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Editorial on the Research Topic

Computational Methods in Predicting Complex Disease Associated Genes and

Environmental Factors

With the advances of sequencing and experimental techniques, the molecular mechanisms of
human Mendelian diseases have been more or less elucidated. However, there are also many
complex diseases whose disease/pathology development involves the interaction of large numbers
of biomolecules across multi-molecular levels including DNA, RNA, proteins, and methylation, as
well as the impact of environmental and human lifestyle factors. The understanding of such diseases
is one of the biggest challenges in modern biology and medical sciences. The progress in this field
will shed light on complex disease pathology, prevention, prognosis, diagnosis, and treatment in a
personalized manner.

In recent years, large amounts of data from human genome sequencing, metagenome
sequencing, and information about the impact of environmental and lifestyle factors on complex
diseases have been produced, collected, and stored in large scale databases such as the National
Alzheimer’s Coordinating Center (NACC) database, the database of Genotypes and Phenotypes
(dbGaP) and UK Biobank. The large amount of data poses a big challenge, as well as a great
opportunity, to reveal the secrets behind complex diseases using machine learning, statistics, and
bioinformatics tools along with validation through experimental work. In fact, many computational
studies have already been performed within this research area; however, most are focused on
disease-associated factors at a single-molecular level, such as genetic factors, epigenetic factors,
environmental factors, and so on. A more systematic study on the interactions among these
factors, alongside experimental validation, might present a comprehensive view on the disease
pathogenicity and thus may hold the key to truly understanding complex diseases.

In this special issue, there are 18 studies of complex diseases.
Li et al. compared the gene expression profiles between patients with heart failure (n = 177)

and without heart failure (n= 136) using multiple feature selection strategies and identified 38 HF
signature genes. Their results can facilitate the early detection of heart failure and can reveal its
molecular mechanisms.

Liang et al. proposed a novel antiviral Drug Repositioning method based on minimizing Matrix
Nuclear Norm (DRMNN). Experiments have shown that DRMNN is better than other algorithms
in predicting which drugs are effective against influenza A virus. Within the 10 drugs most likely to
be effective against H3N2 viruses, six drugs are reported to have some effect on the viruses.
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Liu et al. recruited 20 patients undergoing cardiac surgery
(10 with paroxysmal atrial fibrillation and 10 with persistent
atrial fibrillation) and 10 healthy subjects. With proteomic
analysis, they identified the differentially expressed proteins and
investigated their roles in Atrial fibrillation (AF).

Li et al. developed a set of computational approaches
integrating multiple machine-learning algorithms, including
Monte Carlo feature selection (MCFS), incremental feature
selection (IFS), and support vector machine (SVM), to identify
gene expression characteristics on different phases of Myocardial
infarction (MI). The functional enrichment analyses followed
by protein-protein interaction analysis identified several hub
genes (IL1R1, TLR2, and TLR4) which may be new diagnostic
molecules for MI.

Su et al. described a convolutional neural network called
F-S-Net that fused the information from multimodal medical
images and used the semantic information contained within
these images for glioma segmentation. F-S-Net was found to
achieve a dice coefficient of 0.9052 and Jaccard similarity of
0.8280, outperforming several previous segmentation methods.

Wang et al. screened the genes associated with neuropathic
pain (NP) using differential analysis along with random walk
with restart (RWR). They discovered eight hub genes that were
closely related to NP occurrence and development, which may
help to provide potent theoretical basis for NP treatment.

Hao et al. integrated four gene expression datasets which
collectively included 65 nasal polyp samples from Chronic
rhinosinusitis with nasal polyps (CRSwNP) patients and
54 nasal mucosal samples from healthy controls. They
identified 76 co-differentially expressed genes (co-DEGs,
including 45 upregulated and 31 downregulated) in CRSwNP
patients compared with the healthy controls. Protein-protein
interaction (PPI) network analysis and real-time quantitative
PCR (RT-qPCR) showed that seven genes might be crucial in
CRSwNP pathogenesis.

Guan et al. constructed cell type-specific predictive models
for autism spectrum disorder (ASD) based on individual genes
and gene sets, respectively, to screen cell type-specific ASD-
associated genes and gene sets. They found that the functions of
genes with predictive power for ASD were different and the top
important genes were distinct across different cells, highlighting
the cell-type heterogeneity of ASD.

Zhu et al. proposed and compared 10 protein–protein
interaction (PPI)-based computational methods to study the
connections between diabetes and 254 diseases. They found that
a method called DIconnectivity_eDMNperformed the best in the
sense that it inferred a disease rank (according to its relation with
diabetes) most consistent with that by literature mining.

Zhang et al. analyzed the blood gene expression profiles of
73 Caucasian women with high and low bone mineral density
(BMD). The WGCNA yielded three gene modules, including 26
lncRNAs and 55 mRNAs as hub genes in the blue module, 36
lncRNAs and 31 mRNAs as hub genes in the turquoise module,
and 56 mRNAs and 30 lncRNAs as hub genes in the brown
module. The mRNAs and lncRNAs identified in this WGCNA
could be novel clinical targets in the diagnosis and management
of osteoporosis.

Sun et al. proposed a mathematical model based on
matrix decomposition, named MFMDA, to identify potential
miRNA–disease associations by integrating known miRNA
and disease-related data, similarities between miRNAs and
between diseases. While most predicted miRNAs were confirmed
by external databases of experimental literature, they also
identified a few novel disease-related miRNAs for further
experimental validation.

Wang et al. identify the key modules and hub genes related
to the annulus fibrosus in intervertebral disc degeneration
(IDD) through: (1) constructing a weighted gene co-expression
network; (2) identifying keymodules and hub genes; (3) verifying
the relationships of key modules and hub genes with IDD;
and (4) confirming the expression pattern of hub genes in
clinical samples. They generated a comprehensive overview of
the gene networks underlying annulus fibrosus in intervertebral
disc degeneration.

Wang et al. proposed a new method called Matrix completion
algorithm based on q-kernel information (QIMCMDA) for
miRNA-disease association prediction. Its performance was
significantly better than other commonly used technologies.
QIMCMDA may become an excellent supplement in the field of
biomedical research in the future.

Liu et al. proposed a novel network inference algorithm using
Random Walk with Restart (RWRNET) that combined local
and global topology relationships. The proposed method was
compared with several state-of-the-art methods on the basis
of six benchmark datasets and the results demonstrated the
effectiveness of the proposed method.

An et al. evaluated the pharmacological effects of novel
peptide drugs (P-ONE and P-TWO) at the small RNA (sRNA)
level using an allergic rhinitis (AR) model. They found that
sRNA target genes had a specific enrichment pattern and may
contribute to the effects of the novel peptides.

Gao et al. identified orphan genes in balanced and unbalanced
Arabidopsis thaliana gene datasets. They compared several
ensemble models and found that SMOTE-ENN-XGBoost model,
which combined over-sampling and under-sampling algorithms
with XGBoost, achieved higher predictive accuracy than the
other balanced algorithms with XGBoost models. Thus, SMOTE-
ENN-XGBoost provided a theoretical basis for developing
evaluation criteria for identifying orphan genes in unbalanced
and biological datasets.

Wei et al. developed a machine learning method to classify
colon and rectal cancer into three immune subtypes named
High-Immunity Subtype, Medium-Immunity Subtype, and Low-
Immunity Subtype, respectively. A prognostic signature of six
genes (CERCAM, CD37, CALB2, MEOX2, RASGRP2, and
PCOLCE2) was identified by the multivariable COX analysis,
which was further used to develop an accurate model to predict
the prognosis of colon and rectal cancer patients.

Chidambaran et al. recruited 171 adolescents (14.5 ± 1.8
years, 75.4% female) undergoing spine fusion and tested ranked
deciles of 1,336 prioritized genes for increased representation of
variants associated with chronic postsurgical pain (CPSP).
Penalized regression (LASSO) selected 20 variants for
calculating weighted polygenic risk scores (PRS). Systems
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biology guided PRS improved predictive accuracy of CPSP risk
in a pediatric cohort.

In recent years, there are more and more studies of complex
diseases using computational methods on multi omics data.
By integrating genetic factors, epigenetic factors, environmental
factors, and so on, the underlying mechanisms of complex
diseases may be revealed and we may find the cures.
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Neuropathic Pain
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Background: The reactivity enhancement of pain sensitive neurons in the nervous
system is a feature of the pathogenesis for neuropathic pain (NP), yet the underlying
mechanisms need to be fully understood. In this study, we made an attempt to clarify
the NP-related hub genes and signaling pathways so as to provide effective diagnostic
and therapeutic methods toward NP.

Methods: Microarray expression profile GSE30691 including the mRNA-seq data of the
spared nerve injury (SNI)-induced NP rats was accessed from the GEO database. Then,
genes associated with NP development were screened using differential analysis along
with random walk with restart (RWR). GO annotation and KEGG pathway analyses were
performed to explore the biological functions and signaling pathways where the genes
were activated. Afterward, protein-protein interaction (PPI) analysis and GO analysis
were conducted to further identify the hub genes which showed an intimate correlation
with NP development.

Results: Totally 94 genes associated with NP development were screened by differential
analysis and RWR analysis, and they were observed to be predominantly enriched in
hormone secretion and transport, cAMP signaling pathway and other NP occurrence
associated functions and pathways. Thereafter, the 94 genes were subjected to PPI
analysis to find the genes much more associated with NP and a functional module
composed of 48 genes were obtained. 8 hub genes including C3, C1qb, Ccl2, Cxcl13,
Timp1, Fcgr2b, Gal, and Lyz2 were eventually identified after further association and
functional enrichment analyses, and the expression of these 8 genes were all higher in
SNI rats by comparison with those in Sham rats.

Conclusion: Based on the data collected from GEO database, this study discovered 8
hub genes that were closely related to NP occurrence and development, which help to
provide potent theoretical basis for NP treatment.

Keywords: neuropathic pain, nerve injury model, bioinformatics analysis, hub gene, functional association
network
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HIGHLIGHT

– 94 genes closely related to neuropathic pain occurrence
are identified using differential analysis and random
walk with restart.

– 8 hub genes that are implicated with neuropathic pain
regulation are verified by means of protein association
analysis along with GO annotation and KEGG pathway
analyses.

INTRODUCTION

Pain is a survival mechanism that can act as a warning sign
of ongoing or impending tissue damage. In evolutionary terms,
the activation of high threshold mechanical nociceptors or other
types of specialized nociceptor plays a protective role and can
serve as a warning system for dangerous stimuli (Cohen and Mao,
2014). Neuropathic pain (NP) is a kind of chronic pain induced
by the injury or dysfunction of the central or peripheral nervous
system (Jensen et al., 2011; Finnerup et al., 2016; Watson and
Sandroni, 2016). Smith et al. (2007) discovered that compared
with the nociceptive pain, NP produced a more negative impact
on the life quality. However, the specific mechanisms underlying
NP remain elusive and there is still a lack of the effective
therapeutic methods. Therefore, it is urgent to further clarify the
underlying mechanisms toward NP and exploit the relevant genes
and signaling pathways, so as to provide theoretical basis and new
ideas for future treatment.

The pathogenesis of NP is complex. The current discovery
has shown that NP is not only involved in the excitability of
transmitting pain sensitive neurons, but also related to central
and peripheral sensitization (von Hehn et al., 2012; Meacham
et al., 2017). Central pain, a subtype of NP (like spinal cord
injury-induced pain), manifests as a series of symptoms and signs
that are developed after the injury of the central nervous system,
such as nerve pain caused by headache, abdominal pain, etc.
(Cohen and Mao, 2014). In addition, other than the inducement
of inflammatory response in some local tissues, peripheral
nerve injury or tissue damage can also cause alterations of the
inflammatory-related cytokines in the central nervous system,
such as the elevation of interleukin-1β (IL-1β), IL-6, tumor
necrosis factor-α (TNF-α), chemokines and neurotrophic factors
(Rubio and Sanz-Rodriguez, 2007; Wei et al., 2012; Matsuo et al.,
2014; Sato et al., 2014; Gerard et al., 2015). Zhang et al. (2013)
reported that inhibiting CXCL1-CXCL2 signal might be used
as a novel therapeutic method for NP treatment. Moreover,
Xiong et al. (2016) found that M1-type small glial cells could
produce a large number of pro-inflammatory factors, resulting
in the aggravation of nerve injury and consequently leading to
the neurological dysfunction. Hence, further investigating the
molecular mechanisms underlying NP and clarifying the effective
targets are significant for the application of pain medication in
clinical targeted therapies.

Bioinformatics can provide tools for analysis of large amounts
of information, like the microarray technique, which has been
widely applied in high-throughput gene expression detection
(Schena et al., 1995; Allison et al., 2006) and can be reliably

used for the identification of novel targets for clinical diagnosis
and treatment (Chen et al., 2015). This study aimed to discuss
the molecular mechanisms of nerve injury-induced NP, and in
turn identify the hub genes and signaling pathways associated
with NP pathogenesis. Due to the certain difficulties and the
risk of experimenting on human being, we adopted animal
models to study the NP pathogenesis. In our study, microarray
GSE30691 including the mRNA-seq data of the spared nerve
injury (SNI)-induced NP rats was downloaded from the GEO
database. Multiple bioinformatics methods were adopted here for
screening the genes and pathways which were associated with NP
occurrence. In the meantime, hub genes intimately relevant to NP
development were identified. Our findings would provide new
thoughts for exploration of genes and biological pathways that
are involved in nerve injury-induced NP.

MATERIALS AND METHODS

Data Source
The mRNA expression microarray GSE30691 was downloaded
from the Gene Expression Omnibus (GEO) database1. The
dataset was composed of the L4-5 dorsal root ganglion (DRG)
segments from the rats at 0, 3, 7, 21, and 40 days after SNI and
from the rats at 3, 7, and 21 days after a sham operation. Three
independent experiments were performed in each period.

Differential Analysis
Statistical software R (version 3.3.2)2 and packages of
Bioconductor3 were applied for analysis of the differentially
expressed genes (DEGs). Differential analysis was performed on
the genes from the SNI and Sham rats in 3, 7, and 21-day three
time periods using the “limma” package (Smyth, 2011), with |
logFC| > 0.585 and FDR < 0.05 used as the screening threshold.

Random Walk With Restart (RWR) for
Screening NP-Related Genes
In order to make the analysis more reliable, a network which
can execute on the protein-protein interaction (PPI) network was
designed. RWR is a classic ranking algorithm which is originated
from the random walk. With the aid of RWR analysis, the global
structure information of the network can be explored, which
is helpful to estimate the proximity between two nodes (Zhang
et al., 2018; Fan et al., 2019; Valdeolivas et al., 2019).

The PPI network we had constructed was denoted as a graph
G = (V, E) comprising of a set of genes V and a set of interactions
E. The graph could be characterized by an n × n adjacency
matrix A:

A[i,j]′ =
A[i,j]∑n
k=1 A[i,j]

(1)

where n refers to the total number of the nodes. A_([i,j]) = 1 if
node i and node j are interacted, and 0 otherwise. In the RWR
algorithm, each node in the network was conferred a restart

1https://www.ncbi.nlm.nih.gov/geo/
2https://www.r-project.org/
3http://www.bioconductor.org/
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probability and all probabilities constituted a vector which was
defined as Pt:

P_(t+ 1) = (1− r)A∧
′

P_t+ rP_0 (2)

where A is the column-wise normalized adjacency matrix A.
Pt is the previous state probabilities at time t. r is the restart
probability. P0 is the initial state probabilities, a column vector
with 1/m for the m seed genes (NP-related genes identified
in L4-5 DRG segments from SNL cohort) and 0 for other
genes on the network.

The iteration process was repeated until the difference
between two vectors was smaller than 1 × 10−5. New NP-
related genes were subsequently identified and Venn diagram was
plotted to obtain RWR genes.

GO Annotation and KEGG Pathway
Analyses
As we had screened the genes associated with NP using the RWR
analysis, R package “clusterProfiler” was used to perform GO
annotation and KEGG pathway analyses, with the critical value of
p< 0.05 and q< 0.05 (Yu et al., 2012). Afterward, the enrichment
results were visualized with the aid of R package “enrichplot” so as
to further analyze the biological functions and pathways by which
the genes affected NP.

PPI Network Construction
The NP-associated genes we identified were projected onto a PPI
network for functional association analysis (confidence > 0.400)
using the STRING database4. Thereafter, the Cytoscape plugin
“MCODE” was applied to find the functional module, while
“ClueGO” and “CluePedia” were used for enrichment analysis
toward the genes in the module.

RESULTS

Identification of NP-Associated Genes
To find the genes that were tightly correlated with NP, differential
analysis was run for the genes in the microarray GSE30691.

4https://string-db.org/cgi/input.pl

The results revealed that a total of 51, 99, and 63 DEGs were
identified from the SNI group versus the Sham group at 3, 7, and
21 days after SNI, respectively (Figure 1A). Thereafter, the DEGs
were projected onto a PPI network, and the DEGs of each time
period were regarded as seed genes for follow-up RWR analysis.
Eventually, a total of 95, 98, and 97 NP-associated genes were
screened in three periods, respectively, and the 94 common genes
identified using a Venn diagram were considered to be closely
correlated with NP (Figure 1B).

GO and KEGG Analyses on the
NP-Associated Genes
As abovementioned, 94 genes were identified to be closely related
to NP. In order to investigate the role of these genes in NP,
GO annotation and KEGG pathway analyses were conducted.
As revealed in Figure 2A, the most significantly activated
biological functions of these genes were hormone secretion and
transport, potassium ion transport, humoral immune response
and negative regulation of immune system process, etc. While the
most noteworthy enriched signaling pathways were complement
and coagulation cascade, neuroactive ligand-receptor interaction,
cAMP signaling pathway and ECM-receptor interaction, etc.
(Figure 2B). All of these functions and pathways have been
proven to show an intimate correlation with NP development,
which supports our result that the 94 genes we identified are
significantly associated with NP.

PPI Network Analysis and Identification
of Hub Genes
To gain more insight into the role of these 94 genes in NP
development and find the hub genes which were significantly
implicated in, a PPI network based on these 94 genes was
established on STRING database for functional association
analysis and sequentially visualized on Cytoscape. The plugin
“MCODE” was used to find functional modules and eventually a
module consisting of 48 genes with the highest score was obtained
(Figure 3A). After that, biological functions where the 48 genes
were most activated were explored by means of GO annotation.
It turned out that the genes were predominantly enriched
in some NP development associated functions, including

FIGURE 1 | Identification of NP-associated genes. (A) Volcano Plots of the DEGs in the SNI group versus the Sham group at 3, 7, and 21 days after surgery,
respectively; (B) Venn diagram showed the common NP-associated genes from the 3 time periods.

Frontiers in Neuroscience | www.frontiersin.org 3 May 2020 | Volume 14 | Article 48810

https://string-db.org/cgi/input.pl
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00488 May 18, 2020 Time: 14:3 # 4

Wang et al. Identification of NP-Related Genes

FIGURE 2 | GO and KEGG analyses on the NP-associated genes. (A) The most enriched GO terms of the 94 NP-associated genes; (B) the most activated KEGG
pathways of the 94 NP-associated genes.

FIGURE 3 | PPI Network Analysis and identification of hub genes. (A) PPI network for the 48 genes involved in the functional module of a highest score; (B): the
most enriched GO terms for the 48 genes; C: Proportional graph of the enriched GO terms of the 48 genes.

regulation of humoral immune response, cellular response to
glucocorticoid stimulus, neuropeptide hormone activity, negative
regulation of mononuclear cell proliferation and chemokine
activity (Figures 3B,C).

As the 48 genes in the module were found to be enriched
in NP-associated functions, further PPI network analysis was
conducted to identify the hub genes that were most relevant
to NP occurrence and development. The connectivity degree of

Frontiers in Neuroscience | www.frontiersin.org 4 May 2020 | Volume 14 | Article 48811

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00488 May 18, 2020 Time: 14:3 # 5

Wang et al. Identification of NP-Related Genes

FIGURE 4 | Hub genes associated with NP and the relative expression of each hub gene in different time periods between SNI and Sham rats. (A) Node number of
the hub genes in the PPI network; (B) the relative expression of each hub gene with a degree higher than 10 in different time periods between Sham and SNI rats.

each gene was calculated and it turned out that 8 genes (C3,
C1qb, Ccl2, Cxcl13, Timp1, Fcgr2b, Gal, Lyz2) which had a degree
higher than 10 were identified and here were regarded as the hub
genes significantly associated with NP development (Figure 4A).
For further verification, we detected the expression of the 8 genes
in different time periods between SNI and Sham rats and found
that all these 8 genes exhibited a much higher expression in
SNI rats in comparison with those in Sham rats in the same
period (Figure 4B). In view of these results, the 8 hub genes were
confirmed to be most associated with NP development.

DISCUSSION

NP is a complex chronic pain with elusive mechanisms currently
(Kerstman et al., 2013; Gilron et al., 2015). It has been reported
that NP is commonly associated with paresthesia, hyperesthesia,
paralgesia and hyperalgesia (Bouhassira and Attal, 2016). In
addition, some changes in the whole nervous system are also

implicated with NP, such as the ectopic action potential, the
generation of the new synaptic circuitry and the neuro-immune
interaction (Taylor, 2001; Zhuo et al., 2011). Therefore, it is a
necessity to extend our knowledge on the NP pathogenesis, which
is of great significance on setting of the treatment strategies for
responsive NP prevention and efficacy improvement.

It has been revealed that NP is always accompanied by the
alteration of genes on the sensory pathways (von Hehn et al.,
2012). In the present study, we adopted the microarray technique
to identify the NP-related DEGs and the activated signaling
pathways from the SNI rat models. Microarray technique is a
tool able to quantify the expression levels of thousands of genes
across the biological samples simultaneously, and it can provide
the complex regulations among genes based on the expression
data of the whole genome, which helps us find better targets
for NP treatment (Gao et al., 2018). During the whole analysis
process, some factors like the sample attributes, processing tools,
handling methods and results screening all made some effects
on the final results. To make the results more reliable, we used

Frontiers in Neuroscience | www.frontiersin.org 5 May 2020 | Volume 14 | Article 48812

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00488 May 18, 2020 Time: 14:3 # 6

Wang et al. Identification of NP-Related Genes

multiple analytical methods, such as differential analysis, RWR,
GO annotation, and KEGG pathway analyses. More specifically,
mRNA expression data from the SNI and Sham rats 3, 7, and
21 days after operation were obtained from microarray GSE30691
through the GEO database. Subsequently, DEGs in the three
time periods were screened and projected onto a PPI network,
after which the DEGs in each period were taken as seed genes
for RWR analysis. Eventually, 94 common genes were identified
and considered to be associated with NP development. Our
findings lay a foundation for future investigation of the molecular
mechanisms underlying NP occurrence and development.

After identification of the NP-associated genes, we performed
enrichment analysis and found that these genes were
predominantly enriched in some biological functions like
hormone secretion and transport, potassium ion transport,
humoral immune response, negative regulation of immune
system process, while these functions have been proven to
be involved in NP occurrence and development (Jaggi et al.,
2015; Jang et al., 2018; Wang et al., 2018). Additionally, cAMP
signaling pathway and ECM-receptor interaction are two
signaling pathways that have been confirmed to be implicated
with multiple functions in regulation of NP (Zhou et al., 2017;
Yan et al., 2018; Yan et al., 2019), and our study observed that the
genes we identified were activated in these two pathways as well.
Given the findings above, the specific role of these genes in NP
development requires further exploration.

Despite the genes and pathways associated with NP
development we found, 8 hub genes (C3, C1qb, Ccl2, Cxcl13,
Timp1, Fcgr2b, Gal, Lyz2) that were responsible for NP
development regulation were identified and some of them
have been reported to present an intimate correlation with
NP development. Levin ME et al. conducted the microarray
analysis on the data from the SNI-induced NP rats, and the
results demonstrated that multiple complement factors like
C1 inhibitor, C1q α, β, and γ, C1r, C1s, C2, C3, C4, and C7
were all up-regulated, and rats with less complement C3 in
plasma (cobra venom factor-treated) had relative attenuated
pain behaviors (Levin et al., 2008). This study found that
C3 was remarkably increased in SNI rats and exhibited a
rising trend within 0–21 days. As for Timp1, Gal and C1qb,
researchers discovered that Gal and C1qb could be used as

potential biomarkers for NP occurrence (Buckley et al., 2018;
Yang et al., 2018). Besides, a study on CXCL13 made by Jiang
et al. (2016) revealed that CXCL13 could make an effect on NP
development via targeting CXCR5. These genes were all observed
to be significantly highly expressed in SNI rats in our study.
Moreover, CCL2 has been verified to play a vital role in NP
development (Zhao et al., 2017), yet there has been no study
performed to investigate the role of Fcgr2b and Lyz2 in NP.
Overall, our identification of the 8 hub genes further confirms
their significance in NP development.

In conclusion, we found 94 NP-associated genes and
corresponding enriched biological functions and signaling
pathways by means of multiple bioinformatics approaches.
Furthermore, 8 hub genes that were implicated with NP
development regulation were identified. Our findings lay a
foundation for future exploration of the molecular mechanisms
underlying NP development and help to find potential targets for
NP diagnosis and treatment.
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Myocardial infarction (MI) is a type of serious heart attack in which the blood flow
to the heart is suddenly interrupted, resulting in injury to the heart muscles due
to a lack of oxygen supply. Although clinical diagnosis methods can be used to
identify the occurrence of MI, using the changes of molecular markers or characteristic
molecules in blood to characterize the early phase and later trend of MI will help
us choose a more reasonable treatment plan. Previously, comparative transcriptome
studies focused on finding differentially expressed genes between MI patients and
healthy people. However, signature molecules altered in different phases of MI have
not been well excavated. We developed a set of computational approaches integrating
multiple machine learning algorithms, including Monte Carlo feature selection (MCFS),
incremental feature selection (IFS), and support vector machine (SVM), to identify gene
expression characteristics on different phases of MI. 134 genes were determined to
serve as features for building optimal SVM classifiers to distinguish acute MI and post-
MI. Subsequently, functional enrichment analyses followed by protein-protein interaction
analysis on 134 genes identified several hub genes (IL1R1, TLR2, and TLR4) associated
with progression of MI, which can be used as new diagnostic molecules for MI.

Keywords: myocardial infarction, Monte Carlo feature selection, incremental feature selection, support vector
machine, gene

INTRODUCTION

Myocardial infarction (MI), one of the most common cardiac diseases, has been a serious threat
to human health worldwide for a long period. According to the third universal definition of MI,
it is the condition of myocardial necrosis in a clinical setting consistent with myocardial ischemia
(Bax et al., 2012). MI occurs when the blood flow is impaired and the cardiomyocyte is injured due
to the lack of oxygen supply (Lu et al., 2015). Patients with coronary atherosclerosis have a high
risk of developing a MI when inflammation takes place in the vascular wall (Thygesen et al., 2007).
Usually a more serious event is termed as acute myocardial infarction (AMI). The symptoms of MI
include chest pain, shortness of breath, abnormal heart beating, and fatigue (Kosuge et al., 2006).
Smoking and dyslipidemia are thought to be important risk factors for MI, which is correlated with
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the increasing mortality rate in China (Critchley et al., 2004).
Approximately three million cases of MI are diagnosed every
year and the annual incidence rate is about 600 cases per
100,000 people (Rogers et al., 2008; Nascimento et al., 2019).
The average mortality of MI is approximately 27% according to
statistics (White and Chew, 2008), making it a major cause of
death in the world.

After the onset of MI, many pathological processes occur,
such as the death of myocardial cells, and will develop into
different conditions depending on the status of the patient.
MI can be classified pathologically as acute, healing, or healed,
which is roughly correlated with the disease duration. Acute
MI describes a severe event usually accompanied by activated
inflammation at early onset. Then it progresses to healing, which
can be characterized by the presence of mononuclear cells and
fibroblasts and the absence of polymorphonuclear leukocytes.
The entire process reaching the healed state of MI takes about
several months when cellular infiltration fades away and scar
tissue appears (Thygesen et al., 2007). The different phases
after onset reflect distinct pathological conditions. So, a better
understanding of the phases will contribute to the treatment of
MI and improve the outcomes of patients.

Early and rapid diagnosis is important for the decision
of treatment and improvement of survival. There are several
methods for the evaluation of MI including electrocardiography
(ECG) and cardiac markers. The ECG has a high specificity
of 90% for MI but a poor sensitivity of 20% (Zimetbaum and
Josephson, 2003). Serum biomarkers of myocardial necrosis,
such as cardiac troponin (I or T), which can specifically reflect
myocardial injury, show high clinical sensitivity and can improve
the diagnostic accuracy (Jaffe et al., 2000). Levels of MB isoforms
of creatine (CK-MB) also exhibit the ability to identify MI as
an increased CK-MB value is associated with myocarditis and
electrical cardioversion (Members et al., 2007). Although the
traditional clinical approach has shown excellent performance
for diagnosing MI, an increasing number of studies have proven
that molecular markers, like the transcription profile in serum,
are capable of reflecting detailed pathological conditions and
subsequent progress of MI, which will help to determine the
optimal treatment.

Owing to the great development in RNA-seq technology,
many novel genes are found to play crucial roles in various
diseases. It has been reported that the specific expression pattern
of certain genes is relevant to the pathological condition of
MI. For examples, H-FABP, which is involved in myocardial
fatty-acid metabolism, is rapidly released into the cytosol in
early MI and can act as an early marker (Glatz et al., 1988).
B-type Natriuretic Peptide (BNP) is secreted by the ventricles
in response to the tension of cardiomyocytes and leads to the
reduction of blood pressure, making it a prognostic marker after
MI (De Lemos et al., 2001). Growth Differentiation Factor-15
(GDF15) is specifically expressed in the heart when ischemia or
reperfusion happened, and increasing GDF15 indicates a higher
risk of death in MI patients (Wollert et al., 2007). Besides, non-
coding RNAs are also found to be involved in the pathogenesis
of MI. Circulating miR-208a, which is only detected in AMI
patients, is thought to be the novel potential biomarker for early

diagnosis with higher sensitivity and specificity (Wang et al.,
2010). Given that the progress of MI involves numerous complex
biological processes and pathways, the overall transcriptome
analysis will contribute to revealing a more detailed molecular
mechanism and an easier way to locate the key genes related to
pathogenesis of MI.

In this study, we utilized bioinformatics methods to explore
the key gene networks associated with MI from the vast
transcriptomic data. Previous studies which aimed to find the
biomarker for MI put the focus on separated genes but ignored
the linkage among them. With the application of bioinformatics,
we can study the complex expression network consisting of
multiple genes with less time consumed and a higher efficiency.
Transcriptomic data was obtained from the published paper
which performed whole blood RNA profiling at different time
points in cohort with MI (Vanhaverbeke et al., 2019). In
order to identify the key biomarkers for distinguishing different
pathological extents, we manually divided all patients into three
categories based on the duration of MI. These three different
groups roughly reflect distinct pathological conditions. Next, we
constructed an optimal support vector machine (SVM) model
with the application of a feature selection method called Monte
Carlo Feature Selection (MCFS) (Chen et al., 2018a, 2019a,b,d,
2020; Pan et al., 2018, 2019a,b; Wang et al., 2018; Jiang et al.,
2019; Li et al., 2019) and incremental feature selection (IFS)
(Chen et al., 2018b, 2019d; Lei et al., 2018; Li and Huang,
2018; Sieber et al., 2018; Zhang et al., 2018; Wang and Huang,
2019; Yan et al., 2019). 134 optimal genes were selected which
show specific expression patterns during varied phases of MI
and can distinguish different categories with a highly accuracy.
The functional enrichment analysis suggested the important
biological processes and pathways related to the progress of MI
and corresponding hub genes were identified by gene network
analysis. The selected genes in the current study can serve as
novel biomarkers for different phases of MI and contribute to
revealing the pathological mechanism of MI.

MATERIALS AND METHODS

Dataset
The blood gene expression profiles of 166 samples which
incorporate three phases of MI (D0: acute MI, D30: 30-days
post-MI, and Y1: 1-year post-MI) were downloaded with the
gene expression omnibus (GEO) under accession number of
GSE123342 (Vanhaverbeke et al., 2019). There were 65 D0, 64
D30, and 37 Y1 samples. There were 70,523 probes in Affymetrix
Human Transcriptome Array 2.0 corresponding to 30,905 genes.
The probes for the same gene were averaged and the data was
quantile normalized (Bolstad et al., 2003). We wanted to find the
genes with changed expression patterns in post-MI.

Monte Carlo Feature Selection (MCFS)
Monte Carlo feature selection has been a widely used method
for feature selection (Chen et al., 2018a, 2019a,b,d, 2020; Pan
et al., 2018, 2019a,b; Wang et al., 2018; Jiang et al., 2019; Li et al.,
2019). It was originally developed by Draminski et al. (2008).
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It randomly constructed many tree classifiers of the sub datasets
from the original dataset and assigned the importance to a feature
based on how much it participated in the tree classifiers. The java
software dmLab1 with default parameters (Draminski et al., 2008)
was used to apply the Monte-Carlo feature selection method.

To be more specific, the original dataset was divided into s
subsets of m features (m<<d, where d is the total number of
features, i.e., 30,905 genes in this study). Then, for each subset, t
trees were constructed. Therefore, a total of s·t classification trees
were constructed. At last, the relative importance (RI) of each
feature was estimated as follows:

RIg =

st∑
τ=1

(wAcc)u
∑
ng (τ)

IG(ng(τ))

(
no. in ng(τ)

no. in τ

)v
(1)

where IG(ng(τ)) was the information gain (IG) of node ng(τ),
(no. in ng(τ)) was the number of samples in node ng(τ), (no. in τ)
was the number of samples in tree τ, wAcc was the weighted
accuracy over all samples, and u and v were two regular factors
which were set as default.

After running MCFS, all features can be ranked based on their
RI. The higher the RI, the more important a feature was.

Incremental Feature Selection (IFS)
With MCFS, all features were ranked. But we still did not know
how many genes we should choose. Ideally, we wanted the
number of selected genes to be small but their classification
performance to be great. To find the balance and the optimal
signature, we adopted IFS (Chen et al., 2018b, 2019d; Lei et al.,
2018; Li and Huang, 2018; Sieber et al., 2018; Zhang et al., 2018;
Wang and Huang, 2019; Yan et al., 2019). During IFS, a serial of
feature sets F = [f1, f2, . . . , fN] were constructed. N ranged from
1 to 1000. For each feature set, we constructed corresponding
support vector machine (SVM) classifiers using the R function
svm with default parameters in package e10712 and evaluated
the performance using leave-one-out cross validation (LOOCV).
Therefore, we can get a serial of LOOCV accuracies which
corresponded to different feature sets with various numbers of
features. With the help of the IFS curve, we can balance the
model complexity and classification performance. If the number
of features was too small, the performance would be bad. If the
number of features was too large, too much noise would be
introduced and the performance would decrease. The optimal
selection would be achieved when the number of features was
small and the accuracy was high.

Functional Enrichment Analysis
The biological functions of the optimal MI signature genes were
analyzed using hypergeometric enrichment analysis (Shi et al.,
2018a,b). The significance of the signature genes onto Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways, Gene
Ontology (GO) biological process (BP), molecular function (MF),
and cell component (CC) were represented with hypergeometric
p values.

1http://www.ipipan.eu/staff/m.draminski/mcfs.html
2https://cran.r-project.org/web/packages/e1071/index.html

RESULTS

Feature Ranking Based on MCFS
Method
In this study, we exploited newly published gene expression
profiles of patients with MI (Vanhaverbeke et al., 2019). Each
patient was represented by 30,905 gene expression features. We
integrated expression profiles of all patients into one matrix for
quantile normalization followed by applying the MCFS method
for ranking analysis. Each feature was assessed by estimating the
relative importance (RI) value. After evaluating all features, we
generated a feature list F in descending order of RI values of
features. The ranked features with RI values were provided in
Supplementary Table S1.

Establishing Classifier Using SVM With
IFS
According to the feature list obtained by the MCFS algorism, the
IFS method was employed to identify optimal feature sets which
could train the best performance for SVM. To save computing
time, we established the series of feature subsets (F1, F2, F3, . . .,
F1000) based on the top 1 to 1000 genes in F. For each feature
set, we established a classifier by SVM algorithm and estimated
optimal parameters through Leave-One-Out Cross-Validation
(LOOCV). The LOOCV accuracies on multiple feature subsets
were shown in Figure 1, from which we can see that the accuracy
reached a plateau area when the top 134 features were used for

FIGURE 1 | The IFS-curve obtained by IFS method. The X-axis represents the
number of features participating in the classification. The Y-axis represents the
LOOCV accuracy produced by SVM. The accuracy reached 0.831 when the
top 134 features were used. When even more features were added, the
accuracy did not increase too much. It reached the plateau area. Therefore, to
balance the number of features and the accuracy, 134 features were selected.
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TABLE 1 | The confusion matrix of the predicted results using the 134 features.

Predicted D0* Predicted D30** Predicted Y1***

Actual D0* 47 12 6

Actual D30** 2 58 4

Actual Y1*** 1 3 33

*, acute MI; **, 30-days post-MI; ***, 1-year post-MI.

building the classifier. The 134 optimal features were listed in
Supplementary Table S2. The confusion matrix of the predicted
results using the 134 features was shown in Table 1. It can be seen
that all three classifiers had a great performance.

Cluster Analysis With Optimal Features
In order to confirm the performance of identified optimal
features/genes representing different phases of samples, we

performed cluster analysis on expression profiles of 134 optimal
genes in 166 samples which incorporate three phases of MI
(D0: acute MI, D30: 30-days post-MI, and Y1: 1-year post-MI).
We used a heatmap to visualize the expression of such optimal
genes among three groups of samples (Figure 2). The cluster
tree illustrated that most samples belonging to the same phase
can be clustered together and different phases were classified into
different branches. In addition, these optimal genes were also
classified into three clusters which correspond to high expression
in three phases. The largest gene cluster with 90 genes was highly
expressed in D0, the cluster with 16 genes had a high expression
of D30, and the cluster with 28 genes was highly expressed in Y1.

The expression levels of genes like KLHL8, HCLS1, MOB3A,
IL17RA, ETF1, ZFAS1, CRK, MXD1, UBXN2B, FCAR, and
EXTL3 decreased in post-MI while the expression levels of
genes like DCK and RNU4-7P increased in post-MI. We plotted
the boxplots of several representative genes in Figure 3. For

FIGURE 2 | Heatmap of all MI samples on the top 134 genes. The columns refer to samples and the rows refer to genes. Different phases of samples were colored
by green (D0 represents acute MI), red (D30 represents 30-days post-MI), and blue (Y1 represents 1-year post-MI), respectively. It can be seen that the samples from
different time points had different expression patterns. For each time point, there was a corresponding cluster with highly expressed genes at this time point.

Frontiers in Physiology | www.frontiersin.org 4 June 2020 | Volume 11 | Article 48318

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00483 June 1, 2020 Time: 18:15 # 5

Li et al. Post-MI Blood Expression Signatures

FIGURE 3 | The boxplots of representative post-MI expression patterns. The expression level of genes like DCK (A) and RNU4-7P (B) increased in post-MI while the
expression levels of genes like FCAR (C) and IL17RA (D) decreased in post-MI. These expression patterns may reveal the mechanisms of MI.

example, in Figure 3C, the expression levels of FCAR on D0 was
significantly higher than on D30 and the expression levels on
D30 was significantly higher than on Y1. There was a consistent
post-MI trend of FCAR. These expression patterns may reveal the
mechanisms of MI. FCAR is a member of the immunoglobulin
superfamily and encodes a receptor for the Fc region of IgA. The
cell surface receptors for immunoglobulin, such as the protein

of FCAR, can activate many inflammatory processes involved
in atherosclerosis and coronary artery disease (Daëron, 1997;
Gavasso et al., 2005). The variation in FCAR which causes an
amino acid alteration was found to increase the risk of MI
and coronary heart disease, indicating the potential functional
role of FCAR in the development of cardiovascular disease
(Iakoubova et al., 2006, 2008).
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Functional Enrichment Analysis on
Optimal Features
We next performed functional enrichment analysis on these 134
optimal features/genes. A hypergeometric distribution test was
applied to calculate p value to determine the significantly
enriched entries. Firstly, we performed Gene Ontology
enrichment analysis on the gene set. In biological progress
aspect, the top 3 GO terms were GO: 0044264, GO: 0046903,
and GO: 0005976, which correspond to cellular polysaccharide
metabolic process, secretion, and polysaccharide metabolic
process, respectively (Supplementary Table S3). The top GO
term of cellular component was GO: 0005964, corresponding to
phosphorylase kinase complex (Supplementary Table S4). The
most significantly enriched GO term of molecular function was
GO: 0004908, which was annotated to interleukin-1 receptor
activity (Supplementary Table S5). Secondly, KEGG enrichment
analysis was applied to discover the signaling pathways involved
in these optimal genes. In this part, we found the insulin
signaling pathway (hsa04910) was the top enriched KEGG
pathway (Supplementary Table S6).

Analysis of Gene Interaction Networks
To investigate the correlation of optimal genes, we applied gene
interaction analysis on 134 features/genes to construct gene
interaction networks. Proteins encoded by such classes of genes
were input into a STRING database (Szklarczyk et al., 2018),
mining interaction relationship. Although part of the genes
showed no association with other genes, we found an interaction
network consisting of dozens of genes and predicted three hub
genes, including IL1R1, TLR2, and TLR4 (Figure 4), which may
interact with each other to play a non-negligible role in the
progression of MI.

IL1R1, TLR2, and TLR4 showed promising associations
with MI. It was reported that the knockout of IL1R1 caused
a reduction of leukocyte production after MI, leading to a
decreased inflammation with better outcome (Sager et al., 2015).
In another mice study, the up-regulated IL1R1 at 7 days post-MI
prolonged the inflammation by suppressing neutrophil apoptosis
(Iyer et al., 2015).

TLR2 plays a fundamental role in the activation of
innate immunity (Binder et al., 2002). There are usually
high levels of cytokines that result in inflammation in
MI patients; TLR2 served as a key receptor to activate the
corresponding pathways (Pagano et al., 2012). The experimental
data indicated that circulatory TLR2 is relevant to different
manifestations of myocardial I/R injury (Arslan et al., 2010).
And the inhibition of TLR2 has beneficial effects on I/R
injury in a murine model of MI (Arslan et al., 2009). TLR2
is the key receptor which can induce the inflammation
after MI, therefore many MI-related genes show close
interactions with TLR2.

TLR4 regulates the cytokines after cardiac damage (Arslan
et al., 2010). Activation of TLR4 was related to myocytic
inflammatory reaction in MI patients 14 days after onset,
suggesting that TLR4 signaling plays a role in the progress after
MI (Satoh et al., 2006).

DISCUSSION

Optimal Genes Associated With
Classification of MI
Using the feature selection, 134 genes were extracted and
exhibited an excellent performance in our prediction model
of SVM, suggesting that these genes may participate in the
progression of MI. Here, we took some of the selected genes as
examples to give a detailed discussion to validate the relevance
of a given gene in distinguishing different pathological phases of
MI. Through a literature review, several experimental evidences
or analysis results have been found to confirm the reliability
of our prediction.

DLGAP1-AS1
The top ranked feature identified by our computational analysis
turned out to be DLGAP1-AS1, an RNA gene which is affiliated
with the lncRNA class. A recent publication has reported that
high expression of lncRNA DLGAP1-AS1 was detected in rats
with acute ischemia-reperfusion (I/R) injury. And decreased
DLGAP1-AS1 can alleviate vascular endothelial cell injury via
PI3K pathway (Shen et al., 2020). The cause of I/R injury is
mainly attributed to the reperfusion of the MI area, and vascular
endothelial cells are the key defense with the occurrence of I/R
injury (Carden and Granger, 2000; Causey et al., 2012). So, it
came to the inference that down-regulated DLGAP1-AS1 serves
as the protective regulator to mediate vascular endothelial cells
in preventing I/R injury after the MI. This builds relevance for
the alteration in DLGAP1-AS1 expression in the progression of
MI. Besides that, gene DLGAP1 showed significant differential
expression in Flk-1 knockout mice under the treatment of heart
perfusion (Thirunavukkarasu et al., 2008). Flk-1 is one of the
most important receptors that trigger cardioprotective signals
and plays a crucial role in I/R injury (Shalaby et al., 1995; Addya
et al., 2005), as DLGAP1-AS1 can target DLGAP1 and regulate
its expression. This finding provided further support to suggest
DLGAP1-AS1 was closely related to the progression of MI.

PYGL
The following ranked gene was Glycogen Phosphorylase L
(PYGL), which encodes a homodimeric protein that is involved
in galactose metabolism (Tomihira et al., 2004). Early research
has mentioned the application of glycogen phosphorylase in the
diagnosis of myocardial ischemic injury and infarction (Krause
et al., 1996; Mair, 1998). Recently, PYGL was reported to display
an up-regulated expression in an acute MI cohort compared
to normal controls (Zhang et al., 2017). Another study has
demonstrated that up-regulated PYGL may induce the RIP1-
dependent necrosis after I/R injury, implying that PYGL is
associated with the subsequent progress after AMI and I/R injury
(Oerlemans et al., 2012). This evidence proves our prediction
results were reasonable.

MEGF9
MEGF9 was also identified as an important gene related to the
classification of MI. MEGF9 is a protein coding gene and is
associated with Fiedler’s Myocarditis disease. Some studies have
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FIGURE 4 | Gene networks containing IL1R1, TLR2, TLR4, and other related genes. These gene interactions were extracted from the protein-protein interaction
network reported in a STRING database and plotted by the online drawing tool of STRING. IL1R1, TLR2, and TLR4 were located in the center positions and were
hub genes.

observed differentially expressed MEGF9 and identified it as the
key gene involved in AMI and MI (Cheng et al., 2017; Qiu and
Liu, 2019). As demonstrated by genome-wide linkage analysis in
autosomal dominant congenital heart defects, the risk region in
chromosome 9q was found and MEGF9 turned out to be one
of the candidate genes in this position. However, no mutations
were found in this gene through the sequence analysis, suggesting
that MEGF9 may play its role by post-transcriptional regulation
instead of at the genome level (Van De Meerakker et al., 2011).
Hence, the specific expression pattern could be a signature for
diagnosing MI and even distinguishing different phases of MI.

PHC2
Next, another gene called PHC2, which is associated with the
metabolism of proteins, was selected by our computational
analysis. PHC2 was reported as one of the differentially expressed
genes in patients with MI compared to controls by bioinformatics
screening (Wu et al., 2018). Another study also confirmed the key
role of PHC2 in the pathogenesis of MI through protein-protein
interaction network analysis (Qiu and Liu, 2019). These results
implied that PHC2 may act as a hub gene which can mediate some
other genes’ interaction and regulate downstream pathways, and
then influence the progress of MI. Our analysis highlighted the
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importance of PHC2, pointing out that this specific gene may be
applied as a marker for the prediction of recurrent MI.

Through literature review and reasonable inference, the
selected genes mentioned above were all found to play crucial
roles in the progress of MI and show the discriminative ability
to indicate the pathological degree of disease. It validated the
reliability of our prediction model. Considering the length
limitation of the article, we can’t give extended descriptions
of all 134 selected genes. We believed that these 134 selected
genes were meaningful during the development of MI and
its subsequent progression, and they will contribute to the
research of molecular mechanism and provide benefits for the
therapy of disease.

Gene Ontology Enrichment Analysis
Given that the selected 134 genes were deemed as important
features for the classification of different phases of MI, we
performed GO and KEGG functional enrichment analysis to
explore the key biological processes or pathways during the
progress of disease. As shown in Supplementary Tables S3–S6,
we analyzed the enriched GO terms and KEGG pathways which
showed statistical significance. A detailed discussion was given
about the linkage between certain functional sets and MI.

Based on the enrichment results of 134 selected genes, we
found some GO biological process terms with high scores
turned out to be involved in the polysaccharide metabolic
process, including GO: 0044264 and GO: 0005976. As early
as 1965, scientists have noticed the important role of glucose
load in MI (Cohen and Shafrir, 1965). Recent studies reported
that certain polysaccharide compounds can affect myocardial
injury via regulating the inflammation response (Li et al., 2011;
Lim et al., 2016). As demonstrated by experiments on rat,
the polysaccharide extract from Momordica charantia down-
regulated the expression of NF-kappaB and ameliorated oxidative
stress and inflammation, which caused a cardioprotective effect
against MI (Raish, 2017). Polysaccharide metabolism plays an
important role during the progression of MI, so the biological
processes related to polysaccharide metabolism are meaningful
and can be used to indicate the progression of disease based on
its specific pattern.

Apart from GO terms that belong to biological processes, we
found these 134 genes are also enriched in a cellular components
term GO: 0005964 with the highest probability. GO: 0005964
refers to phosphorylase kinase complex. For cardiomyocytes,
the storage of glycogen is important during the emergency
situation. Increasing Ca2+ concentration in cytosol can induce
glycogenolysis by the activation of phosphorylase kinase, which
can alleviate myocardial damage during MI or cardiac surgery
(Raish, 2017). In fact, some phosphorylases have been applied
in the diagnosis of myocardial ischemic injury and infarction
since the serum level of phosphorylase showed a signature
with the diseases (Krause et al., 1996). It is reasonable for
the MI-related genes to be enriched in such GO term that
would mean the phosphorylase play a crucial role during the
progression of MI.

The most enriched GO terms of molecular function turned
out to be interleukin-1 (IL-1)-related functions including GO:

0004908 and GO: 0019966, which represent IL-1 receptor activity
and IL-1 binding, respectively. An interleukin-1 receptor gene
ST2 was increased in the serum after MI, suggesting that this
gene may participate in innate immunity during myocardial
injury (Weinberg et al., 2002). What’s more, ST2 was reported
to be able to predict the clinical outcome in AMI due to its
role in cardiac pathophysiology (Shimpo et al., 2004). Many
publications have observed the elevated serum level of IL-1
receptor in patients with AMI (Shibata et al., 1997; Balbay
et al., 2001). These findings proved the important role of IL-1
in the progression of MI, and confirmed the relation between
selected genes and MI.

KEGG Pathways Enrichment Analysis
The KEGG pathways enrichment analysis provided various
pathway results. Among these, the highest enriched pathway
turned out to be hsa04910, which is an insulin signaling pathway.
Increased insulin can promote the metabolism of glucose to
maintain the balance of blood glucose. The connection between
abnormal insulin signaling and heart disease has already been
reported, in that diabetes mellitus significantly increased the
risk of ischemic heart disease (Miettinen et al., 1998). Insulin
can protect cardiomyocytes from apoptosis through activating
downstream pathways such as PI3K and Akt (Yao et al., 2014).
It was reported that impaired insulin signaling will cause the
dysfunction of mitochondria after MI due to the reduced glucose
transport and oxygen content (Sena et al., 2009). Thus, the insulin
signaling pathway is important during the progression of MI and
influences the pathological degree of disease.

CONCLUSION

Taken together, the gene features yielded by our model showed
strong relevance to the pathological progression of MI, suggesting
their discriminative ability in the classification of different phases
of disease. This validated the reliability of our machine learning
model and proved that it can be used as a novel approach to
predict the status of MI patients. Our work will contribute to
the precise diagnosis and help to decide on the optimal treatment
for each patient with MI. In addition, the genes identified by our
analysis provided new understanding about the pathogenesis of
MI and established a solid foundation for future research.
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Systematic classification of colon and rectal cancer-associated signatures is critical for
the classification and prognosis of cancer patients. In this study, we identified a panel
of 29 colon and rectal cancer-associated signatures from bioinformatics analyses on
both TCGA and GEO datasets. Based on the signatures, we developed a machine
learning method to classify colon and rectal cancer into three immune subtypes named
High-Immunity Subtype, Medium-Immunity Subtype, and Low-Immunity Subtype,
respectively. Reconfirmed by different datasets, this classification was associated with
the tumor mutational burden (TMB) and many cancer-associated pathways. Compared
to Medium-Immunity and Low-Immunity, patients with High-Immunity Subtype have a
greater immune cell infiltration and better survival prognosis. In addition, a prognostic
signature of six differentially−expressed and survival-associated genes among the three
cancer subtypes (CERCAM, CD37, CALB2, MEOX2, RASGRP2, and PCOLCE2) was
identified by the multivariable COX analysis, which was further used to develop an
accurate model to predict the prognosis of colon and rectal cancer patients.

Keywords: Colon and rectal cancer, signature, prognosis, immunogenomic profiling, machine learning

INTRODUCTION

Colon and rectal tumors are among the most lethal and common malignancies after lung and
prostate cancer (Sanoff et al., 2007; Wilkinson et al., 2010; Bray et al., 2018). It has been estimated
that 53,990 new cases would be diagnosed in 2019 in the United States alone (Yothers et al., 2013).
Distant metastasis is the main factor affecting the overall survival (OS) of patients with colon
cancer, and prevention can reduce its incidence (Sanoff et al., 2007; Bray et al., 2018). Nevertheless,
mortality remains high in case of advanced disease (Wilkinson et al., 2010). In patients with locally
advanced or distantly metastatic colon cancer, conventional treatments are often insufficient to
achieve a curative effect (Pagès et al., 2018; Wang Y. et al., 2018). Consequently, early detection
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and monitoring of the development of colon cancer using
sensitive biomarkers could increase the proportion of patients
diagnosed before the onset of aggressive disease.

Immunotherapy is a significant part of precision medicine in
oncotherapy, enhancing the ability of the host immune system
to fight advanced cancer types (Becht et al., 2016; Gutting et al.,
2019). In recent decades, cutting-edge immunotherapies offered
the promise of alternative treatment methods for many types
of cancer (Sharma and Allison, 2015; Palucka and Coussens,
2016). Recent studies indicate that inhibiting immune checkpoint
receptors expressed on T cells can boost the elimination of
colon cancer cells in vivo. Furthermore, programmed cell death
protein 1 (PD-1) and cytotoxic T lymphocyte associated antigen-
4 (CTLA-4) have been proved as effective targets for the treatment
of patients with immunogenic tumors, especially in mismatch
repair-deficient colon cancer and melanoma (Brahmer et al.,
2012; Sasidharan Nair et al., 2018). Some studies also showed
that MSI tumor classification may be a predictive biomarker
for PD-1 inhibition because of its association with increased
expression of PD-1 and other immune-checkpoint molecules
(Basile et al., 2017; Chouhan and Sammour, 2018). At the same
time, multiple studies investigated tumor immunology in colon
cancer (Kather and Halama, 2019). The colon is not only one of
the most significant digestive organs, but also contains the largest
accumulation of immune cells in the body, which regulate this
very large immune barrier (Fletcher et al., 2018). Some studies
have showed that ulcerative colitis, which is partly considered
an autoimmune disease, can promote the development of colon
cancer, but the underlying signaling mechanism needs further
research (Bopanna et al., 2017; Lopez et al., 2018). Due to the
abundant immune cells in the colon cancer microenvironment
(Fridman et al., 2012), the type, density, and location of
diverse immune cells is a promising resource for predicting
the clinical outcomes. In addition, the evaluation of the extent
of tumor-infiltration by T-lymphocytes, macrophages and mast
cells could be considered as a significant biomarker for TNM
staging and prognosis (Yang et al., 2017; Han et al., 2018).
Indeed, the density of T-lymphocytes and mast cells should be
treated as a widely available prognostic biomarker in colon and
rectal cancer, which is related to their functions in immune
suppression, inflammation, and tumor development (Marech
et al., 2014; Lv et al., 2019). The cancer microenvironment
also commonly consists of stromal cells originating from the
mesenchyma, which can regulate immune cell trafficking and
activation to influence the prognosis of different cancer types
and disease stages (Greten et al., 2004; Koliaraki et al., 2015). In
order to promote the development of effective immunotherapy
strategies, it is important to investigate the immunomodulatory
role of the immune and stromal compartments of tumors. By
combining different immunotherapeutic methods with other
therapeutic approaches, and paying attention to the association
between immunotherapy response and the tumor mutation
burden (TMB), it is possible to significantly improve the efficacy
of cancer therapy.

In this study, we used the “Cell type Identification by
Estimating Relative Subsets of RNA Transcripts (CIBERSORT)”
algorithm, which employs support vector regression and has

already been employed for immune score model construction
in several cancer types (Newman et al., 2015; Zeng et al.,
2018). Furthermore, we classified both rectal and colon
cancer into three distinct subtypes: High-Immunity Subtype,
Medium-Immunity Subtype, and Low-Immunity Subtype using
immunogenomic profiling based on “Estimation of Stromal
and Immune cells in Malignant Tumors using Expression data
(ESTIMATE)” (Yoshihara et al., 2013; Vincent et al., 2015).
We employed CIBERSORT and ESTIMATE to evaluate the
proportions of immune cells and subtype-specific molecular
features in samples from 870 colon and rectal cancer patients
and 70 normal controls based on gene expression profiles
available in public databases. This investigation aimed to
assess the potential clinical utility of differentially expressed
genes form distinct subtypes for prognostic stratification and
their potential as biomarkers for targeted colon and rectal
cancer therapy. Additionally, we explored underlying functional
signaling mechanisms via bioinformatic analyses. The results of
this study lay a great promise and foundation for subsequent
in-depth immune-related studies for the precision treatment of
colon and rectal cancer.

MATERIALS AND METHODS

RNA-Sequencing Data and
Bioinformatics Analysis
Transcriptomic RNA-sequencing data of colon cancer and rectal
cancer patients were obtained from The Cancer Genome Atlas
(TCGA)1, which contained data from a colon adenocarcinoma
(COAD, n = 467) cohort and rectal adenocarcinoma (READ,
n = 172) tissues. The exclusion criteria were normal COAD and
READ samples and an OS of <30 days. Besides level 3 HTSeq-
FPKM data were transformed into TPM (transcripts per million
reads) for the following analyses. The TPM data for 430 patients
with COAD were employed for further analyses. Gene expression
datasets of colon cancer and rectal cancer patients obtained using
an GPL570 platform were searched against the gene expression
omnibus (GEO)2. The raw CEL files of matching microarray
data were processed using the robust multichip average algorithm
(Irizarry et al., 2003). Then, microarray presets could be mapped
to gene symbols according to the platform annotation file and
normalized employing a robust multi-array averaging method
using the “affy” and “simpleaffy” packages (Irizarry et al., 2003).

Implementation of Single-Sample Gene
Set Enrichment Analysis (ssGSEA)
The R package gsva was used for quantitative ssGSEA of
infiltrating immune cell types. The gene signatures of immune
cell populations could be applied to individual colon and rectal
cancer samples with the ssGSEA (Barbie et al., 2009; Bindea et al.,
2013). The enrichment levels of 29 immune signatures which
are related to innate immunity [CD56 bright natural killer (NK)
cells, NK cells, CD56dim NK cells, plasmacytoid dendritic cells

1https://cancergenome.nih.gov/
2https://www.ncbi.nlm.nih.gov/geo/
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(DCs), activated DCs, immature DCs, neutrophils, eosinophils,
monocytes, mast cells, and macrophages] and adaptive immunity
(activated B cells, immature B cells, activated CD4+ T cells,
effector memory CD4+ T cells, central memory CD4+ T cells,
central memory CD8+ T cells, effector memory CD8+ T cells,
activated CD8+ T cells, T follicular helper cells, NK T cells, Tγδ,
Th1, Th2, Th17, and Treg), were quantified in each sample based
on the ssGSEA score. Finally, hierarchical clustering of colon and
rectal cancer was conducted on the basis of ssGSEA scores of the
29 immune signatures.

Evaluation of Immune Cell Infiltration
Levels, Tumor Purity, and Stromal
Content in Colon and Rectal Cancer
Estimation of Stromal and Immune cells in Malignant Tumors
using Expression data was employed to analyze the stromal
content (stromal score), tumor purity, and immune cell
infiltration level (immune score) for colon and rectal cancer
sample (He et al., 2018).

Comparison of the Proportions of
Immune Cell Subsets Between Colon
and Rectal Cancer Subtypes
The transcriptomic RNA-sequencing data with standard
annotation were uploaded to the CIBERSORT web portal3, and
the algorithm was run employing the LM22 signature with 1000
permutations (Newman et al., 2015). The inferred fractions
of immune cell populations produced by CIBERSORT were
considered accurate if the CIBERSORT output had a p < 0.05
(Ali et al., 2016), and were considered eligible for further analysis.
The final CIBERSORT output estimates were normalized for
each sample to add up to one, enabling their direct interpretation
as cell fractions for comparison across different datasets and
immune cell types. For parts of each immune cell type, the
optimal cut-off value was made as the point with the most
important split (log-rank test) (Budczies et al., 2012).

Identification of Differentially Expressed
Genes
The statistical software R (version3.5.2) and the Bioconductor
linear model package for microarray data “limma”4 were used
to identify the differentially expressed genes (DEGs) between
the High-Immunity Subtype and Low-Immunity Subtype
(FDR < 0.05) colon and rectal cancer tissues in TCGA (He
et al., 2018). DEGs were defined by a p-value < 0.05 and
|log2FoldChange| > 1. For genes corresponding to multiple
probe sets, the average data of the multiple probes were used as
the gene expression values (Wei et al., 2018). The values of genes
over 20% of the total samples were eliminated (Qin et al., 2012).
After pre-processing the data, the Wilcoxon signed rank test was
used to select significant DEGs using the “limma” package in
Bioconductor (He et al., 2018).

3http://cibersort.stanford.edu/
4http://www.bioconductor.org/

Identification of Colon Cancer
Subtype-Specific Gene Ontology and
Networks
The step-by-step method of the weighted gene co-expression
network analysis (WGCNA) in R was employed to identify
the gene modules (gene ontology) and construct the module
and network that were significantly related with the genes
highly correlated with immune cell infiltration based on
gene co-expression analysis (He et al., 2018). The adjacency
matrix and the topological overlap matrix (TOM) was used to
calculate according to the corresponding soft threshold, and the
corresponding dissimilarities between each gene were calculated.
We employed the dynamic tree cut method, and the branches of
the hierarchical cluster tree would be cut to identify modules.

Gene Set Enrichment Analysis
H: Hallmark gene sets; C2: curated gene sets [including Kyoto
Encyclopedia of Genes and Genomes (KEGG)]; C5: Gene
Ontology (GO) gene sets; C7: immunologic signatures gene sets
v6.2 collections were downloaded from Molecular Signatures
Database as the target gene sets with which GSEA performed
using the software gsea-3.0. The whole transcriptome of all tumor
samples was used for GSEA, and only gene sets with NOM
p < 0.05 and FDR q < 0.05 were considered as significant.

Survival Analysis
The R package clusterProfiler was employed to conduct gene
functional enrichment analyses to identify biological themes
among gene clusters (Yu et al., 2012). The R package
survival receiver operating characteristic (ROC) was used to
calculate the AUC of the survival ROC curves to validate
the performance of the prognostic signature (Sun, 2017; Lin
et al., 2019). Kaplan–Meier curves were plotted to verify the
statistical relationship between genes and the OS of the high-
risk group and low-risk groups from the TCGA datasets with
the log-rank tests. Using multivariate Cox proportional hazard
regression to identify prognostic clinicopathologic factors for
OS in colon and rectal cancer patients. They were utilized
to verify the differences of survival between the patients in
the two different risk groups. The six-gene signature and
nomogram were developed from the final (forward and backward
elimination methods) Cox model to predict the OS of colon
and rectal cancer patients. Besides the performance of the
prediction model was validated internally and externally by
bootstrap method. Bootstrap-corrected OS rates were calculated
by averaging the Kaplan-Meier estimates based on 2000
bootstrap samples.

RESULTS

Immunogenomic Profiling Identifies
Three Colon and Rectal Cancer Subtypes
Figure 1 shows a schematic representation of the process
for selecting colon and rectal cancer samples. A total of
735 patients with complete overall survival information were
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FIGURE 1 | Flow diagram of the analysis procedure: data collection, preprocessing, and analysis. DEGs, differentially expressed genes; ROC, receiver operating
characteristic; TCGA, The Cancer genome atlas; GEO, Gene Expression Omnibus.

included from TCGA, GSE17536, and GSE109057. A total of 29
immune-associated gene sets, representing diverse immune cell
types, functions, and pathways, were analyzed in the datasets via
the ssGSEA scores (Yoshihara et al., 2013; Vincent et al., 2015)
to quantify the enrichment levels of immune cells, pathways or
functions in the colon and rectal cancer samples. The ssGSEA
scores of the 29 gene sets from these microarray datasets were
then used to conduct hierarchical clustering, which revealed three
types of colon and rectal cancer (Figure 2). We classified the
three clusters as: High-Immunity Subtype, Medium-Immunity
Subtype, and Low-Immunity Subtype, and the immune scores
were higher in High-Immunity Subtype and lower in Low-
Immunity Subtype (Yoshihara et al., 2013; Vincent et al., 2015).
In addition, we found that tumor purity and stromal score
of the three colon and rectal cancer subtypes had opposite
trends (Figure 2).

Composition of Immune Cells in Three
Colon and Rectal Cancer Subtypes
The result showed that the High-Immunity Subtype have
significantly higher immune scores than Low-Immunity Subtype

in colon and rectal cancer (Figures 3A,B). Mann–Whitney
U test. ∗∗p < 0.01; ∗∗∗p < 0.001; p ≥ 0.05, not significant.
Besides the levels of TMB were similar with immune scores
in High-Immunity Subtype and Low-Immunity Subtype, which
showed that the TMB was associated with different Immunity
types Figures 3C,D. Kruskal–Wallis rank sum test. ∗∗p < 0.01;
∗∗∗p < 0.001; p ≥ 0.05, not significant. Owing to the
significant value of 29 immune-associated gene, we tended to
establish a comprehensive exploration of these genes’ molecular
characteristics. The result of genetic alterations testing showed
that Missense Mutation was commonly occurring type of
mutation (Figure 3E). Besides We embarked on the immune
cell constitution in colon and rectal cancer tissues versus normal
colon tissues in Figure 4B. From the results, the fractions of M1
macrophages, activated CD4+ memory T cells, M1 macrophages,
activated NK cells, and neutrophils were consistently higher in
the High-Immunity Subtype than in the Low-Immunity Subtype
in colon cancer. The fractions of activated CD8+ memory T cells,
B cells and Plasma cells were consistently higher in the High-
Immunity Subtype than in the Low-Immunity Subtype in rectal
cancer. And a summary of the immune cell composition in tumor
cases showed that macrophages M1, macrophages M2, mast cells,
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FIGURE 2 | Hierarchical clustering of colon and rectal cancer yields three stable subtypes in four different datasets named High-Immunity Subtype,
Medium-Immunity Subtype and Low-Immunity Subtype. Tumor purity, Stromal score, and Immune score were evaluated by ESTIMATE. (A) The colon cancer
patients in TCGA-COAD database. (B) The rectal cancer patients in TCGA-READ database. (C) The colon cancer patients in GSE17536 database. (D) The colon
cancer patients in GSE109057 database.

T cells and neutrophils were most common immune cell fractions
in colon and rectal cancer in Figures 4A,D. Besides different
types of immune cells affect each other’s fractions, macrophages
M0 in high fractions may decrease the fractions of activated
CD8+ memory T cells (Figures 4C,E).

Expression of Genes on Immune Cells
Showed Significantly Higher Expression
Levels in High-Immunity Subtype
We found that the expression of most HLA genes were
significantly higher in High-Immunity Subtype than in Low-
Immunity Subtype (Kruskal-Wallis test, P < 0.001) (Figure 5).
Besides the expression of various immune cell subpopulation
marker genes (Yoshihara et al., 2013) were the highest in High-
Immunity Subtype and the lowest in Low-Immunity Subtype,
such as CD8A (CD8+ T cells), TNFSF14 (APC co stimulation),
CD79A (B cells), CD28 (Tumor Infiltrating Lymphocyte),
and CD28 (T cell co-stimulation) in colon and rectal cancer
(Figure 5). ANOVA test. P < 0.01; ∗P < 0.05; ∗∗P < 0.01;
∗∗∗P < 0.001.

Identification of Subtype-Specific
Pathways, and Gene Ontology of Colon
and Rectal Cancer
We employed the GSEA to indent the KEGG pathways
and gene ontology enriched in High-Immunity Subtype and
Low-Immunity Subtype (Figures 6A,B). Notably, the positive

regulation of humoral immune response, up-regulation of mast
cell activation associated with immune response, regulation
of T-helper 1,2 cell differentiation and establishment of T
cell polarity. Besides the pathways on Immunity moderation
were highly increased in High-Immunity Subtype and included
antigen processing and presentation pathways, NF-kappa B
signaling, p53 signaling pathway, VEGF signaling pathway,
Hippo signaling pathway, PI3K-Akt and mTOR signaling
pathway and MAPK signaling pathway, which proved that the
immune activity was promoted in High-Immunity Subtype. And
some previous study proved that the promotion of PI3K-Akt
and MAPK cascades positively associated with the elevated of
various immune pathways (Sun, 2017). Besides the immune
scores were related with colon cancer Stage. The immune scores
of Stage IV was lower than Stage I. Based on the selection
criteria after preprocessing the raw data, we identified the
DEGs of High-Immunity Subtype and Low-Immunity Subtype
in TCGA-COAD and TCGA-READ. 2378 DEGs between High-
Immunity Subtype and Low-Immunity Subtype colon cancer
were identified in TCGA-COAD dataset. The DEGs were
analyzed for co-expression network analysis with employing
the WGCNA package, and finally, a total of 18 modules were
identified. The ME in the brown, yellow, red and pink modules
showed significantly higher association with cancer progression
than other modules. And more, the four modules with cancer
development was identified as the clinically significant module,
which was selected for further analysis (Figures 6C,E–F).
Kaplan–Meier curves for OS based on three colon cancer
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FIGURE 3 | Three Immunity subtypes show differential phenotypes. (A,B) Comparison of the immune cell infiltration levels between three colorectal cancer
subtypes. Mann–Whitney U test. (C,D) Comparison of the TMB levels between three colorectal cancer subtypes. Kruskal–Wallis rank sum test. **p < 0.01;
***p < 0.001; p ≥ 0.05, not significant. (E) Mutation landscape of immune-related genes.

immune subtypes. The High-Immunity Subtype had the best
survival, whereas other classes were associated with poor
outcome (Figure 6D). Log-rank test, p = 0.008. We screened hub
DEGs with excellent biomarker potential to evaluate prognosis
between three immunity types in colon cancer. A forest plot of
expression profiles based on multivariate Cox regression analysis
revealed that this immune-based prognostic index could be a
significant tool for the assessment of colon cancer prognosis
(Figure 6G). And the expression of six DEGs were higher
in High-Immunity Subtype than in Low-Immunity Subtype in
colon cancer (Figure 6H). ANOVA test ∗∗P< 0.01; ∗∗∗P< 0.001.

Correlation of Immune Cells Proportion
With Six-Gene Signature Expression
To further confirm the correlation of six-gene signature
expression with the immune microenvironment, and 22 kinds
of immune cell profiles in COAD samples were constructed. The
results from the difference and correlation analyses showed that
lots kinds of immune cells were correlated with the expression

of six-gene signature (Figure 7 and Supplementary Figures S1,
S2). Among them, T cells and Macrophages positively correlated
with CALB2, CD37, CERCAM, MEOX2, RASGRP2, PCOLCE2
expression. The blue line in each plot was fitted linear model
indicating the proportion tropism of the immune cell along
with six-gene signature expression, and Pearson coefficient was
used for the correlation test. These results further supported
that the levels of six-gene signature expression affected the
immune activity.

Prognostic Value of Overlapped DEGs
Between High-Immunity Subtype and
Low-Immunity Subtype in Colon and
Rectal Cancer
According to the multivariate Cox regression analysis, we
established a prognostic signature to divide the colon cancer
and rectal cancer patients into two groups with discrete clinical
outcomes with regards to OS (Figure 8). The prognostic index
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FIGURE 4 | Composition of immune cells in three colon and rectal cancer subtypes and correlation analysis. (A) Barplot showing the fractions of 22 immune cells of
colon cancer patients in TCGA-COAD database. Column names of plot were sample ID. (B) Comparison of the proportions of immune cell subsets between colon
cancer subtypes in TCGA-COAD. ANOVA test, P values are shown. *P < 0.05; **P < 0.01; ***P < 0.001; p ≥ 0.05, not significant. (C) Heatmap showing the
correlation between immune cells of colon cancer cases in TCGA-COAD database. The shade of each tiny color box represented corresponding correlation value
between two cells. (D) Barplot showing the fractions of 22 immune cells of colon cancer patients in TCGA-READ database. Column names of plot were sample ID.
(E) Comparison of the proportions of immune cell subsets between rectal cancer subtypes in TCGA-READ database. ANOVA test, P values are shown. *P < 0.05;
**P < 0.01; ***P < 0.001; p ≥ 0.05, not significant. (F) Heatmap showing the correlation between immune cells of colon cancer cases in TCGA-READ database.
The shade of each tiny color box represented corresponding correlation value between two cells.
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FIGURE 5 | Three colon and rectal cancer subtypes show differential phenotypes. (A) Comparison of the expression levels of HLA genes between colon cancer
subtypes in TCGA-COAD database. ANOVA test. (B) Comparison of the expression levels of genes on immune cells between colon cancer subtypes in
TCGA-COAD database. (C) Comparison of the expression levels of genes on immune cells between rectal cancer subtypes in TCGA-READ database. ANOVA test
P < 0.01; *P < 0.05; **P < 0.01; ***P < 0.001.

formula for colon cancer was as follows: Risk scores = [Status of
CERCAM× (0.3314)]+ [Status of CD37× (−0.5627)]+ [Status
of CALB2× 0.2474]+ [Status of MEOX2× (−0.5889)]+ [Status
of RASGRP2 × (1.0606)] + [Status of PCOLCE2 × (0.6738)].
This prognostic index based on the immune subtypes could
be a valuable tool for distinguishing among colon and rectal
cancer patients on the base of potential discrete clinical outcomes.
We calculated the risk scores of hub genes and divided the
patients into a high-risk group and a low-risk group on the
basis of the median risk score in colon and rectal cancer. The
correlation of gene expression and survival status is shown in
Figures 8A–D. The results of survival analysis proved that the

OS of the high-risk group was significantly lower than that of
the low-risk colon cancer patients (log-rank test, p < 0.001).
The area under the ROC curve was 0.731 in colon cancer,
which indicated a moderate power of the prognostic signature
based on DEGs between the high-immunity subtype and low-
immunity subtype in survival monitoring. The predictive power
of this index for the OS of colon and rectal cancer patients
was investigated in the validation cohort (Figures 8E–H). The
results of this prognostic index suggested a significant difference
between the high-risk group and low-risk group with regard
to the OS of rectal cancer patients in the validation cohort
(log-rank test, p < 0.05). A nomogram for predicting the
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FIGURE 6 | Identification of colon and rectal cancer subtype-specific pathways, gene ontology, DEGs and networks. (A) Gene ontology enriched in High-Immunity
Subtype and Low-Immunity Subtype of colon cancer in TCGA-COAD database. (B) KEGG pathways enriched in High-Immunity Subtype and Low-Immunity
Subtype of colon cancer in TCGA-COAD database. (C) Heatmap of the correlation between MEs and clinical traits of colon cancer. (D) Kaplan–Meier curves for OS
based on three colon cancer immune subtypes. The High-Immunity Subtype had the best survival, whereas other classes were associated with poor outcome
(log-rank test, p = 0.008). (E,F) Comparison of the immune cell infiltration levels between Stage and M-Stage in colon cancer. Wilcoxon rank sum or Kruskal–Wallis
rank sum test served as the statistical significance test. **p < 0.01; ***p < 0.001. (G) Forest plot of hazard ratios showing the prognostic values of five hub genes
with multivariable Cox analyses. (H) Comparison of the expression levels of five hub genes between colon cancer subtypes in TCGA-COAD database. ANOVA test.
**P < 0.01, ***P < 0.001.

3- and 5-year OS was established based on the independent
variables (Figure 9A). The age, Stage-T, Stage-M, Immunity Type
and Six-gene model were further included in the nomogram.
A weighted total score calculated from these factors was applied
to predict the 3- and 5-year OS of the colon cancer patients.
The nomogram cohort was divided into 4 equal groups for
validation. The error bars represent the 95% CIs of these
estimates. A closer distance between two curves suggests higher
accuracy (Figure 9B).

The Six-Gene Signature Had Potential to
Be Indicators of Immune
Microenvironment Modulation
Given the levels of prognostic index risk were negatively
correlated with the survival, GSEA was employed in the high-
risk and the low-risk groups compared with the median level
of risk scores. As shown in Figure 10A and Supplementary

Table S2, for GO collection defined by MSigDB the genes in high-
risk group were mainly enriched in immune-related activities,
such as the regulation of cytokine, 2 type response and mast cell
mediated immunity. For KEGG collection defined by MSigDB,
multiple immune functional singling pathways genes sets were
enriched in the high-risk group (Figure 10B and Supplementary
Table S2). For HALLMARK collection defined by MSigDB, the
genes were enriched in tumor progression-related pathways,
including angiogenesis, apoptosis, IL6-JAK and P53 singling
pathway (Figure 10C and Supplementary Table S2). For the
immunologic gene sets collection defined by MSigDB, multiple
immune functional gene sets were enriched in the high-risk
group (Figure 10D and Supplementary Table S2).

DISCUSSION

Although the significance of classification based on immune
signatures in tumor immunotherapy has been established, the
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FIGURE 7 | The correlation between immune cell proportion and the expression of six signature genes. The scatter plot showed the correlation of immune cell
proportion with the six-gene signature expression (p < 0.05). The blue line in each plot was fitted by a linear model indicating the proportion tropism of the immune
cell along with six-gene signature expression, and the Pearson coefficient was used for the correlation test.

functions and clinical significance of hub genes have not
been explored in colon and rectal cancer. This genome-wide
profiling study identified and classified DEGs in colon and
rectal cancer, which promotes our understanding of their clinical
significance and illuminates potential molecular characteristics.
The results show that colon and rectal cancer could be
classified into three stable subtypes, a High-Immunity Subtype,
Medium-Immunity Subtype, and Low-Immunity Subtype, which
were reproducible and predictable. The High-Immunity colon
and rectal cancer subtype was enriched in immune response
activating and regulating cancer-associated pathways, including
the Toll-like receptor signaling pathway, B cell receptor signaling
pathway, PI3K-Akt signaling pathway, and NF-κB signaling
pathway. Notably, the NF-κB signaling pathway is associated
with immune signatures in colon cancer, and it plays a
significant role in mediating tumor immunity (Sun, 2017).
Moreover, it has a significant negative correlation with the
proliferation and differentiation of immune cells as well as
the synthesis of immunoglobulins (Su et al., 2017; Wang and
Xia, 2018). Additionally, the PI3K-Akt signaling pathway can
affect the production of cytokines by T cells and participate
in immunosuppression, while mTOR plays a significant role in
regulating cell proliferation and protein synthesis, which makes

it a promising target for cancer treatment (Lucas et al., 2016;
Zheng et al., 2018). The immune signature of the Immunity
Low colon cancer subtype was decreased, but enriched in
type I interferon receptor binding and serine phosphorylation
of STAT protein, which is associates with the regulation of
oncogene transcription in tumor apoptosis, proliferation, and
angiogenesis (Yu et al., 2009; Li et al., 2017; Zhang et al.,
2018). These results indicate the existence of potential positive
or negative associations between activation of signaling pathways
and immunity in colon and rectal cancer.

The immune context plays a significant role in tumorigenesis
and progression, and these insights could influence tumor
immunotyping and clinical treatment (Dumauthioz et al., 2018;
Locy et al., 2018). Our results showed that the High-Immunity
Subtype had stronger immune cell infiltration and anti-tumor
immune activity, such as high levels of macrophages, B cells
and cytotoxic T cells. Many studies attempted to assess the
density of CD8+ and CD3+ lymphocytes in the tumor proper via
IHC staining, but the obtained data could not comprehensively
reflect the immune cell infiltration and anti-tumor immune
activities (Qin et al., 2013; Wong et al., 2018). CIBERSORT was
employed to evaluate the proportions of 22 immune cell subsets
in colon and rectal cancer, which indicated that CD8+ T cells,
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FIGURE 8 | The Survival analysis and prognostic performance of the six-gene signature of colon and rectal cancer. (A) The Kaplan–Meier test of the risk score for
the overall survival of colon cancer between high-risk and low-risk patients in TCGA-COAD database (log-rank test, p < 0.001); (B) The prognostic value of the risk
score showed by the time-dependent receiver operating characteristic (ROC) curve for predicting the 5 years overall survival. in TCGA-COAD database; (C) Risk
score curve of the six-gene signature of colon cancer in TCGA-COAD database; (D) Heatmap showed the expression of six genes by risk score of colon cancer in
TCGA-COAD database; (E) The Kaplan–Meier test of the risk score for the overall survival of rectal cancer between high-risk and low-risk patients in TCGA-READ
database (log-rank test, p < 0.001); (F) The prognostic value of the risk score showed by the time-dependent receiver operating characteristic (ROC) curve for
predicting the 5 years overall survival in TCGA-COAD database; (G) Risk score curve of the six-gene signature of rectal cancer in TCGA-READ database;
(H) Heatmap showed the expression of six genes by risk score of rectal cancer in TCGA-READ database.
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FIGURE 9 | (A) Nomogram for predicting 3- and 5-year OS in colon cancer. To calculate probability of OS, first determine the value for each factor by drawing a
vertical line from that factor to the points scale. “Points” is a scoring scale for each factor, and “total points” is a scale for total score. Then sum all of the individual
values and draw a vertical line from the total points scale to the 3-, and 5-year OS probability lines to obtain OS estimates. (B) The nomogram cohort was divided
into four equal groups for validation. The gray line represents the perfect match between the actual (y-axis) and nomogram-predicted (x-axis) survival probabilities.
Black circles represent nomogram-predicted probabilities for each group, and X’s represent the bootstrap-corrected estimates. Error bars represent the 95% CIs of
these estimates. A closer distance between two curves suggests higher accuracy.

M2 macrophages, M1 macrophages, M0 macrophages and mast
cells were present4 in higher numbers in the High-Immunity
Subtype than in the Low-Immunity Subtype, which confirmed
the elevated anti-tumor immune activity in the High-Immunity
Subtype. Macrophages represent the first line of defense against
foreign pathogens, recognizing a wide range of endogenous and
exogenous ligands via important effectors in innate immunity

(Duluc et al., 2009; Rhee, 2016). However, M2 macrophages
can release pro-angiogenic molecules and growth factors that
promote cancer development, as well as inhibit the antitumor
immunity of T cells and NK cells (Pollard, 2004; Lewis and
Pollard, 2006; Sica et al., 2006), which is in agreement with the
findings of this study. In addition, somatic mutations in tumor
DNA could give rise to neoantigens recognizable and targetable
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FIGURE 10 | GSEA for samples with high-risk and low-risk based on the prognostic index of six-gene signature. (A) The enriched gene sets in GO collection by the
high-risk sample. Each line representing one particular gene set with unique color, and up-regulated genes located in the left approaching the origin of the
coordinates, by contrast the down-regulated lay on the right of x-axis. Only gene sets with NOM p < 0.05 and FDR q < 0.05 were considered significant. And only
several leading gene sets were displayed in the plot. (B) The enriched gene sets in KEGG by samples with high-risk sample. And only several leading gene sets were
displayed in the plot. (C) Enriched gene sets in HALLMARK collection by samples of high-risk sample. Only several leading gene sets are shown in plot. (D) Enriched
gene sets in C7 collection, the immunologic gene sets, by samples of high-risk sample. Only several leading gene sets are shown in plot.

by the immune system with major histocompatibility complex
(MHC) (Wong et al., 2018). As a measure of somatic mutations
in cancer cells, TMB is useful in estimating tumor neoantigenic
load (Rhee, 2016), and thus critical for the identification of
patients likely to respond to immune checkpoint blockade (Wong
et al., 2018). In this study, the level of TMB is significantly
higher in High-Immunity Subtype than in Medium-Immunity
Subtype and Low-Immunity Subtype, confirming the relationship
between TMB and immunity.

To investigate the molecular mechanisms and clinical value
of potential targets, we established an immune-based prognostic
index to develop a convenient and reliable protocol for
monitoring the immune status and clinical outcomes in colon
and rectal cancer patients. The index is based on the fractions

of six genes identified among the differentially expressed
genes from the stable High-Immunity and Low-Immunity
subtypes, all of which were up-regulated in the High-Immunity
Subtype. However, the potential molecular mechanisms of
these genes remain poorly understood. Few studies on the
function and mechanism of CERCAM in colon and rectal
cancer have been published. CD37 belongs to the tetraspanin
SUPERFAMILY that is widely expressed and forms complexes
with other tetraspanins and MHC class II on mature B cells
(Xu-Monette et al., 2016). Some studies indicated that CD37 may
be associated with various different cellular processes, including
migration, adhesion, proliferation of lymphocytes and survival,
and it is significant for interactions between T- and B-cells as
well as for immunoglobulin G/immunoglobulin A production
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(van Spriel et al., 2004, 2009; van Spriel, 2011; Beckwith et al.,
2015). Cells with high expression of CALB2 (Calbindin-2) were
derived from primary colon tumors, and it could be a diagnostic
marker for malignant mesotheliomas (Chu et al., 2005; Blum
et al., 2018). Furthermore, CALB2 could be a modifier of 5-
fluorouracil sensitivity, promoting cell death in colorectal cancer
cells through activation of the intrinsic apoptotic pathway
following treatment with this chemotherapy agent (Stevenson
et al., 2011). The Mesenchyma MEOX2 (Homeobox 2) was
previously shown to be related to malignant progression and
clinical prognosis in lung cancer, hepatocellular carcinoma,
laryngeal carcinoma and gliomas (Tachon and Masliantsev,
2019). Furthermore, MEOX2 was also found to regulate the
migration and proliferation of endothelial cells with NF-
kB downregulation (Patel et al., 2005). Additionally, MEOX2
promoter sequences have been treated as part of a test for cancer-
specific DNA methylation cluster markers in colorectal cancer,
and it may regulate the resistance to chemotherapeutics such
as cisplatinum (De Carvalho et al., 2012; Ávila-Moreno et al.,
2014). RASGRP2 (RAS guanyl releasing protein 2), is a guanine-
nucleotide-exchange-factor that can activate small GTPases, such
as Ras and Rap (Irizarry et al., 2003). Additionally, RASGRP2 was
identified as a high-avidity target antigen for CD4+ T cells, and
its expression is thought to be upregulated by HLA-DR to activate
and propagate autoreactive CD4+ T cells (Jelcic et al., 2018).
Moreover, RASGRP2 is related to immune-mediated thrombosis
and thrombocytopenia, and mediates platelet and T-cell adhesion
with integrin-independent neutrophil chemotaxis via integrin-
mediated activation of Rap1 (Cifuni et al., 2008; Carbo et al.,
2010). Some studies have also shown that RASGRP2 could
promote the migratory, invasive and proliferative capacity
in vitro, as well as confer chemoresistance in prostate cancer,
metastatic melanoma, and colon cancer (Yang et al., 2008;
Wang et al., 2017; Wang L.X. et al., 2018). The upregulation
of PCOLCE2 expression leads to enhanced extracellular matrix
organization, which has in turn promotes cancer cells adhesion,
and may be employed to predict tumors with a propensity for
developing metastasis in lung cancer, gynecological cancers or
rectal cancer (Thutkawkorapin et al., 2016; Adhikary et al., 2017;
Lim et al., 2017; Zhang and Wang, 2019). Furthermore, we
established the nomogram to predict the survival more accurately
for colon cancer patients with visualization results, which can
further improve the compliance and therapeutic effect of patients.
For example, a 70-year-old (43 points in the model) colon cancer
patients with T3 stage (65 points), M0 stage (0 points), High-
Immunity Subtype (0 points) with high-risk (42 points) has a
total of 150 points, resulting in the estimated 3-, 5-year OS of
about 65.0 and 55%. The 3- and 5-year OS of patients with High-
Immunity Subtype were both remarkably improved combined
with low six-gene signature risk.

There are a number of limitations to this study. For example,
we screened the genes by identifying overlapping DEGs from
different stable immune subtypes. Although these genes were
able to identify the stable immune subtypes of colon and rectal
cancer and their prognostic powers was validated in this study,
the results are based on RNA-sequencing data, lacking functional
validation of the target genes. This should be addressed in

future studies. Furthermore, only limited data were used for
performance evaluation and it is necessary to collect more
datasets for a more comprehensive evaluation. Because of the lack
of in vitro or in vivo experiments, the reliability of the analysis of
molecular mechanism could be limited. And some prospective
study could be carried out to validate the findings of this
retrospective study. Functional experiments for the validation of
the identified DEGs and corresponding downstream signaling
pathways are needed to therapeutic targets and reveal novel
diagnostic for colon and rectal cancer. Although the multivariate
Cox proportional hazards regression analysis was employed
widely to identify key factors involved in the establishment of
a prognostic model, several machine learning algorithms might
achieve better prediction results, such as Decision Tree, Naïve
Bayes, and Random Forest. We will test these algorithms in
the future. In the future, many questions remain to be solved
on cancer immune therapy, including the correlation between
immunogenomics, proteomics, and metabolomics, which can be
used to understand the immunological changes in rectal and
colon cancer. We hope that our systematic analysis will be of
great help in promoting risk stratification, therapeutic decision-
making in patients with colon and rectal cancer.

CONCLUSION

This study demonstrates the utility of colon and rectal cancer
immune subtypes based on immune signatures in the diagnosis,
treatment evaluation, and prognosis. The proposed DEGs models
could assist in formulating more efficient therapeutic strategies
for improving the personalized management of colon and rectal
cancer patients.
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Using an allergic rhinitis (AR) model, we evaluated the pharmacological effects of
novel peptide drugs (P-ONE and P-TWO) at the small RNA (sRNA) level. Using high-
throughput sequencing, we assessed the sRNA expression profile of the negative
control, AR antagonist (positive control), P-ONE, and P-TWO groups. By functional
clustering and Gene Ontology and KEGG pathway analyses, we found that sRNA
target genes have a specific enrichment pattern and may contribute to the effects
of the novel peptides. Small RNA sequencing confirmed the biological foundations of
novel and traditional AR treatments and suggested unique pharmacological effects. Our
findings will facilitate evaluation of the pathogenesis of AR and of the pharmacological
mechanisms of novel peptide drugs.

Keywords: allergic rhinitis, peptide drugs, small RNAs, high-throughput sequencing, gene ontology, KEGG
pathway

INTRODUCTION

Allergic rhinitis (AR) (Maoz-Segal et al., 2019) is defined as inflammation of the nasal mucosa
induced by an allergic reaction; it is also known as anaphylaxis (allergy) (Turner et al., 2019). Based
on the clinical symptoms, AR can be classified into four groups based on its persistence and severity
(Settipane and Charnock, 2016; Jung et al., 2020). For instance, AR of > 4-week duration is classified
as persistent and AR with only mild symptoms as mild. These classifications can be combined;
for instance, mild persistent AR (Settipane and Charnock, 2016). According to an independent
survey, one in five people in Australia (Smith et al., 2017; Price et al., 2018) and one in three in
the United States (Han et al., 2016) suffer or have suffered from AR, typically accompanied by
asthma and allergic complications (Hill et al., 2016). Similar frequencies have been reported in
other countries (Cardell et al., 2016; Bousquet et al., 2018). Therefore, AR is an important threat to
human health globally.

Initially, the pathogenesis of AR was evaluated based on its pathological characteristics, such
as inflammation and bacterial infection (Ledford and Lockey, 2016). However, these symptoms
are similar to those of other diseases such as infectious rhinitis (the common cold) (Meltzer
et al., 2000), indicating that phenotypic features cannot explain the differential susceptibility
among populations. Next-generation sequencing enables genomic and transcriptomic analysis
of disease. Polymorphisms of genes such as FcγRIIIa (Zeyrek et al., 2008) and those encoding
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histamine-metabolizing enzymes (García-Martín et al., 2007) are
reported to be functionally related to the onset of such diseases.
Moreover, the expression of some microRNAs (miRNAs;
e.g., miR-370, miR-539, and miR-299) is altered during AR
pathogenesis (Specjalski et al., 2016).

Histamine H4 receptor, a member of the G protein-coupled
receptor superfamily, is a core regulatory factor of AR (Takahashi
et al., 2009; Broide, 2010; Shiraishi et al., 2013). During the
pathogenesis of AR, H4 receptor is upregulated, triggering
immune over-activation (Lundberg et al., 2011; Walter et al.,
2011) and remodeling of the inflammatory microenvironment
by modulation of IL-6 and INF-γ expression (Peng et al., 2019).
Among the drugs targeting the core pathogenic processes of AR,
many target the H4 receptor. Indeed, two vaccines developed
based on the immunological epitopes of the H4 receptor were
effective in animal models (Wang et al., 2018). Such vaccines
trigger an immune response against abnormally expressed H4
receptor. Th2 cells and IgE have been demonstrated to contribute
to AR pathogenesis and the efficacy of H4 receptor-based
therapeutics (Wang et al., 2018; Peng et al., 2019); however, the
underlying biological mechanisms are unclear.

At the methodological level, in this study, we focused on two
major biological/bioinformatics techniques: (1) establishment
of guinea pig allergic rhinitis model; (2) analyses on small
RNA sequencing data. For the establishment of guinea pig
allergic rhinitis, researchers from multiple countries have
developed and modified various methods to establish stable,
reproducible and comparable models to mimic the pathogenesis
of allergic rhinitis in human beings. In 2006, researchers
from University of British Columbia (Canada) summarized
the general workflow for the establishment of stable guinea
pig allergic rhinitis model using ovalbumin (Al Suleimani
et al., 2007), which is one of the most common allergens
for guinea pigs’ respiratory tracts. In the next decades, the
detailed techniques have been gradually modified but the major
establishment procedure remains stable, implying the stability
and efficiency of such ovalbumin based methods. Apart from
that, another major methodological challenges for our study
turns out to be the comparable small RNA sequencing analyses.
With the development of computational methods, a general
workflow for small RNA sequencing analyses has already been
established including small RNA clustering, novel small RNA
discovery, miRNA target prediction, differential expression of
small RNA, evolutionary analysis, and functional analysis (Baran-
Gale et al., 2015; Fuchs et al., 2015; Buschmann et al., 2016).
In this study, we applied the latest workflow/software for small
RNA identification and annotation [miRDeep2 (Friedländer
et al., 2008) and RIPmiR (Breakfield et al., 2012)], revealing
a robust small RNA profiling results for further analyses
and summarization.

MicroRNAs are important in the pathogenesis of AR. In
this study, miRNA profiling and a guinea pig model of AR
enabled identification of the therapeutic mechanisms of two
epitopes of the H4 receptor. All in all, based on the microRNA
profiling techniques and blood samples from guinea pig model
of allergic rhinitis (AR), we focused the underlying therapeutic
mechanisms of two reported epitopes against H4 receptor for

allergic rhinitis treatment at the microRNA level, trying to
reveal their potential pharmacological mechanisms by targeting
H4 receptors.

MATERIALS AND METHODS

Reagents and Instruments
The following reagents were used: TRIzol (Invitrogen, 15596018),
DEPC water (Ambion, AM9915), chloroform, isopropanol, and
isoamyl alcohol (Xilong Chemistry). The following instruments
were used: cryogenic centrifuge (Eppendorf), vortex oscillator
(Qilinbeier), and TissueLyser II (Qiagen).

Animal Models
We used 38-week-old male guinea pigs (Changchun Biological
Products Research Institute Co., Ltd.; SCXK (Ji) 2016-0008) to
establish a model of AR.

Model Establishment
Following widely reported rhinitis guinea pig model
establishment protocol (Narita et al., 1998), we established
a guinea pig model of AR using ovalbumin (OVA). OVA causes
less irritation and fewer side effects than toluene diisocyanate
but is prone to degeneration or coagulation and so must be made
fresh immediately before use.

Small Peptide Screening
We first purified anti-HRH4 monoclonal IgG to a high purity
(95%) for phage peptide library screening. Using HR4 antibody
as the antigen, we screened out two peptides with high affinity
for the monoclonal HRH4 IgG; these were named P-ONE
(FNKWMDCLSVTH) and P-TWO (TFKFTLSYRQVH) and
have been patented (Patent 1: “Vaccine based on mimicking
human histamine receptor 4 (HR4) epitope and construction
method thereof”, Application No.: 201510382851.1, Publication
No.: 105017385B and Patent 2: “Using a phage antibody library
to screen human histamine receptor 4 (HR4) epitope mimetic
peptides and a vaccine construction method”, Application No.:
201510382781.X, Publication No.: 105037499B).

Preparation of Vaccines
The peptide and CTB were dissolved in physiological saline, and
the same volume of liposome Lipofect was added such that each
200 µL contained 100 µg of peptide and 5 µg of CTB. The
mixture was stored overnight at 4◦C and on the following day
was brought to room temperature.

(1) Add 1 mL of saline to the antagonist to make a 25 mg/mL
solution.

(2) Add 50 µL of normal saline to CTB to make a 10 mg/mL
solution.

(3) The antagonist requires a total of 200 µL of nasal drops
and is formulated as follows: Antagonist (peptide, 100 µg)
4 µL, CTB (5 µg) 0.5 µL, normal saline 95.5 µL, and
liposomes 100 µL.
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(4) P-ONE 20.7 mg, P-TWO 20.5 mg, and control vaccine 20.5
mg. Normal saline (NS) is added to P-ONE, P-TWO, and
control vaccine as shown in Table 1.

Evaluation of Animal Model of AR
There is no uniform standard for the evaluation of AR models.
Instead, such models are evaluated based on their ability to
repeatedly trigger an allergic reaction.

Symptoms of AR, combined with changes in animal behavior
and characteristic pathomorphological changes, were assessed to
evaluate the model. After stimulation, animals with AR exhibit
symptoms such as sneezing, scratching the nose, scratching
the face, and a running nose. Most prior studies adopted
the symptom score of Zhao (1993). We tested the model by
evaluating sniffing, sneezing, and nasal discharge. During the
evaluation, the superimposed quantitative score was applied to
indicate the success of modeling. Symptom score is tested and
calculated at the last time. After stimulation, each animal was
observed for 30 min. The scoring criteria were as follows:

(1) Nasal itching: 1 point for one or two instances of light nose
blowing, 2 points for moderate scratching of the nose/face,
and 3 points for violent scratching of the nose/face.

(2) Sneeze: 1 point for 1–3, 2 points for 4–10, and 3
points for ≥ 11.

(3) Clearing the nose: 1 point for nostril flow, 2 points for the
front nostril, and 3 points for the runny surface.

The three symptom scores were summed and a total score
of ≥ 5 was considered a success. This experiment is based
on observation records and combined with related behavioral
indicators, verifying the success of the model.

RNA Sampling
After the last dose on day 85, behavioral indicators were
evaluated. We extracted RNA from blood samples for miRNA
sequencing using the RNeasy Plus Micro and Mini Kits (Qiagen).

We fragmented and digested tissue samples by two methods.
The first method is a lapping machine-based method. An
appropriate amount of tissue sample was placed in a numbered
grinding and crushing tube and 1.5 mL of TRIzol lysate was
added. The mixture was ground in a TissueLyser II grinder for
30 s, and allowed to stand for 5 min. The second method was
performed using liquid nitrogen. TRIzol lysate (1.5 mL) was
transferred into a 2 mL EP tube. An appropriate amount of tissue
sample was ground into powder in liquid nitrogen, transferred to
the lysate, and allowed to stand flat for 5 min. Next, the disrupted
tissue samples were centrifuged at 4◦C and 12,000 g for 5 min.
The supernatant was transferred to an EP tube containing 300

µL of chloroform: isoamyl alcohol (24: 1), mixed by inverting
and shaking vigorously, and centrifuged at 12,000 g at 4◦C for
8 min. If the middle layer was thick and the water phase turbid,
extraction was repeated using the same volume of chloroform:
isoamyl alcohol (24: 1).

The supernatant was transferred to a centrifuge tube
containing 600 µL of isopropanol. Do not suck into the middle
layer (micro-tissue or micro-cell sample, add 2 µL of 5 mg/mL
glycogen-assisted precipitation during precipitation), mixed by
inversion, and placed at −20◦C for ≥ 2 h. Next, the sample was
centrifuged at 17,500 g for 25 min at 4◦C, the supernatant was
discarded, and the pellet was washed with 0.9 mL of 75% ethanol
and invert the suspended pellet. The sample was centrifuged at
4◦C for 3 min at 17,500 g (depending on the precipitation),
washed with 75% ethanol, and centrifuged at 17,500 g for 3 min at
4◦C. The supernatant was discarded, residual liquid was removed
after brief centrifugation, and allowed to dry for 3–5 min. Finally,
the pellet was dissolved in 30–200 µL DEPC or RNase-free water.

Small RNA Library Construction
We used the Agilent 2100 Bioanalyzer to evaluate sample
integrity and concentration, and NanoDrop to detect inorganic
ions or polycarbonate contamination.

To construct an RNA library, 0.2–1 µg of RNA was subjected
to electrophoresis, 18–30 nt bands were selected (14–30 ssRNA
Ladder Marker, TaKaRa) stripe and recycle. Next, we prepared
a connection 3′ adaptor system at 70◦C for 2 min and 25◦C
for 2 h and added RT primer at 65◦C for 15 min followed
by a ramp to 4◦C at 0.3◦C/s. Finally, we added the 5′ adaptor
mix system at 70◦C for 2 min and 25◦C for 1 h. For reverse
transcriptase-polymerase chain reaction (RT-PCR), we used
First-Strand Master Mix and Super Script II (Invitrogen) and
performed reverse transcription at 42◦C for 1 h and 70◦C for
15 min. Next, several rounds of PCR amplification using a PCR
Primer Cocktail and Master Mix were performed at 95◦C for 3
min; followed by 15–18 cycles of 98◦C for 20 s, 56◦C for 15 s,
and 72◦C for 15 s; followed by 72◦C for 10 min; and a hold
at 4◦C. The PCR products were purified by electrophoresis and
dissolved in EB.

The double-stranded PCR products were heat denatured and
circularized by the splint oligo sequence. The single-stranded
circular DNA (ssCir DNA) was used as the final library. The
library was validating using an Agilent Technologies 2100
Bioanalyzer. The library was amplified with phi29 to generate
a DNA nanoball (DNB), which harbored > 300 copies of one
molecule. The DNBs were loaded into the patterned nanoarray
and single-end 50-base reads were generated by combinatorial
probe-anchor synthesis (cPAS).

TABLE 1 | Vaccine preparation for different experimental and control groups.

Groups Peptide (uL) CTB (uL) Physiological saline (uL) Liposome (uL)

Negative Control NA NA 75 75

Positive Control 3.659 (JNJ77777120) 0.375 71 75

P-ONE 3.623 (P-ONE) 0.375 71 75

P-TWO 3.659 (P-TWO) 0.375 71 75
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Small RNA Sequencing and Analysis
Data Filtering
The impurities in raw data include 5′ primer contaminants, no-
insert tags, oversized insertion tags, low-quality tags, poly-A tags,
small tags, and tags lacking a 3′ primer. Generally, an adaptor
contaminant is caused by low sample quality or adaptor or sample
concentration. The higher the adapter proportion, the greater the
contamination. Low-quality tags are those with > 4 bases and a
quality of < 10 or those with > 6 bases and a quality of < 13.

The above contaminant tags were removed, and the length
distribution of clean tags was analyzed to evaluate sample
composition. Small RNAs (sRNAs) are typically 18–30 nt in
length (miRNAs, 21 or 22 nt; small interfering RNAs [siRNAs],
24 nt; and PIWI-interacting RNAs [piRNAs], 30 nt). The data
were processed by removing tags of low quality, with 5′ primer
contaminants, lacking a 3′ primer, without insertions, with poly-
A, and of < 18 nt. The length distribution of the clean tags was
summarized. After filtering, the remaining clean tags were stored
in FASTQ format (Cock et al., 2009).

Reads Mapping
In general, the higher the alignment ratio, the closer the genetic
relationship between the sample and the reference species. A low
rate may be due to low similarity with the reference genome or to
contaminants. Bowtie (Langmead et al., 2009) was used to map
clean reads to the reference genome and to other sRNA databases.
Please note that for Rfam we used cmsearch (Nawrocki and Eddy,
2013) with the default parameters.

Small RNA Classification
When annotating, some sRNA tags may be mapped to more than
one category. To ensure that each sRNA was mapped to only
one category, we used the priority miRNA > piRNA > small
nucleolar RNA [snoRNA] > Rfam > other small RNA.

Small RNA Prediction
We used miRDeep2 (Friedländer et al., 2008) (for animals) and
RIPmiR (Breakfield et al., 2012) (for plants) to predict novel
miRNAs by exploring the characteristic hairpin structure of
miRNA precursors. Piano (Wang et al., 2014), which is based on
the support vector machine (SVM) (Scholkopf and Smola, 2001)
algorithm and transposon interaction information, was used to
predict piRNAs. The SVM classifier can be used in a wide range
of species including human, mouse, rat, fruit fly, and insects.
siRNA is a 22–24 nt double-strand RNA, one strand of which
is 2 nt longer than the other. Due to this structural feature, we
aligned tags to identify sRNAs meeting that criterion. Such tags
were regarded as siRNA candidates.

Small RNA Expression
The sRNA expression level was calculated by the transcripts
per million kilobases (TPM) method (John et al., 2004), which
eliminates the influence of sequencing discrepancy. The data can
be used for comparing gene expression between samples. To
calculate the TPM the following formula was used:

TPM =
C ∗ 106

N
(1)

Target Prediction
To identify targets we used RNAhybrid (Krüger and Rehmsmeier,
2006), miRanda (John et al., 2004), or TargetScan (Maziere and
Enright, 2007; Agarwal et al., 2015) for animal, and psRobot
(Wu et al., 2012) or TargetFinder (Fahlgren and Carrington,
2010) for plants. The default parameters were as shown in
Table 2.

Screening of DESs (Differential Expressed
Sequences)
RNA sequencing could be modeled as a random sampling
process, in which each read is sampled independently and
uniformly from every possible nucleotide in the sample
(Jiang and Wong, 2009). Under this assumption the number
of reads from a gene (or transcript isoform) follows a
binomial distribution (and can be approximated by the
Poisson distribution).

Using the statistical model described above, DEGseq (Wang
et al., 2009) proposes a novel method based on the MA-
plot, a statistical analysis tool used to detect and visualize
intensity-dependent ratios of microarray data (Yang et al., 2002).
Let C1 and C2 denote the counts of reads mapped to a
specific gene obtained from two samples, with Ci∼binomial
(ni, pi), i = 1,2, where ni denotes the total number of
mapped reads and pi the probability of a read coming
from that gene. We define M = log2C1 - log2C2, and
A = (log2C1 + log2C2 2). It can be shown that under the
random sampling assumption the conditional distribution of
M given that A = a (a is an observation of A) follows an
approximately normal distribution. For each gene on the MA
plot, we perform the hypothesis test H0: p1 = p2 versus H1:
p1 6= p2. A P-value is assigned based on the conditional
normal distribution.

The P-values calculated for each gene are adjusted to Q-values
for multiple testing corrections by two strategies (Benjamini
and Hochberg, 1995; Storey and Tibshirani, 2003). To improve
accuracy, we defined a differentially expressed gene (DEG)
as a fold-change of ≥ 2 and Q-value of ≤ 0.001. RNA-
seq experiments have low technical background noise and
the Poisson model fits the data well. In such cases, the
technical replicates can be pooled to increase the sequencing
depth and detect subtle changes in gene expression. Otherwise,
a method that estimates noise by comparing the replicates
is recommended.

Screening of DESs (Poisson Distribution)
Based on a prior report (Audic and Claverie, 1997), BGI (Beijing
Genomics Institute) developed an algorithm to identify DEGs

TABLE 2 | Default parameter for target prediction.

Methods Parameter

miRanda -en -20 -strict

RNAhybrid -b 100 -c -f 2,8 -m 100000 -v 3 -u 3 -e -20 -p 1 -s 3utr_human

psRobot -gl 17 -p 8 -gn 1

TargetFinder -c 4
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between two samples. If x is defined as the number of reads from
sRNA A, x yields the Poisson distribution:

p (x) =
eλλx

x!
(λ is the real transcripts of the gene) (2)

2
i=y∑
i=0

p(i|x) (3)

Or

2 ∗

1−
i=y∑
i=0

p(i|x))(if
i=y∑
i=0

p(i|x) > 0.5

 (4)

p(y|x) =

(
N2

N1

)
y

(
x+ y

)
!

x!y!
(

1+ N2
N1

)(x|y|1)
(5)

In the equation above, the P-value of the differential gene
expression test is corrected by the Bonferroni method (Atkinson,
2002). DES analysis is then performed on the sample; however,
this generates thousands of hypotheses simultaneously (only
if gene x is differentially expressed between the two groups);
therefore, correction for false positive (type I errors) and false
negative (type II) errors is performed by the false discovery rate
(FDR) method (Benjamini and Yekutieli, 2001). In the next step,
it is assumed that we have selected R DEGs among which S genes
show differential expression, and the V genes are false positives.
The error ratio (Q) is as follows: Q = V R. The user sets a cutoff
value for Q (e.g., BGI sets a default cutoff of 5%), and the FDR is
preset to < 0.05. To assess the significance of differences in gene
expression, an FDR of ≤ 0.001 and an absolute Log2Ratio value
of ≥ 1 are set as the default thresholds. More stringent criteria,
such as a smaller FDR and larger fold-change value, can also be
used to identify DEGs.

Next, we performed multiple hypothesis tests for the P-value
of the differential gene expression test and determine the P-value
field by controlling the FDR result. The conditions were set in
advance so that the FDR cannot exceed 0.05. We also calculated
the gene expression level (FPKM value) to assess differences in
gene expression between samples. The smaller the FDR value, the
greater the difference multiple, indicating a significant difference
in expression. Genes with an FDR≤ 0.001 and multiples of more
than two-fold were regarded as differentially expressed.

Hierarchical Clustering Analysis
We performed hierarchical clustering of differentially expressed
miRNAs using R package “pheatmap” (Kolde and Kolde, 2015).
For more than two groups, hierarchical clustering of the
intersection was performed, followed by union DESs.

Gene Ontology Enrichment Analysis
Gene Ontology (GO) (The Gene Ontology Consortium, 2016) is
an international standard gene functional classification system.
It offers a dynamically updated and controlled vocabulary,
as well as a defined concept to comprehensively describe
properties of genes and their products. GO has three ontologies:
molecular function, cellular component, and biological process.

The basic unit of GO is the GO term; each term belongs to a
type of ontology.

GO enrichment analysis finds all GO terms that are
significantly enriched in a list of DES target genes and finds genes
that correspond to specific biological functions. To perform this
analysis, BGI first maps all genes to GO terms in the database1,
which calculates the number of genes for each term. The
hypergeometric test is then performed to identify significantly
enriched GO terms in the input gene list. The analysis was based
on GO::TermFinder2 and was performed using the following
algorithm:

P = 1−
m−1∑
i=0

(
M
i

)(
N −M
n− i

)

(
N
n

)

(6)

Here, in the equation, N is the number of all genes with
GO annotations; n is the number of DES target genes in N; M
is the number of all genes annotated with a specific GO term;
and m is the number of DES target genes in M. The P-value
was corrected by the Bonferroni method (Ludbrook, 1998); a
corrected P-value ≤ 0.05 was taken as the threshold. GO terms
fulfilling this condition were defined as significantly enriched.

Pathway Enrichment Analysis
KEGG (Kanehisa et al., 2007) was used to perform pathway
enrichment analysis to identify significantly enriched metabolic
or signal transduction pathways in DES target genes when
compared with the whole genome.

The formula was as for GO analysis. N is the number of
all genes with KEGG annotations; n is the number of DES
target genes in N; M is the number of all genes annotated
with a specific pathway; m is the number of DES target genes
in M. The P-value was corrected by the Bonferroni method
(Weisstein, 2004); a corrected P-value <0.05 was taken as the
threshold. KEGG terms fulfilling this condition were defined as
significantly enriched.

RESULTS

General Data Information
The first results of our experiments turn out to be the evaluation
of the guinea pig models used for further analyses. Based on
the scoring criteria, we screened out qualified animals with a
total score of ≥5 as candidate guinea pigs for further grouping
and sequencing. Then, we sequenced the microRNAs from four
group: model establishment group (negative control); models
adding antagonists against HR4 (positive control); group P-ONE
for models adding peptide P-ONE and group P-TWO for
models adding peptide P-TWO. After sequencing and data
preprocessing, we firstly summarized the numbers detected small
non-coding RNAs from each group shown in Table 3. After such
data, we can identify that:

1http://www.geneontology.org/
2http://www.yeastgenome.org/help/analyze/go-term-finder
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TABLE 3 | Summary of detected small non-coding RNAs for each sample.

Sample name Known
miRNA count

Novel miRNA
count

Known piRNA
count

Novel piRNA
count

Known siRNA
count

Novel siRNA
count

Negative Control 266 1976 0 3467 0 0

Positive Control 264 1044 0 3618 0 0

P-ONE 317 768 0 1308 0 0

P-TWO 289 3294 0 26333 0 0

(1) Small non-coding RNAs (sncRNAs) have quite different
distribution patterns in different samples, indicating their
different biological status;

(2) Most of samples have similar number of known
microRNAs, indicating effective microRNA may be
stable and may not participate in related regulations;

(3) No siRNAs have been identified in all the samples.

To verify the distribution pattern, the first step is to verify the
quality of small RNA sequencing. Therefore, we firstly showed
the sequencing qualities length distribution of small RNAs among
different samples (Figures 1, 2). According to such two figures, it’s
easy for us to confirm that:

(1) Our sequencing is of high quality among all the samples:
generally, sequencing with unstable quality along the
genomic position or with averaged quality lower than
20 are regarded as low quality sequencing data. Our
sequencing data has a stable quality greater than 35,
ensuring the reliability of our further analysis;

(2) The identification of small RNAs is quite effective using our
experimental and computational methods;

(3) Such small RNA sequencing results can be processed for
further analysis.

Annotation of Small RNAs
After filtering, the next result obtained from analyses turned
out to be the annotation name and genome locations of such
identified small RNAs. Clean tags were mapped to sRNA database
such as miRBase and Rfam. Table 4 lists separate mapping rate
for each sample and Figure 3 shows the distribution of tags.
The proportion of all kinds of sRNA is shown in Figure 3.
According to Figure 3, different sample groups have quite
different distribution of small RNA subtypes but they do share
some specific prosperities:

(1) Most of the identified small RNAs can be mapped to
the genome.

(2) There still remain various unknown small RNAs for further
identification and function exploration with different
proportions in different samples.

(3) Among those genomic derived small RNAs, most of such
RNAs derived from genetic repeats and intergenic regions.

Based on the annotation of small RNAs, we summarized
the number and distribution patterns of small RNAs that have
already been confirmed and validated before, trying to reveal
potential functional small RNA contribution on allergic rhinitis.

Prediction of Unknown Small RNAs
After the annotation of small RNAs, there still remain a lot of
unknown tags and small RNAs. Therefore, it’s quite necessary for
us to identify new participators for the pathogenesis of allergic
rhinitis at small RNA level. The identification/prediction of new
small RNAs may not only help us enrich feature candidates for
distribution comparison, but also predicted potential functional
new small RNAs. Here, we used effective software : miRDeep2
(Friedländer et al., 2008) (for animals) and RIPmiR (Breakfield
et al., 2012) (for plants) to predict some unknown small RNAs
(microRNAs and piRNAs) based their architectural features.

Expression Identification of Small RNAs
The small RNA expression level is calculated by using TPM,
which is standardized for comparison.

Target Prediction of MicroRNAs Using
Two Typical Computational Software
The target gene/transcripts of microRNAs may actually reflect
the biological functions and significance of microRNAs. We can
use two effective software (RNAhybrid and miRanda) to get the
target gene of miRNA, extract intersection or union of target gene
as final prediction result. The combined target result as shows
in Figure 4. According to the prediction results, RNAhybrid
and miRanda shared various predicted targets (2646560), while
RNAhybrid can identify more unique targets comparing to
miRanda (4492273 vs 894290). The detailed distribution and
comparison of such prediction results can be seen in Figure 4.

Screening Differentially Expressed
piRNAs
Differentially Expressed small RNAs (DESs) screening is aimed to
find differentially expressed small RNA between samples and do
the further analysis. We use DEGseq and ExpDiff methods to do
this analysis on piRNAs. The DESs in each pairwise as shown in
Figure 5.

Screening Differentially Expressed
miRNAs
Similar with the identification of differentially expressed
miRNAs, using software like DEGseq and ExpDiff, we also
identified differentially expressed microRNAs in different groups.
The distribution of differentially expressed microRNAs in each
pairwise as shown in Figure 6. According to the figure, we
still focused on the differentially expressed miRNA pattern
of With DESs, we perform hierarchical clustering of three
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FIGURE 1 | Quality distribution of four sequencing results. (A) Negative control group; (B) Positive control group; (C) P-ONE group; (D) P-TWO group. From such
four bar plots, we can confirm that all sequencing results are of high quality (greater than 20), satisfying the requirements for further processing and analyses.

comparisons: negative controls and P-ONE; negative controls
and P-TWO and negative controls and positive controls. Based
on such comparation, we identified various expression statistics
at miRNA level:

(1) MicroRNAs have similar alteration pattern in positive
controls and P-ONE group, implying that via microRNAs,
the therapeutic mechanisms of P-ONE may share some
specific regulatory processes with the traditional HR4-
based therapeutics.

(2) However, P-TWO may have totally different regulatory
mechanism considering its specific different alteration
pattern comparing to P-ONE and positive control.

DESs Target Prediction
As we have described in the Methods, we also identified some
target of the DESs. The DESs target were performed by using
several software.

Gene Ontology Enrichment Analysis of
DESs Targets
According to previous analyses, we identified thousands of
genes targeted by differential expressed miRNAs. However, it’s
impossible and unreasonable to analyze the biological effects of
such genes one by one. To show the detailed correlations between

genes targeted by differentially expressed microRNAs and AR
therapeutic effects, here, we introduced gene ontology (The
Gene Ontology Consortium, 2016) and KEGG terms (Kanehisa
et al., 2016, 2018) to describe the functional distribution of
such targeted genes.

Based on the methods we described in Methods, we
further performed Gene Ontology (GO) enrichment analysis
(The Gene Ontology Consortium, 2016) with screened DESs
target genes. GO functional classification is listed to help
understanding the distribution of gene functions of the specie
from the macro level. To reveal the detailed pharmacological
effects of P-ONE and P-TWO, we chose three comparison
to show with GO functional classification box plot. The
comparison can be seen in Figure 7. Comparing the GO
classification box plot, it’s easy to find out that DES target
genes may enrich in similar pattern under three therapeutic
conditions, implying that such three therapeutic methods
(HR4 antagonist, P-ONE and P-TWO) may have similar
pharmacological mechanisms and microRNA may play an
irreplaceable role during such processes.

Pathway Enrichment Analysis of DESs
Targets
Genes usually interact with each other to play roles in certain
biological functions. We perform pathway enrichment analysis
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FIGURE 2 | Length distribution of four sequencing results. (A) Negative control group; (B) Positive control group; (C) P-ONE group); (D) P-TWO group. From such
four bar plots, most of the small RNAs have reasonable length less than 18 nt, corresponding with the general distribution of small RNAs’ length. Therefore, such
results validated the high-quality of our sequencing and the accurate identification of small RNAs.

of DESs target genes based on KEGG database (Kanehisa et al.,
2016, 2018) and generate a report for DESs target genes in
each pairwise, respectively. In addition, we generate a scatter
plot for the top 20 of KEGG enrichment results as Figure 8
and a bar plot for the statistics of KEGG terms types as
Figure 9.

According to the KEGG enrichment figures, we can
summarize the different functional enrichment pattern under

three therapeutic conditions (HR4 antagonist, P-ONE and
P-TWO):

(1) The detailed KEGG enrichment pattern under
three conditions are different involving different
regulatory pathways.

(2) Some specific pathways like pathways in cancer, TGF-beta
signaling pathway and focal adhesion are shared in all
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TABLE 4 | Summary of detected tags for each sample.

Sample name Total tag Mapped tag Percentage (%)

Negative Control 21100237 15900803 75.36

Positive Control 25112110 23343614 92.96

P-ONE 27733405 14780247 53.29

P-TWO 23575452 19846022 84.18

the three groups, indicating the potential contribution of
such pathways for the pharmacological effects of such three
treatment methods.

(3) Still, there are various specific pathways that is differentially
enriched in three groups. For instance, PI3K signaling
pathway is only enriched in positive control group (HR4
antagonist) and P-TWO treatment group, but not P-ONE
treatment group, revealing the potential differences among
such three therapeutic methods.

DISCUSSION

Here, as we have presented above, we accomplished a systematic
analysis on the small RNA (piRNAs and small RNAs) distribution
pattern and potential targeting functional distribution pattern

under different therapeutic conditions against AR. To further
discuss the underlying therapeutic mechanisms of two reported
epitopes against H4 receptor for allergic rhinitis treatment at the
microRNA level and try to reveal their potential pharmacological
mechanisms by targeting H4 receptors, we divided our discussion
in two parts : (1) discussion on the differential small RNA
distribution patterns; (2) discussion on functional clustering of
genes targeted by the differential expressed microRNAs.

Discussion on the Differential Small RNA
Distribution Patterns
As we have shown in Figures 5, 6, it is obvious to see that at
piRNA level, although there is differential expression patterns
in P-ONE and P-TWO, however, the positive control does not
show alterations at piRNA level, indicating that such alteration
induced by P-ONE and P-TWO may not be directly correlated
with targeting HR4 and therapeutic effects on AR. According
to recent publications, no direct reports indicate that piRNAs
may play effective role in the regulation of HR4 during the
pathogenesis of AR, further explaining the specific pattern of
piRNAs in the positive control groups. However, there are various
publications, in deed confirmed that piRNAs may contribute to
the pathogenesis of AR via some specific regulatory mechanisms
like interacting with PTEN (Phosphatase and Tensin homolog)

FIGURE 3 | Catalog of small RNAs in four sequencing groups. (A) Negative control group; (B) positive control group; (C) P-ONE group; (D) P-TWO group. For all
the four samples, most of the so-called small RNAs all come from the genome especially the intergenic regions and only about 5% of all the small RNAs can be
defined as microRNA or small non-coding RNAs. And for all the samples, there still remain thousands of unknown small RNAs for further exploration.
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FIGURE 4 | Venn statistics of filtered predicted targets. Using RNAhybrid and
miRanda, we identified potential targets for our identified miRNAs. According
to the prediction results, among all the predicted targets, most of the targets
are shared by both RNAhybrid and miRanda. Comparing such two methods,
RNAhybrid may work better with more unique prediction results.

(Alexandrova et al., 2016) and PI3k (Phosphoinositide 3-kinase)
(Alexandrova et al., 2016; Narożna et al., 2017). Considering that
traditional HR4 antagonists only block HR4 by physical binding,
however, our newly identified peptides block HR4 biological
functions by triggering specific immune response against HR4.

Therefore, although also targeting HR4, such two peptides may
also have some unique therapeutic contributions on AR, probably
via PTEN or PI3K associated biological processes. The detailed
biological mechanisms may still need further molecular and cell
biology studies to reveal. What’s more, actually, the distribution
patterns of P-ONE and P-TWO are also quite different, P-TWO
has greater effects on the regulation of piRNAs, indicating that
such two peptides may still trigger different immune response
and have different pharmacological mechanisms against AR.

Different from the distribution pattern of piRNAs, the
distributions of miRNAs are quite similar between positive
group and P-ONEp group, indicating that at miRNA level,
such two methods may have similar therapeutic effects on AR.
However, as for the P-TWO group, the distribution of up-
regulated and down regulated microRNAs are reversed. More
microRNAs turn out to be up-regulated in such pattern. Such
phenotype cannot be explained now. However, at least, such
results indicate that P-TWO has quite different pharmacological
effects on microRNA level comparing to P-ONE and traditional
HR4 antagonists.

All in all, summarized from such figures, we can conclude that:

(1) At piRNA level, P-ONE, P-TWO and traditional
HR4 antagonists have totally different expression
pattern, indicating their different regulatory effects
and pharmacological mechanisms.

FIGURE 5 | Statistic of differential expressed sRNAs. Using DEGseq nad ExpDiff, we identified the differentially expressed piRNAs from four groups: 1) negative
control group (neg); 2) positive control group (pos); 3) P-ONE group; 4) P-TWO group. X-axis represents pairwise and Y-axis means number of screened DESs. Blue
bar denotes down-regulated and orange bar for the up-regulated. According to the figure, comparing to the control group, P-TWO have quite a large group of
upregulated pi-RNAs, indicating that P-TWO may have specific pharmacological effects via microRNA regulation.
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FIGURE 6 | Statistic of differential expressed miRNAs. Using DEGseq nad ExpDiff, we identified the differentially expressed miRNAs from four gourps: 1) negative
control group (neg); 2) positive control group (pos); 3) P-ONE group; 4) P-TWO group. X-axis represents pairwise and Y-axis means number of screened DESs. Blue
bar denotes down-regulated and orange bar for the upregulated. According to the figure, P-ONE and traditional HR4-targeted method may have similar regulatory
mechanisms via microRNAs but P-TWO may have its specific pharmacological effects and mechanisms via microRNA regulation.

FIGURE 7 | Go functional classification of DES target genes from three comparison. (A) Comparison between negative control and positive control. (B) Comparison
between negative control and P-ONE. (C) Comparison between negative control and P-TWO. X-axis means number of DEGs (the number is presented by its square
root value). Y-axis represents GO terms. All GO terms are grouped in to three ontologies: blue is for biological processes; brown is for cellular component and
orange is for molecular functions. According to three plots, DES target genes may enrich in similar pattern under three therapeutic conditions, implying that such
three therapeutic methods (HR4 antagonist, P-ONE and P-TWO) may have similar pharmacological mechanisms and microRNA may play an irreplaceable role
during such processes.
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FIGURE 8 | Statistics of pathway enrichment in each pairwise. (A) Comparison between negative control group and positive control group. (B) Comparison between
negative control group and P-ONE. (C) Comparison between negative control group and P-TWO. Rich Factor is the ratio of DESs target genes numbers annotated
in this pathway term to all gene numbers annotated in this pathway term. Greater Rich Fator means greater intensiveness. Q-value is corrected P-value ranging from
0 to 1, and less Q-value means greater intensiveness. We just display the top 20 of enriched pathway terms.

FIGURE 9 | KEGG classification of each pairwise. (A) Comparison between negative control group and positive control group. (B) Comparison between negative
control group and P-ONE. (C) Comparison between negative control group and P-TWO. X-axis means number of DEGs. Y-axis represents second KEGG pathway
terms. All second pathway terms are grouped in top pathway terms indicated in different color.

(2) At miRNA level, P-ONE may have similar therapeutic
effects with HR4 antagonists but P-TWO has quite unique
therapeutic effects on such level.

(3) The typical alteration of small RNA expression level
confirmed that small RNAs in deed play an irreplaceable
role during the therapy of AR and participate in the
pharmacological mechanisms of such medicine.

(4) Also, in terms of methodology, software DEGseq and
ExpDiff may have quite comparable results.

Discussion on Functional Clustering of
Genes Targeted by the Differential
Expressed MicroRNAs
Apart from such phenotypic discussion on the expression
comparison of small RNAs in different groups, using gene
ontology and KEGG annotation and clustering, we also identified
some specific enrichment patterns under different therapeutic

conditions, helping reveal the potential pharmacological
effects of P-ONE and P-TWO comparing to traditional
HR4 antagonists.

Here, firstly, we focused on Figure 7 describing the results of
gene ontology enrichment analyses. Based on the gene ontology
classification, we can summarize that the microRNA target
expression pattern is quite similar under such three treatment
conditions. Therefore, according to such results, although
some regulatory details of P-ONE and P-TWO are different
from traditional HR4 antagonists, actually, the comprehensive
regulatory effects of such two peptides may still be the same at
microRNA regulatory level. Further, such results also confirmed
that new drugs like P-ONE and P-TWO only affect similar
biological processes comparing with previous HR4 antagonists.
Therefore, such two peptides may also be safe to be used in
further therapies.

Apart from gene ontology, we also focused on the KEGG
annotation and clustering results. Based on Figure 8, we
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presented the pathway enrichment pattern in each pairwise. Here,
we identified some specific KEGG pathways that differentially
enriched in different experimental groups.

Firstly, there are still some shared KEGG pathways that have
been identified under all the same conditions, indicating its
specific role for AR pathogenesis and therapies at microRNA
regulatory level. For instance, TGF-beta signaling pathway,
according to recent publications, such biological process has
been widely reported to be a specific pathological pathway
for AR. Early in 1992, researchers in the United States have
confirmed that TGF beta 1 as a core regulator in such
signaling pathway contribute to the pathogenesis of chronically
inflammation in human upper airway tissues, related to the
onset of allergic rhinitis (Ohno et al., 1992). Further in 2002,
another independent study further confirmed the pathogenesis
of allergic rhinitis is directly correlated with TGF-beta effects
(Benson et al., 2002). Therefore, the identification of such
pathway by all the three therapeutic treatment confirmed that
such two new medicine also relied on interfering one of the most
significant pathways of AR to cure such disease. What’s more,
more recent publications (Akdis et al., 2005; Jutel et al., 2006;
Kucuksezer et al., 2013) on TGF-beta and allergic rhinitis also
indicate that TGF-beta is associated with the abnormal immune
responses of AR, corresponding with the designed principal of
P-ONE and P-TWO which is triggering antigen-specific immune
response against HR4.

Apart from such shared biological processes, we also identified
some effective biological processes that is only recognized by
P-ONE and P-TWO. For P-ONE, endocytosis is a unique
pathway with quite low Q-value and has not been identified
by group positive control and P-TWO. In 2019, a specific
publication (Blanco-Pérez et al., 2019)confirmed that a unique
pattern of endocytosis mediated allergen fusion contributing
to the relief of specific allergies, implying that endocytosis
may also contribute to the pathogenesis of AR. The functional
enrichment of P-ONE associated microRNA targets may indicate
that P-ONE may potential inhibit abnormal allergic effects by
interfering allergen fusion, presenting a new theory for the
pharmacological effects of P-ONE. Similarly, as for P-TWO,
there are still some detailed biological processes and pathways
that are uniquely identified in such group. For instance,
the lysosome, although with a relatively high q-value, recent
publications (Ring and Munehen, 1983; Kohno et al., 1987;
Liu et al., 2005) also reported that such biological process
also regulated the abnormal immune response of AR. In
2005, a specific histopathological study (Liu et al., 2005)
on allergic rhinitis confirmed that another drug named as
Centipeda minima treats AR by interfering lysosome associated
biological processes. Therefore, the enrichment of microRNA
targets in such biological process may indicate that P-TWO,
our new peptide drug may interact with lysosome associated
biological processes and interfere the pathogenesis of AR under
certain mechanisms.

Further, we identified the KEGG classification pattern for
each pairwise. Although we have identified various unique
KEGG pathways for each comparison, the general classification
pattern of such three pariwises are quite similar with each

other, implying the general therapeutic effects contributed by
microRNA regulation and the safety of our new drugs P-ONE and
P-TWO.

All in all, as we have mentioned analyzed above, at the
functional level, we can summarize that:

(1) Both P-ONE and P-TWO has similar general and
comprehensive therapeutic effects comparing to traditional
HR4 antagonists at microRNA regulation level according
to gene ontology analyses.

(2) The general pharmacological effects of P-ONE and P-TWO
are similar with those of traditional HR4 antagonists at
microRNA regulatory level. Therefore, P-ONE and P-TWO
may be safe to be applied in clinics considering its
systematic effects in vivo.

(3) According to KEGG pathway enrichment analyses, there
are still some differential regulatory effects of different
treatment strategies at microRNA regulatory level. The
biological foundations of differential therapeutic effects
induced by P-ONE and P-TWO have all been supported
by recent publications.

(4) Some specific pathways like endocytosis, lysosomes, hippo
signaling pathway and inositol phosphate metabolism may
be significant and specific pharmacological mechanisms
for our new drugs P-ONE and P-TWO comparing with
previously widely reported HR4 antagonists.

CONCLUSION

Relied on stable AR models, we identified the pharmacological
effects of our two new candidate peptide drugs P-ONE and
P-TWO on the small RNA level comparing to traditional
HR4 targeting antagonists. Based on the small RNA profiling
results, we firstly confirmed that P-ONE, P-TWO and traditional
HR4 targeting antagonists have specific therapeutic on AR at
microRNA level. Apart from that, the comprehensive effects of
such three treatment strategies are quite similar. For details,
based on KEGG pathway enrichment analysis, we also identified
some unique pharmacological effects of new drugs P-ONE and
P-TWO. All in all, using small RNA sequencing techniques,
for the first time, we compared the pharmacological effects of
P-ONE, P-TWO and traditional drugs and revealed both the
similarities and the differences of such strategies at small RNA
regulatory level, laying a solid foundation for the comprehensive
understanding of the new drugs’ pharmacological mechanisms
and the potential pathogenesis of AR.
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Atrial fibrillation (AF), known as the most common arrhythmia in the developed world,
affects 1.5–2.0% of the population. Numerous basic studies have been carried out to
identify the roles of electric and structural remodeling in the pathophysiological changes
of AF, but more explorations are required to further understand the mechanisms of AF
development. Proteomics enables researchers to identify protein alterations responsible
for the pathological developing progresses of diseases. Compared to the genome,
the proteome is closely related to the disease phenotype and can better manifest
the progression of diseases. In this study, AF patients proteomically analyzed to
identify possible mechanisms. Totally 20 patients undergoing cardiac surgery (10 with
paroxysmal AF and 10 with persistent AF) and 10 healthy subjects were recruited.
The differentially expressed proteins identified here included AKR1A1, LYZ, H2AFY,
DDAH1, FGA,FGB, LAMB1, LAMC1, MYL2, MYBPC3, MYL5, MYH10, HNRNPU,
DKK3, COPS7A, YWHAQ, and PAICS. These proteins were mainly involved in the
development of structural remodeling. The differently expressed proteins may provide
a new perspective for the pathological process of AF, and may enable useful targets
for drug interference. Nevertheless, more research in terms of multi-omics is required to
investigate possible implicated molecular pathways of AF development.

Keywords: atrial fibrillation, proteomics, proteins, structural remodeling, mechanism

INTRODUCTION

Atrial fibrillation (AF), known as the most common arrhythmia in the developed world, attacks 1.5–
2.0% of the population. In the population aged over 40 years, the lifetime risk for AF is about 25%
both in genders (Heeringa et al., 2006). The incidence of AF has risen about threefold with the aging
population during the next 50 years, which progressively increases economic burden (Steinberg,
2004; Miyasaka et al., 2006). AF is characterized electrocardiographically by low-amplitude baseline
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oscillations as supraventricular arrhythmia. The fibrillatory
waves, namely f waves, originate from the fibrillating atria and
are accompanied by an irregular ventricular rhythm. AF mainly
causes cardiovascular mortality and morbidity (Heeringa et al.,
2006). A variety of cardiac diseases and conditions may cause
atrial remodeling and consequently lead to AF development,
but AF may also contribute to atrial remodeling owing to the
progressiveness of the arrhythmia (Wakili et al., 2011).

These remodeling approaches include structural remodeling
characterized as atrial fibrosis (Frustaci et al., 1997) and
atrial adipose (Hatem and Sanders, 2014), electrical remodeling
featured by changes in ion channels and gap junction proteins
(Lai et al., 1999), and endocardial and metabolic remodeling
(Schild et al., 2006; Jeganathan et al., 2017). Numerous basic
studies have been conducted to explore the roles of electric,
structural and contractile remodeling in the pathophysiological
changes of AF. Nevertheless, further explorations are required to
better understand the mechanisms of AF development.

Various techniques, especially “omics” techniques, have been
applied to identify the molecular targets and mechanisms that
mediate AF-related remodeling. Proteomics is one “omics”
technique to study large-scale gene expression at the protein level,
and enables researchers to identify protein alterations responsible
for the pathological developing progresses of diseases. The
proteome determines the cell phenotype and variations that may
change cell and tissue functions. Compared to the genome, the
proteome is closely related to the disease phenotype and can
better manifest the progression of diseases.

In this study, AF patients were categorized into two groups
according to the duration of AF. Paroxysmal AF was termed as
terminating spontaneously within 7 days, and permanent AF was
defined as persisting for more than 1 year. We compared the
proteomics between subjects with sinus rhythm (SR) and patients
with AF to demonstrate the pathophysiological changes.

MATERIALS AND METHODS

Patients and Tissue Preparation
Thirty subjects were enrolled and divided into three groups,
including 10 healthy subjects with SR (Group1, G1), 10 patients
with paroxysmal AF (Group2, G2), and 10 patients with
permanent AF (Group3, G3). The 10 healthy subjects with
SR were all males and aged between 25 and 38 years old.
All AF patients were subjected to physical examination and
clinical evaluation, including medical history, routine blood test,
electrocardiography (ECG), chest CT, and echocardiography.
Exclusion criteria were valvular heart disease, coronary artery
disease, chronic heart failure, myocarditis, cardiomyopathy,
chronic pulmonary heart disease, or hyperthyroidism.

Protocol for sample collection was adhered to the Human
Ethics Committee of Shanghai East Hospital (DI:0402017). This
study complied with the Helsinki Declaration. Prior to operation
of fibrillation ablation, written informed consents were obtained
from all enrolled patients. The left atrial appendage (LAA) was
resected during isolated surgical ablation, and tissue samples were
collected from the abandoned LAA. Normal LAA samples were

collected from healthy male donors. Collected tissues were frozen
in −80◦C liquid nitrogen before further processing.

Protein Extraction
The extraction of proteins from atrial tissues followed previous
protocols (Waller et al., 2013). Briefly, about 20 mg of atrial
tissues were cut on ice and homogenized in a buffer, containing
100 mM Tris, 4% SDS, and maintaining PH 7.6. Protease and
phosphatase inhibitors from Meck were added in the buffer. The
mixture was sonicated for 5 s at 15% amplitude on ice and paused
for 5 s for 2 min of working time on a JY92-IIDN instrument
(Ningbo Scientz Biotechnology Co., Ltd., China). The proteins
were denatured and condensed for 5 min at 95◦C circumstance
afterword. The mixture was centrifuged at 14,000 g for 10 min
to remove the insoluble debris and retain the supernatant for
proteomic experiments. The bicinchoninic acid (BCA) assay was
performed to determine the concentration of protein. All protein
samples were stored at −80◦C for further experiment.

Label-Free Proteomic Analysis
Protein digestion was performed by Filter-aided sample
preparation (FASP) (Wisniewski et al., 2009). Briefly, protein
extraction 200 µg was mixed with a reducing buffer (1 M DTT)
to 100 mM DTT concentration as total, incubated for 1 h at 56◦C
afterword. Then the protein samples were washed twice with
200 mL of a UA buffer (pH 8.5, 8 Murea in 0.1 M Tris-HCl),
adding 50 mM iodoacetamide in the tube to alkylate in the
darkness for 30 min. The mixture was washed firstly with the
100 mL UA buffer and secondly with ammonium bicarbonate
50 mM for three times. All resulting solutions were centrifuged
at 25◦C for 12,000 g. Protein samples were digested with trypsin
(Promega) at 37◦C for 18 hr, with a 1:50 (w/w) concentration
in 50 mM ammonium bicarbonate. Then, peptide samples were
centrifuged to elute. The BCA protein procedure was used to
determine peptide concentration. Peptides were desalted and
dried for further procedure.

For proteomic analysis, nanoflow HPLC Easy-nLC 1000
system (Thermo Fisher Scientific) was used to separate about
1 µg peptides at 300 nL/min with a 70-min LC gradient.
Proteomic analyses were conducted on an Orbitrap Fusion mass
spectrometer (Thermo Fisher Scientific). The positive ion mode
at 1,900 V was set as spray voltage and the ion transfer tube
at 275◦C was also set. Xcalibur was used to perform data-
dependent acquisition. The orbitrap mass analyzer, with a RF lens
60%, resolution of 60,000 @ m/z 200, maximum IT 50 ms and
AGC target 4e5, was used to perform the MS1 full scan. HCD
fragmentation, with a resolution of 15,000 @m/z 200, maximum
IT 150 ms in a 3 s cycle time and AGC target 2e5, was used
to generate top-speed MS2 scans. 1.2 m/z was set as isolation
window. The HCD collision energy and the dynamic exclusion
time were set at 30% and 60 s separately. MS2 analysis were
selected by precursors charged at state 2–6.

Database for Proteomic Analysis
MaxQuant 1.6.1.0, containing 172,418 sequences (downloaded
in July, 2019), was used to analyze all mass spectra. Enzyme
specification was used in search. The fixed modification was
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performed as carbamidomethylation of cysteine, while variable
modification was carried out by N-terminal acetylation and
oxidation of methionine. In the initial scan and the main search
setting at 6 ppm, mass tolerances for fragment ions and precursor
were set at 0.02 Da and 20 ppm respectively.

The Andromeda search engine, integrating into Maxquant,
was used to search tandem MS. Seven amino acids was set as
cutoff of minimum peptide length, while two amino acids was
set as maximum permissible missed cleavage. Maximal FDR was
set at 0.01for proteins, peptide spectral match and site. Two
sequence-unique peptides was set as minimum identification.

The label-free quantitation (LFQ) was analyzed by the
Andromeda search engine. The quantification results of
Maxquant protein and peptide were imported for further
analysis. Comparing with controls, differentially expressed
proteins in patients were defined as significant change if the
ratios were ≥2 or ≤0.5 (P < 0.05).

Protein-Protein Interaction (PPI) Network
Analysis
Proteins and their interactive functions form the backbone of
cellular biology. The PPIs were identified and characterized
to necessarily understand the physiology and efficacy in
the organism. The connective network was demonstrated
for full understanding of cellular machinery. STRING 11.0
(Szklarczyk et al., 2019)1 covering more than 5,090 organisms
was used to analyze PPIs. The biological characteristics of
high-throughput transcriptome data was identified by Gene

1https://string-db.org/

ontology (GO) analysis in defining protein products. GO2

consortium was used to identify the pathways involved. For
molecular function in terms of GO analysis, p <0.05 was
considered significant.

RESULTS

Patient Characteristics
The baseline characteristics of AF patients, with paroxysmal
or permanent AF, were shown in Table 1. All AF patients
received transthoracic echocardiography to rule out heart failure,
defined as left ventricular ejection fraction or LVEF ≥50%,
and valvular heart disease. Color Doppler echocardiography
measured left atrial diameter before fibrillation ablation. All
subjects went through coronary CT angiography (CCTA) to rule
out coronary heart disease.

Differentially Expression of Proteins
Three groups of specimens were detected by liquid
chromatography-tandem mass spectrometry (LC-MS/MS)
and analyzed by the LFQ proteomics. This method quantified
3,911 proteins. The proteome of LAAs was examined to compare
the different changes in protein expressions between healthy
controls and AF patients, using LFQ intensities. The differentially
expressed proteins, compared in pairs between three groups,
were shown in the heat map (Figure 1A). Totally 17 differentially
expressed proteins with significant difference were identified with

2http://www.geneontology.org/

TABLE 1 | Baseline Characteristics of patients with paroxysmal or permanent AF.

No. Type of AF Gender Age
(Year)

Height
(M)

Weight
(Kg)

Hyper
lipidemia

Smoking Hyper
tension

T2DM LVEF (%) CCTA LAD (mm) Duration of
AF (Year)

1 Paroxysmal Male 69 1.69 76 No No Yes No 70 Negative 40 /

2 Paroxysmal Male 63 1.7 64 No No No No 59 Negative 46 /

3 Paroxysmal Male 63 1.7 70 No No No No 66 Negative 39 /

4 Paroxysmal Male 69 1.73 67 No No Yes No 67 Negative 46 /

5 Paroxysmal Male 69 1.65 75 No No No No 70 Negative 36 /

6 Paroxysmal Male 61 1.76 76 No No Yes Yes 60 Negative 42 /

7 Paroxysmal Male 64 1.68 52 No Yes No No 64 Negative 40 /

8 Paroxysmal Male 64 1.81 71 No No Yes Yes 63 Negative 39 /

9 Paroxysmal Male 61 1.67 87 No Yes Yes No 62 Negative 37 /

10 Paroxysmal Male 66 1.73 82 No No Yes No 63 Negative 42 /

11 Persistent Male 63 1.76 86 No No Yes No 57 Negative 46 2.5

12 Persistent Male 63 1.78 80 No No No No 68 Negative 55 3

13 Persistent Male 64 1.7 70 No No No No 67 Negative 41 4

14 Persistent Male 64 1.64 84 No No Yes No 55 Negative 48 2

15 Persistent Male 65 1.69 73 No No Yes No 69 Negative 55 3.5

16 Persistent Male 66 1.68 66 No No Yes No 64 Negative 45 4

17 Persistent Male 67 1.75 80 No No Yes Yes 59 Negative 47 2.5

18 Persistent Male 67 1.65 73 No Yes Yes No 59 Negative 47 3

19 Persistent Male 63 1.64 61 No No No No 73 Negative 49 2

20 Persistent Male 67 1.78 90 No No Yes No 70 Negative 58 2.5

AF, Atrial fibrillation; T2DM, type 2 diabetes mellitus; LVFE, left ventricular ejection fraction; LAD, Left atrial diameter.
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FIGURE 1 | Heatmap visualization of the differently expressed proteins identified in healthy controls, paroxysmal AF patients, and permanent AF patients.
(A) Heatmap showing the differential protein expression profiles compared in pairs among three groups. (B) The differently expressed proteins identified in three
groups by Venn diagram via comparing in pairs.

a gradient change among healthy controls, paroxysmal AF group,
and permanent AF group via comparing in pairs (Figure 1B).

Functions of the Identified Proteins
The 17 proteins were divided into three major groups according
to their different functions: association with cytoskeleton and
protein binding, with chromatin binding, and with oxidative
stress (Table 2).

PPI Network
The STRING analysis was used to establish a PPI network
involving the 17 differentially expressed proteins (Figure 2). This
network contained 17 nodes and 12 edges. The average node
degree was 1.41. In the network analysis, the clustering coefficient
(cc) was 0.5, and PPI enrichment p-value was 4.94e-05, which was
practically negligible.

Molecular function (MF), cellular component (CC), and
biological process (BP) were all analyzed by the GO consortium
database. MF analysis suggested that most of the differently
expressed proteins participated in structural component, protein
binding, and chromatin DNA binding (Figure 3A). BP
analysis demonstrated these proteins were mostly involved in
myocyte activity, development, metabolism, post-translational
protein modification, cell-substrate interaction, and apoptotic
regulation (Figure 3B). CC analysis showed cellular structural
components (Figure 3C).

DISCUSSION

AF is the major cause of thrombotic stroke (Vergara and Della
Bella, 2014). Though AF is a major cause of mortality and
morbidity and there are decades of basic and clinical studies,
its fundamental mechanisms and effective treatment are still
unknown. Patients with paroxysmal AF suffer less than 7 days
of self-terminating episodes, but mostly progress to persistent
AF, lasting more than 7 days (Kerr et al., 2005). AF lasting over
12 months is termed “long-term persistent AF” or permanent
AF. AF leads to structural and electrical remodeling of the
atria, while the underlying mechanisms are scarcely acquainted
and remain to be revealed. Proteins are essential in cellular
function and biological component, and make up to about
50% of the structural component of mammalian cells (Milo,
2013). The proteome represents the entire set of proteins
expressed based on cellular genome at a specific time point, while
various cellular processes and disease developments are always
manifested with different protein levels (Mann et al., 2013). In
brief, characterizing proteomes and specific proteins have almost
been a new approach to understand the cell function mechanism
and disease development.

In this study, 30 LAA samples underwent proteomic analysis,
and 17 differently expressed proteins were identified between
healthy subjects and patients with AF after compared in pairs
between three groups, which means gradient changes with the
development of AF. With time progressing, the atrial remodeling
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TABLE 2 | Differently expressed proteins identified by proteomic analysis.

No. Protein name Gene Accession no. Function

1 Epididymis secretory protein Li 6 AKR1A1 V9HWI0 Cardiac necrosis

2 Lysozyme LYZ B2R4C5 Regulating apoptosis and K(ATP) ion channel

3 Core histone macro-H2A.1 H2AFY O75367 Promoter-specific chromatin binding, oxidative stress

4 Dimethylargininedimethy laminohydrolase 1 DDAH1 B1AKK2 Sarcolemma of cardiomyocytes

5 Fibrinogen alpha chain FGA P02671 Structural molecule activity, metabolism

6 Epididymis secretory sperm binding protein Li 78p FGB V9HVY1 Structural molecule activity

7 Laminin subunit beta-1 LAMB1 P07942 Structural molecule activity

8 Laminin gamma 1 LAMC1 A0A024R972 Structural molecule activity

9 MYL2 protein MYL2 Q6IB42 Structural molecule activity

10 Mutant cardiac myosin-binding protein C MYBPC3 B6D425 Structural molecule activity

11 Myosin light chain 5 MYL5 D6RA88 Structural molecule activity

12 Myosin-10 MYH10 P35580 Actin binding

13 Heterogeneous nuclear ribonucleoprotein U HNRNPU Q00839 Actin binding

14 Dickkopf-related protein 3 DKK3 Q9UBP4 Cardiac hypertrophy and fibrosis

15 COP9 signalosome complex subunit 7a COPS7A Q9UBW8 Cytosol of cardiomyocytes, cardiac proteinopathy

16 14-3-3 protein theta YWHAQ P27348 Adaptor protein, regulating electric channel activity

17 Multifunctional protein ADE2 PAICS E9PBS1 Purine biosynthesis, unclear

continuously occurs, and paroxysmal AF evolves into permanent
AF (Jalife and Kaur, 2015). All these differently expressed proteins
were grouped according to their functions in AF development
and progression, including proteins associated with apoptosis,
with cytoskeleton and protein binding, with oxidative stress, and
with ion channel regulation.

Cardiomyocytes Necrosis and Apoptosis
AKR1A1 belongs to the aldo/keto reductase superfamily,
consisting of more than 40 known proteins and enzymes. This

FIGURE 2 | The protein-protein interaction network for the 17 identified
proteins.

superfamily is also involved in the reduction of xenobiotic
and biogenic aldehydes, virtually presenting every tissue, and is
known as aldehyde reductase. AKR1A1 protein levels increased
in cardiac tissues with more vacuole formation and severe
necrosis. These results suggest that AKR1A1 protein participates
in DOX-induced cardiotoxicity (Zhou et al., 2016). LYZ levels
were elevated in cardiac sarcoidosis patients with intractable
heart failure and refractory arrhythmias (Odawara et al., 2019).
LYZ may participate in the apoptosis in the isolated hearts of rats
(Kim et al., 2010).

Oxidative Stress
H2AFY, belonging to histone H2A family, supersedes
conventional H2A histones with a subset of nucleosomes.
Histones, basic nuclear proteins in eukaryotes, constitute
the nucleosome structure of the chromosomal fiber.
Human zinc finger RNA-binding protein is regulated in
macrophage differentiation by preventing aberrant splicing
of H2AFY, and controls interferon signaling. H2AFY may
participate in transcriptional response to infection (Haque
et al., 2018). H2AFY is related to inflammation in healthy
subjects exposed to ultrafine carbon particles, and especially
changes in the glucose metabolism and cardiovascular system
(Huang et al., 2010).

Cytoskeleton and Protein Binding
Twelve proteins differently expressed between healthy controls
and AF patients, correlating to cytoskeletal structure, were
identified. DDAH1 attenuates ventricular remodeling and cardiac
hypertrophy under stress conditions via regulating subcellular
NO signaling (Xu et al., 2017). FGA participates in left
ventricular diastolic dysfunction as a core protein in β3-
adrenergic receptor knockout mice. FGA may potentially relate
to the cardiac muscle contraction and actin cytoskeleton
organization (Yang et al., 2019). FGB mutation can elevate the
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FIGURE 3 | GO analysis of differently expressed proteins in AF patients. (A) molecular function, (B) biological process, and (C) cell components.

level of plasma fibrinogen in AF patients, and thereby played a
role in cardioembolic stroke (Hu et al., 2017).

LAMB1 and LAMC1 belonging to an extracellular matrix
glycoprotein family constitute non-collagenous basement
membranes. LAMB1 is moderately expressed in heart basement
membranes (Cotrufo et al., 2005). Coding exons of LAMB1,
LAMB4 and PIK3CG were screened in dilated cardiomyopathy
(Schonberger et al., 2005). LAMC1-deficient cardiomyocytes
lacked basement membranes, leading to hormonal regulation
and electrical activity (Malan et al., 2009).

MYL2 triggers contraction by phosphorylation of the
regulatory light chain. Mutations in this gene are related to
hypertrophic cardiomyopathy. MYBPC3, a myosin- associated
protein, consists in the cross-bridge-bearing zone of A bands in
striated muscles, and is expressed exclusively in heart muscles.
Genetic testing discovered the prevalence of MYBPC3 and
MYL2in patients with hypertrophic cardiomyopathy and AF
(Bongini et al., 2016). MYL5 is a component of the hexameric
ATPase cellular motor protein myosin. MYH10, belonging to
the superfamily of myosins, is a conventional non-muscle
myosin. MYH10 is an actin-dependent motor protein, regulating
cytokinesis, cell polarity, and cell motility. Mutations in MYH10
are associated with cardiac developmental defects (Takeda et al.,
2003; Lo et al., 2004).

HNRNPU, belonging to a protein superfamily, binds
nucleic acids and functions in the nucleus by the formation of
ribonucleoprotein complexes with heterogeneous nuclear
RNA. Mice lacking HNRNPU developed lethal dilated
cardiomyopathy, which presented disorganized cardiomyocytes,
abnormal excitation-contraction coupling activities, and
impaired contractility (Ye et al., 2015). DKK3, belonging to

the Dickkopf family as a secreted protein, plays an important
role in heart development. DKK3 presents cardioprotective
effect in pathological cardiac hypertrophy via regulating the
ASK1-JNK/p38 signaling pathway (Zhang et al., 2014). COPS7A,
a component of the COP9 signalosome, may participate in
regulating the degradation of a bona fide misfolded and a
surrogate protein in the myocardial cytosol, while COPS8
hypomorphism may impair autophagosome and exacerbate
cardiac proteinopathy (Liu et al., 2016).

Besides the structural functions above, YWHAQ was
suggested to amplify and prolong the activity of beta-adrenergic
stimulated HERG channel by affecting IKr activity in ventricular
repolarization (Choe et al., 2006). LYZ may participate in K
(ATP) ion channel activity in the isolated hearts of rats, in
addition to apoptosis of cardiomyocyte (Kim et al., 2010).

Besides all the 16 differently expressed proteins discussed
above, the cardiac function of PAICS, which may participate in
purine biosynthesis, is unclear.

AF is commonly associated with structural and electrical
atrial remodeling. Structural atrial remodeling mainly includes
degenerative processes, such as apoptosis and fibrosis, and
alteration of cellular structural expression. Oxidative stress acts
as an interdependent signaling pathway leading to cardiac fibrosis
(Schotten et al., 2011).

From the above analysis, we speculate that most differently
expressed proteins participate in structural remodeling and some
may further develop to atrial electrical remodeling by structural
remodeling or direct electrophysiologic consequence.

In this study, label-free proteomics analysis identified 17 AF-
associated proteins, which were mostly correlated to structural
atrial remodeling. It has been well-demonstrated for decades
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that AF represents atrial myocardium hypertrophy, atrial cavity
dilatation, and apoptosis of atrial cardiomyocytes, and replaces
with fibrotic tissue focus or diffusion. Whether the development
of arrhythmia precedes or follows the structural remodeling
is unclear. Underlying this sophisticated multiple process is
a complex network of molecular correlation. In the study, a
comprehensive PPI network was generated from the proteomics
approach to define the molecular functions participated in AF
development. As mentioned above, these proteins were structural
components of cardiomyocyte, and structural remodeling was
presumed to play a crucial part in AF development.

The differentially expressed proteins in AF patients
require further investigation to understand their exact roles
in the pathological process of AF. For further functional
research, candidate proteins will be selected by stringent
bioinformatics analysis, which may provide vital information
to investigators for future research. The joint analysis of multi-
omics analysis will be carried out to reveal the regulatory
mechanism of AF.

Limitations
The sample size of investigated subjects was small, owing to
the difficulty in obtaining LAA samples. The healthy controls
were younger than AF patients on average, which may result
in inconsistency of the samples. In addition, we investigated
human samples with idiopathic disease, but experiments were
hardly carried out to modulate the protein levels. Although
the left atrium is the key player in AF, only left atrial
appendage tissues can be resected during cardiac ablation,
which cannot fully represent the pathological changes of
AF in the left atrium and cannot thoroughly explain the
mechanism of AF.
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Inferring gene regulatory networks from expression data is essential in identifying
complex regulatory relationships among genes and revealing the mechanism of certain
diseases. Various computation methods have been developed for inferring gene
regulatory networks. However, these methods focus on the local topology of the network
rather than on the global topology. From network optimisation standpoint, emphasising
the global topology of the network also reduces redundant regulatory relationships. In
this study, we propose a novel network inference algorithm using Random Walk with
Restart (RWRNET) that combines local and global topology relationships. The method
first captures the local topology through three elements of random walk and then
combines the local topology with the global topology by Random Walk with Restart.
The Markov Blanket discovery algorithm is then used to deal with isolated genes. The
proposed method is compared with several state-of-the-art methods on the basis of
six benchmark datasets. Experimental results demonstrated the effectiveness of the
proposed method.

Keywords: gene regulatory networks, random walk with restart, local topology, global topology, Markov Blanket
discovery algorithm

INTRODUCTION

Inferring accurate gene regulatory networks (GRNs) is an exciting but difficult topic in the
field of bioinformatics. Inferring accurate GRNs is not only helpful to understanding complex
regulatory relationships between genes in cells but also to understanding relationships between
genes and diseases (Lv and Bao, 2009; Altay and Emmert-Streib, 2010; Tang et al., 2015). With
the development of high-throughput technologies, huge gene expression data have been produced
from which researchers can infer GRNs (Maetschke et al., 2014; Liu, 2015).

Numerous network inference methods for inferring accurate GRNs have been developed.
These methods can be classified into two categories: model-based and similarity-based methods.
Model-based methods, which mainly include Boolean network model, differential equation model
and Bayesian network model, usually infer GRNs through a computational model. The Boolean
network model is a simple discrete model that contributes to understanding various states of cells,
such as proliferation, differentiation and apoptosis (Huang, 1999; Lim et al., 2016; Zhou et al., 2016).
However, the Boolean network model cannot be applied in networks with complex regulatory
relationships. The differential equation model is a continuous network model that can accurately
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describe the dynamic characteristics of GRNs. The expression
level of genes in differential equation is determined by related
genes and regulatory equations, thus allowing the underlying
phenomena of organisms to be accurately described (Alter et al.,
2000; Cantone et al., 2009; Honkela et al., 2010; Huppenkothen
et al., 2017). The Bayesian network model is a popular
graphical model of probability. In this model, the dependencies
between genes are described by a directed acyclic graph. The
Bayesian network model is superior to other models in terms
of dealing with noise and prior knowledge, but it has high
computational complexity (Tan et al., 2011; Betliński and Ślęzak,
2012; Shi et al., 2016).

Similarity-based methods, which primarily include
correlation-based and information theory-based methods,
identify regulatory relationships by measuring the dependencies
between genes (Li et al., 2011). In correlation-based methods,
the dependencies are determined by the degree of co-expression.
Typical measurement methods include Pearson’s correlation
coefficient, Euclidean distance and partial correlation coefficient
(de la Fuente et al., 2004; Saito et al., 2011; Fukushima, 2013;
Ruyssinck et al., 2014; Mohamed Salleh et al., 2015; Ghosh and
Barman, 2016). However, these measurement methods cannot
identify complex dependencies, such as non-linear dependencies
(Wang and Huang, 2014). Information theory-based methods
can capture complex non-linear regulatory relationships (Brunel
et al., 2010; Mousavian et al., 2016). Mutual information (MI)
is first used in information theory to measure the similarity
between signals and later used in the field of biology to measure
regulatory relationships between genes. Classical methods
include Relevance Network (RN), Minimum Redundancy
Network (MRNET), Path Consistency Algorithm based on
Conditional Mutual Information (PCA-CMI) and Redundancy
Reduction in the MRNET algorithm (RRMRNET). RN (Butte
and Kohane, 2000; Kuzmanovski et al., 2018) is one of the earliest
methods that used MI to measure relationships. MRNET (Meyer
et al., 2008) is a feature selection method. In MRNET, a feature
selection strategy is adopted in selecting regulatory relationships.
Although non-linear regulatory relationships can be measured
by MI, it cannot distinguish indirect regulatory relationships
(Margolin et al., 2006). To overcome this limitation, Zhang
et al. (2012) proposed PCA-CMI, in which MI is replaced by
conditional mutual information (CMI). However, CMI tends
to underestimate the relationship between genes, so Zhang
et al. (2015) proposed conditional mutual inclusive information
(CMI2) to solve the problem of underestimation of CMI. To
improve accuracy, Liu et al. (2017) proposed RRMRNET on the
basis of MRNET, in which two strategies are implemented in
eliminating redundant regulatory relationships.

In addition, several machine learning-based methods, such
as tree-based ensemble regression and neural network-based
inference methods, have been applied in this field (Huynh-
Thu et al., 2010; Huynh-Thu and Sanguinetti, 2015; Petralia
et al., 2015; Raza and Alam, 2016). Researchers have also
noticed that several regulatory relationships do not occur in
every cell. Thus, the GRN should be defined in specific cells
and situations (Moignard et al., 2015; Moris et al., 2016).
Therefore, network inference methods based on single-cell

expression data have attracted people’s interest, which has led
to the development of computational and statistical methods
that are aimed at discovering new insights into cell state
transitions (Bendall et al., 2014; Trapnell et al., 2014; Pina et al.,
2015; Rue and Martinez Arias, 2015). The use of single-cell
expression data to infer networks has many advantages. With
the development of single-cell technology, the amount of data
we can use will increase, which can effectively alleviate the
defects of high-dimensional and low-sample gene expression
data (Macosko et al., 2015). However, obtaining the time-series
data of single cells is currently impossible. Notably, these
methods infer the regulatory relationship based on the similarity
between the transcriptional states of genes and usually provide
strong assumptions, which are often unconvincing. However,
several methods can still be used for network reasoning
using single-cell expression data (Bendall et al., 2014; Trapnell
et al., 2014; Haghverdi et al., 2016; Moris et al., 2016;
Reid and Wernisch, 2016).

Although these aforementioned methods have extensively
promoted GRN research, they still have certain shortcomings.
For example, model-based methods usually have high
computational complexity. Most similarity-based methods
consider relationships between only two and not all genes at a
time. Moreover, these methods usually focus on the surrounding
information rather than on the global topology of network,
thus resulting in numerous redundant regulatory relationships.
Therefore, the present study mainly concentrates on inferring
GRNs by combining local and global topologies.

Random Walk with Restart (RWR) is an improvement
of the Random Walk (RW). RWR is widely used in the
field of bioinformatics because it can capture multivariate
relationships between nodes and explores the global topology
of networks (Rosvall and Bergstrom, 2008; Athanasiadis
et al., 2017; Peng et al., 2018; Valdeolivas et al., 2019).
Chen et al. (2012) used RWR to determine associations
between diseases and miRNAs. Sun et al. (2014) verified
the robustness of RWR for parameter selection. Luo et al.
(2016) proposed a new computational approach, MBiRW,
that uses a combination of similarity measures and a double
random Walk (BiRW) algorithm to identify potential new
indications for a particular drug. Yu et al. (2017) provided a
comprehensive framework for predicting new HCC drugs based
on multi-source random walk.

To address the limitations in gene network inference, we
propose a novel network inference algorithm using RWR
(RWRNET). The restart probability, initial probability vector
and roaming network in RWR is first improved to apply
it in network inference. Second, the improved RWR is
used in inferring network structure. Finally, the Markov–
Blanket discovery algorithm IPC-MB is used to optimise the
network structure to obtain the final gene network. The main
contributions of this study are described as follows:

(1) We improve the three key elements of RWR. First, the
proposed method obtains the restart probability and
initial probability vector according to node connectivity
and functional modularity and then captures the local
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topology structure of the network. Second, a roaming
network construction method is proposed for reducing the
complexity of regulatory relationships among genes.

(2) We use a Markov–Blanket discovery algorithm (IPC-MB)
to deal with isolated genes in the network that are
generated by the RWR process.

(3) Extensive experiments are conducted to evaluate
the performance of RWRNET. Experimental results
confirmed that RWRNET is an effective network
inference method.

THEORY

In this section, we review the concepts of (conditional) mutual
information, RWR and Markov–Blanket that are related to the
proposed method.

(Conditional) Mutual Information
Mutual information is an information measurement in
information theory. MI can be regarded as the information
shared by two random variables or the reduction of uncertainty
due to a known random variable. The MI between random
variable X and Y is defined as follows:

MI (X, Y) =
∑

x∈X,y∈Y

p
(
x, y

)
log

p
(
x, y

)
p (x) p

(
y
) (1)

where p(x, y) is the joint distribution of X and Y ; while p(X)
and p(Y) represent the marginal probability functions of X and
Y , respectively.

Conditional mutual information (CMI) is a variant of MI.
CMI represents the information shared between variable X and
variable Y under the influence of variable Z. The CMI between
variable X and variable Y is defined as follows:

CMI (X, Y|Z) =
∑

x∈X,y∈Y,z∈Z

p
(
x, y, z

)
log

p
(
x, y|z

)
p (x|z) p

(
y|z
) (2)

where p(x, y, z) is the joint distribution of X, Y and Z, p(x|z) is
the marginal distribution of variable X when variable Z occurs;
and p(x, y, z) is the joint distribution of X, Y under the influence
of variable Z .

Random Walk With Restart
Random Walk with Restart is an improvement of RW. RWR
contains a parameter α as the restart probability, and 1 − α

represents the probability of a walker moves from a node to an
adjacent node. The RWR of graph can be defined by assigning a
transition probability to each edge. In this way, a walker can jump
from one node to another, and the sequence of nodes visited by
the walker is called RWR. Let pt+1 (j) denote the probability that
walker locates at j-th node when it come to a stable state, then the
formula is:

pt+1 = (1− α) Wpt + αp0 (3)

where W = [aij]N×N is the transition probability matrix, aij is the
transition probability from the i-th node to the j-th node; and

p0 represents the initial probability vector of N × 1, in which the
i-th element is 1 and the others are zero. N is the number of
nodes in the graph.

Markov–Blanket
This section introduces Markov-Blanket (MB). In the complete
set U of random variables, for a given variable X ∈ U and variable
set MB ∈ U (X /∈ MB), the following exists:

X⊥{U −MB− {X}}|MB (4)

that is, if the variable X and the set {U-MB− {X}} are
independent of each other under MB, then the minimum variable
set MB that can meet the above conditions is called MB of X.

METHODS

In this study, we propose an effective network inference method
(i.e., RWRNET). To apply RWR in GRNs, we improve its
three key elements, namely, restart probability, initial probability
vector and roaming network. Then the RWR is used to infer
network structure. Finally, we use IPC-MB to optimise the
network structure. Figure 1 presents the flowchart of RWRNET.
Specific details are discussed in the following sections. At the
same time, we have uploaded the source code (MATLAB format)
to the Internet, and readers can view it by visiting the link1.

Improvements of RWR
This section mainly introduces specific improvements to the
three elements of RWR (i.e., restart probability, initial probability
vector and roaming network) when RWR is applied in GRNs.
First, the restart probability and initial probability vector are
determined according to node connectivity and functional
modularity to capture the network topology. Second, a roaming
network is constructed using the asymmetric MI ranking strategy
to reduce the complexity of regulatory relationships among
genes. Specific details are described as follows.

Calculation of Restart Probability
Different nodes in a network have different connectivity, which
reflects network topology structure to some extent. Laplacian
Eigenmaps is an effective way to obtain network topology,
because it can map high-dimensional data to low-dimensional
data and ensure their similarity to the original data as much as
possible. Applying discrete Laplacian Eigenmaps to the graph
network can obtain the Laplacian matrix L. And the pseudo
inverse L+ of L is a valid kernel that can provides a similarity
measure between nodes. On the basis of L+, the average
commute time ACT (gi,gj) between gene gi and gene gj can be
then defined as

ACT(gi, gj) = L+(gi, gi)+ L+(gj, gj)− 2L+(gi, gj) (5)

L = D−
1
2 (D−W) D−

1
2 (6)

1https://github.com/Dam-1517/RWRNET
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FIGURE 1 | Flowchart of RWRNET. This flowchart consists of four parts, namely, the original input stage, algorithm improvement stage, network inference stage and
network optimisation stage. (A) In the original input stage, the MI matrix was obtained through gene microarrays data. (B) In the algorithm improvement stage, three
key elements of RWR were improved. The first was the restart probability, which was calculated by the pseudo inverse of the Laplacian matrix. Then, the initial
probability vector was improved next. Different genes have various initial probability vectors, depending on the functional module. In the figure, the centres of
modules are represented by orange nodes, modular genes are indicated by green nodes, and others are denoted by blue nodes. Finally, the roaming network. In this
paper, the network represented by the mutual information matrix was considered a fully connected network, and the roaming network was obtained by adjusting this
network. (C) In the network inference stage, RWR was executed to obtain a stationary distribution, and the gene regulatory network was inferred based on the
stationary distribution. (D) In the network optimisation stage, the MB for each isolated gene was discovered to establish a relationship between the isolated genes
and others.

where W is the adjacency matrix of graph, which is MI matrix

in this paper; and D = diag(ai.) with dii = [D]ii = ai. =
n∑

j=1
aij;

ACT(gi, gj) describes the average number of steps that particles
moves from gi to gj and then back to gi .

The average commute time increases when the number of
paths connecting the two points increases and when the length
of paths decreases. According to this idea, the average commute
frequency ACF(gi, gj) and restart probability α can be defined as
follows:

ACF(gi, gj) =

{
1 , gi = gj
1

ACT(gi,gj)
, gi 6= gj

(7)

α =
1

N2

∑
gi∈G

∑
gj∈G

ACF(gi, gj) (8)

where G = {g1, g2, · · · , gN} is the set of genes, and N denotes the
number of genes.

Construction of Initial Probability Vector
Gene regulatory networks is scale-free network in which only a
few genes have regulatory relationships with numerous genes.
These genes have substantial expression levels and form their
own modules according to different functions. Genes in the same
module are closely related not only to each other but also to
genes in other modules. In addition, although RWR can obtain
the global information of the network, taking only these genes as
starting nodes is insufficient. Therefore, the functional module
of these genes is used as starting nodes to obtain sufficient
information in this paper.

In this study, the sum of MI between one gene and another is
used to represent its expression level. The genes whose expression
level is higher than the average expression level are selected
as the centre of functional module. At the same time, due
to the influence of noise on gene expression data, genes with
low expression levels less than MEAN (EL)− STD(EL) are also
selected to fully consider the surrounding information. These
genes then put together to form a set C that includes not only the
genes with high expression levels but also genes with abnormally
low expression levels. The expression level EL and the set C are
defined as follows:

EL
(
gi
)
=

∑
gj∈{G−gi}

MI(gi, gj) (9)

C =
{

gi|EL
(
gi
)

> MEAN (EL) or EL
(
gi
)}

{
< MEAN(EL)− STD (EL) , gi ∈ G

}
(10)

where MEAN(EL) is the average expression level, and STD (EL)
represents the standard deviation.

Finally, for each gene gi in the set C, the top log n genes
with the largest MI(gi, gj) are selected as the functional module
modulegi . Based on these modules, the initial probability vector
p0 can be constructed according to the following strategy: for
each gene gi in G, if gi is an element of C, then the elements
of gi-corresponding and module-corresponding have a value
of non-zero, with their sum equals to 1. Otherwise, only gi
-corresponding is 1, whereas the others are zero.

Construction of Roaming Network
Although GRN is sparse, the regulatory relationships
among genes are extremely complicated. Therefore,

Frontiers in Genetics | www.frontiersin.org 4 September 2020 | Volume 11 | Article 59146169

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-591461 September 23, 2020 Time: 16:41 # 5

Liu et al. Gene Regulatory Network Inference Algorithm

several classical methods have introduced redundant
regulatory relationships when inferring network structure.
To reduce the complexity of regulatory relationships
while maintaining the local topology, we propose a novel
method for constructing the roaming network. The basic
idea is to use the asymmetry of MI ranking to adjust
the relationships between genes, thereby weakening those
that are not closely related. The roaming network (i.e.,
transition probability matrix) W can be constructed using
the following formulas:

W(gi, gj) = Rankgigj
∗MI(gi, gj) (11)

Rankgigj =
1 , if MI(gi, gj) ≥ MIgi

1−
Rgigj

N , if MI(gi, gj) < MIgi and MI(gj, gi) ≥ MIgj

0.1 , if MI(gi, gj) < MIgi and MI(gj, gi) < MIgj

(12)

where Rankgigj is the attenuation factor, which represents
the attenuation degree of regulatory relationships; Rgigj
is the MI ranking of gj among the genes connected with
gi . MIgi represents the average MI between gene gi
and others. As depicted by the formulas, the regulatory
relationship between gi and gj is determined by Rgigj

when MI(gi, gj) < MIgi and MI(gj, gi) ≥ MIgj . The lower
the ranking, the higher the attenuation degree will be.
If MI(gi, gj) ≥ MIgi , the regulatory relationship between
gi and gj will not be weakened; if MI(gi, gj) < MIgi and
MI(gj, gi) < MIgj , the relationship between them will be
weakened by 0.1 times.

Gene Regulatory Network Inference
Based on RWR
This section covers network inference on RWR. Specific details
are discussed below.

The first stage involves initialisation of regulatory
relationships. In this stage, we obtain the MI matrix (MIij)N×N
from the gene microarrays expression data that contain
N genes and M samples. This matrix is then taken as the
input of the method.

The second stage entails implementation of RWR. Given the
restart probability, normalised transition probability matrix and
appropriate initial probability vector, RWR can be performed on
the roaming network for each gene gi to obtain the stationary
distribution pt+1 . Considering time efficiency and accuracy,

when
∣∣pt+1 − pt

∣∣ < 10−6, pt+1 is stable, p(gi)
t+1

(
gj
)

represents the
probability that gi finds gj .

The final stage concerns GRNs inference. In this stage,
stationary distribution is multiplied to transition probability to
obtain the final score MIP(gi)(gj) :

MIP(gi)(gj) = p(gi)
t+1 (gj)

∗W(gi, gj) (13)

Based on the final score, GRNs can be inferred according to the
following formula:

NETWORK(gi, gj) ={
1 , if MIP(gi)(gj) > Threshold

(
gi
)

0 , otherwise
(14)

Threshold
(
gi
)
=

3α

4

∑
gj∈G

MIP(gi)(gj) (15)

where NETWORK(gi, gj) represents the regulatory relationship
between gi and gj; Threshold(gi) is an adaptive threshold
for gi . In this paper, the threshold of each gene is
automatically determined by its prediction results based on
the following reasons. The prediction results of each gene
were obtained by executing the RWR with different initial
probability vectors, and different amounts of information
were generated by each execution of RWR. Therefore, the
prediction results obtained from different genes cannot be
compared and cannot be processed with a fixed threshold.
To this end, Eq. 15 was designed to screen the regulatory
relationships for each gene.

∑
MIP(gi)(gj) was selected as the

major component of formula to simultaneously consider the
effect of the predicted relationship between all genes and the
target gene on the results. However, the regulatory relationship
cannot be screened out if only one major component is used.
Therefore, we added a factor of 3α/4, which represents the
information occupancy of the target gene. Equation 15 indicates
that only when the predictive relationship between a gene
and the target gene exceeds the total information that the
target gene holds can the real regulatory relationship between
them be considered.

Network Optimisation Based on IPC-MB
Given that each gene in GRNs has a unique role, no gene
should be isolated. However, RWR cannot handle isolated
nodes. Therefore, the isolated nodes are processed by a
Markov–Blanket discovery algorithm (IPC-MB) to optimise
the network structure. IPC-MB is a classical feature selection
algorithm (Fu and Desmarais, 2008). Its main idea is involves
eliminating redundant and irrelevant regulatory relationships
according to conditional independence to find genes that have
direct regulatory relationships with the target gene, CMI stands
for the conditional independence in this article. The basic idea is
look for a parent–child set (PC) and a spouse set. These sets are
then merged to obtain the Markov–Blanket (MB) of the target
gene. However, since the genes in the spouse set are actually
redundant, we will not use all of Markov-Blanket, but only use the
parent-child set (PC). Finally, on the basis of PC, the regulatory
relationships between isolated genes and genes in the PC are
established to obtain optimised GRNs.

To describe the proposed method comprehensively, Table 1
summarises the complete RWRNET. As shown in the table,
Lines 2–10 of the pseudo code are the improvements of RWR,
including calculating the restart probability, construction of a
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TABLE 1 | Gene Regulatory Network Inference Algorithm Using Random
Walk with Restart.

Algorithm: RWRNET

Input: Gene microarrays data G = {g1, · · · , gN}

Output: A gene regulatory network

1: Construct a MI matrix MI according to Eq. 1;

2: Calculate restart probability α using Eq. 8;

3: Construct transition probability matrix W using Eq. 11;

4: Calculate gene expression level EL (gi) for each gene using Eq. 9;

5: Select centres of functional module and put them into set C according to
Eq. 10;

6: Construct functional modules:
moduleg1 = {g1} , moduleg2 = {g2} , · · · , modulegN = {gN};

7: For each gene gi ∈ C do

8: Rank the genes gj in {G− gi} according to MI(gi, gj) in descending order to
form ranking list MIL;

9: modulegi ← the top log N genes in MIL;

10: End For

11: For each gene gi ∈ G do

12: Construct initial probability vector p(gi)
0 according to modulegi ;

13: p(gi)
t+1 = RWR(α, W, p(gi)

0 );

14: Calculate final score MIP(gi) according to Eq. 13;

15: End For

16: Infer network using Eq. 14;

17: Process isolated genes based on IPC-MB;

18: Return the optimised gene regulatory network.

roaming network and search for functional modules to construct
the initial probability vector. In Lines 11–16, RWR was used to
infer the initial network structure. The 17th line was used in
IPC-MB to optimise the network structure.

EXPERIMENT

In this section, we introduce the datasets and evaluation
metrics used to evaluate RWRNET performance. In
the experiment, the performance of RWRNET was
compared with that of different methods, namely, CLR,
ARACNE, MRNET, MIDER, MI3, MRMSn, PCA-CMI,
and RRMRNET, based on information theory. Among
these methods, MI3 and MIDER can infer regulatory
directions. However, RWRNET does not infer regulatory
directions. Hence, we ignored the regulatory direction during
the comparisons.

Datasets
During the experiment, the proposed and other methods were
tested and compared in terms of six datasets. The test datasets
were divided into simulated and real data, which included the
reaction chain data, DREAM3 yeast gene expression data and
SOS data. The reaction chain data were downloaded from the
KEGG database2. The reaction chain data were time-series data.
The DREAM3 yeast gene expression data were downloaded from
the DREAM3 challenge project3. The DREAM3 challenge project
provided three types of data; the null-mutant gene knockout data
were selected in this article. The SOS data were downloaded from
E. coli database4. The SOS data were interference data, that is,
the measurement data obtained through a series of transcription
interference. Table 2 provides a summary of the details of the
above six datasets.

The reaction chain with four species datasets comes from a
small linear chain of chemical reactions (Samoilov, 1997). The
dataset contained four variables, each of which contained 100
samples. The real network of the reaction chain included of four
nodes and three edges.

The reaction chain with eight species datasets comes from a
small linear chain of chemical reactions (Samoilov et al., 2001).
The dataset contained eight variables, each of which contained
250 samples. The real network of the reaction chain included of
eight nodes and seven edges.

The Dream3-10 gene dataset is from a yeast network in
DREAM3 (Marbach et al., 2010). The dataset contained 10 genes,
each of which contained 10 samples. The corresponding real
network structure included of 10 nodes and 10 edges.

The Dream3-50 gene dataset is from a yeast network in
DREAM3 (Marbach et al., 2010). The dataset contained 50 genes,
each of which contained 50 samples. The corresponding real
network structure included 50 nodes and 50 edges.

The Dream3-100 gene dataset is also from a yeast
network in DREAM3 (Margolin et al., 2006). The dataset
contained 100 genes, each of which contained 100 samples.
The corresponding real network structure included 100
nodes and 166 edges.

The SOS dataset is from an SOS network (Ronen et al., 2002).
The dataset contained nine genes, each of which contained nine
samples. The corresponding real network structure included nine
nodes and 24 edges.

2https://www.genome.jp/kegg/
3http://dreamchallenges.org/project-list/
4http://regulondb.ccg.unam.mx/index.jsp/

TABLE 2 | Descriptions of the datasets in our experiments.

Datasets Variables Samples Type Network nodes Network edges

Reaction chain with four species 4 100 Simulated 4 3

Reaction chain with eight species 8 250 Simulated 8 7

DREAM3-10 genes 10 10 Simulated 10 10

DREAM3-50 genes 50 50 Simulated 50 77

DREAM3-100 genes 100 100 Simulated 100 166

SOS 9 9 Real 9 24

Frontiers in Genetics | www.frontiersin.org 6 September 2020 | Volume 11 | Article 59146171

https://www.genome.jp/kegg/
http://dreamchallenges.org/project-list/
http://regulondb.ccg.unam.mx/index.jsp/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-591461 September 23, 2020 Time: 16:41 # 7

Liu et al. Gene Regulatory Network Inference Algorithm

Evaluation Metrics
To verify the effectiveness of the proposed method, we used four
evaluation metrics: true positive rate (TPR), false positive rate
(FPR), positive predictive value (PPV) and accuracy rate (ACC).
TP, FP, TN and FN denote the number of true positives, false
positives, true negatives and false negatives, respectively. These
four evaluation metrics are calculated as follows:

TPR =
TP

TP + FN
(16)

FPR =
FP

FP + TN
(17)

PPV =
TP

TP + FP
(18)

ACC =
TP + TN

TP + FP + TN + FN
(19)

RESULTS

Results of the Chain Structure Network
To verify whether the proposed method has an effect on special
networks, such as chain structure network, we selected the
expression data of chain structure network with sizes of four and
eight as the test datasets.

First, we tested the proposed method on the chain structure
network with a size of four. Table 3 shows the performance of
RWRNET and other methods in this dataset. Like most methods,
RWRNET achieved perfect performance (PPV = 1, ACC = 1)
in this dataset.

To verify further the effectiveness of the proposed method,
we selected a chain structure network with a size of eight for
testing. Table 4 shows the performance of all methods. RWRNET,
CLR and ARACNE predicted six correct regulatory relationships
(TP = 6), only one missing regulatory relationship and one
redundant regulatory relationship (FP = 1). Compared with
the performance of the other methods, RWRNET predicted the
most regulatory relationships, and its FPR performance was
only worse than that of MIDER. However, MIDER achieved
FPR = 0 at the cost of TPR. Hence, our proposed method still

TABLE 3 | Comparison of the different methods’ performances in the reaction
chain with four species dataset.

TP FP TPR FPR PPV ACC

CLR 3 0 1 0 1 1

ARACNE 3 0 1 0 1 1

MRNET 3 1 1 0.33 0.75 0.833

MI3 2 3 0.667 1 0.4 0.333

MIDER 3 0 1 0 1 1

MRMSn 3 0 1 0 1 1

RRMRNET 3 0 1 0 1 1

PCA-CMI 3 1 1 0.333 0.75 0.833

RWRNET 3 0 1 0 1 1

TABLE 4 | Comparison of the different methods’ performances in the reaction
chain with eight species dataset.

TP FP TPR FPR PPV ACC

CLR 6 1 0.857 0.048 0.857 0.929

ARACNE 6 1 0.857 0.048 0.857 0.929

MRNET 6 9 0.857 0.429 0.4 0.643

MI3 2 11 0.286 0.524 0.154 0.429

MIDER 5 0 0.714 0 1 0.929

MRMSn – – – – – –

RRMRNET 6 2 0.857 0.095 0.75 0.893

PCA-CMI 6 16 0.857 0.762 0.273 0.393

RWRNET 6 1 0.857 0.048 0.857 0.929

offered great advantages. To intuitively explain the advantages
of RWRNET, we show the network structure inferred by all
methods (Figure 2). The first network in the figure is the
true network structure, the second network is the network
structure inferred by RWRNET, and the other networks are
the network structures inferred by comparison method. The
figure shows that the network structure inferred by CLR,
RRMRNET, ARACNE, and MIDER was the closest to the true
network, whereas the results obtained by MRNET, PCA-CMI,
and MI3 contained considerable redundant control relationships.
RWRNET missed X1–X8 and incorrectly linked X8 to other
genes, similar to the other methods. Only MI3, MIDER and
PCA-CMI were able to predict X1–X8. However, MIDER missed
X3–X4 and X5–X6, MI3 and PCA-CMI introduced excessive
redundant regulatory relationships. In summary, the proposed
method showed excellent performance. Finally, by combining the
performance of RWRNET in these two datasets, we learned that
RWRNET is suitable for special networks.

Results of the DREAM3 Challenge
Network
To demonstrate that the proposed method can be used to infer
GRNs from simulated dataset, we tested it in DREAM3. The
DREAM3 Challenge Network is a version of the DREAM project
that provides various gene expression datasets and corresponding
golden networks to evaluate the performance of the inferred
model. The gene expression dataset provided by DREAM3 is a
simulation dataset. We used yeast gene expression data with a size
of 10, 50, and 100 as the test datasets.

First, we tested the proposed method in the yeast gene
expression dataset with a size of 10. A comparative analysis of
different methods is summarised in Table 5. RRMRNET had the
best performance (PPV = 1, ACC = 1). MRMSn and PCA-CMI
identified nine correct regulatory relationships (TP = 9), whereas
RWRNET identified eight regulatory relationships only (TP = 8)
and introduced a redundant regulatory relationship (FP = 1). To
analyse visually the gap between RWRNET and other methods,
we showed the network structure they inferred (Figure 3). The
figure contains nine networks. The first network is a standard
network, and the one on the right of the standard network is
the network inferred by RWRNET. Like most other methods,
RWRNET missed G4–G9 and predicted G2–G9 incorrectly
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FIGURE 2 | Comparison of the different methods in the reaction chain with eight species dataset.

TABLE 5 | Comparison of the different methods’ performances in the
Dream3-10 gene dataset.

TP FP TPR FPR PPV ACC

CLR 6 10 0.6 0.286 0.375 0.689

ARACNE 6 6 0.6 0.171 0.5 0.778

MRNET 6 12 0.6 0.343 0.333 0.644

MI3 8 6 0.8 0.171 0.571 0.822

MIDER – – – – – –

MRMSn 9 1 0.9 0.029 0.9 0.956

RRMRNET 10 0 1 0 1 1

PCA-CMI 9 1 0.9 0.029 0.9 0.956

RWRNET 8 1 0.8 0.029 0.889 0.933

probably because of noise in the data. Unfortunately, RWRNET
also missed G3–G5. Similar to RWRNET, the network structure
inferred by MI3 lost G3–G5 because MI3 cannot recognise the
triangle relationship between G1, G3, and G5. Similarly, the loss
of G3–G5 in our proposed method may have been caused by the
complex network structures between G1, G3 and G5. Although
RWRNET did not perform as well as the RRMRNET, MRMSn
and PCA-CMI, it still performed well in terms of these four
metrics compared with CLR, ARACNE, MRNET, and MI3.

We then tested the performance of the proposed method in the
yeast gene expression dataset with a size of 50 (Table 6). The TPR
of the proposed method was 0.377, whereas that of the others was
between 0.052 and 0.494. RRMRNET was the only method that
performed better than RWRNET in terms of TPR. The FPR of
the proposed method was only 0.014, whereas the minimum FPR
of the other methods was 0.015. The proposed method clearly
identified correct regulatory relationships and avoided redundant

regulatory relationships (TP = 29, FP = 16). In addition, the
proposed method outperformed the other methods in all metrics,
especially with an ACC of 0.948. In summary, the proposed
method evidently performed better than the other methods.

Finally, we tested the performance of proposed method
in the yeast gene expression dataset with a size of 100
(Table 7). The performance of RWRNET was superior
to that of CLR, ARACNE, MRNET, MI3 and MIDER in
all metrics. Compared with RRMRNET and PCA-CMI,
RWRNET selected about 65 correct regulatory relationships
(TP = 65) and introduced 50 redundant regulatory relationships
(FP = 50). Although the TPR of RWRNET was not the highest
(TPR = 0.392), its FPR was only 0.01. To sum up, the proposed
method was considerably reduced the number of redundant
regulatory relationships. Therefore, our method achieved
the best performance in terms of PPV (PPV = 0.565) and
ACC (ACC = 0.969).

In conclusion, RWRNET achieved a good performance
in the DREAM3 challenge network dataset. The proposed
method predicted as many correct regulatory relationships
as possible while introducing the least redundant regulatory
relationships. These features indicate that our method may
be more advantageous than the other methods in inferring
large-scale networks.

Results of SOS Network in E. coli
Finally, we tested the performance of our method in the SOS
network in E. coli. The SOS network is a signal pathway in
the SOS DNA repair system, which has been experimentally
confirmed and is often used to test the effectiveness of various
methods in real networks. For gene expression data, we chose
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FIGURE 3 | Comparison of the different methods in the Dream3-10 gene dataset.

interference data, which were obtained through a series of
transcription interference measurements.

The performance of all methods are analysed visually in
Table 8. The performance of the proposed method was superior

to that of the other methods, except for PCA-CMI in terms of
ACC. In addition, the performance of the proposed method was
the best in terms of PPV. At the same time, RWRNET had the
best performance in terms of FPR, indicating that our method
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TABLE 6 | Comparison of the different methods’ performances in the
Dream3-50 gene dataset.

TP FP TPR FPR PPV ACC

CLR 19 165 0.247 0.144 0.103 0.818

ARACNE 13 125 0.169 0.109 0.094 0.846

MRNET 21 215 0.273 0.187 0.089 0.779

MI3 21 68 0.273 0.059 0.236 0.899

MIDER 4 79 0.052 0.069 0.048 0.876

MRMSn 21 17 0.273 0.015 0.553 0.94

RRMRNET 38 56 0.494 0.049 0.404 0.922

PCA-CMI 25 19 0.325 0.017 0.568 0.942

RWRNET 29 16 0.377 0.014 0.644 0.948

TABLE 7 | Comparison of the different methods’ performances in the
Dream3-100 gene dataset.

TP FP TPR FPR PPV ACC

CLR 39 713 0.235 0.149 0.052 0.830

ARACNE 20 417 0.121 0.087 0.046 0.886

MRNET 49 984 0.295 0.206 0.047 0.778

MI3 27 165 0.163 0.035 0.141 0.939

MIDER 13 80 0.078 0.017 0.140 0.953

MRMSn – – – – – –

RRMRNET 92 238 0.554 0.05 0.28 0.937

PCA-CMI 70 64 0.422 0.013 0.522 0.968

RWRNET 65 50 0.392 0.01 0.565 0.969

TABLE 8 | Comparison of the different methods’ performances in
the SOS dataset.

TP FP TPR FPR PPV ACC

CLR 12 5 0.5 0.417 0.706 0.528

ARACNE 7 3 0.292 0.25 0.7 0.444

MRNET 17 6 0.708 0.5 0.739 0.639

MI3 9 5 0.375 0.417 0.643 0.444

MIDER – – – – – –

MRMSn 10 2 0.417 0.167 0.833 0.556

RRMRNET 10 2 0.417 0.167 0.833 0.556

PCA-CMI 19 3 0.92 0.25 0.84 0.778

RWRNET 15 1 0.625 0.083 0.938 0.722

introduced fewer redundant regulatory relationships than the
others. A real network usually has a complex network structure
and close regulatory relationships. Thus, inferring a real network
is difficult. However, compared with the other methods, the
proposed method performed well in the SOS network, especially
in identifying redundant regulatory relationships. This result
demonstrated that our method can effectively reduce network
complexity and thus it is suitable for inferring real networks.

DISCUSSION

In this article, we emphasised that combining local topology
with global topology can be used to improve the accuracy of
network inference. However, existing methods usually focus on

local topology rather than on global topology. Given that RWR
is a global search algorithm, we used it to obtain the global
topology of the network. To confirm that RWR can be better
applied to GRNs, we improved its three key elements. First, we
constructed restart probability and initial probability vector on
the basis of network characteristics and regulatory mechanisms
to obtain the local topology structure. Second, we adopted
the asymmetric ranking strategy in constructing the roaming
network to reduce the complexity of regulatory relationships.
Finally, we used IPC-MB to optimise the network structure.
Thus, the proposed method (RWRNET) could theoretically
infer accurate GRNs.

RWRNET was tested on simulated and real datasets. In
simulated datasets, the proposed method achieved excellent
performance. In the reaction chain with four species, the network
structure inferred by RWRNET was exactly the same as the true
network. In the reaction chain with eight species, the Dream3-50
gene dataset and the Dream3-100 gene dataset, RWRNET
accomplished superior performance. In the Dream3-50 gene
dataset, its PPV was 0.644 and ACC was 0.948, indicating that
the proposed method had a relatively good effect. These results
showed that combining local topology with global topology can
effectively improve the accuracy of network inference. In real
datasets, RWRNET also achieved satisfactory results. Under the
premise that RWRNET obtained enough regulatory relationships
(TP = 15), the redundant regulatory relationships it introduced
were the least (FP = 1) possibly because the processing of roaming
networks reduced the effects of complex regulatory relationships
on RWR. Interestingly, RWRNET performed unsatisfactorily
compared with the other network inference methods in the
Dream3-10 gene dataset and SOS dataset. Two possible reasons
can be offered: the complexity of network structure and the
amount of noise in the data. In the Dream3-10 gene network,
RWRNET missed G3–G5 because of the triangular relationship
between G1, G3, and G5 that increased the complexity of
the network structure. Moreover, the SOS network had a
lot of noise that negatively affected the performance of the
proposed method.

RWRNET was tested on networks of different sizes (i.e.,
different numbers of variables), containing 4, 8, 9, 10, 50,
and 100 genes. The experimental results show that RWRNET
achieved good performance on the six different scale networks.
As shown in Tables 3–8, except for networks of sizes 9 and
10, the performance of RWRNET showed an upward trend
with the increase in the number of genes (the number of
variables) in the network. Especially in networks with sizes
of 50 and 100, RWRNET achieved good results in terms of
the PPV and ACC metrics. Thus, combining global topology
with local topology can effectively improve the accuracy of
network inference.

The performance of RWRNET was also compared with
that of other gene network inference methods in terms of
different evaluation metrics. Results showed that RWRNET
performed better than the other methods for most datasets.
In the Dream3-10 Gene Network and SOS Network datasets,
RWRNET did not perform as well as PCA-CMI. Although the
performance of RWRNET in these datasets was not satisfactory,
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it nevertheless considerably reduced the number of redundant
regulatory relationships, indicating that the global topology
relationships of the network can also improve the performance
of network inference.

CONCLUSION

In this study, we proposed a novel network inference method
based on information theory and RWR. We improved
the three key elements of RWR to infer GRNs by using
the proposed method. Restart probability was calculated,
initial probability vector was constructed to adapt to
network characteristics and regulatory mechanisms as much
as possible to capture the network topology accurately.
Moreover, a roaming network construction algorithm based on
asymmetric ranking was proposed. This algorithm effectively
reduced the effects of complex regulatory relationships
on RWR. Finally, the local topology was combined with
the global topology through RWR to infer the network
structure. IPC-MB was used to deal with isolated nodes
and optimise the network structure. The proposed method
was tested in six standard network datasets, and its
performance was compared with that of eight state-of-the-art
methods based on information theory. Experimental results

confirmed that the proposed method can efficiently and
accurately infer GRNs.
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Orphan genes are associated with regulatory patterns, but experimental methods
for identifying orphan genes are both time-consuming and expensive. Designing an
accurate and robust classification model to detect orphan and non-orphan genes in
unbalanced distribution datasets poses a particularly huge challenge. Synthetic minority
over-sampling algorithms (SMOTE) are selected in a preliminary step to deal with
unbalanced gene datasets. To identify orphan genes in balanced and unbalanced
Arabidopsis thaliana gene datasets, SMOTE algorithms were then combined with
traditional and advanced ensemble classified algorithms respectively, using Support
Vector Machine, Random Forest (RF), AdaBoost (adaptive boosting), GBDT (gradient
boosting decision tree), and XGBoost (extreme gradient boosting). After comparing the
performance of these ensemble models, SMOTE algorithms with XGBoost achieved an
F1 score of 0.94 with the balanced A. thaliana gene datasets, but a lower score with
the unbalanced datasets. The proposed ensemble method combines different balanced
data algorithms including Borderline SMOTE (BSMOTE), Adaptive Synthetic Sampling
(ADSYN), SMOTE-Tomek, and SMOTE-ENN with the XGBoost model separately. The
performances of the SMOTE-ENN-XGBoost model, which combined over-sampling and
under-sampling algorithms with XGBoost, achieved higher predictive accuracy than
the other balanced algorithms with XGBoost models. Thus, SMOTE-ENN-XGBoost
provides a theoretical basis for developing evaluation criteria for identifying orphan genes
in unbalanced and biological datasets.

Keywords: unbalanced dataset, ensemble learning, orphan genes, XGBoost model, two-class

INTRODUCTION

The process of identifying orphan genes is an emerging field. Orphan genes play critical roles
in the evolution of species and the adaptability of the environment (Davies and Davies, 2010;
Donoghue et al., 2011; Huang, 2013; Cooper, 2014; Gao et al., 2014). In most plant species, orphan
genes make up about 10–20% of the number of genes (Khalturin et al., 2009; Tautz and Domazet-
Loso, 2011), and each species has a specific proportion of orphan genes (Khalturin et al., 2009;
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Arendsee et al., 2014), Many attempts have been made to
identify orphan genes in multiple species or taxa and to
analyze their functions. The whole genome and transcriptome
sequences of many species have been published, including those
of Arabidopsis thaliana (Arabidopsis Genome Initiative, 2002),
Oryza sativa (Goff et al., 2002), Populus (Tuskan et al., 2006),
and the discovery of orphan genes among these sequences
has helped to clarify the special biological characteristics and
environmental adaptability of angiosperm. For example, the
A. thaliana orphan genes qua-quine starch (QQS) alter the carbon
and nitrogen content of the plant, increasing the protein content
and decreasing the starch content (Li et al., 2009; Arendsee
et al., 2014); the wheat, TaFROG (Triticum aestivum fusarium
resistance orphan gene) contributes to disease resistance genes
for crop-breeding programs (Perochon et al., 2015); and the rice
orphan gene GN2 (GRAINS NO. 2) can affect plant height and
rice yield (Chen et al., 2017).

Currently, orphan genes are detected mainly by comparison
of genome and transcriptome sequences of related species using
BLAST (Blast-Basic Local Alignment Search Tool; Altschul et al.,
1990; Tollriera et al., 2009). However, this approach requires
large server resources and time, and common problems with
complexity and timeliness occur (Ye et al., 2012).

Computational technology and machine learning (ML)
algorithms are widely used in the detection of orphan genes
in big datasets. The method of ML can be used to make two
kinds of field classification from an enormous genome dataset
(Libbrecht and Noble, 2015; Syahrani, 2019). Orphan genes
are widely distributed in plant species and generally exhibit
significant differences in gene length, the number of exons, GC
content, and expression level compared to protein-coding genes
(Donoghue et al., 2011; Neme and Tautz, 2013; Yang et al., 2013;
Arendsee et al., 2014; Xu et al., 2015; Ma et al., 2020). In systems
biology, traditional classification methods, such as Support
Vector Machines (SVMs; Zhu et al., 2009) or Random Forest
(RF; Pang et al., 2006; Dimitrakopoulos et al., 2016) have been
applied in the classification scheme. More recently, ensemble
classification algorithms have achieved remarkable results in the
fields of biology and medicine (Chen and Guestrin, 2016).

Additionally, the number of orphan genes is much less than
the numbers of non-orphan gene datasets, therefore unbalanced
datasets pose significant problems for developers of classifiers.
The original method of over-sampling and under-sampling
(Drummond and Holte, 2003; Chen and Guestrin, 2016) can
help address the problems of an unbalanced dataset (Weiss, 2004;
Zhou and Liu, 2006). In over-sampling methods, the synthetic
minority over-sampling technique (SMOTE) (Demidova and
Klyueva, 2017) can add new minority class examples, but
the deleted information of majority samples may contain
representative information of the majority class. Then, the
improved SMOTE which combines with edited nearest neighbors
(SMOTE-ENN) algorithm (Zhang et al., 2019), is used in the
K-nearest neighbor (KNN) method to classify the sampled
dataset, by the theory of over-sampling and under-sampling.

The bagging and boosting methods are two important
approaches to ensemble learning (Breiman, 1996) that can
improve the accuracy of a model significantly. The boosting

family algorithm adaptively fits a series of weak models and
combines them. Because the number of minority samples in an
unbalanced dataset is small, they are easily misclassified, so the
results of the previous classifier determine the parameters of the
later model and let the next classifier focus on training the last
misclassified sample. Therefore, the Boosting family algorithm
pays more attention to samples that are difficult to classify, which
can effectively improve the prediction accuracy.

In the study described in this manuscript, over-sampling
and under-sampling algorithms were introduced to clean up
unbalanced data (Chawla et al., 2002). Representative serial
classified algorithms of the Boosting family are AdaBoost
(adaptive boosting), GBDT (gradient boosting decision tree),
XGBoost (extreme gradient boosting), and the representative
parallel classified algorithm are SVM and RF. The performance
of these five classification models with over-sampling SMOTE
is better than those with single classifiers. The relevant features
of the whole gene sequencing of A. thaliana were designed as a
model for the identification and prediction of orphan genes. The
result could show that balancing algorithms play a more effective
guiding role in identifying the orphan genes in a species.

MATERIALS AND METHODS

Data Processing Method for Unbalanced
Data
Data preprocessing is the first step for data mining and affects the
result. Preprocessing includes data discretization, missing values,
attribute coding, and data standard regularization. In practice,
each industry has unique data characteristics, so different
methods are used to analyze the data and perform preprocessing.

The processing of unbalanced data describes classes with
obviously uneven distribution. The traditional method used
random over-sampling to increase the number of small-class
samples to achieve a consistent number. Because this method
achieves balance by a single random over-sampling strategy
of copying data, the added repeated data will increase the
complexity of data training and induce over-fitting.

To deal with the problem of unbalanced data classification,
some algorithms have been used effectively to improve the
performance of classification. Common methods for processing
datasets included mainly: over-sampling and under-sampling, or
a combination of under-sampling and over-sampling.

Over-Sampling SMOTE and Borderline
SMOTE
To solve the problem of over-fitting associated with unbalanced
data when the learning information is not generalized, Chawla
et al. (2002) proposed the SMOTE algorithm for preprocessing
over-sampling data of synthetic minority categories. SMOTE was
designed based on a random over-sampling method in the feature
space. By analyzing data with few categories, many new data
are generated by linear interpolation and added to the original
data set. SMOTE first selects each sample from the minority
samples successively as the root sample for the synthesis of the
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new sample. Then according to the up-sampling rate n, SMOTE
randomly selects one of K (K is generally odd, such as K = 5)
neighboring samples of the same category, which is used as an
auxiliary sample to synthesize a new sample and repeated n times.
Finally, linear interpolation is performed between the sample and
each auxiliary sample to generate n synthesized samples. The
basic flow of the algorithm is:

(i) Find K samples of the nearest neighbor for each sample xi,
whose label is “1”;

(ii) A sample xj belonging with few categories is selected
randomly from K;

(iii) Linearly interpolate randomly between xi and xj to
construct a new minority sample.

The SMOTE algorithm effectively solves the problem of over-
fitting caused by the blind replication of random over-sampling
techniques. However, the selection of the nearest neighbor
sample in step 1 exits is purposeless. Users need to determine
the number of K values of the neighbor samples themselves, so
it is difficult to determine the optimal value. Additionally, the
newly synthesized samples may fall into the sample area labeled
"0," which confuses the boundaries between them and interferes
with the correct classification of the data.

Therefore, to address these two problems, Wang et al.
(2015) proposed Borderline SMOTE (an over-sampling method
in unbalanced datasets learning), which is an improved over-
sampling algorithm based on SMOTE. By finding suitable areas
that can better reflect the characteristics of the data to be
interpolated, the problem of sample overlap can be solved. The
Borderline SMOTE algorithm uses only a few samples on the
boundary to synthesize new samples, thereby improving the
internal distribution of samples.

Adaptive Synthetic Sampling
Adaptive Synthetic Sampling adaptively generates different
numbers of sampling samples according to data distribution (He
et al., 2008). The basic flow of the algorithm is below:

(i) Calculate the number of samples to be synthesized, as
follows: G = (ml −ms)× β, where ml is the number of
majority samples, andms is the number of minority
samples. If β = 1, the number of positive and negative
samples is the same after sampling, indicating that the data
is balanced at this time.

(ii) Calculate the number of K nearest neighbor value of each
minority sample, 1 is the number of majority samples
in the K neighbors, the formula is as follows: ri = 1i/K,
where 1i is the number of majority samples in K nearest
neighbors, i = 1,2,3......., ms

(iii) To normalize ri, the formula is r̂ = ri/
ms∑
i=1

ri

(iv) According to the sample weights, calculate the number of
new samples that need to be generated for every minority
sample. The formula is g = r̂ × G.

Select one sample from the K neighbors around each data
with the label “1” to be synthesized, calculate the number to be
generated according to g the formulasi = xi + (xzi − xi)× λ ,

where si is the synthetic sample, xi is the ith minority samples,
and xzi is a random number of the minority sample λ ∈ [0,1]
selected from the K nearest neighbors of xi .

Combining Algorithms
Apart from using a single under-sampling or over-sampling
method, two resampling methods can be combined. For example,
SMOTE-ENN (Zhang et al., 2019), ENN is an under-sampling
method focusing on eliminating noise samples, which is added to
the pipeline after SMOTE to obtain cleaner combined samples.
For each combined sample, its nearest-neighbors are computed
according to the Euclidean distance. These samples will be
removed whose most KNN samples are different from other
classes (shown in Figure 1).

SMOTE-Tomek (Batista et al., 2004) also combine SMOTE
with Tome-links (Tomek), a data cleaning method to handle the
overlapping parts, which are difficult to classify for a few classes
and most surrounding samples. A Tome link can be defined as
follows: given that sample x and y belong to two classes, and be
the distance between x to y as d (x,y). If there is not a sample
z, such as d (x,z) < d (x,y) or d (y,z) < d (x,y), A (x,y) pair is
called a Tome link.

Ensemble Learning Methods
The main idea of the ensemble learning algorithm is to
construct multiple classifiers with weak performance and use a
certain strategy to combine them into a classifier with strong
generalization performance. Consequently, the performance of
the ensemble is better than that of a single classifier.

This study created two classification models for unbalanced
datasets and used Python to build five integrated learning models
of SVM, RF, AdaBoost, GBDT, and XGBoost and conducted
comparative experiments to find the optimal model. XGBoost
performed best in the classification, Five kinds of balanced data
learning methods of resampling: SMOTE, BSMOTE, ADASYN,
SMOTE-ENN, and SMOTE-Tomek, were then combined with
XGBoost to build an ensemble model that produced excellent
classification results (Lemaitre et al., 2017; Wu et al., 2018).

XGBoost was modified by adding regular items to the
GBDT algorithm that can predict the orphan gene binary
classification problem and increase the calculation speed.
XGBoost uses the gradient boosting algorithm of the based
learner classification and regression tree (CART) to calculate
the complexity of the leaf nodes of each tree and uses the
gradient descent algorithm to minimize the loss for finding the
optimal prediction score, thus avoiding over-fitting the learned
model and effectively controlling the complexity of the model
(Chen and Guestrin, 2016).

The derivation process is as follows:

(i) Objective function: obj (θ) =
n∑
i

l
(
yi, ŷi

)
+

K∑
k=1

�(fk)

(ii) Using the first and second derivatives, the Taylor formula
expands:

obj(t)
= [

n∑
i

l
(
yi, ŷi

t−1)
+ gift(xi)] +�

(
ft
)
+ constant
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FIGURE 1 | The process of SMOTE-ENN algorithm: (A) SMOTE selected each sample from the minority samples successively as the root sample for the synthesis
of the new sample. (B) The following result was obtained by employing ENN to eliminate noise samples when the process of SMOTE is caused.

(iii) Measuring the complexity of the decision tree as:�
(
f
)
=

γT+ 1
2λ

T∑
j=1

w2
j , where T is the number of leaf nodes in the

decision tree, and w is the prediction result corresponding
to the leaf node.

(iv) Substituting the above two steps into the objective function
(1), it is organized as:

obj(t)
≈

n∑
i=1

[giwq(xi) +
1
2

(
hiw2

q(xi)

)
] + γT+

1
2

T∑
j=1

w2
j

=

T∑
j=1

[
Gjwj +

1
2
(
Hj + λ

)
w2

j

]
+ γT

(v) Then, Ij =
{

i|q (xi) = j
}

, represents the sample set
belonging to the j-th leaf node.

Gj =
∑
i∈Ij

gi, Hj =
∑
i∈Ij

hi,

(vi) To minimize the objective function, let the derivative be 0
and find the optimal prediction score for each leaf node:

w
∗

j = −
Gj

Hj + λ

(vii) Substitute the objective function again to get its
minimum value:

obj(t)
= −

1
2

T∑
J=1

G2
j

Hj + λ
+ γT

(viii) Find the optimization goal of each layer of the build tree
through obj to find the optimal tree structure, and split the
left and right subtrees as:

Gain (φ) =
1
2

[ (∑
i⊆IL

gi
)2∑

i⊆IL
hi + λ

+

(∑
i⊆IR

gi
)2∑

i⊆IR
hi + λ

−

(∑
i⊆I gi

)2∑
i⊆I hi + λ

]
− γ

Frontiers in Genetics | www.frontiersin.org 4 October 2020 | Volume 11 | Article 82081

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00820 October 1, 2020 Time: 14:9 # 5

Gao et al. Unbalanced Datasets With Ensemble Learning Method

TABLE 1 | Binary confusion matrix.

Real positive Real negative

Predict positive TP FP

Predict negative FN TN

Confusion Matrix
The confusion matrix (error matrix) is a matrix table
(shown in Table 1) that is used to judge whether a sample
is 0 or 1 and reflects the accuracy of classification. The
results of the classification model are analyzed using
four basic indicators: true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). The
prediction classification model that gives the best results
will have a large number of TPs and TNs and a small
number of TPs and TNs.

(i) True positive (TP): the actual value of the model is
the orphan genes, so the model predicts the number
of orphan genes.

(ii) False positive (FP): the actual value of the model is the
orphan gene, but the model predicts the number of non-
orphan genes.

(iii) False negative (FN): the true value of the model is
non-orphan genes, so the model predicts the number
of orphan genes.

TABLE 2 | Training and testing datasets used to design and evaluate the
model classifiers.

Class Train dataset Test dataset Original dataset

None-orphan genes 24833 6208 31041

Orphan genes 1427 357 1784

(iv) True negative (TN): the true value of the model is non-
orphan genes, but the model predicts the number of non-
orphan genes.

Recall, Precision, and F1 Value as
Performance Indicators
A large number of confusion matrix statistics make it difficult
to measure the pros and cons of a model. Therefore, we added
using Recall, Precision, and F1-score, as performance indicators
to better evaluate the performance of the model:

(i) Recall rate (accuracy rate of positive samples):

Recall =
TP

TP+ FN

(ii) Precision (precision rate of positive samples):

Precision =
TP

TP+ FP

(iii) F1-score value:

F1SCORE =
2PR

P+ R

ROC Curve and AUC Value
The receiver operating characteristic (ROC) curve reflects
the probability of identifying correct and wrong results
according to different thresholds. The curve passes (0, 0)
and (1, 1), and the validity of the model is generally
determined by the diagonal of the curve in the upper left
section of the graph.

The AUC value is the value of the area under the ROC curve,
which is generally between 0.5 and 1. The quantized index value
can better compare the performance of the classifiers: a high
performance classifier AUC value is close to 1.

FIGURE 2 | Ratio of orphan to non-orphan and orphan genes. (A) The distribution of an unbalanced dataset in the original A. thaliana. (B) The distribution of
A. thaliana datasets are balanced after using a balanced algorithm.
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TABLE 3 | Compute time compared among Adaboost, GBDT, XGBoost models
with SMOTE algorithm.

Traing model Time (s)

AdaBoost 11.7

GBDT 10.3

XGBoost 0.3

TABLE 4 | F1 scores of GBDT, Adaboost, XGBoost models with the SMOTE
algorithm on test datasets.

n_estimator Learning_rate Testing Algorithm (%)

GBDT AdaBoost XGBoost

200 0.2 90 87.6 93

200 0.1 89 88 92

200 0.01 87 87.4 88

150 0.2 90 87.9 93

150 0.1 89 87.4 91

150 0.01 87 87.4 88

100 0.2 89 87.5 92

100 0.1 88 87.5 90

100 0.01 87 87.5 88

RESULTS

Collating Feature Data of Orphan and
Non-orphan Genes
The whole genome data of the angiosperm A. thaliana
were obtained from The Arabidopsis Information Resource
(TAIR8) dataset ftp://ftp.arabidopsis.org/home/tair/Genes/
TAIR8_genome_release, which contained a total of 32825 gene
sequences. The known orphan genes of A. thaliana downloaded
from the public website https://www.biomedcentral.com/
content/supplementary/1471-2148-10-%2041-S2.TXT (Lin
et al., 2010). The protein sequences and coding sequences
were downloaded from TAIR. GC percent, protein length,
molecular mass, protein isoelectric point (pI), average exon
number were selected.

The six features of the protein and coding sequences were
recorded as V1-V6 (Perochon et al., 2015; Shah, 2018; Ji et al.,
2019). The class of orphan genes is recorded as a Class problem,
where the label of orphan genes is recorded as 1 and the non-
orphan genes are recorded as 0, combined with V1–V6 features
(Ji et al., 2019; Li et al., 2019).

Analyzing Orphan and Non-orphan Gene
Dataset
There were 32825 samples in the gene datasets, but only
about 4.08% of them were orphan genes, so the distribution
of orphan and non-orphan samples was uneven. We evaluated
whether the models can identify the orphan genes. For
traditional ML classification algorithms, the premise is that
the amount of data between categories is balanced, or that
the cost of misclassification for each category is the same.
Therefore, the direct application of many algorithms leads

to more predictions being made for the category with
a larger number.

To solve the problem, of unbalanced data sets, we first
used over-sampling to copy small sample data, which
increased the number of categories with fewer samples.
This method balanced the numbers of orphan and non-
orphan samples to improve the learning ability of the
classifier. The random sampling method was used to
divide the samples into training and testing sets with
a ratio of 8:2 which is the same ratio as the original
dataset (Table 2).

The training set was used to design the model, and the test
set was used to test the performance of the model. The Precision,
Recall, F1, and AUC evaluation indicators were used to compare
the model classifiers to determine the effectiveness of the models
and select the best model.

We used SMOTE to balance the numbers of orphan and non-
orphan genes in the original A. thaliana gene dataset shown
in Figure 2.

Training Model Using Ensemble Learning
Methods
Among the ensemble learning methods, some members of the
Boosting family, such as AdaBoost., GBDT, XGBoost, can be used
to train classifying models, which can save the compute time
remarkably (Table 3).

Two parameters, train_node and learning_rate were
considered to reduce the complexity in modeling. However,
selecting the best parameters for the ensemble learning
algorithms is important to avoid an over-fitting problem. For
this study, we set the learning_rate as 0.01, 0.1, and 0.2 and
train_node as 100, 150, 200 to compute the F1 score.

AdaBoost, GBDT, XGBoost with the two parameters are
used to classify the samples in the training and testing datasets
(Table 2). The results are shown in Table 4.

Overall, the XGBoost with SMOTE performed better than
AdaBoost and GBDT models with SMOTE.

Performance of Different Models With
Balanced and Unbalanced Datasets
Five models, SVM, RF, GBDT, AdaBoost, and XGBoost
were used as baseline classifiers to distinguish orphan
and non-orphan genes in the unbalanced and balanced
A. thaliana gene datasets. The results are shown
in Table 5.

Overall, the five models produced better results with the
balanced datasets. However, the accuracy of the models with
the balanced datasets was lower than with the unbalanced
dataset, which indicates the classification of orphan genes
was towards the majority samples of non-orphan genes.
These results clearly show that designing models using
unbalanced datasets will lead to significant inaccuracies,
which cannot identify orphan genes VS non-orphan
genes precisely. This indicates the importance of using a
balancing algorithm to balance datasets in the first step of the
classification process.
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TABLE 5 | Performance of models in distinguishing orphan vs. non-orphan genes in A. thaliana gene balanced and unbalanced datasets with 8:2 training-testing ratios.

Best Model Unbalanced datasets (%) Balanced datasets (SMOTE) (%)

Accuracy Precision Recall F1 AUC Accuracy Precision Recall F1 AUC

SVM 97 78 47 58 74 83 83 83 83 88

RF 96 47 58 52 93 84 77 98 86 95

GBDT 96 60 59 60 94 87 87 87 87 94

Adaboost 97 56 73 45 93 87 87 86 89 95

XGBoost 97 81 50 62 94 92 91 95 93 97

FIGURE 3 | Performance indices of five classifiers model with the SMOTE
algorithm on the testing dataset to distinguishing orphan and non-orphan
genes after balancing the distribution of A. thaliana gene dataset.

On the balanced A. thaliana gene dataset, the performance
indices of five classifier models on the testing datasets are
shown in Figure 3. Overall, the ensemble models were better

than the single classifiers, as determined by the performance
indicators, among them, the AUC and precision values of
XGBoost, GBDT, AdaBoost with SMOTE were higher than SVM,
RF with SMOTE algorithm. Particularly, XGBoost with SMOTE
produced the highest results among all classifier models (t-
test, P < 0.05). In particular, the F1 value indicates that the
XGBoost model can distinguish orphan genes and non-orphan
genes precisely.

We found that the ROC curve of SMOTE-XGBoost
completely wrapped the ROC curves of the other methods,
and the Precision-Recall (PR) curve confirmed that XGBoost
produced the best performance among the five balancing
algorithm methods (Figure 4).

The PR curve (Figure 4) indicated that when the
classification threshold was near 1, all the samples were
classified as non-orphan genes, and the Precision and
Recall values were 0 at this time. When the classification
threshold was 0.9, there were no FPs, so the Precision
was 1, which means all the genes were classified as
orphans. Because the number of TPs was small, the Recall
was small and the Precision value declined continually.
When the threshold declined to 0, all the samples
were classified as non-orphan genes, meaning that the
Precision will not be 0, because there were no FNs, and
the Recall value was 1. This indicates that the prediction
result is reasonable.

FIGURE 4 | Precision-Recall (PR) curve and ROC curve “True” area and for the five classifiers with an unbalanced dataset.
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FIGURE 5 | Model confusion matrices for XGBoost combined with five over-sampling models: (A) ADASYN-XGB; (B) SMOTE-Tomek-XGB; (C) BSMOTE-XGB;
(D) SMOTE-XGB; (E) SMOTE-ENN-XGB.

Frontiers in Genetics | www.frontiersin.org 8 October 2020 | Volume 11 | Article 82085

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00820 October 1, 2020 Time: 14:9 # 9

Gao et al. Unbalanced Datasets With Ensemble Learning Method

TABLE 6 | Performance indices of the ensemble of composite XGBoost classifiers.

Evaluation value ADASYN-XGB (%) BSMOTE-XGB (%) SMOTE-XGB (%) SMOTE-ENN-XGB (%) SMOTE-Tomek-XGB (%)

Accuracy 85 92 88 95 89

Precision 83 89 87 94 88

Recall 89 97 89 95 90

F1 86 93 88 95 89

AUC 92 97 95 98 96

Performance of XGboost With Different
Balanced Algorithm Methods
We also tested five different models, XGBoost combined
with a balanced algorithm including SMOTE, BSMOTE,
ADASYN, SMOTE-Tomek, SMOTE-ENN, to further explore
the result of the unbalanced datasets. The results of the
confusion matrices of five models are shown in Figure 5.
The performance of the SMOTE-ENN-XGBoost model is
better and the predicted value is higher,which indicates fewer
incorrect classifiers.

The performance indices of the five balanced algorithms
with ensemble XGBoost classifiers models are shown in
Table 6. The ensemble SMOTE-ENN-XGB model had
the highest among the other ensemble models to predict
orphan genes (ORFans).

Therefore, the SMOTE-ENN-XGBoost model is used to
classify and analyze the orphan genes in unbalanced datasets and
applied to the actual predictions.

DISCUSSION

Our research indicates that in the classification of orphan
vs Non-orphan genes the ML method is preferred because
the traditional biological method is time-consuming and
labor-intense. Since the orphan genes of plant species
have similar characteristics, we selected 6 features of the
A. thaliana dataset to build training and testing models
(Donoghue et al., 2011).

The datasets of orphan genes and non-orphan genes are
often unbalanced, which tends to produce a bias towards
majority samples. To overcome this problem, we combined
over-sampling and under-sampling algorithms, making
the trained model with balanced datasets, which improves
the generalization ability of the model, and eventually,
the precision, recall, F1, and AUC for the test set are
significantly increased. To further compare the result of
the evaluation, the balanced algorithm combines classifying
learning algorithms, RF, SVM, Adaboost, GBDT, XGBoost,
which have similar improved results. Furthermore, the
boosting methods containing Adaboost, GBDT, XGBoost
have a better performance than those that use RF and
SVM. Thus, ensemble boosting learning models are an
important method in advancing the identification of orphan
genes and non-orphan genes in unbalanced datasets. At
the same time, the same training node and learning_rate
parameters were automatically used for parallel computing

among the boosting methods, which revealed that the
XGBoost model was more practical than other models
for classifying orphan genes. In particular, since it saves
time and labor, classifying orphan versus non-orphan
genes experimentally in this way could benefit this field
and future studies.

To increase the precision of these ensemble models,
we compared five different balanced algorithms including
SMOTE, BSMOTE, ADASYN, SMOTE-Tomek, SOMTE-
ENN combing with XGBoost models. SMOTE-ENN with
XGBoost has a better evaluation result, especially the
value of Recall. In this paper, we propose the SMOTE-
ENN-XGBoost model for efficiently identifying unbalanced
datasets of orphan genes. We built the SMOTE-ENN-
XGBoost model to classify genes by predicting 0 or 1
values. The results showed that the ensemble classifiers
method classified the orphan and non-orphan genes more
precisely than the single classifiers, and among the five
ensemble models with XGBoost, the SMOTE-ENN-XGBoost
model performed best.

This study provides a new method for the identification
of unbalanced datasets of orphan genes, which can be
applied in the classification of unbalanced biological
datasets. Meanwhile, the method can support the
evolution of species.
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Studies have shown that microRNAs (miRNAs) are closely associated with many
human diseases, but we have not yet fully understand the role and potential molecular
mechanisms of miRNAs in the process of disease development. However, ordinary
biological experiments often require higher costs, and computational methods can be
used to quickly and effectively predict the potential miRNA-disease association effect
at a lower cost, and can be used as a useful reference for experimental methods. For
miRNA-disease association prediction, we have proposed a new method called Matrix
completion algorithm based on q-kernel information (QIMCMDA). We use fivefold cross-
validation and leave-one-out cross-validation to prove the effectiveness of QIMCMDA.
LOOCV shows that AUC can reach 0.9235, and its performance is significantly better
than other commonly used technologies. In addition, we applied QIMCMDA to case
studies of three human diseases, and the results show that our method performs well
in inferring potential interaction between miRNAs and diseases. It is expected that
QIMCMDA will become an excellent supplement in the field of biomedical research in
the future.

Keywords: microRNA-disease interaction, association prediction, heterogeneous omics data, q-kernel
neighborhood similarity, matrix factorization

INTRODUCTION

MicroRNAs (miRNAs) are a type of single-stranded small non-coding RNA (∼22 nt) that
play an important role in gene regression by interfering with post-transcriptional regulation
(Filipowicz et al., 2008; Bartel, 2009). Lee et al. (1993) discovered the first miRNA lin-4
in Caenorhabditis elegans, and since then, 1000s of currently annotated miRNAs have been
found in various species from plants, animals to viruses (Jopling et al., 2005; Kozomara and
Griffiths-Jones, 2011). More and more evidence have shown that miRNA is an important
component in cells and may play an important role in a variety of biological processes
including cell growth (Ambros, 2003), immune response (Taganov et al., 2006), cell proliferation
and differentiation (Chen et al., 2004, 2006), cell development, cell cycle regulation (Carleton
et al., 2007), inflammation (Urbich et al., 2008), apoptosis (Petrocca et al., 2008), and stress
response (Leung and Sharp, 2010). Many studies have shown that miRNA abnormalities are
associated with various human diseases, such as cancer, Alzheimer’s disease, and diabetes
(Iorio et al., 2005; Nunez-Iglesias et al., 2010; Catto et al., 2011; Guay et al., 2011;
Farazi et al., 2013). For example, there is evidence that MicroRNA-155 regulates colon
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cancer cell proliferation, cell cycle, apoptosis, migration, and
targets CBL (Yu et al., 2017). miR-21 negatively regulates Pdcd4
and inhibits TPA-induced tumor transformation (Asangani et al.,
2008). MicroRNA-494 has become a major epigenetic regulator in
aggressive human hepatocellular carcinoma neoplasms (Chuang
et al., 2005). miR-146a is a tumor suppressor that inhibits NF-
κB activity related to the promotion and inhibition of tumor
growth (Li et al., 2014b). This makes miRNAs increasingly
recognized as key regulators in gene expression (Niu et al.,
2019). Finding the association of miRNA-disease is an important
field of biomedicine. It not only helps humans understand the
mechanism of diseases, but also helps the discovery, prognosis,
diagnosis, treatment, and prevention of human complex diseases
(Calin and Croce, 2006; Tricoli and Jacobson, 2007; Cho, 2010;
Jiang et al., 2010).

However, the identification of miRNA-disease associations
using traditional biological methods is often costly (Chen et al.,
2018). Therefore, the use of mathematical and computational
tools to predict potential miRNA-disease associations based
on various experimentally validated association datasets is a
hot issue. Through the integration and collection of data
from a large number of biological experiments, there are
now multiple databases related to miRNA-disease relationships
such as HMDD and dbDEMC (Lu et al., 2008; Yang et al.,
2010; Li et al., 2014a). In recent years, a large number
of miRNA-disease association prediction methods have been
proposed. For instance, Chen and Yan (2014) proposed
a regularized least squares model (RLSMDA) to predict
miRNA-disease associations. This model is a semi-supervised
model that learns in the miRNA space and disease space
respectively, and then combines to get the final prediction
score. However, it should be pointed out that the parameter
selection of this model is more difficult, and the combined
form of the two spatial scores can be improved in the
end. Xu et al. (2011) proposed a method based on support
vector machine (SVM) to predict the interaction between
miRNA and the disease. However, the current database rarely
provides data for non-cancer miRNAs. Therefore, the main
problem of the model is the lack of negative samples,
which will make the supervised learning model unsuitable
for the prediction of large-scale disease-miRNA interactions.
Obtaining large numbers of negatively associated samples is
still difficult (Guan et al., 2020). Chen et al. (2012) adopted
restart random walk (RWRMDA) to predict the potential
miRNA-disease interaction, which restarted the known miRNA-
disease interaction network, using random walks on miRNA
functional similarity network to predict potential miRNA-disease
interaction. However, this method is not applicable to the
prediction of new diseases that are not related to any miRNA.
Chen (2018) introduced the induction matrix completion
model (IMCMDA) for the prediction of miRNA disease
association based on the known miRNA-disease association
matrix, miRNA functional similarity and disease semantic
similarity matrix. However, this method is too sensitive to
the noise in the data, which affects its performance. Chen
et al. (2016b) introduced the model of Within and Between
Score for MiRNA-Disease Association prediction (WBSMDA)

by a combination of integrated similarity and known miRNA-
disease associations. Chen et al. (2018) introduced the MiRNA-
disease association prediction (TLHNMDA) model based on
three-layer heterogeneous network inference, which integrates
multi-level data about miRNA, disease, lncRNA and their
associated information into three layers heterogeneous network
to determine the relationship between miRNA and disease
Potential biological connection. Zhao et al. (2018) proposed
a novel computational model of Symmetric Non-negative
Matrix Factorization for MiRNA-Disease Association prediction
(SNMFMDA) to reveal the relation of miRNA-disease pairs.
Compared to the direct use of the integrated similarity in
previous computational models, the integrated similarity needs to
be interpolated by symmetric non-negative matrix factorization
(SymNMF) before application in SNMFMDA. Jihwan Ha et al.
(2020) present IMIPMF, a novel method for predicting miRNA–
disease associations using probabilistic matrix factorization
(PMF), which is a machine learning technique that is widely
used in recommender systems. Zhu et al. (2020) proposed a
new computational model based on biased heat conduction for
MiRNA-Disease Association prediction (BHCMDA),which can
achieve the AUC of 0.8890 in LOOCV.

We hope to use a simple and effective method for prediction.
Here, we proposed a new matrix completion algorithm based on
the q-kernel function to predict new miRNA disease associations
(QIMCMDA). This model used miRNA q-kernel similarity,
disease q-kernel similarity, known miRNA disease associations,
and miRNA functional similarity. A matrix decomposition
algorithm based on KL divergence was used to complement
missing miRNA-disease associations. Here we used the receiver
operating characteristic (ROC) curve as an evaluation index to
evaluate the effectiveness of QIMCMDA. For known miRNA-
disease associations downloaded from HMDD V2.0, the relevant
data was cross-validated using the method of leave-one-out
cross-validation (LOOCV) and fivefold cross-validation, and
compared with the four previous classic methods (TLHNMDA,
WBSMDA, RLSMDA, and IMCMDA). In addition, case studies
were conducted on three common human diseases (Breast
Neoplasms, Carcinoma Hepatocellular, Colon Neoplasms). All
candidate miRNAs for these three diseases were ranked according
to the predicted scores of QIMCMDA. Then the top 50
predicted miRNAs of these three diseases were verified in
dbDEMC and HMDD 3.2 respectively. As a result, 46, 45,
and 48 of the top 50 potentially relevant miRNAs for the
three diseases were confirmed. These results indicated the
effectiveness of QIMCMDA in predicting potential miRNA-
disease associations.

MATERIALS AND METHODS

Human MiRNA-Disease Associations
In this study, we used human disease-miRNA associations in
the HMDD v2.0 database, the dataset contains 383 diseases, 495
miRNAs, and 5430 high-quality experimentally verified human
miRNA-diseases associations (Chen et al., 2018). We defined the
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adjacency matrix A ∈ Rnd∗nm as follows:
A
(
d (i) , m

(
j
))

=

{
1 diseased (i) has association with miRNA m(j)
0 diseased (i) has no association with miRNA m(j)

(1)

MiRNA Functional Similarity
MiRNA functional similarity score was calculated by Wang
et al. (2010) based on the hypothesis that similarly functional
miRNAs tend to be associated with diseases with similar
phenotypes. Thanks to their work, we obtained from
http://www.cuilab.cn/files/images/cuilab/misim.zip downloaded
the data. We constructed a matrix FS, where the matrix
FS(m(i), m(j)) represents the functional similarity between
miRNAsm(i)and m(j).

Disease Semantic Similarity
Disease Semantic Similarity 1
A Directed Acyclic Graph (DAG) was constructed to describe
a disease based on the MeSH descriptors downloaded from the
National Library of Medicine (Lipscomb, 2000). The DAG of
disease D included not only the ancestor nodes of D and D itself
but also the direct edges from parent nodes to child nodes. The
semantic score of disease D could be defined by the following
equation:

DV1(D) =
∑

d∈T(D)

D1D(d) (2)

we defined the contribution score of disease d in DAG(D) to the
disease D by:{

D1D(d) = 1 if d = D
D1D(d) = max

{
4
∗D1D(d′)|d′ ∈ children of d

}
if d 6= D

(3)

1 is the semantic contribution factor. The contribution score of
disease is decreased as the distance between D and other diseases
increases. Based on the assumption that two diseases with larger
shared area of their DAGs may have greater similarity score, the
semantic similarity score between disease d(i) and disease d(j)
could be defined by the following equation:

SS1(d(i), d(j)) =

∑
t∈T(d(i))∩T(d(j))(D1(d(i))(t)+ D1d(j)(t))

DV1(d(i))+ DV1(d(j))
(4)

Disease Semantic Similarity 2
From above formula (3), it is easy to see that the diseases in the
same layer of DAG(D) will make the same contribution to the
semantic value of D. Moreover, for diseases in the same layer of
DAG(D), it is reasonable to assume that the diseases appeared in
fewer DAGs will be more specific than those diseases appeared in
more DAGs. Hence, to protrude the contribution of these more
specific diseases, the contribution of the node d in T(D) to the
semantic value of the disease D could be obtained according to
the following formula as well (Chen, 2018):

D2D(d) = − log
[

the number of DAGs containing d
the number of diseases

]
(5)

Based on the above formula, the semantic value of the disease D
could be obtained according to the following formula as well:

DV2(D) =
∑

d∈T(D)

D2D(d) (6)

Hence, the semantic similarity between two diseases di and dj
could be obtained according to the following formula as well:

SS1(d(i), d(j)) =

∑
t∈T(d(i))∩T(d(j))(D2(d(i))(t)+ D2d(j)(t))

DV2(d(i))+ DV2(d(j))
(7)

q-Kernel Similarity
Many contributions indicate that the performance of kernel-
based learning algorithms largely depends on the choice of kernel
(Chapelle et al., 2002; Lanckriet et al., 2002; Nogayama et al.,
2003). Boughorbel also proved through experiments that in some
applications, kernels with only positive conditions may be better
than most classical kernels (Boujemaa et al., 2005). Based on
this theory, Zhang et al. (2019) designed a variety of q-Kernel
Functions, such as Non-Linear q-Kernel, Gaussian q-Kernel,
Laplacian q-Kernel, Rational Quadratic q-Kernel, Multiquadric
q-Kernel, Inverse Multiquadric q-Kernel, Wave q-Kernel, and so
on. A q-analog is a mathematical expression parameterized by a
quantity q that generalizes a known expression and reduces to the
known expression. Therefore, after a long period of trial, we have
chosen the inverse quadratic square q kernel function as the main
method for calculating similarity.

Here we introduce a q-Kernel function (inverse multiquadric
q-Kernel) and construct a q-Kernel similarity. Based on the
assumption that similar miRNAs are more likely to exhibit
interactions with similar diseases and vice versa. The q-Kernel
similarity is used to calculate the kernel similarity of miRNA
and disease, respectively, based on known miRNA- diseases. The
value range of the two parameters c and q of the function is
between 0 and 1.

Hq(x, y) =
1

1− q
(q−

1
c − q

−
1√

||x−y||2+c2
) (8)

Similarity Calculation of miRNA Based
on q-Kernel
In previous work, we obtained a similarity network between two
miRNAs. But the integrity of this network is only 0.2058, and
too many missing values make it impossible for us to use this
network directly. Here, the q-kernel function is used to complete
the matrix. First, the obtained q-kernel distance needs to be
normalized and scaled to [0,1], because the similarity network
value of the previous miRNA is between [0,1]. Then we used
the 1-Hq to convert the kernel distance into the similarity and a
q-kernel similarity network of miRNA is obtained, which is called
QM. The similarity of MiRNA is constructed as follows:

Sm
(
m (i) , m

(
j
))


ωFS
(
m (i) , m

(
j
))
+ (1− ω)QM(m(i),

m(j))m (i) and m
(
j
)

(9)

has similarity
QM

(
m (i) , m

(
j
))

otherwise
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The ω is a weighting parameter defined as limiting the effect of FS and
QM on miRNA similarity. Set ω to 0.01 through training. The greater
similarity between miRNAs, the more similar the miRNAs are.

Network Similarity Calculation for
Diseases Based on q-Kernel
We used the same method as the miRNA similarity network to build
the disease similarity network QD. Then integrated QD with disease
semantic similarities SS1 and SS2:

Sd
(
d (i) , d

(
j
))
=


ωSS(d(i), d(j))+ (1− ω)QD(d(i), d(j))

d(i)and d(j) (10)

has similarity
QD(d (i) , d(j)) otherwise

SS(d(i), d(j)) =
SS1(d(i), d(j))+ SS2(d(i), d(j))

2
(11)

We set the parameter values of c and q through training, that is,
c = 0.1 and q = 0.6. Finally, we obtained two kernel similarity
matrices, Sm and Sd .

Matrix Completion
After integrated various known data and similarity calculations of
q-kernel, we can obtain human miRNA-disease correlation matrix
A (Matrix density is 0.028), disease similarity matrixSd, miRNA
similarity matrix Sm. Our goal is to deduce undiscovered miRNA-
disease associations based on this known information. Here we
use Sd ∈ Rnd∗nd as the feature matrix of nd diseases, and Sm ∈

Rnm∗nm as the feature matrix for miRNAs. Sd(i)denote the feature
vector of disease d(i), and Sm(j) denote the feature vector of
miRNA m(j). The main idea of QIMCMDA is to complement
the two feature matrices Sd and Sm by the similarity of the
q-kernel, and then supplement the missing elements under the
restriction of the association matrix A to obtain the potential
associations. Finally, the recovery matrix Z is obtained, and the
form of Z is Z = SdWHTSm. where W ∈ Rnd∗r andH ∈ Rr∗nm, r
is the desired rank which is equal tomin(rank(W), rank(H)). The
parameter r mainly affects the convergence speed of the algorithm,
and has little effect on the results. The matrices W and H can
be obtained as a solution to the following optimization problems.

minW·H ∅ =
∑nd

i=1
∑nm

j=1(Aij ln Aij
Sd∗W∗H∗Sm

−Aij + (Sd ∗W∗H∗Sm)ij)

s.t.W ≥ 0, H ≥ 0 (13)

W and H were set to random dense matrices, and then the alternating
gradient descent method is used to update iterations W and H.

W ←
W∗

[
( Sd∗A

Sd∗W∗H∗Sm
)∗Sm ∗H

′
]

Sd∗ONES∗Sm∗H′
(14)

H←
H∗

[
W
′

∗Sd∗(
A∗Sm

Sd∗W∗H∗Sm
)
]

W ′
∗Sd∗ONES∗Sm

(15)

Through the alternating gradient descent algorithm, W and H
will stabilize and stop the iteration after reaching the maximum
number of iterations. Here, the maximum number of iterations

TABLE 1 | Notations.

Symbol Description

nm number of miRNAs

nd number of diseases

A ∈ Rnd∗nm miRNA-diseases associations matrix

Sm ∈ Rnm∗nm miRNA similarity matrix

Sd ∈ Rnd∗nd disease similarity matrix

W ∈ Rnd∗r alternating iteration matrix in matrix factorization

H ∈ Rr∗nm alternating iteration matrix in matrix factorization

is set to 100. ONES is a matrix, all its elements are 1. It is
used to multiply two matrixes of different ranks. We can use W
and H to calculate the predicted score between disease d(i) and
miRNA m(j) by the following formula (Symbol meaning can refer
to Table 1).

Score(d(i), m(j)) = Sd(i)WHSm(j) (16)

The specific implementation process of QIMCMDA is shown in
Figure 1.

RESULTS

We used 5,430 miRNA-disease associations from HMDD
v2.0 as the gold standard dataset, and we used LOOCV
and fivefold CV to test the effectiveness of QIMCMDA.
In addition, QIMCMDA will be compared with four other
methods IMCMDA (Chen, 2018), RLSMDA (Chen and Yan,
2014), TLHNMDA (Chen et al., 2018), WBSMDA (Chen et al.,
2016b) to evaluate the predictive ability of QIMCMDA (see
Table 2). In the framework of the LOOCV evaluation, 5430
miRNA-disease associations in the data set are considered
as test samples one by one, the other remaining samples are
considered as training samples, and samples with unknown
associations are considered as candidate samples. Through
the calculation of the model, we can obtain the prediction
score, and then rank and record according to the prediction
score. The process of fivefold CV is similar to LOOCV. The
miRNA-disease association of the golden data set was randomly
divided into five groups, one of which was selected as the
test set in turn, and the rest as the training set. Candidate
sample settings are the same as LOOCV. Then rank and
record the predicted scores for each test sample. Figure 2
shows a comparison of the prediction performance based on
the overall AUC value of LOOCV. As a result of LOOCV,
the AUC of QIMCMDA is 0.9235, and the AUC values
obtained by IMCMDA, RLSMDA, TLHNMDA and WBSMDA
are 0.8378, 0.8193, 0.8795, 0.8010, respectively. For fivefold
QIMCMDA, IMCMDA, RLSMDA, TLHNMDA and WBSMDA
10 times were performed, and the average AUC and standard
deviation were recorded as 0.9170 ± 0.0006, 0.8311 ± 0.0006,
0.7814 ± 0.0020, 0.8735 ± 0.0010,0.7980 ± 0.0009, respectively
(see Figure 3).

Parameter Analysis
There are several hyper-parameters in QIMCMDA that need
to be tuned, i.e., c, q, w, k. We use a random search strategy
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FIGURE 1 | Flowchart of QIMCMDA model to infer the potential miRNA-disease associations. ONES is an all-ones matrix of rank nd∗nm.

TABLE 2 | Under the fivefold CV and LOOCV verification framework, the
performance of QIMCMDA and other benchmark methods.

Methods LOOCV Fivefold CV

QIMCMDA 0.9235 0.9170 ± 0.0006

IMCMDA 0.8378 0.8311 ± 0.0006

RLSMDA 0.8193 0.7814 ± 0.0020

TLHNMDA 0.8795 0.8735 ± 0.0010

WBSMDA 0.8010 0.7980 ± 0.0009

to select hyper-parameters from fixed ranges (Zhang et al.,
2020). c and q are parameters for adjusting the q-Kernel
function. In this study, the value of c is selected from
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}, and the value of q is selected
from {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. q can’t be equal to 1.
ω is the weight parameter used to integrate similarity. Here,
ω is selected from {0.01,0.05,0.1,0.15,0.2,0.3,0.4,0.5,0.8,1}.
Next, we show the influence of the these parameters under
the fivefold CV.

The k is a potential feature size. In our test, the
impact of this variable is actually very small, but we
still decided to use PCA to calculate the cumulative
contribution rate to obtain the most appropriate k value.
This method is in the paper by Wang et al. (2017). It
has been well-verified. In this article, the cumulative
contribution rate of 95% is used to select the PC, and the
final k is set 114.

ω is a weight parameter used to integrate the similarity matrix.
Figure 4 shows the effect of changes in ω on AUC when other
parameters are fixed. When ω = 0.01, AUC takes the maximum value.
When c = 0.1, q = 0.6, the model can achieve the best effect
(see Figure 5).

Case Study
In this article, we used case studies to further demonstrate the
effectiveness of QIMCMDA. We performed case studies on three
diseases: Breast Neoplasms, Carcinoma Hepatocellular, and Colon
Neoplasms. These diseases were selected in our case study because
they all have high incidence and insignificant early symptoms.
In addition, they have been considered as case studies in many
previous publications (Guan et al., 2020). Our case study used
HMDD v2.0 as the training database for QIMCMDA. HMDD
3.2 and dbDEMC (Lu et al., 2008; Yang et al., 2010; Li et al.,
2014a) serve as validation databases to confirm the predicted
potential associations. Compared with the previous 2.0 version, the
3.2 version contains more than double the association between
human diseases and miRNAs, the classification of evidence is
more clear, and there is a clear third-party annotation for
each association. The differentially expressed miRNA database
(dbDEMC) in human cancer is a comprehensive database microRNA
(miRNA) designed to store and display differentially expressed
human cancers detected by high-throughput methods. The database
collected a total of 209 newly released data sets from Gene
Expression Omnibus (GEO) and The Cancer Genome Atlas
(TCGA). The current version contains data from 436 biological
experiments, including 2224 differentially expressed miRNAs in
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FIGURE 2 | Performance comparison between QIMCMDA and other benchmark methods (RLSMDA, IMCMDA, TLHNMDA, WBSMDA) on AUC of LOOCV.

FIGURE 3 | Performance comparison between QIMCMDA and other benchmark methods (RLSMDA, IMCMDA, TLHNMDA, WBSMDA) on AUC of fiveflod CV.

36 cancer types. We only perform ranking verification on
candidate miRNAs of interest, so training samples are not in
the final result. In other words, the miRNA disease associations
obtained from the predicted list do not overlap with the known
5430 associations.

Breast Neoplasms is one of the most common malignancies in
women. With more than 2 million new cases worldwide each year,
it ranks second among the world’s major cancer types (Jemal et al.,
2017). More than half of these cases occurred in industrialized
countries (Parkin et al., 2005). It was one of the leading causes
of death among women aged 20–59 (Siegel et al., 2015). With the
development of biological technology, researchers have found more
miRNAs related to Breast Neoplasms. Our results are supported by

third-party annotations in two databases, HMDD3.2 and dbDEMC.
For example, miR-150 and miR-372 can promote the proliferation
and growth of Breast Neoplasms cells by targeting the pro-apoptotic
purinergic P2X7 receptor and LATS2 respectively (Huang et al., 2017;
Cheng et al., 2018). MicroRNA-130a targets RAB5A to inhibit the
proliferation, invasion and migration of Breast Neoplasms cells (Pan
et al., 2015). miR-494 targets CXCR4 through the Wnt/β-catenin
signaling pathway, thereby inhibiting Breast Neoplasms progression
in vitro (Song et al., 2015). The increased miR-451 expression may
negatively regulate Bcl-2 mRNA and protein expression, which in
turn affects caspase 3 protein expression and accelerates Breast
Neoplasms cell apoptosis (Gu et al., 2015). MiR-449a inhibits cell
migration and invasion in Breast Neoplasms by targeting PLAGL2
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FIGURE 4 | Performance of QIMCMDA with different values of ω under fivefold CV.

FIGURE 5 | Performance of QIMCMDA with different values of c and q under fivefold CV.

(Wang et al., 2018). We selected the top 50 in the results and verified
them with two databases, HMDD 3.2 and dbDEMC. It was found
that 10 of the first 10 predictions and 46 miRNAs of the first 50
predictions were verified (see Table 3).

Hepatocellular carcinoma (HCC), one of the most common
malignancies worldwide (Yegin et al., 2016), was also the
main cause of cancer in men under 60 in China (Chen
et al., 2016a). MiRNAs have important roles in the treatment
of HCC and have been corroborated. For example, related
in vitro experiments have further confirmed the anti-tumor
effect of miR-132 in HCC (Liu et al., 2015; Zhang et al., 2016).

The newly identified miR-429-CRKL axis represents a new
potential therapeutic target for HCC therapy (Guo et al., 2018).
MicroRNA-23b inhibits epithelial–mesenchymal transition
(EMT) and metastasis of Hepatocellular Carcinoma by
targeting Pyk2 (Cao et al., 2017). MicroRNA-494 is a major
epigenetic regulator of microRNAs for multiple invasion
inhibitors by targeting 10 11 translocation 1 in aggressive
human Hepatocellular Carcinoma (Chuang et al., 2005).
MicroRNA-340 inhibits the proliferation and invasion of
Hepatocellular Carcinoma cells by targeting JAK1 (Yuan
et al., 2017). Therefore, 10 of the top 10 predicted miRNAs
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TABLE 3 | Prediction results of the top 50 predicted Breast Neoplasms-related
miRNAs based on known associations in HMDD V2.0.

miRNA Evidence miRNA Evidence

hsa-mir-151 HMDD3.2 hsa-mir-663 dbDEMC

hsa-mir-30e HMDD3.2 hsa-mir-382 dbDEMC

hsa-mir-92b HMDD3.2 hsa-mir-494 HMDD3.2

hsa-mir-451 HMDD3.2 hsa-mir-575 HMDD3.2

hsa-mir-130a HMDD3.2 hsa-mir-658 dbDEMC

hsa-mir-192 HMDD3.2 hsa-mir-181d dbDEMC

hsa-mir-98 HMDD3.2 hsa-mir-376a HMDD3.2

hsa-mir-372 HMDD3.2 hsa-mir-211 dbDEMC

hsa-mir-32 HMDD3.2 hsa-mir-484 HMDD3.2

hsa-mir-106a HMDD3.2 hsa-mir-455 Unconfirmed

hsa-mir-130b HMDD3.2 hsa-mir-432 dbDEMC

hsa-mir-99b dbDEMC hsa-mir-381 HMDD3.2

hsa-mir-95 dbDEMC hsa-mir-99a HMDD3.2

hsa-mir-28 dbDEMC hsa-mir-154 dbDEMC

hsa-mir-150 HMDD3.2 hsa-mir-523 dbDEMC

hsa-mir-186 dbDEMC hsa-mir-526b HMDD3.2

hsa-mir-15b HMDD3.2 hsa-mir-507 Unconfirmed

hsa-mir-142 HMDD3.2 hsa-mir-525 Unconfirmed

hsa-mir-449b dbDEMC hsa-mir-660 HMDD3.2

hsa-mir-198 dbDEMC hsa-mir-181c HMDD3.2

hsa-mir-196b HMDD3.2 hsa-mir-300 dbDEMC

hsa-mir-491 HMDD3.2 hsa-mir-297 dbDEMC

hsa-mir-449a HMDD3.2 hsa-mir-136 dbDEMC

hsa-mir-424 HMDD3.2 hsa-mir-331 HMDD3.2

hsa-mir-212 HMDD3.2 hsa-mir-512 Unconfirmed

TABLE 4 | Prediction results of the top 50 predicted Carcinoma
Hepatocellular-related miRNAs based on known associations in HMDD V2.0.

miRNA Evidence miRNA Evidence

hsa-mir-132 HMDD3.2 hsa-mir-516a unconfirmed

hsa-mir-429 HMDD3.2 hsa-mir-663 dbDEMC

hsa-mir-34b HMDD3.2 hsa-mir-340 HMDD3.2

hsa-mir-151 HMDD3.2 hsa-mir-28 dbDEMC

hsa-mir-30e HMDD3.2 hsa-mir-186 HMDD3.2

hsa-mir-367 HMDD3.2 hsa-mir-575 HMDD3.2

hsa-mir-339 dbDEMC hsa-mir-658 dbDEMC

hsa-mir-9 HMDD3.2 hsa-mir-452 HMDD3.2

hsa-mir-215 HMDD3.2 hsa-mir-193b HMDD3.2

hsa-mir-451 HMDD3.2 hsa-mir-196b dbDEMC

hsa-mir-194 HMDD3.2 hsa-mir-494 HMDD3.2

hsa-mir-302a dbDEMC hsa-mir-449a HMDD3.2

hsa-mir-32 HMDD3.2 hsa-mir-424 HMDD3.2

hsa-mir-204 HMDD3.2 hsa-mir-520c HMDD3.2

hsa-mir-135b HMDD3.2 hsa-mir-382 unconfirmed

hsa-mir-95 HMDD3.2 hsa-mir-301b dbDEMC

hsa-mir-488 dbDEMC hsa-mir-510 unconfirmed

hsa-mir-302d HMDD3.2 hsa-mir-376c unconfirmed

hsa-mir-23b HMDD3.2 hsa-mir-455 HMDD3.2

hsa-mir-133a HMDD3.2 hsa-mir-206 HMDD3.2

hsa-mir-299 HMDD3.2 hsa-mir-137 HMDD3.2

hsa-mir-143 HMDD3.2 hsa-mir-211 HMDD3.2

hsa-mir-153 HMDD3.2 hsa-mir-154 HMDD3.2

hsa-mir-516b Unconfirmed hsa-mir-27b HMDD3.2

hsa-mir-383 dbDEMC hsa-mir-523 dbDEMC

TABLE 5 | Prediction results of the top 50 predicted Colon Neoplasms-related
miRNAs based on known associations in HMDD V2.0.

miRNA Evidence miRNA Evidence

hsa-mir-143 HMDD3.2 hsa-mir-200b HMDD3.2

hsa-mir-106b HMDD3.2 hsa-mir-24 HMDD3.2

hsa-mir-21 HMDD3.2 hsa-mir-1 HMDD3.2

hsa-mir-128 HMDD3.2 hsa-mir-205 HMDD3.2

hsa-mir-18a HMDD3.2 hsa-mir-29b HMDD3.2

hsa-mir-9 dbDEMC hsa-let-7b HMDD3.2

hsa-mir-155 HMDD3.2 hsa-mir-31 HMDD3.2

hsa-mir-181a HMDD3.2 hsa-mir-223 HMDD3.2

hsa-mir-494 unconfirmed hsa-let-7c HMDD3.2

hsa-mir-483 HMDD3.2 hsa-mir-15a HMDD3.2

hsa-let-7a HMDD3.2 hsa-mir-200c HMDD3.2

hsa-mir-125b HMDD3.2 hsa-mir-222 HMDD3.2

hsa-mir-146a HMDD3.2 hsa-mir-199a HMDD3.2

hsa-mir-34a HMDD3.2 hsa-mir-30b HMDD3.2

hsa-mir-210 HMDD3.2 hsa-mir-141 HMDD3.2

hsa-mir-16 HMDD3.2 hsa-mir-200a HMDD3.2

hsa-mir-146b dbDEMC hsa-let-7e HMDD3.2

hsa-mir-221 HMDD3.2 hsa-mir-196a HMDD3.2

hsa-mir-93 HMDD3.2 hsa-mir-142 HMDD3.2

hsa-mir-92a HMDD3.2 hsa-let-7f HMDD3.2

hsa-mir-20b dbDEMC hsa-mir-34c Unconfirmed

hsa-mir-19a HMDD3.2 hsa-let-7i HMDD3.2

hsa-mir-29a HMDD3.2 hsa-let-7d HMDD3.2

hsa-mir-18b HMDD3.2 hsa-let-7g HMDD3.2

and 45 of the top 50 predicted miRNAs were confirmed by
experimental literature from the dbDEMC and HMDD3.2
(see Table 4).

Colon Neoplasms are the most common type of gastrointestinal
cancer (Jemal et al., 2011; Ogata-Kawata et al., 2014). Siegel et al.
(2018), there were 97,220 new cases in the United States alone,
and approximately 50,630 patients died. A variety of miRNAs
have been experimentally confirmed to be associated with colon
neoplasms. For example, MicroRNA-155 regulates Colon Neoplasms
cell proliferation, cell cycle, apoptosis, migration and targets CBL (Yu
et al., 2017). MicroRNA-21 induces stem cells by down-regulating
transforming growth factor beta receptor 2 (TGFbetaR2) in Colon
Neoplasms cells (Yu et al., 2012). Let-7 is also involved in the
development of Colon Neoplasms (Williams, 2008). MicroRNA-
221 promotes Colon Neoplasms cell proliferation in vitro (Sun
et al., 2011). MicroRNA-34a inhibits the migration and invasion
of Colon Neoplasms cells by targeting Fra-1 (Wu et al., 2012).
Verification of dbDEMC and HMDD3.2 confirmed 10 of the
first 10 predictions and 48 miRNAs of the first 50 predictions
(see Table 5).

DISCUSSION

Research on the potential prediction of miRNA-disease associations
will help us to understand the pathogenesis and treatment of the
disease more deeply. Especially for cancer, targeted therapy by
regulating miRNA may be a breakthrough point for future treatment.
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In this paper, we developed an algorithm for miRNA-disease
association prediction (QIMCMDA), which mainly introduced
the q-kernel function to complete the similarity information
required. The QIMCMDA model is based on the known miRNA
disease association and miRNA functional similarity network. First,
calculated and completed the miRNA similarity network and the
disease similarity network using the q-kernel function. Then used
the matrix decomposition method to calculate the prediction score
for each sample, and finally sort the scores. The AUC of QIMCMDA
based on LOOCV is 0.9235, showing better performance than
previous methods. In addition, experimental literature has confirmed
the validity of potential miRNA-disease association predictions
for three major human diseases: Breast Neoplasms, Carcinoma
Hepatocellular, Colon Neoplasms).

The reasons for the reliable performance of QIMCMDA are
as follows: the key advantage of QIMCMDA is that it utilizes
the functional similarity of known miRNAs in combination with
q-kernel similarity as features of diseases and miRNAs to complete
the association of missing miRNAs and diseases. And the use of
alternating gradient descent algorithm to search for the optimal
solution can ensure the reliability of disease feature vectors and
miRNA feature vectors. In addition, the overall complexity of our
method from the construction of the network to the final prediction
score calculation is low, and the operation is simple and easy to
reproduce. QIMCMDA has a short running time and is suitable
for large-scale data research. It is a simple and effective method.
Finally, QIMCMDA is a semi-supervised model that does not require
negative samples, reducing the difficulty of model construction.
Compared with methods that require a large number of negative
samples, our method has some advantages. However, QIMCMDA
currently has some limitations. First of all, there are inevitable noises
and outliers in the known materials we use. Second, QIMCMDA
used the KL divergence as an error function, which is unstable

due to noise and outliers. With the development of the times,
database construction will become more and more perfect. As the
number of associated data increases, our predictions will become
more accurate. In addition, for miRNA or disease without any
known associations, our method may be less effective, because the
calculation of q-kernel is mainly based on known associations. In
the future, we can use a large amount of biological data to further
increase the reliability and practicability of the model prediction.
And our method can be practiced in other fields such as the
interaction between microorganisms and diseases or the interaction
between drugs and targets.
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Multimodal medical images provide significant amounts of complementary semantic

information. Therefore, multimodal medical imaging has been widely used in the

segmentation of gliomas through computational neural networks. However, inputting

images from different sources directly to the network does not achieve the best

segmentation effect. This paper describes a convolutional neural network called F-S-Net

that fuses the information from multimodal medical images and uses the semantic

information contained within these images for glioma segmentation. The architecture

of F-S-Net is formed by cascading two sub-networks. The first sub-network projects the

multimodal medical images into the same semantic space, which ensures they have the

same semantic metric. The second sub-network uses a dual encoder structure (DES) and

a channel spatial attention block (CSAB) to extract more detailed information and focus

on the lesion area. DES and CSAB are integrated into U-Net architectures. A multimodal

glioma dataset collected by Yijishan Hospital of Wannan Medical College is used to train

and evaluate the network. F-S-Net is found to achieve a dice coefficient of 0.9052 and

Jaccard similarity of 0.8280, outperforming several previous segmentation methods.

Keywords: medical image fusion, glioma segmentation, fully convolutional neural networks, DES, CSAB, F-S-Net

1. INTRODUCTION

Gliomas, which arise from the canceration of gliocyte in the brain and myelon, are the most
common form of cancer in the skull, accounting for 80% of malignant brain tumors (Ostrom
et al., 2014). The incidence ranges from 3 to 8 per 100,000 people and the fatality rate is high.
Hence, the early diagnosis and treatment of gliomas are very important. The presence of gliomas
can also cause complications such as increased intracranial pressure, brain edema, brain hernia, and
psychosis. The size, location, and type of a glioma are determined by segmenting the affected region
from other normal brain tissue. Accurate segmentation plays an important role in the diagnosis
and treatment of gliomas. However, manual delineation practices not only require significant
anatomical knowledge, but are also expensive, time consuming, and inaccurate. The automatic
segmentation of gliomas would allow doctors to detect the growth of brain tumors earlier and
provide additional information for the generation of treatment plans. Bi et al. (2019) believed that
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artificial intelligence could improve the role of current standard
diagnostic imaging technology by refining the preoperative
classification of brain tumors above the level achievable by
experts. Automatic segmentation based on computer-assisted
intervention provides a steady solution for the treatment of
gliomas, and is an effective tool in reducing the time required
for the accurate detection, location, and delineation of tumor
regions. Hence, it is necessary to automatically segment gliomas
from medical images.

In recent years, methods based on deep learning (LeCun
et al., 2015) have made significant breakthroughs in image
classification (Krizhevsky et al., 2012; Rawat and Wang, 2017),
image segmentation (Badrinarayanan et al., 2017; Garcia-Garcia
et al., 2017), object detection (Ren et al., 2015; Zhao et al.,
2019), object tracking (Li et al., 2018; Ristani and Tomasi, 2018),
image captioning (Anderson et al., 2018; Hossain et al., 2019),
and other fields (Hu et al., 2020). These breakthroughs have
promoted the development of deep learning methods in the
field of medical image analysis (Litjens et al., 2017; Altaf et al.,
2019; Esteva et al., 2019). One of the best-known architectures
for medical image segmentation is U-Net, initially proposed by
Ronneberger et al. (2015), in which the backbone is a fully
convolutional network (FCN) (Long et al., 2015). U-Net has
received widespread attention from researchers in the field of
medical image segmentation, and many improvements to U-Net
have since been proposed (Alom et al., 2018; Oktay et al., 2018;
Zhou et al., 2018). For example, Milletari et al. (2016) proposed
V-Net for processing 3D medical images, whereby residual
learning is employed to improve the convergence speed of the
network and random nonlinear transformation and histogram
matching are used for data augmentation. Milletari et al. also
proposed the dice loss technique based on dice coefficients.
Cheng et al. (2019) obtained a multilevel glioma segmentation
network by combining an attention mechanism and atrous
convolution with 3D U-Net. Chen et al. (2018b) used 3D U-Net
and separable 3D convolution to build a separable 3D U-Net
architecture. A multiscale masked 3D U-Net was proposed by
Xu et al. (2018). The input to their network is a superimposed
multiscale map, and multiscale information is obtained from the
3D ASPP layer.

Although methods based on deep learning have been
widely used in this field, the current approaches have some
disadvantages. Usually, researchers combine multimodal or
multisequence medical images to obtain better segmentation
accuracy (Kamnitsas et al., 2017b; Chen et al., 2018b; Xu et al.,
2018; Zhao et al., 2018; Cheng et al., 2019). The multimodal
medical images are input directly into the network for learning.
However, the semantic conflicts between multimodal medical
images cannot be completely avoided, and these may have a
certain impact on the segmentation results. The method of image
fusion can integrate valuable information from multimodal
medical images, and the fusion results are typically more
comprehensive than the original images (Liu et al., 2017). To
date, there have been few reports on the segmentation of gliomas
based on multimodal medical image fusion.

Another disadvantage of existing methods is that U-Net
variants do not improve the basic architecture of U-Net. In

particular, the features of the medical images are extracted by
a single encoder. This means there may be a loss of feature
information. Therefore, it is necessary for networks to obtain and
retain more useful features.

In this paper, we propose F-S-Net, which combines image
fusion technology to obtain images with richer semantic
information. F-S-Net consists of two sub-networks: a fusion
sub-network and a segmentation sub-network. The fusion sub-
network projects images obtained from computed tomography
(CT) and magnetic resonance imaging (MRI) into the same
semantic space for fusion. Compared with the original images,
the fused image contains more semantic information for
segmentation. To improve the segmentation performance, the
segmentation sub-network uses a dual encoder structure (DES)
and a channel spatial attention block (CSAB) to perform
image segmentation. Based on the U-Net architecture, DES and
CSAB use different sizes of convolution kernel to extract more
effective features and focus on the lesion area. In the process
of skip-connection, a 1×1 convolution and a concatenation
operation are used to achieve better feature fusion. This method
is conducive to feature extraction and utilization, and can
achieve good performance. DES and CSAB are integrated into
the networks based on the U-Net framework, and are found
to improve the segmentation result. Experiments show that
the cascaded networks proposed in this paper achieve better
performance than existing approaches.

The contributions of this study are as follows:

1. A DES is constructed by increasing the width of the
encoder. The proposed structure uses convolution
kernels of different sizes to extract more effective features
from images.

2. Our CSAB is constructed by combining channel attention and
spatial attention mechanisms in the U-Net architecture. The
proposed attention mechanism can be easily integrated into
other networks that use the U-Net framework.

3. The proposed F-S-Net is formed by combining two sub-
networks. One sub-network fuses CT and MRI images to
enhance the semantic information of the images, while
the other is used to segment gliomas accurately from the
fused image.

4. Clinical glioma imaging data were collected from Yijishan
Hospital of WannanMedical College. The labels of each image
were annotated by professional medical staff. The collected
dataset provides a valuable tool for further research.

5. Extensive comparison experiments were conducted based on
the collected dataset to demonstrate that the proposed method
obtains the best segmentation performance among several
deep segmentation methods.

2. RELATED WORK

Convolutional neural networks (CNNs) are a common
architecture for glioma segmentation, especially the
encoder–decoder model.

Wang et al. (2017) trained each tumor sub-region by
using networks with similar architectures and cascading these
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networks. The input to each network was the output from the
previous network. However, some loss of global information
might be caused by the way the gliomas are progressively
segmented. Kamnitsas et al. (2017a) reported better results
using ensembles of multiple models and architectures (EMMA).
In particular, EMMA combined the DeepMedic (Kamnitsas
et al., 2017b), FCN, and U-Net models and synthesized their
segmentation results. The strong performance of EMMA helped
Kamnitsa et al. to win the BraTS Challenge in 2017. However,
EMMA does not offer end-to-end training, and the final
result is affected by the accumulation of errors. Unlike most
researchers, Isensee et al. (2018) demonstrated that competitive
performance could be achieved with a few minor modifications
to a generic U-Net. They reduced the number of feature
maps before sampling from the decoder, and used additional
training data to produce some improvements in terms of
tumor enhancement. Myronenko (2018) won the BraTS 2018
challenge with a segmentation network based on the encoder–
decoder architecture. An asymmetric encoder is used to extract
features, and then two decoders segment the brain tumor and
reconstruct the input image, respectively. The first decoder
outputs the segmentation results from three tumor sub-regions,
while the second uses a variational auto-encoder (VAE) to
reconstruct the input image. The VAE branch only reconstructs
the input images during the training stage. Jiang et al. (2019)
achieved the best results in the 2019 BraTS challenge. They
proposed a U-Net-based cascade network that is divided into
two stages. In the first stage, a variant of U-Net produces an
unshaped result. In the second stage, improved performance
is obtained by increasing the width of the decoder. In fact,
their network uses two decoders that are structurally similar,
but have some differences in their up-sampling procedures:
one decoder uses deconvolution while the other uses trilinear
interpolation. Although multimodal medical imaging has been
widely used in glioma segmentation, few researchers have
considered the processing of multimodal medical images. This
is a clear gap in the research, as the results might be affected
by the different semantic information contained in multimodal
medical images.

3. METHODS

This section describes the proposed F-S-Net architecture in
detail. F-S-Net consists of two sub-networks, a fusion sub-
network and a segmentation sub-network. The fusion sub-
network uses multimodal images to obtain more detailed
medical images with a wealth of semantic information. After
processing the corresponding CT and MRI images, the fusion
results are input to the segmentation sub-network. The
segmentation sub-network uses a dual encoder architecture
to extract detailed features from the lesion area. Different
sizes of convolutional kernel are used to process images on
parallel paths. At the same time, an attention mechanism is
integrated into the CSAB module among the skip-connection
processing. The final result is obtained by segmenting the
fused results.

3.1. F-S-Net
Multimodal medical images have been widely used in medical
image analysis tasks. As multimodal images contain different
semantic information, image fusion technology is used to map
the semantic information from the multimodal images to the
same semantic space, including image structure information
and edge information. Therefore, F-S-Net incorporates medical
image fusion technology. The proposed network architecture is
shown in Figure 1.

F-S-Net is divided into two stages. In the first stage, the
fusion sub-network is used to fuse CT and MRI images. As
the semantic information from various multimodal images is
combined, this process provides more detailed medical images
for segmentation networks. In the second stage, the fused image
is input into the segmentation sub-network. The CSAB and
DES modules are used in the segmentation sub-network based
on the U-Net architecture. Figure 2 shows the structure of the
fusion sub-network (Fan et al., 2019). The Eθ and Dφ of fusion
sub-network are follows the structure of U-Net. Eθ is used
to generate the fusion results. Dφ is used to reconstruct the
input. The loss value is determined by the input, fusion results,
and reconstruction results. The loss function of the fusion sub-
network has been modified by us. The details of the loss function
are described in section 3.4. Dφ is used during the training stage.
The segmentation sub-network architecture is a typical encoder–
decoder structure, as shown in Figure 3. The segmentation sub-
network consists of two encoders (left side) and a decoder (right
side). The two encoders use convolution kernels of different sizes.
In the skip-connection process, the attention mechanism is used
to enable the network to extract the features of a specific area
and perform feature fusion. The decoder is the same as in U-
Net. The network takes input images of 256×256 pixels, and
outputs images of the same size. The network can obtain more
comprehensive and consistent medical images, and perform
better segmentation tasks, after multimodal image fusion. The
results are generated by minimizing the loss value.

3.2. Channel Spatial Attention Block
The attention mechanism is derived from the study of human
vision. In computer vision, the attention mechanism allows the
system to ignore irrelevant information and focus on important
information. Combining channel attention, spatial attention, and
the structural features of U-Net gives the CSAB module. This
module enhances the salient features of the up-sampling process
by applying an attention weight to the high- and low-dimensional
features. The proposed structure is shown in Figure 4. The input
featuremaps x and g are scaled using the attention coefficient (α3)
computed in CSAB. Areas of concern are selected by analyzing
the different types of attention weights provided by x and g.

Given an intermediate feature map x, g ∈ RC×H×W as input,
CSAB obtains two intermediate 1D channel attention weights α1,
α2 ∈ RC×1×1 and an intermediate 2D spatial attention weight α3
∈ R1×H×W . Figure 4 describes the calculation for each attention
module. The overall attention process can be summarized as:

gl = α1(g)⊗ g (1)
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FIGURE 1 | Architecture of the proposed F-S-Net for glioma segmentation. The corresponding CT and MRI images are processed by the fusion sub-network. The

fusion images are copied into the segmentation sub-network, which uses convolution kernels of different sizes to process images on parallel paths. The final results of

segmentation are output by the decoder.

FIGURE 2 | Architecture of fusion sub-network for glioma segmentation. The input size of the network is 256×256. The Eθ and Dφ are follows the structure of U-Net.

The Dφ is used only during training to reconstruct the input.

xl = α2(x)⊗ x (2)

f = α3(g
l, xl)⊗ xl ⊗ gl (3)

F = w(Cat[f , x])+ b (4)

where ⊗ denotes element-wise multiplication. F is the final
output obtained by 1×1 convolution after fusing f and
feature x.

3.2.1. Channel Attention Block

The channel attention weight is produced from high- and low-
dimensional features using the relationship among the features.

Four different spatial context descriptions, gmax, gavg , xmax,

and xavg , are obtained using average pooling and maximum
pooling operations on the feature map. These four characteristics
are entered into a small network for further processing. The
output feature vectors of the small network are merged using a
concatenation operation. Finally, the channel attention weights
α1(g) and α2(x) are obtained after the dimension has been
reduced by 1×1 convolution. The channel attention is calculated
as follows:

gmax = MaxPool(g) (5)

gavg = AvgPool(g) (6)
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FIGURE 3 | Architecture of segmentation sub-network for glioma segmentation. The input size of the network is 256×256. Each different box denotes the different

operations. The number of channels is denoted on the boxes. The parallel pathways process each feature using different sizes of convolution kernel, which are

combined at the end of the encoder.

FIGURE 4 | Schematic of the proposed CSAB. CSAB is composed of Channel Attention Block (CAB) and Spatial Attention Block (SAB). CAB applies channel

attention weight to x from encoder part and g from upsampled, respectively. xl and gl are the feature maps of CAB output. xl and gl are fused in the spatial attention

block. Spatial attention weights are applied to the result of feature fusion. f is the feature maps of SAB output. F is the feature map by CSAB output.

xmax = MaxPool(x) (7)

xavg = AvgPool(x) (8)

g1 = wfc3(wfc2(wfc1(gmax)+ bfc1)+ bfc2)+ bfc3 (9)

g2 = wfc3(wfc2(wfc1(gavg)+ bfc1)+ bfc2)+ bfc3 (10)

x1 = wfc3(wfc2(wfc1(xmax)+ bfc1)+ bfc2)+ bfc3 (11)

x2 = wfc3(wfc2(wfc1(xavg)+ bfc1)+ bfc2)+ bfc3 (12)

α1(g) = σg(wz(Cat[g1, g2])+ bz) (13)

α2(x) = σx(wz(Cat[x1, x2])+ bz) (14)
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where σg and σx denote the sigmoid function, Wfc1 ∈ RC/8×1×1,

Wfc2 ∈ RC/8×1×1, Wfc3 ∈ RC×1×1, and Wz ∈ RC×1×1. Wfc1,
Wfc2, Wfc3, and Wz denote the weight of each convolution. The
rectified linear units (ReLU) activation function is followed by
Wfc1,Wfc2, andWfc3.

3.2.2. Spatial Attention Block

The spatial attentionmap is generated from α1(g) and α2(x) using
the relationship among the features. The attention coefficient,
α3 ∈ [0, 1], suppresses the expression of irrelevant regions in the
input. In addition, the attention coefficient can highlight features
that are useful for the task.

In the spatial attention block, the high- and low-dimensional
features are subjected to 1×1 convolution to obtain two features:
FWg ∈ RC×H×W and FWx ∈ RC×H×W . The concatenation
operation then performs feature fusion. Finally, the spatial
attentionmap of α3 ∈ R1×H×W is generated by 1×1 convolution.
The output of the spatial attention block (SAB) is the element-
wise multiplication of the input feature graph and the attention
coefficient. The spatial attention is calculated as follows:

FWg = wg(g
l)+ bg (15)

FWx = wx(x
l)+ bx (16)

f = α3(g
l, xl)⊗xl⊗gl = σ (ψ(Cat[FWg , FWx ])+b)⊗xl⊗gl (17)

where σ denotes the sigmoid function.Wg ,Wx, and ψ represent
the convolution kernel weights, and bg , bx, and b are the
bias terms.

3.3. Dual Encoder Structure
The DES is developed by extending the encoder of U-Net. Two
different encoders are used to extract features from images, and
the convolution kernel size of the two encoders is different. One
encoder has a convolution kernel size of 3×3, while the other has
a convolution kernel size of 2×2. The encoder with a convolution
kernel size of 3×3 is consistent with U-Net. Each layer consists
of two 3×3 convolutions, followed by batch normalization (BN)
and ReLU activation. The encoder with a convolution kernel of
2×2 is different from that of U-Net. Each layer consists of four
2×2 convolutions, each followed by BN and ReLU activation.
The padding of the four 2×2 convolutions is 0101. The number
of initial filters is 32. More feature information is obtained from
images that use convolution kernels of different sizes. In addition,
more significant information will be input to the decoder through
the parallel paths design.

As the encoder has been expanded, it is necessary to fuse
the features of each path when the features are input into
the decoder. The output of CSAB is fused with the features
obtained by up-sampling. Then, 1×1 convolution is used to
reduce the dimension of the fused features. Finally, the processed
features are input into the decoder. The two features from the
encoder are processed separately. This approach is conducive to
the integration of low- and high-dimensional information. The
experimental results of the optimization procedure demonstrate

the effectiveness of our structure. The structure designed in this
study is shown in Figure 5.

Let X1 and X2 be features extracted by the encoder. F1 and F2
are the features output by CSAB, respectively, and g is the feature
obtained after up-sampling. F1 and F2 are fused with g, and
the features connected by skip-connection are subjected to 1×1
convolution for dimension reduction, resulting in x13 and x23.
These two features are fused after dimensionality reduction to
obtain X, which is input to the decoder. X is computed as follows:

X = Cat[x13, x23] (18)

where F1, F2, x13, and x23 are given by:

F1 = Att(g, x1) (19)

F2 = Att(g, x2) (20)

x13 = Wx1 (Cat[F1, g])+ b1 (21)

x23 = Wx2 (Cat[F2, g])+ b2 (22)

DES has two advantages. First, the convolution kernels of
the two encoders are 3×3 and 2×2, respectively. This strategy
can extract more different features, which is beneficial to the
segmentation task. Secondly, the features processed during the
skip-connection ensure more complete information fusion. We
have not made any major changes to the U-Net architecture.
Therefore, our DES can be extended to most networks that are
based on the U-Net architecture.

3.4. Loss Function
The loss function consists of three terms:

Ltotal = 0.02 ∗ (LMSE + LSSIM)+ LBCE (23)

LMSE is the mean squared error (MSE) loss between the
reconstructed output Ii and the input image Oi:

LMSE =
1

N

N∑

i=1

(Ii − Oi)
2 (24)

where N is the number of epochs.
LSSIM is calculated as:

LSSIM =
1

N

N∑

i=1

(1− SSIM(Oi, Fi)) (25)

where SSIM(·) represents the structural similarity between two
images (Wang et al., 2004). Fi represents the fused image.

LBCE is the binary cross-entropy (BCE) loss applied to the
segmentation output Pi and the segmentation mask Ti:

Frontiers in Neuroscience | www.frontiersin.org 6 October 2020 | Volume 14 | Article 586197105

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Su et al. Multimodal Glioma Image Segmentation

FIGURE 5 | Method of skip-connection. First, the attention weight is applied by CSAB to the output characteristics of the encoder. The features obtained from the

up-sampling are then fused with the features after applying the attention weight. Subsequently, 1×1 convolution is used to reduce the dimension of the fused features.

The final output is obtained by concatenating the two features.

LBCE = −
1

N

N∑

i=1

(Ti log(Pi)+ (1− Ti) log(1− Pi)) (26)

LMSE and LSSIM are the loss functions of the fusion sub-network,
and LBCE is the loss function for the segmentation sub-network.
Since calculations of loss function is different, the loss functions
must be balanced. The proposed model is trained with η = 1 and
γ = 1. η represents the loss weight of the fusion sub-network.
γ represents the loss weight of the segmentation sub-network.
The loss curves are shown in Figure 6, from which we can learn
that fusion loss is bigger than segmentation. To balance the loss
weights between fusion and segmentation sub-networks, the loss
weight in Equation (23) are set to η = 0.02 and γ = 1.

4. RESULTS

4.1. Experimental Environment
A 12 GB NVIDIA Titan X (Pascal) was used for training
and evaluation. The system was running Windows 10
with an Intel Xeon CPU with 64 GB RAM. The program
was written on Pycharm and is based on the Pytorch
(Paszke et al., 2019) framework.

4.2. Dataset
The dataset contains clinical imaging data from 26 patients with
brain gliomas examined at Yijishan Hospital of Wannan Medical
College. The clinical image data consist of CT and T2-weighted
MRI scans from glioma patients, of which nine images were
acquired from low-grade glioma patients and 17 images were
obtained from high-grade glioma patients. These are brain scans
before treatment. After slicing the data, 860 pieces of CT and
MRI images were obtained. Registration was completed after
slicing. In addition, an expert was invited from the First Affiliated
Hospital of the University of Science and Technology of China to
manual delineate the whole tumor area. The data are shown in
Figure 7.

Data augmentation was used to improve the generalization
ability and robustness of the models. As the image size may

FIGURE 6 | Loss curve of different sub-network. The blue line represents the

loss function curve of the fusion sub-network. The orange line represents the

loss function curve of the segmentation sub-network. Fusion loss is bigger

than segmentation loss. Therefore, weights must be applied to balance the

two sub-networks.

change after data augmentation, the images were resampled
to 256×256 pixels. Finally, the dataset was randomly divided
into a training dataset (60%), validation dataset (20%), and test
dataset (20%).

4.3. Evaluation Measures
The accuracy rate (ACC), positive predictive value (PPV), Jaccard
similarity (JS), and dice coefficient (DC) were used as evaluation
indexes. These metrics were calculated as follows:

ACC =
TP + TN

TP + FP + TN + FN
(27)

PPV =
TP

TP + FP
(28)

JS =
TP

FP + TP + FN
(29)
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FIGURE 7 | Example of image modalities and ground truth in the multimodal glioma dataset. (A) Shows a head scan CT. (B) Shows a T2-weighted MRI. (C) Shows

the ground truth. (D) Shows the mergence result of (B,C).

TABLE 1 | JS and DC for F-S-Net with different numbers of kernels and

optimizers.

Number of convolution kernels JS DC

Adam + (32) 0.8070 0.8922

Adabound + (32) 0.8172 0.8975

SGD + (32) 0.7936 0.8839

Adabound + (16) 0.8040 0.8902

DC =
2 ∗ TP

2 ∗ TP + FP + FN
(30)

where TP (true positive) represents the number of foreground
pixels that are correctly classified as foreground (tumor region),
TN (true negative) represents the number of background pixels
that are correctly classified as background (non-tumor region),
FP (false positive) represents the number of background pixels
that are correctly identified as foreground, and FN (false
negative) represents the number of foreground pixels that are
incorrectly classified as background.

ACC is used to represent the classification accuracy of the
classifier. PPV represents the proportion of true positives in all
positive cases. JS reflects the ratio of the common area of the
matched element to the split result. Any imprecise segmentation,
whether under- or over-segmentation, will cause the JS to
decrease. DC calculates the similarity between the prediction
results and the ground truth to evaluate the performance of
the model.

FIGURE 8 | Loss curve for F-S-Net with different optimizers. The red line

represents loss function curve of the SGD optimizer. The blue line represents

the loss function curve of the Adam optimizer. The orange line represents the

loss function curve of the Adabound optimizer. The optimizer of Adabound has

the fastest rate of convergence.

4.4. Training Optimization
First, the appropriate numbers of optimizers and convolution
kernels were determined. Stochastic gradient descent (SGD)
(Robbins and Monro, 1951) has been widely applied in the field
of deep learning, while adaptive moment estimation (Kingma
and Ba, 2014) offers better optimization performance. Adabound
(Luo et al., 2019) dynamically crops the learning rate so that
the algorithm is closer to Adam in the early stages of training
and closer to SGD at the end. For CNNs, the receptive field
and number of channels on the receptive field determine the
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performance of the network. The convolution kernels considered
in the experiments had the following structures: (16) 1-16-
32-64-128-256-128-64-32-16-1; (32) 1-32-64-128-256-512-256-
128-64-32-1. Four experimental groups were examined in the
experiments: (1) Adam + (32), (2) Adabound + (32), (3) SGD +
(32), and (4) Adabound + (16). The number of training epochs
was set to 150, the batch size was set to 4, the weight decay was set
to 5×10−8, and the learning rate decreased by 0.1 after the 100th
epoch. The experimental results are presented in Table 1. The
loss curve is shown in Figure 8. In Figure 8, Adabound converges
faster than the other optimizers. On the independent test dataset,
the DCs of SGD, Adabound, and Adam are 0.8839, 0.8975,
and 0.8922, respectively. Based on these results, Adabound and
structure (32) were used in subsequent experiments.

Convolution kernels of different sizes have different receptive
fields. The convolution kernel size of one encoder was kept the
same as that in U-Net, while the convolution kernel size of the
other encoder was modified as follows: (1) The 3×3 convolution
of the amplified path was replaced by 5×5 convolution. (2)
The two 3×3 convolutions were kept unchanged. (3) The 3×3
convolution of the amplified path was replaced by two 2×2
convolutions. Note that the padding is different when using
2×2 convolution. The experimental results presented in Table 2

show that replacing a set of 3×3 convolutions with a set of 2×2
convolutions produces a better effect.

TABLE 2 | DC and JS for F-S-Net with different sizes of kernels and optimizers in

the encoder–decoder for test dataset.

Sizes of convolution kernel JS DC

3×3-3×3 0.8172 0.8975

3×3-5×5 0.8226 0.9019

3×3-2×2(0101) 0.8234 0.9023

3×3-2×2(1010) 0.8226 0.9014

0101 and 1010 are the settings for the padding in each 2×2 convolution block.

It is necessary to modify the skip-connection to adapt to
the inputs of the two encoders. An increase in skip-connection
input would inevitably require feature fusion and dimensionality
reduction. The order of 1×1 convolution and feature fusion
may affect the performance of the network. Therefore, the four
different structures shown in Figure 9 were constructed.

Experiments were performed using the above four structures.
The final experimental results are presented in Table 3, showing
that better results are obtained by the skip-connection and
dimension reduction of the two paths, respectively.

4.5. Ablation Analysis of Proposed Methods
The experimental results of the proposed structures with non-
fusion and fusion were compared. It is clear that the improved
structure and combination of modules are effective in enhancing
the glioma segmentation results. The hyperparameters were set
according to the previous optimization experiment. The training
and testing samples for the experiment were taken from the
glioma dataset. The fusion results in Figure 10 clearly represent
the overall area of the tumor, which makes the image features
more obvious. The glioma can be accurately segmented and the
network captures the specific outline and edge details of the
lesion area in the image.Table 4 presents the experimental results
from using the proposed architecture.

DECSAU-Net is the segmentation sub-network in F-S-
Net. When the proposed modules are removed, the network

TABLE 3 | DC and JS for F-S-Net with different types of skip-connection.

Skip-connection type JS DC

a 0.8234 0.9023

b 0.8019 0.8883

c 0.8109 0.8947

d 0.8280 0.9052

FIGURE 9 | Different types of skip-connection. The skip-connection of F-S-Net is divided into three parts: (Cu) CSAB and up-sampling. (1×1) 1×1 convolution. (Cat)

concatenation. (A) (1×1) + (Cat) + (Cu). (B) (Cat) + (1×1) + (Cu). (C) (Cu) + (Cat) + (1×1). (D) (Cu) + (1×1) + (Cat).
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FIGURE 10 | Comparison of segmentation results between F-S-Net and other networks. (a,b) source images before fusion, (c) fusion result. Compared with (a,b),

the features in (c) are more obvious. The ground-truth glioma segmentation (e) is highlighted in (d). Similarly, other model predictions are compared with those of

F-S-Net (f). (g–l) Are the results given by FCN8s, SegNet, DeeplabV3+, U-Net, R2U-Net, and AttU-Net, respectively. The missed dense predictions by other models

are highlighted with red arrows.

TABLE 4 | Evaluation metric for ablation analysis of our methods with test dataset.

Model ACC PPV JS DC

U-Net (Ronneberger et al., 2015) 0.9916 0.8001 0.7656 0.8656

DECSAU-Net (Ours) 0.9938 0.8624 0.8193 0.8994

F-S-Net (Ours) 0.9943 0.9054 0.8280 0.9052

TABLE 5 | Evaluation metrics for different network architectures.

Model ACC PPV JS DC

FCN8s (Long et al., 2015) 0.9885 0.7714 0.6980 0.8197

SegNet (Badrinarayanan et al., 2017) 0.9931 0.8428 0.8039 0.8890

DeeplabV3+ (Chen et al., 2018a) 0.9931 0.8328 0.8066 0.8914

U-Net (Ronneberger et al., 2015) 0.9916 0.8001 0.7656 0.8656

R2U-Net (Alom et al., 2018) 0.9932 0.8472 0.8040 0.8905

AttU-Net (Oktay et al., 2018) 0.9934 0.8586 0.8087 0.8932

DECSAU-Net (Ours) 0.9938 0.8624 0.8193 0.8994

F-S-Net (Ours) 0.9943 0.9054 0.8280 0.9052

architecture is the same as the standard U-Net. Comparing
the network models with and without DES and CSAB, it can
be seen that the inclusion of DES and CSAB results in better
performance. The PPV of DECSAU-Net is about 0.0623 higher
than that of U-Net. The JS and DC values are about 0.0537 and
0.0338 higher, respectively. A comparison with U-Net shows that
DES and CSAB improve the results of U-Net.

The results achieved with non-fusion and fusion approaches
are now compared. The DC of the fused image is about 0.0058
higher than that of the image before fusion. The PPV of glioma
segmentation after fusion is also higher at 0.9054. The difference
in JS values shows that the result obtained after fusion is more
similar to the ground truth. In general, the higher DC and

JS values demonstrate that the segmentation is more accurate
after fusion.

4.6. Comparison With Other Methods
Table 5 compares the performance of different network
architectures with that of the proposed F-S-Net after normalizing
and enhancing the glioma data on the same test dataset.
Figure 10 shows the glioma segmentation results, which can be
used to compare F-S-Net with other networks.

Several medical image segmentation architectures
(Ronneberger et al., 2015; Badrinarayanan et al., 2017;
Alom et al., 2018; Chen et al., 2018a; Oktay et al., 2018) are
outperformed by F-S-Net in both evaluations. The results in
Table 5 indicate that F-S-Net is more effective for performing
accurate glioma segmentation. Compared with other network
architectures, our method is more conducive to the segmentation
of lesions as it maps multimodal medical images into the same
semantic space. The advantage of F-S-Net is that the fusion
of multimodal images makes the semantic information more
conspicuous, and DES and CSAB allow the network to achieve a
better segmentation effect.

5. DISCUSSION

Segmenting gliomas directly from CT or MRI images is a
challenging task. In addition, the blurred edges of adjacent bones,
blood vessels, or surgical packaging materials greatly increase the
difficulty of segmentation.

Currently, most researchers directly input multimodal
images into a network for learning. To the best of our
knowledge, there are few reports on the segmentation of
gliomas based on multimodal medical image fusion. To
bridge this gap, F-S-Net has been proposed based on medical
image fusion technology. Fusion and segmentation sub-
networks are cascaded for end-to-end training, and two
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new structures, DES and CSAB, are proposed based on the
structural characteristics of U-Net. The basic idea of F-S-Net
is to use fusion technology to produce images with more
semantic information for the segmentation network, so as to
obtain better segmentation results. DES and CSAB extract
more detailed features and force the network to focus on
the lesion area. Our work builds on existing techniques,
such as CT and MRI image fusion. Medical image fusion
techniques are not specifically designed for the segmentation
task, but can provide images with richer semantic information
for segmentation.

The most important innovation described in this paper
is the ability to perform the task of glioma segmentation
using image fusion. In the field of medical image analysis,
better performance is often achieved by combining different
technologies. The results in Table 4 demonstrate the effectiveness
of DES and CSAB, while those in Tables 4, 5 demonstrate
the improvement offered by using fusion technology for
segmentation. Our network has the following advantages.
First, image fusion can enrich the information available by
integrating information between multimodal medical images.
This method improves the quality of the image and facilitates
the segmentation task. Second, the convolution kernels of
different sizes in DES allow the network to obtain richer
features. This helps to focus attention on the area of interest,
and then obtains a better segmentation effect. Third, CSAB
makes the network focus on the lesion area by applying
different attention weights to the features. Our method not
only integrates the complementary information from different
modalities, but also extracts more detailed features. The
experimental results show that F-S-Net outperforms several
existing methods.

In summary, our proposed method will be helpful in
allowing clinicians to diagnose and treat gliomas. More detailed
segmentation results provide doctors with more complete
boundary information of the tumor, and can better guide
the resulting operations. In addition, better segmentation
contributes to the reconstruction of the image data, which
can provide more information for future monitoring and
treatment planning. Our method overcomes the problem
of incomplete semantic information and achieves good
performance. The combination of segmentation and other
medical imaging technologies will be explored in the future. This
may improve clinical guidance in the diagnosis and treatment of
glioma patients.

6. CONCLUSION

Glioma segmentation is a challenging and significant task in
medical image segmentation. Based on medical image fusion
technology, a cascade network was proposed to automatically
segment gliomas from CT and MRI images. Our network
obtained a DC of 0.9052 on the test dataset. Experimental
results show that the combination of image fusion and image
segmentation is effective. Our model provides a new method and
a new idea for glioma segmentation based on deep learning, and
is beneficial to the clinical diagnosis and treatment of patients.
The proposed network is not only applicable to the segmentation
of gliomas, but could also be easily applied to othermedical image
segmentation tasks.
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Heart failure (HF) is a serious condition in which the support of blood pumped by the heart 
is insufficient to meet the demands of body at a normal cardiac filling pressure. Approximately 
26 million patients worldwide are suffering from heart failure and about 17–45% of patients 
with heart failure die within 1-year, and the majority die within 5-years admitted to a 
hospital. The molecular mechanisms underlying the progression of heart failure have been 
poorly studied. We compared the gene expression profiles between patients with heart 
failure (n = 177) and without heart failure (n = 136) using multiple feature selection strategies 
and identified 38 HF signature genes. The support vector machine (SVM) classifier based 
on these 38 genes evaluated with leave-one-out cross validation (LOOCV) achieved great 
performance with sensitivity of 0.983 and specificity of 0.963. The network analysis 
suggested that the hub gene SMOC2 may play important roles in HF. Other genes, such 
as FCN3, HMGN2, and SERPINA3, also showed great promises. Our results can facilitate 
the early detection of heart failure and can reveal its molecular mechanisms.

Keywords: heart failure, microarray, biomarker, network, molecular mechanism

INTRODUCTION

Heart failure (HF) is a serious condition in which the support of blood pumped by the heart 
is insufficient to meet the demands of body at a normal cardiac filling pressure (Ramachandra 
et  al., 2020). Defined as a syndrome with high morbidity and mortality, HF is the major 
cause of death and a serious threat to human health for a long period (Jarcho, 2020). 
Approximately 26 million patients worldwide are suffering from heart failure, and the society 
faces the long-term great stresses on patients, medical stuff, and medical systems (Bowen 
et  al., 2020). About 17–45% of patients with heart failure die within 1   year, and the majority 
die within 5  years admitted to a hospital in worldwide (Davison and Cotter, 2015; Zhou et  al., 
2020). However, the survival rates for patients with HF have improved in many parts of the 
world in recent years along with the advanced therapies and patient management systems. 
Heart failure is a complex disease, and so many factors are responsible that it is hard to 
blame it on one specific issue (McMurray and Pfeffer, 2005).
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Over the past decades, the genetic causes and molecular 
mechanism underlying the progression of heart failure have 
been partially illustrated. Most previous studies in heart 
failure are limited by inadequate biological samples from 
patients with heart failure (Prohászka et  al., 2013). Since 
then, studies have focused on the molecular mechanism of 
heart failure by virtue of animal models in combination 
with molecular biological techniques. Previous studies 
suggested that classification of disease status for HF is much 
important for the decision of treatment and improvement 
of prognosis (van Oort et  al., 2011). They have discovered 
that novel gene biomarkers play a vital role in various diseases 
depending on the leapfrog development of RNA-Seq technology 
(Asakura and Kitakaze, 2009). According to previous reports, 
the specific gene expression is related to the pathological 
conditions of HF.

Liu et al. (2015) collected six samples from three controls, 
one ischemic heart disease (ISCH), and two dilated 
cardiomyopathies (DCMs) and used RNA-Seq to filter novel 
gene signatures for HF, and precisely categorize HF status 
in larger samples of 313 patients. Vigil-Garcia et  al. (2020) 
selected novel genes induced during pathological cardiac 
hypertrophy that are relevant for human HF through 
cardiomyocyte-specific gene expression analysis. These results 
recognized PFKP as a novel potential therapeutic target to 
prohibit the succession of HF. Tan et al. (2002) used microarrays 
to describe gene expression fingerprints of HF etiologies 
based on seven non-failing human hearts and eight failing 
human hearts with a diagnosis of end-stage dilated 
cardiomyopathy. Zhou et  al. (2020) proposed that valosin-
containing protein could protect the heart against pressure 
overload-induced heart failure using RNA-Seq and a 
comprehensive bioinformatics analysis. Kittleson et al. (2004) 
used microarrays of 48 myocardial samples and gene expression 
profiling to predict biomarkers in determining prognosis and 
response to therapy in HF precisely. All these studies were 
based on microarrays, which have been the remarkable method 
for gene expression studies because of their ability to filter 
thousands of transcripts.

In our study, we  tried to detect the novel HF signature 
genes and their networks from previous transcriptomic data 
which included the gene expression profiles in patients with 
heart failure (n  =  177) and without heart failure (n  =  136) 
using advanced bioinformatics methods. Compared with 
previous studies, which are intended to find the biomarker 
for HF put the focus on separated gene, our study focused 
on the linkage among them. We  built the support vector 
machine (SVM) model with the application of multiple 
feature selection methods: Monte Carlo Feature Selection 
(MCFS; Draminski et  al., 2008; Chen et  al., 2018a, 2020; 
Pan et  al., 2019b; Li et  al., 2020a) and incremental feature 
selection (IFS; Zhang et  al., 2016; Chen et  al., 2018b, 2020; 
Wang et  al., 2018; Pan et  al., 2019a). What is more, we used 
the Search Tool for the Retrieval of Interacting Genes 
(STRING) database (Szklarczyk et  al., 2018) to explore  
the protein interaction networks. A remarkable result of 
our study is that 38 selected genes can serve as novel  

biomarkers for HF and can conduce to revealing the 
pathological mechanism of HF.

MATERIALS AND METHODS

The Microarray Data of Heart Failure 
Patients
We downloaded the microarray gene expression data of 177 
patients with heart failure and 136 patients without heart failure 
from Gene Expression Omnibus (GEO) at https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE57338 (Liu et al., 2015). 
The expression levels of 33,297 probes corresponding to 
20,254 genes in the cardiac tissue were measured with 
Affymetrix Human Gene 1.1 ST Array. The probes 
corresponding to the same gene were averaged to obtain 
the gene expression levels, and the gene expression levels 
were quantile normalized using function normalize.quantiles 
from R/Bioconductor package preprocessCore1 to minimize 
the systematic variance. The normalized data were used for 
further feature selections.

Select the Genes Based on Their 
Importance to Classify the Heart Failure 
Patients
There have been many methods for identifying differentially 
expressed genes (DEGs), such as t-test. But such methods only 
consider the distribution of one gene each time, and do not 
consider the relationship among genes (Tao et  al., 2020). That 
leads to two limitations: (1) The distribution difference of a 
gene is not equivalent to its classification ability; and (2) The 
combinations of the most significant DEGs may not have good 
performance since they may be  redundant and do not help 
each other to achieve a better performance. Therefore, we adopted 
machine learning based multiple feature selection strategies to 
objectively select the optimal heart failure signature. The machine 
learning-based methods have been widely used and achieved 
great success in biomarker discovery (Wang and Huang, 2019; 
Li et  al., 2020a,b; Yuan et  al., 2020; Zhang et  al., 2020a,b; 
Zhu et  al., 2020).

The proposed multiple feature selection strategies can 
be  summarized as Figure  1. First, the expression profiles 
of 20,254 genes in 177 patients with heart failure and 136 
patients without heart failure were normalized. Second, 
we  randomly selected many subset data to construct the 
classification trees using Monte Carlo strategy (Draminski 
et  al., 2008; Chen et  al., 2018a, 2020; Pan et  al., 2019b; Li 
et al., 2020a). To perform MCFS, we used the dmLab software 
version 2.3.0 from https://home.ipipan.waw.pl/m.draminski/
mcfs.html. Third, all these trees were ensembled to calculate 
the classification importance of the genes. The important 
genes should appear in a large number of trees and  
be  able to correctly classify the samples into right groups.  

1 https://bioconductor.org/packages/preprocessCore/
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Fourth, the top ranked genes (1,000  in this study) were 
further analyzed using IFS strategy (Zhang et al., 2016; Chen 
et  al., 2018b, 2019; Wang et  al., 2018; Pan et  al., 2019a). 
Each time, a gene set including the top K most important 
genes (K  =  1, 2, 3, …, 1,000) was used to train a SVM 
model, and its performance was evaluated with leave-one-out 
cross validation (LOOCV; Li and Huang, 2018). To build 
the SVM, we  used the function svm from R package e1071.2 
Fifth, the optimal heart failure signature was the gene set 
with the best performance. If the IFS curve did not reach 
its peak or the plateau area and kept increasing as the 
number of genes increased, more top genes should be analyzed. 
Sixth, to better understand the underlying regulatory 
mechanisms of the signature and increase the interpretability 
of the signature, we constructed the signature network based 
on STRING database version 11.0 (http://string-db.org; 
Szklarczyk et  al., 2018; Shi et  al., 2020).

RESULTS

The Optimal Heart Failure Signature 
Identification
We adopted multiple feature selection strategies (Figure  1) 
to identify the optimal heart failure signature. It integrated 
the strategies of MCFS and IFS. Step A was data preprocessing. 
MCFS included Steps B and C. IFS included Steps D and 
E. Step F was to interpret the biological mechanisms of 
the signature. As demonstrated in Figure  1D, the actual 
IFS curve was shown in Figure  2. The highest LOOCV 
accuracy was 0.974 when the top  38 MCFS genes were 
used to train the SVM model. Therefore, these 38 genes 

2 https://CRAN.R-project.org/package=e1071

were chosen as the optimal heart failure signature, which 
was shown in Table  1. The confusion matrix of the 38 
optimal heart failure signature genes which compared the 
actual class labels and precited class labels of all samples 
were given in Table  2. Their LOOCV sensitivity, specificity, 
and accuracy were 0.983, 0.963, and 0.974, respectively. The 
performance was great.

A D E

B C F

FIGURE 1 | The workflow for optimal heart failure signature identification. The workflow integrated the strategies of Monte Carlo Feature Selection (MCFS) and 
incremental feature selection (IFS). Step (A): data preprocessing. Steps (B,C): MCFS. Steps (D,E): IFS. Step (F): signature network.

FIGURE 2 | The IFS curve of optimal heart failure signature identification. 
It showed the relationship between the number of genes (x) and their 
LOOCV accuracy (y). The peak accuracy was 0.974 when 38 genes were 
used. Therefore, the 38 genes were chosen as optimal heart failure 
signature.
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The Expression Pattern of the 38 Genes in 
Patients With HF and Without HF
We plotted the heatmap of the 38 genes in 177 patients with 
heart failure (HF) and 136 patients without heart failure 
[non-heart failure (NHF)] in Figure  3. It can be  seen that 
most samples were clustered into the correct groups. Only 
very few samples were misclustered. Within the 38 genes, 17 
genes (ZMAT1, APBB3, MNS1, AP3M2, BTN3A1, KCNN3, 
TTC3, SMOC2, LUM, ASPN, FRZB, SFRP4, MATN2, ISLR, 
PDE5A, ECM2, and FREM1) were highly expressed in HF 
and 20 genes (FAM58A, CSDC2, C15orf59, S1PR3, VSIG4, 
CD163, SEMA4B, SLCO4A1, SERPINA3, GGT5, FURIN, 

ZDHHC16, LAD1, USP31, TUBA3D, TUBA3E, ST6GALNAC3, 
LCN6, HMOX2, and FCN3) were lowly expressed in HF.

The Network of the 38 Genes
Signature genes were not necessarily key regulators. They could 
be only markers. But if the signature genes have clear biological 
functions, they certainly can be  better interpreted. Therefore, 
as we  stated in Figure  1F, we  searched the interaction among 
the STRING database (https://string-db.org/; Szklarczyk et  al., 
2018) and plotted the networks of the 38 genes in Figure  4. 
It can be  seen that SMOC2 is located in the hub position of 
the network.

SMOC2, a member of the SPARC family, which is highly 
expressed during embryogenesis and wound healing. Previous 
studies recognized that inflammatory pathways were generally 
dysregulated in right ventricular failure (RVF) tissue. Williams 
et  al. (2018) analyzed mRNA datasets of human non-failing 
and failing heart samples from patients, and concluded that 
SMOC2 was differentially expressed. SMOC2 could be a potential 
significance factor that altered remodeling and inflammation 
for further study in the mechanism of HF. Laugier et al. (2017) 
found that SMOC2, involved in matrix remodeling, is potentially 
associated with the increased T-helper 1 cytokine-mediated 
inflammatory damage in heart, using genome-wide cardiac 
DNA methylation on global gene expression in myocardial 
samples in chronic Chagas disease cardiomyopathy, which is 
an inflammatory cardiomyopathy presenting with heart failure 
and arrhythmia.

DISCUSSION

In the present study, 38 genes were selected from our 
prediction model of SVM, implying strong relevance with 
the pathological mechanisms of HF. After literature retrieval 
and utilization, several evidences and analysis results have 
been retrieved to validate the dependability and reality of 
our analysis.

FCN3, a member of ficolin/opsonin p35 lectin family which 
consists of a collagen-like domain and a fibrinogen-like domain, 
which were found in all human serum. Prohászka et  al. (2013) 
reported that the main initiator molecules of the lectin complement 
pathway MBL, FCN2, and FCN3 were related to chronic heart 
failure (CHF). Low FCN3 levels were related to decreased 
concentrations of complement factor C3 and increased complement 
activation product C3a (Prohászka et  al., 2013). They also 
provided evidence for a significant association of low FCN3 
levels with advanced HF and outcome (Prohászka et  al., 2013). 
FCN3 is reported to be  increased in microvesicles obtained 

TABLE 1 | The 38 optimal heart failure (HF) signature genes.

Rank Gene symbol Full name Importance

1 HMGN2
High mobility group nucleosomal binding 
domain 2

0.571

2 HMOX2 Heme oxygenase 2 0.527
3 SERPINA3 Serpin family A member 3 0.499
4 TUBA3D Tubulin alpha 3d 0.489
5 ECM2 Extracellular matrix protein 2 0.481
6 FREM1 FRAS1 related extracellular matrix 1 0.461
7 FCN3 Ficolin 3 0.458
8 ZMAT1 Zinc finger matrin-type 1 0.405
9 SMOC2 SPARC related modular calcium binding 2 0.386
10 CSDC2 Cold shock domain containing C2 0.383
11 LCN6 Lipocalin 6 0.359
12 LUM Lumican 0.356

13 FURIN
Furin, paired basic amino acid cleaving 
enzyme

0.349

14 LAD1 Ladinin 1 0.338
15 MNS1 Meiosis specific nuclear structural 1 0.338
16 ASPN Asporin 0.317
17 FRZB Frizzled related protein 0.310
18 GGT5 Gamma-glutamyltransferase 5 0.296
19 TUBA3E Tubulin alpha 3e 0.293
20 PDE5A Phosphodiesterase 5A 0.292

21 ISLR
Immunoglobulin superfamily containing 
leucine rich repeat

0.289

22 S1PR3 Sphingosine-1-phosphate receptor 3 0.279
23 SFRP4 Secreted frizzled related protein 4 0.271

24 APBB3
Amyloid beta precursor protein binding 
family B member 3

0.270

25 USP31 Ubiquitin specific peptidase 31 0.268

26 SLCO4A1
Solute carrier organic anion transporter 
family member 4A1

0.251

27 VSIG4
V-set and immunoglobulin domain 
containing 4

0.251

28 KCNN3
Potassium calcium-activated channel 
Subfamily N member 3

0.250

29 FAM58A CCNQ cyclin Q cyclin Q 0.248

30 AP3M2
Adaptor related protein complex 3 
subunit mu 2

0.247

31 C15orf59 INSYN1 inhibitory synaptic factor 1 0.243
32 BTN3A1 Butyrophilin subfamily 3 member A1 0.243
33 ZDHHC16 Zinc finger DHHC-type containing 16 0.241
34 CD163 CD163 molecule 0.238
35 SEMA4B Semaphorin 4B 0.237

36 ST6GALNAC3
ST6 N-acetylgalactosaminide alpha-2,6-
sialyltransferase 3

0.228

37 TTC3 Tetratricopeptide repeat domain 3 0.228
38 MATN2 Matrilin 2 0.219

TABLE 2 | The confusion matrix of the 38 optimal heart failure signature genes.

Predicted HF Predicted NHF

Actual HF 174 3
Actual NHF 5 131
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from activated platelets and abdominal aortic aneurysm (AAA) 
tissue (Fernandez-García et  al., 2017). There is an obvious 
relationship between increased FCN3 plasma levels and AAA 
presence and progression.

HMGN2 binds nucleosomal DNA and is associated with 
transcriptionally active chromatin, which is the top-ranked 
feature recognized by our bioinformatics analysis. HMGN 
protein family could regulate chromatin structure and could 
influence epigenetic modifications. HMGN2 regulates active 
and bivalent genes by promoting an epigenetic landscape of 
active histone modifications at promoters and enhancers (Garza-
Manero et  al., 2019). HMGN2 protected corticogenesis via 
maintaining global chromatin accessibility at promoter regions, 
thus ensuring proper transcriptome regulation (Apelt et  al., 
2020; Gao et  al., 2020). There are few studies to certificate 
the role of HMGN2  in the progress of HF.

SERPINA3 also called Alpha-1-Antichymotrypsin or ACT, 
is first discovered as a plasma protease inhibitor and a 
member of the serine protease inhibitor (Jiang et  al., 2020). 

Previous study showed that SERPINA3 emerged as a responsible 
cardiac secreted factor that is increased in HF patients could 
be  the most robust and promising culprit and were related 
to long-term mortality. Additionally, several researches thought 
that mineralocorticoid receptor antagonists (MRAs) were 
associated to SERPINA3 (Meijers et al., 2018). Gene expression 
of SERPINA3 was significantly increased in the HF group. 
In circulating plasma, the level of SERPINA3 in the HF 
group was confirmed significant increase by ELISA analysis. 
These results suggested that SERPINA3 might play an important 
role in the progression of HF (Zhao et  al., 2020). Asakura 
and Kitakaze (2009) proved that SERPINA3 might become 
novel diagnostic and therapeutic targets linked to the 
pathophysiology of HF using seven microarray datasets 
previously reported.

Due to the length limitation of the article, we cannot describe 
all 38 selected genes in detail. After detailed literature review, 
we  found that all the above-mentioned genes play a vital role 
in the progression of HF, which also verifies the reliability of 

FIGURE 3 | The heatmap of the 38 genes in 177 HF and 136 non-heart failure (NHF) patients. Most samples were clustered into the correct groups. Only very few 
samples were misclustered. Within the 38 genes, 17 genes were highly expressed in HF, and 20 genes were lowly expressed in HF.
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our prediction model. We  believe that these 38 selected genes 
are meaningful in the development of HF. They will contribute 
to the study of molecular mechanism, diagnosis, and treatment 
of HF, and will play an enlightening role in the future molecular 
biology research.
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It is known that miRNA plays an increasingly important role in many physiological
processes. Disease-related miRNAs could be potential biomarkers for clinical diagnosis,
prognosis, and treatment. Therefore, accurately inferring potential miRNAs related to
diseases has become a hot topic in the bioinformatics community recently. In this
study, we proposed a mathematical model based on matrix decomposition, named
MFMDA, to identify potential miRNA–disease associations by integrating known miRNA
and disease-related data, similarities between miRNAs and between diseases. We also
compared MFMDA with some of the latest algorithms in several established miRNA
disease databases. MFMDA reached an AUC of 0.9061 in the fivefold cross-validation.
The experimental results show that MFMDA effectively infers novel miRNA–disease
associations. In addition, we conducted case studies by applying MFMDA to three types
of high-risk human cancers. While most predicted miRNAs are confirmed by external
databases of experimental literature, we also identified a few novel disease-related
miRNAs for further experimental validation.

Keywords: miRNA, matrix decomposition (MFMDA), endometrial cancer, miRNA–disease association,
computational prediction model

INTRODUCTION

Non-coding RNA (ncRNA) is a type of RNA that cannot be translated into protein. Although
ncRNA cannot be translated into protein, its target gene can be regulated at the post-
transcriptional level, thereby affecting disease (Hammond, 2015). A large amount of research
evidence indicates that mutations and disorders of ncRNA are important causes of disease.
Therefore, the identification of disease-related ncRNA has become an important topic in the field
of biological research in recent years. ncRNA is a huge family and can be divided into housekeeper
ncRNA and regulatory ncRNA (Kapranov et al., 2007; Lindsay et al., 2017). Housekeeping
ncRNA is closely related to cell function, mainly involved in gene translation, gene splicing, gene
modification, etc. The main function of regulating ncRNA is to regulate the expression level of
genes. As regulatory ncRNA, miRNA is a class of non-coding single-stranded RNA molecules
with a length of 22 nucleotides encoded by endogenous genes. They participate in the regulation
of post-transcriptional gene expression in animals and plants (Taft et al., 2007; Chen et al.,
2015). So far, 28645 miRNA molecules have been found in animals, plants, and viruses. Most
miRNA genes exist in the genome in the form of single copies, multiple copies, or gene clusters
(Wang and Chang, 2011).
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In recent years, more and more studies have shown that
miRNA plays a huge role in the process of cell differentiation,
biological development, and disease development, which has
also attracted more researchers’ attention (Xu et al., 2004; Jiang
et al., 2012; Li et al., 2014; Kang et al., 2020). With further in-
depth research on the mechanism of action of miRNA, and the
use of the latest high-throughput technologies such as miRNA
chips to study the relationship between miRNA and disease,
people will make higher eukaryote gene expression regulation
Network understanding has improved to a new level (Cui et al.,
2006). This will also make miRNA a new biological marker
for disease diagnosis; it may also make this molecule a drug
target, or simulate this molecule for new drug development,
which will likely provide a new treatment for human diseases
(Goh et al., 2016).

However, using biological experiments to identify disease-
associated miRNAs is expensive and time-consuming, and it
is blind. Therefore, there is an urgent need for simple and
effective computational prediction models for predicting disease-
related miRNAs. With the rapid development of high-throughput
sequencing technology, more and more omics data are published,
which also provides data support for the study of computational
prediction models (Yi et al., 2017).In recent years, many
scholars have proposed some effective computational models for
predicting miRNA related to complex diseases. According to
their respective implementation strategies, we can roughly divide
these methods into machine-based computational prediction
methods and network-based computational prediction methods
(Zou et al., 2016).

Machine learning-based computational prediction methods
predict the association of potential miRNAs with the disease can
be divided into supervised-based machine learning methods and
semi-supervised-based machine learning methods. The method
based on supervision is mainly based on labeling sample set
and label-less sample set to construct a machine learning
model. Jiang et al. extracted feature sets based on known
and unknown associations for training support vector machine
(SVM) classifiers to predict potential miRNAs and disease
associations, and achieved comparative prediction performance
through cross-validation (Maly et al., 2019). Qu et al. (Zou
et al., 2015) developed a new calculation method based
on the KATZ model to predict MiRNA disease association
(KATZMDA) by integrating multiple data sources. Based on the
known miRNA–disease association in the HMDD database, Li
et al. (2017) developed a MiRNA–disease association prediction
model (MCMDA) called the matrix completion algorithm. The
MCMDA model uses a matrix completion algorithm to update
the adjacency matrix of known miRNA–disease associations and
further predict potential associations. Xu et al. (Chen et al., 2018)
proposed a method based on low-rank matrix completion to
predict miRNA–disease association (LRMCMDA). LRMCMDA
first constructs negative samples based on known associations,
and then uses a low-rank matrix to complete the model to infer all
miRNA and disease associations. Cross-validation shows that the
model has obtained reliable prediction performance. However,
although this supervised machine learning method uses different
ways to define negative sample data, it is difficult to deal with

the actual situation in any way, which will affect the prediction
performance. In order to overcome this limitation, Chen and Yan
(2014) proposed a least-squares-based semi-supervised machine
learning method for predicting the association of potential
miRNAs with disease, referred to as RLSMDA for short. The
RLSMDA method constructs a continuous classifier function,
and the predicted value reflects the probability score between
specific miRNAs and specific diseases. This method can obtain
the predicted values of all miRNAs and diseases at the same
time, and does not require negative sample data. In addition,
the RLSMDA method can also predict miRNAs associated with
isolated diseases. Xu et al. (2019) designed a set of probabilistic
matrix decomposition algorithms by integrating the similarity
of miRNAs with diseases, using known correlation matrices
and integrated similarity matrices to identify miRNAs that are
potentially related to diseases. Luo et al. (2017) proposed a
semi-supervised method called KRLSM to reveal the association
between miRNA and disease. Machine learning has been a hot
topic in recent years, and some machine learning methods can be
used to solve this problem. Despite the outstanding contributions
made by existing methods, there is still room for improvement in
prediction accuracy.

In addition to machine learning-based methods, network-
based methods to predict disease-related miRNAs have also
attracted the attention of many researchers. Such methods are
mainly based on a common biological hypothesis, “miRNAs with
similar functions are more likely to be associated with disease
phenotypes with similar functions, and vice versa” (Jiang et al.,
2010). Based on this basic assumption, Jiang et al. proposed a
new method that uses Bayesian models to integrate genomic data
to rank disease-related miRNAs. Chen et al. (2012) adopted the
global network similarity measure and proposed an improved
restart-based random walk model (RWRMDA) to predict the
association between miRNAs and disease. Yet, this method is
not suitable for predicting new disease-related miRNAs. Xuan
et al. (2013) integrated the information entropy of disease
entries and the similarity of disease phenotypes to measure
the functional similarity of diseases and miRNAs, and gave
greater weight to miRNAs belonging to the same family or the
same cluster class, and proposed a k-nearest neighbor prediction
model (HDMP) is used to predict disease-related miRNAs. This
method has obtained reliable prediction performance, but also
cannot predict miRNAs associated with isolated diseases. Later,
Xuan et al. (Banys-Paluchowski et al., 2015) further proposed
the MIDP method based on random walk. In this model, by
assigning different weights to known and unknown nodes, the
prior information of the topology is effectively integrated. In
addition, the extended conversion on the double-layer network of
miRNA diseases makes it possible to predict miRNAs associated
with isolated diseases. You et al. (2017) proposed a path-
based miRNA–disease association (PBMDA) prediction model
by integrating known human miRNA–disease associations,
miRNA functional similarities, disease semantic similarities, and
Gaussian interaction profiles for miRNA and disease similarities.
The model constructs a heterogeneous graph composed of
three interrelated subgraphs, and further uses a depth-first
search algorithm to infer potential miRNA–disease associations.
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The results show that reliable performance is obtained. Gu
et al. (2016) created a network consistency projection algorithm
to identify potential associations (NCPMDA) by integrating
similarity networks and association networks. The biggest
advantage of these methods is that they can predict isolated
miRNAs associated with disease, but the performance obtained
is not very satisfactory.

Although research on miRNA disease association prediction
models has made some progress, there is still room to further
improve the prediction performance of the model. In this study,
we propose a predictive model called matrix decomposition,
which fully considers the similarity between miRNAs and the
similarity between diseases. In order to evaluate the effectiveness
of MFMDA, we tested it using a global fivefold and local LOOCV
framework. MFMDA is superior to the benchmark algorithm
used for comparison, and achieves reliable performance in the
framework of fivefold CV and local LOOCV (AUC 0.9061 and
0.7933) in the HMDD (V2.0) data set. To further prove the
superiority of MFMDA, we analyzed three common diseases.
Based on the analysis of the test results, we can find that 18 of the
top 30 potential miRNAs related to the three diseases predicted
by MFMDA have been confirmed by other databases.

MATERIALS AND METHODS

Human Disease–miRNA Interactome
Network
In the past few decades, as the technology has matured, a large
number of omics data have been published, including a large
number of pairs related to miRNA diseases. Here, we use the
known miRNAs and disease-associated data set HMDD V2.0
as the benchmark dataset (Huang et al., 2019a). The data set
contains 495 miRNAs and 383 diseases and 5430 experimentally
verified human-disease-related pairs. We use the adjacency
matrix A to represent this confirmed association. Specifically, if
the disease d (i) was previously associated with miRNA m

(
j
)
, the

value of Aij is 1; otherwise, the corresponding position is set to 0.

miRNA Functions Similarly
Based on previous research, it is not difficult to find that
miRNAs with similar functions are more likely to be related to
similar diseases (Wang et al., 2010). Under this assumption, the
miRNA functional similarity score was calculated1. Therefore, we
constructed a functional similarity matrix FS between miRNAs
based on these data, where FS(m (i),m

(
j
)
) represents the

similarity between miRNA m (i) and another miRNA m
(
j
)
.

Disease Semantic Similarity
Semantic similarity is a common way to express the similarity
of diseases in this field. MFMDA uses a layered directed acyclic
graph (DAG) to calculate the similarity between two diseases
(Wang et al., 2010). Specifically, for disease d, let DAGd =

(d,Td,Ed) be a DAG, where Td represents the ancestor node
set of d (including itself) and Ed represents the hierarchical

1http://www.cuilab.cn/files/images/cuilab/misim.zip

connection between diseases defined by the MeSH disease tree
structure of the National Library of Medicine. For any t ∈ Td,
MFMDA defines the semantic contribution of disease t to d as:

Dd (t) =

{
1 if t = d
max

{
1× Dd(t

′

)|t
′

∈ children of t
}

if t 6= d
(1)

Where1 is the semantic decay factor, which is set to 0.5 in the
iterative equation according to previous researches (Dong et al.,
2019; Marcuello et al., 2019). Therefore, the semantic similarity
between the diseases d1 and d2 can be defined as:

D
(
di, dj

)
=

∑
t∈Tdi ∩ Tdj

(
Ddi (t)+ Ddj (t)

)
∑

t∈Tdi
Ddj(t)+

∑
t∈Tdj

Ddj(t)
(2)

Gaussian Similarity of miRNA and
Disease
Among various similarity measurement algorithms, Gaussian
similarity is a very good measurement method, which has been
widely used in various fields. Let VP(mi) be the vector related
to miRNA miin Y, i.e., the ith column of Y. Then, the Gaussian
similarity between the diseases mi and mjis calculated as follows:

KM
(
ri, rj

)
= exp(−γm||VP (ri)− VP(rj)||2) (3)

Where γm is the adjustment parameter of the bandwidth (van
Laarhoven et al., 2011). The update rule of parameter γm is as
follows:

γm = γ
′

m/

(
1
nm

∑nm

i=1
||VP (ri) ||2

)
(4)

Similarly, the Gaussian similarity between miRNAs can be
defined as follows:

KD
(
di, dj

)
= exp(−γd||VP

(
di
)
− VP(dj)||2) (5)

γd = γ
′

d/

(
1
nd

∑nd

i=1
||VP

(
di
)
||

2
)

(6)

Integrated Similarity for Diseases and
miRNAs
In order to obtain a more comprehensive disease similarity, the
semantic similarity of the disease is combined with the Gaussian
interactive contour kernel similarity through the following
piecewise function to obtain the final similarity between the
diseases:

Sd
(
di, dj

)
=

{
D
(
di, dj

)
di and dj has semantic similarity

KD
(
di, dj

)
otherwise

(7)
Similarly, the similarity between miRNAs can also be

redefined as:

Sm
(
mi,mj

)
=

{
FS
(
mi,mj

)
ri and rj has functional similarity

KM
(
mi,mj

)
otherwise

(8)
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MFMDA
Matrix factorization (MF) is an effective technique that has
been widely used in data representation (Huang and Zheng,
2006; Hosoda et al., 2009; Zheng et al., 2009; Xu et al., 2020).
It aims to find two matrices whose product provides the best
approximation to the original matrix. Given a miRNAs–diseases
association matrix, MF can be decomposed into two matrices
Y = Rn×m, that is, W ∈ Rn×k and H ∈ Rm×k,and Y ≈ UVT .
Here, we use mathematical formulas to express the potential
association prediction problem between diseases and miRNAs as
the following objective function:

min
U,V
||I·(Y −WHT)||2F (9)

where ||· · ·||2F represents the Frobenius norm and · denotes the
Hadamard product of two matrices, that is, the multiplication of
the corresponding elements of the matrix, and Iij = 0 if the entry
(i, j) in Y is missing, and 1 otherwise.

The standard MF in Eq. 2 is just to find two matrices,
and their product tries to approximate the original matrix.
However, the effects caused by the similarity between miRNAs
and diseases are ignored. Suppose the functions of the two
miRNAs are very similar, and at the same time, the diseases
implicitly learned that they should have a similar distance
in the vector space. The diseases dimension is the same.
For the same reason, the miRNAs size can also use this
idea to constrain the drug’s implicit representation. That is,
if the two diseases are similar, the distance of the miRNAs
in the low-dimensional vector space should also be small.

min
U,V
||I ·

(
Y −WHT

)
||

2
F + λl

(
||W||2F + ||H||

2
F
)

+λv

n∑
i,p=1

||wi − wp||
2Sm∗i,p

+λd
∑m

j,k=1
||hj − hk||2Sd∗j,k

(10)
where λl, λd, and λv are the regularization coefficients;
wi and hj are the ith and jth rows of W and H,
respectively. Sv∗ is the hidden social similarity between
miRNAs and Sd∗ is the hidden social similarity
between diseases.

Optimization
In order to solve the local optimal solution problem of Eq. 3,
we use the gradient descent algorithm to solve. According to
the nature of the Frobenius norm, the corresponding Lagrange
function LE of Eq. 2 can be redefined as:

LE = Tr
(
I ·
(
YYT
− 2 ∗ YHWT

+WHTHWT
))
+

λlTr
(
WWT

)
+ λl Tr

(
HHT

)
+ λmTr

(
WTLmW

)
+

λdTr
(
HTLdH

)
+ Tr

(
∅WT

)
+ Tr

(
ψHT

)
(11)

where Tr(· · · ) represents the trace of a matrix; Lm = Dm − Sm∗
and Ld = Dd − Sd∗ are the graph Laplacian matrices for Sm∗ and

Sd∗, respectively; and Dm and Dm are the diagonal matrices whose
entries are row (or column) sums of Sm∗ and Sd∗, respectively.

The partial derivatives of the above functions with respect to
W and H are:

∂LE
∂W
= −2YH + 2WHTH + 2λlW + 2λmLmW + ∅

∂LE
∂H
= −2YTW + 2HWTW + 2λlH + 2λdLdH +ψ (12)

According to the solution conditions of Karush–Kuhn–
Tucker (KKT) (Facchinei et al., 2013), we can make ∅ikwik =

0 and ψjkhjk = 0, thus obtain the following equations for
w and h:

− (YH)ik wik +
(
WHTH

)
ik
wik + (λlW)ik wik+(

λm(Dm − Sm∗)W
)
ik wik = 0

−

(
YTW

)
jk
hjk +

(
HWTW

)
jk
hjk + (λlH)jk hjk+(

λd(Dd − Sd∗)H
)
jk
hjk = 0. (13)

Therefore, we get the wik and hjk update rules as follows:

wik = wik
(YH + λmSm∗W)ik

(WHTH + λlW + λmDmW)ik

hjk = hjk
(YTW + λdSd∗H)jk

(HWTW + λlH + λdDdH)jk
(14)

The matrices W and H are updated based on Eq. 3 until
convergence. Finally, we can obtain the predicted miRNAs–
diseases association matrix as Y∗ =WHT , and determine the
priority of potential miRNAs and disease according to the value
in the matrix Y∗. In principle, the miRNAs with the highest grade
in Y∗ are more likely to be associated with the disease. The flow
chart of MFMDA is shown in Figure 1.

RESULTS

Evaluation of Prediction Performance
There are many performance indicators for evaluating prediction
models. In this field, ROC curve and AUC value, PR curve, and
AUPR value are usually used to evaluate the performance of the
algorithm (Chen and Huang, 2017; Chen et al., 2020).

The ROC curve, also called receiver operating characteristic
curve or susceptibility curve, is a comprehensive indicator
reflecting sensitivity and specificity. The ROC curve graphically
reveals the correlation between sensitivity and specificity. By
setting different thresholds, a series of corresponding sensitivities
and specificities are calculated, and then plotted with the true
positive rate on the ordinate and false positive rate on the abscissa
curve. The simple assumption is that for binary classification
problems (only two types, positive and negative samples), the

Frontiers in Genetics | www.frontiersin.org 4 November 2020 | Volume 11 | Article 598185122

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-598185 November 10, 2020 Time: 16:0 # 5

Sun et al. Associations Between miRNAs and Diseases

FIGURE 1 | Diagram of MFMDA for predicting potential miRNA–disease associations.

calculation methods of TPR and FPR are shown in Eq. 15.

TPR =
TP

TP + FN
, FPR =

FP
TN + FP

(15)

TP refers to the number of positive samples that are correctly
predicted, that is, the number of positive samples that are
predicted as positive samples; FP refers to the number of positive
samples that are incorrectly predicted, that is, the number of
negative samples that are predicted to be positive samples; the
number of negative samples correctly predicted, that is, the
number of negative samples predicted as negative samples; FN
refers to the number of negative samples that are incorrectly
predicted, that is, the number of positive samples predicted as
negative samples. The area under the line of the ROC curve
is AUC. The more convex the ROC curve, the closer to the
upper left corner. The larger the AUC value, the better the
prediction performance. The AUC value is generally between
0.5 and 1. The AUC value of 0.5 is the effect of random
prediction. The AUC value of 1 has the best performance and
the perfect classifier, that is, it can correct all positive and
negative classes.

The PR curve calculates a series of accuracy and recall by
setting different thresholds, and then draws the curve as the
precision ordinate and recall as the abscissa. The precision and
recall are calculated into the formulas 16:

precision =
TP

TP + FP
, FPR =

TP
TP + FN

. (16)

The PR curve reflects the correlation between accuracy and
recall. The area under the PR curve is AUPR. The larger the AUPR
value, the better the performance.

Comparison With Other Methods
We further compared the prediction performance of the
MFMDA model with four benchmark prediction models (i.e.,
LRMCMDA, IMCMDA, NCPMDA, and RLSMDA). LRMCMDA
and IMCMDA belong to the matrix completion algorithm,
and have achieved good predictive performance in this field.
NCPMDA is a network projection algorithm, which is one of
the representatives of algorithms based on network prediction.
RLSMDA is a semi-supervised learning method based on the
Regularized Least Squares (RLS) framework, which represents a
good opportunity to learn learning algorithms. Since the data
used in this study are all from the public data set HMDD2.0,
all the parameters of the comparison algorithm will also use the
parameters given by the original author.

Performance on Predicting
miRNA–Disease Association
We applied MFMDA, LRMCMDA, IMCMDA, NCPMDA, and
RLSMDA to HMDD V2.0 miRNA–disease association data,
which contains 5430 unique associations between 495 miRNAs
and 383 diseases, and draws their ROC curves of the global
fivefold CV in Figure 2A. As can be seen, the AUCs of
MFMDA, LRMCMDA, IMCMDA, NCPMDA, and RLSMDA
are 0.9061, 0.8883, 0.8364, 0.8637, and 0.8326, respectively,
indicating that MFMDA performed best in predicting miRNA–
disease associations.

However, considering the limited number of known and
experimentally verified miRNA–disease associations, it is too
arbitrary to use AUC to evaluate the performance of prediction
methods. Therefore, we also include the exact recall (PR)
curve and the AUPR in Figure 2B to supplement performance
evaluation. As shown in Figure 2B, the AUPR of MMFDA,

Frontiers in Genetics | www.frontiersin.org 5 November 2020 | Volume 11 | Article 598185123

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-598185 November 10, 2020 Time: 16:0 # 6

Sun et al. Associations Between miRNAs and Diseases

FIGURE 2 | Comparison of MFMDA with four best performers for miRNA–disease associations. (A) ROC curves for fivefold cross validation. (B) Precision–recall (PR)
curve for fivefold cross validation.

LRMCMDA, IMCMDA, NCPMDA, and RLSMDA are 0.3658,
0.4442, 0.2502, 0.2315, and 0.1240, which again shows that
MFMDA performs better than most algorithms in predicting
miRNA–disease associations and can be a supplement to the
existing computational prediction model.

Predicting Novel Disease-Related
miRNAs
For a new disease, if it can find its related miRNAs, it will provide
a great help for people to understand the pathogenesis of the
disease. Therefore, we performed CVd experiment to test the
performance of MFMDA in predicting miRNAs associated to a
novel disease d. In CVd: CV on disease di, we remove all the
known miRNA–disease association of the disease di (column
vectors in matrix Y ∈ Rm×n) and build prediction model (for
inferring the deleted associations) using the remaining data. As
shown in Figure 3, the AUC value obtained by MFMDA is
second only to LRMCMDA, which also indicates that MFMDA
is also relatively good at predicting miRNAs related to new

FIGURE 3 | Comparison between MFMDA and benchmark algorithms based
on local LOOCV.

FIGURE 4 | Network of the top 10 predicted associations for the three
diseases via MFMDA.

diseases. Of course, although LRMCMDA is more effective
at predicting new disease-related miRNAs, LRMCMDA uses
network projection to construct negative samples. This method
of constructing negative samples will be affected by the size of the
data set, which will affect its prediction performance. Presumably,
MFMDA is a semi-supervised algorithm, it does not need to
construct negative samples and the prediction performance is
relatively stable.

Finally, we explored the effect of the disease similarity and
miRNA similarity on prediction performance. Specifically, we
performed global fivefold CV with parameters λmor λd from
0.2 to 1 and a step size of 0.2 (Table 1). We can see that the
two similarities really help predict performance. However, as
the parameters continue to increase, the performance of the
prediction is constantly decreasing.
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TABLE 1 | Prediction AUCs of MFMDA at different choices of parameters.

MFMDA λm = λd = 0.2 λm = λd = 0.4 λm = λd = 0.6 λm = λd = 0.8 λm = λd = 1

AUC 0.9061 0.9058 0.9013 0.8924 0.8912

TABLE 2 | The top 10 potential miRNA candidates detected by MFMDA for endometrial neoplasms.

Cancer No. of confirmed miRNAs Top 10 ranked predictions

Rank miRNAs Evidences Rank miRNAs Evidences

Endometrial neoplasms 9 1 hsa-mir-146a HMDD V3.0 6 hsa-mir-34a HMDD V3.0

2 hsa-mir-221 Unconfirmed 7 hsa-mir-29a HMDD V3.0

3 hsa-mir-20a HMDD V3.0 8 hsa-mir-145 HMDD V3.0

4 hsa-mir-17 HMDD V3.0 9 hsa-mir-15a HMDD V3.0

5 hsa-mir-16 HMDD V3.0 10 hsa-mir-29b HMDD V3.0

Case Study
Next, three disease case studies were conducted to further
validate the predictive power of the new miRNA disease pairs
discovered by MFMDA. We first use the verified HMDD V2.0
pair as a training sample. For each predicted disease, the
corresponding unverified miRNA is ranked according to the
predicted score. Then, according to the other three well-known
databases dbDEMC2.0 (Yang et al., 2017), miR2Disease (Jiang
et al., 2009), and HMDD V3.0 (Huang et al., 2019b), the top 10
candidate miRNAs in the prediction list were examined.

Endometrial cancer is a group of epithelial malignant tumors
that occur in the endometrium, and it occurs in perimenopausal
and postmenopausal women. Endometrial cancer is one of the
most common tumors of the female reproductive system. There
are nearly 200,000 new cases each year, and it is the third
most common gynecological malignant tumor that causes death.
Earlier studies have shown that the differential expression of

miRNA in endometrial adenocarcinoma can play a key auxiliary
role in understanding the diagnosis and treatment of endometrial
adenocarcinoma (Jurcevic et al., 2014). Therefore, in this study,
we used MFMDA to identify potential miRNAs associated
with endometrial adenocarcinoma. Nine of the top 10 miRNAs
found were confirmed by at least one external database (see
Table 2).

In the second case study, we still choose the tumor that
belongs to women with high incidence, namely, breast tumor.
Breast tumors are malignant tumors that occur in the epithelial
tissue of the breast glands. Currently, the treatment is mainly
based on clinical and pathological features. Targeted therapy
and personalized therapy are the ultimate goals. Related studies
have shown that the occurrence of breast tumors is also related
to abnormalities of related miRNAs. For example, an abnormal
increase in miR-22 may promote the occurrence and metastasis
of breast cancer and lead to a higher degree of tumor malignancy.

TABLE 3 | The top 10 potential miRNA candidates detected by MFMDA for breast neoplasms.

Cancer No. of confirmed miRNAs Top 10 ranked predictions

Rank miRNAs Evidences Rank miRNAs Evidences

Breast neoplasms 10 1 hsa-mir-150 dbDEMC 2.0 6 hsa-mir-130a dbDEMC 2.0

2 hsa-mir-142 dbDEMC 2.0 7 hsa-mir-99a dbDEMC 2.0

3 hsa-mir-15b dbDEMC 2.0 8 hsa-mir-196b dbDEMC 2.0

4 hsa-mir-106a dbDEMC 2.0 9 hsa-mir-378a dbDEMC 2.0

5 hsa-mir-192 dbDEMC 2.0 10 hsa-mir-212 dbDEMC 2.0

TABLE 4 | The top 10 potential miRNA candidates detected by MFMDA for lung neoplasms.

Cancer No. of confirmed miRNAs Top 10 ranked predictions

Rank miRNAs Evidences Rank miRNAs Evidences

Lung neoplasms 9 1 hsa-mir-16 miR2Disease 6 hsa-mir-141 miR2Disease

2 hsa-mir-122 dbDEMC 2.0 7 hsa-mir-195 miR2Disease

3 hsa-mir-15a dbDEMC 2.0 8 hsa-mir-429 miR2Disease

4 hsa-mir-15b Unconfirmed 9 hsa-mir-23b dbDEMC 2.0

5 hsa-mir-106b dbDEMC 2.0 10 hsa-mir-20b dbDEMC 2.0
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Therefore, predicting miRNAs related to breast tumors through
related algorithms will also provide corresponding help for
human breast cancer treatment. As shown in Table 3, we found
that the top 10 miRNAs predicted by MFMDA related to breast
cancer have all been confirmed by relevant databases.

Finally, we conduct prediction studies on miRNAs associated
with lung tumors. Lung cancer is one of the fastest growing
morbidity and mortality rates, and the most threatening to
the health and life of the population. In the past 50 years,
many countries have reported that the incidence and mortality
of lung cancer have increased significantly. The incidence and
mortality of lung cancer in men accounted for the first place
in all malignant tumors, the incidence in women accounted
for the second place, and the mortality rate took the second
place. Despite the important therapeutic value of chemotherapy,
surgery is still the only way to treat lung cancer. There is an
urgent need to find potential biomarkers that respond strongly to
clinical observations. The researchers found that the expression
level of miR-99a is related to the clinicopathological factors
of lung cancer and lymph node metastasis. Identifying more
miRNAs related to lung cancer helps to accurately assess clinical
outcomes. Therefore, we conducted a lung cancer case study
based on MFMDA. In the prediction list, nine of the top 10
predicted miRNAs confirmed their association with lung tumors
(see Table 4).

For a clear view, we illustrate in Figure 4 the association
network of the top 10 predicted miRNA candidates for the
three diseases. It is worth noting that some top candidates were
found to be related to several diseases. For example: hsa-mir-
15a has not only been shown to be related to the occurrence
of endometrial neoplasms, but also has a certain relationship
with lung neoplasms.

DISCUSSION

A large number of studies have shown that miRNA plays an
increasingly important role in many physiological processes.
Researchers are trying to identify disease-related miRNAs as
valuable biomarkers that can be used for clinical measurement,
diagnosis, prognosis, and treatment. Therefore, accurately
inferring potential miRNAs related to diseases can help us

study the pathogenesis of diseases and find more effective
treatments. In this study, we proposed a mathematical model
based on MF (MFMDA) to identify potential miRNA–disease
associations. First, MFMDA not only uses known miRNA and
disease-related data, but also integrates the similarities between
miRNA and disease. Second, the model is a semi-supervised
model, which does not rely on negative samples. Finally, in
the process of solving the model, we use the alternating
gradient descent algorithm to find the optimal solution to
ensure a stable decomposition matrix. Experimental results show
that, compared with other methods, MFDMA can effectively
improve performance and is a powerful tool for discovering
the association of potential diseases with miRNA. However,
this method still has some limitations; we need to further
optimize. For example, the similarity measure between diseases
and miRNAs used by MFMDA is too single and may not be the
best choice. How to integrate multiple omics information more
effectively to improve prediction performance is also worthy of
further research.
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Background: Osteoporosis is a highly heritable skeletal muscle disease. However,

the genetic mechanisms mediating the pathogenesis of osteoporosis remain unclear.

Accordingly, in this study, we aimed to clarify the transcriptional regulation and heritability

underlying the onset of osteoporosis.

Methods: Transcriptome gene expression data were obtained from the Gene

Expression Omnibus database. Microarray data from peripheral blood monocytes of

73 Caucasian women with high and low bone mineral density (BMD) were analyzed.

Differentially expressedmessenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs)

were identified. Differences in BMD were then attributed to several gene modules using

weighted gene co-expression network analysis (WGCNA). LncRNA/mRNA regulatory

networks were constructed based on the WGCNA and subjected to functional

enrichment analysis.

Results: In total, 3,355 mRNAs and 999 lncRNAs were identified as differentially

expressed genes between patients with high and low BMD. The WGCNA yielded three

gene modules, including 26 lncRNAs and 55 mRNAs as hub genes in the blue module,

36 lncRNAs and 31 mRNAs as hub genes in the turquoise module, and 56 mRNAs and

30 lncRNAs as hub genes in the brown module. JUN and ACSL5 were subsequently

identified in the modular gene network. After functional pathway enrichment, 40 lncRNAs

and 16 mRNAs were found to be related to differences in BMD. All three modules

were enriched in metabolic pathways. Finally, mRNA/lncRNA/pathway networks were

constructed using the identified regulatory networks of lncRNAs/mRNAs and pathway

enrichment relationships.

Conclusion: The mRNAs and lncRNAs identified in this WGCNA could be novel

clinical targets in the diagnosis and management of osteoporosis. Our findings may

help elucidate the complex interactions between transcripts and non-coding RNAs and

provide novel perspectives on the regulatory mechanisms of osteoporosis.

Keywords: osteoporosis, WGCNA (Weighted Gene Co-expression Network Analyses), pathway, biomarker,

systems biology, LncRNA-long noncoding RNA
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INTRODUCTION

Osteoporosis is a systemic disease of the musculoskeletal system.
Its main pathophysiological characteristics are decreased bone
mass, destruction of bone tissue microstructure, increased bone

fragility, and increased fracture risk (Ensrud and Crandall, 2017).

According to the National Health and Nutrition Examination
Survey III, there are more than 9.9 million patients with
osteoporosis in the United States of America, and 1.5 million

patients suffer from osteoporotic fractures each year (Sahni et al.,
2009). The social costs associated with osteoporosis are expected

to rise as the population ages (Ruza et al., 2013). Affected
by many factors, such as menopause, women are especially
susceptible to osteoporosis (Baccaro et al., 2015). A large-scale
epidemiological survey in 2006 showed that among people over
50 years old, the prevalence of osteoporosis in men was 14.4%,
whereas that in women was as high as 20.7%(Chen et al.,
2016). The lifetime risk of osteoporotic fractures in women is
as high as 40%, which is significantly higher than the combined
risks of breast cancer, endometrial cancer, and ovarian cancer
(Ganji et al., 2019).

Osteoporosis is a disabling disease with insidious onset. In
most patients, no symptoms are detected during the early to
middle stages of illness. However, sudden osteoporotic fracture
can lead to lifelong disability. Early detection and treatment
can significantly improve survival rates and quality of life in
patients with osteoporosis. However, our understanding of the
pathogenesis of osteoporosis is not sufficient. Although many
factors, such as oxidative stress (Zhou et al., 2016; Geng et al.,
2019) and altered estrogen signaling (Sapir-Koren and Livshits,
2017), have been shown to contribute to osteoporosis, specific
biomarkers for the early diagnosis and treatment of this disease
have not yet been identified.

Despite the success of proteomics analyses for screening
of molecular targets in osteoporosis (Xu et al., 2018; Saad,
2020), transcriptomic studies are now attracting much attention.
Previous studies have shown that long non-coding RNAs
(lncRNAs) are involved in the regulation of a series of
biological processes, such as the occurrence and development
of osteoporosis (Zhao et al., 2017; Zhou et al., 2019; Zhang
et al., 2020). lncRNAs can directly interfere with messenger
RNA (mRNA) transcription or form an endogenous competitive
network with microRNAs (miRNAs) to regulate transcription
(Zhang et al., 2020). The regulation mechanisms of lncRNA have
been less studied compared with the more mature studies on
miRNAs (Hupkes et al., 2014; You et al., 2016; Shao, 2017; Wang
et al., 2018; Cui et al., 2019). Therefore, further research on the
lncRNA/mRNA regulatory network in osteoporosis is needed for
better dissemination.

Like most chronic diseases, osteoporosis is determined
by a combination of genetic and environmental factors
(Ongphiphadhanakul, 2007). The heritability of bone density
is thought to be 50–85% (Ralston, 2010). However, all single
genetic pathogenic factors discovered to date can explain
<6% of heritability, including loci discovered by genome-wide
association studies (GWASs) (Liu et al., 2014). In addition, the
two-dimensional role of genes is limited. Therefore, building

networks may improve our ability to discover the remaining
heritability factors in patients with osteoporosis.

Most studies of osteoporosis have focused on screening for
differentially expressed genes (DEGs) to identify biomarkers
(Liu et al., 2014; Xia et al., 2017; Zhou et al., 2018a, 2019;
Zhang et al., 2020). However, few studies have explored the
relevance of genes that share a high degree of functional
interconnection and are regulated in a similar fashion. Weighted
gene co-expression network analysis (WGCNA), a systems
biology method, is particularly useful in this context and may
help establish free-scale gene co-expression networks to identify
the associations between different gene sets or between gene
sets and clinical features (Qian et al., 2019). Notably, WGCNA
has been broadly used to identify hub genes linked with
clinical features in different diseases, such as breast cancer (Li
et al., 2019), heart failure (Niu et al., 2019), and osteoporosis
(Farber, 2010; Chen et al., 2016; Zhang et al., 2016; Qian et al.,
2019).

In the current study, WGCNA and other approaches were
used to analyze microarray data from blood monocytes collected
from pre-and postmenopausal women with low or high bone
mineral density (BMD) to characterize the key genes associated
with osteoporosis. We then constructed a regulatory network
containing key mRNAs and lncRNAs based on the co-expression
relationships. Our findings improve our understanding of the
biological relationships between osteoporosis and genetics and
identify novel potential gene targets for the diagnosis and
treatment of osteoporosis.

METHODS

Datasets and Samples
Data of this experiment are obtained and processed in the
following ways (Figure 1). The microarray dataset GSE56814
was downloaded using the GEOquery package with R version
(The R Foundation for Statistical Computing, Vienna, Austria)
from the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). The gene expression microarray
was based on the GPL5175 platform (Affymetrix Human
Exon 1.0 ST Array). Subjects for the study were enrolled
in a previous microarray-based transcriptome-wide profiling
study of peripheral blood monocytes in 73 Caucasian females
(47–56 years old) (Liu et al., 2015). Briefly, the patients
included 42 women with high BMD (aged 52.9 ± 2.3
years, Z-score = 1.38 ± 0.49) and 31 women with low
BMD (aged 51.4 ± 2.6 years, Z-score = −1.05 ± 0.51;
Table 1). The raw files of gene profiles were downloaded
and processed with the Robust Multi-array Average (RMA)
algorithm. The nsFilter algorithm was used to filter the data for
the subsequent WGCNA.

Annotation of lncRNAs From the Gene
Expression Microarray Profile
LncRNAs were annotated from the gene expression microarray
profile in two steps. First, we used the BLAST software to
align the probes in GPL5175 to the mRNA database, which was
selected from the overlap of coding RNAs in NCBI and Ensembl.
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FIGURE 1 | Data management flowchart of the study.

TABLE 1 | Demographic characteristics of the patient samples.

N Age BMD*

High BMD 42 52.9 ± 2.3 1.38 ± 0.49

Low BMD 31 51.4 ± 2.6 −1.05 ± 0.51

Total 73 52.3 ± 2.4 0.34 ± 0.50

*Hip BMD Z-score.

Second, probes that could not be aligned to the mRNA database
in the first step were further aligned to the lncRNA database,
which included non-coding RNAs longer than 200 nucleotides
collected from the NCBI, Ensembl, Refseq, and NONCODEv5
databases. Sequences were considered matching if they showed

at least 90% identity. In both steps, the cutoff value was set to
e-value <10e−5.

Identification and Visualization of
Differentially Expressed mRNAs and
lncRNAs
A random variance model t-test, which could effectively increase
the degrees of freedom for small samples, was used to filter
differentially expressed mRNAs and lncRNAs between patients
with high and low BMD (Wright and Simon, 2003). After
significance and false discovery rate (FDR) analyses, we selected
DEGs according to the p value threshold and absolute value of
fold change (FC). Results with a p value of <0.05 with |FC|
>1.2 were considered significantly different (Yang et al., 2005).
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For visualization, the differentially expressed mRNAs and
lncRNAs were clustered using a hierarchical cluster algorithm
with average linkage and Spearman’s rank correlation distance,
as provided by the EPCLUST software (http://ep.ebi.ac.uk/
EP/EPCLUST/). Clustering was performed using the methods
outlined in a previous publication (Misha et al., 2004). The results
were visualized using heatmaps and dendrograms.

Functional Enrichment Analysis
Gene ontology (GO) analysis, which organizes genes into
hierarchical categories and uncovers gene regulatory networks
based on biological processes and molecular functions, was
used to analyze the main functions of DEGs (Gene Ontology,
2006). Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis was then used to identify the significant
pathways for these genes (Kanehisa et al., 2004). The Database
for Annotation, Visualization and Integrated Discovery (DAVID;
https://david.ncifcrf.gov/) provides a comprehensive set of
functional annotation tools to analyze high-throughput gene
functions. GO and KEGG pathway enrichment analyses were
performed using DAVID. We were only interested in biological
processes and KEGG pathways showing significance according to
the following parameters: p < 0.05, FDR < 0.05, and enrichment
score >1.5.

WGCNA
WGCNA is an analysis method for complex samples and is
used to mine module information from chip data (Wan et al.,
2018). In the current study, WGCNA was performed using a
freely accessible R package. To minimize the loss of statistical
information, the top 25% of mRNAs from the absolute median
deviation and the top 10% lncRNAs were selected for WGCNA.
The Pearson coefficient between any two genes was calculated.
Subsequently, the correlation coefficients took multiple powers
of N so that the connections between genes in the network
align with the scale-free network distribution. A one-step
function was performed to construct the network and detect
consensus modules. Additionally, we constructed a hierarchical
clustering tree using the correlation coefficient between genes.
Gene modules are indicated as different branches on the
clustering tree, and different colors were used to distinguish
the modules.

Interaction Analysis of the Co-expression
Modules
Interaction analysis of co-expression modules was performed as
previously described Qian et al. (2019). Briefly, we calculated the
eigengene adjacency based on similar co-expression in modules,
and specific interactions among modules were evaluated
using the flashClust function (Langfelder et al., 2012). A
heatmap was established to elucidate the correlations among
different modules.

Construction of the lncRNA–mRNA
Weighted Network
Using the modules obtained with WGCNA, hub genes were
extracted as the top 100 genes in the module. Hub genes with

high connectivity are usually regulatory factors located upstream
of regulatory networks, whereas genes with low connectivity
are usually located downstream of regulatory networks (e.g.,
transporters and catalytic enzymes). Thus, the co-expression
relationships among hub genes were calculated, and the co-
expression of lncRNAs/mRNAs among the top 50 hub genes, as
well as the co-expression of mRNAs/mRNAs among the top 150
hub genes, was selected to construct a co-expression network.
Interactions between lncRNAs and mRNAs were identified by
calculating the Pearson correlation coefficient of differentially
expressed mRNAs and lncRNAs with a cutoff |cor| >0.5. All
interactions were identified using a p.adjust value <0.01. Next,
lncRNA/mRNA regulatory networks were constructed using the
Cytoscape software.

Construction of the lncRNA/mRNA
Pathway Weighted Co-expression Network
The lncRNA/mRNA pathway network was constructed based
on the regulatory relationship of lncRNAs/mRNAs and the
significant pathways involved in the regulation of mRNAs. The
primary objective of this analysis was to identify the signaling
pathways regulated by lncRNAs to predict possible mechanisms
of lncRNAs in disease.

Statistical Analysis
Data were analyzed using the SPSS 23.0 software (SPSS,
Chicago, IL, USA). The random variance model t-test was
performed using BRB-ArrayTools (v4.6, http://linus.nci.
nih.gov/BRB-ArrayTools.html) (Wright and Simon, 2003).
Because the sample size was limited, the adjusted p values
were too large after multiple testing controls. We used
a raw p <0.05 as the threshold for nominally significant
differential expression. Notably, multiple testing adjustment
with an FDR <0.05 was used to filter enriched GO and
KEGG pathways.

RESULTS

Differentially Expressed mRNAs and
lncRNAs
With an FC cutoff value >1.2 and p < 0.05, 3,355 mRNAs
(Figures 2A,C) and 999 lncRNAs (Figures 2B,D) were identified
as differentially expressed between patients with high and
low hip BMD; these were selected as candidate genes for
subsequent WGCNA. The pathway analysis reveals that the up-
/down-regulated DEGs were primarily enriched in metabolic
pathways (Figures 3A,B). The GO analysis found that up-
regulated DEGs were enriched in terms of apoptotic process, G-
protein coupled receptor signaling pathway, negative regulation
of transcription from RNA polymerase II promoter, etc.
Furthermore, the down-regulated ones were enriched in
transcription, DNA-templated, G-protein coupled receptor
signaling pathway, DNA-templated regulation of transcription,
etc. (Figures 3C,D).
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FIGURE 2 | Differentially expressed mRNAs and lncRNAs between high and low hip BMD subjects. (A,B) The heatmaps represent hierarchical clustering for

differentially expressed lncRNAs and mRNAs. (C,D) Volcano plots of significantly differently expressed genes (DEGs).

FIGURE 3 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the top 25 up (A)/down (B)-regulated pathways enriched in

differentially expressed genes between high/low BMD subjects. Top 25 up (C)/down (D)-regulated biological processes enriched in differentially expressed genes

between high/low BMD subjects.
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FIGURE 4 | (A) Size and composition of the modules in the WGCNA network. (B) Dendrogram obtained by clustering the dissimilarity based on consensus

topological overlap with the corresponding module colors indicated by the color row. (C) Eigengene adjacencies of heatmap. Red shows high adjacency.

Establishing Weighted lncRNA/mRNA
Co-expression Networks and Identification
of Soft Threshold Power
A lncRNA/mRNA co-expression network was established from
the newly generated set of mRNAs and lncRNAs. First, we

performed cluster analysis on the selected mRNAs and lncRNAs.
The results showed that no outlier existed in the sample;
thus, there was no need to remove any outliers. Second,

we used the R package to check the integrity of the data
and constructed a network topology to determine the soft
thresholding power. A soft threshold power of 6.5 was used
to define the adjacency matrix, which was processed using
the criteria of approximate scale-free topology. Third, the
adjacent and topological matrices were obtained through the soft
thresholding power. According to the topological matrix, genes
were clustered through dissimilarity. Next, a dynamic shearing
method was used to separate the cluster dendrogram into four
modules, each indicated by a different color (turquoise, blue,
brown, or yellow; gray was used for genes that did not fit into
a distinct group). The largest module was the turquoise module,
followed by the blue module. The size and composition of the
modules are shown in Figure 4A. Of all selected genes, 351
mRNAs and 101 lncRNAs failed to fit within a distinct group and
were assigned to the gray module (Figure 4B). After generating
an eigengene adjacency heatmap (Figure 4C) to explore the
correlations between modules, we found that the regulation
directions of these modules were consistent. The modules
showed a significantly positive correlation in patients with high
BMD and a negative correlation in premenopausal women
with low BMD. However, the correlation was not significant
in postmenopausal women except that the gray module in

patients with high BMD showed a correlation coefficient of
0.25 (p= 0.03).

Functional Analyses and Pathway
Enrichment of Different Modules
To determine whether the modules were composed of
functionally similar genes and to understand the functional
significance of the network modules, GO term and KEGG
pathway enrichment analyses were performed. The enrichment
results from the yellow module were not significant because
there were few genes in this module. The GO results of
all three modules were enriched in the positive regulation
of transcription from RNA polymerase II promoter, DNA-
templated transcription, and their regulatory mechanisms.
Specifically, genes in the blue module were highly enriched
in cell surface receptor signaling pathway, chemical synaptic
transmission, ion transmembrane transport, multicellular
organism development, neutrophil degranulation, and
regulation of receptor activity. The turquoise module was
associated with calcium ion transmembrane transport, cell
adhesion, cell proliferation, cellular protein metabolic process,
membrane depolarization, and microtubule-based movement.
The brown module was associated with bicarbonate transport,
cell cycle arrest, cell differentiation, cell division, cell migration,
oxidation–reduction process, and rRNA processing. The top
20 GO terms for the three modules are shown in Figure 5.
mRNA pathway enrichment was also analyzed. Notably, all three
modules were significantly enriched in metabolic pathways and
neuroactive ligand–receptor interactions. The turquoise module
was specifically associated with purine metabolism, necroptosis,
inflammatory mediator regulation of TRP channels, alcoholism,
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FIGURE 5 | Result of GO analysis about mRNA based on WGCNA. (A) Top 20 enriched gene ontologies in blue module (B). Top 20 enriched gene ontologies in

brown module. (C) Top 20 enriched gene ontologies in turquoise module. (D) Module specificity gene ontologies. The vertical axis shows the results of GO analysis,

and the horizontal axis shows the different modules. The color of the round shape shows transitional values (log10 of q value), and the size shows the number of

genes that were enriched. mRNA, messenger RNA; WGCNA, weighted gene co-expression network analysis.

and the hypoxia-inducible factor-1 signaling pathway. The
blue module was associated with the Rap1 signaling pathway,
calcium signaling pathway, NOD-like receptor signaling
pathway, phosphatidylinositol 3-kinase/Akt signaling pathway,
and sphingolipid signaling pathway. The brown module was
associated with protein processing in the endoplasmic reticulum,
tyrosine metabolism, glycerophospholipid metabolism, cell cycle,
and metabolism of xenobiotics by cytochrome P450. The top 20
pathways for each module are shown in Figure 6.

WGCNA Hub Gene Identification
Hub genes are usually key regulators, such as transcription
factors, and are worthy of in-depth analysis and mining. In

the blue module, we found 26 lncRNAs and 55 mRNAs as
hub genes (Figure 7A). We analyzed the functions of these
hub genes and found that these genes were mainly involved
in response to muscle stretch (e.g., JUN and MAPK14), biotic
stimulus (e.g., IFITM3), and ventricular system development
(e.g., HYDIN and ARMC4). The cell components were enriched
in the cytoplasm (e.g., BCAS3, CD248, DNAJC17, GCN1, and
GLE1), endoplasmic reticulum (e.g., ALG12, NECAB3, UVRAG,
CERS2, and KCNMA1), and endoplasmic reticulum membrane
(e.g., ALG12, NECAB3, CERS2, and PCYT1A). The molecular
functions were mainly enriched in ubiquitin protein ligase
binding (e.g., FAF2, ABTB1, and UBE2N). We also observed 36
lncRNAs and 31 mRNAs as hub nodes in the turquoise module
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FIGURE 6 | Result of pathway analysis about mRNA based on WGCNA. (A) Top 20 enriched pathways in blue module (B). Top 20 enriched pathways in brown

module. (C) Top 20 enriched pathways in turquoise module. (D) Module specificity pathways. The vertical axis shows the results of pathway analysis, and the

horizontal axis shows the different modules. The color of the round shape shows transitional values (log10 of q value), and the size shows the number of genes that

were enriched. mRNA, messenger RNA; WGCNA, weighted gene co-expression network analysis.

(Figure 7B) and 56 mRNAs and 30 lncRNAs as hub nodes in the
brown module (Figure 7C).

Construction of lncRNA/mRNA Pathway
Co-expression Networks
To uncover the possible mechanisms of lncRNA-mediated
regulation of signaling pathways, we selected a number of

pathways with significant differences in the turquoise, blue, and
brown modules and associated them with the lncRNA/mRNA
co-expression network. In the pathway co-expression network,
the blue module had 3 mRNAs and 24 lncRNAs (Figure 7D), the
brown module had 4 mRNAs and 11 lncRNAs (Figure 7E), and
the turquoise module had 9 mRNAs and 5 lncRNAs (Figure 7F).
In the blue module, XR_001739541.1 was linked to MRPS10,
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FIGURE 7 | Established lncRNA–mRNA network and lncRNA–mRNA pathway. (A–C) lncRNA–mRNA network of genes in blue (A), brown (B), and turquoise (C)

modules. (D–F) lncRNA–mRNA pathway of genes in blue (D), brown (E), and turquoise (F) modules.

ACSL5, and JUN and was therefore enriched in the ribosome
pathway and metabolic pathway. Sixteen lncRNAs, including
NONHSAT249872.1 and ENST00000510264.6, were linked to
two mRNAs (JUN and ACSL5) and were enriched in pathways,
such as the NOD-like receptor signaling pathway, mitogen-
activated protein kinase signaling pathway, Wnt signaling
pathway, ErbB signaling pathway, osteoclast differentiation, and
metabolic pathways. Seven other lncRNAs were linked to ACSL5
and were enriched in metabolic pathways. In the brown module,
XR_002958445.1, XR_002957932.1, NONHSAT257980.1,
XR_926664.3, NONHSAT144580.2, and NONHSAT144681.2
were connected to HSD3B7, ENH1, UGT2B11, and MGLL
mRNAs and were therefore enriched in metabolic pathways
and chemical carcinogenesis. In the turquoise module,
ENST00000618234.4 and ENST00000621933.1 were linked
to nine mRNAs (USP39, H2BFWT, CYP4F2, B4GAT1,
MAT2A, CBS, GABRG1, P2RY1, and NPY1R) and enriched
in pathways, such as GABAergic synapse, retrograde
endocannabinoid signaling, Rap1 signaling pathways, and
cAMP signaling pathway. The lncRNAs ENST00000609314.5,
ENST00000480227.5, and ENST00000424133.2 were also
involved in the turquoise modular lncRNA/mRNA pathway
co-expression network.

DISCUSSION

Osteoporosis is a common and complex systemic bone disease,
and women are especially susceptible to this disease. The

onset of osteoporosis is insidious, and the disease often
remains undetected in the early stages. However, once a
secondary osteoporotic fracture occurs, many complications
can occur, and the prognosis is poor. Therefore, many
researchers have investigated the molecular diagnosis, treatment
targets, and genetic regulation of osteoporosis. In a previous
study, Liu showed that DAXX and PLK3, which are related
to induction of apoptosis, were down-regulated in patients
with a low BMD among a cohort of 73 Caucasian females
(Liu et al., 2015). Based on the same microarray dataset
available online, Zhou performed GWAS and found 29 potential
transcription factors for up-regulated genes and 9 transcription
factors for down-regulated genes (Zhou et al., 2018a). They
further investigated the relationships between mRNAs and
lncRNAs using two approaches and claimed that 26 candidate
lncRNAs may regulate mRNA expression (Zhou et al., 2019).
After correcting for crosstalk effects, they identified several
significant enriched pathways involved in BMD regulation
(Zhou et al., 2018b). Moreover, Xia established a meta-
analysis using the microarray datasets GSE56815 and GSE56814
and found 10 potential pathogenic genes of osteoporosis
(Xia et al., 2017).

In this study, we found 4,354 DEGs in the peripheral blood
chips of patients with high or low BMD in the hip; these included
3,355 mRNAs and 999 differentially expressed lncRNAs. In
contrast to previous studies based on protein–protein interaction
(PPI) networks, we employed WGCNA to aggregate genes with
common expression characteristics into modules. This systemic
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biology method helped free-scale gene co-expression networks
to identify associations without previous PPI knowledge (Zheng
et al., 2020). TheWGCNA co-expression networks revealed three
gene modules consisting of 40 lncRNAs and 16 mRNAs, which
were significantly related to the level of BMD. In a previous
study, Qian (Qian et al., 2019) found 12 genes as hub genes
in 80 Caucasian females. Another WGCNA study identified
six genes from 26 healthy young Chinese females (Farber,
2010). Zhang et al. found seven genes that were significantly
down- or up-regulated using traditional comparative analysis,
WGCNA, and gene set enrichment analysis (Zhang et al.,
2016). Chen constructed a WGCNA co-expression network
composed of BMD GWAS genes and found two functional
gene modules and nine interesting genes. Of note, the genes
identified in the current study did not overlap in these previous
studies. We attribute the observed discrepancy to differences
in patients and ethnicity; these potential differences should
be investigated further. The differentially expressed mRNAs
and lncRNAs were primarily involved in metabolic pathways,
including glycerophospholipid metabolism, lysine degradation,
and glycerolipid metabolism.

Our study and previous studies have established possible
targets for the treatment of osteoporosis, such as JUN (Ralston,
2010; Zhou et al., 2019). JUN belongs to the AP-1 family of
transcription factors, which includes c-Fos, Fra1, Fra2, JunB, and
JunD. JUN expression was significantly up-regulated in dental
pulp stem cells induced to undergo osteogenic differentiation
(Guo et al., 2018). Higher concentrations of glucocorticoids
impair osteogenesis by inhibiting JUN expression and human
bone marrow mesenchymal stem cell (BMSC) proliferation,
which can be driven by glucocorticoid receptor and AP-1
crosstalk (Carcamo-Orive et al., 2010). Moreover, our recent
study showed that JUN can drive bone formation by expanding
osteoprogenitor populations and forcing them into the bone
fate, providing a rationale for future clinical applications
(Lerbs et al., 2020).

Long-chain fatty acyl-CoA synthetases 5 (ACSL5) is an
isozyme of the long-chain fatty-acid-coenzyme A ligase family.
It is a regulatory enzyme that converts free long-chain fatty
acids into fatty acyl-CoA esters and thereby plays key roles in
lipid biosynthesis and fatty acid degradation. Currently, there is
no evidence that ACSL5 expression is involved in osteoporosis;
however, the presence of ACSL5 is obviously related to disorders
of glucose metabolism. High glucocorticoid concentrations
impair osteogenesis (Carcamo-Orive et al., 2010) and induce
the activation of osteoclast proliferation and differentiation
(Wongdee and Charoenphandhu, 2011). In addition, ACSL5may
also be an important mediator in apoptosis (Xia et al., 2016).
Further studies are needed to assess the potential roles of this
protein in the pathophysiological process of osteoporosis.

The lncRNA/mRNA regulatory networks were further
constructed using high connectivity hub genes in the WGCNA
co-expression network. Compared with nodes with low
connectivity, nodes with high connectivity play more important
roles in the entire transcription network and are more
likely to be upstream regulators. According to the above-
mentioned regulatory relationships of lncRNAs/mRNAs and

the significantly involved pathways, we further constructed a
network of pathways in which lncRNAs could regulate mRNAs
through co-expression and thereby play roles in these pathways.
Notably, metabolic pathways were significantly enriched in all
three functional gene modules. Bone formation is known to be
dependent on the supply of metabolites to monocytes in the bone
marrow (Bidwell et al., 2013). Additionally, the balance of bone
metabolism depends on the coordination of bone formation
and resorption, and this process requires information exchange
between different types of cells. For example, the lncRNA Bmncr
is a key regulator of age-related osteogenic niche alteration and
cell fate switch of BMSCs (Li et al., 2018). Moreover, the lncRNA
ODSM functions as a competing endogenous RNA in the
lncRNA ODSM/miR-139-3p/ELK1 pathway and has important
functions in osteoblast differentiation and apoptosis (Wang
et al., 2018). Further studies are needed to explore the molecular
mechanisms through which lncRNAs act as transcription
factors to regulate osteoporosis (Zhang et al., 2020). It is worth
noting that the above-mentioned molecular targets may be
indirectly related to the BMD phenotype. In the process of
establishing the aforementioned weighted lncRNA/mRNA co-
expression networks, there was no observed direct quantitative
relationship with the level of BMD. These genes aggregate
to form modules through co-expression relationships. They
have significant correlations and may participate in certain
biological processes together. Not all genes in these modules
are directly related to the level of BMD, which makes it
difficult for us to interpret the experimental results within the
context of BMD levels. Therefore, it is necessary to construct a
network relationship, find the hub genes, and conduct further
in vitro validations.

There were some limitations to this study. First, this study
was based purely on microarray datasets, and we did not obtain
any data directly from in vivo experiments. Thus, further studies
are needed to confirm the observed molecular mechanisms.
Second, when selecting the phenotype of osteoporosis, we used
BMD as the only indicator. Because phenotype identification
can directly influence patient grouping and is crucial to the
construction of gene networks, additional indicators (e.g., bone
geometric parameters, bone size, and compressive strength
index of the femoral neck) should be evaluated in further
studies in order to obtain a complete picture of osteoporosis.
Third, this study did not compare the obtained results in
female osteoporosis with male cases, because there are few
samples of male osteoporosis in the public database, and
the platforms are not the same. It is worth noting that the
above-mentioned biomarkers were all found in female database
samples; therefore, we may not be able to extrapolate these
conclusions to samples of male patients. Previous studies
have shown that miRNAs are gender-dependent as molecular
targets of BMD (Kelch et al., 2017). Finally, this study is
based on gene expression from blood monocytes. This is
far removed from therapeutic application in musculoskeletal
diseases. Further validation on bone samples should be done in
future research.

In conclusion, in this study, we identified differentially
expressed mRNAs and lncRNAs in existing microarray profile
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data. A WGCNA was constructed and yielded three significant
modules associated with differences in BMD. Enrichment
analysis indicated that the modules were primarily enriched in
metabolic pathways, such as glycerophospholipid metabolism,
lysine degradation, and glycerolipid metabolism. Several hub
genes, including JUN and ACSL5, were found and may represent
potential biomarkers or clinical targets for osteoporosis. In
addition, a comprehensive lncRNA/mRNA-pathway regulatory
network was built to elucidate the complex interactions
between the transcripts and non-coding RNAs. Our findings
provided a novel perspective on the regulatory mechanisms
of osteoporosis.
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Diabetes-related diseases (DRDs), especially cancers pose a big threat to public
health. Although people have explored pathological pathways of a few common
DRDs, there is a lack of systematic studies on important biological processes
(BPs) connecting diabetes and its related diseases/cancers. We have proposed and
compared 10 protein–protein interaction (PPI)-based computational methods to study
the connections between diabetes and 254 diseases, among which a method called
DIconnectivity_eDMN performs the best in the sense that it infers a disease rank
(according to its relation with diabetes) most consistent with that by literature mining.
DIconnectivity_eDMN takes diabetes-related genes, other disease-related genes, a PPI
network, and genes in BPs as input. It first maps genes in a BP into the PPI network to
construct a BP-related subnetwork, which is expanded (in the whole PPI network) by a
random walk with restart (RWR) process to generate a so-called expanded modularized
network (eMN). Since the numbers of known disease genes are not high, an RWR
process is also performed to generate an expanded disease-related gene list. For each
eMN and disease, the expanded diabetes-related genes and disease-related genes are
mapped onto the eMN. The association between diabetes and the disease is measured
by the reachability of their genes on all eMNs, in which the reachability is estimated by
a method similar to the Kolmogorov–Smirnov (KS) test. DIconnectivity_eDMN achieves
an area under receiver operating characteristic curve (AUC) of 0.71 for predicting both
Type 1 DRDs and Type 2 DRDs. In addition, DIconnectivity_eDMN reveals important BPs
connecting diabetes and DRDs. For example, “respiratory system development” and
“regulation of mRNA metabolic process” are critical in associating Type 1 diabetes (T1D)
and many Type 1 DRDs. It is also found that the average proportion of diabetes-related
genes interacting with DRDs is higher than that of non-DRDs.

Keywords: diabetes-related disease, PPI network, biological process, network connectivity, network modules

Frontiers in Genetics | www.frontiersin.org 1 December 2020 | Volume 11 | Article 617136140

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.617136
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.617136
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.617136&domain=pdf&date_stamp=2020-12-14
https://www.frontiersin.org/articles/10.3389/fgene.2020.617136/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-617136 December 8, 2020 Time: 18:39 # 2

Zhu et al. Interactions Between Diabetes and Diseases

INTRODUCTION

With the increasing of human life-span, the incidence of
diabetes is rapidly increasing, which presents a big threat
to public health all over the world (Naslafkih and Sestier,
2003). According to a statistics from the International Diabetes
Federation, approximately 415 million people worldwide suffered
from diabetes in 2015, and the incidence is still increasing
at a terrifying rate. By 2040, this number is estimated to
exceed 640 million (International Diabetes Federation, 2015).
Diabetes is a metabolic disease characterized by chronic
hyperglycemia, which includes two forms, namely, Type 1
diabetes (T1D) and Type 2 diabetes (T2D). T2D accounts
for about 85% of the diabetes incidences. Besides genetic
factors, insulin resistance is a major risk factor for both
T1D and T2D (Fourlanos et al., 2004). T1D and T2D also
have a few common complications including damage to
the kidneys, nerves, and cardiovascular systems, which may
result in diabetes-related diseases (DRDs) like renal diseases
(Papatheodorou et al., 2016, 2018). In general, DRDs can be
divided into three categories: (1) microvascular disease, (2)
macrovascular disease, and (3) miscellaneous complications.
Microvascular disease mainly includes eye disease, kidney
disease, and neuropathy; macrovascular disease mainly contains
cardiovascular diseases; while miscellaneous complications
include depression (Nouwen et al., 2011), dementia (Cukierman
et al., 2005), and so on.

At present, people have explored the pathogenesis
and pathological pathways of many DRDs. For example,
inflammation, extracellular matrix expansion, oxidative stress,
DNA damage, and vascular and nerve dysfunction are common
pathways for the development of diabetic nephropathy (Wada
and Makino, 2013; Jenkins et al., 2015; Zhang et al., 2018a);
endothelial dysfunction and inflammation are involved in the
development of diabetic vascular disease (Paneni et al., 2013);
inflammation, endothelial dysfunction, and hypercoagulability
are related to each other and play an important role in the
occurrence of diabetic vascular disease (Domingueti et al.,
2016). Though it is clear that certain biomarkers and biological
pathways are involved in many DRDs, there is no systematic
study summarizing DRD-associated common pathways,
and pathways specific to the interaction between diabetes
and specific DRDs.

With the development of high-throughput sequencing
techniques, there are a lot of studies on genes and networks
associated with diabetes and other diseases. For example, Ding
et al. (2019) identified the core genes of T2D based on biological
information, such as protein–protein interaction (PPI) network
and microarray data. Zhang et al. (2018b) identified genes related
to proliferative diabetic retinopathy based on PPI network
and the random walk with restart (RWR) algorithm. Jiang
et al. identified key genes and biological pathways related to
diabetic nephropathy based on PPI network and microarray
data (Jiang et al., 2015; Liu and Li, 2019; Song et al., 2019). The
more and more accessible disease-related genes together with
other important biological information, such as PPI data, gene
expression data, and gene ontology (GO) data, provide us a

unique opportunity for studying the interaction between diabetes
and DRDs at the network level.

In this paper, we have proposed and compared 10 network-
based computational methods to study the connections between
diabetes and 254 diseases&vitamin D, which can generally be
grouped into four categories, namely (1) DIcd based on the
closest distance; (2) DIoverlap based on gene set overlap; (3)
DINet based on random walk and gene set enrichment; (4)
DIconnectivity based on cut edges between gene sets. Using these
methods, we aim to predict DRDs, and perform a comprehensive
analysis on important biological pathways associated with DRDs.

RESULTS

We have proposed four categories of algorithms to study the
connections between diabetes and other diseases&vitamin D,
namely, DIoverlap, DIcd, DINet, and DIconnectivity, all of which
are based on PPI network/subnet. Since the diabetes-disease
related genes might be enriched in a few biological processes
(BPs) (Nigro et al., 2014), we also studied the connections based
on BP modularized networks (MNs). The MN is constructed by
mapping genes in each GO BP to the reference PPI network.
In addition, we further expand each MN by an RWR procedure
to construct the expanded MN (eMN). In our study, we set the
expansion fold N to 3.

An Overview of DIoverlap, DIcd, DINet,
and DIconnectivity
DIoverlap is the Jaccard coefficient between diabetes and disease
gene set. We applied this algorithm to three types of networks
including the whole network, MN, and eMN, corresponding
to DIoverlap-Whole network, DIoverlap-MN, and DIoverlap-
eMN, respectively. We define the mean of Jaccard coefficients
across the MNs/eMNs as the evaluation standard for DIoverlap-
MN/DIoverlap-eMN. An overview of other three algorithms
DIcd, DINet, and DIconnectivity is presented in Figure 1. For
each algorithm, the disease-related genes were mapped to the
network first. DIcd is the closest distance from diabetes genes to
disease genes on PPI network (see Figure 1A). The major steps
of DINet are shown in Figure 1B, which is similar to GeroNet
algorithm (Yang et al., 2016). For DINet algorithm, the diabetes
and disease genes were mapped to each eMN and the connection
between the two mapped gene sets was estimated using RWR
and gene set enrichment analysis (GSEA); the significance of the
connection was evaluated by a permutation analysis, in which
the diabetes genes are randomly permuted, and the significance
p-value is adjusted for multiple testing; the connection between
diabetes and disease/vitamin D is evaluated by the minimum
adjusted p-value. The details of each step are presented in Section
“Materials and Methods.”

DIconnectivity (Figure 1C) calculates the number of
interactions between diabetes and disease gene set. We applied
this algorithm to three types of networks including the whole
network, MN, and eMN, corresponding to DIconnectivity-
Whole network, DIconnectivity-MN, and DIconnectivity-eMN,
respectively. We define the mean of interaction numbers across
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FIGURE 1 | An overview of DIcd, DINet, and DIconnectivity. (A) The green dots and blue dots represent the genes of diabetes and disease, respectively, and the red
dots represent their overlap. a1, a2, ..., a7 represent diabetes genes, and the closest distances from ai(i = 1, 2, ..., 7) to disease genes are 1, 2, 1, 0, 0, 0, 0, then
DIcd = (1+ 2+ 1+ 0+ 0+ 0+ 0)/7 = 4/7. (B) An overview of GeroNet. RWR, random walk with restart; MN, modularized network; eMN, expanded modularized
network; GSEA, gene set enrichment analysis. (C) The diabetes-disease pair is the same as (A). Four kinds of interactions between the two gene sets were denoted
by H1, H2, H3, H4. We assign the weight of the interactions between the overlap genes (H4) to 2, and the other types (H1, H2, H3) to 1. If the number of
Hi(i = 1, 2, 3, 4) is hi , then DIconnectivity = h1 + h2 + h3 + 2h4.

the MNs/eMNs as the evaluation standard for DIconnectivity-
MN/DIconnectivity-eMN. In addition, DIconnectivity-eDMN
calculates the interaction number between the expand diabetes
and disease gene set on eMNs, and the gene sets are expanded
by RWR and GSEA.

Collection of Diabetes and
Disease&vitamin D Genes, Reference
PPI Network, GO BPs, and DRD
Classification
We used diabetes/diseases genes collected from Enrichr as our
input genes, and the genes of T1D/T2D/254 diseases were
obtained by merging genes with the same human terms. Owing
to some of the T1D/T2D/254 diseases also contain mouse or rat
genes, we constructed two datasets: one of which only considers
the human genes, called the H_Dataset, and the other one
considers the genes of these three species, called HMR_Dataset.
The vitamin D genes are obtained from GO terms which are
related to vitamin D (i.e., the GO terms contain the word
“vitamin D”) and the number of this gene set is 57. The
number of disease genes in H_Dataset ranges from 298 to
3875 and a full list of disease&vitamin D genes is provided in

Supplementary Dataset S1, while the number in HMR_Dataset
ranges from 298 to 4134 and the gene list is provided in
Supplementary Dataset S2. Besides, the number of T1D/T2D
genes in H_Dataset is 355/2109, and the number is 2288/3521
in HMR_Dataset.

We used the PPI network compiled by Menche et al.
as the reference network, and considered 3367 GO BPs
to define MNs (see section “Materials and Methods”). We
annotated the diseases&vitamin D as being either diabetes-
related or non-diabetes related based on literature mining. 41
diseases&vitamin D were annotated as DRD1s (Supplementary
Table S1) and 29 diseases&vitamin D were annotated as DRD2s
(Supplementary Table S2).

Comparison of DIoverlap, DIcd, DINet,
and DIconnectivity
We used 10 methods to study the diabetes-disease&vitamin
D connections based on PPI network/subnet, which are
DIoverlap-Whole network, DIoverlap-MN, DIoverlap-eMN,
DIoverlap-eDMN, DIcd, DINet, DIconnectivity-Whole network,
DIconnectivity-MN, DIconnectivity-eMN, and DIconnectivity-
eDMN. For DIoverlap-MN and DIconnectivity-MN, we
only considered the MNs with the numbers of diabetes and

Frontiers in Genetics | www.frontiersin.org 3 December 2020 | Volume 11 | Article 617136142

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-617136 December 8, 2020 Time: 18:39 # 4

Zhu et al. Interactions Between Diabetes and Diseases

disease/vitamin D mapping genes greater than 5, while for
DIoverlap-eMN, DIconnectivity-eMN, DIoverlap-eDMN, and
DIconnectivity-eDMN, we only considered the eMNs, which
are expanded by these MNs. In addition, for DIoverlap-eDMN
and DIconnectivity-eDMN, we also performed permutation
training of eMNs (see Supplementary Material). For DINet,
we considered the eMNs with the numbers of diabetes and
disease/vitamin D mapping genes greater than 5. We compared
the methods according to the accuracy of predicting the
DRD1s/DRD2s. To quantify the performance, we calculated
the area under the receiver operating characteristic curve
(AUROC or simply AUC) for each method, a commonly
used statistics to characterize the overall performance of
a predictive model. For DINet, we tested nine values for
parameter (i.e., 0.1, 0.2, . . ., 0.9) to get the best prediction
result; for DIoverlap-eDMN/DIconnectivity-eDMN, we tested
10 values for expansion fold N (i.e., 1, 2, . . ., 10) on diabetes
and diseases&vitamin D genes, and denoted the corresponding
methods as DIoverlap-eDMN_EN/DIconnectivity-eDMN_EN.
For T1D/T2D, DIconnectivity-eDMN_E3/DIconnectivity-
eDMN_E4 performed the best with AUC of 0.71/0.71 on
HMR_Dataset (Figure 2). In Figure 2, we only plotted the AUC
result of each method under the optimal parameter (if parameter
is included), and the parameter training results of different
methods are listed in Supplementary Table S3.

Diabetes Related Diseases Predicted by
DIconnectivity-eDMN
We used the best performing method DIconnectivity_eDMN to
predict the connections between diabetes and diseases&vitamin
D, and the predicted ranking list of all 254 diseases&vitamin
D related to T1D/T2D is provided in Supplementary
Datasets S3, S4. It should be noted that we only considered the
eMNs whose numbers of interactions between gene sets were
greater than 0 for each diabetes-disease pair. In order to find
significant related diseases, we converted the DIconnectivity into
z-score statistics and calculated the p-values and then the diseases
with p-values less than 0.05 were significant DRDs (Table 1).
Finally, we found 22 significant related diseases of T1D/T2D.
Among these DRDs, bacterial infection, acute myocardial
infarction, atherosclerosis, osteoarthritis, and obesity are well-
known DRDs. For bacterial infections, the mechanism of the
susceptibility is the influence of glycemia on polymorphonuclear
cell functions, such as urinary tract infection, “diabetic foot,” or
“infectious cellulitis” (Schubert and Heesemann, 1995). Besides,
certain infections (i.e., respiratory and foot infections) are
overrepresented in the diabetic population and are associated
with a higher risk of infection-related mortality (Pearson-
Stuttard et al., 2016). On the one hand, diabetes increases
the risk of acute myocardial infarction; on the other hand,
acute myocardial infarction is the major cause of morbidity
and mortality in diabetic patients (Echouffo-Tcheugui et al.,
2018). The statistics from US centers for disease control and
prevention (CDC1) also note that heart disease is the leading
cause of death among people with diabetes. Diabetes is also

1https://www.cdc.gov/diabetes/managing/problems.html

associated with elevated odds of having osteoarthritis, which is
the most frequent disease in individuals with diabetes (Rehling
et al., 2019). The relationship between diabetes and obesity is
more obvious (Weyer et al., 2001; Okada-Iwabu et al., 2013).
According to the latest statistics from CDC, 89% of diabetes
patients in the United States are overweight or obese (body mass
index > 25 kg/m2). In Brazilian, 75% of the T2D patients are
overweight, and 30% of them are obese (Gomes et al., 2006).

It should be noted that for both T1D and T2D, systemic
lupus erythematosus ranked first, which is associated with an
increased risk of development of diabetes (Chung et al., 2007;
Jiang et al., 2018). A cohort study in Toronto documented
that women with SLE had a significantly higher prevalence of
diabetes than the age-matched healthy controls (5 versus 1%)
(Bruce et al., 2003). Therefore, we can conclude that SLE patients
may develop diabetes. Followed in the list are breast cancer
and asthma. According to Cancer Research UK2, women with
diabetes have an increased risk of breast cancer. In addition,
some studies have shown that diabetes not only increases the
risk of breast cancer (Liao et al., 2011), but also increases
the risk of breast cancer death (Luo et al., 2014; Bronsveld
et al., 2015). The published data on disease occurrence showed
that there was a strong positive association between T1D and
asthma in Europe and elsewhere (Stene and Nafstad, 2001).
Similarly, T2D has attracted attention as a risk factor for
asthma (Murakami et al., 2019). Followed in the list are various
types of psychiatric disorders, neurodegenerative diseases, and
cancers. According to CDC, the complications of diabetes
include heart disease, nerve damage, and mental health. On
the other hand, some studies have shown that bipolar disorder
(McIntyre et al., 2005), schizophrenia (Hoffman, 2017), and
autism spectrum disorder (Alhowikan et al., 2019) also increase
the prevalence of diabetes. In addition, high blood sugar can
cause neuropathy (nerve damage) throughout your body, and
some studies also suggested that there was an association between
diabetes and the neurodegenerative diseases multiple sclerosis
and amyotrophic lateral sclerosis (Mariosa et al., 2015; Tettey
et al., 2015). Additionally, Cancer Research UK notes that people
with diabetes have an increased risk of pancreatic cancer3. What
is more, several studies show a higher risk of womb cancer in
women with diabetes4. We should also note that diabetes is one
of the common comorbidities of ulcerative colitis (Maconi et al.,
2014) and cystic fibrosis (Prentice et al., 2016; Hart et al., 2018).

DIconnectivity-eDMN can effectively rank some recognized
DRDs at the top of the list, but there are still some obvious
related diseases that are relatively backward, such as diabetic
nephropathy of T1D (48th), insulin resistance of T2D (68th),
and even put some diabetes related diseases at the bottom of the
list, such as vitamin D (255th) and morbid obesity (240th) of
T1D/T2D. Such a ranking error may be due to incomplete genes
in our network or diseases&vitamin D. In addition, some DRDs
were not defined as DRDs, but we did find evidence to support

2https://www.cancerresearchuk.org/about-cancer/breast-cancer/risks-causes/
risk-factors
3https://www.cancerresearchuk.org/about-cancer/pancreatic-cancer/risks-causes
4https://www.cancerresearchuk.org/about-cancer/womb-cancer/risks-causes
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FIGURE 2 | Comparison of different methods based on AUC of ROC in T1D (A) and T2D (B). DIcd is based on whole PPI network; DINet is based on expanded
modularized network (eMN); DIconnectivity_whole network represents DIconnectivity based on whole PPI network; DIconnectivity_MN represents DIconnectivity
based on modularized network (MN); DIconnectivity_eMN represents DIconnectivity based on expanded modularized network (eMN); DIoverlap is defined similarly.

TABLE 1 | The significant diabetes-related diseases inferred by DIconnectivity-eDMN.

Disease p-value DRD1 Disease p-value DRD1

Type 1 diabetes

Systemic lupus erythematosus 1.24 E-04 1 Endometrial cancer 1.06 E-02 0

Breast cancer 4.45 E-04 0 Acute myocardial infarction 1.13 E-02 1

Bacterial infection 1.07 E-03 1 Endometriosis 1.58 E-02 0

Asthma 1.08 E-03 1 Cystic fibrosis 1.62 E-02 1

Ulcerative colitis 1.64 E-03 1 Huntington’s disease 2.29 E-02 0

Bipolar disorder 2.16 E-03 0 Multiple sclerosis 3.26E-02 1

Crown’s disease 2.49 E-03 1 Pancreatic cancer 3.58 E-02 1

Polycystic ovary syndrome 2.67 E-03 1 Osteoarthritis 4.14 E-02 0

Hypoxia 2.96 E-03 1 Obesity 4.31 E-02 1

Schizophrenia 3.77 E-03 0 Amyotrophic lateral sclerosis 4.36 E-02 0

Autism spectrum disorder 6.54E-03 0 Prostate cancer 4.84 E-02 0

Disease p-value DRD2 Disease p-value DRD2

Type 2 diabetes

Systemic lupus erythematosus 6.52 E-04 0 Schizophrenia 1.10 E-02 0

Bacterial infection 7.74 E-04 1 Endometriosis 1.16 E-02 0

Asthma 1.72 E-03 0 Autism spectrum disorder 1.70 E-02 0

Breast cancer 1.73 E-03 1 Cystic fibrosis 1.76 E-02 0

Crown’s disease 2.13 E-03 1 Pancreatic cancer 2.66 E-02 1

Hypoxia 4.08E-03 1 Osteoarthritis 2.90 E-02 0

Bipolar disorder 5.09 E-03 0 Multiple sclerosis 3.07 E-02 0

Ulcerative colitis 5.64 E-03 0 Alzheimer’s disease 3.28 E-02 0

Polycystic ovary syndrome 6.99 E-03 1 Obesity 3.35E-02 1

Endometrial cancer 7.33 E-03 0 Huntington’s disease 4.76 E-02 0

Acute myocardial infarction 1.01 E-02 1 Atherosclerosis 4.95 E-02 1
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their connections, such as bipolar disorder, endometrial cancer,
and osteoarthritis.

Functional Subnets Connecting Diabetes
and Diseases&vitamin D
For each diabetes-disease/vitamin D connection, we consider
eMNs satisfying the following two conditions: (1) the eMNs
are under the optimal permutation result; (2) the interaction
numbers between diabetes and disease/vitamin D mapping
genes in the eMNs are greater than 0. In the 255 T1D/T2D-
disease&vitamin D connections, the number of eMNs ranges
from 295/298 to 3123/3291, total 427,349/431,778 eMNs.
Generally speaking, not all subnets play an important role in
the diabetes-disease&vitamin D connections, so we identify the
significant eMNs for each diabetes-disease/vitamin D connection
with permutation analysis method, and the specific steps are
as follows: (1) permute diabetes genes in each eMN for
100 times to calculate the null distribution of DIconnectivity
with DIconnectivity-eDMN_E3 for T1D and DIconnectivity-
eDMN_E4 for T2D and (2) convert the DIconnectivity to
a z-score statistic based on this null distribution, then a
p-value is estimated and adjusted for multiple testing. We
consider the eMNs with FDR ≤ 0.05 are significant, and the
number of significant eMNs for T1D/T2D-disease&vitamin D
connections ranges from 46/0 to 1908/1284, a total of 214,545
(∼50.2%)/84,165 (∼19.5%) significant eMNs.

Functional Subnets Connecting T1D and
Diseases&vitamin D
It is worth noting that different eMNs have different frequencies
to connect diabetes and diseases&vitamin D, that is, some
eMNs are involved in multiple diabetes-disease&vitamin D
connections, and some only affect a few or specific ones. In
order to study eMN frequency in the T1D-disease&vitamin D
connections, we calculated the frequencies of all significant eMNs
for each connection, and the average frequency (AF) was used
as its eMN frequency. Among 255 T1D-disease&vitamin D (42
DRD1s and 213 non-DRD1s) connections (AF∈[102, 201]), there
are 92 connections with AF less than 150, of which 23 are
DRD1s involved and 69 are non-DRD1s involved. This shows
that 55% of T1D-DRD1 connections have an eMN frequency
of less than 150, while for non-DRD1s, this proportion is only
32%. Obviously, the smaller the eMN frequency, the higher
the specificity, and then we can conclude that DRD1s have
higher eMN specificity to connect T1D compared to non-DRD1s.
The AFs of 42 connections (DRD1s involved) are plotted in
Figure 3A, and from the figure, we can see that some well-
known DRD1s have low frequencies (e.g., morbid obesity and
diabetic nephropathy). The higher frequent diseases include
heart diseases (e.g., cardiomyopathy and atherosclerosis) and
inflammatory diseases (e.g., colitis and eczema), which suggests
that the connections between T1D and DRD1s may be mediated
by eMNs with very different frequencies.

In order to further search for specific eMNs and non-specific
eMNs of T1D-DRD1 connections, we defined the specific index
SP (SP = KF/AF, 0 < KF≤42, 0 < AF≤255, 0 < SP≤1),

FIGURE 3 | The numbers of significant eMNs in T1D-DRD1 connections (A)
and T2D-DRD2 connections (B).

where KF is the frequency of significant eMN in the range of
T1D-DRD1 connections. It is easy to know that when AF is
closer to KF and KF is closer to 42, the eMN specificity is
higher. Therefore, we set the SP threshold to 0.3 (Supplementary
Table S4), i.e., the eMN with SP greater than 0.3 is defined
as specific eMN, otherwise non-specific eMN. We sorted the
specific eMNs according to KF from large to small, and list the
top 20 non-specific eMNs and specific eMNs in Table 2. Non-
specific eMNs include BPs such as “GO:0060070_canonical Wnt
signaling pathway” and “GO:0060828_regulation of canonical

Frontiers in Genetics | www.frontiersin.org 6 December 2020 | Volume 11 | Article 617136145

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-617136 December 8, 2020 Time: 18:39 # 7

Zhu et al. Interactions Between Diabetes and Diseases

TABLE 2 | Top 20 non-specific and specific eMNs (KF from large to small) of
T1D-DRD1connections.

Non-specific eMNs KF AF SP

GO:0060070_canonical Wnt signaling pathway 41 237 0.172995781

GO:0060828_regulation of canonical Wnt
signaling pathway

41 226 0.181415929

GO:2000027_regulation of animal organ
morphogenesis

41 224 0.183035714

GO:0000226_microtubule cytoskeleton
organization

40 244 0.163934426

GO:0022604_regulation of cell morphogenesis 40 240 0.166666667

GO:0051090_regulation of DNA-binding
transcription factor activity

40 243 0.164609053

GO:0050769_positive regulation of neurogenesis 40 243 0.164609053

GO:0051047_positive regulation of secretion 40 243 0.164609053

GO:0042391_regulation of membrane potential 40 249 0.16064257

GO:0002793_positive regulation of peptide
secretion

40 233 0.17167382

GO:0016055_Wnt signaling pathway 39 241 0.161825726

GO:0198738_cell-cell signaling by wnt 39 240 0.1625

GO:0030111_regulation of Wnt signaling pathway 39 226 0.172566372

GO:0016050_vesicle organization 39 224 0.174107143

GO:0022412_cellular process involved in
reproduction in multicellular organism

39 229 0.170305677

GO:0050804_modulation of chemical synaptic
transmission

39 240 0.1625

GO:0051091_positive regulation of DNA-binding
transcription factor activity

39 235 0.165957447

GO:0072001_renal system development 39 243 0.160493827

GO:0001822_kidney development 39 234 0.166666667

GO:0001655_urogenital system development 39 222 0.175675676

Specific eMNs

GO:0060541_respiratory system development 28 91 0.307692308

GO:1903311_regulation of mRNA metabolic
process

23 75 0.306666667

GO:1902105_regulation of leukocyte
differentiation

20 59 0.338983051

GO:0052548_regulation of endopeptidase activity 20 66 0.303030303

GO:0007517_muscle organ development 18 53 0.339622642

GO:0071383_cellular response to steroid
hormone stimulus

18 47 0.382978723

GO:0031100_animal organ regeneration 18 56 0.321428571

GO:0060537_muscle tissue development 17 49 0.346938776

GO:0009267_cellular response to starvation 17 48 0.354166667

GO:0003007_heart morphogenesis 17 51 0.333333333

GO:0021782_glial cell development 16 52 0.307692308

GO:0048545_response to steroid hormone 16 53 0.301886792

GO:0002521_leukocyte differentiation 16 42 0.380952381

GO:0071901_negative regulation of protein
serine/threonine kinase activity

16 42 0.380952381

GO:0048771_tissue remodeling 16 46 0.347826087

GO:0042110_T cell activation 16 52 0.307692308

GO:0048732_gland development 16 51 0.31372549

GO:0043434_response to peptide hormone 15 46 0.326086957

GO:0051169_nuclear transport 15 42 0.357142857

GO:0036473_cell death in response to oxidative
stress

15 44 0.340909091

Wnt signaling pathway.” According to Table 2, there are 41
DRD1s (42 in total) and 196 non-DRD1s (213 in total) that
are significantly related to the eMN “GO:0060070_canonical
Wnt signaling pathway,” and there are 41 (98%) DRD1s
and 185 (87%) non-DRD1s that are significantly related to
the eMN “GO:0060828_regulation of canonical Wnt signaling
pathway.” The Wnt signaling pathway has been reported to
be associated with glucose and lipid metabolism (Qin et al.,
2018). Besides, many studies have shown that the Wnt signaling
pathway is related to the pathogenesis of diabetic nephropathy
(Kavanagh et al., 2011) and diabetic retinopathy (Chen and Ma,
2017). In the non-specific eMNs, except for multiple pathways
related to Wnt signaling (GO:0016055_Wnt signaling pathway,
GO:0198738_cell-cell signaling by wnt, GO:0030111_regulation
of Wnt signaling pathway), there are also eMNs related to kidney
development, such as GO:0072001_renal system development,
GO:0001822_kidney development, and GO:0001655_urogenital
system development.

Specific eMNs include BPs such as “respiratory system
development” and “regulation of mRNA metabolic process.”
There are 28 (68%) DRD1s and 63 (30%) non-DRD1s that
are significantly related to “respiratory system development,”
and there are 23 (55%) DRD1s and 52 (24%) non-DRD1s that
are significantly related to “regulation of mRNA metabolic
process.” Related studies have shown that respiratory control
imbalance is common in T1D patients (Bianchi et al., 2017).
The available evidence shows that diabetes usually changes
metabolites such as glucose, fructose, amino acids, and
lipids through metabolic pathways (Arneth et al., 2019).
In addition, the well-known specific eMNs of diabetes,
insulin related BPs (GO:0032868_response to insulin,
GO:0032869_cellular response to insulin stimulus) are also
in the list (Brezar et al., 2011).

Functional Subnets Connecting T2D and
Diseases&vitamin D
We conducted a similar analysis for T2D. Among 255
T2D-diseases&vitamin D (30 DRD2s and 225 non-DRD2s)
connections (AF∈[10, 209]), there are 94 connections with
AF less than 100, of which 16 are DRD2s involved and 78
are non-DRD2s involved. This shows that 53% of T2D-DRD2
connections have an eMN frequency of less than 100, while
for non-DRD2s, this proportion is only 35%. The AFs of
30 connections (DRD2s involved) are plotted in Figure 3B,
and from the figure, we can see that high frequent diseases
include obesity and some heart diseases (cardiomyopathy, acute
myocardial infarction, and atherosclerosis).

We set the SP threshold to 0.2 (Supplementary Table S5) to
define specific eMNs and non-specific eMNs, and list the top 20
of them in Table 3. The non-specific eMN with the largest KF is
“GO:0000226_microtubule cytoskeleton organization,” and there
are 22 DRD2s (30 in total) and 178 non-DRD2s (225 in total) that
are significantly related to it. Studies have found that microtubule
polymerization may play an important role in glucose transport
(Taneja and Priyadarshini, 2018). It is worth noting that pathways
related to Wnt signaling are also significantly related to T2D, such
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TABLE 3 | Top 20 non-specific and specific eMNs (KF from large to small) of
T2D-DRD2 connections.

Non-specific eMNs KF AF SP

GO:0000226_microtubule cytoskeleton
organization

22 200 0.11

GO:0051052_regulation of DNA metabolic
process

22 206 0.106796117

GO:0016570_histone modification 22 184 0.119565217

GO:0198738_cell-cell signaling by wnt 22 182 0.120879121

GO:0016055_Wnt signaling pathway 22 178 0.123595506

GO:0090068_positive regulation of cell cycle
process

22 191 0.115183246

GO:0048285_organelle fission 22 209 0.105263158

GO:0045787_positive regulation of cell cycle 22 195 0.112820513

GO:0045930_negative regulation of mitotic cell
cycle

22 187 0.117647059

GO:0034660_ncRNA metabolic process 21 176 0.119318182

GO:0051260_protein homooligomerization 21 165 0.127272727

GO:0000082_G1/S transition of mitotic cell
cycle

21 180 0.116666667

GO:0072331_signal transduction by p53 class
mediator

21 176 0.119318182

GO:1901987_regulation of cell cycle phase
transition

21 196 0.107142857

GO:0031396_regulation of protein
ubiquitination

21 167 0.125748503

GO:1901990_regulation of mitotic cell cycle
phase transition

21 189 0.111111111

GO:0060249_anatomical structure
homeostasis

20 202 0.099009901

GO:0016569_covalent chromatin modification 20 144 0.138888889

GO:0060070_canonical Wnt signaling pathway 20 172 0.11627907

GO:0044843_cell cycle G1/S phase transition 20 166 0.120481928

Specific eMNs

GO:0061138_morphogenesis of a branching
epithelium

14 67 0.208955224

GO:0007626_locomotory behavior 13 60 0.216666667

GO:0001890_placenta development 13 65 0.2

GO:0007162_negative regulation of cell
adhesion

12 55 0.218181818

GO:0001894_tissue homeostasis 12 50 0.24

GO:0060562_epithelial tube morphogenesis 12 43 0.279069767

GO:0034101_erythrocyte homeostasis 12 55 0.218181818

GO:0048469_cell maturation 12 52 0.230769231

GO:0009267_cellular response to starvation 11 45 0.244444444

GO:0007179_transforming growth factor beta
receptor signaling pathway

11 44 0.25

GO:0042594_response to starvation 11 43 0.255813953

GO:0048762_mesenchymal cell differentiation 11 42 0.261904762

GO:0051100_negative regulation of binding 11 53 0.20754717

GO:0051047_positive regulation of secretion 11 39 0.282051282

GO:0030098_lymphocyte differentiation 11 50 0.22

GO:0001558_regulation of cell growth 11 46 0.239130435

GO:0006732_coenzyme metabolic process 11 42 0.261904762

GO:0032259_methylation 10 41 0.243902439

GO:0090287_regulation of cellular response to
growth factor stimulus

10 46 0.217391304

GO:0019359_nicotinamide nucleotide
biosynthetic process

10 41 0.243902439

as GO:0198738_cell-cell signaling by wnt, GO:0016055_Wnt
signaling pathway, GO:0030111_regulation of Wnt signaling
pathway, and GO:0060828_regulation of canonical Wnt signaling
pathway, and there are evidences that the Wnt signaling pathway
is a key pathway for the occurrence of T2D (Lee et al.,
2008; Liu et al., 2018). Therefore, we can conclude that both
T1D and T2D are significantly related to the Wnt signaling
pathway. On the other hand, the Wnt signaling pathway is
also related to the development of some DRD2s, for example,
miR-128-3p aggravates cardiovascular calcification and insulin
resistance in T2D rats by downregulating ISL1 through the
activation of the Wnt pathway (Wang et al., 2019). The
specific eMN with the largest KF is “GO:0061138_morphogenesis
of a branching epithelium,” and studies have found that
branching morphogenesis is a critical step in the development
of many epithelial organs, for example, lung (Carter et al.,
2014; Goodwin et al., 2019), kidney (Basson et al., 2006),
and breast, besides, breast epithelial branch morphogenesis
may be related to breast cancer (Kessenbrock et al., 2017).
In addition, the similar BPs of morphogenesis of a branching
epithelium (GO:0060562_epithelial tube morphogenesis ranked
6, GO:0001763_morphogenesis of a branching structure ranked
22 and GO:0048754_branching morphogenesis of an epithelial
tube ranked 25) are also in the specific eMN list, which further
indicates that the BP of morphogenesis of a branching epithelium
structure is important for T2D-DRD2 connections.

Key Connectors Mediating
Diabetes-Disease Connections in
Significant Subnets
We performed key connector analysis (KCA) to infer key
genes that connect diabetes and DRDs in selected eMNs. The
detailed information of KCA is provided in Section “Materials
and Methods.” We selected two common diabetes-disease
connections including T1D-bacterial infection and T2D-obesity
as case studies to illustrate the key connectors (Figure 4). In
Figure 4, we only show the subnet consisting of key connectors
and their neighboring genes for a better view.

The T1D-bacterial infection connection is most significant
in the eMN corresponding to “GO:0016055_Wnt signaling
pathway.” In this eMN, there are 111 T1D genes and 58
bacterial infection genes, and the number of overlap between
them is 30. We analyzed these 30 common genes with key
driver analysis (KDA), and the key connector gene HSPA8 was
obtained (Figure 4A). Studies have shown that HSPA8 binds
bacterial lipopolysaccharide (LPS) and mediates LPS-induced
inflammatory response (Yahata et al., 2000; Triantafilou et al.,
2001). Similarly, T2D-obesity connection is the most significant
in the eMN corresponding to “GO:0035107_appendage
morphogenesis.” In this eMN, there are 84 T2D genes and 30
obesity genes, and the number of overlap between them is 23.
We analyzed these 23 common genes, and got the key connector
genes TCF4, CTNNB1 and CEBPB (Figure 4B). TCF4 (TCF7L2)
is the strongest T2D candidate gene discovered to date, and it
also plays a key role in the development and function of adipose
tissue (Chen et al., 2018). CTNNB1 (β-catenin) is a key regulator
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FIGURE 4 | Key connectors of (A) T1D-bacterial infection in Wnt signaling pathway and (B) T2D-obesity in appendage morphogenesis. We use node shape to
denote key connectors: (1) square represents the key connectors; (2) circle represents diabetes and disease genes. We use fill color to denote diabetes and disease
information: (1) red represents diabetes gene; (2) blue represents disease gene; and (3) yellow represents the overlapping diabetes and disease gene.

of fat expansion and human obesity (Chen et al., 2020). Besides,
studies have shown that co-administration of insulin and leptin
to pancreatic islet-derived mesenchymal stem cell (PID-MSC)
leads to the co-development of insulin and leptin resistance, and
the differentiation signaling is mainly mediated by CTNNB1 and
Tub (Ercin et al., 2018). In addition, the repressed expression
of CEBPB has been found in obesity and T2D in adipose tissue
(Li et al., 2016).

DISCUSSION

The Effect of the Number of Disease
Genes on the Result
In the predicted diabetes-related diseases&vitamin D list, some
well-known diseases are not ranked at the top (e.g., diabetic
nephropathy, insulin resistance) and we speculate that it may be
caused by the difference in the number of known disease genes.
We sorted the numbers of diseases&vitamin D genes from large

to small, and found that diabetic nephropathy ranked 118 and
vitamin D ranked 255. In order to prove our conjecture, we
expanded (limited) the genes of each disease to 500 and predicted
DRDs with DIconnectivity_eDMN method on HMR_Dataset
(Supplementary Table S6). We found that the predicted top five
related diseases of T1D and T2D are the same, all of which are
“essential thrombocytemia,” “bacterial infection,” “osteoporosis,”
“diabetic nephropathy,” “insulin resistance.” This result shows
that the number of known disease genes indeed affects the
ranking of related diseases to a certain extent. Additionally,
vitamin D has the least number of genes and is predicted at the
bottom of the list, which further proves our conjecture.

Diabetes Genes Play an Important Role
in the Diabetes-Disease Connections
We calculated the proportion of T1D genes involved in the
DIconnectivity (DIconnectivity-Whole network) for each T1D-
DRD1 connection, and found that the average proportion was
0.64, while in T1D-non-DRD1 connections, the proportion was
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only 0.54. Similarly, in T2D-DRD2 connections and T2D-non-
DRD2 connections, the average proportions were 0.59 and 0.51,
respectively. In addition, we also calculated the proportion of
disease genes involved in the corresponding DIconnectivity, and
found that the average proportions of DRD1s and non-DRD1s
were 0.80 and the average proportions of DRD2s and non-DRD2s
were 0.88 and 0.87, respectively. The average proportion of
disease genes is higher than that of diabetes, but the proportions
is the same for DRDs and non-DRDs, which shows that diabetes
plays a key role in diabetes-disease connections.

For the shortest path method, we considered three distance
measures (Guney et al., 2016): (1) the shortest distance ds(A, S),
ds(A, S) = 1

||S||
∑

a∈A
1
||A||

∑
s∈S d(a, s), where A is diabetes gene

set, S is disease gene set, and d(a, s) is the shortest path length
between nodes a and s in PPI network; (2) the closest distance
dc(S,A), dc(S,A)= 1

||S||
∑

s∈S mina∈A d(s, a), d(s, a)=d(a, s); (3)
the closest distance dc(A, S), dc(A, S)= 1

||A||
∑

a∈A mins∈S d(a, s).
We found that dc(A, S) has the best results (Supplementary
Table S7). Among these three methods, ds(A, S) considers all
genes of diabetes and disease, dc(S,A) only considers all genes
of disease, and dc(A, S) only considers all genes of diabetes.
Therefore, we can conclude that diabetes plays a more important
role in diabetes-disease connections.

The Important Genes and Distances in
the Diabetes-Disease Connections
DIoverlap method takes the intersection between diabetes and
disease gene sets as a criterion for measuring their connection.
In essence, it only considers the genes with distances of 0;
DIconnectivity method considers the genes with distances of
0 and 1; DIcd method considers all diabetes genes regardless
of distance. Among the three methods, DIconnectivity_eDMN
performs best, which shows that the genes with distances of 0 and
1 play an important role in the diabetes-disease connections.

The Impact of BP Redundancy
In order to evaluate the impact of BP redundancy on prediction
results, we calculated the semantic similarity among 3367
BP terms using R software package GOSemSim, of which
1141/359/59 terms have semantic similarity less than 0.8/0.7/0.6.
Too high similarity and few terms are not our selection criteria,
so we adopted the optimal method DIconnectivity-eDMN to
predict DRDs again based on eMNs with similarity less than 0.7.
Through the training of DIconnectivity-eDMN_EN (N = 1, 2,. . .,
10), we found that DIconnectivity-eDMN_E3/DIconnectivity-
eDMN_E4 has the best prediction for DRD1s/DRD2s with AUC
of 0.70/0.71. Therefore, we can conclude that removing a few
highly similar terms has very little impact on the prediction effect.

MATERIALS AND METHODS

Database
We downloaded the upregulated and downregulated gene files
of diabetes/diseases Disease_Perturbations_ from_GEO_up.txt
(Supplementary Dataset S5) and Disease_ Perturbations_

from_GEO_down.txt (Supplementary Dataset S6) from
Enrichr5. Enrichr is a comprehensive resource for curated gene
sets, currently containing 180,184 annotated gene sets from 102
gene set libraries (Kuleshov et al., 2016). Terms of these two
files are the same, but the corresponding genes are different,
so we first merge the upregulated and downregulated genes of
each term, and get a total of 839 terms of human, mouse, and
rat. In addition, since some diabetes/diseases terms are the same
but only the case of the first letter is different, so we merged the
same human terms of diabetes/diseases. Finally, we obtained
a list of genes for 254 diseases and T1D/T2D (Supplementary
Dataset S1). Besides, we also extracted vitamin D genes from GO
terms which were related to vitamin D. In addition, we found
that diabetes and some of 254 diseases not only contain human
term genes, but also mouse or rat term genes, so we constructed
another dataset by adding them to the corresponding disease
gene set (Supplementary Dataset S2).

We used the human PPI network compiled by Menche et al.
as the reference PPI network (Guney et al., 2016), and conducted
research based on its largest connected subnet, which consists of
13,329 proteins and 141,150 protein interactions.

Gene ontology terms were obtained based on R software
package GO.db. We consider GO BPs containing 30–500 genes,
and ignore either very small or overly large functional gene
sets. Finally, we obtained 3367 GO BPs to generate various
network modules.

Diabetes–Disease/Vitamin D Connection
Annotation
We adopted literature mining approach to annotate whether
a disease/vitamin D is diabetes-related. Specifically, we ranked
diseases&vitamin D based on their Jaccard indices between their
names and the term “type 1 diabetes” (“type 2 diabetes”) in
PubMed abstracts published from 2008 to 2019. The PubMed
abstracts containing the term “type 1 diabetes” (“type 2 diabetes”)
from 2008 to 2019 were retrieved using Entrez Programming
Utilities6. The term “type 1 diabetes” corresponds to “type 1
diabetes” [MeSH Terms] OR “type 1 diabetes” [All Fields] in
PubMed, which is a superset of the term “type 1 diabetes.”
The co-occurrence of disease and diabetes was evaluated by the
following equation:

Jaccard(disease, diabetes)=
|PubMedIDdisease ∩ PubMedIDdiabetes|

|PubMedIDdisease ∪ PubMedIDdiabetes|

Where PubMedIDdisease and PubMedIDdiabetes were the
PubMed IDs containing the disease name and the term
“diabetes,” respectively.

According to previous study, some diseases are indeed
associated with diabetes, such as diabetic nephropathy, obesity,
and bacterial infection (Forbes and Cooper, 2013). We used
the minimum Jaccard coefficient of these diseases as the
threshold, and selected the diseases&vitamin D with Jaccard
coefficient larger than threshold as DRDs. Finally, we obtained

5https://maayanlab.cloud/Enrichr/
6http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db~=~pubmed&term~
=~[type1diabetes]+AND+2008:2019[pdat]&retmax~=~999999
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41 diseases&vitamin D that are defined as DRD1s and 29
diseases&vitamin D that are defined as DRD2s.

Four Categories of Algorithms
We used four algorithms to identify the connections between
diabetes and diseases&vitamin D, namely DIoverlap rank the
diseases&vitamin D by calculating the Jaccard coefficient,
DIcd performed by using the closest distance. DINet
based on a procedure similar to gene set enrichment
analysis and an RWR procedure, and DIconnectivity
based on the number of interactions between diabetes and
diseases&vitamin D genes.

DIcd
DIcd is a closest distance method: let A and S denote diabetes and
disease gene set, respectively, and dc(A, S) is the closest distance
from A to S. Given two nodes a ∈ A and s ∈ S, the shortest path
length between a and s in the network is represented by d(a, s),
then we define dc(A, S) as follows:

dc(A, S) =
1
||A||

∑
a∈A

min
s∈S

d(a, s)

It should be noted that the smaller the value of DIcd, the higher
the connection between diabetes and disease.

DIoverlap
DIoverlap is the Jaccard coefficient between diabetes and
disease gene set, and the larger the value, the higher the
connection between them.

DINet
DINet is similar to the GeroNet (Yang et al., 2016, 2017) and it
consists of three steps: (1) Generate expanded network modules
(eMN), (2) Calculate the enrichment scores on eMNs follow a
method similar to GSEA, and (3) Calculate the significance of
enrichment score based on permutation test.

Step 1: To generate expanded network modules (eMN), we
map each GO BP to the reference PPI network to generate the
corresponding MN, which is further expanded by an RWR (see
Supplementary Material) until it reaches N times the original
gene size and the maximum does not exceed 500 genes.

Step 2: To calculate the diabetes-disease enrichment score on
an eMN, we first map the two gene sets to the eMN and perform
two RWR expansions by setting the two mapped gene sets as
seeds, which will rank all genes in the eMN, respectively. We go
through the sorted gene list of eMN based on disease (diabetes)
gene seed, if we encounter a gene that is not a diabetes (disease)

gene, −
√

G
N−G is added to the score, where N is the number of

genes for the network, and G is the number of diabetes (disease)

genes; otherwise,
√

N−G
G is added. This generates a curve and the

peak value is defined as ES1(ES2). The enrichment score is defined
as the weighted sum of scores

ESβ = βES1 + (1− β)ES2, 0 < β < 1.

Step 3: To calculate the significance of enrichment score, we
permute diabetes genes in the eMN for 100 times to calculate the

null distribution of enrichment scores and convert the ESβ to a
z-score statistic based on this null distribution, then a p-value is
estimated and adjusted for multiple testing. For each diabetes-
disease connection, the significance is defined as the minimum
adjusted p-value of eMN. The diseases are then ranked based on
their significances, and the more significant the disease, the more
diabetes-related.

DIconnectivity
DIconnectivity is the weighted sum of interaction numbers
between diabetes and disease gene set, which is based on the
idea of cut edge. We can divide the interactions between the
two gene sets into four categories: (1)H1: one gene involved
in the interaction is disease/VD gene and the other gene is
diabetes gene; (2)H2: one gene is disease/VD gene, and the
other is an overlap gene (both a disease gene and a diabetes
gene); (3)H3: One gene is a diabetes gene, and the other is an
overlap gene; (4) H4: the two genes are both overlap genes. We
give the weight of the number of Hi(i = 1, 2, 3) as 1, and the
weight of H4 as 2 (see Figure 1C). In addition, we also proposed
DIconnectivity-eDMN method, which calculates the weighted
sum of interaction numbers between the expand diabetes and
disease gene set. The gene sets are expanded based on RWR
and GSEA: (1) In Step 2 of DINet, we can obtain the score of
each diabetes/disease gene; (2) Sort the diabetes/disease genes in
descending order according to their scores; (3) The top n genes
are defined as expanded diabetes/disease genes (Hu et al., 2018),
and n is N times the original gene size and the maximum does
not exceed the number of eMN genes. For each diabetes-disease
pair, its DIconnectivity is defined as the mean of interaction
numbers across eMNs. The larger the value is, the higher the
connection between them.

Key Connector Analysis
We adopted the KDA software package (Zhang and Zhu,
2013) to identify key connectors in PPI network. KDA was
originally designed to identify “key regulators” in a directed
regulatory network. When applied to undirected networks like
PPI networks, we consider the key nodes as “key connectors”
since they do not necessarily contain the directional information
(Zhang and Zhu, 2013). Such key connectors function more like
a “hub” gene, instead of being considered as “master regulators.”
Specifically, KDA takes a set of genes G and an undirected gene
network N as inputs. It has two searching strategies, namely,
dynamic neighborhood search (DNS) and static neighborhood
search (SNS) for identifying key connectors. We adopted DNS in
this study: (1) It first generates a subnet NG consisting of all nodes
in N with no more than L(L = 2 in this study) steps away from
the nodes in G. (2) For each gene g in NG, DNS then searches
for genes with distances no more than h = 1, 2, ...,H(H = 2 in
this study) in NG. The set of genes (not including g) is denoted by
NG(HLNg,h). The hypergeometric test is then used to calculate
the enrichment between NG(HLNg,h) and G with the genes in
NG as background for each h. The final enrichment p-value of
each gene g is calculated as the minimum p-value across h layers.
(3) The Bonferroni correction is performed to adjust for multiple
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testing and the genes with significant Bonferroni p-values (≤0.05)
are outputted as key connectors.
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Bulk transcriptomic analyses of autism spectrum disorder (ASD) have revealed
dysregulated pathways, while the brain cell type-specific molecular pathology of ASD
still needs to be studied. Machine learning-based studies can be conducted for ASD,
prioritizing high-confidence gene candidates and promoting the design of effective
interventions. Using human brain nucleus gene expression of ASD and controls, we
construct cell type-specific predictive models for ASD based on individual genes and
gene sets, respectively, to screen cell type-specific ASD-associated genes and gene
sets. These two kinds of predictive models can predict the diagnosis of a nucleus with
known cell type. Then, we construct a multi-label predictive model for predicting the cell
type and diagnosis of a nucleus at the same time. Our findings suggest that layer 2/3
and layer 4 excitatory neurons, layer 5/6 cortico-cortical projection neurons, parvalbumin
interneurons, and protoplasmic astrocytes are preferentially affected in ASD. The
functions of genes with predictive power for ASD are different and the top important
genes are distinct across different cells, highlighting the cell-type heterogeneity of
ASD. The constructed predictive models can promote the diagnosis of ASD, and the
prioritized cell type-specific ASD-associated genes and gene sets may be used as
potential biomarkers of ASD.

Keywords: autism spectrum disorder, cell type-specific, predictive model, gene set, biomarker

INTRODUCTION

Autism spectrum disorder (ASD) represents a group of neurodevelopmental disorders,
characterized by substantial phenotypic and genetic heterogeneity. Genetic studies have identified
variants that contribute to the risk of developing ASD (Iossifov et al., 2012; Neale et al., 2012;
O’Roak et al., 2012; Sanders et al., 2012; De Rubeis et al., 2014; Gaugler et al., 2014; Turner et al.,
2016; Satterstrom et al., 2020). However, it remains perplexing how these reported variants lead
to the pathogenesis of ASD. A major mode of action is that these genetic variants cause gene
expression alternations; direct analysis of gene expression in disease-relevant tissue is thus valuable
for understanding the molecular mechanism of ASD. As ASD is believed to result from functional
aberrations within brains, bulk transcriptomic analyses between autistic and normal brains have
been applied for identifying aberrant gene expression patterns in ASD (Voineagu et al., 2011; Gupta
et al., 2014; Guan et al., 2016; Parikshak et al., 2016). However, the brain is a highly heterogeneous
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organ including different cell types that are highly
interconnected. Genes may demonstrate diverse functions
across different brain cell types. In ASD, different functions may
be dysregulated and causal genes may be distinct across different
cells. Although bulk transcriptomic studies revealed convergence
of disease pathology on common pathways, the brain cell
type-specific molecular pathology of ASD is still needed to study.

Recently, the newly available single-nucleus RNA-sequencing
data of ASD (Velmeshev et al., 2019) makes it possible to study
the cell-type heterogeneity of ASD directly. The authors identified
differentially expressed (DE) genes between ASD and control
groups in a cell type-specific way and analyzed the functions of
the cell type-specific DE genes to characterize the heterogeneity
of dysregulated gene expression patterns among brain cell
types in ASD. As genes interact with others, the integrity of
disease gene modules instead of individual genes may determine
the manifestation of a disease in cells (Kitsak et al., 2016;
Mohammadi et al., 2019). Therefore, in addition to identifying
the individual cell type-specific risk genes, it is essential to identify
cell type-specific gene sets/modules associated with ASD.

There have been more and more studies evaluating the
effectiveness of machine learning for diagnosing ASD, exploring
its genetic underpinnings, and designing effective interventions
(Hyde et al., 2019). These studies were based on different kinds of
datasets, such as behavior evaluation based on Autism Diagnostic
Observation Schedule (ADOS) (Duda et al., 2014; Levy et al.,
2017) and Autism Diagnostic Interview-Revised (ADI-R) (Wall
et al., 2012; Duda et al., 2016), brain images for magnetic
resonance image (MRI) (Chen et al., 2011; Heinsfeld et al.,
2018) and electroencephalogram (EEG) (Bosl et al., 2018), and
genetic profiles (Kong et al., 2012; Cogill and Wang, 2016;
Guan et al., 2016; Oh et al., 2017). To detect ASD candidate
genes, several predictive models were constructed based on gene
expression profiling, including the one built using DE genes
between ASD and controls based on gene expression microarrays
of blood (Kong et al., 2012) and the one built using aberrant gene
expression in ASD based on bulk transcriptomic data of brains
(Guan et al., 2016). Actually, for identifying ASD risk genes,
genetic and genomic studies were usually performed, such as
genome-wide association studies, copy number variation studies,
and whole exome sequencing; these methods are expensive and
time-consuming, and the generated potential candidate genes
are numerous and not easy to be validated (Cogill and Wang,
2016). Gene screening methods based on machine learning can
prioritize genes and identify high-confidence candidates, which
may provide new insights for the experimental studies.

In this study, to characterize the cell-type heterogeneity of
ASD and to take advantage of the potential of gene expression
signature being diagnostic biomarkers for ASD, we analyze the
human brain nucleus gene expression data of ASD and controls
published in Velmeshev et al. (2019) and construct multiple
kinds of classification models for ASD using the algorithm of
partial least squares (PLS), identifying cell type-specific genes and
gene sets associated with ASD. Firstly, we construct cell type-
specific predictive models based on individual genes to screen
cell type-specific genes associated with ASD. Then, we construct
cell type-specific gene set-based predictive models to screen cell

type-specific gene sets associated with ASD. These two kinds
of predictive models can be applied to predict the diagnosis
of a given nucleus with known cell type. Lastly, we further
construct a multi-label predictive model for predicting the cell
type and diagnosis of a given nucleus at the same time. Our
results suggest that it may be feasible to use brain cell/nucleus
gene expression for ASD detection and the constructed predictive
models can promote the diagnosis of ASD. Our analytical
pipeline prioritizes ASD-associated cell type-specific genes and
gene sets, highlighting the cell-type heterogeneity of ASD.

MATERIALS AND METHODS

Human Brain Nucleus Gene Expression
Data
We used the single-nucleus RNA-seq data published in
Velmeshev et al. (2019), which includes 104,559 nuclei from
41 post-mortem tissue samples from the prefrontal cortex
and anterior cingulate cortex of 15 ASD patients and 16
control subjects. The nuclei were divided into 17 cell types,
including fibrous astrocytes (AST-FB), protoplasmic astrocytes
(AST-PP), endothelial, parvalbumin interneurons (IN-PV),
somatostatin interneurons (IN-SST), SV2C interneurons (IN-
SV2C), VIP interneurons (IN-VIP), layer 2/3 excitatory neurons
(L2/3), layer 4 excitatory neurons (L4), layer 5/6 corticofugal
projection neurons (L5/6), layer 5/6 cortico-cortical projection
neurons (L5/6-CC), microglia, maturing neurons (Neu-mat),
NRGN-expressing neurons I (Neu-NRGN-I), NRGN-expressing
neurons II (Neu-NRGN-II), oligodendrocytes, and OPC. We
downloaded the matrices of raw counts from the website of
autism.cells.ucsc.edu. Then, we preprocessed the data with R
package of scran (Lun et al., 2016), including the quality control
of nuclei and genes, removing a minority of nuclei from different
cell cycle phases, and normalizing the gene expression data.
Next, nuclear and mitochondrial genes downloaded from Human
MitoCarta2.0 (Calvo et al., 2016) were excluded. We used the
function of plotExplanatoryVariables in scran to check if any
factors, including region, age, sex, PMI (post-mortem interval),
RIN (RNA integrity number), Capbatch (10X capture batch), and
Seqbatch (sequencing batch), may contribute to the heterogeneity
of gene expression. It can calculate the percentage of the variance
of the expression values that is explained by the factors for each
gene. By checking the distribution of percentages across all genes,
we found that the expression profiles of most genes are not
strongly associated with the factors and the factors thus do not
need to be explicitly modeled in the downstream analyses (Lun
et al., 2016). We applied scran to obtain highly variable genes,
which include a total of 12,036 genes. We used the expression
level of 12,036 genes for downstream analyses, which contains
85,125 nuclei, including 3655, 7085, 1991, 3719, 4190, 1836, 5621,
12,795, 6518, 3402, 4385, 2495, 3532, 589, 1459, 12206, and 9647
nuclei from cell types of AST-FB, AST-PP, endothelial, IN-PV,
IN-SST, IN-SV2C, IN-VIP, L2/3, L4, L5/6, L5/6-CC, microglia,
Neu-mat, Neu-NRGN-I, Neu-NRGN-II, oligodendrocytes, and
OPC, respectively.

Frontiers in Genetics | www.frontiersin.org 2 January 2021 | Volume 11 | Article 628539155

http://autism.cells.ucsc.edu
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-628539 January 9, 2021 Time: 17:46 # 3

Guan et al. Cell Type-Specific Autism-Associated Genes

Annotated Gene Sets
A total of 913 ASD candidate genes were downloaded from
Simons Foundation Autism Research Initiative (SFARI) (release
of March 4, 2020), which include 119, 144, 219, and 472 genes
from categories of S (syndromic), 1 (high confidence), 2 (strong
candidate), and 3 (suggestive evidence). For gene set analysis,
three kinds of annotated gene sets from Molecular Signatures
Database (MSigDB) (Liberzon et al., 2011) were used, including
H: hallmark gene sets, C2: curated gene sets (containing gene
sets from chemical and genetic perturbations, and canonical
pathways of Biocarta, KEGG, PID, and Reactome), and C5: GO
gene sets. By intersecting the genes in gene sets and our analyzed
gene expression matrix, we kept 3741 gene sets containing more
than 30 overlapping genes.

The Algorithm of Partial Least Squares
Partial least squares (Wold, 1966) regression combines features
from principal component analysis and multiple regression. It has
the ability to address the problem of modeling multicollinearity,
noisy, and even incomplete highly dimensional data (Boulesteix
and Strimmer, 2006). PLS can solve both single- and multi-label
classification problems. Partial least squares discriminant analysis
(PLS-DA) is a PLS regression, with the dependent variable
being categorical. Suppose X is an n × m matrix containing n
observations of m genes and Y is an n × p matrix containing
n observations of p response variables, then X and Y can be
decomposed by:

X = TPT
+ E, Y = UQT

+ F

where T and U are n× k score matrices (called component scores
or latent variables) of X and Y, respectively, P and Q are m × k
and p × k orthogonal loading matrices, and E and F are the
residual matrices. The decompositions of X and Y are made so
as to maximize the covariance between T and U. Then, based
on T, P, U, and Q, we can first fit U and T, and then the linear
relationship between X and Y can be obtained.

Recursive Feature Elimination With
Cross-Validation
Recursive feature elimination (RFE) (Guyon et al., 2002) is a
backward feature selection method, which is a recursive process.
It first builds a model using all features based on an algorithm
specified, such as PLS in our study, and computes a measure
of importance for each feature. The least important features are
removed. Then, the model is re-built using the left features,
importance scores are computed, and the least important features
are removed until the specified number of features is reached.
RFE attempts to eliminate dependencies and collinearity that may
exist in the model. It requires a specified number of features to
keep. To find the optimal number of features, RFE with cross-
validation (RFECV) is usually used to score feature subsets of
different sizes and select the best scoring one. Then, the optimal
feature subset is used to build the final model.

The Construction of Predictive Models
The R package of caret (Kuhn, 2008) was adopted to construct
predictive models based on the algorithm of PLS. Firstly, for each
cell type, we extracted the gene expression data of nuclei from
the cell type and constructed a cell type-specific predictive model.
Secondly, for each cell type and each annotated gene set, we
extracted the expression data of nuclei from the cell type in the
genes included in the gene set and constructed a cell type-specific
gene set-based predictive model. These two kinds of predictive
models can predict the diagnosis of a nucleus with known cell
type. Specifically, we split the extracted gene expression data
into a training set and a test set at a ratio of 7:3 using stratified
sampling. For the training set, we selected the optimal model by
applying 10-fold cross-validation for 10 times and tuning over
the model hyperparameter (the number of PLS components)
with grid search from 1 to 15 with a step of 1. To evaluate
the model performance, the area under the receiver operating
characteristic (ROC) curve (denoted as AUC) was used, because
this metric can deal well with the problem of label imbalance and
not be influenced by the selection of threshold. Then, from the
optimal model, we obtained the predictive probability of each
nucleus being a nucleus from ASD patients. Next, we used R
package of pROC (Robin et al., 2011) to obtain the best threshold
on training set and the threshold was used to determine the
predictive performances on training set and test set. For each
predictive model, we calculated the importance of each gene
using the function of varImp in caret.

In order to predict the cell type and diagnosis of a given
nucleus at the same time, we constructed a multi-label predictive
model based on PLS using R package of mlr (Bischl et al., 2016).
For each nucleus, we used 18 labels to describe it, with 1 label
being the diagnosis and the other 17 cell-type labels obtained
using one-hot encoding. We split the whole gene expression
data including all cell types and all genes into a training set
and a test set at a ratio of 7:3 using stratified sampling. Based
on the training set, we selected the optimal model by applying
five-fold cross-validation for five times and tuning over the
model hyperparameter with grid search from 1 to 15 with a
step of 1. Hamming loss, which is the fraction of labels that
are predicted incorrectly to the total number of labels, was used
as a performance indicator. Then, from the optimal model, we
obtained the predictive probability of each nucleus belonging to
each label. For the labels of cell types, the predictive cell type of
each nucleus was set as the cell type whose predictive probability
is the largest. For the diagnosis label, we extracted the predictive
probability of training set and applied ROC analysis to obtain
the optimal cut-off on training set for determining the predictive
diagnosis of each nucleus in training and test sets.

RESULTS

Methodological Overview
After normalization, we used the function of
plotExplanatoryVariables in scran (Lun et al., 2016) to calculate
the percentage of the variance of the expression values that
is explained by factors, including region, age, sex, PMI, RIN,
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Capbatch (10X capture batch), and Seqbatch (sequencing batch),
for each gene (Supplementary Figure 1A). We found that the
expression profiles of most genes are not strongly associated
with the factors and the factors thus do not need to be explicitly
modeled in the downstream analyses. Then, we obtained highly
variable genes, a total of 12,036 genes, and used their expression
level for downstream analyses. The density plot of the percentage
of variance explained by each factor across highly variable genes
can be seen in Supplementary Figure 1B.

Then we constructed multiple kinds of predictive models for
ASD. The overview of our analytical method can be seen in
Figure 1. Firstly, to screen genes associated with ASD in each
cell type, we constructed cell type-specific predictive models,
which can predict the diagnosis of a nucleus whose cell type
is known, using the algorithm of PLS (see section “Materials
and Methods”). Specifically, for each cell type, we extracted the
gene expression data of the nuclei from the cell type and split
the data into training and test sets. We selected the optimal
model based on the training set, and then obtained the predictive
probability of each nucleus being a nucleus from ASD patients.
Next, ROC analysis was performed to obtain the best threshold
on training set, and the threshold was used to determine the
predictive performance on training and test sets. To prioritize
genes, we calculated the importance of each gene in the cell type-
specific predictive model. In addition, in order to use less genes to
achieve similar performances, we performed RFECV (see section
“Materials and Methods”) to reduce the number of genes used
to re-construct cell type-specific predictive models. The optimal
genes obtained using RFECV were denoted as RFE genes, which
were used for the downstream analyses to depict the cell-type
heterogeneity of ASD.

Secondly, to screen gene sets associated with ASD in each cell
type, we constructed cell type-specific gene set-based predictive
models using PLS. Specifically, for each cell type and each
gene set, we extracted the expression level of the nuclei from

the cell type in the genes included in the considered gene set
and constructed a predictive model. To prioritize gene sets, we
ranked gene sets using their predictive performance on the test
set and kept the gene sets whose predictive accuracy (ACC),
sensitivity (SN), and specificity (SP) are larger than 70% as cell
type-specific gene sets associated with ASD. Besides, for the
total genes included in these identified gene sets, we calculated
their frequency and averaged importance, and used the genes
with top averaged importance to re-construct cell type-specific
predictive models.

Lastly, we further constructed a multi-label predictive model
using PLS, which can predict the cell type and the diagnosis of
a given nuclei at the same time. For the labels of cell types, the
predictive cell type of each nucleus was set as the cell type whose
predictive probability is the largest. For the diagnosis label, we
extracted the predictive probability of training set and applied
ROC analysis to obtain the optimal cut-off for determining the
predictive diagnosis of each nucleus in training and test sets.

Cell Type-Specific Genes Associated
With ASD
For each of the 17 cell types, we first constructed a cell
type-specific predictive model using all genes (Table 1 and
Supplementary File 1). To score genes in each cell type,
we calculated the importance of genes and ranked the genes
(Supplementary File 2). Next, in order to use less genes to
achieve similar performances, we used the genes with top 500,
1000, and 1500 importance respectively to construct cell type-
specific predictive models. We found out that using top 1000
genes made the model performance better than the one using
top 500, while approaching the one using top 1500 genes
(Supplementary File 1). Therefore, for each cell type, we applied
RFECV to reduce the number of genes to up to 1000 and obtain
the optimal gene subset, which was then used to re-construct

FIGURE 1 | The methodological overview.
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TABLE 1 | The classification performances of cell type-specific predictive models built using all genes.

Cell type (ASD/control) Training set Test set

ACC SN SP AUC ACC SN SP AUC

AST-FB (2033/1622) 0.91 0.92 0.9 0.97 0.72 0.78 0.63 0.79

AST-PP (4749/2336) 0.93 0.93 0.93 0.98 0.84 0.87 0.79 0.90

Endothelial (850/1141) 0.92 0.91 0.92 0.97 0.76 0.70 0.80 0.83

IN-PV (1811/1908) 0.95 0.94 0.96 0.99 0.80 0.77 0.82 0.88

IN-SST (1945/2245) 0.94 0.92 0.95 0.98 0.76 0.70 0.81 0.83

IN-SV2C (990/846) 0.98 0.98 0.97 1.00 0.80 0.83 0.76 0.88

IN-VIP (3098/2523) 0.89 0.88 0.91 0.96 0.79 0.79 0.78 0.86

L2/3 (6962/5833) 0.95 0.95 0.95 0.99 0.89 0.90 0.88 0.96

L4 (3415/3103) 0.93 0.91 0.94 0.98 0.83 0.80 0.87 0.91

L5/6 (1710/1692) 0.93 0.93 0.93 0.98 0.78 0.77 0.80 0.86

L5/6-CC (2279/2106) 0.97 0.98 0.97 1.00 0.85 0.88 0.82 0.93

Microglia (1174/1321) 0.91 0.90 0.93 0.97 0.76 0.73 0.78 0.84

Neu-mat (1853/1679) 0.85 0.82 0.88 0.93 0.75 0.70 0.80 0.83

Neu-NRGN-I (321/268) 0.97 0.99 0.94 0.99 0.69 0.75 0.63 0.74

Neu-NRGN-II (828/631) 0.82 0.86 0.78 0.89 0.63 0.70 0.53 0.68

Oligodendrocytes (4587/7619) 0.83 0.86 0.81 0.91 0.77 0.79 0.75 0.85

OPC (5085/4562) 0.83 0.82 0.84 0.91 0.75 0.74 0.76 0.82

The number of nuclei from ASD and controls are listed. ROC analysis was applied to obtain the AUC and the optimal cut-off point on the training set, and then the optimal
cut-off was used to determine the predictive accuracy (ACC), sensitivity (SN), and specificity (SP) on the training and test sets.

a cell type-specific predictive model (see section “Materials and
Methods”). The R package of caret (Kuhn, 2008) was adopted to
perform PLS-RFE with 10-fold cross-validation for 10 times. The
sizes of evaluated gene subsets are from 100 to 1000 with a step
of 100. The optimal genes obtained using RFECV were denoted
as RFE genes. It is noted that the performances on test sets of the
cell type-specific predictive models based on RFE genes approach
the ones based on all genes (Figure 2A and Supplementary File
1); hence, we used the RFE genes for the subsequent analyses
in this section.

By examining the number of RFE genes in every cell type
(Table 2), we found that in several cell types, such as AST-PP,
IN-PV, L2/3, L4, and L5/6-CC, there are more RFE genes and
the corresponding cell type-specific predictive models have better
performances than other cell types (Figure 2A). This implies that
these cell types may be more vulnerable in ASD and more genes
may be dysregulated in these cell types. Then, for each cell type,
we also applied edgeR (Robinson et al., 2010) to identify DE genes
in ASD compared to controls. It can be seen that in the mentioned
cell types above, there are indeed more DE genes, which also
indicates that these cell types may be mainly affected by ASD.
By performing hypergeometric tests, we found that the RFE
genes are significantly overlapped with the DE genes identified by
edgeR (Table 2). Then, we checked if building cell type-specific
predictive models using edgeR genes would be better than the
ones using RFE genes, while the model performances using RFE
genes are better than the ones using edgeR genes (Supplementary
File 1). This shows that genes that are not identified by edgeR may
have predictive power for ASD. In addition, we also compared
the RFE genes with the DE genes identified in the single-nucleus
RNA-seq study of ASD (Velmeshev et al., 2019). We found
that RFE genes are significantly overlapped with Velmeshev’s

genes, especially for the cell types of microglia, L2/3, L4, and
IN-VIP (Table 2). The model performances using RFE genes
are significantly better than the ones using Velmeshev’s genes
(Supplementary File 1), which may be because the number of
Velmeshev’s genes is small. Next, we found that there are more
SFARI ASD genes overlapped with RFE genes in neuron-related
cell types. We also performed overrepresentation tests between
RFE genes and SFARI ASD genes, and found that RFE genes are
significantly overlapped with ASD genes (Table 2).

For each cell type-specific predictive model built based on
RFE genes, we calculated the importance of each RFE gene
(Supplementary File 3). Table 2 lists the top RFE genes in each
cell type. Figure 2B also demonstrates the expression of the top
three RFE genes in ASD and control groups for the representative
cell types, including AST-PP, endothelial, IN-PV, L2/3, microglia,
oligodendrocytes, and OPC. The top genes among different
cell types are distinct, implying the cell-type heterogeneity of
ASD. However, some top genes appearing in several cell types
are of note. For instance, gene BCYRN1 (brain cytoplasmic
RNA 1, a long non-coding RNA) has the largest importance in
all excitatory neurons, including L2/3, L4, L5/6, and L5/6-CC.
Gene BCYRN1 is involved in the regulation of synaptogenesis,
and there have been several literatures linking BCYRN1 and
Alzheimer’s disease, a neurological disease (Wan et al., 2017;
Hu et al., 2018), which implies the possible association between
BCYRN1 and ASD. Besides, BCYRN1 has been prioritized in a
blood-based gene expression study of ASD (Ivanov et al., 2015).

To further characterize the cell-type heterogeneity of ASD, we
compared the RFE genes across different cells. We performed
gene ontology analyses using clusterProfiler (Yu et al., 2012),
with background genes set as the genes in the analyzed gene
expression matrix. The functions of cell type-specific RFE
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TABLE 2 | The overrepresentation tests between RFE genes and differentially expressed genes identified by edgeR, differentially expressed genes identified in the study
of Velmeshev et al. (2019), and SFARI ASD genes.

Cell type Number of
RFE genes

Overlapping
genes/edgeR genes

(FDR-adjusted
P-value)

Overlapping
genes/ASD genes

(FDR-adjusted
P-value)

Overlapping
genes/Velmeshev’s

genes (FDR-adjusted
P-value)

Top five important genes

AST-FB 200 120/257 (1.5e−158) 22/299 (5.8e−09) 8/11 (1.4e−12) DPP10, TMSB4X, SPARCL1, ZFP36L1, PCDH9

AST-PP 1000 667/1464 (0.0e+00) 98/299 (2.2e−34) 33/36 (2.1e−32) *PTGDS, HSPA1A, TRPM3, RP11-179A16.1,
*CIRBP

Endothelial 500 115/146 (3.2e−134) 40/299 (6.3e−11) 29/38 (1.5e−32) HERC2P3, *AKAP12, TMSB4X, RP11-649A16.1,
RPS28

IN-PV 1000 384/695 (4.2e−251) 103/299 (2.7e−38) 14/14 (1.3e−15) AC105402.4, MTATP6P1, CNTNAP3, *CIRBP,
ARL17B

IN-SST 1000 549/1346 (5.9e−291) 104/299 (5.3e−39) 16/17 (1.5e−16) SST, AC105402.4, VGF, HSPA1A, BCYRN1

IN-SV2C 900 345/616 (7.4e−244) 100/299 (9.7e−40) 9/9 (1.1e−10) CCK, BCYRN1, AC105402.4, MEG3, HSPB1

IN-VIP 1000 676/1820 (0.0e+00) 104/299 (5.3e−39) 32/32 (7.1e−35) HSPA1A, CCK, *RPS15, MEG3, *RGS12

L2/3 1000 863/4690 (7.8e−230) 107/299 (2.9e−41) 41/41 (2.0e−44) BCYRN1, CCK, *CNTNAP2, MEG3, *CAMK2N1

L4 1000 715/2477 (1.3e−294) 113/299 (3.7e−46) 40/42 (1.2e−40) BCYRN1, CCK, *NCAM2, SLC17A7, MTATP6P1

L5/6 900 467/1069 (4.0e−281) 98/299 (2.7e−38) 5/5 (2.8e−06) BCYRN1, AC105402.4, MTATP6P1, ATP1B1,
SLC17A7

L5/6-CC 1000 701/3183 (7.1e−202) 114/299 (7.5e−47) 7/7 (3.8e−08) BCYRN1, CCK, AC105402.4, RP11-750B16.1,
MT-RNR2

Microglia 200 74/106 (4.9e−112) 20/299 (1.4e−07) 38/49 (2.5e−58) FKBP5, TMSB4X, NEAT1, SLC1A3, CHN2

Neu-mat 900 351/476 (1.7e−312) 116/299 (2.9e−53) 1/1 (7.5e−02) AC105402.4, XIST, CAMK2N1, MEG3, ROBO2

Neu-NRGN-I 100 2/2 (6.8e−05) 12/299 (7.0e−06) 4/6 (8.7e−08) RP11-750B16.1, *PTMA, NRGN, GNAO1, TSPAN7

Neu-NRGN-II 100 7/8 (1.9e−14) 6/299 (3.8e−02) 2/4 (4.4e−04) PRNP, NRGN, STMN1, RP11-750B16.1 PLP1

Oligodendrocytes 600 410/1420 (9.4e−253) 57/299 (9.5e−19) 14/14 (1.2e−18) *PTGDS, NRXN1, CNDP1, *ABCA2, CREB5

OPC 900 528/1413 (1.9e−285) 102/299 (2.9e−41) 3/3 (4.4e−04) GPC5, TMSB4X, HSPH1, *CNTNAP2, *OLIG1

The number of overlapping genes; the number of edgeR genes, Velmeshev’s genes, and ASD genes; and the FDR-adjusted hypergeometric test P-values are shown.
The genes with top five importance are listed, of which edgeR genes are in boldface, SFARI ASD genes are underlined, and Velmeshev’s genes are marked with *.

genes are different among different cell types (Supplementary
File 4). For instance, in IN-PV, the enriched GO terms
include neuron projection, axon, somatodendritic compartment,
and cell part morphogenesis, while in L2/3, the top GO
terms are associated with ribosome, cotranslational protein
targeting to membrane, and protein localization to endoplasmic
reticulum (Figure 2B).

Cell Type-Specific Gene Sets Associated
With ASD
In addition to screening individual genes associated with ASD,
we also constructed cell type-specific gene set-based predictive
models to screen ASD-related gene sets. For each cell type and
each gene set, we extracted the expression level of the nuclei
from the cell type in the genes included in the considered gene
set, and constructed a predictive model (see section “Materials
and Methods”). We retained the gene sets whose ACC, SN,
and SP on test set are larger than 70%, and there are 5, 1,
88, 15, and 137 gene sets identified in cell types of AST-PP,
IN-PV, L2/3, L4, and L5/6-CC, respectively (Supplementary
File 5). Figure 3A shows the top five gene sets in each of these
five cell types and the performances of corresponding cell
type-specific gene set-based predictive models. For AST-PP, the
top ASD-associated gene sets include REACTOME_DISEASE,

GO_REGULATION_OF_CELL_POPULATION_PROLIFERATI-
ON, GO_POSITIVE_REGULATION_OF_CATALYTIC_ACTIVI-
TY, GO_SIGNALING_RECEPTOR_BINDING, and GO_ENZY-
ME_LINKED_RECEPTOR_PROTEIN_SIGNALING_PATHWAY.
For other neuron cell types, the ASD-associated gene sets are
mostly related to cell junction, synapse, neuron projection,
neurogenesis, neuron differentiation, and cell projection
organization. By checking the top important genes in each cell
type-specific gene set, we found that several genes appear in the
majority of the gene sets; for example, gene HSPA1A [heat shock
protein family A (HSP70) member 1A] shows up in all AST-PP
specific ASD-associated gene sets (Figure 3B). Therefore, for
each cell type, we analyzed the frequency of each gene included in
the identified gene sets and calculated the averaged importance of
genes (Supplementary File 5). Figure 3C shows the genes with
top five averaged importance in each cell type. Gene HSPA1A is
noted in AST-PP. Actually, heat shock proteins play a central role
in the development of neurological disorders, of which HSP70
family has been shown its functions (Turturici et al., 2011), and
HSPA1A, a member of HSP70 family, has already been associated
with ASD (Lin et al., 2014). As to gene CCK (cholecystokinin),
it is prioritized in excitatory neurons, which is a kind of gut
peptide hormone. Gut peptide hormones have been found across
different brain regions, and many of them are involved with
ASD-related deficits (Qi and Zhang, 2020).
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FIGURE 2 | (A) The classification performance on test set of cell type-specific predictive models built using RFE genes. ROC analysis was applied to obtain the AUC
and the optimal cut-off point on the training set, and then the optimal cut-off was used to determine the predictive accuracy (ACC), sensitivity (SN), and specificity
(SP) on the test set. For the cell types of AST-PP, endothelial, IN-PV, L2/3, microglia, oligodendrocytes, and OPC, (B) the expression of the top three important genes
in ASD and control groups is shown along with the top enriched GO terms with the RFE genes. The GO terms belonging to molecular functions, cellular component,
and biological process are shown in blue, orange, and green, respectively.

Next, based on the genes with averaged importance >10% in
corresponding cell types, we re-constructed a cell type-specific
predictive model for each of these five cell types. It is noted that
their predictive performances are even better than the ones of the
cell type-specific gene set-based predictive models (Figure 3D).
We checked the functions of these genes (Supplementary File
6) and found that their functions are distinct, especially among
AST-PP, IN-PV, and excitatory neurons (Figure 3E). In AST-PP,
the top genes are associated with the functions of enzyme-
linked receptor protein signaling pathway, transmembrane
receptor protein tyrosine kinase signaling pathway, positive
regulation of phosphorus and phosphate metabolic process,
and cellular component morphogenesis. In IN-PV, the top
genes are related to synaptic and postsynaptic membrane,
cation channel complex, and neuron projection. As to the
cell types of excitatory neurons, the top genes are associated
with ribosome, SRP-dependent cotranslational protein targeting

to membrane, nuclear-transcribed mRNA catabolic process,
nonsense-mediated decay, and protein targeting to ER.

A Multi-Label Classification Model
Predicting Cell Type and Diagnosis
To predict the cell type and diagnosis of a given nucleus at the
same time, we applied PLS to construct a multi-label predictive
model (see section “Materials and Methods”). We split the whole
gene expression data to a training set and a test set. For the
diagnosis label, we extracted the predictive probability of training
set and applied ROC analysis to obtain the optimal cut-off for
determining the predictive diagnosis of each nucleus in training
and test sets. For the cell type labels, the predictive cell type of
each nucleus was set as the cell type whose predictive probability
is the largest. The Hamming loss of the multi-label predictive
model is 0.02, and the accuracy achieves 72.8 with 92.7% accuracy
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FIGURE 3 | (A) The identified top five gene sets associated with ASD by constructing cell type-specific gene set-based predictive models. The number of
overlapping genes between the gene expression data and the gene set, the total number of genes in the gene set, and the performances of corresponding cell
type-specific gene set-based predictive models are shown. For each cell type, (B) illustrates the top five gene sets and the genes with top five importance in each
gene set, and (C) plots the genes with top averaged importance. (D) The performances of predictive models built using genes with averaged importance >10% and
(E) the enriched GO terms with these genes. The GO terms belonging to molecular functions, cellular component, and biological process are shown in blue, orange,
and green, respectively.

for cell-type labels and 78.5% accuracy for diagnosis label. Then,
we examined the predictive performance of the model by cell type
and by label. For each cell type, Figure 4 illustrates the proportion
of the number of nuclei predicted as each cell type to the
total number of nuclei, the proportion of correct and incorrect
predictions for the label of diagnosis, and the proportion of
correct predictions for all labels in the test set. It can be seen
that for most cell types, the predictive cell types are correct,
except for AST-FB, Neu-mat, and Neu-NRGN-I. Because AST-
FB and AST-PP are cell clusters of astrocytes and they may have
similar gene expression patterns, a part of nuclei from AST-FB is
predicted as AST-PP. As both Neu-NRGN-I and Neu-NRGN-II
are NRGN-expressing neurons, nuclei from Neu-NRGN-I were
mostly predicted as Neu-NRGN-II. As to Neu-mat, more than
40% nuclei were predicted as L2/3, which may indicate that the
gene expression patterns between Neu-mat and L2/3 are similar.
For most cell types, the predictive accuracy of diagnosis label is
larger than 70%, and the top highest accuracy values appear in
L2/3, L5/6-CC, IN-SV2C, L4, and AST-PP, showing that these cell
types may be more vulnerable in ASD.

DISCUSSION

Genetic studies have identified variants associated with
ASD, while the causal variants and the specific cell types in
which the disease-risk variants may be active are unclear.
Genes may demonstrate diverse functions across different
brain cell types. Different functions may be dysregulated
and causal genes may be distinct across different brain
cells in ASD. Recently, the newly available single-nucleus
RNA-sequencing data of ASD (Velmeshev et al., 2019)
makes it possible to study the cell-type heterogeneity of
ASD directly. The authors identified DE genes between
ASD and controls in a cell type-specific way and found
that the top DE neuronal genes were identified in L2/3
and IN-VIP, and the top DE genes in non-neuronal cell
types were identified in AST-PP and microglia. The relative
changes of DE genes in L2/3 and microglia were the
most predictive of clinical severity of ASD patients and
the cell types that are recurrently affected across multiple
patients included L2/3 and L5/6-CC. They concluded that
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FIGURE 4 | For each cell type, (left) the proportion of the number of nuclei predicted as each cell type to the total number of nuclei, (middle) the proportion of
correct and incorrect predictions for the label of diagnosis, and (right) the proportion of correct predictions for all labels in the test set.

synaptic signaling of upper-layer excitatory neurons and the
molecular state of microglia are preferentially affected in
ASD, and the dysregulation of specific groups of genes in
cortico-cortical projection neurons correlates with clinical
severity of ASD.

Actually, except for genetic and genomic studies, gene
prioritization studies (Kong et al., 2012; Cogill and Wang, 2016;
Guan et al., 2016; Oh et al., 2017) can be applied to detect
ASD risk genes, which can help to identify high-confidence
gene candidates. In this study, to characterize the cell-type
heterogeneity of ASD and to identify cell type-specific genes and
gene sets associated with ASD, we constructed multiple kinds
of predictive models based on the human brain nucleus gene
expression data of ASD and controls (Velmeshev et al., 2019).
By constructing cell type-specific predictive models based on
individual genes, we found that AST-PP, IN-PV, L2/3, L4, and
L5/6-CC may be more vulnerable in ASD. They have more
RFE genes and the corresponding cell type-specific predictive
models have better performances. Actually, they have more
DE genes identified by edgeR and more SFARI ASD genes.
These indicate that more genes may be dysregulated in these
cell types, and these cell types may be mainly affected by
ASD. In addition, we also compared the RFE genes with the

DE genes identified in the single-nucleus RNA-seq study of
ASD (Velmeshev et al., 2019). We found that RFE genes are
significantly overlapped with Velmeshev’s genes for all cell
types, especially for microglia, L2/3, L4, and IN-VIP. The
functions of genes with predictive power for ASD are different,
and the top important genes are distinct across different cell
types, highlighting the cell-type heterogeneity of ASD. However,
some genes appearing as top important genes in several cell
types are of note. For instance, gene BCYRN1 has the largest
importance in all excitatory neurons, including L2/3, L4, L5/6,
and L5/6-CC. Gene BCYRN1 is involved in the regulation of
synaptogenesis, and there have been several literatures linking
BCYRN1 and Alzheimer’s disease, a neurological disease (Wan
et al., 2017; Hu et al., 2018), which implies the possible
association between BCYRN1 and ASD. Besides, BCYRN1 has
been prioritized in a blood-based gene expression study of ASD
(Ivanov et al., 2015).

As genes interact with others, the integrity of disease
gene modules instead of individual genes may determine
the manifestation of a disease in cells (Kitsak et al., 2016;
Mohammadi et al., 2019). Therefore, in addition to identifying
the individual cell type-specific risk genes, it is valuable
to identify cell type-specific gene sets/modules associated
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with ASD. By constructing cell type-specific gene set-based
predictive models, we also noted cell types of AST-PP,
IN-PV, L2/3, L4, and L5/6-CC. The identified gene sets
specific to these cell types are different. For AST-PP, the
ASD-associated gene sets include REACTOME_DISEASE,
GO_REGULATION_OF_CELL_POPULATION_PROLIFERATI-
ON, GO_POSITIVE_REGULATION_OF_CATALYTIC_ACTIVI-
TY, GO_SIGNALING_RECEPTOR_BINDING, and GO_ENZY-
ME_LINKED_RECEPTOR_PROTEIN_SIGNALING_PATHWAY.
For the other four neuronal cell types, the ASD-associated
gene sets are mostly related to cell junction, synapse, neuron
projection, neurogenesis, neuron differentiation, and cell
projection organization. We found that gene HSPA1A appears as
the most important gene in all AST-PP specific ASD-associated
gene sets. Actually, heat shock proteins play a central role in
the development of neurological disorders, of which the HSP70
family has been shown its functions (Turturici et al., 2011), and
HSPA1A, a member of HSP70 family, has already been associated
with ASD (Lin et al., 2014). Gene CCK is prioritized in L2/3,
L4, and L5/6-CC, which is a kind of gut peptide hormone.
Gut peptide hormones have been found across different brain
regions, and many of them are involved with ASD-related deficits
(Qi and Zhang, 2020).

Overall, we found that the functions of genes with predictive
power for ASD are different and the top important genes
are distinct across different cell types, depicting the cell-type
heterogeneity of ASD. The findings suggest that L2/3, L4, L5/6-
CC, AST-PP, and IN-PV are mainly affected in ASD. The results
show that it may be feasible to use single cell/nucleus gene
expression for ASD detection and the constructed predictive
models can promote the diagnosis of ASD. Our method
prioritizes ASD-associated cell type-specific genes and gene sets,
which may be used as potential biomarkers of ASD, promoting
the design of effective interventions.
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Influenza A viruses, especially H3N2 and H1N1 subtypes, are viruses that often spread
among humans and cause influenza pandemic. There have been several big influenza
pandemics that have caused millions of human deaths in history, and the threat
of influenza viruses to public health is still serious nowadays due to the frequent
antigenic drift and antigenic shift events. However, only few effective anti-flu drugs have
been developed to date. The high development cost, long research and development
time, and drug side effects are the major bottlenecks, which could be relieved by
drug repositioning. In this study, we proposed a novel antiviral Drug Repositioning
method based on minimizing Matrix Nuclear Norm (DRMNN). Specifically, a virus-drug
correlation database consisting of 34 viruses and 205 antiviral drugs was first curated
from public databases and published literature. Together with drug similarity on chemical
structure and virus sequence similarity, we formulated the drug repositioning problem
as a low-rank matrix completion problem, which was solved by minimizing the nuclear
norm of a matrix with a few regularization terms. DRMNN was compared with three
recent association prediction algorithms. The AUC of DRMNN in the global fivefold
cross-validation (fivefold CV) is 0.8661, and the AUC in the local leave-one-out cross-
validation (LOOCV) is 0.6929. Experiments have shown that DRMNN is better than
other algorithms in predicting which drugs are effective against influenza A virus. With
H3N2 as an example, 10 drugs most likely to be effective against H3N2 viruses were
listed, among which six drugs were reported, in other literature, to have some effect
on the viruses. The protein docking experiments between the chemical structure of the
prioritized drugs and viral hemagglutinin protein also provided evidence for the potential
of the predicted drugs for the treatment of influenza.

Keywords: influenza A viruses, anti-viral drugs, treatment, drug repositioning, hemagglutinin

INTRODUCTION

Influenza viruses spread quickly and are among the main causes of human death. Influenza
is an acute respiratory tract infection caused by influenza viruses that seriously endangers
human health. Symptoms include a stuffy nose, cough, sore throat, headache, fever, chills,
anorexia, and myalgia. These symptoms are the result of inflammation caused by a viral infection
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(Eccles, 2005). Type A influenza viruses are major pathogens
for humans. Infection with influenza A viruses usually results in
mild and self-limiting illness. For some people, they can cause
complications such as pneumonia, bronchitis, sinusitis, and ear
infections, leading to serious illness and even death (CDC, 2009).
Influenza complications are often associated with secondary
bacterial infections, which may be due to the virus inducing a
series of changes in the host lung epithelial cells, making them
easy to adhere and invade, leading to changes in the immune
response (Mccullers, 2006, 2014; Jamieson et al., 2013). Influenza
A viruses are evolving very fast, which allows them to regularly
produce new strains of human immunodeficiency, leading to
periodic pandemics (Taubenberger and Kash, 2010). Among the
known 16 hemagglutinin (HA) subtypes and nine neuraminidase
(NA) subtypes of influenza A viruses, only H3N2 subtypes and
H1N1 subtypes are currently spreading among the population
(Webster et al., 1992).

Prevention and treatment of influenza A viruses usually use
vaccines or anti-flu chemical drugs. However, the effectiveness
of the vaccine is based on the similarity of the vaccine strain to
the influenza virus strain that is circulating (Tosh and Poland,
2008). Influenza viruses continue to mutate, and conventional
vaccines may not easily prevent or treat influenza outbreaks
caused by new viruses. Therefore, the research of anti-influenza
chemical drugs is of great significance (Glezen, 2006). Two types
of drugs commonly used to prevent or treat influenza A viruses
are amantadine and neuraminidase inhibitors (NAIs). Studies
have shown that the effectiveness of amantadine is limited by
the high prevalence of influenza A virus (H3N2) with the S31N
mutation in M2 (Barr et al., 2007; Saito et al., 2007). In 2008,
the H1N1 subtype with the H274Y mutation in NA appeared,
which raised concerns about the use of oseltamivir (Hauge et al.,
2009; Hurt et al., 2009a). On the other hand, the incidence
of zanamivir-resistant viruses is low. Chemiluminescence NAI
analysis confirmed that the H3N2 subtype with the D151A/V
mutation in NA reduces the sensitivity of zanamivir (Sheu et al.,
2008). It has been reported that an H1N1 subtype isolate with
a new Q136K mutation in NA that is resistant to zanamivir has
been isolated in Oceania and Southeast Asia (Hurt et al., 2009b).
Burch et al. (2009) commissioned by the National Institute of
health and clinical optimization, searched the database of studies
on the use of neuraminidase inhibitors in the treatment of
seasonal influenza. They presented the results to healthy adults
(i.e., adults without known comorbidities) and people at risk
for influenza-related complications (Burch et al., 2009). Rohloff
et al. (1998) prepared GS-4104, an anti-influenza drug of 3,3-
Diaryloxidoles, with a high yield (62–99%), through an isobutyl
or substituent reaction.

Nevertheless, the development of new drugs for the
prevention and treatment of influenza A viruses is a long
process with a high cost. Therefore, repeated use of drugs is
a strategy to find specific drugs for the treatment of influenza
A viruses among existing drugs. Compared with developing
new drugs, it can greatly shorten the time and reduce the cost.
However, blindly repeating the use of drugs and randomized
clinical trials is risky, and there is still the problem that they
are time-consuming and costly. At present, some calculation

methods provide new testable hypotheses for the repositioning of
systemic drugs (Cheng et al., 2016; Santos et al., 2017). Therefore,
more computational methods for drug screening are urgently
needed to find drugs that may have therapeutic effects against
Influenza A viruses and thereby solve these time-consuming and
costly problems.

In this study, we developed a matrix decomposition-based
antiviral drug reuse method to predict the efficacity of drugs
for the treatment of influenza A virus (H3N2), and the method
mainly includes the following four steps: (1) collect and download
data about viruses and drugs from the literature; (2) calculate
a similar chemical structure of the drugs and similar genetic
sequence of the virus; (3) establish a heterogeneous drug-virus
network based on the virus and drug-related data, the drug
similarity network, and the virus similarity network; (4) use the
nuclear norm minimization method to obtain the drug most
likely to have a therapeutic effect on the virus. Finally, the
experiment evaluated the performance of this method through
fivefold CV, and the results showed that DRMNN achieved an
average AUC value of 0.8661.

MATERIALS AND METHODS

Human Virus and Drug Interaction
Associations
In order to construct a human virus–drug interaction network,
we used text mining technology to study a large number of
previous documents and screened a drug database, and we finally
found 408 confirmed human virus-drug interaction associations,
including 34 viruses and 205 drugs. The adjacency matrix variable
of the virus-drug interaction network was defined as A. If the
drug d(i) has an effect on the virus v(j), then A(ij) is equal to 1,
otherwise it is 0. That is:

A(ij) =
1, if drug d(i) has an effect on the virus v(j)
0, otherwise

Chemical Structure Similarity of Drugs
The drug discovery process is characterized by a long cycle,
high investment, and high risk. In order to shorten the drug
development cycle and control the risk and cost of the drug
development process, computer-aided drug design (CADD) has
become an important tool for new drug development and drug
screening. Molecular similarity calculation is widely used in
the CADD field. Molecular shape similarity is usually based
on the Tanimoto Coefficient (TC). The MACCS fingerprint in
Openbabel V2.3.1 software was used to calculate the molecular
fingerprint similarity between two drugs, represented by TC.
Drugs’ chemical structure information was downloaded from the
DrugBank database. If the MACCS fragment bit strings of two
drug molecules d(i) and d(j) were m(i) and m(j), respectively,
a was set as the fingerprints of the two drugs. The similarity
between drugs d(i) and d(j) was defined as:

DS
(
d (i) , d

(
j
))
= TC =

a
m(i)+m

(
j
)
− a

(1)
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The TC value ranges from zero (no common bits) to one
(all bits are the same), and it can be widely used in various
drug development and repositioning processes. The chemical
structure similarity matrix of drugs is represented by DS. Finally,
the calculated drug similarity constitutes a medical chemical
structure similarity network.

Viral Similarity
Our understanding of any virus often starts from its sequence.
With the development of gene sequencing technology, a lot
of multiple sequence comparison software has also emerged.
MAFFT is a multi-sequence alignment program (Katoh et al.,
2005) that provides a series of alignment methods with the
advantages of fast alignment and high accuracy. Therefore, we
used MAFFT to calculate the sequence similarity between viruses
to express the similarity between viruses. Then, we constructed
a viral similarity network and used VS to represent the viral
similarity matrix.

Human Virus-Drug Interactome Network
We constructed a human virus-drug interactome network
by using human virus and drug interaction associations,

a network of chemical structure similarity of drugs, and a
virus similarity network. Then, the heterogeneous human
virus-drug interactome network was treated as a bipartite
graph G(V, D, E), where V represented human viruses,
D represented drugs, and E was the edges connecting
human viruses and drugs. Therefore, the adjacency matrix
of the heterogeneous drug-virus network matrix can be
defined as:

B =
[

DS AT

A VS

]
(2)

where AT is the transposition of A.

DRMNN
An overview of DRMNN was shown in Figure 1. The nuclear
norm is the sum of the singular values of the matrix, which is
used to constrain the low rank of the matrix. For sparse data,
the matrix has a low rank and contains a lot of redundant
information, which can be used to recover data and extract
features. The nuclear norm has been widely used in various fields
and has achieved good results (Yang et al., 2019). Generally, when

FIGURE 1 | The workflow of DRMNN.

Frontiers in Physiology | www.frontiersin.org 3 January 2021 | Volume 11 | Article 597494167

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-597494 January 18, 2021 Time: 16:58 # 4

Liang et al. Repositioning Drugs on H3N2-Influenza Viruses

a matrix has a low rank, the kernel norm minimization problem
can be expressed as:

min X||X||∗ (3)

where ||X||∗ represents the kernel norm of X, which is defined as
the sum of all singular values of X. The kernel norm minimization
model is a convex optimization problem.

In order to predict the drug-virus association, the elements in
the drug similarity matrix DS and the virus similarity matrix VS
are in the interval [0, 1]. The elements in the correlation matrix A
are 0 or 1. The predicted value of the unknown entry is expected
to be in the range of [0, 1], where a predicted value close to 1
suggests that it may be indicative of an association and vice versa.
However, in the above matrix completion model (2), the entries in
the completed matrix can be any real values in (−,+). However,
it has no practical significance for values greater than 1 and less
than 0. Therefore, it is important to add a constraint to the matrix
completion model to ensure that the missing elements that are
not found are in the interval [0, 1]. In addition, because there
may be a lot of “noise” data in the drug and virus data, the drug
relocation model should tolerate the potential noise as much as
possible. The noise-tolerant matrix completion model is:

min X||X||∗ s.t. ||p� (X)− p� (B) ||F ≤ ε (4)

where ε is the measurement noise level, � is a set of index pairs
(i, j) containing all known entries in B, and p� is the projection
operator on �.

(p� (X))ij =

{
Xij, (i, j) ∈ �

0, otherwise
(5)

However, there are a number of difficulties involved in solving
this model with its inequality constraints, for example, how to
choose the appropriate model parameters and how to choose
an effective solution algorithm. Therefore, we usually replace
the inequality constraint model with a regularized model. The
introduction of soft regularization can tolerate unknown noise
and also make the solution much more convenient to arrive at.
Then the model can be rewritten as the following:

min
X
||X||∗ +

λ

2
||p� (X)− p� (B) ||2F s.t. 0 < Xij < 1 (6)

where || · ||F denotes the Frobenius norm and λ is the parameter
that balances the nuclear specification and the error term. To
solve the optimization problem in Eq. (5), we chose the more
classic alternating direction multiplier method (ADMM) (Gu
et al., 2016). It is worth noting that our objective function
is convex. With the introduction of the auxiliary matrix H,
the ADMM framework can be optimized in the following
equivalent form.

min
X
||X||∗ +

λ

2
||p� (X)− p� (B) ||2F s.t. X = H, 0 < Hij < 1

(7)

Therefore, the enhanced Lagrange function becomes
the following:

L (H, X, Y, λ, µ) = ||X||∗ +
λ

2
||p� (X)− p� (B) ||2F+

Tγ

(
YT (X −H)

)
+

µ

2
||X −H||2F (8)

where Y is the Lagrange multiplier and µ > 0 is the penalty
parameter. The solution process of DRMNN belongs to an
iterative solution. Therefore, when we iterate k times, we need to
calculate the value of iterations Hk+1, Yk+1, and Xk+1 according
to the result of the kth iteration.

Update: Repeat the following steps until there is convergence
or a predetermined number of iterations.

Fix Xk and Yk and calculate a matrix Hk+1 to minimize Eq. (7).

Hk+1 = arg min0≤H≤1L(H, Xk, Yk, λ, µ)

= arg min0≤H≤1
λ

2
||p�(X)− p�(B)||2F+

Tγ(YT(Xk−H ))+
µ

2
||Xk−H ||

2F (9)

Here, H∗ is the optimal solution of
argmin0≤H≤1 L (H, Xk, Yk, λ, µ) , if and only if

λp∗�
(
p�

(
H∗
)
− p� (B)

)
− Yk − µ

(
Xk−H∗

)
= 0 (10)

holds, where p∗� represents the adjoint operator of p� . Then,
the closed solution becomes:

H∗ =
(

α+
λ

µ
p∗�p�

)−1 ( 1
µ

Yk +
λ

µ
p∗�p� (B)+ Xk

)

=

(
α−

λ

µ
p∗�p�

)(
1
µ

Yk +
λ

µ
p∗�p� (B)+ Xk

)

=

(
1
µ

Yk +
λ

µ
p� (B)+ Xk

)
−

λ

µ+ λ

(
1
µ

Yk +
λ

µ
p� (B)+ Xk

)
(11)

where α is the identity operator.
(
α+ λ

µ
p∗�p�

)−1
denotes

the inverse operator of
(
α+ λ

µ
p∗�p�

)
, and it is equal to(

α− λ
µ

p∗�p�

)
. It’s worth noting that p∗�p� p� . Considering

the interval [0,1] constraint, we limit the range of the elements
of Hk+1 to [0, 1] such that

(
Hk+1

)
ij =


1, H∗ij > 1

H∗ij, 0 < H∗ij < 1
0, H∗ij < 0

(12)
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Fix Hk+1 and Yk and calculate a matrix Xk+1 to minimize Eq.
(7).

Xk+1 = arg min
0≤H≤1

L
(
Hk+1, X, Yk, λ, µ

)

= arg min0≤H≤1||X||∗ +
µ

2
||X −

(
Hk+1 −

1
µ

Yk

)
||

2F

=
ϑ1

θ

(
Hk+1 −

1
µ

Yk

)
(13)

where ϑτ(X) is the singular value shrinkage operator which is
defined as:

ϑτ (X) =

∫ θi≥τ

i = 1
(θi − τ) βiγ

Ti (14)

where βi and γi are the left and right singular vectors
corresponding to θi, respectively. The θi are the singular values
of X, which are greater than τ .

Fix Hk+1 and Xk+1 and calculate a matrix Yk+1.

Yk+1 = Yk + κµ
(
Xk+1 −Hk+1

)
(15)

where κ is the learning rate which is set to 1 in this study
for simplicity. Iterate according to the above iteration rules
until convergence, and finally, we obtain the matrix Hk after
convergence. Therefore, the final prediction matrix A∗ for
potential association between drugs and viruses is

A∗ ←

[
DS∗ A∗T

A∗ VS∗

]
← Hk (16)

RESULTS

Indicators of Performance Evaluation
For a binary classification problem, the samples are generally
divided into two types: positive samples and negative samples.
In dichotomies, therefore, there are usually the following
four situations:

TP: True Positives, which means the number from the
sample itself that are positive and are predicted to
be positive;
FP: False Positives, which means the number of samples
that are negative and ultimately predicted to be positive;
TN: True Negatives, which indicates the number of
negatives from the sample itself that are also predicted to
be negative;
FN: False Negatives, which indicates the number
of positives that the sample itself ultimately
predicted to be negative.

The commonly used evaluation indicators of classification
models are: precision, specificity, and sensitivity. Their
calculation formula is as follows:

ACC =
TP + TN

TP + FP + TN + FN

Precision =
TP

TP + FP

Specificity(1− FPR) =
TN

TN + FP

Sensitivity (TPR = Recall) =
TP

TP + FN

The performance evaluation indicators we usually adopt are the
ROC curve and area under the ROC curve (AUC value), as well
as the PR curve and area under the PR curve (AUPR value). The
full name of the ROC is Receiver Operating Characteristic, its
abscissa is the false positive rate (FPR), and its ordinate is the true
positive rate (TPR). Among them, the false positive rate is the
proportion of all negative samples that the classifier incorrectly
predicts as positive, also known as 1-specificity. Similarly, the true
positive rate refers to the proportion of positive samples correctly
identified by the classifier out of all positive samples, which is
also called sensitivity. Then we draw the ROC curve based on
the TPR and FPR. Calculate the area under the ROC curve and
perform a numerical evaluation of the model’s performance. The
area under the ROC curve is defined as AUC (Area Under Curve).
AUC = 0.5 means completely random prediction, and AUC = 1
means a completely accurate prediction. Obviously, the area is
less than 1, but the larger the AUC, the better the performance of
the classifier. On the other hand, the PR curve is actually made
by using precision and recall as variables, where recall is the
x-coordinate and precision is the y-coordinate. AUPR represents
the area under the PR curve. The closer AUPR is to 1, the better
the prediction’s performance will be.

Performance in Predicting Virus-Drug
Association
In DRMNN, there are two parameters λ and µ that need to be
determined. For λ and µ, they are determined from {0.1, 1, 10,
100}, respectively. We performed fivefold CV on the training data
set to determine the parameters and found that when λ = 1 and
µ = 10, DRMNN performs best. The AUC results are shown
in Table 1.

In order to evaluate the prediction performance of DRMNN,
we applied DRMNN to the known human virus and drug
interaction associations A and used the fivefold CV to evaluate
its performance. The specific process was as follows: all known
human virus and drug interaction associations were randomly
divided into five uncrossed sites with equal size. We used one

TABLE 1 | The AUC values using different λ and µ values in fivefold
CV on the dataset.

λ \µ 0.1 1 10 100

0.1 0.7044 0.6992 0.8087 0.8517

1 0.8116 0.8123 0.8661 0.8378

10 0.7919 0.7983 0.8589 0.8318

100 0.7823 0.8006 0.8536 0.8276

The bold value indicates that AUC.
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of the parts as a test sample for prediction and the other four
parts of the sample as training data to build a predictive model.
This process was repeated five times and ended when all samples
were predicted once. The results showed that the AUC value was
0.8661. The AUPR value was 0.4442.

At present, there are few algorithms for predicting which
drugs will effectively treat influenza A viruses by constructing
a network of viruses and drugs. Therefore, in this study, we
compared network association prediction algorithms in other
fields to explore the performance of DRMNN in predicting
drugs that can treat influenza A viruses. NCP was first proposed
by Gu et al. (2016) to predict miRNA-disease association.
Zou et al. (2018) used this method to predict the association
between microorganisms and diseases and achieved good results.

NCP is a method based on a general nonparametric network,
which belongs to the category of unsupervised learning. Its
characteristic is that no negative samples are required. The
Random Walk with Restart (RWR) algorithm has advantages.
It is not only used for the correlation prediction of binary
networks, but also for link prediction of various heterogeneous
networks, and in various network correlation predictions, the
RWR algorithm shows good predictive performance (Chen et al.,
2012). The inductive matrix completion (IMC) algorithm and
collaborative matrix factorization algorithm (CMF) (Xu et al.,
2020) were more commonly used in prediction problems. The
IMC algorithm was originally used to predict the association
between drugs and targets, and was finally applied by Chen et al.
in miRNA-disease association networks, which also showed good

FIGURE 2 | Comparison of predictive performance of DRMNN, NCP, RWR, CMF, and IMC. (A) ROC curve and AUC value based on the global fivefold CV. (B) PR
curve and AUPR values based on global fivefold CV.

FIGURE 3 | Comparison of predictive performance of DRMNN, NCP, CMF, and IMC. (A) ROC curve and AUC value based on the local LOOCV. (B) PR curve and
AUPRs value based on the local LOOCV.
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TABLE 2 | Top 10 possible drugs against influenza A virus (H3N2)
predicted by DRMMN.

Virus Rank Drug name Evidence

Influenza A virus (H3N2) 1 Ribavirin Unconfirmed

2 Nitazoxanide Confirmed

3 Chloroquine Confirmed

4 Favipiravir Unconfirmed

5 Camostat Unconfirmed

6 Mizoribine Confirmed

7 Niclosamide Confirmed

8 Umifenovir Confirmed

9 Mycophenolic acid Unconfirmed

10 Amantadine Confirmed

performance (Chen et al., 2018). In the analysis of all the above
methods, RWR and IMC contain parameters that need to be fine-
tuned. For all parameters, we select the best parameters by using
a global fivefold CV.

We applied DRMNN, NCP, RWR, IMC, and CMF to the
341 associated data between 34 viruses and 205 drugs that
were considered. Under the global fivefold CV, the final AUC
values of them were 0.8661, 0.6556, 0.7058, 0.6821, and 0.7175,
respectively. The ROC curve is shown in Figure 2A, indicating
that DRMNN showed the best performance in predicting the
association between viruses and drugs. We also draw the PR curve
in Figure 2B. The AUPR of DRMNN, NCP, RWR, CMF, and IMC
were 0.4442, 0.0842, 0.1514, 0.1533, and 0.2715, respectively. This
once again proves that DRMNN performs best in predicting the
treatment of influenza A virus.

In addition, we also carried out a local LOOCV. In particular,
for each virus v(i), we removed all known drugs associated
with virus v(i), and used the remaining data to build prediction
models. But RWR cannot predict new virus-related drugs, so
RWR was removed, and only a few other algorithms were
compared. The ROC curve and PR curve are shown in Figure 3.

TABLE 3 | The binding affinity of the unconfirmed drugs predicted by DRMNN to
the target PDB ID: 2VIU.

Drug name Ribavirin Favipiravir Camostat

Free energy of binding (kcal/mol) −7.4 −5.2 −7.5

The results show that the AUC value and the AUPR value of
DRMNN are 0.6929 and 0.2083, respectively, which are much
higher than with the other three algorithms. The local LOOCV
results also show that DRMNN performed well in predicting
potential therapeutic agents for new viruses.

CASE STUDY

Identification of Potential Drugs Against
the Influenza A Virus (H3N2)
Accurately determining the drugs to use to treat influenza A
virus (H3N2) is the primary task of this study. Through the
construction of the viral drug network, we used the DRMNN
algorithm to select drugs that may be used to treat influenza
A virus (H3N2) and help medical staff choose drugs from
a computational perspective. During the construction of the
network, the influenza A virus (H3N2) had no association with
any drugs. DRMNN was used to predict the probability scores
of candidate drugs, and the top 10 drugs for the treatment of
influenza A virus (H3N2) are shown in Table 2. Nitrazoxanide
(ranked 2) can be used to treat Cryptosporidium parvum and
Giardia infections in children and adults, and it has been
licensed in the United States; it is a safe, oral, bioavailable
anti-infective drug (White, 2004). In addition to being used
to treat protozoan and bacterial infections, thiazoles are also
used as a class of broad-spectrum antiviral drugs (Rossignol
et al., 2006, 2009a,b; Korba et al., 2008; Elazar et al., 2009;
La Frazia et al., 2013). These molecules selectively block the
maturation of the viral hemagglutinin through a stage before
the resistance to endoglycosidase H digestion and disrupt the
intracellular transport and insertion of the HA into the host
cell plasma membrane for the correct assembly of the virus and
its removal from the host cell to fight off the virus. Studies
have found that Nitrazoxanide is effective against influenza A
virus (H3N2), which contains the M2 blocker resistance marker
S31N (Sleeman et al., 2014). Chloroquine (ranked 3) is a 9-
aminoquinolone that can be used to fight malaria and that
has biochemical properties that can be used to inhibit virus
replication. The report pointed out that chloroquine can inhibit
the replication of influenza A virus in vitro, and the IC50s of
chloroquine to influenza A virus H3N2 are lower than the plasma

FIGURE 4 | The binding mode between the four drugs docked with molecules and the receptor HEMAGGLUTININ (PDB ID: 2VIU).
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concentration reached during acute malaria treatment (Ooi
et al., 2006). Umifenovir (ranked 8) is licensed in Russia
and is widely used for the prevention or treatment of
influenza. Leneva et al. (2019) found that Umifenovir
effectively inhibited the replication of antigen-dominant
human type A influenza virus using MDCK cell-based
enzyme linked immunoadsorption assay (ELISA), and
none of the viruses isolated before and during umifenovir
treatment showed reduced sensitivity to neuraminidase (NA)
inhibitors, suggesting that umifenovir is effective in treating
influenza A virus.

Molecular Docking
Molecular docking research has become an economic and
modern trend in drug development. It can be used to design
known ligands for specific active sites of macromolecules, and it
is a method that provides valuable information. The technology-
based ligand-protein interaction reveals the possibility of pre-
synthesis. In our study, the computer chemistry research of
the top five drugs predicted by DRMNN was being blindly
connected in online and offline modes. The Autodock 4.2
package1 was used for offline docking. The X-ray crystal
structure of the protein was searched from the RCSB protein
database2. The PDB ID is a 2VIU macromolecule, which
is the receptor binding the domain of influenza A virus
(H3N2) complexed with its receptor Hemagglutinin. We used
MGL Tools 1.5.6 and Autodock Tool (ADT) to prepare
all proteins and ligands. ADT was used to calculate the
binding free energy and inhibition constant of the optimal
docking complex of the above proteins. Figure 4 showed the
interaction of three unproven drugs predicted by DRMNN
with important residues on their receptor Hemagglutinin. The
negative combination free energy further indicates the stability
of the complex (Table 3). This evidence all showed that
the drugs predicted by DRMNN are effective in suppressing
influenza A viruses.

DISCUSSION

Influenza A viruses have always been among the most important
viruses harmful to human health. They can cause acute
respiratory infection that is harmful to human health and
is one of the main causes of death. To prevent and treat
influenza viruses, vaccines or anti-influenza chemicals are usually
used. However, traditional vaccines may not easily prevent and
1 http://autodock.scripps.edu
2 www.rscb.org

treat influenza outbreaks caused by new viruses, while the
development of new drugs will require longer time and higher
economic costs. Therefore, strategies to find effective drugs
among existing drugs can greatly reduce time and cost. In this
paper, we propose a method of reuse of antiviral drugs based
on the minimum nuclear specification. The method mainly uses
data collected from the literature on viruses and drugs, combines
the similarity of drug chemical molecules with the similarity of
virus gene sequence, and uses DRMNN to obtain the drug most
likely to treat influenza A virus (H3N2). After global fivefold
CV, DRMNN showed better performance than other methods in
determining the treatment of influenza A virus (H3N2). Finally,
we obtained the top 10 potential drugs, of which six have been
shown to be effective against influenza A virus (H3N2). This
method saves the experimental cost and time and provides a
powerful reference for preventing and treating influenza A virus.

Although DRMNN has been shown to offer many potential
drugs for influenza A virus (H3N2) that may have therapeutic
effects, some limitations remain in this study. The DRMNN
database contains 13,563 drug entries, and there are thousands
of antivirals for broad-spectrum drugs and thousands of viruses
for NCBI. Due to the limited amount of data, there are still some
biases in the potential drugs we obtain. Therefore, determining
how to select effective data to establish greater data integration is
an important goal for future research.

Finally, we focused our analyses on influenza in this study.
However, it is clear that our method could also be applied to
other viruses, for example SARS-CoV-2. The outbreak of SARS-
CoV-2 has become a serious pandemic and has caused the
deaths of hundreds of thousands of people. Currently, there is
no confirmed drug effective against this virus. In the future, we
will check the drugs predicted by our method for use against this
virus and validate their efficacy through both protein docking and
wet-lab experiments.
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Background: Intervertebral disc degeneration impairs the quality of patients lives. Even

though there has been development of many therapeutic strategies, most of them remain

unsatisfactory due to the limited understanding of the mechanisms that underlie the

intervertebral disc degeneration.

Questions/purposes: This study is meant to identify the key modules and hub genes

related to the annulus fibrosus in intervertebral disc degeneration (IDD) through: (1)

constructing a weighted gene co-expression network; (2) identifying key modules and

hub genes; (3) verifying the relationships of key modules and hub genes with IDD; and

(4) confirming the expression pattern of hub genes in clinical samples.

Methods: The Gene Expression Omnibus provided 24 sets of annulus fibrosus

microarray data. Differentially expressed genes between the annulus fibrosus of

degenerative and non-degenerative intervertebral disc samples have gone through

the Gene Ontology (GO) and pathway analysis. The construction of a gene network

and classification of genes into different modules were conducted through performing

Weighted Gene Co-expression Network Analysis. The identification of modules and hub

genes that were most related to intervertebral disc degeneration was proceeded. In

order to verify the relationships of the module and hub genes with intervertebral disc

degeneration, Ingenuity Pathway Analysis was operated. Clinical samples were adopted

to help verify the hub gene expression profile.

Results: One thousand one hundred ninety differentially expressed genes were

identified. Terms and pathways associated with intervertebral disc degeneration were

presented by GO and pathway analysis. The construction of a Weighted Gene

Coexpression Network was completed and clustering differentially expressed genes into

four modules was also achieved. The module with the lowest P-value and the highest

absolute correlation coefficient was selected and its relationship with intervertebral disc

degeneration was confirmed by Ingenuity Pathway Analysis. The identification of hub

genes and the confirmation of their expression profile were also realized.

Conclusions: This study generated a comprehensive overview of the gene networks

underlying annulus fibrosus in intervertebral disc degeneration.
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Clinical Relevance: Modules and hub genes identified in this study are highly

associated with intervertebral disc degeneration, and may serve as potential therapeutic

targets for intervertebral disc degeneration.

Keywords: intervertebral disc degeneration (IDD), weighted gene co-expression network, gene ontology,

therapeutic target, annulus fibrosus

INTRODUCTION

Low back pain (LBP), one of the most common musculoskeletal
diseases, is estimated that up to 84% of the population suffer
from LBP at least once in their life (Walker, 2000; Shen et al.,
2018). Intervertebral disc degeneration (IDD), resulting from
degenerative and inflammatory changes, promote neurovascular
ingrowth into the disc and accounts for between 26 and 42% of
LBP (Luoma et al., 2000; Kadow et al., 2015). Current approaches
of the treatment of IDD include conservative therapies such
as physiotherapy, anti-inflammatory medication, and surgical
interventions including spinal fusion and disc arthroplasty.
However, the clinical results of these treatments are suboptimal
and a comprehensive understanding of the biological causes of
IDD is required to develop improved therapies (Rao and Cao,
2014; Kadow et al., 2015).

Several studies have been conducted using microarray
to investigate biomarkers and key pathways in IDD. This
information not only enhances our understanding of IDD, but
also highlights potential therapeutic targets. The Wnt pathway
was found to be downregulated in early IDD by Smolders
et al. (2013). Gruber et al. identified differentially expressed
genes associated with pain, nerves and neurotrophin, and
mitochondrial dysfunction, while several aberrantly expressed
long non-coding RNAs (lncRNAs) were identified by Gruber
et al. (2011, 2012), and Wan et al. (2014). Despite important
advances in the clarification of the potential pathogenesis of
IDD are achieved using high throughput microarray analysis,
this established method has failed to generate a comprehensive
overview of the gene network of IDD. A common practice in
microarray data analysis is to apply a double filter to differentially
expressed genes (DEGs) based on fold changes in expression
and t-test P-values in comparisons between different groups
(Zhang and Cao, 2009). However, lists of DEGs fail to elucidate
the interactions among genes (Wu et al., 2013). Furthermore,
downstream genes usually have greater variance resulting in their
higher ranking than upstream genes, which is the key driver of
disease (Naylor et al., 2010).

A number of co-expression network algorithms have been
developed to investigate interactions among genes, including
Weighted Gene Co-expression Network Analysis (WGCNA)
(Serin et al., 2016). This algorithm is broadly applied in various
fields, including lncRNA profiling of IDD (Langfelder and
Horvath, 2008; Chen et al., 2015). WGCNA can be applied to
high-throughput microarray or RNA-seq data sets to find clusters
(modules) of highly correlated genes, using modular intrinsic
genes or in-model central genes to pair these clusters Summarize,
correlate modules with each other and with external sample

traits, and use them to calculate module membership metrics
(Pei et al., 2017). This method has also recently been applied
to proteomics and metabolomics data analysis (DiLeo et al.,
2011). WGCNA can be used to identify candidate biomarkers
or therapeutic targets, and has been used in a variety of human
cancers, including colon cancer, uveal melanoma, glioblastoma,
liver cancer, and osteosarcoma (Langfelder and Horvath, 2008).
This study saw a focus on the gene co-expression network of
annulus fibrosus and the principal cause of discogenic symptoms
(Kazezian et al., 2015). Integrated bioinformatics methods,
including WGCNA, were applied to generate a comprehensive
overview of the gene network associated with IDD. Expression
of some of the identified hub genes was verified using clinical
samples. These hub genes might represent novel therapeutic
targets for IDD.

MATERIALS AND METHODS

Date Acquisition and Clinical Samples
Under the accession number GSE70362, the download of
the data series was accessed from Gene Expression Omnibus
(www.ncbi.nlm.nih.gov/geo/). Processed data of annulus fibrous
were selected for this study. The filtration of DEGs of
degenerative (grade III–V) vs. non-degenerative (grade I–II)
intervertebral disc samples was achieved using a two-tailed t-test.
Using DEGs for further analysis not only preserved variance in
genetic background, but also reduced unrelated genetic noise.We
collected the specific clinical characteristics of clinical samples
from 10 patients with IDD, including gender, age, level, and
pfirrmann grade.

Patients and Tissues
Ethics Review Board of Renji Hospital (number 2017-003)
approved the study trials and the study was performed in
accordance with the rules of the China Food and Drug
Administration/Good Clinical Practice and the Declaration
of Helsinki (2008) of the World Medical Association. All
participants or their parents/legal guardians for patients aged
under 18 years provided the written informed consent.

From patients with IDD in the Spine Group of Renji
Hospital, degenerative intervertebral disc tissue samples were
obtained. Patients with IDD combined with infections, tumors,
or previous lumbar disc surgery were not included in this
study. From patients with accidental fractures, non-degenerative
specimens were collected. None of the patients in the non-
degenerative group reported any previous lumbar pain. Based
on the Pfirrmann grading system, the degenerative condition
was evaluated by two independent observers using magnetic
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resonance imaging (Pfirrmann et al., 2001). All the intervertebral
disc specimens were collected within 1 h after disc excision,
rinsed with phosphate-buffered saline and then stored in the
RNAstore Reagent DP408-02 (Tiangen Biotech, Beijing, China)
at 4◦C.

Gene Ontology Analysis and Pathway
Analysis
The application of gene ontology (GO) analysis to upregulated
and downregulated genes were operated separately (Ashburner
et al., 2000). According to Gene Ontology Consortium, GO
classifies gene functioned in a species-independent way in line
with three aspects: cellular component, molecular function and
biological process. GO analysis was performed to determine the
GO terms that were over- or under-represented in a given set
of genes. GO analysis was performed using ClueGO to generate
a visual representation of the enriched terms in a functionally
grouped annotation network which reflected the relationships
between enriched terms. The leading term in a group was the
most significant (Bindea et al., 2009). The p-value of enrichment
analysis should be <0.05.

By interrogating the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database, the Database for Annotation,
Visualization and Integrated Discovery (DAVID, http://david.
abcc.ncifcrf.gov/) was used to achieve pathway analysis (Huang
et al., 2009; Kanehisa et al., 2017). The p-value of enrichment
analysis should be < 0.05. The Ingenuity Pathway Analysis
Database (IPA, www.Ingenuity.com) was also used for pathway
analysis. KEGG pathway analysis is a topology-based approach
which takes into account gene interactions whereas IPA is based
on gene expression (Khatri et al., 2012). We used a combination
of KEGG pathway analysis and IPA to generate more complete
and accurate information about the identified DEGs. Up- and
down-regulated genes were subjected to KEGG pathway analysis
separately. The fold changes in gene expression of the up-
and down-regulated genes subjected to IPA. The p-value of
enrichment analysis should be <0.05.

Weighted Gene Co-expression Network
Analysis
Through employing static programming language and
environment R, Weighted Gene Co-expression Network
Analysis was conducted with WGCNA package (Jiang et al.,
2014; Core R, 2015). Only DEGs were included in the WGCNA
workflow to minimize noise and reduce the computing burden
without causing major information loss (Ghazalpour et al.,
2006). The adjacency matrix was calculated based on pairwise
Pearson correlation coefficients. WGCNA incorporated the
concept that genes interactions occurred following a scale-free
distribution pattern (Barabasi, 2009). The pickSoftThreshold
function was applied to fit the scale-free criterion. Topologic
overlap measures, which were a robust measure of networks,
were calculated pairwise within the adjacency matrix. The
dynamic tree cutting algorithm, an unsupervised hierarchical
clustering method, was adopted for clustering with input of
topologic overlap measures (Langfelder et al., 2008). In this

study, the soft threshold (power) was 4. We used the default
parameters in WGCNA algorithm, the maximum size of module
was 500, and the minimum size was 30.

Modules can be explained as branches of the clustering tree.
In network terminology, a module refers to a group of genes that
share similar connection patterns with all other genes outside
that group and there are, generally speaking, similar functions
existing in genes in the samemodule (Zhang and Horvath, 2005).
The calculation of the main component of module, a module
eigengene, was then conducted to summarize the gene expression
profiles in the module. In order to identify the modules that
were most related to IDD for further analysis, the calculation
of correlations between module eigengenes and the degenerative
status of samples was operated.

In a scale-free network, hub genes of modules are the most
interconnected genes and they serve as the backbones of this
network (de Jong et al., 2012). Hub genes in disease-related
modules, such as hub lncRNA in IDD, are generally biologically
and clinically meaningful (Jiang et al., 2014; Lee et al., 2014;
Chen et al., 2015; Wang et al., 2015). Hub genes were determined
through ranking intra-modular connectivity and correlation with
eigengenes in selected module. Gene co-expression networks
of all DEGs and hub genes were visualized using Cytoscape
(Shannon et al., 2003).

Ingenuity Pathway Analysis of Selected
Modules and Hub Genes
Genes in selected modules were subjected IPA to evaluate their
relationship with IDD. GO analysis and KEGG pathway analysis
were commonly performed. However, these types of analysis
considered only the number of genes in a given set and ignored
any values related to genes (Khatri et al., 2012). We undertook
a close examination of selected modules including both up-
and down-regulated genes. Thus, GO and KEGG analyses of
heterogeneous data such as ours were inappropriate. Instead, we
performed IPA, which also took into account gene expression
levels. This workflow has been widely adopted in many other
weighted gene co-expression network analyses (Naylor et al.,
2010; Malki et al., 2013). We also adopted the Disease and
Biofunction module of IPA which was similar to Go Analysis.

Validation of Hub Gene Expression
To validate the expression pattern of some hub genes,
quantitative real-time PCR (qRT-PCR) was conducted. TRIzol
reagent (Invitrogen, Carlsbad, CA, USA) was employed to extract
RNA based on the instructions of the manufacturer, and qRT-
PCR assays were conducted through adopting the ViiA7 Real-
Time PCR System (Applied Biosystems, CA, USA) with a thermal
profile comprising one min at 95◦C for polymerase activation,
followed by 40 cycles of 95◦C for 15 s and 60◦C for 30 s.
Expression of target genes was normalized to ß-actin as the
endogenous control. For statistical analysis, the calculation of
gene expression was processed following the 2−11Ct method,
and relative expression data were log2 transformed (Livak and
Schmittgen, 2002). The list of sequences of primers used for qRT-
PCR amplification was presented in Supplementary Table 1.
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Statistical Analysis
All quantitative data were represented as mean ± SD. In the
mRNA expression experiments (SPSS Statistics Version 22.0;
IBM Corp, Armonk, NY, USA), in order to compare control
groups with the IDD group, student’s t-test was operated. Unless
otherwise stated, when P-values were below 0.05, differences were
taken as statistically significant.

RESULTS

Clinical Characteristics of Samples
The specific clinical traits of all samples in GSE70362 were
provided in Supplementary Table 2. From levels T12–L1 to L4–
L5, five pairs of non-degenerative and degenerative annulus
fibrous samples were collected for qRT-PCR analysis to confirm
hub gene expression. Specific clinical traits of these sample

were provided in Supplementary Table 3. In the degenerative
group, the average age was 48.0 years (range, 33–61 years) with
Pfirrmann Grade III–V disc. In the non-degenerative group, the
average age was 31.8 years (range, 16–52 years) with Pfirrmann
Grade I–II disc.

Gene Ontology Analysis and Pathway
Analysis
Altogether 2,636 probes were identified as differentially expressed
in comparisons of degenerative and non-degenerative annulus
fibrosus tissue samples. According to the annotation file, 1,190
probes were mapped to known genes (464 upregulated and
726 downregulated).

An overview of the GO analysis was presented in Figure 1

and specific results for up- and downregulated genes are
provided in Supplementary Figures 1, 2, respectively. For both

FIGURE 1 | Gene ontology (GO) analysis of differentially expressed genes. (A). GO analysis of upregulated genes by ClueGO. According to the most significant gene

in the group, each section of the overview pie-chart represents a group of GO terms with section names allocated. The correlation exists between the size of each

section and the number of genes within the group. (B). GO analysis of downregulated genes by ClueGO. **P < 0.01.
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FIGURE 2 | Weighted gene co-expression network of annulus fibrosus in IDD. (A). Correlation between module and Thompson Grade. Each cell represents a module

with the corresponding correlation (above) and P-value (below). The names of the modules are presented to the left of cells and the bar on the right represents

correlation values. (B). Visual representation of Weighted Gene Co-expression Network. The node represents differentially expressed gene, the edge represents the

interaction between two genes.

up- and down-regulated genes, signal transduction by a p53 class
mediator was enriched, indicating the involvement of apoptosis
in IDD. For upregulated genes, regulation of vasculature
development was enriched, which was consistent with the
vascularization associated with IDD (Freemont et al., 1997).

Results of pathway analysis were presented in Table 1. A
long list of activated pathways has been generated by IPA and
only the IDD-related pathways were presented. The complete
IPA results were presented in Supplementary Table 4. The TNF
signaling pathway, which had a well-established association with
IDD, was found to be activated in KEGG pathway analysis of
upregulated genes and TNFR1 and TNFR2 signaling activation
was identified by IPA (Risbud and Shapiro, 2014). TGF-β
signaling was also identified by IPA. Other cytokine signaling
pathways including B cell activating factor signaling, IL-1
signaling and IL-6 were also identified (Supplementary Table 4)
confirming the role of inflammation in IDD. Mismatch repair
signaling was identified in both KEGG pathway analysis and
IPA. Furthermore, apoptosis signaling activation was identified,
thus confirming the results of GO analysis. Axonal guidance
signaling was also identified, which highlighted the role of
neural ingrowth in IDD (Freemont et al., 1997; Kepler et al.,
2013).

Weighted Gene Co-expression Network
Analysis
Four modules were generated by WGCNA; these modules
were identified by different colors and genes that could not
been classified into any modules were shown in gray. In
WGCNA’s algorithm, some non-clustering genes will be put
into a single module, which will be uniformly called “gray.”
Correlation between modules and Thompson Grade were shown
in Figure 2A. The module with the lowest P-value (shown in
turquoise) and the highest absolute correlation coefficient was

TABLE 1 | Pathway analysis of differentially expressed genes.

Term P-value

KEEG UP-REGULATED GENES

Progesterone-mediated oocyte maturation 0.00561

HTLV-I infection 0.00631

TNF signaling pathway 0.012669

Pathways in cancer 0.013666

Regulation of actin cytoskeleton 0.020803

ErbB signaling pathway 0.027356

Prostate cancer 0.028379

Mismatch repair 0.036276

Acute myeloid leukemia 0.037105

Hepatitis B 0.041927

Choline metabolism in cancer 0.043744

Colorectal cancer 0.047879

KEEG DOWN-REGULATED GENES

DNA replication 0.034

Cell cycle 0.036

IPA

TNFR2 signaling 2.75E-05

Mismatch repair in eukaryotes 8.91E-05

Induction of apoptosis by HIV1 9.77E-05

Apoptosis signaling 0.001995

B cell activating factor signaling 0.008913

Axonal guidance signaling 0.009333

HGF signaling 0.01349

Acute phase response signaling 0.016218

TNFR1 signaling 0.017783

TGF-β signaling 0.022387

The analysis of up- and downregulated genes by Kyoto Encyclopedia of Genes and

Genomes (KEGG) is shown separately (only pathways with P< 0.05 are shown). Ingenuity

pathway analysis (IPA) analysis results are customized to display related pathways only;

complete results are shown in Supplementary Table 4.
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considered to be the module which is most related to IDD
and selected for further analysis. A visual representation of
the whole weighted gene co-expression network was shown
in Figure 2B. Nodes represent genes and node color indicated
module membership. Correlation existed between edges between
nodes and topologic overlaps (analogous to correlation), genes
and small distances indicate high correlation. There was a
tendency for genes within the same module to stay close to
each other in the weighted gene co-expression network by visual
inspection of Figure 2B. The complete results of WGCNA were
provided in Supplementary Table 5.

The gene is represented by each node while the module
membership is indicated by node color. Correlation exists
between edges between nodes and topologic overlaps (analogous
to correlation) between genes and small distances indicate high
correlation. The purpose of this research was to find hub module,
and the turquoise module was highly correlated with the disease.
Therefore, we focused on the analysis of this module.

By ranking intra-modular connectivity and correlation with
the module eigengene, hub genes in the turquoise module were
identified. The top hub genes in the turquoise module were
represented in Figure 3. To be clarified, only the top 30 hub
genes were included. Hub genes were represented by nodes
and correlation exists between node size and the intra-modular
connectivity of the gene. The selection criteria of hub genes
was the top 10 genes with the highest connectivity in the co-
expression network. DSE, IL17RD, DUSP18, ROBO3, BANK1,
MRC2, LGALSL, TFPI, GAP43, and HYAL1, the top ten hub
genes, were shown in darker colors.

FIGURE 3 | Top 30 hub genes in the turquoise module. Hub genes are

represented by nodes and correlation exists between node size and the

intra-modular connectivity of the gene. In the center of this network, the top 10

hub genes are located and they are shown in darker colors.

Ingenuity Pathway Analysis of Turquoise
Module
To evaluate the relationship between the turquoise module and
IDD, IPA was performed. As shown in Figure 4, “apoptosis
signaling,” “factors promoting cardiogenesis invertebrates,”
“neuregulin signaling,” “B cell receptor signaling” “B cell
activating factor signaling” and “natural killer cell signaling”
were identified by IPA. These pathways highlighted the
role of apoptosis, neural ingrowth, vascularization, and
inflammatory cytokines in IDD. Highly related pathways were
also identified in the Diseases and Bio Functions module
(Supplementary Figure 3).

Confirmation of Hub Gene Expression
To validate the outcomes of the turquoise module analysis
and to identify key genes involved in IDD, RT-PCR was
employed to analyze the relative expression levels of 10 hub
genes. Comparisons of degenerative disc and matched non-
degenerative disc samples revealed significant downregulation
of eight genes (IL17RD, DUSP18, GAP43, and HYAL1 [P <

0.001]; ROBO3, BANK1, and MRC2 [P < 0.01]; LGALSL
[P < 0.05]) and significant upregulation of two genes (TFPI
[P < 0.001]; DSE [P < 0.01]). This expression profile
was consistent with the microarray data (Figure 5). To
make data from PCR and microarray comparable, expression
values of each hub genes were transformed by dividing the
average value in whole expression cohort from corresponding
data source.

DISCUSSION

This study applied integrated bioinformatics approaches to
identify variations in gene expression related to annulus fibrous
in degenerative and non-degenerative intervertebral disc tissues.
We generated a complete overview of the gene networks to
highlight gene modules and hub genes highly related to IDD.
The biological and clinical importance of hub genes in weighted
gene co-expression networks have been widely reported (Chen
et al., 2015). This study identifies the hub genes which may
be of importance to the pathogenesis of IDD. By applying this
novel method of analysis, the present study not only updates our
perspective on the pathogenesis of IDD, but also highlights some
hub genes which have the potential to be IDD biomarkers and
treatment targets.

GO and pathway analyses revealed differences in annulus
fibrous associated with degenerative and non-degenerative
intervertebral disc tissue. Some apoptosis, neural ingrowth,
vascularization, and inflammation related terms and pathways
were identified that were consistent with well-established
molecular mechanisms of IDD (Kepler et al., 2013). The
pathogenesis of IDD includes cellular oxidative stress,
mitochondrial dysfunction and apoptosis (Kang et al., 2019).
Endplate chondrocyte apoptosis is an important cause of
the pathogenesis of cartilage endplate (CEP) degeneration,
leading to the occurrence and development of intervertebral
disc degeneration (IDD) (Wu et al., 2010; Li et al., 2014).
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FIGURE 4 | Ingenuity pathway analysis of the turquoise module. Left part shows pathway names and bars represent the corresponding pathway’s –log (P-value).

FIGURE 5 | Relative expression levels of 10 hub genes. Expressions of genes in GSE70362 and clinical samples. **0.001 < P < 0.01; and ***P < 0.001.
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Nucleus pulposus (NPC) apoptosis is the main factor of
IDD. Nucleus pulposus (NP) cell apoptosis is a classic cell
characteristic in the IDD process (Xianzhou and Cunxin,
2018). The vascularization of the intervertebral disc is generally
considered to be a pathological feature of IDD (Johnson
et al., 2007). As IDD progresses, intervertebral disc tend to
be increasingly vascularized through angiogenesis. Recent
evidence suggests that in addition to abnormal and excessive
mechanical loads, inflammation may be a key driver of IDD
and low back pain (Sharma, 2018). A study by GSE70362 has
identified various dysfunctional cell functions, including cell
proliferation and inflammation, and similar findings have
been found in this study (Kazezian et al., 2015). Human T
lymphovirus type I (HTLV-I) is the inducer of adult T-cell
leukemia/lymphoma and HTLV-1-related myelopathy (Sherman
et al., 1993). HTLV-I can cause chronic infections that cannot
be cured or neutralized by vaccines. Due to HTLV-1 infection,
the overall risk of death increases. The research of GSE70362
found that the most important classical pathway induced in
degeneration fibrosus was the interferon pathway (Kazezian
et al., 2015). Other famous pathways including TNF and TGF-β
signaling were also determined in this study (Freemont, 2009).
It is well known that the tumor necrosis factor TNF pathway
affects the survival of cancer patients (Yi et al., 2018). TNF
signal responds to cellular stress and inflammation signals,
activates pro-apoptotic pathways and cytokine cascades (Chau
et al., 2005). Transforming growth factor-beta (TGF-β) is a
cytokine necessary to induce fibrosis and activate cancer stroma
(Busch et al., 2015; Chen et al., 2019). The TGF-β signaling
pathway plays an important role in many biological processes,
including cell growth, differentiation, apoptosis, migration,
and the occurrence and development of cancer (Waddell et al.,
2004). Four gene modules were generated by WGCNA, and
among them, the module that was most highly related to IDD
was the turquoise module. Further analysis by IPA validated
its tight correlation with IDD. By ranking intra-modular
connectivity and correlation with the module eigengene, hub
genes in the turquoise module were identified. Using this
approach, DSE, IL17RD, DUSP18, ROBO3, BANK1, MRC2,
LGALSL, TFPI, GAP43, and HYAL1 were identified as the top
10 hub genes. Hub gene expression profiles were confirmed by
RT-PCR analysis.

Hub genes such as DSE, MRC2, and HYAL1 have a
considerable effect on extracellular matrix metabolism,
alterations in which are a major cause of IDD (Le Maitre
et al., 2007). The DSE gene encodes dermatan sulfate
epimerase, which regulates the biosynthesis of dermatan
sulfate, an important element of the extracellular matrix.
Furthermore, DSE-deficient mice have altered collagen structure
(Maccarana et al., 2009). MRC2 is a versatile mediator of
extracellular matrix metabolism and regulates not only collagen
internalization, but also matrix metalloproteinase activity
(Bailey et al., 2002; Messaritou et al., 2009; Madsen et al.,
2011; Jurgensen et al., 2014). MRC2 also regulates TGF-
β function (Caley et al., 2012). The HYAL1 gene encodes
lysosomal hyaluronidase, which catalyzes the degradation of

hyaluronan, which is one of the major glycosaminoglycans of
the extracellular matrix (Lokeshwar et al., 2006). In addition,
HYAL1 degenerates chondroitin sulfate, which is also an
important component of extracellular matrix (Gushulak et al.,
2012).

Neural ingrowth is reported to be involved in the pathogenesis
of IDD, and our analysis indicates the involvement of hub genes
ROBO3 and GAP43 in this process (Freemont, 2009; Kepler
et al., 2013). ROBO3 is proposed to be involved in guiding
neuronal axon growth, while GAP43 plays a well-established role
in neuronal development and plasticity (Serin et al., 2016).

Inflammation is an essential participant in IDD and both
IL17RD and BANK1 are important mediators of inflammatory
reactions (Risbud and Shapiro, 2014; Molinos et al., 2015).
IL17RD, which interacts with the IL-17 receptor to initiate IL-
17 signaling, has been proposed as a therapeutic target in axial
spondyloarthritis (Rong et al., 2009; Paine and Ritchlin, 2016).
BANK1 mediates B cell signaling is involved in autoimmune
disease such as systemic lupus erythematosus (Bernal-Quirós
et al., 2013).

The hub gene TFPImay be a versatile participant in IDD based
on its ability not only to regulate angiogenesis, but also to induce
apoptosis (Hamuro et al., 1998; Amirkhosravi et al., 2007; Fu
et al., 2008). Although these hub genes are well-characterized, the
remaining two hub genes, DUSP18 and LGALSL, have not been
researched extensively. Thus, the potential mechanisms by which
these genes participate in the pathogenesis of IDD remain to be
clarified. Nevertheless, the close relationships of the other eight
hub genes with IDD indicates an important role for DUSP18
and LGALSL.

The major limitation of the present study is the isolated
analysis of annulus fibrosus data. Although the formation of
vascularized granulation tissue and innervation in annulus
fibrosus are the principal causes of discogenic symptoms,
the role of nucleus pulposus cannot be ignored (Livak and
Schmittgen, 2002). Therefore, the integrated bioinformatics
approaches adopted in this study will be used to explore how
nucleus pulposus functions in IDD. This combined analysis
of annulus fibrosus and nucleus pulposus data will provide
a more integrated overview of the gene networks involved
in IDD.

In conclusion, the present study was conducted
using integrated bioinformatics approaches to generate a
comprehensive overview of the gene network associated with
annulus fibrosus in IDD. We identified 10 hub genes, DSE,
IL17RD, DUSP18, ROBO3, BANK1, MRC2, LGALSL, TFPI,
GAP43 and HYAL1, which updated our perspective on the
pathogenesis of IDD, and could also serve as novel biomarkers
and potential therapeutic targets. In addition, we also explore
related signal transduction pathways and interaction networks.
IDD is the main contributor to low back pain, which is the
main cause of disability worldwide. This study provides clues
to the molecular mechanism of IDD for future experimental
studies. At the same time, this shows that bioinformatics
methods can be used to identify potential targets for other
human tumors.
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Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic sinonasal inflammatory

disease with limited treatment options of corticosteroids, sinus surgery, or both. CRSwNP

is frequently associated with allergic rhinitis and asthma, but the molecular mechanisms

underlying CRSwNP inflammation are not completely understood. We obtained four

gene expression profiles (GSE136825, GSE36830, GSE23552, and GSE72713) from

four Gene Expression Omnibus (GEO), which collectively included 65 nasal polyp

samples from CRSwNP patients and 54 nasal mucosal samples from healthy controls.

Using an integrated analysis approach, we identified 76 co-differentially expressed

genes (co-DEGs, including 45 upregulated and 31 downregulated) in CRSwNP patients

compared with the healthy controls. Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analyses identified the terms including immune effector

process, leukocyte migration, regulation of the inflammatory response, Staphylococcus

aureus infection, and cytokine-cytokine receptor interaction. protein-protein interaction

(PPI) network analysis and real-time quantitative PCR (RT-qPCR) showed that 7 genes

might be crucial in CRSwNP pathogenesis. Repurposing drug candidates (Alfadolone,

Hydralazine, SC-560, Iopamidol, Iloprost, etc) for CRSwNP treatment were identified

from the Connectivity Map (CMap) database. Our results suggest multiple molecular

mechanisms, diagnostic biomarkers, potential therapeutic targets, and new repurposing

drug candidates for CRSwNP treatment.

Keywords: chronic rhinosinusitis with nasal polyps, differentially expressed genes, hub genes, transcriptomic

functional features, drug repurposing bioinformatics analysis of nasal polyps

INTRODUCTION

Chronic rhinosinusitis (CRS) is a common chronic heterogeneous nasal inflammatory disease that
is associated with significant morbidity and a decreased quality of life. It affects ∼7 to 27% of
adults in European populations, 14% of adults in the United States, and 8% of adults in China
(Hastan et al., 2011; Shi et al., 2015; Wang X. et al., 2016). CRS is clinically classified into two

185

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.609754
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.609754&domain=pdf&date_stamp=2021-02-02
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dr.luozhang@139.com
mailto:entwxd@vip.sina.com
https://doi.org/10.3389/fgene.2021.609754
https://www.frontiersin.org/articles/10.3389/fgene.2021.609754/full


Hao et al. Bioinformatic Analysis of Nasal Polyps

phenotypes according to the presence or absence of nasal polyps:
CRS with nasal polyps (CRSwNP) and CRS without nasal polyps
(CRSsNP) (Workman et al., 2018). CRSwNP can be classified
into 2 distinct immunohistological subtypes based on eosinophil
infiltration, eosinophilic CRSwNP (Eos CRSwNP) and non-
eosinophilic CRSwNP (non-eos CRSwNP) (Cao et al., 2009).
Eos CRSwNP demonstrates Th2 inflammation skewed with a
relatively high recurrence and asthma comorbidity rate, while
non-eos CRSwNP is characterized by a Th1 or Th17 response and
a lower recurrence and asthma comorbidity rate (Zhang et al.,
2008; Cao et al., 2009).

Recent studies have demonstrated that defects in the sinonasal
epithelial barrier, increased exposure to pathogenic and colonized
bacteria, and dysregulation of the host immune system play key
roles in CRSwNP pathogenesis (Stevens et al., 2016). However,
the inflammatory mechanisms underlying CRSwNP are not
completely defined. In this regard, biomarkers that precisely
indicate the development and progression of CRSwNP need to
be further investigated to develop novel clinical strategies for
CRSwNP treatment.

Microarray technology and bioinformatic analysis have
emerged as promising, useful tools for screening genetic
alterations involved in the development and progression of
diseases. Furthermore, over the last decade, next-generation
sequencing has produced substantial improvements in quality
and yield (Goodwin et al., 2016). However, obtaining reliable
results is difficult with both individual microarrays and
sequencing due to the lack of samples (Kulasingam and
Diamandis, 2008). Therefore, to obtain further insights into
the mechanisms underlying the pathogenesis of CRSwNP and
to clarify potential therapeutic targets, we analyzed a sufficient
number of samples and combined differentially expressed
genes (DEGs) derived from multiple microarray datasets with
sequence-based data.

We herein aimed to explore the possible molecular
mechanisms and biomarkers and propose new drug candidates
for CRSwNP by integrating all the public databases for
CRSwNP and using bioinformatics analyses of co-differentially
expressed genes (co-DEGs) in nasal polyps from CRSwNP
patients compared to nasal mucosal tissues from healthy
control tissues. We described the transcriptional features,
identified the biomarkers, and predicted the drug repurposing
candidates, which could provide insights into precise CRSwNP
treatment strategies.

MATERIALS AND METHODS

Microarray Studies, Datasets and

Characteristics of Clinical Samples From

the GEO Data Repository
In the present study, we selected microarray and high-
throughput sequencing datasets of nasal tissues from CRSwNP
patients in the GEO database using the following keywords:
“CRSwNP,” “Homo sapiens,” and “nasal tissue.” Based on these
keywords, four CRSwNP datasets (GSE136825, GSE36830,

GSE23552, and GSE72713) were downloaded from the
repository. Derived from the GPL20301 platform (Illumina
HiSeq 4000), GSE136825 includes nasal polyp tissue samples
from 42 CRSwNP patients and nasal mucosal samples from
28 healthy controls (Peng et al., 2019). GSE36830 includes
nasal polyp tissue samples from 6 CRSwNP patients and nasal
mucosal samples from 6 healthy controls evaluated with the
GPL570 platform (Affymetrix Human Genome U133 Plus
2.0 Array) (Stevens et al., 2015b). GSE23552 is based on the
Affymetrix Human Exon 1.0 ST Array and includes nasal
polyp tissue samples from 11 CRSwNP patients and nasal
mucosal samples from 17 healthy controls (Plager et al., 2010).
GSE72713 is based on an Illumina HiSeq 2000 and includes
nasal polyp tissue samples from 6 CRSwNP patients and nasal
mucosal samples from 3 healthy controls (Wang W. et al.,
2016). The details of each dataset are shown in Table 1 and
Supplementary Table 10. The flow chart detailing this study
protocol is shown in Figure 1.

Differential Gene Expression Analysis
First, background correction and standardization were
performed for the original GEO datasets using the packages
EdgeR and Limma of R software (Ritchie et al., 2015). To
determine whether the DEGs distinguished the CRSwNP group
from healthy controls, principal coordinate analysis (PCoA)
was applied to compare the overall characteristics of DEG
communities between the two groups. The PCoA results were
extracted and visualized using the Vegan and Ggplot2 packages
of R software (version 1.2.5033) (Zhang et al., 2019). Next,
differential analysis (|log2FC| > 1, adjusted p < 0.05) of mRNAs
was performed to compare nasal polyp and normal tissue
samples with the Limma package of R software. Heatmaps
and volcano plots of differentially expressed mRNAs were
constructed using the packages Pheatmap and Ggplot2 of
R software.

Subsequently, a Venn diagram showing the intersecting DEGs
of the four datasets was created with Funrich software (version
3.1.3) (Pathan et al., 2015). The raw data in the four datasets
are summarized in the form of a matrix and are shown in
Supplementary Table 1.

PPI Network Construction
STRING (version 11.0) (http://string-db.org/) was used to
identify the PPIs of the intersecting DEGs of the four
datasets, with a combined score >0.4 used as the threshold
for statistically significant interactions(Szklarczyk et al., 2015).
Cytoscape (version 3.7.2) software was used for the PPI network
visualization (Shannon et al., 2003). Then, the Molecular
Complex Detection (MCODE) plugin, a graph theoretic
clustering algorithm finding highly interconnected regions in a
given network was used to identify important modules within
the PPI network (Bader and Hogue, 2003). For this algorithm,
seed vertices are selected and expanded by the density of the
cluster. In detail, the degree cutoff was 2, the node score
was 0.2, the k-score was 2, and the maximum depth was
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TABLE 1 | The details of GEO datasets for CRSwNP.

GSE PMID Sample size

(n)

Technology Platform Instrument Age (y) Sex, male (n%) Number

of DEGs

mRNA

Up Down

GSE136825 PMID:

31439685

CRSwNP: 42

Control: 28

High-

Throughput

sequencing

GPL20301 Illumina HiSeq

4000

NA NA 851 507 344

GSE36830 PMID:

26067893

CRSwNP: 6

Control: 6

In situ

oligonucleotide

GPL570 [HG-U133_Plus_2]

Affymetrix Human

Genome U133

Plus 2.0 Array

CRSwNP:

38 ± 5

Control:

36 ± 6

CRSwNP: 4 (67%)

Control: 2 (33%)

286 149 137

GSE23522 PMID:

20625511

CRSwNP: 11

Control: 17

In situ

oligonucleotide

GPL5175 [HuEx-1_0-st]

Affymetrix Human

Exon 1.0 ST Array

[transcript (gene)

version]

CRSwNP:

40 ± 2.788

Control:

31.22 ± 2.913

CRSwNP: 5 (45%)

Control: 9 (53%)

459 271 188

GSE72713 PMID:

27216292

CRSwNP: 6

Control: 3

High-

Throughput

sequencing

GPL11154 Illumina HiSeq

2000 (Homo

sapiens)

CRSwNP:

46.8 ± 4.8

Control:

48.7 ± 7.6

CRSwNP: 4 (67%)

Control: 1 (67%)

85 21 64

100. A false discovery rate (FDR) < 0.05 was considered
statistically significant.

Functional Enrichment and Pathway

Analyses
GO functional enrichment analysis is a commonly used method
for annotating genes and identifying characteristic biological
attributes of high-throughput genome or transcriptome
data (Ashburner et al., 2000; Gene Ontology, 2006). KEGG
pathway analysis is well-known for its systematic analysis of
gene functions in biological pathways, which links genomic
information with higher-order functional information
(Kanehisa and Goto, 2000). Clusterprofiler package of R
software integrates GO functional enrichment and KEGG
pathway analyses (Yu et al., 2012). We analyzed the functions
and signaling pathways of the intersecting DEGs using
GO and KEGG analyses by ClusterProfiler package of R
software. GO annotation includes three kinds of functional
categories: biological process (BP), cellular component (CC) and
molecular function (MF). P < 0.05 and q < 0.2 were considered
statistically significant.

Screening Candidate Small-Molecule

Drugs
To screen potential small-molecule drugs related to CRSwNP,
the Connectivity Map (CMap) database, an online program for
predicting potential drugs that may affect the biological status
encoded by specific gene expression markers (https://portals.
broadinstitute.org/cmap/), was employed (Lamb et al., 2006). Co-
DEGs, which included upregulated and downregulated genes,
were uploaded to query the CMap database. The enrichment
score indicative of similarity was calculated and ranged from
−1 to 1. A positive connectivity score indicated that the

drug could induce the expression of the queried gene in
CRSwNP, while a negative connectivity score indicated that
the drug induced a status similar to that of normal cells,
suggesting its potential to treat CRSwNP. The results were ranked
by p-value.

Patient Recruitment
This study was approved by the Ethics Committee of Beijing
TongRen Hospital, Capital Medical University, and written
informed consent was obtained from each patient before
enrollment. A total of 70 subjects, including 46 patients with
CRSwNP and 24 healthy control subjects, were recruited. We
collected nasal polyp tissues from patients with CRSwNP
and nasal mucosal tissues from control subjects. The
diagnosis of CRSwNP was made according to the European
Position Paper on Rhinosinusitis and Nasal Polyps 2012
guidelines (Fokkens et al., 2012). Control subjects without
other sinonasal diseases were those undergoing septoplasty
because of anatomic variations. None of the patients had
been treated with corticosteroids, immunomodulatory
agents, or antibiotics within 4 weeks before enrollment.
The exclusion criteria were as follows: patients with acute
infections, acetylsalicylic acid-intolerance, fungal sinusitis,
immunodeficiency, coagulation disorder, or cystic fibrosis and
pregnant women. Details of the subjects’ characteristics are
included in Supplementary Table 7.

RNA Extraction and Real-Time

Quantitative PCR (RT-qPCR)
Total RNA was isolated from nasal polyps of CRSwNP patients
and from the nasal mucosa of controls using Tri R©-Reagent
(Sigma) according to the manufacturer’s instructions. The
quality of total RNA was assessed with a Nanodrop-2000
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FIGURE 1 | Schematic overview of the study. Flowchart of the study to

identify potential factors underlying CRSwNP pathogenesis compared with

healthy controls. CRSwNP, chronic rhinosinusitis with nasal polyps; GO, Gene

Ontology; FC, fold change; Gene Ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes; PPI, protein-protein interaction; co-DEGs,

co-differentially expressed genes; CMap, Connectivity Map database;

RT-qPCR, real-time quantitative PCR; WB, western blot; IHC,

immunohistochemistry.

(Thermo Fisher Scientific, Waltham, Mass), and complementary
DNA was synthesized from 1 µg of total RNA using
PrimeScript RT Master Mix (Abclonal Biotechnology). RT-
qPCR was performed by using SYBR Green mix (Abclonal
Biotechnology) to assess gene expression levels. Primers are listed
in Supplementary Table 8.

Western Blot Analysis
Tissues of nasal polyps from CRSwNP patients and the nasal
mucosa of controls were homogenized in ice-cold RIPA
lysis buffer (50mM Tris-HCl, pH 7.5, 150mM NaCl, 1.0%
Triton X-100, 20mM EDTA, 1mM Na3VO4, 1mM NaF, and
1mM PMSF). The protein concentration was measured by
bicinchoninic acid (BCA) kit (Beyotime, Shanghai, China).
In brief, equal amounts of proteins (16 µg) were loaded on
the sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS–PAGE) and transferred to nitro cellulose membranes.
The membranes were sequentially incubated with primary
antibodies and horseradish peroxidase-conjugated secondary

antibodies (described below). The following primary antibodies
were used: anti-BTK (1:1000 diluted, ABclonal, A19002,
Wuhan, China), anti-HCK (1:1000 diluted, ABclonal, A14537,
Wuhan, China), anti-HK3 (1:1000 diluted, ABclonal, A8428,
Wuhan, China), anti-NCF2 (1:1000 diluted, ABclonal, A1178,
Wuhan, China), anti-NOX2/gp91phox (1:1000 diluted, Abcam,
ab80897), anti-FLAP (3:5000 diluted, Abcam, ab53536), and
anti-β-actin (1:10000 diluted, Sigma, A5441) at 4◦C overnight,
they were further immunoblotted with HRP-conjugated
IgG antibody (1:5000 diluted, ABclonal, Wuhan, China)
at room temperature for 60min, developed with enhanced
chemiluminescence (ECL) substrate (Millipore, Darmstadt,
Germany) and chemiluminescence detection by ChemiDocTM
MP Imaging System (Bio-Rad, United Kingdom). Band density
was quantitated using the Image LabTM software Version 6.0.0
(Bio-Rad, United Kingdom).

Immunohistochemistry Staining
Five-micron thick sections were obtained from blocks of nasal
polyps and nasal mucosa from CRSwNP patients and control
subjects, dewaxed in xylol and rehydrated in graded ethanol.
For antigen retrieval, the slides containing the samples were
incubated with citrate buffer (pH 6.0) in a pressure cooker
(Zhongshan Jinqiao Biotechnology, Beijing, China). The samples
were then treated with freshly prepared 3% hydrogen peroxide
in methanol for 20min and further washed in Tris-buffered
saline. The slides were incubated overnight at 4◦C with anti-
BTK (1:100 diluted, ABclonal, A19002, Wuhan, China), anti-
HCK (1:200 diluted, ABclonal, A2083, Wuhan, China), anti-
HK3 (1:400 diluted, ABclonal, A8428, Wuhan, China), anti-
NCF2 (1:500 diluted, ABclonal, A1178, Wuhan, China), anti-
NOX2/gp91phox (1:100 diluted, ABclonal, A19701, Wuhan,
China), anti-BFL-1/GRS (1:150 diluted, Abcam, ab45413), anti-
FLAP (1:100 diluted, Abcam, ab53536). A polymer system
(Zhongshan Jinqiao Biotechnology, Beijing, China) was applied
as a secondary antibody conjugated to peroxidase. DAB
(3′-diaminobenzidine tetrahydrochloride, Zhongshan Jinqiao
Biotechnology, Beijing, China) was used as the chromogen,
for 5min, followed by Harris hematoxylin counterstain. Slides
were analyzed under a light microscope (Nikon H600L,
Japan) and 5 images were taken for each slide (Nikon NIS
software, version 4.60, Nikon, Japan) at high-power (40X
objective) field. Representative areas were qualitatively selected
for immunostaining analysis. For digital analysis, we used the
cell counter function of the ImageJ software (version 1.52), in
which we semi-quantitatively determined the average optical
density values.

Statistical Analysis
Differences between groups were assessed by ANOVA. In all
cases, P < 0.05 was considered statistically significant. We
drew a receiver operator characteristic (ROC) curve to calculate
the area under curve (AUC) to discriminate CRSwNP patients
from normal subjects. SPSS 16.0 for Windows (IBM, Chicago,
USA) was used for ROC analyses and other statistical analyses
were performed using GraphPad Prism 7.0 software (GraphPad
Software, La Jolla, CA).
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RESULTS

Integrative Analysis of DEGs in CRSwNP

Samples From 4 GEO Datasets
To avoid a high proportion of false positives in an individual
dataset, multiple-dataset integration was necessary for obtaining
reliable results to further investigate the complex molecular
mechanisms of CRSwNP. We performed background correction
and standardization to reduce variability in four GEO datasets
and PCoA, a dimension reduction technique, to present visual
coordinates of similarity or differences between the CRSwNP
and healthy controls from GEO data (Zhang et al., 2019). PCoA
of gene expression in each of the four datasets (GSE136825,
GSE36830, GSE23552, and GSE72713) revealed that the samples
clustered into two distinct groups (Figure 2A).

We divided the genes into different categories according to
their biotype (https://www.ncbi.nlm.nih.gov/gene), and Volcano
plots were used to display the gene expression data and p-value
statistics of each of the datasets (Supplementary Figure 1A).
We identified the genes that were significantly differentially
expressed (|log2FC| > 1, adjusted p < 0.05) in nasal polyps
compared to control tissues (Supplementary Figure 1B). Then,
we integrated the DEGs and identified 76 co-DEGs, including 45
upregulated genes and 31 downregulated genes, derived from the
intersections of any three of the four GEO datasets (Figure 2B
and Supplementary Table 1). A cluster heatmap was used to
visualize the changes in up- and downregulated genes among 76
co-DEGs (Figure 2C), and details of the 76 co-DEGs are shown
in Supplementary Table 1.

GO Functional Enrichment and KEGG

Pathway Analyses of co-DEGs in CRSwNP
To explore the potential functions of co-DEGs, we performed
GO functional enrichment and KEGG pathway analyses (p <

0.05 and q < 0.2). Notably, the BP terms associated with the
upregulated genes were regulation of immune effector process,
leukocyte migration, regulation of inflammatory response,
negative regulation of immune system process, and regulation
of leukocyte-mediated immunity. The CC terms associated
with the upregulated genes were the external side of plasma
membrane, secretory granule membrane, and membrane raft.
The MF terms associated with the upregulated genes were
phospholipid binding, carboxylic acid binding, organic acid
binding, G protein-coupled receptor binding, and cytokine
receptor binding (Figure 3A). In addition, downregulated genes
were also strongly associated with the BP terms organic
anion transport, multicellular organismal homeostasis, drug
transport, and tissue homeostasis. For downregulated genes,
basolateral plasma membrane was found to be the dominant CC
term. The significantly enriched MF terms associated with the
downregulated genes were metal ion transmembrane transporter
activity, secondary active transmembrane transporter activity,
and active transmembrane transporter activity (Figure 3B).

In the KEGG pathway analysis, the upregulated genes were
mainly related to Staphylococcus aureus infection, cytokine-
cytokine receptor interactions, complement and coagulation
cascades, and viral protein interactions with cytokines and

cytokine receptors (Figure 3C), and the downregulated genes
were mainly involved in bile secretion and salivary secretion
(Figure 3D). The results of GO and KEGG pathway enrichment
analyses are also shown in Supplementary Tables 2–4.

PPI Networks of co-DEGs and Hub Genes

in CRSwNP
To further investigate the biological functions of the co-DEGs,
we constructed PPI networks according to the 76 co-DEGs in
CRSwNP (Figure 3E). The PPI networks contained 57 nodes
and 202 edges, and the isolated genes without interactions were
removed. The MCODE algorithm was further applied to identify
hub genes that were densely associated with each other in the
network (Figure 3F). We found that 12 hub genes including
Arachidonate 5-Lipoxygenase Activating Protein (ALOX5AP),
Bcl-2-related protein A1 (BAL2A1), Tyrosine-protein kinase
BTK (BTK), Cytochrome b-245 heavy chain (CYBB), Neutrophil
cytosol factor 2 (NCF2), Tyrosine-protein kinase HCK (HCK),
Hexokinase-3 (HK3), Macrophage colony-stimulating factor 1
receptor (CSF1R), Pleckstrin (PLEK), CMRF35-like molecule 8
(CD300A), Integrin beta-2 (ITGB2), and fMet-Leu-Phe receptor
(FPR1) might play prominent roles in interacting with each
other in the PPI network, which indicated that these 12 genes
might be core molecules in the development of CRSwNP
(Supplementary Tables 5, 6). The 12 genes screened from the
PPI network were also related to neutrophil-mediated immunity,
positive regulation of the innate immune response, positive
regulation of the defense response, and Staphylococcus aureus
infection as determined by GO functional enrichment and KEGG
pathway analyses.

Validation of Hub Genes
To further validate the results of bioinformatics analysis,
the gene expression levels of the 12 hub genes from PPI
network (ALOX5AP, BCL2A1, BTK, CYBB, NCF2, HCK,
HK3, CSF1R, PLEK, CD300A, ITGB2, and FPR1) in nasal
polyps from CRSwNPs and nasal mucosa from healthy
controls were determined by RT-qPCR. As illustrated in
Figure 4 and Supplementary Figure 2, the expression levels
of ALOX5AP, BCL2A1, BTK, CYBB, NCF2, HCK, and HK3
were significantly altered in CRSwNP, as identified by the
bioinformatics analysis. The other five genes did not show
significantly different expression levels in CRSwNP and healthy
control samples. Regarding diagnostic prediction quality, the hub
genes ALOX5AP, BCL2A1, BTK, CYBB, NCF2, HCK, and HK3
performed well-according to receiver operator characteristic
(ROC) analysis (Figure 4C and Supplementary Table 9). The
area under the ROC curves (AUC) of the genes ALOX5AP,
BCL2A1, BTK, CYBB, NCF2, HCK, and HK3 are 0.7698, 0.7639,
0.7029, 0.8418, 0.8913, 0.8185, 0.7136, respectively. The AUC
of combined detection of the 7 indexes was 0.9354, which was
higher than that of each single detection. Both the qPCR and
ROC analyses suggest that these seven hub genes could be
diagnostic biomarkers for CRSwNP.

Next, we identified the protein level of the seven hub
genes (ALOX5AP, BCL2A1, BTK, CYBB, NCF2, HCK, and
HK3) from nasal polyps from CRSwNPs and nasal mucosa
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FIGURE 2 | The identification of co-DEGs in four GEO datasets of CRSwNP. (A) Principal coordinate analysis (PCoA) of gene expression in CRSwNP and healthy

control subjects in four GEO datasets. (B) Venn diagram showing the number of integrated genes among the four GEO datasets. (C) Gene expression heatmap of the

76 co-DEGs in CRSwNP compared to healthy controls.

from healthy controls. The western blot results showed the
expression level of ALOX5AP, BTK, CYBB, NCF2, HCK,
and HK3 in CRSwNP was significantly increased in nasal
polyps compared to control subjects (Figure 5). Moreover, the
immunohistochemistry stain results also demonstrated that the
protein level of ALOX5AP, BCL2A1, BTK, CYBB, NCF2, HCK,
and HK3 were significantly increased in nasal polyps compared
to control subjects (Figure 6). We found that ALOX5AP,
BCL2A1, BTK, CYBB, NCF2, HCK, and HK3 were broadly

expressed on both epithelial layer and stromal layer in nasal
polyp tissues.

Prediction of Potential Novel Drugs for the

Treatment of CRSwNP by CMap
To identify potential drugs for CRSwNP treatment, we
introduced 45 upregulated co-DEGs and 31 downregulated
co-DEGs from the four GEO datasets into the CMap database
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FIGURE 3 | Gene Ontology, KEGG pathway, PPI network of co-DEGs, and hub gene identification analyses in CRSwNP. (A,B) Bubble chart showing enriched GO

terms for (A) upregulated co-DEGs and (B) downregulated co-DEGs. (C,D) Bubble chart showing enriched KEGG pathways for (C) upregulated co-DEGs and (D)

downregulated co-DEGs. P-values < 0.05 and q-values< 0.2 were considered statistically significant. (E) PPI networks of the 76 co-DEGs from the four GEO

datasets of CRSwNP. The node color represents the degree of proteins, and the edge color represents the combined score of proteins. Red represents high, and blue

represents low. (F) The hub genes of PPI networks.
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FIGURE 4 | The gene expression levels and diagnostic values of 7 hub genes in CRSwNP. (A) Fold changes in the ALOX5AP, BCL2A1, BTK, CYBB, NCF2, HCK, and

HK3 genes in CRSwNP as determined by RT-qPCR. (B) The relative expression levels of the ALOX5AP, BCL2A1, BTK, CYBB, NCF2, HCK, and HK3 genes in

CRSwNP. GAPDH was used as a reference. (C) ROC curves for testing the hub genes ALOX5AP, BCL2A1, BTK, CYBB, NCF2, HCK, HK3, and the combination of 7

hub genes as determined by RT-qPCR. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 5 | The protein expression levels 6 hub genes were significantly increased in CRSwNP by western blot analysis. (A) The expression level of ALOX5AP,

BCL2A1, BTK, CYBB, NCF2, HCK, and HK3 proteins in nasal polyps from CRSwNP patients (n = 10) and nasal mucosal tissues from healthy control (n = 8). (B) Fold

changes of relative expression ratio of ALOX5AP, BCL2A1, BTK, CYBB, NCF2, HCK, and HK3 compare to β-actin in CRSwNP and healthy controls. The expression

level of β-actin was used as a reference. *P < 0.05, **P < 0.01, ***P < 0.001.

and matched them with targeted drug therapies. The top 15 most
significant small molecules (Alfadolone, Hydralazine, SC-560,
Iopamidol, Iloprost, Clorgiline, Cefotetan, Etynodiol, Disulfiram,
Ketotifen, Florfenicol, Clidinium bromide, Ramifenazone,
Nafcillin, Bepridil) and their enrichment value are listed in
Table 2. These drug repurposing candidates could target
co-DEGs in CRSwNP and then affect the expression and
function of genes. This provides a novel perspective to explore
potential precise targeted drugs for CRSwNP treatment. Further
experiments are needed to confirm the efficacy of these drug
candidates in CRSwNP.

DISCUSSION

Previous studies were limited to individual datasets or incorrect
combinations, while our study integrated all the available
public GEO databases of CRSwNP. The CRSwNP groups were
independent of the normal control groups in each of the four
datasets as determined by PCoA. We identified 76 co-DEGs
(45 upregulated and 31 downregulated) among all the GEO
data. The PPI network provided an overview illustration of
the associations among the 76 co-DEGs, and we identified
7 hub genes not only by mRNA level, also by protein
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FIGURE 6 | The protein expression levels 7 hub genes were significantly increased in CRSwNP by immunohistochemistry staining. (A–G) The expression level and

location distribution of ALOX5AP, BCL2A1, BTK, CYBB, NCF2, HCK, and HK3 proteins in nasal polyps from CRSwNP patients (n = 11) and nasal mucosal tissues

from healthy control (n = 7). (H), Fold changes of average optical density value in the ALOX5AP, BCL2A1, BTK, CYBB, NCF2, HCK, and HK3 protein expression in

CRSwNP and healthy controls. **P < 0.01, ***P < 0.001, ****P < 0.0001.

expression level that might be biomarkers and key regulators of
CRSwNP pathogenesis.

ALOX5AP is an essential regulator of the biosynthesis
of leukotriene B4 (Haeggstrom, 2018). Previous studies on
the genome-wide gene expression profile of CRSwNP showed
increased ALOX5AP gene expression levels in the nasal polyps
of patients with aspirin-intolerant asthma (Sekigawa et al., 2009)

and decreasedmethylation levels of ALOX5AP in a genome-wide
methylation profile of nasal polyps (Cheong et al., 2011). BTK, a
member of the Tec family of tyrosine kinases, has been indicated
to play crucial roles in B cell development and signal transduction
downstream of the high-affinity receptor for IgE (FcεR) on mast
cells and basophils in an ovalbumin-induced mouse model of
asthma (Phillips et al., 2016). However, there have been no studies
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TABLE 2 | Results of CMap analysis of co-DEGs in CRSwNP.

Rank CMap name Mean N Enrichment P-value CID Molecular formula Group

1 Alfadolone 0.715 3 0.942 0.00024 9798416 C21H32O4 Approved

2 Hydralazine 0.27 6 0.752 0.00058 3637 C8H8N4 Approved

3 SC-560 0.631 3 0.905 0.00176 4306515 C17H12ClF3N2O Experimental

4 Iopamidol −0.255 4 −0.825 0.00177 65492 C17H22I3N3O8 Approved

5 Iloprost −0.686 3 −0.899 0.00194 5311181 C22H32O4 Approved

6 Clorgiline 0.287 4 0.8 0.003 4380 C13H15Cl2NO Experimental

7 Cefotetan 0.484 3 0.877 0.00355 53025 C17H17N7O8S4 Approved

8 Etynodiol −0.319 4 −0.793 0.00374 14687 C20H28O2 Experimental

9 Disulfiram 0.576 5 0.722 0.00378 3117 C10H20N2S4 Approved

10 Ketotifen −0.322 4 −0.782 0.00462 3827 C19H19NOS Approved

11 Florfenicol 0.242 4 0.764 0.00585 114811 C12H14Cl2FNO4S Approved

12 Clidinium bromide −0.303 4 −0.753 0.00746 19004 C22H26BrNO3 Approved

13 Ramifenazone 0.62 4 0.731 0.01038 5037 C14H19N3O Experimental

14 Nafcillin 0.454 4 0.725 0.0115 8982 C21H22N2O5S Approved

15 Bepridil 0.284 4 0.724 0.01162 2351 C24H34N2O Approved

CMap, Connectivity Map; CID, Compound ID.

on BTK in chronic nasal diseases. NCF2 (also called p67phox)
is a subunit of the multiprotein NADPH oxidase complex,
which is an essential component of the innate immune response
responsible for effective superoxide production in neutrophils
(Thomas, 2017). Another study from our group previously found
that p67phox expression was significantly increased in nasal
polyp tissue compared with control mucosal tissue (Zheng et al.,
2020). A study using a nitric oxide polymerase chain reaction
array showed significant upregulation of NCF2 expression in CRS
patients who were both Staphylococcus aureus biofilm-positive
and polyp-positive compared to control subjects (Jardeleza et al.,
2013). HCK, a member of the Src family of tyrosine kinases, acts
as a key regulator of gene expression in alternatively activated
monocytes/macrophages (Bhattacharjee et al., 2011). Similar to
NCF2, CYBB (often referred to as p91phox or NOX2) has also
been found to be upregulated in CRSwNP (Zheng et al., 2020).
HK3 played a functional role in acute promyelocytic leukemia,
non-small lung cancer, and colorectal cancer (Federzoni et al.,
2014; Wolf et al., 2016; Pudova et al., 2018; Tuo et al., 2020).
BCL2A1 is a member of the BCL-2 family of antiapoptotic
proteins that is induced by mucin 1 transmembrane C-terminal
(MUC1-CT) via the NF-κB p65-dependent signaling pathway
(Hiraki et al., 2018). MUC1 has been identified as an anti-
inflammatory molecule that could inhibit bacteria- and virus-
induced inflammation in airways (Kim and Lillehoj, 2008; Li
et al., 2010; Kyo et al., 2012). MUC1-CT also participates in
the corticosteroid response in the treatment of CRSwNP (Milara
et al., 2015), but relationships between BCL2A1 and CRSwNP
remain unknown. Our study has proved the increased expression
of ALOX5AP, BCL2A1, BTK, CYBB, NCF2, HCK, and HK3 by
mRNA and protein levels in nasal polyps.

Currently, colonization by fungi and bacteria, alterations in
mucociliary clearance, abnormalities in the sinonasal epithelial
cell barrier and tissue remodeling combined with host innate
and adaptive immune responses are known to contribute to

the chronic inflammatory and tissue-deforming processes
characteristic of CRS (Stevens et al., 2015a). In our study,
GO and KEGG results showed that upregulated genes were
predominantly enriched for the immune effector process,
leukocyte migration, regulation of the inflammatory response,
negative regulation of the immune system process, and regulation
of leukocyte-mediated immunity. Dysregulation of these
processes indicated that increasing exposure to pathogenic and
colonized bacteria ultimately caused complicated downstream
immune responses and chronic inflammation during the
formation and development of nasal polyps. Additionally,
downregulated genes were enriched for multicellular organismal
homeostasis and tissue homeostasis, which reflected the
destruction of the sinonasal epithelial cell barrier and tissue
remodeling in CRSwNP. KEGG pathway analysis demonstrated
that the upregulated genes were mainly related to Staphylococcus
aureus infection and cytokine-cytokine receptor interactions.
The above pathways are critical biological processes for pathogen
invasion, immune effector and inflammatory responses, and
tissue homeostasis disorder. It is worth noting that dysregulation
of these processes eventually leads to a severe immune response
and the formation of nasal polyps.

Although previous studies involved bioinformatic analysis
of mRNAs and lncRNAs in CRSwNP (Liu et al., 2019; Zhou
et al., 2020), one study included only 12 CRSwNP patients
and 9 healthy controls. The other study used nasal tissue data
combined with primary human basal cells cultured in an air-
liquid interface system, which might be different from nasal
polyp tissue. Our study included 65 CRSwNP patients and 54
healthy controls, representing the largest CRSwNP study to date.
Additionally, we identified new genes that might be involved
in the pathogenesis of CRSwNP. Moreover, we used the CMap
database to identify drug repurposing candidates potentially
targeting the co-DEGs derived from the four GEO datasets.
Repurposing drugs with higher enrichment scores are more
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likely to reverse the gene expression changes seen in CRSwNP
than those with lower enrichment scores. This work may help
to develop new drugs for CRSwNP treatment. Ketotifen is a
cycloheptathiophene blocker of histamine H1 receptors and
inflammatory mediator release that has been widely used in the
treatment of allergic rhinitis, asthma and allergic conjunctivitis,
and its common side effects include tiredness, dry mouth,
and nausea. Clidinium bromide is a synthetic anticholinergic
agent associated with antispasmodic and antisecretory effects
on the gastrointestinal tract and has the side effects of dry
mouth, dry skin and flushed face. Cefotetan and nafcillin are
broad-spectrum cephalosporin antibiotics might rarely cause
allergic reactions that include a rash, systemic papules, urticaria,
pruritus, and fever. These drugs have not yet been reported
as therapies for CRSwNP. Traditionally, CRSwNP treatments
include nasal saline irrigation, intranasal corticosteroids, oral
antibiotics, oral corticosteroids, and surgery depending on both
the site and symptoms of disease (Kariyawasam and Scadding,
2011; Lee, 2015). With the advancement of the concept of
CRSwNP endotypes, the management of precision medicine and
reductions in recurrence are evolving (Kim and Cho, 2017).
Endotyping helps physicians to determine optimal primary
therapeutic modality and predict treatment outcomes and risks
for comorbidities. Biologics in CRSwNP mainly focus on
targeting the type 2 cytokines such as IL-4, IL-5, IL-13, as well as
IgE. Combining our study with previous studies, the hub genes
increased in CRSwNP might be served as biomarkers. Our study
provides new insights which will shift drug discovery toward
the personalized and precision medicine treatment approach
to enhance CRSwNP therapies. Therefore, further research is
needed to explore the potential of new targeted drugs in
CRSwNP treatment.

CONCLUSION

In summary, by comprehensively analyzing gene expression
profiles, sequencing data from four CRSwNP GEO datasets,
identifying key genes and important pathways, and predicting
the repurposing drugs for CRSwNP treatment, our study
elucidated molecular mechanisms underlying the occurrence
and development of CRSwNP to explain its pathogenesis
and aid in diagnosis from the perspective of bioinformatics.
Our study successfully identified 7 potential genes as key
regulators and predicted a series of repurposing drugs to
expand CRSwNP treatment. However, more experimental
validation is necessary before these data can be translated into
the clinic.
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Objectives: Incorporation of genetic factors in psychosocial/perioperative models for
predicting chronic postsurgical pain (CPSP) is key for personalization of analgesia.
However, single variant associations with CPSP have small effect sizes, making
polygenic risk assessment important. Unfortunately, pediatric CPSP studies are not
sufficiently powered for unbiased genome wide association (GWAS). We previously
leveraged systems biology to identify candidate genes associated with CPSP. The
goal of this study was to use systems biology prioritized gene enrichment to generate
polygenic risk scores (PRS) for improved prediction of CPSP in a prospectively enrolled
clinical cohort.

Methods: In a prospectively recruited cohort of 171 adolescents (14.5 ± 1.8 years,
75.4% female) undergoing spine fusion, we collected data about anesthesia/surgical
factors, childhood anxiety sensitivity (CASI), acute pain/opioid use, pain outcomes 6–
12 months post-surgery and blood (for DNA extraction/genotyping). We previously
prioritized candidate genes using computational approaches based on similarity for
functional annotations with a literature-derived “training set.” In this study, we tested
ranked deciles of 1336 prioritized genes for increased representation of variants
associated with CPSP, compared to 10,000 randomly selected control sets. Penalized
regression (LASSO) was used to select final variants from enriched variant sets for
calculation of PRS. PRS incorporated regression models were compared with previously
published non-genetic models for predictive accuracy.

Results: Incidence of CPSP in the prospective cohort was 40.4%. 33,104 case and
252,590 control variants were included for association analyses. The smallest gene set
enriched for CPSP had 80/1010 variants associated with CPSP (p < 0.05), significantly
higher than in 10,000 randomly selected control sets (p = 0.0004). LASSO selected
20 variants for calculating weighted PRS. Model adjusted for covariates including PRS
had AUROC of 0.96 (95% CI: 0.92–0.99) for CPSP prediction, compared to 0.70
(95% CI: 0.59–0.82) for non-genetic model (p < 0.001). Odds ratios and positive
regression coefficients for the final model were internally validated using bootstrapping:
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PRS [OR 1.98 (95% CI: 1.21–3.22); β 0.68 (95% CI: 0.19–0.74)] and CASI [OR 1.33
(95% CI: 1.03–1.72); β 0.29 (0.03–0.38)].

Discussion: Systems biology guided PRS improved predictive accuracy of CPSP risk in
a pediatric cohort. They have potential to serve as biomarkers to guide risk stratification
and tailored prevention. Findings highlight systems biology approaches for deriving PRS
for phenotypes in cohorts less amenable to large scale GWAS.

Keywords: systems biology, genetics, polygenic risk score, chronic post-surgical pain, gene enrichment

INTRODUCTION

Chronic post-surgical pain (CPSP) is an underrecognized and
undertreated problem with an incidence of 14.5–38% in children
after major surgery, that significantly contributes to prolonged
opioid use (Kain et al., 1996; Kehlet et al., 2006; Macrae,
2008; Rabbitts et al., 2017; Harbaugh et al., 2018). CPSP is
defined as chronic pain that develops or increases intensity after
a surgical procedure and persists beyond healing—at least 3
months after surgery (Werner and Kongsgaard, 2014). It has been
recognized as a unique pain state recently in the International
Classification of Diseases (ICD-11) (Schug et al., 2019). Chronic
pain in adolescents leads to chronic pain in adults, imposes
extraordinary annual costs on the health care system (Walker
et al., 2010; Parsons et al., 2013), and negatively impacts physical
and psychological health, leading to disability and depression
(Hunfeld et al., 2001; Kashikar-Zuck et al., 2001; Fletcher et al.,
2011). Hence, targeted, individualized preventive and therapeutic
measures are needed to decrease CPSP occurrence. Development
of such measures is impeded by the inability to accurately predict
individual risk for CPSP.

Our previous studies investigating psychological and
perioperative factors influencing pediatric CPSP showed that
acute postoperative pain, surgical duration and psychological
factors, such as those measured by the Childhood anxiety
sensitivity index (CASI), are associated with CPSP risk in
adolescents undergoing spine surgery (Chidambaran et al.,
2017). However, these factors only explain 16% of variability in
predicting CPSP, with medium accuracy (C-statistic 0.77). Thus,
more accurate and objective biomarkers are needed to guide
CPSP prevention and management.

Pain has a heritable component of up to 60%, suggesting
incorporation of genetic factors may improve CPSP risk
prediction. Our recent systematic literature review of genetic
associations with CPSP (Chidambaran et al., 2019) showed that
variants of several genes are associated with CPSP. However,
any single variant had only a small effect size (Hoofwijk et al.,
2016; Chidambaran et al., 2019). Since small effect sizes of
single variants explain only a low percentage of the phenotypic
variance, any one variant will not be useful at predicting
risk. However, as individuals may harbor many variants each
contributing modestly to risk, creating a risk score which
accounts for the cumulative effect polygenic risk score (PRS) of
many variants may better explain risk. PRS profiling has been
shown to have translational potential as predictive, prognostic
biomarkers (Muranen et al., 2016; Torkamani et al., 2018).

Typically, the PRS builds off of the results of genome wide
association studies (GWAS), whereby an individual’s genetic
risk is the sum of all their risk alleles weighted by significance
of the corresponding allele (Andersen et al., 2017; Escott-Price
et al., 2017). Accurate, generalizable PRS have shown potential
to inform clinical practice in several fields (Torkamani et al.,
2018; Sugrue and Desikan, 2019). In fact, US Preventive Services
Task Force recommended use of PRS for risk prediction and
screening prioritization in prostate cancer (Grossman et al.,
2018). There is also a push to incorporate PRS in risk assessment
for decision-making in cardiovascular disease, breast cancer and
Alzheimer’s disease (Maas et al., 2016; Knowles and Ashley, 2018;
Tan et al., 2018). Richardson et al. (2019) used using UK Biobank
data to analyze 162 GWAS-derived PRS for 551 heritable traits,
and created an easily accessible web application—“An atlas of
polygenic burden associations across the human phenome.” Pain
was not identified as a phenotype in this atlas.

While CPSP is an important clinical problem the lack of
GWAS studies related to pediatric CPSP to inform PRS is a
major barrier. The problem is there are no pediatric biobanks
to our knowledge with this phenotype. Additionally, pediatric
clinical cohorts with well characterized CPSP phenotypes that
are adequately powered to achieve GWAS statistical significance
are difficult to recruit as they must have surgery and long-
term follow-up. Given the lack of GWAS based data and the
likelihood of small effect sizes, additional approaches to deriving
PRS are required for pediatric CPSP. We recently described
a systems-biology approach to identify genes and genetic
pathways involved in CPSP (Chidambaran et al., 2020). This
approach allows prioritization of functionally associated genes,
hence substantially decreases the burden of statistical power for
gene association testing and overcomes sample size limitations.
We hypothesized that combining systems biology with gene
enrichment for associated variants will allow derivation of PRS,
which will improve prediction of CPSP risk in conjunction with
known psychosocial factors. Our research is unique and novel,
and lays the foundation for further research of PRS as predictive
biomarkers of chronic pain conditions and less accessible cohorts
(Tracey et al., 2019).

MATERIALS AND METHODS

This genomics study has two components: the first being
a bioinformatics-driven, systems-biology approach to identify,
rank and prioritize new “candidate genes” associated with CPSP,
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followed by a gene enrichment and association study in a
prospectively recruited surgical cohort with penalized regression
for PRS generation and evaluation.

Systems Biology Gene Prioritization
We previously conducted a literature-based systematic review
of human clinical studies of genetic associations with CPSP. We
conducted a search using electronic databases (including
PubMed and MEDLINE) of full-text articles of human
clinical studies (limited to English language—clinical trials,
multicenter studies, observational studies, and twin studies
reported between 01/2002 and 12/2017) evaluating genetic
associations with CPSP (Chidambaran et al., 2019). We
used the following search terms: (“postoperative pain” OR
“postsurgical pain” OR “postoperative pain” OR “postsurgical
pain” OR “postoperative analgesia” OR “postoperative opioid”
OR “CPSP” OR “chronic postsurgical pain”) AND (genetic
association OR polymorphism OR variant OR “genotype”
OR “Genome wide association” OR “SNP”). We included
21 full-text articles evaluating associations of 69 unique
variants/haplotype with CPSP. Of these, variants of 31 genes
involved in neurotransmission, pain signaling, immune
responses and neuroactive ligand–receptor interaction, were
found to be associated with CPSP (Supplementary Table 1).
The results of the literature review including description of
studies, genes, variants and outcomes are detailed elsewhere
(Chidambaran et al., 2019). Using the literature derived genes
(N = 31) as “training genes,” we previously identified novel
candidate genes based on their similarity scores (“guilt by
association”) to the curated training genes using ToppFun
application of the Transcriptome Ontology Pathway PubMed
based prioritization of genes (ToppGene) Suite, a one-stop portal
of computational software tools for gene enrichment (Chen
et al., 2009). Pathways based on training and top 10% candidate
genes associated with CPSP are described in detail elsewhere
(Chidambaran et al., 2020).

Here, as the next step, we used the curated training set (N = 31)
and prioritized candidate genes (N = 1305) (henceforth referred
to as the “case set” of genes) for association with and gene
enrichment for CPSP in a prospective clinical cohort (Figure 1).

Prospective Clinical Study
An observational prospective cohort study was conducted
in adolescents with idiopathic scoliosis undergoing posterior
spine fusion using standard surgical techniques, anesthetic and
pain protocols. Studies are registered with ClinicalTrials.gov
(Identifier: NCT01839461, NCT01731873), and approved by
the Institutional Review Board. Written informed consent was
obtained from parents and assent was obtained from children
before enrollment.

Inclusion Criteria
Healthy children, age 10–18 years, American Society of
Anesthesiologists (ASA) Physical Status ≤ 2 (mild systemic
disease), diagnosis of idiopathic scoliosis and/or kyphosis,
scheduled to undergo elective spinal fusion.

Exclusion Criteria
Pregnant or breastfeeding females, obesity, diagnosis of chronic
pain or opioid use in the past 6 months, hepatic/renal disease
and/or developmental delays.

Data Collection
Following preoperative data were obtained: demographics
(sex, age, race), weight, pain scores (numerical rating
scale/0–10 NRS) (von Baeyer, 2009) and home medications.
Questionnaires were administered preoperatively to assess
functional disability (FDI) (Walker and Greene, 1991) and
anxiety sensitivity (CASI) (Silverman et al., 1991). All patients
received total intravenous anesthesia (propofol and remifentanil)
and midazolam in the intraoperative period, followed by
standardized doses of patient controlled analgesia (morphine
or hydromorphone) in the postoperative period. Pertinent
surgical details (duration and number of vertebral levels
fused) and anesthetic data (propofol and remifentanil doses)
were collected. Postoperatively, pain scores (every 4 h), doses
of morphine equivalents administered [postoperative days
(POD) 1 and 2] were recorded. Of note, CASI, surgical
duration and acute postoperative pain were associated
with CPSP in a sub set of this cohort (Chidambaran et al.,
2017). After hospital discharge, at 6–12 months, patients
were asked to rate their average pain score (NRS) over the
previous week and to answer open-ended questions about
nature and site of pain, use of medications/alternative
therapies/physician consults for pain, and functional
disability (FDI).

CPSP Outcome
CPSP outcome was evaluated as a continuous variable for
systems biology prioritization and predictive model development
(to maximize power) and dichotomous outcome was used for
comparison of predictive models. CPSP continuous outcome:
Actual NRS pain scores at 6–12 months after surgery. CPSP
dichotomous outcome, determined by pain score > 3/10 on
a 11-point NRS (range 0–10) at 6–12 months after surgery
(CPSP = yes) was used for final comparison of non-genetic versus
PRS incorporated regression model to evaluate improvement
in prediction characteristics. NRS for pain intensity has been
validated as a pain measure in children aged 7–17 years (von
Baeyer, 2009). NRS pain score > 3 (moderate/severe pain) at
3 months has been described as a predictor for persistence
of pain and has been associated with functional disability
(Gerbershagen et al., 2011).

DNA Collection and Genotyping
Blood was drawn for genotyping upon intravenous line
placement. DNA was isolated on the same day, and frozen
at −20◦C. Genotyping was done using the Illumina Human
Omni5 v41-0 array (85 patients), Human Omni5Exome v41-
1 (33 patients) and Infinium Omni5-4-v1 (53 patients).
Arrays were changed due to availability of new arrays which
had more overall and more functional single nucleotide
polymorphisms (SNPs).

Frontiers in Genetics | www.frontiersin.org 3 March 2021 | Volume 12 | Article 594250201

https://clinicaltrials.gov
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-594250 March 17, 2021 Time: 12:29 # 4

Chidambaran et al. CPSP: Systems Biology Guided PRS

FIGURE 1 | Study flow showing steps involved with gene prioritization using systems biology followed by genetic association analyses in the clinical cohort to derive
polygenic risk score based prediction model for chronic post-surgical pain.

Selection of Variants for Comparison of Case/Control
Gene Sets
Only SNPs from autosomes were selected for analysis and
were annotated using ANNOVAR software (Wang et al., 2010).
All samples passed 95% threshold for call rates at genotype
and individual levels. Genetic data was assessed for Hardy–
Weinberg equilibrium (HWE) by means of goodness of fit χ2-
test with threshold for p-values 0.0001 (Wang et al., 2010).
SNPs that were not associated with a specific gene according to
ANNOVAR annotation were excluded prior to analysis. Low-
frequency variants (minor allele frequency less than 10%) were
also excluded (Supplementary Figure 1). There were 4,186,587
variants on the exome chip initially and 542,313 variants
remained after exclusion. SNPs in high linkage disequilibrium
(LD) (80%) were pruned out in PLINK (Purcell et al., 2007) using
the command –indep-pairwise 50 5 0.8.

Procedure for SNP Selection for PRS
The first step to identify SNPs associated with CPSP was genetic
association analyses. The next step was to narrow down the
number of significant SNPs by enrichment analysis. The last
step for identifying SNPs included in PRS calculation was Least
Absolute Shrinkage and Selection Operator (LASSO) regressions.
SNPs with non-zero coefficients were selected for PRS.

Genetic Association Analyses
Analyses were conducted using SAS 9.4 (SAS, Cary, NC) and R1.
Prior to genetic analyses, cryptic relatedness was checked using
Graphical Representation of Relationship (GRR) (Abecasis et al.,
2001). Principal component analysis was employed to confirm
European and African continental ancestry using 482 validated

1http://www.R-project.org
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ancestry informative markers (Tandon et al., 2011). Concordance
with self-reported race was > 95%. Given the concordance, race
was used as a covariate in all the models and not principal
components. To identify significant SNPs, we used linear models
for association of each SNP with CPSP continuous outcome. In
all association tests, we used an additive genetic model in which
major homozygotes were coded as 0, heterozygotes as 1, and
minor homozygotes as 2. Univariate analyses were conducted
for CPSP outcomes with initial covariates (demographics,
surgical duration, CASI, anesthetic doses, preoperative pain
score), as suggested by non-genetic covariates based on our
previous findings in a similar cohort (Chidambaran et al., 2017).
Covariates significant in univariate analyses (p < 0.1) were
included for genetic association analyses. PLINK v.07 was used
for genetic association tests. Since the association results are only
relevant for comparing the significant variants within the ranked
case gene sets and those within the control sets for enrichment,
they are not reported separately.

Gene Enrichment Analyses
Case gene variants were analyzed as sequence of cumulative sums
of ranked variant sets with 10% increment, as has been done in
a prior study (Kurowski et al., 2019). The first addend in each
sequence was the training gene variant set. For each cumulative
sum, we compared the number of associations in our case sets
that met the p < 0.05 threshold to the number of associations
meeting the same criteria in 10,000 matched runs of our control
set of genes. SNPs from the control set were selected in the same
ratio for minor allele frequency (MAF) as it was observed in
the case set. Specifically, we used MAF bands as follows: 10–
15%:15–20%:20–30%:30–50%. Empirical p-values of resampling
tests were computed as follows: we calculated how many samples
out of 10,000 had the number of significant SNPs equal to or
greater than the number of significant SNPs from the case set and
divided this number by 10,000. SNPs in case genes that formed
the earliest cumulative group (where the number of significant
SNPs were greater than in the matched control group) were
considered as a minimal set of variants enriched for associations
with corresponding outcomes.

LASSO Regression
To minimize risk of overfitting, we used penalized regression
with LASSO in R software (package glmnet) after enrichment
analyses (Friedman et al., 2010) with CPSP continuous and
categorical outcome. SNPs in the genes identified in enrichment
analysis were considered for penalized regression. Since penalized
regression can be performed only on data without missing
values we imputed missing genotypes using Michigan Imputation
Server2. We imputed chromosomes where SNPs with missing
genotypes were located. For each chromosome we submitted
two VCF (Variant Call Format) files for subset of white patients
and for subset of blacks and with admixture patients. VCF files
were obtained from PLINK files using PLINK v1.9. Submitted
to the server SNPs had 100% call rate. Both QC and imputation
modes were used at the server. Genotypes for subset of white
patients were imputed against the 1000G Phase 3 reference

2https://imputationserver.sph.umich.edu

panel and the second subset of patients was imputed against the
CAAPA African American reference panel. SNPs of interest were
extracted from the files with imputed genotypes received from the
server. Since SNPs with imputed genotypes overlapped with non-
missing genotypes of original data these two types of genotypes
(original and imputed) were used for evaluation of imputation
accuracy. A controlling penalty parameter lambda for penalized
regression was selected via cross-validation approach.

PRS Calculation
SNPs with non-zero coefficients in LASSO model were selected
for PRS calculation. PRS was calculated as a weighted sum of
products between number of risk alleles and their corresponding
regression coefficients. The mathematical formula used for PRS
calculation was given by the following equation

PRSn =
m∑
i=1

(|bi| ∗ Ri,n)

Where i is a number of SNPs, m is an upper range of SNPs
participating in PRS calculation, n is a number of patients, PRSn
is a polygenic risk score for n-th patient, bi is an absolute value
of regression coefficient for each out of m SNPs from linear
regression models for association of CPSP with a given SNP, Ri,n
is number of risk alleles for i-th SNP for n-th patient.

Regression Models
We built logistic regression models using stepwise approach
including significant non-genetic predictors associated with
CPSP (p < 0.05 selection criteria), followed by inclusion of PRS.
For model performances, we used the area under the receiver
operating characteristics (ROC) curve (AUC). AUCs with 95%
confidence intervals for clinical and genetic models were used for
model comparison in SAS 9.4 (SAS., Cary, NC).

Bootstrapping
While the optimal design for validation is to use an independent
sample for validation, given the challenges in collecting such
samples, we used the bootstrap method to internally validate
the prediction. In this method, new bootstrap samples are
generated from the original sample by random drawing with
replacement multiple times (Efron, 1979). By bootstrapping
across many iterations, the accuracy of parameter estimates can
be determined. In this study, we empirically evaluate bias in the
regression coefficients from the original model. Bootstrapping
bias is a difference between the value obtained by using the
original sample and the mean value obtained using bootstrap
samples. At each iteration (n = 1,000), a random bootstrap
sample (the same size as the original sample) was drawn with
replacement from the original sample. Logistic models were
generated for each bootstrap sample and bootstrapping results
were compared with results from the original model. Regression
coefficients and bootstrap confidence intervals are reported as
linear terms and equivalent odds ratios. Bootstrapping was
performed in R software (R Core Team, 2018) with the package
boot (Davison and Hinkley, 1997; Freeman, 1998).
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Power Analysis
For the gene set enrichment analyses, our goal was to determine
if a set of selected genes/variants were more likely to show
association (p ≤ 0.05) than for a set of variants selected by
chance. Out of 33,104 variants, we created deciles of variants,
and the rates of associated variants compared each decile to
10,000 randomly selected gene sets of equal size. Based on the
one sided proportion test, if we assumed that the background
rate for association in the random set was 0.05, in the first
decile containing 3310 SNPs, we would have 80% power to
detect a difference between the SNPs in the selected genes if they
were associated at a rate of 0.064 (OR = 1.3) at alpha = 0.05.
Notably, the power calculation for gene enrichment was based
on the number of SNPs rather than the number of individuals
in the sample because we are comparing the rates of SNPs
nominally associated between selected genes and random genes.
For individual variants, we would have 80% power to detect
an odds ratio as small as 2.1 at alpha = 0.05 and minor allele
frequency 0.4. To evaluate the PRS risk score, we evaluated the
score in 52 individuals with CPSP and 79 individuals without

CPSP. With these numbers we would have 80% power to detect a
PRS score difference as small as 2 at alpha = 0.05.

RESULTS

Prospective Cohort Characteristics
Demographics and summary of the variables examined for the
prospective cohort are listed in Table 1. CPSP outcome was
determined for 131 of the 171 patients (∼23% loss to follow-up).
The flow diagram for recruitment is presented in Supplementary
Figure 2. We examined the characteristics of both cohort of
subjects lost to follow-up and the cohort of subjects followed
for 6–12 months for all pertinent measures included in the
models and did not find significant differences in terms of age
(p = 0.390), sex (p = 0.361), race (0.906), CASI (p = 0.364),
surgical duration (p = 0.322) and preoperative pain (p = 0.879).
We found a 40.4% (53/131) incidence of CPSP. CPSP cases had
significantly higher preoperative pain scores (p = 0.037) and CASI
(p = 0.003) on univariate analyses and these factors were included

TABLE 1 | Baseline and pain follow-up characteristics of the surgical cohort, based on chronic post-surgical outcomes and univariate analyses of
perioperative/psychological covariates.

Variable Entire cohort (N = 171) CPSP (dichotomous
outcome)

p-value Pain score at 6–12 months
(continuous outcome)

CPSP Yes (N = 53) CPSP No (N = 78)

Demographics Median (IQR) p-value*

Sex F% 75.4% 81.0% 74.4% 0.365 2 (0–4) 0.331

Sex M% 24.6% 19.0% 25.6% 0 (0–4)

Race (White %) 81.8% 77.4% 84.6% 0.292 1 (0–4) 0.844

Race (Non-white %) 18.2% 22.6% 15.4% 3 (0–4)

Mean SD Mean (SD) Mean (SD) p-value Coefficient (SE) p-value**

Weight (Kg) 57.446 15.256 56.3 (14.2) 57.0 (14.5) 0.781 −0.055 (0.018) 0.323

Age (years) 14.488 1.840 14.7 (1.8) 14.5 (1.8) 0.462 0.184 (0.139) 0.189

Preoperative characteristics

Preoperative pain score 0.596 1.282 0.3 (0.5) 0.1 (0.3) 0.037 1.210 (0.648) 0.065

CASI 28.552 5.531 30.6 (5.6) 26.8 (4.9) 0.003 0.147 (0.048) 0.003

Surgical/anesthesia characteristics

Surgical duration 4.816 1.232 5.0 (1.4) 4.8 (1.2) 0.376 0.360 (0.214) 0.095

No. vertebral levels fused 11.506 1.969 11.0 (2.3) 11.6 (1.9) 0.115 0.006 (0.130) 0.963

Propofol dose mg/kg 71.791 27.186 79.5 (27.0) 73.7 (28.7) 0.238 0.014 (0.008) 0.091

Remifentanil dose mcg/kg 113.911 40.891 118.6 (41.5) 115.2 (44.2) 0.563 0.008 (0.006) 0.225

Acute postoperative pain characteristics

AUC POD1–2 200.327 73.490 222.7 (75.9) 196.7 (66.8) 0.053 0.004 (0.003) 0.697

Morphine meq POD1–2 mg/kg 1.626 0.747 1.6 (0.7) 0.8 (0.1) 0.065 0.646 (0.349) 0.067

Pain follow-up at 6–12 months

CPSP Y/No % 53/78 (40.5%)

FDI score 4.485 5.321 6.7 (5.9) 2.3 (4.0) 0.002

Pain score (NRS) 2.240 2.457 4.6 (2.0) 0.6 (1.0) <0.001

* Wilcoxon test.
** Simple linear regression.
CASI, Childhood anxiety sensitivity index; AUC, Area under curve of pain scores over postoperative days (POD) 1 and 2; CPSP, Chronic post-surgical pain; FDI, Functional
disability index.
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as predictors in the regression model, and covariates for genetic
association analyses.

Genetic Enrichment
After quality control and pruning as described under methods,
33,104 case variants and 252,590 control variants were included
for covariate adjusted association analyses. Compared to the
control set, there was enrichment of SNP associations in the
training set for CPSP (Figure 2) but not for the other deciles
of candidate gene variant sets. Of 1010 variants included in
the training set, the number of variants (N = 80) associated
with CPSP (p < 0.05) was significantly higher than in 10,000
randomly selected control sets (p = 0.0004). These 80 variants
were annotated to the following 12 genes:ATXN1 (29); CACNG2
(2); CTSG (2); DRD2 (1); HLA-DQB1 (3); IL10 (1); KCNA1 (1);
KCND2 (5); KCNJ3 (3); KCNJ6 (9); KCNK3 (2); PRKCA (22).

LASSO
Before LASSO, we imputed 45 genotypes in all (16 individual
SNPs over 26 patients, where missing genotypes ranged from

1 to 10 at an individual level). One SNP rs17843723 form
the HLA-DQB1 gene failed imputation and was excluded from
consequent analysis. Imputation accuracy was 100% when we
compared genotypes detected by chips with imputed genotypes.
Number of genotypes for imputation accuracy evaluation was
2,051 (131 patients ∗ 16 SNPs – 45 genotypes with missing
values = 2,051 genotypes for accuracy evaluation). After
LASSO, when CPSP was a continuous variable, the prediction
set was comprised of 53 variants. LASSO regression with
CPSP as a categorical variable resulted in 24 variants. We
identified 20 variants that had non-zero coefficients in both
linear and logistic penalized regression models. Chromosomal
location, genetic annotation, function, MAF, odds ratios for
CPSP and beta for NRS at 6–12 months with p-values
for the LASSO selected variants are provided in Table 2.
These 20 variants were annotated to nine genes: ATXN1 (7);
CACNG2 (1); DRD2 (1); KCNJ3 (2); KCNJ6 (1); KCNK3 (1);
PRKCA (7). Of these variants, rs7220480 was imputed for one
individual, and rs2891519 and rs200369418 were imputed for
three individuals.

FIGURE 2 | Gene enrichment analyses for pain score at 6–12 months as outcome. Centiles represent the portion of case genes used in the genetic assocaition
analysis. 0% includes the training set of gene variants, 10th percentile includes the training list plus the top 10% highest ranked genes, and so forth, vertical axis
represents the number of variants. Box plots represent the cumulative number of SNPs with signficant association with pain score at 6–12 months after surgery
[chronic post-surgical pain (CPSP) continuous outcome] (p < 0.05) in 10,000 runs of control gene variants. The dot indicates the cumulative number of nominal
associations (p < 0.05) identified for case genes. Enrichment is indicated when a greater number of genetic associations are present in case versus control genes,
that is, when the number of associations in case genes (red dot) (80 variants/1010 variants) exceeded the upper 95th percentile threshold in the 10,000 runs of the
control set. For CPSP continuous outcome, we see enrichment in the training set of variants (p < 0.001). The training set incudes 80 variants showing association
with CPSP (p < 0.05).
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TABLE 2 | Genetic variants and risk alleles with regression coefficients included in the determination of polygenic risk score for prediction of chronic post-surgical pain.

SNP Observed
major
allele

Observed
minor
allele

Gene #Linear
regression

weight

p-value
linear

regression

Reference
allele

Alternative
allele

Function Chr Location
(GRCh37)

Minor
allele

frequency

rs62069959 G* A PRKCA 2.299 0.001 C T Intronic 17 64318923 0.196

rs7125415 G A* DRD2 1.657 0.034 C T Intronic 11 113000000 0.126

rs61131185 A G* ATXN1 1.524 0.011 A G Intronic 6 16623387 0.322

rs12665284 G* A ATXN1 1.481 0.041 G A Intronic 6 16626066 0.146

rs202146909 A* G KCNJ3 1.414 0.042 T C Intronic 2 156000000 0.193

rs493352 G* A ATXN1 1.242 0.031 T C Intronic 6 16744169 0.488

rs9754467 A* G CACNG2 1.166 0.032 G A Intronic 22 37019059 0.222

rs12198202 A* G ATXN1 1.064 0.005 T C Intronic 6 16679771 0.424

rs11079653 T* A PRKCA 0.98 0.011 A T Intronic 17 64352329 0.202

rs2850125 G* A KCNJ6 0.936 0.046 C T Intronic 21 39130114 0.456

rs9914723 G A* PRKCA 0.917 0.004 G A Intronic 17 64716397 0.196

rs7220480 1 A G* PRKCA 0.857 0.048 A G Intronic 17 64686679 0.406

rs2891519 2 G A* KCNK3 0.835 0.008 G A Downstream 2 26954991 0.220

rs200369418 2 A* C PRKCA 0.816 0.028 C A Intronic 17 64762496 0.500

rs3812204 G A* ATXN1 0.789 0.038 G A Intronic 6 16698022 0.345

rs4716060 C A* ATXN1 0.772 0.038 C A Intronic 6 16310456 0.345

rs6459476 A C* ATXN1 0.736 0.048 A C Intronic 6 16618187 0.348

rs227912 A* G PRKCA 0.678 0.049 G A Intronic 17 64610729 0.246

rs744214 G* A PRKCA 0.634 0.017 G A Intronic 17 64334856 0.316

rs1992701 G A* KCNJ3 0.584 0.047 C T Intronic 2 156000000 0.453

PRKCA (protein kinase C alpha); DRD2 (dopamine receptor D2); ATXN1 (ataxin 1); KCNJ3 (potassium voltage-gated channel subfamily J member 3); CACNG2 (calcium
voltage-gated channel auxiliary subunit gamma 2); KCNJ6 (potassium voltage-gated channel subfamily J member 6); KCNK3 (potassium two pore domain channel
subfamily K member 3).
#Linear regression coefficients were used to calculate weighted polygenic risk scores; Beta > 0 is the selection criteria per LASSO.
*Risk allele; 1—imputed for one patient; 2—imputed for 3 patients.

Polygenic Risk Scores
Weighted genetic risk was calculated from the 20 SNPs selected
by LASSO regression models. PRS ranged from 10.1 to 30.6
(mean: 21.1; SD 4.0) and were normally distributed. The
predicted probability (with 95% CI) of CPSP for a subject having
a median (for the cohort) CASI = 28.3 using the regression model
is plotted as a function of the PRS in Figure 3. The probability of
CPSP is higher than 50% at a PRS > 23.06.

Regression Models
The non-genetic full and reduced model are presented in
Table 3. The genetic model incorporating PRS in the non-
genetic reduced model is also presented in Table 3. In
the final model, both CASI and PRS remained significant
predictors with Odds ratio (OR) of 1.37 (95% CI: 1.15–1.65)
and 2.16 (95% CI: 1.53–3.05), respectively, for CPSP. In the
final model, regression coefficients for CASI and PRS have
means and standard errors for linear terms 0.32 ± 0.09 and
0.77 ± 0.18, respectively. Comparison of performance of the
predictive model with clinical predictor (CASI) and performance
of the predictive model with PRS (PRS and CASI) showed
statistically significant higher performance of genetic model.
Receiver operating characteristic curve was plotted showing
that AUC for genetic model was 0.96 (95% CI: 0.92–0.99)
compared to 0.70 (95% CI: 0.59–0.82) for non-genetic model
(p = 0.0001) (Figure 4).

Bootstrapping
The final predictive model was evaluated by bootstrapping.
Bootstrapping bias for means of linear terms were positive values
for both CASI (0.03) and PRS (0.09) with standard errors 0.13 and
0.25 for means 0.29 and 0.68, respectively. Thus, bootstrap means
for linear terms for CASI were 0.29 (0.32 minus 0.03) with 95%
confidence interval 0.03–0.38 and for PRS 0.68 (0.77 minus 0.09)
with 95% confidence interval 0.19–0.74. Confidence intervals for
each regression coefficient obtained using bootstrapping serve
as assessments for the model prediction accuracy. OR and 95%
CI for CASI and PRS after bootstrapping remained similar to
initial model results at 1.33 (95% CI: 1.03–1.72) and 1.98 (1.21–
3.22), respectively. Bootstrapping bias means of linear terms,
corresponding ORs with 95% CIs for regression coefficients are
given in Table 3.

DISCUSSION

For phenotypes affected by difficulties in recruiting well powered
and well characterized cohorts, novel methodologies are needed
to address gaps in objective and accurate predictors. This
is especially true for pediatric CPSP as it impedes targeted
preventive efforts. By leveraging systems-biology and genetic
testing approaches, we conducted enrichment analyses to derive
PRS. They were calculated as weighted sum of products between
number of risk alleles at 20 variants selected by LASSO
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FIGURE 3 | Plot of predicted probability of developing chronic postsurgical
pain (CPSP) after spine surgery is presented as a function of polygenic risk
score (PRS), at a childhood anxiety sensitivity index (CASI) score of 28.3
(median CASI in the model). The blue line denotes predicted probabilities from
the final regression model, and dashed lines the 95% confidence interval, and
circles represent observed cases (or outcomes). We see a sigmoid shaped
curve with increasing probability of CPSP at PRS > 16, 50% probability at
PRS = 23.06 and high probability beyond PRS = 30. Thus, higher the
weighted PRS, higher the probability of CPSP.

regression, and their corresponding regression coefficients. We
used bootstrapping to validate our final model’s performance.
Two factors—PRS and CASI—remained in the final risk
model which predicted CPSP with higher accuracy compared
to base non-genetic model (p = 0.0001). Since CPSP is a
biopsychosocial phenomenon, it is not surprising that CASI, a
psychological construct that measures interpretation of anxiety-
related symptoms, remained a major risk predictor along with
PRS. Higher anxiety sensitivity is associated with fear of pain,
pain interference, which then leads to increased avoidance,
disability (Martin et al., 2007) and maladaptive coping styles
(Asmundson and Taylor, 1996), thus leading to the persistence
of pain. Preoperative assessment of CASI will allow interventions
such as education for improved coping, behavioral therapy and
possibly use of anti-anxiolytics to temper the pain experience.

Scarcity of available genomic datasets for our phenotype of
interest, namely, CPSP, makes GWAS daunting. Systems-biology
approaches have been used successfully for identifying gene
pathways implicated in other phenotypes (Kurowski et al., 2012;
Jegga, 2014; Kurowski et al., 2019) as they allow leveraging
known genomic data sources to prioritize functional genes for
association, thereby decreasing the statistical burden. In our
study, literature derived training sets showed enrichment for
CPSP, with genes previously known to play an important role
in pain. This either suggests that all relevant genes have been
captured by the studies so far or that there are additional genes

TABLE 3 | Multiple regression models evaluated for prediction of chronic
post-surgical pain (CPSP) and results of bootstrapping.

Independent variable OR Lower
95% CI

Upper
95% CI

P-values

Full clinical model (AUC = 0.71)

CASI 1.15 1.04 1.25 0.0038

Preoperative Pain 1.40 0.45 4.33 0.5559

Reduced clinical model (AUC = 0.70)

CASI 1.15 1.04 1.26 0.0035

Genetic model (AUC = 0.96)

Independent variable OR Lower
95% CI

Upper
95% CI

P-values

CASI 1.37 1.15 1.65 0.0006

Weighted PRS 2.16 1.53 3.05 <0.0001

Bootstrapping results

OR (β) Lower
95%CI,
OR (β)

Upper
95%CI OR

(β)

Bias β

CASI 1.33 (0.29) 1.03 (0.03) 1.72 (0.38) 0.03

Weighted PRS 1.98 (0.68) 1.21 (0.19) 3.22 (0.74) 0.09

CASI, Childhood anxiety sensitivity index; OR, Odds ratio; β, regression coefficients;
AUC, Area under curve; PRS, Polygenic risk score; CI, confidence interval.

FIGURE 4 | Receiver operating characteristic curve showing the
sensitivity/1-specificity for prediction of chronic post-surgical pain using the
non-genetic model [including childhood anxiety sensitivity index (CASI) –
dashed lines] compared with the prediction using the polygenic risk score final
model (PRS and CASI – solid black lines). The area under curve for genetic
model is 0.96 (95% CI: 0.92–0.99) compared to 0.70 (95% CI: 0.59–0.82) for
non-genetic model (p = 0.0001).

in very different pathways which need additional larger studies.
Importantly, systems biology helped us identify control gene
sets which allowed us to refine the optimal variants for PRS
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determination by enrichment. Our findings are an important
first step in the development of accurate and reliable gene-based
biomarkers to predict susceptibility for CPSP. However, these
findings will need external validation in unrelated similar and
dissimilar surgical cohorts and diverse population structures. In
addition, analytic validation of the panel in a CLIA-certified
laboratory by re-sequencing and confirmation of the variants is
necessary. Nevertheless, there is promising potential for future
automated risk decision support based on preemptive genotyping
and patient characteristics (CASI). This will allow preemptive
preventive strategies to be employed cost-effectively, directed at
those with higher risk.

The derived PRS is composed of weighted risk coefficients
from 20 variants annotated to 7 genes which (not surprisingly)
played a role in CPSP in previous studies: Ataxin-1 (ATXN1),
Protein Kinase C Alpha (PRKCA), calcium channel genes
(codes for the G subunit: CACNG2), Dopamine receptor gene
(DRD2) and potassium channel genes (KCNJ3, KCNJ6, KCNK3).
Potassium and calcium channel genes form the majority of
genes involved. This is consistent with knowledge that these
channels contribute to activation thresholds and spontaneous
or exaggerated neuronal firing in response to noxious stimuli
(Cohen and Mao, 2014). CPSP risk 6 months after breast
cancer surgery has previously been reported for haplotype A2
rs3111020-rs11895478 G-A of KCNJ3 and rs2835925 of KCNJ6
(Langford et al., 2015). Similarly, in another cohort, several
variants of the CACNG2 gene were found to be associated
with CPSP at a nominal level after breast cancer surgery
(Nissenbaum et al., 2010). PRKCA is involved in long-term
potentiation, an important process for memory and chronic
pain development (Kawasaki et al., 2004; Price and Inyang,
2015). A meta-analysis showed that a recessive model of
allele A in rs887797 in PRKCA was strongly associated with
neuropathic CPSP in adults undergoing joint replacement
surgery (Warner et al., 2017). DRD2 variants were nominally
associated with CPSP 4 months after different surgeries (Montes
et al., 2015), as well as in chronic pain conditions (migraine)
and substance abuse/addiction (Xu et al., 2004; Connor et al.,
2007; Todt et al., 2009). Ataxin1 (ATXN1) is a gene that
may play a role in transcription. Although its role in pain
is not known, a study of a multiple surgery cohort found
that the A allele at rs179997 of ATXN1was associated with
CPSP at 4 months (Montes et al., 2015). Although variants
selected for PRS in our study are mostly intronic, a functional
assessment of the variants informing the PRS is not pertinent for
establishing predictive biomarkers. However, intronic sequence
alterations could influence gene function via altering binding sites
for splicing co-factors or transcriptional enhancer/suppressor
elements or may be in linkage with other variants with
functional roles.

Since different surgeries are associated with variable pain
modalities with different incidences of CPSP, the homogeneity
of the surgical cohort in our study is a strength. The well
characterized CPSP phenotypes, systematic approaches and
bootstrapping add to the robustness of the results. Recent
articles discuss clinical implementation of PRS may soon be a
reality in cohorts with a higher prior probability of disease, to

assist in risk/diagnosis or to inform treatment choices (Lewis
and Vassos, 2020). We acknowledge that there are ethical
and scientific challenges surrounding clinical implementation
of PRS (Martin et al., 2019). Cost-benefit analyses for use
of PRS in CPSP will need to consider (a) the prevalence
of cohort at risk (In the US alone, 25 million adult and
5 million pediatric major surgeries are conducted per year
(specifically, for spine surgery— according to the national
scoliosis foundation, about 38,000 spine fusions are conducted
in idiopathic scoliosis every year in the United States) (Sieberg
et al., 2013) (b) the relative risk of phenotype predicted by
PRS (in this study, RR∼2.2), (c) the proportion of surgical
population at risk (in this study, ∼40%; the incidence of severe
CPSP after major surgery is 2.2%—at a conservative estimate,
this translates to 660,000 new cases of CPSP every year in
the United States) (Fletcher et al., 2011), (d) the therapeutic
response rate (CPSP is potentially preventable), and (e) the
cost/impact of the condition being prevented (Gibson, 2019).
Recent estimates suggest that CPSP incurs annual direct and
indirect costs of US$11,846 and US$29,617, respectively, per
patient (Parsons et al., 2013) and negatively impacts quality of
life (Hunfeld et al., 2001; Kashikar-Zuck et al., 2001; Fletcher
et al., 2011). Furthermore, the decreasing costs of genetic
testing indicate that use of PRS will have benefits that outweigh
risks/costs. Recent studies investigating preventive strategies like
pregabalin have conflicting results (Mishriky et al., 2015; Thapa
and Euasobhon, 2018)—this is not necessarily a function of
therapeutic inefficacy—but could potentially be due to bias from
inclusion of low risk subjects; hence, PRS could potentially
improve evaluation of interventional strategies allowing a priori
assessment of risk.

CONCLUSION

In conclusion, systems biology approaches combined with
genetic association testing methodology are useful methods to
develop PRS when GWAS approaches are not feasible. PRS
holds future potential as a biomarker (simple blood test) that
can predict CPSP risk. Given the morbidity associated with
CPSP—including the risk for opioid abuse (Brummett et al.,
2017), significant rates of chronic opioid dependence after
surgery (Lee et al., 2017), the economic burden of CPSP—
and decreasing genetic testing costs, we envision PRS to be
cost-effective adjunct for risk stratification and clinical decision-
making so preventive strategies can be targeted at those with
high-risk. Future studies are needed to validate our findings.
Our results may also have extended potential in predicting
other chronic musculoskeletal pain conditions with similar
pathophysiology.
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