, identifying novel targets and developing new
therapeutic agents are needed for breast cancer treatment.
Other therapeutic targets that can modulate immune responses
against breast tumors are currently under investigation.
Co-stimulatory receptors are promising targets, which
can improve anti-tumor immunity in breast cancer (13).
Purinergic ectoenzymes attenuate the immune response
by increasing the level of extracellular adenosine, which
has immunosuppressive properties (17, 18). Inhibiting
purinergic ectoenzymes will increase the anti-tumor immune
responses (19). Similarly, targeting the immunosuppressive
enzyme arginase 1 (ARG1), could also improve anti-tumor
immune responses (20, 21). Studies have shown that various
cytokines, chemokines, growth factors, and their receptors
such as vascular endothelial growth factor (VEGF), VEGF
Receptor (22), CXC receptor 1(CXCR1), CCL2 receptor
(CCR2) (23), colony-stimulating factor-1 (CSF-1) (24) and
toll-like receptors (TLRs) (25) are essential for breast tumor
proliferation and metastasis. Furthermore, studies on targeting
tryptophan catabolism enzymes, such as indoleamine-2,3-
dioxygenase (IDO1/IDO2), and tryptophan-2,3-dioxygenase
(TDO/TDO2), which are expressed by many immune cells
and solid tumors, including breast cancer are underway (26).
Moreover, the development of agents, which can modulate
the COX2/PGE2 (27) and STING (28) signaling pathways,
are ongoing.

The effects of blocking different immune checkpoints in
breast cancer have been recently reviewed by Swoboda A, and
Nanda R (29). Furthermore, the effectiveness of combining
PD1/PD-L1 blockade with chemotherapy, targeted therapies
and radiotherapy for the treatment of metastatic breast cancer
has been reviewed by Page et al. (30). In this review, we
will discuss the pathways that modulate immune responses
to breast cancer (Figure 1). We will also discuss novel
therapies and clinical trials designed to target these pathways
(Table 1).

STIMULATORY CHECKPOINTS

A major characteristic of tumors is the paucity of, or ability
to downregulate the expression of co-stimulatory molecules
and upregulate co-inhibitory receptor expression (31, 32). The
ligation of co-stimulatory molecules expressed by antigen-
presenting cells (APCs) with their receptors on T cells
provides the second signal necessary for T cell activation and
differentiation. Hence, the use of co-stimulatorymolecule agonist
antibodies, is a strategy which may enhance T cell function in the
TME (31, 32) (Figure 2A). Targeting co-stimulatory molecules
that belong to the tumor necrosis factor receptor (TNFR) family
such as OX40, ICOS, GITR, CD40L, and 4-1BB with agonist
antibodies have been found to improve T cell function, with
favorable outcomes in some cancer patients [reviewed in Moran
et al. (33)].

OX40 (i.e., CD134) is expressed by TILs in various types of
cancers, including breast cancer (34), while its receptor OX40L,
is upregulated on monocytes, neutrophils, macrophages and
dendritic cells. Studies have shown that OX40–OX40L signaling
reduces immunosuppression mediated by regulatory T cells
(Tregs) and enhances the expansion and proliferation of T
cells (34). A study to assess the safety and tolerability of the
OX40 agonist (PF-04518600) alone, or in combination with
the 4-1BB agonist, PF-05082566, in patients with metastatic
carcinoma, including TNBC was concluded in December 2020
(ClinicalTrials.gov Identifier: NCT02315066), (35). However, a
clinical study that had planned to test the agonistic anti-OX40
antibody, MEDI6469, in combination with immune checkpoint
inhibitors in patients diagnosed with advanced solid tumors,
was terminated (32, 35, 36). Another phase I/II study, which
investigated the use of MEDI6469 in combination with radiation
for the treatment of metastatic breast cancer has been completed
(ClinicalTrials.gov Identifier: NCT01862900). An additional
phase I study has been initiated to investigate the effectiveness
of using a CD40 agonist, ABBV-927 plus OX40 agonist ABBV-
368 in combination or without the PD1 inhibitor, budigalimab
in patients with advanced solid tumors, including TNBC
(ClinicalTrials.gov Identifier: NCT03893955). Observations from
a recent study indicated that OX40 agonists enhanced the
production of IL-2 by conventional TILs, which increases the
proliferation of both tumor-infiltrating Tregs and conventional
T cells. Hence, in contrast to what has been postulated
by previous studies, Tregs retain their immunosuppressive
abilities in response to OX40 agonist treatment. However,
results from this study also indicate that Tregs acquire a Th1
phenotype (IFN-g and granzyme B production) in response
to OX40 agonist treatment (37). These observations imply
that OX40 agonist treatment may be more suitable for
combination therapies for cancer treatment. The importance
of investigating the sequence of administering monoclonal
antibodies in combination treatments that include anti-PD1 and
OX40 agonists has been highlighted by Messenheimer et al.
(38). They showed that using a preclinical model of oncogene-
driven mammary cancer that concurrent administration of
anti-PD1 antibody and an OX40 agonist compromised tumor
regression. In contrast, sequential administration of the OX40
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FIGURE 1 | Immune targets in breast cancer immunotherapy.
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TABLE 1 | Examples of clinical trials of Immune targets in breast cancer immunotherapy.

Target Drugs Company With combination Phase Clinicaltrials.gov

identifier (selected

trials)

Anti-(PD-1) Pembrolizumab Merck +Nab-paclitaxel/Paclitaxel/

Gemcitabine/Carboplatin

III NCT02819518

Anti-(PD-L1) Atezolizumab Genentech/Roche – I NCT01375842

+ Nab-paclitaxel III NCT02425891

Avelumab Merck – III NCT02926196

Anti-(CTLA-4) tremelimumab AstraZeneca +Exemestane/ durvalumab II NCT02997995

+ Durvalumab I/II NCT01975831

NCT02536794

Ipilimumab Bristol-Myers Squibb

(BMS)

+ Nivolumab/ cobimetinib I/ II NCT01928394

+ Enoblituzumab I NCT02381314

Anti-(LAG-3) IMP321/Eftilagimod alpha Immutep +Paclitaxel II NCT02614833

Anti-(TIM-3) MBG453 Novartis + Spartalizumab I/II NCT02608268

OX40 agonists

GSK3174998 GlaxoSmithKline Alone/ with Pembrolizumab I NCT02528357

MEDI-0562 MedImmune – I NCT02318394

MEDI-6383 (OX40L-Fc) MedImmune Alone/with MEDI-4736 I NCT02221960

PF-04518600 Pfizer Alone/with PF-05082566 I NCT02315066

MEDI-6469 MedImmune +Radiation I NCT01862900

BMS-986178 Bristol-Myers Squibb Alone/ with nivolumab ±

ipilimumab

I/II NCT02737475

ABBV-368 Idera Pharmaceuticals +ABBV-927 ± budigalimab I NCT03893955

GITR agonist

INCAGN01876 Incyte Nivolumab and/ or ipilimumab I/II NCT03126110

INCAGN01876 Incyte Pembrolizumab and/ or

epacadostat

I/II NCT03277352

TRX518 Leap Therapeutics + Cyclophosphamide +/or

Avelumab

I/II NCT03861403

4-1BB agonist PF-05082566

(Utolimumab)

Pfizer + Trastuzumab – Emtansine I NCT03364348

PRS-343 Pieris Pharmaceuticals,

Inc. (PIRS)

+Atezolizumab Ib NCT03650348

CD40 agonist CDX-1140 Celldex Therapeutics Alone or with Pembrolizumab I NCT03329950

ICOS agonist JTX-2011 Jounce Therapeutics Nivolumab/Ipilimumab/

Pembrolizumab

I/II NCT02904226

IDO1 inhibitor

Indoximod NewLink Genetics - I NCT00739609

+Docetaxel/paclitaxel II NCT01792050

Epacadostat Incyte Corporation + INCMGA00012 and

Epacadostat

I/II NCT03328026

+/or Itacitinib with INCB050465 I NCT02559492

Targeting Arginase-1 Arginase-1 peptide

vaccine

IO Biotech ApS. I NCT03689192

CXCR4 antagonist balixafortide Polyphor +Eribulin III NCT03786094

CCR5 antagonist Leronlimab CytoDyn, Inc. - - NCT04313075

CD73 antagonists ±Oleclumab (MEDI9447) IMFINZI® + Carboplatin + Paclitaxel

+Durvalumab

I/II NCT03616886

CPI-006 Corvus Pharmaceuticals Alone/ with Ciforadenant

+Pembrolizumab

I NCT03454451

A2AR antagonist CPI-444 Ciforadenant Corvus Pharmaceuticals Alone/ with Combination+

Atezolizumab

I NCT02655822

(Continued)
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TABLE 1 | Continued

Target Drugs Company With combination Phase Clinicaltrials.gov

identifier (selected

trials)

PGEP4R blocker AAT-007 Applied Therapeutics - II NCT02538432

CSF1R blocker LY3022855 Imclone Llc Alone/ with Durvalumab or

Tremelimumab

I NCT02718911

Pexidartinib (PLX-3397) Daiichi Sankyo + Eribulin I/II NCT01596751

Emactuzumab (RG7155) Roche +Atezolizumab NCT02323191

+RG7876 I NCT02760797

VEGFR blocker Ramucirumab Eli Lilly and Company +Docetaxel III NCT00703326

Lucitanib Clovis Oncology, Inc. – II NCT02202746

TLR7 agonist 852A Pfizer – II NCT00319748

Imiquimod NYU Langone Health – II NCT00899574

STING agonist ADU-S100 (MIW815) Novartis Pharmaceuticals +Spartalizumab I NCT03172936

E7766 Eisai Inc. - I NCT04144140

FIGURE 2 | Schematic illustrations depicting the effects of different immune targets on breast cancer (A) Immune checkpoints (B) Tryptophan metabolism (C)

Chemokines (D) Arginase enzyme.

agonist and anti-PD1 facilitated tumor elimination, which
was dependent on CD4+ and CD8+ T cell responses (38).
These results indicate that sequential, rather than simultaneous

administration of OX40 agonists and anti–PD-1 can revert PD-
1 resistance and improve responses to combination therapy.
Consequently, one of the approaches in a Bristol-Myers Squibb
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(BMS) clinical study (39) involves exploring the effectiveness
of sequentially administering an OX40 agonist, BMS-986178,
anti-PD1 (Nivolumab), an allogeneic autophagosome-enriched
vaccine, DPV-001 and cyclophosphamide in TNBC patients
(ClinicalTrials.gov Identifier: NCT02737475).

Another co-stimulatory molecule, the inducible co-stimulator
(ICOS), is mainly expressed by activated CD4+ and CD8+ T
cells and constitutively by Tregs. ICOS binds to its ligand, ICOS-L
(B7RP1), expressed by APCs, epithelial cells, endothelial cells and
tumor cells (40). ICOS-mediated co-stimulation does not induce
IL-2 production, hence it is regarded as less potent relative to co-
stimulation elicited by CD28 (41, 42). However, various clinical
studies have shown that high expression of ICOS by T cells in
patients treated with PD-1 and CTLA-4 checkpoint inhibitors
correlates with positive treatment responses (43, 44). Hence,
current immunotherapy strategies include the administration of
ICOS or ICOS-L agonists with CTLA-4 checkpoint inhibitors
(43, 45). A Phase 1/2 first in-human clinical trial has been set up
to evaluate JTX-2011, an agonist monoclonal antibody that binds
to ICOS, alone or in combination with checkpoint inhibitors
for the treatment of advanced solid tumors, including TNBC
breast cancer (46). A recently completed phase 1 clinical trial,
which involved the use of another ICOS agonist, GSK3359609,
in combination with anti-PD-1 shows promising anti-tumor
activity in anti-PD-1/L1 naive patients with head and neck
squamous cell carcinoma (HNSCC) (32, 36). Furthermore, the
findings from this study indicate that GSK3359609 is also suitable
for monotherapy of HNSCC in patients with anti-PD-1/L1 -
experienced HNSCC (GSK Press Release September 28, 2019).

The glucocorticoid-induced TNFR related protein (GITR) is
preferentially expressed on NK cells and T cells, particularly
Tregs. GITR interaction with its ligand, GITRL, on dendritic
cells, boosts effector T cell differentiation and IL-2 production
(11, 13). Importantly, GITR has been detected on lymphocytes
and carcinoma cells from a subset of breast cancer tumor
specimens (47). Furthermore, observations from a study by
Krausz et al. indicated that Tregs from tumor-positive lymph
nodes from advanced breast cancer patients express increased
levels of GITR, compared to tumor-negative lymph nodes (48).
The potential for GITR-mediated co-stimulation to promote high
effector CD8+ T cell to Treg ratios, is now harnessed as an
immunotherapy strategy (49, 50). In fact, the first in-human
phase 1 trial of GITR agonism with the anti-GITR antibody
TRX518, has been initiated and a report indicates reduction
in circulating and intratumoral Tregs at similar levels (51).
However, a combination of GITR agonism with PD-1 blockade
has been postponed due to sub-optimal clinical responses
induced by TRX518 (51, 52). A clinical trial using another
anti-GITR agonistic mAb, INCAGN01876, in combination with
pembrolizumab and epacadostat for the treatment of advanced
or metastatic malignancies is underway (ClinicalTrials.gov
Identifier: NCT03277352).

CD40 is upregulated on the surface of activated APCs and
its interaction with its ligand (CD40-L), expressed on activated
B cells and T cells, leads to the initiation and progression
of cellular and humoral adaptive immunity (53, 54). CD40 is
also expressed in breast and lung carcinomas and carcinomas

of the urinary bladder, nasopharynx, and colon, in contrast
to normal non-proliferating tissues, which are CD40-negative
(55, 56). Observations from a study approximately two decades
ago by Tong et al., indicated that the interaction of soluble
recombinant CD40L with CD40+ human breast cancer cell lines
directly inhibits breast cancer cell growth. By examining primary
tumor biopsies, they also found that infiltrating ductal, lobular
carcinomas and carcinomas expressed CD40 while benign
epithelial tissues of these biopsies exhibited weaker expression
of CD40 (57). Interestingly, tumor infiltrating lymphocytes from
most of the breast cancers examined expressed very low levels
of CD40L (57). Other studies have suggested that CD40 may
induce apoptosis in breast carcinoma cells by upregulating Fas
expression induced by CD40 ligation (58).

A clinical study of CDX-1140, a CD40 agonist, for use as
a monotherapy or in combination with the anti-PD-1 mAB,
pembrolizumab, has been initiated in patients with advanced
malignancies, including breast cancer (ClinicalTrials.gov
Identifier: NCT03329950). Furthermore, results from a recent
orthotopic breast cancer study suggest that combination
treatment using anti-PD-1 and a CD40 agonist promote tumor
immunogenicity (59).

4-1BB (CD137) is another member of the TNFR family of co-
stimulatory molecules. It is expressed on many hematopoietic
cells, including T cells andNK cells. Its ligand, 4-1BBL (CD137L),
is predominantly expressed on APCs. 4-1BB:4-1BBL ligation
potentiates CTL responses, induces antibody-dependent cell-
mediated cytotoxicity in NK cells and modulates the activity of
CD4+ T cells, B cells, DCs, monocytes and macrophages (60).
For instance, CD8+ TILs from TNBC tumors were successfully
propagated with a 4-1BB agonistic antibody (urelumab) (61).
Based on these properties, harnessing the 4-1BB signaling
pathway through the use of agonistic monoclonal antibodies can
serve as a cancer immunotherapy strategy.

Significant breast tumor reduction in xenograft models has
been achieved by targeting 4-1BB, combined with trastuzumab
(anti-HER2) and rituximab (anti-CD20) treatment (32, 62, 63).
In 2017, a clinical trial to investigate the optimal dosage and
side effects of the 4-1BB agonist, utomilumab with trastuzumab
emtansine or trastuzumab in patients with metastatic HER2-
positive breast cancer was initiated (ClinicalTrials.gov Identifier:
NCT03364348). However, a dependency of 4-1BB agonists on
the Fcγ receptor–mediated hyperclustering and liver toxicity in
patients, have been reported (64). Consequently, strategies that
will restrict 4-1BB agonism to the TME, thereby minimizing
off-target toxicities, have been proposed. A recent study has
adopted a protein engineering approach to develop proteins
that simultaneously target 4-1BB and tumor stroma or tumor
antigens (65).

AMINO ACID CATABOLISM

Amino acid metabolism is an immune regulatory mechanism
(52). The breakdown of amino acids, particularly tryptophan and
arginine by immunoregulatory myeloid cells, is one mechanism
whereby T cell proliferation and activation are suppressed
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(29). Furthermore, these catabolic pathways are harnessed by
solid tumors to induce the development of immunosuppressive
tumor microenvironments and poor anti-tumor T cell responses.
Hence, the use of inhibitors of arginase-1 and indolamine-
2, 3- dioxygenase-1 enzymes, which catabolise L-arginine and
tryptophan, respectively, are now exploited as new cancer
immunotherapy strategies.

Catabolism of Tryptophan
Tryptophan is the rarest essential amino acid found in food.
It is a precursor to the synthesis of niacin (vitamin B3),
neurotransmitter serotonin, and the hormone melatonin.
Tryptophan metabolism is associated with immune regulation
and tumor progression (66). Tryptophan catabolism occurs
through the kynurenine pathway with the aid of two enzymes,
indoleamine-2,3-dioxygenase (IDO1) and tryptophan-2,3-
dioxygenase (TDO), which catalyze the first rate-limiting step
by facilitating the oxidative breakdown of the tryptophan indole
group. The generation of kynurenine (Kyn) and the concomitant
release of kynurenine metabolites by myeloid cells, suppresses
T cell and NK cell activity. The activities of IDO and TDO
have been investigated due to their link with various diseases,
including diabetes, mental disorders, inflammatory, and cancer
(67, 68) (Figure 2B).

Indoleamine-Pyrrole 2,3-Dioxygenase (IDO1)
The upregulation and sustained expression of IDO by tumor cells
is a well-characterized immunosuppressive strategy, orchestrated
in conjunction with MDSCs and Tregs (69). IDO1 and
TDO, through their catalytic activity, function as tryptophan
sinks, leading to the suppression of T cell proliferation,
apoptosis and Tregs differentiation. Indeed, T cell activation
and function are highly dependent on the levels of tryptophan
in their microenvironment, as the zeta chain of TCR complex
is downregulated upon tryptophan withdrawal. IDO1 also
suppresses anti-tumor responses through the generation of L-
kynurenine, an endogenous agonist of the arylhydrocarbon
receptor (AhR). AhR activation promotes the differentiation of
Tregs and the concomitant upregulation of IDO1 by DCs (70).
Furthermore, long-term expression of IDO1 by DCs is facilitated
when IDO functions as a signal-transducing molecule (70).

The expression of IDO has been observed in breast
carcinomas, particularly among triple negative (TNBC) basal-
like breast cancers (71, 72). In a study by Dill et al., the authors
assessed 281 primary andmetastatic breast cancers and identified
a correlation between IDO1 and PD-L1 expression, particularly
in high-grade TNBC (73). Their observations imply that IDO1
expression contributes to the resistance of breast cancer to anti-
PD-1/PD-L1 treatment.

A positive correlation between the high expression of PD-1
by T cells and high levels of kynurenine in the plasma and the
TME of breast cancer patients has also been reported (74). IFN-γ
produced by CD8+ T cells induces the production of IDO and
kynurenine by CD45 negative tumor cells. Kynurenine promotes
the translocation of AhR from cytosol to the nucleus of in vitro-
treated and tumor-infiltrating CD8+ T cells and subsequently
upregulates PD-1 (60).

IDO1 also induces cancer progression in a non-immune
manner by regulating angiogenesis (59). The expression of IDO
and levels of CD105+ micro vessel density by breast cancer
specimens were found to be associated with metastasis and
poor prognosis (75). Furthermore, MCF-7 cells which produce
high levels of IDO significantly induced the proliferation of
human umbilical vein endothelial (HUVEC) cells (75). Thus,
the pharmacological modulation of IDO1 and other enzymes
that target amino acids have been included in cancer therapy
strategies (20). Preclinical and clinical studies to test the efficacy
of IDO inhibitors for cancer treatment are discussed extensively
in a recent review (76).

A number of studies in which IDO1 is targeted alone or
in combination with immune checkpoint inhibitors have been
proposed. In 2017, a phase II clinical study investigated the effect
of the combined use of chemotherapy and the IDO1 inhibitor,
1-Methyl-D-tryptophan (Indoximod) in metastatic breast cancer
patients (ClinicalTrials.gov Identifier: NCT01792050). Results
from the phase I study indicated no drug-drug interactions
and partial responses in breast cancer and patients with other
metastatic tumors (77). Four of the breast cancer patients
achieved a reduction in tumor burden; a patient that had
hitherto only received only adjuvant endocrine therapy achieved
the best response (77). Results from another phase I study on
the use of a small molecule inhibitor of IDO1 (Navoximod)
alone, or in combination with a PD-L1 inhibitor (Atezolizumab)
to treat TNBC and other solid tumors indicated tolerability,
partial responses and complete responses in some patients (78).
However, there were no clear benefits associated with the use
of atezolizumab with navoximod (78). Results from another
phase I/II study of another IDO inhibitor, Epacadostat, used in
combination with anti-PD-1 (pembrolizumab) for the treatment
of TNBC and ovarian cancer indicated tolerability, safety and
anti-tumor activity (79). However, in another study, there was
no difference in progression-free or overall survival in patients
with unresectable stage III or IV melanoma administered with
Epacadostat in combination with anti-PD1 (pembrolizumab),
compared to placebo plus pembrolizumab (80). Hence, the
usefulness of IDO1 inhibition as a strategy to enhance anti-PD-1
therapy activity in cancer yet to be clarified.

Other approaches which utilized nanodelivery systems
designed to use Indoximod in conjunction with a-PD-L1 or
the induction of immunogenic cell death using doxorubicin
for breast cancer treatment, have also been investigated (81).
Taken together, the outcomes of these studies suggest that IDO1
inhibitors can be used as standard-of-care treatment for breast
cancer and other solid tumors, alone or in combination with
other cancer therapeutic strategies.

Tryptophan-2,3-Dioxygenase (TDO)
Unlike IDO1, which is induced in immune cells such as
DCs, TDO is constitutively expressed in the liver, where it
regulates tryptophan homoeostasis in the blood (82–84). Similar
to IDO1, TDO suppresses T cell activation by tryptophan
depletion and is also overexpressed in the microenvironment
of various tumors, including breast cancer (26). Preclinical
studies have demonstrated that TDO expression by breast cancer
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cells is associated with increased cancer cell migration and
invasion (66, 85). In a study by Greene et al., the authors
demonstrated that triple-negative breast cancer (TNBC) cells use
TDO to suppress CD8+ T-cell viability (86). Furthermore, in
an earlier preclinical study, D’Amato et al., showed that NF-kB-
dependent upregulation of TDO and AhR is linked to anchorage-
independent cell survival and anoikis resistance of TNBC cells
(85). These observations imply that the overexpression of TDO
by tumors such as TNBC is associated with disease metastatic.

Results from preclinical studies investigating the impact of
TDO inhibition using knockout mice or compounds have shown
that deletion of the TDO gene (TDO2) in mice results in
tryptophan accumulation in the blood and neurologic changes,
which may be associated with serotonin production (84)
Consequently, the utilization of TDO inhibitors may have safety
implications with respect to liver and CNS complications. Dose-
dependent reduction of the 4T1 breast or CT26 colon tumor
growth was achieved by dual inhibition of IDO and TDO using a
lead compound, CB548, in a mouse preclinical model (87). Also,
the administration of CMG017, another dual inhibitor of IDO
and TDO, to tumor-bearing mice resulted in reduced kynurenine
concentration, differential expression of immune-related genes
and the infiltration of effector CD8+ T cells in the TME (87).
Furthermore, co-administration of CMG017 with checkpoint
inhibitors (a-PDL1 and a-CTLA-4) to tumor-challenged mice
resulted in tumor regression and the establishment of memory
CD8+ T cell responses (87).

In 2017, a phase I study was initiated to investigate the
safety, pharmacokinetics, pharmacodynamics and efficacy of
HTI-1090, a small molecule dual inhibitor of IDO1 and TDO,
in patients with advanced solid tumors (ClinicalTrials.gov
Identifier: NCT03208959). Although this study was completed in
2019, the outcomes are yet to be disclosed. The utilization of other
TDO and IDO1 inhibitors such as 680C9, LM101 are still under
preclinical investigation.

Catabolism of Arginine
Arginase
L-arginine is a non-essential amino acid that plays a vital
role in cellular activity such as metabolic programming and
maintenance of T cell fitness (88, 89). The administration of
L-arginine to breast tumor-bearing BALB/c mice suppressed
tumor growth significantly and prolonged the survival time
of treated mice. L-arginine supplementation also enhanced the
levels of IL-10, TNF-α, IFN-γ; macrophage and T cell numbers
and suppressed the activity of MDSCs. The activity of arginase
enzymes (ARG1 and ARG2), which catalyze L-arginine into
ornithine and urea, is increased in the TME of multiple cancers
including breast cancer. Arginase enzymes facilitate localized
immune suppression mediated by cancer-associated fibroblasts
(ARG2), MDSCs, DCs, tumor-associated macrophages (TAMs)
and tumor-infiltrating macrophages (ARG1) (90, 91). These cells
in turn, produce ARG1 in response to a milieu of tumor cues,
such as HIF-1α, M-CSF, GM-CSF, IL-4, IL-13 and IL-6 (89).
Another key enzyme associated with L-arginine metabolism,
nitric oxide synthase (NOS), produces nitric oxide (NO) from L-
arginine and oxygen. In low L-arginine conditions, characteristic

of tumor sites, NOS can induce the production of superoxide
anion, which can combine with NO to generate various reactive
nitrogen species that can also hamper T cell activity at tumor
sites (89).

The reduction of extracellular arginine by ARG1 leads to
suppression of T cell function (Figure 2D) by the activation of
GCN2 kinase, which blocks the expression of several cell cycle
genes such as cdk4, cyclin D3, and CD3 (21). High levels of
ARG1 have been identified in the serum of preoperative breast
cancer patients compared to healthy controls (92). In addition,
elevated ARG1 is expressed by MDSCs from patients diagnosed
with early-stage breast cancer, which is reduced upon surgical
tumor resection (2).

A number of preclinical strategies that target ARG1 have
been implemented with promising results. The cell viability
and arginase activity of a TNBC cell line with high levels of
arginase (MDA-MB-468), were decreased in response to L-
lysine induced arginase inhibition, in comparison to a cell line
with less arginase levels (MDA-MB-231) (93). The treatment
of tumor bearing mice (CT26, 4T1, B16, and LLC) with CB-
1158, a small molecule inhibitor of ARG1, elicited increased
cytotoxic T cell infiltration and decreased myeloid cell numbers
(71). This correlated with increased activation markers, cytokine
production and expression of interferon genes. Furthermore, CB-
1158 efficacy was enhanced when combined with checkpoint
blockade, chemotherapy and adoptive cell therapy (94).

Treatment with the arginase inhibitor (INCB001158)
alone inhibited plasma arginase activity with concomitant
increase in the plasma arginine in a colorectal carcinoma
patient cohort. INCB001158 used in combination with a-PD-1
(pembrolizumab) for the treatment of advanced/metastatic
solid tumors. INCB001158-pembrolizumab combination
treatment elicited increased frequencies of intratumoural CD8+
T cells and a 7% partial response (ClinicalTrials.gov Identifier:
NCT02903914). A clinical study has been initiated to evaluate
the safety, toxicity and immune correlates of administering
an Arginase-1 peptide vaccine (ARG1-18,19,20) to patients
with breast cancer and other solid tumors (ClinicalTrials.gov
Identifier: NCT03689192).

CHEMOKINES AND CHEMOKINE
RECEPTORS

Chemokines and their receptors play a pivotal role in
various biological and pathological processes, including chronic
inflammation, tissue development, hematopoiesis, and immune
modulation (95). Many studies revealed chemokines’ role as
essential mediators of immunity, angiogenesis (96), metastasis
(97), drug resistance (98), breast cancer occurrence and
progression (Figure 2C) (23, 99, 100). Chemokines have been
classified into four main groups, CXC, CC, XC, and CX3C.
The CXC family consists of 17 subfamily members (CXCL1-
CXCL16), while CC family is the largest subgroup (CCL1-
CCL28). The XC family has two subgroups (XCL1 and XCL2),
while there is only one CX3C chemokine (CX3CL1) (95, 101).
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Tumor cell migration and the ensuing invasion into specific
organs occur in response to receptor-ligand interactions,
the rearrangement of the actin cytoskeleton and multiple
environmental cues which favor trafficking. Mueller et al., in
investigating the role of chemokine receptors in promoting
breast cancer metastasis almost two decades ago, found that
breast cancer cells express CXCR4 and CCR7 (90). Consequently,
targeting chemokines and their receptors has been evaluated
in preclinical and clinical cancer immunotherapy studies.
The detailed roles of chemokines in cancer biology have
been reviewed elsewhere (23, 95, 102). We will highlight a
few examples of the roles of chemokine–chemokine receptor
interactions in the breast cancer microenvironment.

CXCR Family
CXCL8 (IL-8) is a chemokine whose physiological effects are
mediated by two receptors, namely CXCR1 and CXCR2 (103).
CXCR2 (IL-8 receptor) is expressed on MDSCs, neutrophils,
lymphocytes, and breast cancer cells. CXCR2 and CXCL8
regulate breast cancer progression in the TME by modulating
several related pathological processes, including promoting
breast cancer growth, angiogenesis, invasion, metastasis, and
reducing cancer cell sensitivity to chemotherapy (99, 104, 105).
CXCR2 modulates the trafficking of neutrophils from the bone
marrow to breast cancer sites, leading to increased tumor growth
(106). CXCR2 also induces the migration of MDSCs, thus,
promoting local immunosuppression (107). Studies show that
cancer patients with high levels of CXCR2 have low overall
survival and poor prognosis (108). The CXCL8-CXCR2 axis
can also stimulate the transcription of VEGF and activate its
receptor,VEGFR2, in endothelial cells by the NF-κB pathway
(109). Like CXCR2, CXCR1 is expressed significantly in breast
cancer stem cells, which increases the growth of breast cancer
when stimulated by inflammation or tissue damage (110).
Consequently, targeting the CXCL8-CXCR1/CXCR2 axis has
been adopted as a breast cancer therapy strategy (111). The
utilization of reparixin, a small molecular weight antagonist
of CXCR1/2 as a breast cancer therapeutic agent has been
investigated in preclinical and clinical studies (99, 112). Results
from a phase Ib trial on the co-administration of reparixin and
paclitaxel to patients with HER-2- negative metastatic breast
cancer yielded a 30% response rate (88). In another study
on the treatment of women with HER-2- negative operative
breast cancer with reparixin only, the frequency of cancer
stem cells, indicated by aldehyde dehydrogenase, CD44+/CD24-
expression, was reduced (113).

Several studies have assessed the impact of CXCR4 in breast
cancer cell survival, proliferation, angiogenesis, migration, and
metastasis (114, 115). CXCR4 induces breast cancer metastases
by binding to its ligand stromal cell-derived factor-1α (SDF-
1), which is overexpressed in the bone marrow, liver, lung, and
breast tumors sites (100, 116). CXCR4 promotes cancer cell
proliferation by activating several signaling pathways, including
Src/ERK1-2, PI3K/AKT, STAT3, and NF-κB. The cross-link
between CXCR4 and other pathways such as Notch, Wnt, and
SHH is also associated with increased breast cancer growth (117).
Injecting immunocompromised mice subcutaneously with a

CXCR4-low-expressing breast cancer cell line (MCF-7), resulted
in reduced tumor growth compared to mice inoculated with the
MDA-MB-231 cell line, which expresses high levels of CXCR4
(118). Also, results from a human study in which surgically
resected ductal carcinomas were evaluated, indicate that high
CXCR4 expression correlates with extensive nodal metastasis
(119). Preclinical studies of CXCR4 inhibitors have demonstrated
its ability to attenuate the proliferation and metastasis of breast
tumors; AMD3100 is a CXCR4 antagonist that decreases lung
metastases in breast cancer (120). However, Lefort et al., have
shown that AMD3100 and TN14003, another CXCR4 inhibitor,
impair only the growth and metastasis of HER2 breast cancers,
but not TNBC (121).

In contrast to the preclinical outcomes, the efficacy of
CXCR4 blockade in clinical trials has not shown clear success
with respect to dosage and the manifestation of undesirable
side effects. In a clinical study by Pernas et al., the safety,
tolerability, pharmacokinetics, and preliminary phase 1 dose-
escalation activity of the CXCR4 antagonist, balixafortide, in
combination with eribulin (antineoplastic) chemotherapy, was
assessed in patients with relapsed metastatic breast cancer who
had hitherto received chemotherapy (96). Partial responses were
observed and serious side effects occurred in 30 and 38% of
the study patients, respectively. Furthermore, two patients died
from septic shock and pneumonia, respectively (96). Based on the
observations of the Phase 1 trial, a phase 3 study has been set up
to investigate the safety, efficacy and tolerability of intravenous
balixafortide administered with eribulin compared to eribulin
monotherapy for the treatment of HER2 negative, locally
recurrent or metastatic breast cancer patients (ClinicalTrials.gov
Identifier: NCT03786094).

The CCR Family
CCL2 is overexpressed in tumor cells, including breast, ovarian,
and lung cancer. CCL2 stimulates the migration of macrophages
that express the chemokine CCL2 receptor (CCR2), into the
TME. It also induces cancer proliferation and invasion (122).
CCL2 can induce the migration of various breast cancer cell
lines, including T47D, MCF-7, and ZR-75-1 (123). Studies using
breast tumor xenografts show that blocking CCL2-CCR2 axis
suppresses the recruitment process of inflammatory monocytes,
increases tumor growth, and promotes metastasis and invasion
(124). These studies suggest that CCL2-CCR2 signaling promotes
breast cancer progression, and targeting this pathway might be
adopted as a breast cancer therapy strategy.

CCL5/CCR5 pathway also plays a critical role in promoting
breast cancer progression. CCL5 ligand is overexpressed in breast
cancer cells, mesenchymal stem cells (MSCs), and infiltrating
leukocytes. Results from a clinical study indicate that levels of
CCL5 in breast cancer patients are higher than that of healthy
controls (125). CCL5 can maintain the immunosuppressive
activity of human MDSCs (126). The CCL5 receptor (CCR5) is
also upregulated on breast cancer cells (127). A study conducted
on breast cancer patients showed that 50% of breast tumors
express CCR5, with >95% TNBC tumors being CCR5+ (128).
The blockade of CCR5 suppresses breast cancer proliferation,
migration, colony formation, and metastasis (129). Therefore,
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targeting CCR5 could be promising strategy for metastatic
breast cancer. Met-CCL5, a competitive CCR5 inhibitor, reduces
breast cancer proliferation and infiltrating macrophages in
animal preclinical models (130). Treatment with maraviroc,
CCR5 antagonist, significantly suppresses bone metastasis in
a xenograft rat model implanted with breast cancer cells
(MDA-MB-231) (131). Leronlimab (PRO 140) is another CCR5
antagonist under investigation in breast cancer clinical trials
(129, 132, 133).

PURINERGIC SIGNALING

Purinergic signaling plays a prominent role in inflammation and
cancer. It modulates cell growth, migration, and cell death (134).
In this pathway, two potent molecules (ATP and Adenosine)
involved in the immune response are released into the TME
(Figure 3A) (135). Intracellular ATP levels are sustained at
millimolar concentrations under physiological conditions, while
extracellular levels are regulated in nanomolar concentrations.
However, in the TME, ATP concentrations arise due to release
from necrotic or apoptotic cells (136). Adenosine concentrations

in solid tumors are also higher than that of healthy tissues
(137, 138). It is well-reported that ATP and Adenosine have
opposite effects. ATP is immunostimulatory as it enhances
the activation of dendritic cells (DC), macrophages, IL-1β
secretion, and cytotoxicity of CD8+ T cells. Hence, ATP
activity can mediate the suppression of proliferating cancer
cells. Adenosine, on the other hand, has immunosuppressive
properties. It inhibits immune effector cells, DC maturation,
cytokine production and stabilizes immunosuppressive Tregs
(139). Purinergic cell surfaces ectoenzymes (P2Xs, P2Ys, CD73,
CD39, and CD38), mediate the biological activities of ATP and
Adenosine, and adenosine receptors (A1R, A2AR, A2BR, A3R),
are overexpressed by breast cancer cells and tumor-infiltrating
immune cells (19). Several therapeutic agents are developed to
target these receptors to enhance anti-tumor immune responses
against breast cancer.

The P2 Family
The pyrogenic receptors P2Xs (ion channel receptors) and
P2Ys (G protein-coupled receptors) are overexpressed on several
immune cells within the TME (140). Among the pyrogenic
receptors, P2X7 receptor (P2X7R) has been studied extensively

FIGURE 3 | Schematic illustrations depicting the effects of different immune targets on breast cancer (A) ATP and Adenosine signaling (B) COX2/PGE2 pathways (C)

CSF-1/CSF-1R (D) VEGF(R).
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due to its contrasting effects (134). In some studies the role of
P2X7 in inducing antitumor immune responses by activating
NK cells, CD4+, and CD8+ effector T cells, and promoting
Treg apoptosis, has been shown (141, 142). Two P2X7 receptor
agonists ATPγS and BzATP, reduce tumor growth and metastasis
(143, 144). Other pieces of evidence propose the P2X7 receptor
as promoters of tumor progression, mediated by inducing tumor
growth, metastasis, and survival (145). P2X7R is upregulated
in various tumors, including malignant breast cancers, and its
expression is higher in tumors compared to the healthy tissue.
This indicates that P2X7 can be used as an effective early cancer
biomarker (40, 146). Many inhibitors that target P2X7R have
been developed, such as Anthraquinone Emodin, which can
potently suppress invasive breast cancer cells in vitro (147).
AZ10606120 is another P2X7R antagonist reported to be a potent
inhibitor of tumor growth (91).

CD39 and CD73
ATP and ADP are converted into AMP by the catalytic activity
of CD39, while AMP is irreversibly converted to adenosine by
CD37 (148). CD39 andCD73 are expressed significantly by breast
cancer and various immune cells, including T cells, NK cells,
B cells, MDSC, macrophages, and neutrophils (17). The high
expression of CD39 and CD73 results in increasing adenosine
levels in the TME, which in turn stimulates the adenosine A2A
and A2B receptors. The adenosine A2A and A2B receptors
promote tumor progression by triggering angiogenesis, tumor
cell survival, and metastasis (149–151). They also increase the
immunosuppressive efficacy of Tregs, macrophages, MDSCs and
development of effector T cells. Breast cancer patients with
positive clinical outcomes exhibited low expression of CD39
and CD73 compared to patients with poorer clinical outcomes,
which indicates that CD39 and CD73 can serve as biomarkers
of patients’ progress (152–154). Blocking CD73 and CD39
promoted anti-tumor responses; anti-CD73 mAbs, enhances the
cytotoxicity of CD8+ T cells and inhibits the activity of Tregs and
MDSCs (155). Small molecules against CD73 such as LaSOM 63
and APCP, inhibit tumor progression and increase the efficacy of
effector T cells (150, 156). Preclinical studies indicate that anti-
CD73 mAbs can hinder metastasis in human breast cancer (157).
Three CD73 antagonists (MEDI9447, BMS-986179, CPI-006),
which target TNBC are currently under clinical investigation
(158). Similarly, preclinical studies of anti-CD39 monoclonal
antibodies, BY40 and BA54G, have demonstrated anti-tumor
efficacy (159). Therapeutic agents that target CD39 are still in the
developmental stage (160).

Adenosine A2A Receptor (A2AR) and
Adenosine A2B Receptor (A2BR)
Extracellular adenosine stimulates the immunosuppressive
pathway through engagement with specific G-protein-coupled
adenosine receptors such as (A2a and A2b) (160). A2aR (high
affinity receptor) is upregulated on a variety of immune cell
subsets, including monocytes, macrophages, DCs, T cells, and
natural killer T (NKT) cells. Adenosine signaling pathway
through the A2aR suppresses T cell proliferation by increasing
the expression of anti-inflammatory cytokines (IL-10, TGF-β)
and reducing the expression of pro-inflammatory cytokines

(IFN-γ, IL-2) (161). It also triggers increased expression of
immune checkpoints such as LAG-3, PD-1, and CTLA-4
(162, 163). A2aR is overexpressed in many cancer cells, including
breast cancer cells. Activation of A2aR leads to an increase in the
proliferation of MCF-7 breast cancer cells (164). A2aR promotes
proliferation and metastasis by stimulating various signaling
pathways, including PLC/PKC, ERK-MAPK, PI3K/AKT/mTOR
(165). CPI-444, an A2AR antagonist, is used as monotherapy
or combined with anti-PD-L1 (Atezolizumab) to treat TNBC
(166). A2bR, on the other hand, is a low-affinity receptor which
needs more Adenosine to be activated. A2bR is overexpressed
by macrophages, DCs, and multiple tumors such as breast
tumors (167, 168). Its upregulation is associated with poor
survival and worse prognosis in human TNBC (169). In vitro
activation of A2bR, increases the growth and migration of breast
cancer (MDA-MB-231) cells (170). Results from an in vivo study
indicate that blocking A2bR reduces the metastasis of TNBC and
enhances the activities of chemotherapy and immune checkpoint
inhibitors (169). Several studies indicate that stimulating A2bR
promotes tumor growth and metastasis through the activation of
the ERK1/2 and angiogenesis pathways; blocking this receptor
reverses these effects (19, 171, 172). A selective A2bR blocker
(ATL801) promotes the inhibition of bladder and breast cancer
growth when injected intratumorally (173).

TARGETING THE COX2/PGE2 PATHWAYS

Increased levels of COX2 enzymes have been reported in nearly
half of breast cancer patients (174), with other studies reporting a
range of 17 to 84% (175, 176). The silencing of COX-2 expressed
by the human breast cancer cell line, MDA-MB-231, inhibits
cell migration in vitro and metastasis in vivo (177). PGE2, an
enzymatic product of COX2, functions by signaling through one
of the four G-protein coupled receptors (EP1, EP2, EP3, and
EP4) (Figure 3B). The COX2/PGE2 axis promotes breast cancer
progression by increasing cancer migration, metastasis, and
angiogenesis (178–180). In addition, PGE2 regulates different
immune cells- it suppresses the proliferation of CD4+ T cells
by reducing intracellular calcium release and suppressing the
activity of the p59 protein tyrosine kinase (181, 182). PGE2
decreases the production of effector cytokines, such as IL-
2 and IFN-γ, and it can also inhibit NK cell function and
B cell proliferation (183–185). PGE2 elevates cAMP by the
stimulation of its receptors, EP2 and EP4 (186). COX2/PGE2
and its receptors are potential target(s) for breast cancer
therapy. Preclinical studies indicate that celecoxib, a selective
COX-2 inhibitor, reduces breast cancer metastasis (176, 187).
The daily intake of COX-2 inhibitors such as non-steroidal
anti-inflammatory drugs (NSAIDs) reduce the risk of breast
cancer occurrence significantly (188). The PGEP4 receptor
blocker (AAT-007) is currently in phase 2 for the treatment
of patients with solid tumors, including breast cancer (179). A
newer version of the PGEP4 receptor antagonist called (AAT-
008) has shown significant bioavailability and pharmacological
profiles in preclinical investigations (189). The PGE2 EP1
antagonist (ONO-8711) suppresses breast cancer progression in
rats (190). Using different breast cancer cell lines in vitro, the
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PGEP3 receptor antagonist (L798,106), demonstrated potency in
reducing breast cancer proliferation and migrations (191).

CSF-1/CSF-1R

Activated macrophages are divided, for simplicity, into anti-
tumor (M1)macrophages and pro-tumor (M2)macrophages.M1
macrophages are activated by GM-CSF, IFN-γ, LPS, and other
cytokines. M1 macrophages, referred to as “fight” macrophages,
play a significant role in producing pro-inflammatory cytokines
and inducing anti-tumor immune responses (192, 193). The
growth factor, GM-CSF, regulates the differentiation of DCs and
macrophages (194, 195). Results from in vivo studies indicate
that GM-CSF suppresses breast cancer growth and metastasis
(196). In contrast, M2 macrophages induce tumor proliferation,
therapy resistance, tumor invasion, angiogenesis, and metastasis.
M2 macrophages are polarized by colony-stimulating factor
1 (CSF1), IL-13, IL-10, IL-4, TGF-β, and prostaglandin E2
(197, 198). The upregulation of CSF-1 signaling correlates with
increased breast cancer progression (Figure 3C) (199). CSF1R
is expressed by both M1/M2 TAMs, MDSCs, neutrophils, and
DCs (200). CSF1/CSF1R signaling increases angiogenesis, cancer
growth, metastases, invasion, CD8+ T cell suppression, tumor
macrophage recruitment, and resistance to therapy (201, 202).
CSF1 can also stimulate VEGF production (196). Blocking CSF1
in breast cancer-bearingmice reversed these effects and increased
mouse survival rate (203). There are currently many therapeutic
agents that target CSF1 and its receptor CSF1R, in preclinical
or clinical development stages. For example, LY3022855, a
CSF1R blocker used as a single agent or in combination with
Durvalumab (anti-PDL1 mAb) or Tremelimumab (anti-CTLA4
mAb) for patients with a solid tumors, including breast cancers
(24). Pexidartinib is another inhibitor of CSF1R that is used in
combination with a microtubule inhibitor (Eribulin) for breast
cancer patients (24). Anti- CSF1R (Emactuzumab) combined
with Atezolizumab (anti-PDL1 mAb) are used to treat TNBC
(24, 204).

VASCULAR ENDOTHELIAL GROWTH
FACTOR A (VEGF-A)

VEGF binding to its receptors promotes the progression,
proliferation, and metastasis of breast cancer (Figure 3D) (22,
205, 206). Among the five identified VEGF subfamilies (VEGF-
A, VEGF-B, VEGF-C, VEGF-D, VEGF-E), VEGFA, also called
VEGF, is the dominant andmost researched isoform (207). VEGF
isoforms bind with varying affinities to VEGFR1, VEGFR2, and
VEGFR3, which mediates VEGF downstream signaling (208).
VEGFA is overexpressed in several types of cancer, including
breast cancer (209), and plays a vital role in angiogenesis
(210). VEGF halts the differentiation and activation of DCs and
promotes the exhaustion of CD8+ T cells by increasing the
expression of inhibitory receptors, such as PD-1, TIM-3, LAG-
3, and CTLA-4 (211). High VEGF plasma levels in breast cancer
patients is associated with a significant reduction of DCs in the
peripheral blood of cancer patients. The appearance of immature

DCs in the blood correlates with the duration and disease stage;
surgical removal of tumors showed a partial reversal of the noted
effects (212). On the other hand, inhibiting VEGF increases
tumor-infiltrating effector T-cells and reduces the recruitment of
Tregs and MDSCs to the TME (213). Blocking VEGF stops the
growth of tumor blood vessels in murine models and promotes
cancer cell death and tumor-shrinkage (214). Therefore, targeting
VEGF and its receptor VEGFR are key therapeutic targets
for breast cancer treatment. Many angiogenesis inhibitors have
been approved by the FDA, however, only a few have been
tested in breast cancer patients such as bevacizumab, which
binds to VEGFA and blocks its efficacy (215). Bevacizumab
was the first FDA approved antiangiogenic agent (216, 217).
In 2008, it was approved to be used in combination with
chemotherapy to treat metastatic HER2-negative breast cancer
(218). However, it showed several adverse side effects and poor
overall survival, which led the FDA to revoke its approval
in 2011 (219, 220). An example of a VEGFR inhibitor is
DC101, a monoclonal antibody which binds to VEGFR2, and
exhibits potential antiangiogenic efficacy against breast tumors
in xenograft models. In another in vivo study, DC101 enhanced
tumor-specific CD8+ T cells and accelerated tumor regression.
Combining DC101 with neu-specific vaccination also suppressed
tumor progression and increased the activity of CD8+ T cells
(221). Ramucirumab, a VEGFR2 blocker, has shown preclinical
and clinical promise in targeting breast cancer angiogenesis,
growth, and metastasis (222). Axitinib is a small molecule
that binds selectively to VEGFR-1,−2, and−3, and blocks their
activities (223); murine studies indicate its potency in inhibiting
breast cancer growth (224). However, clinical studies have only
demonstrated its activity in combination with chemotherapy
(paclitaxel). Sorafenib is another small molecule VEGFR blocker;
reports indicate encouraging clinical trial results from the
treatment of breast cancer patients. However, the utilization of
sunitinib, a VEGFR inhibitor, has not shown any clinical benefit
in breast cancer patients (225).

Overall, the preclinical results obtained from the use of
anti-VEGF agents showed a significant decrease in tumor
angiogenesis. However, the outcome of clinical trials exhibited an
average response (22, 226).

TOLL-LIKE RECEPTOR (TLR)

TLRs are expressed by both cancer and immune cells (227,
228). Among the thirteen TLRs (TLR1-13) that have been
characterized, ten (TLR1-10) were identified in humans, six of
which are expressed on the cell surface TLR (1, 2, 4, 5, 6, and 10)
and four on endosomal membranes (229).

Several TLRs are upregulated in human breast tumors. TLR4
is the most expressed among the TLR family, on breast cancer
cells (MDA-MB-231 cells). Deletion of the TLR4 gene resulted
in an increase in cell death and suppression of IL-6 and IL-8
expression (230). The overexpression of TLR9 in human breast
cancer enhances tumor cell invasion, which is mechanistically
linked to the induction of MMP13 and COX-2 secretion (231).
Various studies have reported positive correlations between
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FIGURE 4 | Schematic illustrations depicting the effects of different immune targets on breast cancer (A) Toll-like receptor(s) (B) Stimulator of interferon genes protein.

TLR expression and the activation of the immune system. TLR
stimulates DCs and macrophages and promotes the secretion of
pro-inflammatory cytokines and the facilitation of anti-tumor
immune responses (232, 233). The role of TLRs as pro-tumor
agents has also been investigated (234). The function of TLRs in
cancer can be described as a “double-edged sword” (Figure 4).
On the one hand, agonists that bind to TLR(s) on tumor cells
can promote cancer progression by promoting immune escape
and cancer cell proliferation and survival. The engagement of
TLR4 expressed by human breast cancer cells results in increased
production immunosuppressive factors such as NO, VEGF, and
MMPs, thereby promoting the tumor invasion (230, 235, 236).

On the other hand, activating TLR5 in the breast cancer
mouse model resulted in anti-proliferative efficacy through
the promotion of necrosis, increased neutrophil infiltration
and down-regulation of cyclin B1, cyclin D1, and cyclin E2
(237). TLR3 expressed by human and mouse breast cancer
cells promotes apoptosis by inducing type I IFN signaling
(238). Preclinical studies have demonstrated that TLR agonists,
combined with other therapeutic agents, can potentially reduce
and suppress tumor progression (239, 240). The different roles of
TLRs are linked to the proximal signaling pathways stimulated
in cancer cells and immune cells. For example, even though
TLR5 is overexpressed in both gastric and breast cancers, it
has opposite effects as it suppresses the proliferation of breast
cancer and induces the growth of gastric cancer cells (237,
241). Many TLR agonists have been investigated for clinical
use. The TLR5 agonist, flagellin, suppresses breast cancer by
induction of caspase-1 activation-dependent pyroptosis. It also
enhances the expression of granzyme B, TNF-α, and IFN-
γ in CD8+ T cells (242, 243). The TLR3 ligand, poly-AU,
increases the survival rate in patients with TLR3-positive breast
cancer (244). Imiquimod is a well-tolerated TLR7 agonist
that can promote the rejection of immune-mediated skin
metastasis in breast cancer patients (245) 852A is another
TLR7 agonist used for the treatment of metastatic breast cancer
patients (240).

STIMULATOR OF INTERFERON GENES
PROTEIN (STING)

Various studies have suggested that STING (stimulator of
interferon (IFN) genes) expression is not only confined to
innate and adaptive immune cells (246–248), but is also
expressed in various tumors, including breast cancer (249).
STING stimulators have shown great potential for activating
immune cells, enhancing anti-tumor immunity by inducing a
variety of pro-inflammatory cytokines and chemokines (246, 247,
250), priming and activation of T cells (251), enhancement of
antigen presentation, promotion of cancer cell death, inducing
the recognition and apoptosis of cancer cells by T cells (249,
252, 253). A previous study has revealed the role of STING in
promoting death in 4T1 breast cancer cells by increasing the
caspase-3 pathway cascade (249). Similarly, the overexpression
of STING in two breast cancer cell lines, T47D or MCF-
7 has been shown to increase caspase 3 and/or 7 activity
(252). The deletion of STING expressed by melanoma cell lines
results in the suppression of cytokines (IFN-γ) and chemokines
(CCL5 and CXCL10) production (254). Furthermore, STING
knockout mice exhibit reduced NK cell responses by mediating
the downregulation of perforin, granzyme B, and IFN-γ (253,
254). Numerous STING stimulators are now under clinical
investigation for the treatment of various types of cancers.
The utilization of ADU-S100 (MIW815), a STING agonist,
is currently being tested in combination with anti-PD-1
(spartalizumab) for the treatment of patients with solid tumors,
including PD-1-naïve TNBC (255).

CONCLUSIONS

Following several years of preclinical and clinical research,
our understanding of how the immune system responds
to cancer has increased. The limited success of immune
checkpoints, like CTLA-4 or PD-1, in clinical trials for breast
cancer patients, has prompted research to find alternative
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targets. Many new emerging data reported novel pathways that
stimulate immune responses against breast tumors. These newly
discovered pathways are likely to be the future targets of breast
cancer immunotherapy.
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Immune Checkpoint Inhibitor,
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Kristin C. Hicks1, Claudia Palena1, Lisa M. Cordes2, Seth M. Steinberg3,
Deneise Francis2, Fatima Karzai2, Stanley Lipkowitz4, Renee N. Donahue1,
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1 Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of
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Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States, 4 Women’s
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United States

Breast tumors commonly harbor low mutational burden, low PD-L1 expression, defective
antigen processing/presentation, and an immunosuppressive tumor microenvironment
(TME). In a malignancy mostly refractory to checkpoint blockade, there is an unmet clinical
need for novel combination approaches that increase tumor immune infiltration and tumor
control. Preclinical data have guided the development of this clinical trial combining
1) BN-Brachyury (a poxvirus vaccine platform encoding the tumor associated antigen
brachyury), 2) bintrafusp alfa (a bifunctional protein composed of the extracellular
domain of the TGF-bRII receptor (TGFb “trap”) fused to a human IgG1 anti-PD-L1),
3), entinostat (a class I histone deacetylase inhibitor), and 4) T-DM1 (ado-trastuzumab
emtansine, a standard of care antibody-drug conjugate targeting HER2). We
hypothesize that this tetratherapy will induce a robust immune response against HER2+

breast cancer with improved response rates through 1) expanding tumor antigen-specific
effector T cells, natural killer cells, and immunostimulatory dendritic cells, 2) improving
antigen presentation, and 3) decreasing inhibitory cytokines, regulatory T cells, and
myeloid-derived suppressor cells. In an orthotopic HER2+ murine breast cancer model,
tetratherapy induced high levels of antigen-specific T cell responses, tumor CD8+ T cell/
Treg ratio, and augmented the presence of IFNg- or TNFa-producing CD8+ T cells and
IFNg/TNFa bifunctional CD8+ T cells with increased cytokine production. Similar effects
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were observed in tumor CD4+ effector T cells. Based on this data, a phase 1b clinical trial
evaluating the stepwise addition of BN-Brachyury, bintrafusp alfa, T-DM1 and entinostat
in advanced breast cancer was designed. Arm 1 (TNBC) receives BN-Brachyury +
bintrafusp alfa. Arm 2 (HER2+) receives T-DM1 + BN-Brachyury + bintrafusp alfa. After
safety is established in Arm 2, Arm 3 (HER2+) will receive T-DM1 + BN-Brachyury +
bintrafusp alfa + entinostat. Reimaging will occur every 2 cycles (1 cycle = 21 days). Arms
2 and 3 undergo research biopsies at baseline and after 2 cycles to evaluate changes
within the TME. Peripheral immune responses will be evaluated. Co-primary objectives are
response rate and safety. All arms employ a safety assessment in the initial six patients
and a 2-stage Simon design for clinical efficacy (Arm 1 if ≥ three responses of eight then
expand to 13 patients; Arms 2 and 3 if ≥ four responses of 14 then expand to 19 patients
per arm). Secondary objectives include progression-free survival and changes in tumor
infiltrating lymphocytes. Exploratory analyses include changes in peripheral immune cells
and cytokines. To our knowledge, the combination of a vaccine, an anti-PD-L1 antibody,
entinostat, and T-DM1 has not been previously evaluated in the preclinical or clinical
setting. This trial (NCT04296942) is open at the National Cancer Institute (Bethesda, MD).
Keywords: metastatic breast cancer, bintrafusp alfa, entinostat, BN-Brachyury, TGF-b
INTRODUCTION

Breast cancer has historically been considered immunologically
cold with most tumors having a relatively low mutational burden
[mean 1.63 mutations per megabase (1)] and low programmed
death-ligand 1 (PD-L1) expression (2, 3). In addition, it is
hypothesized that the intrinsic resistance to immunotherapy
observed in breast cancer may be due to low neoantigen levels,
defective antigen presentation, and the presence of transforming
growth factor beta (TGF-b) and other immunosuppressive
signals in the tumor microenvironment (TME), collectively
promoting exclusion of effector T cells and natural killer (NK)
cells from the tumor (4–7). Together, these defects create an
immunosuppressive TME that impedes the generation of an
effective anti-tumor immune response as is reflected by the
modest results observed with immune checkpoint blockade
(ICB) monotherapy in breast cancer (3, 8, 9).
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The FDA recently granted the first approved indication
for ICB use in breast cancer, with the use of the anti-PD-L1
antibody atezolizumab in combination with nab-paclitaxel for
patients with PD-L1+ triple-negative breast cancer (TNBC) (10).
In this new era, multimodal therapies may help shift the TME to
a more immunopermissive environment, thus allowing proper
engagement of the immune system to successfully eradicate
the tumor.

Here, we present preclinical data and the resulting innovative
clinical trial design for a phase 1b clinical trial that will evaluate
safety and efficacy of combination immunotherapy through the
stepwise addition of Bavarian Nordic (BN)-Brachyury, bintrafusp
alfa, T-DM1, and entinostat in advanced breast cancer.
RATIONALE FOR TETRATHERAPY
COMBINATION IN ADVANCED BREAST
CANCER

BN-Brachyury
BN-Brachyury vaccine is a recombinant poxvirus vaccine against
the transcription factor brachyury, a tumor-associated antigen
that plays an important role in the epithelial-to-mesenchymal
transition in breast cancer (11–13). BN-Brachyury is comprised
of two replication incompetent recombinant viral vaccines, i.e.,
modified vaccinia Ankara (MVA-BN-Brachyury; prime) and
fowlpox (FPV-Brachyury; boost). Clinical data with various
brachyury vaccines have consistently demonstrated generation
of a brachyury-specific T cell response in breast cancer patients
(14, 15). A recently completed phase 1 study of BN-Brachyury
prime-boost vaccines showed the vaccine was well tolerated and
generated brachyury-specific immune responses in patients with
advanced solid tumors (16).
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Bintrafusp Alfa
Bintrafusp alfa (previously designated M7824) is a novel
bifunctional fusion protein composed of a monoclonal antibody
against human PD-L1 fused to the soluble extracellular domain
of human TGF-b receptor II (TGF-bRII), which functions as a
TGF-b “trap” (17–19). Preclinically, bintrafusp alfa has synergized
with vaccines (20). Phase 1 studies have demonstrated an
acceptable safety profile and have suggested some signs of
clinical benefit (21, 22). A small pilot study of bintrafusp alfa in
TNBC demonstrated a response rate of 9.1%, which is comparable
to other ICB in unselected TNBC (22). Multiple phase II studies
are ongoing with bintrafusp alfa in breast cancer (NCT03579472,
NCT03524170) [clinicaltrials.gov].

Entinostat
Entinostat is a class 1 histone deacetylase inhibitor (HDACi) that
has been shown to increase sensitivity of breast cancer cells to
antigen-specific CD8+ T cell mediated lysis in vitro (23). This
immunogenic modulation was observed against a broad range of
tumor-associated antigens (TAAs) including brachyury and was
associated with increased expression of antigen processing
machinery and tumor immune recognition. HDACi have been
shown to restore expression of MHC class I proteins and antigen
processing and presentation molecules (23, 24). Entinostat
exposure also increased the sensitivity of breast cancer cells
(MDA-MB-231) to NK cell-mediated attack through direct
lysis and via anti-PD-L1-mediated antibody-dependent cell-
mediated cytotoxicity (ADCC) (25). These effects were
associated with increased expression of NK ligands on tumor
cells and augmented NK activation and cytolytic function upon
entinostat exposure in vitro. Furthermore, entinostat increased
the expression of human PD-L1 in PC-3 (prostate) carcinoma
xenografts in vivo (25). Others have also shown upregulation of
PD-L1 on tumors with entinostat treatment (26), which has been
attributed to the epigenetic modulation observed with HDACi
(24). In addition, the combination of entinostat with nivolumab and
ipilimumab in patients with advanced HER2 negative breast cancers
demonstrated altered myeloid-derived suppressor cell (MDSC)
signaling pathway and increased immune infiltration (27).
Preliminary results of the ENCORE-601 trial involving entinostat
with pembrolizumab in checkpoint refractory non-small cell lung
cancer (NSCLC) demonstrated clinical efficacy in multiple patients
regardless of prior checkpoint treatment or PD-L1 status (28).
However, despite strong preclinical evidence regarding the
combination of entinostat with ICBs, trials results have been
inconsistent. In ENCORE-602 (29) and ENCORE-603 (30),
entinostat was combined with an anti-PD-L1 antibody in patients
with advanced TNBC (ENCORE-602) or advanced epithelial
ovarian cancer (ENCORE-603). The combination did not
improve clinical efficacy in these populations and a higher
number of grade 3 and 4 treatment related adverse events (AEs)
were seen in the combination arms, with themost frequent toxicities
seen being neutropenia and fatigue (29, 30). However, with dose
modifications, most patients were able to continue on therapy. In
addition, there were no increases in immune-related adverse events
in the combination arms over the anti-PD-L1 monotherapy arm.
Frontiers in Oncology | www.frontiersin.org 3107
T-DM1
Ado-trastuzumab emtansine (T-DM1 or Kadcycla®) is an
antibody-drug conjugate used in the second- and third-line
treatment of metastatic HER2+ breast cancer (HER2+ BC).
T-DM1 activates ADCC, dendritic cell maturation, and increases
tumor infiltrating lymphocytes (TILs), PD-L1 expression, and
immunomodulatory cytokines (31, 32). The KATE2 trial
evaluated T-DM1 +/- atezolizumab. There was no significant
improvement in the primary trial endpoint of progression-free
survival (PFS) in the intention to treat (ITT) population.
Exploratory analysis of overall survival data in the ITT
population is still maturing but an interim report at ESMO 2019
showed that the median survival had not been met in either
treatment arm. In addition, survival analysis stratified by PD-L1
expression demonstrated a trend towards longer survival in PD-L1+
patients (94.3% in PD-L1+ vs 87.9% in PD-L1-) but this was not
significant (HR 0.55, 95% CI 0.22 to 1.38) (33, 34).
PRECLINICAL DATA SUPPORTING
TETRATHERAPY IN ADVANCED
BREAST CANCER
Previously, Christmas et al. (35) demonstrated synergistic anti-
tumor activity with the triple combination of entinostat, an anti-
programmed cell death protein 1 (PD-1) antibody and a HER2-
targeted antibody in HER2/neu transgenic breast cancer models,
resulting in significant reduction in tumor size and improved
survival. This was associated with reprogramming of granulocytic
MDSCs in the TME to become less suppressive, increased CD8+

effector T cells, and reduced regulatory T cells (Tregs) compared to
single agent HER2-targeted therapy. Based upon this preliminary
data along with the known immune effects and anti-tumor activity
of BN-Brachyury (14, 16, 36), entinostat (23, 25, 35, 37),
bintrafusp alfa (38–40), and T-DM1 (31, 32), we developed a
preclinical hypothesis that the 4-agent combination with
entinostat (E), bintrafusp alfa (B), Ad-Twist vaccine (A), and T-
DM1 (T) (EBAT) would provide superior anti-tumor activity and
immune effects in a breast cancer model (Figure 1) compared to
the triplet (BAT), doublet (BA) or single agents (E, T, or B). To our
knowledge, the combination of a vaccine, an anti-PD-L1 antibody,
entinostat, and T-DM1 has not been previously evaluated in the
preclinical or clinical setting.

To test this hypothesis, we examined the antitumor effects and
immune correlates of the 4-agent combination therapy in the HER-
2 expressing TuBO murine breast cancer model. Of note, since
TuBO cells do not express brachyury, Twist was used as a model
antigen. Twist is well-expressed in TuBO tumor cells and shares
functional features with brachyury in multiple aspects of tumor
progression. Similar to brachyury, Twist is a transcription factor that
has also been implicated in the control of tumor plasticity and as
a driver of metastatic progression (11, 13, 41, 42). Overexpression
of either brachyury or Twist has been associated with poor
prognosis for multiple carcinomas, including breast cancer (11,
43, 44). In preclinical studies, a vaccine targeting Twist
demonstrated significant anti-tumor and anti-metastatic effects as
a monotherapy (45).
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TuBo murine breast tumor cells were orthotopically
implanted subcutaneously (s.c.) into the mammary fat pad of
female Balb/c mice. Tumor volume was measured twice weekly.
When tumors reached 200mm3, mice were randomized based on
tumor size and treatment initiated as per the schematic (Figure 2A).
Mice received entinostat (E) or control (C) chow. The Ad-Twist
vaccine (A) was administered s.c. at a non-tumor site. Bintrafusp
alfa (B) and T-DM1 (T) were administered intraperitoneally (i.p.)
and intravenously (i.v.), respectively. Animals were monitored by
the veterinarian staff for signs of toxicity, including weight loss,
signs of pain, lethargy, or any abnormal behavior. No toxicity was
reported in this study. Animals were sacrificed on day 34 and
immune populations in the tumor were examined (Figures 2D–K
and Supplemental Figure S1). As shown in Figure 2, combination
therapy with entinostat, bintrafusp alfa, Ad-Twist vaccine, and
T-DM1 (EBAT) induced the highest level of anti-tumor activity
Frontiers in Oncology | www.frontiersin.org 4108
of all treatment groups (Figures 2B, C, and Supplemental Figure
S1), with 100% of tumors regressing at day 32 (Figure 2B and
Supplemental Figure S1a). While not statistically significant, there
was a trend towards EBAT therapy enhancing CD8+ T cell tumor
infiltration (Figure 2D), but no change in the infiltration of Tregs
(Supplemental Figure S1b). However, the ratio of CD8+ T cells
to CD4+ Tregs (Figure 2E) was increased, suggesting a more
immunopermissive TME. Furthermore, functional analyses
revealed EBAT increased the functional activity of T cells. There
was a significant increase in splenic Twist-specific CD8+ T cell
responses upon EBAT treatment compared to monotherapy, dual
or triple agent regimens (Figure 2F). Analysis of tumor CD8+ T cell
responses (Figures 2G–K) upon T-cell receptor stimulation
demonstrated that EBAT treatment induced the highest
proportion of CD8+ T cells producing IFNg (Figure 2G) and
TNFa (Figure 2I), as well as multifunctional IFNg/TNFa double
FIGURE 1 | The rational combination of immunotherapy agents can augment key components of a successful anti-tumor immune response. From left to right:
Bintrafusp alfa inhibits PD-L1 and sequesters TGF-b in the tumor microenvironment leading to activation of immune effector cells (including natural killer cells) and
decreased tumor plasticity. Ado-trastuzumab emtansine (aka T-DM1I, Kadcyla) is an antibody drug conjugate that targets the HER2 receptor and allows the delivery
of the anti-microtubule chemotherapy called DM1. Like other HER2-targeting antibodies, T-DM1 also mediates ADCC, increases antigen presentation on tumor cells
and increases PD-L1 expression on the tumor and immune cells. BN-Brachyury vaccines generate brachyury-specific T cell responses in breast cancer. Brachyury is
a transcription factor involved in tumor plasticity, metastasis, chemoresistance, and poor clinical outcomes in breast cancers. Entinostat is an HDACi that increases
antigen presentation, increases activated T cells and decreases Tregs. In addition, entinostat is also known to decrease HER2 resistance through various
mechanisms. It is hypothesized that this tetratherapy will induce a robust immune response against breast cancer with improved tumor control. ADCC, antibody-
dependent cell-mediated cytotoxicity; HDACi, histone deacetylase inhibitor; MDSCs, myeloid-derived suppressor cells; NK cell, natural killer cell; PD-L1, programmed
death-ligand 1; TGF-b, transforming growth factor beta. This figure was created by MG-M using BioRender.com.
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positive T cells (Figure 2K). Furthermore, EBAT induced a
significant increase over control treatment in IFNg (Figure 2H)
and TNFa (Figure 2J) expression on a per cell basis, which was not
observed with monotherapy, dual or triple agent regimens. Similar
results were observed in effector CD4+ T cells (Supplemental
Figure S1c-g). Collectively these results suggest that EBAT
tetratherapy induces superior immune-mediated anti-tumor
activity relative to monotherapy, dual or triple agent regimens in
a preclinical model of HER2+ breast cancer.
CLINICAL TRIAL DESIGN

Patient Eligibility
The BrEAsT (BN-Brachyury, Entinostat, Ado-trastuzumab
emtansine, and Bintrafusp alfa) study enrolls patients (female
and male) with histologically or cytologically confirmed
metastatic TNBC or ER-/PR-/HER2+ breast cancer. In this study,
Frontiers in Oncology | www.frontiersin.org 5109
hormone receptor negative is defined by immunohistochemistry
(IHC) as estrogen receptor (ER) < 10%, progesterone receptor
(PR) < 10%, in order to include patients with low ER+ tumors,
where the clinical benefit of endocrine therapy is unclear (46). This
relaxed definition is supported by the new 2020 American College
of Pathology (ACP) guidelines (46) and by molecular analysis
showing similar ER gene signature scores in tumors with ER < 1%
(negative) and ER 1 to 9% (47). Furthermore, gene expression
signatures in tumors with ER 1 to 9% demonstrated that 48%
had gene expression signatures that were basal-like, with only 8%
of these tumors being identified as luminal B (47). For Arm 1
(TNBC), HER2 negative or unamplified breast cancer is defined
as IHC 0 or 1+ or IHC 2+ with FISH average HER2 copy number
< 4.0 signals per cell or HER2/CEP17 < 2.0 with average HER2
copy number < 4.0 signals per cell. For Arms 2 and 3 (HER2+),
HER2 positivity is defined as HER2 amplified by IHC 3+ or FISH
average with HER2 copy number ≥ 6 signals per cell or HER2/
CEP17 ≥ 2.0.
A B

C D E F

G H I J K

FIGURE 2 | Combination therapy resulted in improved anti-tumor immune response in an orthotopic HER2+ murine breast cancer model. TuBo breast tumor cells
(4×105) were orthotopically implanted into the mammary fat pad of female Balb/c mice on day 0 and treated with either control (C) or entinostat (E) diet, T-DM1 (T),
bintrafusp alfa (B), and/or Ad-Twist vaccine (A) according to the schedule and doses in (A). (B, C) Graphs show primary tumor growth curves of individual mice in
each treatment group over the entire study duration (B), and at day 32 (C). For (B, C), data from 1 experiment, n=11–12 mice/group. (D–K) Two days after the last
vaccination, tumor, and spleen immune cells were isolated. Graphs show the number of CD8+ T cells (D), or the ratio of CD8+ T cells to Treg (E) in the tumor.
(F) Splenocytes were incubated with a Twist peptide pool overnight and IFNg production was determined by ELISPOT. (G–K) Tumor CD8+ T cells were stimulated
with aCD3 and aCD28 for 4 h and cytokine production was analyzed by flow cytometry. Graphs show frequency of total IFNg+ (G), IFNg production on a per cell
basis (H), frequency of total TNFa+ (I), TNFa production on a per cell basis (J), and frequency of IFNg/TNFa-double producing (K) CD44hi CD8+ T cells. For (D–K),
data from 1 experiment, n=3-5 mice/group. All graphs show mean ± SEM. Data were analyzed using one-way ANOVA with Tukey’s multiple comparisons. Statistical
significance was set at p <0.05. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Patients must be ≥ 18 years old with an Eastern Cooperative
Oncology Group performance status of ≤ 1, adequate organ
function including cardiac function (Ejection Fraction ≥ 50%)
and bone marrow function. All patients must have measurable
disease per RECISTv1.1 and HER2+ patients must have
biopsiable disease. At least 1 prior treatment in the metastatic
setting is required. Patients with known PD-L1 positive TNBC
(positive according to the SP142 assay) must have received prior
treatment with atezolizumab + nab-paclitaxel. TNBC patients
with ER 1%–9% must have received treatment with at least two
lines of endocrine treatment (tamoxifen, aromatase inhibitor, or
fulvestrant), with one line including a CDK4/6 inhibitor plus
endocrine therapy for metastatic cancer and be considered
endocrine therapy resistant. HER2+ patients must have
received prior treatment for metastatic disease with a taxane,
trastuzumab, and pertuzumab (THP).

There is a required treatment washout period of 3 weeks for
chemotherapy, 4 weeks for radiation, anti-PD-1/-L1 therapy, and
other investigational agents. Asymptomatic or brain metastases
treated > 6 weeks are allowed. Well controlled human
immunodeficiency virus (HIV), hepatitis B virus (HBV) or
treated hepatitis C virus (HCV) is allowed. Exclusion criteria
include symptomatic brain metastases or clinically significant
bleeding (≤ 3 months from study entry). Patients with active
Frontiers in Oncology | www.frontiersin.org 6110
autoimmune conditions requiring immunosuppression are
excluded. Concurrent use of immunosuppressive drugs
including therapeutic prednisone is not allowed. Due to the
potential for cardiac dysfunction and myocarditis, patients with a
history of myocarditis are excluded.

Baseline screening assessments include a full history and
physical exam, assessment of functional status, basic laboratory
evaluations (complete blood count, comprehensive metabolic
panel, coagulation studies, thyroid function), viral studies (HBV,
HCV and HIV), cardiac evaluation with an electrocardiogram and
a 2D echocardiogram and imaging studies (CT CAP and bone
scan) to confirm measurable disease.
Study Design
This is an open label, phase 1b trial with three arms to evaluate
BN-Brachyury, entinostat, bintrafusp alfa +/- T-DM1 in
advanced breast cancer (Figure 3). Arm 1 will evaluate BN-
Brachyury and bintrafusp alfa in TNBC. Arms 2 and 3 will
evaluate BN-Brachyury, bintrafusp alfa, T-DM1 +/- entinostat in
ER-/PR-/HER2+ breast cancer. If a patient is removed from
treatment, that patient will not be allowed to enroll on another
study arm. Up to 51 patients will be treated on this study with an
accrual ceiling set at 55 patients.
FIGURE 3 | Trial schema. The BrEAsT study contains three separate, single arm phase 1b trials that evaluate the safety and efficacy of the sequential addition of
immunotherapy agents with the goal of rapidly escalating to the 4-drug combination to lead to the best anti-tumor control and immune infiltration seen in the
preclinical studies. Each arm starts with a safety assessment of the drug combinations with DLT assessments in the first six patients on each arm. Following the
demonstration of safety, additional patients will be enrolled using a Simon 2-stage clinical efficacy design. DLT, dose limiting toxicity.
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Drug Administration
Treatment cycles are 21 days in length. Patients in Arm 1 will
receive BN-Brachyury in a prime-boost fashion. The priming
doses of MVA-BN-Brachyury consist of one injection in each
extremity (four injections per priming dose) with each injection
consisting of 2 × 108 infectious units (IU) per 0.5 ml
administered s.c. on day 1 of cycles 1 and 2. The boosting dose
of FPV-Brachyury consists of one injection s.c. with 1 x 109 IU/
0.5 ml every 3 weeks until cycle 9, then every 12 weeks.
Bintrafusp alfa will be administered IV every 3 weeks using a
2,400 mg flat dose. T-DM1 is given at the standard dose of 3.6
mg/kg IV every 3 weeks. Patients will self-administer entinostat 5
mg by mouth every week while on trial (Table 1). Dose
reductions for bintrafusp alfa (1,800 mg IV q3 weeks),
entinostat (3 mg po q7 days, 2 mg po q7 days) and T-DM1
(per FDA package insert) are permitted. A prophylactic dose of a
5-HT3 antagonist or dopamine blocker will be given prior to T-
DM1 and patients in Arm 3 will be prescribed an oral anti-emetic
to self-administer as needed due to the known gastrointestinal
side effects of entinostat.

During cycle 1, patients will return to the clinic on day 8 for a
safety visit, which includes a physical exam, basic labs and repeat
electrocardiogram. Starting with cycle 2, patients will be
clinically assessed every 3 weeks and undergo evaluation with
physical exams, functional status assessment and basic
laboratory evaluations (CBC, CMP). Patients who receive T-
DM1 will undergo a 2D echocardiogram every 84 days as
recommended by current guidelines.

Dose-Limiting Toxicity
Dose-limiting toxicities (DLTs) are based on the National Cancer
Institute’s Common Terminology Criteria for Adverse Events
(CTCAE), version 5. A DLT is defined as an adverse event or
abnormal laboratory value assessed as suspected to be trial
treatment related (possible, probable or definite) and unrelated
to disease or disease progression that occurs within the 30 days of
the first treatment. Any grade ≥3 non-hematologic, non-hepatic
adverse event will be considered a DLT with the following
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exceptions: nausea and/or vomiting or electrolyte imbalances
that persist for 48 h despite supportive care. DLTs will also
include grade ≥ 3 fatigue lasting ≥ 7 days, hematologic
abnormalities (grade ≥ 4 neutropenia lasting ≥ 7 days, grade ≥
3 febrile neutropenia, grade ≥ 4 thrombocytopenia), grade ≥ 3
bleeding events, and liver abnormalities (grade ≥ 4 elevation in
AST or ALT, grade ≥ 4 elevation in bilirubin).

Endpoints
Safety Assessments
Up until the time the first three patients complete at least one
cycle of treatment on each arm, accrual will proceed slowly (in
Arm 1, no more than one patient per 6 days; in Arms 2 and 3, no
more than one patient per 28 days) to more closely monitor
safety, and after three patients receive at least 1 cycle of
investigational agents, a safety review will be conducted before
additional patients are enrolled. If there is 1 or more DLT in the
first three patients on a given arm, accrual of the next three
patients on the associated arm will proceed slowly with no more
than one patient per 21 days (1 cycle) to continue to closely
monitor safety. On the basis of the monitoring criteria, if two of
the first two patients or if three patients experience DLT within
the first six patients, then the trial will halt accrual and the
treatment regimen may be modified. The review will include a
per-patient listing of all reported AEs to date, including actions
required for dosing, to more fully review the nature, frequency,
severity, and timing of the events. This information combined
with fewer DLTs may also result in modification of the treatment
regimen. Throughout enrollment of all arms, DLTs within the 30
days of first treatment will be summarized with pre-specified
criteria based on sequential boundaries to pause enrollment to
more fully review safety if excessive numbers of DLTs
are observed.

Objective Responses
Patients will undergo restaging with CT chest, abdomen and
pelvis +/- bone scan every 6 weeks (2 cycles). The co-primary
endpoints of this study are safety and efficacy, with efficacy being
TABLE 1 | Trial agents and dosing schedules*.

Agent Manufacturer Dose Arms

BN-MVA-Brachyury Bavarian Nordic DL1: 4 injections SC per dose q3 weeks x 2 doses (1 injection = 2x108 Inf.U/0.5 ml) 1, 2, 3
FPV-Brachyury Bavarian Nordic DL1: 1 injection SC per dose q3 weeks x 4 doses then q12 weeks

(1 injection = 1x109 Inf.U)
1, 2, 3

Bintrafusp alfa EMD Serono DL1: 2400mg IV q3 weeks
DL-1:1,800 mg IV q3 weeks

1, 2, 3

T-DM1 Standard of Care DL1: 3.6mg/kg IV q3 weeks
DL-1: 3.0 mg/kg IV q3 weeks
DL-2: 2.4 mg/kg IV q3 weeks

2, 3

Entinostat Syndax DL1: 5 mg po q 7 days
DL-1: 3 mg po q7 days
DL-2: 2 mg po q7 days

3

March 2021 | Volume 10 | Article 5
1 Cycle = 21 days; q = every.
*The stepwise addition of agents with continuous safety assessment will assist in determining any potential additive toxicities of the agent combination. Dose modifications for agents will be
performed for toxicity based upon known treatment-related adverse events of each respective agent. One or more agents may be decreased or held at any time based upon high grade
toxicity possibly/probably/definitely attributed to a specific trial drug or drugs. DL1, dose level 1; DL-1, dose level minus 1; DL-2, dose level minus 2.
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defined as an objective response in a measurable lesion as defined
by RECIST version 1.1. Secondary endpoints of this study are
PFS in all treatment arms and change in TILs in Arms 2 and 3.

Correlative Studies
Peripheral blood samples for exploratory analysis will be
collected on day 1 of cycles 1, 2, 3 and 6. Peripheral blood
mononuclear cells will be evaluated for changes in immune cell
subsets. A flow-based assay to interrogate over 123 peripheral
immune cell subsets (48, 49) will be employed to detect any
changes in different phenotypes of the following: CD8+ T cells,
CD4+ T cells, Tregs, dendritic cells, B cells, NK cells, NKT cells,
MDSCs, and total monocytes. In addition, the generation of
brachyury-specific T cells will be analyzed using a flow-based
assay (14–16) that simultaneously detects antigen-specific CD8+

and CD4+ cells, and multifunctional subsets of each; the assay is
also non-MHC restricted. In patients who receive entinostat,
histone acetylation will be evaluated as a surrogate marker for
entinostat pharmacodynamics. Plasma and serum will be
evaluated for pharmacokinetics, brachyury-specific antibodies,
soluble factors including sCD27 and sCD40, TGF-b levels, and
cell free DNA (cfDNA). Patients with HER2+ breast cancer will
undergo a tumor biopsy at baseline and after 2 cycles. Biopsy
samples will be evaluated for changes in the immune
microenvironment, HER2 expression, PD-L1 expression,
tumor mutational burden, as well as epigenetic changes
induced by the agent combination.

Materials and methods pertaining to preclinical studies are
described in Supplementary Materials.

Statistical Considerations and
Plans
Arm 1
In similar subjects with TNBC (unselected for PD-L1 expression)
who received a checkpoint inhibitor, the objective response rate
(ORR) was approximately 8%–10% (50–52). Recently presented
data on the use of bintrafusp alfa in TNBC demonstrated a clinical
response rate of 9.1% (22). The goal is to first determine if using
BN-Brachyury plus bintrafusp alfa in a small pilot arm is safe and if
this combination could improve this ORR by a modest amount in
advanced breast cancer. Since a HER2 targeting agent is not
included in this initial pilot arm, the patient population for BN-
Brachyury plus bintrafusp alfa is limited to TNBCpatients. Accrual
of the first three patients on trial in this arm will be slow (no more
than one patient per 6 days) in order to allow for monitoring of
toxicity. If there are 0–1 patients with DLTs among the six patients
enrolled on this arm, accrual to this arm will continue by using a
Simon optimal 2-stage phase II trial design (53) to rule out an
unacceptably low partial response (PR) + complete response (CR)
rate of 10% (p0 = 0.10) in favor of an improved response rate
of 35% (p1 = 0.35). With 1-sided alpha=0.10 (probability of
accepting a poor treatment=0.10) and beta=0.20 (probability of
rejecting a good treatment=0.20), the first stage will enroll eight
evaluable subjects, and if 0 to 1 of the 8 have a clinical response,
then no further subjects will be accrued. If 2 or more of the first
8 subjects have a response, then accrual would continue until a
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total of 13 evaluable subjects have been enrolled. If there are
two subjects with a response out of 13 subjects, this would be an
uninterestingly low response rate and the arm would not further
expand. If there were 3 or more of 13 (23.1%) who experienced
a response, this would be sufficiently interesting to warrant
further study in later trials. If the response rate is 10%
(unacceptable level), the probability of early termination after
the first stage is 81.3%.

Arms 2 and 3
Following determination of safety in Arm 1 (0–1 with DLTs
among the first six patients enrolled), patients who are HER2+ will
undergo an initial safety evaluation and then will be assigned in
an alternating fashion to the second and third arms. Of note, due
to the small number of patients and the initial safety assessment
in six patients per arm, randomization is not feasible since these
six initial patients will also be used in the efficacy assessment.
Provided that there are 0–1 patients with DLTs among the six
patients enrolled on Arm 2, this arm will be temporarily closed,
and patients will be enrolled on Arm 3 for a safety evaluation.
Provided that there are 0–1 patients with DLTs among the six
patients enrolled on Arm 3, patients with HER2+ breast cancer will
be directly allocated in an alternating fashion to Arms 2 and 3. In
Arms 2 and 3, accrual of the first three patients in each arm will
proceed slowly with no more than one patient enrolled every 28
days in order to allow for safety monitoring. If there is one or more
DLTs in the first three patients on any arm, accrual of the next
three patients on the associated arm will proceed slowly with no
more than one patient per 21 days (one cycle) to closely monitor
safety. If there are two or more patients with a DLT among the
first six treated on either arm, the trial will halt accrual pending
an amendment to detail how the study will proceed from that
point forward.

Real world data from similar patients with metastatic HER2+

breast cancer who received second-line T-DM1 after first-line
treatment with THP demonstrated a response rate of 18% and a
duration of treatment of 4 to 5 months (54, 55). The primary
objective is to determine if either arm could improve upon the 18%
response rate by a modest amount. Each arm will be conducted
using a Simonminimax 2-stage phase II trial design (53) to rule out
an unacceptably low PR+CR rate of 18% (p0 = 0.18) in favor of an
improved response rate of 40% (p1 = 0.40). With 1-sided
alpha=0.10 (probability of accepting a poor treatment=0.10) and
beta=0.20 (probability of rejecting a good treatment=0.20), the first
stage will enroll 14 evaluable subjects in each arm, and if 0 to 3 of
the 14 have a clinical response, then no further subjects will be
accrued. If 4 or more of the first 14 subjects have a response in an
arm, then accrual would continue until a total of 19 evaluable
subjects have been enrolled in that arm. If there were 6 or more of
19 (31.6%) who experience a response, this would be sufficiently
interesting to warrant further study of that combination in later
trials. If accrual ends to one arm because of insufficient activity, the
other arm will remain open to enroll patients directly. If the
response rate is 18% (unacceptable level), the probability of
termination after the first stage is 76.5% in each arm. There will
be no adjustment for the multiplicity of the three arms.
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DISCUSSION

We hypothesize that combining these four agents will lead to a
robust immune response against HR-/HER2+ breast cancer with
improved response rates when compared to historical controls.
The immune effects of the standard of care therapy T-DM1 may
be enhanced through combination with entinostat, bintrafusp alfa,
and the BN-Brachyury vaccine. In a tumor that generally does not
respond to checkpoint monotherapy, this combination of agents
may help to augment the three key components of a successful
anti-tumor immune response (3). Furthermore, the use of novel
combination approaches is in keeping with the Cancer Moonshot
Task Force’s mandate, which called for the use of innovative
strategies to rapidly translate new agents from bench to bedside.
Rational combination of immune therapies based on preclinical
data is a plausible strategy to achieve this aim and is especially
warranted in treating patients who have exhausted most, if not all,
therapeutic options. Enhancing immunity via several
complementary mechanisms is a promising means to produce
objective responses in an ever-increasing portion of patients who
may benefit from immunotherapy.

While one of the primary objectives is response rate, we
acknowledge that due to small numbers, this study is not
powered to fully examine clinical efficacy even if the primary
endpoint of response rate is met. If the co-primary objective of
response rate is met, the trial agents would likely be evaluated
further in a larger phase 2 clinical trial where clinical efficacy
could be better assessed with ample power.

Since the preclinical data demonstrated the best anti-tumor
activity with the 4-agent combination, this study was designed to
allow for rapid escalation to the 4-agent regimen. However, since
these agents have not been used in combination, we are required
to demonstrate safety of the agent combinations while assessing
the potential clinical impact of the respective agents. A Simon
optimal design was used in Arm 1 (TNBC; bintrafusp alfa + BN-
Brachyury) in order to minimize the sample size needed since
preclinical data did not suggest significant improvement in
tumor control with this doublet. A Simon minimax design was
used in Arms 2 (HER2; bintrafusp alfa + BN-Brachyury + T-
DM1) and 3 (HER2; bintrafusp alfa + BN-Brachyury + T-DM1 +
entinostat) due to the need to generate informative data on
clinical efficacy while limiting the number of patients who would
be exposed to these agents in the event there is toxicity or even
decreased efficacy of the active agents. Furthermore, due to the
time it took to develop this novel trial and for the trial to progress
through all of the scientific and regulatory assessments, statistics
were based on the data available at the conception of the trial
concept in 2017 and 2018. While more recently released response
rates from the KATE2 study demonstrated ORR of around 40%–
45% in both the T-DM1 arm and the T-DM1+atezolizumab arm,
only half of the patients in the KATE2 trial had received prior
pertuzumab (33). The specified thresholds in the BrEAsT trial to
proceed to a phase 2 trial are not significantly different from the
response rates documented in KATE2 and since prior treatment
with pertuzumab is required, we would expect the ORR to be
slightly lower than the T-DM1 arm from the KATE2 trial as has
been documented (54, 55). If one or more arms of the trial were
Frontiers in Oncology | www.frontiersin.org 9113
to advance to a phase 2 clinical trial, a more rigorous threshold for
clinical efficacy would be employed as is the case with transition
of most early clinical trials to larger phase 2 clinical trials.

Preclinical data presented here support this combination of
agents and show that tetratherapy increases the functionality of
CD4+ and CD8+ T cells in the TME, which is associated with
augmented anti-tumor efficacy relative to the triplet, doublet or
singlets. This trial design in which the safety and efficacy of
various combinations of immunotherapy agents are able to be
evaluated relatively quickly is just one in a series of quick efficacy
seeking trials (QuEST) that are being conducted at the National
Cancer Institute, National Institutes of Health (Bethesda, MD)
(56). The BrEAsT trial is now open and accruing patients at the
Center for Cancer Research at the National Cancer Institute,
National Institutes of Health (NCT04296942).
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Phase I Trial of a Yeast-Based Therapeutic Cancer Vaccine (GI-6301)
Targeting the Transcription Factor Brachyury. Cancer Immunol Res (2015)
3(11):1248–56. doi: 10.1158/2326-6066.CIR-15-0119

16. Collins JM, Donahue RN, Tsai YT, Manu M, Palena C, Gatti-Mays ME, et al.
Phase I Trial of a Modified Vaccinia Ankara Priming Vaccine Followed by a
Fowlpox Virus Boosting Vaccine Modified to Express Brachyury and
Costimulatory Molecules in Advanced Solid Tumors. Oncologist (2020) 25
(7):560-e1006. doi: 10.1634/theoncologist.2019-0932
17. Gatti-Mays MD, Gulley JL. M7824: A promising new strategy to combat
cancer immune evasion. Oncoscience (2018) 5(11-12):269–70. doi: 10.18632/
oncoscience.451

18. Jochems C, Tritsch SR, Pellom ST, Su Z, Soon-Shiong P, Wong HC, et al.
Analyses of functions of an anti-PD-L1/TGFbR2 bispecific fusion protein
(M7824). Oncotarget (2017) 8(43):75217–31. doi: 10.18632/oncotarget.20680

19. David JM, Dominguez C, McCampbell KK, Gulley JL, Schlom J, Palena C. A
novel bifunctional anti-PD-L1/TGF-b Trap fusion protein (M7824) efficiently
reverts mesenchymalization of human lung cancer cells. Oncoimmunology
(2017) 6(10):e1349589. doi: 10.1080/2162402X.2017.1349589

20. Knudson KM, Hicks KC, Luo X, Chen J-Q, Schlom J, Gameiro SR. M7824, a
novel bifunctional anti-PD-L1/TGFb Trap fusion protein, promotes anti-
tumor efficacy as monotherapy and in combination with vaccine.
OncoImmunology (2018) 7(5):e1426519. doi: 10.1080/2162402X.2018.1426519

21. Strauss J, Heery CR, Schlom J, Madan RA, Cao L, Kang Z, et al. Phase I Trial of
M7824 (MSB0011359C), a Bifunctional Fusion Protein Targeting PD-L1 and
TGFb, in Advanced Solid Tumors. Clin Cancer Res (2018) 24(6):1287–95. doi:
10.1158/1078-0432.CCR-17-2653

22. Spira A, Awada A, Isambert N, Lorente Estelles D, Nemunaitis J, Penel N, et al.
Bintrafusp alfa (M7824), a bifunctional fusion protein targeting transforming
growth factor- beta and programmed death ligand 1, in advanced triple-
negative breast cancer: preliminary results from a phase 1 cohort (abstr).
San Antonio Breast Cancer Symposium. Dec 10–14 2019. In: Cancer Res
(2020) 80(4 Suppl):P3-09-06. doi: 10.1158/1538-7445.SABCS19- P3-09-06

23. Gameiro SR, Malamas AS, Tsang KY, Ferrone S, Hodge JW. Inhibitors of
histone deacetylase 1 reverse the immune evasion phenotype to enhance T-
cell mediated lysis of prostate and breast carcinoma cells. Oncotarget (2016) 7
(7):7390–402. doi: 10.18632/oncotarget.7180

24. Morel D, Jeffery D, Aspeslagh S, Almouzni G, Postel-Vinay S. Combining
epigenetic drugs with other therapies for solid tumours - past lessons and
future promise. Nat Rev Clin Oncol (2020) 17(2):91–107. doi: 10.1038/s41571-
019-0267-4

25. Hicks KC, Fantini M, Donahue RN, Schwab A, Knudson KM, Tritsch SR, et al.
Epigenetic priming of both tumor and NK cells augments antibody-
dependent cellular cytotoxicity elicited by the anti-PD-L1 antibody
avelumab against multiple carcinoma cell types. Oncoimmunology (2018) 7
(11):e1466018. doi: 10.1080/2162402X.2018.1466018

26. Woods DM, Sodre AL, Villagra A, Sarnaik A, Sotomayor EM,Weber J. HDAC
Inhibition Upregulates PD-1 Ligands in Melanoma and Augments
Immunotherapy with PD-1 Blockade. Cancer Immunol Res (2015) 3
(12):1375–85. doi: 10.1158/2326-6066.CIR-15-0077-T

27. Roussos Torres E, Kagohara L, Davis E, Rafie C, Christmas B, Zhu Q, et al.
Reprograming the suppressive tumor microenvironment of breast cancer
(abstr). San Antonio Breast Cancer Symposium, Dec. 10-14, 2019. In: Cancer
Res (2020) 80(4 Suppl):P5-04-06. doi: 10.1158/1538-7445.SABCS19-P5-04-06

28. Hellmann M, Janne P, Opyrchal M, Hafez N, Raez L, Gabrilovich D, et al.
Efficacy/safety of entinostat and pembrolizumab in NSCLC patients previously
treated with anti-PD-(L)1 therapy. (abstr). International Association for the
Study of Lung Cancer (IASLC) 19thWorld Congress on Lung Cancer, Sept. 23-
26, 2018, Toronto, Canada. In: J Thorac Oncol (2018) 13(105):OA0501. doi:
10.1016/j.jtho.2018.08.257

29. O’Shaughnessy J, Moroose R, Babu S, Baramidze K, Chan D, Leitner S, et al.
Results of Encore 602 (TRIO025), a phase II, randomized, placebo-controlled,
double-blinded, multicenter study of atezolizumab with or without entinostat
in patients with advanced triple negative breast cancer (abstr). American
Society of Clinical Oncology (ASCO) Virtual Annual Meeting. May 29-31,
2020. In: J Clin Oncol (2020) 38(15_Supp):1014–14. doi: 10.1200/JCO.2020.
38.15_suppl.1014

30. Cadoo K, Meyers M, Burger R, Armstrong D, Penson R, Gordon M, et al.
ENCORE 603: A Phase II Randomized Study of Avelumab Plus Entinostat vs
March 2021 | Volume 10 | Article 581801

https://www.frontiersin.org/articles/10.3389/fonc.2020.581801/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2020.581801/full#supplementary-material
https://doi.org/10.1080/2162402X.2018.1490854
https://doi.org/10.1080/2162402X.2018.1490854
https://doi.org/10.1016/j.humpath.2017.08.010
https://doi.org/10.1016/j.humpath.2017.08.010
https://doi.org/10.1038/s41523-019-0133-7
https://doi.org/10.1016/j.cell.2015.07.056
https://doi.org/10.1016/j.cell.2015.07.056
https://doi.org/10.1056/NEJMoa1604958
https://doi.org/10.1056/NEJMoa1604958
https://doi.org/10.1126/science.aan6733
https://doi.org/10.1073/pnas.1817652116
https://doi.org/10.1001/jamaoncol.2018.7147
https://doi.org/10.1038/s41523-019-0130-x
https://doi.org/10.1038/s41523-019-0130-x
https://doi.org/10.1056/NEJMoa1809615
https://doi.org/10.1056/NEJMoa1809615
https://doi.org/10.1093/jnci/dju054
https://doi.org/10.1016/bs.acr.2015.04.001
https://doi.org/10.1530/ERC-16-0037
https://doi.org/10.1158/1078-0432.CCR-17-1087
https://doi.org/10.1158/2326-6066.CIR-15-0119
https://doi.org/10.1634/theoncologist.2019-0932
https://doi.org/10.18632/oncoscience.451
https://doi.org/10.18632/oncoscience.451
https://doi.org/10.18632/oncotarget.20680
https://doi.org/10.1080/2162402X.2017.1349589
https://doi.org/10.1080/2162402X.2018.1426519
https://doi.org/10.1158/1078-0432.CCR-17-2653
https://doi.org/10.1158/1538-7445.SABCS19- P3-09-06
https://doi.org/10.18632/oncotarget.7180
https://doi.org/10.1038/s41571-019-0267-4
https://doi.org/10.1038/s41571-019-0267-4
https://doi.org/10.1080/2162402X.2018.1466018
https://doi.org/10.1158/2326-6066.CIR-15-0077-T
https://doi.org/10.1158/1538-7445.SABCS19-P5-04-06
https://doi.org/10.1016/j.jtho.2018.08.257
https://doi.org/10.1200/JCO.2020.38.15_suppl.1014
https://doi.org/10.1200/JCO.2020.38.15_suppl.1014
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gatti-Mays et al. Combination Immunotherapy: BrEAsT Trial
Avelumab Plus Placebo in Patients with Advanced and Recurrent Epithelial
Ovarian Cancer (abstr). American Society of Clinical Oncology (ASCO)
Annual Meeting, May 31-June 4, 2019. In: J Clin Oncol (2019) 37
(15_Supp):5511–5511. doi: 10.1200/JCO.2019.37.15_suppl.5511

31. Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX. Trastuzumab-DM1
(T-DM1) retains all the mechanisms of action of trastuzumab and efficiently
inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat
(2011) 128(2):347–56. doi: 10.1007/s10549-010-1090-x

32. Müller P, Kreuzaler M, Khan T, Thommen DS, Martin K, Glatz K, et al.
Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly
susceptible to CTLA-4/PD-1 blockade. Sci Transl Med (2015) 7
(315):315ra188. doi: 10.1126/scitranslmed.aac4925

33. Emens L, Esteva F, Beresford M, Saura C, De Laurentiis M, Kim S-B, et al.
(2018). Results from KATE2, a randomized phase 2 study of atezolizumab
(atezo)+trastuzumab emtansine (T-DM1) vs placebo (pbo)+T-DM1 in
previously treated HER2+ advanced breast cancer (BC) (abstr). 2018 San
Antonio Breast Cancer Symposium, Dec. 4-8, 2018, San Antonio, TX. In:
Cancer Res 79(4 Suppl):PD3–01. doi: 10.1158/1538-7445.SABCS18-PD3-01

34. Emens L, Esteva F, Beresford M, Saura C, Dr Laurentiis M, Kim S, et al. Overall
survival (OS) in KATE2, a phase 2 study of programmed death ligand 1 (PD-L1)
inhibitor atezolizumab (atezo) + trastuzumab emtansine (T-DM1) vs placebo
(pbo) + T-DM1 in previously treated HER2+ advanced breast cancer (abstr).
European Society for Medical Oncology (ESMO) Congress 2019, Sept. 27-Oct. 1,
2019. In: Ann Oncol (2019) 30(Suppl_5):v104–42. doi: 10.1093/annonc/mdz242

35. Christmas BJ, Rafie CI, Hopkins AC, Scott BA, Ma HS, Cruz KA, et al. Entinostat
Converts Immune-Resistant Breast and Pancreatic Cancers into Checkpoint-
Responsive Tumors by Reprogramming Tumor-Infiltrating MDSCs. Cancer
Immunol Res (2018) 6(12):1561–77. doi: 10.1158/2326-6066.CIR-18-0070

36. Heery CR, Donahue R, Lepone L, Grenga I, Richards J, Metenou S, et al.
Phase I, dose-escalation, clinical trial of MVA-Brachyury-TRICOM vaccine
demonstrating safety and brachyury-specific T cell responses (abstr). Society
for Immunotherapy of Cancer (SITC) 30th Annual Meeting, Nov. 4-8, 2015,
National Harbor, MD. In: J ImmunoTher Cancer (2015) 3(Suppl2):P132.
doi: 10.1186/2051-1426-3-S2-P132

37. Hicks KC, Knudson KM, Lee KL, Hamilton DH, Hodge JW, Figg WD, et al.
Cooperative Immune-Mediated Mechanisms of the HDAC Inhibitor
Entinostat, an IL15 Superagonist, and a Cancer Vaccine Effectively Synergize
as a Novel Cancer Therapy. Clin Cancer Res (2020) 26(3):704–16. doi: 10.1158/
1078-0432.CCR-19-0727

38. Knudson KM, Hodge JW, Schlom J, Gameiro SR. Rationale for IL-15
superagonists in cancer immunotherapy. Expert Opin Biol Ther (2020) 20
(7):705–9. doi: 10.1080/14712598.2020.1738379

39. Lind H, Gameiro SR, Jochems C, Donahue RN, Strauss J, Gulley JM, et al.
Dual targeting of TGF-beta and PD-L1 via a bifunctional anti-PD-L1/TGF-
betaRII agent: status of preclinical and clinical advances. J Immunother Cancer
(2020) 8(1):e000433. doi: 10.1136/jitc-2019-000433

40. Horn LA, Riskin J, Hempel HA, Fousek K, Lind H, Hamilton DH, et al.
Simultaneous inhibition of CXCR1/2, TGF-beta, and PD-L1 remodels the
tumor and its microenvironment to drive antitumor immunity. J Immunother
Cancer (2020) 8(1):e000326. doi: 10.1136/jitc-2019-000326

41. Roselli M, Fernando RI, Guadagni F, Spila A, Alessandroni J, Palmirotta R,
et al. Brachyury, a driver of the epithelial-mesenchymal transition, is
overexpressed in human lung tumors: an opportunity for novel
interventions against lung cancer. Clin Cancer Res (2012) 18(14):3868–79.
doi: 10.1158/1078-0432.CCR-11-3211

42. Kwok WK, Ling MT, Lee TW, Lau TC, Zhou C, Zhang X, et al. Up-regulation
of TWIST in prostate cancer and its implication as a therapeutic target. Cancer
Res (2005) 65(12):5153–62. doi: 10.1158/0008-5472.CAN-04-3785

43. Riaz M, Sieuwerts AM, Look MP, Timmermans MA, Smid M, Foekens JA,
et al. High TWIST1 mRNA expression is associated with poor prognosis in
lymph node-negative and estrogen receptor-positive human breast cancer and
is co-expressed with stromal as well as ECM related genes. Breast Cancer Res
(2012) 14(5):R123. doi: 10.1186/bcr3317

44. Vesuna F, Lisok A, Kimble B, Domek J, Kato Y, van der Groep P, et al. Twist
contributes to hormone resistance in breast cancer by downregulating estrogen
receptor-alpha. Oncogene (2012) 31(27):3223–34. doi: 10.1038/onc.2011.483
Frontiers in Oncology | www.frontiersin.org 11115
45. Ardiani A, Gameiro SR, Palena C, Hamilton DH, Kwilas A, King TH, et al.
Vaccine-mediated immunotherapy directed against a transcription factor
driving the metastatic process. Cancer Res (2014) 74(7):1945–57. doi:
10.1158/0008-5472.CAN-13-2045

46. Allison KH, Hammond MEH, Dowsett M, McKernin SE, Carey LA,
Fitzgibbons PL, et al. Estrogen and Progesterone Receptor Testing in Breast
Cancer: American Society of Clinical Oncology/College of American
Pathologists Guideline Update. In: Arch Pathol Lab Med (2020) 144
(5):545–63. doi: 10.5858/arpa.2019-0904-SA

47. Iwamoto T, Booser D, Valero V, Murray JL, Koenig K, Esteva FJ, et al.
Estrogen receptor (ER) mRNA and ER-related gene expression in breast
cancers that are 1% to 10% ER-positive by immunohistochemistry. J Clin
Oncol (2012) 30(7):729–34. doi: 10.1200/JCO.2011.36.2574

48. Donahue RN, Lepone LM, Grenga I, Jochems C, Fantini M, Madan RA, et al.
Analyses of the peripheral immunome following multiple administrations of
avelumab, a human IgG1 anti-PD-L1 monoclonal antibody. J Immunother
Cancer (2017) 5:20. doi: 10.1186/s40425-017-0220-y

49. Lepone LM, Donahue RN, Grenga I, Metenou S, Richards J, Heery CR, et al.
Analyses of 123 Peripheral Human Immune Cell Subsets: Defining Differences
with Age and between Healthy Donors and Cancer Patients Not Detected in
Analysis of Standard Immune Cell Types. J Circ Biomark (2016) 5:5. doi:
10.5772/62322

50. Dirix LY, Takacs I, Jerusalem G, Nikolinakos P, Arkenau HT, Forero-
Torres A, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally
advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor
study. Breast Cancer Res Treat (2017) 167(3):671–86. doi: 10.1158/1538-
7445.SABCS15-S1-04

51. Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, et al.
Pembrolizumab in Patients With Advanced Triple-Negative Breast Cancer:
Phase Ib KEYNOTE-012 Study. J Clin Oncol (2016) 34(21):2460–7. doi:
10.1200/JCO.2015.64.8931

52. Rugo HS, Delord JP, Im SA, Ott PA, Piha-Paul SA, Bedard PL, et al. Safety and
Antitumor Activity of Pembrolizumab in Patients with Estrogen Receptor-
Positive/Human Epidermal Growth Factor Receptor 2-Negative Advanced
Breast Cancer. Clin Cancer Res (2018) 24(12):2804–11. doi: 10.1158/1078-
0432.CCR-17-3452

53. Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin
Trials (1989) 10(1):1–10. doi: 10.1016/0197-2456(89)90015-9

54. Katz D, Feldhamer I, Greenberg-Dotan S, Hammerman A. Duration of
second-line T-DM1 therapy: Is it associated with duration of first-line anti-
Her2 therapy in metastatic HER2 + breast cancer? J Clin Oncol (2017) 35
(15_suppl):e12512–e. doi: 10.1200/JCO.2017.35.15_suppl.e12512

55. Dzimitrowicz H, Berger M, Vargo C, Hood A, Abdelghany O, Raghavendra
AS, et al. T-DM1 Activity in Metastatic Human Epidermal Growth Factor
Receptor 2-Positive Breast Cancers That Received Prior Therapy With
Trastuzumab and Pertuzumab. J Clin Oncol (2016) 34(29):3511–7. doi:
10.1200/JCO.2016.67.3624

56. Redman JM, Steinberg SM, Gulley JL. Quick efficacy seeking trial (QuEST1): a
novel combination immunotherapy study designed for rapid clinical signal
assessment metastatic castration-resistant prostate cancer. J Immunother
Cancer (2018) 6(1):91. doi: 10.1186/s40425-018-0409-8

Conflict of Interest: CP is an inventor in NIH patents related to brachyury.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Gatti-Mays, Gameiro, Ozawa, Knudson, Hicks, Palena, Cordes,
Steinberg, Francis, Karzai, Lipkowitz, Donahue, Jochems, Schlom and Gulley. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
March 2021 | Volume 10 | Article 581801

https://doi.org/10.1200/JCO.2019.37.15_suppl.5511
https://doi.org/10.1007/s10549-010-1090-x
https://doi.org/10.1126/scitranslmed.aac4925
https://doi.org/10.1158/1538-7445.SABCS18-PD3-01
https://doi.org/10.1093/annonc/mdz242
https://doi.org/10.1158/2326-6066.CIR-18-0070
https://doi.org/10.1186/2051-1426-3-S2-P132
https://doi.org/10.1158/1078-0432.CCR-19-0727
https://doi.org/10.1158/1078-0432.CCR-19-0727
https://doi.org/10.1080/14712598.2020.1738379
https://doi.org/10.1136/jitc-2019-000433
https://doi.org/10.1136/jitc-2019-000326
https://doi.org/10.1158/1078-0432.CCR-11-3211
https://doi.org/10.1158/0008-5472.CAN-04-3785
https://doi.org/10.1186/bcr3317
https://doi.org/10.1038/onc.2011.483
https://doi.org/10.1158/0008-5472.CAN-13-2045
https://doi.org/10.5858/arpa.2019-0904-SA
https://doi.org/10.1200/JCO.2011.36.2574
https://doi.org/10.1186/s40425-017-0220-y
https://doi.org/10.5772/62322
https://doi.org/10.1158/1538-7445.SABCS15-S1-04
https://doi.org/10.1158/1538-7445.SABCS15-S1-04
https://doi.org/10.1200/JCO.2015.64.8931
https://doi.org/10.1158/1078-0432.CCR-17-3452
https://doi.org/10.1158/1078-0432.CCR-17-3452
https://doi.org/10.1016/0197-2456(89)90015-9
https://doi.org/10.1200/JCO.2017.35.15_suppl.e12512
https://doi.org/10.1200/JCO.2016.67.3624
https://doi.org/10.1186/s40425-018-0409-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Adriana Albini,

MultiMedica (IRCCS), Italy

Reviewed by:
Soldano Ferrone,

Massachusetts General Hospital and
Harvard Medical School, United States

Antonino Bruno,
MultiMedica (IRCCS), Italy

Pier-Luigi Lollini,
University of Bologna, Italy

*Correspondence:
Paola Defilippi

paola.defilippi@unito.it
Laura Conti

laura.conti@unito.it

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Women’s Cancer,
a section of the journal
Frontiers in Oncology

Received: 25 September 2020
Accepted: 22 January 2021
Published: 11 March 2021

Citation:
Salemme V, Centonze G, Cavallo F,
Defilippi P and Conti L (2021) The
Crosstalk Between Tumor Cells

and the Immune Microenvironment
in Breast Cancer: Implications

for Immunotherapy.
Front. Oncol. 11:610303.

doi: 10.3389/fonc.2021.610303

REVIEW
published: 11 March 2021

doi: 10.3389/fonc.2021.610303
The Crosstalk Between Tumor Cells
and the Immune Microenvironment in
Breast Cancer: Implications for
Immunotherapy
Vincenzo Salemme†, Giorgia Centonze†, Federica Cavallo , Paola Defilippi*
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Breast cancer progression is a complex process controlled by genetic and epigenetic
factors that coordinate the crosstalk between tumor cells and the components of tumor
microenvironment (TME). Among those, the immune cells play a dual role during cancer
onset and progression, as they can protect from tumor progression by killing
immunogenic neoplastic cells, but in the meanwhile can also shape tumor
immunogenicity, contributing to tumor escape. The complex interplay between cancer
and the immune TME influences the outcome of immunotherapy and of many other anti-
cancer therapies. Herein, we present an updated view of the pro- and anti-tumor activities
of the main immune cell populations present in breast TME, such as T and NK cells,
myeloid cells, innate lymphoid cells, mast cells and eosinophils, and of the underlying
cytokine-, cell–cell contact- and microvesicle-based mechanisms. Moreover, current and
novel therapeutic options that can revert the immunosuppressive activity of breast TME
will be discussed. To this end, clinical trials assessing the efficacy of CAR-T and CAR-NK
cells, cancer vaccination, immunogenic cell death-inducing chemotherapy, DNA methyl
transferase and histone deacetylase inhibitors, cytokines or their inhibitors and other
immunotherapies in breast cancer patients will be reviewed. The knowledge of the
complex interplay that elapses between tumor and immune cells, and of the
experimental therapies targeting it, would help to develop new combination treatments
able to overcome tumor immune evasion mechanisms and optimize clinical benefit of
current immunotherapies.

Keywords: breast cancer, cancer immunotherapy, tumor microenvironment (TME), immune checkpoint inhibitors
(ICI), immunosuppression
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INTRODUCTION

Breast cancer (BC) still represents the most frequent cancer in
women and the second cause of cancer deaths worldwide (1).
Treatment options have improved the outcome of BC patients, but
still many patients progress to metastatic disease, which remains
very difficult to cure. The failure of specific therapies may be
ascribed to the fact that most anti-cancer drugs currently used
mainly target cancer cells. Indeed, emerging evidence suggests that
BC is not only composed of neoplastic cells but also of the tumor
microenvironment (TME) consisting of different cell types,
including endothelial cells, several stromal cell types, and
immune cells. The cells composing the TME undergo a complex
interplay with cancer cells through either cell–cell contacts or the
production of extracellular matrix complexes and soluble factors
that shape the microenvironment (2). The continuous and
dynamic interaction between cancer cells and the TME can
either promote or hinder cancer progression. In particular,
tumor infiltrating immune cells protect from tumor progression
by eliminating immunogenic neoplastic cells, but in the
meanwhile they can contribute to tumor resistance to therapies,
shaping tumor immunogenicity and selecting resistant tumor
clones able to escape the immune response (3). Although BC
was previously considered as a poor immunogenic cancer that
does not respond to immunotherapies due to a low mutational
burden (4), the notion of the role exerted by the immune system in
BC progression has led to the application of this type of treatments
also in this tumor. The introduction of immunotherapies
improved the outcome of many BC patients, however, data from
the clinics have underlined that it is strongly influenced by the
composition of the immune TME. Indeed, immune cells have
Abbreviations: ADCC, Antibody-Dependent Cellular Cytotoxicity; APCs,
Antigen-Presenting Cells; ARG1, Arginase 1; BC, Breast Cancer; BCIM, Breast
Cancer Immune Microenvironment; bFGF, basic Fibroblast Growth Factor; CAR,
Chimeric Antigen Receptor; CCL, CC-chemokine ligand; COX-2,
Cyclooxygenase-2; CRTH2, Chemoattractant-homologous Receptor expressed
on Th2 cells; CSCs, Cancer Stem Cells; CSF-IR, Colony-Stimulating Factor-1
Receptor; CSFs, Colony-stimulating factors; CTLA-4, Cytotoxic T Lymphocyte
Antigen 4; CXCL, C-X-C-chemokine Ligand; DCs, Dendritic Cells; DFS, Disease
Free Survival; ECP, Eosinophil Cationic Protein; EDN, Eosinophil-Derived
Neurotoxin; EMT, Epithelial–Mesenchymal Transition; EPX, Eosinophil
Peroxide; Evs, Extracellular Vesicles; G−, Granulocyte; GM−, Granulocyte-
macrophage; HMGB1, High-Mobility Group Box 1 protein; ICD, Immunogenic
Cell Death; ICI, Immune Checkpoint Inhibitor; Ics, Immune Checkpoints; IFN,
Interferon; IL, Interleukin; ILCs, Innate Lymphoid Cells; IMCs, Immature
Myeloid Cells; LAG-3, Lymphocyte activation gene-3; M, macrophage; MBP,
Major Basic Protein; MCs, Mast cells; MDSCs, Myeloid-Derived Suppressor Cells;
M-DSCs, Monocytic MDSCs; MHC, Major Histocompatibility Complex; MMPs,
Matrix metalloproteinase; MUC, Mucin; NGF, Nerve Growth Factor; NK, Natural
Killer; NO, Nitric Oxide; OS, Overall Survival; PD-1, Programmed Death 1;
PDGF, Platelet-Derived Growth Factor; PG, Prostaglandin; PGD2, Prostaglandin
D2; PlGF, Placental Growth Factor; PMN-MDSCs, Polymorphonuclear MDSCs;
PNT, Peroxynitrite; RNS, Reactive Nitrogen Species; ROS, Reactive Oxygen
Species; SCF, Stem Cell Factor; TAAs, Tumor Associated Antigens; TAMs,
Tumor Associated Macrophages; TCR, T Cell Receptor; TGFb, Transforming
Growth Factor-b; TIGIT, T cell immunoglobulin and ITIM domain; TILs, Tumor
Infiltrating Lymphocytes; TIM-3, T-cell Immunoglobulin and Mucin domain-
containing molecule 3; TME, Tumor Microenvironment; TNBC, TripleNegative
Breast Cancer; Tregs, Regulatory T Cells, VEGF, Vascular Endothelial
Growth Factor.
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been implied in the development of resistance mechanisms to
immunotherapy in BC, which hampers the establishment of
durable responses, leading to disease progression (5).

Therefore, a deeper knowledge of BC TME and of the role
that the different tumor infiltrating immune cell populations
exert on cancer progression and response to therapies would
allow the development of more effective treatments for BC.
Furthermore, the identification of TME-related characteristics
associated with a good or poor response to therapies would
facilitate patient stratification and therapeutic decisions. In this
light, in this paper we summarize the role exerted by the main
immune cell populations present in the TME in BC progression,
their influence on immunotherapies, and we discuss novel
therapeutic strategies able to counteract the tumor-promoting
activities of BC TME.
MAJOR PLAYERS IN BC IMMUNE
MICROENVIRONMENT

During the evolutionary history of a tumor, a complex and dynamic
communication between tumor cells and the cells in the TME is
established, shaping several tumor hallmarks such as sustained
proliferative signaling, avoidance of immune destruction, induction
of angiogenesis, and activation of invasion and metastasis (6).
Importantly, different types of immune cells play specific roles,
establishing a strong crosstalk network with cancer cells (Figure
1). In this sense, tumor immunoediting by innate and adaptive
immune cell populations that together constitute the so-called Breast
Cancer Immune Microenvironment (BCIM) is an important
determinant of tumor progression. Immunoediting is a dynamic
process that occurs in three steps, notably Elimination, Equilibrium,
and Escape. The Elimination is the first step, also called
immunosurveillance, in which transformed cells are destroyed by a
competent immune system able to activate a strong immune
response against cancer. During the Equilibrium phase, tumor cells
that survived the Elimination phase and immune cells reciprocally
shape each other. A balance is established between the tumor and the
immune system with a selection pressure on tumor cells, which are
genetically unstable and rapidly mutating. Tumor cell variants that
have acquired resistance to elimination then enter the Escape phase,
the final step of the process, when the tumor grows and becomes
clinically apparent. The Escape phase is characterized by the
progressive establishment of an immunosuppressive TME (7).

Based on the activity of the innate and adaptive immune
cell populations involved in the immunoediting process,
we can identify two major subclasses of immune cells: the
immunosuppressive and the immunostimulating cells. Several
lines of evidence have demonstrated that the presence of these
cells within the BCIM significantly impacts on BC progression
and treatment response. In particular, infiltration of tumors by
immunostimulating immune cells such as some macrophages,
lymphocytes, natural killer (NK) cells, innate lymphoid cells
(ILCs), dendritic cells (DCs) and eosinophils is crucial for tumor
control (8). The anti-cancer immune response generated by these
cells is, however, inhibited by the action of immunosuppressive
March 2021 | Volume 11 | Article 610303
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cells, such as myeloid-derived suppressor cells (MDSCs),
mast cells (MCs), regulatory T cells (Tregs), and type 2-
polarized tumor-associated macrophages (M2-like TAMs),
which are intrinsically associated with the developing TME (9).

Here, we briefly describe the major immune subpopulations
present in BCIM, with a particular attention to their impact on BC
patient’s prognosis and to their influence on the response to current
immunotherapies. In addition, we review the state of the art of the
therapeutic strategies aiming at reverting immunosuppression in
order to potentiate anti-cancer immune responses.

Immunosuppressive Cells
Myeloid-Derived Suppressor Cells
MDSCs are a heterogeneous population of progenitors and
precursors of myeloid cells. The molecular mechanisms behind
their generation and their true origins are still debated, and different
theories proposed. Upon an increased demand for myeloid cells,
immature myeloid cells (IMCs) can undergo a process known as
Frontiers in Oncology | www.frontiersin.org 3118
emergency myelopoiesis, expanding in the bone marrow and
migrating into the periphery. Or else, IMCs may also expand and
become functionally active MDSCs extramedullary (in organs such
as spleen) (10). Conversely, in pathologic conditions such as cancer,
several cytokines, chemokines and factors, such as for example
granulocytic-colony stimulating factor (G-CSF) (11), C-X-C-
chemokine ligand (CXCL)2, CC-chemokine ligand (CCL)2, CCL5
(12) CXCL5, and CXCL12 (13) (see below Cytokine and Soluble
Factors-Mediated Mechanisms) secreted by the tumor cause the
block of their differentiation as well as their mobilization from the
bone marrow and accumulation into the primary and secondary
neoplastic lesions (10). Based on the different cell surface antigen
expressions, two subsets of MDSCs have been identified:
polymorphonuclear or granulocytic MDSCs (PMN-MDSCs) and
monocytic MDSCs (M-MDSCs). In mice, the PMN-MDSCs and
M-MDSCs are identified by a CD11b+Ly6G+Ly6Clow and a
CD11b+Ly6G−Ly6Chigh phenotype, respectively, whereas, in
humans, PMN-MDSCs are CD11b+CD14−CD15+CD33+ cells,
FIGURE 1 | Major players in immune breast TME. Among all cell populations present in breast TME, polymorphonuclear (PMN) and monocytic (Mo) Myeloid-Derived
Suppressor Cells (MDSCs), Mast Cells (MCs), Innate Lymphoid Cells Type 2 and 3 (ILC2/3), M2-like Tumor Associated Macrophages (TAMs) and FoxP3+ regulatory
T cells (Treg) are considered to exert an immunosuppressive action, while Tumor Infiltrating CD4+ and CD8+ Lymphocytes (TILs), Natural killer (NK) cells/Innate
Lymphoid Cells Type 1 (ILC1), Dendritic cells (DCs) and Eosinophils are associated with an anti-tumor activity. Created with BioRender.com.
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and M-MDSCs are CD11b+CD14+ CD15−CD33+HLA−DR−/low

cells. Other hypotheses suggest that M-MDSCs and PMN-
MDSCs may represent reprogrammed or activated monocytes
and granulocytes (10). Nowadays, it is widely accepted that these
IMCs, through the secretion of several soluble factors as well as the
production of reactive oxygen species (ROS) and reactive nitrogen
species (RNS) (see below), are able to induce severe anergy of
effector immune cells, to recruit Tregs and to promote the M2-like
TAM polarization, thus generating a strong immunosuppressive
TME. In particular, MDSCs are able to recruit Tregs at the tumor
site throughout the expression on their membrane of the immune
stimulatory receptor CD40. The same receptor is exploited by
MDSCs to directly inhibit T-cell proliferation by its binding with
the ligand CD40L expressed on T-cell plasma membrane (14, 15).
Recently, MDSCs have also been associated with the formation of
the pre-metastatic niche, to the stimulation of angiogenesis and the
maintenance of cancer stem cells (CSCs), a small population of cells
responsible for tumor initiation and metastases (16–18). Several
studies have shown that MDSCs are associated with poor prognosis
in BC patients. Notably, Kumar et al. reported that MDSCs are
more enriched in triple-negative BC (TNBC) patient samples
compared to non-TNBC (19), and high levels of circulating
MDSCs significantly correlate to liver and bone metastases and
higher levels of circulating tumor cells (20). In summary, many lines
of evidence suggest that MDSCs play a detrimental role in
BC progression.

Mast Cells
MCs are innate immune cells characterized by their cargo of
inflammatory mediators stored in cytoplasmic granules, which
are released upon encountering the appropriate stimuli, such as
IgE, that play a central role in allergic diseases (21). MC
degranulation is known to have beneficial roles in response
against pathogens, such as helminths, bacteria, and viruses.

They are distributed in diverse tissues throughout the body
and, like other immune cells, originate into the bone marrow
from the hematopoietic stem cell progenitor which can become a
committed MC progenitor that through the bloodstream
migrates to peripheral tissues to complete maturation (22).
Their differentiation, growth, and survival are strongly
regulated by tissue microenvironmental factors, of which stem
cell factor (SCF), the ligand of the c-Kit receptor, and interleukin
(IL)-3 are the best-characterized (23).

Interestingly, other endogenous factors such as IL-4, IL-6, IL-
9, IL-10, IL-33, nerve growth factor (NGF), and transforming
growth factor b (TGF-b) contribute to MC maturation and
function (22). Inside the tumor, MCs are able to suppress the
anti-tumor immune response by inducing an adenosine-
mediated immunosuppressive crosstalk with MDSCs and Tregs
and by limiting the adaptive immunity through IL-13 secretion
(24, 25). However, the influence of MCs in BC prognosis is still
much debated. MCs, through the secretion of the great variety of
bioactive components contained inside the cytoplasmic granules,
may exert both pro- and anti-tumor effects. In particular, in vitro
and in vivo studies indicate that MCs exhibit a pro-tumor activity
through the promotion of lymphatic and blood vessel formation,
tumor growth, and metastasis (26). On the other hand,
Frontiers in Oncology | www.frontiersin.org 4119
Samoszuk et al. demonstrated that depletion of MCs with
imatinib enhanced tumor growth in a murine model of BC,
supporting MC anti-tumoral role (27). Another study associates
MCs with a greater survival and favorable prognosis (28).
Consistently, Rajput et al. reported that in a cohort of 4.444
invasive BC patients with a long term follow-up, stromal MCs
correlate with a good prognosis (29).

M2-Like Tumor Associated Macrophages
Macrophages are terminally differentiated myeloid cells which
are responsible for the elimination of infectious agents and the
regulation of adaptive immunity. For many years, macrophage
biological origin was attributed to bone marrow-derived
progenitors and blood monocyte intermediates that
differentiate into mature cells once seeded into organs (30).
However, several genetic tracing data revealed that multiple
macrophage populations develop from embryonic progenitors
and are able to self-renew by local proliferation of mature,
differentiated cells. Each tissue microenvironment has been
demonstrated to influence macrophage morphological and
functional characteristics (31). Based on their functional role,
macrophages have been classified in two different subtypes: anti-
tumoral M1-like and pro-tumoral M2-like polarized TAMs (32).
In mice, both M1- and M2-like TAMs are characterized by the
expression of markers such as CD11b, F4/80 and colony-
stimulating factor-1 receptor (CSF-1R) and low levels of
expression of the myeloid differentiation marker Gr1, whereas
major histocompatibility complex (MHC) class II glycoproteins
and CD206 are used to distinguish between M1- and M2-like
TAMs, respectively. In humans, macrophages are identified by
the expression of CD68, CD312, CD115, and other markers.
However, it is important to note that TAM phenotypes are much
more complex and categorizing them into binary states is not
completely correct (33). Several data indicate that the pro-
tumoral M2-like TAMs within the BCIM play pivotal roles in
promoting tumorigenesis and metastasis formation via both
non-immune and immune related mechanisms. The non-
immune role of TAMs consists in the release of numerous
angiogenic factors, such as vascular endothelial growth factor
(VEGF), platelet-derived growth factor (PDGF), and basic
fibroblast growth factor (bFGF), that stimulate angiogenesis
within the tumor, as well as in the secretion of many signaling
molecules, including EGF, matix metalloproteinases (MMPs),
CCL2, CCL18, and macrophage (M)-CSF that consequently
activate tumor cell epithelial–mesenchymal transition (EMT),
invasion, and metastasis (34, 35). The pro-tumoral M2-like TAM
infiltration contributes to establish an immunosuppressive
microenvironment. For example, it has been reported that M2-
like TAMs, through the secretion of TGF-b, as well as IL-10,
suppress CD8+ T cell functions by direct transcriptional
repression of genes encoding functional mediators, such as
perforins, granzymes, and cytotoxins (34, 36). Moreover, in
virtue of their high expression levels of enzymes such as
arginase 1 (ARG1) and indoleamine 2,3-dioxygenase 1, M2
TAMs deplete the TME of the amino acids arginine and
tryptophan, which are essential for T and NK cell proliferation
and survival (35) (see below). Several studies demonstrated that
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M2-TAMs are a poor prognostic factor in BC (37–39). In
particular, M2-TAMs promote tumor growth by facilitating
immunosuppression, angiogenesis, and inflammation, and can
also promote tumor recurrence after conventional therapies (30,
39). Consistently, CSF1-expressing TAMs are associated with
more aggressive tumors, in a cohort of 47 BC patients (33).
Moreover, signatures of M2-like TAM infiltration correlate with
a poor prognosis in luminal and triple negative subgroups of
BC (40).

FoxP3+ Regulatory T Cells
Tregs are a distinct specialized subpopulation of T cells that act to
suppress immune response. Tregs represent half of the
CD4+CD25+ T cell population. In addition, a small number of
CD8+FoxP3+ Tregs have also been identified in a large cohort of
BC patients (41). Physiologically, Tregs are involved in the
regulation of T and B lymphocyte activation as well as in the
homeostasis of cytotoxic lymphocytes (9, 42). The normal thymus
produces FoxP3-expressing CD25+CD4+ Tregs. In addition to
these naturally occurring Tregs, some naive CD25–CD4+ T cells
may also differentiate to Tregs in the periphery (43). Tregs are also
involved in a broad spectrum of pathologies such as
autoimmunity, allograft rejection, and hypersensitivity. Their
role in immunosuppression is indisputable since they can
disrupt the host immune response through a multitude of
mechanisms involving cell–cell contacts and the production of
immunosuppressive cytokines and metabolites, thus sustaining
tumor progression and aggressiveness. Tregs appear to have a
major role in disrupting the immune control of cancers and are
therefore associated with worse patient outcome (44).

Higher numbers of Tregs in the peripheral blood of BC patients
compared with healthy controls have been reported, and their ability
to infiltrate tumors increases with tumor stage and correlates with
poor prognosis in invasive BCs (41, 45). Tregs are recruited in the
TME by several chemokines and cytokines produced by tumor cells,
cancer associated fibroblasts or immunosuppressive cells. CXCL12 is
one of the main factors that induce Treg recruitment. Interestingly,
the expression of CXCL12 and its receptor CXCR4 is increased by
hypoxia, which could further promote Treg infiltration in breast
tumors, especially in the basal-like subtype (46). Related to the
different BC subtypes, it has been described that Treg infiltration
signature is associated with poor prognosis in luminal, triple negative
and HER2+ BC. Interestingly, Peng et al. also reported that, in a
cohort of 122 patients with primary invasive ductal BC, patients with
a low FoxP3+/CD8+ ratio showed a higher disease free survival (DFS)
than patients with an higher FoxP3+/CD8+ ratio (47). Moreover,
the depletion of Tregs in advanced primary tumors induces a
strong CD4+ T cell and interferon (IFN)g-dependent anti-tumor
response (45). In particular, the interferon (IFN) g derived from the
CD4+ cells, but not from the CD8+ and NK cells, is responsible for
the tumoricidal effects after Treg depletion in PyMT breast
carcinomas (48).

Anti-Tumor Immune Cells
Tumor Infiltrating T cells
TILs include all the cells with a lymphocytic nature infiltrating
the tumor tissues. Of particular interest are cytotoxic (CD8+) and
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helper (CD4+) T-lymphocytes (49) that constitute an essential
part of the adaptive immunity. CD8+ T-lymphocytes are the
major effector cells involved in tumor elimination by recognizing
tumor-associated- and neo-antigens presented by MHC class I
(47). CD4+ T cells can support and help the CD8+ T population
during the anti-tumor response via the secretion of a wide range
of effector cytokines. In general, TIL abundance in tumors is
fundamental for the establishment of an important immune
response against cancer. Indeed, a huge literature is consistent
with a positive correlation between TILs and good prognosis of
BC patients. For example, an increased number of TILs positively
correlates with increased DFS and overall survival (OS) in both
TNBC and HER2-positive BC patients treated with neoadjuvant
chemotherapy. Surprisingly, this correlation is completely lost in
luminal A tumors (50). Further studies are needed to elucidate
the underlying mechanisms, which might be related to the effects
of the endocrine therapy on the immune system in Luminal
A patients.

Natural Killer Cells
NK cells derive from a common lymphoid progenitor into the
bone marrow and then spread to primary and secondary
lymphoid tissues, as well as within non-lymphoid tissues
including the lungs, liver, and the peripheral blood (51, 52).
Phenotypically, they are identified as CD3−NK1.1+ in mice,
while in humans two main subsets exist: cytotoxic
CD56dimCD16+ cells and cytokine-producing CD56brightCD16−

cells (51). In both mice and humans, NK cells can be divided in
four subsets, corresponding to different maturation stages, based
on the expression of CD27 and CD11b surface markers. Immature
NK cells do not express the two markers. During maturation, they
acquire CD27 expression and then CD11b, while fully mature NK
present in peripheral blood are nearly all CD11b+ CD27−. These
different phenotypes correspond to different cell functions, with
CD27+ cells showing the best ability to secrete cytokines, and
CD11b+ CD27− displaying high cytolytic function (53, 54). NK
cells play an important role in cancer immunosurveillance,
eliminating a variety of transformed cells through the release of
cytolytic granules containing perforins and granzymes. Differently
from T-lymphocytes, NK cells participate in the innate immunity
and can recognize and kill altered cells without prior sensitization.
Moreover, NK cells recognize and eliminate cells that do not
express MHC class I, a mechanism that many cancer cells, and BC
CSCs in particular, exploit to escape from T cell-mediated
cytotoxicity (55, 56). For these reasons, NK cells are the most
effective immune cell subpopulation to control and eventually
eliminate abnormal cells. However, in BC and several other
solid cancer types, tumor infiltrating NK cells display a
CD56brightCD16− phenotype and secrete invasion-associated
enzymes such as MMP9 and, similarly to decidual NK cells,
exert pro-angiogenic functions through the secretion of VEGF
and angiogenin (57, 58). VEGF induces tumor vessel growth and
exerts immunosuppressive functions, promoting the proliferation
of immunosuppressive cells, limiting T-cell recruitment and
enhancing T-cell exhaustion (59). This shift in NK cell function
may be induced by several factors present in the breast TME, as
previously described for lung cancer, where TGF-b, adenosine,
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and prostaglandins downregulate NK activating receptors and
induce the production of VEGF and placental growth factor
(PIGF) that promote cancer progression (55, 60, 61).
Interestingly, the balance between pro- and anti-tumor activity
exerted by NK cells differs in the different BC subtypes. Indeed, a
strong presence of NK cells that in turn is associated with a good
prognosis has been found in ER+ and HER2+ BC patients, while
NK cell infiltration correlates with poor prognosis in TNBC
patients (40).

Innate Lymphoid Cells
ILCs are immune cells deriving from the common lymphoid
progenitor and belong to the innate counterparts of T cells. In
effect, ILCs have been proposed as the evolutionary precursors of
T cells that do not express antigen-specific receptors (62). They
are tissue resident cells extremely rare in the peripheral blood
(63, 64), able to detect changes in the local microenvironment
through receptors for cytokines that are released during tissue
damage, and to trigger the adaptive immunity (65). Based on
their hallmarks, such as their cytokine signature and phenotype,
ILCs are divided into three major groups: ILC1s, ILC2s, and
ILC3s, even if two additional immune cell types, NK cells and
lymphoid tissue inducer cells, are also included in the ILC
family (66).

In response to IL-12, IL-15, and IL-18, ILC1s secrete IFNg
that is extremely important to induce macrophages and DCs to
eliminate bacteria and to present antigens. ILC2s secrete type-2
cytokines such as IL-5, IL-9, IL-13, and amphiregulin, which on
one hand are involved in the expulsion of helminths and in
helping to repair the damaged tissues, while on the other hand
are able to enhance Treg functions and thus immunosuppression
(67). ILC3s, instead, produce IL-22 and IL-17 that are able to
stimulate the secretion of antimicrobial peptides and mucus by
epithelial and goblet cells, respectively (68, 69).

Like NK cells, ILC1s are dependent on IL-15 and exhibit potent
cytotoxic activities against tumor cells, limiting tumor growth in
mammary preclinical model (70, 71). In BC, Irshad et al. identified
an interesting mechanism through which ILC3s, together with
stromal cells, are able to promote lymphatic metastasis by
modulating the local chemokine milieu. In particular, in a
preclinical mouse model of TNBC, CCL21-dependent ILC3
recruitment into the primary tumor stimulates CXCL13
production by the stromal cells, which in turn promotes the
production of the cancer cell motile factor RANKL that induces
cell migration (72). Moreover, in BC an enrichment of ILC2s in
tumors compared to healthy tissue was observed, and IL-33
administration in 4T1 BC cell model accelerates tumor growth
and the development of lung and liver metastases, which is
associated with increased intratumoral infiltration of ILCs,
MDSCs and Tregs (73, 74). However, the real contribution of
ILCs in cancer disease is still a matter of debate. Whether the
enrichment of ILCs into the tumor site results from newly recruited
cells or from local in situ proliferation is another open question.

Dendritic Cells
DCs are specialized antigen-presenting cells able to orchestrate an
efficient anti-tumor immunity as well as to participate in the
Frontiers in Oncology | www.frontiersin.org 6121
immune tolerance. Mouse and human conventional DCs derive
from common DC precursors in the bone marrow. There are two
main subsets of DCs, monocytic DCs (mDCs) that are generally
CD11c+, and plasmacytoid DCs (pDCs) (75, 76). DCs induce an
efficient T lymphocyte activation and anti-tumor immune response
stimulation through the process of antigen presentation on MHC
class I and II molecules to T-lymphocytes, as well as by producing
immunomodulatory signals through cell–cell contacts and soluble
factors (77).

DCs have been found in many cancer types, including BC,
where they are poorly activated and often dysfunctional, since the
TME promotes their production of IL-10 and TGF-b, which
contribute to the expansion of Tregs (77). Moreover, an increase
of DCs has been observed in the peripheral blood of BC patients,
with higher levels in HER2-positive BC patients compared to
HER2 negative ones, suggesting differences between the different
BC subtypes (78). However, the prognostic role of DCs in patients
remains unclear, likely due to their heterogeneous composition
that comprises cells at different maturation stages. In a recent
study about metastatic BC, Holsbø and Olsen analyzed gene
expression profiles in patient blood samples and examined genes
and gene sets associated with risk of BCmetastasis. Among the top
genes, pDC-related genes and processes were identified (79). This
was in line with another study, in which pDC infiltration in
primary localized BC correlates with an adverse outcome,
suggesting their contribution in tumor progression (80). On the
other hand, Bailur and colleagues’ results suggest a positive
association between circulating pDCs and BC survival (76, 80).
Similarly, the presence of CD83+ mature intratumor DCs strongly
associated with better patient survival in node-positive tumors
(81), and CD11c+ mDCs positively correlated with T cell
infiltration and OS in TNBC patients (82). Moreover, different
subsets of DCs can have different correlations with therapeutic
response in BC patients. Indeed, a significant increase of DCs in
the blood was noted in BC patients whose tumors showed a good
pathological response following neoadjuvant capecitabine and
docetaxel preceded by adriamycin and cyclophosphamide
regimens. However the presence of a decreased amount of
intratumoral CD1a+ DCs did not show any significant
correlation with response to therapy, in both primary breast
tumors and metastatic axillary lymph nodes (83, 84).

Eosinophils
Eosinophils are innate immune cells involved in the protective
immune response of the host against helminthes (85), viral (86)
and microbial pathogens (87). Human eosinophils derive from
CD34+CD117+ pluripotent hematopoietic stem cells in the bone
marrow, where they complete their maturation and subsequently
enter into the bloodstream (88).

Phenotypically, eosinophils are characterized as CD11b+Gr-
1loF4/80+ cells. These markers are also found on macrophages,
but eosinophils can be distinguished due to their high
granularity, lack of expression of MHC-II and expression of
the sialic acid-binding lectin Siglec-F (89).

Eosinophils are recruited from the blood into the sites of
inflammation where, upon activation, they can release an array
of inflammatory mediators such as for example cationic proteins
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(major basic protein (MBP), eosinophil cationic protein (ECP),
eosinophil peroxide (EPX), and eosinophil-derived neurotoxin
(EDN)) that are unique to eosinophils and are important in the
defense against parasitic infections (90). Noteworthy, IL-5
together with IL-3 and GM-CSF, is crucial for supporting the
maturation of human eosinophils in the bone marrow (91) and
mediates their survival by NF-kB-induced Bcl-xL, which
inhibits apoptosis.

Evidence indicates the presence of eosinophils in the TME of
several human hematological and solid tumors, including BC,
even if the mechanisms responsible of the eosinophil infiltration
into the tumors are not completely known (92–94). However,
some data show that the high-mobility group box 1 protein
(HMGB1), IL-1a, and IL-33 potentially trigger eosinophil
recruitment (95). Moreover, macrophages and MCs can recruit
eosinophil via the production of VEGFs (96, 97) and/or the
release of histamine and prostaglandin D2 (PGD2) through the
activation of the chemoattractant-homologous receptor
expressed on Th2 cells (CRTH2) (98) and H4 receptor
(99), respectively.

Into the TME, eosinophils influence other leukocytes, such as
T cells, NK cells, DCs and macrophages. In particular, they are
able to recruit and activate T cells through CXCL9, CXCL10, and
CCL5, to attract NK cells by IL-6, IL-12, and CXCL10
production, and to induce M1 polarization (100). Therefore,
the presence of eosinophils into the tumor or in bloodstream is a
favorable prognostic factor for most cancers, although evidence
for a pro-tumorigenic role for eosinophils is reported (101). In
BC eosinophils appear to be anti-tumorigenic, enhancing the
patients’ ability to respond against disease (102). In particular,
Ownby et al. reported that BC patients with eosinophil counts of
less than 55/mm3 had significantly higher risk of recurrent
disease than patients who had normal or high levels of
eosinophils (102). Moreover, a study on a cohort of 930 BC
patients reported a benefit for relative eosinophil count (REC)-
high vs REC-low in BC-specific survival and in time to treatment
failure (93).
MECHANISMS OF
IMMUNOSUPPRESSION IN BREAST TME

During tumor progression, several immunosuppressive mechanisms
appear, with a huge advantage in terms of growth, aggressiveness and
resistance to treatments for cancer cells. As reported above, the
BCIM contains specific immune sub-populations that, through
complex and dynamic mechanisms, are able to inhibit the host
anti-tumor immune response, by affecting the activity of the main
immunostimulating populations. It is important to note that, to
generate a tumor immunosuppressive microenvironment, the
presence of the immunosuppressive cells inside the tumor lesion is
absolutely indispensable. Several anti-inflammatory mechanisms
used by BC cells to mobilize and recruit the immunosuppressive
mediators have been identified. Here we summarize the main
communication strategies that the tumor cells apply to recruit
these pro-tumor immune cells as well as the mechanisms through
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which these cells inhibit the activity of the anti-tumor immune cells,
distinguishing between cytokine/soluble factors, cell–cell contact and
exosome-mediated mechanisms (Figure 2).

Cytokine and Soluble Factors-Mediated
Mechanisms
Colony-stimulating factors (CSFs) are essential for the
proliferation, activity and differentiation of the myeloid-cell
lineage. G-, GM- and M-CSF are the main components of this
family. Interestingly, BC cells can upregulate the expression of
these CSFs through a variety of mechanisms, promoting the
mobilization and infiltration of specific MDSC populations into
the tumors (12, 103, 104). In particular, the mTOR pathway
drives G-CSF expression in in vivo preclinical models of BC,
where, notably, the CSC compartment exhibits an elevated
production of G-CSF, thus identifying a positive correlation
between CSCs and immunosuppressive TME (11). In addition,
it has been demonstrated that tumors actively reprogram
metabolic pathways to evade effective anti-tumor immunity.
Interestingly, a high glycolytic rate is associated with an
increased secretion of both G-CSF and GM-CSF in TNBC
cells (105).

Equally, also the chemokines play an important and
fundamental role in the regulation of the TME. In particular,
the secretion of CXCL2 and CCL22 by DNp63-carrying BC cells
has been reported to be associated with MDSC infiltration.
Importantly, CCL2 and CCL5 have been identified to be
important chemokines implicated in monocyte and/or M-
MDSC migration to tumors (12). Instead, CXCL5 and CXCL12
(SDF-1) play an important role in PMN-MDSC recruitment into
the primary tumor in a BC mouse model with the deletion of
Tgfbr2 (13).

Once recruited inside the tumor, the MDSCs explicate a
strong immunosuppressive activity both directly, through the
continuous production of reactive oxygen species (ROS), nitric
oxide (NO) and several cytokines and, indirectly, by attracting
additional immunosuppressive populations. In particular, it is
widely reported that M-MDSCs are able to produce mainly O2

–,
H2O2, and peroxynitrite (PNT), while PMN-MDSCs mainly
release NO and arginase, which deplete L-arginine from the
TME, inhibiting T cell function. These MDSC-derived ROS,
NRS, and PNT are able to modify the T cell receptor (TCR) and
the CD8 molecules, inducing the block of T-cell immune activity
(106). Interestingly, MDSCs can directly block the entry of CD8+

T cells into tumors, by producing high levels of PNT, as well as
are able to inhibit T-cell proliferation, strongly impairing the
anti-tumor immune response (12, 107). MDSCs as well as the BC
cells themselves can also produce immunosuppressive cytokines,
such as IL-10, IL-6 and TGF-b, inducing inflammation that may
facilitate immune suppression (108, 109). Moreover, to amplify
the immunosuppression mechanisms repertoire, MDSCs are
able to attract Tregs in a CCR5-dependent manner by
secreting CCL4 and CCL5 (12). In addition, to further increase
the complexity of the immunosuppressive network, Tregs have
been identified as an important source of IL-10 in the TME. High
IL-10 production levels amplify the immunosuppressive
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mechanisms sustaining the expression of FoxP3, TGF-bR, and
TGF-b. TGF-b plays a complex role in BC progression, since it
acts as a tumor-suppressor in normal and premalignant cells and
as a tumor promoter during the more advanced phases of tumor
development, with several epigenetic modification of its signaling
partners and target genes controlling this dual role (110). Indeed,
while under physiological conditions TGF-b inhibits mammary
ductal growth and epithelial stem cell self-renewal, when released
in the TME it induces EMT and the secretion of matrix
components that stimulate invasion and metastatic spreading,
and, together with VEGF, recruits endothelial cells and promotes
their proliferation, favoring angiogenesis (111). Moreover, TGF-
b participates in the downregulation of IL-2 expression, which is
a requirement for T cell proliferation (44). Concomitantly, TGF-
b favors the Treg infiltration in tumor tissues, which could also
be directly induced by cancer cells through the expression of
several chemokines, such as S1P, CXCL12, CCL20, CCL5,
CCL28, and CCL2/22 (44).
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As reported above, also TAMs, mainly as pro-tumoral M2,
are abundant in the BCIM. TAMs originate primarily from bone
marrow-derived blood monocytes/M-MDSC recruited in the
TME and induced to rapidly differentiate into macrophages
(12). Moreover, one of the main mechanisms found in
different types of cancer, including BC, is the secretion of
CCL2 through which the cancer cells are able to attract and
increase the TAM abundance into the TME (112, 113). The
presence of TAMs has been associated with the secretion of an
array of chemokines, cytokines, and enzymes able to induce
immunosuppression and to downregulate the activation of
immune cells involved in the anti-tumor response. Notably,
chemokines such as CCL2, CCL5, CCL17, CCL18, CCL20 and
CCL22, cytokines such as hepatocyte growth factor (HGF),
PDGF-B, VEGF, IL-4, IL-10, prostaglandin (PG) and TGF-b
and enzymes, such as Cathepsin K, cyclooxygenase-2 (COX-2),
ARG1 and MMPs secreted by TAMs can directly inhibit both
CD8+ and CD4+ T cell effector function as well as recruit Tregs
A B

C

FIGURE 2 | Mechanisms of immunosuppression in breast TME. Breast cancer cells developed several mechanisms to promote immunosuppression. (A) Cytokines
and soluble factors are the main players in cell communication and signaling and they are able to mediate immune cell recruitment, mobilization and/or tumor
infiltration. Moreover, they promote inflammation and contribute in changing TME composition, making it more immune suppressive. (B) Another strategy adopted by
breast cancer cells is to overexpress on their surface immune checkpoint receptors such as PD-L1 or CTLA4, inducing cell–cell contact mediated death or anergy in
T cells and suppressing immune response against tumor. (C) Finally, tumor derived exosomes could induce a reprograming in both immune suppressive and
immune cells promoting tumor progression and survival by a wild range of molecules through different mechanisms. Created with BioRender.com.
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into the tumor lesion (114). In particular, PGE2, the major
product of COX-2, plays a pivotal role in BC progression,
though the binding to seven transmembrane G-protein-
coupled receptors expressed on several immune cell subsets
(115). Inhibition of its production by unselective COX
inhibitors such as aspirin or other non-steroidal anti-
inflammatory drugs has been associated with a reduced risk of
developing BC (116), which constitutively expresses high
amounts of COX-2 (117). PGE2 is secreted by both cancer
cells and immune cells present in the TME, where it promotes
the differentiation of MDSCs, from bone marrow progenitors,
and DCs and their recruitment and activation, the M2
polarization of macrophages and their expression of
programmed death ligand (PD-L)1. In addition, it suppresses
NK anti-metastatic activity by reducing the expression of their
activating receptors, stimulates the induction of Th2 cells and
Tregs while inhibiting Th1 polarization, overall inducing
immunosuppression (115).

Besides chemokines, cytokines, and eicosanoids, an
immunosuppressive role is also played by metabolites produced
by cancer cells, such as adenosine. Adenosine is a purine nucleoside
present at low levels in healthy tissues, but released in high amounts
in inflamed tissues and in the TME, where it acts as a danger signal.
Adenosine is produced by the ectoenzyme CD73 from AMP,
generated by CD39 starting from ATP. These two ectoenzymes
are expressed at high levels on MDSCs and tumor cells from
different cancers, and correlate with poor response to therapy in
TNBC patients (118). Adenosine binds four different G-protein-
coupled receptors that have been found to be expressed on multiple
immune subsets. It exerts several immunosuppressive activities,
such as the inhibition of activation and proliferation of CD4+ T
and NK cells, induction of Tregs, skewing of DCs to tolerogenic or
regulatory subsets and of macrophages to the M2 phenotype (61,
118) (Figure 2A).

Cell–Cell Contact-Mediated
Immunosuppressive Mechanisms
An additional strategy by which BC cells are able to evade
immune destruction is mediated by cell-cell contact. Plasma
membrane receptors such as the Programmed Death 1 (PD-1)
and the Cytotoxic T lymphocyte antigen 4 (CTLA-4) are
responsible for the T cell anti-tumor suppression activity,
leading to tumor escape from the immune surveillance (119).
In normal conditions, PD-1 is expressed on T and B
lymphocytes, providing peripheral tolerance and protection
against autoimmunity, while its ligand PD-L1 is mainly
expressed on the surface of antigen-presenting cells. In
pathological conditions, such as cancer, the cells can acquire
the capability to overexpress PD-L1 and PD-L2. Although the
mechanism is not completely understood, the PD-1/PD-L1/PD-
L2 axis is able to induce anergy and/or apoptosis of PD-1+ T
cells, attenuating the anti-tumor immune response and
promoting Treg immunosuppressive activity (120, 121).
Interestingly, a higher PD-L1 expression has been observed in
HER2+ BC and TNBC subtypes rather than in the Luminal
subtypes (122, 123).
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In addition, CTLA-4, which belongs to the immunoglobulin
superfamily, is expressed mainly on activated T cells, playing the
role of T cells activity inhibitor. In fact, CTLA4 is homologous to
CD28, a T-cell co-stimulatory protein, able to bind CD80 and
CD86 on antigen-presenting cells. Thanks to its role in inhibiting
the immune response against the tumor, CTLA-4 correlates with
a poor prognosis in BC patients. Interestingly, besides on T cells,
CTLA-4 is often expressed on BC cells (124, 125). Although its
exact role in BC cells is still unknown, it might contribute to the
regulation of PD-L1 expression and cell proliferation, as
observed in lung cancer (126). Moreover, BC cells not only
express these receptors on their surface, but they can also induce
PD-1 expression in other immune cell populations, enhancing
their immunosuppressive function. In particular, it has been
described that tumor cells can modulate PD-L1 expression on
MDSCs through the release of cytokines such as IFNg. In fact,
IFNg-activated pSTAT1 is able to activate IRF1 protein, leading
to its binding on a specific sequence in the cd274 promoter,
enhancing PD-L1 transcription. In fact, IFNg is highly
expressed in cells of the tumor tissues and its neutralization
significantly decreased PD-L1+ MDSCs in the TME in vivo (127).

Furthermore, previous works demonstrated that also Tregs,
accumulated in BC microenvironment, express high levels of
CTLA-4 and PD-1, participating in T cell inhibition (128).

Interestingly, in addition to PD-L1 and CTLA-4, BC cells
often upregulate other immune checkpoint (IC) markers as a
mechanism of resistance to current inhibitors (129). For
instance, T-cell Immunoglobulin and Mucin domain-
containing molecule 3 (TIM-3) correlates with the presence of
other IC markers such as lymphocyte activation gene (LAG)-3
and PD-L1 (129). TIM-3 is an IC receptor that is emerging as a
target for cancer immunotherapy. It is expressed on both tumor
and immune cells, and contributes to immune tolerance (130).
LAG-3 is a cellular receptor expressed by activated T
lymphocytes and is associated with T cell exhaustion (131),
and it is commonly upregulated with PD-1 (132). Additionally,
the T cell immunoglobulin and ITIM domain (TIGIT) co-
inhibitory receptor (131), is highly expressed on CD8+ and
CD4+ TILs in TNBC, while its ligands are present on antigen
presenting cells and cancer cells (133). These three ICs, due to
their properties, have been proposed as prognostic markers in
BC, together with CD47 (131, 132, 134, 135). The CD47 receptor
is expressed on the surface of several types of cancer cells and
functions as an anti-engulfment signal that protects cells from
phagocytosis by macrophages (136, 137). In particular, it is
highly expressed on TNBC, and it has been associated with
EMT and poor prognosis (135) (Figure 2B).

Exosomes and Microvesicles as Important
Players in Sustaining Tumor Progression
Due to their lipid double layer, extracellular vesicles (EVs) are
able to carry stably active biological molecules and have a crucial
role in cellular communication and trafficking in both
physiological and pathological conditions. Exosomes are a
subclass of EVs involved in intercellular communication that
are released by all cell types, including cancer cells. Cancer
March 2021 | Volume 11 | Article 610303

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Salemme et al. Breast Cancer Microenvironment Influences Immunotherapy
exosomes have been demonstrated to mediate the main steps of
tumor progression, in particular through the modulation of
immune response, TME reprogramming and metastasis
formation (138). It has been reported that BC cells often
release exosomes containing TGF-b and IL-10, leading to T
cells suppression (139–141). In particular, it has been shown that
tumor-derived EVs are predominantly taken up by MDSCs,
inducing MDSC immunosuppressive functions (142).

Moreover, it has been shown that tumor-derived exosomes
could carry PD-L1 on their membrane surface. Besides inhibiting
effector T cell recruitment and activation, exosome PD-L1
confers resistance to ICI therapy. Their ability to competitively
bind to PD-L1 antibodies may contribute to the still largely
unknown mechanisms of resistance of exosomal PD-L1 (143).

Numerous studies have underlined the role of exosomes in
processes involved in tumor progression and survival, modulating
immune cells such as DCs, T cells, macrophages, and NK cells and
exerting a pro-inflammatory effect (144). For example, BC-derived
exosomes can induce a pro-inflammatory response in
macrophages localized at distant sites through the activation of
NF-kB, which in turn stimulates production of inflammatory
cytokines (145). In particular, palmitoylated proteins on the
cancer exosome surface are able to bind to TLR2 enhancing NF-
kB activation. In turn, activated macrophages prepare pre-
metastatic niches that favor colonization by tumor cells (145).
Furthermore, despite the molecular mechanism is not fully
understood, it has been shown that tumor-derived EVs are able
to increase the expansion of CD4+CD25+FoxP3+ Treg cells,
inducing their suppressor activity and at the same time blocking
the proliferation of activated CD8+ T cells (141, 146).

Interestingly, it has been demonstrated that BC-derived
exosomes can contain and transmit also non-coding RNA, such
as lncRNA SNHG16, which is able to induce CD73 in gd1 Treg cells,
enhancing their immunosuppressive effect via adenosine generation
(147). Further studies have underlined the presence in EVs of
miRNAs able to contribute to tumor progression. For instance, BC-
secreted exosomal miR-105 could induce a metabolic program in
cancer associated fibroblasts by activating the MYC signaling,
adapting them to a different metabolic environment (148, 149).
Another example is miR-503 that can enhance polarization of the
microglia from a tumor-suppressive M1 to a tumor-promoting M2
phenotype, thus contributing to brain metastasis in BC (150).
Interestingly, hypoxic conditions favor the release of
immunosuppressive exosomes by BC cells. In fact, hypoxia
increases the EV content of two immunosuppressive factors,
TGF-b1 and miR-23a, which inhibit NK cell function by directly
targeting the expression of CD107a and decreasing the cell surface
expression of the activating receptor NKG2D (151) (Figure 2C).
IMPORTANCE OF THE TME IN RESPONSE
AND RESISTANCE TO IMMUNOTHERAPY

Immunotherapy in BC
Immunotherapy has entered the clinical practice for BC patients
as early as 1998, with the FDA-approval of the humanized HER2
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monoclonal antibody trastuzumab, followed by other HER2
targeting antibodies (152). These drugs improved overall
survival of patients affected by early or advanced HER2+ BC.
However, tumors often display intrinsic or acquired resistance
mechanisms, and most patients eventually experience disease
progression (153).

Besides these passive immunotherapies, active immunotherapy
for BC has been extensively studied. Although encouraging results
came from preclinical analysis, most of the clinical trials with
vaccines targeting tumor associated antigens (TAA) such as
HER2 or mucin (MUC)1 failed to significantly improve patients’
outcome (154). Currently, new vaccines based on tumor-specific
neo-antigens and shared oncoantigens that play a key role in the
biology of CSCs are giving promising results that will hopefully pave
the way for their clinical translation (155–159). Recently,
immunotherapy options for BC treatments have expanded, with
the introduction of the ICI atezolizumab (a PD-L1 antibody) in
combination with chemotherapy for the treatment of patients with
PD-L1+ unresectable locally advanced or metastatic TNBC (152).
However, the Phase III double-blind IMpassion130 trial
(ClinicalTrials.gov NCT02425891) demonstrated a clinically
meaningful but not statistically significant difference in OS
between patients treated with nab-paclitaxel plus atezolizumab or
placebo, and a complete response rate of only 10.3% in PD-L1+
patients subjected to the combinatory treatment (160, 161).

Altogether, the results coming from the different BC
immunotherapy regimens applied so far either in the clinical
practice or in clinical trials suggest that multiple tumor cell
intrinsic and extrinsic mechanisms of resistance need to be
targeted to increase their efficacy. In particular, it is becoming
increasingly evident that the immunosuppressive activity of the
TME greatly affects tumor response to immunotherapy (5).

The Role of TME in the Response to
HER2-Targeted Therapies
The composition of the TME is key in determining the sensitivity
of HER2+ BCs to HER2-targeted therapies (153). Indeed, several
studies have shown that the presence of TILs and the expression
of immune-associated gene signatures in pre-treatment biopsies
are associated with longer DFS in HER2+ BC patients treated
with anti-HER2-based therapy in the neoadjuvant or adjuvant
settings (50). This is mainly due to the ability of immune cells to
enhance trastuzumab anti-cancer activity. In fact, NK-dependent
antibody-dependent cellular cytotoxicity (ADCC) plays a central
role in trastuzumab-mediated cancer cell killing (162). Moreover,
trastuzumab-induced HER2 internalization leads to HER2
presentation in MHC class I molecules, which can activate
anti-tumor CD8+ T cells (163). Therefore, although the main
mechanisms responsible for primary or acquired resistance to
trastuzumab and to the other HER2-targeted therapies are
cancer cell-intrinsic (153), the presence of M2 macrophages
and other immunosuppressive cells in the TME significantly
impairs the efficacy of HER2-targeting antibodies (164).
Interestingly, trastuzumab treatment can increase the immune
evasive properties of BC cells through the induced secretion of
TGF-b, IL-6 and other immunosuppressive cytokines that, in
turn, recruit immunosuppressive cells (165, 166). Indeed, the
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presence of a high number of TILs in patients with residual
disease after neoadjuvant therapy was associated with worse DFS
(167), probably due to an increase in Treg cells (168), indicating
that immune-mediated resistance mechanisms need to be
inhibited in BC patients to guarantee a good response to
HER2-targeted therapy.

TME Mediates Resistance to Immune
Checkpoint Inhibitors
The poor response of most BCs to single-agent ICI therapy
reflects intrinsic or acquired resistance (169). The mechanisms
responsible for acquired resistance to ICIs in BC are currently
unclear. However, lack of TILs and the presence of high numbers
of MDSCs and other immunosuppressive cells correlate with low
response (170). Of note, the TME composition in primary cancer
differs from that in metastases, and clinical and preclinical data
have demonstrated that primary BC are more responsive to ICIs
than their corresponding lung or liver metastases, demonstrating
that TME is important in determining response to
immunotherapy (171). Indeed, many cells within the TME can
impair the response to ICIs by inhibiting effector T cells (172),
and depletion of intra-tumor MDSCs or Treg cells improved
responsiveness to PD-1/PD-L1 blockade in preclinical models of
BC (173, 174). Therefore, association of ICIs with therapies that
revert the immunosuppressive activity of TME may improve
their efficacy.
STRATEGIES TO REVERT IMMUNE
SUPPRESSION AND IMPROVE CANCER
IMMUNOTHERAPY

The growing understanding of themechanisms that cause resistance
to immunotherapy will pave the way to the development of
combination strategies that associate immunotherapy with drugs
able to revert TME immunosuppression. Indeed, several studies
have demonstrated that therapies that either recruit T or NK cells or
reduce immunosuppressive factors in the TME can sensitize poorly
immunogenic tumors to immunotherapy (175) (Figure 3).

The first strategy to improve the effectiveness of
immunotherapy, and in particular of ICIs, is to recruit and
activate effector cells such as anti-tumor T lymphocytes, since
ICIs are not able to unleash antitumor responses if fully primed T
cells are not present at the tumor site (176). This effect may be
obtained with adoptive cell transfer therapy, and in particular
with the administration of chimeric antigen receptor (CAR) T
cells. Several clinical trials with CAR T cells specific for different
tumor antigens such as HER2 (NCT03696030), EpCAM
(NCT02915445), MUC1 (NCT04020575 and NCT02587689)
and mesothelin (NCT02792114), alone or in combination
regimens, are currently ongoing in BC patients. Till now, CAR
T efficacy in solid tumors has demonstrated limited, mostly due
to the presence of physical barriers that limit their infiltration in
the tumor and to the immunosuppression exerted by the TME,
but their combination with ICIs and other immunotherapies is
expected to ameliorate cancer patient outcomes (177). However,
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it must be taken into account that, due to the difficulties in
finding BC specific antigens, CAR T cells have been generated
that targets TAAs, and therefore they can induce cytokine release
syndrome and other severe reactions (178), as observed in a
patient who died of pulmonary distress 5 days after receiving
HER2-targeting CAR T cells (179), rising safety concerns.

Anti-cancer vaccination is a promising alternative to induce T
cell recruitment in the tumor. Recently, cancer vaccines have
been repositioned as a way to activate an immune response
whose brakes are then removed by ICIs (154). A phase I clinical
trial is testing the association of the personalized cancer vaccine
RO7198457—an mRNA-based vaccine targeting an unspecified
amount of tumor-associated antigens expressed in the patient’s
tumor—with atezolizumab in patients with TNBC and other
solid tumors (NCT03289962). Moreover, several clinical trials
are currently recruiting patients affected by TNBC or other
advanced BCs that will be treated with vaccination in
association with the anti-PD-1 pembrolizumab or the anti-PD-
L1 durvalumab (NCT04024800; NCT03362060; NCT03632941;
NCT03789097; NCT04634747; NCT04418219; NCT03199040;
NCT03606967; NCT02643303)). In the next years, the results
coming from these trials will clarify the effectiveness of combined
therapies based on ICIs and vaccination for BC treatment.
Interestingly, cancer vaccines targeting CSCs can also synergize
with HER2-targeted immunotherapy, as we have recently
demonstrated in a preclinical model (180). Thus, multiple
combination strategies might be developed in the next years to
further improve BC treatment.

Another strategy to induce T cell activation and increase the
efficacy of immunotherapy in BC patients is its association with
cytotoxic chemotherapies that can induce immunogenic cell
death (ICD), with the subsequent release of tumor antigens
that prime T cells. Not all cytotoxic agents lead to ICD, but
doxorubicin, mitoxantrone, paclitaxel and oxaliplatin do (181,
182). Moreover, these immunomodulating drugs improve
immunotherapy by downregulating PD-L2 and upregulating
MHC class I expression on tumor cells, increasing their
immunogenicity (183). Several clinical trials testing the
combination of ICIs with immunogenic chemotherapy have
been performed (some examples are NCT02555657;
NCT02622074; NCT03139851; NCT02425891), and the results
from the IMpassion130 trial (NCT02425891) have led to the
FDA approval of atezolizumab in association with nab-paclitaxel
for first line, metastatic, PD-L1+ TNBC (160, 161).

Very recent data have shown that ICIs can act not only on T
cells but also on NK cells, which express several ICs that inhibit
their cytotoxic function, such as PD-1, TIM3, TIGIT, LAG-3 and
CD96 (184). Several clinical trials are ongoing investigating the
effects of ICIs on NK cells in different solid cancers, as reviewed in
(185). Besides the classical ICs, NK cells express specific inhibitory
receptors such as KIRs and NKG2A, and several inhibitory
receptor blocking antibodies are currently undergoing clinical
evaluation in solid cancers. Monalizumab, a mAb targeting
NKG2A, is currently being tested in combination with
trastuzumab in metastatic HER2+ breast cancer (NCT04307329).
However, the study of these novel drugs in BC patients is still
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limited. Nevertheless, since NK cells represent an attractive tool
for cancer immunotherapy thanks to their ability to kill cancer
cells in an MHC-independent manner, other NK-based
immunotherapies have been developed (186). Besides
stimulation with cytokines (such as IL-12, IL-15 or IL-2,
discussed below), the anti-tumor effects of endogenous NK cells
can be stimulated by administration of bispecific and trispecific
killer cell engagers (BiKE and TriKE, respectively), constituted by
antibodies targeting CD16 or NKG2D and one or two tumor
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antigens (61). TriKEs can also be engineered to sustain NK cell
proliferation in vivo, through the insertion of a modified IL-15
cross-linker (51). BiKe and TriKE specific for HER2 or EpCam
were developed for BC, and, during the revision of this paper, GT
Biopharma announced the initiation of clinical development of
TriKE therapy for the treatment of HER2+ breast and
gastrointestinal cancers, using a tri-specific scFv recombinant
fusion protein conjugate composed of anti-CD16 and anti-
HER2 antibodies, and a modified form of IL-15 (61).
FIGURE 3 | Strategies to revert immune suppression and improve cancer immunotherapy. Actually, several methods used in breast cancer treatment take
advantage of immunomodulation mechanisms and are promising tools for tumor immunotherapy. One strategy is to improve immune cell activity against the tumor
by innovative therapies such as CAR-T/CAR-NK administration, which employs patient’s T/NK cells engineered with chimeric receptors targeting antigens
characteristics of cancer cells, or as anti-cancer vaccination, which stimulates the activation of the patient’s tumor-specific T cells. An additional method ongoing in
clinical studies is the use of monoclonal antibodies against immune checkpoints or immune checkpoints inhibitors (ICIs) to block T-cell suppression, and the use of
BiKE and TriKE reagents to induce antitumor NK cell activation. Moreover, an antitumor immune response may be activated by chemotherapy drugs inducing
immunogenic cell death. A second strategy to improve tumor immunotherapy is to revert the immunosuppressive activity of TME often displayed in several breast
cancers. In this sense, cytokine pharmacological modulation or inhibition of specific immunosuppressive pathways can be performed. The effects of single or
combined therapies are actually studied. Created with BioRender.com.
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Recently, adoptive NK cell therapy strategies have been
explored in preclinical and clinical studies. Although adoptive
transfer of autologous NK cells expanded ex vivo induced only
very limited antitumor effect in patients with solid cancers,
partially due to the immunosuppressed state of patients’ NK
cells, a phase I clinical trial in patients with treatment-refractory
HER2+ solid cancers treated with trastuzumab, bevacizumab,
and autologous in vitro expanded NK cells reported preliminary
antitumor activity, supporting the assessment of this approach in
phase II trials (187). Alloreactive human pluripotent stem cell- or
PBMC-derived NK cells have been widely investigated. However,
in BC patients a phase II trial with allogeneic NK cell
administration after lymphodepleting chemotherapy and total
body irradiation gave poor results (188).

The difficulties in obtaining large amounts of NK cells led to the
development of NK cell lines, among which EBV-transfected NK-92
is the only approved by the FDA for use in clinical trials (189). A
clinical trial associating the infusion of NK-92 cells to the IL-15
super-agonist N-803 that promotes enhanced NK cell function,
several chemotherapeutic drugs and vaccines targeting CEA, Ras
and MUC-1, is currently recruiting TNBC patients who have
progressed on standard of care therapy (NCT03387085). In order
to improve their efficacy, NK cells expressing tumor-targeting CARs
were generated. Autologous, allogeneic and NK cell lines can all be
engineered to express CARs. Most CAR-NKs developed so far were
tested in hematological malignancies, and some clinical trials are
currently evaluating the safety and efficacy of PD-L1 or HER2-
targeting CAR-NK therapy in solid tumors, although, to the best of
our knowledge, there is not published data on human trials on BC
up to now (186). Of note, the identification of CD142 (also known
as tissue factor) as an antigen highly expressed in TNBC cells and
CSCs, led to development of CAR-NKs specific for this aggressive
type of BC, which led to positive results in preclinical studies (190),
and similar results were obtained with EGFR-CAR NK cells (191),
opening the way for a clinical development. Although CAR-NK
therapy is still under evaluation, it displays potential advantages
over CAR-T cell therapy. Indeed, NK cells release mainly IFNg
and GM-CSF, which are relatively safer than the cytokines released
by activated CAR-T cells (IL-6 and TNF-a) that can cause cytokine
release syndrome. Finally, CAR-NK cells can kill target cells in both
CAR-dependent and CAR-independent manners, increasing their
efficacy (51).

Another strategy to improve tumor immunotherapy is to revert
the immunosuppressive activity of TME that characterizes most BCs.
To this end, both drugs that deplete immunosuppressive cells and
inhibitors of inflammatory cytokines have been tested. No selective
MDSC inhibitors are currently known; however, many existing
drugs reduce systemic and intratumor MDSCs, potentiating
immunotherapy over time (15). DNA methyl transferase (DNMT)
and histone deacetylase (HDAC) inhibitors, besides increasing
tumor cell intrinsic immunogenicity through the upregulation of
MHC class I and the antigen processing machinery (192), exert this
effect (193). The HDAC inhibitor romidepsin is being evaluated in
association with nivolumab and cisplatin in TNBC (NCT02393794),
while the DNMT inhibitor decitabine in combination with
pembrolizumab, followed by standard neoadjuvant chemotherapy,
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is under evaluation for locally advanced HER2− BC (NCT02957968).
Recently, a key role of PI3Kd and PI3Kg isoforms in promoting
integrin4-dependent MDSC recruitment in the TME and in
stimulating the immunosuppressive polarization of MDSCs and
TAMs has been shown (194). Therefore, the PI3Kd and PI3Kg
inhibitor IPI-549 is under evaluation in combination with
atezolizumab and nab-paclitaxel in TNBC patients (NCT03961698).

Since in BC the dominant TAM phenotype is that of tumor
promoting M2, which is associated with poor prognosis (195),
macrophage depletion or re-education to anti-tumor M1 is an
attractive approach for TME modulation (196). The most widely
used strategy to date has been TAM depletion from the TME
through inhibition of CSF-1/CSF-1R axis. CSF-1/CSF-1R
inhibitors have been administered either as a monotherapy
(NCT02265536) or in association with chemotherapy
(NCT01596751 and NCT02435680). However, the available
results from other cancer types showed only modest efficacy
(196). This could be partially due to the ability of chemotherapy
to recruit Tie+ macrophages in the TME, which in turn promote
cancer cell dissemination (197). Therefore, a phase I clinical trial
that evaluates the efficacy of the Tie2 kinase inhibitor rebastinib
in combination with paclitaxel and the microtubule inhibitor
eribulin mesylate in patients with advanced BC is currently
ongoing (NCT02824575).

Aberrant overexpression of many proinflammatory cytokines
has been reported in breast tumors, with a different profile
during cancer progression (108). The modulation of cytokines
present in the TME can be pharmacologically performed in order
to either increase cytokines that promote anti-tumor immune
responses or inhibit those that favor tumor progression (198).
Among the anti-tumoral cytokines, IL-2 is one of the most
studied, since it potentiates the activation of both cytotoxic T
and NK cells, and can therefore enhance ADCC (198).
IL-2 (aldesleukin or its pegylated more stable form
bempegaldesleukin) administration has therefore been
associated with trastuzumab, cancer vaccines or ICIs in several
clinical trials in BC patients. However, the few results available so
far indicate only a modest benefit (NCT00784524;
NCT00003199; NCT03435640). This could be ascribed to the
induction of compensatory immunosuppressive mechanisms,
such as increased expression of IC molecules, secretion of
inhibitory cytokines such as IL-10 and TGF-b, triggering of
Treg cells and MDSCs, and activation of intracellular
suppressors of cytokine signaling proteins that terminate the
antitumor response (198). Therefore, many strategies that inhibit
immunosuppressive cytokines have been developed and tested in
a multitude of clinical trials in BC patients. TGF-b, IL-6 and IL-8
are among the most promising cytokines to be targeted, since
their overexpression has been associated with advanced disease,
higher risk of recurrence, stemness, therapeutic resistance as well
as immune suppression (199–202). Several TGF-b targeting
agents are under analysis in BC patients. An anti-PD-L1/TGF-
bRII bifunctional antibody (M7824) is currently undergoing
clinical evaluation either as a single agent in stage II–III
HER2+ BC (NCT03620201) or in combination with radiation
(NCT03524170), with eribulin (NCT03579472) or with a
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brachyury-targeting virus-based vaccine plus trastuzumab
emtansine or the class I HDAC inhibitor entinostat in TNBC
patients (NCT04296942). Similarly, the selective TGF-bR1
inhibitor galunisertib is under evaluation in combination with
paclitaxel in TNBC patients (NCT02672475). For what concerns
IL-6, the neutralizing IL-6 receptor antibody tocilizumab—FDA-
approved for the treatment of cytokine release syndrome in CAR
T-treated patients—is emerging as a potential new therapeutic in
BC. Two clinical trials are recruiting patients to test its
administration in combination with either trastuzumab and
pertuzumab in metastatic HER2+ BC or with atezolizumab
and nab-paclitaxel in advanced TNBC patients (NCT03135171
and NCT03424005). In preclinical models of TNBC, IL-8
inhibition was shown to revert the mesenchymal phenotype,
decrease MDSCs in the TME and enhance tumor cell killing by T
and NK cells (202), providing the rational for combining IL-8
inhibitors with immunotherapy or chemotherapy. Reparixin, a
small molecule inhibitor of the IL-8 receptors CXCR1 and
CXCR2, has been tested in clinical trials (NCT01861054;
NCT01861054) in HER2− BC patients, reporting a 30%
response rate in 27 patients and a decrease in the aldehyde
dehydrogenase CSC marker in about 25% of patients (203).
Besides cytokines, molecules involved in the production of the
immunosuppressive metabolite adenosine represent promising
targets for BC therapy. In this light, clinical trials are currently
ongoing in TNBC and other solid tumors combining
immunotherapy with pembrolizumab or atezolizumab and
inhibitors of CD73 or adenosine receptors (CPI-006 and CPI-
444, respectively; NCT03454451 and NCT02655822), although
the results have not yet been published (204).
CONCLUSIONS

The introduction of immunotherapy has revolutionized the
treatment of several cancer types, shifting the focus from
cytotoxic therapies toward treatments that boost anti-tumor
immune responses. However, only a small percentage of
patients affected by BC currently benefit from immunotherapy.
Indeed, the clinical efficacy of immunotherapy is limited to a
subset of patients, and secondary resistance often develops in
responding patients, further constraining the possibility of
immunotherapy of substantially improving the outcome of
BC patients.

A plethora of mechanisms contribute to the low efficacy
displayed by immunotherapy in general, and of ICIs in
particular, when administered as a single agent in the majority of
BC patients, and it is now well known that the TME plays a pivotal
role in the resistance mechanisms. Indeed, tumor progression is
strictly intertwined with modifications of its TME that promote
cancer cell proliferation while inhibiting the effector functions of
anti-tumor immune responses, generating an immunosuppressive
microenvironment that finally results in tumor outgrowth and
metastatic dissemination. This immunosuppressive milieu
generated by the crosstalk between cancer cells and immune and
stromal cells present in the TME significantly dampens the
protective anti-tumor immune responses activated by
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immunotherapies, thus resulting in treatment failure. The
awareness of the existence of these mechanisms has shed light
on the need to develop combination therapies that support the
effect of ICIs and other immunotherapies by either expanding
the activation and recruitment of effector cells, such as T
l ym p h o c y t e s a n d NK c e l l s , o r b y i n h i b i t i n g
immunosuppressive cells and soluble factors. Of note, recent
evidence from the literature and the clinics is expanding the
focus of immunotherapy from its traditional T cell-centric view
to a broader vision. Indeed, others and we have previously
suggested that the humoral response plays a key role in
immunotherapy-induced anti-cancer responses (157, 205, 206).
This is particularly important considering that CSCs from BC
and many solid cancers downregulate antigen-processing and
presentation, thus escaping T cell responses (155). For the same
reason, NK cells are emerging as new potential allies in cancer
immunotherapy. Hundreds of clinical trials are currently testing
different combinations of drugs, sometimes obtaining
encouraging results. However, we must be conscious that BC
and its TME represent a very heterogeneous and dynamic system
that changes over time as the result of a complex crosstalk
between neoplastic cells, immune cells and cancer therapies.
This implies that a deeper understanding of the role played by
the innate and adaptive immune response in individual BCs,
and the characterization of the TME features that mostly
influence the efficacy of immunotherapy, are needed to develop
more effective treatments able to simultaneously activate anti-
tumor immune responses and hinder the mechanisms leading to
tumor immune escape. To this end, the identification of new
predictive biomarkers of response to ICIs and combined
therapies, which could help to stratify patients and guide the
therapeutic decision, is urgently needed. Many efforts to define an
immune signature distinctive of BC patients that positively
respond to immunotherapy have been made, but clear-cut data
are still missing (122, 207). The identification of personalized
biomarker profiles, although representing a demanding challenge,
may represent in the next years an important tool that could
improve the development of optimal personalized combination
therapies able to significantly improve BC prognosis.
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Background: Immuno-oncology (IO) agents have demonstrated efficacy across many
tumor types and have led to change in standard of care. In breast cancer, atezolizumab
and pembrolizumab were recently FDA-approved in combination with chemotherapy
specifically for patients with PD-L1-positive metastatic triple-negative breast cancer
(TNBC). However, the single agent PD-1/PD-L1 inhibitors demonstrate only modest
single agent efficacy in breast cancer. The purpose of this study was to investigate the
efficacy of novel IO agents in patients with metastatic breast cancer (MBC), beyond
TNBC, treated in phase I clinical trials at the University of Colorado.

Methods: We performed a retrospective analysis using a database of patients with MBC
who received treatment with IO agents in phase I/Ib clinical trials at the University of
Colorado Hospital from January 1, 2012 to July 1, 2018. Patient demographics,
treatments and clinical outcomes were obtained.

Results: We identified 43 patients treated with an IO agent either as a single agent or in
combination. The average age was 53 years; 55.8% had hormone receptor-positive/
HER2-negative breast cancer, 39.5% TNBC and 4.7% HER2-positive. Patients received
an average of 2 prior lines of chemotherapy (range 0-7) in the metastatic setting. Most
patients (72.1%) received IO alone and 27.9% received IO plus chemotherapy. Median
progression-free survival (PFS) was 2.3 months and median overall survival (OS) was 12.1
months. Patients remaining on study ≥ 6 months (20.9%) were more likely to be treated
with chemotherapy plus IO compared to patients with a PFS < 6 months (77.8% v.
14.7%). No differences in number of metastatic sites, prior lines of chemotherapy, breast
cancer subtype, absolute lymphocyte count, or LDHwere identified between patients with
a PFS ≥ 6 months vs. < 6 months.
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Conclusions: Our phase I experience demonstrates benefit from IO therapy that was not
limited to patients with TNBC and confirms improved efficacy from IO agents in
combination with chemotherapy. A subset of patients with MBC treated in phase I
clinical trials with an IO agent derived prolonged clinical benefit. Predictors of response to
immunotherapy in breast cancer remain uncharacterized and further research is needed
to identify these factors.
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INTRODUCTION

Breast cancer is the most common cancer in women and patients
with metastatic breast cancer (MBC) have a 5-year overall
survival of only 27% (1). While prognosis depends on biologic
subtype, there remains a critical unmet need for novel
therapeutic options to improve survival for patients with MBC.

The development of immuno-oncology (IO) therapeutics has
changed the way we treat many cancers, most dramatically with
inhibitors of programmed cell death-1 (PD-1), its ligand (PD-L1)
and cytotoxic T-lymphocyte-associated antigen (CTLA-4) (2–4).
The first approval in metastatic breast cancer came in 2019 with
the approval of atezolizumab in combination with nab-paclitaxel
for patients with PD-L1-positive (tumor-infiltrating immune
cells ≥ 1%) metastatic triple-negative breast cancer (TNBC)
(5). This was followed in 2020 by the approval of
pembrolizumab in combination with chemotherapy including
paclitaxel, nab-paclitaxel or gemcitabine plus carboplatin in
patients with PD-L1-positive (combined positive score ≥10)
metastatic TNBC (5, 6).

TNBC and human epidermal growth factor receptor 2
(HER2)-positive breast cancers are perceived as being more
immunogenic compared to luminal breast cancers based on a
higher mutational burden, higher tumor-infiltrating lymphocyte
(TIL) rates and higher PD-L1 expression (7–10). Higher TIL
expression is associated with increased pathologic complete
response (pCR) rates in patients treated with neoadjuvant
chemotherapy and improved prognosis in HER2-positive and
TNBC (9, 11). PD-L1 is expressed in 20-50% of breast cancers
and varies depending on the specific antibody clone and
evaluation on tumor cells or immune cells in the tumor
microenvironment (10). Expression is higher in TNBC and
HER2-positive breast cancer compared to hormone receptor
(HR)-positive/HER2-negative tumors (10, 12). In patients with
TNBC and HER2-positive breast cancer treated with
neoadjuvant chemotherapy, PD-L1 expression correlates with a
higher pCR rates and improved clinical outcomes (13–15).

Despite the increased immunogenicity of TNBC, response
rates to IO monotherapy with pembrolizumab range from 23%
for PD-L1-positive patients treated in the first-line setting to
approximately 5% for patients previously treated with
chemotherapy regardless of PD-L1 status (16, 17). While there
is a subset of patients with TNBC who are exceptional
responders to immunotherapy and experience long-term
disease control, the efficacy of IO monotherapy generally is no
2137
better than palliative chemotherapy and combinations of IO plus
chemotherapy are more active (5, 6, 18).

The activity of IO agents in luminal breast cancers is more
limited with response rates ranging from 11% to 30% for
pembrolizumab in patients with advanced PD-L1 positive, HR-
positive HER2-negative breast cancer and 3% with avelumab in a
similar patient population (19, 20). In the neoadjuvant setting,
the addition of pembrolizumab to an anthracycline and taxane-
containing chemotherapy backbone resulted in an increased pCR
rate in patients with HR-positive/HER2-negative breast cancer in
the I-SPY2 clinical trial (21). There are numerous ongoing
clinical trials evaluating IO agents in combination with
chemotherapy, radiotherapy, other immune checkpoint
inhibitors or cancer vaccines (22).

Over the last decade, there has been a rapid increase in the
development of diverse IO agents targeting numerous pathways
extending beyond CTLA-4 and PD-1/PD-L1. The recent
approval of atezolizumab and pembrolizumab in combination
with chemotherapy for patients with PD-L1-positive TNBC
allows for an IO option for a subset of patients with metastatic
breast cancer. Outside of this limited indication, the opportunity
for many patients to receive treatment with an IO agent has been
in the setting of a clinical trial. Given the great enthusiasm for IO
agents in general for the treatment of cancer and the promise of
durable responses for some patients, we observed high
enrollment of patients with metastatic breast cancer in phase I
clinical trials evaluating IO agents at our site.

The purpose of this study was to evaluate clinical outcomes
for patients with metastatic breast cancer who were treated in
phase I clinical trials containing at least one IO agent at the
University of Colorado Cancer Center. We included patients
with all breast cancer subtypes who were treated with many
different types of IO agents ranging from PD-1/PD-L1-inhibitors
to cancer vaccines. While each phase I trial enrolled a small
number of patients with metastatic breast cancer, we sought to
combine these patients into one dataset to explore outcomes for
IO agents in a phase I breast cancer population.
MATERIALS AND METHODS

We performed a retrospective analysis using a database of
patients from the electronic medical record system (EMRS)
with MBC who received treatment with IO agents in phase I/
Ib clinical trials at the University of Colorado Hospital from
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January 1, 2012 – July 1, 2018. All data was stored in a secure
online database and the study was performed in accordance with
local IRB guidelines. Phase I trials included all protocols that
studied single agent or multi-agent investigational drugs that had
phase I or phase Ib in the title. For patients in phase Ib/II trials,
only patients enrolled in the phase Ib portion of the study were
included for analysis. Patients were included in the study if they
received an agent considered to directly target or modulate
immune cells or immune cell signaling (an IO agent).

Patient characteristics including age, sex, presence of metastatic
disease at diagnosis, number of sites of metastases, lines of prior
systemic therapy, HR and HER2 receptor status, Eastern
Cooperative Oncology Group Performance Status (ECOG PS),
radiation within 30 days of IO and mean lab values were
collected via chart review using the EMRS. HR and HER2
receptor status was based on local pathology report also found in
the EMRS. Other data collected included: time of treatment
discontinuation, disease progression and death. We did not collect
PD-L1 status as this was not uniformly performed for all patients
with MBC during the time period of this study at our institution.

Investigational treatments were administered at the University of
ColoradoHospital as part of a clinical trial that received institutional
review board (IRB) approval. All patients provided written
informed consent prior to enrollment in these phase I clinical trials.

Endpoints and Statistical Methodology
Cohort characteristics were summarized using counts with
percentages for categorical variables and with the mean with
quartiles for continuous variables. The association between cohort
characteristics and progression-free survival (PFS) was evaluated
with the Wilcoxon rank-sum test for continuous variables and the
Fisher Exact test for categorical variables due to low cell counts. The
Wilcoxon rank-sum test was chosen to account for the non-normal
distribution of the continuous variables.

PFS was defined as the time from study enrollment to the date of
discontinuation for progressive disease, initiation of a new anti-
cancer therapy, or death. Overall survival (OS) was defined as the
time from study enrollment to the date of death. Patients lost to
follow-up were censored at the last follow-up date. For patients who
remained on study, the date of analysis (May 1st, 2019) was used to
censor the patient outcomes. The median number of months for OS
and PFS were calculated using the Kaplan-Meier method with p-
values determined by log-rank test. p-values were reported based on
a null hypothesis of no difference against a two-sided alternative.
Analyses were performed using SAS 9.4 (SAS Institute; Cary, NC).
RESULTS

Baseline Patient Characteristics
A total of 43 patients with MBC were treated with a wide range of
IO agents in phase I/Ib clinical trials at the University of
Colorado Hospital during the period of our study. The average
age was 53 years (range 33-71) and all patients were female
(Table 1). ECOG PS was 0 in 53.5% of patients and 1 in 46.5% of
patients. Most patients had 3 or more sites of metastasis (51.6%).
On average, patients received two prior lines of chemotherapy
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(range 0-7) in the metastatic setting. Most patients had HR-
positive/HER2-negative breast cancer (55.8%), followed by
TNBC (39.5%) and HER2-positive disease (4.7%). In the phase
I/Ib clinical trials, 72.1% of patients received single or
combination immunotherapy and 27.9% received an IO agent
plus chemotherapy.

Patients with HR-positive/HER2-negative breast cancer all
received hormonal therapy prior to enrollment in the phase I/Ib
clinical trials (Supplemental Table 1a). The most common prior
therapy administered in the HR-positive/HER2-negative group,
included capecitabine (45.8%) and everolimus (45.8%). Around
one-fifth (20.8%) of patients with HR-positive/HER2-negative
cancers received a cyclin-dependent kinase (CDK) 4/6 inhibitor
prior to enrollment in phase I/Ib clinical trials. A little less than
half (44.4%) of HR-positive/HER2-negative patients received a
CDK 4/6 inhibitor and one patient (5.6%) received alpelisib
following progression on phase I/Ib clinical trials (Supplemental
Table 1b). In TNBC, the most common prior therapy
administered in any setting was carboplatin with gemcitabine
(64.7%) and doxorubicin, cyclophosphamide, paclitaxel/
docetaxel (47.1%) (Supplemental Table 1c). Around one-
quarter (23.5%) of patients with TNBC received sacituzumab
govitecan prior to enrollment in phase I/Ib trials. The most
common therapy received post-progression in TNBC was
eribulin (28.6%) (Supplemental Table 1d). One patient (7.1%)
with TNBC received sacituzumab govitecan following
progression. Prior therapies received in HER2-positive cancers
are listed in Supplemental Table 1e.

Phase I Clinical Trials Including IO Agents
In the phase I studies included in this analysis, patients were
treated with PD-L1/PD-1 inhibitors without chemotherapy
(N=12, 27.9%), IO agents other than PD-L1/PD-1 inhibitors
without chemotherapy (N=19, 44.2%) or any IO agent plus
chemotherapy (N= 12, 27.9%) (Figure 1). Patients treated with
PD-L1/PD-1 inhibitors without chemotherapy also received
other agents targeting vascular endothelial growth factor
(VEGF), indoleamine 2,3-dioxygenase 1 (IDO), OX40, CD38,
and T-cell immunoreceptor with Ig and ITIM domains (TIGIT).
Trials containing IO agents other than PD-L1/PD-1 inhibitors
without chemotherapy included agents targeting IL-10 inhibitor,
toll-like receptor 9 (TLR9) agonist and cancer vaccines. Trials
with an IO agent in combination with chemotherapy included
agents targeting PD-L1, cancer vaccines, nab-paclitaxel,
cyclophosphamide and FOLFOX chemotherapy.

Clinical Outcomes
The median PFS and OS for all patients with MBC enrolled in
phase I clinical trials including any IO agent was 2.3 months
(95% CI, 2.07-2.60) and 12.1 months (95% CI, 8.35-14.27),
respectively (Figure 2). Patients who received an IO agent plus
chemotherapy had an improved PFS (5.9 months [95% CI, 2.60-
10.45] vs. 2.1 months [95% CI, 1.55-2.30], p<0.001) and OS (18.4
months [95% CI, 11.54-28.60] vs. 9.5 months [95% CI, 5.39-
13.84] p=0.015) compared to those who received an IO agent
without chemotherapy (Table 2, Figure 3). In subgroup analysis
for patients with HR-positive/HER2-negative breast cancer,
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median PFS was prolonged in patients treated with IO plus
chemotherapy compared to IO alone (5.6 months [95% CI, 2.6-
8.1] vs. 2.2 months [95% CI, 2.0-2.4], p = 0.0096) (Figure 3).
There was also a trend towards improved OS in these patients
(17.2 months [95% CI, 11.5-31.0] vs. 11.0 months [95% CI, 5.4-
14.8], p= 0.276). Similar findings were observed in patients with
TNBC with improved median PFS (10.5 months [95% CI, 2.5-
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NE (Not Estimable)] vs. 1.8 months [95% CI, 0.6-2.5], p=0.008)
and OS (24.2 months [95% CI, 6.6-NE] vs. 6.0 months [95% CI,
0.7-14.4], p=0.0193) in patients treated with IO plus
chemotherapy versus IO alone (Figure 3).

We identified 9 patients (20.9%) with PFS ≥ 6 months which
we considered to be consistent with clinical benefit (Table 1). Of
these, 5 had HR-positive/HER2-negative breast cancer and 4
TABLE 1 | Baseline Patient Characteristics.

Total Patients PFS <6 months PFS ≥ 6 months p-value

Total Number Patients (N) 43 34 9 –

Age (years)
Mean 52.58 52.71 52.11 0.9167±

Range (33-71) (33-71) (39-62)
Sex
Male 0 (0%) 0 (0%) 0 (0%) –

Female 43 (100%) 34 (100%) 9 (100%)
Metastatic disease at diagnosis 3 (7.14%) 3 (9.09%) 0 (0%) 1.0000*
Number of Metastatic Locations
1 9 (20.93%) 6 (17.65%) 3 (33.33%) 0.4284*
2 12 (27.91%) 9 (26.47%) 3 (33.33%)
3+ 22 (51.16%) 19 (55.88%) 3 (33.33%)

Lines of chemotherapy in metastatic setting
Mean 2.14 2.09 2.33 0.8179±

Range (0-7) (0-5) (0-7)
Receptor status 1.0000*
HR+/HER2- 24 (55.81%) 19 (55.88%) 5 (55.56%)
HER2+ 2 (4.65%) 2 (5.88%) 0 (0%)
TNBC 17 (39.53%) 13 (38.24%) 4 (44.44%)

Treatment
PD-L1/PD-1 12 (27.91%) 11 (32.35%) 1 (11.11%) 0.0015*
IO + Chemotherapy 12 (27.91%) 5 (14.71%) 7 (77.78%)
Other IO, No Chemo 19 (44.19%) 18 (52.94%) 1 (11.11%)

ECOG PS
0 23 (53.49%) 18 (52.94%) 5 (55.56%) –

1 20 (46.51%) 16 (47.06%) 4 (44.44%)
Radiation within 30 days of IO 3 (6.98%) 1 (2.94%) 2 (22.22%) 0.1060*
Lymphocyte count (k/uL)
Mean (SD) 1.23 (0.68) 1.13 (0.47) 1.59 (1.14) 0.2948±

Alkaline Phosphatase (U/L)
Mean (SD) 99.72 (56.82) 105.5 (62.42) 77.89 (14.18) 0.1389±

LDH (U/L)
Mean (SD) 449.71 (787.83) 500.22 (863.14) 217.4 (99.02) 0.6313±
M
arch 2021 | Volume 11 | Article
*Fisher Exact Test.
±Wilcoxon rank-sun Test.
ECOG PS, Eastern Cooperative Oncology Group Performance Status; SD, Standard Deviation.
A B

FIGURE 1 | Pie-charts showing (A) Treatment distribution in all patients (N=43) (B) Treatment distribution in patients with PFS ≥ 6 months (N=9).
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patients had TNBC. Patients with PFS ≥ 6 months, were treated
with IO plus chemotherapy (N=7, 77.8%) and IO alone (N=2,
22.2%) (Table 1, Figure 1). Patients with PFS ≥ 6 months were
more likely to receive an IO agent plus chemotherapy compared
to those with PFS < 6 months (77.8% vs. 14.7%). No significant
differences in prior lines of therapy, lymphocyte count, alkaline
phosphatase, or lactate dehydrogenase (LDH) were identified
between patients with PFS < 6 months and ≥ 6 months.

Five patients (11.6%) had PFS ≥ 9 months (range 9 months to
>36 months) which we considered to be consistent with durable
response. All but one of these patients were treated with IO plus
chemotherapy and four of the five patients had TNBC. The best
response observed in our study was in a 59-year-old woman with
TNBC metastatic to her chest wall, lymph nodes and lungs who
was treated with anti-PD-L1 and chemotherapy in the second-
line setting. Chemotherapy was discontinued after 4 cycles due to
neuropathy and she continued on single agent anti-PD-L1 for
another 11 cycles before developing immune-mediated
pneumonitis requiring discontinuation of immunotherapy. She
had a complete clinical response to therapy and remains with no
evidence of disease 3.5 years later.
DISCUSSION

Our study looked at clinical outcomes in patients with
previously-treated metastatic breast cancer treated in phase I
clinical trials that included an IO agent. We included patients
with all breast cancer subtypes treated with many different IO
Frontiers in Oncology | www.frontiersin.org 5140
agents targeting PD-1/PD-L1, but also other immune
checkpoints and cancer vaccines. Patients were previously
treated with an average of 2 prior lines of chemotherapy in the
metastatic setting, approximately 20% of patients with HR-
positive/HER2-negative disease previously received CDK 4/6
inhibitors and 23.5% of patients with TNBC received prior
sacituzumab govitecan. Our study demonstrates that regardless
of breast cancer subtype or specific IO target, patients with
metastatic breast cancer (TNBC or endocrine-resistant HR-
positive/HER2-negative) treated with combinations of IO plus
chemotherapy had prolonged PFS and OS compared to patients
treated with IO agents alone. Our study found limited efficacy for
IO agents administered without chemotherapy, including novel
immune checkpoint inhibitor combinations, in patients with
previously-treated metastatic breast cancer.

In our study, the median PFS for all patients with previously-
treated metastatic breast cancer who received an IO agent in a phase
I clinical trial was a modest 2.3 months. This is consistent with other
reports of outcomes for similar patients treated in phase I trials (23).
However, a unique finding of our study looking specifically at
patients receiving IO agents was the observation of durable
responses (PFS ≥ 9 months) in 11.6% of patients including one
patient who experienced a durable remission lasting many years
after stopping therapy for toxicity. Additionally, 20.9% of patients
had PFS ≥ 6 months consistent with clinical benefit. Durable
responses to immunotherapy observed in our study are consistent
with what has been observed in other larger trials of IO agents in
breast cancer and other solid tumors where durable remissions can
occur even in patients with widespread metastatic disease (24–26).
TABLE 2 | Progression-Free Survival (PFS) and Overall Survival (OS) for Patients Who Received IO Plus Chemotherapy Compared to Patients Who Received IO Only.

IO + Chemotherapy IO Only p-value2

Median PFS (months)1 5.88
(95% CI, 2.60-10.45)

2.07
(95% CI, 1.55-2.30)

<0.001

Median OS
(months)

18.38
(95% CI, 11.54-28.60)

9.47
(95% CI, 5.39-13.84)

0.015
March 2021 | Volume 11 | Articl
CI, confidence interval
1One observation dropped due to unknown reason going off-study in calculation of PFS.
2p-values generated using log-rank test.
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FIGURE 2 | (A) Progression-Free Survival and (B) Overall Survival for Patients with Metastatic Breast Cancer in Phase I/Ib Clinical Trials Treated with IO Agents.
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The majority of patients in our study who experienced
durable long-term responses (PFS > 9 months) were patients
with metastatic TNBC treated with IO plus chemotherapy
consistent with the now proven benefit of FDA-approved
regimens in PD-L1-positive metastatic TNBC. Notably, the
Frontiers in Oncology | www.frontiersin.org 6141
efficacy of the combination of atezolizumab and nab-paclitaxel
in patients with PD-L1-positive TNBC was confirmed in the
phase III first-line Impassion130 trial resulting in FDA-approval
following the observation of preliminary efficacy in a Phase Ib
trial including previously-treated patients (5, 26). Despite our
A B
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FIGURE 3 | Kaplan-Meier Curves for Patients Who Received IO and Chemotherapy Compared to Patients Who Received IO Without Chemotherapy (A)
Progression-Free Survival for all patients (B) Overall Survival for all patients (C) Progression-Free Survival for HR-positive, HER-2 negative breast cancer (D) Overall
Survival for HR-positive, HER-2 negative breast cancer (E) Progression-Free Survival for TNBC (F) Overall Survival for TNBC.
March 2021 | Volume 11 | Article 640690
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patients being somewhat heavily pretreated, a subset of patients
with TNBC still derived long-term benefit from IO +
chemotherapy when treated in a phase I clinical trial setting.

There were patients in our study with metastatic HR-positive/
HER2-negative breast cancer, resistant to endocrine therapy, that
derived benefit from IO plus chemotherapy including one
patient with a durable response (PFS > 9 months) and 5
patients with PFS > 6 months. The efficacy of single agent PD-
1/PD-L1-inhibitors in HR-positive HER2-negative breast cancer
is modest with response rates lower than in TNBC (16, 17, 19, 20,
27, 28). Our results support the many ongoing clinical trials of IO
agents in combination with chemotherapy in patients with
endocrine-resistant HR-positive/HER2-negative breast
cancer (22).

Clinical benefit in our study was greater in patients treated with
IO plus chemotherapy and this finding was observed in patients
with both endocrine-resistant HR-positive/HER2- breast cancer and
TNBC which is also consistent with other studies in breast cancer
demonstrating modest response rates with IO agents alone (16, 17,
19, 20, 26, 29, 30). Patients in our study with HR-positive/HER2-
negative breast cancers, had a median PFS of 5.6 vs. 2.2 months
(p=0.0096) in those treated with IO plus chemotherapy compared
to IO monotherapy. OS was also improved however this result was
not statistically significant.

There are few studies which have examined IO agents in
combination with chemotherapy in a metastatic HR-positive/
HER2-negative population. Interestingly, a recently released study
examining survival of HR-positive/HER2-negative MBC patients
treated with eribulin with or without pembrolizumab did not find
improvement in OS or PFS in the IO plus chemotherapy group,
which differs from our findings (31). In the I-SPY2 trial, the
combination of pembrolizumab with chemotherapy led to a more
than doubling of the pCR rate in patients with early stage HR-
positive/HER2-negative cancers who had a MammaPrint that was
not in the low risk range (21). The limited efficacy of IO
monotherapy in HR-positive/HER2-negative breast cancer has
been hypothesized to be potentially related to lower PD-L1
expression, tumor-infiltrating lymphocytes (TILs) and tumor
mutation burden (TMB) in this disease subset (9, 31–33). Current
data suggest that the addition of chemotherapy to IO agents may
have multiple favorable effects including stimulation of the immune
system by release of tumor neoantigens and recruitment of antigen-
presenting cells (22, 34). Moreover, IO plus chemotherapy
combination may delay the development of resistance to
treatment (35).

Our study relays the importance of phase I clinical trials, often
thought as a last resort for patients with advanced malignancy.
Enrollment in phase I clinical trials remains a viable option for
select patients with previously-treated metastatic breast cancer
(23). Of the patients examined, 11.6% had durable response and
one patient with metastatic TNBC remains disease free after
3.5 years. It is estimated that only 3-5% of United States adult
cancer patients are enrolled in clinical trials (36). However, when
comparing breast cancer (BC) patients to the general population,
BC patients appear to obtain clinical benefit from phase I
therapies with similar toxicity (36). As a result of phase I trials,
Frontiers in Oncology | www.frontiersin.org 7142
atezolizumab with nab-paclitaxel is FDA approved for metastatic
TNBC as is tucatinib in the treatment of HER2-positive MBC (5,
26, 37, 38). Phase I trials are important for discovering promising
therapies and should continue to be utilized.

While our study showed benefit of IO plus chemotherapy in a
metastatic TNBC and HR-positive population, there were several
limitations. Limitations to our study included the retrospective
nature of the analysis and our inability to include PD-L1-
expression as a variable. We included patients treated with a
diverse range of IO agents making our population heterogeneous
and patients were all treated at a single academic center. There were
overall very modest patient numbers and very few patients with
HER2-positive breast cancer were treated in these studies. Another
limitation to our study was that only a fifth of patients received prior
therapy with CDK 4/6 inhibitors. As CDK 4/6 inhibitors are
standard first line therapies, our study may not be able to be
extrapolated to patients who did receive this therapy prior to IO.

The success of the combination of IO plus chemotherapy in
TNBC highlights the potential for activity of new therapies in
early phase clinical trials in carefully selected patients. Our study
demonstrates that the benefit derived from novel IO agents is not
limited to a TNBC population. Despite these benefits, larger,
multi-center trials are needed in order to better understand the
use of IO agents in all breast cancer subtypes.
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Background: Preclinical data support a key role for the human epidermal growth

factor receptor 3 (HER3) pathway in hormone receptor (HR)–positive breast cancer.

Recently, new HER3 directed antibody drug conjugates have shown activity in

breast cancer. Given the need to better understand the molecular biology, tumor

microenvironment, and mechanisms of drug resistance in breast cancer, we designed

this window-of-opportunity study with the HER3 directed antibody drug conjugate

patritumab deruxtecan (HER3-DXd; U3-1402).

Trial Design: Based on these data, a prospective, multicenter, single-arm,

window-of-opportunity study was designed to evaluate the biological

effect of patritumab deruxtecan in the treatment of naïve patients with

HR-positive/HER2-negative early breast cancer whose primary tumors are

≥1 cm by ultrasound evaluation. Patients will be enrolled in four cohorts
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according to the mRNA-based ERBB3 expression by central assessment. The primary

endpoint is a CelTIL score after one single dose. A translational research plan is also

included to provide biological information and to evaluate secondary and exploratory

objectives of the study.

Trial Registration Number: EudraCT 2019-004964-23; NCT number: NCT04610528.

Keywords: Breast Cancer, ERBB3, HER3, U3-1402, patritumab deruxtecan, HER3-DXd, CelTIL Score

INTRODUCTION

HER3, encoded by the ERBB3 gene, is broadly expressed in
various types of human cancer. HER3 has been associated with
poor patient outcomes (1) and therapeutic agent resistance,
including resistance to anti-EGFR, anti-HER2 inhibitors (2),
and endocrine therapy (3, 4). HER3 belongs to the type I
transmembrane tyrosine kinase family of receptors and activates
intracellular signaling pathways, mainly the PI3K/AKT and
MAPK/ERK pathways, upon dimerization with other HER
family members (2, 5). These observations have resulted in the
development of investigational HER3 directed agents in HER3-
expressing breast cancer and other solid tumors.

Patritumab deruxtecan (HER3-DXd; U3-1402), a potential
first-in-class HER3 directed antibody drug conjugate (ADC),
is currently under development to act on these previously
mentioned targets (6). In addition to its antitumor efficacy by
binding HER3 ligand and the release of the cytotoxic payload
in the tumor cells (7), patritumab deruxtecan enhanced the
infiltration of innate and adaptive immune cells in preclinical
models (8). These preclinical data have shown that patritumab
deruxtecan can elicit potent antitumor immunity even in the
setting of tumors insensitive to PD-1 and PD-L1 immune
checkpoint inhibitors and that its efficacy is more pronounced
in the presence of PD-1 inhibition, suggesting that patritumab
deruxtecan sensitizes insensitive tumors to PD-1 blockade and
has synergistic effects (8).

In the clinical setting, an early report of a clinical
trial suggested that patritumab deruxtecan could be safely
administered and it demonstrated promising antitumor efficacy
(the overall response and the disease control rate were 42.9
and 90.5%, respectively) in heavily pretreated HER3-expressing
metastatic breast cancer (9); these results are in accordance with
more recent preliminary data from heavily pretreated EGFR-
mutated non-small cell lung carcinoma patients, in whom the
overall response rate was 25%, and the disease control rate was
70% (10).

Although no validated HER3 assay has been established
to date, recent studies support the role of HER3
immunohistochemistry (IHC) as a potential biomarker (11–13).
However, there are important limitations with IHC-based
assays, such as different sensitivities of the antibodies used,
their low dynamic range, their subjectivity in scoring, and their
difficulty in establishing suitable cut-offs. Therefore, clinical
implementation of a robust genomic assay would represent an
important advancement. To overcome these limitations, we plan
to test the prospective use of an mRNA-based ERBB3 expression

assay using the nCounter platform (Nanostring Technologies,
Seattle, USA) developed by our group (14).

The role of the host immune system in breast cancer is
becoming an important topic to study for several reasons. First,
the immune response has a fundamental role in the efficacy
of drug therapy. In all breast cancer subtypes, baseline high
TIL grade is associated with a significantly higher pCR rate
after neoadjuvant chemotherapy (15). Second, the recent success
of therapeutic agents capable of activating immune responses
to cancer, such as anti-PD1/PDL1 or anti-CTLA4 inhibitors,
allows innovative treatment strategies (16). Third, high tumor-
infiltrating lymphocytes (TILs) counts and immune-related gene
expression signatures in the primary tumor are consistently
associated with better survival in triple-negative breast cancer
and HER2-positive breast cancer (15, 17–19). On the other hand,
the prognostic value of assessing TILs in HR-positive/HER2-
negative breast cancer remains unclear according to a few studies
(15, 20).

The TOT-HER3 (a window-of-opportunity study of
patritumab deruxtecan, a HER3 directed ADC in operable
breast cancer according to ERBB3 expression) trial is designed
to assess whether a single dose of patritumab deruxtecan
can increase immune infiltration and the lysis of tumor cells
during short-term preoperative treatment in hormone receptor
(HR)-positive/HER2-negative primary breast cancer. Short-term
preoperative studies are a validated strategy for evaluating
the impact of targeted therapies using the decrease in tumor
cellularity and the increase in immune infiltration as a surrogate
endpoint of treatment benefit (21, 22). The primary endpoint of
TOT-HER3 is changes in the CelTIL score, a novel combined
biomarker based on stromal TILs and tumor cellularity. Access
to tumor tissue before and after the investigational treatment
enables comprehensive analysis of biomarker changes, thus
providing critical insights into the optimal patient population,
biomarker predictive value, and potential mechanisms of
primary resistance (23, 24).

METHODS

Study Design and Treatment
This is a prospective, multicenter, single-arm, window-of-
opportunity study evaluating the biological effect of patritumab
deruxtecan in treatment naïve patients with early breast cancer,
whose primary tumors are ≥1 cm by ultrasound evaluation
(Figure 1). The study will include up to 80 patients with HR-
positive/HER2-negative tumors.
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FIGURE 1 | TOT-HER3 trial design.

TABLE 1 | Main/key eligibility criteria.

Inclusion Criteria Exclusion criteria

1. Written informed consent form.

2. Premenopausal or post-menopausal women and men, age ≥ 18 years.

3. ECOG Performance Status 0–1.

4. Histologically confirmed non-metastatic primary invasive adenocarcinoma of

the breast untreated and recently diagnosed, with all the following

characteristics:

- At least one lesion that can be measured in at least 1 dimension with ≥ 1 cm in

the largest diameter measured by ultrasound.

- Absence of distant metastasis (M0) as determined by institutional practice.

- in the case of a multifocal or multicentric tumor, the largest lesion must be

≥1 cm and designated the “target” lesion for all subsequent tumor evaluations

and biopsies.

5. Patient must have biopsiable disease.

6. Estrogen (ER)-positive and/or Progesterone (PgR)-positive and

HER2-negative tumor by the most recent American Society of Clinical

Oncology—College of American Pathologists (ASCO-CAP) guidelines: ER

and PgR defined as IHC nuclear staining >1% and HER2 negative locally

assessed.

7. Ki67% ≥ 10% locally assessed.

8. Available pretreatment FFPE core needle biopsy evaluable for PAM50 and

ERBB3 mRNA expression.

9. Baseline LVEF ≥ 50%

10. Adequate organ functions

11. Absence of any psychological, familial, sociological, or geographical

condition potentially hampering compliance with the study protocol and

follow-up schedule; those conditions should be discussed with the patient

before registration in the trial.

1. Inoperable locally advanced or inflammatory (i.e., inoperable stage III) breast

cancer.

2. Bilateral invasive breast cancer.

3. Patients in whom a primary tumor excisional biopsy was performed.

4. Any prior treatment for primary actual invasive breast cancer.

5. Prior treatment with a HER3 antibody, topoisomerase I inhibitor, with an ADC

that consists of an exatecan derivative that is a topoisomerase I inhibitor (e.g.,

DS-8201) and with a govitecan derivative (e.g., IMMU-132).

6. Medical history of symptomatic congestive heart failure or serious cardiac

arrhythmia requiring treatment; myocardial infarction within 6 months prior to

enrolment or unstable angina.

7. QT interval corrected using Fridericia’s formula to >450ms in males and >

470ms in females.

8. Any factor that increases the risk of corrected QT interval prolongation or risk

of arrhythmic events, such as congenital long QT syndrome, family history of

long QT syndrome, or unexplained sudden death under 40 years of age in

first-degree relatives.

9. Medical history of clinically significant lung diseases or who are suspected to

have these diseases by imaging at the screening period.

10. Clinically significant corneal disease.

11. Known hypersensitivity to either the drug substance components or inactive

ingredients in the drug product or history of severe hypersensitivity reactions

to other monoclonal antibodies.

12. Clinically severe pulmonary compromise resulting from intercurrent

pulmonary illnesses including, but not limited to, any underlying pulmonary

disorder and any autoimmune, connective tissue, or inflammatory disorders

with potential pulmonary involvement or prior pneumonectomy.

Adult female patients (≥18 years old) with pre/post-
menopausal status will be eligible if they have not been
previously treated and have histologically confirmed stage I–
IIIA invasive breast cancer, with primary tumors equal to or
larger than 1 cm in diameter (as measured by ultrasound), clinical
nodal status of 0–2, HR-positive and HER2-negative according
to ASCO/CAP guidelines, and Ki67% ≥ 10% determined
locally. Patients should also have an Eastern Cooperative
Oncology Group (ECOG) performance status of 0–1 and
adequate hematological counts, hepatic and renal function,
and left ventricular ejection fraction ≥ 50%. Patients will
be excluded if they have received prior anticancer therapy.

Detailed inclusion and exclusion criteria can be found in
Table 1.

All patients will undergo pretreatment tumor tissue
acquisition. Central determination of ERBB3 mRNA expression
will be performed in FFPE core biopsies, and patients will be
enrolled in four cohorts, according to the expression of ERBB3
based in quartiles and defined by the pre-specified cutoffs, to
ensure a broad representation of HR-positive/HER2-negative
tumors with different ERBB3 expression. The number of slots
available per cohort will be limited to 20 patients each.

After confirmation of all the eligibility criteria, patients will
be enrolled, and a single dose of patritumab deruxtecan will be
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administered by intravenous infusion at a dose of 6.4 mg/kg.
A second optional biopsy will be performed in the same lesion
3–7 days after patritumab deruxtecan’s administration. A third
biopsy post-treatment of the same lesion will be mandatory 21
(±3) days after the administration of patritumab deruxtecan,
independently of the subsequent treatment. Thereafter, patients
will be considered either for definitive surgery or primarymedical
treatment (e.g., neoadjuvant chemotherapy) at the discretion of
the treating physician.

Primary Endpoint—The CelTIL Score
To answer the primary objective of the trial, we will evaluate
CelTIL score differences between baseline and post-treatment
samples in all patients regardless of their ERBB3 mRNA
expression. The CelTIL score is based on the percentage (%) of
tumor cellularity and the % of stromal TILs. Histopathologic
analysis of the proportion of TILs will be done in whole sections
of tumor tissue stained with hematoxylin and eosin (H&E). TILs
will be quantified according to the 2014 guidelines developed by
the International TILs Working Group (25). Percentages of TILs
and tumor cellularity at baseline and D21 will be scored in slides
of core biopsies from patients enrolled in the trial blinded from
clinic–pathologic and outcome data.

The CelTIL score was developed based on day 15 tumor
samples from the PAMELA trial (22). The neoadjuvant

PAMELA trial treated 151 HER2+ breast cancer patients
with trastuzumab-lapatinib (and endocrine therapy if HR-
positive) (26). Tumor cellularity and the TILs score measured
at day 15 following anti-HER2 therapy was associated with
pathologic complete response (pCR). A combined score, CelTIL,
considering both variables was derived: CelTIL score = −0.8 ×

tumor cellularity (in %) + 1.3 × TILs (in %). The CelTIL score
was validated in the PAMELA (26) and LPT109096 (27) phase
II neoadjuvant trials as an early readout of the probability of a
pCR. High CelTIL scores identify tumors that have high immune
infiltration and reduced tumor cellularity (22).

In a third study, the CelTIL score was performed in tumor
samples of 196 patients with early-stage HER2-positive disease
treated with standard trastuzumab-based chemotherapy from
the NeoALTTO phase III trial (28). This study randomized
455 women with HER2-positive early breast cancer to lapatinib
(Arm A), trastuzumab (Arm B), or trastuzumab and lapatinib
(Arm C) for 6 weeks, followed by an assigned anti-HER2
treatment combined with paclitaxel weekly. The CelTIL score
was independently associated with event free survival, overall
survival, and pCR (29). Early and absolute changes in the CelTIL
score following neoadjuvant therapy were associated with tumor
shrinkage at surgery in other three neoadjuvant trials (30).
Taken together, these results demonstrated that high TILs and
low tumor cellularity following one cycle of treatment provided

TABLE 2 | Primary and secondary objectives and endpoints.

Primary objective Primary endpoint

To evaluate if one dose of U3-1402 increases the value of the CelTIL score

between baseline and post-treatment samples in all included patients with early

breast cancer.

Mean change in the CelTIL score per central assessment in paired samples after one

dose of U3-1402 at C1D21 (±3).

CelTIL score = −0.8 × tumor cellularity (in %) + 1.3 × TILs (in %). The minimum and

maximum unscaled CelTIL scores will be −80 and 130. This unscaled CelTIL score

will then be scaled to reflect a range from 0 to 100 points.

Secondary objectives Secondary endpoints

To identify a significant increase in the CelTIL score after one dose of U3-1402

between baseline and post-treatment samples within each of the four ERBB3

cohorts.

Mean change in the CelTIL score at C1D21 of treatment in paired samples in ultralow,

low, medium, and high ERBB3 cohorts.

To determine the association of the levels of baseline ERBB3 expression with

changes in the CelTIL score after one dose of U3-1402 in all patients and within

each ERBB3 cohort.

Correlation between ERBB3 mRNA baseline levels and changes in the CelTIL score

at C1D21 in paired samples in all patients and in ultralow, low, medium, and high

ERBB3 cohorts.

To determine the association of HER3 IHC expression with changes in the

CelTIL score after a single dose of U3-1402 in all patients and within each

ERBB3 cohort.

Correlation between HER3 IHC levels per central assessment and changes in the

CelTIL score at C1D21 in paired samples in all patients and in ultralow, low, medium,

and high ERBB3 cohorts.

To evaluate the changes in CelTIL across the four PAM50 intrinsic subtypes. CelTIL score at the C1D21 score according to intrinsic subtype: Luminal A, Luminal

B, HER2-enriched, and Basal-like subtypes.

To evaluate the antiproliferative activity of one dose of U3-1402 between

baseline and post-treatment samples.

Complete Cell Cycle Arrest (CCCA) determined per central assessment by IHC Ki67<

2.7% at C1D21.

Differences in differential expression [mean suppression = 100–[geometric mean

(post-treatment/pre-treatment 100)]] of proliferative genes (BIRC5, CCNB1, CDC20,

CDCA1, CEP55, KNTC2, MKI67, PTTG1, RRM2, TYMS, and UBE2C).

To evaluate the association of ERBB3 mRNA expression with HER3 IHC

expression.

Correlation coefficients between both biomarkers.

To evaluate the changes of HER3 expression. HER3 IHC at baseline, at D3-D7 (optional), C1D21.

To describe the safety and tolerability of U3-1402. Type, incidence, severity (as graded by the NCI CTCAE v. 5.0), seriousness, and

attribution to the study medications of AEs and any laboratory abnormalities.
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independent and additional predictive information in patients
with primary breast cancer following neoadjuvant treatment, also
suggesting that CelTIL could be a surrogate for treatment efficacy
in the neoadjuvant setting.

Secondary endpoints, summarized in Table 2, include
mean change in the CelTIL score in ultralow, low, medium,

and high ERBB3 cohorts, correlation between ERBB3 mRNA
and HER3 IHC baseline levels and changes in the CelTIL
score, the CelTIL score according to PAM50 intrinsic
subtype, antiproliferative activity, and safety. Exploratory
and translational research endpoints include the assessment of
predictive and prognostic biomarkers.

FIGURE 2 | Measurement of ERBB3 expression in breast cancer using the nCounter platform. (A) Box plots of ERBB3 gene expression in breast tumors as classified

by hormone receptor and HER2 expression and intrinsic subtype. (B) Unsupervised hierarchical clustering using the 50 PAM50 genes and ERBB3 (rows) and 1,580

tumor samples (columns). Each colored square on the heatmap represents the relative median signature score for each sample with the highest expression being red,

the lowest expression being green, and the average expression being black. (C) Pearson correlation between ERBB3, single genes, and PAM50 gene expression

signatures evaluated in breast cancer samples.
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FIGURE 3 | Comparing ERBB3 expression across datasets (A) Evaluation of ERBB3 cutoff in breast cancer samples from patients with early breast cancer included

in IN-HOUSE, METABRIC, and TCGA. (B) Proportion of samples in each immunohistochemistry subtype based on the ERBB3 cohort. Each bar is colored according

to the ERBB3 distribution in each cohort. (C) Correlation coefficients of proportions of tumor samples within each quartile based on the IHC subtype between the

three datasets. (D) Scatter plots of ERBB3 vs. ESR1 expression for samples from METABRIC, IN-HOUSE, and TCGA cohorts, colored by subtype. The three

horizontal lines indicate the cutoffs of each cohort. Discontinued line in each figure represents the regression line. Pearson correlation coefficient (r) with significance

(p-value) is presented in each figure.
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Measuring ERBB3 mRNA
Each patient will be assigned to one of the four cohorts
according to their ERBB3 mRNA expression in the baseline
sample determined by the nCounter Platform. The cutoffs to be
used in this trial were determined as follows.

To date, we have analyzed ERBB3 mRNA using the nCounter
platform in 1,600 tumor samples using formalin-fixed paraffin-
embedded tumor samples with IHC data. Among these samples
with IHC data, 65% were HR-positive and 18% were HER2-
positive. The IHC subtype distribution is as follows: (1) 51.9%
HR-positive/HER2-negative, (2) 29.9% triple-negative breast
cancer (TNBC), (3) 13.5% HR-positive/HER2-positive, and (4)
4.7% HR-negative/HER2-positive.

In this nCounter dataset, the range of ERBB3 mRNA
expression has an 18.6-fold difference in gene expression (i.e.,
from the lowest to the highest ERBB3 value), and the interquartile
range is 1.5 (in log base 2), which is equal to a difference in
expression of 2.9-fold.

Large expression variability across and within each IHC-
based and PAM50 subtype was observed. ERBB3 expression
was statistically significantly higher in HR-positive tumors
(P < 0.001; Figure 2A). ERBB3 expression varied statistically
significantly according to the intrinsic subtype (P < 0.001;
Figure 2A), with the Luminal A subtypes showing the highest
median expression, followed by the Luminal B, HER2-enriched,
and Basal-like.

Using quartiles, the proportion of ERBB3-high tumors within
each IHC subtype ranged from 4% in TNBC to 36% in
HR+/HER2-negative when percentile 75th in the combined
matrix was used as the cutoff to define ERBB3-high (Figure 2A).

Next, we explored the association of ERBB3 expression
with PAM50 breast cancer-related genes in the combined
matrix (Figure 2B). As expected, ERBB3 high correlated
[correlation coefficients [r] > 0.50] with a group of five genes,
including ESR1 and FOXA1, which are significantly enriched
in luminal and hormone response biology. Concordant with
this single-gene analysis, moderate correlation (r = 0.53)
was found between ERBB3 and PAM50 Luminal A signature
and negative correlation (r = −0.25) between ERBB3 and
PAM50 Basal-like, proliferation, and risk of recurrence signatures
(Figure 2C).

Evaluating ERBB3 Expression in
Independent Datasets
In order to examine the consistency of the cutoff points, results
from the in-house nCounter dataset were compared to two
independent cohorts (i.e., METABRIC and TCGA datasets).
METABRIC includes 1,992 breast cancer samples analyzed by
the Illumina HT 12 IDATS platform, and TCGA includes 1,101
breast cancer samples analyzed by HiSeq Illumina sequencers
(Figure 3A).

Using quartiles, Figure 3B shows the proportion of tumors
within each quartile based on their IHC subtype between our
in-house dataset, METABRIC, and TCGA. Figure 3C shows
the correlation coefficients among the three datasets in the
different IHC-group tumors. In HR-positive/HER2-negative, the

correlation coefficients of the proportions between the three
datasets were remarkably similar. In the other subtypes, the
correlation coefficients among the datasets were between 0.49
and 0.99. A relationship between ERBB3 and ESR1 expression
was seen to be moderately correlated across the three datasets
(Figure 3D); the correlation coefficients among the datasets were
between 0.51 and 0.59.

Statistical Analysis
The study would require a sample size of 72 (number of pairs
samples) to achieve a power of 80% using a level of significance
of 5% (two sided), for detecting a mean difference between pairs
of 13 CelTIL score. It is assumed that the standard deviation of
the differences is 38.6, which is the standard deviation observed
in 403 patients with CelTIL data across the four SOLTI trials (30).
Assuming a 10% drop-out or lack of available tissue, 80 patients
will be recruited.

No formal statistical comparison will be carried out between
cohorts. Statistical analyses will be performed to estimate the
proportions or means (or medians) for all variables including
confidence interval calculations.

CONCLUSION

We propose the TOT-HER3 study, the first window of
opportunity trial to evaluate the biological effect of patritumab
deruxtecan in patients with HR-positive/HER2-negative early
breast cancer. High ERBB3 mRNA gene expression is observed
across all subtypes of breast cancer, although it predominates
in HR-positive/HER2-negative disease suggesting a role for
HER3 directed therapies in this disease. We will analyze
ERBB3 expression using a clinically applicable assay in FFPE
primary tumors.

This information can provide insight for improving the
design of future clinical trials in the HR-positive/HER2-
negative breast cancer through the selection of patients
who will mostly benefit from this drug. The use of a
quantitative method such as ERBB3 mRNA expression,
which offers the opportunity to identify different cutoffs,
might potentially improve treatment personalization. In
addition, the results of TOT-HER3 could help identify patients
most likely to benefit from HER3 directed ADCs across
cancer types.
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Metaplastic breast cancer is a rare and often chemo-refractory subtype of breast cancer
with poor prognosis and limited treatment options. Recent studies have reported
overexpression of programmed death ligand 1 (PD-L1) in metaplastic breast cancers,
and there are several reports of anti-PD-1/L1 being potentially active in this disease. In this
case series, we present 5 patients with metastatic metaplastic breast cancer treated with
anti-PD-1-based therapy at a single center, with 3 of 5 cases demonstrating a response to
therapy, and one of the responding cases being a metaplastic lobular carcinoma with low-
level hormone receptor expression. Cases were evaluated for PD-L1 expression, tumor
infiltrating lymphocytes (TILs), DNA mutations, RNA sequencing, and T-cell receptor
sequencing. Duration of the response in these cases was limited, in contrast to the more
durable responses noted in other recently published reports.

Keywords: metaplastic breast cancer, TNBC, immunotherapy, PD-L1, PI3K
INTRODUCTION

Metaplastic breast cancer (MBC) is a rare and aggressive subtype of breast cancer, comprising
approximately 1% of all breast cancers, and is defined histologically as tumors that have epithelial
differentiation into squamous and/or mesenchymal components, with multiple components often
co-existing in the same tumor (1, 2). The current WHO classification of breast tumors further
divides metaplastic carcinoma into additional subtypes: low grade adenosquamous, fibromatosis-
like metaplastic, squamous cell, spindle cell, metaplastic with mesenchymal differentiation
(including chondroid, osseous, or other types), mixed metaplastic, and myoepithelial carcinomas
(3). There is limited understanding of the prognostic implications of various subtypes, and therefore
are all clinically treated as a single entity (4). MBCs tend to present with a larger size, less frequent
axillary nodal involvement, and have a higher rate of developing distant metastasis compared to
other breast cancers (5, 6). They are frequently negative for estrogen receptor (ER), progesterone
receptor (PR), and Human epidermal growth factor 2 (HER2) overexpression, with 85-89% of cases
noted to be triple negative in recent analyses (6–9). However, compared to other triple negative
breast cancers (TNBC), MBCs tend to have worse outcomes across all clinical stages, with 3-year
overall survival for stage IV disease of 15% vs 22% for TNBC, and 64% for all other breast cancer
types in one recent analysis of the National Cancer Database (10). MBCs also have poor response
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rates to cytotoxic chemotherapy compared to other types of breast
cancer (5, 11, 12). As a result, there has been interest in evaluating
novel strategies, including targeted therapies and immunotherapy
(12, 13). The potential utility of immunotherapy for this disease has
been highlighted by recent reports of metastaticMBCwith durable
responses to immune checkpoint blockade (14–16). Here, we
present a case series of 5 patients with metastatic MBC treated
with anti-PD-1 therapy.
MATERIALS AND METHODS

Patients
4 of the 5 patients were treated on a phase 1b trial evaluating the
safety of paclitaxel or capecitabine in combination with the anti-
PD-1 antibody, pembrolizumab. Inclusion criteria for this trial
included ER/PR <1% by IHC, HER2 negative (IHC 0-1 or IHC2
with ISH HER2/CEP17 <2), measurable disease by RECISTv1.1,
ECOG 0-1, and investigator-determined indication for paclitaxel
or capecitabine in the 1st or 2nd line setting (17). One additional
patient was treated with compassionate use nivolumab with
bicalutamide and was not part of the trial. Because
bicalutamide was discontinued shortly after commencing
therapy, this case is still described in the series. Baseline
biopsies prior to receiving anti-PD-1 therapy were available for
all patients, as were post-treatment biopsies for Cases 1 and 3. All
biopsies were reviewed by a pathologist to confirm the diagnosis
of MBC (Figures 1A, 2A, 3A, 4A, 5A). All biopsies were also
evaluated for PD-L1 expression in both tumor cells and immune
cells with the Ventana PD-L1 SP263 assay and were reviewed by
a pathologist for scoring (Figures 1B, 2B, 3B, 4B, 5B). A combined
positive score (CPS), defined as the total number of PD-L1 staining
cells (tumor cells, lymphocytes, and macrophages) divided by the
total of viable tumor cells, multiplied by 100, is reported, with a CPS
≥1 consideredpositivepermanufacturer insert, thoughrecent trials
in breast cancer have identified a higher cut-off of CPS ≥10 for
clinical activity (18, 19). TILs were also scored by a pathologist per
the International TILs Working Group guidelines for evaluating
TILs in breast cancer (20).

Biomarker Assessment
When tissue was available, additional exploratory biomarker
immune profiling was conducted. Cases 2, 4, and 5 were
evaluated with a multiplexed immunofluorescence (mIF) panel
as part of the clinical trial of pembrolizumab + chemotherapy in
which they were enrolled (17). These cases were compared to the
non-metaplastic TNBC cases from the same clinical trial, also
evaluated with mIF.

5mm Formalin Fixed Paraffin Embedded (FFPE) slides were
stained and microwave treated in citrate buffer pH 6.0 to present
cross-reactivity between antibodies. Tissue slides were incubated
with DAPI as counterstain and coverslipped with VectaShield
mounting media (Vector Labs). Whole slides were scanned and
digitized at 10x magnification (PerkinElmer Vectra 3.0) for gross
visualization of the tumor, with regions of interest scanned at 20x
(0.36mm2) for quantification. The maximum possible number of
non-overlapping regions of interest, as determined as areas with
Frontiers in Oncology | www.frontiersin.org 2155
viable tumor and visible immune cells, were obtained for each
slide. InForm software (PerkinElmer, package 2.4) was used
according to manufacture instructions to segment and
phenotype cells, with cells identified as cytokeratin-positive
tumor cells, CD3-positive CD8-negative FoxP3-negative T-cells
(Helper T-cells), CD3-positive CD8-positive T-cells (Cytotoxic
T-cells), CD3-positive FoxP3-positive T-cells (Regulatory T-
cells), and CD163-positive cells (Macrophages). PD-L1
quantitative immunofluorescence was also measured for each
cell, which recent studies have found to be comparable to clinical
PD-L1 scores (21, 22).

Genomic Assessment
Cases were evaluated for targetable DNA mutations with a solid
tumor mutation panel, although the commercial panels used
varied as they were ordered at the discretion of the treating
physician. All panels were processed similarly, with FFPE tissue
sections examined by a pathologist and genomic DNA extracted
from areas of viable tumor. Mutations were screened for by
massively-parallel sequencing-by-synthesis.

RNA sequencing was performed on Cases 1, 2, 4, and 5 as part
of exploratory analyses of the clinical trial. FFPE tissue sections
were deparaffinized followed by RNA extraction and purification
using the Qiagen AllPrep DNA/RNA FFPE kit. 85ng of input
RNA was used to prepare sequencing libraries using the Illumina
TruSeq RNA Exome kit. Sequencing of the RNA Exome libraries
was performed on the Illumina HiSeq 4000 instrument at 2 x 76
read paired end configuration. Gene expression counts were
quantified using salmon-v.0.11.2 (23). Differential gene
expression analysis was performed using the R software package
edgeR (24). Previously identified genes of interest in MBC were
evaluated, including AKT1, CCND3, CCNE1, CDK2NB, CDKN2A,
CREB1, CREBBP, EGFR, KDM6A, KMT2D-MLL2, MKI67 (Ki-
67), MTOR, MYC, Nanog, NF2, CD274 (PD-L1), PI3K, PIK3RI,
PTEN, and TP53 (8, 9, 25, 26).

Peripheral blood T-cell receptor (TCR) sequencing was
performed in cases 1, 2, 4, and 5, and on n=21 non-metaplastic
metastatic TNBC patients from the phase Ib trial. Peripheral blood
mononuclear cells (PMBCs) were collected at baseline and at
regular intervals during treatment, and T-cell DNA was extracted
and submitted for deep sequencing using the immunoSEQ Assay
(Adaptive Biotechnologies). T-cell richness was estimated by the
nonparametric model iChao1 function, and clonality index was
calculated as the square root of the Simpson’s diversity index.

Statistical Methods
For the purpose of hypothesis generation, immune and genomic
profiles were constructed for individual patients using the above
biomarkers data. For each biomarker outcome, raw scores were
converted into modified z-scores, based upon underlying median
and median absolute deviations of the outcomes across a cohort of
TNBC patients treated on the aforementioned phase Ib chemo-
immunotherapy clinical trial. Because of the limited sample size,
this analysiswas conductedprimarily forhypothesis generation and
to identify possible outlier features of the case tumors, which could
potentially assist with characterizing the unique clinical response
profiles of each case in the series.
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FIGURE 1 | Case 1 (A) H&E image, showing metaplastic carcinoma with chondroid differentiation (B) PD-L1 by the Ventana PD-L1 SP263 assay (C–F).
Radiographic changes in Case 1 from (C) week 0, (D) 12 weeks, (E) 16 weeks, and (F) 24 weeks. Images C1 to F1 showing regression of the dominant right lung
mass, then regrowth. Images C2 to F2 showing growth of an initially non-target left lung nodule. Images (G–I) show RNA expression heatmaps with modified
z-scores of expression vs. non-metaplastic TNBC cases in pathways of interest for metaplastic breast cancer (G) RAS-MEK-ERK, (H) PI3K-AKT-mTOR (I) TP53.
Genes with DNA mutations are outlined in red.
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FIGURE 2 | Case 2 (A) H&E image, showing metaplastic squamous carcinoma (B) PD-L1 by the Ventana PD-L1 SP263 assay (C–E). Radiographic changes from
(C) week 0, (D) 12 weeks, and (E) 24 weeks. A mixed, but overall partial response by RECIST criteria is noted initially (D) followed by progression (E). Images (F–H)
show RNA expression heatmaps with modified z-scores of expression vs. non-metaplastic TNBC cases in pathways of interest for metaplastic breast cancer (F)
RAS-MEK-ERK, (G) PI3K-AKT-mTOR (H) TP53. Genes with DNA mutations are outlined in red.
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RESULTS

Case 1
The patient is a 63-year-old woman found to have a right breast
mass on screening mammography, with biopsy showing a grade 3
invasive ductal carcinoma, ER-, PR-, HER2- (2+ IHC, ISH 3.04,
ratio1.27). MRI additionally noted a small enhancing mass of the
left breast, biopsy showing a concurrent grade 1 invasive ductal
carcinoma with associated low-grade DCIS, ER >95%, PR 30%,
HER2- (1+ IHC). She was treated with neoadjuvant therapy on the
I-SPY trial with paclitaxel + ganetespib followed by doxorubicin +
cyclophosphamide with a brief clinical response, followed by re-
growth. She underwent bilateral mastectomy and sentinel lymph
node biopsy, pathology consistent with metaplastic carcinoma,
3.1 cm x 2.8 cm with lymphovascular invasion, negative for
perineural invasion, 2/2 intramammary lymph nodes involved
with no extracapsular extension, 0/7 axillary nodes positive, 1/2
sentinel nodes with micro-metastatic carcinoma, no extracapsular
extension, 0/11 additional axillary lymph nodes, and an RCB score
of 3.835, class RCB-III (corresponding with suboptimal response
and prognosis) (27). No residual carcinoma was detected on the left,
0/2 sentinel lymph nodes involved. She received adjuvant radiation
therapy. However, follow up imaging noted an 8.3 cm right middle
lobe perihilar mass with complete occlusion of the bronchus
intermedius. Biopsy was obtained by bronchoscopy, with
Frontiers in Oncology | www.frontiersin.org 5158
pathology showing a poorly differentiated malignant neoplasm
consistent with metaplastic breast cancer, ER-, PR-, HER2-. She
received palliative bronchoscopic debulking.

She was enrolled in a phase Ib trial, receiving pembrolizumab
(200mg IV every 3 weeks) with capecitabine (2000mg twice daily by
mouth on days 1-7, every 2 weeks) (17). Per trial protocol, CT
imaging of the chest, abdomen, and pelvis were obtained at baseline
and every 12 weeks thereafter to assess for response by RECIST v1.1.
Imaging at 12 weeks showed an overall partial response, though
with mixed findings showing significant shrinkage of her dominant
tumor, but enlargement of a left lung lesion (Figures 1C–F). The left
lung lesion was biopsied and was consistent with metaplastic breast
cancer. She received palliative radiation to her right lung mass. On
follow up at 23 weeks, had developed new scalp lesions, which were
biopsied and consistent with metaplastic breast cancer. She
subsequently enrolled in hospice.

PD-L1 expression and TILs were evaluated by a pathologist
on pre- treatment and post- treatment biopsies. PD-L1
expression on tumor cells was 0% on both pre- treatment and
post- treatment biopsies, but 10% and 40% respectively on
immune cells. CPS measured 5 on the pre-treatment biopsy
and 1.5 on post-treatment biopsies, both above the threshold for
positivity of ≥ 1, but below the ≥10% threshold. TILs were 20% in
the pre-treatment biopsy but decreased to 1% in the post-
treatment biopsy.
A B

D EC

FIGURE 3 | Case 3 (A) H&E image, showing mixed metaplastic squamous carcinoma and pleomorphic invasive lobular carcinoma (B) PD-L1 by the Ventana PD-L1
SP263 assay (C–E). Lesions at baseline (C) initially appeared worsened at 4 weeks (D), then demonstrated a complete clinical response by week 14 (E).
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DNA mutations noted included PIK3CA, TP53, PTEN,
CDKN2A. In a comparison of RNA expression, there were no
marked differences in expression within the TP53 or the RAS/
MRK/ERK pathways, but PDK1 appeared less expressed within
the PI3K pathway compared to other cases (Figures 1G–I).
Frontiers in Oncology | www.frontiersin.org 6159
Case 2
The patient is a 58-year-old woman who presented with a
gradually enlarging right breast, biopsy revealing a grade 3
invasive ductal carcinoma, ER-, PR-, HER2- (IHC 0, FISH
ratio 1.23). Right axillary lymph node biopsy was positive for
A B

D
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FIGURE 4 | Case 4 (A) H&E image, showing metaplastic squamous carcinoma (B) PD-L1 by the Ventana PD-L1 SP263 assay. Images (C–E) show RNA
expression heatmaps with modified z-scores of expression vs. non-metaplastic TNBC cases in pathways of interest for metaplastic breast cancer (C) RAS-MEK-
ERK, (D) PI3K-AKT-mTOR (E) TP53. Genes with DNA mutations are outlined in red.
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metastatic breast carcinoma. She received neoadjuvant dose-
dense doxorubicin + cyclophosphamide, followed by paclitaxel,
with decrease in the right breast mass but increase in an axillary
dominant node on follow up ultrasound. She underwent
lumpectomy and axillary lymph node dissection, with
pathology showing a grade 3 invasive ductal carcinoma,
4.0 cm, with an additional 8 mm focus, 3/19 lymph nodes
positive with the largest at 2.4 cm, negative for lymphovascular
invasion. She received adjuvant radiation to the right breast. She
Frontiers in Oncology | www.frontiersin.org 7160
later presented for follow up and reported increasing mid-back
pain, with MRI of the T- and L-spine without evidence of
metastasis to the spine, but found enhancing pulmonary
lesions. CT chest noted bilateral lung lesions, with core biopsy
showing an ER-, PR-, HER2- breast cancer with metaplastic
features with focal chondroid differentiation.

She enrolled in the aforementioned phase Ib trial of
capecitabine + pembrolizumab. Follow up CT scans at 12
weeks showed a partial response, with an overall shrinking of
A B
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FIGURE 5 | Case 5 (A) H&E image, showing metaplastic squamous carcinoma (B) PD-L1 by the Ventana PD-L1 SP263 assay. Images (C–E) show RNA
expression heatmaps with modified z-scores of expression vs. non-metaplastic TNBC cases in pathways of interest for metaplastic breast cancer (C) RAS-MEK-
ERK, (D) PI3K-AKT-mTOR (E) TP53. Genes with DNA mutations are outlined in red.
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multiple lung nodules, while also noting growth of other smaller
nodules (Figures 2C–E). However, follow up scans at 24 weeks
showed clear progression of disease and she was taken off the
trial. She remains on 6th line therapy with sacituzimab as of
March 2021, with addition lines including eribulin, gemcitabine,
cisplatin, and paclitaxel.

On pre-treatment biopsy, PD-L1 expression was noted on 0% of
tumor cells and 10% of immune cells, with a CPS of 5, above the
threshold for positivity of ≥ 1, but below the ≥ 10 threshold. PD-L1
scoring bymIFwas relatively low. TILs were scored as 15%. Immune
cell counts were lower for CD8+ Cytotoxic T-cells, CD163+
Macrophages, and FOXP3+ Regulatory T-cells compared to non-
metaplastic cases, but CD3+Helper T-cells were higher than in non-
metaplastics (Table1,Figure6).DNAmutations of interest included
TP53, MYC, and DICER1. No significant patterns of increased or
decreased expressionwas found inRNAanalysis of theTP53 orPI3K
pathways. Higher expression was seen within the RAS/MEK/ERK
pathway (Figures 2F–H).
Case 3
The patient is an 82-year-old woman with a prior history of right
sided stage IIB breast cancer in 2001, treated with mastectomy and
axillary lymph node dissection, ER+, PR+, HER2-. She received
adjuvant chemotherapy with cyclophosphamide, epirubicin, and 5-
FU for 6 cycles, and additionally received radiation, 5 years of
tamoxifen and 7 years of aromatase inhibitors (letrozole and
exemestane). She had normal surveillance mammographies until
November 2015 where she was found to have calcifications and
possible distortion in the left upper outer breast. Biopsy found grade
II pleomorphic invasive lobular carcinoma, ER 2%, PR-, HER2-
(IHC 2+, ISH 1.8, ratio 1.06). She had a left breast mastectomy with
sentinel lymph node biopsy, with a 5 mm residual invasive lobular
carcinoma, with additional foci ranging from 1-3mm, grade II, with
negative margins, and extensive lymphovascular invasion, 2/2
sentinel nodes positive. She received adjuvant cyclophosphamide,
methotrexate and 5-FU.

She developed a local chest wall recurrence, biopsy showing a
metaplastic breast carcinoma with a component of pleomorphic
lobular carcinoma associated with squamous differentiation, ER
20%, PR-, HER2- (IHC 1+ ISH 2.3, ratio 1.1), with androgen
receptor staining positive in 30% of tumor cells. She received
radiation, and then was started on fulvestrant + palbociclib, but
had disease progression. She then started on exemestane +
everolimus, but again had progressing skin lesions. She was
then started on 3rd line compassionate use nivolumab with off-
label bicalutamide as the patient had wanted to avoid further
Frontiers in Oncology | www.frontiersin.org 8161
chemotherapy, and had not previously responded to ER-directed
therapy. Bicalutamide was held after 2 weeks of treatment, with
concerns for fluid retention and swelling. At 1 month follow up
she had worsening skin lesions, but nivolumab was continued
with the possibility of a flare reaction causing the exam findings
rather than disease progression. 2 months into treatment skin
lesions appeared to be crusting over, and at 4 months appeared to
have a complete response (Figures 3C–E). She continued on
therapy for an additional 4 months when new skin lesions were
noted on her back and trunk and a biopsy confirmed
disease recurrence.

PD-L1 expression on tumor cells was 2% of pre-treatment and
0% of post-treatment tumor cells were positive for PD-L1,
compared to 50% of both pre-treatment and post-treatment
immune cells. CPS was above the threshold for positivity of ≥ 1,
and a higher threshold of ≥ 10 in the pre-treatment sample with a
CPS of 10, though only above the ≥ 1 threshold in the post-
treatment sample with a CPS of 3. TILs were scored as 30% in the
pre- treatment and 15% in the post-treatment samples. DNA
mutations included PIK3CA, TP53, AKT1, CDH1, KMT2D.
Further genomic and immunoprofiling was unavailable for this
case, as this patient was not a part of the clinical trial.
Case 4
The patient is a 60-year-old woman who presented with a painful
large left breast mass. Biopsy of the left breast showed grade 3
invasive ductal carcinoma with focal spindle cell features, also
noted on left axillary biopsy, ER-, PR-, HER2- (IHC 0, ISH 1.55,
ratio 0.86). She received 4 cycles of neoadjuvant dose dense
doxorubicin + cyclophosphamide with minimal response,
followed by 4 cycles of carboplatin + weekly paclitaxel with
some response. She underwent a left modified radical
mastectomy, with pathology showing a 4.4 cm grade 3 IDC
with metaplastic features, and extensive lymphovascular
invasion, clear surgical margins, and 4/7 axillary lymph nodes
involved with extranodal extension. Prior to receiving adjuvant
radiation, a subcutaneous nodule was found inferior to her
mastectomy incision, with excisional biopsy showing 3 foci of
recurrent/residual IDC with sarcomatoid features, with one focus
extending beyond the excisional margin. She received adjuvant
radiation, and a subsequent PET scan and brain MRI were
without evidence of residual disease. She then presented with
left arm swelling, CT chest, abdomen, pelvis found enlarged
lymph nodes in the neck and chest, multiple pulmonary nodules,
small hypodensities in the liver measuring less than 5 mm, and
sclerotic-appearing lesions in the manubrium. A brain MRI and
TABLE 1 | Immune cell counts in Case 2 by mIF.

Patient Median raw
cell count per
ROI (CD3+)

Z-score vs.
Non-metaplastic

(CD3+)

Median raw
cell count per
ROI (CD8+)

Z-score vs.
Non-metaplastic

(CD8+)

Median raw cell
count per ROI

(CD163+)

Z-score vs.
Non-metaplas-
tic (CD163+)

Median raw cell
count per ROI

(FOXP3+)

Z-score vs.
Non-metaplastic

(FOXP3+)

Case 2 10.7 0.85 14.5 -0.51 16.9 -0.67 5.1 -0.82
Ju
ne 2021 | Volume
ROI, region of interest; CD3+, CD3-positive CD8-negative FoxP3-negative T-cells (Helper T-cells); CD8+, CD3-positive CD8-positive T-cells (Cytotoxic T-cells); CD163+, CD163-positive
cells (Macrophages); FOXP3+; CD3-positive FoxP3-positive T-cells (Regulatory T-cells).
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A

B

C

D

FIGURE 6 | Immune cell counts by mIF. Total immune cell counts for metaplastic Cases 2, 4, and 5 plotted with non-metaplastic (cases identified as ‘NM’) TNBC
from the same clinical trial in a violin plot. No clear difference is noted between the metaplastic cases and non-metaplastic cases (A) Helper T-cells (B) Cytotoxic
T-cells (C) Macrophages (D) Regulatory T-cells.
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bone scan showed no evidence of metastases. An ultrasound-
guided FNA of a neck nodule on the right showed extensive
necrosis and degenerated atypical cells, consistent with a
necrotic carcinoma.

She was enrolled in the same phase Ib trial of capecitabine +
pembrolizumab. Follow up imaging at 12 weeks noted a mixed
response with growth of some nodes and regression of others,
but she did have a new bony metastasis at T11 and was taken off
of the trial.

On pre-treatment biopsy, PD-L1 expression was noted on 0%
of tumor cells and 2% of immune cells, with a CPS of 0.5, under
the threshold for positivity of ≥ 1. PD-L1 scoring bymIF was lower
than the median of cases evaluated. TILs were scored as 2%.
Immune cell counts by mIF noted higher CD163+ Macrophages
than in non-metaplastic cases, and lower FOXP3+ Regulatory
T-cells, which were 4th lowest among the 19 evaluable cases. CD3+
Helper T-cells and CD8+ Cytotoxic T-cell counts were similar to
non-metaplastic cases (Table 2, Figure 6). DNA mutations of
interest included PIK3R1, CHEK2, NF1, and NCOR1. RNA
expression in the TP53 pathway found decreased MDM4 and
CHK2, but otherwise was without a clear pattern of increased or
decreased expression. The PI3K pathway noted increased PTEN,
but otherwise was again without a clear pattern through the rest of
the pathway. Strong expression was seen in the RAS/MRK/ERK
pathway, particularly of JUN and FOS (Figures 4C–E).

Case 5
This is a 62-year-old woman who had a small left breast lump
that rapidly grew into a fungating mass. Skin punch and core
needle biopsies showed metaplastic carcinoma with extensive
necrosis and dermal direct extension, ER-, PR-, HER2- (IHC 0,
ISH 3.05, ratio 0.72). Staging CT scan revealed a large left breast
mass measuring 13.6 cm with a large left axillary node measuring
7.4 cm, numerous bilateral pulmonary metastasis, a suspected
metastatic pancreatic neck mass measuring 1.8 cm, and a soft
tissue lesion surrounding the right 10th rib, without other definite
bone metastases, but bone scan noted multiple bone metastases.
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She received paclitaxel (80mg/m2 IV weekly on days 1, 8, 15
of each 3-week cycle) with pembrolizumab (200 mg IV every 3
weeks). Following initiation, she had a mild infusion reaction to
paclitaxel, but was maintained on therapy with dexamethasone
pretreatment. The patient felt her breast mass shrank initially,
but on follow up appointment prior to cycle 3, her mass appeared
larger and repeat CT of the chest, abdomen, and pelvis showed
progressive disease at multiple foci with a new pathologic
fracture of the L-spine. She received palliative radiation to her
spine and was taken off the trial and started on a DAE regimen
(doxorubicin 30mg/m2 IV q3wk, bevacizumab 15mg/kg q3wk,
and everolimus 5mg PO daily). She developed disease
progression and subsequently enrolled in hospice.

A pre-treatment biopsy was available for review and PD-L1
expression was noted on 0% of tumor cells and 10% of immune
cells, with a combined positive score of 2, above the threshold for
positivity of ≥ 1, but below the threshold of >10. PD-L1 scoring
by mIF noted relatively low expression. TILs were scored as 5%.
Immune cells by mIF noted higher FOXP3+ Regulatory T-cells
than the median of non-metaplastic cases, as well as compared to
the other metaplastic cases, but overall populations were low for
all cases. CD3+ Helper T-cell counts were near median values,
with both CD8+ Cytotoxic T-cell and CD163+ Macrophages
lower than non-metaplastic cases (Table 3, Figure 6). DNA
mutations of interest included TP53 and MYC. No significant
patterns were noted in RNA expression in the TP53 and RAS/
MEK/ERK pathway, though ERK2 was significantly lower in the
RAS/MEK/ERK pathway. In the PI3K pathway, PIK3CA and
PIK3R1 were relatively lower, but no pattern of reduced
expression was noted in the rest of the pathway (Figures 5C–E).
Comparative Biomarker Assessment
of Metaplastic versus Non-Metaplastic
TNBCs
The small sample size in this series prohibited extensive
characterization of MBC. However, because data in MBC are
TABLE 2 | Immune cell counts in Case 3 by mIF.

Patient Median raw
cell count per
ROI (CD3+)

Z-score vs.
Non-metaplastic

(CD3+)

Median raw
cell count per
ROI (CD8+)

Z-score vs.
Non-metaplastic

(CD8+)

Median raw cell
count per ROI

(CD163+)

Z-score vs.
Non-metaplastic

(CD163+)

Median raw cell
count per ROI

(FOXP3+)

Z-score vs.
Non-metaplastic

(FOXP3+)

Case 4 5.5 0.04 5.5 -0.33 18.5 0.92 1.5 -0.67
Ju
ne 2021 | Volume
ROI, region of interest; CD3+, CD3-positive CD8-negative FoxP3-negative T-cells (Helper T-cells); CD8+, CD3-positive CD8-positive T-cells (Cytotoxic T-cells;, CD163+, CD163-positive
cells (Macrophages); FOXP3+, CD3-positive FoxP3-positive T-cells (Regulatory T-cells).
TABLE 3 | Immune cell counts in Case 5 by mIF.

Patient Median raw
cell count per
ROI (CD3+)

Z-score vs.
Non-metaplastic

(CD3+)

Median raw
cell count per
ROI (CD8+)

Z-score vs.
Non-metaplastic

(CD8+)

Median raw cell
count per ROI

(CD163+)

Z-score vs.
Non-metaplastic

(CD163+)

Median raw cell
count per ROI

(FOXP3+)

Z-score vs.
Non-metaplastic

(FOXP3+)

Case 5 6.5 0.22 2 -0.65 4.5 -0.47 5.5 0.52
ROI, region of interest; CD3+, CD3-positive CD8-negative FoxP3-negative T-cells (Helper T-cells); CD8+, CD3-positive CD8-positive T-cells (Cytotoxic T-cells); CD163+, CD163-positive
cells (Macrophages); FOXP3+, CD3-positive FoxP3-positive T-cells (Regulatory T-cells).
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limited due to the rarity of this disease, it was of interest to
conduct an informal, hypothesis-generating descriptive
comparison of immunoprofiles using MBC versus non-MBC
specimens from the aforementioned phase Ib trial.
PD-L1
PD-L1 expression by mIF was generally lower in the metaplastic
cases vs the non-metaplastic TNBCs, with all 3 cases evaluated
below the median in PD-L1 expression (Figure 7). However,
clinical PD-L1 scoring by CPS >1 showed that 4 of 5 metaplastic
cases were positive by this definition with only Case 4 below this
threshold. When using a higher cutoff of CPS ≥10 for positivity
as in other recent trials of pembrolizumab in triple negative
breast cancer, only Case 3 met the threshold (18).
Immune Cells
Given the heterogeneity ofMBC, comparisons were made between
each metaplastic case and n=14 evaluable non-metaplastic TNBC
cases to evaluate for outlier factors to differentiate metaplastic and
non-metaplastic TNBC, rather than against all other cases
including the 2 other metaplastic cases (n=16) in an attempt to
identify the unique differences in each metaplastic case against
TNBC, rather than a cohort that would include other metaplastic
cases. Evaluation of immune cells by mIF demonstrated overall
lower median raw cell counts across regions of interest in the
metaplastic cases compared to the median of non-metaplastic
TNBC cases. No obvious outliers were noted in comparison to
non-metaplastic TNBC. Cases 2, 4, and 5 had positive z-scores in
comparing CD3+ Helper T-cells to non-metaplastic TNBC, but all
scores were <1 (Table 4). To additionally evaluate heterogeneity in
MBC, the variance in immune cell counts between regions of
interest was evaluated. A median absolute deviation was calculated
Frontiers in Oncology | www.frontiersin.org 11164
and overall, less variance was seen in metaplastic cases compared
to non-metaplastic cases (Table 5).
RNA and TCR Sequencing
Comparison of RNA sequencing did not demonstrate significant
differences between metaplastic and non-metaplastic cases in
multiple genes of interest, but did note multiple outlier genes, with
an arbitrary cutoff of a modified z-score >3 in 2 or more metaplastic
cases selected to identify possible outliers: SOX8, CIC, COL9A3,
ZFAND1, UBE2W, C2orf40, ENY2, RBM39, TGS1, DPY19L4,
CLEC18A, ACAN, SLC25A32, VIRMA, IGF2, NOTUM, WWP2,
NPIPB11, UPK1B, GABPB1, NR4A1, SLC25A42, FBXO25. RNA
expression in pathways of interest in MBC are further presented in
Figures 1, 2, 4, 5 and 8.

TCR sequencing did not find significant changes in T-cell
diversity by richness or clonality at baseline or during treatment
between metaplastics and non-metaplastics. Evaluating the
clonotype structure, metaplastics as a group vs non-
metaplastics did not have significant differences in the amounts
of higher frequency or lower frequency clones (Figure 9).
However, Case 2 and Case 4 had a greater proportion of high-
prevalence clones compared to other cases at baseline with Case
2 being a responder and Case 4 being a non-responder.
DISCUSSION

Our case series provides additional evidence of clinical activity of
chemo-immunotherapy for MBC, a rare subtype of breast cancer
for which limited outcomes data are available. In this series, we
describe clinical responses in 2/4 cases treated with
chemotherapy plus pembrolizumab. Of interest, we also report
FIGURE 7 | PD-L1 mIF violin plot. Mean PD-L1 quantitative immunofluorescence in baseline biopsies for metaplastic Cases 2, 4, and 5 as well as non-metaplastic
(cases identified as ‘NM’) TNBC from the same clinical trial in a violin plot. A trend towards lower mean PD-L1 expression is noted in the metaplastic cases.
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a fifth MBC case of a complete clinical response to nivolumab
and bicalutamide. These data are supportive of previously
published reports of clinical response in MBC. Adams reported
a case of metastatic MBC with a large chest wall lesion that
dramatically responded to nab-paclitaxel + pembrolizumab, with
an ongoing response at 6 months (14), whereas Al Sayed et al.
reported a case of chemo-refractory metastatic MBC treated with
durvalumab + paclitaxel with a complete clinical response
reported without recurrence at 2 years (15). In comparison,
clinical response rates to chemo-immunotherapy among non-
MBC TNBCs were 8/24 in the parent phase Ib clinical trial.
Otherwise, a recent report of an MBC cohort within the DART
trial (NCT02834013) of dual anti-CTLA-4 (ipilimumab) and
anti-PD-1 (nivolumab) therapy reported responses in 3 of 17
patients (18%), with ongoing responses at 23, 25, and 27
months (16).

Duration of Response and
Mixed Responses
One notable observation from our series is that clinical responses
were less durable than previously reported in published case
reports, with progression free survival (PFS) of 5.3, 5.7 and 8.0
months for Cases 1, 2 and 3 respectively. Of note, the non-
metaplastic TNBC responders (n=8) in the same trial as Cases 1
and 2 had an average PFS of 6.9 months, arguing that duration of
response to chemo-immunotherapy in metaplastic breast cancer
may not appreciably differ from non-metaplastic TNBC.
However, notably, Case 3 which had the longest PFS was an
ER+ tumor, treated with bicalutamide in addition to anti-PD-1
therapy, and not a TNBC, limiting direct comparisons.
Frontiers in Oncology | www.frontiersin.org 12165
A classic histologic trademark of MBC is intralesional
heterogeneity, with the potential for having multiple regions of
the tumor exhibiting distinct histologic features. In a recent
analysis, it has also been suggested that intralesional histologic
heterogeneity may reflect underlying genomic heterogeneity (28,
29). We evaluated for heterogeneity of radiographic response in
our case series, and observed that Cases 1 and 2 had partial
responses by RECIST v1.1, but had a mixed picture, with target
lesions both shrinking and enlarging on initial follow up
imaging. Case 4 also noted regression of some target lesions,
but overall had disease progression by RECIST v1.1. Mixed
responses, defined as the presence of simultaneously regressing
and progressing target lesions, have been previously reported in
studies with immunotherapy, with one study of stage IV
melanoma treated with immune checkpoint blockade reporting
22% of patients with a mixed response. However, the majority of
these cases do eventually become clear responders or
progressors, and the phenomenon of a mixed response may be
an artifact of the kinetics of immunotherapy, rather than being a
separate outcome (30). In comparison, of 15 evaluable non-
metaplastic TNBC, just 2 cases had similar mixed responses to
chemo-immunotherapy (17). The limited sample size in this
series prohibits drawing conclusions, however as additional
MBC patients receive chemo-immunotherapy across the globe,
it would be of interest to further evaluate the hypothesis that
MBC could experience heterogeneous clinical responses. Because
of the aggressive nature of this disease, and limited standard-of-
care systemic options, it may be of value to consider locoregional
therapy such as radiotherapy, to address progressive lesions in
the setting of otherwise-responding disease. Notably, a recent
study has shown promising activity and safety of radiotherapy +
pembrolizumab in metastatic TNBC, with an objective response
rate of 17.6% in a phase II trial of n=17 patients, although it is
uncertain whether any of these were MBC. Another recent study
in metastatic hormone receptor+/HER2- breast cancer did not
show any responses with this combination in a heavily pre-
treated group of n=8 patients (31, 32).
PD-L1 Status and Response
Increased PD-L1 expression has been reported in multiple
studies of MBC, with one study of 75 MBCs reporting PD-L1
TABLE 4 | Comparison of mIF cell counts.

Patient Median raw
cell count per
ROI (CD3+)

Z-score vs.
Non-metaplastic

(CD3+)

Median raw
cell count per
ROI (CD8+)

Z-score vs.
Non-metaplastic

(CD8+)

Median raw
cell count per
ROI (CD163+)

Z-score vs.
Non-metaplastic

(CD163+)

Median raw
cell count per
ROI (FOXP3+)

Z-score vs.
Non-metaplastic

(FOXP3+)

Case 2 10 0.85 3.5 -0.51 2.5 -0.67 1 -0.82
Case 4 5.5 0.04 5.5 -0.33 18.5 0.92 1.5 -0.67
Case 5 6.5 0.22 2 -0.65 4.5 -0.47 5.5 0.52
Non-
metaplastic
(n=16)

5.25 n/a 9 n/a 9.25 n/a 3.75 n/a
Jun
e 2021 | Volume
ROI, region of interest; CD3+, CD3-positive CD8-negative FoxP3-negative T-cells (Helper T-cells); CD8+, CD3-positive CD8-positive T-cells (Cytotoxic T-cells); CD163+, CD163-positive
cells (Macrophages); FOXP3+, CD3-positive FoxP3-positive T-cells (Regulatory T-cells).
Raw cell counts for immune cells as a median across regions of interest, quantified by a multiplexed immunofluorescence panel and calculated modified z-scores comparing metaplastic
cases to n=16 non-metaplastic TNBC. Stromal and intra-tumor immune cells were not differentiated due to low numbers of immune cells within areas of tumor.
TABLE 5 | Variance in immune cells by mIF reported as median absolute deviation.

Cell-type Non-metaplastic (n=14) Metaplastic (Cases 2, 4, 5)

CD3+ 3.75 1
CD8+ 7.25 1.5
CD163+ 6.75 2
FOXP3+ 2.25 0.5
CD3+, CD3-positive CD8-negative FoxP3-negative T-cells (Helper T-cells); CD8+, CD3-
positive CD8-positive T-cells (Cytotoxic T-cells); CD163+; CD163-positive cells
(Macrophages), FOXP3+; CD3-positive FoxP3-positive T-cells (Regulatory T-cells).
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overexpression in 46% of cases, with overexpression defined as 2+
staining in >5% of tumor cells, compared to just 9% in TNBC and
6% in HER2+ or ER/PR+ tumors (8). However, other studies have
shown conflicting reports on rates of PD-L1 overexpression,
potentially due in part to differences in how PD-L1 expression is
measured and defined, with one study reporting 0% (0/18)
expression (≥1% on tumor cells, SP142), and another reporting
50% (7/14) expression (>1% on immune cells and >+ by IHC,
SP263) (25, 33). PD-L1 overexpression in MBCs may be related to
epithelial to mesenchymal transition (EMT), which is thought to be
related to the pathogenesis of MBC.MBC has been found to express
markers of EMT including ZEB1, a repressor of E-cadherin and
Yes-associated protein (34, 35). EMT may also explain the high
rates of metastatic disease in MBC and has also been found to
upregulate PD-L1 expression in breast cancer (36). Mutations of the
PI3K pathway could also contribute to the overexpression of PD-L1
in MBCs (36, 37).

In this series, 4 of 5 cases exhibited modest PD-L1 expression,
considered positive using the CPS overexpression by the CPS≥1
cutoff, but with only one case being positive by the ≥10 cutoff. In
the phase III first-line KEYNOTE-355 trial, pembrolizumab was
shown to improve outcomes in the CPS ≥10 group, but not the
CPS≥1 group (18). In an exploratory analysis, this finding was
also confirmed in the second/third-line trial of pembrolizumab
versus chemotherapy, where an improvement in overall survival
was noted in CPS ≥20, but not in CPS≥1 or CPS≥10 (19).In our
series, 2 of the 3 MBC responders had a CPS of 1-10, with the 3rd

with a CPS of 10. These data raise the hypothesis that responses
could be achieved in MBC even with modest PD-L1 expression
Frontiers in Oncology | www.frontiersin.org 13166
levels. Because of the unmet need and absence of effective systemic
options for MBC, further clinical investigation is warranted to
determine whether the addition of anti-PD-1/L1 to chemotherapy
would be effective for MBC cases with CPS 1-10.

Genomic Profiling and PI3K Inhibition
Within previously identified genes of interest, 4 of 5 cases in our
cohort had mutations of TP53, and 3 of 5 patients had mutations
in the PI3K pathway, with Case 1 and Case 3 with PIK3CA
mutations and Case 4 with a PIK3R1 mutation (Table 6). This is
particularly of interest in the context of immunotherapy as
activating mutations of the PI3K pathway and loss of its
antagonist PTEN have been found to have multiple effects on
the tumor microenvironment. Loss of PTEN has been associated
with increased expression of immunosuppressive cytokines,
decreased tumor infiltration by T-cells, decreased T-cell
mediated cell death, and increased PD-L1 expression (37, 38).
Activating mutations of the PI3K pathway have been associated
with resistance to PD-1/PD-L1 inhibition, by decreased
expression of IFN-g and granzyme B, and decreased CD8+ T-
cell infiltration (39). Use of PI3K inhibitors has been found to
result in decreased PD-L1 expression, increased CD8+ T-cells,
and inhibition of regulatory T-cells, restoring the anti-tumor
immune response (37, 40). Murine mammary models have
suggested improved response to anti-PD-L1 therapy when used
in combination with PI3K inhibitors (38, 41). Given the potential
synergy of PI3K inhibition and immune therapy, a combination
approach may warrant further investigation in this group of
patients with high incidence of PI3K pathway alterations.
A B C

FIGURE 8 | RNA Heat Map. RNA expression heatmaps with modified z-scores of expression vs non-metaplastics represented for each patient for 3 molecular
pathways of interest in metaplastic breast cancer, (A) RAS-MRK-ERK pathway, (B) PI3K-AKT-mTOR pathway, (C) TP53 pathway.
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Immunoprofiling of MBC
In addition to the above, in this series we also demonstrated a
method of interrogating for unique immunologic and/or
genomic features of individual tumor cases, relative to a parent
cohort. While limited due to the small number of MBCs in this
case series, we found no consistent or extreme differences in
evaluation of immune cells, PD-L1 expression, RNA sequencing,
or TCR sequencing in our MBC cases compared to non-
metaplastic TNBC. Of note, a recent study evaluating 44 cases
of MBC versus 174 cases of TNBC found more CD163+ cells in
the stroma and less CD8+ cells in the tumor of MBC cases (44).
This study also found higher PD-L1 expression in tumor cells of
MBC (44). In contrast, MBC cases had low PD-L1 expression
(Figure 7), with 4/5 cases as positive by a CPS ≥1, but only 1 of 5
positive with a threshold of CPS ≥10. RNA and TCR sequencing
may additionally provide further insight into the biology of
Frontiers in Oncology | www.frontiersin.org 14167
MBC, and while this series was too small to evaluate for
distinguishing features of MBC, this framework of reporting Z-
scores of cases relative to a parent cohort may be helpful in future
case series of rare tumor types such as MBC. For example,
evaluation of gene pathways of interest could help identify
targeted treatments that may be more effective for individual
cases of MBC given the heterogeneity of this disease process.
CONCLUSION

Three patients demonstrated a response to therapy, albeit limited
in duration. One responding patient exhibited low-level ER
expression and pleomorphic lobular features, whereas the other
cases were triple negative breast cancer. Responses were observed
in tumors with intermediate PD-L1 expression (CPS 1-10). The
FIGURE 9 | T-cell receptor sequencing clone frequency. Comparison of T-cell receptor sequencing clone frequency for metaplastic cases versus non-metaplastic
TNBC prior to treatment. No significant difference in the percentage of low, low-middle, high-middle, or high frequency clones is noted in comparing the metaplastic
versus non-metaplastic cases, with Cases 2 and 4 appearing to have more high frequency clones, and Cases 1 and 5 having less. Cases 1 and 2 were responders
while Cases 4 and 5 did not respond to therapy.
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aggressive nature of MBC and unmet need for effective palliative
options, support further investigation of the role of anti-PD-1/L1
in PD-L1-intermediate MBC is warranted.
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Pre: 2% Pre: 50% Pre: 10 Pre: 30% Adjuvant: Right breast:
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epirubicin + 5-FU, tamoxifen,
letrozole, exemestane
Left breast:
cyclophosphamide +
methotrexate + 5-FU
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fulvestrant + palbociclib
Metastatic 2nd line:
exemestane + everolimus

Complete
response, PFS:
8.0 months

Post:
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Case 4 Metaplastic squamous
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ER-/PR-/HER2- PIK3R1,
CHEK2,
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0% 2% 0.5 2% Neoadjuvant: doxorubicin +
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Progressive
disease

Case 5 Metaplastic carcinoma
with heterologous
mesenchymal
differentiation (chondroid)

ER-/PR-/HER2- TP53, MYC 0% 10% 2 5% None Progressive
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ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; PD-L1, Programmed death-ligand 1; TC, tumor cells; IC, immune cells; CPS,
combined positive score (# of PD-L1+ cells/total # of viable tumor cells x100), TIL (H&E): TIL scoring per the guidelines of the International TILs working group (20). PFS, progression free
survival. Both pre- and post-treatment biopsies were available for Cases 1 and 3. Cases 2, 4, 5, only had pre-treatment biopsies available.
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