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Editorial on the Research Topic
 Using Ecological Models to Support and Shape Environmental Policy Decisions




INTRODUCTION

Marine and coastal ecosystems are directly or indirectly affected by human activities (Von Glasow et al., 2013; Halpern et al., 2019; He and Silliman, 2019; O'hara et al., 2021). Because of their complexity, predicting the effects of regulations and management measures on these ecosystems has been a challenging task (Leslie and Mcleod, 2007; Ruckelshaus et al., 2008; Link et al., 2018; Stephenson et al., 2018). Ecological and socio-ecological models have been recognized to be essential for addressing this issue (Heymans et al., 2018, 2020). These tools can provide an integrative image of key mechanisms and processes at different scales (e.g., from coastal to basin scales) and hierarchical levels (e.g., individuals, populations, communities, and ecosystems) and can be used to explore the consequences of alternative policies or management scenarios (Piroddi et al., 2015; Lynam et al., 2016; Holsman et al., 2017; Smith et al., 2017). Such models have long been used and developed in academic and research settings, but not operationally. More recently they have been used as heuristic tools for policy and management, e.g., to understand general patterns in ecosystem structure and functioning, or for qualitative assessment of the impact of single or multiple pressures on selected species/functional groups (Punde et al., 2017; Ostlaender et al., 2019; Townsend et al., 2019; Link and Marshak, 2021). These types of models have a great potential to directly underpin policies and management decisions, and this potential is beginning to be realized.

This Research Topic showcases recent advancements in modeling tools to directly support environmental management and policies for the sustainable use of coastal and ocean resources. The geographic scope covers coasts, enclosed seas and open oceans, around Europe and the USA This collection of 27 articles highlights the types of models currently being used, the policies and environmental aspects covered, as well as gaps and actions needed to better link models and policies for improving the management and the restoration of our oceans.



FISHERY AND CLIMATE

This Research Topic highlights that fisheries and associated regulations dominate the bulk of the models used to advise environmental policies. In fact, of the 27 articles, ~41% were related to modeling and assessing fishing pressure on specific compartments of the ecosystem; an extra ~15% modeled the impact of fishing in combination with changes in climate/environment, while climate on its own represented ~4% of the accepted papers.

Most of the modeling effort to support fisheries policy is concentrated in the USA, and most of the papers point to the use of coupled and/or ensemble of models to better support/advise fisheries management. For example, Reum et al. reviewed the importance of using multispecies model ensembles (MMEs) to address fisheries management in the Northwest Atlantic Coastal Shelf; Gulf of Mexico; and the California Current. Major conclusions drawn from this review were: 1) the need to have well-defined procedures for review and uptake of information from MMEs to advise fishery management decision-making bodies, as happens for single-species stock assessment models; 2) an ensemble model suite improve the credibility of multispecies models, building confidence in the absence of quantitative treatments; and 3) involvement of a diverse set of stakeholders at an early stage of model development ensures the utility of the models and ensemble in a policy context.

Multi models (from single- and multi-species stock assessment to more complex food web approaches) have been also described by Anstead et al., who reviewed the history of Atlantic menhaden management on the East Coast of the USA and the development and implementation of the ecosystem approach to forage fish management. Drew et al. showed the practical use of these MMEs (from less to more complex models) to evaluate the trade-offs between the harvest of Atlantic menhaden and ecosystem management objectives. Less complex models were relatively easier to implement and update, but lacked key elements needed to manage multiple species simultaneously. By contrast, more complex models required a wider array of data and were more difficult to update within the current management time-frames, but produced a more useful framework for managers. The authors concluded that the food-web model, Ecopath with Ecosim (EwE), coupled with the existing single-species assessment model, was most appropriate for use in management decisions. Further details on this particular model and approach were presented in Chagaris et al. and Howell et al. Although most of these examples are from the USA, the integration of an ecosystem model into the single-species assessment and management framework was also shown in Europe, for the Irish Sea ecosystem (Bentley et al.) again using the EwE software.

To test fishery harvest rules, Kaplan et al. showed the use of end to end models (Atlantis) in the California Current, and Nordic-Barents Seas, addressing explicitly the linkage between predators and prey and between the forage needs of predators and fisheries. The results highlighted that there was an increase in catch variability when fishing mortality rates were linked to prey biomass (zooplankton). In addition, when there was an increase in fishing and a decrease in productivity (zooplankton), strong ecosystem effects on other species could be expected, such as changes in phytoplankton abundance and subsequent effects on epibenthos, zooplankton and other primary producers. Overall, these results demonstrated the usefulness of explicitly incorporating ecosystem concerns within fisheries management to better simulate and address environmental policy questions.

Management strategy evaluation (MSE) was used by Smith et al. to compare static and dynamic fishing closures for the drift-gillnet swordfish fishery in California to reduce leatherback turtles bycatch. This study showed that static and dynamic closures can each play a role in bycatch reduction, but dynamic closures are more effective for species with dynamic habitat associations. In addition, the authors recommended that for highly distributed species like sea turtles, spatial closures may work better with the implementation of other mitigation tools such as effort control, gear selectivity and bycatch quotas.

Kaplan et al. also used MSE to show how and why MSE is continuing to grow from a single species approach to multi-species and ecosystem-based management (EBM). They highlighted case studies from the USA related to fisheries regulations and climate, emphasizing methods, tool development, and lessons learned that are relevant beyond the USA, and the benefits relative to single species MSE approaches.

Szymkowiak and Rhodes-Reese applied a coupled socio-ecological framework on the sablefish fishery in Alaska to examine which strategies fishermen use to adapt ecosystems conditions. By coupling quantitative indicators and a qualitative network model, they demonstrated how adaptive strategies could be evaluated to capture the multi-faceted well-being effects of how fishers adapt to ecosystem changing conditions. Coupled socio-ecological models, as shown in this study, could elevate the inclusion of human adaptive behaviors, providing a framework that aims to mitigate the adverse effects on both the fishers and the resources by facilitating the mixture of adaptive strategies that maximizes desired well-being outcomes.

Kasperski et al. assessed the state of coupled social-ecological models (SES) in support of the ecosystem based fisheries management approach in the USA. They found that for a model to provide useful strategic or tactical advice, it should only be coupled to the degree necessary to understand the importance of system dynamics/responses and to create management-relevant performance metrics or potential risks from (in) action. The main takeaway message from this study was the key role of “timing” in management uptake and successful coupling. Early engagement between disciplines, and even across sub-disciplines, could ensure the broadest range of questions can be addressed within a management timeline.

Tommasi et al. presented a case study from the West Coast of the USA, showcasing a process to identify management priorities, coming from stakeholders' comments. These priorities were then used to assess potential ecosystem models and analyses that could help to address the policy concerns and identify gaps in existing ecosystem models and analyses that limit their utility to the management process. This is one of the few papers that presented a concrete blueprint for matching models to management needs in a specific policy context.

The only study from the Indian Ocean (Zanzibar) showed the use of a Bayesian hierarchical species distribution modeling approach to identify potential conservation areas for commercially important species, and to better advise local fishing communities on their spatio-temporal decision-making process (Rehren et al.). As highlighted in this paper, this type of approach is particularly valuable for the operability of spatial management of small-scale fisheries, which normally suffer from a lack of long-term information and fisheries independent data.

In Europe, in Limfjorden (Denmark), Pastor et al. used a sediment transport model to show the impact that mussel dredging has on sedimentary processes, through resuspension of sediment particles, and potentially on eelgrass growth due to a reduction in water clarity. The results showed that shellfish fishing intensity and frequency have minimal effects on light conditions for eelgrass. However, they suggested that management plans for areas with co-occurring dredging activities and seagrass beds should limit the daily number of dredging activities allowed, and spread them over weeks and months to obtain a more sporadic effect on light conditions.

On the combined impact of fishing and changes in climate, Whitehouse et al. investigated how forecasted climate change and fisheries management scenarios may interact to produce different outcomes for commercial species and the eastern Bering Sea food web. In particular, using a modeling framework that linked/coupled a global earth system, hydrodynamic-biogeochemical, food web and fisheries models, they examined how population dynamics, food web structure, and fishery catches may change in the eastern Bering Sea under climate change. This study aimed to support fisheries managers by providing projections of stock status and ecosystem conditions that can inform guidance on the long-term impacts of climate change and fisheries.

Finally, Kearney et al. highlighted that despite the increasingly need and use of climate change projections for marine resources management strategies, scientists and managers should carefully understand the differences among global Earth System Models (ESMs) in relation to key processes, resolution, etc. The authors provided a summary of some key points marine resources end-users may need to consider when using the biogeochemical model output for marine resources policy strategies.



COASTAL AND OFFSHORE DEVELOPMENT AND RESTORATION

Coastal and offshore development and restoration models to support management plans represent ~19% of the articles of this Research Topic. The studies were from the USA (Louisiana) and Europe (East Atlantic and North Sea) and tackled two different aspects of coastal/offshore developments and restorations. In Louisiana, de Mutsert et al. used a hydrological model coupled to a marine food web model in coastal/estuarine areas to evaluate the effects of a large-scale coastal restoration plan on the biomass and distribution of fisheries species. To understand the effects of climate change, simulations also included sea level rise scenarios. Simulation output showed that the plan mostly resulted in increases in species biomass, but that the outcomes were species-specific and basin-specific. The specific sea level rise scenarios affected the amount of wetland habitat maintained, and subsequently the biomass of species depending on that habitat. This work filled an important gap in the literature by evaluating landscape-scale impacts on estuarine food webs and changes in species biomass and distributions in response to environmental changes. By making this type of information available to resource managers, precautionary measures of ecosystem management and adaptation can be implemented.

Still in Louisiana, Barataria Bay, Lewis et al. showed the use of ensemble and coupled marine ecosystem models to inform resource managers in their assessment of the ecological effects of a large-scale marsh restoration project. Multiple models indicated that the food web was resilient to disturbance because of a detritus energy reserve, and because the consumer biomass consisted mostly of low tropic level and high turnover species. This information provided ecosystem-level information to decision-makers for assessing possible basin-scale impacts of a proposed large-scale restoration project on fish and shellfish resources.

In Europe, Serpetti et al. coupled a food web model with a hydrodynamic-sediment tracking model to assess the impacts of Multi-Purpose Platforms (MPPs) on the West Coast of Scotland. These MPPs comprise offshore wind turbines co-located with a fish farm in the surrounding ecosystem. Results showed high sensitivity to changes for bottom-up drivers, such as primary producers and detritus, with potential impact on pelagic and benthic consumers through the food web. The authors also discussed the potential use of this type of modeling approach to support marine spatial planning and the impact that these results might have for EU policies.

In the North Sea, the impact of Offshore Wind Farms (OWFs) on the environment (through filtration of the water column and fecal pellets production by blue mussel) of the Belgian Coastal Zone, was assessed by Ivanov et al. who used a coupled hydrodynamic-sediment transport model. The authors showed that the spatial distribution and extent of the impact in terms of organic and mineral particles fluxes to the bottom were determined by the local hydrodynamics (e.g., tidal and residual currents, mesoscale gyres). Overall, the footprint of the OWF on the total carbon deposition went beyond the study area, and was particularly high within 2–5 km around the turbine foundation and extends several kilometers away. Different scenarios of design of a future OWFs on a “nature protection” region were assessed and recommendations for the placement of wind turbines were provided.

In a companion paper, the consequences of this altered distribution of the carbon flux was further investigated by De Borger et al., using a hydrodynamic-biogeochemical model. Their results showed that sediments in OWFs became sites of intense organic carbon mineralization, with an average increase in carbon preservation in the sediment. This work provides a first estimate of the scale over which offshore windfarms affect sedimentary nutrient cycling, and indicates that sediment biogeochemistry should also be added to the list of ecosystem effects that need to be taken into consideration in the decision-making processes related to OWF placement or dismantling.



EUTROPHICATION AND POLLUTANTS

Of the articles published in this Research Topic, ~15% tackled the modeling to support policies to deal with eutrophication (~11%) and plastic pollution (~4%), and all of these were conducted in Europe. In all instances, coupled and ensemble models were the tools utilized to advise policy decisions. For example, Stegert et al. assessed the historical eutrophication state of the North Sea using two coupled physical-biogeochemical models. This was done to evaluate the degree of methodological uncertainties and the reliability of the model-based reconstruction, for example, the impact of boundary conditions, model formulations and natural variability. Results showed that the quality of river forcing dominated model variability in coastal regions while in most of the offshore regions, natural variability dominated. In some specific areas, the difference of answers given by the models dominated the variability. Hence, the authors recommended using a larger number of models, which will provide a more robust estimate, even though the validation efforts will be consequent.

A multi-model assessment was also the approach utilized by Friedland et al., who used up to five coupled hydrodynamic-biogeochemical models to assess the impact of realistic nutrient load reductions (improved management of agriculture and wastewater treatment) from European river systems on the biogeochemistry. Their results showed that in nearly all marine regions, riverine load reductions would lead to reduced nutrient concentrations in the marine environment. In addition, model ensemble displayed strong consistency and robustness, as most, if not all models, indicated improvements in the same areas. Piroddi et al. coupled the hydrodynamic-biogeochemical models of Friedland et al. with 14 High Trophic Level models, covering almost all the EU seas, to assess the impact of these nutrient load reductions on the higher trophic level component of the European marine ecosystems. Their results showed that nutrient reduction measures would not have a significant impact on the structure and function of European regional seas. However, coastal and shelf areas will be more sensitive to environmental changes than large regional and sub-regional ecosystems that also include open seas.

The modeling of pollutants such as microplastics was presented by Van der Molen et al. who used a coupled hydrodynamic-particle tracking model to investigate the differences in dispersal and accumulation of microplastics in the North Sea. Their results showed that floating particles could accumulate temporarily on salinity fronts and in gyres, and were deposited predominantly on west-facing beaches. These outcomes are relevant for the development of environmental legislation and management of microplastics under EU policies.



POLICY-MODELING INTERFACE

Another important aspect of modeling to support policies is related to the way the results are communicated to decision-makers/stakeholder. Steenbeek et al. developed an approach that connects an ecosystem model with a game engine for real-time communication and visualization of scientific results. The approach, called OceanViz, focused on communicating scientific data to non-scientific audiences to foster dialogue, offering experimental, immersive approaches to visualizing complex ecosystems whilst avoiding information overload.

On the other hand, Quemmerais-Amice et al. developed a technical and methodological approach to map the risk of cumulative effects on benthic habitats, using the French continental shelf as case study. This tool [built using Spatial Query Language (SQL), Geographic Information System (GIS) and R] illustrated the feasibility of mapping the risk of cumulative effects on benthic habitats, showing confidence index and variability associated with the analysis. This demonstrator contributes to the concrete implementation of the cumulative effect assessment concept and decision support tools needed within the framework of European policies.



DISCUSSION

The type of models used to support environmental policies were either coupled (~33%), multi model ensembles (~26%), both coupled and ensembles (~15%), or single models (~30%). When coupling models, hydrodynamic-biogeochemical or -sediment transport models, linked (or not) with food web models, were the most numerous. Conversely, of the ensembles, multispecies models (e.g., stock assessment, food web, species distribution, end to end, and statistical models) constituted the majority of the models. Among single models (not coupled or in an ensemble), food webs, MSE, Bayesian, end to end, were used to support fisheries related policies while gaming tool and a DPSIR (Drivers, Pressures, State, Impact and Response; Patrício et al., 2016) framework were used for the modeling-policy interface. Socio-economic-ecological modeling tools were under-represented (~7%). This constitutes the main area where future work is needed, as managing resources is more about managing people, and therefore the links between social/economic and ecological systems are critical if we want to use these tools for ecosystem-based management of our natural resources.

The policies addressed in these studies referred to EU or USA policies, highlighting a lack of models used to address/support broader international policies like the Convention on Biological Diversity (CBD) or the United Nation's sustainable development goals (SDGs), although the majority of indicators/output produced by these tools could be linked to those if needed. While few attempts exist in the literature on the use of marine modeling tools for both CBD and SDG (e.g., Levy and Ban, 2013; Allen et al., 2016), more effort should be put in place to better link national and international policies with available modeling outputs.

Most of the case studies presented in this Research Topic occurred either in Europe or in the USA, with only one exception (Zanzibar, Indian Ocean), showing a lack of studies in this collection on using modeling tools in other parts of the world. This is also pointed out by Heymans et al. (2020) in a paper that highlights the ecosystems modeling needed for the UN Decade of Ocean Science for Sustainable Development. While European studies seem to cover a wider spectrum of environmental pressures/policies mainly driven by European policies such as Marine Strategy Framework Directive/Blue Economy and more broadly the EU Green Deal, studies in the USA were mainly dominated by modeling fishing to address fisheries regulation/policy issues.

Overall, this collection of articles emphasize that coupled and/or multi model ensembles are the most utilized tools to answer policy questions. The use of coupled and model ensembles have been recognized to produce more robust and consistent model results, substantially decreasing uncertainties in the scenario outcomes and improving the credibility of the models when advising decision makers. Another important message that emerged from this Research Topic is the need to involve stakeholders in the modeling process from the start. Stakeholders need to be there during the development/implementation/scenarios process, to ensure the utility of these models for management decisions. The co-design of these tools with stakeholders enables better credibility of the models and gives buy-in to the ultimate outcomes that are predicted by the models. Not all the models presented here followed this procedure but they highlighted the need to engage with stakeholders.

The future for applying ecological models to ecosystem-based management holds many opportunities (Borja et al., 2020). Fisheries management is a major driver for developing ecological models. Climate is becoming a major driver for model development. As ecosystem considerations continue to be addressed for fisheries and with increasing calls to address climate change, one might expect that this will increase the development and application of ecological models for marine ecosystem-based management. In addition, Link (2010) noted the need for multiple model ensembles to deal with model uncertainty for ecosystem-based management. The articles in this collection (and references therein) indicate that this is becoming a more regular practice.

We note a dearth of end to end modeling sensu (Fulton, 2010; Rose, 2012), in this collection. More holistic models may be important for addressing broader marine EBM trade-offs and for incorporating climate as an ecosystem driver. Thought end to end modeling is limited in this collection, model coupling is demonstrated throughout with comprehensive overview articles on coupling global scale oceanographic models and ecological models (Kearney et al.) and coupling socioeconomic and ecological models (Kasperski et al.). These layout good approaches for coupling models that would enable end to end modeling. In addition, these approaches will be important for modeling climate changes scenarios. Additionally, coupling socioeconomic and ecological models will be useful for future stakeholder engagement and potentially for model co-design processes with stakeholders and policy makers, as has previously been highlighted by Heymans et al. (2018) for European policy makers.
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Management strategy evaluation (MSE) provides a simulation framework to test the performance of living marine resource management. MSE has now been adopted broadly for use in single-species fishery management, often using a relatively simple “operating model” that projects population dynamics of one species forward in time. However, many challenges in ecosystem-based management involve tradeoffs between multiple species and interactions of multiple stressors. Here we use complex operating models, multi-species ecosystem models of the California Current and Nordic and Barents Seas, to test threshold harvest control rules that explicitly address the linkage between predators and prey, and between the forage needs of predators and fisheries. Specifically, within Atlantis ecosystem models we focus on how forage (zooplankton) availability affects the performance of harvest rules for target fish, and how these harvest rules for fish can account for environmentally-driven fluctuations in zooplankton. Our investigation led to three main results. First, consistent with studies based on single-species operating models, we found that compared to constant F = FMSY policies, threshold rules led to higher target stock biomass for Pacific hake (Merluccius productus) in the California Current and mackerel (Scomber scombrus) in the Nordic and Barents Seas. Performance in terms of catch of these species varied depending partly on the biomass and recovery trajectory for the simulated stock. Secondly, the multi-species operating models and the harvest control rules that linked fishing mortality rates to prey biomass (zooplankton) led to increased catch variability; this stemmed directly from the harvest rule that frequently adjusted Pacific hake or mackerel fishing rates in response to zooplankton, which are quite variable in these two ecosystems. Thirdly, tests suggested that threshold rules that increased fishing when productivity (zooplankton) declined had the potential for strong ecosystem effects on other species. These effects were most apparent in the Nordic and Barents Seas simulations. The tests of harvest control rules here do not include uncertainty in monitoring of fish and zooplankton, nor do they include uncertainty in stock assessment and implementation; these would be required for full MSE. Additionally, we intentionally chose target fish with strong mechanistic links to particular zooplankton groups, with the simplifying assumption that zooplankton biomass followed a forced time series. Further developing and testing of ecosystem-level considerations can be achieved with end-to-end ecosystem models, such as the Atlantis models applied here, which have the added benefit of tracking the follow-on effects of the harvest control rule on the broader ecosystem.

Keywords: harvest control rules, California Current, Nordic and Barents Seas, Pacific hake, Atlantic mackerel, management strategy evaluation


INTRODUCTION

Management strategy evaluation (MSE) provides a simulation framework to test the performance of living marine resource management (Sainsbury, 2000; Punt et al., 2016a). MSE has now been adopted broadly for use in single-species fishery management, often using a relatively simple “operating model” that projects population dynamics of one species forward in time. However, many challenges in ecosystem-based management involve tradeoffs between multiple species and interactions of multiple stressors (Link, 2010). Efforts are underway to include these dynamics in more complex “end-to-end” ecosystem models that can serve as operating models for MSE, but to date the most fruitful ecosystem-based MSE approach has often been to strip the ecosystem model (operating model) down to intermediate levels of complexity (often 3–5 species) (Punt and Butterworth, 1995; Plagányi et al., 2012; Punt et al., 2016b; ICES, 2018b). Here we take a different tack, retaining the complexity of the end-to-end ecosystem models, but stripping down the simulated assessment in the MSE. We test threshold harvest control rules (synonymously HCRs or simply “rules”) that explicitly address the linkage between predators and prey, and between forage needs of predators and fisheries. Specifically, within Atlantis ecosystem models we focus on how forage (zooplankton) availability affects the performance of harvest rules for target fish, and how these harvest rules for fish can account for environmentally-driven fluctuations in zooplankton. The same set of harvest control rules are applied in the California Current and Nordic and Barents Sea models (Figure 1), where recent conditions and future scenarios suggest climate-driven shifts in prey productivity and spatial distribution (Drinkwater, 2005; Ellingsen et al., 2008; Bond et al., 2015; Cheung et al., 2015; Leising et al., 2015). For the two systems, we test for common responses to the harvest control rules.
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FIGURE 1. Atlantis model domains for California Current and Nordic and Barents Seas.



Single-Species Threshold Harvest Control Rules

Threshold harvest control rules have been advocated, tested, and applied in fisheries management, particularly as a robust means to cope with variability in stock productivity (recruitment) and uncertainty in stock size and policy implementation. This originally included simple “constant escapement” policies (commonly for salmon and capelin) that prohibit fishing below a certain stock size (the limit reference point), and that harvest all biomass above that stock size (sensu, Reed, 1979). More recently this has evolved into proportional threshold control rules that apply a fixed fishing mortality rate above a limit reference point. For instance, Engen et al. (1997) found that this approach outperformed constant escapement policies in the face of uncertainty in stock size. Lillegård et al. (2005) also tested proportional threshold harvest control rules for Norwegian spring spawning herring (Clupea harengus), illustrating the high performance of this HCR when stock size was uncertain. Norwegian spring spawning herring are a particularly relevant example because of their high variability in recruitment and resulting strong fluctuations in stock size (Toresen and Østvedt, 2000). Sethi et al. (2005) tested the impacts of uncertainty in stock size, stock productivity (recruitment), and implementation on optimal policy choices for simulated species. Given highly stochastic stock size (recruitment) these authors ultimately advised a proportional threshold harvest control policy with a limit reference point at approximately 0.3–0.4 of stock carrying capacity and a constant harvest rate above that of 0.6–0.7 of the stock. This literature has also led to attempts in fishery management to more precisely define limit reference points and target reference points, i.e., the stock size at which maximum fishing rates are applied (Mace, 1994; Clark, 2002). Most current applications for marine fish involve a modified threshold policy (Spencer and Collie, 1997) that specifies “hockey stick-shaped” increases in fishing mortality rates (or catch) as biomass increases from the limit reference point to the target reference point, with constant fishing rates at biomass above that target (Figure 2A). Threshold harvest rules are in place for Pacific hake (Merluccius productus) (US Congress Senate Committee on Foreign Relations, 2004), other groundfish on the US West Coast (Pacific Fishery Management Council, 2016), Northeast Arctic haddock (Melanogrammus aeglefinus) and other demersal fish in the Barents Sea (ICES, 2018a) and many other stocks. Globally, simulation testing of harvest control rules, most often variants on threshold rules, plays an important role in the Precautionary Approach to fisheries (FAO, 1996; Punt, 2006).
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FIGURE 2. Top left panel: Threshold harvest control rule and constant fishing mortality rate at FMSY. Top right panel: Threshold harvest control rule that decreases F when the forage base declines. Bottom panel: Threshold harvest control rule that increases F when the forage base declines.




Threshold Harvest Control Rules That Respond to Ecosystem Productivity and Forage Base

In practice, most harvest control rules applied for fisheries management assume stock productivity varies only with the size of the target population or by including predation mortality, but previous simulation testing has considered harvest rules that respond to fluctuations in ocean conditions and prey (e.g., ICES, 2016b). In particular, fishery managers may take one of two divergent policies to respond to declining prey resources. The first perspective treats leaving fish unharvested in the ocean as an “investment” that is preferable when productivity is high (Costello et al., 1998, 2001), with the implication that fishing rates should be lowered during periods of high productivity and raised during periods of low productivity.

The alternative policy is to increase fishing when productivity is high, and fish less aggressively when productivity is low. “Less aggressive fishing” can mean upward adjustments to escapement, or decreasing fishing mortality rates in step with declining stock size, or simply maintaining constant fishing mortality rates such that catch (e.g., in tons) declines with a declining stock size (Parma, 1990; Walters and Parma, 1996; Carson et al., 2008). Overall, there is a clear understanding that refinement of harvest control rules is an important next step toward addressing both single-species goals and economic and conservation objectives within ecosystem-based fishery management (Froese et al., 2011; Levin et al., 2018; Trenkel, 2018).



Goals

Here, we apply an ecosystem modeling approach to test simple versions of threshold harvest control rules where fishing rates are adjusted with productivity, focusing on productivity driven by the abundance of key zooplankton forage taxa. We focus on major target fish stocks in the California Current and the Nordic and Barents Seas: Pacific hake and mackerel (Scomber scombrus), respectively. For these target species, we simulate alternative threshold harvest control rules that either increase or decrease fishing rates when forage productivity declines, and compare these rules to a simpler threshold harvest control rule that approximates current management policy in these regions. As a benchmark, we also apply a constant fishing rate based on maximum sustainable yield (FMSY). These ecosystem-based harvest rules that address shifting productivity or threshold forage biomass are not novel, but here we explore their implications for different trophic levels and the structure, function, and catches at the ecosystem level. We adopt lessons learned from other (mostly single-species) MSE efforts in terms of how to score, plot, and summarize model performance. Overall, there is recognition that harvest control rules are key tools for achieving ecosystem-based fisheries management goals such as coping with climate change (Kritzer et al., 2019), and for implementing the precautionary approach (Punt, 2006). Below we demonstrate that applying end-to-end “operating models” allows simulation testing of novel harvest control rules that include ecosystem considerations, and allows us to screen the implications of those rules on the ecosystem level.



ECOSYSTEMS AND METHODS


California Current Ecosystem

The California Current (Figure 1) is a southward-flowing eastern boundary current, and the coastal ecosystem is dominated by episodic upwelling on the scale of days to months, with long-term variability driven by the basin-scale Pacific Decadal Oscillation and the El Niño-Southern Oscillation (Checkley and Barth, 2009). Sardine (Sardinops sagax) and anchovy (Engraulis mordax) in particular demonstrate decade-long cycles (Chavez et al., 2003), and other species such as hake and rockfish (Sebastes spp.) exhibit high inter-annual variability in recruitment (Berger et al., 2017). Fisheries in this region range from large vessels with at-sea processing capability to small coastal vessels. Dominant species in landings include Pacific hake, sardine, and squid (Doryteuthis opalescens). Major contributors to landed value also include Dungeness crab (Metacarcinus magister), shrimp (Pandalus jordani), albacore tuna (Thunnus alalunga), sablefish (Anoplopoma fimbria), and salmon (Oncorhynchus spp.). Hake dominate the midwater fish biomass on the continental shelf and slope, and account for about 12% of total fish biomass (Marshall et al., 2017). Hake feed heavily on euphausiid species including Euphausia pacifica and Thysanoessa spinifera, and their distinct diel vertical migration may track euphausiids’ vertical movements (Ressler et al., 2007). Larger hake consume more fish than smaller hake. Nonetheless, recent diet syntheses suggest that approximately 80% of adult hake diet is euphausiids (Dufault et al., 2009; Wippel et al., 2017).

Pacific hake are a transboundary stock managed jointly by the US and Canada following a simple threshold harvest rule. The default fishing mortality rate when abundance is high is based on a proxy for MSY, which leads to a spawning biomass per recruit that is 40% of that without fishing (FSPR = 40%). The 40:10 threshold harvest rule decreases catch linearly to zero as spawning biomass declines from 40 to 10% of unfished levels (Berger et al., 2017). No fishery exists for zooplankton in the California Current, and in fact such fisheries were recently banned (NMFS, 2009), but natural fluctuations alone drive strong oscillations in euphausiid abundance (Ralston et al., 2015).



Nordic and Barents Seas

The Nordic and Barents Seas, where the Nordic Seas include the Greenland, Iceland, and Norwegian Sea (Figure 1), are dominated by contrasting water masses, with a large heat transport into the Barents Sea from the Norwegian Atlantic slope Current (Orvik and Skagseth, 2005). High seasonal variability follows changes in light and stratification. The ecosystems are tightly linked together by an inflow of zooplankton from the Norwegian Sea to the Barents Sea (Skaret et al., 2014) and species migrating between the two. The Norwegian Sea ecosystem is dominated by three pelagic fish species: Norwegian Spring Spawning (NSS) herring, blue whiting (Micromesistius poutassou), and mackerel, all of which compete for plankton prey items including copepods and euphausiids. Mackerel enter the Norwegian Sea for summer feeding and spend the remaining part of the year (including spawning) slightly south of the model domain, where it also spawns. The dominant prey of mackerel is the copepod Calanus finmarchicus, which has a standing stock biomass of close to 31 million tons in the Norwegian Sea (Broms et al., 2016).

Present day management for mackerel in the Norwegian Sea is complicated. Although three partners (Norway, EU, and the Faroe Islands) agreed upon a management strategy in 2015 which should be valid for the subsequent 5 years, the total quotas for 2015 to 2017 have all exceeded the advice from ICES (ICES, 2019). ICES advice, though not followed, was based upon harvest control rules in 2010 and since 2016 (ICES, 2019). A limited fishery for Calanus finmarchicus is active in the Norwegian Sea (Grimaldo and Gjøsund, 2012), though with a low quota (165,000 tons) relative to the standing stock biomass (∼31 million tons) (Broms et al., 2016).



Atlantis Ecosystem Model

To evaluate the implications of alternative harvest rules on the broader ecosystem, we implement the end-to-end Atlantis C++ code framework (Fulton et al., 2004, 2011; Audzijonyte et al., 2019). As an end-to-end model, Atlantis simulates oceanography, nutrient cycling, food web dynamics, fisheries, and other human uses on a three-dimensional domain. In most applications including ours, simulations involve forward projections of differential equations, solved on 12 or 24 h time steps using adaptive-difference techniques. The model tracks species abundance in terms of nitrogen concentrations per model cell (for invertebrates and primary producers), and in terms of numbers-at-age and weights-at-age (in nitrogen units) for vertebrates. Vertebrates typically are driven by fixed seasonal migrations or foraging behavior, while plankton are advected between model cells. Over 30 Atlantis models have now been implemented worldwide (Weijerman et al., 2016). The Atlantis code base is maintained by CSIRO Australia and made available via an online request at https://research.csiro.au/atlantis/.



California Current Atlantis

The California Current Atlantis model has been described in depth (Kaplan et al., 2017; Marshall et al., 2017). Briefly, the model includes five primary producer groups, 25 benthic and planktonic invertebrates, 36 fish groups, 10 marine mammal groups, three bird groups, and two detritus categories. The model domain represents 1.475 million km2 with 89 polygons (Figure 1), including US West Coast waters of the continental shelf, slope, and offshore to 200 nautical miles (322 km), as well as portions of Mexican and Canadian waters. The model is initialized in year 2013, and for most fish species, including hake, initial conditions for biomass are taken from recent stock assessments. Initial conditions for the “Large zooplankton” functional group (euphausiids) are taken from a summary of the CalCOFI plankton time series (Lavaniegos and Ohman, 2007), and from zooplankton samples taken along the Newport Oregon Hydrographic Line (W. Peterson, unpublished data, NOAA NWFSC, Newport Oregon). The model is forced by Regional Ocean Modeling System (ROMS) output for 2013, as in Marshall et al. (2017). This oceanography drives Atlantis daily temperature, salinity, and currents; in the present application we do not apply the values of pH from Marshall et al. (2017) to the biological response of the model. The California Current model generally does not require a spin-up, and after initialization in year 2013 reaches quasi-stable behavior (under constant fishing) by approximately year 30, before our results reporting years 41–50. In other applications, the model has been used to test implications of ocean acidification (Marshall et al., 2017) and reductions in forage fish abundance (Kaplan et al., 2017).



Nordic and Barents Sea Atlantis

The Nordic and Barents Sea Atlantis model (Hansen et al., 2016, 2019a,b) includes 54 species and functional groups, and was constructed to explore combined fisheries and climate scenarios. Of the 54 components, 3 are primary producers, 20 fish groups, nine benthic and planktonic invertebrates, two bird groups, 10 marine mammal groups, and three detritus categories. The model domain represents 4 million km2 with 60 polygons (Figure 1), which are designed to be as homogeneous as possible. For this study, the model is initialized representing 2003, and fish biomasses are taken primarily from stock assessments, including for mackerel (ICES, 2017). Biomass of the functional group “Mesozooplankton” (primarily C. finmarchicus) was taken from surveys in the Norwegian Sea (Skjoldal et al., 2004) and in the Barents Sea (SJØMIL)1. Daily inputs of temperature, salinity and currents were interpolated from a set of ROMS models representing the period used in these simulations (NorESM; Sandø et al., 2014). This Atlantis model required a 24 year spin-up period, where the physical forcing was looped 24 times using the same year (2004). These first 24 years were not used in any analyses. Mackerel is a migratory species within this model (Hansen et al., 2016), and only enters the model during the summer months for feeding. During the period it stays outside the model domain, it experiences no mortality or growth. Fisheries prior to 2017 were represented using historical fishing pressures for the larger commercial stocks (ICES, 2017, 2018a). Along with the California Current model, the Nordic and Barents Sea Atlantis implementation has recently been used as part of a global suite of models to test a range of fisheries policies and marine protected areas (Olsen et al., 2018), and for a sensitivity study of the key groups and parameters included in the model system (Hansen et al., 2019a).



Simulation Design

For both ecosystems, we simulate 50-year forward projections of the harvest control rules described in detail below. The simulations are based on the parameterizations described in Hansen et al. (2016, 2019a) and Kaplan et al. (2017), recently applied jointly in Olsen et al. (2018). In the California Current simulations, fishing rates for all species other than our “target” (Pacific hake) were held at 2013 fishing mortality rates (F units of yr–1). In the Nordic and Barents Seas simulations, fishing rates for all species other than “target” mackerel represented historical F rates until 2017, when they switch to average, representative values for each component based on the fishing pressure for the last decade.

We tested six harvest control rules (Table 1). To establish parameters for the harvest rules, prior to the simulations described here, estimates of B100 (unfished biomass) and FMSY for the target fish groups were calculated iteratively from multiple simulations, by varying (or turning off) fishing rates on one target species and holding all other species at base case fishing rates. The calculated FMSY was applied in the “Constant FMSY” simulations, and was also used to define the maximum fishing mortality rate in the threshold harvest rule simulations (Figure 2 and Table 1, Rule 1). The B100 was also used to define B40 (40% of unfished biomass) and B10 (10% of unfished biomass), which we used to define Btarget (target biomass) and Blim (limit reference point below which harvest is stopped) in the threshold rules, respectively (Figure 2 and Table 1, Rule 2). (We adopt the terminology “target” following common usage on the US West Coast (Punt et al., 2008), but note that readers from other regions may have other terminology, such as Btrigger).


TABLE 1. Simulations performed.

[image: Table 1]Due to the strong feeding preference from hake and mackerel on euphausiids and copepods respectively, we designed harvest rules with precautionary reductions in fishing on target stocks that were triggered when their zooplankton prey declined below threshold levels. Specifically, we reduced fishing mortality rates (F, yr–1) on target fish when zooplankton fell below either 50% of average biomass (Table 1, Rule 3) or below 25% of average biomass (Table 1, Rule 4). Fishing mortality was reduced proportional to the diet fraction comprised of the zooplankton. For the California Current, this was a 79% reduction in fishing mortality rate from the simple threshold rule (based on 79% of hake diet from euphausiids in the base case; Wippel et al., 2017), and for the Nordic and Barents Seas this was similarly a 75% reduction in fishing mortality rate (based on Iversen, 2004). This strong reduction in fishing illustrates a case where fishery managers institute very precautionary policies, assuming little ability of hake or mackerel to locate zooplankton aggregations or switch prey when productivity declines.

In addition, we tested the possible effects of increasing the fishing pressure on the target fish when its main zooplankton prey fell below the threshold. For this specific harvest control rule, we increased the fishing mortality rate by 25% when the zooplankton fell below either 50% (Table 1, Rule 5) or 25% (Table 1, Rule 6) of average biomass.



Time Series of Plankton Productivity

The threshold harvest rules are intended to adjust to shifts in stock abundance and productivity, and hence we simulate an ensemble of fluctuating time series of zooplankton productivity that will drive these shifts (Figure 3). California Current euphausiids and Nordic and Barents Seas copepods are major prey items for Pacific hake and mackerel respectively (Dufault et al., 2009; Bachiller et al., 2016; Wippel et al., 2017), and sensitivity analyses support the key role of zooplankton for fish food webs (Hansen et al., 2019a). For the California Current, we drive ecosystem productivity with observations of annual euphausiid abundance from midwater net surveys off Central California, for 1990–2017 (Sakuma et al., 2016). For the Nordic and Barents Seas, we drive the ecosystem model with a Norwegian Sea copepod survey for 1995–2017 (Broms et al., 2016). We scaled the plankton time series for each ecosystem such that the mean of the time series was 1. We then created 13 replicates of the time series (for a total of 14), each with a distinct starting point in the original survey data (e.g., starting years 1,3,5,…,27), and then we “looped” or repeated the time series for the simulation duration (50 years). We used each of these 14 time series as annual multipliers of base zooplankton biomass, and used these time series of zooplankton biomass to drive the 14 replicates testing each harvest rule listed in Table 1. Performance of a harvest rule in each simulation (e.g., Simple Threshold harvest rule for hake with zooplankton time series #1) was calculated by comparing to outputs from an FMSY simulation forced by the identical zooplankton time series (e.g., zooplankton time series #1). The choice of 14 replicates was driven by practical considerations related to available computer processing power: 14 × 6 harvest rules × 2 ecosystems represents approximately 8,000 h of compute time.
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FIGURE 3. Biomass trajectories of euphausiids from the California Current Atlantis model (top) and of copepods from the Nordic and Barents Seas Atlantis model (bottom). For each ecosystem, simulations 1 and 5 are shown as examples. The pattern is shifted by 2 years between each simulation, e.g., simulations 1 and 5 are 8 years lagged. Biomass trajectories are forced based on zooplankton abundance time series for the Norwegian Sea (copepods, 1995–2017), and the California Current (euphausiids, 1990–2017), with the time series “looped” to stretch the duration of the Atlantis simulations.




Performance Metrics

We evaluated performance of the harvest rules in terms of ecosystem metrics, following Olsen et al. (2018). The ecosystem metrics largely follow those from the IndiSeas project (Shin and Shannon, 2010) and others (Fulton et al., 2005; Rice and Rochet, 2005; Methratta and Link, 2006). We calculated seven metrics of ecological community properties and eight metrics of fisheries and economic properties, averaging over the last 10 years of each fifty year scenario (Table 2). The economic properties are very simple, only taking the value of the catch (current value) into consideration, using values from Olsen et al. (2018). Consistent with other MSEs (e.g., Tommasi et al., 2017), we also plotted the biomass, catch, and coefficient of variation of catch, for both target fish species (hake or mackerel).


TABLE 2. Ecological and fishery indicators used as performance metrics.

[image: Table 2]The biomass responses of modeled groups in the last 10 years of the simulation were plotted relative to biomass in the FMSY case, and were also aggregated into 11 guilds, as in Olsen et al. (2018): “mammals,” “seabirds,” “shark,” “demersal fish,” “pelagic fish,” “squid,” “filter feeder,” “epibenthos,” “zooplankton,” “primary producer,” and “infauna.”



RESULTS


Example of Dynamic Outputs: California Current Harvest Control Rules for Hake

The simulations implemented the harvest control rules specified in Figure 2 and Table 1, and projected impacts on stock dynamics. For example, the California Current hake threshold rule decreasing F when prey abundance declined had the expected upper and lower limbs corresponding to periods with high or low euphausiid abundance (Figure 4, corresponding to harvest rule #4 in Table 1). Frequent (annual) adjustment of the F rates led to high variability in hake F and catch. Similar diagnostic plots for other harvest control rules suggest the simulations were able to recreate the set of rules listed in Table 1.
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FIGURE 4. Example time series of Pacific hake biomass and F (top panel), zooplankton biomass (middle panel), and F versus biomass (bottom panel) from the California Current Atlantis model. These are outputs from a threshold harvest rule for target fish that scales fishing in step with productivity (if zooplankton falls below < 25%; Table 1, Rule 4). More specifically, for this US example, F rates from the 40/10 hake threshold rule are decreased by 79% if euphausiid abundance falls below 25% of baseline euphausiid abundance. Note the high variability in F for this harvest rule (top panel, gray symbols linked by gray lines). In the top panel the solid black line indicates the BTARGET reference point below which the fishing mortality rate is reduced (B40), and the dashed black line indicates the BLIM reference point below which harvest is stopped (B10). In the middle panel, points indicate whether zooplankton abundance is below 25% (red), between 25 and 50% (orange), or above 50% (blue). In the bottom panel, the solid gray horizontal line indicates the maximum fishing mortality rate (FMSY), the solid black line indicates the BTARGET reference point, and points are colored identically to the middle panel.




Threshold Harvest Rules for Target Fish

For both the California Current and Nordic and Barents Seas, as expected, the scenarios suggest higher target fish biomass (hake or mackerel, respectively) in the final years of the simulation under a threshold harvest control rule than under constant FMSY (rule #2 in Table 1, Figures 5, 6 top left panels, Supplementary Table S1). This was due to lower average F imposed at low biomasses under this harvest rule (Figure 2A). Variation in catches with the threshold rule, as compared to variation in catch under FMSY, was higher for mackerel, and only slightly higher for hake (Figures 5, 6, top right panels). Average catches of both hake and mackerel were within ∼5–10% of average catches under an FMSY base case. Lower F resulted in lower average catches for mackerel. For hake in the California Current, catches were slightly higher under this threshold rule (and all variants of the threshold rule below) than the FMSY case. This was due primarily to the trend in hake biomass in the base run (decline followed by recovery over years 25–50), and the fact that lower Fs in the threshold rule during the early part of the recovery led to higher biomass and catch by the final years of the simulation. The hake stock starts the simulation at 3.8 million metric tons, which is 67% of the model’s estimate of unfished biomass (5.7 million metric tons), but approximately double the model estimate of BMSY (1.94 metric tons). The decline below BMSY is driven primarily by model internal dynamics (physical forcing and trophic interactions, including effects of management on other commercial species), rather than by fishing rates on hake; however, the recovery from this decline is influenced by hake F and harvest rule. In both ecosystems, target fish biomass trends were slightly modified by the zooplankton forcing, but were consistent enough that we see moderate or little variability in target species biomass and catch across the 14 simulations, as demonstrated by the narrow range of biomass outcomes for hake and mackerel (Figures 5, 6, top left panels).
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FIGURE 5. Fishery and ecological metrics for the California Current results, with Pacific hake as target fish. These performance metrics are scored against comparable base cases with target fish F = FMSY. Each of the pairs of simulations here is forced with a different time series of euphausiid biomass. Top left panel: Performance metrics for simulations with a simple threshold harvest control rule (rule #2 in Table 1). Middle left panel: Performance metrics for a threshold rule for target fish that decreases fishing if productivity declines (if zooplankton < 25%). This threshold rule is #4 in Table 1. Bottom left panel: Performance metrics for a threshold rule for target fish that increases fishing if productivity declines (if zooplankton < 25%). This threshold rule is #6 in Table 1. Right panels: Coefficient of variation of catch. In all panels, boxes span the lower to upper quartiles, horizontal black lines within each box represent median values, and whiskers extend to the highest and lowest values excluding outliers. Outliers are indicated by open circles, defined as points beyond 1.5 times the interquartile range.



[image: image]

FIGURE 6. Fishery and ecological metrics as in Figure 5, but for the Nordic and Barents Seas, with mackerel as target fish. Each of the pairs of simulations here is forced with a different time series of copepod biomass.


The ecosystem-level performance of the threshold harvest rule differed little from the FMSY scenario. Other than metrics related directly to target fish, the ratios of ecological metrics (Figures 5, 6, top left panels) in these two scenarios were generally near 1, especially in the California Current. Guild-level biomasses for the most part did not differ substantially between the scenario with this threshold rule and the corresponding FMSY simulations (Figure 7). Hake and mackerel are both categorized for these purposes as pelagic fish, and were the only species in the pelagic guild that exhibited strong increases in biomass. Other guilds showed minimal responses. For the California Current, the strongest impact (∼+15%) was in the demersal fish guild, for Large Piscivorous Flatfish (halibut); empirical diet studies suggest adult halibut have a diet of 38% hake and juveniles have diet of 6% hake (Wippel et al., 2017). For the Nordic and Barents Seas, the strongest impacts were on individual zooplankton and primary producer groups, but these were generally less than 30% and were present in a minority of the 14 simulations. One caveat is that the direct forcing of copepod biomass (see “Time Series of Plankton Productivity” above) can lead to stronger responses in the lower trophic levels than might exist if copepod biomass dynamics were limited by model feedbacks.
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FIGURE 7. Guild-level biomasses for simulations with a simple threshold harvest control rule for target fish (rule #2 in Table 1), scored against comparable “control” simulations with target fish F = Fmsy. Each simulation is represented by a unique color. Vertical bars represent the range of functional group responses, grouped by guilds, within each simulation. Small triangles are individual functional group responses, and black circles are the average responses per simulation. Top panel: California Current results for Pacific hake as target fish. Lower panel: Nordic and Barents Seas results for mackerel as target fish. Both target fish are in the pelagic fish guild.




Threshold Rules That Scale Fishing Mortality Rate With Forage Productivity

Threshold harvest control rules that decrease fishing on target fish if forage productivity declines (i.e., zooplankton abundance declined below 25%) led to frequent abrupt declines in F (as exemplified in Figure 4), resulting in lower average F, high target fish (hake or mackerel) biomass and very high variability in catch (Figures 5, 6, middle panels). In the California Current this variability resulted in higher target fish (hake) catches compared to the fixed FMSY scenario; this pattern was consistent with hake catch results in the simple threshold rule, as described above. In the Nordic and Barents Seas, this variability resulted in target fish (mackerel) catch similar to levels in the fixed FMSY scenario. Target fish biomass was higher than under the simple threshold harvest rule (i.e., compared to top panels in Figures 5, 6).

As compared to FMSY scenarios, threshold harvest control rules that increase fishing if productivity declines also exhibited lower average F, high target fish biomasses and high variability in catch (Figures 5, 6, bottom panels). However, compared to scenarios that decrease fishing on target fish if productivity declines, threshold harvest control rules that increase fishing on target fish if productivity declines led to lower target fish biomass, but also lower catch variability (Figures 5, 6, bottom panels, Supplementary Table S1). Catches outperformed FMSY scenarios by ∼10% for hake, but not for mackerel; this was consistent with catch results in the simple threshold rule, as described above.

As would be expected, the harvest rules that adjusted to more moderate (50%) declines in zooplankton (Rules #3 and #5; Supplementary Figures S1, S2) have even more frequent adjustments in F and larger variation in target fish catches, i.e., trends for target fish catch and biomass are more extreme examples of those in Figures 5, 6, middle and lower panels.

For the harvest rule that decreased fishing on target fish if productivity declined, ecological performance differed little from the FMSY scenario. Other than metrics related directly to target fish, the ratio of ecological metrics (Figures 5, 6, middle panels) in these two scenarios was generally near 1. Guild-level biomasses for the most part did not differ substantially between the threshold rules that scaled fishing with productivity and the corresponding FMSY simulations (Supplementary Figure S3). Similar to results from the simple threshold rule, for the California Current the largest effect on a species other than hake was a 19–22% increase in Large Piscivorous Flatfish. For the Nordic and Barents Seas, the largest effect at the guild level, other than for pelagic fish (i.e., mackerel), was for individual zooplankton and primary producer groups in a minority of the 14 simulations, consistent with results testing the simple threshold harvest rule for mackerel.

In contrast, for the harvest rule that increased fishing on target fish if productivity declined, ecological performance was more variable, particularly for the Nordic and Barents Seas (Figures 5, 6 lower panels and Supplementary Table S1). Median effects across simulations were as high as 15%, and the performance of individual simulations varied, particularly for metrics related to primary production (“PP”) and also for Mean Trophic Level of Biomass. Under this harvest rule, the Nordic and Barents Seas experienced high variability (across simulations) in terms of the guilds Epibenthos, Zooplankton, and Primary producers, and some variability in the Demersal fish guild, as well as increases in Pelagic fish (mackerel) (Supplementary Figure S4). In the California Current, guild-level effects were more rare.



DISCUSSION

Acknowledgment of and attempts to incorporate variability and directional change in environmental conditions into fisheries management is increasing as ecosystem-based management approaches gain popularity (Marshall et al., 2018; Haltuch et al., 2019). Many countries now embrace the principles of ecosystem-based fisheries management (Pitcher et al., 2009), even if the implementation of these management approaches has been somewhat slow (Skern-Mauritzen et al., 2016). While future ocean conditions will be driven by warming, ocean acidification, deoxygenation, and interactions with multiple anthropogenic stressors such as fishing and nutrient loading (Gattuso et al., 2015), climate change is not required to demonstrate the potential value of responsive harvest control rules. However, we expect some of the most dramatic future changes to occur in sub-arctic and arctic ecosystems such as the Nordic and Barents Seas (Cheung et al., 2010; Fossheim et al., 2015), and eastern boundary currents such as the California Current that are marked by upwelling of deep, nutrient rich water (Gruber et al., 2012). Future scenarios involve not only projections of the biophysical responses, but also aspects of governance, economy, and management (Maury et al., 2017). Management response to variable and changing ocean conditions may require flexible, responsive policies that adapt to changing productivity and fishery demands (Pinsky and Mantua, 2014; Schindler and Hilborn, 2015). Here we have evaluated the ecosystem and fishery consequences of one set of such responsive policies for key pelagic species for the California Current and Nordic and Barents Seas ecosystems.

Our main results agree in many ways with those from previous single-species simulation studies, but the application of the full ecosystem model identifies two dimensions of tradeoffs that are not apparent with simpler operating models. Consistent with studies based on single-species operating models (see review by Deroba and Bence, 2008), we found that compared to constant F = FMSY policies, threshold rules led to higher target stock biomass for Pacific hake in the California Current and mackerel in the Norwegian Sea. Performance in terms of catch varied depending partly on the biomass and recovery trajectory for the individual target stocks, largely due to the dynamics of the individual target stocks.

The first major tradeoff illustrated by applying the full ecosystem model was the increased catch variability apparent for all the harvest control rules that link fishing mortality rates to prey (zooplankton) availability, due to rapid and frequent changes in those fishing rates. In these two systems zooplankton abundance is highly variable (Figure 3), and this tradeoff stems directly from the structure of the harvest rule, rather than from modeled trophic dynamics. Variability in catches is often reported as a performance metric (Punt et al., 2016a), and if one goal of fisheries managers and fishers is to minimize fluctuations in catch, we expect that they would be unwilling to accept management strategies with order-of-magnitude increases in catch variability. For example, threshold rules that decreased fishing when zooplankton declined led to extremely high variability in catch. Overall our simulations found little benefit to this policy versus either the simple threshold rule or constant F = FMSY scenario. Previous authors have also suggested that constant F rates often perform well in terms of single species performance metrics such as catch or natural log of catch (Parma, 1990; Walters and Parma, 1996), dampening variability in biomass and yield. Simple threshold rules are an extension to this which accounts for stochasticity and uncertainty in stock size (Lillegård et al., 2005; Sethi et al., 2005).

The second major tradeoff illustrated by our results stems from the full representation of the ecosystem in the operating model, and in particular when testing the threshold rules that increase fishing when productivity (zooplankton) declined. This perspective treats leaving fish unharvested in the ocean as an “investment,” meaning that they should be harvested more heavily when productivity declines. Our application of end-to-end ecosystem models here illustrates a possible disadvantage to this policy, the potential for stronger ecosystem effects across other species. These effects were most apparent in the Nordic and Barents Seas model, where higher fishing on mackerel ultimately led to shifts in phytoplankton abundance, and subsequent effects on Epibenthos, Zooplankton, and Primary producers. The direction of these shifts varied across our simulations, but our results suggest a destabilizing effect of added fishing mortality on mackerel. Nordic and Barents Seas mackerel had maximum F (FMSY) of 0.15, compared to roughly 0.08 for hake in the simulated California Current, and this higher F led to stronger effects when fishing rates on mackerel were increased (to 1.25∗FMSY). Additionally, copepods are a higher proportion of the animal biomass in the Nordic and Barents Seas than are euphausiids in the California Current (23% versus 15% in our base Atlantis models). Overall, the Nordic and Barents Seas simulations that increased fishing when zooplankton declined suggest that frequent strong adjustments to a relatively high fishing rate on a major ecosystem component (mackerel) may lead to highly variable responses across the ecosystem, and low predictability (evidenced by performance differences among simulations that varied only in the timing of the zooplankton forcing). These results suggest that episodic or “bang-bang” harvest policies, which have some parallels to constant escapement policies (sensu Reed, 1979), may lead not only to high variability in yield and profits (Deroba and Bence, 2008), but also to high ecological variability. The difference between regions illustrates the value of having multiple models and species in our tests – a strength of this multi-region comparison.

Though this tradeoff between increased fishing (to 1.25 ∗ FMSY) versus stability in the ecosystem arose in our simulations for the Nordic and Barents Seas, overall most of the threshold rules considered here for both ecosystems had only minor effects across ecological metrics and other species guilds. We expect that this insensitivity of the simulated ecosystem is because these policies alter harvest of only single target stocks. Other applications of these Atlantis model have tested the effects of fishing on California Current forage fish (Kaplan et al., 2017) and Nordic and Barents Seas zooplankton and key fish stocks other than mackerel (Hansen et al., 2019a, b), and have found stronger effects across the food web. Nonetheless we note that spatially explicit, full ecosystem-scale models like Atlantis often have dampened predator-prey dynamics compared to non-spatial food web models. This is in part because they include prey refuges in size and space, age structure, and additional density dependent mechanisms besides prey limitation (Walters et al., 2016).

Punt et al. (2013) suggested that Atlantis ecosystem models could be applied as operating models for MSE related to the changing climate and ocean conditions, particularly due to expected future shifts in predator-prey relationships. Here we demonstrate one such application, showing that end-to-end models can be used to test ecosystem-level effects of rules that respond to shifts in target species and prey productivity in the California Current and Nordic and Barents Seas. Understanding how yields of target species vary according to other ecosystem factors is not confined to theoretical research, but is beginning to enter tactical fisheries management. Capelin (Mallotus villosus) in the Barents Sea has been managed since 1991 via a constant escapement strategy where the consumption by Northeast Arctic cod (Gadus morhua) is taken into account when setting the capelin quota (ICES, 2015). The capelin quota is therefore dependent on the abundance of cod in the region. HCRs dependent on environmental or feeding conditions are also beginning to be developed. The most recent MSE for Northeast Arctic cod (ICES, 2016a) evaluated 10 different HCRs, including fishing harder at high stock sizes to account for density dependent effects and fishing harder at high cod stock sizes under conditions of low prey (capelin) abundance. Both of these sets of rules attempt to explicitly account for food availability in the management of a high trophic level target species, and the HCR implemented in management accounts for density dependent effects. A more wide ranging approach is proposed for the Irish Sea in ICES (2018b), where it is suggested that the choice of target F for the groundfish species in the region could be allowed to vary within pre-defined precautionary FMSY-ranges (ICES, 2016a) depending on the environmental conditions in the region. Studies of the kind described here are therefore critical in providing the theoretical understanding to support this ongoing move toward more holistic fisheries management.


Caveats

The analysis presented here is a stepping stone that allows simulation testing of harvest control rules within two ecosystems, however, full MSE would include uncertainty in monitoring, stock assessment, and implementation (Punt et al., 2016a). In essence we have taken shortcuts by assuming that the tested harvest control rules have perfect knowledge, and this may have important consequences. For instance, Sethi et al. (2005) suggest that high uncertainty in stock size may argue for lower thresholds and higher exploitation rates. Implementation uncertainty may be particularly important, as annual harvest advice may often be ignored in practice (Patterson and Résimont, 2007). Embedding all sources of uncertainty in MSEs within computationally-intensive end-to-end models is challenging but technically possible (see Fulton et al., 2016; Dichmont et al., 2017). However, end-to-end models such as Atlantis can also be used to screen or winnow harvest policies before further MSE with models of simpler taxonomic and ecological resolution (e.g., MICE models, Plagányi et al., 2012; Punt et al., 2016b).

The threshold rules that we tested here assume that managers have accurate and timely surveys of prey (euphausiid or copepod) abundance. Though such surveys exist (Ohman and Smith, 1995; Peterson et al., 2014; Broms et al., 2016), it is challenging to directly link these to the drivers of productivity of target fish stocks, and ultimately to real-world fisheries management. In the context of harvest control rules for single species, other authors have pointed out the dangers of mis-identifying shifts in recruitment and their underlying mechanisms (Haltuch and Punt, 2011; Szuwalski and Punt, 2012), and the importance of timely action in relation to climate and productivity shifts (Brown et al., 2012). However, Kritzer et al. (2019) showed that a simple threshold control rule outperformed fixed fishing mortality for a range of species in the face of directional climate-induced changes in stock productivity. This suggests that simple threshold control rules may be sufficient in many cases. We intentionally chose and tested strong mechanistic links in our operating model, between target fish (Pacific hake and mackerel) and planktonic prey that they feed heavily upon. Weaker relationships between prey or environmental variables and fish production (recruitment) may be common, and problematic for use in fisheries management (De Oliveira and Butterworth, 2005). Nonetheless there is continued interest in zooplankton surveys, and interest from fishery managers in understanding these trends in the context of broader ecosystem status and productivity (Zador and Yasumiishi, 2017; Harvey et al., 2018).

The Atlantis models used here are best viewed as operating models or “testbeds,” rather than exact representations of the California Current and Nordic and Barents Seas. This is consistent with the overall strategic role of end-to-end models such as Atlantis (Fulton et al., 2011). Key assumptions include those related to predator-prey functional responses, density dependence in some species’ stock-recruit relationships, and representation of most fisheries as constant mortality rates applied uniformly in space and across all age classes. Complex end-to-end models, such as these applied here, do introduce structural uncertainty due to the explicit representation of complex ecological processes and the associated large number of parameters (Link et al., 2012). As an example of one such process, in the Nordic and Barents Seas model, the mackerel necessarily was impacted by its role (and parameterization) as a migratory species, not spending its whole life-cycle within the model domain. A separate, large omission in our work above is that social and economic aspects of fisheries and related performance metrics are not considered for either ecosystem here, but have been in other recent studies using Atlantis models (Fulton et al., 2019). Also, we note that for simplicity, zooplankton biomasses were directly forced in our tests of harvest control rules for hake and mackerel, eliminating the feedback-loop from zooplankton’s predators and prey. From other studies (e.g., Pantus, 2007; Hansen et al., 2019a), parameter perturbations at the lower trophic levels, and in particular zooplankton, potentially have a large impact on the ecosystem in the Atlantis models. Thus, our assumptions regarding zooplankton forcing affect the simulations, though we control for this by pairing each scenario (i.e., simulation of a harvest control rule) with a comparable FMSY simulation forced by the identical zooplankton time series.



CONCLUSION

The proposed control rules that we test here are intentionally narrow, focused on the value of including predator-prey considerations into harvest strategies for target stocks. We undertook this analysis in the same spirit as Tommasi et al. (2017) careful exploration of the value of incorporating sea surface temperature information into harvest control rules for Pacific sardine (Sardinops sagax), simulating control rules that affect fishing on a single target stock, and intentionally neglecting some aspects of uncertainty. Expanding beyond such focused control rules, Link (2005) and Fay et al. (2015) suggested broader ecosystem-level indicators (such as total pelagic biomass) and corresponding warning thresholds and limit reference points that could directly be incorporated into harvest rules. Further development and testing of such ecosystem-level considerations can be achieved with end-to-end ecosystem models, such as the Atlantis models applied here, which have the added benefit of tracking the follow-on effects of the control rule on the broader ecosystem. For the California Current and Nordic and Barents Seas, our explorations with the harvest rules tested here represent bi-directional effects: from the ecosystem to the forage-dependent harvest rule, via information about variability in zooplankton; and from the harvest rule to ecosystem, via follow-on food web effects and variable responses across lower trophic levels, particularly in the Nordic and Barents Seas model under tests of relatively high fishing rates.
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Mussel dredging causes resuspension of sediment particles that reduce water clarity and potentially leads to reduced eelgrass growth. In order to study the impact of resuspension from mussel dredging on light conditions in the water column, field experiments were conducted at two sites in the Limfjorden. Light loggers were placed in two circular arrays around the dredge area. Vertical profiles of current velocity were measured by an ADCP and the sediment particle size composition was obtained from sediment core samples. The field data was used to force, calibrate and validate a sediment transport model developed in the FlexSem model system. Changes in sediment concentrations during and after mussel dredging were modeled for the two sites and for seven scenarios. We found that the distance and direction of the plume in the model was in good agreement with light logger data. The plume duration was less than 1 h, and the impact range was between 260–540 m. The scenarios showed that fishing intensity and current speeds were most important for shaping the sediment plumes. Changes in suspended sediment concentrations were 0.62–1.79 mg l–1 on median average and 1.22–11.61 mg l–1 for the upper quantile of the plume, which were on the same order of magnitude as background values in the Limfjorden. The amount of fishing days during the eelgrass growth season was 6–8% in Lovns Bredning and 16–35% in Løgstør Bredning and less than 1–2% of the total area was dredged per season. Even though there are substantial changes in the light conditions from the sediment plumes, the overall spatio-temporal impact in the study area is considered low. We recommend that management plans in other areas could sustain a shellfish fishery by limiting fishing intensity and frequency near eelgrass beds. The presented approach combines observational data, sediment transport modeling and reported fishing activity. It is a step forward within sediment transport modeling and could be incorporated into environmental impact assessments. The results have recently been used as scientific background for recommendations to improve the management plans according to the Danish Mussel Policy and relevant EU Directives.

Keywords: sediment transport model, Limfjorden, mussel fishery, sediment plumes, light


INTRODUCTION

Shellfish are important ecological engineers in coastal marine areas as they often live in aggregated structures with a diverse assemblage of associated flora and fauna. They filter the water, control phytoplankton biomass and they are food source for higher trophic levels such as crabs, starfish, birds and humans (Dame, 1996; Herman et al., 1999; Maar et al., 2009; Petersen et al., 2013). Shellfish are commercially exploited in many coastal areas using different types of gears (Dolmer and Frandsen, 2002; Kamermans and Smaal, 2002). However, the shellfish fishery can be in conflict with conservation interests by reducing the amount of food availability for shellfish eating birds, reducing the benthic filtration capacity, causing mechanical disturbance of the seabed (e.g., affecting seagrass beds, benthos communities, and sediment structure) and increasing sediment resuspension affecting the water clarity (Dolmer, 2002; Dolmer and Frandsen, 2002; Neckles et al., 2005; Frandsen et al., 2015). The EU Common Fishery Policy aims to ensure that fishing is environmentally, economically and socially sustainable. Hence, in order to manage shellfish fisheries, it is important to document the impact of fishing on the ecosystem (Kamermans and Smaal, 2002).

One of the concerns of mussel dredging is the resuspension of sediment particles leading to reduced light conditions for seagrasses (Riemann and Hoffmann, 1991; Dyekjær et al., 1995; Holmer et al., 2003). Eelgrass (Zostera marina) is the most common seagrass species in northern and western Europe and is a key indicator under the European Water Framework Directive for the biological quality element ‘Macroalgae and angiosperms’ (Carstensen et al., 2013). The primary cause of seagrass degradation and loss globally is a reduction in water clarity, both from increased turbidity and increased nutrient loading (Erftemeijer and Robin Lewis, 2006). In many cases, dredging operations have contributed to a higher turbidity and loss of seagrass vegetation (Erftemeijer and Robin Lewis, 2006). In the Danish estuary Limfjorden, water clarity and eelgrass depth distributions have not improved since the 1990s despite nutrient reductions of around 30%, probably due to increased sediment resuspension (Carstensen et al., 2013). Management measures have been implemented to protect the eelgrass beds by designating “eelgrass boxes” in Natura 2000 areas, which are avoiding direct fishing 300 m around the eelgrass beds. Eelgrass boxes encompass both, the known eelgrass habitats, and locations determined by modeling where the eelgrasses could potentially recolonize (Canal-Vergés et al., 2016). However, the indirect impact from dredging on seagrass ecosystems is far from fully understood, despite various research efforts (Erftemeijer and Robin Lewis, 2006). Hence, there is a critical need to improve the ability to make predictions of the sediment plume length, intensity, and persistence of environmental impacts associated with trawling and dredging, especially when conducted close to sensitive habitats such as eelgrass meadows (Erftemeijer and Robin Lewis, 2006; Linders et al., 2018).

The processes governing the dredge plume generation and transport are complex and depend on many factors, which are often site- and substrate-specific (Canal-Vergés et al., 2016). In the following study, we used the 3D FlexSem model system (Larsen et al., 2017, 2020) as a tool for predicting potential environmental impacts of mussel dredging activities supported by field data at two study sites in the Limfjorden. The aim of this study is to estimate the effects of mussel dredging causing resuspension and transport of sediment particles, and investigate how the sediment plume changes the light conditions in the water column in different scenarios. The topic of the study is a result of discussions in the Danish Mussel Committee that is an advisory body for management of the oyster and mussel fisheries in Danish waters. The model results will be evaluated and used to provide input to management plans addressing mussel fisheries and protection of eelgrass beds.



MATERIALS AND METHODS


Study Area

The Limfjorden is a eutrophic shallow, brackish water area, with a mean depth of about 4.9 m and a surface area of 1,500 km2 (Figure 1). It is connected to the open waters of the North Sea to the west and the Kattegat to the east through narrow entrances and is characterized by small tidal amplitude (<0.5 m). The dominant saltwater inflow is with westerly winds from the North Sea and the average salinity ranges from 32 in the west to 22 in the inner parts of the Limfjorden (Maar et al., 2010). Løgstør Bredning is the central basin connecting the western and eastern parts, whereas Lovns Bredning is the innermost located basin only connected through a narrow strait to the rest of the Limfjorden (Figure 1). The mussel fishery is an important industry in both basins and is restricted to water depths >5 m in Løgstør Bredning and >2 m in Lovns Bredning as well as outside eelgrass boxes, where fishery is prohibited in order to protect known eelgrass beds. Currently, there are 21 licensed boats in the Limfjorden with an annual harvest between 15,000–22,000 ton the last 5 years (Danish Fishery Agency). Mussel dredging is carried out from boats using four mussel dredges with a width of 1.45 m, two on each side of the vessel and each with a weight of 123.4 kg (Frandsen et al., 2015).
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FIGURE 1. Map of the central and western Limfjorden showing the dredging locations (Lovns and Løgstør). Color legend indicates the water depth and yellow text boxes indicate the major cities.




Field Studies

Field studies were conducted in two different areas of the Limfjorden (Figure 1); in Lovns Bredning from 26th February to 4th March 2017 and in Løgstør Bredning from 6–10th March 2017. In each sampling area, 16 fixed-position moorings were deployed in two circular sensor arrays around the mussel dredging area (Figure 2). The inner array (stations 1–8) had a diameter of 200 m and the outer array (stations 9–16) was set up with a diameter of 600 m. Mussel dredging was performed by one fishing boat using four light dredges, two on each side of the boat (Frandsen et al., 2015). The start and end positions were mainly located inside or at the boundary of the inner mooring circle (Figure 2). The dredging process takes a couple of minutes, before the collected mussels are rinsed in the water column and taken on board. Part of the survey area in Lovns Bredning (including stations 14 and 15) was located inside a small eelgrass protection area (eelgrass box) (Figure 2A). The mussel dredging activities lasted for 1.5–2.5 h each day giving a total of 19 and 15 dredge tracks in Lovns Bredning and Løgstør Bredning, respectively, over the study period (Table 1). The highest amount of dredging events was 12 in Lovns Bredning and 9 in Løgstør Bredning occurring on the second day at both locations (Table 1). Each dredge covered a distance of approximately 115 m and 150 m and with a sailing speed of 3.2 knots and 2.6 knots in Lovns Bredning and Løgstør Bredning, respectively. The field data was used to force, calibrate and validate the sediment transport model.


TABLE 1. Dredging date, trawl numbers, number of trawls per day, start time of the first trawl and end time of the last trawl in Lovns Bredning and Løgstør Bredning.
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FIGURE 2. Mussel dredging tracks conducted in (A) Lovns Bredning and (B) Løgstør Bredning. Black circles indicate the position of loggers (numbered from 1–16), the ADCP and the sediment sampling. Trawl tracks are gray lines, sediment types are indicated as background color, water depth as blue contour lines, and the FlexSem model domain is shown as a black polygon. The hatched area indicates the location of the eelgrass box.



Light Measurements

Integrated temperature and light loggers (HOBO Pendant Temperature/Light 64K Data Logger) were mounted on each mooring in the two circular arrays at three different water depths (0.5, 1.5, and 3.0 m above seabed). The 48 loggers (3 depths and 16 stations) were deployed in each area over a period of 4 days and light intensity time series were collected with a sampling interval of 30 s. Five loggers in the Lovns area did not provide any data due to technical problems (two near-surface loggers and three loggers at 1 m above the seabed). However, only one bottom logger at Løgstør Bredning failed to provide data. Each time series was filtered using a 3 min moving average for removing the largest outliers, but retaining sharp changes in light intensity associated with short-lived sediment plumes caused by experimental mussel dredging. Light intensities were min-max normalized by scaling all values in the range 0–1 to compensate for large light intensity differences between moorings caused by temporal variability of solar irradiance, spatial heterogeneity in cloud cover and background light attenuation due to the presence of particles other than sedimentary material from mussel dredging. Light intensity anomalies were then calculated at each depth relative to an area-wide average of the min-max normalized data. We used a simple threshold to detect potential evidence for occurrences of dredging related turbid layers in the light logger data. Such signals were considered present, if the minimum light near-bottom intensity anomaly (low light events) at location x is smaller than the time-averaged light intensity anomaly at that location minus the highest standard deviation at any location xn and time step t:
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where ΔI(x,t) is a time (t) series of light intensity anomalies at a specific location x,[image: image] is the corresponding time-averaged intensity anomaly at location x and σΔI(xn,t)is the standard deviation of intensity anomalies from all mooring locations xn and time step t (n = number of locations 1–16).



ADCP Measurements

A 600 kHz ADCP (RDI Workhorse Sentinel) was deployed at each site (station 1 at Lovns Bredning mooring, station 3 at Løgstør Bredning mooring) in a bottom-mounted, upward-looking configuration. 30 seconds ensembles of 3D velocity components were collected along with corresponding records of beam correlation and error velocity. Each vertical profile had a bin size of 0.5 m and the first bin was at 1.59 m above the bottom (blanking distance: 0.88 m). The velocity data time series at each bin were filtered using a 30 min moving average. When compared to light intensity data, current measurements were less variable over time and a filter length of 30 min was chosen as a balance between retaining the dominant flow patterns and removing instrument noise. Only the first 6 bins contained error-free data (1.59–4.09 m above the bottom). Other depth bins were discarded due to the presence of strong artificial shear layers and noise mainly generated by acoustic signal reflection at the sea surface.



Sediment Samples

Sediment cores were taken by a diver in the middle of the sampling arrays in Lovns Bredning and at station 3 in Løgstør Bredning using Plexiglas cores. Three replicates were taken on each site and kept in the cold before being processed in the laboratory. The sediment cores had a surface area of 0.0021 m2 and the sediment column was sectioned into the depth layers: 0–1 and 1–2 cm. Samples from each stratum were homogenized and subsamples of 10 ml were taken for loss of weight on ignition (LOI) determination, while the rest of sediment was used for grain size analysis (surface area: 0.00115 m2). Each stratum was then sieved through test sieves of 2 mm, 1 mm, 500, 250, 125, and 63 μm. Each fraction was dried at 80°C until no difference in weight was measured (>48 h). The last fraction, <63 μm, was filtered onto 47 mm pre-dried Wattman GF/C microfiber filters (Sigma-Aldrich Denmark A/S, Copenhagen, Denmark), dried at 80°C for >48 h in order to determine dry weight. Organic matter content was determined for the 10 ml samples for each stratum as LOI at 550°C for 4 h.



Model Development


Model Approach

The FlexSem model system was used to describe the resuspension and transport of different size fractions of sediment particles with different sinking rates after a dredging event. FlexSem uses an unstructured computational mesh (Larsen et al., 2017, 2020). The computational mesh is made of 4,056 equilateral triangles with a characteristic length scale of 10 m covering a total area of 630 m × 630 m (Supplementary Figure A.1). The vertical discretization is implemented as z-coordinates, i.e., the separation between computational cells in the vertical are defined at fixed depths. For this study, 10 layers of 0.5 m thicknesses were used yielding a total water depth of 5 m. The FlexSem model system was forced by measured time-series of vertical profiles of horizontal current velocities (speed and direction) from the ADCP. It was assumed that the currents were spatially uniform within the model domain because the sea beds were smooth with slopes less than 5 per-mille. Thus, the model includes vertical velocity shear, i.e., vertical changes of the horizontal flow, but no explicit vertical velocities or diffusion. Vertical velocities from the ADCP were at least one order of magnitude smaller than the horizontal currents. A sensitivity test showed that the sediment plume only was slightly affected at vertical diffusivities >10–3 m2 s–1 (Supplementary Figure A.2), which are in the less frequent, high end of observed and simulated values (10–6–10–2 m2 s–1) from the area (Maar et al., 2007; Stevens and Petersen, 2011). The measured vertical profiles were linearly interpolated from the depth bins of the ADCP to the model depth layers.



Sediment Resuspension and Sinking

The area-specific amount of resuspended sediment (kg DW m–2) was estimated from the measured weight of particles in the sediment (kg DW m–3) in the 0–1 cm layer for Lovns Bredning and 0–2 cm for Løgstør Bredning (Table 2) multiplied by the penetration depth of the light dredge. Since there are no estimates of the depth penetration of the light dredge, we used the minimum penetration depth of 0.0015 m for the heavier Dutch dredge (Dyekjær et al., 1995). This resulted in a resuspension of 2.6 kg DW m–2 and 3.7 kg DW m–2 in Lovns Bredning and Løgstør Bredning, respectively. The differences in resuspension were due to a lower sediment density in Lovns (1,741 kg m–3) compared to Løgstør (2,480 kg m–3) (Table 2) resulting in a higher sediment release in Løgstør. The approach assumed a 100% efficient resuspension, e.g., that the dredge was in contact with the seafloor at all times. Our resuspension estimates were similar to reported values of 1.6–2.6 kg DW m–2 measured in the water column before and after dredging using the Dutch-dredge in the Limfjorden (Dyekjær et al., 1995).


TABLE 2. Sediment composition in Lovns Bredning and Løgstør Bredning showing particle size range (mm), sediment class, sediment concentrations (kg m–3) at 0–1 cm depth (Lovns) and 0–2 cm depth (Løgstør), and representative particle size applied in the estimated sinking rates.

[image: Table 2]The total amount of resuspended material (kg DW) was calculated multiplying the area-specific resuspension (kg DW m–2) by the length (m) of the dredge track (Figure 2) and the width of the four dredges (4 m × 1.45 m). The resuspended material was distributed on five particle size fractions (from <0.063 to 1 mm) based on field data (Table 2). The dominant particle size in Lovns Bredning was 0.125–0.50 mm (fine to medium sand). The dominant particle sizes in Løgstør Bredning were smaller, with 0.063–0.25 mm (very fine to fine sand). However, Lovns Bredning had a higher concentration of the smallest sediment fraction (<0.063 mm, silt) compared to Løgstør Bredning (Table 2).

Settling velocities (Vz, m s–1) for each sediment size fraction were calculated from the Stokes Law equation. This equation is based on the assumptions that the flow is highly viscous, the particles are impermeable and the shapes of particles are spherical (Sun et al., 2016):
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where g is the gravitational acceleration (m s–2), ρzthe density of the settling particle (kg m–3),ρw the density of water (kg m–3), d the diameter of the particle (m), and μ the dynamic viscosity (kg m–1 s–1). We assumed that the particles had a density of 2,600 kg m–3, i.e., proxy for quartz (Linders et al., 2018). The calculated sinking velocities ranged from 0.002 to 0.53 m s–1 (Table 2). Preliminary model tests showed that the two larger size classes (0.5–1 mm) were settling within a few minutes, and the three smaller size classes (<0.063–0.25 mm) were the ones that contributed to generate the plume (Supplementary Figure A.3). The plume duration was estimated to be approximately 1 h for the smallest size fraction (<0.063 mm, silt).



Model Simulations and Scenarios


Simulations Using Survey Data

The resuspension of modeled sediment particles during the mussel dredging events were reproduced according to the survey data (Table 1) and followed the movement of the fishing ship for each day in Lovns and Løgstør Bredning (Figure 2). The model time-step was set to 1 s and the amount of sediment release corresponded to the light dredge (see section above). The resuspended sediment (Table 2) was released into the water column equally distributed over depth because (i) the final washing of the dredges affected the whole water column, (ii) the plume was visible from drone photos and (iii) the analysis of light attenuation anomalies demonstrated an effect to at least 3 m above bottom (Supplementary Figures B.1, B.3). The release followed the dredge track 3 to 12 times each day corresponding to the number of dredging activities (Table 1). E.g., if there were four dredging events occurring in 1 day lasting 1 min each, the particles were released in all the model cells along the dredge track within 1 min (typically 9–11 cells) for each dredging event that day. Hence, the longer the dredge track was, the more model cells would be involved in the release. After settling, there was no further resuspension. The location of the dredge tracks was based on ship movement obtained from start and end positions of the ship (Figure 2). This type of particle release following the ship movement during dredging is named ‘dynamic’ release opposed to a ‘static’ release, where particles are released from one grid cell only (see section below). Model results provided spatial data on particle concentrations of the different size fraction distributed equally in the water column over time. At the end of each simulation (1 day), the accumulated sediment concentration settled within each model element was calculated. The accumulated sediment concentration results are therefore not a representation of the suspended sediment particles at any point in time, but a time independent view of the sediment plume extent. In reality, the actual suspended sediment concentration at any point in time is likely to be lower due to the plume dispersal over time. Accordingly, plume length (m) was defined as the maximum horizontal transport of sediment estimated from the accumulated sediment concentration (Linders et al., 2018). A threshold of detectable impact on the sediment concentration was defined as >0.02 mg l–1 (>0.1 g m–2 in a 5 m deep water column) corresponding to 1% of the lower quartile of measured suspended background concentrations in the Limfjorden (Olesen, 1996). Plume intensity (mg l–1) was estimated as the median value and the 5, 25, 75, and 95% percentiles of suspended sediment concentration during 1 h after dredging.



Model Scenarios

Different model scenarios were tested in Lovns Bredning (Table 3) in order to analyze the sensitivity of the model to (i) type of particle release (static versus dynamic), (ii) amount of suspended sediment using different gear types, (iii) particle size composition, (iv) fishing intensity as number of trawls and (v) changes in current speed. Lovns Bredning was chosen due to the proximity of the eelgrass boxes to the dredging activities and the high concentration of silt. In the scenarios, particles were released from one element in the center of the mesh (i.e., static release) for each of the four dredging events on 28th February 2017 in Lovns Bredning. The mean velocity was 0.05 m s–1 during the release. The first scenario applied a minimum resuspension of 1 kg DW m–2 for the light dredge according to Frandsen et al. (2015). They estimated the resuspension from the difference in the weight of the gear before and after rinsing it immediately after the dredging event (Frandsen et al., 2015). This value was considered as a minimum estimate, because they only considered the sediment caught by the gear not including the sediment released during the dredging. The second scenario applied the release of 2.6 kg DW m–2 for Lovns Bredning and tested the effect of ‘static’ versus ‘dynamic’ release of sediment particles. In the third scenario, we used a maximum resuspension of 3.7 kg DW m–2 as estimated for Løgstør Bredning. This was considered as a worst-case scenario, due to the amount of resuspended material. In this case, it was higher than the maximum estimate by Dyekjær et al. (1995) using the heavier Dutch dredge, and it was based on a 100% efficient resuspension.


TABLE 3. Model scenarios description of intensity, amount of sediment release, particle size composition and current speed.

[image: Table 3]The following scenarios applied a release of 2.6 kg DW m–2 estimated for Lovns Bredning using the light dredge. Scenario 4 used the particle size composition from Løgstør Bredning (Table 2). In scenario 5, an intense dredging activity was tested with a total of 12 trawls in 1 day. In scenarios 6 and 7, the simulations started when the maximum and minimum current speeds, respectively, were observed in the data set. E.g., if the maximum current speed occurred on the 28th February, the model and the dredging activities were forced to start at that time.



Fishing Data

The data on the number of fishing days, boats and tracks, and size of the dredged area per month in 2017 and 2018 in the two studied areas was obtained from the Danish Fisheries Agency (unpublished data). The seasonal impact (%) was estimated as the number of fishing days in each area out of a total of 210 days during the eelgrass growth period from May to October (Eriander, 2017). The average track length varied between of 295 m in Lovns Bredning and 528 m in Løgstør Bredning.



RESULTS


Field Measurements

Instantaneous currents from moored ADCP measurements are summarized in rose plots and individual time-series plots for each depth level (Figure 3). In general, currents were rather uniform over depth without significant vertical shear for most of the sampling period in each area. At the Lovns mooring, the strongest instantaneous currents were directed to the south and west during the first 2 days of sampling (Figure 3A). The highest instantaneous current speeds (0.15 m s–1) were recorded in the bottom-most layers in the early hours on the 2nd March 2017. At the end of the sampling period (after 2nd March at 12:00 pm) currents were considerably weaker (∼0.02 m s–1) and mainly directed to the south and southeast. At the Løgstør mooring, currents were mainly directed to the northeast with speeds up to 0.10 m s–1, interrupted by short periods of south-westward flow (Figure 3B). Instantaneous currents during these flow reversals showed an episodic amplification of both magnitude and vertical shear. Maximum speeds of up to 0.15 m s–1 were recorded in the near-surface layers during the second day (7th March 12:00 h–18:00 h).
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FIGURE 3. Rose plots of instantaneous currents at all depths (left column) and corresponding time series of instantaneous currents (every 20th data point is shown corresponding to 10 min intervals) at different depth layers (right column) measured by the ADCP at (A) Lovns Bredning and (B) Løgstør Bredning.


Light intensity anomalies at different sampling days in Lovns Bredning for the bottom-most layer (0.5 m above bottom) are presented in Figures 4A–C along with observed currents. In addition, maps including stations, where our threshold detection method predicted the presence of a dredging plume are shown in Figures 4D–F. Presence and orientation of the most characteristic negative light intensity anomalies followed the direction and magnitude of the observed near-bottom currents during all the sampling days (Figures 4D–F). On 1st March, however, some potential plume locations (stations 1, 2, 16) were predicted to be located upstream from the dredging site (Figure 4E). For most of the dredging periods, sediment plumes were predicted inside the inner sampling array (∼200 m). On 1st March, however, characteristic negative light anomalies were also identified at least 300 m to the south of the initial dredging area, during conditions of intense dredging and strong southerly flow (Figure 4E). Characteristic light intensity anomalies in the mid-layer (1.5 m above bottom) were also well aligned with subsurface currents (Supplementary Figure B.2). Results from light intensity measurements in Løgstør Bredning can also be found in the Supplementary Figures B.3–B.5.
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FIGURE 4. Bottom-most (0.5 m) light intensity anomalies from normalized light intensity logger data at all moorings in Lovns Bredning. Time-series during different sampling days are shown in subfigures (A–C) with dredging periods indicated by black arrows. Mooring stations are numbered according to Figure 2A and have different colors. The stick plots below (A–C) display the dominant flow direction in the bottom-most depth layer (see Figure 3 for more information). Stick plots represent both flow magnitude and direction and are equally scaled. In subfigures (D–F), the locations of moorings with detected light intensity anomalies are indicated using the same color code as in (A–C) for the respective days. The hatched area indicates the location of the eelgrass box.




Model Validation

Time-series of the observed near-bottom (0.5 m above the seabed) light intensity anomalies were compared with corresponding time series of modeled sediment concentrations (g m–3) at Lovns and Løgstør Bredning stations for the survey data simulations. We only considered sampling locations where presence of potential dredging plumes from light measurements was predicted by the detection threshold method in equation 1. Modeled occurrences of high sediment concentrations corresponded to negative light intensity anomalies, i.e., stronger light attenuation. Spatial sediment distributions from the model and plume presence estimated from observations showed an overall good agreement in both extent and direction for all dredging periods in Lovns Bredning (Figures 4D–F, 5A–C). The main exceptions were on the 1st March, where some observations deviated from the main current direction. At Løgstør Bredning (Figures 5D–F), we again found a good agreement with the model except for an outlier in observations at station 10 on the 8th March 2017, but this signal occurred some hours after the last dredging event (Supplementary Figures B.5B,E). There was also a good agreement in timing of the plume onset and duration between data and model results during stronger plume events (Figure 6), however, the agreement was poorer in cases of weaker plumes close to the detection threshold, as it can be seen at some locations in Lovns Bredning on the 1st March 2017 (Supplementary Figure B.6).
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FIGURE 5. Accumulated sediment concentration (g m– 2 on log scale) at the end of the trawling activities in Lovns Bredning on three dates: (A) 28 February, (B) 01 March, and (C) 02 March and in Løgstør Bredning for three dates: (D) 07 March, (E) 08 March, and (F) 09 March. The hatched area indicates the location of the eelgrass box. Black circles indicate the position of loggers and filled green circles are the estimated light intensity anomalies from Figure 4.
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FIGURE 6. Observed time series of light intensity anomalies at plume presence locations (colored lines, predicted by the detection threshold analysis) versus the modeled sediment concentrations (g m– 3 on log scale, gray solid lines) at 0.5 m above seabed on the first sampling day at (A) Lovns Bredning and (B) Løgstør Bredning. Colored lines and numbers refer to predicted stations as shown in Figure 4.




Model Results of Sediment Plumes


Sediment Accumulation on the Seabed

The total amount of sediment accumulated on the seabed at the end of the dredging period was estimated for each sampling day in Lovns Bredning and Løgstør Bredning (Figure 5). The highest impact was found close to the dredge track due to the fast sedimentation of the larger particles and the signal decreased with distance from the track in the downstream current direction. On the second day, the highest impact was found during the highest dredging activity in both locations (Table 2). The smaller particles were transported further away by the prevailing currents and the impact range was 200–500 m in Lovns Bredning and Løgstør Bredning. The impacted area differed between days and locations due to differences in current patterns, dredging events and different sediment size fractions at the two locations.

In the model scenarios, the accumulated sediment on the seabed and the sediment plume length at the end of the dredging period was calculated for Lovns Bredning (Figure 7 and Table 4). The plume length was smaller and the sediment concentrations were lower in scenario 1 (330 m, Figure 7A) with minimum resuspension compared to the standard scenario 2 (360 m, Figure 7B). In scenario 3, the plume length was bigger and the sediment concentrations higher than in scenarios 1 and 2 due to the higher amount of resuspended sediment from using the Dutch dredge (>390 m, Figure 7C). In scenario 4, the lower proportion of the smallest sediment fraction (<63 μm) with lower sinking rates (Løgstør conditions) resulted in a smaller impact range (310 m) by sedimentation (Figure 7D). Scenario 5 with a higher fishing intensity showed a larger plume length (450 m) reaching further into the eelgrass box compared to the other scenarios (Figure 7E). Scenario 6 (220 m) showed that low current speeds caused a smaller plume (Figure 7F) compared to scenario 7 (>390 m) with high current speeds (Figure 7G). The plume intensity varied from 0.62 to 1.79 mg l–1 (median) between scenarios and the upper quantile showed values up to 11.61 mg l–1 in scenario 5 (Table 4). In summary, the main drivers for sediment plume impact were fishing intensity (scenario 5) and current velocity (scenarios 6–7), whereas the amount of resuspension from gear selection (scenarios 1–3) and particle size contribution (scenario 4) were less important for the study sites.


TABLE 4. Plume length (m) and intensity expressed as the median (50%) and the 5, 25, 75, and 95% percentiles of suspended sediment concentration in the water column 0–1 h after dredging.
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FIGURE 7. Accumulated sediment (g m– 2 on log scale) at the end of the trawling activities in Lovns Bredning for the different scenarios (A–G) (nos. 1–7 in Table 3). The hatched area indicates the location of the eelgrass box. Black circles indicate the position of loggers.




DISCUSSION


Estimated Effects of Mussel Dredging

Quantifying and modeling the transport and fate of sediments released during mussel dredging operations is essential for developing management plans in coastal shallow areas such as the Limfjorden (Sun et al., 2016). Here, we used a combination of field data and modeling to calculate the resultant sediment plumes and changes in light conditions caused by mussel dredging. During the surveys, the modeled plume size varied from 260 to 540 m depending on fishing intensity, current patterns and differences in sediment type between the two sites. The distance and direction of the plumes followed the current patterns, which showed a high day-to-day variability at the two study sites (Figures 3–5).

The generated sediment plume was most sensitive to increased fishing intensity (i.e., number of dredge tracks per day), which impacted a larger area and showed higher accumulation of sediment on the seabed (Figures 5B,E, 7E). Current patterns were similarly important, and the plume length increased from 220 m at low current speeds (0.02–0.04 m s–1), to >390 m at high current speeds (0.15 m s–1) (Table 4). A previous study on sediment plume modeling due to fish dredging estimated a horizontal transport distance of 280 m for resuspended coarse silt at current speeds of 0.04 m s–1 (Linders et al., 2018). To a lesser degree, the plume length was increased with higher amount of resuspended sediment from using different gear types (Figures 7A–C). The plume persistence was around 1 h mainly attributed to smallest particle size fractions (<0.063 mm silt) with lowest sinking velocities. The rest of the larger sand particles sank within the first 10 min after the resuspension event. A previous field study also found that non-cohesive sediment was able to settle within the first 30–60 min after eel trawling or mussel dredging (Riemann and Hoffmann, 1991). The scenario 4 using particle size composition from Løgstør Bredning confirmed a smaller plume length than for Lovns Bredning, due to the fewer silt particles (Figures 7B,D). Hence, the potential impact from mussel dredging on the eelgrass would be larger in areas dominated by silt and/or high current speeds compared to more sandy sites with faster settling and/or lower current speeds.

Light attenuation in the Limfjorden mainly depends on suspended inorganic matter and less on chlorophyll a concentrations and is closely related to wind-induced re-suspension (Dyekjær et al., 1995; Olesen, 1996). The model showed that the median concentration of the sediment plume from the dredging events (0.62–1.79 mg l–1) was slightly lower than measured background median values of 2.9 mg l–1 in the Limfjorden (Olesen, 1996). On the other hand, the 75%-percentiles values showed similar values (1.22–11.61 mg l–1) to the upper quantile of 4.7 mg l–1 of measurements (Olesen, 1996). Hence, the most intense part of the plume could have substantial effects on the light conditions as observed from the light anomaly analysis (Figure 4). Eelgrass has high light requirements and reduced light conditions that can make them more sensitive to other stressors (Kuusemäe et al., 2016). The indirect effect on eelgrass growth due to reduced light conditions from sediment plumes depends not only on the water clarity, but also on the prevailing light conditions at the bottom (i.e., if they live close to their depth limit), the season, duration, and frequency of the impact and will be discussed below.



Fishing Activities and Impact on Eelgrass Beds

Eelgrass beds are mainly located along the coastline in shallow waters, where they are protected from fishing by the eelgrass boxes, and the 2 and 5 m depth fishing limits in Lovns Bredning and Løgstør Bredning, respectively. The mussel fishery season starts in September and ends in June the following year, after which it closes for two consecutive months. The eelgrass growth season is from May to October (Eriander, 2017) with maximum biomass production during the summer months (Boström et al., 2014). Hence, there will be a short seasonal overlap from April to May to June and from September to October, but not during the summer period with maximum eelgrass growth. On average, one fishing boat would dredge an area from 2 to 50 times the same day with an average of 20 to 26 dredges within 2–7 h. The reported fishery data from 2017 to 2018 indicated an average of 57 to 100 dredging events per day. However, in two of the days, the dredging reached ∼200 events in Lovns, and in another day ∼450 events in Løgstør. These values depend on the number of boats present in the area, and on the capacity of the boats.

The recorded fishery activity in Lovns Bredning is variable from year to year. In 2017, there were 28 boat events (the same boat can fish several times) distributed on 13 days from April to October. However, in 2018, there were 64 boat-events for 17 fishing days (Danish Fisheries Agency). Hence, the daily fishing impact corresponded to 6–8% of the eelgrass growth season. Around 27 and 40% (in 2017 and 2018, respectively) of the fishing took place in less than 500 m away from the eelgrass box. This was due to the nearby high standing stock of mussel seeds in the area. The eelgrass box contains a buffer zone of 300 m around the eelgrass. Hence, if fishing is occurring close to the box, the plume may reach the eelgrass when there is high current speeds events or/and intense fishing (Table 4). Nevertheless, the impact will probably be minor at the given fishing frequency in Lovns Bredning. In Løgstør Bredning, the daily fishing activity was higher than for Lovns Bredning with 16–35% of the growth season in 2017 and 2018, respectively (126–322 boat-events, 33–75 days), whereas only <1% of the fishing occurred less than 500 m from the eelgrass box. On average, <2 and 1.2% of Lovns and Løgstør areas, respectively, are impacted by direct dredging effects from April to October in 2017. Hence, although there are more fishing days in Løgstør than in Lovns, the fishery in Løgstør is spread over a larger area further away from the coastline and the eelgrass habitats. Moreover, in all Natura 2000 areas, the eelgrass boxes take into consideration all the eelgrass beds established, and the potential habitat that could be colonized by eelgrass. Overall, for the two basins, the estimated indirect effects from fishing on light conditions and eelgrass growth must be considered to be of minor importance as long as the daily fishing intensity is kept at the same low level.

Only a few eelgrass boxes in the study areas are overlapping with mussel beds of interest to the fishermen, while for most of the boxes, fishery is occurring further than 500 m of their borders. Under new management scenarios, the 300 m buffer zone around the eelgrass beds within the eelgrass boxes could be reduced, but not less than 100 m to prevent potential direct effects, such as geogenic reefs in Natura 2000 areas (Pers. Comm. Danish Fishery Agency). This would require to run new model scenarios for the areas of interest and to consider changes in background resuspension events from dredging, in order to maintain a low fishing impact during the eelgrass growing season. The present study only considers the indirect effects on light conditions, whereas direct effects on the eelgrass through smothering from sediment suspension is not considered (Brodersen et al., 2017). Despite this assumption, only fine particles would be transported to the eelgrass beds, while larger particles (comprising most of the sediment) would sink in the vicinity of the trawl marks (Linders et al., 2018). Other direct effects such as damage on eelgrass shoots, leaves and seeds where not considered in this study. The management plans are already taking this into account in the eelgrass box areas, where the eelgrass can expand to new areas (BEK nr 1258 af 27/11/2019). Mussel (over)fishing can potentially reduce the filtration capacity by the mussel population and thereby decrease water clarity (Carstensen et al., 2013), which was not considered in the present study. Another model study found that the current fishery of 8–16% of the mussel stock in the Limfjorden increased chlorophyll a concentrations with 2–4%, which was close to the methodology detection level (Petersen et al., 2020a).



Model Validation

The largest differences between modeled sediment concentrations and observed light intensity data were found during periods of weak plumes close to the plume detection threshold applied to the light intensity data. These differences are likely due to shortcomings in individual skills of both the numerical model and the plume detection method. The numerical model only considers sediment introduced by dredging activities and does not take into account background sedimentation. Average sediment plume concentrations from dredging (Table 4) ranged within the same magnitude as wind generated resuspension (Dyekjær et al., 1995; Olesen, 1996). However, the numerical model was not considering multiple resuspension events generated by wind and waves, which can explain some of the deviations between model results and light data based plume predictions. The statistical presence/absence calculated from light intensity data might occasionally fail to differentiate correctly between light attenuation caused by dredging plumes and light attenuation caused by natural sediment resuspension events. Consequently, a pronounced mismatch between modeled sediment concentrations and observed light intensity anomalies can be expected at locations, where plume signals are weak or absent.



Model Limitations

Sediment transport modeling has many challenges due to the complex nature of local hydrodynamics, sediment transport processes and lack of data, which is a considerable obstacle for improving model predictions (Merritt et al., 2003). Sediment transport modeling does not often include ambient suspended sediments although it determines the overall impact of dredging. Natural turbidity is a common event in shallow environments, where resuspension and transport of suspended material are influenced by currents, wind, wave mixing and river outflows (Jones et al., 2016). Although there might be potential benefits from including ambient sediments in the models, the issue of ambient sediment modeling needs to be carefully assessed in the future since it requires more data on sediment dynamics and poses challenges with respect to local scale hydrodynamics. In the present study, we did not include ambient sediments in the model. Instead, we used light intensity anomalies from measurements to distinguish the dredging events from the natural turbidity, which was used to validate the modeled sediment plumes. Once the sediment is resuspended by a dredging event, it becomes more easily to resuspend with a second dredge happening nearby or by wind events (Paterson et al., 2000; Linders et al., 2018). This could cause local multiple resuspension events in the fished area that was not included in the modeling. However, on basin scale, the fished area was 7% of the Limfjorden during the period 2014–2018 (Petersen et al., 2020b). Hence, only a smaller part of the area will be affected by such multiple resuspension events after trawling and it will mainly be a problem in the areas close to the eelgrass beds.

Improving the model accuracy should be considered in the context of current science and financial costs. For example, the sinking velocity is essential for the dredge plume modeling, and measuring sinking velocity of particles in dredge plume can be done using existing technologies (Sun et al., 2016). On the other hand, cohesive sediment resuspension under surface wave forcing appears to be poorly understood and not well represented in sediment transport models; hence improving this aspect would require long-term research (Durrieu de Madron et al., 2005). In the present study, we used a conservative approach for estimation of particle sinking velocities without considering flocculation, which could be improved by more accurate measurements of the sampled particles. For future studies, it would be optimal to start recording field data on sedimentation before the dredging operations start (also known as continuous approach). This will allow us to understand the dynamics in the area in the prior phases, and be able to estimate how does other effects such as wind account for resuspension, since we potentially are under-estimating suspended sediment concentrations. In addition, parameterizations used in sediment transport models are often not reported in the Environmental Impact Assessment (EIA) documentation, leaving considerable uncertainty in assessing the model performance and inter-comparison with other models. The present model is documented and validated, and can be applied to other coastal and open sites with smooth bottom gradients, because water column structure and tides will be included in the ADCP data forcing the model. Areas with strong wave mixing will not be applicable, because this would also require a wave model. Model scenarios can be used to evaluate potential effects, and make recommendations to underpin management strategies in coastal areas affected by trawling activities.



Use of Modeling to Support Environmental Policies

Dredging for mussels and oysters has some immediate and easily measurable effects on the areas of the seabed that are directly affected by the dredge. These effects have received increased attention in recent years where in the coastal zone, fishery have to comply with environmental and nature conservation goals set be the EU Water Framework Directive and EU Species and Habitats Directive, and where focus of both direct and indirect environmental impacts of fisheries are less on the target species and more on the ecosystem. The main challenges for the fisheries management and the public are to document the effect of dredging and as a part of this make sure that the stock is not over-fished. In terms of environmental impact, the direct effect of the dredging on, e.g., eelgrass or benthic infauna can be assumed or has been demonstrated (see e.g., McLaverty et al., 2020). However, other more indirect effects, e.g., on the light in the form of resuspension of sediment caused by the fishing gear, have received less attention as they are more difficult to assess. In eutrophic areas, such additional impact on light attenuation may be critical to the key ecosystem components like eelgrass and macroalgae and thus further limit their expansion.

At present, the management objectives and principles for mussel and oyster fishery are stated in the Danish Mussel Policy1 (in Danish). This policy is balanced between utilization of the shellfish resource and protection of key ecosystem components like eelgrass, macroalgae, and benthic fauna from the direct physical damage caused by the dredging as well as potential indirect effects. The key ecosystem components are monitored regularly together with annual stock estimates of the mussel and oyster populations, and are used in the management plan. However, there was little knowledge on indirect effects of mussel dredging. As a consequence, the management had applied a precautionary approach by delimiting a buffer zone of 300 m around both the existing eelgrass beds, but also in areas where eelgrass beds can potentially expand. These areas are defined and annually revised following monitoring and modeling (Canal-Vergés et al., 2016; Nielsen et al., 2020). However, the management becomes too restrictive according to the precautionary principle and hence, in fact, does not live up to the intentions of the Common Fisheries Policy to increase productivity and profitability in the industry. Models such as the one used in this study are necessary to consider the indirect effects and thus to meet the intentions of the Common Fisheries Policy (CFP) to protect the marine environment, e.g., in relation to the implementation of the Water Framework Directive (2000/60/EC). Knowledge regarding the direct and indirect effects of fishing are therefore of great importance to the management of the fisheries and thus also to the industry. The present project has provided new knowledge about the indirect effects on the marine environment of mussel and oyster dredging activities, and the developed new model tools and methods that can establish new knowledge on fishery effects at the level of entire basins. The results have been used as scientific background for recommendations to improve management according to the Danish Mussel Policy and have been already implemented for the 2020–2021 fishery season. The buffer zone in the eelgrass boxes has now been reduced to 100 m. The model has therefore contributed to the CFP by adjusting the buffer to protect the eelgrass and by increasing productivity and profitability of the mussel fishery by allowing fishery to take place in new grounds closer to the eelgrass that were previously protected. Moreover, the results have also been used into the implementation of the Water Framework Directive by assessing the resuspension from fishery as a pressure factor. In order to continue to support decision-making processes in relation to dredging, general models that can be applied to various coastal and open sites need to evolve as effective and practical tools. Time-limited projects often restrict models to a defined set of scenarios making the tool unsustainable. The current model is available for use but still requires expert knowledge for setting up new scenarios. However, interest and need for new scenarios in specific areas where potential conflicts between fishery and marine environment arise can potentially be addressed and thus would make it a sustainable tool.



CONCLUSION

Sediment transport models are often not calibrated or validated due to the lack of relevant field data. In the present study, measured velocity profiles were used to force the hydrodynamic model, field data on sediment types were used to calibrate the model, whereas measured light intensity anomalies were used for successful model validation. In relation to management, the fixed buffer zones around mussel dredging that protect the eelgrass from indirect effects on light conditions, e.g., in the Limfjorden, could be more flexible depending on the dominant flow conditions and the fishing behavior, but should also consider the sediment type and risk of increased background resuspension due to dredging. Further, the present fishing intensity and frequency was found to have minimal effects on light conditions for eelgrass in the Limfjorden. Management plans for other areas with co-occurring dredging activities and seagrass beds should likewise limit the daily number of allowed dredging activities, and spread them over weeks and months to obtain a more sporadic effect on light conditions. The presented approach combining observational data with the presented modeling tool is a step forward within sediment transport modeling. The results can support more evidence-based management decisions in relation to the Danish Mussel Policy and governing EU Directives and have recently been applied in the new fishing plans for the season 2020–2021 in the Limfjorden.
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The implementation of the European integrated marine policy poses many scientific challenges. Among them, the knowledge and understanding of interactions between anthropogenic pressures and ecological components is an important issue, particularly to help define Good Environmental Status, environmental targets and monitoring programs of the Marine Strategy Framework Directive (2008, MSFD). Assessment of cumulative effects of different pressures is a particularly complex issue requiring modeling tools and methods, as well as accurate data sets on human activities, anthropogenic pressures and ecological components. The results of these assessments are also uncertain and highly dependent on the calculation methods and assumptions, as well as on the data sets used. Within this context, we developed a technical and methodological approach to map the risk of cumulative effects of different pressures on benthic habitats. These developments were initiated as part of the implementation of the MSFD in France to contribute to the diagnosis of the marine environment. Here we provide a demonstrator to illustrate the feasibility for mapping the risk of cumulative effects of different pressures on benthic habitats, as well as the confidence index and the variability associated with this analysis. The method is based on a spatial analysis using a mapping of benthic habitats and their sensitivity to pressures, as well as the distribution and intensity of human activities and associated pressures. We collected and prepared relatively accurate and consistent data sets to describe human activities and benthic habitats. Data sets are embedded into a grid that facilitates the management and analysis of the data and exploitation of the results. The demonstrator consists of a relational database using the Spatial Query Language (SQL) language as well as data analysis scripts using the R language. The first demonstrator operations validated the main methodological and technical choices and helped to identify future developments needed to facilitate the appropriation and integration of these approaches in the implementation of public policies for the management of the marine environment.

Keywords: cumulative effects assessment, human activities, anthropogenic pressures, benthic habitats, risk, Marine Strategy Framework Directive


INTRODUCTION

Worldwide marine and coastal ecosystems are hosting more and more human activities using space, mineral and living resources. This leads to an increase in anthropogenic pressure, causing a significant decrease in biodiversity, habitat loss and significant changes in ecological functions (Korpinen and Andersen, 2016; Willsteed et al., 2017). The understanding and assessments of the cumulative effects of anthropogenic pressures are considered as major issues to inform strategic planning and marine ecosystem conservation and management (Foley et al., 2017; Stelzenmüller et al., 2018).

Cumulative effects assessment (CEA) has been defined as ‘a systematic procedure for identifying and evaluating the significance of effects from multiple sources/activities and for providing an estimate of the overall expected impact in order to inform management measures’ (Judd et al., 2015). Cumulative effects assessment can contribute to the diagnosis of the marine environment and provide strategic information to support decision-makers (Korpinen et al., 2013; Goodsir et al., 2015; Depellegrin et al., 2017). Over the past decade, numerous studies have laid the methodological bases of CEA (Halpern et al., 2008; Stelzenmüller et al., 2010; Micheli et al., 2013). This field of investigation is particularly dynamic and is still very exploratory. The methodological and semantic framework, as well as shared principles, conceptual models and tools, are still under development and raise complex scientific questions (Korpinen and Andersen, 2016; Stelzenmüller et al., 2018).

As mentioned in Korpinen and Andersen (2016) about half of the cumulative pressures and impacts assessment studies follow the same method or a similar method to that presented by Halpern et al. (2008). These assessments use mainly three components: the mapping of pressure intensities, the mapping of ecological components to be studied and a sensitivity index (weighting factor) for each ecosystem – pressure couple. The calculation method is most often additive, that is to say, the effects of each pressure on each component of the ecosystems are added. Significant methodological challenges and uncertainties are present at each stage of this cumulative effects modeling process (Halpern and Fujita, 2013; Korpinen and Andersen, 2016).

The ecosystem data sets have uncertainties about the presence of habitats, species and communities, their natural dynamics and ecological status. The human activity data sets have uncertainties about the distribution and intensity of uses in time and space. Moreover, the relationships between activities and pressures and between pressures and ecological components also include uncertainties and hypotheses. Finally, the methods of calculating the cumulative effects of different pressures also rest on many assumptions and uncertainties such as the relative contribution of activities to each pressure, the combined action of pressures, the response of ecosystem components, and especially the variability of their sensitivity according to their ecological status and local conditions. These issues in addition to the different stages of data preparation such as data integration in a grid, the use of specific typologies, data transformation and normalization, have a great influence on the final results. Uncertainty analysis is becoming an increasingly important aspect of modeling processes and is now considered as a mandatory step in cumulative effects assessment studies (Stock and Micheli, 2016; Gissi et al., 2017).

The Marine Strategy Framework Directive (2008/56/EC of the European Parliament and the Council, MSFD) aims to achieve Good Environmental Status (GES) by 2020 (European Commission, 2008) following an ecosystem-based management. The development of methods and tools has been identified as one of the major challenges to contribute to implementation of the MSFD and help decision-makers (Smith et al., 2016; Borja et al., 2017). As described in the Directive, the ecological assessment must ‘cover the main cumulative and synergistic effects.’ However, for the past 10 years and the beginning of the MSFD implementation, anthropogenic pressures have been evaluated one by one and there are no validated tools and methods for evaluating cumulative effects.

This article presents a concrete application of the concepts presented above to provide methods and demonstrator tool able to map the Risks of Cumulative Effects (RCE) of different pressures on benthic habitats. These developments are consistent with recently developed concepts to support an integrated approach for assessing the status of benthic habitats under the MSFD (Elliott et al., 2018). In this context, the developments presented here are intended to contribute to the diagnosis of the marine environment, usable for the implementation of the MSFD, the Maritime Spatial Planning Directive and for marine protected areas management.

The proposed RCE assessment is based on Halpern et al. (2008) method. We enriched this approach with a human activities–pressures relationship matrix based on La Rivière et al. (2016) recent work that we complemented with the consultation of scientific and institutional experts. Moreover, we adapted and enriched this method with a new matrix of benthic habitats’ sensitivity to anthropogenic pressures (La Rivière et al., 2016). The different data describing human activities, pressures and benthic habitats as well as relationship matrices (activity-pressure and habitat-pressure) were associated with a spatially explicit confidence index. Finally, we developed two approaches to map the confidence and the variability of the RCE depending on different calculation assumptions (Gissi et al., 2017). The intermediate data produced on human activities, pressures and benthic habitats constitute a homogeneous set of data, contributing to a better interpretation of the RCE.

Results are presented and provide an initial assessment of the capabilities of the demonstrator tool for locating, explaining and prioritizing threats and data gaps in order to inform management and monitoring priorities based on the intensity and distribution of RCE. Gaps, limitations and scientific, methodological and technical challenges are discussed with a view to fostering the acceptability, appropriation and use of these approaches and methods.



MATERIALS AND EQUIPMENT

The demonstrator tool essentially uses free and open source software and widely used languages – i.e., R version 3.5.1 (R Core Team, 2018), Structured Query Language (SQL), Geographic Information System (GIS).

The software used for the preparation, storing and processing of the data is presented in Figure 1. Data formatting, visualization and mapping were performed in QGIS 3.2.1 (QGIS Development Team, 2018). Data storage and management were performed in PostgreSQL 10 database (The PostgreSQL Global Development Group, 2018) using pgAdmin 4 software (pgAdmin Development team, 2018) and PostGIS 2.4 extension (PostGIS Project Contributors, 2018). The RCE analysis was performed with R programming language 3.5.1 (R Core Team, 2018) using RStudio 1.1.4 software (RStudio Team, 2016). The configuration of the access to the database, the results export management and the backup options of the analysis were carried out in an MS Excel file that is read by the R script. This configuration file makes the developed tool accessible to users not familiar with R and allows users to have an overview of the information to fill out and check before launching an analysis.


[image: image]

FIGURE 1. Software used for the demonstrator.




METHODS

Since the 1990s international organizations have promoted the DPSIR framework (Drivers-Pressures-State-Impact-Response) as an integrative systemic framework to assemble bio-physical knowledge in support to the design and implementation of environmental policies (OECD, 1993; European Commission, 1999). This framework is widely used, particularly in the area of aquatic ecosystem management (Borja et al., 2006; Lewison et al., 2016). It is explicitly referred to in the MSFD regulation and commonly used to report on the regular updates of the initial assessment of the state of marine waters, pressures and impacts, and good environmental status objectives. It has also been criticized for failing to integrate properly the socio-economic dimensions of environmental problems, leading to the proposal of enhanced frameworks such as DAPSIWR that considers key elements regarding “actions and activities” (A) controlling pressures and the impacts on “human wellbeing” (W) (Patrício et al., 2016). Characterizing and assessing “impacts” in operational terms remains a challenge. On purpose, and to avoid misinterpretation, the CEA uses the term “effect” rather than impacts under a risk assessment perspective.

The term “Pressure” used here as a synonym of “anthropogenic pressure” refers to the mechanism through which a human activity can have an effect on a habitat. Pressures can be physical, chemical or biological. A same pressure can be caused by a number of different activities (La Rivière et al., 2016).

The term “Risk” used as a synonym of “risk of impact” or “vulnerability” is the combination of the likelihood of a habitat being exposed to a pressure (threat) and impacted by this pressure, depending on the ecological sensitivity to that pressure. “Risk” puts the scope of results into perspective, as they are not a quantitative expression of the measurable effects on biological communities.

The term “Effects” refers to the consequence of a pressure on a habitat where a change in its biotic and/or abiotic characteristics occurs (La Rivière et al., 2016).


Methodology Overview

Statistical and spatial data sets on human activities, pressures, and benthic habitats were synthesized, structured, and mapped into a regular square grid of 1 min of degree in latitude per 1 min of degree in longitude resolution. In the database, each grid cell was associated with a unique identifier, which made it possible to link these datasets. The RCE index was calculated in each grid cell taking into account the intensity of the human activities present, the pressures generated by these human activities, the surface area of the benthic habitats present as well as their sensitivity to pressures. The main steps of the analysis are presented in Figure 2. The descriptive data of human activities, as well as the calculated data describing the intensity of physical pressures, were stored and organized with classifications compatible with the indicative list of human activities and anthropogenic pressures contained in the amended Commission Directive (EU) 2017/845. The intensities of the physical pressures were estimated on the basis of intensities of the underlying human activities. As there were no data sets available where the actual pressure had been measured, the different human activity intensities were considered as proxies to estimate the intensities of the physical pressures. The descriptive data of the benthic habitats were stored and organized with the European Union Nature Information System (EUNIS) classification (ETC/BD-EEA, 2012).
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FIGURE 2. Main steps of the RCE analysis.


The calculation of the RCE involved two relationship matrices. First, the activity–physical pressure matrix identified the link between human activities and anthropogenic pressures. Secondly, the benthic habitat–physical pressure sensitivity matrix gave the level of ecological sensitivity of benthic habitats to anthropogenic physical pressures. These two matrices made it possible to relate all human activities, pressures and benthic habitats in a consistent way. They formed a linkage framework which was inspired by previous studies (Goodsir et al., 2015; Knights et al., 2015).

The human activity–physical pressure matrix identified with a binary link (0 or 1) the different human activities that could contribute to generate each physical pressure. We built this matrix using the typology of human activities adopted under the MSFD and the physical pressures typology from La Rivière et al. (2016). The human activities typology was enriched with more precise subcategories allowing them to be linked to real data describing the activities. We informed the relationships between activities and pressures in a 1-day workshop (December 2016) with the different scientific and institutional teams involved in the MSFD implementation. The 35 Workshop attendees were divided into 4 groups who each worked independently on one of the four parts of the matrix. The four parts of the matrix completed during the workshop are presented in the Supplementary Table 1. Finally, a working group composed of 4 thematic experts of the French Office for Biodiversity analyzed, completed and validated the matrix obtained during the workshop. The source of each activity-pressure relationship was documented and associated with a confidence index that expressed the level and the quality of expertise mobilized for the evaluation as described in the Supplementary Table 2. An extract of the activity–pressure relationship matrix is presented in Table 1.


TABLE 1. Extract of the activities – pressures relationship matrix, for 21 human activities and 12 physical pressures used in the analysis [gray lines: binary relationship (0 or 1) between activities and pressures, white lines: confidence index associated with the relationship evaluation (value between 0 and 5), ‘ND’: undefined].
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The benthic habitats–physical pressures sensitivity matrix was based on Marine Evidence-based Sensitivity Assessment (MarESA) for English Channel and Bay of Biscay habitats (Tillin et al., 2010; Tillin and Tyler-Walters, 2014; Tyler-Walters et al., 2018) and on French benthic habitats’ sensitivity assessment (La Rivière et al., 2018) for the Mediterranean habitats. Within the framework of the RCE methodological developments, the MarESA sensitivity assessment is used until the French benthic habitats’ sensitivity assessment is completed and accessible for English Channel and Bay of Biscay habitats. The French benthic habitats’ sensitivity assessment is based on the methodology developed previously under the MarESA project, which allowed us to easily combine the sensitivity assessments of the two projects. The sensitivity is the combination of a habitat’s capacity to tolerate a pressure (resistance) and the time needed to recover after an impact (La Rivière et al., 2016). The resistance is defined as the ability of a habitat to tolerate a pressure without significantly changing its biotic or abiotic characteristics (La Rivière et al., 2016). The resilience is defined as the time a habitat needs to recover from the effect of a pressure, once that pressure has been alleviated (La Rivière et al., 2016). For each benthic habitat and each anthropogenic pressure, a sensitivity score (derived from the assessment of a resistance and a resilience score) and its confidence index were evaluated by a detailed literature review, compilation of evidence, complemented when necessary by expert judgment (La Rivière et al., 2016). Sensitivity assessments were made against single pressures, therefore cumulative pressures could not be considered, and resilience was only considered if the pressure had been alleviated or reduced to a magnitude that no longer caused an impact. It was therefore assumed that the sensitivity score provides theoretical information that cannot truly reflect the field and real conditions in which pressures and habitats interact. Table 2 shows an extract of the sensitivity matrix.


TABLE 2. Extract of the sensitivity matrix for physical pressures and EUNIS habitats type A5.53 [gray lines: sensitivity evaluation between benthic habitats and physical pressures, white lines: confidence index (CI) associated with the evaluation (value between 0 and 5), ‘ND’: undefined, A5.53: Sublittoral seagrass beds, A5.5313: Mediterranean Cymodocea beds, A5.53131: Association with Cymodocea nodosa on well sorted fine sands, A5.5331: Zostera marina/angustifolia beds on lower shore or infralittoral clean or muddy sand, A5.5333: Association with Zostera marina in euryhaline and eurythermal environments, A5.535: Posidonia beds, A5.5353: Facies of dead “mattes” of Posidonia oceanica without much epiflora].
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RCE Index Calculation

We adapted the cumulative effects model proposed by Halpern et al. (2008). In relation to this work, the main adaptation concerned the use of more precise activity and pressure typologies and the use of a matrix of relationship between activities and pressures. In our analysis, the activities were not integrated into the RCE calculation directly by considering them as pressures. Each activity could contribute to several pressures. The calculation of the RCE index for each grid cell was divided into three main stages: (i) computing the intensity of each anthropogenic pressure, (ii) computing the sensitivity of the grid cell to each anthropogenic pressure, (iii) the calculation of the risk of cumulative effects. Several steps of the calculation of the RCE index required a normalization of some variables x (e.g., activity, pressure, or sensitivity) into a new variable xnorm following the equation below:
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Where xmax and xmin are, respectively, the maximum and minimum value of x in the study area. The aim of this normalization was to allow comparison of various variables expressed in different units by rescaling from 0 to 1, but also to avoid over-representation of extreme values and correct frequency distribution bias (Micheli et al., 2013; Depellegrin et al., 2017).

(i) Computation of the intensity Pj of each anthropogenic pressure j

[image: image]

where Ainorm is the normalized intensity of the activity i and γAi/Pj is the binary link of the activity – pressure relational matrix (0 indicates that the activity i does not generate the pressure j and 1 indicates that the activity i generates the pressure j).

(ii) Computation of the sensitivity SensPj to each anthropogenic pressure j

[image: image]

Where Sk is the surface of the benthic habitat k in the grid cell, S is the total surface of the grid cell and μj,k is the sensitivity of the habitat k to the pressure j according to the benthic habitats – physical pressures sensitivity matrix.

(iii) Computation of the risk of cumulative effect index (RCE).

Prior to this stage, for each pressure j, the intensity Pj and the sensitivity of the grid cell SensPj were normalized with the normalization function described above (xnorm). Note that this imply that a normalized pressure intensity of 0 and 1 correspond, respectively, to the minimum and maximum intensity of that pressure in the study area and for the period considered.
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Confidence Index Calculation

A first approach to spatially represent the uncertainties of the model was to develop a single confidence index that qualifies the reliability of the final RCE in each cell (Stock and Micheli, 2016). The calculation of this index first required assigning four intermediate confidence indices in each grid cell to:


–the mapping of each benthic habitat k (CI_Hk)

–the intensity of each human activity i (CI_Ai)

–each relationship of the activity–pressure relational matrix (CI_γAi/Pj)

–the sensitivity scores of each link of the habitat–pressure sensitivity matrix (CI_μj,k).



The different methods for assigning these confidence indices are presented in Supplementary Tables 2–5. Based on these 4 intermediate indices, a global confidence index, reflecting the reliability of the RCE score, was computed for each cell. Similarly, to the RCE computation described above (2.2), there are three main stages: (i) computation of a confidence index for each pressure Pj (CI_Pj), (ii) computation of a confidence index for the sensitivity of each grid cell to each pressure Pj (CI_SensibPj) and (iii) the computation of the final confidence index (CI_RCE). The final index ranges between 0 and 1, 1 reflecting a maximum confidence.


Confidence Index for Each Pressure Pj (Ci_Pj)

The confidence index associated with the pressure Pj (CI_Pj) was calculated in 3 steps. First, CIL_AP_Pj reflects the confidence in the link between all human activities and the pressure Pj. Two cases were distinguished: if one or more activities are present in a given grid cell, CIL_AP_Pj is the mean of CI_γAi/Pj weighted by the intensity of each activity, and divided by 5 to obtain an index ranging from 0 to 1. If no activity is present in the grid cell, the link between human activities and the pressure Pj will not have any effect on the RCE: we thus assigned a maximum value to CIL_AP_Pj.
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Secondly, CIQ_AP_Pj represents the confidence in the activity data sets associated with the pressure Pj. Here as well, two cases are distinguished. If at least one activity is linked to the pressure Pj, CIQ_AP_Pj is the mean of the CI_Ai of the activities associated with the pressure Pj. If no activity is associated with the pressure Pj, the intensity of each activity Ai will have no impact on the RCE: we thus assigned a maximum value to CIQ_AP_Pj.
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The confidence index in each pressure Pj (CI_Pj) is the product of these two intermediate indices and ranges from 0 to 1 as well:
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Confidence Index for the Sensitivity to Each Pressure Pj (CI_SensibPj)

Computing a confidence index for the sensitivity of each grid cell to each pressure Pj first required us to assign a confidence index to the sensitivity scores of the k habitats of the grid cell to the pressure Pj. This index was computed as the mean of the CI_μj,k weighted by the surface Sk of each habitat k (and divided by 5, CI_μj,k maximum value, to standardize the index between 0 and 1).
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Secondly, we assigned to each grid cell an index that reflected the confidence in the mapping of benthic habitats that were sensitive to the pressure Pj (CIQ_HP_Pj). When at least one habitat was sensitive to the pressure Pj, CIQ_HP_Pj was computed as the mean of the CI_Hk, weighted by the sensitivity of each habitat to Pj (μjk) (and divided by 5, CI_Hk maximum value, to standardize the index between 0 and 1). In the case when no habitat of the grid cell was sensitive to Pj, the habitat surface had no impact on the RCE calculation, so we assigned a maximum score for CIQ_HP_Pj.
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CI_SensibPj was calculated as the product of these two indices:
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Calculation of the Risk of Cumulative Effects’ Confidence Index

The confidence index in the pressure Pj (CI_Pj) and the confidence index in the habitat’s sensitivity to the pressure Pj (CI_SensibPj) allowed us to calculate a confidence index for the risk of effect of the pressure Pj in the grid cell (CI_RE_Pj). For this step, it is necessary to distinguish 3 distinct cases:


–If the pressure Pj is present in the grid cell (Pj > 0) but the grid cell is not sensitive to Pj (μjk = 0), then the risk of effect is null and its value depends solely on the sensitivity of the grid cell to the pressure (the intensity of the pressure has no impact on the result). In this case, it was considered that CI_RE_Pj only depends on CI_SensibPj.

–If Pj is null in the grid cell (Pj = 0) but the sensitivity of the grid cell to the pressure j is different from zero (μjk ≠ 0), then the risk of effect is null and its value depends solely on Pj (the sensitivity of the grid cell to the pressure will have no impact on the risk of effect). In this case, it was considered that CI_RE_Pj depends only on CI_Pj.

–In the other two possible scenarios (both the sensitivity and the pressure are null or non-null), then the value of the risk of effect will depend on both μjk and Pj.
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The confidence index in the RCE for a given grid cell (CI_RCE) was computed as the mean of the confidence indices of the risk of effect associated with each pressure Pj (CI_RE_Pj) weighted by the risk of effect associated with each pressure Pj (RE_Pj). In other words, the CI_RCE would mostly depend on the confidence indices in the pressures that contribute the most to the RCE. In the case of a null RCE (ΣRE_Pj = 0), we considered that all the Pj contributed equally to this result so the CI_RCE was simply computed as the mean of the CI_RE_Pj.
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Uncertainty Analysis

To quantify the uncertainties associated with our model, we investigated the effect of the variation of several sources of uncertainty on the RCE scores. Based on a literature review (Halpern and Fujita, 2013; Korpinen and Andersen, 2016; Stock and Micheli, 2016; Gissi et al., 2017), we identified seven sources of variation – hereinafter referred to as “factors.” These factors, presented in Table 3, can be divided in two categories:


TABLE 3. Description of factors used in the Monte-Carlo simulations.
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–Model assumptions (factors X1, X2, X6 and X7) for which the level of uncertainty, as defined by Walker et al. (2003), corresponds to scenario-uncertainty. This means that we know the range of possible assumptions, but current knowledge is not yet sufficient to formulate the probability of any one particular assumption being true.

–Variation of several parameters of our model depending on the value of the confidence index associated with these parameters (factors X3 to X5).



As proposed in recent studies (Stock and Micheli, 2016; Gissi et al., 2017), we performed Monte Carlo (MC) simulations to explore the range of possible RCE scores taking into account these factors.


X1: Multiple Pressure Effect Model

In most cumulative impact studies, human pressures are assumed to simply add up while it has been demonstrated that antagonist (i.e., the effect is lower than the sum of the pressures) and synergistic (i.e., the effect is higher than the sum) effects also occur in nature (Crain et al., 2008). We investigated the multiple pressure effects by applying randomly one of these three models in each MC simulation.
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Supplementary Figure 1 shows the theoretical result of these three models.



X2: Activity Intensity to Pressure Intensity Model

The second factor concerned the method of calculating the intensity of physical pressures from the intensity of activities. The linear model which was applied in our default RCE calculation setting assumed that the intensity of the pressure generated by an activity (normalized between 0 and 1) equals the intensity of this activity (normalized between 0 and 1):
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The “pessimistic” approach considered that the intensity of the pressure increases very rapidly and then reaches a plateau with the equation:
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The “optimistic” approach considered that the intensity of the pressure increases slowly and is only significant at high values of Ai:
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where PjAi is the intensity of the pressure Pj generated by the activity intensity Ai.

The last approach considered that the relationship between a pressure intensity and the activity that generates it is represented by a logistic curve:
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The Supplementary Figure 2 illustrates the four models used in the MC simulation. The type of activity–pressure response was specific to each activity–pressure pair. Therefore, during each MC simulation, each activity–pressure pair was randomly associated with one of the four options (linear, pessimistic, optimistic or logistic). In this way, for a given simulation, each activity–pressure pair was associated with the same function in all the grid cells.



X3: Value of the Sensitivity Score μjk

Instead of having a fixed sensitivity score, we associated the sensitivity scores μjk with a statistical distribution and generated in each MC simulation a random value [image: image] taken from this distribution. The aim was to take into account the confidence in each sensitivity score, so that the sensitivity scores with a low confidence index were more variable than the ones with a high confidence index. Because the sensitivity score μjk ranges strictly between 0 and 5, a beta distribution was chosen to model each μjk in order to maintain the generated sensitivity scores within finite borders. Based on the recommendations of Ferrari and Cribari-Neto (2004), we generated random values [image: image] with the following model:
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Where φjk is a precision parameter, which is proportional to the confidence index in the sensitivity score:
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The Supplementary Figure 3 shows the results obtained with 20,000 runs of this calculation process for some examples of μjk and CI_μj,k pairs.



X4: Value of the Activity – Pressure Relationship Index γAi/Pj

Following the same principle as X3, this factor consisted in varying the values contained in the activity–pressure relational matrix (γAi/Pj) depending on the value of the confidence index (CI_γAi/Pj). Since the activity–pressure relationship could only take two values (0 or 1) we used a simple application of the binomial distribution. The confidence index (CI_γAi/Pj) values were between 0 and 5. Let [image: image]/Pj be the new γAi/Pj relation, the probability for this link to have the same value as the original link is then:

[image: image]

At each simulation, a new activity–pressure relational matrix for the whole grid was randomly generated from the original matrix.



X5: Value of the Activity Intensity Ai

Following the same principle as X3, this factor consisted in varying the intensity of activities (Ai) according to the confidence index (CI_Ai) describing the quality of the activity data set. For each simulation, we applied for each cell the same algorithm as factor X3.



X6: Spreading of Pressure Effect From Point Source

As proposed in Stock and Micheli (2016) we investigated the spreading of pressure intensity around the point source. The distance at which the activity exerted a given pressure was specific to an activity–pressure pair. As we did not have sufficient information to assign a fixed effect distance to each activity–pressure pair, we generated at each simulation an activity–pressure matrix containing a random number between 0 and 3. This number corresponds to the grid cell effect distance over which each activity exerts each pressure for this simulation as described in the Supplementary Figure 4. The function developed performed for each activity and in each grid cell the following calculation:

If the activity was present on the grid cell (Ai≠0), the value remained the same.

If the activity was not present (Ai = 0), the function searched if the activity was present among the 8 adjacent grid cells. If this was the case, then the new value of the activity in the grid cell ([image: image]) was equal to half of the highest value of the activity intensity in the adjacent grid cells, otherwise the value remained at 0.

Each new application of this function allowed us to add one more grid cell in the distance function. In this case, the decrease was not linear. Let f(x) the function that gives the value of the activity intensity at a distance of x grid cells from the original grid cell, then we have:
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X7: Method of Assigning the Sensitivity Index μjk for Habitats Not Evaluated in the Source Sensitivity Matrix

For a number of mapped benthic habitats that did not have a sensitivity assessment in the original sensitivity matrix, we calculated a sensitivity index (μj,k′) from habitats of the same nature for which we had a sensitivity index (μj,k). These sensitivity indices were calculated by aggregating the sensitivity scores of these “child” habitats with two methods as described in the Supplementary Figure 5. Using the median option, we chose the median of the sensitivity value of the “child” habitats. Using the precautionary option, we chose the highest sensitivity value of the “child” habitats. At each simulation, we chose randomly between these two options.




Data Preparation


Human Activities Data

As previously described, the estimation of the intensity of the physical pressures was carried out by taking into account the intensity of the human activities producing these pressures. For this purpose, relatively accurate data describing the location and intensity of human activities were collected and prepared. The source and description of the 21 data sets describing the intensity of human activities prepared for the RCE analysis are presented in Table 4.


TABLE 4. Description of human activities data sets used.
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The typology of human activities and pressures was consistent with the typology used for the implementation of the MSFD. The confidence index of the human activity data sets was evaluated as described in the Supplementary Table 4. All human activity data sets were subject to an inter-annual average covering the 2011–2016 period (2005–2013 period for the dumping of dredged material), with the exception of aquaculture, coastline artificialization and buoy mooring places. For these three activities, the data sets corresponded to the most recent data, without temporal data series. For these three data sets it was assumed that they were relatively stable and representative of the current situation. Consequently, it was assumed that all the human activities data sets represented an average situation over the recent 2011–2016 period.

Despite the good overall quality of the data collected and prepared, these data provided an incomplete estimate of the distribution and intensity of these marine activities. This was particularly true for fishing activities that are described here with data sets from the European Vessel Monitoring System (VMS) which only applies in France to vessels over 12 meters long. Therefore, all coastal fishing fleets with vessels less than 12 meters were not included in this analysis. In order to remove some outliers due to VMS data processing, fishing effort values less than or equal to 24 h per year and per grid cell were considered as zeros. For the anchoring activity, the Automatic Identification System (AIS) data set used is representative for the shipping and passenger vessels and for large yachts. However, many small pleasure craft are not equipped with AIS and are therefore highly underestimated in this data. For the aquaculture activities, the cultivated biomass by concession area was estimated from the local regulations defining the cultivation methods and conditions. These estimates gave the maximum potential biomass. They did not take into account local aquaculture contexts like unexploited or partially exploited concessions. The intensity of each human activity was calculated in the grid cells as shown in Figure 3.
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FIGURE 3. Method of calculating the intensity of human activities into the grid.


The intensity of the activities in each grid cell was calculated on the basis of the relative area of activity present in each grid cell, with the exception of fishing effort data and anchored vessel numbers data which were collected directly in a regular square grid of the same resolution. The grid cells for which the presence and/or intensity of the activity are unknown take the value “No Data.”

The raw data sets and gridded data sets describing the human activities used in the analysis, with the exception of the fishing activities data sets, are archived and available on the Ifremer Sextant marine and coastal Geographic Data Infrastructure web portal (see the 13 references Contin, 2018a, b, c, d, e, f, g, h, i, j, k, l, m).



Benthic Habitats Data

A multi-source mapping of benthic habitats covering the entire French Exclusive Economic Zone was conducted for the purposes of the study. The benthic habitats map used the EUNIS 2007 classification (ETC/BD-EEA, 2012). The 2017 EuSeaMap European benthic habitat map (Populus et al., 2017) formed the basis of the data used. This Broad-scale Seabed Habitat Map (BSHM) is used as part of the implementation of the MSFD and, in some European countries, for the creation and evaluation of the marine protected area network (Andersen et al., 2018).

In coastal areas, and in general wherever possible, this data set was replaced by available data with more precise spatial and typological resolution. The aim was to complete the EuSeaMap data set with data providing habitats mapped at least at the EUNIS 4 level. This step was performed using GIS tools to compile, harmonize and carry out geometric union of 150 data layers from 27 main data sources, as presented in the Supplementary Table 6.

The main steps in the construction of the multisource benthic habitats map are presented in Figure 4. The formatting of the source data (geometric formatting, reprojection, typology conversion and confidence index assignment) was carried out in the first step. The conversion of habitat typologies into the EUNIS 2007 typology was carried out using the HabRef v.4 database (Clair et al., 2017) which describes the links between the different typologies as shown in Supplementary Table 7. As presented in Supplementary Table 3, the data sources for which a habitat typology conversion was required were given the value 0 for the criterion (H_typ) contributing to the calculation of the confidence index of benthic habitat mapping (CI_Hk).
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FIGURE 4. Main steps of building the multisource map of benthic habitats.


The great heterogeneity of the metadata and confidence assessment methods of the different data sources did not allow the use of pre-existing confidence indices. Some data, such as for example EuSeaMap 2017 and Carthamed, are provided with confidence indices based on complex and robust methods. Other data are provided without any confidence assessment. Moreover, it was not possible to use other methods such as the MESH project (Mapping European Seabed Habitats) confidence assessment guidelines (Foster-Smith et al., 2007) because only the data producers are able to evaluate the parameters needed for this confidence assessment method. In this context, we have developed a relatively simple method to assess a confidence index of all benthic habitat data sources as described in the Supplementary Table 3.

The multisource map generated at the end of the second step is composed of 2,077,704 polygons that cover about 375,650 km2 with 239 different EUNIS habitat codes. The Supplementary Figure 6 presents the main features of this map. Then, the multisource benthic habitats map was integrated in the regular square grid (third step) by a SQL query presented in the Supplementary Appendix 1. Each grid cell contains the list of habitats intersecting the grid cell and the percentage of the sea surface of the grid cell covered by each habitat.

The raw and gridded versions (Quemmerais-Amice, 2020a, b) of the multisource benthic habitats map are archived and available on the Ifremer Sextant marine and coastal Geographic Data Infrastructure web portal.





RESULTS

The results presented here give an average estimate of the Risk of Cumulative Effects (RCE) of different pressures based on the intensity of human activities and associated physical pressures that took place, overall, between 2011 and 2016. The interpretation of the results therefore relates to this period. The RCE and Confidence index analyses presented here were carried out on grid cells with an average depth between 0 and −200 m. These grid cells cover the maritime space between the coastline and the slope of the continental shelf. Prior to these analyses, grid cells of which less than 50% of the area was covered by benthic habitats with a sensitivity assessment were excluded. Figure 5 shows the Risk of Cumulative Effects distribution within the French continental shelf.
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FIGURE 5. Risk of Cumulative Effects map. (A) Bay of Seine, (B) Pertuis Charentais and Gironde estuary, (C) French Riviera (Côte d’Azur), (D) Normand-Breton Gulf, (E) Loire estuary, (F) Corsica.


Six percentage of the grid cells were excluded from the RCE calculation (n = 4591 with RCE = null, gray mesh in Figure 5). At least 50% of the surface of these grid cells was covered by benthic habitats mapped with EUNIS levels lower than 4 and/or by benthic habitats of higher EUNIS level but whose sensitivity had not been evaluated. The identification of these grid cells made it possible to locate and target the complementary studies to be carried out to map these areas and/or to complete the sensitivity assessments. The RCE was 0 in 39% of the grid cells (n = 30137 with RCE = 0, green grid cells in Figure 5). Considering the human activities and the physical pressures taken into account in this analysis, these zones did not seem to present any risk of cumulative effects for the period studied. 55% of the grid cells had a RCE value greater than 0 (n = 42842, grid cells mapped with a gradient of red). The highest RCE values (top quartile in deep red) were scattered across all the study area, both in very coastal and offshore areas. The sum of the RCE values of the grid cells included in the top quartile (n = 10710, 13% of the grid cells) represented about 58% of the total risk over the entire study area. Considering the human activities and physical pressures taken into account in the analysis, these grid cells corresponded to the areas where the RCE value was the greatest for the period studied. As shown in Figure 6, the French area included in the Celtic Seas marine subregion seems to be the least affected by the RCE, with 63% of the grid cells having RCE values between 0 (45%) and the bottom quartile and only 3 % of grid cells in the top quartile of RCE values. In contrast, the French area included in the Western Mediterranean Sea subregion is highly contrasted, with 44% of the grid cells having a RCE of 0 and 50% of the grid cells having RCE values in the fourth or top quintile. As shown in Figure 5, these grid cells concern all coastal areas and almost all of the Gulf of Lion.
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FIGURE 6. RCE quartile distribution in percentage of grid cell in each French waters of MSFD marine subregions. “Cha” English Channel, “Cel” Celtic Seas, “BoB” Bay of Biscay and “Med” Western Mediterranean Sea.


An analysis of the activities and pressures contributing to the RCE throughout the study area provided a better description of management issues. As shown in the Figure 7, the bottom trawl was the most widespread activity and was present in the largest number of grid cells (approximately 50% of the grid cells), which is consistent with a previous study (Lorance et al., 2009). This activity seemed to contribute, via the generated pressures, to approximately 70% of the sum of the RCE over all the grid cells in the study area. This global vision revealed that only 2 activities (listed in descending order: bottom trawl and dredge) contributes to approximately 80% of the sum of the RCE over all the grid cells in the study area.
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FIGURE 7. Contribution of human activities to the RCE. “Activity presence” represent the percentage of grid cells where the activity is located; “impacted mesh” represents the percentage of grid cells were the activity contributes to the RCE; “contribution to RCE” represents the contribution of the activity to the total RCE in the studied area, in percentage.


Similarly, the surface abrasion pressure was present in about 60% of the grid cells and contributed to about 27% of the sum of the RCE over all the grid cells in the study area (Figure 8). Only 4 physical pressures (listed in descending order: surface abrasion, reworking of sediment, light deposition and change in suspended solids) contributes to approximately 80% of the sum of the RCE over all the grid cells in the study area.
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FIGURE 8. Contribution of pressures to the RCE. “Pressure presence” represents the percentage of grid cells where the activity is located; “impacted mesh” represents the percentage of grid cells where the activity contributes to the RCE; “contribution to RCE” represents the contribution of the activity to the total RCE in the studied area, in percentage.


This statistical analysis, if carried out on specific areas (territorial sea, MSFD marine sub-region or marine protected areas) may reveal more local issues and inform decision-makers on more precise management issues in order to act on the pressures and activities that contribute the most to the risk.

The mapping of the RCE confidence index (Figure 9) showed a very constrained situation. The map can make it possible to localize the areas having an insufficient confidence index, and then to select the data associated with these grid cells (confidence indices are stored in the Database) to identify the data that best explains the confidence index. It will then be possible to better define the complementary studies to be carried out. This map will also allow managers to better understand the confidence that can be placed in the analysis in a fairly transparent manner and help to define acceptable uncertainty thresholds.
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FIGURE 9. Risk of Cumulative Effects Confidence Index map. (A) Bay of Seine, (B) Pertuis Charentais and Gironde estuary, (C) French Riviera (Côte d’Azur), (D) Normand-Breton Gulf, (E) Loire estuary, (F) Corsica.


The analysis of the RCE variability was carried out with 10,000 Monte-Carlo simulations using the 7 criteria considered in the calculation process as described in Table 3. The 10,000 simulations were carried-out on the IFREMER DATARMOR supercomputer. Figure 10 shows the distribution of the RCE variability. The red gradient refers to the top quartile of RCE values. 15% of the grid cells (11710 grid cells) were in the top quartile of the RCE values in at least 75% of the simulations (g1: deepest red meshes). Despite the large number of simulations, these grid cells are never in the bottom quartile of the RCE values. This implies that, even when varying the model assumptions, these areas always have the highest RCE values. Around 9% of the grid cells were in the top quartile of the RCE values between 50 to 75% of the simulations (g2: red meshes).
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FIGURE 10. Risk of Cumulative Effects variability (10,000 Monte-Carlo simulations). (A) Bay of Seine, (B) Normand-Breton Gulf, (C) Loire estuary, (D) Pertuis Charentais and Gironde estuary, (E) Marseille to French Riviera (Côte d’Azur).


The green gradient refers to the bottom quartile of RCE values. Around 12% of the grid cells were in the bottom quartile in at least 75% of the simulations (g7: deepest green). This implies that even when varying the model assumptions, these areas always have the lowest RCE values. 16% of the grid cells were in the bottom quartile of RCE values between 50 to 75% of the simulations (g6: second deep green grid cells). In areas covered by g1 and g7 grid cells (deepest red and deepest green grid cells), the RCE values could be considered as relatively stable and well evaluated with regard to the data sets and criteria taken into account in the simulations.

Twenty seven percentage of the grid cells were in the top quartile of the RCE values in at most 50% of the simulations or were in medium RCE values (g3: light pink grid cells). 12% of the grid cells were very variable (g4: yellow grid cells), sometimes in the top quartile of the RCE values (up to 12% of simulations), sometimes in the bottom quartile (up to 12% of simulations) and sometimes in the mean RCE values. Around 7% of the grid cells were in the bottom quartile of the RCE values in at most 50% of the simulations or were in medium RCE values (g5: light green grid cells).

A brief description of the distribution of the group g1 (deepest red grid cells) allows highlighting the strongest and the most visible issues for the management of the risk of cumulative effects. This analysis also highlights that taking these issues into account could be beneficial for European public policies. The group g1 covers 30% of the grid cells in the French waters of the English Channel and North Sea MSFD marine sub-region and 23% of the grid cells in the French waters of the Western Mediterranean Sea MSFD marine sub-region. These two marine sub-regions are therefore particularly concerned by the risk of cumulative effects on benthic habitats.

Bottom trawling is the activity that contributes the most to the importance of the RCE in the group g1. This activity is present in 84% of g1 grid cells and contributes for 53% of the sum of the RCE over all the grid cells of the group. This result is very probably underestimated because only the fishing vessels monitored within the framework of the European Common Fisheries Policy (VMS survey) were taken into account in the analysis. Dredge and coastal artificialization are in second and third position and contributes, respectively, to 16 and 8% of the sum of the RCE over all the grid cells of the group. As human activities generate several pressures, the relative contribution of physical pressures is more nuanced. 6 physical pressures (surface abrasion, reworking of sediment, light deposition, change in suspended solids, heavy sub-surface abrasion, light sub-surface abrasion) are present in at least 90% of the grid cells of the group and contribute, respectively, between 12 and 22% of the sum of the RCE over all the grid cells of the group.

Analysis according to biozone seabed areas, as defined by Populus et al. (2017) reveals that coastal areas are particularly affected by the risk of cumulative effects of different pressures. The g1 group cover around 27% of the grid cells which are mainly in the intertidal biozone, 33% of the grid cells which are mainly in the infralittoral biozone and 38% of the grid cells which are mainly in the shallow circalittoral biozone.

The g1 group cover 27% of the grid cells included in the marine and coastal Special Areas of Conservation designated by France within the European Council Directive 92/43/EEC (Natura 2000 network). About 75% of the marine protected areas (97 sites out of 130) have no grid cells in the g1 group, but some sites are particularly affected, such as FR2502021 (Baie de Seine orientale) of which 72% of the grid cells are in g1, FR2500079 (Chausey) of which 71% of the grid cells are in g1 and FR7200679 (Bassin d’Arcachon et cap Ferret) of which 63% of the grid cells are in g1. 24 sites have at least 10% of their grid cells in g1.

Analysis according to benthic habitats makes it possible to target more precisely the habitats most exposed to the risk of cumulative effects. 32% of the benthic habitats (67 EUNIS codes out of 210) have at least 50% of their total area located in the g1 group. Among them some are particularly affected by the risk of cumulative effects of different pressures, such as the benthic habitats listed in the Table 5. For example, all sublittoral seagrass beds habitats (EUNIS A5.53 and higher level codes), which are of high ecological and heritage importance, have at least 76% of their total area included in the grid cells of group g1.


TABLE 5. List of benthic habitats whose 75% of the total area is located in the grid cells of group g1.

[image: Table 5]


DISCUSSION

We have developed a method and a tool contributing to the concrete implementation of the cumulative effect assessment concept on the scale of French European waters. These developments could contribute to lay the foundations of RCE assessment (Judd et al., 2015) and Decision support tools (Pınarbaşi et al., 2017) needed within the framework of the MSFD and MSP European policies. They also could contribute to feed the reflections on the major assumptions and challenges related to the RCE assessment (Halpern and Fujita, 2013; Korpinen and Andersen, 2016).

One of the main interests of the proposed method is to deal concretely with the question of uncertainties and the variability of the cumulative effects assessment. These major issues related to cumulative effects assessment (Stock and Micheli, 2016; Gissi et al., 2017) are integrated in the early stages of the analysis, by providing a confidence index for each data set and for each relationship of the activity–pressure matrix and the sensitivity matrix. Confidence indices are used to map confidence in the RCE (Figure 9) and, moreover, they are integrated in the Monte Carlo simulation to map the variability of the RCE according to 7 criteria (Figure 10). In the analysis presented here, 10,000 Monte Carlo simulations were performed taking into account 7 factors that can strongly influence the cumulative effects assessment. Of the 7 factors, 3 factors (X3: value of the sensitivity score, X4: value of the activity–pressure relationship and X5: value of the activity intensity, Table 3) directly use the confidence indices associated with the data and matrices to guide random draws on these parameters. The other criteria take into account, in particular, 3 modes of combined effects of the pressures (X1: additive, antagonistic or synergistic effects), 4 methods of calculating the intensity of the pressures based on the intensity of the activities (X2) and the distance of the pressures’ effect around the point source (X6). The demonstrator tool allows one to choose the criteria (among the 7) to use in the simulations. This option will make it possible to analyze the relative contribution of each criterion to the overall variability of the model, and to define precisely the methodological efforts to be undertaken on specific criteria. Finally, other criteria can be added, such as, for example, nonlinear responses of ecosystems to pressures (Halpern and Fujita, 2013).

The data describing the human activities are associated with a sufficiently precise typology to discriminate uses and associated pressures. The fishing activity is sub-divided into 8 activities based on fishing gear. Likewise, the aquaculture is sub-divided into 7 activities according to the main breeding techniques. In addition, the sensitivity matrix also makes it possible to hierarchize and discriminate the effect of the different pressures on each habitat. These choices make it possible to assign different weights to the pressures in the RCE assessment and ensure that pressure layers will not have roughly equal importance in the analysis (Halpern and Fujita, 2013).

The spatial resolution of the regular square grid (1′ × 1′) is consistent with the resolution of the source datasets and the scale of the study area (whole French European waters). This resolution is much finer than the scale of MSFD evaluation and management units. Even if the spatial distribution of the benthic habitats, activities and pressures is unknown within each grid cell, this resolution could give enough precision to identify the most important and structuring areas concerning the RCE at this scale. To deal with the assumption that stressors are uniformly distributed within the grid cells (Halpern and Fujita, 2013) and if the descriptive data of the various parameters are available with higher spatial resolutions, it will be possible to perform more precise analyses on specific sites such as marine protected areas.

To ensure that habitats are not simply mapped as present or absent (Halpern and Fujita, 2013), the grid cells contain the list and the relative area of each overlapping habitat defined with the EUNIS typology. Moreover, multi-source mapping of benthic habitats (Figure 4) integrates very recent benthic habitats data sets and more than half of the habitats are mapped at least at EUNIS level 4.

To deal with the normalization of the pressure intensity between 0 and 1, we chose to use the maximum values observed over the period and the study area to set the value of 1 at each pressure, as is commonly done (Halpern and Fujita, 2013).

The tool and method have been developed to integrate existing and available data, they are also adaptable to integrate new or up-to-date data and new methods of analysis, which are essential to integrate these approaches into marine public policies and are becoming step by step more operational (Judd et al., 2015).

There are, however, still some challenges to improve the robustness, acceptability and deployment of this approach and contribute to answer some methodological and technical issues (Halpern and Fujita, 2013; Korpinen and Andersen, 2016).


Mapping Anthropogenic Pressures

Significant evolutions are still needed to improve the mapping of anthropogenic pressures generated by marine activities. This could be achieved through a more long-term work involving marine stakeholders and academic researchers with expertise on the human activities and their interactions with the environment. This could be a dedicated project based on the mobilization of scientific expertise, scientific publications and benchmarking of different knowledge. It could concern the following issues:


Evaluating the Age, the Duration and the Frequency of Activities

Taking into account historical data describing human activities and their temporal accumulation is a great challenge to improve the assessment of cumulative effects (Willsteed et al., 2017). As previously stated, the descriptive data on human activities currently used for the RCE analysis covers the period 2011–2016. However, human activities that contribute the most to the risk, notably the bottom trawl, have been practiced significantly for about a century (Joubin, 1922; Lorance et al., 2009; Boisson, 2012; Eigaard et al., 2017). This activity has transformed the original habitats, leaving a footprint for several decades (Eigaard et al., 2017). Mapped habitats are already a response to past anthropogenic pressures and could be considered as the result of a relatively old anthropization of the marine environment. Currently, the RCE analysis does not take into account the historical effects which have already modified the marine environment (Korpinen and Andersen, 2016). To advance this approach, a substantial work of collecting and interpreting older data sets should be conducted. It could delimit areas that have been used regularly by certain activities for several decades. Then in these areas, the resilience capabilities (La Rivière et al., 2016) of the habitats could be assessed locally by taking into account the age and temporal persistence of pressures as proposed by Knights et al. (2015). This method would ultimately vary the sensitivity of habitats according to the local and historical context of human activities and pressures. Likewise, the duration and frequency of activities have a great influence on the resilience capacities of habitats (La Rivière et al., 2016). As proposed by Knights et al. (2015) it is possible to evaluate the duration and frequency of activities and pressures based on expert judgment.



Evaluating the Geographical Area of Influence of the Pressures for Each Type of Activity

For each activity–pressure linkage, a specific spatial model could be defined to map the pressures more realistically. This modeling can implement a linear decrease in pressure intensity (Ban et al., 2010; Andersen et al., 2013) or an exponential decrease (Holon et al., 2015). Andersen et al. (2013) have automated the use of spatial models by defining some categories of maximum potential effect distances (local, 1, 5, 10, 20, and 50 km) and by asking a group of experts to evaluate the appropriate category for the different activity–pressure pairs. Sometimes, categories of pressure intensity are defined according to the intensity of the activity. For example, for each activity, Holon et al. (2015) defined maximum potential effect distances based on activity intensity categories. Spatial models are generally applied circularly around the pressure source. Other factors such as wave or tidal currents and river plumes will significantly modify these theoretical areas of pressure influence. Hydro-sedimentary modeling can be used to model the most likely area of influence, by type of pressure and by season, for example.



Improving the Consideration of Biological and Chemical Pressures Released by Land-Based Activities

Anthropogenic contaminants and nutrients reach the marine environment mostly directly from land-based sources. Most of the chemical and bacteriological contaminants produced by these activities are introduced into the marine environment by sea outfall (water treatment plants, industrial sites) and by the hydrographic network. Some of this pollution can also be released or disseminated in the marine environment by sea-based activities (Tornero and Hanke, 2016). A recent European Environment Agency (EEA) assessment concludes that contamination by synthetic chemicals and heavy metals is still a major environmental concern in European seas (Andersen et al., 2019).

The integration of these land-based pressures into cumulative effects assessment poses several methodological difficulties. In recent studies, contaminants and nutrient inputs are estimated from the location and intensity of the land-based activities concerned: for example, agricultural area, urban area, number of inhabitants, flow of the sea outfalls (Holon et al., 2015). These data, which are not associated with real levels of defined contaminants, and the use of the sea outfall location, make it possible to estimate inputs in general. The mapping of their area of influence at sea is carried out by applying exponential decreasing equations from point source and by taking into account a reduction as a function of depth (Holon et al., 2015). Other studies have produced input modeling by contaminant category (heavy metals, synthetic compounds) and by watershed using generally the same type of data, coupled with oceanographic models to map the dilution of these contaminants (Andersen et al., 2013). Clarke Murray et al. (2015) mapped the marine influence of the dominant stressor for each land-based activity using kernel density decay at the mouth of each estuary associated with a watershed. We propose to reconsider the problem of these land-based chemical pressures in the assessment of cumulative pressures.

First, considering that the hydro-geochemical cycles of contaminants and nutrients in the watersheds are complex and very variable over time and between watersheds (Desmit et al., 2018; Le Moal et al., 2019), it is unlikely that the commonly used proxies (number of inhabitants, agricultural area) give a realistic estimate of inputs into the marine environment. For this reason, it would be interesting to directly use the contaminant concentration measurements carried out in the mouths of rivers and estuaries and at sea, in particular under the Water Framework Directive (WFD). This option would allow the estimation to be based on real concentrations by year or by season and with specific and defined groups of pollutants. It would also have a strong link with the monitoring carried out under the WFD and the descriptors 8 and 5 of the MSFD.

Secondly, significant expertise is required to choose the molecules or group of molecules on which it would be relevant and possible to work. Which molecules exert pressure on benthic habitats and communities? Considering that pollutants have very variable chemical behaviors in the sea (sedimentation, transformation, dilution), which ones can be integrated into a modeling approach? What types of concentration measurements should be used, in biota, in sediment? Should concentration thresholds be used beyond which molecules concentration acts like a pressure on habitats and benthic communities? Or should we take into account the duration of exposure to these molecules that act over the long term (number of years)? Should we define sensitivity indices for each habitat such as the sensitivity matrix used for physical pressures, or should we develop sensitivities associated with water bodies by considering their oceanographic functioning and vulnerability (WFD water bodies for example)?

Thirdly, there is a significant challenge in modeling the likely distribution of these contaminants in benthic habitats and communities. Contaminant concentration data from WFD monitoring networks can be used in oceanographic models, such as MARS3D (Lazure and Dumas, 2008) to simulate the dispersion of chemical and bacteriological contaminants by integrating the process of transformation and transfer between the water/air/sediment compartments. The use of these tools throughout the coastal zone would allow average inter-annual or seasonal concentrations for targeted contaminants to be produced and then integrated into the RCE analysis.




Data Challenges

The quality and the spatial and temporal resolution of the data as well as their typology have a very important influence on cumulative effect analysis and on the interest of the results for management. As part of this project, a significant effort was made to collect and prepare the most accurate data possible. About 40% of the project cost was dedicated to data collection and preparation. No data was purchased, it is a cost associated with the time required to prepare and manage the data. This cost is partly a consequence of the large heterogeneity of data and data sources and producers which makes it difficult to construct consistent and usable data sets. The main difficulties encountered are the heterogeneity of the data, the regulations governing their acquisition and their right of diffusion and re-use, the relatively large number of institutions involved in the production of data, and sometimes the absence of data directly responding to our needs.

Overall, it can be noted that data acquisition was facilitated by the integration of the project into the national data collection program organized for the second evaluation of the MSFD. The possible improvements concern essentially four areas: the temporal resolution, the spatial resolution, the completeness of the data already collected, and the acquisition of missing data. Most of these issues are part of the confidence index assessment parameters, as presented in Supplementary Table 4.


Temporal Resolution

The data collected to describe human activities was generally available by year, aggregated by year. This enabled the calculation of average inter-annual intensities. However, the RCE estimate would be even more interesting for management if it were calculated at least per season. This issue of temporal resolution is only very rarely taken into account in the various cumulative effect assessment studies (Korpinen and Andersen, 2016). Indeed, this implies a real qualitative leap, a more efficient information production chain and greater data preparation capabilities. In France, most descriptive data on the intensity of human activities exist or can be calculated per month, but they are difficult to access and their preparation would require much more time. For benthic habitats data, we need to produce a synthesis of the knowledge to describe the seasonal dynamics of the habitats, in particular to have a sensitivity index per season.



Spatial Resolution

In this study we propose a spatial analysis in a regular square grid of 1 min of degree by 1 min of degree of resolution. This resolution was chosen because it is the lowest spatial resolution among our datasets (fishing effort). In this context, proposing a better spatial resolution would not provide more information and would give a misleading picture of the true resolution of the data. This resolution allows, as it is, a sufficiently precise mapping of the RCE for offshore areas. For the coastal zones and especially for the Provencal and Corsica coast of the Mediterranean Sea, this resolution is insufficient. In this area, the activities are concentrated on the coastline as there is no truly continental shelf (Figures 5–7). The method and tool developed here are able to work with a much more precise regular square grid resolution, like those used by Holon et al. (2015) in the French coastal area of the Mediterranean Sea. However, it is necessary to have data that are also mapped at high resolution.



Completeness of the Data

Several data sources were crossed to produce data as complete as possible. For the extraction of marine aggregates, we crossed spatial data from Ifremer (area of dredging concessions at sea) with declarative data on annual extracted quantity by concession from regional administrations. The same principle was applied to aquaculture activities, for buoy mooring areas and for artificial reefs. For artificial reefs, the data preparation stage did not lead to sufficiently complete data sets to allow their inclusion in the analysis (complete data in the Mediterranean and very incomplete data in the Atlantic).

Other particularly important data cover only a part of the territory, such as the modeling of the winter concentration of dissolved inorganic nitrogen (DIN), which is one of the indicators of eutrophication risk. The nutrient inputs at sea, causing eutrophication phenomena, still remain a strong issue for the management of European coastal waters (Ibisch et al., 2017; Desmit et al., 2018). Very recent modeling of the winter concentration of DIN (Ménesguen et al., 2019) uses the ECO-MARS3D model (Lazure and Dumas, 2008) and can only be used from the Belgian border to the Loire estuary. For this reason, we did not integrate this data in the first analysis presented in this article. This mapping may be associated with MSFD thresholds defining eutrophication to identify areas for which the DIN concentration is a pressure. Work underway under the MSFD Descriptor 8 aims to achieve these models on all French waters, including the Mediterranean.

Other activities are monitored under European and long-term policies. This is the case of fishing activities. However, French fishing effort data are also intrinsically incomplete, as only vessels over 12 meters are monitored by the VMS. The fleets of small vessels represent a significant number of vessels that work mainly in the coastal area. In this area, the current RCE results are therefore clearly underestimated. The likely evolution of European policy (European Commission, 2018) including the obligation for Member States to monitor all fishing vessels in the VMS, even small ones, will provide a much more comprehensive view of coastal fishing activities.



Acquisition of Missing Data

Some data are not yet integrated in the database and used in the first analyses, either because they do not exist or because they are particularly difficult to collect. This is the case, for example, for beach replenishment and land reclaimed from the sea. In these two examples, the data exist but are not accessible at national level. These two examples illustrate the difficulty of obtaining current data describing the construction phases of coastal developments. Other activities would require considerable work to build consistent and harmonized data sets at the national level, such as all the recreational activities that could interact with benthic habitats. These activities are not monitored at national level and there is no coordinated survey or information structuring at this scale. There is a strong challenge in coordinating the different institutions and State services that produce or manage data.

Finally, the updating process for all the data is a particularly strong issue and despite the progress made within the context of the MSFD (easier access, setting up of web portal, etc.) is not yet resolved.




Technical Challenges

Several cumulative effects analysis tools have been developed in recent years to support the implementation of marine management public policies (Pınarbaşi et al., 2017; Menegon et al., 2018). Managers require easy-to-use, turnkey analysis tools and relatively simple and fast results and interpretation. The development of user-friendly tools, taking into account their needs and their skills is a strong issue to favor the appropriation and acceptability of these methods of analysis. For now, the demonstrator tool (based mainly on a suite of open-source software) presented here is not really suitable for non-experienced users. In the current state, its use involves opening a configuration file and the analysis script in R language as presented in Figure 2. It is not necessary to have programming skills, but it is necessary to be extremely precise and focused to follow the setup and verification procedure before starting the analysis. Similarly, visualization and exploitation of results requires opening GIS software or using R to build new graphics. Geomatics specialists of the regional marine offices of the French Office for Biodiversity have been successfully trained to use the tool. This training also made it possible to draw up a list of improvements and developments that would be interesting to consider for their local needs, in particular for the management of marine protected areas. This includes the development of a single interface for the configuration of the analysis and its launch. The setting must be facilitated. The initialization must allow the configuration to be tested before launching the analysis to quickly identify any data entry errors or inconsistent data. The management of the calculation options and the Monte-Carlo simulations must also be rationalized and allow, among other things, an estimation of the calculation time. The management of the results and the backups must also offer more options and allow all the metadata of the performed analysis (back-up of configuration options, list of parameters and data used, log files, etc.) to be stored.

Finally, this interface must also offer an application for the visualization and exploration of the results, in the form of a map, graph and statistics, allowing one to request grid cells to obtain the different information for contextualizing the result. The final tool could be used as stand-alone software or as a webtool, providing user-friendly interfaces appropriate to decision-makers and regional authorities as proposed in a recent study (Menegon et al., 2018).



Validation and Analysis of the RCE Results

The CEA method developed here gives a general diagnosis of the risk of degradation of benthic habitats. However, the interpretation of the results must remain cautious. Mapping the RCE confidence index and the variability of RCE by performing Monte-Carlo simulation allows for better location and quantification of the confidence that can be placed in the outcomes. This answers the issues identified for the assessment of the confidence of these analyses (Korpinen and Andersen, 2016; Stelzenmüller et al., 2018).

The configuration of the Monte-Carlo simulations allows the study of the relative contribution of the 7 parameters (Table 3) involved in the variability of the RCE. The developed tool makes it possible to choose the parameters used in the simulations, and also to add parameters if necessary. These complementary analyses will make it possible to identify the parameters that contribute the most to the variability of the RCE and subsequently to target future developments on these parameters. In addition, it is possible to simulate the cessation or reduction of certain human activities and related pressures, to produce RCE scenarios potentially useful for management. Lastly, the data currently available enable year-by-year RCE analyses to be conducted. The tests performed so far are based on annual averages of activity intensity. Year-by-year analyses will provide evolutionary trends of the RCE over time and space and can help to identify a reference year.

Nevertheless, it is currently impossible to measure in the field the cumulative effects of multiple pressures and to measure the relative contribution of these effects and natural variability and climate change to the status of benthic habitats. The ecological status of the habitats is the result of all these conditions.

To make progress on this issue, it will be necessary to compare the RCE result with different ecological status indicators based on in situ monitoring of benthic communities as previously done in a recent study (Clark et al., 2016). At the French scale, the evaluation of the MSFD criterion D6C5 (condition of the benthic communities) is carried-out with the BenthoVal Biotic Index (Labrune et al., 2017; Bernard et al., 2018). This indicator was initially developed to determine the impact of different sources of disturbance on soft bottom benthic communities, through the analysis of losses of individuals within affected benthic communities, compared to non-impacted reference communities. It is based on site monitoring of the abundance of benthic fauna species. For the 2018 assessment of criterion D6C5, the indicator BenthoVal 2012–2016 quantifies the loss of species abundance between the 2 years sampled during the 2012–2016 period. A significant decline in the value of the indicator indicates habitat degradation due to disturbance. However, the interpretation of this indicator is also difficult due to the difficulty of locating reference sites without pressures and also due to the difficulty of qualifying and quantifying the anthropogenic pressures on the monitored sites. For these soft bottom benthic habitats, comparing the results of the RCE and BenthoVal index would be beneficial for the interpretation of both approaches. Overall, the cross-checking between these two approaches would be a concrete application of the concept of a feedback loop (Elliott et al., 2018) to better calibrate the model and the field monitoring and ultimately increase the confidence in our results.
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Atlantic menhaden (Brevoortia tyrannus) are an important forage fish for many predators, and they also support the largest commercial fishery by weight on the U.S. East Coast. Menhaden management has been working toward ecological reference points (ERPs) that account for menhaden’s role in the ecosystem. The goal of this work was to develop menhaden ERPs using ecosystem models. An existing Ecopath with Ecosim model of the Northwest Atlantic Continental Shelf (NWACS) was reduced in complexity from 61 to 17 species/functional groups. The new NWACS model of intermediate complexity for ecosystems (NWACS-MICE) serves to link the dynamics of menhaden with key managed predators. Striped bass (Morone saxatilis) were determined to be most sensitive to menhaden harvest and therefore served as an indicator of ecosystem impacts. ERPs were based on the tradeoff relationship between the equilibrium biomass of striped bass and menhaden fishing mortality (F). The ERPs were defined as the menhaden F rates that maintain striped bass at their biomass target and threshold when striped bass are fished at their Ftarget, and all other modeled species were fished at status quo levels. These correspond to an ERP Ftarget of 0.19 and an ERP Fthreshold of 0.57, which are lower than the single species reference points by 30–40%, but higher than current (2017) menhaden F. The ERPs were then fed back into the age-structured stock assessment model projections to provide information on total allowable catch. The ERPs developed in this study were adopted by the Atlantic menhaden Management Board, marking a shift toward ecosystem-based fishery management for this economically and ecologically important species.

Keywords: Ecopath with Ecosim, ecosystem based fishery management, ecosystem model, forage fish, tradeoffs


INTRODUCTION

Forage fishes are abundant, schooling, mid-trophic level fishes that contribute substantially to the diet of many larger predators and serve central roles in energy transfer within ecosystems, but many forage species are themselves harvested and support some of the largest fisheries in the world. Due to their role in the ecosystem and their environmentally driven fluctuations, forage fish and their management have become a focal issue in the call for ecosystem-based fisheries management (EBFM) approaches (Pikitch et al., 2004; Dickey-Collas et al., 2014; Rice and Duplisea, 2014; National Marine Fisheries Service [NMFS], 2016; Siple et al., 2019). Although several general recommendations have been proposed to guide forage fish harvest rates and management policy (Constable et al., 2000; Cury et al., 2011; Smith et al., 2011; Pikitch et al., 2012), the effect that forage fish harvest has on predator populations remains a subject of debate among scientists (Hilborn et al., 2017; Pikitch et al., 2018). Despite the different viewpoints, there is a consensus that case-specific modeling and research are necessary to address specific ecological considerations and management challenges associated with individual forage fisheries or the systems they reside in (Hilborn et al., 2017; Pikitch et al., 2018).

Multi-species and ecosystem models that account for predator–prey dynamics are essential tools for evaluating the ecological impacts of forage fish harvest policies. However, the added complexity and data requirements of these approaches introduce considerable uncertainty into the management advice they provide. Overly simple models may not provide a good enough representation of the ecosystem and can lead to poor fits and model bias, and reduced stakeholder buy-in; while full end-to-end ecosystem models require an increased understanding of species-environment interactions and have high parameter uncertainty (Collie et al., 2016). Models of intermediate complexity for ecosystem assessment, or MICE models, seek to strike a balance by including only the necessary components to address the main management question(s) (Plagányi et al., 2014). For example, a MICE model of the California Current included three forage species and two predator species and was used to evaluate forage fish management systems and identify key sources of uncertainty (Punt et al., 2016; Kaplan et al., 2019). While MICE models have some clear advantages (speed and ease of use, fewer data requirements, and simpler interpretation), they should be compared to other intermediate and highly complex models of the same system to check against critical model biases (Plagányi et al., 2014; Kaplan et al., 2019).

Atlantic menhaden (Brevoortia tyrannus), members of the Clupeidae family, are a planktivorous schooling fish found in Atlantic waters from Nova Scotia to Florida (Ahrenholz, 1991). They are prey for a wide range of other species, including commercially and recreationally important finfish like striped bass [Morone saxatilis (Hartman and Brandt, 1995) and bluefin tuna (Thunnus thynnus) (Butler et al., 2010), piscivorous birds (Mersmann, 1989; Glass and Watts, 2009), and marine mammals (Gannon and Waples, 2004)]. Atlantic menhaden have been the target of commercial fisheries since the 1800s (Ahrenholz et al., 1987). The majority of landings are taken by the purse-seine reduction fishery, which processes the catch into fish meal and fish oil for aquaculture and animal feed, dietary supplements, and other products. Atlantic menhaden are also harvested by mixed gear fisheries in most states for use as bait in other commercial and recreational fisheries (SEDAR, 2020a). Landings peaked in the mid-1950s at about 700,000 mt per year; over the past decade, total landings have averaged approximately 200,000 mt per year with an average annual value of $40.8 million USD, making Atlantic menhaden the largest fishery by weight on the U.S. East Coast for that time period (National Marine Fisheries Service [NMFS], 2019). Because Atlantic menhaden have been primarily caught in state waters, the species is managed by the Atlantic States Marine Fisheries Commission (ASMFC). ASMFC also manages, solely or jointly with the National Oceanic and Atmospheric Administration (NOAA), several predator species that consume Atlantic menhaden, including striped bass, bluefish (Pomatomus saltatrix), weakfish (Cynoscion regalis), and spiny dogfish (Squalus acanthias).

The role of Atlantic menhaden as a forage species has long been recognized, particularly for striped bass, which is arguably ASMFC’s highest profile predator species. There has been increasing interest from managers and stakeholders in accounting for Atlantic menhaden’s ecosystem services when setting regulations and harvest limits. ASMFC convened a workshop with managers, scientists, and stakeholders to identify ecosystem management objectives for Atlantic menhaden. The objectives included (1) sustaining menhaden to provide for directed fisheries, (2) sustaining menhaden for consumptive needs of predators, (3) sustaining menhaden to provide stability across all fisheries, and (4) minimizing risk due to a changing environment (ASMFC, 2015b). ASMFC has already implemented precautionary measures to achieve these objectives. In 2006, harvest by the purse seine reduction fishery within the Chesapeake Bay was capped due to concerns about localized depletion of Atlantic menhaden in an important predator nursery area (ASMFC, 2005), and in 2017 the coastwide total allowable catch (TAC) was set at a level lower than the TAC at the single-species target F to leave more Atlantic menhaden in the water for predators (ASMFC, 2017). However, these measures were somewhat ad hoc and were not based on quantitative analyses. Developing quantitative ecological reference points (ERPs) that take into account Atlantic menhaden’s role as a forage species remained a high priority for ASMFC.

With the passage of Amendment 3 to the Menhaden Fishery Management Plan in 2017, the ERP workgroup was tasked with developing ERPs for management that account for menhaden’s role as a forage fish. Several models were considered as part of this process. The models ranged from simple to complex and included a time-varying intrinsic growth rate surplus production model (Nesslage and Wilberg, 2019), a two-species surplus production model with predation (Uphoff and Sharov, 2018), a multispecies statistical catch-at-age model (Curti et al., 2013; McNamee, 2018), an Ecopath with Ecosim (EwE) MICE model with a limited number of predator and prey species (described here), and a more holistic EwE model that included many more menhaden predators (Buchheister et al., 2017a,b). Of these, the EwE MICE model was put forward as the recommended tool for developing the ERPs because it included bottom-up effects of menhaden harvest on predators, captured the dynamics of key managed predator species, and can be updated on a timeframe suitable for management (SEDAR, 2020b). This paper describes the development of the final EwE MICE model and its utility in establishing Atlantic menhaden ERPs. The overall goal of this work was to identify tradeoffs associated with Atlantic menhaden harvest and establish management reference points that account for the dietary needs of menhaden predators.



MATERIALS AND METHODS


Ecopath With Ecosim

We developed a model of intermediate complexity for ecosystem assessment for the Northwest Atlantic Continental Shelf, hereafter called NWACS-MICE, using EwE. EwE is a trophic dynamic modeling package that facilitates management of biomass and food web data for whole ecosystems and has been widely used for analysis of aquatic resources (Pauly et al., 2000; Christensen and Walters, 2004a; Colléter et al., 2015). The Ecopath component of EwE is a static, mass-balance view of the ecosystem that allows for representation of age structure and provides the initial state for dynamic modeling. In Ecopath, the production of each modeled species or functional group is allocated among fishing, predation, other mortality, and migration while maintaining mass-balance between groups. In Ecosim, biomass dynamics are modeled on a monthly time step as a series of differential equations, where the change in biomass for each group is predicted as its consumption minus losses to predation, fishing, migration, and other unexplained natural mortality (Walters et al., 1997). The EwE software package also includes several built-in functions that were utilized in the development of menhaden ERPs. These included the time series fitting routine, equilibrium FMSY analysis (Walters et al., 2005), emergent stock-recruit curves, and batch run processing with the multi-sim plugin. For full details on the underlying theory, assumptions, equations, and model mechanics of EwE see the original sources (Walters et al., 1997; Christensen and Walters, 2004a; Christensen et al., 2005).

In developing menhaden ERPs, it was critical that the chosen model be able to account for top-down predation effects on menhaden as well as the bottom-up effects that menhaden have on their predators. In Ecosim, this is modeled based on foraging arena theory, which states that predator–prey interactions are restricted to spatial and temporal arenas, and movement of prey into the foraging arena determines how much is consumed by predators (Ahrens et al., 2012). The Ecosim vulnerability exchange rate parameters, Vij, describe the exchange rates of prey i from a not vulnerable state into a vulnerable biomass pool where they can be consumed by predator j. The vulnerability parameters control the amount of prey biomass available to predators and therefore regulate consumption, and in turn, the growth and biomass of the predators. Consumption for a predator is mortality for its prey, and the Vij also serve as limits on predation mortality at high predator biomass. Low Vij values restrict flow into the vulnerable state, which thereby limits consumption and prevents any substantial biomass gains in the predator. Large Vij values result in stronger top-down predation effects because the exchange rate of prey into the vulnerable biomass pool is high, allowing for prey biomass to be quickly exhausted by predators.

Other Ecosim parameters that factor into the foraging arena equations include foraging time adjustment (FTA) and prey switching. FTA allows groups to spend less time feeding when their densities are low or when food density increases, which lowers exposure to predation under those conditions (i.e., FTA regulates the tradeoff between growth vs. survival). Additionally, the time spent feeding can be directly responsive to changes in predator abundance (risk-sensitive feeding) and some proportion of unexplained mortality can be allowed to vary with feeding time (stronger density-dependence in natural mortality, M). Prey switching is said to occur when predator diets change disproportionately to the relative abundance of their prey. In Ecosim, this is accomplished by modifying the search rates, aijt, of predator j in relation to changes in biomass B of prey i over time t using a power function [image: image], where the predator switching power parameter (Pj) can range between zero (constant aij) and two (fast response). In our analysis, prey switching allowed us to explore whether impacts of menhaden harvest on predators might be moderated by the ability of predators to quickly switch to other prey resources.



The NWACS-MICE Model


Spatial Domain and Functional Groups

The spatial domain for the model spans the continental shelf of the Northwest Atlantic Ocean from North Carolina to Maine including the Mid-Atlantic Bight, Southern New England, Georges Bank, and Gulf of Maine subregions. The model implicitly represents major estuaries along the coastline, such as the Chesapeake Bay, Delaware Bay, and Long Island Sound, given that diet and biomass data from estuaries were included in the model parameterization. Although the domain does not encompass the entire distributional range of Atlantic menhaden (from Florida to Nova Scotia), it is similar to the range of a multispecies virtual population analysis model developed for Atlantic menhaden (Garrison et al., 2010) and of existing ecosystem models for the region (Link et al., 2008, 2010). This domain relies on the natural faunal and oceanographic break in North Carolina (Longhurst, 2010), while also including the bulk of historical Atlantic menhaden fishing effort concentrated in the Chesapeake Bay and the Mid-Atlantic (SEDAR, 2020a).

An original EwE model of the NWACS was previously developed to inform Atlantic menhaden management in an ecosystem context (Buchheister et al., 2017a,b). The original NWACS model leveraged previous Ecopath models developed for the region (Link et al., 2008). The model consisted of 48 different functional or species groups, with several important species modeled using age stanzas (for a total of 61 unique groups). The model was calibrated to data from 1982 to 2013 and was partially updated to include data through 2017 for key species as part of the Atlantic menhaden ERP development (SEDAR, 2020b). The original NWACS model served as a basis for developing the NWACS-MICE model, which was restricted to focus on key managed species that are connected through food web interactions. The NWACS-MICE model simulated the dynamics of 17 biomass pools including Atlantic menhaden (ages 0 and 1+), striped bass (ages 0–1, 2–5, and 6+), spiny dogfish, bluefish (ages 0 and 1+), weakfish (ages 0 and 1+), Atlantic herring (Clupea harengus, ages 0 and 1+), anchovies (Anchoa spp.), benthic invertebrates, zooplankton, phytoplankton, and detritus (Table 1). Striped bass, menhaden, spiny dogfish, bluefish, weakfish, and Atlantic herring are managed, or co-managed, by the ASMFC, and regularly undergo formal stock assessments. Of these, striped bass, spiny dogfish, bluefish, and weakfish were identified as major consumers of Atlantic menhaden based on an analysis of diet data (SEDAR, 2020b) from the NOAA Northeast Fisheries Science Center food habits database1. These six species are hereafter referred to collectively as the ERP complex. Multiple age stanzas were used to represent basic trophic ontogeny, fishery selectivity, and age-dependent predation for these key species. Anchovies were also included because they are an important prey item for species in the ERP complex. A separate fishing “fleet” for each species in the ERP complex was included in the NWACS-MICE model, where each fleet only captured a single target species and landings included both harvests and dead discards combined overall gear types and fishing sectors.


TABLE 1. Basic inputs and estimates from the NWACS-MICE Ecopath model, including biomass (B), biomass accumulation (BA), production to biomass ratio (PB) or total mortality rate (Z), consumption to biomass ratio (QB), trophic level (TL), ecotrophic efficiency (EE), fishing mortality (F), and predation mortality (M2).

[image: Table 1]


Ecopath Model Inputs

The basic data requirements for Ecopath are biomass (B), production to biomass ratio (PB) or total mortality rate (Z), consumption to biomass ratio (QB), diet composition (DC), and landings for each model group. Biomass accumulation (BA) was included to represent non-equilibrium changes in biomass occurring over the Ecopath base year. The NWACS-MICE Ecopath model base year was 1985, which is the earliest common year in all stock assessments for the ERP complex. Biomass inputs (million metric tons) were obtained either directly from stock assessments or by simply adding the biomass of lower trophic level groups from the original NWACS model. For all the assessed species, biomasses were taken directly from the single-species stock assessments (ASMFC, 2015a, 2019b; Northeast Fisheries Science Center [NEFSC], 2018, 2019a,b; SEDAR, 2020a) and summed by age for each Ecopath age stanza. For multi stanza groups, biomass was only input for a single age stanza (usually the oldest) and then calculated by Ecopath for other stanzas based on input growth and mortality parameters. Details for biomass calculations of each group are provided in the Supplementary Materials.

Biomass accumulation was input to represent non-stationarity within the Ecopath base year of 1985. BA is a flow term expressed as a rate of change, where a negative value signifies biomass depletion during the base year and a positive value indicates biomass gains. For multi-stanza groups, high BA will shift the calculated age distribution to younger ages, representing a strong year class during the Ecopath base year and leading to initial increases during the first few years of an Ecosim simulation. Biomass accumulation was entered for all species in the ERP complex except weakfish and spiny dogfish (Table 1), which according to time series data, showed little change during the base year. The input BA rates were calculated from the stock assessment model output as (B1986/B1985)-1, where B was the total biomass of all ages.

In Ecopath, PB ratios and total mortality rates are used interchangeably because the two values are equal under the assumption of equilibrium (Allen, 1971). Mortality rates for species in the ERP complex were entered as annual total instantaneous mortality, Z, where Z = F + M. Age-specific M was available from each species’ stock assessment. For multi stanza groups, M was taken as the average over all ages in each stanza weighted by the 1985 mean numbers-at-age (Table 1). In the case of Atlantic herring, the 2018 assessment used a constant M, thus, the age-varying M vector was taken from the previous stock assessment conducted in 2015, which used the Lorenzen (1996) estimator (Deroba, 2015; Northeast Fisheries Science Center [NEFSC], 2018). Spiny dogfish and anchovy M were taken directly from the original NWACS model, and the PB of the invertebrate and zooplankton groups were taken as the average PB of the inclusive groups from the original NWACS model, weighted by the biomass of those groups. The PB ratio for phytoplankton was taken directly from the original NWACS model. Fishing mortality, F, for each species in the ERP complex was calculated from stock assessment output as the sum of landings for each stanza divided by the average (or mid-year) biomass of each stanza. These F rates were added to numbers-weighted mean M to obtain the input Z values.

The Ecopath diet matrix describes the proportion of each prey i in the diet of predator j, DCij. The diet matrix of the original NWACS model was simplified for the NWACS-MICE model by first summing the DCij across NWACS-MICE prey groups and then averaging across NWACS-MICE predators, weighted by total consumption of each predator (Supplementary Table S1). Any diet proportions of a prey type included in the original NWACS model but not in the MICE model were assigned to diet import, which represents a constant proportion of consumption that is obtained from outside the modeled system. Consumption rates, QB, were input for all consumer groups and taken directly from the original NWACS model (Table 1). For multi-stanza species QB was entered for the leading stanza only and calculated for other ages based on input biomass, mortality, and growth parameters. For aggregate groups (inverts and zooplankton) the QB was taken as the weighted average QB for inclusive groups from the original NWACS model weighted by the biomass of each group. Lastly, landings were included for the ERP complex species (Table 1) and derived from stock assessment outputs by summing the 1985 landings-at-age across ages within each stanza.



Time Series Data

The NWACS-MICE Ecosim model was calibrated to time series of observed abundance and catch from 1985 to 2017 using species and age-specific time series of fishing mortality as forcing functions. A total of 18 indices of abundance and 10 catch time series were used as reference data during model calibration (Supplementary Table S2, SEDAR, 2020b). Relative abundance time series for species in the ERP complex were obtained from fisheries independent surveys and recreational creel surveys as reported in the stock assessments. Given that some species had many such time series, we included no more than two times series that were recommended by the ASMFC’s Species Technical Committees as the most representative for each species. Catch time series were assembled from the stock assessment report files as the landings and dead discards in weight, summed over all gears and age classes for each stanza. Fishing mortality was used as a forcing time series in Ecosim for all harvested species except spiny dogfish, which used catch forcing instead because F estimates were not available. Time series weights (one for each reference time series) were derived from the year-specific coefficient of variation (CV) for each survey, calculated as the inverse of the mean CV over all available years (i.e., 1/CV) such that more precise data streams had higher weights and thus more influence on model fit.



Ecosim Calibration Procedure

Fitting an Ecosim model begins by first identifying the most sensitive Vij parameters and then estimating those parameters to improve the model’s goodness-of-fit as assessed by the sum of squared differences (SS) between predicted and observed biomass and catch time series. As a conservative approach, it has been recommended to only estimate K-1 parameters (Heymans et al., 2016), where K is the number of reference time series (i.e., observed biomass and catch) used to tune the model. Ecosim models are prone to local minima in SS, thus requiring repeated vulnerability searches to find model convergence. Therefore, a “repeated search” methodology (described in the Supplementary Materials) was implemented where the sensitivity and estimation routine was repeated until no further improvement in the SS and AIC was obtained. The vulnerabilities were reset to their default value of 2 and the repeated search was initiated after any changes were made to Ecopath inputs, FTA parameters, prey switching parameters, or time series forcing functions.

When calibrating Ecosim models, the Vij parameters are often estimated at extremely high values (1 × 109) during the fitting process, which may result in theoretical predation rates far above the prey’s Z when predator biomass is high. While this may improve the SS measure-of-fit over the period of observed data, the high Vij could lead to dynamic instability, exaggerated top-down effects, and groups crashing entirely when projecting extreme fishing or environmental scenarios. To correct for this, we set an upper limit to the vulnerability parameters to prevent the theoretical maximum predation mortality from exceeding the natural mortality of the prey (see the Supplementary Materials for details). Additionally, Vij estimated at the lower bound of 1.0 can be problematic in projections scenarios and often causes species to be unresponsive to fishing; therefore a minimum vulnerability of 1.02 was used.



Ecosim Base Run Configuration

Over 30 different Ecosim configurations were tested during the development of the NWACS-MICE model representing alternative inputs and assumptions for diet composition, foraging time adjustments, prey switching, vulnerability caps, primary production anomalies, seasonal prey availability, and recruitment deviations (Supplementary Table S3). Each model was fit following the repeated search methodology and then adjusted by applying the minimum vulnerability of 1.02 and the upper Vij limit described above and in the Supplementary Materials. We began by fitting Ecosim with recommended default settings which included FTA of 0.5 for the youngest age stanzas only, which allows for compensatory improvements in juvenile survival at low stock sizes due to density-dependent foraging behavior (Christensen et al., 2005). Next, we fit a series of models that included prey switching to simulate a process where predators may switch to more abundant prey items when menhaden abundance is low, thereby mitigating some of the negative effects that menhaden harvest may have on predator populations. Separate NWACS-MICE models were fit with prey switching power Pj values of 0.5, 1, and 1.5 applied to all menhaden predators. Of the values considered, Pj = 1 (run 5) resulted in the lowest SS and was the setting used in the base run.

To determine whether the estimated Vij’s might cause dynamic instability, we also inspected emergent properties of the model as additional diagnostics to the Ecosim SS, following best practices of Heymans et al. (2016). This included an equilibrium FMSY analysis (Walters et al., 2005) applied to each species in the ERP complex by running long term simulations over a range of F values (see Supplementary Materials); an evaluation of emergent stock recruit curves in Ecosim (Walters and Martell, 2004); and checking whether Ecosim could generate expected biomass responses when species were fished at their proxy single-species reference points.

The final base run (run 8) was fitted with prey switching power Pj = 1 and vulnerability limits applied (lower Vij = 1.02 and upper Vij with M2cap = 1), plus a few manual adjustments to parameters that improved model stability and emergent property diagnostics. The manual changes were arrived at through an iterative process and included: setting the proportion of other mortality (M0) sensitive to foraging time equal to zero and predator effect on foraging time equal to 1 for juvenile striped bass (e.g., risk-sensitive foraging time and lower density-dependence in M); and raising the minimum Vij limit slightly from 1.02 to 1.3 for the menhaden-zooplankton interactions, to 1.05 for spiny dogfish, to 1.1 for bluefish, and 1.5 for weakfish. These small increases in the minimum Vij were found to improve diagnostics in the single species projection scenarios and equilibrium FMSY analysis.



Management Scenarios


Establishing the ERPs

Of the species in the ERP complex, striped bass was the most responsive to changes in Atlantic menhaden F. This was supported by analysis from the original NWACS model that evaluated a broader suite of species and found that striped bass and nearshore piscivorous birds were the most sensitive menhaden predators, with both showing similar responses to increases in menhaden F (Buchheister et al., 2017a). Therefore, striped bass was used as an indicator of the impacts of Atlantic menhaden fishing pressure on the ecosystem for the development of ERPs using the NWACS-MICE model. ERPs based on striped bass biomass were assumed to also sustain other species in the ecosystem that were less sensitive to levels of Atlantic menhaden removals.

Projections were run with the NWACS-MICE Ecosim model from 2018 to 2057 over a range of Atlantic menhaden and striped bass F. In these simulations, striped bass F ranged from 0 to 2 times F2017, and Atlantic menhaden F ranged from 0 to 10 times F2017. Bluefish, weakfish, spiny dogfish, and Atlantic herring were held constant at F2017 in these projections. For striped bass, which has two harvested age stanzas, the F multipliers were applied to each stanza (i.e., a F multiplier of 0.5 would be a 50% reduction in F2017 for all harvested age stanzas). For each simulation, a biomass ratio for striped bass was calculated as age 6+ biomass in the terminal year of the projection divided by the Ecosim target age 6+ biomass, where the Ecosim biomass target was based on the ratio of Btarget/B2017 = 1.58 from the stock assessment (Northeast Fisheries Science Center [NEFSC], 2019a). Biomass of striped bass age 6+ from the NWACS-MICE model was treated as a proxy for spawning stock biomass reference points, since females mature between ages 4 to 8. Similarly, the biomass of bluefish and weakfish were predicted as a function of striped bass and Atlantic menhaden F and expressed as ratios to their single species reference points. For bluefish we used the biomass target (2.06∗B2017) and for weakfish we used the biomass threshold (3.58∗B2017) from their respective stock assessments (ASMFC, 2019b; Northeast Fisheries Science Center [NEFSC], 2019b) as the single species reference points.

The menhaden ERPs were based on the relationship of striped bass biomass to menhaden fishing mortality, when striped bass are fished at their single-species Ftarget (0.635∗F2017) and all other species in the ERP complex were held constant at F2017. Thus, we defined the ERP Ftarget as the maximum Atlantic menhaden F that maintains striped bass at their biomass target, when striped bass are fished at Ftarget and all other species were fished at 2017 rates. The ERP Fthreshold was defined as the maximum Atlantic menhaden F that maintains striped bass at their biomass threshold when striped bass are fished at Ftarget.



Total Allowable Catch Projections

Atlantic menhaden are managed using a coastwide total allowable catch (TAC); as a consequence, the menhaden ERPs must provide decision support for setting the coastwide TAC. Therefore, we used stock assessment model projections to determine the probability that the single species Ftarget and Fthreshold would exceed the ERP F rates from Ecosim and to estimate the TAC with a 50% probability of exceeding the ERP Ftarget. The single species stock assessment for Atlantic menhaden was conducted using the Beaufort Assessment Model (BAM), which is an age-structured statistical catch-at-age model fitted to landings, age composition, length composition, and index data (SEDAR, 2020a). Uncertainty in the single species assessment was determined through a Monte Carlo bootstrapping (MCB) procedure, whereby uncertainty in input data and model parameters such as M were bootstrapped to provide distributions around estimated time series such as recruitment, biomass, and estimated parameters. The projections used the base run of the BAM model, as well as the individual runs from the MCB procedure, to forward project abundance at age from the terminal year of the assessment, using total instantaneous mortality, Z. Total instantaneous mortality was the sum of natural mortality, a specified input, and fishing mortality, a value that was solved for during the projection analyses. Recruitment was projected using non-linear time series analysis (Deyle et al., 2018). The projections allowed for determining the risk of exceeding a value of F under specified TAC values. Annual TACs were established using MCB runs from the BAM with a specified probability (usually 50%) of exceeding the single species and ERP Ftarget or Fthreshold values (SEDAR, 2020a). Projections were run from 2018 to 2022, using actual landings in 2018–2019 and applying the 216,000 mt TAC in 2020 to project the TAC for 2021–2022. Lastly, menhaden stock status is based on reproductive output. Therefore, fecundity-based biological reference points were also generated for the associated Ftarget and Fthreshold using equilibrium calculations for spawning potential ratio (SPR) where population fecundity was calculated based on a function of mean weight-at-age, spawning frequency, and maturity (Gartland et al., 2019; SEDAR, 2020a).



RESULTS


Ecopath Mortality Rates and the Ecotrophic Efficiency of Menhaden

Predation mortality (M2) for Atlantic menhaden calculated by the NWACS-MICE Ecopath for 1985 conditions was 0.121 for juveniles and 0.031 for adults age 1+ (Table 1 and Figure 1). Striped bass (all ages combined) and adult bluefish accounted for 36% and 55% of juvenile menhaden M2, respectively, with the other two predators (dogfish and weakfish) accounting for the remaining 9% of menhaden M2 (Figure 1). Predation mortality of adult menhaden was partitioned to 64% adult bluefish and 30% striped bass (Figure 1). The low M2 of Atlantic menhaden in the NWACS-MICE model resulted in ecotrophic efficiencies of 0.08 and 0.15 for juvenile and age 1+ menhaden (Table 1), respectively, meaning that 92% and 85% of the total mortality is unexplained in the model. Bluefish, spiny dogfish, and striped bass accounted for most of the predation mortality overall in the Ecopath model (Figure 1). In fact, bluefish accounted for the largest percentage of M2 on menhaden, juvenile bluefish, and weakfish. Striped bass contributed to at least 20% of the M2 on juvenile striped bass, menhaden, and juvenile weakfish. Predation mortality for the other forage group in the ERP complex, Atlantic herring, was higher than menhaden, with 0.895 for juveniles and 0.377 for adults (Table 1), with most of the mortality coming from spiny dogfish and bluefish (Figure 1). Even though Atlantic herring contribute to a smaller portion of the predator diets compared to menhaden, their M2 rates are higher because biomass is an order of magnitude lower than menhaden (Table 1).
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FIGURE 1. Mortality components of species in the ERP complex from the NWACS-MICE Ecopath model describing (Left) how mortality is partitioned among fishing (F), predation (M2), and other ‘unexplained’ mortalities (M0). The predation mortality component is further partitioned into predator species, combined over age stanzas (Right).


Predation mortality rates were low (<0.002) for the adult age stanzas of predator species in the ERP complex (striped bass, dogfish, and bluefish; Table 1), which is expected for these larger species that have fewer predators, many of which were excluded from the NWACS-MICE model. Predation mortality on juvenile stanzas was generally higher than adults, with juvenile bluefish and weakfish having a high M2, 1.6, and 1.3, respectively (Figure 2). Predation on striped bass juveniles was poorly explained by the model and represented only about 10% of the total mortality, with virtually no predation on the sub-adults. Weakfish, which function in the model as both predator and prey, had a slightly higher M2 in the adult stanza (M2 = 0.08) than the other ERP predator species (Table 1).


[image: image]

FIGURE 2. NWACS-MICE Ecosim model fits to relative abundance indices for species in the ERP complex. The solid black line is the base run model (run 8) and the gray lines are the biomass trajectories from all 32 fitted Ecosim models. Observed data are from the Marine Recreational Information Program (MRIP), the Connecticut Long Island Sound Trawl Survey (CT LISTS), the North Carolina Pamlico Sound Inshore Gillnet survey (NC PSIGN), a combined menhaden juvenile abundance index (JAI), combined menhaden adult indices for the northern, mid-Atlantic, and southern regions (NAD, MAD, SAD), the Northeast Fisheries Science Center trawl survey (NEFSC, 2 time periods), and the Delaware Sound Trawl Survey (DE TRAWL).




Model Fits to Time Series

The NWACS-MICE Ecosim model produced reasonably good fits to the observed indices of abundance and catch data (Figures 2, 3). The weighted sum of squares (SS) from all 32 fitted models ranged between 1031 and 1327, with the base run SS = 1186 (Supplementary Table S3). Six of the seven lowest SS were obtained from exploratory scenarios that included annual primary production anomalies or forced annual deviations in juvenile survival that allowed the model to better track interannual variability. Of the models developed for management (runs 1–14), the lowest SS was for run 5 (SS = 1088) with prey switching Pj = 1 and no vulnerability limits applied. However, the equilibrium FMSY output for run 5 (Supplementary Figure S1) demonstrated model instability at high fishing mortality rates on Atlantic menhaden and striped bass, as well as a general lack of sensitivity to fishing for weakfish and bluefish. As previously mentioned, this instability was associated with vulnerability parameters estimated at the lower bound of 1.0. Subsequently, manual adjustments were made to the vulnerabilities and foraging time adjustment parameters in runs 6 and 7 (Supplementary Table S3), eventually leading to the base run 8 that had a higher SS but improved stability at high menhaden F in the equilibrium FMSY analysis.
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FIGURE 3. NWACS-MICE Ecosim model fits to landings for species in the ERP complex. The solid black line is the base run model (run 8) and the gray lines are the biomass trajectories from all 32 fitted Ecosim models. The observed catch time series were aggregated from the stock assessment models.


In general, the NWACS-MICE Ecosim model was better at capturing the overall trends in observed abundance data rather than the interannual variability. The predicted biomass of striped bass followed the general trend in the data, capturing the recovery during the 1990s and gradual decline that has followed since (Figure 2). The high interannual variability in the observed data for both menhaden groups was not captured well by the model, nor was the steep decline in the combined juvenile menhaden index observed in 1985–1990. The spiny dogfish observed index was highly variable without trend, but the model predictions were flatter. Bluefish juveniles and adults fit the data well whereas weakfish did not fit the observed spike in abundance that occurred in the late 1990s. Lastly, Atlantic herring fit the overall trend but did not predict the high values observed during 1992, 1995, and 2002 or the lows observed during 1998–2000. The Ecosim model was also able to fit the observed catch trends well (Figure 3), although the predicted catch of striped bass was slightly higher than observed catches after 2000.



Predator–Prey Surface Plots

The analysis of menhaden and striped bass F combinations showed that under current striped bass and menhaden F rates, striped bass will remain below their biomass target and threshold and reach equilibrium at a B/Btarget ratio of 0.66 (Figure 4). At current striped bass F, the model predicted the striped bass biomass ratio would range between 0.74 (near the striped bass Bthreshold) when menhaden F = 0 down to 0.42 when menhaden F is 10x the current value. When striped bass are fished at their Ftarget of 0.2, the model predicted their biomass ratio to range from 1.15 to 0.54 over the range of menhaden F rates considered. Under this scenario, striped bass reached their biomass target at current menhaden F rates, and remained above their biomass threshold for menhaden F rates ranging from zero to approximately four times F2017 (Figure 4). When both striped bass and Atlantic menhaden were fished at their single species Ftarget rates, the equilibrium striped bass biomass ratio was 0.90, which is above the threshold and below the target.
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FIGURE 4. Equilibrium biomass ratios of ERP species as a function of Atlantic menhaden and striped bass F combinations generated by the NWACS-MICE Ecosim model base run. In the striped bass panel, the dashed lines indicate the current F rates, the dotted lines are the target F rates, and the solid black lines indicate the location of the target and threshold biomass ratio contours. All ratios are expressed relative to their single species targets, except for menhaden, which is expressed relative to current (2017) biomass because biomass targets are not defined.


The menhaden and striped bass F combinations explored here resulted in changes to the biomass of other species in the ERP complex, such as bluefish and weakfish that also eat menhaden, are preyed upon by striped bass, or compete with striped bass for food. Bluefish, which was experiencing overfishing in 2017, was predicted to remain below their biomass target across all menhaden and striped bass F combinations (Figure 4). Under current striped bass and menhaden harvest rates, bluefish were predicted to reach equilibrium at a biomass ratio of 0.38. The maximum predicted bluefish biomass ratio was 0.59, which occurred when menhaden F = 0 and striped bass F was 2x Fcurrent. Higher F rates on striped bass led to higher biomass of bluefish due to reduced predation and competition (striped bass prey on juvenile bluefish and have diet overlap with bluefish). When striped bass F is reduced, the biomass of bluefish was predicted to decline, with the lowest biomass ratio of 0.19 predicted in scenarios with high menhaden F and low striped bass F (Figure 4).

Weakfish biomass was also predicted to remain below their threshold across all striped bass and menhaden F combinations, and would reach equilibrium at a biomass ratio of 0.30 under current F rates (Figure 4). Similar to bluefish, the maximum biomass ratio of 0.33 for weakfish occurred when menhaden F = 0 and striped bass F is 2x the current value. However, when striped bass F was low, weakfish biomass increased slightly under higher menhaden F rates, going from 0.21 at menhaden F = 0 to 0.25 at Fx10. This is because the indirect positive effects (i.e., lower predation and competition) resulting from the impact of menhaden harvest on striped bass and bluefish (Figure 4) outweighed the direct negative effects of menhaden harvest on weakfish. In contrast, when striped bass F is high, weakfish biomass ratios declined with menhaden F, going from 0.33 when menhaden F = 0 to 0.27 at maximum menhaden F (Figure 4).

Spiny dogfish and Atlantic herring biomass ratios were highest when menhaden F and striped bass F were both high (Figure 4). Spiny dogfish equilibrium biomass ratio was predicted to be 1.24 under current F rates and remained above their biomass target across nearly all F combinations. Atlantic herring equilibrium biomass ratio under current F was equal to 0.6, and remained below the target over all menhaden and striped bass F rates (Figure 4).



Atlantic Menhaden Ecological Reference Points

Atlantic menhaden ERPs were estimated based on the relationship between menhaden F and striped bass biomass ratios when striped bass was fished at their biomass target and all other species are fished at their 2017 status quo levels. The ERPs are located within the striped bass surface plot where the horizontal dotted line (at striped bass Ftarget = 0.2) intersects the target and threshold B ratio contours (Figure 4), and in Figure 5 where the tradeoff curve crosses the biomass target and threshold. The ERP Ftarget is the menhaden F that maintains striped bass at their biomass target when striped bass are fished at their Ftarget, and it marks the point where the tradeoff curve crosses the target biomass ratio of 1 (Figure 5). The ERP Ftarget was estimated to be 0.19, which was about 20% higher than the current 2017 Atlantic menhaden F of 0.16 and 40% lower than the menhaden single species Ftarget of 0.31 from the stock assessment (Table 2). The ERP Fthreshold is the menhaden F that maintains striped bass at their biomass threshold (when striped bass are fished at Ftarget), and is the point where the tradeoff curve crosses the threshold biomass ratio of 0.78 (Figure 5). The ERP Fthreshold was estimated to be 0.57, which is over 260% higher than the current menhaden F, and is about 30% lower than the single species menhaden Fthreshold of 0.86 from the stock assessment (Table 2). For the projections at the current TAC value, there was 0% probability that the TAC will exceed the ERP Fthreshold and a moderate (60–66%) chance it will exceed the ERP Ftarget in the short-term. TAC values of 176,800 mt and 187,400 mt for 2021 and 2022, respectively, were associated with a 50% probability of attaining the ERP Ftarget (Table 2). Fecundity-based reference points, in numbers of eggs, associated with the ERP Ftarget and Fthreshold were 2.00 × 1015 and 1.49 × 1015, which were higher than their single species counterparts by just 3% and 2%, respectively, and below the current fecundity of 2.60 × 1015 eggs (Table 2).


[image: image]

FIGURE 5. Equilibrium striped bass biomass ratio when fished at Ftarget = 0.2, over a range of menhaden F rates, generated by the NWACS-MICE Ecosim model. The solid black line is the tradeoff curve used to establish the ecological reference points (ERPs). The ERP Ftarget and ERP Fthreshold are the menhaden F rates where the curve crosses the biomass target and threshold, respectively. Target and threshold F rates from the single-species (SS) stock assessment are included for comparison along with the current menhaden F rate (green line).



TABLE 2. Single species and ecological-based reference points (ERP) for Atlantic menhaden.
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DISCUSSION


Ecological Reference Points

Atlantic menhaden ERPs were established using an ecosystem model of intermediate complexity and were based on the tradeoff between menhaden harvest and striped bass biomass. This type of tradeoff relationship is central to any forage fish management system. Recent analyses have focused on understanding these forage fish tradeoffs in both real-world (Koehn et al., 2017) and simulated systems (Essington et al., 2015). However, our approach is the first to use these tradeoff relationships in actual management of a forage fish. The tradeoff relationship between Atlantic menhaden and striped bass was concaved, meaning that small increases in menhaden F resulted in disproportionate drops in striped bass biomass (Walters and Martell, 2004). In addition, the current status of striped bass (B2017/Btarget = 0.6) and menhaden F (F2017 = 0.16) is suboptimal, i.e., it is below the tradeoff curve, and there is a set of solutions along the tradeoff frontier where both menhaden harvest and striped bass biomass are higher. By extension, striped bass catch would also be higher at their single-species Ftarget under an optimal configuration. According to the NWACS-MICE model, moving toward an optimal condition first requires a reduction in striped bass F, because biomass was below the threshold across all menhaden F rates. Striped bass was determined to be overfished and experiencing overfishing in the latest stock assessment (Northeast Fisheries Science Center [NEFSC], 2019a) and regulatory changes have already been implemented to reduce F and rebuild the stock (ASMFC, 2019a). The ERPs were developed assuming efforts to reduce striped bass F are successful and would therefore provide enough Atlantic menhaden to support a rebuilt striped bass population. That is, these ERPs do not compromise the performance of striped bass management actions. This satisfied two fundamental ERP objectives previously defined by managers to (1) sustain menhaden for directed fisheries and (2) sustain menhaden for predator species (ASMFC, 2015b).

The ERP target and threshold values were found to be 40% and 30% lower than their single species counterparts, respectively. Through a meta-analysis using ecosystem models, Pikitch et al. (2012) recommended that to sustain forage fish populations and their predators, fishing mortality on forage fish should not exceed 50% of FMSY or 50% of natural mortality. In a study that examined collapsed forage fisheries, Patterson (1992) found that sustainability was likely to be achieved when fishing mortality did not exceed 67% of natural mortality. MSY based reference points were not estimable in the menhaden stock assessment model, but if we assume the single species F reference points are below FMSY, then the ERP F rates could easily be 50% of FMSY or lower. When we compare the ERPs to output from the NWACS-MICE equilibrium analysis (FMSY = 0.81, Supplementary Table S4) or a FMSY proxy from the BAM that achieves a SPR of 40% (F40%SPR = 1.57), then both ERPs would be well below the 0.5FMSY rule-of-thumb (Pikitch et al., 2012). Compared to a natural mortality rate of 1.17 (Liljestrand et al., 2019), the ERP target and threshold are, respectively, 16% and 49% of M, also below the rules-of-thumb (Patterson, 1992; Pikitch et al., 2012). Therefore, the menhaden ERPs, which were explicitly related to the performance of a single predator, striped bass, were within the range of forage fish harvest rates that have been recommended to enhance forage fish sustainability and provide benefits to the broader ecosystem.

Our study uniquely integrated an ecosystem model with an age-structured single species model to provide tactical management advice for a forage species, combining the strengths of both approaches. The NWACS-MICE tool provided strategic advice about the long-term effects of Atlantic menhaden harvest on a limited set of predators and allowed managers to evaluate trade-offs between forage fish harvest and predator biomass. However, the NWACS-MICE model does not capture the short-term interannual variability in Atlantic menhaden population dynamics, especially with regards to recruitment. The single species model includes variable recruitment in the projection scenarios and is well suited for providing short-term (3–5 years) tactical advice on TAC levels, but does not provide information on ecosystem responses. This integration of models allows for long-term ecosystem-level planning, while also providing decision support in the form of annual TACs that fits the existing single-species management framework. While the integration of the models may appear straight forward, translation between two models with different levels of complexity, such as different age structures and recruitment assumptions, presented a challenge. Ultimately, a ratio approach was used to convert fishing mortality rates and biomass ratios between the two modeling types. Further propagation of uncertainty from the ecosystem model to the TAC projections will be necessary to fully quantify risk. One possible approach is to apply natural mortality rates from the ecosystem model in the TAC projections to account for any future changes in predation mortality.



Uncertainties, Assumptions, and Limitations

There remained a substantial amount of unexplained mortality for Atlantic menhaden in the NWACS-MICE model, which was somewhat expected given the limited field of predator species that were included. Similarly, the original NWACS model (Buchheister et al., 2017a), also resulted in high unexplained mortality rates, which was not expected given the inclusion of many more predators. There are several potential explanations for this pattern. First, although many thousand stomach samples were included when creating the Ecopath diet matrices (Buchheister et al., 2017b; SEDAR, 2020b), the dietary contribution of Atlantic menhaden to their predators could be underestimated if, for example, there are intensive spatial-temporal predation events that were not sampled in the diet surveys. Second, the estimated biomass of Atlantic menhaden in the 2019 assessment (SEDAR, 2020a) was more than double the estimate from the previous assessment (SEDAR, 2015), which was due to new, empirical estimates of higher menhaden natural mortality (Liljestrand et al., 2019). If the NWACS-MICE model has used lower biomass estimates and/or mortality rates from previous assessments, menhaden would have a higher EE and lower proportion of unexplained mortality. The uncertainty surrounding menhaden EE and the contribution to predator diets was the basis for a sensitivity run requested by a technical review panel (runs 15–22 in Supplementary Table S3). This configuration resulted in slightly lower ERPs and a steeper tradeoff curve. It is also possible that the models are correct, and menhaden do have high rates of non-predation natural mortality since they are prone to large fish kills related to hypoxia (Paerl et al., 1998; Smith, 1999) and epizootic infections (Dykstra et al., 1989; Reimschuessel et al., 2003). The truth is likely some combination of these factors, and future work is needed to empirically validate the current estimates of menhaden natural mortality and understand how it is partitioned into sources of fishing, predation, and other causes.

The NWACS-MICE model was found to be highly sensitive to the Ecosim vulnerability parameters, which were often estimated at upper and lower bounds. Vulnerability parameters estimated at the bounds may arise due to lack of contrast in the data, omission of key environmental forcing functions, or overly precise optimization criteria. For instance, Ecosim may attempt to explain patterns in the data using predator–prey vulnerabilities that would have been naturally explained by some environmental drivers. Additionally, the vulnerability parameters, along with foraging time adjustment settings, impact the degree of compensation in recruitment, growth, and survival (Christensen and Walters, 2004a), which in turn determine how sensitive a species is to harvest. This is evident in the wide range of FMSY arising from alternative model configurations (Supplementary Table S4 and Supplementary Figure S1). Models with higher FMSY for menhaden would likely result in a flatter tradeoff relationship and vice versa. However, not all parameter settings produced satisfactory fits to the data. Applying minimum and maximum vulnerability caps resulted in slightly worse fits to the data, but drastically improved projection scenarios at high menhaden F leading to more reasonable FMSY estimates, and constrained theoretical maximum predation mortality rates to values that are compatible with natural mortality rates of the prey species. The parameter space in Ecosim models is large and must be evaluated fully to capture the uncertainty in the model (Gaichas et al., 2012). Potential improvements to parameter estimation in Ecosim could apply the vulnerability caps described here as penalized bounds (Bolker et al., 2013; Kinzey et al., 2018) or a constrained minimization approach (Vallino, 2000; Senina et al., 2008) that would prevent the vulnerabilities from being estimated at the upper and lower bounds.

Due to the reduced age structure and the combining of fleets in the NWACS-MICE model, asymptotic selectivity was assumed for all species in the ERP complex. In contrast, recent stock assessments of menhaden, bluefish, weakfish, and Atlantic herring assume dome-shaped selectivity for some or all fleets and may allow selectivity to change over time. Flat-topped selectivity generally results in a stronger response to increasing F than dome-shaped selectivity, because older fish are vulnerable to harvest. For the ERPs, we expect that a dome-shaped selectivity for menhaden would lead to higher ERP F rates, i.e., a flatter tradeoff curve. However, to implement dome-shaped selectivity for menhaden, NWACS-MICE would require finer age structure and difficult assumptions about age-specific predation from the diet studies. Nevertheless, improving consistency between NWACS-MICE and the stock assessments has advantages, and the implications of model structure as it relates to selectivity should be explored in future iterations.

The current configuration of the NWACS-MICE model does not include any environmental drivers that might help explain the inter-annual variability in the system. Rather, the model attempts to replicate observed trends in abundance and catch using fishing and trophic processes only. This is a glaring limitation for an ecosystem model centered around a species that is recruitment driven and related to several environmental drivers such as physical transport processes (Checkley et al., 1988; Quinlan et al., 1999) and larger-scale climatic drivers like the Atlantic Multidecal Oscillation (Buchheister et al., 2016). It’s also possible that delivery and transport of nutrients from coastal rivers might impact Atlantic menhaden dynamics as it does for Gulf menhaden (Brevoortia patronus) (Govoni, 1997; Leaf, 2017) and Atlantic thread herring (Opisthonema oglinum) (Chagaris et al., 2015), two other members of the family Clupeidae with similar life histories. Stock assessment models also do not explicitly account for environmental drivers either, but they do estimate annual recruitment deviations. Analogous to this, Ecosim has the ability to estimate annual primary production anomalies (runs 23–25), however, those anomalies were not correlated with other information on primary production and were not considered for inclusion. Work is underway to assemble a time series of bottom-up forcing to account for changes in primary productivity and other environmental factors that drive Atlantic menhaden populations.



Research and Modeling Recommendations

This NWACS-MICE model and the adopted ERPs serve as a step forward in EBFM, but additional research and model development will be beneficial. Expanding the collection of diet and abundance data for the key predators, particularly across seasons and regions, would improve our understanding of the spatiotemporal dynamics of trophic interactions and predator–prey overlap. Accounting for seasonal and spatial migration patterns is also important in this system. For example, we found the ERP tradeoff curve to be sensitive to assumptions about the seasonal availability of Atlantic herring as prey to striped bass. More work is needed to synthesize data to parameterize and validate a spatial-temporal dynamic Ecospace model (Steenbeek et al., 2013). We also recommend improved monitoring of population trends and diet data in non-finfish predators (e.g., birds, marine mammals) and data-poor prey species (e.g., bay anchovies, sand eels, benthic invertebrates, zooplankton, and phytoplankton) to better characterize the importance of Atlantic menhaden and other forage species to the ecosystem dynamics. Future iterations of the NWACS model should explore annual recruitment deviations (from external models), primary production time series, and environmental drivers to better represent interannual variability in the system.

An obvious next step in refining the menhaden ERPs is to incorporate additional predators, such as birds, mammals, and other piscivorous fishes that were found to contribute to menhaden mortality in the original NWACS model and/or were sensitive to menhaden harvest. The decision not to include additional predators was primarily a practical one, that aimed to balance model complexity with the added uncertainty that comes with including more species for which we have few data. Due to time constraints, a fair comparison of the ERPs generated by the original NWACS and the NWACS-MICE models was not possible during the development of these ERPs. If the full model suggests that the ERPs were severely biased due to model simplification, then that would be grounds to expand the MICE model to include additional species. As Collie et al. (2016) concluded, the “sweet spot” in model complexity strikes a balance between bias and uncertainty, and also depends on the key management questions and the effort required to update and maintain the models for routine operational use. Understanding how model complexity influences the management advice is considered a high priority moving forward.

With regards to management advice using the NWACS-MICE model, additional work is needed to characterize uncertainty in model projections and the resulting tradeoff frontier using Monte-Carlo simulations and alternate mass-balance parameterizations (Steenbeek et al., 2018). Management strategy evaluation (MSE) presents a more robust technique of incorporating uncertainty and evaluating strategic harvest strategies (Punt et al., 2016; Mackinson et al., 2018; Surma et al., 2018). Any ecosystem-level MSE should be carefully planned and incorporate input from stakeholders and managers of all species considered. Additionally, the optimal solution along the tradeoff frontier can be solved for in Ecosim while considering the socio-economic value of the competing fisheries (Christensen and Walters, 2004b; Heymans et al., 2009; Essington et al., 2015). Given that models of different types or complexities can address slightly different aspects of the tradeoffs in menhaden harvest management, we have also advocated for the continued development of other multispecies models, especially a multispecies statistical catch at age model developed as part of the ERP process (Curti et al., 2013; McNamee, 2018).



Moving Toward EBFM

The adoption of ERPs developed with the NWACS-MICE tool represents a significant step in incorporating quantitative ecosystem considerations into fisheries management on the US East Coast. ASMFC has sole management authority for Atlantic menhaden, striped bass, and weakfish, and so an ecosystem management approach that considers reference points, management objectives, and trade-offs for all three species together, using a tool like this, is a feasible next step to move EBFM forward in this system. Conceptually, our approach to establishing ERPs is transferable to other predator–prey systems and other multi-species modeling approaches. In fact, ecosystem models already exist in many systems around the world where large forage fisheries are prosecuted. However, the capabilities of this tool to provide broader EBFM advice are somewhat limited by current single-species management frameworks, in which species reference points are set independently, without consideration of ecosystem dynamics or trade-offs with other species. Progress toward true EBFM will require not just strong scientific tools, but also a shift in the management framework to better coordinate stock assessments and ecosystem modeling efforts with management actions. Additionally, stakeholders and managers of all species must come together to define objectives for the ecosystem as a whole and set reference points. A sea change in fisheries management may not be possible overnight, but incremental some steps such as this can be taken to move ecosystem-based management forward.
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Over recent years there have been rapid changes occurring across marine ecosystems worldwide, with high latitude systems seeing ecosystem shifts emerging at unprecedented rates. The Gulf of Alaska and Bering Sea marine ecosystems have experienced substantial fluctuation in fish stocks, with some species experiencing considerable decreases while others thrive. Following the marine heatwave of 2014, sablefish (Anoplopoma fimbria) had a historically unparalleled juvenile recruitment class that is now dominating the stock composition. While this recruitment class bodes well for future fisheries, it is currently undermining the value of the fishery with limited incentives to retain the smaller and less valuable fish, compounding adverse effects on earnings in the fishery due to whale depredation that has been occurring for years. This study examines the well-being implications of fishermen’s adaptive strategies to these ecosystem conditions within the Alaska sablefish fishery using a socio-ecological system framework, operationalized as a qualitative network model (QNMs) and quantitative indicators. We examine the extent to which adaptation strategies, derived from a literature review and stakeholder interviews, are being utilized in the fishery with quantitative indicators. These strategies are then examined with QNMs that explore their impacts across the spectrum of well-being. By coupling quantitative indicators and QNMs, we were able to demonstrate how adaptive strategies can be examined to capture the multi-faceted well-being effects of fisheries participants’ adaptations to changing conditions. This study directly addresses several of the key guiding principles of the U.S. EBFM Road Map, including advancing our understanding of ecosystem processes, exploring trade-offs within an ecosystem, and maintaining resilient ecosystems, inclusive of community well-being. Thus this paper demonstrates how coupled socio-ecological models can elevate the inclusion of human adaptive behaviors, providing a framework for the development of policymaking that can mitigate adverse effects on both the participants and the resource by facilitating the mixture of adaptive strategies that maximizes desired well-being outcomes.

Keywords: adaptive strategies, QNM, ecosystem change, quantitative indicators, EBFM, well-being, sablefish


INTRODUCTION

High latitude marine ecosystems are experiencing unparalleled climatic change (Serreze and Francis, 2006) and in 2013, a record breaking marine heatwave began in the Northeast Pacific and continued through 2015 with substantial system-wide changes throughout the Gulf of Alaska (GOA) (Bond et al., 2015). This extended anomalous warming episode was immediately followed by a particularly intense El Nino event and the subsequent atmospheric mechanisms drew the warm water into the Bering Sea and prolonged the heatwave (Walsh et al., 2018). While the impacts are still being fully assessed, many commercial fisheries along the US West Coast from California to the Bering Sea were severely adversely affected (Barbeaux et al., 2019; Laurel and Rogers, 2020). In contrast, sablefish (Anoplopoma fimbria) had a historically unprecedented recruitment class during 2014 and 2016 (Hanselman et al., 2019). Under climate change, it is anticipated that the Gulf of Alaska and Bering Sea will continue to undergo extreme heating events like the 2013 heatwave (Walsh et al., 2018) and subsequent above average sablefish recruitment events will likely persist (Hanselman et al., 2019).

The 2014 sablefish recruitment class that followed the marine heatwave is currently dominating the stock composition, creating uncertainty for both stock assessors and harvesters alike (Hanselman et al., 2019). Prior to 2014, the last large recruitment event occurred in 2000 and pales in comparison with what occured in 2014 and 2016 (Figure 1) (Hanselman et al., 2019). From age-0 to two, juvenile sablefish reside in nearshore habitat before moving to the deeper waters on the upper continental slope (Rutecki and Varosi, 1997) where they are in reach to both the longline and trawl fleets. During those first 2 years, juvenile sablefish can grow upwards of 1.2 mm a day (Sigler et al., 2001), before their growth rate asymptotes with adults reaching an average maximum length of 80 cm (Echave et al., 2012). Though these large recruitment classes are expected to enter the fishery, there is still a high level of uncertainty in the timing and their condition. Managers consider the high recruitment estimates and future stock trajectories to be associated with considerable uncertainty, as early recruitment estimates of unusually strong year classes have frequently been overestimated in past assessments (Hanselman et al., 2019). For example, the estimated size of the 2014 years class declined by over 40% between the initial estimates and the 2019 assessment (Hanselman et al., 2019). Further compounding the uncertainty is the decline of the spawning biomass during the last 30 years (Figure 1) and overall ecosystem variability. The magnitude and frequency of events like the 2013 marine heatwave are still being assessed for sablefish (Hanselman et al., 2019), creating additional challenges in predicting if and when recruitment events of this nature will occur in the future.
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FIGURE 1. Age-2 sablefish recruits and spawning biomass of sablefish in Alaska from 1977 to 2019. The blue line and primary y-axis indicate the average number of age 2-recruits; the orange line and secondary y-axis indicate the average spawning biomass.


The influx of small fish and the overall decline of older fish is having substantial adverse effects on the fishery, as it is difficult for fishermen to avoid the vast numbers of small fish (Rosellon-Druker et al., 2020). Large sablefish receive a substantial price premium and the high numbers of smaller fish are currently causing average dockside prices to plummet across all size categories (Fissel et al., 2019). Fishermen have also been encountering large numbers of fish that are too small to be marketable (NPFMC, 2018). In addition, the price differential between small and large fish has grown over the last 2 years as the increased supply of smaller fish is putting downward pressure on the price of small fish, further increasing the price margin between the size classes (Fissel et al., 2019; NPFMC, 2019a). The net effect is that although total allowable catch (TAC) for this fishery has increased, revenues have concurrently dropped with estimates of average vessel revenues for 2019 at 68% of the previous 5-year average, based on harvest data used in this analysis as described below. In addition, revenue declines are coupled with increased operating costs from gear damage and loss of fish caused by persistent whale depredation on longline gear from both sperm whales (Physeter macrocephalus) and killer whales (Orcinus orca), as well as rising expenses in terms of bait, fuel, and crew due to the additional time it takes to harvest quotas under conditions of both whale depredation and small sablefish abundance (Peterson et al., 2014).

Understanding the ways in which fishermen are being affected by and responding to these changes is critical to ensuring the resilience of the fishing fleet and fishing dependent communities as well as to the biological sustainability of the fishery in the long run (Lord, 2011; van Putten et al., 2013; Ono et al., 2017). The increased ecological uncertainty has required fishermen to adapt in a variety of ways, all of which have diverse implications in terms of well-being outcomes. Additionally, the continual capture of the less than desirable size class and the potential for illegal discarding has the capability to reduce the spawning potential of the large recruitment classes. This study examines these types of impacts from adaptive behaviors in the sablefish IFQ fishery in response to both small sablefish abundance and whale depredation using quantitative indicators and qualitative network models (QNMs).

Qualitative network models are operationalized conceptual models, which employ a qualitative understanding of variables and the direction of their linkages to build a system of interest (Dambacher et al., 2009). Their qualitative assessment is useful in discerning how a community responds to a sustained (press) or short (pulse) perturbation (Raymond et al., 2011; Melbourne-Thomas et al., 2012) and is favored in data limited systems where a quantitative assessment of variable interactions is not feasible (Dambacher et al., 2009; Reum et al., 2015). Within QNMs, link directions of positive and negative are assigned to community variable interactions and assembled into a sign directed graph, known as a digraph. The digraph corresponds to a community matrix and can be analyzed using graph theory and matrix algebra (Reum et al., 2015). Random variable interaction strengths are assigned to the community matrix to simulate a system, which is then perturbed to probabilistically predict how a community responds to a perturbation (Melbourne-Thomas et al., 2012).

Qualitative network models are being increasingly employed to examine ecosystems more holistically and their qualitative responses to system perturbations (Reum et al., 2015; Harvey et al., 2016). Despite this increased use, the incorporation of human dimensions into these models is often overly simplistic, with limited if any consideration of human adaptability and variability in terms of well-being (Kelble et al., 2013; Okamoto et al., 2020). Well-being, as described in more detail below, is conceptualized as a state of being when needs are met and individuals and communities can pursue their goals and enjoy a good quality of life (Breslow et al., 2016). In this study, we present a novel application of QNMs, moving beyond static assumptions to incorporate adaptive behaviors and better reflect the reality of how coupled socio-ecological systems function. We first examine the extent to which various adaptive strategies are being used with fishery derived quantitative indicators; then, we apply QNMs to demonstrate the diversity of well-being outcomes associated with these adaptations. This coupling of quantitative indicators with QNMs provides insights into which adaptive strategies are being employed and in turn how adaptive choices may affect well-being, informing managers about the potential trade-offs associated with policy decisions that may facilitate one type of adaptation over another.

The remainder of this paper is organized as follows. The following section provides a discussion of how the fixed-gear fishery is conducted and managed in Alaska. This is followed by a description of the data and methodology. The results of the study are presented in terms of both insights into the choice of adaptations and their well-being outcomes, followed by the conclusions including potential policy implications.



MANAGEMENT OF THE ALASKA SABLEFISH FISHERY

The vast majority (over 90%) of Alaska sablefish is harvested in the federal fixed-gear fisheries (longline pot and hook-and-line). The fixed-gear sablefish fishery is the third most valuable groundfish fishery in Alaska, with average landings of 9,640 total metric tons over the last 5 years averaging $87.9 million in ex-vessel values (nominal US dollars) (Fissel et al., 2020). The fishery is prosecuted by a large number of relatively small vessels, averaging 279 total vessels with the majority of vessels around 50–60 feet in length (Fissel et al., 2020).

The management of the Alaska sablefish fishery provides important context for how fishermen make decisions about adapting to changing conditions. The North Pacific Fishery Management Council (NPFMC) develops and amends fishery management plans for the sablefish fishery that are implemented by the National Marine Fisheries Service Alaska Regional Office (NMFS AKRO). The federal fixed-gear sablefish fishery is managed under the Pacific halibut and sablefish individual fishing quota (IFQ) Program (hereinafter IFQ Program) wherein participants have quota shares that are translated into annual IFQs on the basis of the TAC. There are both catcher vessels and catcher processors that participate in the sablefish IFQ fishery; the former of which land their IFQs at shoreside processors while the latter process their catch onboard. This study focuses on the catcher vessel fleet, which accounts for about 80% of sablefish IFQ landings. Catcher processors are subject to different regulations that could affect the adaptive strategies that they employ and differentiate them from catcher vessels (NPFMC/NMFS, 2016).

When the IFQ Program was implemented in 1995 it included a number of diverse provisions intended to address a variety of social objectives for the fisheries that in turn have implications for how fishermen can respond to changing ecological conditions. Quota shares (QS) are both area and vessel class specific, with trading of QS between areas and vessel classes prohibited. In order to ensure that the benefits of the sablefish IFQ fishery flowed to active participants, IFQ leasing (the harvest of IFQ by someone other than the QS holder for which the QS holder is compensated) was prohibited for catcher vessel quota shareholders except under emergency medical and survivorship conditions. However, initial recipients of QS may use hired masters (anyone designated by the QS holder) to land their IFQ, and for many participants doing so effectively amounts to leasing (Szymkowiak and Himes-Cornell, 2015). There are emergency leasing provisions under which quota shareholders with medical conditions or who are beneficiaries of quota may outright lease their IFQs for harvest. The program also includes limits on consolidation including individual QS accumulation limits and vessel use caps; the former limits the amount of QS that can be held by an individual while the latter constrains the amount of IFQ that can be landed on a vessel. Participants in the sablefish IFQ fishery are also mandated to retain all sablefish that they land, irrespective of size. In an effort to limit gear conflicts between hook-and-line and longline pot gear users, the program also originally included a prohibition on using pots to harvest sablefish in the Gulf of Alaska, which are generally allowed in the rest of the Alaskan sablefish fishery. In 2017, in response to increasing concerns about whale depredation on sablefish caught on hook-and-line gear this prohibition was lifted allowing the use of longline pot gear in the Gulf of Alaska sablefish IFQ fishery.



DATA AND METHODS

This study couples quantitative indicators with QNMs to understand the potential well-being effects of adaptive strategies on participants. The strategies that fishermen are employing to mitigate economic losses from changing ecological conditions were determined through literature review and stakeholder interviews. Indicators were developed to examine the utilization of these strategies. The indicators were compiled from Alaska harvest data that is the principal source of information for fisheries analyses in the region. Conceptual models describing the linkages between adaptive strategies and components of well-being were developed from links described during stakeholder interviews and within the literature. The models were operationalized as QNMs and perturbed to reflect current ecological conditions, including abundant juvenile sablefish and whale depredation.


Identifying the Sablefish IFQ Fleet’s Adaptive Strategies

In order to determine fishermen’s adaptive strategies to minimize whale depredation and harvest of small sablefish as well as the well-being outcomes of those strategies, we conducted stakeholder interviews and a literature review. Semi-structured interviews were conducted over the telephone with key informants using an open-ended question format on the topics of whale depredation, small sablefish abundance, and adaptive strategies in the fleet. Key informants were chosen on the basis of their expertise in the sablefish fishery and representation of stakeholder groups in key geographic areas – Seattle, Sitka, Homer, and Kodiak- that fish throughout all of the sablefish fisheries management areas off Alaska. The literature review consisted of analyses conducted for the NPFMC regarding whale depredation and small sablefish abundance issues (NPFMC, 2013, 2015, 2018, 2019a,b; NPFMC/NMFS, 2016). Furthermore we used search databases including Google Scholar and Scopus with variations of a combination of the search terms “Alaska,” “sablefish,” “whale depredation,” “juvenile sablefish,” which resulted in a series of peer reviewed publications largely pertinent to whale depredation, given the relative recency of issues with small sablefish in the region (Peterson and Carothers, 2013; Peterson et al., 2014; Peterson and Hanselman, 2017; Hanselman et al., 2018).

Through this process we identified several key strategies, which fishermen are employing in Alaska to try to mitigate the adverse impacts of changing ecological conditions on their earnings. These strategies include highgrading (or discarding of small or damaged fish), avoidance behaviors, leasing IFQ, and stacking IFQ on pot boats, Table 1, which are described in detail below. (The associated indicators are described in Section “Quantitative indicators of adaptive behavior”). In general these adaptations are not mutually exclusive but may be invoked by fishermen over differing time horizons. An adaptive strategy was utilized if there was a minimum of one publication supporting the strategies identified by stakeholders. Some of the strategies are specific to avoiding small sablefish while others are intended to limit whale depredation.


TABLE 1. Adaptive strategies in response to small sablefish and whale depredation.

[image: Table 1]In the short run, fishermen noted that they may respond to small sablefish abundance by highgrading their catch – the practice of discarding smaller size fish or those damaged by whale depredation. Currently, regulations mandate retention of all sablefish for IFQ participants, irrespective of size; however, fishermen indicated that highgrading likely occurs in the fishery anyway. The sablefish IFQ fleet is only subject to partial observer coverage, with 7% of the sablefish IFQ harvests actually observed in 2018 (Hanselman et al., 2019), a limitation that can facilitate highgrading. Fishermen noted that they may also employ a variety of avoidance behaviors on fishing trips to try to limit both whale depredation and small sablefish. In order to avoid whales, fishermen may use shorter sets to minimize the amount of time that whales have to depredate the gear. Fishermen also described increasing distances between sets in order to prevent whales from learning to follow the boat. In an effort to avoid small sablefish, fishermen target deeper waters where smaller fish are less likely to aggregate. Deeper sets are likely to be coupled with shorter sets because fishing deeper affords whales a longer amount of time to try to pick fish off the gear. In essence, this implies a squeeze between avoiding whales and small fish using this strategy, which similarly to the other strategies likely results in variability in its application depending on which condition, small fish or whales, is problematic at any given time in any given area.

Because, according to fishermen, avoidance and highgrading have not been wholly effective at mitigating adverse effects on earnings within the sablefish IFQ fishery, fishermen have also begun to employ more strategic planning behavior in the medium term. Fishermen noted attempting to minimize operating costs by leasing IFQ, essentially aggregating IFQ from multiple quota shareholders in order to make economically efficient trips. This was a strategy relevant in terms of increasing costs associated with both avoiding whales and small fish. In order to specifically address whale depredation issues, fishermen discussed stacking IFQ on boats employing pot gear, which whales cannot depredate. Therefore, whereas leasing is explored herein in terms of both leasing to hook-and-line and pot boats, stacking IFQ is understood to be a strategy specific to moving quota onto pot boats only.



Quantitative Indicators of Adaptive Behavior

The extent to which each of the adaptive strategies delineated above is being employed in the sablefish fishery is examined using quantitative indicators that align with each of the strategies, see Table 1. An indicator of at sea discarding was used to assess whether fishermen are highgrading their catch to minimize the retention of small fish. Despite the prohibition on discarding in the sablefish IFQ fishery, the practice does take place and data is recorded by onboard monitoring efforts in the fleet (see NMFS, 2019). According to fishermen, avoidance behaviors have compounded the season prolongation that has resulted from the increased time needed to harvest quotas with whale depredation and small fish. Because direct indicators of the various avoidance behaviors were not available, proxy indicators were developed that examine season duration in terms of average annual days-at-sea and daily harvest. These indicators are examined with respect to linear time trends and using locally weighted scatterplot smoothing (LOWESS) regression to determine whether trends change relative to the more recent data. A bandwidth of 0.4 is applied, indicating that the LOWESS smoother has a span equal to 40% of the data. Leasing is examined as the percent of sablefish IFQ landed by permit holders and hired masters, as described above the relationship between permit holders and hired masters is often akin to leasing. Stacking IFQ is examined with respect to the distribution of sablefish IFQ landed by pot and hook-and-line gear.

Specific well-being outcomes of adaptive strategies identified by the QNM simulations, or more simply variables within our models, were also assessed using quantitative indicators. Non-target bycatch is considered a product of fishermen harvesting in deeper waters to target larger sized adults and avoid the large number of juvenile sablefish. Specifically, stakeholders indicated increased interactions with rockfish due to the transition to deeper waters, which is examined with an indicator of rockfish bycatch for the sablefish IFQ fleet, for the top six rockfish species landed by volume. As fishermen try to reduce operational costs, they aggregate quota on fewer vessels either by leasing or stacking IFQ on pot boats. That consolidation implies fewer opportunities for crew to participate in this fishery resulting potentially from both fewer participating vessels and from quota shareholders cooperating in the harvest of their quota; the latter of which implies that shareholders in turn act as crew on someone else’s vessel (NPFMC/NMFS, 2016). This well-being effect is captured with an indicator that examines the number of unique vessels and average crew size per fishing trip in the sablefish IFQ fleet.

The vast majority of the indicators in this study are based on harvest data that is collected by the Alaska Department of Fish and Game (ADFG) and utilized by NMFS AKRO to track sablefish harvests relative to IFQ accounts. The harvest data, commonly referred to as “fish tickets,” contains information on species landed, weight, gear used, prices, product types, and harvest dates, as well as permit, vessel, and processor identifiers. Permit holder data was coupled with harvest data to identify whether the person making the landing was the IFQ permit holder or a hired master.

In order to align our analysis of the indicators with the QNMs developed from the literature and stakeholder interviews we limited the data to catcher vessels making shoreside landings of sablefish IFQ. The only indicator that was not derived directly from fish ticket data is for sablefish discards by the IFQ fleet. This indicator was developed from an analysis presented by the NMFS AKRO to the NPFMC and based on data from the NMFS Catch Accounting System and Restricted Access Management Program databases, inclusive of a variety of required industry reports of harvest and at-sea discards and data collected through the fishery observer program (Cahalan et al., 2014; NMFS, 2019).

Trends that became evident in 2017 were generally considered consistent with a response to small sablefish abundance, which is aligned with the timing of when fishermen reported encountering large numbers of small fish (NPFMC, 2018). A response to whale depredation is less easily discernible because that depredation has been occurring for decades. However, quota stacking on pot boats is examined as a response to whale depredation following the amendment to the IFQ Program that allowed pot gear usage in the Gulf of Alaska in 2017. The timing of the implementation of this amendment may be confounding trends examined with respect to adaptive strategies. Given the recency of small sablefish abundance and the short length of time series that we can examine, the intent of this study is really to demonstrate the potential utility of coupling quantitative indicators with QNMs rather than ascertaining actual trends based on the indicators themselves. The use of indicators to denote potential ecosystem changes that may affect stocks and fisheries is becoming increasingly important in the face of rapid marine ecological shifts and increasingly applied in North Pacific fisheries (Shotwell, 2018), and indicators focused on human adaptation can be readily incorporated within that mix.



Development of the Baseline and Adaptive QNMs

Five QNMs were constructed to explore the well-being effects of each of the adaptive strategies of the sablefish IFQ fleet. As noted above, similar to identifying adaptive strategies, linkages were determined from the well-being effects that were identified from stakeholder interviews and evidenced in the literature. Well-being is framed in terms of its multiple components, linking the individual, environmental, and social domains that provide for a good quality of life beyond when basic needs are met (Breslow et al., 2016). These domains consist of a broad array of elements that have previously been associated with fisheries participation in Alaska (Figure 2) (Szymkowiak and Kasperski, 2020).
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FIGURE 2. Elements of well-being that are explored in the QNMs of adaptive behaviors to small sablefish abundance and whale depredation.


The QNMs developed explore the impacts of each of the adaptive strategies described by stakeholders with respect to the elements shown in Figure 2 – social relationships, environmental connection, health, knowledge and values, freedom and agency, and equity and sustainability. Whereas the literature points to positive relationships between the well-being components denoted in Figure 2 and fisheries participation in Alaska (Szymkowiak and Kasperski, 2020), stakeholders described how small sablefish abundance and whale depredation undermine these well-being relationships, with expressed stress regarding these changes and their perceptions of their capacity to understand their marine environment. Similarly, the various adaptive strategies have had differing, often negative impacts across the well-being components, according to stakeholder interviews and as described in the literature (NPFMC, 2013, 2015, 2019a; Peterson and Carothers, 2013; Peterson et al., 2014; NPFMC/NMFS, 2016). Table 2 provides examples of quotes and the linkages that were derived from them to build the QNMs.


TABLE 2. Example quotes and the linkages derived from them to build QNMs.

[image: Table 2]In order to build the models we had to make simplistic assumptions about link directionality that masked the realities of heterogeneous linkages across diverse user groups. For example, leasing IFQs may have adverse implications for physical safety for lessees who have to harvest the quotas often under stressed conditions; but for the quota shareholder this can have positive effects on safety because they no longer have to go out to sea. This implies differing relationships between model variables and well-being components for these two user groups. However, the simplistic assumptions of QNMs preclude heterogeneity in link directionality so that divergent linkages cannot be included. Because the intent of this study is to examine the implications of adaptations on the spectrum of well-being and we did not specifically engage in discussions about the divergent application of adaptive strategies across different user groups. Only linkages specific to those who are actively participating in the fishery harvest were examined within our QNMs, omitting quota shareholders who are not directly participating.

In the instance where link directionality diverged between stakeholders and the literature, the link was excluded from the QNM. This was the case for the implications between pot gear usage and the size of fish harvested. Multiple stakeholders voiced concern that the use of pot gear actually results in the harvest of smaller fish than hook-and-line gear. However, scientists examining this potential relationship in the sablefish stock assessment did not find conclusive results in the relationship between pots and fish size (Hanselman et al., 2019). Therefore this relationship is not included in the QNMs.

The core of the QNMs is a simplistic relationship between the major components of fisheries participation. That participation or fishing effort results in harvests, which when coupled with prices determine gross revenues. Gross revenues are positively associated with livelihood and income security (the two economic components of well-being) while fishing costs, as determined by effort, have negative implications for the same variables. All five models were perturbed by increasing both small sablefish abundance and whale depredation simultaneously, which then triggers the adaptive strategies to examine how well-being components are affected. Because each model includes distinct adaptive strategies, the perturbation of small sablefish and whale depredation allows for examining how each of these adaptations will impact well-being.

The first model is the baseline model, which explores the effects of increased small sablefish abundance and whale depredation when fishermen are assumed to have no adaptive responses. Small sablefish abundance and whale depredation pull harvests in opposite directions because of how they affect the TAC, with the former providing for TAC increases due to positive stock implications and the latter driving it down as another source of mortality. Both of these ecological stressors also result in increased fishing costs due to damaged fish and the greater amount of time necessary to harvest quotas.

The following four models explore the effects of the diverse adaptive strategies on the components of well-being. In the short term, fishermen are expected to address the harvest of small fish by highgrading their catch. This is eventually coupled with avoidance behaviors (e.g., fishing deeper waters, setting shorter sets, increasing distances between sets) that, as discussed above, are differentially intended to avoid small sablefish and/or whales. In addition to direct well-being effects, these avoidance behaviors are also assumed to lead to increased non-target bycatch due to fishing in deeper waters; in turn, this bycatch has its own well-being implications. Similarly, in addition to their direct well-being effects, leasing IFQ and stacking IFQ on pot boats are associated with secondary impacts on gear conflicts, consolidation, lease fees and QS prices, which in turn have their own well-being implications. Leasing and stacking on pot boats are employed in addition to avoidance and highgrading, because none of the adaptive strategies are completely effective at mitigating harvests of small fish or whale depredation.

Figure 3 is the matrix representation of the linkages that are incorporated within the baseline, highgrading and avoidance behaviors QNMs, built from the stakeholder interviews and literature as described above. Supplementary Table 1 provides a breakdown of this matrix, describing the variables utilized, link direction, and the references; the Supplementary Material also depict the relationships in the baseline model using a flowchart (Supplementary Figure 1). The highgrading model builds on the baseline model and the avoidance behaviors model builds on the highrading model. In other words, the highgrading model includes all of the linkages within the baseline model as well as linkages specific to highgrading; the avoidance behaviors model includes all of the linkages within the highgrading and baseline models as well as linkages specific to the avoidance behaviors model. Each of the linkages within a model is demarcated with a square, which includes a positive or negative symbol that indicates the link direction. The colors of the squares denote which model(s) include the linkage. In general, well-being components are the terminal nodes in the models, comprising the majority of the variables on the x-axis; the exception to that is livelihood which appears on both axes because of its role in incentivizing fishing effort in the adaptive models. The leasing IFQ and stacking IFQ models include all of the linkages represented in Figure 3; the additional linkages included in each of these two models are provided in Figure 4, and also described in the Supplementary Table 1. As described above, leasing and stacking trigger other variables – gear conflicts, consolidation, lease fees, and QS prices – that in turn have their own impacts across well-being components.
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FIGURE 3. A matrix representation of the variable interactions obtained from the signed digraphs for the baseline, highgrading and avoidance QNMs, derived from stakeholder interviews and literature review. All variables have negative self-interaction (not shown). Symbols within squares indicate the link direction (+, –). Blue boxes indicate links specific to the baseline model, green boxes are specific to the highgrading models and teal boxes apply to the avoidance. Figure created with R package “ggplot2” (Wickham, 2016; R Core Team, 2019). The highgrading model includes all of the links in the baseline model; the avoidance model includes all of the links in the highgrading and baseline models.
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FIGURE 4. A matrix representation of the additional variable interactions obtained from the signed digraphs specific to the leasing and stacking IFQ QNMs, derived from stakeholder interviews and literature review. All variables have a negative self-interaction (not shown). Symbols within squares indicate the link direction (+, –). Red boxes indicate links specific to the leasing IFQ model, light blue boxes are specific to stacking IFQ model, and purple boxes indicate links that are shared by both models. Figure created with R package “ggplot2” (Wickham, 2016; R Core Team, 2019). The leasing and stacking IFQ models also include all of the linkages represented in the avoidance model.


The variable representing fisheries participation in these models does not respond directly to adaptive behaviors. Instead these behaviors are included as distinct variables in the model, with their own linkages and well-being effects. This is because QNMs preclude the inclusion of divergent relationships (positive and negative) for the same link. The variable representing fisheries participation has positive effects on well-being as described above, but under changed conditions and adaptive behaviors that participation is altered and undermines well-being outcomes. Therefore, there is a necessity for the inclusion of new variables to model the well-being impacts of each of the adaptive strategies within the QNMs. These adaptive strategies are incorporated as responses to changes in average fish prices or average fishing costs or both, as fishermen are essentially trying to attenuate profit declines from small and depredated fish.



Operationalizing the QNMs

In order to operationalize the QNMs, we began by building a sign directed graph in the diagram creation program Dia (ver. 0.97.2)1. The digraph is interpreted as a community matrix in the R package QPress (Melbourne-Thomas et al., 2012; R Core Team, 2019) with the community matrix elements corresponding to a variable interaction direction (→ = 1, • = −1, and no link = 0). Consistent with previous applications of QNMs, a negative self-interaction was applied to each variable to account for the assumed negative self-effects not included in the model as well as to enhance overall model stability (Raymond et al., 2011; Melbourne-Thomas et al., 2012).

The known link direction (positive and negative sign) is retained to create a simulated community matrix and the stability is tested against known stability criteria (see Melbourne-Thomas et al., 2012). The predicted response of the community to the perturbation is determined from the inverse of the stable matrices retained. This process is repeated for 10,000 simulations and the results are summarized and expressed as the probability of occurrence with the impact from the perturbation readily assessed for each variable across the stable matrices. A predicted response was assumed to have high sign consistency and therefore high sign determinacy when ≥ 70% of the responses were positive or negative, with those falling between 30 and 70% having an indeterminate sign response and considered equivocal (Melbourne-Thomas et al., 2012; Reum et al., 2015).



RESULTS AND DISCUSSION

The extent to which adaptation strategies are being employed in the sablefish fishery is explored within section “Examining adaptive strategies with quantitative indicators.” In turn, understanding the utilization of strategies provides information on the relevance of the well-being effects for each of the adaptive QNMs that are described in section “Understanding the well-being effects of adaptations.” Finally the well-being effects delineated through the QNMs are explored with quantitative indicators in section “Examining QNM results with indicators.”


Examining Adaptive Strategies With Quantitative Indicators

In this section quantitative indicators are employed to examine the application of various adaptive strategies. Figure 5 represents the annual sablefish discard rate in terms of the percent of the number of fish that are discarded relative to total harvests in the sablefish IFQ fleet. The figure demonstrates an increase in discarding in 2019 aligned with stakeholder interviews indicating that “a fair amount of highgrading is happening on the grounds, despite sablefish being mandatory retention.” This lagged response may reflect declining prices across all size categories and the substantial increase in the price differential between small and large fish that occurred in 2018 (NPFMC, 2018). The lack of a visible increase beginning in 2017 when the small fish began to substantially contribute to the harvestable biomass may be due to smaller price differentials at that time and higher prices overall (Fissel et al., 2019). The increase in discards is further attributed to the rise of pot gear vessels in the fishery – a response to whale depredation that is explored below - because these boats account for the majority of discards.
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FIGURE 5. Sablefish discard rates for the sablefish IFQ fleet in terms of the percent of the number of fish that are discarded, based on observer and electronic monitoring data.


The annual average season length for vessels in the sablefish IFQ fleet demonstrates a statistically significant (at the 0.0% level) increasing trend of 1.2 days per year from 2006 to 2019, as well as a marked increase in the average season length beginning in 2017 evident in the LOWESS curve (Figure 6A). Thus average season length is aligned with expectations of the effects of current ecological conditions and changing behaviors leading to more time on the water. Concurrently, average daily harvests (Figure 6B) have been decreasing significantly (at the 0.0% level) at a rate of 58 pounds a year, aligned with CPUE trends for the sablefish IFQ fishery noted in the stock assessment (Hanselman et al., 2019). In fact, the correlation coefficient for the average season length and daily harvest (0.81) indicates a strong relationship between these two variables demonstrating that the fleet has been experiencing reduced efficiencies contributing to prolonged fishing seasons over the time series.
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FIGURE 6. Average season length in days (A) and average catch per day in pounds (B) for sablefish IFQ vessels. Figure includes the linear fit line and the 95% confidence interval around that line and the LOWESS fit curve calculated using a 0.4 bandwidth.


The influx of juveniles is exacerbated by the rapid decline of older fish over the last several years, resulting in fewer big fish to target among the inundation of small fish (Hanselman et al., 2019). Yet the LOWESS curve demonstrates that the rate of the decline of daily harvests has actually decreased over the last several years, with slight increases in harvest rates in 2017 relative to 2016 and 2019 relative to 2018. Thus despite overall evidence of declining harvest rates for the fleet, the last several years of data do not point to adverse effects of avoidance strategies on these rates. However in part this may be attributed to fishermen “dropping out” and leaving their quota un-fished as evidenced in 2018 and 2019 when approximately 82% of the quota was harvested, compared to 90% for all the previous years of the IFQ Program (NMFS, 2020). The differential shifts in the two trendlines in Figure 6 since 2017 point to the potential that other drivers in addition to reduced daily harvests are contributing to increasing seasons in the fishery over the last several years, although a longer time series and a more robust analysis would be needed to fully examine the reasons for these changes.

Figure 7A does not indicate increased leasing in response to small sablefish and whale depredation (Figure 7A). Instead leasing has been declining since 2014 likely in response to regulatory measures that were implemented at the time to limit the use of hired masters in the fishery (Szymkowiak and Himes-Cornell, 2017). It should be noted that although emergency leasing has historically not accounted for a large portion of landed pounds in the sablefish IFQ fishery (NPFMC/NMFS, 2016), changing ecological conditions may be driving the increasing use of this lease provision, which is not captured in our data. In contrast to hired master use, quota stacking on pot boats has generally been increasing over the last several years (Figure 7B), aligned with expectations that it serves as a strategy to avoid whale depredation. The increase is demonstrable starting in 2017, when the amendment allowing the use of longline pot gear in the Gulf of Alaska sablefish IFQ fishery was implemented.
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FIGURE 7. Percent of IFQ sablefish landed by permit holders and hired masters (A) and percent of IFQ sablefish landed by gear type (B).




Understanding the Well-Being Effects of Adaptations

The multi-faceted components of well-being are explored using the adaptive strategies that were evidenced by the quantitative indicators above. With the exception of leasing, the indicators in Section “Examining adaptive strategies with quantitative indicators” point to some increase in the adaptive strategies that were enumerated by stakeholders, most prominently highgrading and stacking IFQ. Although the response is not apparent for leasing and may not be readily distinguishable from other drivers with the season duration and daily harvest indicators, the QNM results of all four adaptive strategies are explored within this section. The well-being outcomes of strategies that are not being employed are also important to consider, as policymakers can promote strategies given their intended suite of outcomes.

In the baseline model, small adult sablefish and whale depredation are both positively perturbed and fishermen do not undertake any adaptive behaviors (Figure 8). Increasing numbers of small fish and whale depredation lead to decreasing dockside fish prices. Concurrently they increase the costs of fishing because fishermen have to spend more time harvesting in order to catch their full quota leading to greater expenditures on things like bait, fuel, and crew expenses. The coupling of lower prices and increased fishing costs diminish incentives for fishing leading to reduced harvests. This effect is manifest in declining percentages of the TAC being harvested in the fishery over the last several years (NMFS, 2020). Gross revenues decline as both prices and harvests fall leading to negative responses in livelihood and income security.
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FIGURE 8. Results from 10,000 simulations to a positive perturbation in small adults and whale depredation for the baseline highgrading, and avoidance behaviors models. The squares indicate the probability of a positive (blue) or negative (red) response of the variables (y-axis) within each model (x-axis). Shading increase corresponds with an increase in sign consistency and the textured squares represent inconsistent results that are less than the 70% cutoff. Figure created with R package “ggplot2” (Wickham, 2016; R Core Team, 2019).


In addition to adverse economic effects in the baseline model, increasing numbers of small adults and whale depredation lead to negative impacts across a number of other well-being components. As fishermen observe a changing ecosystem, they experience declines in their connection to the ecosystem and mental health, self determination, stewardship, and sense of enjoyment and fulfillment. The availability of food declines with the preponderance of small fish and whale depredation, which also adversely affect short term food security. The unprecedented ecological conditions that led to the large sablefish recruitment class along with continued whale depredation imply increasing uncertainties in the stock assessment, reflected in a negative result for governance. Seasonal prolongation has negative implications for family connection and physical safety due to fatigue. Physical safety is also adversely affected by depredating whales, which can be hazardous. The totality of these effects also implies increasing political participation as fishermen advocate for increased flexibilities in response to revenue declines. This has been demonstrable in the North Pacific fisheries management process with fishermen seeking flexibilities for the use of pot gear to target sablefish as well as the elimination of the prohibition on discarding of small fish (NPFMC, 2013, 2018).

Figure 8 demonstrates the results when fishermen respond to whale depredation and small fish abundance in the highgrading model (8) and in the avoidance behaviors model (8). Because the intent of highgrading is to retain larger sized fish to receive a higher dockside price, there is no longer a consistently negative effect on average prices. However, highgrading is unlikely to actually ameliorate harvests of small fish due to continued overabundance of them, as denoted by an inconsistent result for average prices. Positive effects on average fishing costs continue as discarding implies the use of extra bait, fuel, and labor to harvest quotas. Coupled with continued negative effects on harvests, gross revenues have consistently negative effects, with resultant negative implications for livelihood and income security.

In addition to the negative effects on various well-being components from small sablefish abundance and whale depredation, highgrading undermines the well-being that fishermen derive from fisheries participation. The prolongation of the fishing season under the baseline scenario is compounded by fishermen having to spend more time on the water due to highgrading, with continued negative implications for family connection as well as physical safety. Further negative impacts on a variety of well-being components result from fishermen experiencing a dissolution from their sense of self and way of life due to highgrading, with adverse implications for identity, personal development, and family heritage. The notion that fishermen are highgrading their catch can also lead to an erosion of other community members’ perceptions of the role of fishermen in their community with negative effects on cultural values and traditions and sense of community. Highgrading also negatively impacts the national economy and national food security as it results in fish mortality that does not enter the food system. Since it is unobserved, highgrading also has adverse implications for stewardship and the information necessary to effectively manage the resource.

In the avoidance behaviors model, the coupling of highgrading with avoidance leads to inconsistent results for fish prices and harvests and gross revenues as well (Figure 8). Some of the negative effects on well-being components become less consistent as avoiding small fish and whales is a strategy to mitigate not only revenue declines but discarding as well. Although examination of the season length and daily harvest indicators above did not indicate that avoidance behaviors are necessarily prolonging fishing seasons, stakeholder accounts did indicate more time on the water due to this strategy, which is reflected in negative results for family connection, sense of enjoyment/fulfillment, and physical safety. Adverse effects on physical safety are also associated with fishing in new waters and moving around more on the water. Some fishermen also noted that the strategy of fishing in deeper waters results in bycatch of non-target species, an effect that is captured in the positive results in “non-target bycatch” in Figure 8.

Stakeholders indicated that because highgrading and avoidance behaviors do not completely mitigate adverse effects on gross revenues, fishermen also employ leasing and stacking IFQ strategies, the well-being effects of which are explored in Figure 9. In the leasing IFQ model, new variables are added to account for relationships that do not exist in the highgrading and avoidance behaviors models, Figure 9. Low earnings expectations associated with small fish and whale depredation have, according to fishermen, resulted in decreased lease fees and QS prices - a relationship that is aligned with economic theory (Anderson and Seijo, 2010; Szymkowiak and Felthoven, 2016). Lease fees are the amount paid by the fisherman to the QS holder for the harvest of their IFQ, usually calculated in terms of the percent of the total ex-vessel revenues (NPFMC/NMFS, 2016). In turn, the declining lease fees and QS prices can lead to positive well-being outcomes, by essentially mitigating the adverse effects that have been associated with high lease fees and QS prices. In particular, rising QS prices were associated in the 20-year review of the IFQ Program with adverse effects on entry, the distribution of benefits to small/rural communities, and fisheries diversification, which in turn have negative implications for social justice and equity, personal development, education and information, sense of community, and resilience (NPFMC/NMFS, 2016). Lease fees have been negatively associated in this fishery with physical safety and stewardship due to the demands on the lessee to harvest the IFQs even in poor weather conditions and without much investment in the long-term health of the resource (NPFMC/NMFS, 2016; Ringer et al., 2018). In addition, the disparities created by rising lease fees have undermined participants’ sense of community and the distributional inequities in the benefits derived from the implementation of the IFQ Program have eroded perceived social justice and equity (Ringer et al., 2018). Figure 9 demonstrates how those effects are actually ameliorated when lease fees and QS prices drop, with positive results across some of these well-being components and less consistently negative results across others.
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FIGURE 9. Results from 10,000 simulations to a positive perturbation in small adults and whale depredation for the leasing IFQ and stacking IFQ models. The squares indicate the probability of a positive (blue) or negative (red) response of the variables (y-axis) within each model (x-axis). Shading increase corresponds with an increase in sign consistency and the textured squares represent inconsistent results that are less than the 70% cutoff Figure created with R package “ggplot2” (Wickham, 2016; R Core Team, 2019).


In essence, declining lease fees and QS prices attenuate the negative impacts of leasing and in a scenario where leasing becomes the primary adaptive strategy, it may provide for entry opportunities for new participants as well as other associated benefits. The positive impacts on new entry due to lowered QS prices in the leasing IFQ model also buffer the potential effects of increasing consolidation resulting from leasing. The aggregation of quota with leasing leads to fewer vessels directly participating in the fishery; in turn, this limits crew and entry opportunities. However, that negative effect is cushioned by the positive impacts of lower QS prices on those opportunities.

Whereas stacking quota on pot boats can be akin to leasing, the practice also includes quota shareholders participating in the harvest of their quota on pot boats, Figure 9. The stacking IFQ model results in the incorporation of two new variables - gear conflicts and consolidation, which result in their own well-being effects. There has been historic gear conflict between longline pot and hook-and-line vessels in the sablefish fishery, which employ different gear on the same fishing grounds and at the same depth (NPFMC/NMFS, 2016). The groundline on longline pot gear is heavier and stronger than the one used for hook-and-line gear so that when the two gear types are set in the same place it can result in entanglement and gear loss. Furthermore, pot gear can sit in the water for longer periods of time because the fish caught in it are not subject to sand fleas like those caught with hook-and-line gear, so that pot gear can preempt fishing grounds. Therefore, stacking quota on pot boats as an adaptive strategy is assumed to lead to increased gear conflicts. In turn, gear conflicts have a number of well-being implications. Gear loss can result in ghost fishing, which has negative effects on governance and education and information due untracked fishing mortality (NPFMC/NMFS, 2016). The coupling of the ecological implications of ghost fishing and the social implications of gear conflicts on maintaining intra-community relationships undermines sense of community, resilience, and sustainability as well. Although these impacts could imply negative effects on stewardship as well, there is indication that the use of pots can have more direct positive impacts on reducing other ecological interactions including marine mammal and seabird interactions (NPFMC, 2015); therefore, the ultimate impact on stewardship is equivocal.

The outcomes of consolidation are different within the stacking IFQ model than the leasing IFQ model because in the latter declining QS prices and lease fees provide entry opportunities buffering the negative effects of consolidation. Within the stacking IFQ model, with fewer participating vessels, there is a reduction in the availability of crew jobs and opportunities for new individuals to enter the fishery with negative effects on personal development and education and information. This represents an inequitable distribution of fishery benefits across generations resulting in a decline in social justice and equity. The loss of intergenerational access and learning opportunities is also manifest in negative impacts on resilience and sustainability due to decreased opportunities to share traditions across generations.



Examining QNM Results With Indicators

Specific well-being outcomes of adaptive strategies, or variables in our QNMs, are explored using time-series indicators. In an effort to understand how prevalent the issue of non-target rockfish bycatch is, an outcome of avoidance behaviors, Figure 10 examines landings of the top six rockfish species by volume harvested by the sablefish IFQ fleet. These harvests represent rockfish that were incidentally caught on sablefish IFQ target trips. As in section “Examining adaptive strategies with quantitative indicators,” well-being outcomes are considered to be associated with adaptations if they became evident in 2017 or later. The figure demonstrates a substantial increase in rockfish bycatch but not until 2019, which may imply that similarly to the timeline discussed for the highgrading indicator above the incentives for avoiding small sablefish became particularly acute in 2019.
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FIGURE 10. Rockfish bycatch for the sablefish IFQ fleet, for the top six rockfish species landed by volume.


Increasing rockfish bycatch is especially relevant in the Central and Eastern Gulf of Alaska, as these deeper waters are ecological hotspots for various rockfish species, some of which are considered vulnerable. In addition to the increase in the volume of rockfish bycatch for the sablefish IFQ fleet, Figure 10 also indicates an increase in landings of yelloweye rockfish which is a species of particular concern in Southeast Alaska (ADFG, 2019). In response, beginning in 2020, the sablefish IFQ fleet is subject to mandatory rockfish retention due to concerns about both increasing and unobserved bycatch (NPFMC, 2019c). Overall the trends in rockfish bycatch substantiate concerns that changing behavior in the sablefish IFQ fleet may have adverse consequences for non-target species bycatch, especially if price differentials between small and large fish continue.

The impacts of IFQ stacking on consolidation and lost opportunities for crew employment are explored in Figure 11 in terms of both the number of active vessels in the fishery (Figure 11A) and average crew size on sablefish fishing trips (Figure 11B). Consolidation in terms of active vessels has been occurring at a statistically significant rate (at the 0.05% level) of just over 6 vessels per year over the time series. Although the LOWESS trendline does not indicate that the rate of vessel consolidation has changed substantially since 2017, there is a visible dip in 2019. In contrast, the linear trendline for average crew size is not statistically significant although the LOWESS trendline for average crew size on sablefish IFQ fishing trips indicates a marked decrease in 2019. Decreasing vessel numbers over the time series indicate a substantial decrease in crew opportunities in the fishery. The marked decrease in vessel numbers and average crew size in 2019 point to the potential that changing ecological conditions and adaptive responses to those may be adversely affecting participation opportunities. Although a longer time series will be needed to determine significant trends and parse out other factors, altered crew opportunities and changes to crewmembers’ capacity to gain requisite experience to become vested in this fishery have been documented since IFQ implementation (Carothers, 2010, 2015; NPFMC/NMFS, 2016; Ringer et al., 2018).
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FIGURE 11. Number of unique vessels (A) and average crew size per fishing trip (B) in the sablefish IFQ fleet. Figure includes the linear fit line and the 95% confidence interval around that line and the LOWESS fit curve calculated using a 0.4 bandwidth.




POLICY IMPLICATIONS

This study demonstrates how indicators coupled with QNMs can be used to understand adaptive behaviors and their well-being implications and tradeoffs. The ways in which adaptation strategies are shaping behavior in a fishery can be examined with quantitative indicators from harvest data that is readily available in many fisheries. Such indicators provide valuable insights about how fishermen are adapting to changing conditions that when coupled with QNMs can be used to inform well-being outcomes as well as other ecological effects. For example, the adaptations that are taking shape in response to large sablefish recruitment events in Alaska can be readily translated to the US West Coast where the 2016 sablefish cohort was also the largest in decades (Haltuch et al., 2019).

The exploration of adaptive strategies using QNMs provides a means of conceptualizing outcomes across the spectrum of well-being. To date most policymaking has focused on economic outcomes because these are more readily quantified than other well-being effects. The application of QNMs in this study demonstrates how other well-being impacts can be examined in parallel to economic effects and essentially places them on a level playing field. Using stakeholder interviews and literature review, well-being outcomes can be linked to variables that are associated with adaptations and fisheries participation more broadly to build QNMs. Such tools can then extend the scope of what is considered in shaping policies, allowing decision makers to consider the spectrum of well-being components.

The application of quantitative indicators and QNMs in the context of adaptation strategies to changing ecological conditions in this study addresses several existing limitations to the incorporation of human dimensions within EBFM. Firstly, it moves from static assumptions about human behavior to incorporate the realities of how adaptation characterizes fisheries participation. Furthermore, it incorporates the spectrum of well-being, moving beyond the singular focus on economic welfare that dominates the conventional discourse on outcomes in fisheries. Thirdly, it facilitates an understanding about the implicit tradeoffs of adaptive strategies across the components of well-being. For example, policymakers could consider the implications on crew and new entry opportunities associated with the leasing and stacking IFQ strategies, especially given the manifest decline in participating vessels in Figure 11. Whereas QNM results for the leasing IFQ model indicate that under current conditions of low QS prices and lease fees there is a positive outcome in inter-generational equity issues, the stacking IFQ model has the opposite effect. This would imply that holding all else equal policies that promote leasing could ameliorate equity issues relative to more stacking. In examining all of these issues, this study addresses a number of the key principles of the U.S. EBFM Road Map as well as other guiding documents for ecosystem based science, including advancing our understanding of ecosystem processes, exploring trade-offs within an ecosystem, and maintaining resilient ecosystems, inclusive of community well-being.

As with all models, QNMs are simplistic representations of systems that have inherent limitations, which should be considered by policy makers when utilizing them. Issues with model stability arise when too many variables are examined in QNMs; therefore, variables are often grouped or intermediary variables are removed. The necessity of this reductionist approach may hinder the capacity of these models to fully represent fisheries systems. Therefore, in developing QNMs there needs to be consideration of which variables policy makers may be able to isolate for regulation in order to ensure that these are not aggregated. QNMs are also constrained to uniform relationships, in that a linkage can only be either positive, negative, or neutral. But the nature of those linkages can vary between and even within user groups. For example, in the case of sablefish adaptive strategies we noted the omission of inactive quota shareholders from our models in order to be able to develop QNMs of leasing behavior. However, in reality even within the group of active harvesters in this fishery, the well-being effects of adaptive strategies could vary based on a multitude of individual variables, including risk tolerance, access to capital, experience and so on. Policy makers should therefore consider how representative the linkages in the QNMs are of the various user groups in their fisheries. Finally, the binary nature of QNMs also does not allow for weighting the variable strengths, therefore all variables are assumed to have equal impact upon one another. Other modeling frameworks like fuzzy cognitive mapping allow for the inclusion of the strength of interactions, but policymakers then have to judge the representativeness of the strengths included in those models. In essence QNMs provide an easily adaptable mechanism of examining how adaptive behavior may reverberate throughout a fishery, but there is a tradeoff in that facility with impediments in accounting for the inherent complexity of these systems.



CONCLUSION

In the Alaskan sablefish fishery, the influx of small sablefish and continued whale depredation has caused earnings to plummet and fishermen to invoke a variety of strategies to try to adapt and mitigate that decline. The persistence and likely acceleration of change in the sablefish fishery will necessitate further adaptive evolution. Fishermen may have to convert their existing hook-and-line boats to pot boats or invest in new boats to accommodate pot gear, a capital intensive proposition that may be facilitated by partnering with others or technological advancement. Others may develop or extend existing networks to facilitate information sharing about small sablefish or whale hotspots and leasing or quota stacking arrangements. Each of these and any other strategies that may emerge will have its own variegated impacts across the spectrum of well-being that can be explored with indicators and network models. To expand the utility of these tools there should be greater consideration of regional differences in ecological and market perturbations and thus spatial variation in the application of adaptation strategies, as well as the potential for distinct local well-being priorities. This can facilitate policymaking that maximizes desired outcomes contextualized in locally relevant adaptive capacities and value systems.

Adaptation is a key component of the resilience that characterizes fishermen and makes fisheries successful. Understanding how adaptive behavior unfolds in fisheries and its well-being outcomes is critical for conceptualizing adaptations and their impacts in the face of diverse forms of perturbations, from ecological impacts associated with climate change to market effects of global shifts. The rate at which marine ecosystems across the globe are changing is anticipated to increase in the coming years (Walsh et al., 2018), the necessity for integrating adaptations into policy frameworks and the assessment of the techniques that are employed is also going to become more relevant. The mechanisms of evaluating adaptational impacts demonstrated in this study have the potential to advance those frameworks by incorporating the diversity in human adaptation and well-being, providing a means to more accurately represent humans within EBFM policy.
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Although many countries have formally committed to Ecosystem-Based Fisheries Management (EBFM), actual progress toward these goals has been slow. This paper presents two independent case studies that have combined strategic advice from ecosystem modeling with the tactical advice of single-species assessment models to provide practical ecosystem-based management advice. With this approach, stock status, reference points, and initial target F are computed from a single-species model, then an ecosystem model rescales the target F according to ecosystem indicators without crossing pre-calculated single-species precautionary limits. Finally, the single-species model computes the quota advice from the rescaled target F, termed here Feco. Such a methodology incorporates both the detailed population reconstructions of the single-species model and the broader ecosystem perspective from ecosystem-based modeling, and fits into existing management schemes. The advocated method has arisen from independent work on EBFM in two international fisheries management systems: (1) Atlantic menhaden in the United States and (2) the multi species fisheries of the Irish Sea, in the Celtic Seas ecoregion. In the Atlantic menhaden example, the objective was to develop ecological reference points (ERPs) that account for the effect of menhaden harvest on predator populations and the tradeoffs associated with forage fish management. In the Irish Sea, the objective was to account for ecosystem variability when setting quotas for the individual target species. These two exercises were aimed at different management needs, but both arrived at a process of adjusting the target F used within the current single-species management. Although the approach has limitations, it represents a practical step toward EBFM, which can be adapted to a range of ecosystem objectives and applied within current management systems.
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INTRODUCTION

Incorporating ecosystem information into fisheries management [i.e., Ecosystem Approach to Fisheries Management (EAFM) and Ecosystem-Based Fisheries Management (EBFM)] is an acknowledged goal of many nations based upon an agreed code of conduct for responsible fisheries management (FAO, 1995, FAO, 2008, NOAA, 2016). For simplicity, we will use the term EBFM throughout as it captures EAFM as well. EBFM has been identified as an approach to meet multiple fisheries and living resources legislative mandates (EU, 2008, EU, 2013; NOAA, 2016). Actual progress toward implementing EBFM is just beginning to be evident (e.g., Townsend et al., 2019), with some examples including limited ecosystem interactions (Marshall et al., 2019). However, current fisheries management is still largely based around single species stock assessments (Skern-Mauritzen et al., 2016). This limited progress can partly be attributed to the limitations of the modeling tools available to support management (Plagányi, 2007; Townsend et al., 2008) and also the structural inertia in the management systems themselves (Christie, 2005; Marshak et al., 2017) including a requirement to fit into existing regulatory frameworks.

Science has made progress in assessing and modeling ecosystems to inform fisheries management. Integrated Ecosystem Assessments (IEAs) are an approach to ecosystem-based management that aim to integrate components of an ecosystem, including humans, into the decision-making process so that managers can balance trade-offs and determine what management decisions are more likely to achieve objectives (Levin et al., 2009; Harvey et al., 2017). While IEAs are intended to form part of the advice process (ICES, 2019b), they have often tended to exist as standalone overviews, rather than being fully integrated into the advice-giving process (Cormier et al., 2017). Where they are integrated into the advice, they are typically used to provide context for the single species advice, rather than directly impacting tactical management. In the US, the National Oceanic and Atmospheric Administration (NOAA) Fisheries IEA program has been used to develop Ecosystem Status Reports that are frequently presented to Regional Fisheries Management Councils to provide an ecosystem context for management decision making (Slater et al., 2017). In Europe, the International Council for the Exploration of the Seas (ICES) produces Ecosystem Overviews (EOs), which are advice products with the same aim of providing ecosystem information to public authorities with competence for marine management, including the European Commission.

The use of ecosystem models, rather than an ecosystem status assessment, has the potential to provide more appropriate and quantitative inputs to the single species stock assessment models currently used to support advice. Full ecosystem models are now available for a number of ecoregions, for example, using both the Atlantis (Fulton et al., 2011) and Ecopath with Ecosim (EwE; Christensen and Walters, 2004) ecosystem modeling tools, as well as customized model sets developed for a specific region (e.g., Alaska Climate Integrated Modeling—ACLIM project; Hollowed et al., 2020). These models track the flow of energy through an entire ecosystem and allow the modeler to choose where to aggregate and where to have detail on a single species. Thus, they allow focus on species of interest while incorporating the entire ecosystem. However, while these models are used to give strategic information to managers about overall and long-term trends, they have not been previously considered suitable for tactical management use because of their inherent complexity and structural uncertainty (Collie et al., 2016). In this context, “tactical advice” comprises evaluation of stock status and setting of Total Allowable Catches (TACs), and other management measures such as spatio-temporal closures or gear regulation, while strategic management covers overall management objectives, socio-economic considerations, and selection of Harvest Control Rules.

While most single species assessments do not include any ecosystem considerations, beyond allowing for annually varying parameters such as weight-at-age or mortality, progress has been made in incorporating environmental fluctuations (Marshall et al., 2019). These include salmon forecasts (Satterthwaite et al., 2020), red tide (Sagarese et al., 2015) and variable predation, e.g., Atlantic mackerel Scomber scombrus (Moustahfid et al., 2009); NEA cod Gadus morhua, and capelin Mallotus villosus (Skern-Mauritzen et al., 2016), North Sea (ICES, 2020a), and Baltic (ICES, 2020b) assessments. The inclusion of environmental factors and predation allows for the formal inclusion of a limited range of ecological considerations, which can drive natural mortality and impact estimated productivity via recruitment or growth. Even when single species assessments include ecological considerations in some form, the main purpose of single species stock assessments is providing biological reference points, stock status determination, and forecasts of quotas or TAC. The advice from stock assessments are intended to be precautionary in the sense of attempting to avoid overfishing and hence stock collapse; meaning that the management based on the forecast TAC should limit the risk of population collapse and recruitment overfishing to within predefined limits. Bridging the gap between single species assessments and including broad ecosystem information into quota setting management has, thus far, proven elusive (Townsend et al., 2019).

Single species models have some key advantages over ecosystem models in estimating stock status and providing management advice, while ecosystem models are complementary in a management setting by quantifying broader ecological processes and uncertainties. Single species models focus on a smaller set of processes—population dynamics and harvest dynamics, and data-collection programs have largely been structured to address those interactions. This narrower focus makes them easier to create, update, and review. Single-species models are typically designed to track the details of fluctuations in a stock over time, while ecosystem models have often only been designed to represent overall trends. Single species assessments are designed to produce quantified estimates of the probability of stock collapse under different fishing pressures, while ecosystem models were not designed with this intention in mind. This last point is critical because many management systems legally require that fishing be “precautionary”—i.e., to keep the risk of stock collapse below a predefined level [The UN Fish Stocks Agreement UN FSA, 1995; Council Regulation 2019/124 (EU, 2019); Magnuson Stevens Fishery Conservation and Management Act (MSA), 2014]. However, while such single-species models can incorporate limited ecosystem or multispecies information, they cannot incorporate full ecosystem dynamics. Ecosystem models can explain some of the uncertainty that cannot be explained within single-species models, through attribution to ecological influences (trophic dynamics and/or environmental variability). Therein lies their value, because variability that can be explained and potentially managed can result in beneficial modifications to precautionary measures. However, given the complexity of ecosystem models and the single species governance structure of most fisheries management systems, it is difficult to see how ecosystem models could be used alone to duplicate the operational strengths of single species models in the foreseeable future. In theory, the two approaches are entirely complimentary, with single species models making implicit assumptions about how vital rates change (or remain constant) over time and ecological models being explicit about the influences of the surrounding environment (e.g., habitat, water quality, predator-prey abundances) on stock dynamics. A key challenge to moving EBFM forward is therefore to find ways of incorporating more ecosystem realism into the advice-giving process by combining the different skills and strengths of the two modeling approaches. Bridging the gap between single species assessments to include broader ecosystem information into actual management advice has, thus far, not been widely adopted (Townsend et al., 2019).

In this paper, we present two independent case studies that provided tactical management advice through the combined use of EwE models and single species assessments in two different settings: (1) Atlantic menhaden on the East Coast of the United States (Anstead et al., 2020; Drew et al., 2020; Chagaris et al., this volume) and (2) commercial fish stocks in the Irish Sea (Bentley et al., this volume). In both cases, an approach was developed which allowed ecosystem modeling results to be incorporated into the existing management structure, while retaining the single species assessment models used to support existing management. In both cases multiple different models (including ecosystem and multispecies models) were considered, and the EwE considered most appropriate given the management aims and state of model developments. Based on the success of these two case studies, we propose using ecosystem or multispecies models to adjust single species reference points to account for ecosystem understanding when providing management advice. We term the revised target fishing mortality Feco to highlight the ecosystem component of the advice. The approach is well suited to account for ecosystem considerations within existing single species management frameworks.



CASE STUDY: ATLANTIC MENHADEN

Atlantic menhaden Brevoortia tyrannus are distributed broadly along the U.S. Atlantic coast and are an important forage fish for a suite of predators that support valuable recreational fisheries. Atlantic menhaden are also harvested commercially using purse seines, processed into animal feed and vitamin supplements, and used for bait. Menhaden landings peaked during the 1950s at around 600,000 mt/yr and currently average about 180,000 mt/yr at a value of 39.4 million $USD, making it the largest fishery by tonnage on the U.S. East Coast. For nearly 20 years, the Atlantic States Marine Fisheries Commission (1981), the interstate fisheries management organization responsible for regulating the menhaden fishery, has pursued ecosystem approaches to managing this fishery. Since the first Atlantic States Marine Fisheries Commission (1981), managers have acknowledged the role of menhaden as forage for several recreationally important species (striped bass Morone saxatilis, bluefish Pomatomus saltatrix, and weakfish Cynoscion regalis) as well as marine mammals and birds. In the 2000s, several vocal environmental and sport-fishing groups were advocating for strict limits on the menhaden fishery, while the fishing industry pushed back. During this time, ASMFC engaged in ecosystem and multispecies modeling efforts to try to understand the potential impact of the menhaden fishery on its predators. However, as management objectives were unclear, modeling efforts were not well focused.

In 2010, ASFMC determined that ecological reference points (ERPs) that account for the dietary needs of menhaden’s predators were needed. Managers and stakeholders were concerned that recent declines in several predator stocks also managed by the ASMFC were linked to insufficient prey and wanted quantitative reference points that accounted for menhaden’s role as a forage fish to use for determining stock status and setting quotas. In 2012, ASMFC adopted single species reference points that provided more protection for spawning stock biomass than the previous target and threshold and established the first coastwide TAC for Atlantic menhaden to bring F below the new threshold. ASMFC also established the Ecological Reference Points Work Group (ERP WG), a technical workgroup comprised of scientists from state, federal, and academic agencies focused on developing ERPs for use in management. The ERP WG expanded on a previous set of ecosystem/multispecies models, but progress was hindered because management objectives had not been made explicit in an ecosystem context. To address this issue, ASMFC convened a workshop in 2015 to identify fundamental ecosystem management objectives for menhaden. Participants of the workshop included ASMFC managers, scientists, and stakeholders representing the menhaden fisheries, predator recreational fisheries, and environmental advocacy groups. The identified ecosystem objectives included: sustaining menhaden to provide for fisheries, sustaining menhaden to provide for predators, and providing stability for all types of fisheries. In addition to the stakeholder-oriented objective workshop, all ERP WG meetings were open to the public with regular opportunities for stakeholders to comment and ask questions.

With clear objectives, the ERP WG was able to more thoroughly evaluate models that could address the ecosystem objectives and develop approaches for establishing ERPs. The WG explored a suite of models ranging from simple to complex, including two extended surplus production models, a multi-species statistical catch-at-age model, and two EwE models of differing taxonomic and trophic complexity. These models were developed, evaluated, and vetted for management through a review process simultaneous with the menhaden single species stock assessment. Ultimately, an EwE model referred to as the Northwest Atlantic Continental Shelf-Model of Intermediate Complexity for Ecosystem Assessment (NWACS-MICE) was selected as the recommended tool to develop ERPs, based on its performance and its ability to inform the ecosystem management objectives identified by the ASMFC (Chagaris et al., this volume). The NWACS-MICE model focused on menhaden and four of its key predators that support commercial and recreational fisheries and are also managed by ASMFC—striped bass, bluefish, weakfish, and spiny dogfish Squalus acanthias. Each of these key species, except for spiny dogfish, were modeled with at least two age classes (juveniles and adults) to capture ontogenetic changes in trophic interactions. The model also included alternative forage fish, Atlantic herring Clupea harengus and anchovies Anchoa spp., and aggregated biomass pools for benthic invertebrates, zooplankton, phytoplankton, and detritus, for a total of 15 different species/functional groups and age classes in the model. The NWACS-MICE Ecosim model was calibrated to time series of relative abundance and catch from 1985 to 2017.

Striped bass are arguably the most important nearshore gamefish on the U.S. East Coast and a major menhaden predator. The NWACS-MICE and the full-complexity NWACS EwE models both found striped bass to be the predator most sensitive to menhaden harvest, such that measures to ensure healthy striped bass populations would extend to other predators in the system. Striped bass were also found to be overfished and experiencing overfishing in their most recent single species stock assessment, and efforts are underway to reduce F and allow the stock to rebuild. Therefore, the ERPs were established based on the equilibrium tradeoff relationship between menhaden F and striped bass biomass, when striped bass are fished at their target F. Projection scenarios were run for 40 years over a range of fishing mortality rates (F) on menhaden and striped bass. Surface plots were generated from the terminal year equilibrium biomass to reveal the tradeoff between harvesting menhaden and enhancing predator populations. The ERP Ftarget and Fthreshold were defined as the Atlantic menhaden F that sustained striped bass at their biomass target or threshold, respectively, over the long term. The ERP Ftarget was 40% lower than the single species Ftarget and the ERP Fthreshold was 30% lower than its single species counterpart.

Atlantic menhaden are managed with a coastwide TAC, but the NWACS-MICE Ecosim model does not capture the short term variability exhibited by menhaden, especially with regards to recruitment, and it is not well suited to provide advice on the TAC (Chagaris et al. this volume, Drew et al. this volume). In contrast, the single species stock assessment model includes variability in recruitment during the projection period, but does not provide long-term strategic advice on ecosystem impacts. Therefore, the WG recommended a combination of the NWACS-MICE EwE model and the single species stock assessment model to set the TAC under the new ERPs. Menhaden yield streams for 2021–2022 were estimated through projections from the single species model as the annual yield with a 50% probability of exceeding the ERP Ftarget.



CASE STUDY: IRISH SEA

The fisheries of the Irish Sea have shown dramatic changes over the last 50 years. At the start of this period, the fishery was finfish dominated, consisting predominantly of cod, whiting Merlangius merlangus, and Atlantic herring. Since 1970, landings have declined by 97% for cod, by 88% for whiting, and by 81% for Atlantic herring. Over the same period, invertebrate landings increased, mainly composed of the Norway lobster Nephrops norvegicus, (+ 56%), crabs (+ 78%), and scallops (+ 34%). Landings of Nephrops remained relatively stable from the 1980s to the mid-2000s, with some declines evident since then (ICES, 2019a). From the early 2000s, management measures were implemented, mainly for the recovery of cod stocks. These included closed seasons, closed areas, and gear restrictions for 1999–2016, and multi-annual selection of TACs, restriction of effort, technical measures (more selective gears), control and enforcement, as well as structural and market measures from 2017 to the present. Combined, this resulted in declines in fishing effort by around 90% since 2003 for both the whitefish otter trawlers and the beam trawlers. Effort by the trawlers targeting Nephrops declined by around 30%. The main purpose of this management approach was to improve the cod stock, but it was not successful; there has been no recovery to the reference maximum sustainable yield (MSY) biomass level. Although there is some evidence of improvement in biomass in recent years, it appears to have declined again since 2015. Additionally, whiting has failed to recover to previous stock levels. For other stocks, namely plaice, haddock, and Atlantic herring, there has been stock recovery since the early 2000s, likely helped by the substantial effort reductions.

In 2014, the North Western Waters Advisory Council (NWWAC; an EU mandated fisheries stakeholder forum for both industry and environmental groups) asked ICES to investigate why the substantial effort reductions had not helped with recovery of cod, whiting, and sole, and if the lack of recovery could be linked to environmental factors. Based on this request, ICES set up a benchmark workshop series (WKIrish: ICES, 2016b) to examine the single species stock assessments and the possibility of ecosystem drivers having a role in the changes. The first part of the work involved a wide-ranging scoping workshop involving scientists and fishery stakeholders, this was followed by an assessment benchmark process developing and improving the single species stock assessment data and methodology, as many of the assessments were unreliable (ICES, 2017). Later, and where this paper is focused, the workshops focused on developing a suite of ecosystem models to explore the system as a whole. The aim was to develop the models in explicit collaboration with the NWWAC stakeholders for the Irish Sea, and involve a range of possible modeling approaches. These included a “Length-based Multispecies analysis by numerical simulation”—LeMans, multispecies mixed fisheries model (Thorpe and De Oliveira, 2019), MoSES (a Model for the Simulation of Ecological Systems) developed for the Irish Sea (ICES, 2020c), and an EwE model (Bentley et al., 2020). The LeMans and MoSES models were not fully operational in time for the final workshop, but the EwE model was available for operational advice, and thus, the EwE modeling approach is described in this paper.

The EwE model included 41 functional groups, including the commercial species as adults and juveniles, as well as other groups ranging from detritus, discards, and primary producers to mammals and seabirds (Bentley et al., 2020). The different commercial fleets were included with their effort, as well as temperature, top-down (e.g., predation) and bottom-up (e.g., primary production) interactions, and the North Atlantic Oscillation (NAO) anomaly, all of which were identified as significant drivers of historic biomass and catch trends. A key element of the work was the continuous involvement of the stakeholders (both industry and environmental bodies) along with stock assessment scientists responsible for the key commercial stocks. The stakeholders were able to provide pivotal information for the diets of many key species in the model, particularly for 1973, the start year for the model, identifying 80 links of which 30 were previously unknown to the scientists from stomach content records (Bentley et al., 2019a). They also provided critical information on effort trends by gear, starting well before formal records that begin in 2003 (Bentley et al., 2019b).

The key end result was that significant ecosystem drivers for stock production were identified for four species (ICES, 2020c). Significant ecosystem drivers were identified through a hypothesis testing process that evaluated goodness of fit with and without ecosystem drivers included. Both cod and whiting were strongly influenced by sea surface temperature with a 3 year lag, thus linking to recruitment. Atlantic herring had a strong link to large zooplankton abundance. Nephrops were linked to the abundance of predators at trophic level 4 and above. For sole, plaice, and haddock, no convincing ecological indicators (i.e., possessing both strong correlation and mechanism of effect) were identified.

The stock assessment scientists brought the key understanding of the assessment process, and, critically, because they understood the existing management system they brought information on how the ecosystem knowledge could be formulated to make it accessible to the process of providing policy advice, particularly in relation to MSY fishing mortality that determines TACs and quotas. The interdisciplinary approach combined the expertise of three types of experts: ecological modelers, stock assessors, and stakeholders to determine which results had the potential to become operational advice with relevance at the science-policy interface.

The end products were recommendations for target Fs within the pretty-good-yield ranges that have been adopted for many stocks in the EU. ICES provides precautionary FMSY ranges (FMSY upper and FMSY lower) that are derived to deliver no more than a 5% reduction in long-term yield compared with MSY for selected stocks (Hilborn, 2010; ICES, 2016a, 2019b; Rindorf et al., 2017). Using the identified indicator for each stock, the Ftarget value was scaled linearly within the range (FMSY lower, FMSY upper) according to the current value of the indicator within the historical range during the model tuning period. For example, if the indicator identified for a particular stock was 80% of the way to the most favorable value observed over the model period, then Ftarget was adjusted to 80% of the way to the higher FMSY upper value. This linear scaling was chosen for simplicity given that this is a new approach, but in principle more complex relationships would be possible, and likely appropriate. Single species FMSY and associated quotas were adjusted for cod and whiting based on sea surface temperature, herring F, and quotas were adjusted according to empirical estimates of zooplankton abundance, and Nephrops F and quota was adjusted based on combined biomass of predators. Full details are in Bentley et al. (2020). This allows the ecosystem understanding to be incorporated within the existing single stock management framework, and critically, within the FMSY ranges that have already been identified as being precautionary. On this basis, ecosystem information can be used to set F within those ranges, and within the management advice paradigm.


Synthesis

Although the groups that completed the two case studies described above worked independently and with different management aims, the result was a common modeling approach for addressing EBFM issues. In the Irish Sea, the focus was on identifying ecological drivers acting on the stocks, whereas in the US, the focus was on the menhaden stock as a driver in the ecosystem through trophic interactions. In both situations, a mechanism of adjusting the Ftarget to produce a revised Feco was identified as an efficient method for incorporating ecological information into the stock assessment process.



THE MODELS

Both case studies used a multi-model approach to evaluate the objectives as specified by managers and stakeholders, but ultimately settled on a final ecosystem model developed using EwE. The multi-model approach allowed for comparisons across model types, model assumptions, and for the evaluation of the models to address management needs. For the menhaden case study, the simplified EwE model was chosen as it could be used to address the management objectives while limiting overall complexity. That is, the EwE models captured the effects of top-down predation on menhaden and bottom-up effects of menhaden biomass on the growth and mortality of its predators. For the Irish Sea, the EwE model identified environmental drivers of key species to determine likely causes for failed recovery.

Both EwE models were developed following best practices (e.g., Link, 2010; Heymans et al., 2016), which included (1) tailoring the models to the questions they were intended to answer, (2) testing the uncertainty in input data, (3) making ecologically justified choices during model construction, and (4) seeking quality assurance through external review. Such rigorous approaches improve model credibility within the research community and with advisory bodies and external reviewers who are familiar with the methodology, leading to positive steps toward the application of EBFM (Townsend et al., 2019). Conceptually, the analysis could be repeated using any ecosystem modeling platform, provided that the model represents the key ecological processes with sufficient detail to address the management question.



THE METHOD

The workflow involved in this method is summarized in Figure 1. Note that all of the steps involving the single species model are those conducted in the current management systems (e.g., ICES, 2019b), only the involvement of the ecosystem model to adjust Ftarget is novel. In both cases, the ecosystem models were initiated in response to some management question that was driven by stakeholder input. For Atlantic menhaden, the primary issue driving model development pertained to concerns raised by stakeholders over many years about the impact that menhaden harvest has on their predators. In the Irish Sea, the issue at hand centered on environmental explanations for poor recovery of several managed fish stocks following concerted effort reductions.


[image: image]

FIGURE 1. Flow chart outlining the steps in advice giving involved in the proposed method, with the input of the ecosystem modeling to the single species advice highlighted.


Next, both case studies produced and reviewed a suite of modeling approaches designed around, and in response to, the management questions. The approaches taken by ASMFC and ICES to complete this step were similar in several ways. Both case studies assembled technical workgroups that worked closely with stock assessment modelers and both models were developed through a series of workshops and meetings that were open and transparent to the public. This process is described in further detail below. An ensemble approach was initially taken that ultimately led to the selection of a single model for management use. For Atlantic menhaden, the final model was selected by the workgroup and then put forward for review by a panel of independent experts, that were also reviewing the menhaden stock assessment. In the Irish Sea, the EwE model, which had also been reviewed by the workgroup and a panel of independent experts, was selected as fitting to the observational data, and being the most operationally ready model from the ensemble being developed.

An important step in the process is the determination of the ecosystem indicator to be used to adjust F. Two different approaches were taken in these case studies. For the Irish Sea, the goal was to determine potential environmental drivers of managed fish stocks so that harvest rates could be adjusted accordingly. The ecosystem indicators identified for commercial stocks in the Irish Sea included sea surface temperature, zooplankton abundance, and predator abundance. For Atlantic menhaden, the ecosystem indicator was quite different, being a property of one of the stocks rather than an environmental variable. Here, menhaden were treated as a driver on predator populations that could be manipulated by managers and the ecosystem indicator was the biomass of their most sensitive predator, striped bass. The goal in this case was to ensure sufficient food availability to allow the projected biomass of striped bass to recover under scenarios of reduced fishing pressure. These two examples serve to highlight the flexibility of this approach—either environmental or inter-species interactions can be accommodated by adjusting target F in the way described.

The method of adjusting the Ftarget is not specified in Figure 1, because as the examples above demonstrate the adjustment will depend on the needs of the particular case. However, this method does not involve directly transferring a value of Ftarget from the ecosystem model to the single species model, which should minimize errors arising from different estimates of biomass levels in the different models. Rather, it applies a scaling factor to the Ftarget from the single-species model, thus ensuring that the resulting Ftarget is compatible with the single-species F reference points from the assessment. In the Irish Sea, Feco was specific for each species and based on a linear scalar to the environmental driver, constrained within defined targets and limits. In the menhaden example, Feco was established based on the response of a single predator. Note also that because this link simply involves rescaling the single species Ftarget value, a full coupling (two-way interaction) between the single species and ecosystem model is not required.

Finally, the assessment model must then run a short-term forecast (typically 1–3 years) with the given Ftarget to produce quota advice for the coming year or years. The proposed method adjusts the Ftarget based on ecosystem information as can be seen in the examples described above. The method does not otherwise alter the existing harvest control rule methodology, and the revised Ftarget is constrained to not exceed the existing Flim or breach precautionary guidelines.

The strength of this approach is that the assessment and management of fish stocks remains with the single species assessment models and within the current management structure as much as possible. The stock history, status, reference point calculation, initial estimate of target F, and the translation of the final target into quota advice all remain within the realm of the single-species assessment model. As a result, the advice system is familiar to managers and stakeholders, so these first steps toward EBFM are less onerous and daunting than what managers, stakeholders, and scientists might have expected. Only the adjustment of the target F is influenced by the ecosystem modeling. This also implies that no change is required to the existing assessment model. This draws on the strengths of existing single species stock assessments, while broadening the management approach to include ecosystem considerations. Essentially, the traditional single stock assessment recognizes that stock status can change in response to fishing mortality, and intrinsic population dynamics. The ecosystem model recognizes that stock status can change in response to extrinsic ecosystem factors. The proposed approach then modulates the target F from the stock assessment model with the status of the indicator(s) identified by the ecosystem model. In addition, the management framework currently in place can remain and the method simply fits within the existing structures. The management regime itself can, of course, continue to evolve and can change with time as the needs arise, but no fundamental change is required before implementing this method. The proposed method allows the key driver(s) for a particular stock to be considered without requiring that all possible drivers be included. Finally, because the method adjusts Ftarget to produce an Feco, with the constraint that Feco remains at or below existing Fthreshold levels, the risk of stock collapse is no higher, and potentially lower, than under current single species assessments and management.

Apart from the step involving adjusting the Ftarget, this workflow is exactly as is currently done for single species management advice; and thus, offers an easy and straight-forward transition to implementing EBFM.



THE PROCESS

Often, the way science is conducted is equally as important as its context when it comes to operationalizing advice (Österblom et al., 2020). To this end, the similarities shared by the United States Menhaden and Irish Sea case studies do not just lie in the nature of their approach, but also in the way the approaches were developed. Both case studies were developed at the science-policy interface where they addressed specific questions linked to impending decisions, which managers and stakeholders were already invested in. This streamlined the integration of ecosystem information into their respective advice structures by allowing ecosystem researchers to become familiar with the advice framework and management needs. Equally, the scientists linked to the advisory process (the stock assessors) were able to become accustomed to the ecosystem research, and importantly, for limitations to be made explicit and expectations to be managed throughout. Furthermore, the work was truly transdisciplinary in nature, where scientists that do not normally work together (stock assessors and ecological modelers) joined with stakeholders, advisors, and managers to co-produce a conceptual, theoretical, and methodological innovation that integrates knowledge between disciplines, to produce a practical and applicable solution. The integration of the stakeholders into this process, in both cases, was particularly important, and it is rare to see them actively engaging with a complex ecosystem model such as EwE. It is anticipated that the development of modeling and management will be an iterative process, with further refinements in the future.

In both case studies, there was strong and motivated stakeholder involvement. Critically, that involvement led to co-designed elements, e.g., question formulation, food web, and effort trajectory construction in WKIrish and specifying objectives of interest in the menhaden case study, as well as interrogation of the model results with the scientists. Equally, both case studies included those involved advising on the management of the stocks. For WKIrish, the team included those involved in the stock assessment and advice process, up to, but not directly including the managers themselves. In the EU, the next step in further developing the process would be to include policy-makers, at the national and EU ministerial level; however, that presents a substantial challenge. For the menhaden case study, the team included scientists that considered public comment and input during the model development process and met regularly with managers to report on progress and receive input. In the US case, an immediate next step would be a risk-based decision-making process to set a TAC for 2021–2022 based on the accepted ERPs. In the US case, a broader next step would be to start integrating policy decisions across management bodies for menhaden and its key predators instead of this approach being contained solely within the menhaden management arena.



SUMMARY

As fisheries management agencies evolve toward EBFM, the modeling approaches used to inform decision-making must also evolve. Previously, single-species model systems had co-evolved with single-species management and data collection systems so that they were well adapted to address the specific management issues and concerns for a given stock. Ecosystem models generally account for a broader set of ecological interactions influencing fish stocks but usually have less resolution on specific population dynamics, thus they are well-suited to complement single-species models. Combined single-species with ecosystem or multispecies modeling tools can address the standard fisheries management objectives as well as a broader suite of ecosystem-oriented objectives (such as trade-offs between fisheries for different stocks or responding to changing environmental conditions) that arise with increased EBFM implementation. The method of adjusting the target F to produce a Feco is sufficiently flexible to be used by many ecoregions; to address multiple different purposes, goals, or objectives; and fits within existing management schemes. By only adjusting the existing Ftarget, this method avoids directly transferring values between different models, and by remaining within existing limit reference points the method imposes no additional risk of stock collapse. The two examples presented here represent different goals using the same process. By fitting to ranges of Ftarget which come close to delivering MSY (as in the Irish Sea case), this approach maintained existing good yield criteria as was desired while also incorporating ecosystem information. Alternatively, as shown in the Atlantic menhaden case, the method allowed for changes in Ftarget on forage fish to support predators in a manner that draws upon best available scientific information and incorporates knowledge of the changing ecosystem. In both cases the adjustment was made without increasing the risk of stock collapse beyond that already included in the existing management system. Clearly, there will be different requirements when implementing EBFM in different fisheries and management contexts, and meeting the needs of managers and stakeholders in a given situation is likely to be critical to adoption in management (Townsend et al., 2019). Management Strategy Evaluations (MSEs) give one potential framework to explore alternative applications of this approach.

The proposed method for computing an Feco does have some limitations in that it may not necessarily include the full suite of pertinent predator and prey interactions or environmental factors, and it does not require that multi-species trajectories be linked to the single species projections when producing quota advice at the end of the process. It could be argued that the proposed approach is still quite limited in the value it gains from the ecosystem model. The ecosystem model itself is not used directly. It is used to suggest which ecosystem indicators are critical (e.g., water temperature in the WKIrish case, or predator stock biomass in the menhaden case) or to identify the predator-prey tradeoff relationship. These are empirical values that can be determined in any given year without running the ecosystem model, or in the case of menhaden, are long term equilibrium reference points. This could be considered as taking a lot of effort for a very constrained outcome. However, this approach provides a quantitative, mechanistic link between ecosystem indicators and appropriate harvest levels, instead of the ad hoc buffer approach of solely relying on indicators. The models could be used much more extensively, e.g., linking in elements of spatial distribution, growth, predation, food web effects etc. or by optimizing fishing mortality rates to achieve some broader management objective. More importantly, they have the potential to integrate numbers of pressures and drivers to indicate the likely short-term future of the stock. The approach of extending the single species assessment in this manner relies on there being sufficient data and process understanding to construct a meaningful ecosystem model.

Implementing “full” EBFM would require considering all major species and other ecosystem components interacting together and would allow for trade-offs and interactions between different fisheries and management strategies. For example, it may well be sustainable to fish a species above its long-term single species reference level (Fthreshold) in a situation where predator biomass is low or where environmental conditions are favorable. In principle, management objectives could allow for a Ftarget level being adjusted not just above the single species Ftarget, but also above the single species limit reference points, but one question that would arise is how to identify a precautionary target fishing level. The inability to identify the precautionary limit reference point leads back to the difficulties of using ecosystem models to directly inform tactical fisheries management advice. Therefore, exceeding the single species precautionary limits would require a separate analysis that this did not involve an excessive risk of inducing stock collapse. For true EBFM, one would also ideally want to allow for variations of other fish stocks and environmental conditions to have an impact on the single species stock assessment model and short-term forecast for each stock. Such a “fully coupled” system would allow for a more detailed multispecies analysis and support trade-offs between a wider range of stocks. How to achieve this is currently an active field of research (e.g., Gaichas et al., 2017; Holsman et al., 2020). Within the framework proposed here, such a system could be constructed through a tighter coupling of one or more single-species models and the ecosystem model. However, the method presented here represents a clear step forward in integrating ecosystem information into the advice-giving process, allowing ecosystem information to directly affect tactical quota-setting advice. The existence of two very different examples shows that it is a flexible and powerful approach, which can efficiently and effectively address a number of current needs in fisheries advice.

In conclusion, the very simplicity of the Feco method presented here makes it viable for immediate implementation. We do not claim that this is the only solution to implementing EBFM, nor that it can address every possible issue. Nevertheless, the method here represents a valuable and flexible step forward in practical, operational EBFM, which can be directly implemented within existing management frameworks.
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Atlantic menhaden is an important forage fish and the target of the largest fishery along the US East Coast by volume. Since 1999, managers at the Atlantic States Marine Fisheries Commission, stakeholders, and scientists have been interested in developing ecological reference points (ERPs) that account for menhaden’s role as a forage species. To accomplish this, we developed a suite of modeling approaches that incorporated predation on menhaden and changes in productivity over time and allowed for evaluation of trade-offs between menhaden harvest and ecosystem management objectives. These approaches ranged in complexity, from models with minimal data requirements and few assumptions to approaches with extensive data needs and detailed assumptions. This included a surplus production model with a time-varying intrinsic growth rate, a Steele-Henderson surplus production model, a multispecies statistical catch-at-age model, an Ecopath with Ecosim (EwE) model with a limited predator and prey field, and a full EwE model. We evaluated how each model could address managers’ objectives and compared outputs across the approaches, highlighting their strengths, weaknesses, and management utility. All models produced estimates of age-1 + biomass and exploitation rate that were similar in trend and magnitude to the single-species statistical catch-at-age model, especially in recent years. While the less complex models were relativity easy to implement and update, they lacked key elements needed to manage multiple species simultaneously. More complex models required a wider array of data and were more difficult to update within the current management time-frames, but produced a more useful framework for managers. Ultimately, an EwE model of intermediate complexity coupled with the existing single-species assessment model was recommended for use in management.

Keywords: ecological modeling, ecosystem-based fisheries management, forage fish management, predator-prey dynamics, Atlantic menhaden, Brevoortia tyrannus


INTRODUCTION

Over the past decade, there has been increasing interest in taking into account ecosystem impacts when managing forage species. Much of the work on this issue has concluded that forage fisheries should be managed more conservatively than single-species reference points would suggest, to ensure both the sustainable harvest of forage fish and to reduce ecosystem impacts from their removal. For example, Smith et al. (2011) recommended maintaining forage fish populations at a target biomass of 75% of unexploited biomass to prevent negative consequences to predators, compared to the approximately 60% level implied by fishing at the F that produces the maximum sustainable yield (FMSY). Pikitch et al. (2012) recommended a precautionary approach for forage fish management, including fishing at 50–75% of FMSY and using a biomass threshold of 30–40% of unexploited biomass depending on the quality of data available, in order to sustain both predator and prey species. There has been some criticism of the studies underpinning these recommendations. Essington and Plagányi (2014) highlighted the pitfalls in the approach of reusing ecological models that were developed to address other issues, as they may not have the depth or breadth of ecosystem structure necessary to fully explore questions they were not designed to answer. Hilborn et al. (2017) pointed out that the ecological models used to develop the rule of thumb recommendations in Pikitch et al. (2012) did not account for the weak, environmentally driven stock-recruitment relationship observed for most forage species or the differing selectivities of predators and fisheries, and therefore may overstate the impact of fishing on forage fish abundance and predator population dynamics (but see also the response of Pikitch et al., 2018). However, there remains a general consensus that ecosystem services should be considered when managing forage fisheries, and that developing models tailored to a specific ecosystem, species of interest, and management question provides the best results.

The range of modeling approaches to provide quantitative advice for ecosystem-based fishery management for forage fishes has greatly expanded in the past few decades (Rice and Duplisea, 2014). Early approaches focused on key predator-prey interactions and parsimonious models. For example, Steele and Henderson (1984) showed that the large population fluctuations observed in forage fish species could be recreated with a surplus production model that incorporated a predation function, resulting in multiple equilibrium states for the prey species. The multispecies virtual population analysis (MSVPA) framework was developed as a set of single-species VPAs for key species linked by a feeding model (Helgason and Gislason, 1979; Pope, 1979) to estimate predation mortality on prey species, along with population size and fishing mortality. As processing power and data collection improved, more complex models became possible. The multispecies statistical catch-at-age (MSSCAA) approach translated the MSVPA into the statistical catch-at-age and catch-at-length frameworks to take advantage of the more statistically robust maximum likelihood fitting approach (Lewy and Vinther, 2004; Kinzey and Punt, 2009). Full ecosystem models like Ecopath with Ecosim (Christensen and Walters, 2004) and Atlantis (Fulton et al., 2004; Audzijonyte et al., 2019) were developed to model not just the complete food web from primary production to apex predators but also physical processes, environmental drivers, and socioeconomic factors. As with all quantitative modeling, there is a trade-off between model complexity (i.e., realism) and data requirements (Plagányi et al., 2014; Punt et al., 2016). As model complexity increases, concerns shift from model bias due to the omission of important ecosystem components in simple models to parameter uncertainty that arises as the number of parameters increases in a complex model (Collie et al., 2016). The more complex the model and the more data streams that are needed to support it, the more challenging it is to incorporate into short and moderate-term fisheries management. In addition, model structure affects what kind of management advice can be provided and what kind of questions the model can answer. A multi-model approach allows for the exploration of the trade-offs between model complexity, data requirements, and management objectives to select an approach that makes the best use of the available data and provides information that is relevant to managers and stakeholders.

We applied a multi-model approach to an important forage fish in the northwest Atlantic coastal ecosystem, Atlantic menhaden (Brevoortia tyrannus). Atlantic menhaden have supported one of the largest fisheries in the U.S. since colonial times, with the vast majority of landings being used to produce fish meal and fish oil for use in a variety of products, and a smaller component being used as bait for other commercial and recreational fisheries (SEDAR, 2020a). Atlantic menhaden are also a prey item for a variety of species including larger fish such as striped bass (Morone saxatilis; Walter et al., 2003) and bluefin tuna (Thunnus thynnus; Butler et al., 2010); birds such as bald eagles (Haliaeetus leucocephalus; Mersmann, 1989) and osprey (Pandion haliaetus; Glass and Watts, 2009); and marine mammals like bottlenose dolphin (Tursiops truncatus; Gannon and Waples, 2004). Many of these predator species support valuable commercial and recreational fisheries or ecotourism industries as well as having cultural value. The importance of Atlantic menhaden as a forage fish has long been recognized by scientists, stakeholders, and the body responsible for managing Atlantic menhaden, the Atlantic States Marine Fisheries Commission (ASMFC; Atlantic States Marine Fisheries Commission [ASMFC], 1981). The single-species assessment of Atlantic menhaden has historically used estimates of natural mortality from an MSVPA model to better quantify the effects of predation on the Atlantic menhaden population (Atlantic States Marine Fisheries Commission [ASMFC], 2004, 2011; Garrison et al., 2010). However, this approach had several limitations, one of which was the lack of information regarding the effects of Atlantic menhaden removals on important predator species. ASMFC remained interested in developing quantitative “ecological reference points” (ERPs) that take into account Atlantic menhaden’s role as a forage species to evaluate stock status and set quotas (Atlantic States Marine Fisheries Commission [ASMFC], 2012). ASMFC identified a set of ecosystem management objectives for Atlantic menhaden that it wanted the ERPs to inform, including (1) sustaining Atlantic menhaden to provide for directed fisheries, (2) sustaining Atlantic menhaden to provide for predators, (3) providing stability for Atlantic menhaden and predator fisheries, and (4) minimizing risk due to a changing environment (Atlantic States Marine Fisheries Commission [ASMFC], 2015).

Here we describe the process of model exploration and comparison to develop a tool that provided ERPs for Atlantic menhaden that met managers’ needs. For more detail on the final recommended model and its implementation in a management framework, see Chagaris et al. (2020). For this paper, we had three primary objectives. First, we developed a suite of models capable of estimating ERPs for use in the management of Atlantic menhaden. These models covered a range of complexity levels, model structures, and model assumptions, including two different types of surplus production models, a MSSCAA model, and two Ecopath with Ecosim models of varying levels of complexity. Each model was fit to observed data, including time series of total catch, catch-at-age, indices of young-of-year and age-1+ abundance, and diet data for Atlantic menhaden and other species in the ecosystem. Not all models used all data sources, but model inputs were standardized as much as possible across the candidate models. All of the models were capable of producing reference points that reflected ecosystem considerations in some way, although the definitions of the reference point and the type of information they provided varied depending on model structure. Second, we compared the outputs and estimates of each model, including biomass, exploitation rate, and natural mortality rate of Atlantic menhaden, as well as the stock status based on their ERPs. Example ERPs were calculated for each model based on conditions (e.g., productivity, predator abundance) in 2017, the terminal year of the models. Third, we evaluated the capability and utility of the models to produce management advice for the explicit ecosystem objectives defined for this fishery.



MATERIALS AND METHODS


Data Standardization

To better evaluate the effects of differences in model structure, model inputs were standardized as much as possible across the candidate models, with all models using the same data sources for the key ecosystem species. The key ecosystem species were defined as Atlantic menhaden, striped bass, Atlantic herring (Clupea harengus), bluefish (Pomatomus saltatrix), spiny dogfish (Squalus acanthias), and weakfish (Cynoscion regalis). These species were selected based on the magnitude of the species’ role as Atlantic menhaden consumers or as alternative prey for Atlantic menhaden predators as indicated by an analysis of the Northeast Fisheries Science Center Food Habits Database (Link and Almeida, 2000)1, the quality and availability of stock assessment data for each species, and the relevance of each species to ASMFC management. All of the key ecosystem species had recently undergone stock assessments with data and population estimates available through 2017, the terminal year of the ERP models (Northeast Fisheries Science Center [NEFSC], 2018a,b, 2019, 2020; Atlantic States Marine Fisheries Commission [ASMFC], 2019; SEDAR, 2020a). Due to differences in structure among models, not all models included all of the key ecosystem species, and some models included additional species or species groups.

Each of the models had somewhat different data requirements. All models required data on Atlantic menhaden, and the ERP models used the same time-series of total removals, life history parameters, and indices of abundance as the Atlantic menhaden single-species model to the extent practicable. For models that required data on other species, datasets from the most recent stock assessments were used; for some models, this included input data like total removals, life history parameters, and indices of abundance, while for other models, the stock assessment estimates of biomass and/or fishing mortality rates were used. More detail on the data used in each model is provided in Section “Model Descriptions” below.

The starting year for each of the ERP models was constrained by the availability of data for the species included in the model. The Atlantic menhaden stock assessment started in 1955, but the starting years for the striped bass, bluefish, and weakfish assessments were 1982–1985, when reliable estimates of recreational catch became available. Diet data were obtained from three large scale monitoring programs: the Northeast Fisheries Science Center Food Habits Database, the North East Area Monitoring and Assessment Program (NEAMAP), and Chesapeake Bay Multispecies Monitoring and Assessment Program (ChesMMAP). These data were supplemented with smaller-scale studies, especially for species that were not well represented in the larger monitoring programs (Garrison et al., 2010).



Model Descriptions

We developed a suite of five models: a surplus production model with a time-varying intrinsic growth rate of the population, r, (SPM TVr; Nesslage and Wilberg, 2019), a Steele-Henderson surplus production model with predation (SPM S-H; Steele and Henderson, 1984; Uphoff and Sharov, 2018), a multispecies statistical catch-at-age model (MSSCAA; Curti et al., 2013; McNamee, 2018), an intermediate complexity Ecopath with Ecosim model with a limited predator and prey field (EwE-MICE; Chagaris et al., 2020), and a full Ecopath with Ecosim model (EwE-Full; Buchheister et al., 2017a,b). We also compared these models to the results of the single species statistical catch-at-age model used to assess Atlantic menhaden (the Beaufort Assessment Model, BAM; Williams and Shertzer, 2015; SEDAR, 2020a). Together, these models covered a wide range of model complexity and data requirements (Table 1). Full descriptions of individual models, including equations, parameter estimates, model diagnostics, and sensitivity runs, are available for the single-species model in SEDAR (2020a) and for the ERP models in SEDAR (2020b). The single-species BAM has been used since 2010 to assess and manage Atlantic menhaden. The BAM was a single-species statistical catch-at-age model that estimated population-size-at-age and recruitment, using 1955 as the start year, and projected the population forward in time (Williams and Shertzer, 2015; SEDAR, 2020a). The BAM used a fleets-as-areas model with each of the fleets broken into areas to reflect differences in selectivity and Atlantic menhaden availability along the coast. The BAM was fit to a time series of total landings and catch-at-age data for each regional fleet, three age-1+ fishery-independent indices, index-at-length data, a larval index, and a juvenile abundance index (SEDAR, 2020a).


TABLE 1. Comparison of model structure, attributes, and inputs used for ERP models.

[image: Table 1]The SPM TVr and SPM S-H were the least complex models, with minimal explicit assumptions about ecosystem dynamics and productivity drivers. They also required the least data. Unlike traditional surplus production models, which estimate a single, time constant value for r, the SPM TVr model estimated an annual r for Atlantic menhaden using a random walk process (Nesslage and Wilberg, 2019; SEDAR, 2020b). The parameter r encompassed a range of population processes, including recruitment, natural mortality, and size-at-age. Estimation of time-varying r captured the overall effects of interannual variability in those processes without attributing changes in productivity to any one driver. The SPM TVr model had minimal data requirements: a time-series of removals and one or more indices of relative abundance for Atlantic menhaden. A fishery-dependent index that covered the entire time-series (1957–2017) was used in addition to two shorter adult fishery-independent indices used in the single-species assessment, to provide the contrast in stock size that surplus production models need to independently estimate r and carrying capacity, K (Hilborn and Walters, 1992).

The SPM S-H model is another variation on the traditional surplus production model which incorporated additional sigmoidal type III predation functions that estimated predation losses from one or more predators (Collie and Spencer, 1993, 1995; Uphoff and Sharov, 2018; SEDAR, 2020b). The SPM S-H model explicitly linked changes in productivity to changes in predator biomass. The SPM S-H model used the same Atlantic menhaden inputs as the SPM TVr: total removals, two adult fishery-independent indices, and the long-term fishery-dependent index. The SPM S-H model also required a time-series of predator biomass. Different combinations of striped bass, bluefish, and spiny dogfish were explored as candidate predators by comparing their SPM S-H models to SPM models (no predator); the final model used striped bass as the sole predator based on AICc, model fit, and how well consumption estimates matched similar parameters for included species derived from feeding experiments and bioenergetics models (SEDAR, 2020b). The base model covered 1985–2017, but a long-term exploratory model was developed by hindcasting striped bass biomass from 1957 to 1981 based on a fishery-independent egg presence-absence index of egg production (Uphoff, 1993, 1997) in the Chesapeake Bay, the main striped bass spawning ground.

The MSSCAA was one of the models of intermediate complexity, with more explicit and detailed assumptions about ecosystem dynamics and more extensive data requirements than the surplus production models, but fewer key predator and prey species than the full EwE model. The MSSCAA was a set of traditional statistical catch-at-age models for the key ecosystem species linked by equations that described trophic interactions (Curti et al., 2013; McNamee, 2018; SEDAR, 2020b). The MSSCAA included a pool of “other ecosystem biomass” to account for alternative prey species that were not explicitly modeled. The MSSCAA was fit to the same datasets used for individual species’ statistical catch-at-age models (total removals, indices of relative abundance, and age composition of the catch and indices), although the inputs were simplified somewhat to reduce the number of fleets and indices of abundance in the model (SEDAR, 2020b). The MSSCAA was also fit to observed diet composition data. The MSSCAA was parameterized with the same life history inputs as the single-species assessments such as size-at-age, maturity schedule, and, for predator species, natural mortality rates. The MSSCAA began in 1985, the earliest year that all catch-at-age data sets were available for the key ecosystem species.

EwE is a dynamic food web model that simulates changes in biomass across all trophic levels, from detritus and primary producers to top predators (Christensen and Walters, 2004). In EwE temporal simulations, biomass dynamics are predicted as a function of prey consumed minus losses to predation and fishing (and migration if included), where consumption is modeled based on foraging arena theory (Ahrens et al., 2012). Importantly, the foraging arena equations account for top–down and bottom–up processes, which allows for the development of trade-off relationships between prey harvest and predator biomass. Additionally, EwE models can produce equilibrium-based MSY reference points and generate emergent stock-recruit relationships under different ecosystem conditions. The basic inputs for EwE are biomass, total mortality or production rate, consumption rates, diet composition, and total removals. The model is calibrated to time series of relative abundance and catch, using fishing effort or fishing mortality as forcing series, by estimating key parameters of the foraging arena equations to improve model fit to observed data.

The EwE-MICE was another intermediate complexity model (Chagaris et al., 2020; SEDAR, 2020b). The EwE-MICE model included the six key ecosystem species, as well as anchovies (Anchoa spp.), benthic invertebrates, zooplankton, phytoplankton, and detritus. The key ecosystem species in the EwE-MICE model were split into age stanzas based on trophic ontogeny and fishery selectivity, generally represented by age-0 and age-1+ fish, or juvenile, sub-adult, and adult fish. The EwE-MICE simulations began in 1985, the earliest year that all single-species assessment results were available for the key ecosystem species.

The EwE-Full model represented the most complex and data-intensive model explored (Buchheister et al., 2017a,b; SEDAR, 2020b). The EwE-Full model described the Northwest Atlantic Continental Shelf ecosystem using 61 trophic groups, compared to 17 trophic groups in the EwE-MICE model. In addition to the key ecosystem species, the EwE-Full model also included other economically important finfish like Atlantic cod (Gadus morhua) and summer flounder (Paralichthys dentatus) and higher non-finfish trophic groups like sharks, sea birds, and marine mammals. The EwE-Full simulations began in 1982, the earliest year that estimates of recreational catch were available for finfish predators and the starting year for many of the single species stock assessments. The EwE-Full model was calibrated to stock assessment estimates of biomass for Atlantic menhaden and other species, where available, unlike the EwE-MICE model, which used the indices of abundance for all species.



Reference Point Definitions

All of the ERP models were capable of producing reference points that reflected ecosystem considerations in some way, although the definitions of the reference point and the type of information they provided varied from model to model (Table 2). The SPM TVr model provided annual estimates of UMSY, the exploitation rate that produces the maximum sustainable yield, which was calculated based on annual estimates of r. This provided sustainable exploitation rate reference points based on the changing productivity of the stock; 75% of UMSY was used as the overfishing threshold. The SPM TVr model also estimated BMSY, the biomass that produces MSY, which did not vary over time, as it was calculated from a time-constant estimate of K; 50% of BMSY was used as the overfished threshold. The SPM S-H model produced reference points in terms of maximum usable production (MUP), the surplus production available to predators and the fishery, instead of single species MSY (Overholtz et al., 2008; Moustahfid et al., 2009). Surplus production available to the fishery alone was defined as MUP minus consumption by predators in the most recent years; the F rate associated with the surplus production available to the fishery, FMUP, provided an overfishing threshold that would allow Atlantic menhaden to maintain its current forage role (Moustahfid et al., 2009). The biomass that produced the maximum usable production, BMUP, was the equivalent of BMSY, for the fishery and modeled predators and was used as the overfished threshold. Since the SPM S-H model did not contain all predators BMUP was used as a threshold to provide some (but unknown) buffering against important predation by an excluded predator or predators.


TABLE 2. Reference points definitions and stock status determinations for the single-species and ERP models based on current ecosystem conditions.

[image: Table 2]The MSSCAA output (e.g., current selectivity patterns and estimates of M) could be used to calculate MSY- or spawning potential ratio (SPR)-based reference points for Atlantic menhaden as is done with traditional single-species statistical catch-at-age models; F40%SPR, the F rate that results in 40% of the unfished SPR was used as the overfishing threshold. The EwE models calculated FMSY by running long term projections over a range of F or effort values for Atlantic menhaden and identifying the F that produced MSY. Additionally, the EwE models generated menhaden fishing mortality reference points based on the biomass response of their predators and under alternative ecosystem conditions representing different biomass levels of predators and prey in the model. Reference points for all models were calculated based on current ecosystem conditions, i.e., productivity levels or predator consumption levels in the most recent year of the model.

For this study, we focused on F reference points that could be used to provide management advice (i.e., quota recommendations). The surplus production models produced both F and biomass reference points internally, with no additional work required, and both are reported here. Absolute biomass reference points could be derived for the MSSCAA, but development would have required additional work outside of the model and would have been sensitive to assumptions about future recruitment dynamics, predator fishery control rules, and fishery selectivity patterns. Biomass reference points were not provided for the EwE models primarily because initial biomass was not estimated by the model but was a model input, and the coarse age structure and maturity representation in EwE confounded comparisons of spawning biomass across model types.

For comparison, stock status based on the single-species reference points derived from the BAM was also evaluated. The single-species reference points were based on the observed F rates during a sustainable period in the fishery (1960–2012); the overfishing threshold was the maximum geometric mean F-at-age for ages 2–4 over that period, and the overfished threshold was the long term equilibrium egg production that would result from fishing the population at the F threshold (SEDAR, 2020a).



Model Comparisons

We quantitatively and qualitatively compared model estimates and performance. Quantitative metrics included biomass, exploitation rate, natural mortality rates, and stock status metrics. For biomass, exploitation rate, and natural mortality rates, we compared absolute values to assess scale and values relative to their time-series mean to assess trends; Spearman’s rank correlation coefficient was used as a metric of correlation between time-series with a p-value adjusted for multiple comparisons using the Bonferroni correction. Qualitative metrics included the ability to inform management objectives on a time scale consistent with management needs.

To compare Atlantic menhaden population size estimates across models, total age-1+ biomass was used. For the SPM TVr and SPM S-H models, this was equivalent to the total biomass estimates from each model. For the BAM and the MSSCAA model, this was the sum of the beginning of the year biomass at age for ages 1–6+. For the EwE models, total age-1+ biomass was defined as the biomass in the “adult” size class for the EwE-MICE model (which used only two size classes, equivalent to age-0 and age-1+) and the sum of the “medium” and “large” size classes for the EwE-Full model (which used three size classes, with the “small” size class equivalent to age-0). The 95% confidence intervals from the BAM were used as an estimate of the minimum uncertainty for the single-species biomass estimates to facilitate comparisons.

Exploitation rate of Atlantic menhaden was used to compare measures of fishing mortality across models with different structures as well as different units. Exploitation rate was calculated as predicted total age-1+ fishery removals in weight divided by the beginning of the year age-1+ biomass for all models. The EwE models used exploitation rate as an input forcing series, and so were not included in this comparison. The 95% confidence intervals from the BAM were used as an estimate of the minimum uncertainty for the single-species exploitation rate estimates to facilitate comparisons.

The SPM S-H, the MSSCAA, and the EwE models estimated natural mortality from the predation of modeled species, referred to as M2. To compare estimates of total M and M2 across models, biomass-weighted average M and M2 were calculated for the models that had multiple age or size bins for adult Atlantic menhaden (the MSSCAA and EwE-Full models), while the full M2 from the SPM S-H and the full M and M2 on age-1+ Atlantic menhaden from the EwE-MICE were used for the less structured models. The SPM TVr did not produce estimates of M or M2. The SPM S-H included non-modeled predation mortality in the r parameter, so it did not produce estimates of M. The BAM used an age-varying but time-constant M as input, and a biomass-weighted average M on age-1+ was calculated for the BAM for comparison purposes.

We also compared stock status relative to each models’ reference points in the terminal year. Because of differences in scale and currency for each model, we did not compare the absolute values of the reference points. Each model’s terminal year estimate of F or U for Atlantic menhaden was compared to the F or U threshold; overfishing was occurring if the terminal year estimate was above the threshold. Each model’s terminal year estimate of biomass or fecundity for Atlantic menhaden was compared to the biomass or fecundity threshold where available (the surplus production models and the BAM); the stock was overfished if biomass or fecundity was below the threshold. The reference point values were calculated based on the most recent ecosystem conditions for each model.

Because the EwE-MICE was a scaled-down version of the EwE-Full model, we could evaluate the effects of a more limited predator-prey field on our understanding of the ecosystem. We conducted 40–50 years projections using different levels of F on Atlantic menhaden with both EwE models and evaluated the resulting trends in biomass for other species in the ecosystem to determine which predators were most sensitive to menhaden harvest and assess whether the EwE-MICE model was missing predators that were more sensitive to Atlantic menhaden harvest (SEDAR, 2020b).

In addition to model output, we also qualitatively evaluated the models’ abilities to address management objectives and performance measures. Based on the report from the 2015 ASMFC Ecosystem Management Objectives Workshop (Atlantic States Marine Fisheries Commission [ASMFC], 2015), the models needed to be able to (1) explicitly examine the trade-off between fishery removal of Atlantic menhaden and important predator biomass; (2) provide quantitative and understandable advice on removal levels of Atlantic menhaden under various predator biomass or fishing levels; (3) examine the implications and consequences of Atlantic menhaden harvest strategy on important predators within the modeling framework, and (4) be updatable on a timeframe consistent with Atlantic menhaden management.



RESULTS


Quantitative Comparisons of Model Output

All models estimated similar trends in age-1+ biomass estimates and were on similar scales, both in comparison to each other and to the single-species assessment results (Figure 1). All ERP model estimates were significantly correlated with the single-species model estimates of biomass (ρ = 0.42–0.60, p < 0.003), and were generally correlated with each other as well (Table 3). The two surplus production models (SPM TVr and SPM S-H) and the single-species assessment model (BAM) were comparable across the entire time series (1957–2017). All three models showed a decline from the late 1950s to a low in the early 1960s before increasing through the end of the time series, although the surplus production models began increasing sooner than the BAM. The surplus production model estimates of biomass exhibited less interannual variability than the BAM estimates because they did not capture the variability in recruitment that is estimated by the statistical catch-at-age model structure. The MSSCAA model produced estimates of total biomass that were most similar in magnitude and interannual variability to the BAM (Figure 1). Both models showed an increase from 1985 to the early 1990s followed by a decline into the early 2000s and then recovery to levels higher than 1985, although the MSSCAA declined further during the late 1990s and early 2000s. The EwE models followed the overall trend and magnitude of the BAM estimates, but, like the surplus production models, they showed less variability over time than the statistical catch-at-age models because the EwE models did not include annual recruitment deviations (Figure 1). The EwE-Full model was calibrated to the biomass time series from the BAM, whereas the EwE-MICE model was calibrated using fishery-independent indices. Despite these differences, the EwE models were similar to one another and captured the overall trajectories estimated by the BAM and other ERP models.
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FIGURE 1. Estimates of age-1+ biomass from the ERP and single-species models. Shaded area indicates the 95% confidence intervals from the single-species assessment model.



TABLE 3. Spearman’s rank correlation coefficients and p-values between estimates of age-1+ biomass across models.

[image: Table 3]Exploitation rates generated by the BAM, SPM TVr, SPM S-H, and MSSCA models were of similar magnitude and exhibited the same declining trends since the mid-1980s (Figure 2). The ERP model estimates of exploitation rate were significantly correlated with the single-species estimates for the full time-series, and with each other (ρ = 0.67–0.98, p < 0.008; Table 4). However, the surplus production models showed a different trend from the BAM estimates in the earliest part of the time-series, the mid-1950s through the mid-1970s. The surplus production models estimated the highest exploitation rates over the entire time series in the early 1960s, followed by a steady decline through the end of the time series. The BAM estimates peaked in the mid-1970s to the mid-1980s before declining. The BAM estimates were lower relative to both the surplus production model estimates and its time-series high during the 1960s, although still higher than the estimates from the most recent years. The MSSCAA does not extend back that far, so no comparisons with that model were possible for this period. The MSSCAA estimates of exploitation rate were very similar to the BAM estimates over the 1985–2017 time period and generally within the MCMC confidence intervals of the BAM estimates, with the exception of the early 2000s (Figure 2). The EwE models used exploitation rates as input forcing time series, and so were not included in this comparison.
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FIGURE 2. Estimates of exploitation rates from the ERP and single-species models. Shaded area indicates 95% confidence intervals from the single species assessment model.



TABLE 4. Spearman’s rank correlation coefficients and p-values between estimates of exploitation rate across models.

[image: Table 4]The estimates of modeled predation mortality, M2 from the SPM S-H, MSSCAA, and EwE-MICE models generally showed similar trends over time, with M2 peaking in the late 1990s to early 2000s before declining (Figure 3A). This follows the trend in striped bass biomass over this period. In contrast, the EwE-Full model showed a gradual increase over the entire time-series. The magnitude of M2 estimates varied across models, with the SPM S-H and MSSCAA models estimating the highest M2, followed by the EwE-Full model, and then the EwE-MICE model. Overall, M2 made up a small component of total natural mortality, even for the EwE-Full model (Figure 3B). Total natural mortality showed relatively little trend across all models over the last 30 years. Estimates of M were more variable for the MSSCAA model than for the EwE models, and all three ERP models estimated a higher M than was used as input for the single-species model. The estimates of r from the SPM TVr model showed an inverse pattern to the M2 estimates from the intermediate complexity models, with a decline in productivity from the late 1980s through the early 2000s and then an increase, although not to the levels at the beginning of the time series in the early 1960s (Figure 4).
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FIGURE 3. Estimates of biomass-weighted predation mortalityM2 (A) and total natural mortality, M (B) for age-1+ Atlantic menhaden from the ERP models. (B) Includes the biomass-weighted average M for age-1+ Atlantic menhaden used in the single-species assessment.
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FIGURE 4. Time-varying intrinsic growth rate, r, from the SPM TVr model.


Estimates of MSY or MSY-proxy reference points from each model are shown in Table 2. Direct comparisons of these estimates are of limited utility, due to differences in model structure (e.g., whether the models used instantaneous annual F rates or catch divided by biomass as the overfishing metric) and the slight differences in scale across models. Comparisons of stock status determinations are more informative, and stock status determinations were also similar across models (Table 2). The single-species assessment determined that the stock was not overfished and overfishing was not occurring in 2017 relative to the single-species reference points (SEDAR, 2020a). The SPM TVr model found that although productivity was lower in recent years than it was at the beginning of the time-series, declining removals brought the exploitation rate under the UMSY threshold in 2017, indicating that Atlantic menhaden were not experiencing overfishing. Biomass was also above the BMSY target in 2017, indicating the stock was not overfished. Similarly, the SPM S-H model found that Atlantic menhaden were not overfished and were not experiencing overfishing in 2017. The MSSCAA model indicated that Atlantic menhaden biomass would increase if fished under 2017 F. The EwE estimates of F in 2017 were lower than the EwE estimates of FMSY the for all age stanzas, indicating overfishing was not occurring in those models.



Qualitative Comparisons of Model Attributes

The most substantial difference among models was their ability to address management objectives and performance metrics (Table 5). The SPM TVr was able to identify changes in productivity over time and adjust the sustainable exploitation rate to take those changes into account. However, the model did not attribute changes in productivity to predation or any other specific cause, and therefore could not be used to evaluate trade-offs between Atlantic menhaden harvest and ecosystem services. The SPM S-H attributed changes in productivity to predation and could provide reference points that allowed for sustainable Atlantic menhaden harvest under different striped bass population levels. However, it could not directly capture the consequences of Atlantic menhaden harvest to the predator populations. External proxy metrics of predator condition relative to modeled consumption could indicate Atlantic menhaden’s influence on striped bass. Condition was not routinely estimated for striped bass, but annual weights-at-age (standard inputs to the catch at age model) could be used as a proxy for condition, although this may be a coarse indicator of condition since fasting striped bass replace lipids with water in a linear fashion (Jacobs et al., 2013). Similarly, the current configuration of the MSSCAA model lacked bottom–up feedback. While it was capable of incorporating changes in productivity due to both predation mortality and variability in recruitment, it could not capture the effects of changes in Atlantic menhaden harvest on the predators as currently formulated.


TABLE 5. Fundamental ecosystem management objectives and their performance measures for Atlantic menhaden, and which ones each model is capable of meeting.

[image: Table 5]The EwE models were the only models that included both the top–down effects of predation on Atlantic menhaden and the bottom–up effects of Atlantic menhaden population levels on predators necessary to evaluate the trade-offs between Atlantic menhaden harvest and predator biomass. Comparing the performance of the EwE-Full model and the EwE-MICE model indicated that the reduced predator set of the EwE-MICE model was not missing other predators that had a stronger negative response to Atlantic menhaden harvest (Figure 5). Both EwE models indicated that striped bass were the most sensitive finfish predator; that is, increases in fishing pressure on Atlantic menhaden resulted in larger declines in biomass for striped bass than for the other key ecosystem species (Figure 5). The EwE-Full model indicated nearshore piscivorous birds were as sensitive as striped bass to Atlantic menhaden harvest rates, while other predators not included in the EwE-MICE model such as seabirds and demersal piscivores were less sensitive and more similar to bluefish and spiny dogfish in their response to Atlantic menhaden harvest rates (Figure 5). Harvest scenarios that did not cause declines in the biomass of predators included in the EwE-MICE model would be expected to have similar effects for other predators that were only included in the EwE-Full model over the range of scenarios examined here.
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FIGURE 5. Effect of Atlantic menhaden fishing on equilibrium biomass of select trophic groups (projected for 50 years) relative to their equilibrium biomass under status quo Atlantic menhaden fishing rates from the EwE-Full model. ERP focal species were fished at their target F while Atlantic menhaden F rates were scaled from 0 to 20 times the 2017 values using an F-multiplier. Lines are plotted for all ERP focal species and other trophic groups with non-negligible (>15%) responses. Solid lines indicate species included in both the EwE-Full and EwE-MICE models, while dashed lines indicate species or species groups included only in the EwE-Full model.


The EwE-MICE was deemed to have a more desirable level of complexity for transparent and quantitative examination of trade-offs, but only for the key ecosystem species included. The EwE-Full model would allow that trade-off evaluation for a wider range of predator species, but it had a much greater need for data inputs (e.g., from other assessments and for data poor species) and made more assumptions in describing the ecosystem. These complexities and uncertainties made it more challenging to provide timely advice for management decisions compared to the EwE-MICE model.



DISCUSSION

This multi-model approach, along with the emphasis on standardizing input data and key species across models, allowed us to explore the effects of model structure and assumptions on results and select a model that provided the most relevant information to managers. To the extent practicable, the ERP models used the same time-series of total removals, life history parameters, and indices of abundance as the Atlantic menhaden single-species model, and in some cases (i.e., the EwE models) used output from the single-species model directly. All of the models estimated similar overall trends in Atlantic menhaden population size and exploitation rates over the last 30 years, showing a generally increasing trend in biomass and a decreasing trend in exploitation rate. The magnitude of population size and exploitation rate estimates were also consistent with the estimates from the single-species assessment.

Despite similarities in population size and exploitation rates, the models differed in the level of interannual variability they estimated. These differences were due not to model complexity but to the specifics of model structure. The MSSCAA model, which was as complex as the EwE-MICE model, showed the same level of interannual variability as the single-species model, while the surplus production models, which were the least complex, showed lower interannual variability, more like the EwE models. The difference was in how each model handled recruitment: the statistical catch-at-age models estimated recruitment as annual deviations from mean recruitment and fit to observed indices of young-of-year abundance, while the EwE and surplus production models estimated recruitment or new production as a function of adult biomass. As a result, both the single and MSSCAA models were able to track the observed variability in recruitment, which translated to variability in age-1+ biomass, while the EwE and the surplus production models produced smoother trends. The SPM TVr does allow for some deviations from that relationship with the annual estimates of r, but the level of interannual variability is constrained somewhat by the CV on the random walk function. Sensitivity runs with the EwE-MICE including model-estimated primary production anomalies and configurations with recruitment deviations showed more interannual variability in recruitment. However, neither were incorporated into the final model due to lack of known primary production anomalies over the entire time period for which to compare the estimated values and unstable dynamics resulting from their inclusion. More fully capturing internanual variability in recruitment is a high priority moving forward with model development. This is an important source of model uncertainty for the surplus production and EwE models, and highlights the value of the multi-model approach.

The BAM and the surplus production models showed different trends in exploitation rate at the beginning of the time series, which was likely due to differences in the input data: the surplus production model used a fishery-dependent CPUE index as well as the fishery-independent indices, while the base run of the BAM did not. When the fishery-dependent CPUE index was included in the BAM as a sensitivity run, the trend in estimates of exploitation rate in the early part of the time-series was similar to the surplus production models, peaking at the same time as the surplus production models and declining consistently through the rest of the time-series, with a smaller peak in the 1980s (SEDAR, 2020b). The estimates of the exploitation rate from this run of the BAM were still lower than the estimates from the surplus production models. These models also produced terminal stock status similar to the single-species assessment, which determined that Atlantic menhaden were not overfished and were not experiencing overfishing in 2017.

The models did vary in their estimates of the magnitude and trend of M2, due to the differences in model structure. The models with limited predators (SPM S-H, MSSCAA, and EwE-MICE) showed a trend that followed the biomass trajectory of striped bass, the major predator in those models. The EwE-Full model with a larger predator field showed a flatter trend because changes in striped bass biomass and consumption were offset by changes in the biomass and consumption of other predators like summer flounder and haddock, and also because total M2 in the EwE-Full model was less influenced by changes in the contribution of M2 from a single predator than the intermediate complexity models. Estimates of r from the SPM TVr model were consistent with these estimates, showing lower productivity when M2 peaked in the intermediate complexity models and then an increase in productivity when M2 declined. The SPM TVr model does not attribute changes in productivity to any one mechanism, and changes in r may be related to factors other than predation mortality, such as changes in recruitment.

The ERP models provided insight into the sources of mortality for Atlantic menhaden and how M has changed over time relative to the static value assumed by the single-species model. However, the estimates of M from the ERP models are not independent of the BAM. The estimate of total M from the MSSCAA was the sum of the estimated M2 from modeled predators and a specified M0, the rate of natural mortality from all other sources; M0 was based in part on the empirical estimate of M (Liljestrand et al., 2019) used in the single-species model. The EwE models used Z, F, and biomass from the single-species model as input, and a total M (from Z-F) was parsed into M2 from modeled predators and residual unexplained mortality for the starting year. These inputs from the single-species model were sensitive to the M used in the BAM. Overall, estimates of total M from the ERP models showed more of a trend over time than the time-constant M used in the BAM, but less variability than the estimates of M2.

Mortality from modeled predators was a relatively small component of total natural mortality across all models that had an explicit M term. This is not unreasonable for the intermediate complexity models (i.e., the MSSCAA and the EwE-MICE models), which only modeled four predators, but it is unexpected for the full EwE model, which includes a much larger set of predators. In EwE parlance, this implies that Atlantic menhaden have a low ecotrophic efficiency (EE), meaning that there was a high proportion of “unexplained” mortality in the EwE models that was not caused by the modeled predators. This is likely due to a combination of potential factors which require further research and investigation. First, Atlantic menhaden are subject to significant non-predation mortality events such as hypoxia-driven fish kills and disease (Ahrenholz, 1991; Smith, 1999), which could explain the high estimates of unexplained mortality in the EwE models. Second, limitations and uncertainty in the diet data and predator biomass data may result in underestimates of M2. For example, diet composition estimates can vary significantly across studies and monitoring programs even for species with high sample sizes (e.g., Walter et al., 2003). Sensitivity runs conducted with the EwE-Full model where the diet composition data was set to the maximum observed value for all species resulted in higher estimates of M2, a lower, but still substantial, proportion of unexplained M, and higher EE (SEDAR, 2020b). In addition, there is considerable uncertainty around the estimates of M2 from the EwE-Full model due to high uncertainty in biomass levels and trends of modeled predators such as birds and marine mammals. Third, the model does not fully capture the spatiotemporal dynamics of Atlantic menhaden-predator interactions, potentially missing periods or locations of particularly intensive predation. Fourth, the estimates of mortality (M or Z) and biomass obtained from the BAM for the starting year of the EwE models could be biased high. The M used in the BAM was higher than what was used for other similar forage species (e.g., Atlantic herring, Northeast Fisheries Science Center [NEFSC], 2019), but was empirically derived and based on a comprehensive tagging program (Liljestrand et al., 2019). However, if the M used in the BAM was biased high, it would result in excess unexplained mortality for Atlantic menhaden in the EwE models (and a lower EE value), and it could have led to biomass estimates that were too high or improperly scaled to the rest of the ecosystem. Future modeling and sensitivity analyses should explore how the low proportion of explained M in the models and the resulting ERPs are influenced by model structure, deficiencies in predator diet or biomass data, overly high estimates of Atlantic menhaden M or biomass from the BAM model, and naturally occurring non-predation mortality events.

The true utility of these kinds of ecological models is not the ability to recreate a single-species assessment, but their ability to put those dynamics into an ecosystem context and develop ecological reference points that take into account Atlantic menhaden’s role as a forage fish. The values of these reference points are determined by the ecosystem conditions (e.g., productivity levels, predator consumption levels) under which they are calculated; of the four key ecosystem predators identified here, only spiny dogfish were not considered overfished in 2017. Therefore, levels of Atlantic menhaden removals that would be sustainable under 2017 conditions may not be sustainable when all predators are rebuilt, or during the process of rebuilding. While the models were able to calculate reference point values for different levels of productivity or predation, there is no one “right” answer or reference point value; the sustainable level of Atlantic menhaden fishing mortality depends on the management objectives for the predators and the ecosystem, which is ultimately a decision for managers.

Therefore, it is important that any models used to develop ERPs can explore the scenarios that managers are interested in and can address the performance metrics needed to ensure their policies are attaining their objectives on a timeline that works with their process. This will increase both the utility of the model and buy-in from managers. ASMFC identified two competing objectives for ecosystem management of Atlantic menhaden: sustaining Atlantic menhaden to provide for directed fisheries and sustaining Atlantic menhaden to provide for predators and predator fisheries. To provide the most useful information to management, the selected ERP model needed to allow managers and stakeholders to evaluate the trade-offs between Atlantic menhaden harvest and ecosystem goals. The EwE models were the only models that explicitly modeled both top–down effects of predation on Atlantic menhaden and bottom–up effects of Atlantic menhaden population levels on predators. The EwE-MICE has the desired level of complexity needed for transparent and quantitative examination of trade-offs, and comparisons with the EwE-Full model indicated that the EwE-MICE model was not missing more sensitive predators. However, it could be biased by the overall low predation mortality rates associated with fewer modeled predators and its ability to evaluate the effects of menhaden harvest on other managed or protected species is limited by the choice of species included. For this first set of ERPs, we recommended using the EwE-MICE model to develop ERPs for Atlantic menhaden as it represented the best balance between model complexity, data availability, and the ability to provide the information managers have deemed important. Because the EwE-MICE model did not fully capture the dynamics of variable recruitment, year-class strength, and changes in fleet selectivities, we recommended pairing the ERPs developed from the EwE-MICE model with the single-species assessment model to provide short-term tactical advice on harvest strategies. Since the EwE-MICE model relies on output from the BAM, maintaining and updating the single-species model to provide short-term tactical advice does not represent an additional burden to the assessment process. In this framework, managers would use the EwE-MICE model to explore the trade-offs between Atlantic menhaden harvest and predator biomass in order to select target and threshold F reference points that meet their ecosystem management objectives under long term equilibrium conditions. The single-species assessment model, which better captures short-term variability in recruitment, F, and biomass, would then be used to assess whether overfishing of Atlantic menhaden was occurring and to calculate a total allowable catch that would achieve the ERP F target. For more detail on the EwE-MICE trade-off analysis and integration with the single-species model, see Chagaris et al. (2020). This approach of integrating an ecosystem model into the single-species assessment and management framework was also recently implemented in the Irish Sea (Bentley et al., 2020); see Howell et al. (2020) for a more detailed discussion of the merits of this approach.

ASMFC’s ecosystem management objectives for Atlantic menhaden are not unique (Garcia, 2009). However, other regions or management bodies may prioritize those objectives differently. For ASMFC, understanding both the top–down and bottom–up dynamics of the predator-prey interactions in this ecosystem was important, which made the EwE-MICE combined with the single-species model the best tool given management goals. In a system where understanding the top–down effects of predation mortality and the effects of environmentally driven recruitment are the highest priority, and bottom–up effects are less important, the MSSCAA model might be the best tool, due to its ability to track observed variation in recruitment and the fact that it does not rely on stock assessment output from other species. The multi-model approach, combined with an understanding of managers’ objectives, allows researchers to select the best tool for a particular set of management objectives, instead of trying to make a pre-chosen tool fit the situation.

We focused on selecting a single model through this process, rather than a model averaging approach (Millar et al., 2015), because we wanted a tool that would efficiently explore managers’ questions about ecosystem scenarios and trade-offs, as well as one that could be updated with new data regularly. Maintaining multiple models with different input streams through a model-averaging approach would make this tool less efficient in practice. As managers become more comfortable with this ecosystem approach and can focus on key questions or scenarios, the model-averaging approach could become more tractable in the future.

The formal development of ASMFC’s ecosystem management objectives allowed us to identify high priority areas of future research. ASMFC identified the spatial distribution of Atlantic menhaden relative to fisheries and predator distributions as a performance metric to be assessed. None of the models included spatial or seasonal dynamics and exploring that should be a high priority for the next iteration of these models. While the surplus production models, MSSCAA, and BAM would require additional work to implement spatial dynamics, EwE already has a spatially explicit component, Ecospace, which represents the mixing of biomass among spatial cells while also including trophic interaction processes (Walters et al., 2010). The habitat capacity model in Ecospace (Christensen et al., 2014) is a flexible way to relate to species to their habitat to generate realistic species distribution patterns. Data are a limiting factor here as well; the available diet data indicated there were seasonal and regional differences in diet composition along the Atlantic coast, but the current data, as well as the understanding of the key ERP species’ migration patterns, are not sufficient to support modeling at a finer scale at this time.

In addition, ASMFC identified minimizing risk due to a changing environment as an ecosystem management objective. None of the models, as they were configured, were able to explicitly account for this. The BAM, the SPM TVr, and the MSSCAA models could account for environmentally driven variation in productivity or recruitment in the observed data without identifying an explicit mechanism by estimating the intrinsic growth rate or recruitment annually. However, without a mechanism, these models had no way to predict changes in productivity or recruitment into the future under different environmental conditions. Similarly, EwE has the flexibility to address environmental change through the incorporation of primary productivity forcing functions or downscaled ocean climate models like those from the Intergovernmental Panel on Climate Change, among others, in the Ecospace spatial-temporal framework. Species’ abundances, spatial distributions, and ecosystem indices could then be simulated and management options evaluated under various climate change scenarios. Modeling of environmental factors in this study was limited by the poor understanding of the relationship between specific environmental drivers and recruitment and mortality across all predator and prey species. Advancements are being made on this front (e.g., Munch and Conover, 2000; North and Houde, 2003; Buchheister et al., 2016), but a better understanding of these dynamics would allow the models examined here to more explicitly incorporate uncertainty about future environmental conditions into projections and reference points for both predators and prey. The approach of using the single-species model to provide tactical advice avoids some of the uncertainty in setting catch limits based on the smoothed biomass trends in the EwE models, which do not incorporate recruitment variability. However, it does not fully resolve the question of whether the EwE models overstate the importance of fishing as a driver when environmental factors are not considered in the stock-recruitment relationship (Hilborn et al., 2017), making this an important area of future model development even without the consideration of climate change.

The process used to develop ERPs for Atlantic menhaden provides an example of tailoring multi-species and ecosystem models to address ecosystem management objectives. These models represent advances in incorporating quantitative ecosystem considerations into a traditional single species management framework, but further work on the modeling and data collection are still needed. Collie and Gislason (2001) recommended that biological reference points for forage species be considered moving targets that should be redefined every 5–10 years to match the prevailing level of predation; uncertainty about the impacts of environmental changes on future recruitment and mortality strengthen that recommendation. This adaptive approach aligns with the ASMFC management process, in which Atlantic menhaden undergo an assessment update every 3 years and a benchmark assessment every 6 years. The assessment update adds new years of data but uses the existing model(s), while the benchmark assessment allows for more substantial changes to existing models or development of new models; a similar approach is used by other regions and management bodies. This process of continued improvements can allow for incorporation of environmental drivers, spatio-temporal dynamics, and other advances in our scientific understanding, as well as improving data collection to support those developments, while still providing usable short term scientific advice for management. The multi-model approach described here should be continued through the long term benchmark process to reassess the trade-offs between model complexity, data requirements, and management objectives as these improvements are made. This adaptive, incremental process will improve the quality of management advice provided as our understanding improves and ecosystem management objectives evolve.
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Recent observations of record low winter sea-ice coverage and warming water temperatures in the eastern Bering Sea have signaled the potential impacts of climate change on this ecosystem, which have implications for commercial fisheries production. We investigate the impacts of forecasted climate change on the eastern Bering Sea food web through the end of the century under medium- and high-emissions climate scenarios in combination with a selection of fisheries management strategies by conducting simulations using a dynamic food web model. The outputs from three global earth system models run under two greenhouse gas emission scenarios were dynamically downscaled using a regional ocean and biogeochemical model to project ecosystem dynamics at the base of the food web. Four fishing scenarios were explored: status quo, no fishing, and two scenarios that alternatively assume increased fishing emphasis on either gadids or flatfishes. Annual fishery quotas were dynamically simulated by combining harvest control rules based on model-simulated stock biomass, while incorporating social and economic tradeoffs induced by the Bering Sea’s combined groundfish harvest cap. There was little predicted difference between the status quo and no fishing scenario for most managed groundfish species biomasses at the end of the century, regardless of emission scenario. Under the status quo fishing scenario, biomass projections for most species and functional groups across trophic levels showed a slow but steady decline toward the end of the century, and most groups were near or below recent historical (1991–2017) biomass levels by 2080. The bottom–up effects of declines in biomass at lower trophic levels as forecasted by the climate-enhanced lower trophic level modeling, drove the biomass trends at higher trophic levels. By 2080, the biomass projections for species and trophic guilds showed very little difference between emission scenarios. Our method for climate-enhanced food web projections can support fisheries managers by informing strategic guidance on the long-term impacts of ecosystem productivity shifts driven by climate change on commercial species and the food web, and how those impacts may interact with different fisheries management scenarios.

Keywords: Bering Sea, climate change, fisheries, food web, Rpath


INTRODUCTION

Climate change is rapidly affecting marine species and ocean ecosystems worldwide (Hoegh-Guldberg and Bruno, 2010; Poloczanska et al., 2013) by warming water temperatures, increasing stratification, reducing dissolved oxygen, and altering nutrient supplies and thereby primary production (Bopp et al., 2013; Boyce and Worm, 2015; Cheng et al., 2019). This in turn limits production at higher trophic levels (Ryther, 1969; Iverson, 1990), including production that supports fisheries (Pauly and Christensen, 1995; Chassot et al., 2010; Stock et al., 2017). Climate change directly affects organisms at the individual level through impacts on physiological processes and behavioral responses, altering rates of somatic growth, mortality, and reproduction (Portner and Peck, 2010). These individual impacts are transmitted to higher levels of community organization through altered population growth rates, species distribution, community composition, and predator-prey interactions (Cheung et al., 2009; Rijnsdorp et al., 2009; Doney et al., 2012; Pinsky et al., 2013). The accumulation of these impacts affects the structure, function, and productivity across all levels of a food web (Kortsch et al., 2015; Sydeman et al., 2015).

Marine ecosystems are also simultaneously subject to the stress of fisheries, which reduces the abundance of target and non-target species, further altering community composition and species interactions (Tegner and Dayton, 1999; Steele and Schumacher, 2000; Jackson et al., 2001; Worm et al., 2009). Fishing can also lead to demographic changes in fish populations that increase their variability, making them more sensitive to changing climate conditions (Berkeley et al., 2004; Hsieh et al., 2006; Anderson et al., 2008; Hidalgo et al., 2011; Shelton and Mangel, 2011). The impacts of climate change on marine species and ocean ecosystems have ramifications for dependent communities that rely on the ocean for nutrition and income, and for the commercial fishing industry (Sumaila et al., 2011; Allison and Bassett, 2015).

The impacts of climate change on the ecosystem and the food web are becoming increasingly visible in the eastern Bering Sea. Historically, the eastern Bering Sea continental shelf has been covered by sea ice during winter and early spring, which leaves a remnant “cold pool” of bottom water (<2°C) over portions of the central shelf throughout the summer (Coachman, 1986; Wyllie-Echeverria and Wooster, 1998; Sullivan et al., 2014). The presence of the cold pool is a key biophysical feature that limits species distributions and influences community composition (Mueter and Litzow, 2008; Stevenson and Lauth, 2012, 2019; Eisner et al., 2018). Seasonal variation in the presence of sea ice and the cold pool has important implications for the timing, magnitude, and community composition of primary and secondary production (Coyle et al., 2011; Stabeno et al., 2012; Coyle and Gibson, 2017), for the recruitment of commercially important fishes (Hunt et al., 2011; Duffy-Anderson et al., 2016; Farley et al., 2016; Cooper et al., 2020), and marine mammal and seabird habitats (Cooper et al., 2013; Citta et al., 2018). Recent years (2014–2019) have seen a decline in the duration and coverage of seasonal sea-ice, a decrease in the size of the cold pool, and warming water temperatures (Stabeno and Bell, 2019; Baker et al., 2020; Danielson et al., 2020). These physical changes altered the phenology, magnitude, and species composition of the phytoplankton bloom and zooplankton community, changes which were transmitted up the food web to forage fishes, including the juvenile stages of commercial species, and to other higher trophic level predators (Sigler et al., 2016; Duffy-Anderson et al., 2019; Lomas et al., 2020). The recent reductions in sea ice coverage and warming water temperatures are in contrast with the historical record and may portend an impending shift in ecosystem structure and function (Grebmeier et al., 2006; Huntington et al., 2020).

Environmental changes associated with warming may have profound social and economic consequences. The living marine resources of the eastern Bering Sea are an important source of nutrition for coastal communities and have significant social and cultural value (Renner and Huntington, 2014; Gadamus and Raymond-Yakoubian, 2015). Additionally, the eastern Bering Sea has several valuable groundfish and crab fisheries (Fissel et al., 2017), including the fishery for walleye pollock (Gadus chalcogrammus) which has averaged ∼1.2 million tons in catch per year since the 1970s (Ianelli et al., 2017) and is the world’s second largest single-species fishery (FAO, 2019). The North Pacific Fishery Management Council (NPFMC) manages federal fisheries in Alaska for valuable fish and shellfish through the application of a polycentric decision making system founded on an ecosystem approach to management of groundfish resources that is informed by a Fisheries Ecosystem Plan (NPFMC, 2019). Two elements of the ecosystem approach to fishery management used by the NPFMC are particularly relevant to this paper: a 2 million metric ton (MMT) overall cap on annual groundfish removals; and the use of a precautionary harvest control rule that includes a buffer between the target and limit fishing mortality rates. In addition, for most species targeted in the fishery, a sloping control rule is applied where-in fishing mortality is reduced when the spawning stock biomass drops below the target biomass level, which is higher than the biomass that can produce the maximum sustainable yield (Bmsy or its proxy) (NPFMC, 2018).

The NPFMC’s Fishery Ecosystem Plan informs management by projecting future stock status and ecosystem conditions that consider the interacting effects of climate change and fisheries on target and non-target species, food webs, and tradeoffs in different ocean uses to make informed decisions on sustainable resource exploitation (Spencer et al., 2019; Hollowed et al., 2020; Holsman et al., 2020; Reum et al., 2020). The Alaska Climate Integrated Modeling Project (ACLIM) was initiated by NOAA’S Alaska Fisheries Science Center to investigate these types of questions for the eastern Bering Sea (Hollowed et al., 2020). ACLIM is an integrated modeling program that links outputs from a selection of global earth system models run under Intergovernmental Panel on Climate Change (IPCC) climate scenarios to a suite of biological models to investigate the potential impacts of forecasted climate change on fish, fisheries, and the ecosystem of the eastern Bering Sea (Hollowed et al., 2020). The multi-model approach of ACLIM allows for joint consideration of the strengths and weaknesses of different model structures and facilitates the examination of different sources of uncertainty in projection results.

We developed an Ecopath with Ecosim model (EwE1, Christensen and Pauly, 1992; Christensen and Walters, 2004) of the eastern Bering Sea to investigate the potential impacts of forecasted climate change on species and the food web, and the interactive effects of different fisheries management scenarios and climate change on modeled outcomes. The ACLIM modeling framework incorporates a coupled regional ocean and biogeochemical model to project future ocean conditions and lower trophic level dynamics (Hollowed et al., 2020). Forecasted climate change is expected to impact water temperatures, sea ice, phytoplankton, and lower trophic levels in the eastern Bering Sea (Wang et al., 2012; Hermann et al., 2019), and will have a bottom–up impact on the broader food web. There are many variables that could potentially be affected by climate change. Due to the anticipated changes at the base of the food web, we incorporate climate change impacts into food web simulations by representing the biomass of primary and secondary producer groups with projections from the climate-enhanced lower trophic level modeling. This approach specifically examines the bottom–up effects of changing biomass at lower trophic levels due to climate change, and how these changes may be transmitted up the food web to consumer groups via their trophic linkages.

Here we use our climate-enhanced dynamic food web model to ask how the impacts of forecasted climate change on lower trophic levels may affect species and the broader food web in the eastern Bering Sea, and how might those responses change under alternative climate change and fishery management scenarios? We incorporate a fisheries sub-model into our simulations that provides dynamic projections of annual catch quotas for US federally managed groundfish in the eastern Bering Sea in response to the changing status of managed stocks and in accordance with the existing fisheries management paradigm. Our primary objective was to project the biomass and catch of commercially important species and the biomass of trophic guilds to examine a range of possible outcomes at the end of the century for individual species and the food web under forecasted climate change and the prescribed fishing scenarios. Biomass trajectories of marine mammals and seabirds are also projected, many of which are protected species or whose well-being is thought to be an indicator of food web status (Sydeman et al., 2017).



MATERIALS AND METHODS


Modeling Approach

Our modeling approach was to use the outputs from multiple earth system models, each run under a selection of climate change scenarios, to drive a regional ocean and biogeochemical model (Figure 1). The projected conditions from the oceanographic lower trophic level model are then used as inputs to represent climate change in the food web model. The food web model was linked to a fisheries sub-model that incorporates social and economic tradeoffs into dynamic predictions of catch quotas under different fisheries management scenarios based on the existing fisheries management paradigm. We cover each of these components of the modeling framework below.
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FIGURE 1. Overview of the ACLIM modeling framework as implemented with our food web model. The outputs from three earth system models, each driven by two IPCC AR5 climate scenarios (RCP 4.5 and 8.5), are dynamically downscaled and used to drive a regional ocean and biogeochemical model through the end of the century. The outputs from the lower trophic level modeling are used to simulate the biomass dynamics of phytoplankton and zooplankton groups in the food web model. The food web model is coupled to a fisheries sub-model that dynamically predicts annual commercial fisheries catch in response to the simulated stock status and under four different quota allocation scenarios.




Simulating Climate Change

The earth system models we use are selected from the Climate Model Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012) and include, the Geophysical Fluid Dynamics Laboratory Earth System Model 2M (GFDL-ESM2M, Dunne et al., 2012), the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM, Kay et al., 2015), and the Model for Interdisciplinary Research on Climate (MIROC-ESM, Watanabe et al., 2011). These models were selected because they represent the breadth of simulation outcomes present in the suite of models included in CMIP5, and for their performance within the Bering Sea study region (Hermann et al., 2019). The earth system models were driven with two representative concentration pathways (Moss et al., 2010) from the IPCC Fifth Assessment Report (AR5). These pathways describe different trajectories for future greenhouse gas emissions, mitigation, and subsequent climate change. Two global emission scenarios were considered: RCP 8.5, which represents an unmitigated pathway with high greenhouse gas emissions; and RCP 4.5, which represents an intermediate level of mitigation and greenhouse gas emissions.

We simulate production dynamics of lower trophic level functional groups using a regional ocean circulation model based on a Regional Ocean Modeling System (ROMS) domain coupled to a lower trophic level biological model developed during the Bering Sea Ecosystem Study (BEST) Program (Gibson and Spitz, 2011) and later improved in various versions (Hermann et al., 2016; Kearney et al., 2020). The coupled biophysical model covers the Bering Sea with 10-km horizontal resolution (Bering 10K ROMS/BEST-NPZ, Hermann et al., 2016; hereafter referred to as “Bering 10K”). Bering10k is driven at the sea surface and ocean lateral boundaries by variables from the coarse resolution global earth system models mentioned above, and integrated continuously in time from 2006 to 2100; in this way, the biophysical state of the Bering Sea from the various earth system model forecast scenarios is dynamically downscaled. More details of the Bering10K and its use as a tool for dynamic downscaling can be found in Hermann et al. (2019). Because our food web model is not spatially discrete, monthly averages over our study area were extracted from the BESTNPZ output (Holsman et al., 2020) to represent biomass dynamics for small and large phytoplankton, pelagic and benthic microbes, copepods, and euphausiids in our food web model (see Supplementary Material).

Outputs from the reanalysis-forced BESTNPZ hindcast (Hermann et al., 2013, 2016) were used to force the trophic dynamics model from 1991 to 2017. Outputs from the CMIP5-forced BESTNPZ forecasts were used to simulate future climate scenarios over the period 2006 to 2099. The BESTNPZ outputs used for projections (2018–2099) were bias-corrected using differences in monthly mean and variability between the hindcast and projections during the overlapping period (2006–2017; Ho et al., 2012; Hawkins et al., 2013; see Supplementary Material and Supplementary Figure 1). The downscaled runs with the CESM model under RCP 4.5 did not go beyond 2080, so we limit our analysis of the RCP 4.5 simulations to 2080 and earlier, and any comparisons between RCP 4.5 and RCP 8.5 are also limited to 2080.



Food Web Model

We use Ecopath with Ecosim (EwE) to model the food web of the eastern Bering Sea. EwE is a biomass compartment model that integrates information on species biomass, production, consumption, diet composition, and mortality to describe the network of connections and material flows between groups in a food web (Polovina, 1984; Christensen and Walters, 2004). The equations and algorithms underlying the EwE framework are thoroughly documented elsewhere (e.g., Walters et al., 1997; Christensen and Walters, 2004). For our analysis we use Rpath2 (Lucey et al., 2020, 2021), an independent version of EwE that uses the same equations and algorithms of EwE but is developed for use with the open source statistical program R (R Core Team, 2015). Using Rpath also allows us to use a region-specific fisheries sub-model that dynamically predicts fisheries catch based on harvest control rules and model-simulated stock biomass, that has also been developed for use with R (more in Fisheries Scenarios below, Faig and Haynie, 2019).

We use a previously published EwE model of the eastern Bering Sea that was calibrated to the early 1990s (1990–1994) and constructed on a scale that reflects existing fishery management regions and coincides with known distributions of several commercial groundfish stocks (Aydin et al., 2007). The region of study includes the continental shelf and upper continental slope waters between 25 and 1000 m depth, encompassing an area of ∼495,000 km2 (Figure 2). The model was informed by decades of data collected in the eastern Bering Sea to support fisheries management and for monitoring protected species, trophic interactions, and lower trophic levels [see Aydin et al. (2007) for complete documentation of all model parameters and data sources].
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FIGURE 2. The area in the eastern Bering Sea described by the EwE model of Aydin et al. (2007).


The model as originally constructed was highly detailed with 129 biological groups, including 14 single-species groups with separate adult and juvenile compartments (a.k.a., stanzas). While we sought to maintain this level of detail for some commercial fish and protected species, we aggregated several species into functional groups with other species of similar life history traits, food habits, and environmental requirements in the interest of keeping the model results tractable (Supplementary Table 1). Functional groups that were aggregated together had their respective biomasses and fisheries catch summed together. The P/B, Q/B, and diet composition of the aggregated groups were averages weighted by the biomass of the original groups. We reduced the original full model to 72 biological groups, including five single-species groups with corresponding juvenile groups, two primary production groups, and three detrital compartments (pelagic, benthic, and fisheries offal) (Supplementary Table 2). Aggregating the model did not bring it out-of-balance and no modifications were necessary. This eastern Bering Sea model was originally tuned to the reference state of the early 1990s (Aydin et al., 2007), therefore we initiate our simulations in 1991.

Detritus pools are basal resources supporting the production of lower trophic levels in a food web (Rooney et al., 2006). While the biomass of detritus pools are generally unknown, we tracked the biomass of detritus as it is a key dietary component for lower trophic levels. Detritus in our food web model comes from unassimilated food, fishery offal, and mortality from sources other than predation and fisheries. Rpath calculates the biomass of detritus (if not provided by user) as the sum of inputs to detritus divided by the turnover rate of detritus (Lucey et al., 2020). We did not specify a turnover rate for detritus and used the Rpath default of 0.5. This made the detritus biomass equal to twice the detritus input.



Fisheries Catch Scenarios

During the hindcast period (1991–2017) the model was projected with the actual catch time series for groundfish and crab species (Cahalan et al., 2014) when such data were available, and the exploitation rate from the Ecopath model for components with no historical catch data. Groundfish catch during the projection period (2018–2099) was predicted using a fisheries sub-model, which predicted the catch of federally managed groundfish in the eastern Bering Sea based on estimates of acceptable biological catch (ABC). The input ABCs were used to predict the total allowable catch (TAC) and the TACs are then used to predict catch. The fisheries sub-model, known as the “ABC to TAC And Commercial Harvest model,” or ATTACH, and its documentation can be downloaded from www.github.com/amandafaig/catchfunction. The catches predicted by ATTACH are based on historical relationships between the ABCs and observed catch, modeling the historical practices of the regional fishery management council for quota setting and redistributing quota between fisheries sectors and management areas under the 2 MMT ecosystem harvest cap and the observed abilities of the fisheries to catch the allocated quotas. The ATTACH has previously been used with a multi-species size-spectrum model of the eastern Bering Sea food web (Reum et al., 2020) and a multi-species statistical catch-at-age model of walleye pollock, Pacific cod (Gadus macrocephalus), and arrowtooth flounder (Atheresthes stomias) (Holsman et al., 2020). Detailed descriptions of the equations and assumptions in ATTACH can be found in the source documentation (Faig and Haynie, 2019) and in the appendices of Holsman et al. (2020) and Reum et al. (2020).

At the end of each year during the projection period (2018–2099), we calculated ABCs for each of the federally managed groundfish stocks and commercial crab stocks using a sloped harvest control rule that mimics that used for actual management (NPFMC, 2017). We used the Ecopath-based biomass (B) and exploitation rate (F) as target values in our harvest control rule (Btarget and Ftarget). Federally managed gadids and flatfish generally account for about 75% of the ecosystem harvest cap, and are the species of core interest in this study. The biomass and catch of gadids and flatfish in 1991 were near long-term averages, making 1991 a suitable reference year for these biological reference points. The ABCs are based on stock status during the simulation, which is evaluated as the ratio of simulated stock biomass of species i (Bi) to their target biomass (Bi,target):
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α has a default value of 0.05 and is the intercept to the sloped harvest control rule where F, and thus ABC, would be equal to zero (Figure 3). We use a modified harvest control rule that sets the ABC equal to zero when the simulated stock status drops below a minimum threshold (Bi/Bi,target ≤ 0.2). This modified harvest control rule is used in Alaska for pollock and other groundfish to help maintain prey resources for protected species (NPFMC, 2018).
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FIGURE 3. Schematic of the harvest control rule used to determine the acceptable biological catch of groundfish subject to the ecosystem harvest cap. The target biomass (Btarget) and target exploitation rate (Ftarget) are the Ecopath-based biomass and exploitation rate. α is the intercept to the sloped harvest control rule where fishing mortality, and thus ABC, would be equal to zero. We use a modified harvest control rule that sets fishing mortality equal to zero when the simulated stock biomass drops below a minimum threshold of 0.2 Btarget (b).


At the end of each year during the projection period (2018–2099), the simulation was paused so we could calculate ABCs for all the groundfish species (or multi-species complex) managed under the ecosystem harvest cap (Table 1). The calculated ABC values were input to the fisheries sub-model, which returned the predicted catch for those stocks in the next year of the simulation. The predicted catches were then applied to the next year of the simulation, and the simulation resumed for one more year.


TABLE 1. Groundfish species or species complexes managed under the Bering Sea/Aleutian Islands ecosystem harvest cap.

[image: Table 1]Given the constraint of the two million ton ecosystem harvest cap there are several ways that quota could be allocated in the future. The fisheries sub-model predicts catch under four quota allocation scenarios that are subject to the ecosystem cap and have been vetted through the NPFMC (Hollowed et al., 2020): (1) a status quo scenario that reflects the current practices and decisions of the fishery management council, and assumes no significant changes to those practices are made; (2) a gadid preference scenario with an expansion of pollock and Pacific cod quota (up to 10% increase) under the cap and at the expense of other groundfish fisheries; (3) a flatfish preference scenario that included an increase in the combined flatfish quota (up to 30%) under the cap and at the expense of pollock and Pacific cod; and (4) a scenario where no fishing is allowed. The no fishing scenario is intended to highlight how species and the food web may fare in the absence of fishing but still subject to simulated climate change.

The individual quotas set by the regional fishery management council, are less than the ABCs determined in the respective stock assessments. The sum of the groundfish quotas must fit under the ecosystem cap, so some stocks are fished well below their respective ABC (Witherell et al., 2000). For example, the quotas for flatfish have historically been set below their respective ABCs to allow for larger harvests of pollock and Pacific cod under the ecosystem cap (Witherell, 1995). The fisheries sub-model reflects these historical practices when making catch projections. For example, the catch of arrowtooth flounder and northern rock sole are both limited to a constant maximum catch as long as their stock status stays above the threshold biomass (Bi/Bi,target ≥ 1). However, under the flatfish preference scenario, the constant maximum catch on northern rock sole can be relaxed when their biomass is greater than Btarget and the combined ABC of pollock and Pacific cod is above ∼1.4 million tons. Above that level, 10% of the predicted gadid catch is reallocated to flatfish and can increase the catch of northern rock sole above their constant catch maximum.



Analysis of Results

We focus our analysis on a core group of six species that are currently of economic and ecological importance in the study region: walleye pollock, Pacific cod, yellowfin sole (Limanda aspera), northern rock sole (Lepidopsetta polyxystra), arrowtooth flounder, and snow crab (Chionoecetes opilio). We track the biomass trajectories and catch projections for these core species through the end of the century. Additionally, we track the biomass of marine mammals and seabirds, whose condition may be an indicator of food web status and prey availability. The biomass projections for all functional groups included in the food web model, and under all scenarios, can be found in the Supplementary Material. As an indicator of ecosystem status and food web structure, we also track the biomass of trophic guilds including, apex predators, benthic foragers, motile epifauna, pelagic foragers, structural epifauna, shrimp and other zooplankton, and infauna (Table 2).


TABLE 2. The composition of trophic guilds.

[image: Table 2]Within trophic guilds, we examined the change in biomass between the end of the hindcast period (2008–2017) and the last 10 years of the projection period (2071–2080) run under both RCPs. Within each trophic guild, we separated results by earth system model, RCP, and by fishing scenario. Within each earth system model-RCP-fishing scenario combination, we looked at the distribution of the percent change in biomass for functional groups within each trophic guild. This distribution of outcomes does not consider any process error arising from inherent variability in the population dynamics, parameter uncertainty in our food web model, uncertainty in the implementation of our quota allocation scenarios, or any error in our observation of stock status. We calculated the change in biomass as the difference between the mean biomass over the last 10 years of the hindcast period (2008–2017) and the last 10 years of the projection period (2071–2080), divided by the mean biomass over the last 10 years of the hindcast period. The apex predator guild includes 21 functional groups, benthic foragers includes 12, motile epifauna 6, and pelagic foragers 19. We did not include infauna, structural epifauna, and shrimp and other zooplankton in this analysis as those guilds consist of only one or two functional groups and we therefore could not describe a range of outcomes.



Sensitivity Analysis

A mass-balanced food web model represents only one of many possible mass-balanced food web configurations. Additionally, there are varying degrees of uncertainty about all the model parameters, with some parameters being well supported by data and others not. Simulations with alternative model parameterizations could lead to divergent outcomes for species and the food web. We evaluated the sensitivity of our projections to parameter uncertainty using a Monte Carlo routine to generate an ensemble of alternative Ecosim parameter sets from our Ecopath model, following the approach of Whitehouse and Aydin (2020). We conducted identical simulations with each ensemble member to examine how sensitive our simulation results were to uncertainty in parameter estimates (biomass, P/B, Q/B, diet composition, and other mortality [M0]), and the predator-prey functional response (i.e., vulnerability). We used a data pedigree to describe the quality of the original parameter estimates. Each pedigree score corresponds to a prescribed range as a proportion of the original parameter estimate (coefficient of variation, CV). Entire sets of Ecosim parameters were drawn from distributions centered on the balanced model estimates and bounded by their respective CVs. Vulnerability ranges from one to infinity for each predator/prey link, and is centered on 2.0; the value represents the ratio of top–down to bottom–up control plus 1.0 (so the center of 2.0 represents a balance of top–down versus bottom–up control). However, values beyond 91 are difficult to distinguish from infinity (Gaichas et al., 2012), therefore, we allowed vulnerability to vary from 1.01 to 91 using a log-uniform distribution for all trophic links. The generated Ecosim parameter sets were subjected to a 100-year burn-in to eliminate unstable configurations (e.g., ecosystems with functional groups whose biomass decreases to zero, or biomass grows without limit). Each of the retained ecosystems was subjected to a simulation with climate-forcing under the GFDL-RCP 8.5 emission scenario and the status quo scenario of the fisheries sub-model. For each retained ecosystem, we calculated the percent change in biomass for each functional group as the change in the mean biomass from the final 10 years of the simulation (2090–2099) relative to the mean of the respective group’s biomass from the final 10 years of the hindcast period (2008–2017). A more detailed description of the sensitivity analysis can be found in the Supplementary Material and in Whitehouse and Aydin (2020).



RESULTS


Lower Trophic Level Projections

Our food web model projected declining trends in annual mean biomass for most lower trophic level functional groups (Figure 4). Across the three downscaled projections, Hermann et al. (2019) predicted a net decrease for the combined biomass of small and large phytoplankton. These two primary producer groups were modeled as separate functional groups in our food web model. In our study area, small phytoplankton biomass was projected to decrease by the end of the century across all three earth system model projections and both RCPs. However, large phytoplankton was projected to have a modest biomass increase in the GFDL and CESM projections and a more substantial increase in biomass was predicted under the MIROC projection (Supplementary Figure 2). Euphausiids gradually decrease through the rest of the century to values near the minimum over the hindcast. Copepod biomass also declined, and by mid-century was well below minimum values observed during the hindcast. Pelagic and benthic microbes did not show a clear trend and finished the century within the range of values from the hindcast. Both pelagic and benthic detritus pools decreased toward the end of the century and stabilized at values below their mean values during the hindcast period.


[image: image]

FIGURE 4. Annual mean biomass projections for pelagic and benthic detritus and the projections for the functional groups forced with outputs from lower trophic level modeling (euphausiids, copepods, pelagic microbes, benthic microbes, large phytoplankton, and small phytoplankton). The gray lines from 1991 to 2017 indicates the historical period. The purple and green polygons indicate the minimum and maximum range for the three earth system models run under each RCP. The purple and green lines indicate the mean of the three runs for each RCP. The dashed lines indicate the minimum and maximum values from the historical period and the solid black line indicates the mean value from the historical period.




Core Species

Under both RCPs, there was a general decline in the biomass of core species by the end of the century to values that were near or below the lowest values during the hindcast period (1991–2017) (Figure 5). The trajectories were similar under the three fishing scenarios, but for some species, distinct from the no-fishing scenario. This was especially evident for Pacific cod and yellowfin sole, which were subject to high exploitation rates under the scenarios with fishing. When fishing was halted at the start of the simulation period (2018) the biomass trajectories of Pacific cod and yellowfin sole responded with sharp increases. In contrast, the quota for northern rock sole is typically set well below their ABC (Witherell, 1995; Wilderbuer et al., 2019) and their biomass trajectory showed little change in response to the halting of fishing.
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FIGURE 5. Biomass projections for the core commercial species run under all four fishing scenarios. The gray lines from 1991 to 2017 indicates the historical period. The purple and green polygons indicate the minimum and maximum range for the three earth system models run under each RCP. The purple and green lines indicate the mean of the three runs for each RCP. The dashed lines indicate the minimum and maximum values from the historical period.


The forecasted core species biomasses were similar among emission scenarios, but there were some differences in transient dynamics (Figure 5). The largest differences between RCPs occurred over the period from 2025 to 2045. During this window, all core species showed biomass peaks under RCP 8.5. Additionally, the biomass trajectories generally tracked higher under RCP 8.5 than under RCP 4.5 during these years. This pattern is similar to the biomass peaks for phytoplankton and zooplankton groups from the lower trophic level modeling and the detritus pools under RCP 8.5, which are all near or above their hindcast mean values during this time window. By 2060, the gap between biomass trajectories under the two RCPs was narrowing and by 2080, they were virtually equivalent.

In general, there were only minor differences in catch for most of the core species under the three fishing scenarios that included catch (Figure 6). Under the gadid preference scenario, the catch of pollock and Pacific cod was slightly higher than under the status quo scenario. Pollock catch declined gradually to values approximately equal to the lowest catches over the hindcast period under all three fishing scenarios. The catch of snow crab is highly variable but remains well above historical lows through the end of the century.
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FIGURE 6. Catch projections for the core commercial species run under the three fishing scenarios that include fisheries catch. The gray line from 1991 to 2017 indicates the observed catch during the historical period. The purple and green polygons indicate the minimum and maximum range for the three earth system models run under each RCP. The purple and green lines indicate the mean of the three runs for each RCP. The dashed lines indicate the historical minimum and maximum values.


The catch of arrowtooth flounder, northern rock sole, and yellowfin sole were highest under the flatfish preference scenario (Figure 6). Northern rock sole had the most visible change in catch under the flatfish preference scenario. This was due to the reallocation of a portion of the catch originally allocated to gadids to flatfish, including northern rock sole. This reallocation of quota produced the sharp changes in northern rock sole catch under the flatfish preference scenario up through about mid-century. There was an increase in the arrowtooth flounder catch threshold under the flatfish preference; however, there were years toward the end of the century under RCP 8.5, where catch was below the threshold. This was because the biomass of arrowtooth flounder had dropped below their target biomass in those years and their ABC was on the “sloped” part of the harvest control rule. The catch of yellowfin sole declined through 2080 and the end of the century under all three fishing scenarios.

The catch trajectories for snow crab and Pacific cod had sharp changes in catch at the start of the projection period (2018, Figure 6). This was due to how we have simulated the harvest control rule. Our target exploitation rate was based on the status of the mass-balanced model during the base model time period (i.e., early 1990s). So long as their biomass was at or above their target biomass, these species would be subject to the target exploitation rate. In the case of snow crab and Pacific cod, this resulted in a jump in catch from the last year of the hindcast period (2017) to the start of the projection (2018). Additionally, the snow crab fishery is managed by the Alaska Department of Fish and Game and catch quotas are determined with a different harvest control rule than used in this study (NPFMC, 2020).



Marine Mammals and Seabirds

By 2080 the mean biomass trajectory for all marine mammal and seabird groups were below their minimum value from the hindcast period (Figures 7, 8). There were some increases in biomass under RCP 8.5 during the 2030s, but the trajectories declined thereafter. This pattern was due to fluctuations in prey abundance, which reflected the trajectories of the lower trophic level groups we have forced in these simulations. There were brief peaks in the biomass of phytoplankton, microbes, copepods, euphausiids, and detritus during the 2020s and 2030s under RCP 8.5 (Figure 4). These short-term increases by lower trophic level groups were transmitted up the food web to marine mammals and seabirds. Thereafter, the lower trophic level groups started to decline and the upper trophic level groups that fed upon them also started to decline. In particular, the decrease in copepods and euphausiids affected zooplanktivorous predators. For example, Auklets are particularly susceptible to declines in zooplankton as they depend on copepods and euphausiids for more than 80% of their base diet composition. The declines in zooplankton also drove declines in several forage fish species (e.g., herring, capelin, sandlance, and squid), many of which comprise large portions of the diet composition of piscivorous seabird and marine mammal groups.
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FIGURE 7. Biomass projections for marine mammal functional groups. The gray line from 1991 to 2017 indicates the historical period. The purple and green polygons indicate the minimum and maximum range for the three earth system models run under each RCP. The purple and green lines indicate the mean of the three runs for each RCP. The dashed lines indicate the minimum and maximum values from the historical period.
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FIGURE 8. Biomass projections for seabird functional groups. The gray line from 1991 to 2017 indicates the historical period. The purple and green polygons indicate the minimum and maximum range for the three earth system models run under each RCP. The purple and green lines indicate the mean of the three runs for each RCP. The dashed lines indicate the minimum and maximum values from the historical period.




Trophic Guilds

The trophic guilds included all of the model’s functional groups, not just federally managed groundfish; therefore, we focused our results and discussion in this section on those projections run under the status quo and no fishing scenarios. Across all trophic guilds, RCPs and earth systems models, the food web model predicted declining biomass by 2080 and beyond if fishing was included (Figure 9). There was little observable difference in trophic guild biomass projections under the three fishing scenarios with catch (Supplementary Figure 2). Peak projected biomass values for all the guilds under RCP 8.5 were visible up to about mid-century. After that time, a decline in biomass was predicted, and by 2080, most of the trajectories under both RCPs were near the lowest values observed during the hindcast period.
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FIGURE 9. Biomass projections for trophic guilds under the status quo and no fishing scenarios. The gray lines from 1991 to 2017 indicates the historical period. The purple and green polygons indicate the minimum and maximum range for the three earth system models run under each RCP. The purple and green lines indicate the mean of the three runs for each RCP. The dashed lines indicate the minimum and maximum values from the historical period.


The motile epifauna, shrimp and other zooplankton, infauna, and structural epifauna guilds are dominated by invertebrates and showed little difference between the status quo and no fishing scenarios. The biomass trajectories for motile epifauna and the shrimp and other zooplankton guilds were slightly lower under the no fishing scenario. This was because several important predators of these guilds are commercial groundfish whose biomass, and thus consumption, increased under the no fishing scenario. The infauna and structural epifauna guilds are heavily dependent on primary production and detritus pools, and this was reflected in their biomass trajectories, the shape of which is similar to the projections for small phytoplankton and benthic and pelagic detritus (Figure 2).

All of the groundfish managed under the ecosystem cap are members of either the apex predators, benthic foragers, or pelagic foragers feeding guilds. The biomass dynamics of the apex predator guild were driven largely by Pacific cod, which are a biomass dominant component of this guild. The benthic foragers guild includes several flatfishes, including yellowfin sole and northern rock sole. These two flatfish species account for more than half of the total biomass of this guild and drive the guild dynamics. Similarly, the trajectory for the pelagic foragers guild was driven by pollock, which account for about half of the biomass of this guild.

For most functional groups within the apex predators, benthic foragers, motile epifauna, and pelagic foragers guilds there was a decline in biomass between the “present” and 2080 (Figure 10). However, some functional groups did increase in biomass. This occurred most frequently under the no fishing scenario. Within the apex guild, groups whose biomass increased over the simulation included Pacific cod (adults), skates, sharks, and Pacific halibut (Supplementary Figure 6). In the benthic foragers guild, Pacific cod juveniles, yellowfin sole, and Alaska plaice all experienced biomass increases under the no fishing scenario (Supplementary Figure 7). Among pelagic foragers, returning salmon, Pacific ocean perch, jellyfish, and other rockfish all experienced biomass increases under the no fishing scenario (Supplementary Figure 8). There were no scenario combinations where any groups within the motile epifauna guild experienced an increase in biomass (Supplementary Figure 9). The biomass projections for all remaining functional groups can be found in Supplementary Figures 10–12.
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FIGURE 10. The percent change in biomass for functional groups between the end of the hindcast period (2008–2017) and the end of the projection period for the two RCPs (2071–2080). Each of the four panels is for one of the trophic guilds. Each box-and-whisker shows the percentage change in biomass for all the functional groups within the specified trophic guild by the earth system model-RCP-fishing scenario combination. The earth system models are labeled at the top of each panel. For each earth system model there are two RCPs, 4.5 is shown in green and 8.5 in purple. The fishing scenarios are labeled on the x-axis (1 = status quo, 2 = catch more gadids, 3 = catch more flatfish, 4 = no fishing). Outliers are shown with empty circles.


Within an earth system model-RCP combination, there was little difference in the outcomes between the three fishing scenarios that included catch (fishing scenarios 1–3 in Figure 10). The outcomes were generally higher for most groups within the apex predators, benthic foragers, and pelagic foragers guilds under the no fishing scenario (scenario 4 in Figure 10) than under the status quo scenario in each of the earth system model-RCP combinations. However, motile epifauna had generally lower biomass under the no fishing scenario. This was due to an increase in predation pressure from commercially fished predators whose biomass increased when there was no fishing.

Within each earth system model, and across these four trophic guilds, there was very little difference in the 2080 outcomes between the two RCPs, indicating that the differences between these climate-forcing scenarios did not sufficiently manifest themselves among the variables we used for climate forcing in this study. A greater distinction in 2080 outcomes is evident between the earth system models (Figure 10).



Sensitivity to Parameter Uncertainty

We generated 2.55 million Ecosim parameter sets for our sensitivity analysis, of which, 2,057 parameter sets survived the burn-in period and were retained for analysis. The distribution of biomass outcomes were wide for many functional groups. However, we found the median outcome, and 75% of the retained parameter sets, at the end of the century for the majority of functional groups to be in directional agreement with the simulations presented here (Supplementary Figure 4). The qualitative direction of change was in agreement with our simulations for most of the generated parameter sets.



DISCUSSION

This work integrates multiple models to see how one mechanism—food web dynamics—might contribute to changes on population dynamics, community composition, and fishery catches under climate change. Our results indicate the bottom-up effects of projected climate change on the eastern Bering Sea could propagate through all levels of the food web, including marine mammals and seabirds. We found the biomass of most foraging guilds, individual species, and functional groups to decline gradually through 2080 under both RCP 4.5 and 8.5. The gradual declines predicted for primary (phytoplankton) and secondary producer biomass (zooplankton and microbes) drove declines in detritus pools, and ultimately were transmitted up the food web to all trophic levels, including commercially important groundfish and crabs. For some of the commercial groundfish species, increases in biomass by the end of the century could be realized under anticipated climate change when there was no fishing. This suggests that for some species the pressure from fisheries may be more significant than any negative pressure from the simulated climate forcing. Some commercial crab and benthic invertebrate groups had lower biomass when there was no fishing due to increased predation from commercial groundfish predators. By 2080, there was little distinction between the biomass trajectories subject to the high or intermediate emission scenarios for many of the groups, and a greater distinction in outcomes could be observed due to the earth system models. This indicates that by the end of the century the structural uncertainty in our simulations due to different earth system models was greater than the scenario uncertainty due to different emission pathways.

Fisheries can have a range of potential impacts on species and the ecosystem, and there is no single best way to forecast those impacts using a food web model. One approach commonly used with EwE models is to hold the fisheries mortality of targeted species at a constant value equal to present day fishing mortality, or held constant at a multiple of present day fishing mortality (e.g., Brown et al., 2010; Ainsworth et al., 2011; Niiranen et al., 2013; Bentley et al., 2017; Serpetti et al., 2017; Corrales et al., 2018; Fulton et al., 2018). However, neither of these scenarios mimic the actual way fisheries are managed in the eastern Bering Sea. Consequently, we incorporated a fisheries sub-model into our simulations that provided dynamic projections of annual catch quotas for US federally managed groundfish in the eastern Bering Sea in response to the changing status of managed stocks and in accordance with the existing fisheries management paradigm (Faig and Haynie, 2019). The constraint of the ecosystem harvest cap in the Bering Sea requires managers to consider social and economic tradeoffs when allocating quota under the cap. This leads to some stocks being fished well below the maximum sustainable fishing levels determined in stock assessments (Witherell et al., 2000). The fisheries sub-model predicted annual catch quotas given these cap-induced tradeoffs and region-specific management practices (Faig and Haynie, 2019).

The gradual declines in biomass for most species and functional groups in our projections of the eastern Bering Sea food web are in directional agreement with other regional and global multi-species modeling studies forecasting fish and total animal biomass through the end of the century. At high latitudes, in particular the Arctic Ocean, total animal biomass is predicted to increase due to a confluence of factors including increased primary production, warming temperatures, and poleward range expansions of productive, commercial, temperate species into the Arctic (Cheung et al., 2009; Fossheim et al., 2015; Lefort et al., 2015; Bryndum-Buchholz et al., 2019; Lotze et al., 2019). At lower latitudes, global projections are less decisive and there are mixed outcomes that may vary according to structural, scenario, and parameter uncertainty (Lotze et al., 2019). In comparison to global models that include projected total biomass declines in the eastern Bering Sea (Bryndum-Buchholz et al., 2019; Lotze et al., 2019), the declines we projected in this study are modest, and the range of uncertainty in our simulations allows for the maintenance of biomass for many species, or in some cases an increase in biomass.

The biomass declines we projected for many species are smaller in magnitude, in part, due to how we implemented climate forcing in our study and the absence of some other climate-related processes and direct effects that would influence the future trajectories of species. Previous studies in other regions have simulated the effects of anticipated climate change using EwE models by forcing the production rate of phytoplankton to be consistent with projections from earth system models (Brown et al., 2010; Ainsworth et al., 2011; Howell et al., 2013; Niiranen et al., 2013; Watson et al., 2013; Suprenand and Ainsworth, 2017; Fulton et al., 2018; Ehrnsten et al., 2019), or by scaling predator consumption by their thermal tolerance and forecasted temperature change (Bentley et al., 2017; Serpetti et al., 2017; Corrales et al., 2018), or by scaling reproductive output to climate forecasts (Niiranen et al., 2013; Ehrnsten et al., 2019). Alternatively, we have linked our food web model to a climate-enhanced regional ocean and biogeochemical model to represent the biomass dynamics of key lower trophic level groups. By fixing the biomass trajectories of these lower trophic level groups in this manner, their biomass dynamics are not subject to top–down pressure. Our results are strictly limited to the bottom-up effects of forecasted reductions in primary and secondary producer biomass on the food web, as mediated by the network of trophic interactions. Including the direct physiological effects of temperature in future simulation studies could result in more pronounced declines for species when temperatures exceed their thermal envelopes, and more pronounced increases in biomass for species with a higher thermal tolerance who can take advantage of the changing conditions.

The biomass and catch trajectories from our model are limited projections of potential climate impacts in the eastern Bering Sea as they are constrained by the processes represented in our food web model and to the nature of climate forcing used in our simulations. The outputs from the Bering10K model used to simulate climate forcing integrate the direct effects of temperature and other biophysical forces on those lower trophic levels (Gibson and Spitz, 2011; Hermann et al., 2019). For example, the BESTNPZ model included temperature-dependent mortality of large zooplankton, as a proxy for temperature-dependent predation. However, our food web model does not explicitly consider the direct biophysical effects of climate change on the remainder of the food web. Temperature will directly impact the physiology, behavior, and performance of ectotherms (Portner and Peck, 2010), drive species distribution shifts (Mueter and Litzow, 2008; Frainer et al., 2017; Stevenson and Lauth, 2019), and facilitate the introduction of non-indigenous species from warmer regions (Cheung et al., 2015; Alabia et al., 2018; Droghini et al., 2020). We did not examine the direct effects of climate change on physiological processes in this study and leave that for future work.

The direct physiological effects of temperature may attenuate or accentuate the indirect effects of climate change represented in our food web model. Methods to incorporate the direct effects of temperature on organisms have been developed for EwE (e.g., Bentley et al., 2017; Serpetti et al., 2017) but similar methods have not yet been developed for Rpath. The biological reference points we used with our harvest control rules are rooted in the static, mass-balanced model configuration and the environmental conditions of the base model time-period of the early 1990s. Under the projected environmental conditions those biological reference points (e.g., target biomass) may no longer be valid in the future and updated values should be calculated to reflect the stock’s current productivity (Haltuch et al., 2009). Other considerations for future simulations include the effects of ocean acidification, deoxygenation, loss of habitat (e.g., sea ice), and emigration or invasion of new species from adjacent regions.

The declines in biomass across most groups in the eastern Bering Sea through the end of the century in our study are similar to the findings of other climate-enhanced multi-species models from the ACLIM project. Reum et al. (2020) used a multi-species size-spectrum model to make biomass projections of the eastern Bering Sea food web and found on average that spawning stock biomass for the groundfish community declined through the end of the century. However, they found the direction of trend in biomass among several groundfish species did not agree across all climate change scenarios. Holsman et al. (2020) used a multi-species statistical catch-at-age model to make projections for pollock, Pacific cod, and arrowtooth flounder through the end of the century and similarly observed declining biomass for all three species under RCPs 4.5 and 8.5. A key distinction between our simulations and those of Holsman et al. (2020) and Reum et al. (2020) is that we did not include the direct effects of temperature on biological processes and instead focused on the impacts of climate-induced changes at lower trophic levels on the whole food web. The declines in biomass that we observed for pollock and Pacific cod in our simulations are minor in comparison to these other two studies, and in the case of arrowtooth flounder, are not in directional agreement with Reum et al. (2020). The more comprehensive network of trophic interactions in our Rpath model provides additional detail on trophic interactions across the whole food web but lacks the physiological detail of temperature effects included in these other two studies. Additionally, there are many other differences in the structural assumptions made by these modeling frameworks, which may contribute substantially to projection results differing in direction or magnitude (Jacobsen et al., 2016). The structural differences between the suite of biological models included in the ACLIM project are an advantage of the multi-model ensemble approach, and these differences will be utilized in future work to help quantify structural uncertainty in ensemble projections (Hollowed et al., 2020).

Uncertainty in our projections is present at multiple levels of the modeling hierarchy and should be taken into consideration when interpreting the results. The outputs of our simulations are quantitative, and it is tempting to view the trajectories as accurate or precise projections. However, they stem from a single model configuration and are subject to initialization and parameter uncertainty, in addition to scenario and structural uncertainty (Payne et al., 2016). Knowledge of forecasts and projections can potentially influence the decision-making process, therefore it is important that simulation results are viewed in the appropriate context (Hobday et al., 2019). Our projections are best interpreted in a qualitative manner, in terms of the direction of change and the agreement across simulation scenarios (Ainsworth et al., 2011).

Our use of multiple climate and fishing scenarios is a start to addressing scenario uncertainty but only accounts for a limited portion of this uncertainty. Scenario uncertainty is due to an inability to know what the full potential range of future outcomes includes. RCPs 8.5 and 4.5 represent upper and intermediate levels of warming, respectively, among the RCPs available, but we did not include RCP 2.6 in our modeling framework (Hollowed et al., 2020), which is a pathway with high levels of mitigation and low greenhouse gas emissions. Including the lowest emission scenario may have provided additional contrast in the outcomes and revealed interactions between fisheries and climate that were not present in our current simulations, and would have presented a broader picture of scenario uncertainty due to climate.

Our fisheries scenarios are rooted in the existing fisheries management paradigm and historical management decisions. Thus, they do not reflect conditions that exist outside the historical record and cannot predict how future management decisions under unprecedented conditions may differ from historical practices. The portion of scenario uncertainty due to human responses to unforeseen or unprecedented conditions is irreducible in many respects, and will likely always be present to some degree in any future projections (Hawkins et al., 2016; Payne et al., 2016; Planque, 2016).

Structural uncertainty is due to a limited understanding of the processes and mechanisms that determine population and ecosystem dynamics and are represented with simplified processes in models. To help address structural uncertainty, we used three earth system models to project future climate. The importance of structural uncertainty can be seen in our projection outcomes at 2080, where a greater distinction in outcomes is seen between earth system models as opposed to between the two RCPs (Figure 10). This outcome emphasizes the importance of using multiple earth system models in climate projections with biological models, and highlights how important the selected earth system models can be in determining the end of century outcomes. Frölicher et al. (2016) found that most uncertainty in century-scale projections of net primary production with earth system models was attributed to structural uncertainty, followed by scenario uncertainty. This result is similar to the findings of Reum et al. (2020) who observed that uncertainty in projections with a multi-species size-spectrum model up to mid-century was primarily due to the climate scenario, but thereafter it was primarily due to the earth system model.

The total uncertainty in our Rpath projections also includes the uncertainty present in the earth system models and the oceanographic and lower trophic level modeling, whose outputs drive our projections. The uncertainty in previous steps in the model hierarchy accumulates in our model, adding to the total uncertainty (Payne et al., 2016). An additional source of structural uncertainty in the ACLIM modeling framework is the use of a single ocean and biogeochemical model. The Bering10K model provides the biological indices used to simulate climate forcing in our Rpath projections. While the Bering 10K outputs have demonstrated skill at projecting physical, thermal, and nutrient dynamics, room for improvement remains with the skill of reproducing primary and secondary production group dynamics (Kearney et al., 2020). We acknowledge that these biological variables with lower skill are those variables we are using to simulate climate change within our Rpath model.

The risk of climate change impacts on the eastern Bering Sea food web persists under both the business-as-usual (RCP 8.5) and the moderate emission scenario (RCP 4.5). The best way to limit the impacts of climate change on marine ecosystems and fisheries is to reduce greenhouse gas emissions (Cheung et al., 2016; Gattuso et al., 2018). In the face of climate change impacts, the long-term sustainability of fisheries can be best ensured with effective ecosystem-based fisheries management that is responsive to the impacts of climate change on species and the food web (Gaines et al., 2018; Fulton et al., 2019; Free et al., 2020; Holsman et al., 2020). Our climate-enhanced projections with Rpath can support fisheries managers by contributing to an improved understanding of the long-term effects of forecasted climate change on commercial and non-commercial species, and in consideration of region-specific policies and tradeoffs confronting fisheries managers. We incorporated a fisheries sub-model that could emulate region-specific management practices and make dynamic catch predictions during the simulations, which provided additional detail over the alternative of using a constant multiplier of present day fishing mortality. Our model projections are one part of a larger ensemble of biological models in the ACLIM project that will be jointly considered in future work to quantify different sources of uncertainty and provide a more comprehensive suite of future projections for the eastern Bering Sea (Hollowed et al., 2020). While our Rpath projections are not suited to inform tactical management decisions, as they do not include adequate measures of uncertainty or the likelihood of different outcomes, our method for incorporating climate and fisheries into food web projections can serve as a starting point for future studies that consider additional climate stressors and more comprehensive accounting of uncertainty.
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Coastal erosion and wetland loss are affecting Louisiana to such an extent that the loss of land between 1932 and 2016 was close to 5,000 km2. To mitigate this decline, coastal protection and restoration projects are being planned and implemented by the State of Louisiana, United States. The Louisiana Coastal Master Plan (CMP) is an adaptive management approach that provides a suite of projects that are predicted to build or maintain land and protect coastal communities. Restoring the coast with this 50-year large-scale restoration and risk reduction plan has the potential to change the biomass and distribution of economically and ecologically important fisheries species in this region. However, not restoring the coast may have negative impacts on these species due to the loss of habitat. This research uses an ecosystem model to evaluate the effects of plan implementation versus a future without action (FWOA) on the biomass and distribution of fisheries species in the estuaries over 50 years of model simulations. By simulating effects using a spatially-explicit ecosystem model, not only can the changes in biomass in response to plan implementation be evaluated, but also the distribution of species in response to the planned restoration and risk reduction projects. Simulations are performed under two relative sea level rise (SLR) scenarios to understand the effects of climate change on project performance and subsequent fisheries species biomass and distribution. Simulation output of eight economically important fisheries species shows that the plan mostly results in increases in species biomass, but that the outcomes are species-specific and basin-specific. The SLR scenario highly affects the amount of wetland habitat maintained after 50 years (with higher levels of wetland loss under increased SLR) and, subsequently, the biomass of species depending on that habitat. Species distribution results can be used to identify expected changes for specific species on a regional basis. By making this type of information available to resource managers, precautionary measures of ecosystem management and adaptation can be implemented.

Keywords: ecosystem modeling, wetland loss, Ecospace, Louisiana Coastal Master Plan, large sediment diversions, sea level rise, fisheries species, food web


INTRODUCTION

The estuaries of the northern Gulf of Mexico, United States, are nowhere as extensive as in the Louisiana coastal zone, where an area of 56,000 km2 supports productive commercially and recreationally important species (Keithly and Roberts, 2017). This region is also suffering the highest rates of wetland loss in the United States due to coastal erosion and relative sea level rise (SLR); the amount of land already lost between 1932 and 2016 is close to 5,000 km2 (calculated using data from Couvillion et al., 2017). Projected accelerated rates of SLR are expected to increase this loss in the future (IPCC, 2014). To mitigate this decline, coastal protection and restoration projects are being planned and implemented. The 2017 Louisiana Coastal Master Plan (CMP) is the latest plan in an adaptive management approach that provides a list of projects that build or maintain land and protect coastal communities (CPRA, 2017). The restoration measures that are implemented or proposed to be employed in the CMP have been selected using an extensive simulation process, using multiple models that determine the effect of all projects on, e.g., land building, water quality, vegetation growth, and coastal flooding, under three different future scenarios that vary SLR, hurricane frequency and intensity, precipitation patterns, and subsidence (rate of land compaction and sinking). Most models that support the CMP are actively linked within one framework, the Integrated Compartment Model (ICM; CPRA, 2017). The ICM simulates the effect of several proposed restoration and risk reduction projects, with a focus on building and maintaining land. Additional models during the plan development process were added to examine the effects of flood risk reduction projects. A planning tool that made use of simulation output—including economic considerations—informed the decisions of which restoration and protection projects to include in the CMP (CPRA, 2017).

Any changes in the coastal area have the potential to change the habitat suitability of the fish and shellfish that live in that area. We developed a new ecosystem model and coupled that to the ICM using an automated one-way coupling approach, which allowed us to simulate effects of the restoration and protection projects on the biomass and distribution of living marine resources within the Louisiana coastal area. ICM outputs used as environmental drivers include salinity, total Kjeldahl nitrogen (TKN), temperature, total suspended solids (TSS), and percent cover of marsh. With these linked models, we addressed the following research questions: (1) How does the biomass and spatial distribution of economically and ecologically important fisheries species change with the implementation of the Louisiana CMP as compared to a future without action (FWOA)? and (2) How does SLR affect these species in a future with and without restoration over 50 years?

The ecosystem model developed to this purpose is an Ecospace model built within the Ecopath with Ecosim (EwE) software, representing the local food web with 55 groups. EwE is an open source ecosystem modeling software, originally developed by Polovina (1984) to model trophic interactions and to estimate mean annual biomass on a Hawaiian coral reef ecosystem. The Ecosim and Ecospace components were developed later (Walters et al., 1997, 2000). The utility of the model has expanded from investigating changes in mean annual biomass of fish species to operational ecosystem management approaches such as investigations into combined effects of fishing impacts and environmental drivers (Coll et al., 2016; De Mutsert et al., 2016; Hernvann et al., 2020) and marine protected area placement and environmental drivers (Dahood et al., 2020), environmental impact studies (Raoux et al., 2018), and spatial–temporal modeling for marsh restoration effects on fish species (De Mutsert et al., 2017).

To identify how the restoration and protection projects selected for the 2017 CMP differentially affect living marine resources from changes occurring over 50 years under different rates of SLR, an FWOA scenario was simulated as well. Both the CMP and the FWOA were simulated under three future SLR projections (Meselhe et al., 2017); here we show output from the “high” and “low” SLR projections (details of these two projections are provided in section “Materials and Methods”). By directly linking the models through an executable version of Ecospace (the EwE Console), we evaluate effects of proposed projects on biomass and distribution of living marine resources within the estuaries under two different SLR scenarios. This information provides managers and other stakeholders with a fuller picture of trade-offs that are part of the decision-making process, a better understanding of what to expect when selected projects are implemented, and estimates how different SLR projections can affect the outcome.



MATERIALS AND METHODS


Study Area and Model Domain

The model domain encompasses all of the Coastal Study Areas (CSAs) as defined by the Louisiana Department of Wildlife and Fisheries (LDWF., 2002; Figure 1). In this paper, we focus on a subset of these basins, the Pontchartrain, Breton, Birdsfoot, and Barataria regions (highlighted in color in Figure 1). We chose this area because it includes most large sediment diversion projects (Supplementary Table S1) proposed in the 2017 CMP, which, in similar models, have been shown to affect fish distributions over both short and long time intervals (De Mutsert et al., 2017).
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FIGURE 1. Model domain for the ICM and CMP Ecospace model (area within the black box). Each color represents a different Coastal Study Area (CSA) within the model domain; dark gray CSAs are excluded from this analysis. Symbols represent the sampling locations of fish surveys that are used for CMP Ecospace model development and calibration.




The Integrated Compartment Model

The ICM is a suite of dynamic landscape models that simulate coastal wetland hydrology, vegetation cover, and wetland elevation change across the Louisiana coastal zone. Hydrologic and hydraulic calculations are performed in a link-node model that calculates daily water levels, salinity concentrations, and sediment deposition and resuspension at 946 calculation nodes within the model domain (Meselhe et al., 2013; White et al., 2018). The vegetation dynamics module determines a relative coverage of vegetation species at a given location based upon salinity and water level variability conditions during the warm growing season (May through August, for details, see Visser and Duke-Sylvester, 2017). Within the wetland elevation model, simulated sediment deposition rates in open water bodies are used to calculate annual rates of shoaling, and vertical accretion of the marsh surface is calculated from deposition rates of mineral sediments on the marsh surface in conjunction with marsh type-specific organic matter accretion rates to calculate annual total vertical accretion of marsh areas (Couvillion and Beck, 2013; White et al., 2017). The vertical accretion component of the wetland elevation change model is counteracted by subsidence rates of assumed future scenarios as well as assumed rates of global mean SLR (Meselhe et al., 2017; White et al., 2018), which result in relative SLR scenarios that may be greater or less than the simulated rates of vertical accretion. This results in a modeled wetland area that may experience greater inundation over the simulation period. If the inundation depth was persistently greater than a threshold depth, which varied by habitat type (Couvillion and Beck, 2013), or a low-salinity habitat type experienced a prolonged period of elevated salinity values, the wetland area would collapse into open water (Supplementary Table S2). As the modeled landscape changed due to deposition and erosion of sediment and the collapse and/or gain of land, the modeled representation of the landscape (depth of water bodies, width of flow pathways, elevation of marsh platform, etc.) was updated, resulting in a feedback between the hydrodynamic calculations, the vegetation response, and the wetland elevation changes. These feedbacks were modeled on an annual timestep, and annually updated maps of marsh cover were included in Ecospace simulations. Spatial output of salinity and temperature was read into Ecospace on a monthly basis during simulations to affect nekton distribution, and salinity, temperature, and TSS were read in on a daily basis to affect oyster survival and distribution. TKN was read into Ecospace on a monthly basis to affect primary production, which subsequently affected secondary production through food web interactions.



The CMP Ecospace Model


Ecopath Base Model

Ecopath is a virtual representation of an aquatic food web that models the flows and pools of biomass within that system and must be developed prior to using the other components of the modeling suite (i.e., Ecosim and Ecospace). The Ecopath model assumes conservation of mass over a year by satisfying two master equations. The first equation describes the production of each functional group as a set of n linear equations for n groups:
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where [image: image] is the production to biomass ratio for group i, EEi is the ecotrophic efficiency (the proportion of production used in the system), Bi and Bj are the biomasses of the prey and predators, respectively, [image: image] is the consumption to biomass ratio, DCji  is the fraction of preyi in predator j’s diet, Yi is the catch rate for the fishery for group i, Ei is the net migration rate, and BAi is the biomass accumulation for group i.

Energy balance within each group is ensured with the second master equation:
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where production can be described as:
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Which can be described in function notation by the following equation:
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where Pi    is the production of prey group i, Qjis the consumption of predator j, DCji is the diet composition contribution of i to j’s diet (by weight, not energy), Fi is the instantaneous rate of fishing mortality, NMi is the net migration rate of prey group i, BAi is the biomass accumulation rate for i, M0i is the other mortality rate for i (non-predation, non-fishery), and Bi is the biomass of i.

This Ecopath model characterizes the food web in the model area (Figure 1) in the year 2000. Fifty-five functional groups that represent life stages of species or guilds were defined (Table 1). Species of interest (due to their ecological or economic importance) were characterized with a juvenile as well as an adult life stage to better represent the ontogenetic changes through a species’ life history (Christensen and Walters, 2004). This multi-stanza approach consists of two or more groups in the model that are linked with a von Bertalanffy growth function. The consumer groups considered in this study include zoobenthos, zooplankton, nektonic shrimps and crabs, oysters, fishes, birds, and bottlenose dolphin. Estimates of initial biomass were obtained from the data sources indicated in Table 1. When available, we used mean biomasses calculated from 1995 to 2000 data collected in the Barataria, Breton Sound, and Lake Pontchartrain basins by the LDWF fisheries independent monitoring program (FIMP). In addition to initial biomass, consumption to biomass (Q/B) and production to biomass parameters (P/B) were entered for each group. Age in months was also provided for multi-stanza groups that depict that start of each life stage (i.e., age in month when the juvenile turns into an adult) and the von Bertalanffy k value (a curvature parameter that suggests how fast a fish will reach L8; von Bertalanffy, 1933). The values and sources for each of these parameters are indicated in Table 1.


TABLE 1. Mass-balanced Ecopath parameters.

[image: Table 1]
A diet matrix is used to link the trophic interactions among species in the model. The diet of each group consists of the proportional consumption of some combination of other groups in the model, summing to one. The diet composition was constructed from previously completed diet studies for each species. Using these proportional diets as a baseline, we constructed the matrix that was then iteratively adjusted as needed. That is, during the model balancing process, the diet matrix was adjusted within the bounds of what is reported in local diet studies and published stomach content analyses for each specific species (see Supplementary Table S3) to ensure a balanced flow of energy into and out of the system.

In addition to predation captured by the diet matrix, fishery removal plays a role in the mass-balancing process. Fisheries present in the ecosystem were added to the Ecopath model with commercial landings that were derived from the LDWF Trip Ticket data and recreational landings derived from NOAA’s MRIP program. The commercial fleets included in the Ecopath model are those targeting brown shrimp, white shrimp, blue crab, black drum, oysters, and menhaden. In addition to that, one recreational “fleet” was added, targeting adult spotted seatrout, adult red drum, adult black drum, adult largemouth bass, adult blue catfish, adult southern flounder, adult sheepshead, adult sunfishes, and adult blue crab. Bycatch of fleets was included in the model, based on estimates from Walters et al. (2008). If these inputs did not meet the mass balance assumption during model balancing procedures, the relatively uncertain discard values were iteratively reduced to meet those assumptions.



Model Calibration

The model was calibrated in Ecosim, which is the temporal dynamic module of EwE. Ecosim re-expresses the system of linear equations from Ecopath as a system of coupled differential equations to predict future outcomes:
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where gi is the net growth efficiency; Ii is the biomass immigration rate; Mi is the non-predation mortality rate; Fi is the fishing mortality rate; ei is the emigration rate; and Cij can be considered the “flow” from pool i to pool j organisms as a function of time—the consumption rate of type i biomass pool by type j biomass pool.

During model calibration, biomass and landings output of groups in the model were fitted to observed biomass data, landings data, and fishing effort, for each group for which we had such data available (see Supplementary Table S4 for data sources). Spatially averaged ICM output of TKN, salinity, and temperature was included as environmental drivers. Model fitting in Ecosim adjusts the vulnerability exchange rate to predation until the best fit to observed data is found. During the fitting procedure, the vulnerability exchange rates were adjusted until the model with the lowest sum of squared deviations (SS) of the observed logarithmic (log) biomass values and AIC values was found, which is the model that best recreates historical patterns of biomass (Christensen et al., 2008). Model calibration was completed for annual observed data of biomass (fishery independent data) and catch (fishery dependent data) of species for which data were available for the 14-year simulation (2000–2013; Figure 2) using the same procedures as used in De Mutsert et al. (2017). Additional goodness of fit metrics, including %RMSE, PBIAS, and r, were calculated for catch and biomass after calibration (Supplementary Table S5).
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FIGURE 2. Biomass (B, t km−2) and catch (tonnes) calibration fits to annual biomass observations and annual landings data respectively. Error bars indicate the standard error of the observations. Biomass observations reflect coastwide averages based on collections at stations indicated in Figure 1. (A) Spotted Seatrout, (B) Largemouth Bass, (C) Gulf Menhaden, (D) Blue Crab, (E) Brown Shrimp, (F) White Shrimp, (G) Eastern Oyster, (H) Black Drum, (I) Gulf Menhaden catch, (J) Blue Crab catch, (K) Brown Shrimp catch, (L) White Shrimp catch, (M) Eastern Oyster catch, (N) Black Drum catch.




Ecospace

In the CMP Ecospace model, the same set of differential equations applied in Ecosim is applied in every grid cell over a georeferenced base map (Walters et al., 1997; Christensen et al., 2008). The model domain presented above is included as a base map with 1 km2 grid cells totaling 58,079 cells; the subset of basins we focus on in this study totals 21,363 cells. Cells are connected through movement of groups and fleets as described in Walters et al. (1999), while environmental parameters affect biomass and movement of groups using the habitat capacity model as described in Christensen et al. (2014).

Maps of the environmental drivers affect all fish groups in the model as determined by response curves (see Figure 3 for the curves of the species discussed in this paper). Response curves were derived by plotting LDWF FIMP catch data of groups in the model versus salinity and temperature. The trapezoidal shape of the curves was decided upon to reflect tolerance ranges rather than having one optimum salinity or temperature value, which is what a binomial curve would suggest. The response curve of marsh cover was derived from Minello and Rozas (2002), and only applied to juvenile life stages of nekton species. Of the drivers, salinity and temperature were loaded monthly, while percent cover of marsh was loaded annually during a model run. TKN was used as a relative primary productivity driver to affect primary producers and was loaded monthly. Oysters were affected by daily salinity, temperature, and TSS through oyster environmental capacity layers (OECLs) as described in De Mutsert et al. (2017). In short, the capacity of oysters to grow in a certain model cell in 1 month is determined by daily levels of salinity, temperature, and TSS in that month in combination with response curves; this creates one OECL. These OECLs are then loaded monthly into Ecospace to affect oyster biomass. One habitat map was added for oysters, which describes the % cultch (oyster rubble on which spat can settle) in each model cell. This addition was important to simulate oyster distribution, as oysters only settle on cultch. All environmental driver maps except for % cultch were output from the ICM. The CMP Ecospace model received these driver values for each grid cell from the ICM through one-way coupling to the ICM as described below.
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FIGURE 3. (A–L) Habitat capacity (y-axis) in response to salinity (x-axis) makes up the salinity response curves for the juvenile and adult life stages of model groups. Seven species of interest are shown. (M) Temperature response curve applied to all species in the model. (N) Marsh response curve (derived from Minello and Rozas, 2002) applied to all juvenile life stages of nekton species in the model.




Model Coupling

The ICM provides an overarching framework to link specialized models with varying input and output formats into a single modeling suite. For a model to be included in the ICM suite, it must be configurable and run via an automated interface, without human intervention. The EwE Scientific Interface requires an operator to load, configure, and run an Ecosim and Ecospace scenario. To include Ecospace within the ICM modeling framework, we developed a new Ecospace console application that can be configured via a text file supplied to the command line of the console application. The EwE software uses a modular design, with each model component contained in a set of dynamic linked libraries (.dll’s). This architecture allows the new command line version of Ecospace to use the same code libraries and plugins as the EwE Scientific Interface. This customized version of Ecospace is different from the free open-access EwE software and can be attained through collaboration with the Ecopath International Initiative.

The ICM could then include Ecospace within its modeling suite. For each Ecospace input variable of interest (i.e., salinity, temperature), the ICM created input grid files in ESRI’s non-proprietary ASCII format from the output of other models in the ICM chain. The EwE Spatial Temporal Framework could then be configured to read these .asc grid files as inputs to drive the Ecospace habitat capacity model (see Supplementary Figure S1 for a diagram of the coupling framework).



Coastal Master Plan Environment

The ICM was used to simulate, across a variety of environmental scenarios, two potential futures: FWOA and CMP. Both simulations were initialized with data that represented the 2014 landscape configuration and included any additional restoration projects that were currently under construction or permitted (CPRA, 2017). The FWOA simulations did not have any additional restoration or risk reduction projects added to the landscapes during the simulations, whereas the CMP simulations included a portfolio of habitat restoration and hurricane and storm surge risk reduction projects implemented sequentially throughout the 50-year simulations. The projects were implemented in phases and were placed throughout the entire Louisiana coastal zone. Project types that were included in the plan were: marsh creation, sediment diversion, ridge restoration, shoreline protection, hydrologic restoration, and structural hurricane protection (e.g., levees, floodwalls, and floodgates). Of the 121 projects implemented in the CMP simulations (see Supplementary Table S1 for all projects), 54 were located east of Bayou Lafourche and would likely have some impact on the fisheries model output in the Pontchartrain, Breton, and Barataria regions, which is the focus of this analysis (Figure 4).
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FIGURE 4. Restoration projects included in the approved 2017 Louisiana Coastal Master Plan specific to our focal area of the Pontchartrain, Breton, Birdfoot, and Barataria regions.


Marsh creation projects are placed on the landscape and immediately result in an increase of functional marsh habitat within the project footprint; they also impact the flow pathways within the region and therefore may have secondary impacts upon water levels, salinities, sediment dynamics, and other hydrodynamic variables. The first two marsh creation projects within the Pontchartrain, Breton, and Barataria regions of the model domain were implemented in year 4 and year 5, 14 marsh creation projects were implemented between years 15 and 19, and three additional marsh creation projects were implemented in years 34, 37, and 39. Ridge restoration projects are implemented in a similar manner; however, the feature alignments are more linear in nature, follow historic ridges, and have design elevations considerably higher than the marsh creation projects. Five ridge restoration projects were implemented in year 5 in the eastern portion of the domain, and three additional ridges were restored in year 15.

Hurricane protection projects consist of levees, floodwalls, and floodgates at strategic locations surrounding some of the more populous regions of the model domain. Floodgates are included in the model with an operational logic that will shut the floodgates if downstream water surface elevations are above a specified elevation threshold. These elevation thresholds do not change through time (as mean sea levels are higher) and there is no logic in place to operate them solely during hurricane conditions. Therefore, during later decades under the higher SLR scenarios, the operation of the floodgates is more frequent. Most of the hurricane protection projects within the Pontchartrain, Breton, and Barataria regions are on the periphery of wetland and estuary habitats. However, two projects in these regions, the Lake Pontchartrain Barrier and the Upper Barataria Risk Reduction projects, do bisect large portions of potential non-urban habitat. These projects are implemented in the CMP in years 7 and 11, respectively.

In addition to the project types listed above, there are also several sediment and freshwater diversion projects implemented in the Pontchartrain, Breton, and Barataria regions. These projects aim to re-connect historic flow pathways (hydrologic restoration) or to re-introduce sediment-laden, nutrient-rich, and low-salinity Mississippi River water to the estuary and wetland systems surrounding the Mississippi River Delta. The magnitude of the re-introduced flow in these projects varies; however, they are located along the Mississippi River from upstream of Blind River (Union diversion) to several miles downstream of the termination of the east-bank river levee in Bohemia (the lower Breton diversion). One diversion (the Ama diversion) is implemented in year 19; the remaining eight diversions are implemented in either year 7 or year 9.

The remainder of the CMP projects implemented in the Pontchartrain, Breton, and Barataria regions consist of one hydrologic restoration project and seven shoreline protection projects. These projects are generally smaller in scale and are anticipated to have limited impact upon modeled fishery response.



Simulation Scenarios

We compared the effects on fish and shellfish biomass of having the CMP in effect over 50 years with those of an FWOA using a Wilcoxon rank test. We evaluated the differences in biomass and distribution of the species in our model by comparing these two future approaches. We focused on the results of eight economically important fisheries species, namely, spotted seatrout (Cynoscion nebulosus), largemouth bass (Micropterus salmoides), Gulf menhaden (Brevoortia patronus), blue crab (Callinectes sapidus), brown shrimp (Farfantepenaeus aztecus), white shrimp (Litopenaeus setiferus), eastern oyster (Crassostrea virginica), and black drum (Pogonias cromis). Both scenarios were run under two different future scenarios: one representing low levels of SLR projections (0.43 m/50 years) and one representing high levels of SLR projections (0.83 m/50 years; see Supplementary Table S6 for full climate scenario descriptions). The SLR scenarios were used to provide an estimate of uncertainty around the year 50 predictions. Results were analyzed per basin for four basins of interest as indicated in Figure 1: Lower Barataria, Breton Sound, Lower Pontchartrain, and the Birdsfoot Delta. Spatial distribution maps of model output were created using a GIS to visualize the differences between year 0 and year 50, under two different SLR scenarios, and with and without plan implementation. Two months are displayed: June and October. These two months are chosen as representative months where the largest difference in plan implementation response can be expected. A significant component of the CMP in the Mississippi River Delta is the implementation of large sediment diversions, which have a proposed and simulated flow regime that varies throughout the year as a function of flows in the Mississippi River (see De Mutsert et al., 2017 for a related diagram). The biggest diversion effects within EwE are expected to be found in early summer (e.g., June) when water diverted during the spring-time river flood has resulted in the lowest salinity and longest sustained sediment loading. There is an expected reversal in environmental conditions during the fall (e.g., October) when the river flows are traditionally at a minimum and the diversions are no longer operated due to the operational rules applied. Finally, the difference between the two future SLR scenarios was compared delta-wide by pooling the basins using a Wilcoxon rank test.



RESULTS

The changes resulting from plan implementation are species-specific and basin-specific (Figure 5). In general, the eight species of interest we focus on had more biomass at the end of the 50-year simulation when the Coastal Master Plan was implemented as compared to an FWOA. We focused our comparisons on the juvenile life stages with two exceptions, because the species highlighted make most use of the estuaries of the Mississippi River Delta during that stage in their life. The exceptions were eastern oyster, for which we chose to display the sack oysters (adults) that occur within the model area, and spotted seatrout, another species that occurs in the estuaries during their adult life stage.
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FIGURE 5. The biomass in simulation year 50 of eight species of economic interest in four different basins (BFD, Birdsfoot Delta; BRT, Breton Sound; LBA, Lower Barataria; LPO, Lower Pontchartrain) in coastal Louisiana after 50 years of Coastal Master Plan (CMP) implementation compared to a future without action (FWOA). The boxes in the box plots reflect the model output of two different SLR scenario simulations. (A) Blue Crab, (B) Black Drum, (C) Brown Shrimp, (D) Gulf Menhaden, (E) Largemouth Bass, (F) Eastern Oyster, (G) Spotted Seatrout, (H) White Shrimp.


Since we are comparing model output with the two SLR scenarios as “samples” (see Supplementary Table S6 for description of SLR scenarios), sample size for the Wilcoxon rank test was small and did not provide enough power to return significant differences. Rather, the SLR scenarios should be viewed as a visualization of the level of uncertainty in the response of living resources to CMP implementation in the face of uncertain future climate. The difference between biomass under the low and high SLR scenarios visualized with spatial distribution maps reveals the large effect the SLR scenario chosen has on the outcome (Figures 6–14). We will point out the difference in model output with and without plan implementation, but since we lack sufficient model output samples, we are unable to determine whether these differences are significant.


[image: image]

FIGURE 6. Spatial distribution of juvenile Blue Crab in different simulations. Output is shown from June and October in Year 0 and Year 50, under “Low” and “High” relative sea level rise (see Supplementary Table S6 for scenarios), and with Coastal Master Plan (CMP) implementation and without (FWOA).
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FIGURE 7. Spatial distribution of juvenile Black Drum in different simulations. Output is shown from June and October in Year 0 and Year 50, under “Low” and “High” relative sea level rise (see Supplementary Table S6 for scenarios), and with Coastal Master Plan (CMP) implementation and without (FWOA).
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FIGURE 8. Spatial distribution of juvenile Brown Shrimp in different simulations. Output is shown from June and October in Year 0 and Year 50, under “Low” and “High” relative sea level rise (see Supplementary Table S6 for scenarios), and with Coastal Master Plan (CMP) implementation and without (FWOA).
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FIGURE 9. Spatial distribution of juvenile Gulf Menhaden in different simulations. Output is shown from June and October in Year 0 and Year 50, under “Low” and “High” relative sea level rise (see Supplementary Table S6 for scenarios), and with Coastal Master Plan (CMP) implementation and without (FWOA).
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FIGURE 10. Spatial distribution of juvenile Largemouth Bass in different simulations. Output is shown from June and October in Year 0 and Year 50, under “Low” and “High” relative sea level rise (see Supplementary Table S6 for scenarios), and with Coastal Master Plan (CMP) implementation and without (FWOA).
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FIGURE 11. Spatial distribution of adult Eastern Oyster in different simulations. Output is shown from June and October in Year 0 and Year 50, under “Low” and “High” relative sea level rise (see Supplementary Table S6 for scenarios), and with Coastal Master Plan (CMP) implementation and without (FWOA).
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FIGURE 12. Spatial distribution of adult Spotted Seatrout in different simulations. Output is shown from June and October in Year 0 and Year 50, under “Low” and “High” relative sea level rise (see Supplementary Table S6 for scenarios), and with Coastal Master Plan (CMP) implementation and without (FWOA).
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FIGURE 13. Spatial distribution of juvenile White Shrimp in different simulations. Output is shown from June and October in Year 0 and Year 50, under “Low” and “High” relative sea level rise (see Supplementary Table S6 for scenarios), and with Coastal Master Plan (CMP) implementation and without (FWOA).
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FIGURE 14. The average difference in biomass over all basins of eight species of economic interest between Coastal Master Plan (CMP) implementation and a future without action (FWOA). This difference under a low and high sea level rise scenarios is compared. Values indicate how much more biomass in g m–2 is retained at year 50 with plan implementation as compared to a future without action. (A) Blue Crab, (B) Black Drum, (C) Brown Shrimp, (D) Gulf Menhaden, (E) Largemouth Bass, (F) Eastern Oyster, (G) Spotted Seatrout, (H) White Shrimp.




Effects of SLR Scenario

Future rates of SLR appear to impact plan implementation effects on biomass and distribution of fisheries species (Figures 6–13). In other words, SLR adds uncertainty in the predictions of CMP effects. The SLR scenario simulated also has an influence on fish biomass and distribution in an FWOA. To evaluate what effect plan implementation has under different rates of SLR, the biomass difference in year 50 between CMP and FWOA over all basins under the two SLR scenarios was compared (Figure 14). With positive values indicating that more biomass is present in year 50 under plan implementation that in an FWOA, only blue crab under the high SLR scenario shows an average lower biomass with plan implementation than in an FWOA. All other species responded positively to plan implementation. For blue crab, black drum, Gulf menhaden, and largemouth bass, the effect of plan implementation is larger under the low SLR scenario than under the high SLR scenario. For brown shrimp, eastern oyster, spotted seatrout, and white shrimp, the effect of plan implementation is larger under the high SLR scenario than under the low SLR scenario.


Species-Specific Responses

Blue crab biomass was lower with plan implementation in the Birdsfoot Delta than without, higher in Breton Sound and Lower Barataria, and showed no difference in the Lower Pontchartrain basin (Figure 5A). Figure 6 shows loss of blue crab habitat (marsh edge) and thereby biomass under FWOA, which is mitigated by plan implementation under CMP. This outcome is evident in Breton Sound and Lower Barataria, which are the receiving basins of Mississippi River sediment and nutrients through large sediment diversions as part of the CMP (see Supplementary Table S1 for all projects included in the CMP). Black drum biomass was lower with plan implementation in the Birdsfoot Delta than without, and higher in Breton Sound, Lower Barataria, and the Lower Pontchartrain basin (Figure 5B). Black drum shows a strong increase in biomass over the model simulation time with plan implementation and a low SLR scenario, moderate increase in biomass with plan implementation under a high SLR scenario as well as in an FWOA under a low SLR scenario, but a decrease in biomass in an FWOA under a high SLR scenario (Figure 7). Brown shrimp biomass was higher with plan implementation in the Birdsfoot Delta, lower Barataria, and the Lower Pontchartrain basin than without, and showed no difference in Breton Sound (Figure 5C). The differences between CMP and FWOA and between low and high SLR scenarios (the latter is evident by the small size of the boxes in the box plot) were small. An effect of habitat loss can be seen when comparing the start (year 0) with the end of the simulation (year 50) especially at the marine end of the Lower Pontchartrain and Breton Sound basins, resulting in a shift of biomass toward the offshore area of the Lower Barataria basin (Figure 8). This effect is strongest without plan implementation (FWOA) and under high rates of SLR. Gulf menhaden shows a positive response to plan implementation in all basins except for the Birdsfoot Delta (Figure 5D). The distribution maps indicate that in an FWOA suitable habitat seems to disappear elsewhere, concentrating Gulf menhaden juveniles around the Birdsfoot (Figure 9). Under the CMP, suitable areas for Gulf menhaden juveniles expand in the wetlands of Barataria Bay and Breton Sound. Largemouth bass shows much higher biomass under CMP than in an FWOA in Breton Sound and Lower Barataria (Figure 5E). The differences in the Birdsfoot Delta and Lower Pontchartrain basin are small but positive for CMP as compared to FWOA. The distribution of this low salinity species spreads to the wetlands of Barataria Bay and Breton Sound with plan implementation over the 50-year model simulation, even under the high SLR scenario (Figure 10). Eastern oyster experienced higher biomass in all basins under plan implementation than in an FWOA in year 50 of the simulation (Figure 5F). The spatial distribution maps show that highest biomass occurs under plan implementation with high SLR projection (Figure 11). Averaged over SLR scenarios, the effect on oysters of plan implementation is still positive (Figure 5F). The spatial distribution is in this case also heavily determined by substrate, with percent cultch as a main factor in oyster establishment. Spotted seatrout shows higher biomass in Lower Barataria with plan implementation as compared to an FWOA (Figure 5G), which is due to an increase in biomass with CMP implementation (Figure 12), especially under the low SLR scenario, and a decrease in biomass in an FWOA. Differences are smaller in the other basins, with slightly lower biomass with plan implementation than in an FWOA in the Birsdsfoot Delta, and slightly higher in Breton Sound and Lower Pontchartrain (Figure 5G). White shrimp showed very little difference in all basins between plan implementation and an FWOA, but in all cases, the biomass was slightly higher with plan implementation (Figure 5H). From the spatial distribution maps, it becomes clear that the largest change occurs through time (year 0 versus year 50, Figure 13), with biomass reductions mostly in the lower Breton Sound and Pontchartrain Basins.



DISCUSSION

The Louisiana CMP is designed to mitigate coastal wetland losses and habitat changes that are expected due to both anthropogenic and natural causes (CPRA, 2017; White et al., 2017), which in turn affects the biomass of living marine resources. This reduction of habitat loss due to plan implementation is more successful under low SLR scenarios, but still noticeable under high rates of SLR (White et al., 2019). How much the climate will change is unknown; therefore simulations of two scenarios have been compared here, one considered on the low end of change in SLR and subsidence and one considered on the high end. The complications of SLR rate scenarios, and how they will be impacted by new knowledge (e.g., of ice sheet melt dynamics), and by climate change mitigation and emission reduction efforts at the global scale, are a continuously evolving and advancing area of scientific study1. Research conducted since the development of these scenarios is exploring the relative likelihoods of these (and others) SLR scenarios (Kopp et al., 2014; Sweet et al., 2017); however, it still remains difficult to project, with any level of confidence, exactly which SLR scenario will be the closest to future sea level trends in coastal Louisiana; a factor that is further compounded by subsidence rates. What is clear is that future sea levels in coastal Louisiana will result in changed conditions that will only be partially mitigated by an extensive restoration plan. Restoration and mitigation alone will not prevent the loss of coastal habitat for living marine resources. Climate change is a global process and should therefore be considered when developing ecosystem restoration plans. In fact, Busch et al. (2016) outlines a Climate Science Strategy for the US National Marine Fisheries Service (NMFS) and directly calls for “robust projections of future ocean conditions and the likely responses of ecosystems, LMRs, and human communities on appropriate temporal and spatial scales.” The work herein is an exciting step to aligning with the plan put forth by the NMFS.

Planned restoration projects that will have the most effect on the fish and shellfish in the Mississippi River Delta (our focus area) are large sediment diversions and marsh creation projects. These projects are expected to increase habitat as compared to an FWOA by mitigating wetland loss, increasing sediment and nutrient loads by diverting Mississippi River water into the estuaries, and reducing salinity for the same reason. While the land-building capacity of river diversions has been shown in various projects (Day et al., 2018), stakeholders are concerned about potential negative impacts to fish and fisheries (Barra, 2020), mostly due to salinity reductions (Das et al., 2012). Explicitly simulating effects of planned restoration projects on living resources in the estuaries as was done in our study provides an estimate of the effects and impacts of these projects on living resources. One species of concern is eastern oyster, which will be affected by lowered salinities (Soniat et al., 2013). We have put much care into the simulation of oyster response to environmental changes by including OECLs (De Mutsert et al., 2017); a different habitat suitability subroutine than the habitat capacity model available in Ecospace that reflect effects of environmental change on daily rather than monthly time steps. We found similarities in our oyster distributions to Soniat et al. (2013); suitable locations for eastern oyster are at the marine end of the lower estuaries and depend on the presence of hard substrate. Perhaps surprisingly, we found that eastern oyster experienced higher biomass under plan implementation than in an FWOA in year 50 of the simulation. This does not mean oyster biomass increased over the 50-year simulation with plan implementation; oyster biomass in both the FWOA and CMP scenarios decreased over the course of the simulation under the low SLR scenario. The distribution maps show that higher rates of SLR might actually befits oysters; plan implementation under high SLR resulted in highest biomass, which is due to a combination of increased nutrients and increased salinity.

Our results indicate that the effects of the combined projects in the 2017 Coastal Master Plan in the Mississippi River Delta are species-specific and basin-specific. However, the general trend is that the differences in species’ biomasses are small, with mostly slightly higher biomass with plan implementation versus an FWOA. The fact that an FWOA does not result in more biomass of living resources in a 50-year simulation indicates that the need for estuarine habitat at some stage of each of these species life histories outweighs the costs of lowered salinities. In addition, these species are all estuarine species with a salinity optimum below full seawater (35); the saltwater intrusion as result of relative SLR may increase the salinity too much for these species in this area. Results from White et al. (2018), for example, indicate that the existing freshwater diversion in Barataria Basin may be inadequate in maintaining present-day salinity dynamics under the same high SLR scenario as we used in this study. One example of this in our results is the decline in brown and white shrimp biomass over time, with biomass reduced in the Chandeleur Sound (at the marine end of Breton Sound and lower Pontchartrain Basin). This may be a result of saltwater intrusion due to SLR, and outside of the effect area of restoration plans.

The positive effects on the biomass of living resources with plan implementation are encouraging since the plan is focused on mitigating land loss and is not explicitly designed to benefit fisheries species. In addition to mitigating the loss of fish habitat, this effect can be explained by the increased nutrients as a result of diverting Mississippi River water into the estuaries as part of the restoration efforts, represented in the model as TKN driving primary productivity (Supplementary Figure S2). Fish and fisheries generally show strong responses to changes in nutrient loads (Breitburg et al., 2009). Our results show that especially for Gulf menhaden, which has biomass concentrated around nutrient-rich areas because their phytoplankton-centric diet links them closely to nutrients. This concentrates Gulf menhaden juveniles around the Birdsfoot Delta in an FWOA, since that is the main source of nutrients in that scenario, and suitable habitat seems to disappear elsewhere. Under plan implementation, suitable areas for Gulf menhaden juveniles expand into the wetlands of Barataria Bay and Breton Sound because of increased nutrient levels in response to large river diversions. Since nutrient changes elicit such a strong response, a useful addition to a suite of models such as the ICMs would be a biological model that explicitly simulates phytoplankton growth in response to all physical and biogeochemical changes occurring in the model scenarios, such as presented in Baustian et al. (2018), and potential formation of hypoxia with high nutrient loads, such as presented in Fennel et al. (2011). While the current drivers of change in the model are salinity, nutrients, and habitat, future improvements to the Ecospace model should include accounting for effects of increased sediments loads on phytoplankton, fish, and shellfish, effects of flow increase on these organisms during diversion openings, and effects of hypoxia.

A previous study in the Mississippi River Delta with a similar scope and objective found that the negative effects of the salinity reductions as a result of large sediment diversions outweighed the positive effects of reduced marsh loss on estuarine fish and shellfish species (De Mutsert et al., 2017). The results showed a redistribution of species to more favorable areas rather than overall biomass loss. The current study found that for most species, the biomass was higher with implementation of restoration projects, of which some reduce salinity, than in an FWOA. De Mutsert et al. (2017) and the current study were linked to different models delivering the environmental driver data, and used different Ecospace models to simulate the effects on living resources. The current study uses ICM projections with future scenarios that include SLR at two different rates, while the model used to drive the De Mutsert et al.’s (2017) study did not include environmental changes through subsidence and/or SLR (Baustian et al., 2018). Without the inclusion of SLR, the amount of marsh loss and saltwater intrusion under an FWOA is likely underestimated. Because of that fact, the difference in available juvenile habitat between an FWOA and coastal restoration is smaller, and the salinity reduction through river diversions is stronger. A second reason for the difference is that phytoplankton was explicitly modeled in Baustian et al. (2018), while this was not the case in the ICM (White et al., 2019). De Mutsert et al. (2017) reported a reduction in secondary biomass close to diversion outfalls because high sediment load reduced phytoplankton growth, even at high nutrient levels. Without phytoplankton explicitly modeled in the ICM, nutrients are used in the current study to drive primary production in Ecospace, which does not account for changes in light availability to phytoplankton. Therefore, the primary production and secondary production near the outfall of large sediment diversions or the Mississippi river mouth are likely overestimated in the current study. Despite the differences in the use of models and results, neither study found strong negative impacts on living resources of coastal restoration projects designed to mitigate wetland loss. Both studies found small effects on biomass that were species-specific and basin-specific. These basin-level differences could help inform localized management responses to the changes estimated by the models. By providing spatial outputs (maps) with these studies rather than line graphs, estimates of spatial redistribution could provide resource managers with basin specific knowledge to implement the most appropriate restoration strategy in that area.

By comparing June and October, we compared a month after a period of high diversion flow (June) and a month after a period of diversion closure (October) under the simulated diversions operation plan. By considering these results, recovery of high salinity species from a period of low salinity can be evaluated. We found that the biomasses observed in both June and October were similar between a number of the target species (e.g., brown shrimp, blue crab, spotted seatrout, and black drum). This outcome may mean that the magnitude of the diversions maintains a new status quo of an estuarine nekton community structure and distribution that is tolerant of lowered salinities. However, our simulations do not explicitly address the effect of salinity changes on spawning success or larval recruitment to the estuaries of fish and shellfish, which could be affected by spring and summer diversion opening (Peyronnin et al., 2017). The operation schedule and thereby flow regime are not finalized yet, and discussions have pointed to winter openings being potentially more optimal (Peyronnin et al., 2017). The June output can be more broadly interpreted as conditions when the large sediment diversions are open, and October as conditions when the large sediment diversions are closed.

The simulations show species-specific and location-specific effects which are a result of local biological factors. For example, the spatial distribution maps of brown and white shrimp show that most of the shrimp biomass is at the marine end of the lower estuaries, which may be why plan implementation or SLR effects such as wetland loss have less impact than on other species. Das et al. (2012) in their study in the same area concluded that river diversions strongly affect salinities only in the middle section of the estuary, so spatial distribution of organisms and their overlap with environmental change on small scales affect the species-specific outcomes. While diversions do not affect salinities much in the upper estuary (since it is already fresh; Das et al., 2012), they can affect the biomass of upper estuary low-salinity species. Salinity is likely the main driver for higher largemouth bass biomass with plan implementation as compared to an FWOA, due to expansion into the mid-estuary with the opening of the large sediment diversions under CMP. Busch et al. (2016) explicitly states that climate projections need regional and local down-scaling to adjust for the relevant and local biological factors that drive smaller-scale systems. EwE software provides a user-friendly interface to do just that, which facilitates the transfer and applicability of the approach described here to other areas and issues.

This work fills an important gap in the literature by evaluating landscape-scale impacts on estuarine food webs and changes in species biomass and distributions in response to environmental changes. Small-scale, site-specific studies that evaluate impacts of restoration on nekton species are widely available in the literature. However, landscape-scale impacts of marsh restoration on fish and fisheries have been less studied. This type of study would not be possible without the availability of long-term monitoring data from stations covering the coastal area provided by the Louisiana Department of Wildlife and Fisheries. Using available monitoring data over larger regions in combination with known restoration projects could elucidate broad-scale patterns of nekton response over time and space. Recent large-scale studies evaluate impacts of the Deepwater Horizon Oil Spill on fisheries using data from the same monitoring program (Van der Ham and De Mutsert, 2014; Ward et al., 2018). Monitoring data provide an avenue for managers to implement adaptive management strategies in a system laden with much uncertainty, and allow for the development and validation of large ecosystem models as presented in this study that are increasingly needed to addressed ecosystem-based management questions.



CONCLUSION

Coastal areas need to prepare for a changing environment, which includes wetland loss. Coastal restoration and risk reduction projects are part of the mitigation strategy. While these activities will undoubtedly affect the living resources in these areas, simulations such as the ones conducted in this study provide insights into what responses can be expected. Current simulations do not show large negative impacts on living resources of implementing restoration projects designed to mitigate wetland loss. A main reason for this outcome is that an FWOA is a changing environment as well, undergoing habitat loss and saltwater intrusion, represented here by including two SLR scenarios in the model projections. Simulations such as these can provide information to help managers prioritize restoration strategies and anticipate localized response needs to changes in living resource biomass. The simulations show species-specific and location-specific effects that emphasize that species-specific relationships to environmental and location-specific drivers will need to be included in a model when applying this methodology to other locations globally. Resource managers can use the resulting information to implement precautionary measures of ecosystem management and adaptation.
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As ecosystem-based fisheries management becomes more ingrained into the way fisheries agencies do business, a need for ecosystem and multispecies models arises. Yet ecosystems are complex, and model uncertainty can be large. Model ensembles have historically been used in other disciplines to address model uncertainty. To understand the benefits and limitations of multispecies model ensembles (MMEs), cases where they have been used in the United States to address fisheries management issues are reviewed. The cases include: (1) development of ecological reference points for Atlantic Menhaden, (2) the creation of time series to relate harmful algal blooms to grouper mortality in the Gulf of Mexico, and (3) fostering understanding of the role of forage fish in the California Current. Each case study briefly reviews the management issue, the models used and model synthesis approach taken, and the outcomes and lessons learned from the application of MMEs. Major conclusions drawn from these studies highlight how the act of developing an ensemble model suite can improve the credibility of multispecies models, how qualitative synthesis of projections can advance system understanding and build confidence in the absence of quantitative treatments, and how involving a diverse set of stakeholders early is useful for ensuring the utility of the models and ensemble. Procedures for review and uptake of information from single-species stock assessment models are well established, but the absence of well-defined procedures for MMEs in many fishery management decision-making bodies poses a major obstacle. The benefits and issues identified here should help accelerate the design, implementation, and utility of MMEs in applied fisheries contexts.
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INTRODUCTION

Ecosystem-based fisheries management (EBFM) and an ecosystem approach to fisheries (EAF)—hereafter collectively referred to as EBFM—are now firmly embedded in modern fisheries science (Link, 2010; Dolan et al., 2016). At its core, EBFM emphasizes the need to consider the broader ecological and social contexts of fisheries to better inform policy and decision-making. In practice, this requires conceptualizing the larger systems fisheries operate within and the use of models to formalize and represent important processes. The complexity of the models used to support EBFM reflects the different scales of its implementation, ranging widely from inclusion of environmental forcings in simple population models to community, food web, and coupled social–ecological models for evaluating system-level tradeoffs (O’Farrell et al., 2017; Geary et al., 2020). However, ecological systems are often only partially understood, and multiple models differing in structure or parameterization may provide plausible alternative representations (Gardmark et al., 2013; Geary et al., 2020). As the relevance of multispecies models has increased, so have calls for explicit consideration of model uncertainty (Hill et al., 2007; Addison et al., 2013; Geary et al., 2020), but efforts to develop sets of multispecies models to inform EBFM problems remain limited.

A set of distinct, plausible models may permit multimodel inference and be treated as an ensemble. Model ensembles are used for analysis and operational forecasting in many fields including weather (Tracton and Kalnay, 1993; Zhou and Du, 2010) and long-term climate prediction (Tebaldi and Knutti, 2007; Semenov and Stratonovitch, 2010), and ecological applications of multispecies model ensembles (MMEs) include projection of impacts due to climate change (Gardmark et al., 2013; Cheung et al., 2016; Reum et al., 2020), fishing (Spence et al., 2018), and species eradications and invasions (Baker et al., 2017). Methods for combining quantitative ensemble projections are diverse: from unweighted methods (e.g., “democracy of models”) to more complex approaches that weight models based on various criteria including level of data support, e.g., Bayesian posterior model probabilities (Burnham and Anderson, 2002; King et al., 2009; Ianelli et al., 2016; Spence et al., 2018). In general, model ensembles address structural uncertainty with the added benefit that ensemble forecast quantities of interest can be more accurate than estimates from individual ensemble members (Hagedorn et al., 2005; Zhou and Du, 2010).

However, the benefits of adopting multi-model approaches in an EBFM context may extend beyond statistical and predictive advantages. With regard to policy making, a set of models explicitly acknowledges model uncertainty, which promotes transparency (Addison et al., 2013), and inclusion of distinct models increases avenues for representing diverse hypotheses, incorporating different knowledge sources, and engaging with stakeholders, all of which may help to legitimize EBFM policies and decisions (Fulton et al., 2015; Francis et al., 2018). From a research perspective, assembling a diverse candidate model set often also means recruiting researchers with different perspectives and areas of technical expertise onto a modeling team. Doing so may foster an environment favorable to knowledge exchange and the cross-pollination of ideas. Moreover, qualitative syntheses, rigorous comparisons of model behavior, and evaluation of the role key assumptions have on predictions can yield deeper insight into a system and guide future data collection and modeling efforts (Gardmark et al., 2013; Cheung et al., 2016; Hollowed et al., 2020; Reum et al., 2020). These benefits are valuable in their own right and can be attainable even when quantitative, statistical treatment of ensemble outputs remains out of reach.

As noted, some examples of multispecies model ensembles (MMEs) for fisheries research have been published (Gardmark et al., 2013; Cheung et al., 2016; Reum et al., 2020). However, MMEs for fisheries management applications are limited. The few instances of management application can partly be attributed to the novelty of MMEs in fisheries modeling (Townsend et al., 2014), but other challenges may exist. Understanding the benefits and limitations of MMEs is important so that the approach can be more fully leveraged in fisheries management. Here, we sought to identify how ensemble modeling and multispecies applications, in particular, are applied in practice to address objectives and issues related to EBFM.

We focus our review on three representative case studies in the United States that have developed MMEs in response to specific management objectives and goals, and presented outcomes to decision-makers, managers, or stakeholders. For each case study, we ask the general question: what do we get from considering an ensemble of multispecies models within a management context? In particular, we evaluated how multispecies model suites (1) were synthesized and utilized, (2) facilitated engagement with stakeholders, management plan teams, and researchers, and (3) influenced the credibility of the output or advice derived from the modeling exercises. We highlight lessons from the case studies that should accelerate adoption and implementation of multispecies model ensembles in support of EBFM.



CASE STUDIES


Atlantic Menhaden

To address the potential effects of fishing mortality on a forage fish and its predators, the Atlantic States Marine Fisheries Commission used an MME approach. A lead model from the MME was used with a stock assessment model to help set ecologically based reference points for fishing mortality. Synthesis of the model outputs from the set was qualitative because time constraints prevented quantitative synthesis. Open, transparent development of the models in the MME enabled stakeholder engagement and benefited the decision-making process.


Management Issue

Atlantic menhaden (Brevoortia tyrannus) is a small-bodied forage fish found in estuarine and nearshore habitats along the eastern coastline of the United States and Canada. Since the development of the first fishery management plan for Atlantic menhaden (herein “menhaden”) in 1981, fisheries managers have acknowledged the potentially significant role of menhaden as a prey base for other fish stocks managed by the Atlantic States Marine Fisheries Commission (ASMFC,, 1998). To better resolve predation on menhaden, an ecosystem model—Multispecies Virtual Population Analysis—Extended, MSVPA-X (Garrison et al., 2010), was developed in the early 2000s to generate mortality rates that were then used in a statistical catch-at-age stock assessment model. The paired modeling approach was routinely used for the two subsequent stock assessments, but its use was discontinued.

Concurrently, the Atlantic Menhaden Management Board began to consider the larger ecological role of menhaden in their decision-making and requested additional information on how menhaden removals by the fishery might affect predator populations. The original MSVPA-X, while resolving predation impacts on menhaden, did not relate predator productivity to menhaden abundance, and could not directly address the issue. In 2015, the ASMFC convened an Ecosystem Management Objectives Workshop to explicitly delineate the desired objectives for the menhaden fishery and tasked a workgroup to develop ecological reference points based on alternative multispecies models identified by a technical committee. The broad objectives were to (1) sustain the menhaden stock and provide for the fishery, (2) sustain menhaden to provide for predators, (3) provide stability for a variety of fisheries, and (4) minimize risk to sustainable yield for menhaden management (and management of menhaden predators) attributable to a changing environment. Additional detail on the performance measures associated with these objectives is available in ASMFC, (2015). A newly developed Ecological Reference Point Workgroup (herein “workgroup”) was convened following the Ecosystem Management Objectives Workshop to identify a modeling framework that would begin to address these objectives and performance measures. We highlight the multiple model aspects of the larger modeling and management processes, and direct interested readers to Anstead et al. (2020) for additional details regarding the history of the menhaden fishery, its management, and the modeling used to inform its management.



Model Set and Synthesis Approach

The workgroup sought a model framework that would address as many of the Ecosystem Management Objectives as possible as well as closely replicate the population abundance and fishing mortality rate patterns produced by the menhaden single species stock assessment model (SEDAR, 2020). Considerable uncertainty in predator responses to changes in the menhaden stock existed. To partly account for this, the workgroup identified a set of multispecies food web models that ranged in taxonomic complexity. Food web interactions in the models reflected the degree to which predator groupings were taxonomically resolved. In more complex food web models, the ability to represent age structure for all populations becomes difficult, so the workgroup also wanted to address uncertainty in age structure. Finally, as understanding environmental variability was an important objective, the workgroup preferred models that could address uncertainty in natural processes. Overall, the selected models reflected an emphasis on addressing uncertainty attributable to structural complexity and, to a lesser extent, to natural variability and parameter uncertainty.

The initial set of candidate models was assembled based on the expertise of the workgroup and other known existing models or models in development. One workgroup member had worked previously with a Surplus Production Model with time-varying r (SPM TVr), which can be useful for dealing with uncertainty in natural processes that drive stocks in production or mortality (Nesslage and Wilberg, 2019). The Steele-Henderson Surplus Production Model (SPM S-H) can help determine the importance of predators on menhaden population dynamics based on relative fits to data (Uphoff and Sharov, 2018). A multispecies statistical catch-at-age model (VADER—Virtual Assessment for the Description of Ecosystem Responses) included the age structure of prey and key predator stocks, but unlike MSVPA-X, modeled predation based on the consumption demand of predators (McNamee, 2018). Two Ecopath with Ecosim (EwE) models were also included in the model set. The first model included relatively fine taxonomic resolution (NWACS-Full, Northwest Atlantic Coastal Shelf) and was developed and parameterized by an academic partner (Buchheister et al., 2017a,b). The second model consisted of a scaled-down version of the first model (NWACS-MICE, Northwest Atlantic Coastal Shelf—Model of Intermediate Complexity for Ecosystem Assessment) and was composed of coarser taxonomic groupings. The latter model was easier to update with new data on an operational basis and was more computationally efficient and therefore amenable to parameter sensitivity analyses (Chagaris et al., 2020).

Initially, the workgroup intended to consider the proposed candidate models, review their structures, and select a single model to fully develop for use in setting ecological reference points (ERPs). Additional meetings were convened, so lead modelers could present an interim version of each candidate model and allow time for workgroup members to have hands-on experience with the models. Ultimately, the workgroup elected to move forward with fully developing all models, which would then be presented for review and potential use in setting ERPs individually or as an ensemble average. This decision was made because the members found that each model was useful for informing some subset of the ecosystem management objectives and provided some useful insights about the ecosystem. The fully developed models were parameterized or tuned using standardized, current data sets of biomass indices, harvests, and environmental variables.

All models were presented for Management Review (SEDAR, 2020). However, because of limited time for preparation and review, the working group opted to forego calculation of ensemble averages and instead focused on selecting a single model, NWACS-MICE, as the preferred model for setting ERPs (Figure 1). Since model review was scheduled for fall of 2019, the availability of the final data in late summer complicated updating data inputs for model development. Translating outputs (abundance/biomass and fishing mortality/exploitation rate) between model types (surplus production/biomass pool and age-structured) was a complex task that needed more time and consideration to complete. This additional layer would have also complicated the model review and would require more time than had been allotted for reviewers.
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FIGURE 1. A visual summary of the model sets and qualitative synthesis approach used in each case study. (A) Atlantic menhaden, (B) Gulf of Mexico gag and red grouper, and (C) sardine and anchovy in the California Current. In all case studies, data sets used to calibrate and parameterize ensemble models were shared across models depending on applicability, and Information derived from models within the set were shared between models. Solid black arrows represent unidirectional information flow of outputs and towards management uptake. Dashed lines information sharing between models in the ensemble set (e.g., predation rates in one model inform natural mortality rates in another).


Ultimately, the NWACS-MICE model was chosen because it addressed most of the management objectives (and with further development could address virtually all). The NWACS-Full model had a similar benefit, but because of its increased structural complexity, future updates of that model may have been onerous and difficult to perform on an operational management timeline. VADER had a similar structural complexity and was able to address similar objectives as NWACS-MICE, but effects of prey on predators had not been developed at the time of the review. Both surplus production models were useful for understanding potential factors influencing Atlantic menhaden mortality and were amenable to rapid updating, but they did not address as many ecosystem management objectives as the other models.

In the future, the workgroup plans to continue using this set of models (or other models with a similar range of complexity). During the model development process, the members found that insight gained from one model helped inform other models and the overall ERP development (Figure 1). For example, the NWACS-Full model informed the structure and development of NWACS-MICE. The SPM-TVr model pointed to the potential of environmental processes that should be considered in future model/ERP development. Often multiple data sources were available for model parameterization and validation. Testing multiple models with multiple data sets led to discussions about the data and ecosystem dynamics. Ultimately, the models produced similar patterns in key indicators (e.g., menhaden biomass and fishing mortality rates), which led the workgroup to greater confidence that key ecological processes were captured in the models. More details on the models and model selection process for this example case are in Cieri et al. (2020).



Outcomes and Lessons Learned

Overall, the objective of the ERP workgroup was achieved. The NWACS-MICE model was accepted for use by the Menhaden Management Board to be used in combination with the single species stock assessment model for setting ERPs. The use of multiple models helped reassure the reviewers that key components of the ecosystem had been considered and that the NWACS-MICE model captured their dynamics sufficiently for providing management advice (SEDAR, 2020).

In this example, several benefits can be noted. Clear management objectives are helpful for understanding the principal ecosystem components that need to be included in a model ensemble. Developing these objectives helped managers and modelers focus on the key management issues. Using multiple models was helpful for understanding the level of model complexity needed to capture key components of an ecosystem and key management issues. Thorough and open discussion and presentation of models among modelers and stakeholders was beneficial. The open process enabled the ensemble team to address concerns about the models and guide stakeholders through ensemble development, with the end goal being stakeholder buy-in. In addition, this builds a collaborative and cooperative atmosphere among team members, which is important because an ensemble team requires many people who have to work together intensely and often.

The limitations to this MME approach were largely based on time and the existing model review process. Initial development and review of multiple models (and eventually model-averaged ensembles) take considerably more time than using a single model. However, after the initial development of the model set, efficiencies can be identified to enable more rapid model production and operationalization. Reviewing multiple models (and eventually model-averaged ensembles) for fisheries management requires considerably more time (and expertise covering a range of disciplines) than a typical single model review. This additional effort should be taken into account when establishing review timelines.

In addition, the clear and open process for developing Ecosystem Management Objectives, developing the ecosystem models, and establishing the process for setting ERPs helped to ensure that this approach could be used for setting ERPs. Moreover, the open process provided a higher level of satisfaction among stakeholders. Previous Atlantic Menhaden Board meetings (in the 2000s) had been contentious. After the August 2020 Atlantic Menhaden Board meeting where the process for setting ERPs was approved, multiple stakeholders sent out press releases indicating their satisfaction with the process.



Gulf of Mexico Gag and Red Grouper

Severe red tides in this region frequently cause mass mortality events for fisheries. To aid in quantifying the effects of these events on reef fish population dynamics, multiple ecosystem models were developed. Outputs from these models were used to inform the variability in natural mortality for stock assessment models. In the process of developing the MME, stakeholders learned more about multispecies model approaches and the need for more data/research on red tides. Additional stakeholder involvement in model review and development should help build support for more robust use of the MME approach for this issue.


Management Issue

Harmful algal blooms in the Gulf of Mexico caused by the dinoflagellate Karenia brevis have been linked to massive fish kills (Flaherty and Landsberg, 2011), mass mortalities of marine mammals, and increased sea turtle strandings (Landsberg et al., 2009). One of the most severe events occurred in 2005, when the West Florida Shelf experienced an extensive and persistent K. brevis bloom event (also known as red tide) covering more than 500 square nautical miles and lasting from January 2005 through February 2006 (FWRI, 2020). While the Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research Institute Harmful Algal Bloom database1 provides a comprehensive record of species identified in fish kills (Sagarese et al., 2017; DiLeone and Ainsworth, 2019), much of the data are collected opportunistically from beachcombers who report observations of dead, stranded fishes. Anecdotal evidence suggests that shallow-water groupers including Goliath grouper (Epinephelus itajara), red grouper (Epinephelus morio), gag grouper (Mycteroperca microlepis), and scamp (Mycteroperca phenax) may succumb to severe red tide events, although the mechanism of mortality remains unknown (Smith, 1975; Walter et al., 2013; Driggers et al., 2016). The 2009 update stock assessments for both gag and red groupers were the first assessments to explicitly incorporate additional natural mortality attributed to the 2005 red tide event (SEDAR, 2009a,b). However, both assessments highlighted the need for red tide research to develop quantitative estimates of red tide mortality for consideration and incorporation into stock assessments.

An effort led by the National Oceanographic and Atmospheric Administration’s Gulf of Mexico Integrated Ecosystem Assessment Program to estimate red tide natural mortality solidified following unanimous passage of two motions by the Gulf of Mexico Fishery Management Council’s Standing and Ecosystem Scientific and Statistical Committees to (1) expand the integration of ecosystem components into the assessment and management of fishery resources and (2) develop products that integrate ecosystem analyses into stock assessments (GMFMC,, 2013). Both motions were passed as part of the 2013–2014 Gulf of Mexico Gag Grouper Assessment and again as part of the 2014–2015 Gulf of Mexico Red Grouper Assessment.



Model Set and Synthesis Approach

To address calls for evaluating and integrating the ecosystem effects of red tides into gag and red grouper management, a set of existing ecosystem models was assembled. The models were developed as part of a larger Integrated Ecosystem Assessment initiative to integrate environmental and ecosystem considerations into the fisheries management decision-making process (Grüss et al., 2016a). In total, three ecosystem models were identified and used to estimate gag and red grouper natural mortality and partitioned natural mortality into a minimum of two categories: predation and all sources other than predation (non-predation). The model set was developed with the initial goal of generating time series estimates of grouper natural mortality to identify the potential magnitude of red tide impacts and provide red tide mortality estimates to force stock assessment models and thus account for environmental conditions in grouper management decision-making.

The ecosystem models included two EwE models, each representing the West Florida Shelf ecosystem and developed by academic researchers in partnership with NOAA. The first EwE model (WFS Reef fish EwE) emphasized managed reef fish dynamics, resolved multi-stanza age classes (e.g., juveniles and adults) for multiple reef fishes including gag and red grouper, and estimated predation and non-predation natural mortality (Chagaris et al., 2015). The second EwE model (WFS Red tide EwE) was similar to the first but differed in two key regards: a third category of natural mortality, mortality due to red tide events, was explicitly represented, and age structure was limited to gag and red grouper and a subset of other coastal and reef fishes known to also be vulnerable to red tide (Gray, 2014; Sagarese et al., 2015; Gray DiLeone and Ainsworth, 2019). Representation of red tide mortality in WFS Red tide EwE was accomplished by repurposing size- and age-specific mortality functions used to implement fleet-specific fishing mortality in Gray (2014) and Gray DiLeone and Ainsworth (2019).

The third ecosystem model, an Object-oriented Simulator of Marine ecOSystEms model for the West Florida Shelf (OSMOSE-WFS), is a two-dimensional, individual-based, multispecies model. In OSMOSE, predation mortality rates and diet compositions emerge as a function of predator–prey overlap in the horizontal dimension, predator to prey size ratios, and accessibility coefficients reflecting the degree of accessibility of prey to the predators due to implicit, underlying factors such as prey morphology or distribution in the water column (Grüss et al., 2015b, 2016b). Similar to the EwE models, OSMOSE-WFS estimated age- and size-specific predation and non-predation mortality and care was taken to ensure that OSMOSE-WFS shared a number of features with WFS Reef fish EwE (spatial domain, study period, reference period, and reference biomasses) to improve comparability of model outputs. Predicted age-specific total natural mortality estimates for red grouper from OSMOSE-WFS were used in sensitivity analyses in the 2014–2015 Gulf of Mexico Red Grouper assessment (Grüss et al., 2015b, 2016b).

Both OSMOSE-WFS and WFS Reef Fish EwE were presented to the Gulf of Mexico Fishery Management Council’s Standing and Ecosystem Scientific and Statistical Committees after the 2014 gag grouper and 2015 red grouper assessments. Presentations were demonstrative in nature, with the overall aim being to familiarize the committee with the data sources and inputs, model structures, assumptions, and predictions. Procedures for formally reviewing stock assessments are well established by the Office of Science and Technology through the Center of Independent Experts (Brown et al., 2006), but there are currently no analogous procedures for multispecies and ecosystem models, and no terms of reference were developed to guide a technical review. While lacking formal review, presentations to the committee on the models were highly interactive, and the modelers sought feedback and incorporated requested modifications in updates to their models. Further, the modelers worked collaboratively throughout the project to ensure outputs were comparable to facilitate cross-model analysis (Grüss et al., 2015a, 2016a,b).

Model developers on this project had planned to use a quantitative ensemble approach for estimating the natural mortality rates employed in the 2014 gag grouper and 2015 red grouper assessment models. However, this did not happen because: (1) the three ecosystem models had started being developed before the opportunity to serve the 2014 gag grouper and 2015 red grouper assessments emerged and, therefore, had not benefited from enough exposure to and feedback from stakeholders before the base assessment models were finalized; and (2) assessments in the Gulf of Mexico and other marine regions rely on a specific technical review process of assessment model inputs and outputs, which, at the time, were lacking for ecosystem model inputs and the products that ecosystem models deliver to assessments.



Outcomes and Lessons Learned

This case study highlights the utility of multiple ecosystem models for advancing integration of ecosystem considerations into single-species management and was recognized as an important tool through the Southeast Data Assessment and Review (SEDAR) process by both assessment participants and fishery managers. The WFS Reef fish EwE model (Chagaris, 2013; Chagaris et al., 2015) was deemed useful for informing the upcoming SEDAR stock assessments, WFS Red tide EwE was recognized as useful for informing the grouper assessments (Gray et al., 2013; Gray, 2014; Gray DiLeone and Ainsworth, 2019), and OSMOSE-WFS was found to be useful as a complementary tool for the grouper assessments because its structure and assumptions differed markedly from the two EwE models while sharing reference conditions (Grüss et al., 2013, 2015a,b, 2016a,b, 2017; Gruss et al., 2017). Ultimately, committee members were interested in applying multispecies models to fisheries management questions, but did voice some concerns over the representativeness of the data inputs, such as those used to parameterize trophic interactions and the spatial representation of the red tide mortality.

Both the 2014 gag grouper and 2015 red grouper assessments represented some of the first assessments in the Southeast United States to consider external effects due to environmental drivers, in this case red tide. The age-specific mortality rates estimated by OSMOSE-WFS and an index of red tide mortality derived from WFS Red tide EwE were explicitly tested in sensitivity analyses for red grouper (Sagarese et al., 2015). One sensitivity run replaced the Lorenzen age-specific natural mortality vector with the age-specific natural mortality (predation + non-predation mortality) vector estimated within OSMOSE-WFS. Another sensitivity run used the index of red tide mortality produced by the WFS Red Tide EwE model to drive red tide mortality. Mortality due to red tide was estimated within the stock assessment via a bycatch fleet, which is a customization available in the Stock Synthesis modeling framework to account for extra removals not due to directed fishing mortality (Methot et al., 2018). Within the stock assessment model, the index produced by WFS Red Tide EwE was input as a time series of effort data for the red tide bycatch fleet, where the effort index was essentially treated as a survey of red tide mortality. The assessment model, in turn, estimated the dead biomass due to red tide. While these sensitivity runs allowed valuable discussions of how ecosystem model outputs could be used in an assessment framework, they did not become the base assessment model. Ultimately, the base assessment models for both gag and red grouper estimated extra natural mortality due to red tide solely in 2005, which was a severe red tide event as supported by the ecosystem model outputs (e.g., WFS Red Tide EwE).

What was learned from the Gulf of Mexico gag and red grouper experiences was that the development of ecosystem models and their ultimate use in fisheries management need to place more emphasis on stakeholder engagement from the moment ecosystem models start being developed (Gruss et al., 2017; Chagaris et al., 2019) and throughout the review process, which can be iterative in nature. Increased buy-in and support from stakeholders, as well as incorporation of their knowledge, could help increase data quality and increase understanding of project objectives (e.g., bringing in stakeholder knowledge when parameterizing different diet matrix constructs could improve ecosystem model realism) (Bentley et al., 2019). Furthermore, substantial time needs to be allocated to a thorough technical review of ecosystem model inputs and their products for stock assessments to help address data concerns by stakeholders (e.g., diet matrices in EwE) and advance the direct use of ecosystem model predictions and MME in fisheries assessments and management.

The development of ecosystem models and the potential use of these ecosystem models and MME in the Gulf of Mexico fisheries assessments were greatly facilitated by strong collaboration between NOAA and academic partners. Relying on academic agencies to develop ecosystem models helped relieve some of the burden on the assessment process and NOAA, although considerable effort was still needed to determine how to incorporate the information within the stock assessment (Sagarese et al., 2015).

Multiple ecosystem models were used to confirm the importance of red tide on the mortality rates of gag and red grouper. Agreement between the different models built support for allowing the stock assessment models to account for elevated mortality in years with strong red tide. Specifically, the model building and comparison process helped (1) educate stakeholders and managers on multispecies model assumptions and applications, (2) build robust support for addressing red tide mortality in stock assessments, and (3) spur additional conversations about the application of multispecies models to other problems.



Sardine and Anchovy in the California Current

Concerns about low abundances of key forage fish in the California Current led to requests from a Pacific Fishery Management Council workshop for a modeling exercise to improve understanding of the availability of forage fish to support predators and fisheries. Models were brought together through a partnership between academic and government research institutions. As the fisheries for these forage species were closed, the models were not ultimately used to make tactical management decisions; however, the models provided strategic management advice and provided a framework for informing future decision-making.


Management Issue

Pacific sardine (Sardinops sagax) and anchovy (Engraulis mordax) are key forage fish species in the California Current, supporting both fisheries and predators, but also show strong fluctuations in abundance on multi-decadal time scales (Baumgarner, 1992). In 2014–2015, sardine and anchovy were both at low abundance (Hill et al., 2015; MacCall et al., 2016; Thayer et al., 2017), raising concerns regarding the impacts of fishing, and the availability of forage for predators. To better understand these concerns and to address a call for modeling from a Pacific Fishery Management Council workshop (PFMC,, 2013), a suite of models was brought together by the Ocean Modeling Forum (OMF2). The OMF is a collaboration between academic, state, and federal research scientists, policy analysts, fishery managers, and industry, to facilitate the integration of modeling approaches into applied marine resource decision-making (Francis et al., 2018). The OMF applies a case study approach to help marine managers frame questions and learn about and apply modeling approaches, while also allowing collaborations and improvement across modeling groups.

The overarching goal of this case study was to provide fisheries management, including the Pacific Fishery Management Council, with better knowledge to improve EBFM of small pelagic fish in the California Current. Providing this knowledge required answering basic questions: What predators eat sardine or anchovy? In turn, what do sardine and anchovy eat? How large are the population cycles of these forage fish? What is the interaction between forage fish species? A range of model types was applied to investigate these questions. The utility of individual models was amplified by linking different model types, by incorporating knowledge from other models and from empirical studies, and by including expert opinion about ecosystem-level dynamics. Applicability of results was improved by including details of the actual fishery management procedures as implemented by Canada, the United States, and Mexico (Francis et al., 2018).



Model Set and Synthesis Approach

Understanding the role of forage fish in the California Current, and the potential impacts of periods of low forage fish abundance, required a diverse suite of models. A non-dynamic Ecopath model was an essential first step to handle the “accounting” exercise of weighing predator needs against forage fish stocks (Koehn et al., 2016). This accounting of diets and biomasses was used as input to a dynamic Model of Intermediate Complexity for Ecosystem assessment, MICE, as broadly defined by Plaganyi et al. (2014). Here we will call the model implementation (Punt et al., 2016) the California Current MICE (CC-MICE), to differentiate from the NWACS-MICE model described above. The CC-MICE included basic spatial representation and trophic interactions between sardine, anchovy, and key predators, but not the broader food web (Figure 1). Strengths of the CC-MICE model included that it was able to capture realistic harvest policies and that it was simple enough to allow full Monte Carlo testing of scenarios for recruitment and structural uncertainty in ecological relationships. The diet information and inputs were also compared to those for an end-to-end ecosystem model, an Atlantis model of the California Current (Kaplan et al., 2017), but the values were not forced to be identical (Figure 1). Moreover, the Ecopath model provided information on diets and biomass that was used to make statistical predictions of predator response to prey declines (PREP, Predator Response to the Exploration of Prey) based on Pikitch et al. (2012) and to quantify prey importance (SURF index, Supportive Role to Fishery ecosystems) (Essington and Plaganyi, 2014; Figure 1).

The California Current team opportunistically leveraged modeling frameworks that were in development (Ecopath, Atlantis), but tailored them to new questions (especially for Atlantis) and supplemented them with new model types (CC-MICE). Repurposing models can be problematic (Essington and Plaganyi, 2014) particularly if model taxonomic and spatial resolution are insufficient to capture the species of interest and related model skill. For the California Current, this was partially addressed by co-developing major parts of the Atlantis and Ecopath models (literally in the same small room), with an eye toward addressing ecosystem-based forage fish management, and then subsequently using those findings to inform CC-MICE model development centered around the same species and management questions.

Translating outputs between structurally dissimilar models can be challenging and time consuming. In this case, the Ecopath model used biomass-based accounting, the CC-MICE modeled numbers of individuals, and Atlantis modeled numbers of individual vertebrates and weight-at-age (Kaplan et al., 2019). Ultimately sardine biomass was used as the common currency for Atlantis and CC-MICE, such that Atlantis simulation output could be qualitatively compared to CC-MICE output that represented conditions of similar sardine abundance. In this way, abundance or biomass of predators could be evaluated at different levels of sardine abundance. One caveat was that the Atlantis model had coarser taxonomic resolution of bird groups that are dependent on forage fish. Approximate comparisons could be made to the PREP predictions, in terms of proportional declines of predators under different sardine abundance scenarios. The primary goal was to qualitatively compare the predictions between models, keeping in mind the differences in model structure, currencies, and taxonomic resolution. Though this allowed comparison of the models’ predictions, it was not intended as a way of forming a true ensemble. Overall, model comparison illustrated that agreement (in terms of response of predators such as sea lions and birds) hinged on the level of taxonomic resolution, assumptions of generalist versus specialist diets, and whether the models included age structure and other “dampening” aspects that slow perturbations in the models (Kaplan et al., 2019).

Though having different “currencies” across models necessitated some careful translation, model comparison was feasible, and the currencies and units that resonated with particular users were retained. For instance, the CC-MICE model allowed calculations of population size and probabilities of falling below thresholds (familiar to stock assessment audiences) and Atlantis tracked population size (as in stock assessment) but also weight-at-age (relevant to predator condition). Ecopath and PREP captured aspects of energy transfer and trophic demands and clearly visualized diet dependencies (relevant to predator bioenergetics and forage needs). Overall, the diverse set of models meant that expert participants who were not involved in the hands-on modeling were nonetheless able to contribute information to one or more models in ways that built credibility and improved the representation of ecology or management.



Outcomes and Lessons Learned

The suite of models assembled to study forage fish proved useful in a research context, but somewhat paradoxically the impetus for the study (low sardine and anchovy abundances) also kept the fisheries closed, and this meant that managers did not have a pressing need to incorporate the modeling into new harvest decisions. Moreover, revised sardine harvest policies (Hurtado-Ferro and Punt, 2014) had been recently evaluated and adopted by fishery managers and there was no new set of harvest policy options directly under consideration. Nonetheless, the work was presented to the Coastal Pelagic Fishery Management Team of the Pacific Fishery Management Council, and previous engagement with the Management Council (on the Atlantis model specifically) provides the framework for further review and applications, including those related to forage fish harvest (Kaplan and Marshall, 2016). A formal review process and related fast timetable were not part of the California Current OMF forage fish work; though this was a disadvantage in some ways, it also allowed a wider breadth of model types to be considered (i.e., wider than could be handled in a focused review process).

As management needs arise for forage fish in the California Current, we expect some future version of this MME to be valuable for testing new harvest policies or for evaluating impacts of future changes in the environment. In particular, the dynamic models such as the CC-MICE and Atlantis could test alternate harvest thresholds, or alternative maximum fishing rates; these thresholds and maxima are part of current harvest policy in the region (PFMC,, 2019). Siple et al. (2019) suggest that these harvest policies should be matched closely to each forage species’s life history characteristics and population dynamics and, furthermore, that rapid monitoring and detection of stock trends can mitigate some risks and tradeoffs. MMEs can further test these results across a broader range of models and structural assumptions and can test novel approaches such as aggregate or guild catch limits rather than only single-species limits (Gaichas et al., 2017), i.e., to preserve abundance of total forage. To truly develop management-ready results for the United States portion of the California Current will require engagement of the MME teams with the United States Pacific Fishery Management Council, states, and tribes.

The boom-and-bust nature of small pelagic fish in upwelling systems such as the California Current implies that fisheries, and perhaps therefore demand for MME-based advice, will be episodic. In these situations, modeling teams are likely to need to rapidly and periodically assemble suites of models. Another result of working within these highly variable systems is that it is important to ensure that the ensemble includes at least one model that captures stochasticity (e.g., in recruitment), such that results can be presented in terms of probability of catches or abundance of small pelagic fish and their predators falling below management reference levels. This is common in single-species models but is not ubiquitous in slower, more complex multispecies and ecosystem models. The CC-MICE model (Punt et al., 2016) was designed to offer this perspective regarding California Current forage fish, and similar approaches for other species and regions also offer this valuable probabilistic approach (Cochrane et al., 1998; Sanchez et al., 2019; Siple et al., 2019; Okamoto et al., 2020).

As discussed for the case studies above, the human collaboration involved in constructing, modifying, and applying the models strengthened each modeling effort and brought new insights and data to bear on the research questions. Francis et al. (2018) elaborate on how this process evolved within the Ocean Modeling Forum, and the benefits of this approach. For sardine and anchovy in the California Current, the very intentional set of structured meetings and dedicated funding facilitated this collaboration, rather than relying on ad hoc relationships between researchers. A benefit of the sardine and anchovy work and a related herring working group were new collaborations (co-authorship networks) across disciplines and between previously separated individuals (Francis et al., 2018). Intentional engagement with stakeholders in workshop settings has been a key component of similar efforts in other regions (Trenkel et al., 2015; Feeney et al., 2019).



CONCLUSION

The case studies presented here highlight advantages that come from developing MMEs in applied EBFM contexts as well as challenges that require forethought and planning. While the statistical advantages of ensembles are well understood, we show that in practice, estimation of ensemble-averaged quantities of interest remains an elusive goal. That said, the case studies reveal other benefits that provide strong support for pursuing MMEs and demonstrate a range of applications. Below, we summarize these benefits and discuss recommendations to avoid potential pitfalls.

The act of building ensemble modeling, and development of the ensemble model suite, can improve the credibility of multispecies/ecosystem models. In all case studies, development of MMEs required use of consistent data sets that could be employed across different modeling frameworks. This required a review and consideration of data sets that were likely more thorough than would be needed for a single model. Similarly, during the development process, a rigorous, impartial internal review of the models is needed to understand similarities and inconsistencies between the model outputs and with the data that models were fitted or tuned to. A single model would only be reviewed based on comparisons of its outputs to data. A thorough, rigorous internal review of models and data supports a modeling team in preparing for external review. A key characteristic of the fishery management world is rigorous external review processes. As multi-model approaches mature, external review processes can dictate what models are accepted/acceptable for use in an ensemble.

Ensembles can be qualitative in nature—that is, behavior and predictions can be compared and synthesized in a qualitative manner. At this time, MMEs for fisheries management applications have not been combined quantitatively to produce probability distributions of outputs. As ecosystem modeling is in the early stages of MME, methodologies for combining outputs from models with dissimilar output structures have not been fully developed. Similarly, time has been a limited resource when using multi-model approaches, so the additional time to apply model-averaging and other techniques for combining models has not been available. While formal quantitative ensembling might be desirable and among the goals for this discipline, other fields have emphasized that qualitative comparisons of models in an ensemble may be just as valuable as model-averaged ensembles (Townsend et al., 2014) (Beven, J. NOAA Weather Service, pers comm).

As noted by Townsend et al. (2014), applications of true ensembles in living marine resource management are rare (though there are some recent examples) (Gardmark et al., 2013; Reum et al., 2020). Instead, Townsend et al. (2014) discuss the “mingling of models,” and a need for at least a qualitative comparison of predictions from different models. This mingling of models and qualitative comparison was the approach used for California Current forage fish. In particular, this simple type of MME allowed static models (Ecopath) to inform different dynamic models (e.g., CC-MICE and Atlantis) and a comparison of their outputs. There was no natural way to create ensemble averages, and in this case, the dynamic models were so different in terms of structure and number of replicates (many replicates with CC-MICE, versus single tests of each fishing level with Atlantis), that true ensembles seemed infeasible, or at least a much longer term goal.

Involving a diverse set of stakeholders (plan teams—teams of people involved in the process—fisheries councils and fishers) is important for getting buy-in from the community. Especially noted in the menhaden case, a stakeholder process to set management objectives and an open model development process were beneficial in the ultimate application of ecosystem models for management. During the development phase, stakeholders should be in on the conversations of the modeling team, and they should have time to make statements or ask questions. This way, decisions about data and models can be seen to have a clear rationale based on science and practical concerns. As noted with the Gulf of Mexico grouper experience, to be efficient, stakeholder engagement needs to happen as soon as the ecosystem models start being developed.

Models with a range of different structures should be used. In all the cases, models with very different structures (e.g., biomass dynamic, age structured, food web, and individual-based) were used. Variety in model structure allows consideration of multiple hypotheses about key factors driving a system. A modeling team that has thoroughly considered the environmental and ecological mechanisms will be better prepared to answer questions from stakeholders and external reviewers as to why particular modeling decisions were made, thus improving the credibility of the advice given. In addition, as the relative importance of key system drivers may change over time, using models that keep track of drivers will improve awareness of potentially important changes.

Model of Intermediate Complexity for Ecosystem assessments are an important part of the model sets. In the menhaden and California Current cases, MICE were used in the model set. As noted above, a range of model structures is important, and similarly, models with a range of complexity are important. Often structure and complexity go hand-in-hand. Simple biomass dynamic models with just a few species and drivers can be quick to run and accommodate extensive sensitivity analysis, but they may not capture key drivers. Complex, end-to-end models will likely capture key drivers, but they can be unwieldy for sensitivity analyses and maintenance. MICEs strike a balance between these extremes, capture most of the key drivers (at least drivers deemed important during the modeled time frame), and are relatively easier to maintain and run sensitivity analyses on. This approach has been adopted for many systems worldwide and the benefits are further described in Plaganyi et al. (2014). While the Gulf of Mexico grouper case study served as a step toward EBFM in the southeast United States, jumping immediately into highly complex models likely complicated their uptake in the fisheries management process.


MME Recommendations

Based on three case studies analyzed in the present paper, MMEs for living marine resource management applications have some demonstrated benefits (e.g., added rigor in model data preparation, more thorough examination of key drivers of system dynamics, and improved ability to deal with uncertainty attributable to model structure). From these case studies, some clear recommendations for MMEs also emerge:


1. Multispecies model ensembles should consist of a range of models with different structures—MICE are a useful model type to be included in the ensemble.

2. Stakeholders should be included in the model development process to help with buy-in and transparency.

3. Qualitative syntheses of MME outputs are valuable in themselves and important for evaluating the potential utility of more involved quantitative approaches.



Beyond these general benefits and recommendations, there are practical matters to be considered before an MME is developed for an ecosystem or MME management application. The case studies analyzed in this paper demonstrate MME development for specific management questions, and, as a result, time for fully implementing MME (including exploration of quantitative synthesis approaches) was limited. With a bit of hindsight and reverse engineering, approaches for establishing MME processes for regional applications can be surmised and recommendations for planning future MME applications can be made and further benefits of MMEs can be achieved. Recommendations for implementing a regional MME program within a resource management agency issues include:


1. Establish automated data collation processes. After field data are collected, entered into electronic databases, and quality assurance processes are implemented, automated software or scripts should be used to synthesize and prepare the data for input into the MME. The input data types for each model in the MME may vary depending on the model structure. Documented automated processes for converting raw data to model input are necessary to ensure that models are using the same data, which will be important for synthesis of outputs. In addition, time saved on data wrangling allows more time for MME development and output synthesis.

2. Use a stakeholder-oriented process to clarify the key objectives and questions to address, the important processes within the system, and the potential universe of relevant models, e.g., Chagaris et al. (2019). Scientists can identify biophysical factors that drive and organize system dynamics. Social scientists can identify human activities that influence ecosystems. Conceptual models are a useful way to incorporate stakeholder input on important ecosystem components and drivers. In addition, they are useful for identifying important ecosystem indicators.

3. Depending on the aims and goals of the modeling effort, set up a range of models with a range of structural complexity. A minimal model set should include:

(a) One to three simpler models (e.g., extended stock assessment models and multispecies surplus production models).

(b) At least one MICE.

(c) One or two more complex models (e.g., end-to-end models, dynamic food web models, coupled biophysical models, and socioecological models).

4. Involve stakeholders in the development of each ecosystem model in the MME, ideally as early as ecosystem models start being developed. As ecosystem models keep being developed, regular presentations to stakeholder groups and management bodies will help with buy-in. Early and regular stakeholder engagement in model development can help to establish clear management objectives.

5. Develop long-term funding to support and maintain all models in the MME. Shorter term research funding can be used to adapt existing models in the MME to address novel management issues, to develop and incorporate new models into MME programs, and to develop approaches for quantitative synthesis of MMEs. Model development is iterative in nature and funding horizons should reflect that fact.

6. Develop model review procedures (or refine existing procedures) that can more readily deal with multiple models and models with increased ecological complexity relative to standard fisheries population dynamic models.



The recommendations for establishing MME programs may seem daunting at first; however, many regional management agencies have begun to implement some of these recommendations. Fisheries agencies have a number of multispecies/ecosystem models being used for management (ICES, 2019; Townsend et al., 2020). For example, multispecies interactions are considered in the management of multiple North Sea and Baltic Sea stocks by applying time-varying predation mortality estimated by multispecies models within single-species stock assessments (Lewy and Vinther, 2004; Bauer et al., 2019). Multispecies interactions in the Barents Sea are explicitly considered in the management of both capelin and Northeast Arctic cod. Capelin assessment and management explicitly considers forage for cod (Gjosaeter et al., 2002), and the cod harvest control rule has an upper B threshold where F increases (ICES, 2020), which may mediate capelin predation. In addition to the menhaden example reviewed here, ICES has used an ecosystem model to enhance single species advice in the Irish Sea (Howell et al., 2021). The NOAA-Alaska Fisheries Science Center has developed an MME for climate considerations (Hollowed et al., 2020). The NOAA-Northwest and Southwest Fisheries Science Centers have developed approaches for engaging with stakeholders to align models with management needs and identify where new models are needed (Tommasi et al., 2020). The NOAA-Northeast Fisheries Science Center is developing automation approaches for producing standardized model input data sets. The NOAA-Southeast Fisheries Science Center, in collaboration with academic partners and through additional funding via the NOAA Restore Science Program, is building ecosystem models for use as decision support tools for fisheries managers. Further, SEFSC is investing in a formal peer-review of the Gulf of Mexico Atlantis model for application to Gulf shrimp fisheries.

These steps toward making ecosystem modeling operational are part of an evolution. Historically, these models were used for research, and they have been used increasingly for management applications. The models applied for California Current forage fish illustrate two tensions: the need to both apply existing models as well as to develop new approaches with added capabilities; and the desire to delve deep into ecological complexity while also including an array of models that capture very different aspects of the fishery system. Development of MME programs will push government agencies to operationalize modeling, but care should be taken to not divest from the development of new models when needed nor divert resources from stock assessments, which themselves benefit from MME products. Recognizing the significant funding requirements of MME efforts, cost–benefit analyses could be performed to identify where resources should best be allocated within management systems. As was demonstrated in all of these case studies, collaborations between academic and government researchers can help to ensure that research and new model development are ongoing and potentially distribute and reduce overall costs.

Ultimately, the development of MME programs will not necessarily address all EBFM questions. However, a directed evolution of resource management modeling programs toward an MME program will enable more rapid response to EBFM questions as they arise.
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We have developed an approach that connects a complex and widely used scientific ecosystem modeling approach with a game engine for real-time communication and visualization of scientific results. The approach, OceanViz, focuses on communicating scientific data to non-scientific audiences to foster dialogue, offering experimental, immersive approaches to visualizing complex ecosystems whilst avoiding information overload. Within the context of ecosystem-based fisheries management, OceanViz can engage decision makers into the implicit operation of scientific software as an aid during the decision process, and it can be of direct use for public communication through appealing and informative visualizations. Beside a server-client architecture to centralize decision making around an ecosystem model, OceanViz includes an extensive visualization toolkit capable of accurately reflecting marine ecosystem changes through a simulated three-dimensional (3D) underwater environment. Here we outline the ideas and concepts that went into OceanViz, its implementation and its related challenges. We reflect on challenges to scientific visualization and communication as food-for-thought for the marine ecosystem modeling community and beyond.
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INTRODUCTION

Marine environmental sciences aim to sustain human societies and the oceans on which they rely. An effective way of doing so is through influencing policy changes, but policies are not changed purely by printing out scientific statements on plausible future scenarios. Rather, they are facilitated by involving concerned parties into a dialog that builds on the scientific data gathered and the predictions made possible through scientific analyses and models (Giebels et al., 2020).

Ecosystem models are increasingly used for policy advice (e.g., Heymans et al., 2020), but their operation is challenging for non-experts, while model results represent abstractions of reality in numbers, which are difficult to comprehend by non-specialists. Although complex scientific data communication can be made more efficient through careful design and the use of standardized and informative indicators (Kelleher and Wagener, 2011; Coll and Steenbeek, 2017; Böttinger et al., 2020), there are inherent communication problems that call for the use of a more processed form of scientific findings (Georgescu et al., 2019; Walling and Vaneeckhaute, 2020).

The huge advances in technology and software usability brought about by video games have opened a wide range of opportunities for initiatives outside the gaming realm. Video games have become an integral part of modern life, surpassing the combined worth of the movie and music industry (BBC News, 2019). Gaming has helped develop and expand different approaches to involving science in decision-making processes, including the area of particular interest for our research: serious gaming (Ritterfeld et al., 2009; Georgescu et al., 2019). In serious games, the primary focus is not purely on amusement, but on exposing the participant to some form of knowledge through the use of explicit educational experiences, multi-media, and entertainment (Laamarti et al., 2014). They harbor multiple elements that lend itself for scientific outreach, communication, and stakeholder involvement, and in particular, for ecosystem management (Madani et al., 2017).

Managing ecosystems is a daunting task, which requires identifying trade-offs and finding compromises between often-conflicting interests regarding ecology, economy, and politics. Environmental Decisions Support Systems (EDSS) are systematic tools to aid the decision process in support of management-related decision-making. For EDSS to be efficient in the decision-making process, they have to be credible from a scientific perspective (Bennett et al., 2013), which is a niche for ecosystem models (Heymans et al., 2020). A particular challenge to this inclusion is the need to obtain and communicate results in forms that facilitates adoption by stakeholders (McIntosh et al., 2011). Audiences must thus be able to explore problem spaces in their specific domains of knowledge without having to worry about the interaction with, and parameterization of, underlying scientific models. Additionally, a wide range of model results must be translated to a condensed set of intuitive indicators that match audience terminology and visuals (e.g., Walling and Vaneeckhaute, 2020). Translating scientific data to target audiences is a science in itself (e.g., Anderson et al., 1983) that requires discussions far beyond the scope of this paper. The aspects that we deemed most important for bringing modeling to non-modeler audiences are (i) limit information overload (Walters, 1986); and (ii) immersion (Wang et al., 2019).

Information overload occurs when audiences lose track of overarching questions due to exposure to too many details that may not be relevant to them, which a mistake is easily made when exposing non-modelers to the plethora of details that ecosystem models produce. Reducing information overload thus requires providing possible stakeholders, from different backgrounds, with just the information that they need to make informed decisions (Walters, 1986). Immersion refers to the use of animated virtual realities that appeal to the hedonic value of seeing an ecosystem as it is rather than having to interpret the state of an ecosystem through graphs and charts. Emotional experiences are an essential part of our ability to engage and learn (Wang et al., 2019), and can add a fundamental dimension to the decision process.

There are a few examples that use immersive 3D underwater visualizations to convey marine ecosystems. Games such as ABZÛ (Giant Squid, 2015) the Subnautica franchise (Unknown Worlds, 2020), and collaborative digital art projects such as theBlu (WEVR, 2020), allow participants to explore different habitats and meet different species in thriving virtual underwater worlds. Although none of these visualizations have scientific models behind it, they have a clear aim to strike emotional connections between audiences and a virtual world. The recently released Virtual Ecosystem Scenario Viewer (VES-V; NOAA Fisheries, 2020) of the National Oceanic and Atmospheric Administration (NOAA) visualizes empirical ecosystem data and model output in 3D via the Internet.

The inclusion of ecosystem models into an EDSS also creates the opportunity to provide estimates whether elected management options will stand the test of time, especially when considering climate variability (Heymans et al., 2020). This we see as an essential feature that most present-day EDSS fail to capitalize on. For instance, none of the operational decision support tools for Maritime Spatial Planning (MSP) reviewed in Pınarbaşı et al. (2017) can perform any form of forecasting. If EDSS cannot present users with plausible short- and long-term implications of potential planning decisions under, for instance, variations in climate, the ability to make reasonable decisions about future ecosystems is limited. To our best knowledge, the recently released MSP Challenge (Mayer et al., 2014; Steenbeek et al., 2020) is the only simulation platform that merges gamified policy exploration with scientific forecasting, but even this powerful platform is lacking the ability to include climate variability.

OceanViz was conceptualized under the pioneering OceanSummits approach (Christensen and Lai, 2011) to address the challenges listed above under a fisheries management context. It was based on two interlinked problem-solving cycles (Figure 1): stakeholder and expert consultation in the decision-making process leads to the collaborative development of an ecosystem model, the definition of various thresholds, and the identification of plausible management options. The ecosystem model must be able to assess the combined impacts of ecosystem dynamics, fisheries management, and climate change. Collaborative modeling sessions take these inputs to explore how policy decisions may affect the ecosystem and derived ecosystem services with the use of the OceanViz software, which provides invaluable input to the decision making process (Christensen and Lai, 2011).
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FIGURE 1. The flow of OceanViz within a decision making process.


This paper focuses on how we constructed OceanViz as a “virtual field trip” into a simulated 3D underwater environment in flux, that, through a direct link with an ecosystem model, allowing exploration of long-term impacts of fisheries management actions (Christensen and Lai, 2011).



MATERIALS AND METHODS

The OceanViz software consists of three parts: (i) the ecological model, (ii) the client/server system, and (iii) the data visualizations.


Ecological Model

We connected OceanViz to Ecopath with Ecosim (EwE), the world’s most used ecosystem modeling approach to represent aquatic ecosystems (Christensen and Walters, 2004). EwE consists of three main components: Ecopath – a static, mass-balanced snapshot of the ecosystem (Christensen and Pauly, 1992); Ecosim – a time dynamic simulation module for policy exploration (Walters et al., 2000; Ahrens et al., 2012); and Ecospace – a spatial and temporal dynamic module designed for exploring the impact of fishing and environmental change (Walters et al., 1999; Christensen et al., 2014). The EwE approach is widely used to address ecological questions, evaluate ecosystem effects of fishing, explore management policy options, analyze impact, and placement of marine protected areas, model the combined effect of environmental changes, and combinations of the above (Coll et al., 2015; Colléter et al., 2015). EwE is most known as a desktop software for the Windows platform, but it is in fact an ecosystem model-building toolkit written in .NET and can be extended through plugins (Steenbeek et al., 2016). Additionally, EwE is an open-source approach built and supported through a global scientific community. Because of its capabilities, versatility, global reach, and accessible coding structure, the EwE approach was used to drive the ecosystem dynamics in OceanViz. In this manuscript, OceanViz utilizes the capabilities of the temporal-dynamic module Ecosim of the EwE approach.



The Client/Server System

To facilitate group discussions around a central ecosystem model, we developed a client/server system. The server component hosts the ecological model, which dispatches ecological results to the various client components, and accepts input from the client components that are integrated into the ecological model. This design allows any number of human participants to interact through the OceanViz clients with the shared ecosystem model on the OceanViz server, thus building a shared understanding of ecological impacts.



Data Visualizations

The 3D visualizations were developed as an immersive virtual environment to display model simulation results, but also as an interactive aquarium that can be explored on its own. Different scenes in OceanViz were modeled using photos and expert advice. The abundance of the different species was derived from the biomasses in the ecological model as delivered by the client software.

In order to populate the 3D visualizations with the data from the model, we initially focused on visualizing the hundred most exploited or iconic species in the world ocean (Figure 2A shows an example of the library built under OceanViz), and additional species can be added with relative ease. Represented species were built as 3D models using photographs and measurements for guidance. For instance, the fish baseline sizes were obtained through FishBase (Froese and Pauly, 2010). The visualizations followed performance requirements of computer games, leaning toward the construction of 3D meshes with low polygon counts. In average, fish models have around 300 polygons or faces (Figure 2B).
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FIGURE 2. An overview of some of the 3D assets used in OceanViz (A), and a detailed view of a 3D model of a Pacific Bluefin Tuna, Thunnus Orientalis (B). The underlying wireframe is partially shown to demonstrate that reduced use of polygons can still yield convincing 3D models.


The visualization module was developed using the freely available Blender Game Engine. Blender is a 3D content creation suite, available for all major operating systems under the GNU General Public License (Blender Foundation, 2020). Blender is a powerful modeling, rendering, and animation platform, also including real-time and gaming engine capabilities (Felinto and Pan, 2013). This includes a full physics engine, collision detection, dynamic constraints, real-time shadows, support for the OpenGL Shading Language, etc. The open source nature of Blender means that it is possible to make any type of customization as often is needed in complex projects such as OceanViz.

An advantage of using a game engine is that all the assets that populated our visualization can be displayed with dynamic behavior. We implemented a rudimentary artificial intelligence system to reflect animal movement and behavior with configurable tradeoffs between ecological accuracy and the amount of detail that a computer can draw in real time. Technical details about how we implemented the 3D marine life visualizations are provided in Supplementary Material.



OceanViz Architecture

Figure 3 illustrates the architecture of OceanViz. The server software controls the flow of the ecological model, and communicates with clients to disperse scientific results and to receive fisheries management inputs for which new simulations can be run. Any number of clients can be connected. Each client works independently of the others and has two visual components: (i) a data exploration layer through which participants explore background information and ecosystem model results as delivered by the server, and can make changes to fishing management scenarios that are sent to the server; and (ii) a 3D visualization layer that renders the animated underwater environment.
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FIGURE 3. Schematic overview of the OceanViz architecture. On the server side, the EwE desktop software provides model results to multiple clients (*). On the client side, the OceanViz user interface consists of two layers, a data exploration layer written in .NET and 3D visualization layer written in Blender.





RESULTS


Scenarios

We assume that, prior to an OceanViz session, all participants have been involved in the definition of the ecosystem model, the food web structure, its exploitation, and acceptable management thresholds as originally described in Christensen and Lai (2011). During an OceanViz session, the group explores and compares different fisheries management scenarios and the impacts on the mutually agreed ecosystem model and ecosystem services. The OceanViz software offers three or more scenario “slots” where participants can alter fisheries management settings. These alterations are established through group consensus and are entered by a moderator. The ecosystem model then computes the impacts of management scenarios, and communicates the changes in the ecosystem and ecosystem services to the participants.



Data Exploration

Data communication in OceanViz is divided in four sections (Figure 4). The first section, “introduction,” provides a set of screens with background information that is relevant for understanding a given aquatic ecosystem and its exploitation (Figure 4A). The second section, “input,” summarizes the condition of the ecosystem and the management options that can be changed under the different scenarios (Figure 4B). Some values define the ecosystem and cannot be changed during an OceanViz session (e.g., temperature, productivity, ecosystem summaries), while other values can be altered during an OceanViz session to explore fisheries management options. The third section, “results,” provides access to data that explains how the ecosystem changed under alternative scenarios (Figure 4C). To reduce information overload, the main results summarizes the relative change per variable, per management scenario, in relation to the base year in the ecosystem. This provides participants with a first-glance of the magnitude of change. Participants then can explore the change over time of each variable across all management scenarios in detail (Figure 4D). Last, the section “indicators” presents a single snapshot of the most important variables across the management scenarios in relation to the pre-defined thresholds (as established with participants prior to a session). OceanViz uses a simple color-coded “traffic lights” or red-amber-green (RAG) system to indicate whether a parameter value falls below the limit reference point (red), above the target reference (green), or in between (amber). The traffic light system allows for a quick overview of changes in the ecosystem (Figure 4E). The traffic light system is adjustable for colorblindness.
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FIGURE 4. The sections of the OceanViz data exploration interface: information (A), input (B) and an example input screen where users can alter fishing effort by sketching with a mouse or their finger (C), results overview (D) and an example results detail screen showing trends in biodiversity (E), and traffic lights for select ecological indicators (F).




3D Visualization

The 3D visualizations present an immersive virtual ocean with animals and plants in simulated marine habitats (Figure 5). The 3D visualizations reflect the state of the ecosystem as predicted by the ecological model. Sizes and densities of plants and animals vary in response to changes in biomass. Volumetric fog is included to give the first-hand illusion of being under water, and its intensity can be varied through model-calculated nutrient levels to visualize eutrophication. Color attenuation can be used to represent both depth and the distance from the viewers’ eye (Figure 5).
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FIGURE 5. An example of OceanViz 3D visualizations presenting a Peruvian ecosystem.


OceanViz captures substrate and local features of the environment. All living components are spawned into the environment based on their natural occurrence: kelp appear attached to the bottom; coral grow on rock walls or rock outcrops; pelagic animals are placed in mid-water; etc.

As animals and plants tend to unevenly distribute across vast areas and often aggregate within, complex ecosystems are not typically viewed in one glance. To ensure that all relevant species in the ecosystem are visible at any given moment, OceanViz concentrates relative abundances of species within the participants’ field of vision. Albeit not ecologically correct, this allows OceanViz to accurately represent the relative densities of species over time as predicted by the ecological model.



The Challenge of Visualizing Change

Communicating changes over time through animations is challenging due to the shifting baseline effect (Pauly, 1995; Soga and Gaston, 2018). Early versions of OceanViz had a timeline system that stepped through simulation time at 1 month per second, where species population changed according to their abundance while the animation progressed (Figure 6A). However, at the end of an animation of progressive change over 50 years, it was hard to recall the initial state of the ecosystem. It was thus very difficult to make any form of comparison between the initial and final states of an ecosystem simulation. We addressed this issue by visualizing the environment across three panels – three time slices – in a continuous camera (Figure 6B). The panels represent the first, mid-point, and last year of a simulation, where each panel displays animal densities, sizes and environment conditions (e.g., turbidity) according to the ecosystem model. This three-panel setup allows for side-by-side visual comparison of the amount of change in an ecosystem. The panels could also reflect the end-of-simulation year for different management scenarios to allow for a side-by-side visual comparison of fisheries management impacts.


[image: image]

FIGURE 6. Two approaches of OceanViz to show change. The earliest approach (A) showed ecosystem change through a continuous animation supported by small graphs of ecosystem indicators. This system was replaced by three panels (B) that reflect the first year, mid-point, and end year of the ecosystem as predicted by the ecosystem model.





DISCUSSION

By using software tools tailored toward particular audiences, science can be executed, presented and digested in diverse forms. The OceanViz facility described here was created to explore solutions to specific challenges to the implementation of EDSS: involving stakeholders in the design, implementation and execution of an EDSS; transparent integration of scientific software to support the decision process; and providing a user-friendly system that focuses on communicating meaningful results (e.g., McIntosh et al., 2011; Walling and Vaneeckhaute, 2020).

The OceanViz software is a ready to use tool to engage non-scientific users in the operation of an aquatic ecosystem model through immersive visualizations. De-coupling the ecosystem model from the 3D visualizations across a network allows OceanViz to run on various devices. The OceanViz software is a flexible tool to visualize and communicate changes in a broad range of marine ecosystems, and can be driven by any type of ecological data source.

OceanViz was primarily designed to be used at the decision table – where decision makers can visualize the possible outcomes of different proposed management interventions. However, OceanViz is a modular visualization toolkit that can be deployed to entirely different settings. The 3D visualization engine is a stand-alone, programmable virtual aquarium that can be used in other projects, for any purpose that requires display of an interactive underwater world. For example, it can be used in the classroom – to teach about ecosystem modeling. The current implementation of the OceanViz methodology allows for a smooth (30–60 fps on a high-end desktop computer with a normal graphics card dedicated to gaming) experience and can handle most of the main components available in the EwE models (Christensen and Walters, 2004). In this context, a recent spin-off capability to visualize modeling results in real time using OceanViz was built into a plug-in for EwE (Figure 7, top-left panel). In addition, as a direct consequence of our OceanViz experiments, the EwE software was recently integrated into the Maritime Spatial Planning Challenge simulation platform (Steenbeek et al., 2020).
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FIGURE 7. Different uses of the OceanViz visualizations: embedded in the EwE desktop software (A), in a scripted movie to show the impacts of sharks on coral reefs (B), in a scripted movie shows the ecological links between sharks, tuna, and sea birds (C), in a kiosk game that allowed users to explore the combined impacts of eutrophication and fishing in the Baltic (D).


The OceanViz 3D visualizations have already found uptake into a number of other activities. They have been used to produce scripted short movies to such as can be seen at www.globaloceanmodelling.org/visualizations, and they have been integrated into a kiosk game that focused on model-driven exploration of fisheries and eutrophication in the Baltic (a still of BalticViz, unpublished, is shown in Figure 7). Through capabilities of the Blender Game Engine, the OceanViz 3D visualizations are compatible with dome projections, and, via third-party systems like BlenderVR, stereoscopic virtual reality (VR) headsets (Katz et al., 2015).

However, any visualization piece is a biased visualization that displays a virtual world. One of the merits of this project is to combine the rigorous view of the scientific data, with the creative artistic impetus for effectively communicating and connecting to the audience. In fact, OceanViz shows that some level of artistic freedom is needed to visualize a complex and diverse marine ecosystems in a single 3D visualization. For example: (i) water visibility is driven by the scientific engine, but it has the turbidity attenuated to allow visualization at a greater distance than the actual. (ii) Fish interactions are “scenic” and do not affect the net value representation of the individual fish models. (iii) The engine “cheats” on absolute fish abundances but does ensure that the relative abundances are realistic, where biomass numbers can be scaled logarithmically or linearly depending on visualized species. (iv) Last, the challenge to display ecosystem components that would normally not occur in the same visual setting were addressed by using camera pathways to “visit” the various modeled habitats and the species living within, where species were visualized only in their naturally occurring habitats.

Despite being linked to food web models, OceanViz does not explicitly show a predator prey behavior, or more specifically, you won’t see a shark eating a sardine. There are a few reasons for that: (i) performance – with the employed technology, the available computing units were not capable of handling a sophisticated individual fish intelligence as touched upon earlier; (ii) our focus is on displaying abundances; (iii) scene setup – it’s important to reinforce that the species layout in the 3D scene is a raw representation of the data, and not necessarily can be related to a real ecosystem where such behaviors are observed. We have deliberately built a simplified world.

The scope of OceanViz as presented here was deliberately kept small as an experiment in data presentation and virtual reality; we did not set out to develop a comprehensive EDSS. Future developments can certainly include essential EDSS features such as comprehensive usability and uncertainty assessments (Walling and Vaneeckhaute, 2020). As all ecosystem management questions have temporal and spatial components, we can also extend OceanViz to connect to spatial-temporal ecosystem models such as Ecospace, the spatial-temporal module of EwE (Serpetti et al., 2017; Coll et al., 2020), and to explicitly represent the impacts of climate change according to the available forecasting scenarios (Tittensor et al., 2018). We can extend OceanViz to incorporate the effects of hazardous substances and litter if the connected ecological model provides said features, and OceanViz can be made to incorporate socio-economic impact analysis and include non-aquatic species in its considerations if underlying models provide these abilities – providing stakeholder sessions have such needs. The design of OceanViz is open-ended to tap into all features of underlying ecosystem models, and as mentioned prior, different ecosystem models can be used to drive the OceanViz dynamics. Whichever modeling capabilities are used: it is of utmost importance to ensure that information provided by OceanViz is conveyed in a form that only stimulates participatory dialogues for specific stakeholder sessions without leading to information overload (Georgescu et al., 2019).

In the spring of 2018, the Blender Foundation announced that the game engine was no longer part of Blender (Felinto, 2018). Future developments will require to transfer the visual assets and logic of the OceanViz visualizations to another compatible game development platform such as the Unity game engine (Unity Technologies, 2020).

Despite its limitations and potential improvements, upsurges in the interest in stakeholder-driven ecosystem management supported by decision support tools (Pınarbaşı et al., 2017; Keijser et al., 2018; Ernst, 2019; Krueck et al., 2019), and the emergence of ecological decision support tools that not only support the full problem solving cycle but also provide visions of the future based on plausible solutions (Steenbeek et al., 2020), have led us to believe that OceanViz may hold potential for this renewing landscape. EwE ecosystem models are increasingly being used for ecosystem-based fisheries management and integrative assessments (Christensen and Walters, 2011; Coll et al., 2015). The OceanViz approach provides blueprints for addressing the three challenges that Heymans et al. (2020) posed to the ecosystem modeling community, namely: (i) enable ocean managers to use, (ii) communicate, and (iii) co-design ecosystem models. As such, there is a need for tools such as OceanViz to address real world problems.

Due to lack of funding, the OceanViz approach has not yet been applied to an actual decision making process and thus far has been a purely academic exercise. Throughout its development, we have demonstrated and tested OceanViz with scientists, stakeholders, and with broader audiences in over 20 different settings and events to gather feedback. This feedback, in turn, was invaluable in shaping the OceanViz software to the version presented here. This study illustrates that the results from the OceanViz software are promising, and are ready to head toward applying this methodology to address real-world applications. We certainly will keep building on the OceanViz tools and experiences, and we hope that this work will provide inspirational to other research approaches striving to connect scientific software with target policy audiences. OceanViz can serve as a tool for stakeholders, policy makers, students, and scientists to understand the importance of ecosystem-based management and of the need to act now if there is going to be seafood and a healthy ocean for future generations to enjoy.
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Time-area closures are a valuable tool for mitigating fisheries bycatch. There is increasing recognition that dynamic closures, which have boundaries that vary across space and time, can be more effective than static closures at protecting mobile species in dynamic environments. We created a management strategy evaluation to compare static and dynamic closures in a simulated fishery based on the California drift gillnet swordfish fishery, with closures aimed at reducing bycatch of leatherback turtles. We tested eight operating models that varied swordfish and leatherback distributions, and within each evaluated the performance of three static and five dynamic closure strategies. We repeated this under 20 and 50% simulated observer coverage to alter the data available for closure creation. We found that static closures can be effective for reducing bycatch of species with more geographically associated distributions, but to avoid redistributing bycatch the static areas closed should be based on potential (not just observed) bycatch. Only dynamic closures were effective at reducing bycatch for more dynamic leatherback distributions, and they generally reduced bycatch risk more than they reduced target catch. Dynamic closures were less likely to redistribute fishing into rarely fished areas, by leaving open pockets of lower risk habitat, but these closures were often fragmented which would create practical challenges for fishers and managers and require a mobile fleet. Given our simulation’s catch rates, 20% observer coverage was sufficient to create useful closures and increasing coverage to 50% added only minor improvement in closure performance. Even strict static or dynamic closures reduced leatherback bycatch by only 30–50% per season, because the simulated leatherback distributions were broad and open areas contained considerable bycatch risk. Perfect knowledge of the leatherback distribution provided an additional 5–15% bycatch reduction over a dynamic closure with realistic predictive accuracy. This moderate level of bycatch reduction highlights the limitations of redistributing fishing effort to reduce bycatch of broadly distributed and rarely encountered species, and indicates that, for these species, spatial management may work best when used with other bycatch mitigation approaches. We recommend future research explores methods for considering model uncertainty in the spatial and temporal resolution of dynamic closures.

Keywords: bycatch, spatial closures, dynamic ocean management, EcoCast, management strategy evaluation (MSE)


INTRODUCTION

A key threat to sustainable fisheries is bycatch – the unintended catch of non-target species (Lewison et al., 2014; Savoca et al., 2020). Some of the tools for bycatch mitigation include gear changes, bycatch quotas, and spatial management (Hall et al., 2000; O’Keefe et al., 2014). Time-area closures are a common type of spatial management, whereby an area of high bycatch risk is systematically closed to remove fishing effort at particular times (Goodyear, 1999; Dinmore et al., 2003; Armsworth et al., 2010). Once established, these closures are often static and not responsive to changing species distributions and fisheries operations (Lewison et al., 2015; Smith et al., 2020). As climate change and variability force species redistributions, static closures may increasingly and unnecessarily restrict fishing activity in areas where bycatch risk is low (Grantham et al., 2008; Hazen et al., 2018).

Due to the limitations of static closures, there is increasing emphasis on dynamic management, whereby management strategies use near-real-time data to better align scales of management to scales of change in biological habitats, the physical environment, and resource use (Oestreich et al., 2020). Dynamic ocean management is a key development in spatial management of fisheries, with potential for improving conservation of mobile species, while reducing economic impacts (Lewison et al., 2015; Maxwell et al., 2015; Dunn et al., 2016). Dynamic time-area closures are often based on thresholds or models of suitable habitat (Hobday and Hartmann, 2006; Howell et al., 2008), and have evolved into near-real-time (and forecastable) multi-species bycatch avoidance tools (Howell et al., 2015; Hazen et al., 2018).

There are numerous challenges when implementing dynamic time-area closures. Data and technology requirements for real-time or forecasted products are considerable, and aligning spatial and temporal scale with the practical needs of managers and fishers can be challenging (Maxwell et al., 2015; Welch et al., 2019a). Additionally, the redistribution of fishing effort outside closures can have unintended consequences on fishery bycatch and economic efficiency (Powers and Abeare, 2009; O’Keefe et al., 2014; Hoos et al., 2019). Further complications arise when the closure objective is to reduce bycatch of multiple species. When species have different habitat distributions, meeting multiple objectives can reduce the efficacy of dynamic time-area closures (Welch et al., 2020). Clearly there is great potential for dynamic time-area closures, but more integrated analysis is needed to better quantify the benefits and limitations of dynamic closures derived from species distribution models (SDMs), including how sensitive closure performance is to specific habitat associations or data availability.

We compared static and dynamic time-area closures using management strategy evaluation (MSE) – a type of simulation used to compare multiple management strategies (Punt et al., 2016). We simulated a fishery based on the California drift gillnet swordfish (Xiphias gladius) fishery (DGN), and evaluated performance of static and dynamic closures in reducing bycatch of (1) leatherback turtles (Dermochelys coriacea) using single species closures, and (2) leatherback turtles and blue sharks (Prionace glauca) using multi-species closures. We used the DGN as the reference fishery for our simulation because it currently experiences a large static time-area closure aimed at minimizing bycatch of leatherback turtles (the Pacific Leatherback Conservation Area, PLCA, Figure 1), and because there is extensive geo-referenced catch and bycatch information from an observer program (Urbisci et al., 2016; Mason et al., 2019). The DGN was also the case study for development of ‘EcoCast,’ a dynamic decision support tool for bycatch avoidance (Hazen et al., 2018). EcoCast maps fishing suitability based on the estimated distributions of target and bycatch species, and can be extended to create highly dynamic and multi-species time-area closures using fishing suitability thresholds. The flexibility of the MSE framework allowed us to develop a set of models of the biological and management systems (‘operating models’), encompassing the key uncertainties of species distributions, closure creation, and observer program size, and evaluate which closures were most robust to these uncertainties.
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FIGURE 1. The closure areas implemented in the DGN and in our simulation (n = 12; see Supplementary Material S1 for closure dates), with the exception of the Pacific Leatherback Conservation Area (PLCA) and Loggerhead Conservation Area (red lines) which were not implemented in our simulation.


The goal of our study was to compare the performance of static and EcoCast-based dynamic time-area closures, aimed at reducing bycatch of two species, using a simulation based on the DGN. Of particular interest were: (1) quantifying the trade-off between bycatch avoidance and economic considerations such as target species catch and trip-level profit, (2) exploring sensitivity of closure performance to the dynamism of a species’ distribution and the size of an observer program, (3) quantifying the magnitude of variation in simulated catches due to interannual ocean variability, and to stochastic elements such as the location of fishing and bycatch observation, and (4) identifying more generally the conditions under which time-area closures and the subsequent redistribution of fishing effort are likely to be effective tools for bycatch mitigation.



MATERIALS AND METHODS


General Simulation Approach

Our simulation used a management strategy evaluation (MSE) framework (Figure 2). MSE is a closed-loop simulation, comprised of one or more operating models representing the assumed ‘true’ biological and fishery conditions, and a management process representing the detection and response of management to the operating model (Punt et al., 2016). In our case, the operating models defined the ocean state, fishing locations, and the distribution of potential catch and bycatch, while the management process defined the observer program and the creation and implementation of static and dynamic time-area closures (Figure 2A). The MSE framework was particularly appropriate in this study, because leatherback turtles are rarely encountered in the DGN (Martin et al., 2015; Mason et al., 2019), which makes their distribution and bycatch risk challenging to quantify. By using MSE, we were able to characterize this uncertainty by testing multiple plausible operating models of leatherback distribution, and evaluate closure strategies assuming each operating model was true.
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FIGURE 2. Our simulation framework, describing the MSE loop (A), the phases in which the simulation progressed (B), and the variations and closure strategies tested (C). The operating models were eight combinations of leatherback turtle (LB), swordfish (SF), and blue shark (BS) catch models, and are defined alongside the static and dynamic (Dyn.) closure strategies in Table 2. Output from a California Current System implementation of the Regional Ocean Modeling System (ROMS) informed the spatially explicit catch models for swordfish, blue shark, and leatherback turtles, as well as the species distribution models (SDMs) used to create the dynamic closures. The number of runs was 80 in Phase 1, and 720 in Phase 3.



Although our simulation closely represents the DGN, the simulated static and dynamic closures are dependent on the specific leatherback distribution scenario simulated in the operating model (‘simulated truth’) and thus do not represent actual closures in the DGN. Our simulation should be considered a hypothetical fishery because the simulated static closures, although created to represent a PLCA-like closure (Figure 1), differed from the PLCA in shape and location. Thus, our simulation does not attempt to identify the best closure for reducing leatherback turtle bycatch in the actual DGN; rather, we use the DGN as a guide for a realistic fishery in which to compare the relative performance of static and dynamic time-area closures, given uncertainties in the biological and management systems.



The Drift Gillnet Fishery

The DGN is a federally managed fishery which has operated over the period from 1980 to the present in the national waters of the U.S. west coast. It targets highly migratory species (HMS) with swordfish being the dominant targeted species (currently contributing ∼86% of total revenue; Pacific Fisheries Information Network, PacFIN). The DGN commonly catches non-target species such as blue sharks and molas (Mola mola), which are not marketable, and more rarely interacts with marine mammals and sea turtles (Mason et al., 2019). DGN vessels remain at sea for multiple days before landing their catch, and deploy the gillnet (as a ‘set’) typically overnight. The exclusive economic zone (EEZ) off California is closed annually to the DGN from 1st February to 30th April, and is closed from the coast to 75 nm from shore from 1st May to 14th August, meaning that a de facto DGN fishing season operates from 15th August to 31st January (Supplementary Material 1).

The DGN has a complex management history with numerous regulatory changes, and participation in the fishery has declined substantially over the last 20–30 years (Holts and Sosa-Nishizaki, 1998; Urbisci et al., 2016; Mason et al., 2019). A number of regulations have been implemented to reduce bycatch, including gear modifications and time-area closures. There are currently 14 permanent or temporary closures, including two time-area closures aimed at reducing bycatch of sea turtles (Figure 1 and Supplementary Material 1). The largest of these closures is the PLCA, which was designed to encompass the majority of observed leatherback turtle bycatch events. The PLCA was implemented in 2001 and is enacted each year from 15th August to 15th November. This closure timing is considered effective at reducing interactions with leatherback turtles (Eguchi et al., 2017). It is also considered to have contributed to a reduction in effort and landings of swordfish on the U.S. West Coast. Continued assessment of the economic impacts of these (and potential) regulations and closures is important to ensure thorough evaluation of the trade-off between bycatch reduction and economic opportunity; especially in the context of absolute bycatch impact (which for the DGN is comparatively low; Savoca et al., 2020), and considering the potential for “leakage” and “spillover” of the bycatch problem for many HMS (Chan and Pan, 2016; Helvey et al., 2017).

The National Marine Fisheries Service (NMFS) established a federal observer program for the DGN in 1990, usually covering 15–20% of fishing trips. This program provides a range of information, including the dates and locations of all sets and set-level counts of all caught species. We used this observer data to develop catch models for swordfish, blue shark, and leatherback turtles. We selected these two bycatch species due to the influence of leatherbacks on the DGN’s current spatial management, because both leatherbacks and blue sharks are included in EcoCast, and because blue sharks represent a commonly encountered species to contrast the rare bycatch of leatherbacks. The DGN also uses logbooks that report total landings, and these data were used to determine realistic total fishing effort in our simulation. A cost-earnings survey has also been done for this fishery (years 2009–2010; NMFS, unpublished data), which provided essential information on variable fishing costs (Smith et al., 2020).



The MSE Simulation


Simulation Framework

The simulation framework consists of an MSE simulation loop (Figure 2A), which was run in three phases (Figure 2B), and repeated numerous times to include a range of operating models (uncertainty scenarios) and spatial management strategies (Figure 2C). The operating model in the MSE loop defined the distribution and catch rate of swordfish, leatherback turtles, and blue sharks. These were correlative catch models informed by a suite of habitat variables, including dynamic ocean covariates taken from a data-assimilative implementation of ROMS configured for the California Current (Neveu et al., 2016)1. The MSE operated at the scale of the ROMS output: daily, and at a 0.1° (∼10 km) horizontal resolution. We simulated eight operating models, corresponding to eight combinations of our catch models, to incorporate uncertainty in the distribution of leatherback turtles and swordfish. The catch models were used to predict daily potential catch across the entire domain, given each day’s environmental conditions, with set-level catches determined by simulating a fishing process using an agent-based model (ABM) which did not allow fishing in closed areas.

Closed areas were determined by the simulated leatherback closure defined by the spatial management strategy being assessed. We evaluated performance of nine spatial management strategies, which were a no closure reference strategy, three static closures, and five dynamic closures. Each operating model and management strategy combination was iterated five times to incorporate random variation in which trips were observed, model-based closure creation, and fishing locations and simulated catch (Figure 2C). We also repeated the entire simulation for two levels of an observer program (20 or 50% coverage of vessels) to explore how the amount of bycatch information influenced closure performance. Given how our model was tuned, 20% coverage represented a minimum amount to create our dynamic closures, and we chose to explore whether increasing information above this minimum improved closure performance (and not because we are specifically interested in 50% coverage). Of interest, but beyond the scope of our study, would be to explore the relationship between observer coverage, bycatch rate, and SDM performance. This would be important when evaluating the suitability of dynamic closures in real-world fisheries with less observer coverage. Catch and fishing information (e.g., distance traveled, profit) were recorded and stored for evaluation of closure performance.

In Phase 1 of the simulation, the MSE loop was run for 5 years without a leatherback closure. This created 5 years of an observer program with which to create leatherback closures. In Phase 2 (which occurred instantaneously), the data from this observer program (given either 20 or 50% coverage of trips; Figure 2C) were used in the creation of static and dynamic time-area closures to be implemented in Phase 3. In Phase 3, the MSE loop was run for another 5 years, this time with a leatherback closure implemented. The performance metrics recorded in Phase 3 were those used to compare performance of the various closure strategies, often with respect to the baseline ‘no closure’ strategy (Table 1). The simulation was developed in R (v3.6.3; R Core Team, 2020).


TABLE 1. Summary of the key performance metrics used to evaluate closure strategies.
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Catch Models

The distribution of potential catch for the three species was determined using correlative SDMs (Figure 3). These were fitted to the actual observer data for the DGN, from 1990 to 2000 (∼5700 observed sets). This period was selected as it was before the implementation of the PLCA closure, and thus before the distribution of fishing effort changed considerably. We created four leatherback turtle catch models and two swordfish models to define the distribution of potential catch and bycatch (Table 2). Varying the leatherback model allowed us to explore closure performance across plausible differences in leatherback distribution (LB1 and LB2), as well as explore the impact of species distribution type (seasonal or broad) on closure performance (LB1seas, LB2scal). It was important to test plausible differences in swordfish distribution (SF1, SF2), because the distribution of expected and recent swordfish catch influenced fishing locations (see the ABM below). Only a single blue shark catch model was used, in order to keep the number of operating models manageable.
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FIGURE 3. Predicted catch by the seven catch models used to define the operating models (Table 2). Shown is the mean predicted catch for November (i.e., the mean of all November days for 1991–2000; the mean November catch rate averaged across the domain is in parentheses); November was chosen as this has high fishing effort. The color is the predicted mean probability of catching one leatherback per 12 h set (A–D), or the mean number of swordfish (E–F) or blue sharks (G) per 12 h set. See Supplementary Material S2 for example maps of daily predicted catch. The latitudinal limits of prediction were due to the limits of the FTLE variable, except the northward limit in SF2 which was the limit of the soap film smoother.



TABLE 2. Summary of the seven catch models used to define the operating models, and the nine static or dynamic closure strategies.
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A variety of correlative models were used to develop the catch models (Table 2 and Supplementary Material 2). Classification trees (random forests; Breiman, 2001) were used to model leatherback bycatch due to the very low number of observed bycatch events (n = 23), and random forests are known to be robust for modeling rare bycatch (Carretta, 2018; Stock et al., 2019). Given that a maximum of one leatherback turtle is typically caught per DGN set, we chose to model leatherback catch rate as a Bernoulli process (catch of zero leatherbacks or one leatherback). Predicted probabilities for classification trees were then defined as the proportion of votes of each class from the individual trees. We used down-sampling to correct imbalance in the absence and presence classes of observation (Stock et al., 2019). Like other authors (Stock et al., 2018), we found that class imbalance-corrected random forests overpredicted bycatch rates, and we rescaled the predicted bycatch probabilities using a general updating approach (Elkan, 2001; Suppementary Material 2). However, our simulation was designed so that leatherback closures could be created using a simulated observer program, and the actual observed bycatch rate (∼0.004 per set) was too low to create useful closures over a short period (especially the SDM-based dynamic closures). In practice, EcoCast incorporates animal tracking data to create risk surfaces for rare species (Hazen et al., 2018), but tracking data were too complex to simulate in our MSE (which would require not only a simulated observer program but also simulated animal locations and a tracking program). Thus, we rescaled the leatherback bycatch probabilities to have an inflated bycatch rate of ∼0.07 leatherbacks per set for each catch model. Testing showed this catch rate was near the minimum required to create the dynamic closures without fitting issues (given 20% observer coverage). Thus, the absolute bycatch rate in our study does not represent that in the actual DGN, but closure comparisons using percent bycatch reduction are indicative of performance given rare bycatch species with a leatherback-like distribution.

There were two main random forests fitted for leatherback turtle catches (LB1 and LB2; Table 2). While both generated plausible bycatch distributions relative to observed bycatch events (Supplementary Table 2.2), they were reflective of different potential leatherback distribution patterns. Both models included environmental covariates and an effort covariate (set duration), but only one also included geographic coordinates (LB1). LB1 represents a leatherback distribution with core habitat off central California (Figure 3), which agrees with existing research indicating this may be part of, and a transit region for, an important foraging area (Eguchi et al., 2017). LB2 represents a broader and more variable leatherback distribution which is determined predominantly by dynamic habitat variables (Supplementary Material 2). The LB1seas model is identical to the LB1 model, but with a forced migration signal that removes leatherbacks from the domain by the end of November. This was done to match telemetry patterns (Benson et al., 2011), and to represent a leatherback distribution potentially more amenable to spatial management (i.e., bycatch risk exists in a smaller and more predictable part of the fishing season). The LBscal model was rescaled using a fixed scalar, which created a leatherback distribution with the same mean catch rate but less difference between ‘high bycatch risk’ and ‘low bycatch risk’ habitat (Suppementary Material 2). This represents a distribution potentially less suitable for spatial management (i.e., redistributing vessels from high risk to low risk areas will have less impact on bycatch reduction). More information on model covariates, rescaling, performance, and fitted parameters are provided in Supplementary Material 2.

The two swordfish catch models (SF1 and SF2, Table 2) were fitted to the observer data as a boosted regression tree (BRT; SF1) or generalized additive mixed model (GAMM; SF2). GAMMs and BRTs are common tools for species distribution modeling; both have shown success in modeling the distribution of potential swordfish catch (Smith et al., 2020) and both were plausible models based on their similar predictive performance (Supplementary Table 2.3). The GAMM included environmental covariates, a space-time tensor using a soap-film smoother for geographic coordinates, and a vessel ID random effect (using bs = “re”). The BRT included environmental covariates and latitude. Both models included the effort covariate (set duration). Swordfish catch (number per set) was modeled with a negative binomial family in the GAMMs and a Poisson family in the BRT (36% of sets caught zero swordfish). Evaluation of residuals and overdispersion in the GAMM showed the negative binomial was appropriate. This family was not available for the BRT, but an evaluation of the model prediction from the BRT showed a sensible distribution of catch rates (evaluated in Smith et al., 2020). The blue shark model (BS1, Table 2) was fitted as per SF1, using a Poisson BRT. More information on these models is provided in Supplementary Material 2.

These seven catch models were used to predict potential catch across the modeled domain (Figure 3) for each day of the simulation, and saved as rasters for use in the MSE loop. The prediction specified set duration at 12 h, which was the mode and median from the observer data. Predicted potential catch was thus the mean number of swordfish or blue shark per 12 h set, or the mean probability of catching one leatherback turtle per 12 h set. By modeling catch statistically and without population dynamics, our study evaluated closure performance under assumptions of fixed population abundance and no depletion at any spatial scale.



Spatial Management Strategies

Our MSE compared nine time-area closure strategies (Table 2). Each static closure kept the same spatial and temporal dimensions for the entire Phase 3 (Figure 2B) but these dimensions changed between operating models and iterations. Dynamic closures changed daily, and also changed between operating models and iterations, and were implemented for the entire fishing season. The reference closure strategy was ‘no leatherback closure,’ in which there was no closure and vessels were free to fish anywhere outside other closures (Figure 1).

We simulated three static closure strategies (Table 2). These were based loosely on the PLCA, which was designed to enclose the majority of observed leatherback turtle bycatch (Figure 1). We used two methods to approximate this design process in our simulation: kernel density estimation and regression. Closure creation occurred in the management process (Figure 2A) in Phase 2 of the MSE (Figure 2B) using the simulated observer data collected in Phase 1. The first approach created a kernel density estimate (KDE) of the simulated observed leatherback bycatch, and defined the closure as a threshold of that KDE. We term this the ‘Static-obs’ closure, to indicate a static closure that encompasses only observed bycatch events. We specified two thresholds: 70 and 90%, meaning that the KDE area (i.e., the closure) enclosed 70 or 90% of observed bycatch events. These thresholds correspond to the ‘Static-obsm’ (moderate) and ‘Static-obss’ (strict) strategies (Table 2). The second approach used regression to create the closure, specifically a binomial GAM relating bycatch occurrence to a bivariate smoother of latitude and longitude; i.e., the probability of bycatch as a static function of location. A threshold probability was specified (0.1 probability of presence), and locations with bycatch probabilities higher than this threshold were considered closed. The key difference between the KDE and GAM approaches is that the KDE does not account for catch rate and is more influenced by the distribution of fishing effort, whereas the GAM models catch rate and may close areas that have a high bycatch rate relative to effort, even if the number of observed bycatch events is small. We thus term this closure ‘Static-pred’ to indicate the closure encompasses areas of predicted bycatch events. The PLCA is enacted for only part of the fishing season, with fixed start and end dates (Supplementary Material 1), so we also simulated start and end dates for the simulated static closures. As for the spatial extent, start and end dates were selected to encompass 70 or 90% of observed events (for the Static-obs closures) and 80% for Static-pred. For simplicity, start and end dates were evaluated at the monthly level, with closures starting or ending on the 15th of a month. Threshold values were arbitrary, but were selected so that the amount of fishable area closed was comparable to the PLCA and relatively similar among strategies. Examples of the static closures are shown in Figure 4.
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FIGURE 4. Maps of closure strategies for an example date (2nd November 1997), with color indicating the potential swordfish catch (number per 12 h set) defined by model SF2. White areas indicate closures (or area outside the EEZ). Also shown are six ports used as departure ports in our simulation (gray circles), plus four ports available for landing only (gray triangles). Panel (A) shows the non-turtle closures active on this date (Washington, Oregon 1000 fathom, California 12 nm, Point Reyes), and the simulated observed leatherback turtle bycatch events (black dots) for an iteration of Phase 3 of the LB1-SF2 operating model for the no closure strategy. Panels (B,C) show the additional closed area on this date due to the Static-obss (B) and Static-pred (C) closures (dashed black lines are closure borders). In this iteration, these closures were implemented from 15-July to 15-December (Static-obss) and 15-August to 15-December (Static-pred). Panels (D,E) show the additional closed area due to the strict dynamic closures, with EcoCast evenly weighted (D) or turtle weighted (E). Panel (F) shows the closed area if the Dyn-turts closure had perfect information on the distribution of potential leatherback bycatch. Also illustrated in panels (B–F) are example fishing trips simulated by our ABM. These vessels departed Morro Bay (black circle), made five sets (red squares) then landed their catch at the nearest port (blue circle).


We simulated five dynamic closures (‘Dyn’; Table 2), all created using the EcoCast decision support tool (Hazen et al., 2018). EcoCast sums predictions from presence-absence SDMs of multiple species to generate a fishing suitability (or risk) surface, with weightings used to determine each species’ contribution to the calculated risk. EcoCast can include both bycatch and target species and weight each more negatively (for bycatch species) or positively (for target species) depending on the prioritization of species. Our closures were defined as those areas with predicted bycatch risk greater than a specified threshold. We specified a three-species EcoCast (swordfish, leatherback turtle, blue shark) to explore one key aspect of EcoCast – the ability to balance objectives for target and bycatch species – and to more closely resemble the multi-species version currently available to DGN fishers (Hazen et al., 2018; Welch et al., 2020). EcoCast risk surfaces were created in Phase 2, by: (i) creating environmentally informed SDMs for each species using the simulated observer data matched to environmental data from ROMS; (ii) predicting the risk surface for every day in Phase 3; and (iii) closing to fishing for every day in Phase 3 the areas with EcoCast values above the risk threshold. The SDMs were created using BRTs in an approach very similar to that used for EcoCast. The four EcoCast closure strategies were strict and moderate thresholds for two species-weighting scenarios (Table 2). The species weightings represent a ‘multi-species’ closure in which the habitats of all three species were evenly weighted (‘Dyn-multi’; i.e., habitats with high leatherback bycatch risk will have their risk reduced if they are also good swordfish habitat and/or poor blue shark habitat), and a ‘single-species’ closure in which leatherbacks were prioritized over the other species (‘Dyn-turt’; i.e., habitats with high leatherback bycatch risk will remain high risk regardless of suitability for the other species). The EcoCast thresholds were calculated using an iterative process to encompass 90% (strict) or 50% (moderate) of the ‘good quality’ leatherback turtle habitat (defined as > 0.1 probability of occurrence). Thus, ‘Dyn-turts’ represents the closure with the highest leatherback avoidance objective. These threshold values were selected so that the amount of fishable area closed was comparable between static and dynamic closures.

An important element of MSE is ensuring that the information from the operating model available to the management process has realistic error (Punt et al., 2016). In our case, it was key to ensure that the SDMs used to calculate EcoCast and create the dynamic closures were realistically accurate, given that SDMs were also used to define the operating models. We did this by simulating an observer program, and by using structurally different models for the operating model and EcoCast closure SDMs. We evaluated accuracy, and found that EcoCast had a similar predictive power in the simulation (AUC = 0.66–0.81) as it does in the real world for leatherback turtles (AUC = 0.77; Welch et al., 2020), so no additional error was simulated. The final ‘Dyn-turtsP’ strategy was created, in part, to explore this simulated and real-world accuracy (Table 2), and performance of this closure represents maximum EcoCast performance given perfect knowledge (no observation or estimation error) of the distribution of leatherback turtles. More information about EcoCast fitting, thresholds, and validation is presented in Supplementary Material 3. Examples of the static closures are shown in Figure 4.



Fishing Effort and Agent-Based Model

Our MSE used an agent-based model (ABM) to simulate fishing (Figure 2). It was essential to have a dynamic tool like an ABM so that the fishing locations responded realistically to fishing closures (especially the daily updated dynamic closures). The ABM simulated individual vessels and their fishing effort, movement, and catches, and was based on a profit maximization framework, whereby agents (i.e., fishing vessels) make decisions that maximize their utility (van Putten et al., 2012). Here, utility was measured as a vessel’s expected partial profit, which is the revenue from expected swordfish catch minus fuel and crew costs. Because DGN vessels fish for multiple days, with presumably an expectation of trip duration, we calculated trip-dependent utility. This estimates the utility of a location if it was fished on a trip of specified duration and expected distance traveled (Smith et al., 2020). Our ABM operated in two stages: (1) utility was calculated for all cells in the fishable domain; and (2) the cell with the highest expected utility was selected from all accessible and available cells (i.e., those that can be traveled to within a specified time and are not in an active closure) using an accuracy term representing an agent’s imperfect detection of utility. The ABM is further detailed in Supplementary Material 4. See Figure 4 for example vessel tracks.

Fishing effort was determined by the number of sets each day and their duration. Set duration was fixed (12 h) for tractability as well as computational efficiency (set duration was a covariate in the catch models, and the predicted daily catch rasters were created outside the MSE loop). The number of vessels and sets to simulate in the ABM was estimated from DGN logbooks (sourced from PacFIN). We calculated logbook mean monthly effort and allocated this to 5-day fishing trips, which were then distributed to key departure ports based on the recorded departure ports in the observer data (1990–2000). This resulted in a monthly number of sets that matched the logbook effort, while closely matching the observed proportional use of specific departure ports. The departure dates of fishing trips within each month were allocated randomly, so that for each iteration of the simulation the daily fishing effort could vary (even if the mean monthly effort could not). We fixed the duration of every fishing trip at five overnight sets (the median value from the observer data) for tractability.

Our ABM operated at the set level, so catches needed to be integers (i.e., number per set). Thus, we calculated catch of each species as a random sample from the distribution of each catch model (negative binomial or Poisson for swordfish, Poisson for blue sharks, binomial for leatherbacks) given the mean catch rate predicted by each catch model (and fitted dispersion parameter for the negative binomial). An advantage of this approach was the realistic variation in catches among sets and vessels, and we found close agreement between simulated and observed catch frequencies (Supplementary Figure 5.2). There were numerous parameters used in the ABM that influenced fisher behavior, such as swordfish price and initial step distances (Supplementary Material 4), but these were not varied in our simulation in order to keep the number of iterations manageable. Thus, our results represent closure performance given ‘mean’ vessel behavior, and changes to aspects such as vessel mobility could have considerable influence on closure performance, e.g., near-shore time-area closures may have a greater economic impact on lower mobility vessels (Smith et al., 2020).



Performance Metrics

The metrics we used to evaluate closure performance are summarized in Table 1. They were focused on the total coast-wide catch and bycatch of the three species per fishing season, as well as the mean catch and bycatch rate (per set). We also measured closure performance using profit, distance traveled, and fishing opportunity. Fisher profit and distance traveled were measured at the trip level. Fishing opportunity was measured at the set level, and was represented by the number of missed sets, the frequency of shared fishing cells, and the frequency of undesirable travel behavior (see Supplementary Table 4.5). Unlike more tactical MSEs, ours did not have specific management objectives or targets, except that a successful closure would reduce leatherback turtle bycatch (compared to no closure), and beyond that provide balance in other economic and bycatch metrics (e.g., target swordfish catch, profit, area open, blue shark bycatch).



Simulation Validation and Uncertainty

We compared various simulation outputs with observations to ensure our simulation was representative of DGN dynamics and thus a useful comparison of static and dynamic closures. Reasonable accuracy was important for the ABM in which numerous parameters were tuned to create realistic agents. We compared total simulated swordfish landings and their variation throughout the fishing season against observations. To help tune the ABM, we compared observed and modeled data for: swordfish per-set catch rates; the distance offshore of fishing locations; the travel distance between sets; and the general spatial distribution of fishing effort (Supplementary Material 5). In general, we found close agreement between simulated and real-world fishing, although we could not reproduce the same level of near-shore fishing (Supplementary Figure 5.3). The broader distribution of fishing was accurate (Supplementary Figure 5.5).

A key element of MSE is incorporating all relevant uncertainties (Punt et al., 2016). Our simulation focused on incorporating uncertainty in: the distribution and catch rates of swordfish and leatherback turtles; choice of fishing location; SDM construction; the fine-scale timing of fishing effort; and which trips were observed. These and additional sources of uncertainty are detailed in Table 3. We were able to allocate general sources of variation (environmental, closure creation, other; Table 3) in our simulation, by comparing differences in key outputs among bootstrapped pair-wise comparisons of simulation runs. This method is detailed in Supplementary Material 5.


TABLE 3. Summary of the sources of uncertainty and variation in our simulation.
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RESULTS


Closure Performance

In terms of swordfish catch, the strict Static-obss closure clearly performed worst, leading to 25–40% fewer swordfish per season compared to no turtle closure (Figure 5A). Trip profit showed the same pattern as swordfish (Supplementary Figures 6.2–6.5), showing that lost revenue was the predominant economic driver, as opposed to additional distance costs. For both LB1 and LB2, this decline in swordfish catch was due to reduced access to good quality swordfish habitat (see ‘swordfish per set’ results, Supplementary Figure 6.2), and for LB2 was also due to the Static-obss closure reducing fishing effort. Static-obss under the LB2 leatherback distribution reduced effort by 10–30% (Figure 5E). These boxplots indicate the considerable variation among fishing seasons and iterations for all performance metrics (Figure 5).
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FIGURE 5. Boxplots summarizing differences between closure strategies for six key performance metrics. This compares results from the LB1 and LB2 models, using the SF1 model and 20% observer coverage (see Supplementary Material S6 for the other operating models). All reported values are per season and represent differences from the ‘no turtle closure’ strategy; e.g., compared to no turtle closure, having the Static-obss closure meant 25–40% fewer swordfish caught per season. Each boxplot contains five iterations of five seasons (n = 25). Units in panels (A,B,E) are percentage changes, (C,D) are absolute catch rates, and (F) is the absolute area (as a % of total area within 200 km from shore).


The moderate closures (Static-obsm, Dyn-multim, Dyn-turtm) produced the smallest reduction in leatherback turtle bycatch, showing that closures can be largely ineffective if only some habitat is protected and fishing effort is mostly redistributed (Figure 5B). Static-obss and Static-pred achieved bycatch reduction under the more static LB1 leatherback distribution, but were largely ineffective when the leatherback distribution was broader and more dynamic (LB2). Leatherback bycatch per set indicates whether fishing effort was redistributed into less risky habitat. According to this metric, both static and dynamic closures were effective under the LB1 model, but only the strict dynamic closures were effective under LB2 (Figure 5C). Thus, the decline in total bycatch by Static-obss under LB2 was due to reduction in fishing effort, not the effective redistribution of fishing effort to less risky areas. In terms of balancing bycatch and target catch, the ‘turtle per swordfish’ metric showed that strict dynamic closures were most effective, and Static-obss the worst (Figure 5D). The absolute means under the no closure strategy were 2.3 leatherbacks per 100 swordfish for LB1 and 3.5 for LB2.

Both Static-obss and Dyn-multis reduced blue shark bycatch by 20–25% under the LB2 model (Supplementary Figure 6.3), in which closures were often larger and extended into Southern California. However, this reduction was less than the reduction in swordfish catch. Other closures had negligible impact on blue shark bycatch, most likely due to this species’ very broad simulated distribution (Figure 3).

In terms of fishing opportunity, all closure strategies closed 40–80% of the fishable area (i.e., waters within 200 km from shore), with 15–45% more area closed than with no turtle closure (Figure 5F). The Dyn-multis closure closed the most area (Supplementary Figure 6.6 and Supplementary Table 6.1) because the EcoCast threshold needed to be stricter in order to protect 90% of good quality leatherback habitat given the additional constraint of considering the other species’ distributions. Even so, most fishing could still occur in open fragments of habitat, and the distribution of fishing effort under dynamic closures was similar to that with no closure (Figure 6). For dynamic closures, the area open was similar among fishing seasons except for 1997, which was an anomalous year with low predicted bycatch risk (Supplementary Figure 6.6). The area open within a season for dynamic closures was more variable for the LB2 model. Although the Static-obss closure had the most impact on fishing effort (Figure 5E), the dynamic closures more often induced undesirable fishing conditions, such as location sharing or traveling too far, but these occurred in <5% of sets (Supplementary Figure 6.1).
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FIGURE 6. The distribution of simulated fishing effort under no closure (A,E), and the change in this effort under strict static closures (B,C,F,G) and the strict turtle-weighted dynamic closure (D,H), for the LB1 and LB2 leatherback models. These represent one iteration and using the SF1 model. In (A,E) color indicates effort, which is the total number of sets per 0.3°-degree cells during Phase 3 (i.e., five fishing seasons and ∼15,000 sets); in other panels color indicates the change in the number of sets (blue indicates a decrease, and orange an increase, in fishing effort compared to no closure). The red dashed line contains 95% of real-world observed effort and the dashed black line is the boundary of the static closure for that iteration (arrows indicate direction of closed area for the Static-pred closure). For the Static-obss closure under LB2 (F) considerable effort was relocated into a single coastal cell (∼900 km2) at the very bottom of the domain. The distribution of actual effort (not the change in effort) is illustrated in Supplementary Figure 6.7.


We summarize closure performance across the two main leatherback models in Figure 7. In this study, we consider a successful closure one that reduces leatherback turtle bycatch without unreasonably impacting fishing effort and opportunity. Thus, the Static-pred closure was the most successful static closure, but it was only effective under LB1. Dyn-turts or Dyn-multis could be considered the most successful dynamic closures, and were the only closures to effectively reduce leatherback bycatch under LB2 (Figure 7). As expected, having perfect information for the distribution of leatherbacks (Dyn-turtsP) improved closure effectiveness, providing an additional 6–15% bycatch reduction over Dyn-turts (Figure 5 and Supplementary Material 6).
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FIGURE 7. A summary of comparative median closure performance across performance metrics, for the two main leatherback models (LB1 and LB2). Color indicates whether a strategy had best (green) or worst (red) performance across the eight strategies, with additional colors indicating intermediate performance. Intermediate performance was calculated by dividing the range (max – min) of median values for each metric into five intervals and determining in which interval the median for each strategy was located. Thus, colors accurately represent relative performance within metrics but are arbitrary with respect to absolute performance, i.e., ‘best’ does not necessarily mean good performance (refer to Figure 5 and corresponding figures in Supplementary Material S6 for absolute values). This table summarizes across swordfish models, observer levels, and simulation iterations. The primary objective of simulated closures was reduction of leatherback turtle bycatch, and the relevant metrics are highlighted gray.




Additional Models, and Observer Size

Our simulation also compared closure performance across the two additional leatherback models (LB1seas, LB2scal), the two swordfish models, and the two observer program sizes (Supplementary Figures 6.8, 6.9). Performance was very similar between LB1 and LB1seas. We created LB1seas to represent a distribution of leatherbacks better suited to time-area closures, but because our simulation used the same closure thresholds for all simulation runs, closures in LB1seas simply ended earlier (and closed less area over the entire season Supplementary Figure 6.8 and Supplementary Table 6.1) while achieving the same bycatch reduction. To demonstrate how time-area closures may achieve better bycatch reduction for LB1seas, a stricter closure threshold would be required during the period the leatherbacks were present. We created LB2scal to represent a distribution of leatherbacks poorly suited for spatial management. This was clearly observed, with bycatch reduction for LB2scal only 50% of that for LB2 (compare leatherback catch per set in Supplementary Figures 6.3, 6.5, 6.8).

Closure performance occasionally differed between the two swordfish models. The swordfish models influenced the distribution of fishing effort, which differed more among fishing seasons for the SF2 model (due to the space-time smoother). The result was more variation in performance metrics for SF2 (Supplementary Figures 6.2, 6.3) and altered performance of some closures, e.g., Dyn-multis closed more area and reduced swordfish catch more under SF2 (Supplementary Figure 6.8). This highlights the considerable influence the distribution of fishing can have on closure effectiveness (i.e., how much fishing is redistributed and to where), and some of the complexities of multi-species closures (e.g., the degree of overlap among species will be highly influential).

Increasing the coverage of the observer program from 20 to 50% had little impact on closure performance (Supplementary Figure 6.9). This was especially true for LB1, indicating that a more static species distribution requires fewer observations to model accurately. Under LB2 and LB2scal, more observer coverage led to slightly better performance for strict static and dynamic closures, but this improvement was small, at 3–9% additional bycatch reduction over no turtle closure. We note that this improvement would be case-specific, and depend on the abundance of the species and the model being fitted, but for our study (and somewhat by design) 20% coverage provided acceptably accurate models of species’ distributions (20% coverage corresponded to 160–240 observed leatherback bycatch events in the 5 years of Phase 1).



Sources of Variation

Across all 5 years of Phase 3, interannual differences in catch and bycatch explained 50–75% of maximum pairwise differences (Supplementary Figure 6.10), indicating that environmental variation (and hence species distributions) were the key drivers of variation in catch and bycatch. Much of this environmental variability was driven by the year 1997, when the DGN season occurred in the midst of an El Niño event that was one of the strongest on record and dramatically altered the physical, chemical, and biological landscape of the California Current System (Chavez et al., 2002, and references therein). When the anomalous 1997 year was removed, the environmental contribution declined to 10-50% and the majority of variation came from the ‘other’ source (stochastic processes). The highest contribution from stochastic processes was for leatherback bycatch for LB1 without 1997, which represents a leatherback distribution that has some fixed spatial structure and a comparatively stable environment. In this case, variation in leatherback bycatch would be comparatively small and derive predominantly from stochasticity in whether or not a catch occurs, and where fishers choose to fish. Stochasticity associated with closure creation (e.g., which catch and bycatch events were observed and how this affected closure creation) was most important for the more dynamic LB2 leatherback distribution, and closure dimensions tended to differ more among iterations. Sources of variation in swordfish catch differed among swordfish models, with SF2 having predominantly environmental sources (Supplementary Figure 6.11). This was probably because the SF2 model contained a continuous time smoother, which created additional interannual differences in catch. Thus, if a species has large fluctuations in abundance that are independent of ocean conditions, then the environment (including population aspects) may always be the key driver of variation in catch and bycatch, rather than aspects of closures or fisher choice.



DISCUSSION

Our simulation demonstrated potential advantages of using dynamic spatial management to reduce bycatch. The clearest advantages of dynamic closures were: (1) achieving better bycatch reduction relative to target species catch (leatherbacks per swordfish); (2) being the only closures to reduce bycatch risk (leatherbacks per set) for a leatherback turtle distribution driven by dynamic ocean variables (LB2); (3) rarely causing a loss of fishing effort (missed sets); and (4) achieving a spatial distribution of fishing effort similar to that from no turtle closure (Figure 6). Realizing these advantages did require a fleet that was flexible in terms of fishing locations, and even with this flexibility dynamic closures occasionally caused unappealing fishing conditions due to a sparse or highly fragmented fishable area. Almost all closures led to some decline in swordfish catch (often 5–10%), and fragmentation of the fishable area was the key disadvantage of highly dynamic closures, which would pose practical challenges for trip planning and closure enforcement. Perhaps the clearest signal in our study was that it was not possible (even with perfect information) to eliminate the bycatch of a broadly distributed species using spatial management that involves the redistribution of fishing effort. This was because there were few locations where risk of bycatch was zero. This result highlights that spatial management is only one tool for bycatch reduction, and for rarely encountered and/or widely distributed species may be most useful when used together with other bycatch mitigation approaches. Informed by our results, a set of more general conditions under which spatial management is useful, and important factors influencing the success of static or closures, are illustrated in Figure 8.


[image: image]

FIGURE 8. A summary schematic of the key factors indicating when spatial management (SM) is likely to be effective for bycatch mitigation (A), and a set of key factors influencing closure dynamism (ranging from static to highly dynamic; B) and closure intensity (moderate to strict; C). For example, in our simulation the dynamic Dyn-turts closure was most successful under the LB2 operating model (green circles), due to a dynamic leatherback distribution, high fleet mobility, and moderate-high data availability (reduced only due to species rarity). A strict threshold was considered effective, due to the high conservation status of leatherbacks, and due to a low fleet impact relative to other closure scenarios. Our LB2scal operating model, which simulated a broader leatherback niche, represented an environment less suited to spatial management (orange circle), due to the reduced ability to relocate fishing effort from high-risk to low-risk areas. This schematic is intended to summarize the key factors contributing to closure success, and these axes could be used to help direct early discussion of the suitability of dynamic closures for other fisheries (but are not a replacement for quantitative analysis). For example, a fishery well suited for dynamic spatial management would have well defined and dynamic distributions of target and bycatch species, and a fleet capable of being redistributed (without great economic impact).



Static or Dynamic?

We found that closure performance depended on the distribution of the species and the distribution of fishers. Static closures were most successful for species with strong geographic associations (LB1) and least successful for more dynamic species distributions (LB2). Static closures were also less successful when they affected popular ports with lower vessel mobility (LB2). Static closures were effective at some objectives, with both the Static-obss and Static-pred static closures achieving near-best leatherback bycatch reduction for LB1. The Static-pred closure had less impact on swordfish catch than Static-obss, so was overall the best performing static closure (and occasionally with dimensions remarkably similar to the existing PLCA, Supplementary Figure 6.6). The success of the Static-pred closure highlights the value of considering the bycatch risk relative to fishing effort (Static-pred) rather than closing the area with most observed bycatch (Static-obs). This is because the latter approach can cause redistribution of fishing into higher risk areas and simply shift the bycatch elsewhere (O’Keefe et al., 2014; Hoos et al., 2019). Static-pred requires locations of fishing events whether bycatch was caught or not, whereas Static-obs requires only the location of bycatch. This means that Static-obs requires less information and may be more easily created for fisheries with less monitoring. However, the risk of unintended impacts from effort redistribution under Static-obs is such that we encourage that (for comparison with Static-obs closures) Static-pred closures be developed using pseudo-absences (Barbet-Massin et al., 2012) throughout the fishable domain.

Dynamic closures were clearly able to provide more balance between target catch and bycatch, and over time provided similar access to fishing grounds as the no closure strategy (Figure 6). Dynamic closures did require a flexible fleet that was able to fish any location reasonably accessible from port, and dynamic closures may be most successful under conditions of low fishing effort to avoid over-crowding in open pockets. There are practical challenges to dynamic closures as well, for both managers and fishers. For example, we used EcoCast to create dynamic closures at the native scale of ROMS (0.1°) in contrast to the current 0.25° version of EcoCast (Hazen et al., 2018; Welch et al., 2019a), which meant closures had a very fine spatial and temporal resolution. These closures may be difficult to enforce, challenging to communicate and deliver to stakeholders, and fragmented open areas may be difficult for fishers to locate and remain within. There is a spectrum of ‘dynamic’ between completely static and highly dynamic time-area closures, such as event-triggered static closures (Welch et al., 2019b) and threshold type closures (Hobday and Hartmann, 2006). There is much to be gained by exploring these options, especially when there is sufficient data to quantify species distributions, but it is also essential to understand the distribution and redistribution of fishing effort (Powers and Abeare, 2009) and vessel mobility in order to take full advantage of dynamic spatial management. Regarding the current spatial closures used in the DGN (especially the PLCA), our study indicates great potential for increased closure dynamism due to the extensive observer program and availability of ocean data, but incorporating precautionary ‘strict’ closure thresholds (given the high conservation concern for sea turtles) and a multi-tool approach given the very rare occurrence of turtle bycatch (Figure 8).

Species with predictable distributions are most likely to benefit from tailored spatial protection (Hyrenbach et al., 2000; Boerder et al., 2019), but the nature of the predictability influences the success of dynamic closures. Although both static and dynamic closures were somewhat effective for LB1, static closures were largely ineffective at bycatch reduction for LB2. This indicates that the spatial structure of the species’ distribution matters, and species with identifiable habitat but weaker geographic associations may benefit most from dynamic tailored closures. The perfect information closure (Dyn-turtsP) highlighted the importance of predictive power, as it achieved best bycatch reduction, but there were other important considerations. We saw different predictive performance in the leatherback models fitted to simulated observer data, in LB1 (AUC = 0.82) and LB2 (AUC = 0.66; Supplementary Table 3.1), yet the closures created from these models achieved similar reduction in bycatch risk (leatherbacks per set; Figure 5). This was likely due to the closures in LB2 redistributing more effort (especially from the San Diego port), indicating that a less accurate closure can still achieve good bycatch avoidance by redistributing more effort.

In general, dynamic spatial closures will be most suitable for a fishery in which (Figure 8): bycatch and target species have strong preferences for specific dynamic habitats and have low spatial overlap; bycatch is relatively common (to accurately estimate bycatch risk, and as evidence that redistributing effort can reduce bycatch); ocean and fishery data availability is high; fleet mobility is high (to respond to varying closures); and environmental variation is high (leading to a variable species distribution that requires dynamic closures). Strict dynamic closures are also more likely to be appropriate when the bycatch species is/are of high conservation concern, when fleet impact (namely economic) is comparatively low, and when there are no other suitable bycatch mitigation tools. A fishery least suitable for dynamic closures as a primary tool will have the opposite, with broad, static, strongly overlapping or highly uncertain distributions of bycatch and target species, and a fleet that cannot respond to closure changes without severe economic impacts.



Single or Multi-Species?

Our simulation did not explore multispecies issues in great detail, but it was clear that dynamic closures in this study could not efficiently reduce bycatch of both leatherbacks and blue sharks. Only when a closure was very large, causing the loss of some fishing effort, was bycatch for both species reduced (Dyn-multis and LB2; Figure 7). The viability of multi-species protection will be case specific, and depend on the overlap of the species’ distributions as well as the algorithm used for this multi-feature prioritization problem (Welch et al., 2020). Dynamic spatial management is a developing tool for mitigating multi-species bycatch (Little et al., 2015). Our results, however, indicate that if dynamic closures are aimed at reducing bycatch of specific species (rather than bycatch of any species) then incorporating more than a few species in closure design may lead to ‘diminishing returns’ in bycatch reduction (Welch et al., 2020). The advantages of dynamic closures in our study were predominantly for closures weighted to a single species, and more research is needed simulating dynamic closures for a variety of species with different rarity, habitat associations, and home range size. This will help identify the opportunities and limitations in multi-species spatial management.



Bycatch Avoidance, Reduction, or Target-Level?

There are two distinct processes relevant to bycatch mitigation using spatial management: the redistribution of fishing effort, and the reduction of total fishing effort. Time-area closures will cause the first and can lead to the latter when the closure is prohibitively large. Here, we discuss when, and how, time-area closures are likely to be effective bycatch mitigation tools given only redistribution of effort, and consider effort reduction a separate tool.

Time-area closures will be effective at reducing bycatch when effort can be redistributed to locations with lower bycatch risk (Murray et al., 2000; Powers and Abeare, 2009; Hoos et al., 2019). The long-run effectiveness of this redistribution will be directly proportional to the difference in mean risk between the habitats being fished before and after redistribution. If a species is widely distributed throughout the fishable area, or has more similar suitability throughout the domain (as in LB2scal), or if fishers typically fish low risk habitat in the absence of spatial closures (Keith et al., 2020), then effort redistribution is unlikely to be an effective strategy for bycatch reduction. However, bycatch reduction is only one objective, and our analysis highlighted the value of evaluating bycatch reduction alongside other objectives. We thus distinguish three management objectives: bycatch avoidance, bycatch reduction, and target-level bycatch reduction. ‘Avoidance’ refers to closing areas with high bycatch risk regardless of how often they are fished. ‘Reduction’ refers to reducing bycatch rates from current levels, which means at least some fishing must be redistributed to lower risk areas. ‘Target-level reduction’ means reducing bycatch to a specific level (e.g., a specific number of animals or interactions, e.g., a bycatch ‘hard cap’). Determining the appropriate objective influences the types of bycatch mitigation tools used and how spatial management should be used.

The dynamic closure approach we used in our study, i.e., using SDMs to avoid species, is certainly effective for a ‘bycatch avoidance’ objective. This approach identifies and closes the highest risk areas whether they are fished or not. For ‘bycatch reduction’, SDM-based closures can still be effective (e.g., our 30–50% reduction in leatherback bycatch), but calculated closure thresholds need to consider the co-occurrence of species and fishing (e.g., Howell et al., 2015; Eguchi et al., 2017) to ensure some effort is redistributed to lower risk areas. For ‘target-level reduction,’ a different approach is probably required. If the desired level of bycatch is set, say at 10% of current levels, then a closure needs to redistribute effort to specific areas of known (i.e., predicted) bycatch risk. In this case, a better closure design approach would be to identify areas to leave open (rather than areas to close) based on the estimated bycatch given a predicted level of fishing effort in those open areas. For target-level reduction, and for cases in which effort redistribution is unlikely to greatly reduce mean bycatch risk, spatial management is probably best used as a secondary tool to support other management tools, such as effort control, gear modifications and increased gear selectivity, fleet communications, or bycatch quotas (O’Keefe et al., 2014; Senko et al., 2014; Swimmer et al., 2017; Sepulveda and Aalbers, 2018; Holland and Martin, 2019).



Challenges for Dynamic Closures

Our study highlighted some issues for dynamic spatial management that deserve further evaluation, relevant to closure design, implementation, and simulation. A key challenge for designing time-area closures will always be gathering sufficient data on the distribution of species (especially rare species). In our study, 20% observer coverage was sufficient to create useful models of species’ distributions with 5 years of data. This was also close to the minimum coverage required to create a robust SDM, given our specified bycatch rate. Less information, due to a lower bycatch rate or less observer coverage, would likely require simpler SDMs, which may reduce predictive power and closure accuracy. A useful level of observer coverage depends on bycatch rate (Curtis and Carretta, 2020), so while 20% was useful in our simulation it is likely too low to create complex SDMs for the rarest bycatch species in the actual DGN. EcoCast currently creates SDMs from both fishery-dependent data and telemetry data (Hazen et al., 2018), and in the case of species encountered very rarely (e.g., leatherback turtles) relies only on the telemetry. Telemetry data are essential for informing habitat suitability for rarely encountered species, and while these data can indicate the probability of presence they may not accurately indicate catchability and thus the probability of being caught. This may be especially important of probability of presence is used (linearly) to determine closure thresholds. Thus, important research avenues are continued investigation of biases associated with using telemetry data to inform bycatch risk (Žydelis et al., 2011), and exploring modeling approaches for integrating diverse data sources (Grüss and Thorson, 2019) to integrate telemetry and fishery-dependent catch data.

The environment was often a key driver of variation in catch and bycatch (Supplementary Figure 6.10), so the more accurately we can observe and model ocean change, species distributions, and population abundance, the more effective dynamic spatial management will be. But stochasticity was another key component of this variation, arising predominantly from how we sampled integer catches and which fishing sets were observed. Rarer bycatch events will tend to represent the mean risk with reduced precision (Martin et al., 2015), which will typically lead to increased uncertainty in developing spatial closures in the short term. We observed this uncertainty even in the ‘perfect knowledge’ closure, which had perfect knowledge of the mean catch rate only, and the integer catches given that mean were random. There may be other statistical approaches for simulating catches that identify this uncertainty differently (such as using mixture models as operating models), but it may also be that dynamic closures aimed at reducing very rare bycatch events are subject to strong stochasticity (Figure 8). This unavoidable uncertainty should be reflected in the resolution of the closure or in the general management approach (e.g., whether time-area closures are used in concert with other tools).

A valuable research priority is if, and how, closure resolution should reflect model uncertainty. Practical considerations relevant to enforcement and fisher planning will influence the resolution and design of dynamic closures, as should the magnitude, periodicity, and predictability of bycatch (Dunn et al., 2011; Welch et al., 2018). But incorporating model uncertainty in the temporal and spatial resolution of a closure will be more challenging. It seems intuitive that increased uncertainty in a species’ distribution and catchability would encourage a coarser resolution of a dynamic closure; e.g., if the predicted bycatch risk at two locations (or dates) cannot be distinguished with statistical clarity, then they should share the same open/closed status. Further research is needed on the scales of SDM predictability, and temporally and spatially structured cross-validation procedures (Roberts et al., 2017) or spatial autocorrelation analysis (Dunn et al., 2011) may be a useful avenues for quantifying the relationship between predictive power and closure resolution. Advancing the measurement and communication of uncertainty in bycatch risk, alongside the integration of real-time and forecast ocean and bycatch data, will help ensure that dynamic spatial closures make a robust contribution to the management of bycatch in dynamic environments.
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Eutrophication is one of the most important anthropogenic pressures impacting coastal seas. In Europe, several legislations and management measures have been implemented to halt nutrient overloading in marine ecosystems. This study evaluates the impact of freshwater nutrient control measures on higher trophic levels (HTL) in European marine ecosystems following descriptors and criteria as defined by the Marine Strategy Framework Directive (MSFD). We used a novel pan-European marine modeling ensemble of fourteen HTL models, covering almost all the EU seas, under two nutrient management scenarios. Results from our projections suggest that the proposed nutrient reduction measures may not have a significant impact on the structure and function of European marine ecosystems. Among the assessed criteria, the spawning stock biomass of commercially important fish stocks and the biomass of small pelagic fishes would be the most impacted, albeit with values lower than 2.5%. For the other criteria/indicators, such as species diversity and trophic level indicators, the impact was lower. The Black Sea and the North-East Atlantic were the most negatively impacted regions, while the Baltic Sea was the only region showing signs of improvement. Coastal and shelf areas were more sensitive to environmental changes than large regional and sub-regional ecosystems that also include open seas. This is the first pan-European multi-model comparison study used to assess the impacts of land-based measures on marine and coastal European ecosystems through a set of selected ecological indicators. Since anthropogenic pressures are expanding apace in the marine environment and policy makers need to use rapid and effective policy measures for fast-changing environments, this modeling framework is an essential asset in supporting and guiding EU policy needs and decisions.

Keywords: ecological modeling, hydrological modeling, hydrodynamic and biogeochemical modeling, higher trophic level modeling, ecological indicators, criteria, policy support


INTRODUCTION

Eutrophication is one of the most important anthropogenic pressures on coastal and estuarine waters (Cloern, 2001; Desmit et al., 2018), seriously threatening the functioning and structure of marine ecosystems (Diaz and Rosenberg, 2008; Nixon, 2009; Doney, 2010; Cai et al., 2011), due to an excessive amount of nutrients from agricultural run-off and sewage. In Europe, several pieces of legislation have been implemented to prevent negative effects of eutrophication, either directly with the Urban Wastewater Treatment (UWWTD CEC, 1991), the Nitrates (ND, CEC, 1991), and the Water Framework (WFD 2000/60/EC) Directives, or within an ecosystem context with the Marine Strategy Framework Directive (MSFD 2008/56/EC). Eutrophication is one of the eleven qualitative descriptors of the MSFD established by the European Commission (EC) to assess the environmental status of EU marine waters (European Commission, 2008; Cardoso et al., 2010). Despite the legislation to mitigate the negative impacts of nutrient discharge in European waters, countries have not been compliant and the measures have not been effective enough to achieve the ultimate goals of the regulations. One of the main obstacles is that marine and coastal ecosystems receiving these impacts are so complex that they prevent stakeholders from observing pressure-impact relationships between nutrient discharges and marine ecosystem state.

Ecological models are powerful tools to address the complexity of these systems and highlight these relationships (Hyder et al., 2015; Lynam et al., 2016; Heymans et al., 2018). Decades of experience and acquired knowledge resulted in a strong progress of ecological modeling, allowing e.g., to better simulate the different components of the marine environment and explore the ecological responses that might occur if alternative management scenarios were implemented (IPBES, 2016; Zandersen et al., 2019). Within this context, the scientific community has been working to build a robust and reliable “End to End Models” (E2EMs) framework, which simulate the main processes that influence the dynamics of marine ecosystems (Fulton, 2010). This framework includes different types of spatially temporally explicit models, as (1) Hydrological models: providing information on river discharge in terms of flow and nutrients; (2) Hydrodynamic models: simulating marine water transport; (3) Biogeochemical models (lower trophic level, LTL): assessing transported nutrients and nutrient processes within phytoplankton/zooplankton; and (4) Food-web/multispecies models (or higher trophic level, HTL): simulating biomass dynamics, the distribution of marine organisms (from phytoplankton to top predators) and fisheries.

Several studies have used the E2EM framework to assess the impact of nutrient reduction or other stressors on HTL organisms and ecosystem functioning (Libralato and Solidoro, 2009; Rose et al., 2010; Peck et al., 2018). In this study we explore the impact of nutrient management scenarios at the European Sea scale by running an ensemble of different HTL models, forced by an existing coupled hydrological and hydrodynamic-biogeochemical framework (see details below) covering specific areas of European regional seas. This was done to achieve a pan-European assessment of the impact of such measures in marine ecosystems while evaluating consistencies or divergences in predictions among different types of models and applications.

In particular we assess how changes in nutrient inputs and concentrations and consequently planktonic groups might impact the structure and function of the upper trophic levels of the food web. Classical food web theory suggests that nutrient enrichment affects the food web from the bottom-up along with top-down effects, through predation, controlling the biomass of all trophic levels of a system (Oksanen et al., 1981; Borer et al., 2006). Several studies have investigated these synergetic effects on terrestrial and marine ecosystems (Worm et al., 2002; Isbell et al., 2013) highlighting that a decrease in nutrients would decrease the biomass of autotrophic organisms while the possible resulting decrease in the biomass of herbivores and carnivores would depend on the complexity (trophic linkages: Abrams, 1993; Leibold et al., 1997; Ward and McCann, 2017) and on the nature of the ecosystem (e.g., at mature or developmental stage and/or in oligotrophic or eutrophic conditions: Odum, 1969; Proulx and Mazumder, 1998; Schlenger et al., 2019). However, it is still unclear how biodiversity changes in relation to nutrients and which type of relationship this might be (Waide et al., 1999; Kondoh, 2001; Jara et al., 2006; Groendahl and Fink, 2017). Recent empirical and modeling studies have also suggested that net primary production is a key factor explaining fisheries yield and limiting fishery production potential (e.g., Stock et al., 2017; Link and Watson, 2019).

Our assessment follows MSFD descriptors (mainly the biodiversity related descriptors) and methodological standards, developed and agreed upon in the framework of European or international conventions (European Commission, 2017). We included additional indices, as suggested by previous studies (Shannon et al., 2014; Coll et al., 2016), to complement the assessment of the marine environment.

The use of an ensemble of models is crucial to increase the reliability of model predictions, account for prediction uncertainty and better inform decision-makers about the range of effects of selected pressures/measures on biodiversity, ecosystems and their services in general (Gårdmark et al., 2013; Maxwell et al., 2015; Bauer et al., 2019; Lotze et al., 2019). The overall aim of this paper is to utilize the pan-European model ensemble to address the impact of eutrophication on the European seas. Similar exercises have been done on regional scale (Bauer et al., 2018), but to our knowledge, this is the first pan-European multi-model comparison used to assess the impacts of land-based management measures (in this case the reduction of nutrients) on marine and coastal HTL ecosystems.



MATERIALS AND METHODS


Nutrient Scenarios


Hydrological and Hydrodynamic-Biogeochemical Models

The hydrodynamic-biogeochemical dynamics of the European seas resulting from different river scenarios have been simulated using an End to End Model called Modeling Framework (MF), developed at the European Commission by its science Directorate-General (DG), the Joint Research Centre (JRC). The MF consists of coupled (either offline or online) hydrological, hydrodynamic-biogeochemical, and food-web models (Supplementary Figure S1). These models have been implemented and validated at different spatial (regional and sub-regional) and temporal (past and future) scales (Garcia-Gorriz et al., 2016; Macias et al., 2018b) across Europe.

The MF has been designed to simulate changes in the state of European marine ecosystems and derived services in response to different pressures and management scenarios with the overall goal of providing explicit support to the decision-making process. In particular, in relation to eutrophication, the MF has investigated two realistic nutrient management scenarios, following measures reported and suggested by Member States within the WFD implementation plans. The two scenarios covering inland water quantity and quality (nutrients) in Europe include: (1) actual nutrient loads from river discharge (reference scenario, REF) and (2) maximum technically feasible reduction (MTFR scenario) of nutrient input to surface water. The nutrient reductions can be achieved by, e.g., keeping the nutrient surplus in agricultural areas to a minimum, optimizing mineral fertilizer applications and upgrading waste water treatments to the highest level of nutrient removal (Grizzetti et al., 2021).

The water flow and the effectiveness of measures for preventing water scarcity were simulated by the LISFLOOD model (De Roo et al., 2020); a GIS-based hydrological rainfall-runoff-routing model used to simulate the hydrological processes that occur in a river basin. Annual total nitrogen and total phosphorus loads reaching the sea were estimated by the GREEN model (Geospatial Regression Equation for European Nutrient losses; Grizzetti et al., 2012); a statistical regression model that represents the processes of nutrient transport and retention in the river basin as well as the nutrient sources and physical characteristics that influence nutrient processes. GREEN was coupled to LISFLOOD by incorporating the modeled water flow, to simulate annual nutrient loads for the period 2005–2012, corresponding to the most recent spatial data homogeneously available at the European scale (Grizzetti et al., 2021).

The MTFR scenario comprised increased water use efficiency in irrigation and domestic usage, changes in cooling water requirements and the implementation of wastewater re-use for irrigation (De Roo et al., 2020). Measures to reduce nutrient pollution in the water consisted of upgrading all waste water treatment plans in the EU to a high level of nutrient removal (i.e., a tertiary treatment with an enhanced reduction of phosphorus) and lowering the mineral fertilization in agricultural fields by setting maximum nitrogen surplus in agricultural areas to 10%, but without changing the current level of livestock and manure production (Grizzetti et al., 2021). The simulation of nutrient inputs and measures was implemented in a high spatial resolution grid (catchments of 7 km2 average size). The simulated annual river flow and nutrient concentrations estimated by GREEN, for both scenarios, were then coupled to the LTL module of the MF to assess how changes in nutrient load might impact nutrient and plankton concentrations at sea.

The LTL module consisted of 3D hydrodynamic-biogeochemical models representing the four main MSFD regions (Mediterranean Sea, Black Sea, Baltic Sea and North East Atlantic). Details of the hydrodynamic-biogeochemical models can be found in Garcia-Gorriz et al. (2016) and Macias et al. (2018b). The mean difference in nutrient concentrations between the two scenarios (MTFR and REF) estimated by the hydrological model for the land-sea interface, and integrated for the assessed period (2005–2012), ranged from −2 to −31.8% for riverine total nitrogen and from −4 to −46.3% for total phosphorus, depending on the assessed ecosystem (Table 1). Relative changes in nutrient concentrations and primary production at sea estimated by the hydrodynamic-biochemical models were smaller but varied according to the HTL marine ecosystem considered.


TABLE 1. The HTL European marine ecosystems, HTL model type, acronym and HTL spatial extent (ranges of latitude and longitude), which was used to extract LTL models outputs (details in Supplementary Table S1). Relative changes (%) between the two scenarios (MTFR and REF) of riverine total nitrogen (TN) and total phosphorus (TP) loads estimated by the hydrological model (Grizzetti et al., 2021), and total nitrate (DIN), phosphate (DIP) and primary production (PP) at sea estimated by the hydrodynamic-biogeochemical models (Friedland et al., 2021) for the period 2005–2012.

[image: Table 1]In addition, an example of the spatial output scenarios produced by the hydrological and hydrodynamic-biogeochemical models for the Mediterranean Sea, and integrated for the assessed period (2005–2012), is presented in Supplementary Figure S2. The full Pan-European assessment for the hydrological and LTL modules can be found in Grizzetti et al. (2021) and Friedland et al. (2021), respectively.



HTL Models

Fourteen HTL models were used to run the nutrient management scenarios, all covering either full MSFD regions, sub-regions, or smaller zones within single MSFD areas (Figure 1 and Supplementary Table S1). The criteria used to select these models were that they were validated, fitted to observed data, and published in peer-reviewed scientific literature. The model types included in this assessment were: food-webs (79%, Ecopath with Ecosim or EwE: Christensen and Walters, 2004), multispecies/individual-based (14%, Osmose: Shin et al., 2005) and end-to-end (7%, Atlantis: Fulton et al., 2011) models, which corresponded to the main modeling tools used in Europe to assess HTL compartments of marine ecosystems (Piroddi et al., 2015). A detailed description of these models is given in Supplementary Table S1. As shown in Supplementary Table S1, the HTL models were all different in complexity and structure depending on their specific goals e.g., number of functional groups, temporal/spatial scale, and environmental/anthropogenic drivers (e.g., fishing pressure, primary production, temperature). Yet, a commonality across these tools was the ability to capture historic (hindcast) ecosystem dynamics using environmental variables (e.g., nutrients concentrations, phytoplankton biomass or primary production) as drivers. This was an essential prerequisite for exploring the effect of nutrient scenarios on these ecosystems.
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FIGURE 1. Map showing the location and spatial extent of the 14 ecosystems models included in the analysis. Light-blue background and Arabic numbers correspond to MSFD regions and sub-regions (1 = Mediterranean Sea; 2 = Black Sea; 3 = Baltic Sea; 4 = North Sea; 5 = Celtic Seas) while dashed background and Roman numbers refer to smaller areas within an MSFD region/sub-region (I = Western Mediterranean; II = North-East Adriatic; III = Inner Ionian Archipelago; IV = Thermaikos Gulf; V = Baltic Proper; VI = North Sea; VII = English Channel; VIII = Celtic Sea; IX = Irish Sea; X = West Coast of Scotland).


To run the nutrient simulations, each HTL model was forced with specific environmental output from the REF and MTFR scenarios of the MF hydrodynamic-biogeochemical module covering the 2005–2012 period. Each scenario was run separately by the individual HTL models using the 8-years (2005–2012) simulations from the LTL models as “forecast” scenarios (Supplementary Table S1), keeping the hindcast from the original settings, as the main goal of this study was to detect changes between the two scenarios. The types of drivers provided correspond to the drivers utilized by the specific HTL models to hindcast the historical observations. For example, simulated phytoplankton biomass or primary production were used to simulate nutrients in the EwE models while simulated nutrients at sea were used in the Atlantis model (Supplementary Table S1). The other forcing (e.g., fishing mortality/effort, temperature) already incorporated in each HTL model were kept unchanged as the purpose of the exercise was to assess changes in the HTL ecosystems impacted solely by changes in nutrient management (Supplementary Table S1).



Metrics for Assessing HTL Responses


MSFD Criteria

To assess the impact of the nutrient management scenarios, a set of criteria from MSFD Descriptor 3 (D3: Commercially exploited species) and Descriptor 4 (D4: Food webs) were used. In particular, we chose criteria and species that would likely have a direct response to these scenarios, such as small pelagic fishes (e.g., herrings, sardines, anchovies) bottom-up controlled by primary production, and criteria that would be able to capture changes within the food web (e.g., species diversity). To be able to compare output across regions and models, we selected criteria common to most of the models (Table 2). MSFD Descriptor 1 (D1: biodiversity) was not used because the majority of the models were not able to capture dynamics of non-commercial iconic species such as marine mammals and seabirds. The full list of criteria is shown in Table 2.


TABLE 2. List of selected descriptors/criteria as defined by the MSFD (2017/848/EC) together with the modeled derived indicators (MDI), definitions and references.

[image: Table 2]


Trophic-Based Indicators

In addition to the MSFD criteria, two other indicators were assessed to test if nutrient scenarios would have an impact on the trophic structure of the ecosystems. These include the trophic level (TL) of the community, excluding TL < 2 (mTLco) (Shannon et al., 2014), calculated as:

[image: image]

where TB is total biomass, Bi is the biomass of species i and TLi is the trophic level of species i (note: TB, Bi and TLi vary in time); and the TL of the landed catches (TLc) (Christensen, 1996; Pauly et al., 1998), calculated as:

[image: image]

where YL is total landings, Yi is the landing of species i and TLi is the trophic level of species i (note: YL, Yi and TLi vary in time).

Modeled criteria and indicators (I) were extracted annually (for the 8 years of simulations) for each HTL model and for both REF and MTFR scenarios. The relative mean change between these scenarios was calculated as:

[image: image]

and presented per descriptor-criterion/TL indicator and per model. For D3 the scale of assessment required by the GES (Good Environmental Status) Decision (European Commission, 2017) is at stock level (typically at one or more geographical subareas [GSAs1 /ICES2 ] as defined by FAO) and for D4 it is at MSFD regional/sub-regional scale. As the models in this assessment had different spatial scales (Figure 1 and Table 1) depending on their final goals, the estimation of the mean change of the selected criteria was done using the original scale of each model, not following, thus, GES requirements. The same scale was also applied for trophic level indicators.



Metrics Over Space

Only six of the HTL models used in this assessment had a spatial component; of these, three were built for the Mediterranean Sea, two covering the entire basin and one set up for the Western Mediterranean Sea (Supplementary Table S1). For the purpose of comparing the spatial predictions from the models and assessing their consistencies/divergences, the Western Mediterranean Sea was used as a reference study. In particular, the relative difference between the two scenarios for each model was calculated as the relative mean change per grid cell. Food-web criteria and their relative changes were presented per model for the whole sub-basin, for shelf (<200 m) and open water (>200 m) areas; the same scale was also applied for trophic level indicators. For criterion D3C2 (the spawning stock biomass of the European pilchard, Sardina pilchardus), the relative mean change was presented at geographic subarea (GSAs) level. D4C1 and D3C2 were not available for the Osmose model.

Finally, coherence maps were created for the three indicators (the small pelagic fishes [D4C2] and the TLs) common to the models to evaluate the coherence of the projections. Trends of relative changes were compared per grid cell and per model, looking at the signs, indicating whether an increase (or decrease) in the selected indicator occurred under the MTFR scenario. The percentage of coherence was calculated for the whole sub-basin, the shelves (<200 m) and open waters (>200 m).



RESULTS


MSFD Criteria–Mean Change

The scenario outputs showed differences between and commonalities among models, criteria, size and locations (Figure 2). In particular, at MSFD regional scale, the Spawning Stock Biomass [SSB] of commercial small pelagic fishes (D3C2) showed a slight decrease in all the areas, with the exception of the English Channel (Osmose; +0.7%), with average values ranging between −1.3 and −2.0% (Figure 2A). The Baltic Proper (the only model available for the Baltic Sea used to represent the entire MSFD region) showed a decrease but also a high level of variability in the modeled SSB values. The Mediterranean Sea models highlighted a reduction in the SSB in all the models/areas considered (from sub-regional to localized coastal/shelf level). Overall, the most impacted MSFD sub-region was the Adriatic Sea (−3.0%), and among smaller areas within an MSFD region/sub-region, the North Sea (−5.5%) and the West Coast of Scotland (−3.3%).
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FIGURE 2. Box plots representing the mean change (%) and standard deviation between MTFR and REF scenario for the selected MSFD criteria: (A) Spawning stock biomass (SSB) of a commercially important small pelagic fish (D3C2); (B) Species diversity index (D4C1) and (C) Small pelagic fish biomass (D4C2) for every MSFD region/sub-region and smaller areas within an MSFD region/sub-region (the acronyms correspond to those given in Table 1). Yearly modeled data points are plotted as colored circles. D3C2 is not displayed for Med-Osmose and NE_Adri as not available, same for D4C1 and Med-Osmose.


Species diversity (D4C1) did not show a significant change (Figure 2B) among the MSFD regions except for the Baltic Sea where a slight increase of +1.3% was observed, and for the North-East Adriatic Sea where a decrease (−3.1%) was found. Small pelagic fish biomass (D4C2) had the highest variability among the areas/models (Figure 2C). At MSFD regional scale, this criterion decreased (−2.3%) in the Black Sea followed by the North East Atlantic and the Mediterranean Sea with slight decreases between −1.8 and −0.9%. In contrast, the biomass of small pelagic fish in the Baltic Sea increased slightly (+2.0%). At sub-regional level, the Adriatic Sea from the MF-Mediterranean model (Adri_JRC) was the area with the highest reduction (−2.0%). Conversely, the Osmose model for the Adriatic Sea (Adri_OSM) projected an increase (+1.3%). For the other Mediterranean sub-regions (the Western, the Ionian and the Eastern) the available models agreed on the marginal impact of the nutrient scenarios for these regions, with an agreement in the mean change for the Western Mediterranean Sea [JRC_EwE (−0.015%); ICM_EwE (−0.011%) and Osmose (−0.017%)] and a disagreement in trend for the other two sub-regions [Ionian: JRC_EwE (−0.1%), and Osmose (0.5%); Eastern: JRC_EwE (−0.09%), and Osmose (0.86%)]. Regarding ecosystems at smaller scales within an MSFD region/sub-region, in the Mediterranean Sea, the North-East Adriatic Sea showed the highest reduction (−8.4%) in small pelagic fish biomass (D4C2) followed by the Thermaikos Gulf (−1.7%) and the Inner Ionian Sea (−1.2%). In the North-East Atlantic, the North Sea was the area most impacted by the nutrient reduction with a −7.5% decrease followed by the West Coast of Scotland (−2.5%), the Celtic Sea (−1.05%) and the Irish Sea (−0.67%), while for the English Channel, the two available models highlighted that the change was minimal (Atlantis: −0.08%; Osmose: +0.04%).



TL Indicators–Mean Change

Overall, the TL indicators did not show clear changes between the two nutrient scenarios (Figure 3). For the MSFD regions, both indicators showed a mean change very close to zero. At sub-regional level, some small increases (<0.5%) were observed through the Mediterranean Osmose model and, for the mTLco, also through the Western Mediterranean Sea from ICM (West_ICM) (Figure 3A). Looking at mTLco, the highest negative changes were observed at smaller scale with a reduction in the North-East Adriatic (−0.7%) followed by the North East Atlantic models (West Coast of Scotland (−0.41%), Celtic Sea (−0.36%) and English Channel in case of the Osmose model (English Channel_OSM; −0.3%) (Figure 3A). Similarly, small reductions in TLc were observed in the North-East Adriatic (−0.2%) and two areas of the North-East Atlantic Sea, the West Coast of Scotland (−0.29%) and the English Channel_OSM (−0.24%) (Figure 3B).
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FIGURE 3. Box plots representing the mean change (%) and standard deviation for TL indicators: (A) Mean trophic level of the community (mTLco); (B) Mean Trophic Level of the Catch (TLc) for every MSFD region/sub-region and smaller areas within an MSFD region/sub-region (the acronyms correspond to those given in Table 1). Yearly modeled data points are plotted as colored circles.




MSFD Criteria Over Space

The spatial outputs produced by the HTL models for the two scenarios in the Western Mediterranean Sea highlighted differences and commonalities among models, criteria/indicators, and between the whole subregion, shelf areas and open waters (Figures 4, 5 and Supplementary Figure S3). SSB (D3C2) results showed a slight reduction for European pilchard with values that, depending on the model considered, ranged between −0.07 and −6% (Figure 4). Looking at GSAs (refer to Figure 4 for the names of the different GSA regions), the highest reductions were found in the Balearic Islands (GSA5: −3.1%) and Algeria (GSA4: −2.2%) using the Western Mediterranean Sea from the JRC (West_JRC) model and the Gulf of Lion (GSA7: −0.39%) from the West_ICM model (Supplementary Table S2).
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FIGURE 4. Maps representing the mean change (%) for the Spawning stock biomass of a commercially important small pelagic fish (D3C2) per GSA (# 1. Northern Alboran Sea; 2. Alboran Island; 3. Southern Alboran Sea; 4. Algeria; 5. Balearic Islands; 6. Northern Spain; 7. Gulf of Lion; 8. Corsica; 9. Ligurian and Tyrrhenian Seas; 10. South and Central Tyrrhenian; 11.1. Sardinia West; 11.2. Sardinia East; 12. Northern Tunisia) and per model type.
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FIGURE 5. Maps representing the mean change (%) for the Small pelagic fish biomass (D4C2) per model type. Mean values were calculated considering the whole Western sub-region, shelves (<200 m) and open waters (>200 m). Note that the color scale of D4C2_OSM is different from the one of D4C2_EwE_JRC/ICM.


The species diversity index (D4C1) (Supplementary Figure S3) showed good agreement in the direction of change but differences in the amplitude. Only a marginal reduction (between −0.1 and −2%) was depicted by the available models around the continental shelf of the Gulf of Lion, Northern Spain and the Balearic islands and a slight increase along the coasts of the Gulf of Lion and the North Tyrrhenian Sea. For the small pelagic fish biomass (D4C2), two out of the three available models showed a decrease along European coastlines with the highest negative values (around −3%) concentrated around the Gulf of Lion, Northern Spain and the North Tyrrhenian region (Figure 5). In these models the continental shelves were the most negatively impacted areas. A different pattern was found using the Western Mediterranean Sea from the Osmose (West_OSM) model, where high variability was observed in the whole sub-region with open waters more impacted than shelf areas (Figure 5).

The spatial coherence for the small pelagic fish biomass was heterogeneous for the whole sub-region with an approximate equal percentage of decrease (45%) and increase (55%) (Figure 6 and Supplementary Figure S6). When looking at shelves and open waters, all or most models showed that 69% of the grid cells were associated with a decrease (shelves) and 61% associated to an increase (open waters) (Figure 6 and Supplementary Figure S6).
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FIGURE 6. Coherence map for Small pelagic fish biomass (D4C2) which shows where all or most models (2 out of three) agree on the relative change trend.




TL Indicators—Spatial Scale

The West_OSM and West_ICM models suggested a slight increase of both trophic level indicators (Figure 7 and Supplementary Figure S4) in all the assessed areas (whole region, shelf, open waters) with high variability in both models for the TL of the community (mTLco; between −4 and +10%) (Figure 7) and for TL of the catches in the Osmose model (mTLc; between −6% and +4%) (Supplementary Figure S4). Conversely, the West_JRC model showed a slight decrease in mTLco and mTLc particularly in the shelf areas (mTLco: ∼−0.011%; mTLc: ∼−0.016%) and around the coastal areas of the Gulf of Lion, Northern Spain and the North Tyrrhenian Sea (mTLco: ∼−0.3%; mTLc: ∼ −0.2%).
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FIGURE 7. Maps representing the mean change (%) for the Mean trophic level of the community (mTLco) per model type. Mean values were calculated considering the whole Western sub-region, shelves (<200 m) and open waters (>200 m). Note that the color scale of mTLco_EwE_JRC is different from the one of mTLco_EwE_ICM and mTLco_OSM.


The spatial coherence for the mTLco was extremely heterogeneous for all the areas (the whole sub-region, shelves and open waters). Here, 55% of the grid cells were associated with a decrease in mTLco while 45% were associated with an increase (Supplementary Figures S5, S6). In all models, ca. 70% of the cell were associated with a decrease in TLc (Supplementary Figures S5, S6).



DISCUSSION


Mean Change in MSFD Criteria and TL Indicators

This study provides a first pan-European assessment of the impact of nutrient management scenarios on marine ecosystems and related marine resources. The reduction of nutrients from river run-off showed no substantial changes in the structure and function of the HTL ecosystem models included. From a regional MSFD perspective, the mean change of SSB of commercially important small pelagic fish species (D3C2) and small pelagic fish biomass (D4C2) showed the highest decrease if only with values below 2.5%. Interestingly, all the available models confirmed a decline in the biomass of commercial small pelagic fish species among the main MSFD regions, suggesting that a reduced primary production as a result of nutrient reductions (Table 1), might negatively influence the dynamics of these fish stocks, although only modestly.

This phenomenon has already been observed in other systems as shown by Breitburg et al. (2009) and de Mutsert et al. (2016). Population dynamics of small pelagic fishes are tightly coupled to the dynamics of their food; i.e., plankton. If nutrient levels do not lead to strong adverse environmental impacts such as anoxia, harmful algal blooms and shifts in the zooplankton community, then a reduction in nutrients eventually leads to a reduction in food availability for small pelagic fishes. When fishing pressure (top down effect) on small pelagics is combined with this reduced resource availability (bottom up effect), then a decline of small pelagic fishes can be expected (Ramírez et al., 2018). Biomass variability of small pelagic species may be linked to overexploitation, climate change and other environmental factors. Because of their rapid growth and short lifespan, small pelagic fishes, and especially their recruitment success (Brosset et al., 2017), are vulnerable to climate and environmental forcing (Alheit et al., 2019; Saraux et al., 2019; Tsikliras et al., 2019). However, the potential decrease in SSB of commercially important stocks might be largely compensated by a decrease in fishing mortality (Froese et al., 2018), assuming low predator pressure, and improved size selectivity of the fisheries, notably in the Mediterranean Sea (e.g., Colloca et al., 2013).

When looking at the biomass of commercial stocks and non-commercial small pelagic fish species, the pattern was similar to the mean change of SSB of commercially important stocks (D3C2), but with larger variability across regions/sub-regions/small areas within an MSFD region. Variability across models might be related to the structure of the available models (e.g., some models might have more commercially important small pelagics than non-commercial species, or vice versa). Within each model, the higher variability for small pelagic fish biomass could be driven either by the different strength of species responses to lower productivity, and/or by the temporal variability of the responses. For example, in the West Coast of Scotland, this study showed that the biomass of small pelagic fishes (herring, sprat and horse mackerel) declined with lower ecosystem productivity (bottom-up control). However, sprat, which has a relatively healthy stock and a high turnover rate in this ecosystem, quickly increased again after the initial decline due to an overall reduction in predation pressure (top-down controls). Despite differences in the way models were constructed, which could cause fundamental differences when comparing ecosystems (Libralato et al., 2010; Heymans et al., 2014), the majority of the ecosystem models projected decreases in small pelagic fish biomass. Hence, the differences in the structures of the models utilized in this study did not prevent diagnosing the most likely direction of change in European marine ecosystems under the nutrient reduction scenario.

For species diversity (D4C1), no clear responses were observed at a regional or sub-regional scale, except in the Baltic Sea with a slight increase and in the North-East Adriatic Sea with a decrease in diversity. The Baltic Proper was the only area that showed a slight increase in the two food-web criteria compared to the reference scenario; this might be related to the highly eutrophic nature of this ecosystem and the fact that a reduction of nutrient inputs might lead to an improvement of the marine environment e.g., better bottom oxygen levels, as observed in Saraiva et al. (2019) and Friedland et al. (2021), and thus better spawning conditions, leading to an increase in the Eastern Baltic cod stock. This response was not observed in other ecosystems that are also considered to be eutrophic such as the North-East Adriatic Sea, the Black Sea and the whole Adriatic Sea (from the JRC model) where nutrients reduction, mainly from the Po and Danube rivers, would reduce the assessed D3 and D4 criteria (Figure 2). The reduction in dissolved nutrients and primary production indicated by the biogeochemical models (Table 1) reflect these differences. In these systems the decrease in nutrient loads resulted in an average reduction in the primary production of 0.3% for the Baltic Sea, 3.4% for the Black Sea and 4.8% for the North-East Adriatic Sea. The differential changes observed in the marine environment of these food webs are reflected in the assessed HTL criteria.

The reason why these systems responded differently to a reduction in nutrient load is probably because the level of eutrophication observed in the Baltic Sea is worse than in other regional seas, as shown also by McQuatters-Gollop et al. (2009), and oxygen is one of the main ecosystem drivers (Ehrnsten et al., 2019) thus, the system is more prone to improve, even if little as in this case, than the others. Theoretical studies suggest that an increase in species diversity might occur when productivity shifts from high (eutrophic) to intermediate levels and predator and/or fishing pressure stays low to medium (Kondoh, 2001; Worm et al., 2002). In the case of the Baltic Proper, the increase was due to a reduction of nutrient input and partially to a lower predator pressure (seals) on cod, which increased due to improved oxygen conditions. By contrast, species diversity might decrease if the reduction of productivity is combined with high level of predation (predators and/or fishing), as in the case of the Black Sea and the Adriatic Sea.

The size and location of the studied ecosystems are also important. Coastal and shelf areas are more sensitive to environmental changes than larger sub-regional or regional ecosystems, since the former are at the interface between land and sea, and are subjected to a variety of anthropogenic pressures (e.g., eutrophication, fishing pressure, pollutants; Halpern et al., 2019; Duarte et al., 2020). The North-East Adriatic Sea, a small shelf and coastal ecosystem where bottom up processes are fundamental in the structure and function of the food web (Celić et al., 2018), is one of the most impacted marine system in the overall assessment (Table 1 and Figures 2, 3). The apparent susceptibility to the variation of nutrient input of this small shelf/coastal ecosystem might be also a consequence of the difficulties in compromising the spatial resolution of the LTL model with the small area represented. Adequate spatial resolution for both LTL and HTL would improve the representation of ecosystem dynamics for small shelves and coastal areas (Solidoro et al., 2010).

The relative contribution of river input in the total provision of nutrients, and hence primary production in the marine environment, may also control to a large extent the intensity of impacts affecting the pelagic fish community. For instance, the larger decline in small pelagic fishes observed in the North Sea compared to the Celtic Sea might be the result of the North Sea having proportionally larger riverine discharges and greater levels of mixing (Heath and Beare, 2008; Holt et al., 2012) stimulating pelagic production and the pelagic pathway in the ecosystem (Heath, 2005).

However, Pérez-Ruzafa et al. (2019, 2020) showed that in coastal lagoons and coastal areas the pelagic productivity might not reflect changes in nutrient input at sea. This is because the system could channel the production and main fluxes toward the benthic system (Agnetta et al., 2019 and Cresson et al., 2020), retaining excessive production in the sediment or exporting it outside the system (e.g., through species migration). These mechanisms might impede observing clear changes in the ecosystem (mainly in the pelagic indicators) despite fluctuations in nutrient input. Furthermore, although the surface of the shelf in each model domain was considered to account for the observed changes, the different proportion of coastal environments and coastal areas included in each model might have inevitable effects on coastal biogeochemical processes (Table 1) cascading up in the food webs (Figures 2, 3) and partially explaining the observed differential changes.

In addition, the stronger reduction in total nitrogen and phosphorus in the land-sea interface rather than in the dissolved nutrients at sea, [as shown in Table 1 and in more details in Friedland et al. (2021)], indicate that marine biogeochemical systems depend not only on total nitrogen and phosphorus from riverine inputs, but also on the internal nutrient dynamics, e.g., mixing and stratification of DIN and DIP from deeper layers. Therefore, it is expected that reducing one input source (river) does not relate to a 1:1 reduction of marine (dissolved) nutrients at sea. This could explain the little reduction of primary production and the little impact of these changes on the HTL criteria/indicators.

The TL indices assessed in this study, the trophic level of the community (mTLco) and the trophic level of landed catches (TLc), showed little variation (depending on the scale considered) when applying these nutrient management measures. Shannon et al. (2014) already reported no clear pattern or response of TL-based indicators to changes in Chl-a, suggesting also that these indicators might not necessarily reflect changes at the bottom of the food web. According to Heymans et al. (2014), the trophic level of the catch is highly influenced by ecosystem traits such as latitude, basins and depth, which should be taken into account when evaluating these indicators as proxy of food web dynamics. Coll et al. (2016) highlighted the usefulness of the trophic level of the community indicator in assessing the impact of fishing on the whole ecosystem. However, our study shows that this index is not sensitive enough to capture changes in the food web from environmental drivers, such as nutrients and associated ecosystem productivity, as is also observed by Fu et al. (2019). This result might be related to the fact that bottom-up modifications, such as those induced by changes in nutrient inputs, are not as evident in the food chain as top-down forces, which generally resonate beyond the planktivore level, causing trophic cascades (Borer et al., 2006).

In addition, the weak responses of some of the criteria/indicators to changes in nutrients might be due to the short time series of forcing data utilized in this assessment. It is well known that ecosystems that accumulated nutrients during eutrophication require long recovery times to see large effects of load changes on ecosystem dynamics (Moloney et al., 2010; Murray et al., 2019). Thus, limiting the simulations to 8 years could have impeded a clear cause-effect relationship. This limitation was also highlighted in the results of LTL modules (Friedland et al., 2021; Grizzetti et al., 2021) which showed that 8 years of simulations were not enough to reach a new equilibrium. The internal nutrient dynamics and long residence times hampered the effect of the nutrient input reductions in the assessed ecosystems. Further efforts should be made to assess the potential impact of longer time series of changed nutrient loads in the various EU ecosystems.

It is also important to acknowledge that coastal processes are not well represented by the spatial models available here (which include both HTL and LTL models), e.g., the responses of species fished near the coast such as European seabass, Dicentrarchus labrax, or Black seabream, Spondyliosoma cantharus, are not well captured in these models. Similarly, potential improvements due to reductions in eutrophication in the pelagic habitat of coastal spawning species such as pikeperch, Stizostedion lucioperca, are not captured by the whole-sea models. The impact of bottom up forces on the marine food web might also be difficult to predict if inedible autotroph species are not properly modeled. These, in fact, might act as trophic dead-end species (Akoglu et al., 2014) or nutrient “sponges” (Murdoch et al., 1998), reducing the carrying capacity of edible species and, consequently, their trophic role (Murdoch et al., 1998; Borer et al., 2006; Akoglu et al., 2014). Finally, most of the models used in this exercise did not account for changes in dissolved oxygen (DO) impacting benthic and pelagic organisms/functional groups (e.g., impact on metabolism and recruitment success), which is another important component of eutrophication. This requires further research in the future.



Mean Change in MSFD Criteria and TL Indicators at Spatial Scale

This study assessed the impact of changes in nutrient concentrations on the spatially explicit ecosystem model of the Western Mediterranean sub-region. Our analysis confirmed that coastal and shelf ecosystems will be the most impacted when nutrients are reduced. Two out of three models suggested a slight decrease, more or less pronounced depending on the model/area considered, along the coasts/shelves of the Western Mediterranean Sea. These results are in line with previous studies that showed how freshwater pollution control measures will not impact the NW Mediterranean marine ecosystem at large, given the relatively smaller importance of river-borne nutrients for the marine productivity in the area (Macias et al., 2018a).

When inspecting change in the spawning stock biomass of European pilchard (D3C2) or the biomass of small pelagic fishes (D4C2), the two available spatial EwE models confirmed a slight decline along the continental shelf for both criteria and a marginal increase in open waters for small pelagic fishes. Yet, spatial differences were detected between the two models which could be related to the model structure and/or to the drivers used to spatially distribute the marine species and condition growth and consumption (such as changes in sea temperature). Ecosystem productivity, together with other environmental drivers such as temperature and salinity, are important factors affecting the distribution of small pelagic fishes (Bonanno et al., 2014; Quattrocchi et al., 2016; Quattrocchi and Maynou, 2017) so, including or excluding these factors may produce different outputs. The Osmose model, on the other hand, showed a different picture from the two EwE models, highlighting no clear spatial patterns among the criterion and TL indicators assessed. There are three main explanations for these differences. First, Osmose and EwE models differed in terms of model structure, process formulations (e.g., trophic assumptions) and parameterization (e.g., spatial distribution of species), which can lead to marked differences in the projections (Travers et al., 2010; Smith et al., 2015). Second, in the Osmose model, predation is a size-based and opportunistic process, which tends to buffer and dilute, via the numerous trophic links, the direct effects of changes in primary and secondary productions on the biomass of predators such as small pelagic fishes (Travers et al., 2010; Smith et al., 2015). As suggested by Travers et al. (2010), this predation formulation makes the system modeled by Osmose more variable and resilient to perturbations (nutrients reduction measures here). Third, the Osmose model was forced by the biomass of six phyto- and zoo-planktonic groups. Each group responded differently in time and space to changes in nutrient concentrations, which may have led to more heterogeneous spatio-temporal changes in the criteria considered. The spatial analysis confirmed the results obtained from the mean change for the TL indices and the species diversity index (see section “Mean Change in MSFD Criteria and TL Indicators”), with weak signals in all the assessed spatial compartments.

Overall our study confirmed that spatial modeling is still a challenging component of HTL ecosystem approaches as previously shown (Piroddi et al., 2015). Yet, because it is a fundamental aspect for guiding policy decisions (Liquete et al., 2016), its importance has increased considerably in recent years. Despite their ascertained importance in supporting policy and policy makers, spatial ecosystem models covering the entire food web from nutrients, phytoplankton to top predators, particularly at large scale, have hardly ever been utilized in the policy making process because of their high level of uncertainty (Fulton, 2010). Several studies have suggested possible ways (e.g., Bayesian network; Paradinas et al., 2015; Coll et al., 2019) to reduce specific aspects of such uncertainty. One of these approaches is the use of model ensembles to increase the reliability of model predictions, estimate the associated uncertainty (e.g., lack of spatial distribution data for many fish species and many marine ecosystems) and better assist our policies (Boyce et al., 2020). Our study, while going in this direction, highlights current challenges to fully implement such an ensemble framework in the context of the European Regional seas, because of the limited number of available spatial HTL models. The same area is rarely covered by more than one model, and existing models are not structured following a standardized approach for inter-comparison of results. Future work should address these shortcomings, benefiting from recent novel modeling developments (Spence et al., 2018), protocols for comparative modeling ensembles (Tittensor et al., 2018), and future opportunities for modeling development under the new Decade of Ocean Science for Sustainable Development (2021–2030) (Heymans et al., 2020).



Using Ecosystem Models to Support EU Marine Policies

This study investigated the effects of applied inland management measures that aim to reduce nutrient pollution in the marine environment. Using a broad set of HTL marine ecosystem models covering most of the European seas, this study was able to assess the response of these marine ecosystems to land-based measures using the criteria defined by the GES Decision (European Commission, 2017). The MSFD Descriptors and criteria have been designed to directly support and facilitate Member States in the assessment and reporting of GES. When trying to align the available modeling tools to such regulation, some difficulties were encountered. For example, not all models included species diversity explicitly (such as single species of dolphins or seabirds) and for this reason, D1 criteria could not be assessed in this study. However, the species diversity indices, which in the legislation are associated to the integrative Food Web Descriptor (D4), could also be used to evaluate the state of D1. Other modeled indicators have the potential to be useful for assessing GES (Tam et al., 2017), if easily interpretable, capable of describing food web changes and sensitivity to pressures and should be provided to policy makers to complement the assessments of the marine environment. In addition, the scale of assessments defined by the different policies (e.g., Common Fisheries Policy [CFP], MSFD, WFD) is specific for specific indicators (e.g., for eutrophication, one of the required scales is the coastal zone defined as one nautical mile from the coast; for fisheries, the scale is the FAO divisions/subdivisions) and should be assessed, if possible, using the existing modeling tools but it is not a binding requirement. Such scales are, in fact, used by Member States in their monitoring programs and reporting of GES. Overall, the role and strength of marine ecosystem models in support policies should be to: (1) highlight issues that cut across criteria/indicators and descriptors; (2) evaluate the responses of indicators to single or multiple stressors; (3) provide decision makers with a tool that can assess compartments of the marine ecosystems not directly measurable by current monitoring programs; and (4) evaluate the response of ecosystems to potential management measures.

Another important aspect where ecosystem models can support policy is in the setting of meaningful threshold/target values. As highlighted by Piroddi et al. (2015), there is a lack of tested and validated threshold/target values compliant with specific legal requirements. This is mainly due to disagreements among stakeholders in the settings of targets, which currently limits the full assessment of specific measures on marine ecosystems using the modeling tools.



CONCLUSION AND PERSPECTIVES

This study suggests that improved nutrient management, in line within European directives to preserve and/or recover the status of coastal and marine water status, will have little impact on the assessed HTL marine ecosystems. Riverine nutrient discharge, though, is just one of many stressors impacting our seas and further modeling studies should investigate the impact from synergistic and antagonistic stressors. Pressures like climate change, overfishing, chemical pollutants and plastics are expanding rapidly throughout the world (Halpern et al., 2019; Duarte et al., 2020). Thus, a holistic approach to marine management, such as that provided by the MSFD, is essential. Mechanistic modeling tools, like the ones used in this study, have the capabilities of assessing and providing useful information on the impacts of cumulative anthropogenic pressures on every trophic level of a marine ecosystem, and evaluating short/long term forecast of selected policy measures. This pan-European ensemble modeling study represents the first exercise for large scale policy evaluation within the EU framework. This work gives indications for further improvement of modeling tools, such as standardization of model evaluation, their sensibility and creation of model ensembles that will provide reasonable confidence intervals for policy making decisions.

In 2019, the United Nations (UN) declared the Decade on Ecosystem Restoration with the purpose of “recognizing the need to massively accelerate global restoration of degraded ecosystems, to fight the climate heating crisis, enhance food security, provide clean water and protect biodiversity on the planet” and in 2021, the UN Decade of Ocean Science for Sustainable Development will begin, aiming to “developing scientific knowledge, building infrastructure and fostering relationships for a sustainable and healthy ocean.” It is now time to utilize these modeling tools to better guide and support decisions making by managers and policy makers.
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FOOTNOTES
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2 International Council for the Exploration of the Sea: http://www.fao.org/fishery/area/Area27/en
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Coastal ecosystems are experiencing degradation from compound impacts of climate change and multiple anthropogenic disturbances. These pressures often act synergistically and complicate designing effective conservation measures; consequently, large-scale coastal restoration actions become a wicked problem. The purpose of this study was to use two different food web models in a coordinated manner to inform resource managers in their assessment of the ecological effects of a large-scale marsh restoration project. A team was formed that included the model developers and outside scientists, who were asked to use available model results of the calibrated simulations of an Ecopath with Ecosim (EwE) model and a Comprehensive Aquatic Systems Model (CASM), both designed to describe the structure and energetics of the Barataria Bay, Louisiana, United States food web. Both models offer somewhat different depictions of the predator-prey and competitive interactions of species within the food web, and how environmental conditions affect the species biomass pools and energetics. Collectively, the team evaluated the strengths of each model and derived a common set of indicator variables from model outputs that provided information on the structure and energy flow of the simulated food web. Considering the different modeling structures and calibration approaches, indicators were interpreted within and between models. Use of both models enabled a robust determination that: (1) Detritus plays a vital role in the energetics of the system; (2) The food web responds to spring high flow seasons by increasing productivity through specific, dominant pathways; (3) The trophic pyramid is truncated; (4) Compared to other estuaries, this system has redundant pathways for energy transfer. These findings indicate that the food web appears to be resilient to disturbance because of a detritus energy reserve, most consumer biomass consists of low trophic level, high turnover species, and redundant energy pathways exist. This information provides context to decision-makers for assessing possible basin-scale impacts on fish and shellfish resources of a proposed large-scale restoration project. The use of multiple models in a coordinated but not overly constrained way, as demonstrated here, provides a significant step toward co-production of knowledge for use in resource management decisions.
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INTRODUCTION

Coastal ecosystems are experiencing increasing degradation from compound impacts of climate change and multiple anthropogenic disturbances. These pressures often act synergistically and complicate designing effective management and conservation measures; consequently, large-scale restoration actions can evolve into wicked problems (DeFries and Nagendra, 2017). Ecological food web modeling is a valuable approach for helping decision-makers evaluate the range of possible ecological responses that can occur from new (or continued) engineered water projects or from restoration actions. Ecological modeling is especially useful when the disturbances from the action affect multiple, interacting species and act across trophic levels that then leads to direct and indirect effects (e.g., De Mutsert et al., 2017; Kaplan et al., 2019; Lester, 2019).

An evolving expansion in the use of ecological models in resource management decisions is the practice of using multiple models (i.e., multi-model, ensemble modeling approaches) to evaluate various ecosystem responses (e.g., Fulton and Smith, 2004; Garcia et al., 2012; Forrest et al., 2015; Fulton et al., 2015, 2018; Tittensor et al., 2018). Ecological models are always a simplification of the systems they represent, and different models can capture alternative but valid views of system structure and dynamics. Similarities of results across alternative models can suggest robustness of those results, and differences among models can suggest the importance of processes or model features present in one model and absent or represented very simply in another. Another advantage of using multiple models is the reduction in the amplification of uncertainty that results from dependence on the predictions from only one model (Dahood et al., 2020).

Identifying the model formulation that is optimal in terms of complexity remains a fundamental challenge (Collie et al., 2016). While there are extensive methods for parameter uncertainty (Wu and Li, 2006; Saltelli et al., 2008; Ferretti et al., 2016), there remain relatively few methods for quantitatively assessing structural uncertainty beyond the purposeful testing of a set of alternative models (Lindenschmidt et al., 2007; Brugnach et al., 2008; Getz et al., 2018). Approaches range from the models sharing all common inputs and being calibrated and validated in a coordinated manner to the models being independently developed and predictions compared at the end (e.g., Rose et al., 1991a, b; Gårdmark et al., 2013; Meier et al., 2014; Scavia et al., 2017; Kaplan et al., 2019). Multiple models offer an approach for quantifying the structural uncertainty of responses and the component models can complement each other to offer additional understanding into system dynamics.

Even with the known advantages of multi-model approaches, management agencies are often reluctant to fund development of ensemble models at the scale of a single project or management action. The applied nature of management questions often involves short timelines and budget constraints discourage the development of multiple, semi-independent modeling efforts. Unknown risks when using a reasonable but less than optimal single model is also a factor in the reluctance of decision makers to use multiple models. In addition, one of the known challenges in ecological modeling is the difficulty in model validation and this challenge is amplified when using multiple models for management purposes. When validation of one or multiple models is limited by data availability, managers are often hesitant to accept model outcomes.

There are examples of the successful use of multiple modeling approaches to aid in resource management decisions (e.g., SEDAR, 2015, 2020; Xiao and Friedrichs, 2014; Kaplan et al., 2019) and the current literature provides guidance on best practices of selecting, calibrating, and validating ecological models for natural resource decision-making (e.g., Schmolke et al., 2010; Link et al., 2012; Rose et al., 2015; Heymans et al., 2016; Fath et al., 2019). There has also been recent momentum on the use of action science to facilitate co-production of fisheries management strategies (Cooke et al., 2020). Here, we present how using two food web models can provide a broad and robust view of system dynamics, making a considerable step toward co-production. Such a robust depiction of the baseline system provides a solid foundation to then examine how the food web would respond to potential operation strategies of the proposed project on fish and fisheries. This ongoing work in coastal Louisiana (United States) is a multi-year collaboration between state/federal representatives and academic scientists. We describe a recent step in the evolution of this partnership below.

Beginning in 2013, state and federal resource managers partnered with coastal researchers to initiate a long-term, large-scale restoration assessment designed to address the severe wetland losses occurring in southern Louisiana. The lower Mississippi River, responsible for the creation of the vast wetland system in south Louisiana, has been completely leveed (diked) since 1941, essentially ending the natural deltaic cycle of the lower river basin. The impact of river disconnection from its adjacent marshes is exacerbated by the effects of sea level rise, land subsidence, and anthropogenically altered hydrology (CPRA, 2017). Loss of wetlands has been recorded as high as 0.53 hectares every 34 min (Couvillion et al., 2017). The Louisiana Coastal Area Mississippi River Hydrodynamic and Delta Management Study (LCA-MRHDM) paired scientists and managers to develop a series of hydrodynamic, sediment, and vegetation models to assess the potential impacts of large sediment diversions, proposed to mitigate some of this loss. Sediment diversions are gated structures built into the levees that allow river water, sediment, and nutrients to flow back into the wetlands from which they were disconnected. The diversions thus act to recreate the natural deltaic cycle and thereby promote the rebuilding of wetlands. The collective modeling approaches simulated various ways in which a select combination of the possible sediment diversions could deliver sediments and stimulate wetland plant growth, thereby resulting in accumulation of organic matter and land stabilization in the receiving basins.

As part of the development of modeling tools, the Louisiana (LA) Coastal Protection and Restoration Authority (CPRA) supported two different food web modeling efforts to assess the potential effects on fish and shellfish communities in the receiving basins of the proposed diversions (Dynamic Solutions, 2016; De Mutsert et al., 2017). Adapting previously developed models from the region, two models were developed that used as their inputs the output from the hydrodynamic, vegetation, and sediment models (Meselhe et al., 2013 and Baustian et al., 2018). The simulation results of these two models were taken into consideration by managers as the number of proposed sediment diversions was reduced from four to two, with priority development given to the Mid-Barataria Bay Sediment Diversion (MBSD, De Mutsert et al., 2017).

In this paper, we show how the results from the two developed food web models were combined to inform the next phase of management decisions for the MBSD. We demonstrate how the coordinated use of both models provided a broader understanding of potential food web responses to restoration project impacts than possible with either model alone. Specifically, we used the calibrated versions of an Ecopath with Ecosim (EwE) model and a Comprehensive Aquatic Systems Model (CASM) to evaluate the structure and function of the Barataria Bay food web under different environmental (salinity, primary productivity, temperature) conditions. The models represent snapshots in both time and space of the predator-prey and competitive interactions of species within the food web, and how environmental conditions can affect the structure (e.g., which species dominate) and energetics (e.g., the pathways of energy flows within the food web). This study combines ecological indicators estimated from CASM and EwE to describe key features for understanding how disturbances (including those expected from the project) could affect the Barataria Bay food web.



MATERIALS AND METHODS


Model Descriptions

The two models used in this study were formulated as versions (configurations) of general modeling suites (EwE and CASM) and are described below. A more detailed overview of the versions of the models used here can be found in the Supplementary Material. Full descriptions of model parameterization and algorithms can be found in the referenced studies (De Mutsert et al., 2016, 2017; Dynamic Solutions, 2016).

EwE and Ecospace is an open-source modeling software that was historically created to develop mass-balanced food web models to describe aquatic ecosystems (Polovina, 1984; Christensen and Pauly, 1992; Walters et al., 1997; Walters et al., 1999; Walters et al., 2000). Use and applications have greatly improved over the past 35 years of development, making EwE the most applied ecosystem modeling tool globally (464 models published to date1). The freely available modeling software can be used to address marine policy questions (e.g., Hyder et al., 2015; Chagaris et al., 2019; Vilas et al., 2020) and has been more recently used to evaluate food web responses to changes in abiotic factors (e.g., De Mutsert et al., 2012, 2017; Lewis et al., 2016). EwE describes the flows of biomass among user-defined functional groups, which represents one snapshot in time (Ecopath). Once this base model has been developed, users can evaluate time-dynamic simulations through a series of coupled differential equations (Ecosim) and, furthermore, can examine spatial-temporal dynamics with the Ecosim food web imbedded into a 2-D (Ecospace) spatial grid (Steenbeek et al., 2013). Along with an added habitat capacity sub-model (Christensen et al., 2014), an Ecospace model can be used to evaluate how populations within their food web are affected by changes in fishing pressure and by variation in environmental factors over both space and time.

The Comprehensive Aquatic System Model (CASM) is a generalized and flexible aquatic food web modeling platform that has been used to address theoretical (DeAngelis et al., 1989) and applied (Bartell et al., 1999; Bartell, 2003; Fulford et al., 2010; Dynamic Solutions, 2012, 2013) questions for a variety of freshwater and coastal ecosystems. The CASM is a set of coupled differential equations. CASM simulates daily production dynamics of producer and consumer populations within the food web and is also capable of simulating concentrations of water chemistry state variables including dissolved inorganic nitrogen and phosphorus, dissolved silica, dissolved oxygen, and dissolved and particulate organic matter.



Simulation Results Used in This Analysis

In this analysis, we used previously developed and calibrated versions of both models (see Supplementary Material), which are reported in separate documents prepared by the model developers from an earlier project done in collaboration with state and federal agencies (De Mutsert et al., 2016, 2017; Dynamic Solutions, 2016). The different formulations for growth, mortality, reproduction, and predator-prey and competitive interactions used by EwE and CASM provide a way to describe the food web under alternative views of how the species and environmental variables interact. In our application, EwE and CASM shared a number of common inputs (see Figure 1) and used similar (but not necessarily identical) values of these common inputs in their developer-specific calibrations (e.g., salinity, temperature, chlorophyll-a, and areal percent, or proportion of marsh versus open water). These common inputs were the outputs from an integrated biophysical model that was developed within the 2012 Louisiana Coastal Master Plan framework (Meselhe et al., 2013) and the MRHDM Delft3D framework (Meselhe et al., 2015; Baustian et al., 2018). A similar list of species was represented in both models (see Figures 2, 3) and both models were calibrated to the same Louisiana Department of Wildlife and Fisheries (LDWF) long-term fisheries-independent monitoring data. However, parameter estimation and decisions about what parameters to vary and what constituted sufficient model skill were done separately for each model by their respective developers.
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FIGURE 1. (A) Monthly salinity, (B) Chlorophyll-a concentration (μg l–1), and (C) temperature for the three years from which rebalanced EwE time slices were extracted. (D) Climatological daily salinity, (E) Chlorophyll-a concentration (μg l–1), and (F) temperature for eight CASM polygons used as input to the calibration simulations.
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FIGURE 2. Species-biomass distribution of the Ecopath base model used in the calibration simulation of Ecosim (plotted on log scale). EwE plot is only displaying adult life stages as biomasses for juveniles were calculated using von Bertalanffy (1933) growth model.
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FIGURE 3. Comprehensive aquatic systems model (CASM) species-biomass distribution for June 15 in polygon 10 (plotted on log scale).


Prior to beginning the analysis for the current study, we first considered the degree of agreement between predicted and observed values of species biomasses over time from each calibrated simulation. Agreement was generally high for both models in their respective calibration simulations (Figure 4). The Ecosim simulation generally captured the mean and variation in the annual observed data for the key species groups (Figures 4A–E, see Table 1 in De Mutsert et al., 2017). The fit statistics showed variable but generally acceptable correlation (overall average r = 0.4) and low percent bias (average = 22%) across species groups. The CASM daily predicted biomasses of the key species groups (averaged over polygons) also showed an adequate fit to the observed biomasses well (Figure 4B); the fit statistics showed variable but generally high correlation (overall average r = 0.4, with 50% of species having a r > 0.6) and low percent bias (average = ± 30% for moderate to high biomass species) across species groups (see Table 5 in Dynamic Solutions, 2016).
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FIGURE 4. Predicted versus observed biomasses over time from selected species represented in both the Ecosim (A) and CASM (B) calibration simulations. Observed biomasses were annual for Ecosim and daily for CASM. Both used the same monitoring data that was monthly, which were averaged for Ecosim and interpolated for CASM. Ecosim predictions were for the entire model domain, while CASM predicts were averaged over the polygons comprising the domain of the Barataria Bay.


For this coordinated analyses, which used both models, we applied the results of the EwE calibrated model (Ecosim) for June and October of 2008, 2010, and 2013 (i.e., six food webs or balanced Ecopath models). These years were selected because the physical-biological model (Delft3D) used to provide driving variables (e.g., salinity, Figure 1A) to the EwE model (Baustian et al., 2018) reflected different hydrographic conditions in the time periods up to and including each of these years. June within each year is a period of relatively high productivity reflecting the results of the spring increased river flow and coincides to the month near the end of the operations of the proposed project. October is a period of relatively low biological productivity, as it occurs during a period of low river input and cooling temperatures. The year 2008 can be considered to have relatively high salinity and low chlorophyll-a concentrations in June and October compared to the same months in years 2010 and 2013 (Figure 1A). We used specific years from the Ecosim simulation to ensure realism because environmental conditions covary (typically through river flow) together in model inputs; however, this fact also shows that differences among years in environmental conditions are not simply different in a single factor such as temperature or salinity.

To create the balanced food web models from the calibrated Ecosim model, a plug-in to Ecosim was developed that generated Ecopath models from these six chosen time periods. The plug-in ran the Ecosim model up to a chosen month and year in the calibration simulation and then output all parameters from that snapshot in time (i.e., a time slice). For each time slice of Ecosim (June and October of three separate years), a rebalanced Ecopath model (a static snapshot of the ecosystem) was created so that the ecological indicators could be generated. The rebalancing involved adjustments to species-specific biomass accumulation rates in each Ecosim slice. Because the biomass accumulation rates just indicate the change in biomass from the base model to the time slice, the adjustments did not affect the biomasses, diets, or turnover rates within each time period. In addition, the adjustments, when needed, were generally small in magnitude. Thus, the rebalancing did not affect the calculations of the indicators outputted from the Ecopath Network Analysis Plug-in (Christensen and Pauly, 1992) used in this study.

The analysis of the calibrated CASM simulations used here were the daily output for each of eight polygons within the Barataria Bay (Figure 5, polygons 5, 10, 11, 14, 15, 16, 17, and 19). Because the environmental conditions were climatological (i.e., averaged by day across years), a single year of daily output was used from the sequence of repeated identical years in the calibration simulation. The eight polygons were selected to provide a range of environmental conditions, with a particular focus on salinity and chlorophyll-a concentrations (Figures 1D–F). Figure 6 shows the range of the average annual values of salinity and chlorophyll-a concentrations of the eight selected polygons. Use of multiple polygons allowed calculation of indicators for various combinations of salinity and chlorophyll (productivity) conditions within the Bay: (1) low salinity with high chlorophyll (polygons 15, 16, and 17); (2) intermediate salinity with low chlorophyll (polygon 19), with intermediate chlorophyll (polygon 14) and with high chlorophyll (polygon 10); and (3) high salinity with intermediate chlorophyll (polygons 5 and 11).
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FIGURE 5. Model domain in the Mississippi River Delta, United States for the EwE (outlined in blue) and CASM (numbered polygons) calibrated simulations and location of the Mid-Barataria Sediment Diversion (red point).
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FIGURE 6. Averaged annual values of daily salinity and chlorophyll-a concentration for each of the 8 polygons used in this analysis of the CASM calibration simulation.




Selection and Interpretation of Indicators

We determined during a series of modeling team workshops that point-by-point comparisons of species group biomasses between the two models was not informative for assessing responses to disturbances. The strength of combining the results from the two models was in their prediction of higher-order indicators of food web structure and energetics. By using a standardized set of indicators, results from both models would provide a robust view of the food web in Barataria Bay and provide a basis for projecting how the food web would respond to disturbances. When taken together and consistently calculated from both models, judicious selection of these higher-order indicators would provide information on community structure, the connectivity of the food web (which species are connected to other species), and how fast and efficiently energy flows from the primary producers and detritus up through the food web via different pathways of connected species. Inclusion of certain indicators would also provide qualitative information on high-order food web properties, such as general energetic activity and resilience (Christian et al., 2010; Canning and Death, 2018).

There are dozens of candidate indicators that could be used to help inform natural resource managers (Borrett, 2013; Fath et al., 2019; Safi et al., 2019). During our modeling team workshops, we strategically selected indicators that covered the major features of the food web, were suggested by the literature, and for which both models produce the output needed for their calculation (Table 1). The details of how the indicators are calculated from model outputs are described elsewhere (e.g., Ulanowicz and Norden, 1990; Christensen et al., 2005; Heymans et al., 2016). Our focus is on their interpretation within and across models. The selected suite of indicators can be grouped into categories based on what features of the food web they help to describe.


TABLE 1. The indicators and their interpretation derived from the calibration simulations of Ecopath and CASM for the Barataria Bay.

[image: Table 1]The first set of indicators (Shannon-Wiener Index, Species-biomass plots, and Mean Trophic Level Index) summarize the biomass structure of all species in the simulated food webs (Table 1). Since the list of species between time or space snapshots does not vary (i.e., species groups are fixed in both models), changes in our Shannon-Wiener values between snapshots (Ecopath and CASM) indicate differences in the evenness of the biomass distributions across all species. The mean trophic level index is a biomass-weighted average of the trophic levels across species.

The second group of indicators focuses on how energy flows among the species within the food web (Table 1). Using the Ecopath base model, we illustrated how energy flows up the food web with ecological flow diagrams that show the energy paths from three producer groups (pelagic algae, benthic algae, and detritus) to consumer species (see example in Figure 7). Both models are used to summarize energy flows with additional indicators: (1) comparison of the sum of all energy flows from primary producers versus the sum of all energy flows from detritus, (2) comparison of the summed energy flows from primary producers to consumers versus summed energy flows from detritus to consumers (3) total system throughput (TST), and (4) reduction of the food web into a simple linear food chain through a Lindeman Spine diagram. The first and second indicators in this group characterize the importance of detritus as an energy source to the food web relative to primary production; the second indicator specifically characterizes the importance of detritus and primary producers to consumers (i.e., detritivory). Total system throughput is the sum of all energy flows in the food web and is a measure of the energy budget. The Lindeman spine summarizes the food web by using the full food web information to estimate the equivalent linear food chain.
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FIGURE 7. Example Lindeman Spine diagrams from the CASM model for polygon 10 on June 15. Biomasses are t km–2 and flows are in t km–2 day–1 (Allesina and Bondavalli, 2004).


The third and final group of indicators derived from Information Theory (Ulanowicz, 1997) provides further insights into the energy pathways by quantifying the dominance and complexity of the pathways of how energy flows up the food web and provides a measure of the resilience of the food web (Table 1). These indicators are related to each other and are termed: ascendency, capacity, the ratio of ascendency to capacity (A/C), and overhead. Ascendency measures the efficiency of the pathways used by energy as it flows up the food web; high ascendency indicates that the food web makes efficient use of primary production and can sustain high biomass. High ascendancy usually implies a less disturbed system that is also less resilient to future disturbances (Ulanowicz, 1997). Capacity is the maximum value possible for ascendency. The difference between capacity and ascendency is system overhead. Overhead measures the complexity, where high overhead is indicative of a system that has many alternate pathways for energy movement and is therefore relatively more resilient, within certain bounds, to disturbance. The ratio of ascendency to capacity (A/C) is useful for indicating resiliency (where a low A/C is indicative of a highly resilient system) and the ratio is comparable across models and food webs. Overhead is calculated as 1- A/C and so varies in the opposite direction as A/C (Ulanowicz, 1997; Canning and Death, 2018).



Generation of Indicators

All indicators were computed from the rebalanced Ecopath models (derived from the calibrated Ecosim time slices) using the Ecological Network Analysis Plugin and from the output of the CASM calibration simulation. Thus, there were indicator values for six Ecopath food web snapshots (June and October from 2008, 2010, and 2013) and indicator values for eight food web snapshots (different polygons under climatological conditions) from CASM.



RESULTS

The suite of indicator values showed consistent similarities and differences within each model and between models (Tables 2, 3) that, when combined, provided a description of the seasonal, interannual, and spatial variation in food web structure and energetics of Barataria Bay. The ecosystem indicators generated by both models showed the models were sensitive to changes in environmental conditions. The average Shannon Weiner index for Ecopath in June was 2.01 and 1.99 in October. For CASM, average Shannon Weiner indices were grouped by environmental conditions (Table 2) and were 3.00 (polygons 5, 11), 2.95 (polygons 10, 14, 19) and 3.16 (polygons 15, 16, 17), respectively. The mean trophic level across both models was ∼2, except for polygons 15 and 16 for CASM, which reported a mean trophic level of 3. Total system throughput (TST) was on average higher in all June years compared to October years in Ecopath (Table 3). CASM reported more variable TST across grouped polygons, with the highest value of 5372 t km–1yr–1 reported in polygon 10. Productivity and flows from detritus metrics were generally higher for all June years in Ecopath and for polygons 10, 15, 16, and 17 (Tables 2, 3). Ascendency metrics in Ecopath are highest in all June years compared to the October years. In CASM, ascendency/capacity remains constant over all time periods, while ascendency alone shows a range of values from 1798 flowbits to 6498 flowbits over all polygons. As the final step in our modeling team workshops, participants interpreted the model results together with the goal of using the indicators to formulate four general findings that would provide a basis for projecting how the food web would respond to disturbances and the proposed sediment diversion. The findings used both similarities and differences in the indicators between the two models and leveraged their structural and implementation differences (e.g., Ecopath for seasonal dynamics and CASM for spatial dynamics).


TABLE 2. Indicator values from the eight spatial polygons for the calibration simulation of CASM.

[image: Table 2]
TABLE 3. Indicator values from the Ecopath food web snapshots taken from the calibration simulation of Ecosim.
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Key Finding 1: Detritus Plays an Important Role in the Energetics and Functioning of the Barataria Food Web

A substantial store of decomposing material sustains high levels of detritivory in the simulated Barataria Bay food web and was responsible for a sizable fraction of the total energy budget in the food web. CASM outputs indicated that detritivory accounted for approximately 10.4% of all flows present in the food web (i.e., calculated as flows from detritus to consumers/total system throughput; Table 2). For comparison, 53% of the flows were herbivory (flows from primary producers to consumers/total system throughput). Herbivory and detritivory together accounted for all new energy inputs to the system. Thus, flows from detritus accounted for (10.4/(10.4 + 53)∗100) = 16% of all energy input to the food web. This value is based on averaged annual flows over the eight polygons; the result is robust because the contribution of detritus relative to primary production was similar among polygons (range from 15% to 18%). Ecopath output indicated an even more important contribution from detritus: detritivory accounted for 35% of flows in the food web and primary consumption accounted for 65%. Flows from PP (consumption only) averaged 618 t km–2 yr–1 and flows from detritus (consumption only) averaged 339 t km–2 yr–1 (Table 3). Thus, flows from detritus accounted for (339/(339 + 618)∗100) = 35% of all energy input to the system, and flows from PP accounted for (618/(339 + 618)∗100) = 65%. Similar to the spatial consistency in CASM, the contribution of detritus relative to primary production was similar among the six Ecopath slices (33% to 37%). Thus, both models indicated a large (16% and 35%) portion of all energy into the food web was detrital, and this large contribution occurred when productivity was low and high (May and October in Ecopath) and uniformly within the bay (polygons in CASM).

Both CASM and Ecopath results also indicated a net production of new detritus in the system. The total annual flow into detritus pools from summed daily allochthonous inputs, and from daily mortality and excretion of producer and consumer groups for CASM was computed by polygon and then averaged over the eight polygons. The flow into detritus was equal to 670 t km–2 y–1, while the averaged flow out from the detritus biomass pools (Table 2) due to consumption was lower at 417 t km–2 y–1. A daily snapshot Lindemann Spine from a single polygon in CASM (Figure 7) further illustrated the high net production rates of detritus (12.53 versus about 8 t km–2 d–1 exiting). Our illustrative Ecopath slice shows flows from consumers into detritus of 396 t km–2 and flows out of detritus due to consumption at 346 t km–2 (Figure 8). The higher inflow in both the CASM and Ecopath models shows a detritus surplus because it was created faster than it was consumed. Ecopath energy flow diagrams provided additional evidence of the role of detritus, as many species were receiving energy originating from phytoplankton, phytobenthos, and detritus. The cumulative effect of these many linkages was the large energy fluxes emanating from the detritus pool (Figure 9).


[image: image]

FIGURE 8. Example Lindeman Spine diagrams from the June 2010 Ecopath model determined from time slices from the Ecosim calibration simulation. Biomasses are in t km–2 and flows are in t km–2year–1.
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FIGURE 9. Energy Flow diagrams from the Ecopath base model used in the Ecosim calibration simulation to highlight net production of detritus in the model compared to other producer compartments. Trophic level is indicated on the y-axis; the size of the dots indicates the size of the biomass pools. Energy flow (t km–2 yr–1) from phytoplankton (A), Benthic Algae (B), and Detritus (C) is highlighted. This figure represents the key species found in both the CASM and EwE models.




Key Finding 2: The Barataria Bay Food Web Shows a Response of Increased Productivity After the Spring High Flow Season That Is Mediated Through Specific, Dominant Pathways

Seasonally representative output from the Ecopath food webs indicated a greater total system throughput in June compared to October. The average June value (over years) compared to October was 4,520 versus 3,124 t km–2y–1 (Table 3). Not only was the TST higher in June than in October, but ascendency (averaged over years) was also higher [5,345 versus 3,710 flowbits (t km–2y–1*bit)]. The mean trophic level of the food web (computed starting with consumers at trophic level 2) did not vary much with this seasonal (October versus June) increase in biomass, suggesting that the biomass increase occurred in species with a trophic level near 2.2. CASM-generated TST and ascendancy were highest in polygons 15, 17, 10, and 5 (Table 2), which are the polygons with the higher primary production/bottom-up food web support (Figure 6). The lowest TST and ascendancy values were in the polygons with the lower primary production. The magnitudes in the TST and ascendancy of the polygons generally tracked the chlorophyll-a (index of productivity) in the polygons (Table 2 and Figure 6). Therefore, the spatially explicit CASM results, when viewed temporally (space-for-time), represent a temporal pattern that is consistent with the Ecopath prediction of increased productivity after the spring high flow season.



Key Finding 3: The Trophic Pyramid of the Barataria Food Web Is Truncated

The Lindeman spines estimated from the Ecopath and CASM food webs indicated a large decrease in the amount of biomass above trophic level 2 (examples of selected spines shown in Figures 7, 8). This pattern was consistent for June and October for all three years from Ecopath, and on an annual basis for the eight polygons from CASM. The drop off can be easily visualized by the species-biomass distribution plots, which showed a decrease in biomass moving up the trophic levels (bottom to top in the plots) even when biomasses are plotted on a logarithmic scale (Figures 2, 3). The relatively low mean trophic level of the food web indicated by both models is commensurate with a truncated trophic pyramid structure (CASM: 2.33 to 2.51 across polygons; Ecopath: 2.21 to 2.25 seasonally).



Key Finding 4: Compared to Other Estuaries, the Barataria Bay Food Web Has Many Potential Pathways for Energy Transfer

The relatively low ascendency/capacity (A/C) ratio from both Ecopath (Table 3) and CASM (Table 2) indicated low predictability of energy flows within the food web. Both models indicated there were many potential pathways for a unit of energy to travel, that is, flow from producers to consumers is less predictable. That is, there is a large number of species found in first and second order consumers and this energy moves up the food web through these various pathways. The overall averaged A/C from Ecopath (28%) and CASM (31%) food webs were both considerably lower than A/C values reported for other estuarine food webs (e.g., Christian et al., 2005).



DISCUSSION

Use of multiple ecosystem and food web models to inform natural resource management decisions are increasing (e.g., Peterman, 2004; Link et al., 2012; Townsend et al., 2014). Our analysis of two alternative food web models for Barataria Bay provided baseline information to help guide management decision-making on a large-scale restoration project. The goal was to identify how the food web might respond to changing estuarine conditions by providing a fundamental understanding structure and functioning of the system. The complementary use of the Ecopath and CASM models, leveraging their respective strengths, provided a robust view of the food web and its general responsiveness to disturbances. This collective approach was achieved by forming a team that included the expert panel of scientists and model developers, with periodic check-ins with the state and federal managers, who worked collaboratively to synthesize model results. The results presented here were provided to the management agencies charged with evaluating the potential impacts of the project. Further analyses could involve systematically perturbing the food webs in a generalized manner (e.g., altered growth rates) in both models to mimic anticipated changes in water quality from project operations.

Using multiple models provides several advantages when considering the use of model output in natural resource management decisions. The ecosystem indicators calculated provide only one value per ecosystem snapshot. Multiple models can provide for ‘samples’ of ecosystem function indicators. This ability to sample indicators is especially important to evaluate if the representations of the ecosystem are different under different environmental conditions. For example, seeing higher ascendency values for both models under higher productivity scenarios allows us to interpret a link between productivity and ascendency. The differences in model structure also provides a way to describe the food web under alternate views of how the species and environmental variables interact.

While this case study is based on one geographic location and restoration action, the methodologies used herein can be broadly applied. The long-term collaboration between scientists, agencies and managers started during the initial scoping phase of this project and continued throughout the application phase (Beier et al., 2017; Laudien et al., 2019), making this approach particularly compelling. This extended working relationship lays a solid foundation for future applications of using co-production in natural resource management decisions. The rapport built between the government agencies and modeling teams helped guide the science as results were collectively discussed during workshops and conference call check-ins. Co-production using action science methodologies is gaining traction across the world (Gross and Hagy, 2017; Laudien et al., 2019) and successful projects like this one make the case for continued expansion of these practices. Therefore, we contend this approach to using multiple models for natural resource decision-making can be applicable in other contexts and ecosystems.


Implications of Key Findings for Decision-Makers

Our analysis of the indicators provided baseline information on the structure and energetics of the Barataria Bay food web and can be used to infer how the food web would respond to disturbances (or changes in environmental conditions caused by sediment diversions). Collectively interpreting the average range of flows from detritus of 16% to 35% (Tables 2, 3), suggested that detritus played a significant role in supporting fish and fisheries in Barataria Bay and that the food web has multiple pathways of moving fresh (chlorophyll) and recycled (detritus) organic matter into the food web. Such influence of detritus is typical of shallow deltaic systems with high rates of production and deposition (Odum, 1984; Kennish, 1990). Because a large part of the food web’s total energy budget derives from the breakdown of detritus, the modeling results indicated that there exists a short-term energy reserve in the system that is somewhat independent of primary production and therefore insensitive to light limitation and other factors that may limit primary production. This property suggests some potential uniformity in the production rate of detritivorous species and their predators during short-term increases in system turbidity or other disturbances that may limit phytobenthos or phytoplankton production. Fisheries targeting detritivorous species, such as shrimp and blue crab, may benefit from this buffering effect.

Also noteworthy from the indicators was that the detritus-based food web supported a different array of species than either the phytoplankton or phytobenthos-based food webs (Figure 9). Long-term changes in detrital inputs, composition, or dynamics can therefore result in a shift in species composition and changes in the structure of the food web (De Mutsert and Cowan, 2012). Reliance on the detrital dynamics has been shown to offer enhanced ecosystem stability (Moore et al., 2004). In particular, the extent to which detritus is delivered by freshwater sources or adjacent marshes (i.e., allochthonous sources) versus produced by the decay of phytoplankton and phytobenthos (i.e., autochthonous sources), which can be affected by disturbances, will also modulate the food web structure and energetics.

Seasonal inputs from rivers are important to the normal functioning of the food web in many estuaries as they stimulate primary and secondary production in the spring and summer (Madden et al., 1988; Nielsen et al., 2004; Cloern et al., 2014). These inputs fuel seasonal increases in dominant-biomass low-trophic level species (e.g., phytoplankton, benthic algae). These species groups serve an important ecological role as they facilitate energy transfer to higher trophic levels. The Ecopath slices indicated higher throughput in June for Barataria Bay that reflected the tail end of the spring bloom and suggests that high biomass and consumption rates were concomitant with an increase in primary productivity (TST is positively related to chlorophyll-a concentration in both models). The truncated nature of the food web indicated in the Lindeman spines (Figures 7, 8) show that the seasonal peak in biomass (June versus October) is concentrated in a large number of species found at lower trophic levels (i.e., TL < 3). Environmental changes, or changes in the supply of nutrients, could therefore alter the seasonal production of these high biomass, low trophic level consumer groups, such as shrimp, anchovy, and menhaden.

Indicators also showed that most of the biomass within the food web was organized at lower trophic levels, and because low-trophic level species have high turnover rates, there is potential for high population growth rates over short periods of time (e.g., 1–2 years). Such turnover provides a mechanism for these species to be relatively resilient to short-term disturbances. Changes to environmental conditions can have large effects on the food web because environmental conditions influence the base of the food web, and a large portion of food web biomass is found in basal and lower-trophic level species (Odum, 1971, e.g., phytoplankton, zooplankton, and forage species). Due to this strong and direct connection between the environment and biomass-dominant groups, the food web is liable to be variable and spatiotemporally responsive to changes in environmental conditions.

The truncated food web from both models indicated that average trophic pathways are short, and that predatory fish population production is unlikely to be limited by their consumption effects on their available food. Predator populations were kept low in simulations in part because of the assumed high rates of fishing mortality (e.g., in Ecopath - Fishing/Total (F/Z) mortality was 68% for menhaden, 81% for gray snapper, 45% for largemouth bass, and 27% for black drum) and other sources of removals (e.g., migrations in CASM). High rates of predation mortality by adults on juvenile fish might also contribute to relatively low levels of high trophic consumer biomasses. Short trophic pathways and an absence of substantial predator biomass both suggest that the system is donor (bottom-up) controlled. Low ecotrophic efficiencies (EE) in the Ecopath models estimated from the Ecosim simulation for mid-trophic level forage species reinforced this finding, as it also indicates low predation rates from higher trophic level species relative to production of forage species. Additional support was provided by the vulnerabilities set during calibration of Ecosim that suggested that biomass dynamics of forage fish species are not strongly controlled by predation (i.e., top-down control is weak compared to bottom up effects).

When viewed in comparison to other estuarine ecosystems, our analyses indicated that Barataria Bay has a relatively high level of resiliency because of its relatively low values of A/C. Christian et al. (2005) compared the A/C values of 6 separate estuarine ecosystems (with a total of 17 seasonal values) that showed an averaged value of 43% (standard deviation of 0.05). The lower A/C ratios generated with Ecopath and CASM (Tables 2, 3) are indicative of large food webs with varied consumer diets that result in many possible energy pathways through the food web (Morris et al., 2005). Both models represented multiple lower trophic level consumer species that feed on a variety of prey types (detritus, benthic algae, benthic infauna, and epifauna), and both models represented the pelagic aspect of their food webs with multiple forage fish species such as bay anchovy, shads, silversides, and gulf menhaden feeding on phytoplankton and zooplankton in the water column. This opportunistic feeding, which is typical of estuarine species (Elliott et al., 2007), allows top and mid-level predators to switch to other prey items when environmental conditions become unfavorable for certain forage species, increasing the resilience of the food web as a whole. Thus, for Barataria Bay, there is a large number of possible destinations for an energy parcel, and lower overall certainty of the destination of energy into the upper trophic levels. Although high A/C systems make more efficient use of energy to produce biomass, low A/C systems tend to have more pathways through which energy may flow (Ulanowicz, 1997; Canning and Death, 2018). Low A/C systems are therefore robust to disturbance, as redundant pathways for energy flow exist in case any single node (species or groups of similar species) is disturbed. Redundant food web connections (i.e., multiple potential pathways for energy transfer) help reduce the danger of furthering food limitation of predators even if important prey groups are disturbed or eliminated by fisheries or disturbances. Perturbations that occur on a limited number of species and connections can potentially be absorbed by the food web.

Note that while the food web as a whole may be resilient, individual species or groups in the food web can still be affected (some being reduced), and that the degree of resiliency and responsiveness of individual species depends on the type (where it affects the food web and how), magnitude, duration, and repetitiveness of the disturbance (Ulanowicz, 2018). A disturbance that broadly affects many aspects of the bottom of the food web (phytoplankton, phytobenthos, and detritus), and does so with high intensity for an extended time period and repeats every year, can exceed the resilience provided by redundant food web connections. It follows that the Barataria food web can likely absorb a disturbance that affects only part of the bottom of the food web and especially if the disturbance has only small to moderate impacts that occur once or with sufficient time between impacts.



Context for Interpretation of Indicators

We focused on June versus October for Ecopath and spatial differences via different polygons in CASM. A more direct analysis of model output would have evaluated the same outputs between the models so their predictions could be directly interpreted. Our primary purpose here was not to compare the models to determine when and where the models agreed and disagreed. Our purpose was to use the two models to characterize the Barataria Bay food web and to focus on the model results with sufficiently high enough confidence to be used to understand the food web. In our use of the calibration simulations, we noted several examples where both models generated similar predictions and also situations when the two models differed in their predictions but for valid reasons related to their alternative views of the food web. For instance, the strength of CASM under calibration conditions was to examine spatial differences in the food web within Barataria Bay on an annual basis. The calibration of Ecosim used year-to-year variation in environmental inputs for a large spatial domain so its strength lay in examining seasonal (rather than spatial) differences. The aim, therefore, was to combine the results from the calibration simulations of two models to describe the food web, and we contend this integration is the strength of this approach. By using both models, we were able to make statements about the average food web structure and energetics and how it varied seasonally (June versus October) and spatially (among polygons).

An important caveat centers on how the two models represent species biomass removals from their domains. Both the Ecopath and CASM models focus on the dynamics within their domains and attempt to account for species removals. These removals can affect the structure and energetics of the simulated food webs. Ecopath includes fisheries harvest, which removes significant fractions of biomass of certain species, and CASM includes emigration and immigration (in and out of the domain) for species. This difference is important because indicators that show a high importance of bottom-up controls on the food web (environmental to lower trophic levels) are conditional on relatively low biomasses of higher trophic levels, which may be low due to removals. Therefore, a major change in removals that allows higher biomasses of certain species can affect the finding that the food web during calibration conditions was being controlled by environmental forcing acting at the lower part of the food web.

Careful interpretation of ecosystem models is needed because the same labels can be attached to environmental variables, parameters, and processes even though they are used differently within alternative models. An example is the difference in how respiration is represented in the two models used here. Respiration rates in CASM will be lower because its formulation has additional loss terms to respiration (e.g., excretion) that are included in one respiration term in Ecopath. Both formulations are valid but one must identify this difference and look carefully at the models when respiration losses are included as part of the calculation of indicators.

We did not focus on using the calibration simulations to determine how general or project-induced changes in salinity would affect the food webs. Both Ecopath and CASM included the effects of variation in salinity (feeding in Ecopath; growth rate in CASM) within their calibration simulations. However, simulations of specific salinity scenarios are likely uncertain due to the need to specify salinity effects on multiple processes of many species; such simulations are achievable with additional model development and analyses. We suggest that a next step would be to perform new simulations with the calibrated models that vary environmental conditions (low versus high flow years) in a systematic way so that responses of the food web can be attributed, in a cause-and-effect manner, to generalized types of disturbances (e.g., reduced growth) imposed on species in the models.

The outcomes of this work resulted from a series of workshops lead by an expert panel of ecological modelers. These scientists worked previously with the state and federal managers to develop the most relevant plan for use of the food web models to support the management decision. Other participants included the marine ecologists who developed the food web models and representatives of the state and federal management agencies. During the workshops it was collectively determined that the EwE model should focus on two key months and the analysis of the CASM simulation should focus on the spatial differences in annual output provided by the multiple, independently simulated polygons. During the workshop, all participants determined which ecological indicators could be calculated with both models or what indicators should be used specifically from one model or the other. This systematic determination of indicators that included periodic discussions with the government agency representatives, allowed for a broad description of the structure, status, and resilience of the Barataria food web under natural variability of environmental conditions in the area. This action science approach to management also ensured the results provided to the interested agencies were scientifically sound and included relevant information to evaluate the efficacy of the restoration project.

Finally, we offer a few more caveats. First, some of the indicators are sensitive to the specific structure of the models. We used indicators that were robust but if a third model was considered or major changes were made in the use of Ecoapth or CASM, then the indicators should be re-examined to confirm how best to compare them across models and for project scenarios. The indicators remain valid descriptors of the food web; what should be re-examined are the actual values of the indicators and how to assess differences over time and space and between models. Second, while physical habitat is included in both models, both models assumed no major changes in physical habitat during the calibration simulation time period. The focus was on food web interactions assuming stable physical habitat conditions. Habitat suitability modeling being done separately from these food web models will provide information on the effects of changing habitat.

While much more can be inferred about the food web from further analysis of these models, the calibration simulations provided a sound foundation for the food web structure and energetics. Such information provides a food web context for assessing possible impacts of the proposed project. The management agencies have also used habitat suitability index (HSI) models to evaluate species-specific spatiotemporal differences in habitat suitability (between 0 and 1) based on varying salinity, temperature, water depth, proportion marsh, and other factors, for key fisheries (e.g., shrimps, blue crab, spotted seatrout) and wildlife (e.g., ducks, alligators) species in Barataria Basin. The HSIs provided simpler formulaic models for evaluating the Mid-Barataria Sediment Diversion operational alternatives for determining potential species impacts. The HSIs are much less complex, with modeled results, sensitivity, and uncertainty much easier to communicate for assessment of single species. HSIs are commonly used for impacts analysis for environmental assessments for water resource and restoration projects (CPRA, 2017), but multispecies or food web models are much less common. Using the calibrated EwE and CASM to describe the existing food web structure and energetics in Barataria Basin under varying spatial and temporal environmental conditions offered an expanded understanding and explanation of potential ecosystem-level impacts beyond HSI analysis.



CONCLUSION

Careful evaluation and testing of ecosystem models enable understanding of their strengths and limitations. We demonstrated how combining the results from two alternative models (Ecopath and CASM) for Barataria Bay is a scientifically sound and practical approach for dealing with the complexities of food webs and how they respond to environmental variation, resource management actions, and disturbances. There are a wide range of ways multiple models can be used, from a high degree of coordination during model development to complete independence until the synthesis at the end. A key step in all multi-model approaches is to ensure that the modeling results are interpreted properly (Rose et al., 2015; Schuwirth et al., 2019). We attempted to address the interpretation issue by working with managers so that the results were presented a manner that, as much as possible, could inform decision-making. Most multiple model situations are somewhere between the extremes of complete versus no coordination and thus determining the confidence to assign to results when models agree or disagree is challenging. Our approach presented here offers a template for combining modeling results that leverages the strengths of the different models by focusing on higher-order indicators (rather than variable-by-variable comparisons) that have relatively high confidence and also are useful to management (Fu et al., 2019). A critical aspect of our approach was the coordination between model developers and outside scientists, with input from natural resource managers, all working together in a collaborative effort.
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There has been a proliferation of coupled social-ecological systems (SES) models created and published in recent years. However, the degree of coupling between natural and social systems varies widely across the different coupled models and is often a function of the disciplinary background of the team conducting the research. This manuscript examines models developed for and used by NOAA Fisheries in support of Ecosystem Based Fisheries Management (EBFM) in the United States. It provides resource managers and interdisciplinary scientists insights on the strengths and weaknesses of the most commonly used SES models: end-to-end models, conceptual models, bioeconomic models, management strategy evaluations (MSEs), fisher behavior models, integrated social vulnerability models, and regional economic impact models. These model types are not unique to the literature, but allow us to differentiate between one-way coupled models – where outputs from one model are inputs into a second model of another discipline with no feedback to the first model, and two-way coupled models – where there are linkages between the natural and social system models. For a model to provide useful strategic or tactical advice, it should only be coupled to the degree necessary to understand the important dynamics/responses of the system and to create management-relevant performance metrics or potential risks from an (in)action. However, one key finding is to not wait to integrate! This paper highlights the importance of “when” the coupling happens, as timing affects the ability to fully address management questions and multi-sectoral usage conflicts that consider the full SES for EBFM or ecosystem based management (EBM) more generally.
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INTRODUCTION

The concept of social-ecological systems (SES) was applied and popularized by Berkes and Folke (1998) who argued that the solution to resource management problems was not in increasing the complexity or performance of environmental and economic models, but rather in recognizing the feedbacks that occur between the two disciplines. Since their initial applications, the SES concept has been used in a wide range of fields and examples have proliferated, and yet the term remains poorly defined (Colding and Barthel, 2019). Here, we define a social-ecological system similar to Anderies et al. (2004) as: an ecological system of interdependent organisms or biological units interacting with a social system of interdependent humans deriving benefits from uses of the ecosystem as well as from the state of the ecosystem. These SESs can be represented by quantitative or qualitative models, however, in all cases, models are an abstraction from reality, and the direction of abstraction has strong bearing on the questions which can be answered with the model. Further, the exact manner in which the coupling between social and ecological systems is conceptualized has implications on the kind and variety of management questions that can be addressed by each coupled SES model. This manuscript discusses a number of approaches to creating coupled SES models used in the United States and provides resource managers and interdisciplinary scientists a guide for choosing when, how, and why to couple SES models. We discuss trade-offs between modeling approaches, including data requirements, the speed and scale at which the coupled model can be integrated across disciplines, model development stage by which the coupling is no longer possible/fruitful, and other issues which affect model utility in a management and scientific context. By considering each model’s ability to answer management-relevant questions as well as its development costs, we aim to provide interdisciplinary scientists and resource managers with a better understanding of not only why coupled models are important, but also what options are available for coupling depending on where in the development process they stand, the relevant research and management questions, and the time horizon in which answers are needed.

The backdrop for this manuscript is the United States National Oceanic and Atmospheric Administration’s (NOAA) Ecosystem Based Fisheries Management (EBFM) roadmap, published in 2016 (NOAA Fisheries, 2016). NOAA Fisheries defines EBFM as “a systematic approach to fisheries management in a geographically specified area that contributes to the resilience and sustainability of the ecosystem; recognizes the physical, biological, economic, and social interactions among the affected fishery- related components of the ecosystem, including humans; and seeks to optimize benefits among a diverse set of societal goals.” The EBFM roadmap was introduced into a well-established system in the United States where regional fishery management council harvest regulations rely on fishery reference points established in an analysis and review process based principally on individual species stock assessments. A recent review compares how current United States, Canadian, and European Union management approaches incorporate changing environmental conditions (ICES, 2021). EBFM provides a more effective and holistic approach to fisheries management than single species management by accounting for species interactions and environmental effects into the management process (Pikitch et al., 2004; Marshall et al., 2018), and the roadmap is the set of incremental steps to achieve that end.

The EBFM roadmap makes clear that modeling efforts should be coupled social-ecological endeavors to allow for effective trade-off analysis, and that they can run the gamut from qualitative conceptual models through quantitative end-to-end (i.e., from nutrients to apex predators to human uses) models. This manuscript describes the current state of coupled SES modeling within NOAA Fisheries and focuses on how these coupled models are used in support of management decision- making. Thus our focus is on fishery management-centric representations of the SES, but the framework and approach would be relevant to other sectors as well as more broadly for Ecosystem Based Management (EBM). This manuscript is not a survey of all the relevant scientific literature on coupled SES models. Rather, it is focused specifically on coupled models most frequently used to assess trade-offs within and across United States fisheries, although some discussion of the importance of coupled models in assessing trade-offs across ocean use sectors is provided in the discussion that follows. Many of the models included will contribute to NOAA Fisheries Integrated Toolbox, an ongoing effort to increase the ease of utilizing and integrating diverse models in fisheries management. This fisheries-specific focus allows us to assess model uptake by a specific clientele, the eight United States Regional Fishery Management Councils, and to identify where resource managers supported uptake across these case studies.

We begin by defining the organizing framework employed throughout the manuscript, including general data requirements and modeling complexities, before reviewing the management relevance with respect to questions each type of model can address and assessing management uptake. The discussion which follows looks to explicitly detail trade-offs across types of models, and highlight commonalities in case studies of management uptake, while the conclusion situates the current manuscript in the broader literature.



MATERIALS AND METHODS

Natural and social science researchers met in St. Petersburg, FL, United States from December 9th to 11th, 2019 for the NOAA Fisheries National Ecosystem Modeling Workshop (NEMoW) to discuss a variety of ecosystem modeling approaches and challenges (Townsend et al., 2020). In preparation for NEMoW, participants were asked to fill out a questionnaire about the models either developed since 2012 or currently under development in their region of the United States, with particular interest in those which have been used to support fisheries management decision-making. This questionnaire identified the coupled SES models in each of the eight regions in which United States federal fisheries are managed, how frequently they are used or updated, a description of the model including the problem or question it addresses, the data requirements, model structure, and the coupled component, as well as whether the model has traction with managers and what factors contributed to or hindered management uptake. The aim of the questionnaire was not to develop a survey of the literature, as a number of examples are already available (e.g., Plagányi, 2007; Prellezo et al., 2012; Schluter et al., 2012; Stojanovic et al., 2016; Nielsen et al., 2018). Neither was it to develop a typology for coupled SES models. Rather, the aim was to delineate the capacity of commonly used coupled SES models to address management relevant questions and highlight the best uses for each through the reference to existing work. The accompanying discussion is aimed at briefly introducing these models to managers and scientists interested in interdisciplinary work, and highlight the importance and utility of coupling social and ecological systems. We identified over 30 individual models with some level of coupled SES components within the 11 United States large marine ecosystems (LMEs)1.

They represented seven commonly used types of models: end-to-end models, conceptual models, bioeconomic models, management strategy evaluations (MSEs), fisher behavior models, integrated social vulnerability models, and regional economic impact models, summarized in Table 1. A non-exhaustive list of coupled SES models considered for use by fisheries managers in the United States is summarized in Supplementary Appendix Table 1. During our workshop, we discussed commonalities across models, how they were developed, and how they were applied to management questions. We identified three core frameworks for further analysis: type of coupling, phase of project life cycle when the model was coupled, and category of management questions.



TABLE 1. General types of coupled SES models.


[image: Table 1]

Here we define two types of SES coupled models which are distinguished by whether or not there are model linkages and feedbacks between the natural and social system (Figure 1). We distinguish between One-way coupled models, where outputs from one model are inputs into a second model with no connection back to the first model, and Two-way coupled models where there are feedbacks between the natural and social system. A One-way coupled model could begin by taking the output from a natural systems model and incorporating it into a social systems model to create a Natural-Social One-way Coupled Model or use output from a social systems model as input into a natural systems model, creating a Social-Natural One-way Coupled Model. Two-way coupled models require model linkages and feedback-loops between both the social system model and the natural system model.
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FIGURE 1. Conceptual Relationship Between One-way and Two-way Coupled Social-Ecological Models.



One commonality across all model types and potential management questions was that “when” the coupling happened fundamentally affected the modeler’s ability to improve the model and the model’s ability to address complete management questions that consider the full SES. Based on model descriptions, we identified four key phases for project life cycle and entry point for social-ecological coupling: (1) Project Design and Scoping, (2) Model Development, (3) Model Assessment, and (4) Management Strategy Assessment (Figure 2). Next, we describe each project phase and the implications of coupling at this stage in terms of attainable degree of social-ecological Two-way coupling, from limited One-way coupling when integrated late in the project phase to complete Two-way coupling when integrated early. There is a continuum of degrees of coupling across both One-way and Two-way coupled models, and the level of attainable coupling is not always a function of the type of model, but rather when the natural and social system models are coupled.
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FIGURE 2. Project life cycle and entry point for EBFM social-ecological coupling. *Note: The four sectors of interest for management questions are Understanding Ecosystem Connections and Function (shorthand “Ecology”), Assessing the Impact of Environmental and Management Changes on Fisheries (shorthand “Fisheries”), Understanding the Distributional Impacts of Management Policies and Environmental changes on Society and the Economy (shorthand “Society”), and a Full SES Approach Integrating the other Three Sectors (shorthand “Full SES”).





RESULTS: DON’T WAIT TO INTEGRATE! LIMITATIONS RESULTING FROM DELAYED COUPLING

For a model to be useful for a specific management question or issue, it should be coupled to the degree necessary to understand the system and have management-relevant performance metrics that can be used to assess the degree of management success or potential risks from an (in)action. Each model type described in Table 1 can be either minimally or fully coupled (Figure 1) and can also provide either strategic or tactical fisheries management advice.

Kaplan and Leonard (2012) and Fay et al. (2019) are two examples of Natural-Social One-way Coupled Models, where outputs from an Atlantis model were passed to an economic input-output model to estimate economic impacts on communities and regions caused by changes in seafood landings. One-way coupled models can also start from the model output from a social systems model and combine it with a natural systems model creating a Social-Natural One-way Coupled Model, such as Ruzicka et al. (2019). They combine the output of a series of fishery production models for nine fleets catching halibut and arrowtooth flounder in the Gulf of Alaska and uses those fleets in a (nutrients to fisheries) end-to-end model CGOA-ECOTRAN to evaluate the impact of alternate levels of fishing effort and large-scale changes in oceanographic conditions.

Examples of Two-way coupled models include bioeconomic models which incorporate a stage-structured population model of Bristol Bay Red King Crab (Punt et al., 2014b) and southern Tanner crab (Punt et al., 2016). By varying ocean acidification conditions they are able to estimate the long-term maximum economic yield (MEY) (as well as other reference points) in these fisheries as a result of having Economic Data Report (EDR) data available to parameterize the economic component of the model (Punt et al., 2014a, b).

We found that each type of model could be created to provide strategic (general and/or long-term) or tactical (action-specific and/or short-term) advice. The decision to create a One-or Two-way coupled model depended on the management objective and the timeframe in which results were needed. Not all One-way coupled models were simpler or less time consuming to create or run, nor were all Two-way coupled models necessarily more complex or did they take longer to develop and implement.


Project Design and Scoping

Project Design and Scoping is the very beginning stage of project formulation before hypotheses, objectives, and the full scope of research are defined. Developing a coupled model at this stage implies integration of both natural and social scientists in designing the project scope. This multi-disciplinary collaboration is necessary to create a fully Two-way coupled model of the SES that can meaningfully answer complex ecological and social questions that do not impact exclusively either the ecological or social system. The purpose of coupling at this stage is to better identify questions, objectives, and performance metrics of interest to the management and stakeholder communities. Only when social and natural scientists along with managers and resource users work together from the project design and scoping phase can truly integrated two-way coupled models be developed. An example of such a Two-way coupled model is an end-to-end model (Box 1). The development of integrated and coupled social and natural systems models can often span multiple years. It is very infrequent that two existing models can be fully integrated to produce Two-way coupled end-to-end models which address the relevant management priorities. Hence, this long timeframe to co-develop research questions and models should be reflected explicitly in funding priorities and approaches to enable this type of integrated research2. The utility of end-to-end models in a management context is the ability to quantify the impact(s) of dynamic system processes on the distribution and abundance of living marine resources and the overarching impact on long- term ecosystem resilience [e.g., the role of interspecies interactions on developing sustainable, harvest policies (Masi et al., 2018), the frequency of stock assessment updates (Hutniczak et al., 2019), and how ecosystem resilience impacts (conflicting) human use of the ecosystem (e.g., extractive vs. non-extractive use) (Weijerman et al., 2016)].


Box 1. End-to-end models.

An end-to-end ecosystem modeling platform encompasses parameters that allow for explicit representation of the marine environment (Link, 2010). In particular, an end-to-end model captures the realism and dynamics of the biological, physical, chemical and (social-) economical processes of the ecosystem across spatial scales, and the two-way interactions of those spatial and temporal processes across the food web (Rose et al., 2010). Tam et al. (2019) emphasize the need to continue to develop ecological and social and economic indicators of ecosystem health along with advances in end-to-end modeling, rather than being solely derived from model output. Typically, end-to-end models are driven with historical time series of ecosystem dynamics (e.g., physics from regional ocean models, fisheries catch time series, spatial and temporal nutrient inputs) and are projected forward in time based on assumptions of stationarity of input parameters (e.g., maximum individual growth remains constant over time). As an example, in the end-to-end Atlantis modeling platform, population dynamics of marine species are coupled to fishing fleet dynamics and an economics sub-model (Fulton et al., 2004, 2011). End-users can customize this sub-model to simulate a range of exploitation (e.g., changes in fleet behavior) and management scenarios (e.g., TACs, temporal and spatial closures), which are affected by revenue and quota limits (Audzijonyte et al., 2019). Recent applications of Atlantis incorporated calculation of metrics such as employment and wellbeing (Fay et al., 2019; Fulton et al., 2019).



Other examples of a two-way coupling modeling approach that can be particularly effective early in the project life cycle are conceptual and causal models (see Box 2). Conceptual and causal models are usually used to make sense of relationships and linkages within a system; these linkages are often developed in consultation with stakeholders to facilitate stakeholder participation and integrate diverse sources of knowledge of the system (Düspohl et al., 2012). This collaboration allows for a common understanding of all system aspects and gives individuals who are impacted by resource management decisions an opportunity to include relationships that are important to them. Furthermore, tapping into the collective knowledge of a large and diverse group of resource users can lead to a robust understanding of the SES and overcome scientific data gaps with regard to linkage (Aminpour et al., 2020). Thus, when projects are designed from the outset with important ecological and societal issues determining the outcomes of interest, these models can be fully coupled and address the entire SES, in addition to impacts on the ecology and outcomes on the fishery and society and vice versa.


Box 2. Conceptual and causal models.

Conceptual models are graphic representations of relationships among key components of an ecosystem including management options, e.g., factors (climate change, management scenarios) that influence the ecological state components, and how changes in ecological state components influence social state components and vice versa. These models can integrate social, economic, and ecological objectives through the identification of relationships among these aspects. Conceptual models can be operationalized into dynamic simulation frameworks through techniques such as the creation of Qualitative Network Models (Harvey et al., 2016), cognitive fuzzy mapping (Martin et al., 2019), and Bayesian Belief Networks (Little et al., 2004). When these models explicitly describe hypotheses about how cause and effect propagate throughout a SES, they are generally described as causal models and have been used across a variety of natural and social science disciplines (Cheng et al., 2020). Conceptual modeling can also be carried out in a participatory manner in order to engage individuals who are impacted by resource management decisions and capture their perspectives and knowledge of the systems being modeled.





Model Development

The Model Development phase typically occurs once a team has been established focused on a general research topic and a model is developed for a funding proposal. More often than not, coupling at this stage occurs in a limited two-way fashion between a very complicated social and/or economic model and a relatively simplistic representation of the ecology (see Box 3 on Bioeconomic models) or a similarly complicated ecological and/or biological model with a simple representation of the human system [see Box 4 on Management Strategy Evaluations (MSEs)].


Box 3. Bioeconomic models.

Bioeconomic models have a long history of use in fisheries management, including the foundational works of Gordon (1954), Schaeffer (1957), and Smith (1969) establishing the framework to explore the connections between the biology of a species and the economics of the harvesting sector. These early coupled bioeconomic models were fairly simplistic mathematical models of catch and fishing effort with surplus production stock dynamics and are well summarized in Clark (1990). These models typically have some type of objective function which is either optimized or simulated to explore the tradeoffs across different potential harvest strategies, and can be used to assess the impact of past or future management actions on the fishery and the fish stock. However, advances in the science of stock assessments, ecology, and fisheries economics have led to increasingly complex and data intensive models of stock dynamics, fisher behavior, and decision making often resulting in bioeconomic models with cutting-edge science in one discipline and a fairly simplistic representation of the other discipline (e.g., Kasperski, 2015; DePiper et al., 2017). This highlights the need to couple bioeconomic models so that these models represent the best available science to inform fisheries managers, not just advances within our own disciplines that others find implausible or highly speculative. There continue to be advances toward more fully coupled bioeconomic models such as Punt et al. (2014b) and Punt et al. (2016) with stock assessment and economic models that are both cutting-edge. Surveys of the literature include, Plagányi (2007), Prellezo et al. (2012), and Nielsen et al. (2018).




Box 4. Management strategy evaluation.

A management strategy evaluation (MSE) is a simulation study used to evaluate the performance of one or more preferred management actions (e.g., a fishing harvest rate). The simulation study will often consider variation among a broad range of biological or economic uncertainties (Punt et al., 2014a). A MSE can be a tactical or strategic application, and is typically conducted as a “closed-loop” simulation. A tactical MSE is used to address a short-term, specific management action [e.g., increasing the acceptable catch limit (ACL) for a chosen species], whereas a strategic MSE would explore a range of “what-if” scenarios and thus may not focus on any one outcome (Punt et al., 2016). A “closed-loop” MSE is a dynamic simulation that initializes by acquiring information about the operating model based on an individual or set of predefined indicators. For example, an indicator may be the available biomass of a given species. This information is acquired from the operating model (typically with added observational error) and then fed into the sampling model, where management thresholds (e.g., an overfishing limit) will be implemented (typically implementation error is added here). For example, if the available biomass is below the established threshold then the fishing allocation(s) will be limited in the subsequent cycle of the MSE loop (or until the simulation ends). The closed-loop simulation continues to iterate on an annual cycle, where the duration of the full simulation is based on the management objective. The coupling of the MSE cycle to a bioeconomic model may occur following the closed-loop MSE simulation. For example, MSE outputs from an end-to-end model being input into a bioeconomic model would be considered a one-way coupling. Goethel et al. (2019) provide an example of a two-way coupled MSE model where they integrated stakeholder engagement iteratively throughout each stage of the MSE.



The intent of coupling the ecological component of the model with a social component during the model development phase of a project is to assist the team in identifying the best modeling approaches to answer the set of already defined questions. In this phase, two-way coupling of the models is possible, but the questions that the coupled model will be able to answer will necessarily be a subset of those the entire interdisciplinary research team would have developed had they been involved from the start. However, this may be the best approach to take in some circumstances with well-defined questions that are somewhat limited in scope and a complete picture of the impact on the full SES is unnecessary or not feasible given regulatory or time constraints. The Bio-economic Length Age Structured Tool or “BLAST” Model (Lee et al., 2017) is one such example. It is a bioeconomic model which combines a utility-theory consistent model of recreational fishing demand and an age-structured stock dynamics model to help provide harvest advice to fisheries managers, initially developed in the Northeast United States.

Often, the way social and economic coupling occurs in this stage in an effort at implementing EBFM policies are through models of fisher behavior to better understand the economic and social costs and benefits of specific management rules and regulations (Abbott and Haynie, 2012; Abbott et al., 2015; Reimer et al., 2017; see Box 5). These models can either be created prospectively (as a fishery management council, regional planning body, or other management body is considering the impact of multiple alternatives) or through a retrospective analysis of the economic and social impacts of a management or environmental change.


Box 5. Fisher behavior.

Fisheries economists have employed discrete choice models and several other spatial models since the 1980’s in a number of fisheries to better understand and statistically explain what factors influence the spatial and participation choices that fishers make across fisheries and fishing grounds (Bockstael and Opaluch, 1983; Smith and Wilen, 2003; Girardin et al., 2017). Two key characteristics that economists have identified from this research is that (1) fishers are drawn to higher catch rates and revenues; and (2) travel costs are reduced whenever possible (e.g., Eales and Wilen, 1986; Haynie and Layton, 2010). Researchers have also been able to estimate the costs of different hypothetical and actual spatial closures (e.g., Reimer and Haynie, 2018).

Fisheries managers are often faced with decisions that may close areas or limit catch of certain species to fisheries, and so wish to know how this will affect fishers and in turn how the fishers will respond to hypothetical closures or changes in the environment. While there has been a significant amount of research in the location choice sub-field of economics, only a very limited amount of this research has directly informed decision makers. The primary goal of the nearly complete NOAA Fisheries Spatial Economic Toolbox for Fisheries (FishSET) is to help managers and analysts better answer spatial management questions as they are making decisions and framing policy options (Haynie, 2015).



The class of models that are coupled at the model development stage, whether One-way coupled or limited Two-way coupled, tend to have moderate or moderate-high management traction, which is intuitive because these are often the type of models that are created to address specific management problems. As a result, these models tend to focus on modeling fishing fleet dynamics (Branch et al., 2006; Watson and Haynie, 2018) and the impact of regulations, such as spatial or temporal closures (Abbott and Haynie, 2012; Reimer and Haynie, 2018), on the fishing industry and on society at large (Sanchirico et al., 2013).



Model Assessment

This is the phase of a project where the modeling team has a model developed to explain some real world phenomenon and is trying to assess the degree to which their model reflects reality or to assess the potential implications of the model to society. This phase can happen during or after the initial publication of the basic natural science or social science model manuscript(s) which often form the basis for creating an integrated SES model where the coupling occurs during the Model Assessment phase. The Integrated Social Vulnerability class of models (see Box 6) often represent One-way coupling of natural and social science models via the integration of a model of the risk to a natural and/or man-made hazard [such as climate change (Hare et al., 2016)] and a model of social vulnerability and/or adaptive capacity (Jepson and Colburn, 2013) specifically in regards to the risk from climate change and sea-level rise to coastal communities, as in Colburn et al. (2016). That study is an example of both a qualitative one-way coupling in integrating the species and community diversity metrics as well as a quantitative one-way coupling between sea-level rise risk and the number of marine businesses affected.


Box 6. Integrated social vulnerability.

The intersections of social vulnerability metrics and natural hazards vulnerabilities is a specific application of an integrative model to a particular scenario, but one that has been applied successfully around the world in a wide variety of contexts [e.g., based on Susan Cutter’s Social Vulnerability Index (SoVI) to environmental hazards (Cutter, 2003)]. Communities need to plan for and respond to natural disasters and human-made harmful events. Various factors influence the community’s ability to mitigate the impacts. These factors, such as poverty, access to transportation, number of people per household, are known as social vulnerability. In the United States, the socio-economic and demographic data for these factors is commonly derived from Census data. The SoVI is meant to be used to make sense of the social system in comparison to natural hazards and built infrastructure in order to determine where hazards will have the largest and longest impact (Cutter, 2009). Because of SoVI’s reliance on Census data, geographic comparisons and time series analysis are also possible in order to determine the dynamics of vulnerability in space and time (Cutter and Finch, 2008). NOAA’s National Centers for Coastal Ocean Science (NCCOS) has incorporated SoVI into an Integrated Vulnerability Framework to examine geographic variability in and overlaps between social vulnerability, natural resource vulnerability, and structural vulnerability to natural hazards such as sea level rise, storm surge, stormwater flooding, heat, drought, and wildfire (Messick et al., 2016; Fleming et al., 2017). The geospatial approach of the Integrated Vulnerability Framework is designed to help communities qualify for adaptation grants and programs by demonstrating need, contextualize relative vulnerability among neighboring communities, and prioritize areas where adaptation programs can deliver benefits to communities most in need.

With a slightly different focus on social impact assessment and satisfying United States Magnuson-Stevens Act National Standard 8 about sustaining fishing communities of place, NOAA Fisheries has developed a series of Community Social Vulnerability Indices (CSVIs) to identify fishing communities that may be susceptible to the adverse impacts of regulatory change (Jepson and Colburn, 2013). However, the CSVIs are grounded in a broader effort to gauge the ability of coastal communities to adapt to change, especially from climate change, and how that adaptation contributes to overall community well-being and natural resource use. The CSVIs were expanded to include measures of risk from both sea level rise (Colburn et al., 2016) and storm surge. Most recently, the CSVIs have been updated to include trend data from 2009 through 2018 to better understand how these communities are adapting to change over time and how vulnerabilities may play a role in that adaptation.



In addition to coupling to describe the social impacts of changes in the marine environment, coupling at the Model Assessment phase can also help describe the economic impacts of these changes to the society as a whole, often through the use of One-way coupled Regional Economic Impact Models (see Box 7). These models have been integrated similarly as quantitative one-way coupled models where a climate-informed stock assessment model is used to generate a series of projections of future stock biomass and catch of the projection period (Ianelli et al., 2011) and the changes in fisheries yield is then used as an input in a dynamic computable general equilibrium (CGE) model of the Alaska fisheries and non-fisheries economy (Seung and Ianelli, 2016, 2019).


Box 7. Regional economic impact models.

There are a number of models that can assess the broader economic activity associated with recreational and commercial fisheries, beyond the fishers themselves. Regional economic impact models estimate the difference in economic activity, expressed in terms of sales, income, value-added, or employment, with and without a policy or environmental change [see Loveridge (2004), Seung and Waters (2006), and Seung (2015) for good reviews of these models]. The predominant approach utilized in coupled socio-ecological modeling endeavors are Regional Input-Output models. Regional Input-Output models were originally developed by Leontief (1951), and assess direct and indirect impacts from changes in landings revenue. This means they trace the impact of revenue changes to not only the fishing businesses themselves, but also forward to sectors that use seafood produced by the fishing sector (e.g., seafood processors, dealers, restaurants) and backward to business that supply inputs to fishing (e.g., marinas, ice and bait suppliers, marine repair and supply shops). The major drawback to this modeling framework is that it is static, meaning behavioral responses to changes are not captured. The analyses resulting from these models are thus best viewed as identifying impacts in the economy due to changes in landings, but not estimating changes in welfare itself which would be a more meaningful metric for policy analysis. Other frameworks such as Input- Output Linear Programming (e.g., Kirkley et al., 2011), Computable General Equilibrium (CGE, e.g., Jin et al., 2012; Seung and Ianelli, 2016), and dynamic CGE (e.g., Seung et al., 2015) have been used for coupled socio-ecological modeling exercises to better assess how behavior is likely to change due to system changes. However, the complexity of these models means that the nuanced differences across fishing fleets that are key in a management context can be lost through aggregation. The trade-off between these approaches thus depends on the question being addressed and ultimate application.





Management Strategy Assessment

The human activity most commonly included in existing United States EBFM coupled modeling efforts is fishery catch. However, coupling at the Management Strategy Assessment stage usually implies that catches are not driven by any kind of behavioral model of fishers but rather based upon simple assumptions of fisheries mortality rates. Coupling at this stage is often a simple quantitative one-way relationship in which a series of alternative catch projections are multiplied by some fixed price to assess potential “economic impacts” of these different catch projections. These models can have some utility in fisheries and stocks in which the total TAC is caught nearly every year (full utilization) and catch projections are unlikely to change the relative prices across alternative target species. However, these models may perform poorly when the catch projections have an impact on the overall size of the catch over time through size-based targeting and production strategies among the fleet, as shown by Chen (2018) in the Bering Sea pollock fishery. These models may also perform poorly in situations where bycatch or quota constraints of other species jointly caught with the target species of interest may result in lower than full TAC utilization, as can happen in the New England and Bering Sea groundfish fisheries, more often prior to the implementation of catch shares (Brinson and Thunberg, 2013, 2016). As this coupling occurs so late in the process, it generally still only provides meaningful information about the ecological impacts of proposed management strategies or environmental changes but the impacts to society and the fishery are largely through narrative description. Thus these types of models may be useful to assess the management strategies across ecological objectives, but are unlikely to provide substantial useful information about the social or economic impacts of these ecological outcomes. Integrated models that account for management and fishing responses to changing physical and economic responses will provide more realistic projections and understanding of uncertainty (e.g., Hollowed et al., 2020; Reum et al., 2020).




DISCUSSION

As shown in Table 1, there is overlap between potential model capabilities, depending on how the model is created and for what purpose. We further categorize these different types of coupled SES models by the EBFM sector they inform or for which management questions they are most appropriately designed to address. The four categories of management questions (depicted in Figure 2) are: Understanding Ecosystem Connections and Function (shorthand “Ecology”), Assessing the Impact of Environmental and Management Changes on Fisheries (shorthand “Fisheries”), Understanding the Distributional Impacts of Management Policies and Environmental changes on Society and the Economy (shorthand “Society”), and a Full SES Approach Integrating the other Three Sectors (shorthand “Full SES”). The section below provides examples by EBFM sector of applying models to management questions.


Understanding Ecosystem Connections and Function (Ecology)

The therMizer model was developed in order to better understand the effects of rising ocean temperature and changing plankton communities on fish size and abundance (Woodworth-Jefcoats et al., 2019). It is a size-based food web model with individual species represented, gear-specific fishery, and effects of temperature on metabolism and aerobic scope. It can incorporate dynamic fishing scenarios and the output can be used to estimate changes in catch value as a result of modeled climate and/or fishing scenarios, but is not intended to explain changes in fisheries behavior from any non-ecological basis.

Initial modeling results from the Alaska Climate Integrated Modeling (ACLIM) project are focused on key fisheries management areas of concern about climate change and species distribution shifts in the Eastern Bering Sea (Hermann et al., 2019; Holsman et al., 2020; Reum et al., 2020). The ACLIM project relies on repeated communication with stakeholders and managers to assess potential climate change effects as well as potential management and fleet responses to the changes they are currently experiencing (Hollowed et al., 2020). As the ACLIM project develops further, connections will be made to integrate impacts beyond commercial fisheries to create a series of integrated end-to-end models that explore a suite of climate scenarios with a variety of fisheries fleet dynamics models and potential management instruments.



Assessing the Impact of Environmental and Management Changes on Fisheries (Fisheries)

Although less prevalent than their commercial counterparts, recreational fishery bioeconomic models are also employed in assessing the impact of alternate regulations on fisheries and stocks. In the Northeast United States, a multispecies SES for cod and haddock is used to assess the impact of differing possession and size limits and seasonal closures on both stocks, as well as changes in the recreational welfare derived from this mixed recreational fishery due to the regulations (Lee et al., 2017). The model provides two-way coupling between an economic recreational demand module based on choice experiment survey data and an age-structured stock dynamics module. Recreational landings and discards are estimated based on fishing regulations, stock structure, and recreational effort derived from expected utility maximization. The resultant fishing mortality is passed to the stock dynamics module, which allows estimation of alternate stock trajectories based on variability around initial conditions, uncertainty in recruitment, and changes in regulations. These changes in stock conditions will, in turn, affect future recreational fishing behavior.

Researchers at the Northeast Fisheries Science Center developed the model and a joint Northeast Fishery Management Council (NEFMC)/Mid-Atlantic Fishery Management Council (MAFMC) panel reviewed the model in 2012. The authors note challenges to employing the model in support of resource management decision-making includes time lags in and uncertainty around the scientific information used, as well as inflexibilities in the management system, which results in a condensed period for model updating and an undermining of stakeholder trust in the management process due to the use of outdated information to assess current conditions. Results from the first implementation of the model in support of fisheries management indicate that although changes in regulations had substantial impacts on the recreational welfare generated, minimal long-run conservation value was derived from even the most draconian alternatives assessed. This result actually facilitated management uptake, as it was viewed favorably by stakeholders, minimizing concerns around the adoption of a novel approach for specification setting which might have otherwise hampered adoption. Since 2013, this model has been employed to support the selection of recreational groundfish measures for the Gulf of Maine in each round of specification setting. Revised versions of the choice experiment were conducted in 2014 and 2019. The simulation model has also since been further refined at the request of the NEFMC to allow for analysis of slot limits and regulations that vary within the year or by fishery mode.



Understanding the Distributional Impacts of Management Policies and Environmental Changes on Society and the Economy (Society)

To better understand ecosystem function and the deep connections local stakeholders have with the marine environment, conceptual models of the SES can be developed in partnership between scientists and resource users at a local scale, such as for the case of the community of Sitka, Alaska, and Sitka Sound (Rosellon-Druker et al., 2019), or at a regional-or ecosystem-scale (Harvey et al., 2016). These “place-based” SES models have been developed as part of an Integrated Ecosystem Assessment (IEA) in which the two-way coupled conceptual models are used to understand the multifaceted nature of well-being in local communities and to generate a set of feasible indicators of community well-being related to their interactions with the marine environment (Szymkowiak and Kasperski, 2021). The repeated interaction with the community of Sitka has helped generate trust between the researchers and community members, and they appreciate the availability of performance metrics that reflect how they interact with the marine environment, but these models and metrics have not been designed to support any specific management decision and are generally limited to providing local context for decision makers.



Full SES Approach Integrating the Other Three Sectors (Full SES)

Kaplan and Leonard (2012) offer one example of a simple One-way coupling from an end-to-end model to a regional input-output model. In this work, catch projections from Atlantis (Fulton et al., 2011) ecosystem model scenarios (Kaplan et al., 2012) were passed to the IOPAC input-output model (Leonard and Watson, 2011). This allowed the authors to evaluate the economic impact (in terms of jobs and income in the broader economy) stemming from changes in port-level landed revenue; landed revenue was assumed to be the product of catch and constant price per port. This coupling to IOPAC allowed outputs from the end-to-end model to be translated to direct effects (on the seafood sector), indirect effects (on suppliers to the seafood sector), and induced effects (related to broader household spending), rather than only reporting landed revenue as a modeling endpoint. The Atlantis ecosystem model scenarios tested effects of fishing gear shifts and spatial closures. Although the Atlantis model projection period was 20 years, the coupling to the input-output model was made only for years 1 and 15, largely due to the caveats described above related to the static nature of input-output models and their lack of behavioral responses.

The coupled approach of Kaplan and Leonard (2012) has been replicated with other end-to-end models, and gained traction with fishery management audiences, but the approach is not “operational,” i.e., it is not routinely delivered as a management product. Fay et al. (2019) recently applied a similar coupled approach in the Northeast United States, coupling an Atlantis model to the NERIOCOM input-output model (Steinback and Thunberg, 2006). The Atlantis-IOPAC coupling of models has been presented to the Pacific Fishery Management Council, council subcommittees, and review panels (Kaplan and Marshall, 2016). A recent application by Hodgson et al. (2018) considered port-level effects of ocean acidification on revenue, income, and employment. IOPAC is routinely updated for use by the Pacific Fishery Management Council, so further coupling is possible and is likely a constructive way to frame ecosystem modeling results, in particular because input-output models are commonly used throughout the United States by policy makers (including outside fisheries).



Management Uptake

A review of key factors which facilitated management uptake, as detailed in Supplementary Appendix Table 1, indicates some commonalities across models successfully used in management support. Most obvious is when stakeholders and managers request answers to specific questions that necessitate the development of a coupled model, regardless of the types of models or coupling employed. Somewhat less apparent and equally necessary is the need to have models which function within management timelines and are able to test management-relevant policy instruments. For tactical advice, this reality usually translates into a need to develop relatively lightweight models which can iterate combinations of policies quickly to inform the development of management actions. For strategic advice, models need to realistically capture the dynamics of resources most closely associated with human actions under management, such that stakeholders and managers glimpse their perception of the system in model outputs, which can build trust in its function. Providing either tactical or strategic advice in this manner necessitates coupled SES models, in that it is the interplay of biology and human behavior which determines the success or failure of policy instruments. Timing plays a key role in management uptake, and good models are often left unused because they may not be completely developed in time for management actions.

In light of this, building models based on recurring demands helps to ensure the often long lead time necessary to develop models does not unduly interfere with their adoption. Many times uptake is as much a fortuitous confluence of events as careful planning. As such, having a developed model which can answer a scientifically interesting and seemingly policy-relevant question ready when it becomes important from a manager’s perspective can also bear fruit. Retrospective analyses of prior management or environmental shocks also provide valuable insights into probable human responses to future management alternatives and environmental shocks such as climate change.



Implications for General Modeling Support

One of the advantages of recognizing the need for coupled modeling is that generic modeling support activities can be applied to all disciplines. For example, the extensive use of a variety of models for stock assessments has led to NOAA support for the development of a modeling toolbox infrastructure, which includes the NOAA Fisheries Integrated Toolbox and current supports a number of the SES models described in this manuscript. This integrated toolbox infrastructure is being designed to support stock assessment, ecosystem, economic and human dimension models. Sharing a basic requirement for provision of model metadata, version control, model sharing, and other aspects will facilitate model coupling. Similarly, the need and investment for access to high-speed computing for coupled earth-system models will apply to coupled SES models.




CONCLUSION

In this manuscript we have provided an overview of a framework to describe coupled SES fishery models, including the trade-offs between approaches and management questions which they can address. We reviewed management uptake of these SES models to identify commonalities across case studies in terms of both successes and failures. The ultimate purpose of this manuscript is to provide interdisciplinary scientists and resource managers with guidance on how, when, and what to couple in order to provide actionable information for a suite of management-relevant questions. The main takeaway from this analysis is that timing plays a key role in management uptake and successful coupling. Early engagement between disciplines, and even across sub-disciplines, ensures the broadest range of questions can be addressed within a management timeline.

This manuscript focused on fishery management-centric SES models, but the framework is applicable within a broader EBM construct and the ideas outlined in this paper resonate into multi-sectoral modeling approaches, particularly the need to integrate early not only within a single sector (such as through EBFM) but also across sectors. Further, all the modeling approaches outlined here can inform decision-makers whenever fisheries and other ocean uses come into conflict. When shifting from a focus on fisheries toward broader interactions between fisheries, wind energy development, tourism, and other ocean uses, coupled SES models will continue to play an important role in understanding the breadth of trade-offs entailed. As always, the management questions and industry sectors under consideration will dictate the relative value of modeling approaches and metrics which can help inform resource managers.
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FOOTNOTES

1 There is not a one- to-one correspondence between LME and Fishery Management Council jurisdiction. For example, the North Pacific Fishery Management Council straddles four LMEs; Aleutian Islands, Eastern Bering Sea, Gulf of Alaska, and the Arctic LME which includes both the Beaufort and Chukchi Seas.

2 One approach would be to provide small awards to research teams early in the project timeline to facilitate discussions of how best to integrate the research questions and study outputs to address management-specific questions prior to submitting a larger proposal to a(nother) funding agency.
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A novel pan-European marine model ensemble was established, covering nearly all seas under the regulation of the Marine Strategy Framework Directive (MSFD), with the aim of providing a consistent assessment of the potential impacts of riverine nutrient reduction scenarios on marine eutrophication indicators. For each sea region, up to five coupled biogeochemical models from institutes all over Europe were brought together for the first time. All model systems followed a harmonised scenario approach and ran two simulations, which varied only in the riverine nutrient inputs. The load reductions were evaluated with the catchment model GREEN and represented the impacts due to improved management of agriculture and wastewater treatment in all European river systems. The model ensemble, comprising 15 members, was used to assess changes to the core eutrophication indicators as defined within MSFD Descriptor 5. In nearly all marine regions, riverine load reductions led to reduced nutrient concentrations in the marine environment. However, regionally the nutrient input reductions led to an increase in the non-limiting nutrient in the water, especially in the case of phosphate concentrations in the Black Sea. Further core eutrophication indicators, such as chlorophyll-a, bottom oxygen and the Trophic Index TRIX, improved nearly everywhere, but the changes were less pronounced than for the inorganic nutrients. The model ensemble displayed strong consistency and robustness, as most if not all models indicated improvements in the same areas. There were substantial differences between the individual seas in the speed of response to the reduced nutrient loads. In the North Sea ensemble, a stable plateau was reached after only three years, while the simulation period of eight years was too short to obtain steady model results in the Baltic Sea. The ensemble exercise confirmed the importance of improved management of agriculture and wastewater treatments in the river catchments to reduce marine eutrophication. Several shortcomings were identified, the outcome of different approaches to compute the mean change was estimated and potential improvements are discussed to enhance policy support. Applying a model ensemble enabled us to obtain highly robust and consistent model results, substantially decreasing uncertainties in the scenario outcome.

Keywords: MSFD, eutrophication, water quality indicators, lower trophic level models, model ensemble, pan-European river management impacts


INTRODUCTION

Marine ecosystems are fundamental components of the Earth system, providing valuable ecosystems services such as climate regulation, food, energy and mineral resources, as well as cultural and recreational services (Peterson and Lubchenco, 1997; Barbier, 2017). However, human activities have drastically changed the structure and functioning, as well as the health and productivity of deep oceans, coastal seas, lakes and rivers. Furthermore these are severely at risk due to climate change, overexploitation, ocean acidification, deoxygenation, excess nutrients, chemical pollutants and plastics (Duarte et al., 2020). The combination of all these anthropogenic-induced effects is substantially altering the marine ecosystems and the provision of ecosystem services (Halpern et al., 2015, 2019; Geneletti et al., 2020). Hence, the maintenance and preservation of marine ecosystems are core elements of major international policies (Borja et al., 2020).

In this context, the United Nations has launched the ‘Decade of Ocean Science for Sustainable Development (2021–2030)’ to tackle the challenges in ensuring a sustainable and rational use of natural resources. Objectives, key areas for action and problems to be tackled in this decade are closely aligned with the overarching challenges defined in the UN Sustainable Development Goals (SDGs; Guterres, 2018) in particular SDG#14 (Conserve and sustainably use the oceans, seas and marine resources).

Clean and healthy seas are also a central pillar of the European guiding principles permeating into multiple aspects of the current European Green Deal (European Commission, 2019). At the same time, they are also specifically addressed in several EU policy drivers, such as the Marine Strategy Framework Directive (MSFD; Commission of the European Communities (2008), the Common Fisheries Policy (CFP EC, 2013; Regulation (EU) No 1380/2013), the Blue Growth Strategy (EC, 2012) or the Blue Economy Strategy (EC, 2014). Many threats to marine ecosystems are well known, such as the accumulation of pollutants (e.g., plastics or hazardous chemical substances) or overfishing. Reducing human impacts and, at the same time, aiming to achieve, restore or obtain “Good Environmental Status” (GES) in all (European) marine waters is the major goal of the MSFD.

Among the other threats, eutrophication due to the enrichment of nutrients has been identified as a high-risk anthropogenic-induced process in many coastal and marine waters for decades. Although river-induced fertilisation of coastal waters is a natural process, it has accelerated worldwide due to human activities (Diaz, 2001). The excess of nutrients delivered to coastal areas is the main cause of eutrophication (Bouwman et al., 2012). One major consequence of eutrophication is the development of intense algal blooms (Heisler et al., 2008) in the river plume and adjacent shelf water (Lohrenz et al., 1997; Dagg and Breed, 2003; Fennel and Testa, 2019; Große et al., 2019). This may lead to harmful algal proliferations or even the regime shift from macrophytes-dominated ecosystems to phytoplankton-dominated ones in enclosed waterbodies (Friedland et al., 2019). Large amounts of organic matter sink to the seafloor, where they are decomposed by benthic bacteria using oxygen (Rabouille et al., 2008; Levin et al., 2009). If water exchange is limited, the oxidation of organic matter may lead to hypoxia (or even anoxia) in the bottom layer (Rabalais et al., 2002), stressing or even killing the benthic fauna (Diaz and Rosenberg, 1995).

Eutrophication has been well understood for decades (Nixon, 1995; Karydis and Kitsiou, 2019). It is the result of a supply of nutrients by rivers, the atmosphere or human activities (such as aquaculture) into coastal and marine regions beyond the ecological capabilities of the ecosystem. These nutrient inputs mainly consist of nitrogen (measured mostly as total nitrogen loads, TN) and phosphorus components (total phosphorus loads, TP). To limit the nutrient inputs into the seas, management plans have been implemented for decades, such as the Baltic Sea Action Plan (HELCOM, 2007), the Black Sea Strategic Action Plan (BSSAP, 2009) and for the North Sea (PARCOM, 1988; Lenhart et al., 2010; OSPAR, 2017). These plans are often accompanied by national nutrient load targets, e.g., within the Danish Water Action Plan (Maar et al., 2016), implemented under the EU Water Framework Directive (WFD; Commission of the European Communities, 2000). If these management plans and input targets are not harmonised, their implementation is hampered, as shown for Szczecin Lagoon (Baltic Sea) by Friedland et al. (2019).

The regional action plans have resulted in strong reductions of nutrient inputs to all European seas over the last decades. For example, nutrient loads into the Baltic Sea are nowadays 25% less for TN and even 50% less for TP, compared to the peak loads in the 1980s (Gustafsson et al., 2012). Likewise, TN loads from the river Danube (the main source of riverine inputs into the Black Sea) have been reduced by 15% (compared to the peak value at the end of the 1980s), and TP loads have fallen by nearly 40% compared to the peak around 1990 (Behrendt and Zessner, 2005). Nevertheless, the Black Sea ecosystem has still been in a strongly degraded state since the early 1990s, without showing any significant recovery (e.g., Oguz and Velikova, 2010; Capet et al., 2013), despite the load reductions (BSC, 2008, 2019).

The nutrient load thresholds were often set without verifying the feasibility of the maximal allowable loads, e.g., through implementing land-based measures in the river’s catchments. Grizzetti et al. (2021) addressed this aspect by developing a pan-European catchment model. It was applied to assess the potential effects of a maximal upgrade of all wastewater treatment plants and a lower fertilisers’ application, in order to reduce their surplus in the river basins. However, the impact on the marine environment of these nutrient load reductions due to improved management has not yet been assessed.

Due to the complexity of coastal marine systems and the multitude of nonlinear interactions among their different components and their external forcing, mathematical models are valuable toolkits to improve the understanding of these systems. Commonly used are fully coupled three-dimensional models of the lower trophic levels (LTL), which include the nutrient and phytoplankton dynamics as well as the marine physical properties. As a core feature, these numerical tools consider the multiple components of the LTL (especially phytoplankton), which depend not only on the supply (and internal cycling) of inorganic nutrients, but also on the hydrodynamic drivers. These models enable us to test the effects of reductions in nutrient inputs (Kerimoglu et al., 2018; Macias et al., 2018) and to evaluate how changes in the nitrogen to phosphorous ratio could impact the productivity of marine waters (Friedland et al., 2012; Macias et al., 2019).

However, even the best-validated model system is still a (mathematical) simplification of reality, predicting potential trajectories based on a variety of basic assumptions. Faced with the spread of model uncertainties, stakeholders demand robust model results, which are reliable and trustworthy (Beierle, 2010). One key for addressing this gap and to gain robust results is to use not only one model system, but a variety of models whose outputs are combined into an ensemble. While this approach is widely used for climate change predictions (Pachauri et al., 2014), there are only a few ensembles already implemented for marine systems (e.g., HELCOM (2013a), Meier et al. (2018) for the Baltic Sea; Lenhart et al. (2010) for the North Sea; or Almroth and Skogen (2010) for both seas). To the best of our knowledge, no ensemble covers all European seas yet.

This manuscript will therefore address the gaps by presenting a novel ensemble exercise covering (nearly) all European seas. It was used to assess the impacts on marine and coastal LTL ecosystems of the nutrient input reductions due to improved management as shown by Grizzetti et al. (2021). This novel pan-European model ensemble was utilized to (i) detect consistent and divergent reactions within the regional sea ensembles; (ii) identify the scales of spatial and temporal impacts from the load input reduction in the different European seas; (iii) compare the outcome of different evaluation procedures; and (iv) identify shortcomings and potential improvements to better support policy decisions.



METHOD

The European regional seas differ strongly with respect to their individual hydrodynamic and ecological features. This is reflected by the regional models included in the ensemble (see below, and Supplementary Table 1). All ensemble members were largely validated and are capable of reproducing the characteristics of the individual seas (see Supplementary Table 1 for recent references, including validation results). Each model system was used to run two simulations, differing only in respect to the riverine nutrient loads, while all other input variables (such as atmospheric forcing, boundary conditions or atmospheric deposition) were kept the same in both simulations. As far as possible, these inputs were harmonised between all ensemble members. The first simulation was based on the current nitrogen and phosphorus loads into the European seas and reflected the reference situation (called REF hereafter). The second simulation (called MTFR) was built up on the “High Technically Feasible Reduction” scenario of Grizzetti et al. (2021). This scenario assumed that the potential measures were implemented to reduce nutrient pollution in freshwater systems and nutrient loads to the seas. These measures comprised the upgrade of all wastewater treatments (at the highest level of nutrient removal, corresponding to a tertiary treatment with enhanced phosphorus reduction), and optimised mineral fertilisation in agricultural fields. In particular, the latter considered a maximum nitrogen surplus of 10% in agricultural areas (the corresponding reduction in mineral phosphorus was estimated), while the current livestock (and manure) production was kept the same as the reference case. In addition, the MTFR scenario included measures to prevent water scarcity, through increasing water use efficiency in irrigation and in domestic usage, changing requirements for cooling water and implementing wastewater re-use for irrigation (Grizzetti et al., 2021). All riverine nutrient loads to the European seas in the REF situation and the reductions under the MTFR scenario were estimated by using the catchment model GREEN (Grizzetti et al., 2012, 2019). GREEN incorporated the results of the water quantity model LISFLOOD (De Roo et al., 2020), which was used to integrate the implementation of the potential measures affecting water flow and water use efficiency. The model outputs of GREEN, covering the period 2005–2012, were provided to all members of the marine ensembles.


Regional Sea Ensembles


Black Sea Ensemble

Beyond the continental shelf, the Black Sea reaches depths of 2,000 m. The circulation follows a spatially complex pattern, dominated by the main cyclonic current and mesoscale energetic features. One of the unique features of the Black Sea is its cold intermediate layer, a remnant of the cold winter water masses, which in summer are covered by warmer surface water (Miladinova et al., 2018). While several big rivers flow into the Black Sea (including Europe’s biggest river, the Danube), the outflow is highly restricted and takes place only at the Bosporus. The high volume of freshwater inputs causes a very strong pycnocline, hampering any vertical exchange and resulting in extraordinarily long residence times and the formation of strongly anoxic deep waters (İzdar and Murray, 2012). Phytoplankton growth in the Black Sea is limited by nitrogen (Oguz and Merico, 2006). Nutrient input reductions were assumed under the MTFR scenario only for the western rivers flowing into the Black Sea (as only these rivers were covered by GREEN). All other rivers from Ukraine, Russia, Georgia and Turkey were unchanged under the MTFR scenario compared to REF.

The Black Sea ensemble consisted of two models (ULiège-BAMHBI and JRC-BSEM, Supplementary Table 1), which differ substantially. ULiège-BAMHBI is a combination of the Nucleus for European Modelling of the Ocean (NEMO) and the BiogeochemicAl Model for Hypoxic and Benthic Influenced areas (BAMHBI). The latter describes the food web from bacteria to gelatinous carnivores, including an explicit representation of organic matter degradation under anaerobic and sulfidic conditions, as well as benthic degradation (Grégoire et al., 2008; Grégoire and Soetaert, 2010; Capet et al., 2016). It is used within the Copernicus Marine Environment and Monitoring Services (CMEMS) to provide forecasts and reanalysis within the remit of the Black Sea Monitoring and Forecasting Centre (BS-MFC). The JRC Black Sea Ecosystem Model (JRC-BSEM) captured the mesoscale circulations and thermohaline structure of the Black Sea over a continuous multi-decadal period (Miladinova et al., 2017). JRC-BSEM uses the General Estuarine Transport Model (GETM) and a higher number of vertical sigma levels, which are additionally compressed towards the surface. The biogeochemical module was tailor-made for the Black Sea ecosystem and its dominating N-limitation (Miladinova et al., 2016). It represents the classical omnivorous food web, including several phytoplankton and zooplankton groups, as well as gelatinous zooplankton species Mnemiopsis and Beroe Ovata.



Baltic Sea Ensemble

The Baltic Sea is a semi-enclosed, brackish water system with very limited access to the adjacent North Sea. It is characterised by substantial freshwater inflows and features a permanent halocline that hampers the exchange between the surface and the bottom waters (Leppäranta and Myrberg, 2009). Together with the specific bathymetry, this results in high residence times of nutrients, especially for phosphorus which remains for decades (Radtke et al., 2012). After a century of excess nutrient loads, the Baltic Sea is highly eutrophic and characterized by long lasting, bottom water anoxia in most parts of the deep-sea basins. The anoxic conditions are only temporarily improved after high-saline water inflows from the North Sea (Mohrholz et al., 2015). The turnover from oxic back to anoxic conditions was thereby accelerated in recent times (Neumann et al., 2017). Nutrient limitations in the Baltic Sea vary spatially and temporally. Coastal waters suffer from an excess input of nitrogen, resulting in high N:P ratios. The central basins, as well as coastal areas under upwelling conditions, are characterised by low N:P ratios, resulting in strong summer blooms of N-fixing cyanobacteria (Vahtera et al., 2007), which benefit from high phosphate concentrations. A unique feature of the Baltic Sea is the ice formation for up to four months each year (Leppäranta and Myrberg, 2009), hampering vertical mixing and determining the start of the spring bloom (Hjerne et al., 2019). Due to its complex bathymetry, the Baltic Sea can be divided into several basins, which are mostly separated by shallow sills. Therefore – in contrast to all the spatially explicit 3D-models – one model system (BNI-BALTSEM) was included in the ensemble that merged the single basins into vertically resolved, but horizontally averaged boxes. Overall, the Baltic Sea ensemble consisted of five model systems (see Supplementary Table 1). Three models (by IOW, MSI, and JRC) were based on the Ecological Regional Ocean Model (ERGOM; Neumann, 2000; Neumann et al., 2002), although there were differences in the applied versions, as well as in their hydrodynamic engines. HZG-ECOSMO included not only the LTL dynamics but also some higher trophic production, and covered additionally the North Sea, so that no explicit boundary to the North Sea had to be described as in the other Baltic Sea models.



Mediterranean Sea Ensemble

The Mediterranean Sea is the southernmost EU basin, separating three continents and connecting highly disparate cultures and societies around its coasts. Following EEA (2018), the Mediterranean Sea was divided into four sub-regions (see Figure 1) for the scope of the present analysis. The entire Mediterranean Sea region supports intensive anthropogenic activities such as fishing, maritime traffic and tourism (Liquete et al., 2016). Although representing only 1% of the global ocean surface, it contains very high marine biodiversity: between 4 and 18% of all marine species are found in the Mediterranean Sea (Bianchi and Morri, 2000; Coll et al., 2010; Bianchi et al., 2012). Water circulation follows an anti-estuarine scheme with a surface inflow of fresher Atlantic waters and a deep outflow at the Strait of Gibraltar, which is the only connection to the open ocean. There are strong ecological gradients in the basins, with a typical west-east decrease in primary productivity and several production hotspots scattered throughout the region (Siokou-Frangou et al., 2010). Major nutrient inputs to the surface layer are vertical mixing (mainly during winter), mesoscale dynamics in the Strait of Gibraltar and Alboran Sea, atmospheric deposition (including desert dust) and freshwater inputs (Macias et al., 2014), especially into the Adriatic and Aegean-Levantine Seas.
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FIGURE 1. Total reduction of annual TN loads [kt] into the single MSFD regions (blueish colors), bars denote the reduction as percentage of TN (red) and TP loads (green) into the MSFD regions computed purely for the rivers provided by the catchment model GREEN (yellow areas; see Grizzetti et al. (2021) for details) and for all rivers flowing into the single MSFD areas (including the rivers not covered by GREEN).


Four different models were used within the Mediterranean Sea ensemble. Two of them used the hydrodynamic model NEMO, the others used GETM or the Princeton Ocean Model (POM). Each model system included a specific biogeochemical component with different levels of complexity and levels of detail, but all model systems have been shown to represent the dynamics and behavior of the lower trophic levels of the Mediterranean Sea (see Supplementary Table 1). As with the Black Sea, only nutrient input reductions from the European rivers flowing into the Mediterranean Sea were assumed under the MTFR scenario, while the riverine nutrient inputs from Northern Africa and Turkey were unchanged in both scenarios.



North and Celtic Seas Ensemble

The Greater North Sea and Celtic Seas are highly dynamical regions. Tides and the exchange with the North Atlantic result in short residence times, which have been estimated at around 50 days (Skogen et al., 1995) and between 40 and 85 days (Delhez et al., 2004). While the North Sea is a shallow shelf sea (except for the Norwegian Trench), the Celtic Seas consist of the continental shelf and deep sea areas. Several large rivers enter the Greater North Sea (such as the Rhine and Elbe), importing large amounts of dissolved inorganic nutrients. This has resulted in strong deviations from the pre-industrial state (Kerimoglu et al., 2018) and a classification of “problematic” especially for the coastal parts of the southern North Sea – in the latest integrated assessment by OSPAR (2017). On the other hand, near-bottom oxygen concentrations are only seasonally diminished (Kemp et al., 2009; Fennel and Testa, 2019).

The model ensemble for the North Sea consisted of four model systems (see Supplementary Table 1). While HZG-ECOSMO included the North Sea and Baltic Sea, UHH-HZG-ECOHAM and JRC-ERSEM have an open boundary to the Baltic Sea but incorporated the Celtic Seas. HZG-UO-GPM was the only curvilinear model within the ensemble (Kerimoglu et al., 2020) and covered only the southern North Sea (along the boundaries forced by UHH-HZG-ECOHAM). To produce the ensemble means, the outputs from HZG-UO-GPM were transformed into a rectangular grid. In contrast to HZG-ECOSMO and UHH-HZG-ECOHAM, HZG-UO-GPM and JRC-ERSEM consider variable nutrient uptake ratios and a sophisticated phytoplankton growth model.



Eutrophication Indicators

To analyse the model results, key MSFD eutrophication indicators were used (Ferreira et al., 2011). These were the near-surface concentrations of nitrate or dissolved inorganic nitrogen (DIN, if nitrate and ammonium could be used), phosphate (both representing MSFD descriptor D5C1), and chlorophyll-a (for MSFD descriptor D5C2). Further, the oxygen concentrations above the bottom were used representing MSFD descriptor D5C5. In contrast to the dissolved nutrients and phytoplankton densities, degradation in water quality is indicated by lower oxygen concentrations in bottom waters (mostly due to an increase in the microbial breakdown of organic material). Hence, increasing bottom oxygen concentrations link to improved water quality. An exception is the Black Sea, where hypoxia or even anoxia are natural features and not induced by eutrophication. The Black Sea was therefore not included in the bottom oxygen assessment.

In addition, the Trophic Index TRIX was evaluated; this is a composite of near-surface chlorophyll-a, DIN and phosphate concentrations, as well as the deviation of oxygen saturation from 100% (Vollenweider et al., 1998). Although not fully used as an eutrophication indicator in the MSFD, in some EU member states (such as Italy) TRIX is integrated into the monitoring programme for the marine environment status (Fiori et al., 2016), because TRIX allows a consistent water quality assessment reflecting the natural gradients from coastal to open sea water. TRIX is computed as:
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The lower (L) and upper (M) limits for the single components of TRIX were thus determined individually for the single regional seas (U denotes the concentrations of the single indicators and k was set to 10).



Methodology to Combine the Models Into an Ensemble

To assess the impact of the reduced nutrient inputs on the marine eutrophication indicators (see section “Eutrophication Indicators”), the relative differences between the nutrient reduction scenario (MTFR) and the reference simulations (REF) were calculated. Therefore, the temporal average over the simulation period was computed for each indicator and grid point for both simulations. Secondly, the relative differences were computed as (MTFR-REF)/REF∗100 for every grid point. From these resulting maps of relative changes for each model system, the ensemble means for each indicator was calculated, together with the spatial average for each model.

To assess the consistency of the model outcomes, only the signs of the relative changes were compared, indicating whether an increase (or decrease) in the selected eutrophication indicator occurred under the MTFR scenario. Therefore, the relative changes in the single models were transferred to a joint horizontal grid, and for every grid cell it was evaluated whether the selected indicator was decreasing or increasing in all or most models.

To compute the temporal development of the relative changes, the procedure to calculate the relative changes described above was adopted. Instead of computing the temporal average over the whole simulation period, for every indicator the temporal averages from the start until each time step were calculated. Then, again, the relative differences between the temporal means between the MTFR scenario and REF were calculated and finally spatially averaged for each MSFD region.

To assess the impact of calculation method on the mean relative change per indicator and region, two additional computational procedures were tested and compared to the method described above. These methods differed only in the order of averaging steps. For the second method, the relative difference was computed for every grid point and time step of the simulation period. Then, the relative differences were averaged over each MSFD region. Finally, the resulting time series was averaged over time. For the third calculation method, the spatial average of each indicator was computed for the individual MSFD region first. The relative difference in the spatially averaged indicators was then calculated for every time step, and finally the temporal averages were computed.



RESULTS


Nutrient Input Reductions

Due to the specific climatic and hydrological characteristics of the different river basins, their current level of anthropogenic pressures, nutrient inputs, waste water treatment and agricultural practices as well as the location and intensity of the applied measures, the load reductions under the MTFR compared with the REF scenario varied widely between the single MSFD areas (see Figure 1 and Table 1). The reduction intensities estimated by GREEN varied not only between the different seas, but also between total nitrogen (TN) and total phosphorus (TP) loads, with reductions in TP loads generally higher than those for TN in all marine areas except for the Black Sea. Overall, the MTFR scenario resulted in a reduction in annual pan-European loads of 14.7% for TN and 23.6% for TP. The greatest total reductions were estimated for the Greater North Sea: 165 kt TN (15.6% less than in the REF scenario) and 11.6 kt TP (18.5%). For some regional seas, the impact of the load reductions from the pan-European rivers was only marginal. For example, the input reductions for the rivers covered by GREEN to the Aegean-Levantine Sea were 5.3% for TN and 13.1% for TP, while the total load reductions (considering also the rivers not covered by GREEN, such as the Nile) were 2% for TN and 4% for TP (see Figure 1). However, other MSFD regions are impacted only little by riverine nutrient loads. For example, the nutrient inputs to the Ionian Sea were reduced strongly: 30.9% for TN 48.3% for TP. At once, the total annual loads were reduced only little (17 kt TN and 2.4 kt TP).


TABLE 1. Relative changes of the riverine TN and TP loads (including all rivers) into the different MSFD regions together with relative changes of the assessed eutrophication indicators from the single ensemble members and combined to the ensemble mean.
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Spatial Scale


Dissolved Nutrient Concentrations in the Upper 10 m (D5C1)

Over the simulation period (2005-2012), concentration of DIN in the Black Sea showed a decrease of 20.3% (JRC-BSEM; see Figure 2A, Table 1, and Supplementary Figure 5) and 41.2% (ULiège-BAMHBI). The decrease in DIN was substantially higher than the reduction of pure nitrogen loads (10.4% considering all riverine sources; Figure 1). On the other hand, phosphate concentrations increased in both models (6.5% in JRC-BSEM and 24.3% in ULiège-BAHMBI; see Figure 3A and Supplementary Figure 6). Phosphate was not only increasing in the inner basin (where it is typically in excess), but also along the north-western shelf, where it is usually deficient (Figure 3A). The model reactions for DIN had a very high spatial consistency: both Black Sea models showed decreasing DIN concentrations in 97.8% of the area (Figure 2C). In both models, this decrease in DIN was significant in most parts of the Black Sea (see Supplementary Figure 10), and even highly significant in the eastern part of the Black Sea. On the other hand, in both models the increase in phosphate concentrations occurred in 94.4% of the total area, but it was less pronounced if only assessed over the shelf area (74.3%). For most of the area, the increased phosphate concentration under the MTFR scenario was significant only in one model system (see Supplementary Figure 11).
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FIGURE 2. (A) Ensemble means and model-specific relative change at load reduction scenario (compared to reference scenario) for the MSFD regions of nitrate (MSFD indicator D5C1). (B) Consistency map showing, if all or at least most models have the same trend of the relative change at load reduction scenario (compared to reference scenario) with respect to nitrate (MSFD indicator D5C1). (C) Share of the total area (bold bars) and of the shelf region (dotted bar), where all or most models show consistent changes with respect to nitrate (MSFD indicator D5C1).
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FIGURE 3. (A) Ensemble means and model-specific relative change at load reduction scenario (compared to reference scenario) for the MSFD regions of phosphate (MSFD indicator D5C1). (B) Consistency map showing, if all or at least most models have the same trend of the relative change at load reduction scenario (compared to reference scenario) with respect to phosphate (MSFD indicator D5C1). (C) Share of the total area (bold bars) and of the shelf region (dotted bar), where all or most models show consistent changes with respect to phosphate (MSFD indicator D5C1).


Averaged over the whole Baltic Sea, DIN concentrations were reduced by 1.9% (see Figure 2A and Supplementary Figure 5). All models showed a decrease, but of differing intensity (between 0.6% and 3.2%). Spatial consistency was quite high, with a decrease in 97.9% of the total area in all models (see Figures 2B,C). The strongest reductions occurred nearby the river outlets of the Oder and Vistula along the southern shore of the Baltic Sea (see Figure 2A). The decrease in phosphate concentration was slightly lower at 0.9% (ranging between 0.1% and 2.7% in the single models; see Figure 3A and Supplementary Figure 6), again with the strongest reductions along the southern coastline. Spatial consistency for phosphate was less pronounced: only 50.3% of the total areas showed a decrease in all models showed (70.4% in most models; see Figures 3B,C). The consistency was high for the deep basins of the Baltic Sea, while the models disagreed in the Bothnian Bay and Sea, the Gulf of Finland and the Danish Straits. Overall, the decreases in the pelagic DIN and phosphate concentrations were much weaker than the reductions in river inputs (8.6% for TN loads and 9.9% for TP loads).

Both pelagic nutrient concentrations showed a strong and consistent decrease within the North Sea ensemble (see Figures 2A, 3A). DIN concentrations were reduced by 9.6% (5.5% - 17.4%; Figure 2A and Supplementary Figure 5) and phosphate by 5.8% (3.4% - 9.8%; Figure 3A and Supplementary Figure 6). There was very high spatial consistency, particularly for DIN where all models showed a decrease in 93.5% of the area (Figures 2B,C), while for phosphate this covered 78.6% of the area (Figure 3C). The strongest decrease in inorganic nutrients occurred along the east coast of the United Kingdom and in the southern North Sea (Figures 2A, 3A). HZG-UO-GPM exclusively covered the latter region, so the North Sea ensemble mean was substantially lower if HZG-UO-GPM was included. Furthermore, the decrease in DIN (and less pronounced the decrease in phosphate) under MTFR scenario was even significant in these areas (Supplementary Figures 10, 11). The only disagreement between the models was around the mouth of the Firth of Forth (Figure 3A), where the input reductions led to a change of the limiting nutrient in UHH-HZG-ECOHAM (see Supplementary Figure 4).

Only two models included the Celtic Seas and both showed a consistent decrease in DIN and phosphate in the Irish Sea (see Figures 2A, 3A), which was significant for approximately 26% of the shelf area (see Supplementary Figures 10, 11). On the other hand, the Celtic Seas models diverged in the open ocean, resulting in quite low mean changes for the MSFD region as a whole (1.8% for DIN and 1.1% for phosphate). There was a drastic increase in the spatial consistency, when only assessing the shelf region (78.2% compared to 48.8% for DIN, and 71.3% compared with 46.4% for phosphate).

The reactions of the four sub-regions of the Mediterranean Sea to the load reductions were quite consistent for all ensemble members (see Figures 2B, 3B). In all models, there was almost no change for the Western Mediterranean Sea, the Ionian Sea and the Aegean-Levantine Sea (Figures 2A, 3A). It was more pronounced in the Adriatic Sea with an average regional decrease of 1.7% in DIN (ranging between 0.5% and 2.6% in the single models; Figure 2A and Supplementary Figures 3, 5) and 3.6% in phosphate (2.3% - 5.1%; Figure 3A and Supplementary Figures 3, 6). Furthermore, there was a sharp gradient within the Adriatic Sea with strongest decreases in the north-western part (Figures 2A, 3A). There were high levels of consistency: 76.1% of the total area of the Adriatic Sea showed a decrease in all models (98.9% in most models; Figure 2C). Along the western coast of the Adriatic Sea, the reduction in DIN was slightly significant in some models (Supplementary Figures 10, 11). In JRC-MedERGOM, a slight increase of DIN even occurred in part of the north-western Adriatic Sea, although there was the same substantial decrease along the shoreline as in the other ensemble members (see Supplementary Figure 3b). Furthermore, for a small area in the south-western Ionian Sea, an increase in nitrate occurred in all models (Figure 2B). Meanwhile, there was very high consistency with respect to change in phosphate concentration for all four sub-regions of the Mediterranean Sea: for at least 99.8% of the total area, all models showed decreasing phosphate concentrations (Figure 3B). In the Adriatic Sea, the region with slightly significant decrease in phosphate at most models was larger than for the change in nitrate (Supplementary Figure 11).



Chlorophyll-a Concentration in the Upper 10 m (D5C2)

In the Black Sea, the reduction in nutrient inputs led to a consistent drop in phytoplankton biomass, as indicated by decreased chlorophyll-a concentration. The chlorophyll-a concentration was reduced by 4.1% in the ensemble, with remarkable differences between the two models (Figure 4A and Supplementary Figure 7). While only a weak (1.2%) decrease of chlorophyll-a occurred in the inner basin and shelf areas in JRC-BSEM, it was nearly six times higher (7.0%) in Uliège-BAHMBI. Spatial consistency was high for decreasing concentrations (nearly 80% of the total area; Figures 4B,C). In both models, there was an increase of chlorophyll-a in the easternmost area.
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FIGURE 4. (A) Ensemble means and model-specific relative change at load reduction scenario (compared to reference scenario) for the MSFD regions of chlorophyll-a (MSFD indicator D5C2). (B) Consistency map showing, if all or at least most models have the same trend of the relative change at load reduction scenario (compared to reference scenario) with respect to chlorophyll-a (MSFD indicator D5C2). (C) Share of the total area (bold bars) and of the shelf region (dotted bar), where all or most models show consistent changes with respect to chlorophyll-a (MSFD indicator D5C2).


In the Baltic Sea, the total decrease in chlorophyll-a was less pronounced, with a mean of 0.9% for the whole ensemble (ranging between 0.3% and 1.4% in the single models; Figure 4A and Supplementary Figure 7). All models predicted a decrease in chlorophyll-a in most parts of the Baltic Sea (65.3% of the total area), at least four of the five models showed a decrease everywhere (Figure 4B). The only exceptions to the decreasing tendency were the Swedish east coast, where phytoplankton increased in HZG-ECOSMO and the Danish Straits near the open boundary in JRC-ERGOM (Supplementary Figure 2). In line with the decrease patterns for the inorganic nutrients, chlorophyll-a was again strongest reduced along the southern shore of the Baltic Sea, next to the outlets of the Oder and Vistula rivers (Figure 4A).

The North Sea ensemble showed consistent decreases in chlorophyll-a concentration in the southern part of the North Sea (Figures 4A,B and Supplementary Figure 7). The ensemble mean was 2.0% with the single models ranging between 1.5% and 2.9%. For 88.7% of the total area, most models showed a decrease (Figure 4C). The least agreement was in the English Channel and the Norwegian Trench, while the models agreed on strong (up to 10%) reductions in the southern North Sea (Figure 4A). The decrease in chlorophyll-a was slightly significant in some models (Supplementary Figure 12), but the significance levels were lower than for the D5C1 indicators. In the Celtic Seas region, the load reduction effect for chlorophyll-a was only weak (spatially averaged decrease of 0.4%), with the highest consistency in the shelf area of Irish Sea (Figures 4B,C; 67.2% compared to 52.7% taking the whole region into account). While chlorophyll-a was decreasing or at least showing no change in UHH-HZG-ECOHAM, the relative change patterns in JRC-ERSEM were quite patchy (Supplementary Figure 4), although the absolute differences between the two scenario simulations were below 0.1 mg m–3.

The relative change in chlorophyll-a in the four sub-regions of the Mediterranean Sea showed the same spatial patterns as for the inorganic nutrients (see Figure 4A). While the average for all four models showed a decrease in all sub-regions, there was a remarkable reduction only in the Adriatic Sea (3.2% in the ensemble mean, with the single models ranging between 2.2% and 5.1%; Figure 4A and Supplementary Figure 7). Moreover, the reduction was again strongest in the north-western part of the Adriatic Sea. Spatial consistency was extremely high: all models showed a decrease in chlorophyll-a for 99.6% of the Adriatic Sea (Figures 4B,C). For a small patch of the north-western Adriatic Sea, the decrease in chlorophyll-a was even highly significant in all models (Supplementary Figure 12). In the other sub-regions, in at least three of the four models there was also a decrease in chlorophyll-a in 84.7% (Aegean-Levantine Sea), 97.7% (Ionian Sea), and 99.9% (Western Mediterranean Sea) of the area. An increase in chlorophyll-a occurred only in some isolated nearshore spots (see Figures 4A,B).

Overall, the nutrient input reductions led to a decrease of chlorophyll-a in all MSFD regions (Figure 5 and Table 1). The decrease intensity was determined by not only the input reductions, but also the regional characteristics (Figure 6). For example, the input reductions to the North Sea and the Celtic Seas were around 15% for TN and 20% for TP, but the chlorophyll-a decrease was four times stronger in the North Sea than in the Celtic Seas (Figure 5). Also, while the nutrient input reductions led to nearly the same decrease in inorganic nutrient concentrations in the Baltic Sea and the Celtic Seas, the reduction in chlorophyll-a was nearly doubled in the Baltic Sea (Figure 6).
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FIGURE 5. Relative change of chlorophyll-a concentration per MSFD region (only ensemble means; symbol size refers to the change intensity of chlorophyll-a) as function of the reduction of the riverine TN and TP inputs.
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FIGURE 6. Relative change of chlorophyll-a concentration per MSFD region (bluish colors refer to the change intensity of chlorophyll-a) as function of the relative changes of the dissolved nutrients DIN and phosphate from all the single models (ensemble means per region are highlighted by the enlarged symbols).




Bottom Oxygen Concentrations (D5C5)

Although bottom oxygen concentration in the Baltic Sea depends largely on inflows of highly saline waters, it increased by 0.9% in the ensemble (Figure 7A), although the single models differed substantially with average relative changes between 0.1% and 1.9% (Figure 7A and Supplementary Figure 8). Spatial consistency was high, as for 78.4% of the area, an increase occurred in all models, and for 98.3% an increase occurred in most models (Figures 7B,C).
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FIGURE 7. (A) Ensemble means and model-specific relative change at load reduction scenario (compared to reference scenario) for the MSFD regions of bottom oxygen (MSFD indicator D5C5) [please be aware that increased values of bottom oxygen are indicating an improved ecosystem status]. (B) Consistency map showing, if all or at least most models have the same trend of the relative change at load reduction scenario (compared to reference scenario) with respect to bottom oxygen (MSFD indicator D5C5). (C) Share of the total area (bold bars) and of the shelf region (dotted bar), where all or most models show consistent changes with respect to bottom oxygen (MSFD indicator D5C5).


Due to its shallowness and the strong hydrodynamics, bottom oxygen conditions are not problematic in the North Sea and were impacted only marginally in the ensemble (Figure 7A). Spatial consistency (Figures 7B,C) here was quite high, with 87.6% increase in most models and 61.4% increase in all models. At once, most models showed a decrease in bottom oxygen near Dogger Bank and in the northern North Sea (Figures 7A,B).

As with the eutrophication indicators described above, no change was observed in most parts of the Mediterranean Sea. Only in JRC-MedERGOM, there was a notable increase in bottom oxygen in the Adriatic Sea, mostly in its north-western part (Figure 7A and Supplementary Figure 8). Meanwhile, HCMR-ERSEM showed a decrease in bottom oxygen in the same area. Nevertheless, there was high spatial consistency between the models, but opposite of the eutrophication indicators described above the spatial consistency was reduced for the shelf areas. For example, in the Ionian Sea, all models showed an increase in bottom oxygen at 88.6% of the total area, but only for 45.3 % of the shelf region.



Trophic Index (TRIX, Composite of D5C1-2-5)

All MSFD regions showed a decrease in TRIX due to the improved nutrient management (Figure 8A and Supplementary Figure 9). While the decrease in the Baltic Sea and most sub-regions of the Mediterranean Sea was quite marginal (below 0.2%), it was stronger in the North Sea (1.4%) and intermediate in the Black Sea (0.7%), Adriatic Sea (0.7%) and Celtic Seas (0.4%). The spatial consistency of decreasing values in most models was nearly 100% for the Baltic Sea and Adriatic Sea (Figures 8B,C), but also very high in the Western Mediterranean Sea (97.9%) and North Sea (93.0%). In the Celtic Seas, TRIX decreased in both models for 65.3% of the shelf, but only 44.8% of the total area. On the other hand, in the deep-sea parts of the Celtic Seas, along the southern shore of the Ionian Sea and near the Kerch Strait (Black Sea), TRIX increased for most of the ensemble members (Figure 8B).
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FIGURE 8. (A) Ensemble means and model-specific relative change at load reduction scenario (compared to reference scenario) for the MSFD regions of the Trophic Index TRIX. (B) Consistency map showing, if all or at least most models have the same trend of the relative change at load reduction scenario (compared to reference scenario) with respect to the Trophic Index TRIX. (C) Share of the total area (bold bars) and of the shelf region (dotted bar), where all or most models show consistent changes with respect to the Trophic Index TRIX.




Assessing the Methods to Calculate the Mean Relative Change

In Supplementary Figures 5–9, the relative changes are shown for all the individual models with respect to the assessed eutrophication indicators, computed using the three different methods (varying the sequencing of computing the temporal and spatial averages of the single indicators or the derived relative differences, see section “Methodology to Combine the Models Into an Ensemble”). There was strong agreement for the derived mean changes, e.g., for phosphate the signs of the relative changes were always the same independent of the method. For chlorophyll-a, there were four cases where computing first the relative differences and then the spatial and temporal averages (method 2) resulted in an opposite sign than when using the other two methods (JRC-ERSEM for Celtic Seas, ULiège-BAHMBI for Black Sea ensemble and HZG-ECOSMO for North Sea and Baltic Sea). In these cases, assessment methods 1 and 3 indicated an improvement under the load reduction scenario, while the second calculation method resulted in a worsening. The central problem here is that very small concentrations in the reference scenario (e.g., phytoplankton densities close to zero) resulted in extremely high relative changes, although the absolute changes were close to zero. On the other hand, in most cases the first calculation method resulted in the largest standard deviations, as the final computational step was the spatial merging of heterogeneous regions, so that the standard deviation got a measure for spatial variability. This resulted in strongly reduced signal-to-noise ratios (SNR), as for method 1 the mean change was greater than the standard deviation only for 17% of assessed indicators. For methods 2 and 3, SNR was much higher at 62% and 71%, respectively.



Assessing Response Rates on the Temporal Scale

There were substantial differences between the regional ensembles in the temporal development of the relative changes in DIN and phosphate (see Figures 9A,B). In the North Sea ensemble, the spatially averaged relative change was near zero at the beginning and then decreased rapidly between 2005 and 2008, when the maximal reduction was achieved. Due to the strong nutrient limitation, the spread of relative changes in the Black Sea widened further until the end of the simulation period (2012). In the Adriatic Sea, as well as in the Baltic Sea, the decrease in dissolved nutrients was fast in the first year and occurred mainly in coastal regions next to the river outlets. Thereafter, the decrease continued steadily, with the decay rate slowing down only in the North Sea.
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FIGURE 9. Relative changes of DIN (A), phosphate (B), chlorophyll-a (C), bottom oxygen (D) and TRIX (E) computed from the ensemble members (ensemble mean ± standard deviation) of the Black Sea (black), Adriatic Sea (yellow), Baltic Sea (blue) and North Sea including GPM (green) and without GPM (purple) following the method of Kearney (2020).


Chlorophyll-a concentrations decreased steadily from year to year in all seas (Figure 9C), although decay rates were slowing down at the end of the simulation period. Furthermore, a seasonal component of the phytoplankton response to the reduced nutrient concentrations became visible (Figure 9C), for example in the Black Sea where values were higher in the spring than in other seasons. In line with the changed nutrient concentrations, in most seas chlorophyll-a showed a rapid decrease at the beginning of the simulation period (again mainly in the coastal area), which continued more gradually thereafter.

Over the simulation period, the bottom oxygen concentration improved slightly but continuously in the Baltic and Adriatic Seas (Figure 9D), with almost constant annual decay rates. In the North Sea ensemble, the change in bottom oxygen was almost negligible and mainly occurred in HZG-UO-GPM. Despite the differences between single seas, TRIX decreased in all seas over time (Figure 9E). In the Adriatic and North Seas, TRIX constantly improved over the simulation period (indicated by almost constant change rates), so that the maximal improvement was reached at the end of the simulation period. In the Black Sea, TRIX was decreasing faster in the beginning, with the strongest TRIX improvement in the first two years, before the decrease rate slowed (due to the accumulation of phosphate).



DISCUSSION

Over the past few decades, eutrophication has remained a central threat to all marine and coastal waters, especially in Europe. The most important measure is to reduce nutrient inputs to the seas through improved nutrient management in the catchments. This is the central outcome of the model ensemble presented, which showed an improvement in nearly all the eutrophication indicators considered for all MSFD regions (see Table 1). In all seas, these improvements were strongest near the river outlets, e.g., of the Danube (Black Sea), Po (Adriatic Sea), Rhine and Elbe (North Sea), or Oder and Vistula (Baltic Sea). Nevertheless, this positive effect of the load reduction was not strong enough to restore the resilience of the Black Sea ecosystem (as in the 1960s) or to reach the GES targets defined by the regional sea conventions HELCOM for the Baltic Sea (HELCOM, 2013a) or OSPAR for the North Sea (OSPAR, 2017). For example, the mean decreases in DIN (1.8%) and phosphate concentrations (0.8%) in the Baltic Sea were much less than the reductions needed in the Central Baltic Sea to achieve the respective GES targets of 26.7% (HELCOM, 2018) and 48.8% (HELCOM, 2018). This was expected, as nutrient input reduction demands set, for example, within the Baltic Sea Action Plan (HELCOM, 2007, 2013b), were substantially more ambitious than the reduction achieved under the nutrient reduction scenario, implemented by our pan-European model ensemble.

Model outputs indicated that dissolved inorganic nutrients (D5C1) reacted more quickly to the changing nutrient loads (Figures 9A,B). In places, these led to significant results throughout the ensembles (Supplementary Figures 10, 11). On the regional scale, there was a strong clustering of the dissolved nutrient concentration responses in the single models (Figure 6), indicating strong coherence between the marine model responses. On the other hand, the other core eutrophication indicators (especially chlorophyll-a and bottom oxygen, but also the trophic index TRIX) showed less pronounced improvements (Figures 9C–E and Table 1). Changes in bottom oxygen were visible only in isolated spots, such as the north-western Adriatic Sea (Figure 7A). This was partly caused by the hydrodynamics of the single seas, for example in the North Sea, where vertical mixing is strong enough for sufficient ventilation, or in the Baltic Sea, where an increase in bottom oxygen occurred only at the edges of the deep basins. On the other hand, from the ecosystem functioning perspective, changes in spatial extent and duration of the zone below a critical oxygen concentration (or saturation level) seem more appropriate indicators of improved water quality than the pure average oxygen concentrations (Große et al., 2017).

Although improvements in nearly all eutrophication indicators occurred in all MSFD regions, both the intensities and the response times of the relative changes varied strongly between the MSFD regions (Figure 9). While in most parts of the Mediterranean Sea no changes were induced by the improved nutrient management, strong improvements were indicated in the North Sea ensemble (−10% for DIN, −6% for phosphate, −2% for chlorophyll-a and TRIX), as well as in the Black Sea ensemble (−30% for DIN and −7% for chlorophyll-a). In the North Sea, the maximal effect was reached very quickly, while in the other seas it took until the end of the simulation period to achieve maximal impacts. This was a strong indication that further improvements could be expected in all eutrophication indicators over longer simulation periods. This should consider the characteristic time scales for the different seas in their response behavior to nutrient management strategies. Overall, it seems necessary to use longer simulation periods than the eight years one we used, in order to assess the full open sea impacts of the load reductions away from coastal and marginal areas (e.g., Adriatic Sea). After decades of excess nutrient inputs into the seas, the internal nutrient pools (nutrients stored in deep waters or sediments) have high stocks, meaning that already nowadays pelagic nutrient pools are growing although riverine inputs are declining, e.g., in the Baltic Sea (Daewel and Schrum, 2017; Savchuk, 2018). Hence, the ensemble changes in nutrient concentrations were less pronounced if the full water column was assessed – not only the near-surface nutrient concentrations, which were presented in this study in line with the defined MSFD eutrophication indicators.

Any assessment of changes in eutrophication indicators over longer timescales in future ensemble approaches must also consider climate change (Wakelin et al., 2015), which will most probably result in reduced amounts of near-bottom dissolved oxygen in the marine environment (Friedland et al., 2012; Meier et al., 2018; Wakelin et al., 2020). Although being a natural feature of the Baltic Sea (Kabel et al., 2012; Kotilainen et al., 2014), the extent of anoxic areas will even increase with climate change (Neumann et al., 2012; Meier et al., 2018). The need for longer simulation times to study the effects of nutrient input reductions is further imposed by the time lag of several decades from the time of emissions in the catchment to the related effect on water quality. This is especially necessary in the Black Sea (Kroiss et al., 2006) and the Baltic Sea (Radtke et al., 2012), where an additional time lag within the catchment is hampering the effects of improved nutrient management (McCrackin et al., 2018). Consequently, a long-term strategy is required for sustainable development in water quality management, with a perspective of several decades for lasting success.

The intensity of water quality improvements, as well as consistency within the ensembles, was pronounced when evaluating only the shelf region (defined up to a depth of 200m). Merging large heterogeneous regions into single MSFD assessment regions becomes questionable if the regional peculiarities are not considered. In addition, the spatially explicit, fully coupled 3D models involved in the ensemble exercise have their limitations. All European waters include coastal and transitional waters, which are regulated under the EU Water Framework Directive (WFD; Liquete et al., 2013). Assessing the water quality status, as well as setting environmental targets, needs to be done in a consistent and harmonised way for all marine parts including coastal, transitional and open sea waters (Schernewski et al., 2015). Although the model ensemble had higher consistencies for the coastal waters and shelf region, only few model systems have spatial resolutions fine enough for a satisfactory evaluation of the waters regulated under WFD. HZG-UO-GPM was such an example, but with the downside that it did not cover the whole MSFD region. Since it only covered the southern part of the North Sea, it represented a distinct outlier in the calculation of the spatial and temporal changes.

The different regional responses to the reduced riverine nutrient inputs were caused by the regional peculiarities of the single seas (Figure 6) rather than the load reduction intensities (Figure 5). For example, nutrient load reductions to the Ionian Sea were strongest compared to the other seas, while chlorophyll-a changed only slightly. Nevertheless, the different load reduction intensities induced by improved nutrient management (Grizzetti et al., 2021) caused shifts in the marine nutrient conditions and N:P ratios. While most seas reacted to the reduced TP inputs with decreased pelagic phosphate concentrations, an accumulation of phosphate (and therefore a worsening of this eutrophication indicator) occurred in both models of the Black Sea ensemble (+6.5 and +24.3%; Figure 3A). On the other hand, the Black Sea is the only region where nitrogen loads were reduced more than phosphorus loads (Figure 5). For some models and regions within the Mediterranean Sea, the same effect was observed in conjunction with a worsening in the DIN indicator (Figure 2A). These shifts in pelagic N:P ratios were induced in the ensemble mainly by the improved wastewater treatment assumed under MTFR scenario, which resulted in a disproportionate reduction in TP loads (see Table 1). This shift in N:P ratio coincided with observed changes in nutrient inputs in recent years, e.g., as reported for Europe (Desmit et al., 2018) or in Chinese lake systems (Tong et al., 2020). On the other hand, the sea-specific reactions underlined the importance of considering the ecological conditions of the receiving sea, especially with respect to the predominantly limiting nutrient and the pelagic N:P ratio. While total load reduction into the Black Sea was approximately 10% for both TN and TP inputs, pelagic nitrate concentrations consistently decreased, while phosphate concentrations strongly increased. This was caused by the strong N-limitation of the phytoplankton in the deep basin, which was already occurring and got enhanced by the load reductions. Typically, the shelf surface waters of the Black Sea are phosphorus limited (Cociasu et al., 1997), while in the inner basin and continental slope the surface N:P is ∼6-8 (Tugrul et al., 1992; Tuğrul et al., 2014). Compared to the maximum loads of the Danube in the late 1980s, riverine nutrient loads had already been reduced by 15% and nearly 40% for TN and TP respectively in 2000 (Behrendt and Zessner, 2005; Popovici, 2015), without resulting in a significant recovery of the Black Sea ecosystem (Oguz and Velikova, 2010). It has been severely damaged by eutrophication since the 1970s (Mee, 1992; Kideys, 2002) and is in a strongly degraded state since the early 1990s (Oguz and Velikova, 2010). The opposite process explains the results in the Mediterranean Sea, where phosphate is the limiting inorganic nutrient (Tanaka et al., 2011; Lazzari et al., 2016). Phosphorus input reductions in the Adriatic Sea have caused a significant decline in phytoplankton (Mozetič et al., 2010; Cozzi and Giani, 2011) and may even lead to oligotrophication (Piroddi et al., in press). At the same time, there was an increase in unused DIN in Mediterranean waters in the ensemble (Figure 2A).

Although, in general, the amount of phytoplankton biomass was reduced in both the Black Sea and the Mediterranean Sea, the resulting increase in unused inorganic nutrients in the marine ecosystems could induce unwanted changes (Peñuelas et al., 2013). For example, excess phosphate in Black Sea waters could favour a bloom of nitrogen-fixing bacteria, some of them presenting harmful components, as already observed for the Baltic Sea (Olofsson et al., 2016). An excess of DIN in Mediterranean waters could also provoke changes in floristic composition of the plankton community, with unexpected consequences on the entire food webs (Piroddi et al., in press). To overcome this problem, load reduction targets must consider the ecological state and nutrient limitation of the receiving marine waters, as well as physical characteristics and climate change impacts on nutrient dynamics (Kanter and Brownlie, 2019). Here an improved policy approach is necessary, where nutrient input targets are defined based on the ecological state in the marine waters. Despite severe shortcomings, a positive example of successful consideration was the revised Baltic Sea Action Plan (HELCOM, 2007, 2013b), where firstly ecological targets (referring to the GES thresholds) were defined (HELCOM, 2013a) and secondly, allowable nutrient inputs were estimated, to meet then the marine targets. Therefore, it is strongly recommended that a comparable approach is applied to all other MSFD regions.

Applying a full pan-European model ensemble, instead of a single model for each regional sea, allowed us to find strong consistencies (see Figures 2B, 3B, 4B, 7B, 8B) in the simulated responses of marine ecosystems to reduced riverine nutrient loads. For most regions, the majority of models agreed that the load reductions led to decreased levels of the dissolved inorganic nutrients (except for regions where the non-limiting nutrient accumulated) and phytoplankton biomass, while bottom oxygen increased slightly (see Table 1). These consistent and coherent patterns indicated robust model results, as demanded by stakeholders or managing authorities. To enhance the robustness of the concluded results, the sensitivity of the computed mean changes was tested by applying three different mathematical methods to assess the average relative differences (see Supplementary Figures 5–9). Therefore, the sequence of computing the temporal and spatial averages, as well as the relative differences was varied. While the derived mean changes were almost the same for most models and indicators using all assessment methods, there were several cases where the different methods led to results with opposite signs (Supplementary Figures 5–9). As the relative difference computation, as well as the spatial and temporal averaging, are nonlinear functions in time and space, we expected to obtain differences with all the assessment methods, which each have their advantages. Computing first the temporal averages for the single eutrophication indicators, before computing the relative differences, gave more stable results and was therefore used for the spatial maps (Figures 2A, 3A, 4A, 7A, 8A). However, this method failed to evaluate seasonal or interannual differences and it resulted in high standard deviations due to the spatial heterogeneity. On the other hand, computing the spatial average first and then the relative difference for each time step allowed us to see seasonal and high frequency signals better, while areas with strong responses were overlaid by large open sea areas mostly unaffected by the nutrient input changes. Computing the relative differences first, before doing the spatial and temporal averaging, was quite a sensitive method, if there were very small concentrations in the reference scenario, which might result in extraordinarily high relative differences. None of the single methods is thus perfect, but they reflected different sources of natural variability. Hence, it is recommended that different calculation methods are applied to obtain the specific mean and standard deviation values for each MSFD region.

While the ensemble exercise allowed us to obtain consistent and robust results, some shortcomings and uncertainties could not be eliminated. For some regions, only two model systems have participated in the ensemble exercise, which might not be enough to gain a robust ensemble outcome. Thus, it seems important to add further models to the ensemble to gain results that are more robust. It is worth noting, however, all modelling groups joined the ensemble exercise voluntarily and received no financial support. A potential, although labor-intensive, step forward towards more robust ensemble results could be to proceed to weighted ensembles (instead of unweighted ones like the present study). This could use weights based on a comparison of the model results with observations (Almroth and Skogen, 2010; Meier et al., 2018), as long as there are suitable and usable data to obtain the weights. Reduction in total nutrient loads were determined based on the scenario output from the catchment model GREEN (Grizzetti et al., 2021). These reductions were applied exclusively to the inorganic nutrient loads to the seas, but there was no reduction in organic loads, although these contribute substantially to overall loads, especially in the Baltic Sea (Voss et al., 2010). The boundary effects between different MSFD regions of the nutrient input reductions could only be included directly for some MSFD regions and models, e.g., in the Mediterranean Sea, all four MSFD regions are directly covered and therefore coupled by the marine models. For several transition zones (especially between the North and Baltic Seas, but also between the Black Sea and the Mediterranean Sea), the boundary effects were not explicitly included. To address this shortcoming, it seems necessary to have more model systems like HZG-ECOSMO, which cover several MSFD regions. Although, the ensemble setup was homogenised as far as possible by following a coordinated protocol, as suggested by Orr et al. (2017), some differences remained (see Supplementary Table 1 for details) fostering variations in the results. For example, every model had a specific spin-up phase before the nutrient load reduction took place. Although all ensemble members were validated against up-to-date observations (see Supplementary Table 1), the state variables at the beginning of the load reduction scenario (01/01/2005) differed between the model systems after the individual spin-up. This resulted, inter alia, in slightly different N:P ratios in each model, and hence differences in response to the load reductions (e.g., strength of nutrient limitations) in the marine models.



CONCLUSION

Despite the above mentioned limitations, the novel pan-European marine model ensemble has demonstrated that a consistent assessment of land-based measures on the marine environment is possible. In almost all marine regions, riverine load reductions led to improvement in nearly all marine eutrophication indicators included in the Marine Strategy Framework Directive. These improvements were greatest for dissolved inorganic nutrients, while chlorophyll-a and bottom oxygen concentration showed only minor and slow changes. Consistency of changes within the ensemble was higher for shelf regions, which reacted more quickly to the change in nutrient inputs. Applying a composite indicator such as the Trophic Index TRIX allowed us to obtain consistent results for the different seas despite regional peculiarities, which must be considered to prevent an accumulation of the non-limiting nutrient when pollution-reduction measures are applied. Combining several marine biogeochemical models into an ensemble, following a harmonised scenario approach, substantially increases the robustness and certainty levels of the derived results, in spite of the difficulties associated and the increased workload compared to a single model study.

Some shortcomings of the presented scenario approach were also revealed. Particularly, the relative short time-span (eight years) of the simulations does not allow capturing the full impact of the improved nutrient management in the marine environment. Further, the consequences for river quality of the improved nutrient management was estimated only with one hydrological model, while a freshwater model ensemble would be a better approach to reduce uncertainty. In some seas, only two marine model systems contributed to the ensemble, what might be too few to reduce the uncertainty substantially. Also, only few model systems include several interconnected MSFD regions, although there are interactions between them (e.g. only one model system includes the North and Baltic Seas). The robustness and certainty of the derived results were further addressed by applying different methods to compute the mean spatial and temporal changes at MSFD region level, as each of these procedures allows for different sources of natural variability to be addressed. While the mean values in the three approaches were comparable, the signal-to-noise ratios varied more strongly. This might indicate that merging large and inhomogeneous seas into one unique MSFD region might be inappropriate. The combination of these statistical approaches for evaluating the scenario outcomes with a model ensemble is an important contribution towards providing more robust model outputs as required to support future management and to achieve targets set by policy drivers.
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Although frequently suggested as a goal for ecosystem-based fisheries management, incorporating ecosystem information into fisheries stock assessments has proven challenging. The uncertainty of input data, coupled with the structural uncertainty of complex multi-species models, currently makes the use of absolute values from such models contentious for short-term single-species fisheries management advice. Here, we propose a different approach where the standard assessment methodologies can be enhanced using ecosystem model derived information. Using a case study of the Irish Sea, we illustrate how stock-specific ecosystem indicators can be used to set an ecosystem-based fishing mortality reference point (FECO) within the “Pretty Good Yield” ranges for fishing mortality which form the present precautionary approach adopted in Europe by the International Council for the Exploration of the Sea (ICES). We propose that this new target, FECO, can be used to scale fishing mortality down when the ecosystem conditions for the stock are poor and up when conditions are good. This approach provides a streamlined quantitative way of incorporating ecosystem information into catch advice and provides an opportunity to operationalize ecosystem models and empirical indicators, while retaining the integrity of current assessment models and the FMSY-based advice process.

Keywords: strategic advice, ecosystem approach to fisheries management, FECO, Ecopath with Ecosim, indicators


INTRODUCTION

Fish stock productivity is affected by random environmental variability, environmental cycles and trends (Britten et al., 2017; Free et al., 2019). Fisheries management often relies on setting annual or multi-annual catch quotas which need to be constrained to avoid depleting the stock, but for economic reasons also need to avoid under-harvesting. This aim is enshrined in the maximum sustainable yield (MSY) concept which is incorporated into international ocean law (UNCLOS Article 61; UNCLOS, 1982), as well as many regional and national fisheries policies. Unexplained environmental fluctuations are generally dealt with by incorporating a degree of precaution in the resulting catch advice, or via the use of probabilistic state-based approaches (Harwood and Stokes, 2003). Fisheries scientists have also long appreciated the potential impact of environmental cycles on stock productivity (Ottersen et al., 2001; Chavez et al., 2003) and pointed out that these “productivity phases” pose a challenge to the concept of MSY (Punt and Smith, 2001), which assumes there is a long-term stationary state that stocks will reach under a particular fishing mortality regime (FMSY). Nevertheless, in theory FMSY values can be adjusted in response to environmentally driven productivity, the challenge being to distinguish a new productivity phase from the short-term environmental variability. In addition, both stochastic environmental variability and cycles can be confounded by longer-term trends. This is the case with anthropogenic increases in atmospheric CO2 levels, resulting in warming over large areas of the global oceans, reductions in pH, changes to ocean stratification patterns, and other secondary effects (Solomon et al., 2009; Henson et al., 2017).

Changing environmental conditions can impact individual species’ spatial ranges (Fredston-Hermann et al., 2020), phenology (Poloczanska et al., 2016), recruitment (Beggs et al., 2014), and growth (Baudron et al., 2014). Taken together, these species impacts may manifest as changes in the whole community (Burrows et al., 2019). There can also be a wide range of indirect impacts, e.g., on primary and secondary productivity (Capuzzo et al., 2018), on predator-prey match-mismatch (Régnier et al., 2017), and on overall prey availability (Alvarez-Fernandez et al., 2015). Such responses at individual, species and community levels can potentially affect both ecosystem structure and functioning (Walters and Christensen, 2019; Ye and Carocci, 2019). Accounting for ecosystem condition in marine management is therefore paramount for the maintenance of healthy ecosystems and the protection of stakeholder interests. Promisingly, recent studies found that one quarter of fish stock assessment models included at least one type of interaction between the assessed species and its ecosystem in the US (Marshall et al., 2019), with 27% of assessments in Canada making recommendations or providing advice based on climate, oceanographic or ecological considerations (Pepin et al., 2018). Thus, whilst some progress is being made in some jurisdictions, ecosystem information has not yet been widely incorporated into tactical fisheries management (Skern-Mauritzen et al., 2016).

Ecosystem-based management (EBM) encapsulates the movement toward a more cooperative and holistic approach to marine resource management (Leslie and McLeod, 2007). Whilst there is no single definition for EBM (Long et al., 2015), its general principles assert that resource managers must acknowledge the complexities and interspecific dynamics of ecological systems whilst accounting for human social and governance objectives (Long et al., 2015). Fisheries specific variations include ecosystem-based fisheries management (EBFM), the ecosystem approach to fisheries (EAF) (Garcia, 2003), and ecosystem approach to fisheries management (EAFM) (Link, 2002; Hall and Mainprize, 2004). EBFM recognizes the combined physical, biological, economic, and social trade-offs affecting the fisheries sector, and the need to consider not only the anthropogenic and environmental factors which impact stocks, but also how stock dynamics impact other components of the ecosystem (Link J., 2010; Link and Browman, 2014). In EAFM, ecosystem factors are included in the assessment of a stock, while the social and political dimensions are not necessarily explicitly addressed (Pitcher et al., 2009; Link and Browman, 2014). EAFM thus represents a small, yet important, step from traditional single-species stock assessment, toward fully holistic EBM.

Within the EU, EBM of all maritime activities is mandated through the Marine Strategy Framework Directive (MSFD) (EC, 2008). For fisheries, Article 13 of the Reformed Common Fisheries Policy (CFP) explicitly calls for implementation of EAFM (EC, 2013). However, movement toward EAFM has been hampered by the mismatch between CFP and MSFD policies in terms of competence, discourse, decision making, and their definitions of EAFM (Ramirez-Monsalve et al., 2016). Furthermore, the CFP fails to state at which level ecosystem concerns should be incorporated into fisheries management (Prellezo and Curtin, 2015). As a consequence, although the science to support ecosystem-level advice has grown, progress toward operational EAFM has been slow (Jennings and Rice, 2011; Patrick and Link, 2015; Ramirez-Monsalve et al., 2016).

The daunting challenge of moving toward a more holistic approach has led to skepticism among critics regarding the ability to operationalize ecosystem advice. Issues that have been raised include whether the existing governance structure can support an ecosystem approach, whether we have enough data to support an ecosystem approach, and whether the models required are too complex or uncertain to be useful (Collie et al., 2016; Patrick and Link, 2015). Underlying all of these issues is the worry that we simply do not know enough to take constructive action. Whilst we deliberate the merits of EBM, the threat of climate change and overexploitation grow (Daw et al., 2009; IPCC, 2019), so that the perceived benefits of moving toward an ecosystem-based approach may soon outweigh the perceived risks of a status quo approach (Pikitch et al., 2004). Despite the questions that impede action, Patrick and Link (2015) assert that perfect knowledge of every process is neither attainable nor needed to implement ecosystem-based actions, and that our existing knowledge of patterns and processes, along with existing modeling tools and approaches, should be more than enough to start implementing an ecosystem approach.

Whilst direct environmental effects have been incorporated into a number of single-species stock assessments, e.g., sea temperature affecting catchability in fisheries surveys, or recruitment time series (Marshall et al., 2019), models representing multiple species or the entire food web have had less uptake – although they have the capacity to produce both the strategic and tactical ecosystem advice to advance EAFM (Plagányi et al., 2014; Collie et al., 2016). Recent years have seen an increase in the capabilities of ecosystem models: those which simulate the interactions between food webs, fisheries, and the environment (Hyder et al., 2015; Heymans et al., 2018; Bryndum-Buchholz et al., 2019; Lotze et al., 2019), alongside a rapid expansion in the ability of oceanographic (Meehl et al., 2014) and climate models (Bauer et al., 2015; IPCC, 2019). These advances have led to the emergence of more capable ecological forecasts (Payne et al., 2017), ecosystem-level explorations into the cumulative impacts of fishing and climate change (Serpetti et al., 2017), and the emergence of multi-species MSY approaches which account for trophic interactions and environmental change (Spence et al., 2020a).

The jump from single-species modeling to ecosystem modeling requires an increase in model complexity and parameters across several classes of data to quantify trophic interactions, life-history properties, environmental signals, fishing activity, and many others, often across both temporal and spatial resolutions (Christensen and Walters, 2004). The development of these complex models has been facilitated by increased computing power and availability of environmental data. There is now a wealth of different ecosystem and multi-species models available (Hyder et al., 2015). Ecopath with Ecosim (EwE) has become one of the most widely used approaches for modeling marine food webs and was developed as a tool for modeling fisheries within an ecosystem context (e.g., Plagányi and Butterworth, 2004; Christensen and Walters, 2011; Coll and Libralato, 2012; Mackinson et al., 2018).

Numerous EwE studies have concluded with the recommendation that ecosystem information should be incorporated into management (e.g., Bentley et al., 2017; Serpetti et al., 2017) but most stop at this point and fail to provide any suggestion of how this should be done. A few EwE studies have provided revised fishing reference points based on multi-species considerations (Baudron et al., 2019), or compared trade-offs between different fishing strategies (Stäbler et al., 2016, 2019), but as far as we know, no EwE model has ever been used to set catch levels.

In Europe and North America there is typically an annual cycle of stock advice and implementation of management measures such as catch quotas. To provide advice on an annual basis across multiple stocks, assessment scientists require models of low or intermediate complexity which rely on minimal assumptions, minimal data, can be run quickly and can be easily updated (Methot, 2009; Plagányi et al., 2014). EwE models are good for highlighting plausible trends in the ecosystem and building an understanding of the underlying relationships which regulate productivity (e.g., Corrales et al., 2017; Bentley et al., 2020). However, input-data uncertainty and structural uncertainty makes their use in providing absolute values for single-species advice problematic (Collie et al., 2016).

In this paper we demonstrate that we do not have to replace the standard assessment methodologies, but rather we propose a way to supplement single-species assessments with strategic ecosystem information derived from ecosystem models.

We present an approach for the incorporation of ecosystem information into catch advice and demonstrate, by testing the approach on Irish Sea herring (Clupea harengus), cod (Gadus morhua), whiting (Merlangius merlangus), and Nephrops (N. norvegicus), how the approach has the potential to encourage more precautionary stock harvest during poor productivity phases and prevent overly cautious yields during high productivity phases. Our proposed approach was co-developed by scientists, stakeholders, and policy advisors aiming to enhance Irish Sea catch advice by accounting for the environmental impacts which had historically hindered stock production and fishing opportunities. We outline the framework applied in the current case study of the Irish Sea to allow further development and testing in other sea regions.



ICES ADVICE ON CATCH OPTIONS

For the North Atlantic waters under the EU CFP (excluding the Mediterranean), scientific advice on fishing opportunities is provided by ICES (International Council for the Exploration of the Sea) based on two principles under European legislation: MSY and the precautionary approach (Froese and Quaas, 2013). ICES applies the MSY concept to single-species stocks to maximize average long-term yield and maintain productive fish stocks within healthy ecosystems. Despite being on the international agenda for decades, MSY has always been a disputed concept, especially when put forward as the overarching objective of fishery management (Larkin, 1977). Criticisms include its top–down nature, inherent uncertainty, and concerns that it may not be conservative enough to ensure sustainability (Mesnil, 2012). Importantly, estimates of MSY generally assume ecosystem stability (and healthy ecosystems), such that populations will reach a theoretical equilibrium if subjected to a fixed fishing mortality rate (F) in the long-term. Given that marine ecosystems are increasingly affected by climate change, this assumption is less tenable and raises questions first posed in the 1950s about how often MSY values should be revised in response to ecosystem change (Finley and Oreskes, 2013). In addition, the common assumption that stocks fished at MSY will be able to support non-commercial species, including marine mammals and seabirds, is debatable since the required biomass to support predators is typically unknown (Hill et al., 2020). However, MSY conveys a beguilingly simple and politically attractive message (Cushing, 1977; Mesnil, 2012), which has likely led to its adoption in policies including the UN Convention of the Law of the Sea (UNCLOS), US fisheries policy (Finley and Oreskes, 2013) and the EU CFP (EC, 2013). In ICES advice, FMSY, is therefore the fishing mortality that should give long-term MSY from a single stock.

In addition, ICES conforms to the precautionary approach by providing advice for Total Allowable Catches (TAC) based on rules that aim to ‘safeguard’ stocks from overfishing (Figure 1). When spawning stock biomass (SSB) falls below a threshold (MSYBtrigger), the proposed F should be linearly reduced toward zero to enable the stock to rebuild to levels capable of producing MSY, assuming future recruitment follows historical levels. A further reference point, Blim sets the level of SSB where future recruitment is highly likely to be impaired and is based on the lowest SSB where large recruitment has been observed. If SSB falls below Blim, then an F of zero is advised. Because of the historical evolution of the reference points, precautionary reference points are also provided (Bpa and Fpa) to reduce the risk of reaching Blim or the F limit (Flim).
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FIGURE 1. ICES fishing and reference points for Irish Sea herring (her.27.nirs). ICES provide (A) biomass reference points, (B) fishing reference points, (C) and an advice rule to ensure fisheries management advice is consistent with the precautionary principle.


Following concerns that FMSY gave managers insufficient flexibility to manage multispecies fisheries, ICES also now provides advice on plausible values around FMSY for several stocks in the Baltic Sea, North Sea and Western EU waters. These FMSY ranges (FMSYlower to FMSYupper), introduced in 2015, are intended to deliver no more than a 5% reduction in long-term yield compared with the MSY (ICES, 2015c). These ranges are derived through long-term simulation of observed stock dynamics and include appropriate assumptions of biological variability and model error. Precautionary and good yield are still achieved when fishing within the FMSY ranges (if stocks are above MSY Btrigger), however, the provision of an FMSY range introduces flexibility for quota setting. This flexibility is especially useful in mixed fisheries where the catch of one stock is coupled with the unavoidable catch of other stocks, which may or may not have a choke effect under the EU landings obligation (Rindorf et al., 2017; Garcia et al., 2020). However, there are no current guidelines to operationalize the use of FMSY ranges and they have not been widely used. We propose that relevant ecosystem indicators, derived from or identified by ecosystem models, could be used to provide an ecosystem informed target F within these established FMSY ranges. This concept arose from a series of workshops centered on building capacity for an ecosystem-based approach to fishery management for the Irish Sea (ICES, 2020). This approach adds to the utility of the FMSY ranges for mixed fisheries, by providing a precautionary reference point, contingent on the productivity and condition of the wider ecosystem.



THE IRISH SEA AND ICES WKIrish

Irish Sea fisheries have undergone considerable change in recent years following the decline of commercially important finfish stocks and their slow response to management measures invoked through recovery plans. Addressing the challenges facing these fisheries requires a holistic approach, including modeling, to improve ecosystem understanding alongside the refinement of single-species assessment methods. This process was initiated in the first ICES Integrated Benchmark Assessment (WKIrish; ICES, 2015a) which established the WKIrish Framework. The WKIrish framework brought multiple stakeholder groups together, including fishermen, scientists, regulators, environmental non-governmental organizations and other interested parties to enhance fisheries advice and co-develop an operational route for EAFM. The work plan for the WKIrish Framework was a multi-year process focused on improving the single-species stock assessments and advice for the Irish Sea (ICES division VIIa) (Figure 2), incorporating a mixed fisheries model, and developing an approach for the integration of stakeholder knowledge and ecosystem science in order to work toward an integrated assessment1.
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FIGURE 2. ICES fisheries divisions and the Irish Sea. Map of the United Kingdom and Ireland with the surrounding waters broken down into their ICES advisory areas (left), along with a map of the Irish Sea; ICES division VIIa (right).


The first WKIrish workshop (WKIrish1; ICES, 2015a) centered around the co-design and co-production of knowledge with information exchange between scientists and stakeholder groups concerning ecosystem processes, fisheries, management and policy issues, leading to the identification of data and tools that could be used to progress EBFM in the Irish Sea. Following this, further workshops were held to evaluate the scientific (fisheries) data available for the region (WKIrish2; ICES, 2016), update Irish Sea single-stock assessments (WKIrish3; ICES, 2017), integrate stakeholder knowledge into ecosystem models (WKIrish4; ICES, 2018b), and identify ways to operationalize EAFM for the Irish Sea (WKIrish5 and 6; ICES, 2018a, 2020).

WKIrish also motivated new ecosystem modeling. There are now four multi-species models for the region including an updated Ecopath with Ecosim model (EwE; Bentley et al., 2020), a ‘Length-based Multispecies analysis by numerical simulation’ model (LeMans; Thorpe et al., 2015; Spence et al., 2020b), the Model for the Simulation of Ecological Systems (MoSES; ICES, 2020), and a Fleet and Fisheries Forecast model (FCube; Ulrich et al., 2011; ICES, 2018b). The four models are closely aligned in their purpose yet differ structurally, opening the door for ensemble modeling opportunities such as those seen in the North and Baltic Seas (Spence et al., 2018; Bauer et al., 2019) and globally (Lotze et al., 2019). As a result of the WKIrish Framework, these models have been designed at the science-policy interface where they have benefited from stakeholder input and feedback and critique from the extended research community. Stakeholders were integral participants of all six WKIrish workshops, contributing toward research design, implementation, and dissemination. The EwE model was designed in principle to address questions from the fishing industry who were asking why fish stocks showed little sign of recovery despite their large reductions in fishing effort. Focusing on these questions through WKIrish streamlined the integration of outputs into ICES advice for Irish Sea fisheries, as it specifically addressed the needs of the stakeholder-led North Western Waters Advisory Council (NWWAC). Fishers’ knowledge was used in the co-production of studies on species diets (Bentley et al., 2019a), historical fishing effort (Bentley et al., 2019b), and integrated ecosystem assessments (Pedreschi et al., 2019).

Of the four models, the EwE is the most operationally complete (ICES, 2019c). It was evaluated by the ICES Working Group on Multispecies Assessment Methods (WGSAM) in 2019 and approved as a quality assured reference for scientific input to ICES advice products (ICES, 2019c). Hindcast simulations using the EwE model suggest that historic environmental change did suppress the overall production of several commercial finfish species, limiting opportunities for the fishing industry, whilst also dampening the rates of stock recovery despite marked reductions in fishing effort (Figure 3) (Bentley et al., 2020).


[image: image]

FIGURE 3. Biomass simulations for commercial stocks in the Irish Sea. Simulations were generated using the Irish Sea EwE key run (ICES, 2019c) with environmental drivers (orange) and without environmental drivers (blue) to discern the role of environmental change in stock trajectories. Solid lines indicate baseline model simulations and shaded areas indicate 95% confidence intervals based on input uncertainty (see Bentley et al., 2020). Dashed lines indicate biomass trends from single-stock assessment models.


During the fifth meeting of WKIrish it was proposed and agreed that ecosystem indicators derived from or identified by the EwE model could be used to inform fishing opportunities for each stock within the pre-defined range of FMSY values (ICES, 2018b). If ecosystem indicators for a stock are in a poor condition, managers should be advised to apply an FMSY at the lower end of the range to minimize the cumulative impact their actions may have on the stock. If indicators suggest that the stock is experiencing favorable ecosystem conditions and stock biomass is above MSY Btrigger, then an F in the upper range could be advised. This approach provides a streamlined, quantitative way to incorporate ecosystem information into an existing management framework following the objectives of the guiding fishery policy (CFP) (EC, 2013).



ECOSYSTEM ADVISED F (FECO)


FECO Concept and Calculation

Ecosystem advised F, for a given stock, which we refer to as FECO, is a precautionary F within the predefined FMSY range based on the strategic understanding available from ecosystem models. This approach does not require additional complexity in stock assessment models, therefore maintaining their robustness for short-term forecasting of stock trajectories. FECO achieves EAFM and facilitates a move toward EBFM, providing an important step to bring ecosystem information into the advice process. Ecosystem indicators to inform FECO should be selected based on a biological understanding of the stock and the likely mechanism behind the indicator-stock relationship. We note though that mechanisms linking environmental trends with stock production can be unclear and are often inferred from correlation analyses (Zimmermann et al., 2019). However progress has been made toward quantifying the environmental mechanisms driving stock production (e.g., Brill and Lutcavage, 2001; Kristiansen et al., 2014; Régnier et al., 2017). It is important to recognize, however, that correlations can and may break down over time, and causation cannot be inferred.

The potential indicators identified using the Irish Sea EwE model ranged from single observable drivers such as sea surface temperature to more complex emergent food web indicators, such as indices of trophic level. The model was thus applied in two ways to provide ecosystem information: (1) model results were used to identify and recommend important indicators available from other sources (i.e., temperature or zooplankton biomass); and (2) emergent model products were identified as indicators (i.e., trophic indices or predation mortality).

The proposed method for calculating FECO for a given year uses the status of an indicator from that year (Is) relative to its long-term range (i.e., is the indicator high or low relative to values across the time series) which is calculated as:
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where Iy is the ecosystem model indicator (I) value in year y, Iymin is the minimum value of I from the time series and Iymax is the maximum value of I from the time series. This equation provides a proportion, between zero (relatively poor status) and one (relatively good status), which ranks how the current status of the indicator compares with previous years, assuming low values of the indicators represent relatively poor status. This would not be the case for negative relationships, such as that seen between cod SSB and temperature (Brander, 1995; Planque and Fox, 1998), where higher spring sea temperatures appear to be linked to reduced subsequent recruitment. In such cases, IS should be calculated as shown in the second condition of Equation 1 so that high indicator values return low IS values. The status of the indicator determines the placement of the FECO reference point within the ICES FMSY range. If only a single indicator is considered and IS is equal to zero, FECO will equal FMSYlower, whilst if IS is equal to one, FECO will equal FMSYupper (Equation 2). Considering the ICES advice rule that FMSY should be linearly reduced toward zero when SSB is below MSY Btrigger, we have added a condition to Equation 2 to keep FECO for the coming year within the precautionary bounds of ICES advice when SSB is ≤MSY Btrigger. Below Blim FECO is equal to 0 following ICES advice:
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Which indicator(s) is/are appropriate will vary by stock and environment. During the sixth meeting of WKIrish, candidate indicators were proposed and explored for each of the key Irish Sea stocks, including cod, whiting, haddock (Melanogrammus aeglefinus), sole (Solea solea), plaice (Pleuronectes platessa), herring, and Nephrops (ICES, 2020). The Irish Sea EwE model was used to explore the relationship between the candidate indicators and the EwE derived trends of stock size.

To date, only first order linear relationships have been tested, however, further exploration of more complex relationships may yield different candidate indicators. The production of some stocks may also be linked to multiple indicators. For example, indicators of temperature and predation pressure both correlated with Irish Sea sole SSB. Estimations of the contribution of these drivers to production rate of the stock could form the basis of indicator weightings between zero and one, making it possible to estimate the overall indicator status for the stock:
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where IS is the current condition of the weighted set of indicators (Ii, calculated using Equation 1) multiplied by its proportional weighting (αi), where the sum of the weights equals one. Therefore, if temperature had a stronger effect on the production of sole than predation pressure, the overall indicator score (IS) could be weighted in favor of the current temperature.

The values of the indicator should be updated as soon as possible when derived from environmental time series or, in the case of model derived metrics should be updated through regular re-evaluation of the ecosystem models. For example, ICES review and update data, assessment methodologies, reference points, and models every 3–5 years during workshops known as benchmarks. During ICES benchmarks, the relationships between ecosystem indicators and stock production should be reviewed to determine if they are still valid.



FECO Example

The FECO approach is demonstrated here for four commercial Irish Sea stocks. During WKIrish6, experts used the EwE model and outputs and analysis from Bentley et al. (2020) to identify suitable FECO indicators for herring, cod, whiting and Nephrops (ICES, 2020). The process through which indicators were identified (demonstrated in Figure 4) involved identifying the drivers underpinning stock dynamics in the EwE model based on how their inclusion in the model impacted the statistical fit of model simulations to observed data. Herring production in the Irish Sea has been influenced by the top down impact of fishing but also the availability of large zooplankton (>2 mm), a functional group in the EwE model consisting mostly of Calanus spp. which are the main prey of herring (Rice, 1963). The large zooplankton biomass indicator, available from the Continuous Plankton Recorder (CPR) survey (Reid et al., 2003) (Figure 4D) was thus selected to be used in the calculation of herring FECO. Sea surface temperature was identified as an indicator of stock production for both cod and whiting (ICES, 2020). The identified relationship between temperature and SSB was improved by lagging the SST (3 years) to align the environmental condition with stock recruitment. Finally, the abundance of higher trophic levels (4+) was strongly and negatively related to the stock production of Nephrops, indicating higher predation when this indicator was high. Zooplankton and SST indicators were derived from primary sources (such as the CPR survey). The trophic level 4+ indicator used in calculation of FECO for Nephrops was taken as a direct EwE output.
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FIGURE 4. Relationship between large zooplankton biomass and Irish Sea herring production. The key drivers of Irish Sea herring biomass in the Irish Sea EwE model are: (i) fishing pressure, and (ii) the biomass trend of large zooplankton. (A) The solid line indicates the model simulation, the shaded area is the 95% uncertainty bounds based on input data uncertainty, and the dashed line is the single-stock assessment. (B) Agreement between EwE simulations and stock assessment results decreased when large zooplankton biomass was not well replicated (i.e. the NAOw is not used as a driver of zooplankton mortality) and (C) fishing mortality is not accounted for. (D) Large zooplankton biomass simulations are improved when production is driven by the North Atlantic Oscillation (dashed line is the index of large zooplankton (>2 mm) from the Continuous Plankton Recorder (CPR) with a three-year moving average). (E) Returning to the ‘raw’ data, a positive linear relationship is identified between herring SSB and CPR large zooplankton index with a 3-year moving average.


Equation 1 was used to calculate the status of each indicator (IS) for 2016, which was the final year of the EwE model, and Equation 2 was used to scale FMSY to produce FECO reference points for 2016 (Figure 5). The ecosystem model was driven under three F scenarios for each stock: (1) the actual annual F as calculated in the most recent stock assessment, (2) the FECO advice rule was followed, with F being adjusted on an annual basis in-line with the retrospective status of the stock-specific ecosystem indicators described above, and (3) FMSY held constant (with no advice rule applied) across the entire simulation. We also calculated the summed catch (across the entire time series) and interannual variation (IAV) of the catch for each scenario. The IAV for each fishing scenario was calculated as:
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FIGURE 5. From indicator to FECO. Examples are presented for Irish Sea (A) herring with large zooplankton biomass as an indicator, (B) cod with inverted sea surface temperature (SST; 3-year lag) as an indicator, (C) whiting with SST (3-year lag) as an indicator, and (D) Nephrops with the inverted biomass of trophic level 4+ as an indicator. On the left, all indicators are rescaled between zero and one to provide a percentile value which ranks the status of the indicator (IS) in 2016 compared with previous years. On the right, the status of the indicator determines the placement of the FECO reference point within ICES FMSY ranges.
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where n is the number of years (y) in the simulation and Cy is the catch during year y (A’mar et al., 2010).


Herring

Adjusting herring FMSY in line with the condition of the large zooplankton indicator reduced catches during poor ecosystem conditions and encouraged higher catches during periods of good ecosystem condition (Figure 6). The largest divergence in catches between scenarios was seen in 2011, where catches under the FECO scenario were 25% greater than those under the FMSY scenario and 57% greater than those from the actual F scenario. When compared with FECO, the stationary FMSY target led to lower biomasses during periods of low productivity and resulted in overly cautious harvest during periods of high productivity. Simulated herring biomass was higher using FECO, than when using FMSY or actual F during the periods of lower productivity (less zooplankton), and this was reversed in periods of higher zooplankton abundance. Summed catches were similar across scenarios, however, IAV was higher under FECO due to the relatively erratic zooplankton indicator trend.
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FIGURE 6. Retrospective application of FECO for Irish Sea herring: Three fishing mortality scenarios were prepared to simulate Irish Sea herring dynamics from 1980 to 2016. FECO was retrospectively calculated based on the condition of the large zooplankton indicator. The different fishing mortality trends were applied to herring in the EwE model to simulate their effect on the stock’s biomass and catch (trend, total yield, and interannual variation).




Cod

Fishing at FECO for cod, which was dynamic in response to SST changes (inverted trend with a 3-year lag), and stationary FMSY led to generally higher catches across the entire time series (Figure 7). This is because the lower initial F and catches allowed for a more productive cod stock in the long-term. As with herring, FECO proved to be the more precautionary scenario of the three as it resulted in higher biomasses following the reduction of fishing mortality during poor ecosystem conditions. We see this most prominently from the year 2000 onwards, where FECO was reduced due to high temperatures. The disparity between FECO and FMSY scenarios is greatest around the years 2010 to 2012, where biomass and catches are on average 58 and 35% higher respectively in the FECO scenario. The IAV at FECO was less than the actual F but still more than FMSY due to the addition of environmental variability.
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FIGURE 7. Retrospective application of FECO for Irish Sea cod: Three fishing mortality scenarios were prepared to simulate Irish Sea cod dynamics from 1976 to 2016. FECO was retrospectively calculated based on the condition of the sea surface temperature (3-year lag) indicator. The different fishing mortality trends were applied to cod in the EwE model to simulate their effect on the stock’s biomass and catch (trend, total yield, and interannual variation).




Whiting

Retrospective simulations suggest that fishing whiting at FECO or FMSY across the time series would have produced more stable long-term yield and kept the stock above MSYBtrigger (Figure 8). Fishing at the actual F led to higher summed catches however this scenario was unsustainable and led to the severe overexploitation (biomass < Blim) of the stock. There are few differences between the FECO and FMSY biomass and catch projections, however, like cod, fishing at FECO led to higher stock biomasses from 2000 onwards by reducing F during poor indicator conditions. Similarly to cod, the IAV at FECO was less than the actual F but greater than FMSY.
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FIGURE 8. Retrospective application of FECO for Irish Sea whiting: Three fishing mortality scenarios were prepared to simulate Irish Sea whiting dynamics from 1976 to 2016. FECO was retrospectively calculated based on the condition of the sea surface temperature (3-year lag) indicator. The different fishing mortality trends were applied to whiting in the EwE model to simulate their effect on the stock’s biomass and catch (trend, total yield and interannual variation).




Nephrops

Nephrops catches when fishing at FECO were often lower when compared to catches at FMSY or actual F, however, biomass was higher as a result (Figure 9). Catches under all scenarios followed similar trajectories at a similar magnitude, suggesting that fishers may have seen similar short-term and long-term yields at a reduced effort due to the higher stock biomass when fishing at FECO. It is important to note that the EwE model does not explicitly account for limiting factors such as space for burrows, therefore additional analyses would be needed to affirm whether fishing at FECO would have facilitated a higher stock biomass. Nephrops IAV was much lower when fished at FECO and FMSY compared to the actual F.
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FIGURE 9. Retrospective application of FECO for Irish Sea Nephrops: Three fishing mortality scenarios were prepared to simulate Irish Sea Nephrops dynamics from 1976-2016. FECO was retrospectively calculated based on the condition of the trophic level 4+ biomass indicator. The different fishing mortality trends were applied to Nephrops in the EwE model to simulate their effect on the stock’s biomass and catch (trend, total yield, and interannual variation).






DISCUSSION

This study introduces the FECO approach, which provides a quantitative mechanism for incorporating ecosystem information from empirical and model-derived indicators into the ICES single-species stock assessment process. The FECO concept helps deliver EAFM and is a stepping-stone toward EBFM, identifying a pragmatic, transparent route by which ecosystem information can be immediately incorporated into the current single-species stock assessment process without the need to revise any existing ICES protocols. The existing ICES protocols and their adoption by managers are part of a well-established process, some of which is set in the international legislation (e.g., MSY). Changing the system is not easy, and the use of more holistic models in practice has been hampered by their complexity and (to date) difficulty in adhering to the precautionary principle. Using the FECO approach, ecosystem processes can be accounted for without violating existing single-species precautionary reference points and while retaining ‘good yield.’ Furthermore, by using the ecosystem information to refine the target F in this way, quota setting can still be conducted within the single-species assessment models.

Fishing at FECO offered a more precautionary harvest approach for all stocks during periods of poor environmental conditions when compared to actual F or FMSY as, when fished at FECO, stock biomasses showed slower declines and earlier recoveries in the face of adverse conditions. Our results indicate that adapting the chosen F to changes in ecosystem indicators, even within F ranges predefined by single-stock assessment models, enhances the responsiveness of management to changes in stock production. The interannual variation (IAV) was much lower for the FECO scenario than the actual F scenario for all stocks except herring, although compared to the constant FMSY scenario it tended to be higher. This variability was linked to the variability in the stock specific environmental indicators, with the large zooplankton indicator simulating the greatest variability, followed by SST and then trophic level 4+ biomass. While increased variability may make it more difficult to adapt fishing strategies on an annual basis, the use of indicators such as SST with a 3-year lag allows us to project where FECO sits within the reference points range for the next few years, giving management more time to prepare.

Harvesting at FECO can be assumed not to increase the risk of stock collapse beyond that already included in the existing management system since it lies within the precautionary FMSY range. Simulations suggest that fishing at FECO could potentially reduce the risk of stock collapse by reducing exploitation during poor productivity phases. There is a risk that the indicators identified through model simulations do not represent reality, or relationships may break down over time. This should not detrimentally impact the stock, as F will remain within the (precautionary) FMSY ranges, however, the potential benefits of a more precautionary approach may not be realized. This risk can be best managed by frequently revisiting the FECO reference point and updating indicator time series as part of the annual assessment or the established stock benchmark processes.

The main limitations of using EwE to support the FECO approach are linked to: (1) the heavy data requirements, and (2) the question of whether the model is capturing real patterns. With more data, the predictive capacity of ecological models tends to improve as they can capture variability across interannual cycles and multidecadal shifts (Giron-Nava et al., 2017). However, if the model only covers a short time period due to data availability, the possibility that the environmental indicator will move out of the modeled range is increased, which may lead to unexpected changes. We did not include parameter or structural uncertainty in our simulations, which can lead to poor, or no, representation of some ecosystem processes and uncertainty in specific model outcomes. This limitation can be addressed through the use of Monte Carlo analysis to capture the impacts of parameter uncertainty (Kennedy and O’Hagan, 2001; Steenbeek et al., 2018) and ensemble modeling approaches (e.g., Spence et al., 2018; Lotze et al., 2019) which exploit the strengths of different modeling approaches to provide more robust outcomes and a deeper understanding of structural uncertainties. The WKIrish process has four potential models now at different stages of development, including EwE. We note a third limitation of this approach that relates to its application to data-limited stocks. While ICES provides advice on more than 260 stocks on an annual basis, it is estimated that more than sixty percent of these stocks have insufficient data to support short-term forecasts and MSY-based advice (ICES, 2019b). The approach for calculating FECO relies on the availability of MSY-based advice, meaning, in its current capacity, it may not be directly applicable to data-limited stocks without FMSY ranges. However, in the case of the current advice framework for stocks outside of the FMSY approach, arbitrary values are applied to ensure precautionary advice is provided. The concept of an ecosystem indicator within this process may provide a more justifiable advice framework, although this would require further testing.


Streamlining Ecosystem Model Outputs for Catch Advice

WKIrish facilitated the operational use of EwE through regional coordination of the ICES benchmark process. This process brought together industry stakeholders, policy advisors, eNGO’s, biologists, fishery scientists, multi-species/ecosystem modelers, social scientists, and stock assessment experts. Drawing on the experience of WKIrish, we outline four key lessons which have been essential in our aim to advance EAFM for the Irish Sea (Figure 10).


[image: image]

FIGURE 10. Preparing ecosystem models for policy advice. Drawing on the experience of WKIrish, these illustrations outline the four key lessons which have been fundamental in our pursuit to operationalize the Irish Sea EwE model for policy advice.



Lesson 1: Make Sure Your Objectives Are Aligned With Policy Questions

The Irish Sea EwE model was created with the objective to address a specific problem which managers and stakeholders were already invested in: how can management use ecosystem information to work toward an integrated assessment and advice (ICES, 2015a)? This helped to keep the research aligned with issues relevant to policy advisors (in this case, the stock assessment experts up to and including the ICES Advisory Committee) and stakeholders, increasing its utility as a tool to inform catch advice. Researchers thus need to be aware of the policy making process and the relevant issues their research can address, whilst taking care to manage the expectations of industry stakeholders. Be aware that the ways in which EwE and other multi-species approaches can be applied may be limited; policy processes are frequently tied to legislative concepts (such as MSY) which affects the ability of ecosystem science to influence major policy progress (Townsend et al., 2019). It is important to recognize the constraints of existing policy processes and advice frameworks when attempting to integrate and operationalize ecosystem information.



Lesson 2: Engage Early and Often With Stakeholders and Policy Advisors

Dedicated collaboration between scientists, stakeholders, and policy advisors is needed from early in the project to streamline the potential for integration of science into policy advice. Frequent engagement gets people accustomed to seeing ecosystem models and their analysis, which helps build the credibility of the research. A co-design and co-production approach to knowledge generation offers an inclusive forum to share information and trigger positive social and ecological action (Armitage et al., 2011), whilst moving away from expert-built analytical frameworks that fail to capture local knowledge (Djenontin and Meadow, 2018). It also increases the degree to which researchers and stakeholders interact (Dilling and Lemos, 2011), improving the alignment of research to stakeholder needs (Shirk et al., 2012), stakeholders’ understanding of the ‘scientific’ approach, and relations between stakeholders and scientists. Taken together, the approach increases transparency, improving both trust relations and confidence in the science, and co-ownership of the resulting advice. Co-production methods are called for in European level policy documents such as the European Marine Board’s foresight document: Navigating the Future V (EMB, 2019), which highlights the need for transdisciplinarity, calls for which have been increasing globally.



Lesson 3: Use Best Practices Where Available

It is important to use best practices in both model development and stakeholder engagement processes. For stakeholder engagement, this requires inter alia an open-door inclusion policy, providing both the space and time to develop understanding and allow for (facilitated) stakeholder discussions, managing expectations, maintaining open communication, finding a common language (avoiding overuse of terminology/jargon), and maintaining a culture of mutual respect (e.g., Mackinson et al., 2008).

Best practices need to be followed during model development to ensure ecosystem models are rigorous and consistent enough to be useful for policy advice. Following established best practices improves model credibility within the research community and with advisory bodies and external reviewers who are familiar with the methodology. For EwE, best practices have been outlined by Link J.S. (2010) and Heymans et al. (2016) and center largely on ensuring models comply with ecological and thermodynamic rules (e.g., production rates generally decline with increasing trophic level). Best practice also includes tailoring the structure of models to the questions they intend to answer and acknowledging and visualizing the uncertainty in model inputs and outputs.



Lesson 4: Seek Out Informal and Formal Reviews

Formal reviews by advisory bodies act as quality assurance for models to be used in a management capacity. If possible, researchers should aim for periodic reviews with peers and stakeholders to help guide model development (Townsend et al., 2019). The Irish Sea model was reviewed through the process of scientific publications, informally by researchers and stakeholders at WKIrish workshops (ICES, 2018a, b), and formally by an ICES WGSAM review committee (ICES, 2019c). Early informal periodic reviews by WKIrish helped to identify issues with the model early on in its development, helping to avoid the rejection of the model at the late formal review by WGSAM.




Concept Development

While FECO is not currently designed to move outside of the precautionary bounds of the tactical advice, it could be used to highlight environmentally driven productivity changes and identify whether the conditions under which reference points such as FMSY were set, would no longer hold. Fishing reference points set during a high-productive ecosystem regime run a higher risk of leading to stock overexploitation if the ecosystem were to shift to a low-productivity regime (Vert-pre et al., 2013). A prolonged period of FECO being placed at the extremes of the FMSY range may signify that the FMSY advice no longer holds considering the ecosystem condition and may need to be revisited. The FECO approach could also work in concert with the current mixed-fisheries approach (Ulrich et al., 2017; Garcia et al., 2020) when FECO > FMSY, by using FECO as the upper limit of the FMSY range. The use of the revised range would facilitate the incorporation of ecosystem information into mixed fisheries advice and avoid fishing at FMSYupper when it may be harmful to do so. However, coupling mixed-fisheries models with multi-species models could provide a more long-term approach for the estimation of a safe operating space that meets mixed-fisheries goals while giving good harvest under multi-species considerations (ICES, 2014, 2015b).

Including appropriate ecosystem models alongside single-species models during future ICES benchmark assessments could foster a holistic self-perpetuating development of the work area, as was accomplished during WKIrish (ICES, 2020), encouraging further refinement of the FECO concept and a multidisciplinary approach for single-species assessments. Initiatives such as this promote the training of inter-disciplinary researchers capable of transferring ideas and methodologies across disciplines which is important for the progression of EBM (DePiper et al., 2017; Alexander et al., 2019).

The FECO approach can clearly be developed further, particularly when exploring the relationships between ecosystem indicators and stock production. First order linear relationships were used to identify ecosystem indicators in the example presented in this study, however, we recommend further exploration of more complex relationships which may yield different candidate indicators. Community and biomass-based ecological indicators generally respond to fishing mortality in a negative, linear way (Shin et al., 2010); however, these responses can vary depending on environmental change and the applied fishing strategy (Hunsicker et al., 2016; Fu et al., 2019b). Indicators may respond sharply to fishing pressures past certain thresholds which are often unique to specific ecosystems (Tam et al., 2017; Fu et al., 2019a). Future work should also explore the interaction of pressure indicators with responses to identify non-linear ecosystem responses, detect tipping points, and classify ‘early warning indicators’ to facilitate the development of adaptive management strategies and avoid detrimental ecosystem shifts (Foley et al., 2015).

Ecosystem models represent a multidimensional space. Reducing their complexity to one indicator may run the risk of missing other important drivers that may interact synergistically or antagonistically. Similarly, other impacts could be explored. For example, EwE could be used to explore the impacts of FECO on other consumers within the food web. In reality, the yield of one species depends not only on the applied F they experience, but the F applied to other species and the wider dynamics of the food web (Thorpe and De Oliveira, 2019). Maximizing the yield of each fish stock while accounting for the ecological links between them and the non-targeted components of the food web could lead to long-term ecological sustainability and economic growth (Thorpe, 2019; Spence et al., 2020a).

The usefulness of indicators may also be limited by the availability of data to measure/model indicators or our ability to predict short-term changes in indicators. Many of the trophic indicators derived from the Irish Sea EwE model (i.e., predation pressure, high trophic biomass, zooplankton biomass) were influenced by the inclusion of large-scale climatic drivers in the model. Planque et al. (2003) attempted to use statistical forecasts of sea temperature to improve advice for North Sea cod but concluded that the results were insufficiently accurate to be operationally useful (Planque et al., 2003). Since then, our ability to predict changes in large-scale climatic drivers has matured with the evolution of oceanographic and climate modeling. For example, models of the Atlantic Multidecadal Oscillation (AMO; an anomaly of sea-surface temperature) have been shown to have predictive skill in the range of 2–9 years depending on the model (Trenary and DelSole, 2016). Models that robustly predict the North Atlantic Oscillation (NAO; index based on surface sea-level pressure) tend to be restricted to intra-annual seasonal forecasts initialized a month before the onset of winter (Parker et al., 2019).

Beyond the current FECO proposal, there are other ways in which ecosystem models could both indirectly and quantitatively inform decision making within stock assessment benchmarking. These links may include exploration into the use of natural mortality time series in the same way that multi-species models (SMS) are used to estimate predation influenced natural mortalities for statistical catch at age models (SAM) for single-species assessments (ICES, 2019a). The outputs from ecosystem models could also inform the time series of stock dynamics that should be used when estimating reference points and their ranges. Beyond catch advice, ecosystem models could be operationally used within ICES fisheries and/or ecosystem overviews to provide qualitative or quantitative indicators of ecosystem state and the wider impact on non-target species either directly or indirectly through the food web, as is done by the National Oceanic and Atmospheric Administration (NOAA) Fisheries in their Ecosystem Assessments and Report Cards (Slater et al., 2017). Furthermore, ecosystem models can be used to evaluate the likely performance of a range of management measures through Management Strategy Evaluation (Mackinson et al., 2018; Thorpe and De Oliveira, 2019) and through the assessment cycle for Good Environmental Status (Lynam et al., 2016), as well as to anticipate the effects of climate change on fish stocks (Guenette et al., 2014; Bentley et al., 2017; Pennino et al., 2019).




CONCLUSION

Ecosystem modeling as a scientific discipline has matured considerably over the past decade, particularly in its capacity to address data uncertainty. Yet the parameter and structural uncertainty of ecosystem models means they may not yet be sufficiently mature to meet the standards required for providing useful tactical catch advice for fisheries management. However, we argue that this does not render ecosystem models useless in the realm of stock assessments. The FECO concept offers an approach to refine recommended fishing mortality by incorporating ecosystem information whilst ensuring that the methods for assessing stocks, setting reference points, and evaluating stock status do not need to be changed. We hope that interventions such as FECO, with its capacity to bridge disciplines, can contribute to continued progress toward EBFM.
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Atlantic menhaden (Brevoortia tyrannus) support the largest fishery by volume on the United States East Coast, while also playing an important role as a forage species. Managers’ and stakeholders’ increasing concerns about the impact of Atlantic menhaden harvest on ecosystem processes led to an evolution in the assessment and management of this species from a purely single-species approach to an ecosystem approach. The first coastwide stock assessment of Atlantic menhaden for management used a single-species virtual population analysis (VPA). Subsequent assessments used a forward projecting statistical catch-at-age framework that incorporated estimates of predation mortality from a multispecies VPA while analytical efforts continued toward the development of ecosystem models and explicit ecological reference points (ERPs) for Atlantic menhaden. As an interim step while ecosystem models were being developed, a series of ad hoc measures to preserve Atlantic menhaden biomass for predators were used by managers. In August 2020, the Atlantic States Marine Fisheries Commission formally adopted an ecological modeling framework as a tool to set reference points and harvest limits for the Atlantic menhaden that considers their role as a forage fish. This is the first example of a quantitative ecosystem approach to setting reference points on the United States Atlantic Coast and it represents a significant advance for forage fish management. This case study reviews the history of Atlantic menhaden stock assessments and management, outlines the progress on the current implementation of ERPs for this species, and highlights future research and management needs to improve and expand ecosystem-based fisheries management.

Keywords: atlantic menhaden, fisheries management, ecosystem based fisheries management, forage fish, ecosystem approaches to fisheries management, ecological reference points, Brevoortia tyrannus


INTRODUCTION

Over the past several decades, scientists, managers, and stakeholders have expressed increasing interest in ecosystem-based fisheries management (EBFM). EBFM is a holistic approach that seeks to manage fisheries for the health and resilience of the ecosystem overall, rather than focusing on maximizing yield or productivity for single species (McLeod and Leslie, 2009; Link, 2010). True EBFM models are designed to provide advice for managing the ecosystem as a whole, which represents a major paradigm shift from the current single-species management framework, to the point that full implementation is often considered prohibitive (Patrick and Link, 2015; Levin et al., 2018). However, ecosystem considerations can be brought into the single-species framework with ecosystem approaches to fisheries management (EAFM). EAFM shares many of the same goals and objectives as EBFM but seeks to develop scientific and policy approaches that build upon existing single-species frameworks as opposed to starting with a full ecosystem framework (Link, 2010). Forage fishes have received particular attention in this context because they represent a clear case of competing management objectives that cannot be resolved within purely single-species management; they provide direct socioeconomic benefits to the fisheries that target them, but they also provide direct benefits to the ecosystem as prey and to the fisheries that target their predators (Link, 2010). There is an extensive body of literature on scientific and policy approaches to account for the ecosystem role of forage fishes (e.g., Pikitch et al., 2012), but actual implementation of these approaches has been limited to date (Rice and Duplisea, 2014; Koehn et al., 2020).

Several modeling and management approaches for addressing the role of forage fishes in the ecosystem have been developed including harvest control rules that consider predator needs (e.g., Constable et al., 2000; Pikitch et al., 2012) and the implementation of EBFM (e.g., Fletcher et al., 2010; Fogarty, 2014). Issues for applying EBFM include modeling challenges such as model selection and lack of data (e.g., Link et al., 2012; Rose et al., 2015) and management barriers when authority extends across regulatory bodies and geographic areas (e.g., Fletcher et al., 2010). Various modeling approaches that account for the role of forage fishes in the ecosystem were compared and discussed by Pikitch et al. (2012). The methods used have varied and include biomass thresholds to ensure predators have sufficient food (e.g., krill Euphausia superba in the Antarctic, capelin Mallotus villosus and Atlantic herring Clupea harengus in the Barents Sea, Peruvian anchovy Engraulis ringens) to temperature-dependent quota buffers (e.g., forage fish in California) to spatial or seasonal closures for the fishery (e.g., North Sea sand eels Ammodytes spp., anchovy Engraulis encrasicolus and sardine Sardinops sagax in South Africa; Pikitch et al., 2012).

Atlantic menhaden (Brevoortia tyrannus) are an economically and ecologically important schooling forage fish in the clupeid family that inhabit nearshore Atlantic Ocean waters from Nova Scotia, CAN, to Florida, United States (Figure 1). Atlantic menhaden undergo extensive size- and age-dependent seasonal migrations (Dryfoos et al., 1973; Nicholson, 1978; Liljestrand et al., 2019) and are indeterminate spawners, capable of spawning multiple times in a season in nearshore coastal waters (Ahrenholz, 1991; Southeast Data Assessment and Review [SEDAR], 2020a). Fish may live up to a maximum of 10 years based on scale ages, although individuals aged over six are rarely seen in the fisheries (Southeast Data Assessment and Review [SEDAR], 2015). Juveniles spend most of their first spring and summer in estuaries along the coast and migrate to the nearshore coastal waters and ocean in the late fall. Subadult and adult fish also seasonally inhabit estuarine and coastal habitats. As larvae, Atlantic menhaden feed on zooplankton, but juveniles and adults consume zooplankton and phytoplankton by filtering seawater through specialized gill rakers (June and Carlson, 1971; Friedland, 1985; Lynch et al., 2010). Atlantic menhaden serve as prey for a wide range of species (Nicholson, 1978; Ahrenholz et al., 1987; Munroe and Smith, 2000) that include commercially- and recreationally-important finfishes such as Atlantic striped bass (Morone saxatilis; Walter et al., 2003), bluefish (Pomatomus saltatrix; Scharf et al., 2004), spiny dogfish (Squalus acanthias; Buckel et al., 1999), and bluefin tuna (Thunnus thynnus; Butler et al., 2010). They are also consumed by birds (e.g., osprey Pandion haliaetus, bald eagle Haliaeetus leucocephalus; Viverette et al., 2007) and marine mammals such as dolphins and humpback whales (Smith et al., 2015). The northwest Atlantic continental shelf (NWACS) ecosystem has a diverse prey base and the prevalence of Atlantic menhaden in the diets of predators varies by season and region, as well as with the age of the predator, the abundance of Atlantic menhaden, and availability of other alternative prey (Chase, 2002; Walter et al., 2003; Butler et al., 2010; Overton et al., 2015).


[image: image]

FIGURE 1. Map of the range of Atlantic menhaden from Nova Scotia, Canada, along the nearshore and coastal waters of the United States Atlantic coast to Florida, top, and the number of reduction plants in operation in the United States by region through time, bottom (Source: NOAA Beaufort).


In addition to their ecological role, Atlantic menhaden have supported the largest commercial fishery by volume, or weight in tonnes, on the Atlantic coast for over a century with landings in 2018 valued at US$44.5 million (Ahrenholz et al., 1987; National Marine Fisheries Service [NMFS], 2020; Southeast Data Assessment and Review [SEDAR], 2020a). The majority of landings come from the purse seine “reduction” fishery (Figure 2), which harvest Atlantic menhaden for processing into fish meal and oil. The products are then used in aquaculture feed, poultry and swine feed, fertilizer, pet food, and dietary supplements (Southeast Data Assessment and Review [SEDAR], 2020a). In the 1950s, 25 Atlantic menhaden factories operated in the United States, but today only one reduction plant in Virginia remains in operation (Figure 1). Atlantic menhaden are also harvested coastwide by mixed gear “bait” fisheries for use in other commercial and recreational fisheries. Bait landings have increased in recent years and currently comprise 25% of total coastwide landings. This shift is attributed to the shortage of other bait fish, such as Atlantic herring (C. harengus; Southeast Data Assessment and Review [SEDAR], 2020a). The Atlantic menhaden bait fishery is comprised of small-scale operations that typically also harvest other species as part of their income (Whitehead and Harrison, 2017).
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FIGURE 2. Atlantic menhaden landings from the reduction and bait fisheries during each of the five periods of assessment and management history. Coastwide harvest quotas began in 2013 and are indicated on the graph in red.


Like many forage species, Atlantic menhaden have undergone large fluctuations in biomass over time (Essington et al., 2016; Southeast Data Assessment and Review [SEDAR], 2020a; Figure 3), as have the predators that rely on them. Recognizing and accounting for the role of Atlantic menhaden in the ecosystem has become a priority for the management of the species (Southeast Data Assessment and Review [SEDAR], 2020a,b). For over two decades, managers, fisheries scientists, and stakeholders have worked together to move the management of Atlantic menhaden beyond a single-species framework and toward an ecosystem approach. The objectives of this case study were to (1) describe the history of Atlantic menhaden management and assessment science to illustrate the development and implementation of an ecosystem approach to forage fish management, (2) highlight the challenges faced and future work needed to advance Atlantic menhaden management, and (3) synthesize the lessons learned from this process that can facilitate advances in the management of other forage fish species.
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FIGURE 3. Age 1+ biomass of Atlantic menhaden (in metric tons; top) and geometric mean fishing mortality rate (F) for ages-2 to -4 (bottom) with 95th percentiles from the Monte Carlo Bootstrap method as estimated in the most recent stock assessment (Southeast Data Assessment and Review [SEDAR], 2020a).




ASSESSMENT AND MANAGEMENT HISTORY

Atlantic menhaden are managed by the Atlantic States Marine Fisheries Commission (ASMFC), as the majority of landings historically come from United States state territorial waters (within 3 miles of the coast) rather than United States federal exclusive economic zone waters (3–200 miles from the coast). ASMFC was established by statute in 1942 to provide a cooperative framework for the management of marine and diadromous stocks that were shared between multiple states on the United States Atlantic Coast. ASMFC currently manages 27 species or groups of species, either solely or jointly with the U.S. Federal Fisheries Management Councils. Individual species Management Boards, made up of representatives from interested states and the federal government, set the broad-scale management regulations for that species’ state fisheries. The Atlantic Striped Bass Conservation Act (1984) and Atlantic Coastal Fisheries Cooperative Management Act (1993) gave ASMFC legislative authority for the species it manages. ASMFC is not bound by the Magnuson-Stevens Fishery Conservation and Management Act (1976, subsequent reauthorizations) that governs most United States federal-waters fisheries, and therefore ASMFC can be more flexible when setting management objectives, reference points, and harvest strategies than federally managed species. Species-specific Technical Committees, comprised of state, federal, and academic scientists, conduct stock assessments and provide technical advice to support management for ASMFC-managed species.


1850–1980: Boom, Bust, and Recovery

The industrial-scale purse seine fishery for Atlantic menhaden began in the 1850s in Rhode Island and spread south to the Carolinas by the late 1800s (Southeast Data Assessment and Review [SEDAR], 2020a). The fishery expanded significantly after World War II to become the largest fishery by weight in the United States (Ahrenholz et al., 1987). Annual landings peaked in the late 1950s at approximately 700,000 mt (Figure 2) with over 20 processing plants in operation from Maine through Florida (Southeast Data Assessment and Review [SEDAR], 2020a). The population was supported by frequent strong year classes and age-1+ biomass was high (Figure 3). However, in the 1960s, the population declined and the stock contracted geographically. Landings also declined, reaching less than 200,000 mt in 1969, and processing plants north of Chesapeake Bay began to close. By 1974, only ten processing plants remained active (Southeast Data Assessment and Review [SEDAR], 2020a). In the 1970s, the stock began to recover as stronger year classes entered the population, and landings increased again, although not to the highs of the 1950s, and a few plants in the Northeast (Maine through Connecticut) reopened.

There was no quota for Atlantic menhaden during this period and states managed the fishery in their waters independently with no consistent coastwide management. Extensive sampling of the reduction fishery catch, including the collection of catch-at-age data, began in 1955. This data collection facilitated the development of age-structured models in the 1970s (e.g., Schaaf and Huntsman, 1972; Schaaf, 1975, 1979), although these were not used for coastwide management.



1981–1999: Beginning of Coastwide Atlantic Menhaden Management

Atlantic States Marine Fisheries Commission established the first interstate Fishery Management Plan for Atlantic menhaden in 1981. The plan was revised significantly in 1992 in response to several developments in the 1980s including an improved spawning stock relative to the 1970s, good recruitment, expanded age structure, and the closing of most reduction plants during that decade. These early plans specified management triggers based on the age structure of the catch, spawning stock biomass, spawning potential, and, if necessary, provided options for management action (Atlantic States Marine Fisheries Commission [ASMFC], 1981, 1992). Several states independently introduced season or gear restrictions that curtailed the reduction fishery in their waters. The stock was assessed with a separable Virtual Population Analysis (VPA) during this period (e.g., Vaughan et al., 1986).

Annual landings remained moderately high through the 1980s, averaging around 370,000 mt (Figure 2). Although all shore-based reduction plants in the Northeast had closed by 1989, mainly because of odor abatement issues with local municipalities, Canadian-based plants and factory ships from the Soviet Union provided alternative markets for landings from that region (Southeast Data Assessment and Review [SEDAR], 2020a). However, landings declined again during the 1990s as adult fish became scarce north of New York and by 1998 only two processing plants remained in operation on the Atlantic coast, one in Virginia and one in North Carolina. Additionally, these two remaining plants reduced their effort, production capacity, and fleet size (Southeast Data Assessment and Review [SEDAR], 2020a).

From the first management plan in 1981, the role of Atlantic menhaden as a forage fish was recognized (Table 1). The early plans highlighted the perceived conflict between the Atlantic menhaden reduction fishery and recreational anglers who targeted the predators of Atlantic menhaden and believed that the Atlantic menhaden fishery was reducing their prey base (Atlantic States Marine Fisheries Commission [ASMFC], 1981). However, recognition of their forage role did not translate into explicit management actions. The VPA used to assess the stock at this time incorporated an age- and time-constant estimate of natural mortality (M, or the loss in the population due to causes other than fishing, such as disease or predation) based on tagging data, but the 1999 peer review of the assessment recommended a multispecies approach to capture the impact of changes in predator populations on Atlantic menhaden mortality rates (Atlantic States Marine Fisheries Commission [ASMFC], 1999).


TABLE 1. Key management documents, objectives, reference points, United States coastwide quota levels, and harvest caps on Atlantic menhaden for 1981–2020.
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2000–2010: First Steps Toward Atlantic Menhaden Ecosystem Modeling and Management

In 2001, Amendment 1 to the Atlantic menhaden management plan specifically added ecological objectives, including maintaining the important ecological role menhaden play along the coast (Atlantic States Marine Fisheries Commission [ASMFC], 2001). At this time, ASMFC also began funding the development of a multispecies model for Atlantic menhaden to account for their role in the ecosystem. The resulting Expanded Multispecies VPA model (MSVPA-X model) was a set of single-species VPA models that were linked by a predator consumption model, which allowed for the calculation of predation mortality on Atlantic menhaden (Northeast Fisheries Science Center [NEFSC], 2006; Garrison et al., 2010). The MSVPA-X explicitly modeled Atlantic menhaden, striped bass, bluefish, and weakfish (Cynoscion regalis), all of which are managed solely or jointly by ASMFC. These species were also chosen because diet data indicated Atlantic menhaden were an important component and all three predator species had seen an increase in their population sizes since the early 1990s, raising concerns that predation mortality may increase on Atlantic menhaden and predator biomass and growth may be limited. This model was intended to better quantify predator and prey interactions and account for these effects on Atlantic menhaden, specifically through the development of time- and age-varying M estimates. The MSVPA-X was not developed enough to replace the single-species assessments, set reference points, or set harvest limits for the modeled species, but was still able to inform the M values used in the single-species stock assessment for Atlantic menhaden by providing estimates of time-varying M-at-age.

In 2004, the single-species Atlantic menhaden assessment switched from a VPA to a forward-projecting statistical catch-at-age model, known as the Beaufort Assessment Model or BAM (Williams and Shertzer, 2015). This model allowed the separation of bait and reduction fleets, as well as the incorporation of fishery-independent indices of abundance (Atlantic States Marine Fisheries Commission [ASMFC], 2004). The MSVPA-X was used to develop age-specific estimates of M for input into the 2004 assessment, and time- and age-varying estimates of M for the 2010 assessment, both using BAM. The BAM has remained the preferred single-species assessment model to this day.

Atlantic States Marine Fisheries Commission uses reference points to establish the status of a stock (whether the stock is overfished or experiencing overfishing) as well as to set quotas and harvest strategies to control fishing mortality. The 2004 assessment found that the stock was not overfished and overfishing was not occurring relative to the reference points at that time (Table 1), the fishing mortality rate (F, or the loss in the population due to fishing) corresponding to the median observed spawning biomass to recruitment ratio (also called FREP, or FREPLACEMENT; Sissenwine and Shepherd, 1987). However, managers and stakeholders expressed concerns about the potential for localized depletion of Atlantic menhaden within the Chesapeake Bay. The Chesapeake Bay is the largest estuary in the United States, located in the center of the range of Atlantic menhaden (Figure 1), and is an important nursery ground for many species on the Atlantic Coast, including Atlantic menhaden and several commercially and recreationally valuable predator species. Atlantic menhaden’s landings along the coast and within the Chesapeake Bay had declined over the past decade, but with the closures of more northern reduction plants, the proportion of landings from the Chesapeake Bay had increased compared to historical levels (Atlantic States Marine Fisheries Commission [ASMFC], 2005). In 2005, the reduction plant in North Carolina closed, leaving only one plant in Virginia still in operation.

Juvenile Atlantic menhaden abundance indices in the Chesapeake Bay had declined to low levels in the 1990s and early 2000s (Atlantic States Marine Fisheries Commission [ASMFC], 2004), and observations of striped bass in poor condition increased in the Chesapeake Bay along with an outbreak of lesions and an epizootic of mycobacteriosis (Uphoff, 2003; Walter et al., 2003). This caused increased concern from recreational and environmental stakeholders and organizations about the effect of Atlantic menhaden abundance on striped bass health (Vogelbein et al., 1999; Uphoff, 2003; Atlantic States Marine Fisheries Commission [ASMFC], 2004). As a result, managers and stakeholders worried that Atlantic menhaden abundance in the Chesapeake Bay could be reduced below the level that would be sufficient to maintain their basic ecological functions (e.g., forage base, important link with primary productivity). In response to these concerns, ASMFC implemented an ad hoc harvest cap on the reduction fishery in the Chesapeake Bay starting in 2006 (Table 1). The cap limited the removals of Atlantic menhaden from the Chesapeake Bay for reduction purposes to 109,020 mt, the average of the 2001–2005 reduction landings from the Bay. Total coastwide landings of Atlantic menhaden averaged approximately 217,000 mt per year for the same period but there was no coastwide quota for Atlantic menhaden at that time. The Chesapeake Bay harvest cap was intended as a precautionary measure to prevent the expansion of the reduction fishery in an ecologically important region, representing the first management measure that was explicitly intended to consider Atlantic menhaden’s role as a forage fish.

During this time, work continued on complementary ecosystem modeling efforts relevant to Atlantic menhaden. The National Oceanic and Atmospheric Administration’s (NOAA) Chesapeake Bay Office developed the Fisheries Ecosystem Planning for the Chesapeake Bay report (National Oceanic and Atmospheric Administration Chesapeake Bay Fisheries Ecosystem Advisory Panel [NOAA CBFEAP], 2006), the first ecosystem plan for United States fisheries, which described the Bay’s ecosystem, species interactions, habitats, and ecosystem-based approaches for management. NOAA’s Chesapeake Bay Office also organized a peer review of existing research programs on Atlantic menhaden and ecosystem dynamics within the Chesapeake Bay in an attempt to answer the question of whether localized depletion was occurring. The result was inconclusive: without an operational definition of depletion, it could not be determined whether localized depletion was occurring or how well the ongoing research could address that question (Maguire, 2009). Additionally, Christensen et al. (2009) developed an Ecopath with Ecosim (EwE) model for the Chesapeake Bay that included Atlantic menhaden. EwE is a dynamic food web model that simulates changes in biomass across whole ecosystems (Christensen and Walters, 2004). Christensen et al. (2009) only intended to provide ecosystem advice for the Chesapeake Bay, so while the EwE modeled more species and provided more information about Atlantic menhaden’s role in the ecosystem than the MSVPA-X, it missed important dynamics between Atlantic menhaden and their predators during their migrations outside of the Chesapeake Bay.



2011–2014: First Coastwide Quota and Lenfest Report

The 2010 stock assessment indicated the stock was experiencing overfishing, although it was not overfished relative to the single-species reference points at that time (Atlantic States Marine Fisheries Commission [ASMFC], 2011; Table 1). The peer review of the 2010 assessment recommended considering alternative reference points to FREP since the stock had been at low levels of population fecundity for several years and the current reference points were not protecting the spawning stock relative to the unfished level. Following the assessment, the Atlantic Menhaden Technical Committee was tasked with developing options for alternative reference points that accounted for predation. Acknowledging that development of these reference points would require expertise beyond the Technical Committee, the Ecological Reference Point Work Group (ERP WG) was appointed in 2012 and was comprised of members of relevant single-species committees and groups that had worked on previous menhaden multispecies efforts.

In response to the recommendations from the peer review, reference points were developed based on percent of maximum spawning potential (MSP). The 2010 assessment used a time- and age-varying M based on output from the MSVPA-X, so predation in recent years was incorporated into those reference points, but this approach did not fully satisfy managers in terms of accounting for Atlantic menhaden’s role as a forage fish. In 2012, ASMFC implemented Amendment 2 to the management plan to adopt single-species reference points based on percent MSP, with the F threshold set at F15%MSP and the F target set at F30%MSP (Table 1). Amendment 2 specified that single-species reference points would be applied until scientists could develop ERPs, defined in that document as reference points that account for the broader ecological roles and services that Atlantic menhaden provide (Atlantic States Marine Fisheries Commission [ASMFC], 2012). Overfishing was still occurring relative to those new single-species reference points. To reduce F, Amendment 2 also implemented the first coastwide quota for Atlantic menhaden. Other measures to allocate catch across states and improve catch reporting and biosampling in the bait fishery were also implemented (Atlantic States Marine Fisheries Commission [ASMFC], 2012). The annual quota was set at 170,800 mt and represented a 20% reduction from 2009 to 2011 average landings. The cap on annual reduction fishery removals from the Chesapeake Bay was also reduced by 20%, to 87,216 mt. Some small-scale operations (0–2 employees) were not affected by the decreased quota but larger-scale operations faced reductions in landings, income, and workforce (Whitehead and Harrison, 2017). Also in response to the quota, the one remaining reduction factory in Virginia decreased the size of its fleet.

At approximately the same time, the Lenfest Forage Fish Task Force released a report (Pikitch et al., 2012) that provided recommendations for managing forage fish in an ecosystem context based on extensive meta-analyses of existing ecosystem models and literature from several regions around the world, including the Chesapeake Bay EwE model developed by Christensen et al. (2009). Pikitch et al. (2012) recommended a precautionary approach for forage fish management to ensure sustainability of both predator and prey species. Recommendations included fishing at 50–75% of FMSY and adopting a biomass threshold of 30–40% of unexploited biomass, depending on the amount and quality of data available for a given system and fishery. These findings were in line with other concurrent research on forage fish management (e.g., Walters et al., 2005; Smith et al., 2011). The Pikitch et al. (2012) report received attention outside of scientific circles and increased awareness of and interest in ecosystem approaches to fishery management among stakeholders.

Other research on Atlantic menhaden-specific ecosystem analyses occurred independently of the ERP WG. Buchheister et al. (2017a, b) developed an EwE model that covered the NWACS ecosystem with data from 1982 to 2013, extending the Chesapeake Bay modeling by Link et al. (2008) and Christensen et al. (2009). The NWACS EwE model included 61 trophic groups, from plankton to finfish, birds and marine mammals, and eight fishing fleets. The model estimated the impacts of different levels of Atlantic menhaden harvest on the biomass and yield of other species (Buchheister et al., 2017a,b).



2015–2020: Amendment 3 and the ERP Assessment

Atlantic menhaden were assessed again in 2015 and the single-species reference points were redefined. Instead of using F15%MSP as the threshold and F30%MSP as the target, the stock assessment recommended setting the F reference points based on a period when the stock was considered to be experiencing sustainable fishing mortality and the F threshold and target were defined as the maximum and median geometric mean fishing mortality rate for ages 2–4 during 1960–2012 (Southeast Data Assessment and Review [SEDAR], 2015). The new threshold and target resulted in a higher percent maximum spawning percentage than the previous reference points, equivalent to an F21%MSP and F36%MSP, respectively (Table 1), and were more conservative than the previous reference points. This stock assessment found that Atlantic menhaden were not overfished and not experiencing overfishing relative to their single-species reference points, but improvements to model structure and data resulted in a revision to historical stock status, indicating F had been below both the target and the threshold since 2000, even under the new, more conservative reference points (Southeast Data Assessment and Review [SEDAR], 2015).

In response to these findings, ASMFC initiated the development of Amendment 3, which focused on the reallocation of the commercial quota between the states and the path toward adoption of ERPs (Atlantic States Marine Fisheries Commission [ASMFC], 2017). However, the ERPs were not ready for use in management at the time. As a result, public comment was sought on several options: (1) ending the ERP WG’s work and using only the single-species reference points going forward; (2) using interim generalized forage fish reference points based on literature (e.g., Pikitch et al., 2012 or Smith et al., 2011) until Atlantic menhaden-specific ERPs were available; and (3) using single-species reference points until Atlantic menhaden-specific ERPs were available.

Atlantic States Marine Fisheries Commission received over 157,000 comments from the public in favor of some form of ERPs compared to seven comments in favor of only using single-species reference points going forward, illustrating the public interest and awareness of the issue and the desire to move to an ecosystem management regime. The Atlantic Menhaden Management Board voted to continue to use the single-species reference points until the ERP WG’s work was completed and peer-reviewed. To provide interim protection for ecosystem services, the Board used an ad hoc approach to set the coastwide quota at 187,880 mt for 2015–2016 and 216,000 mt for 2017–2018, an increase from the 2012 to 2014 quota, but 31% less than the quota recommended if the stock were fished at the single-species target F rate (314,500 mt in 2018). The Board also reduced the Chesapeake Bay reduction harvest cap from 87,216 to 51,000 mt, approximately equal to the average reduction landings from the Bay over the previous 5-year period and a 41% decrease from the previous cap. An economic impact analysis was conducted to evaluate different quota levels and the associated changes to jobs and revenue (Whitehead and Harrison, 2017).

As part of the 2015 assessment, the ERP WG presented a suite of preliminary ERP models and ecosystem monitoring approaches for consideration (Southeast Data Assessment and Review [SEDAR], 2015). Problems arose with the MSVPA-X during the assessment, particularly with the MSVPA-X being unable to capture the same population trends as the more complex BAM single-species assessments and with the labor-intensive nature of the modeling process (Southeast Data Assessment and Review [SEDAR], 2015). As a result, the development of the MSVPA-X was shelved in favor of the other approaches.

To continue the work, the ERP WG needed concrete guidance from the Atlantic Menhaden Management Board about their specific ecosystem and fisheries goals and objectives for the management of Atlantic menhaden. While there is longstanding precedent for what constitutes single-species fishery management objectives, there are no standardized objectives for multispecies management as the objectives depend on the specific context of the fisheries and ecosystem involved. This difference created some confusion, as the managers wanted technical expertise on the ERPs first, but the ERP WG required managers’ input on objectives to proceed with development. To address this, ASMFC convened a workshop in 2015. Participants included ASMFC managers, fishery and ecosystem stakeholders, and scientists. At the workshop, fundamental ecosystem management objectives, as well as their associated performance measures, were identified through a structured decision-making process (Peterman and Anderson, 1999; Irwin et al., 2011; Table 2). These objectives included ensuring sustainability of Atlantic menhaden to provide for directed Atlantic menhaden fisheries, ensuring sustainability of Atlantic menhaden to provide for predators and the fisheries they support, providing stability for Atlantic menhaden and predator fisheries, and minimizing risk due to a changing environment (Atlantic States Marine Fisheries Commission [ASMFC], 2015). The objectives were not prioritized or ranked, and the competing nature of some of these objectives indicated that the models used to develop ERPs for Atlantic menhaden must evaluate the trade-offs between Atlantic menhaden harvest and predator harvest or biomass to provide managers with the information most relevant to their needs.


TABLE 2. Fundamental objectives for ecosystem management of Atlantic menhaden and their associated performance metrics, as identified by Atlantic States Marine Fisheries Commission [ASMFC], 2015.
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TABLE 3. Summary of models explored in the development of ecological reference points for Atlantic menhaden.

[image: Table 3]Five key predator and prey species (termed “focal species”) were identified based on their importance as a predator of Atlantic menhaden or as an alternative prey for Atlantic menhaden predators and the quality of the available data for each species (Southeast Data Assessment and Review [SEDAR], 2020b). Striped bass, bluefish, spiny dogfish, and weakfish were key predatory species of Atlantic menhaden. Weakfish were included as both an Atlantic menhaden predator and a prey item for the other predators. Atlantic herring was included as a key alternative prey to Atlantic menhaden for the predators identified. All five focal species are managed either solely or jointly by ASMFC. Not all models included all species, and some models included more species; for example, the NWACS-MICE model also included anchovies (Anchoa spp.) as an alternative prey, and the full NWACS EwE model included many additional predators, such as finfishes, sharks, birds, and marine mammals. However, the focal species approach ensured a minimum set of predators with consistent input data was used in the intermediate complexity models.

The ERP models were developed using datasets for Atlantic menhaden and the focal species that were as consistent as possible across models. Life history information, landings, and abundance indices from the single-species stock assessment were used for Atlantic menhaden, as well as estimates of fishing mortality and biomass from BAM. All focal species had recently undergone single-species stock assessments, which provided life history, landings, and index data through 2017, as well as estimates of fishing mortality and population size. Newer data were not available for all of the groups included in the full NWACS EwE model; as a result, inputs for those groups were extrapolated from the terminal year of 2013.

The ERP WG evaluated the five ERP models based on their performance (i.e., residuals, sensitivities, and other diagnostics), their strengths and weaknesses, and their ability to inform the fundamental ecosystem management objectives (Buchheister et al., 2017a,b; McNamee, 2018; Uphoff and Sharov, 2018; Nesslage and Wilberg, 2019; Chagaris et al., 2020). The ERP WG ultimately recommended using the NWACS-MICE model rather than the other four for two reasons. First, the EwE framework used by the NWACS-MICE model was the only approach that could address both the top-down effects of predation on Atlantic menhaden and the bottom-up effects of Atlantic menhaden on predator populations, which were required to evaluate the key tradeoffs between Atlantic menhaden harvest and predator needs that were central to the identified ecosystem objectives. Second, the NWACS-MICE implementation was less data-intensive than the full NWACS model, which reduced some of the uncertainty associated with modeling the data-poor predators and prey in the full model. This meant the NWACS-MICE model could be updated more quickly and efficiently, on a timeframe that met manager’s needs. Comparisons of the full and MICE versions of the NWACS model indicated that the NWACS-MICE model included the fish predators most sensitive to the menhaden population. Striped bass was the most sensitive fish predator to Atlantic menhaden harvest in both models. In the full NWACS model, nearshore piscivorous birds were also sensitive to Atlantic menhaden F, but their response was similar to striped bass over the range of scenarios explored by the full model (Southeast Data Assessment and Review [SEDAR], 2020b). This choice was consistent with a growing body of literature that has recommended models of intermediate complexity (i.e., MICE) for ecosystems as representing a compromise between complexity/realism and uncertainty for use in management (Plagányi et al., 2014; Collie et al., 2016; Punt et al., 2016). Specifically, the ERP WG recommended using the NWACS-MICE in conjunction with the single-species assessment model, BAM; the NWACS-MICE model would provide strategic advice about the trade-offs between Atlantic menhaden fishing mortality and predator biomass to set reference points, while the single-species model would be used to provide short-term tactical advice about harvest strategies to achieve the ERP F target (Chagaris et al., 2020; Southeast Data Assessment and Review [SEDAR], 2020b). The ERP report was peer-reviewed with the single-species assessment in 2019, and the ERP WG’s recommended tool was deemed acceptable for management use by a panel of independent experts (Southeast Data Assessment and Review [SEDAR], 2020b). The peer-review panel also recommended the continued development of the alternative models going forward.



CURRENT MANAGEMENT

The development and implementation of ERPs for Atlantic menhaden was a lengthy process (Figure 4 and Table 1), but in August 2020, ASMFC adopted the approach from the ERP WG for management use. The ERP target was defined as the maximum F on Atlantic menhaden that would sustain striped bass at their biomass target when striped bass were fished at their F target. The ERP threshold was defined as the maximum F on Atlantic menhaden that would keep striped bass at its biomass threshold when striped bass was fished at its F target. For both reference points, all other species in the model were fished at their status quo (i.e., 2017) F rates. Striped bass was the focal predator species for this analysis because it was the most sensitive to Atlantic menhaden F in both the NWACS-MICE and the full NWACS models. Thus, levels of Atlantic menhaden F that sustain striped bass should also sustain piscivorous birds and less sensitive predators, in the absence of significant disruptions to the ecosystem (Southeast Data Assessment and Review [SEDAR], 2020b). With these ERP targets and thresholds, the Atlantic Menhaden Management Board reviewed projections from the single-species model, BAM, and set a quota for 2021 and 2022 of 194,400 mt, a 10% decrease in the quota from 2020.
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FIGURE 4. Timeline of significant steps in management and science for Atlantic menhaden and the development of ecological reference points (ERPs).


The ERP WG explored a range of scenarios for the other focal species (i.e., not Atlantic menhaden or striped bass) and found that the NWACS-MICE model was sensitive to the population level of Atlantic herring, resulting in higher F reference points for Atlantic menhaden when Atlantic herring was at its biomass target and lower F reference points when Atlantic herring was below its biomass threshold as compared to the status quo scenario. Atlantic herring are an important prey item for striped bass in some seasons and regions. However, this sensitivity is likely due to the lack of seasonal and spatial dynamics in the NWACS-MICE model rather than reflecting true ecosystem dynamics. When a seasonal forcing function was added to the striped bass-Atlantic herring relationship, the sensitivity of the model was significantly reduced and the F target values were similar across multiple scenarios. The status quo 2017 scenario most closely approximated short-term conditions for the ecosystem; this assumption can be revisited after additional analysis to incorporate seasonal dynamics into the NWACS-MICE model as part of the next stock assessment, which is scheduled for 2025.

The ERP target and threshold F were lower than the single-species target and threshold F. The F value from the NWACS-MICE model was on a different scale than the F values from the single-species model due to differences in model structure. The single-species model is a statistical catch-at-age model that estimates an annual full F, the instantaneous fishing mortality rate that the fully selected age class experiences, while the NWACS-MICE model is an EwE model that uses an exploitation rate to drive the population based on the proportion of age-1+ biomass removed by the fishery each year. As a result, although both models report an F, estimates of F reference points from the NWACS-MICE model are not directly comparable to estimates of annual F from the single-species model. Therefore, the NWACS-MICE model F values were scaled to the single-species values for use in management. The NWACS-MICE model produced a tradeoff curve relating menhaden F to striped bass biomass, in an equilibrium context. From this relationship, Atlantic menhaden F multipliers were identified that would maintain striped bass at their biomass target or threshold, when striped bass were fished at their F target. The F multipliers that produced these conditions were then applied to the single-species model estimate of full F in the terminal year to produce the ERP target and threshold on the same scale as the single-species model. The ERP target was estimated at a full F (i.e., maximum F-at-age) of 0.19 on the single-species model scale, compared to a target F of 0.31 for the single-species model. The ERP threshold was estimated at a full F of 0.57 on the single-species model scale, compared to a threshold F of 0.86 from the single-species model. The 2017 estimate of full F from the single-species model was 0.16, below both the ERP target and threshold, indicating that Atlantic menhaden were not experiencing ecosystem overfishing in 2017.



CHALLENGES AND FUTURE WORK

Atlantic States Marine Fisheries Commissions adoption of ERPs for Atlantic menhaden is the first application of quantitative ecological models in management on the United States East Coast and represents a significant step forward for forage fish management in the United States and beyond. However, there is still much work to be done on both the science and the policy side to fully and successfully implement ecosystem-based fishery management for this region. There were modeling, data, and management challenges identified through this process and there is work to be done in the future to address these challenges as the fishery progresses toward EBFM.


Data Requirements

The models are only as good as the data and more data is needed. The ERP assessment sourced data on diet, abundance, and life history for the focal species from peer reviewed and unpublished literature as well as from long-term state and federal monitoring programs. The collection of diet data along the Atlantic coast needs to be expanded to provide seasonally and regionally stratified annual, year-round monitoring of key predator diets to provide information on prey abundance and predator consumption at a finer scale. This could be done through existing data collection programs with an increase in funding and effort. In addition, a long-term research need is improved monitoring of population trends and diet data in non-finfish predators such as birds and marine mammals and prey species such as bay anchovy, sand lances (Ammodytes spp.), and benthic invertebrates to better characterize the full ecosystem dynamics.



Modeling

With the exception of the surplus production models, the ERP models were developed with age- or size-structure for Atlantic menhaden and the focal species to address different selectivities on the size of fish captured depending on the fishery and gear used. Improving the impacts of selectivities on model results is an important goal, including the exploration of time-varying selectivities. The current NWACS-MICE model did not fully capture the variability of Atlantic menhaden recruitment. Some of this uncertainty was mitigated by the use of the single-species model, which did capture that observed variability, to provide short-term tactical advice informed by recent recruitment. More work is needed to incorporate realistic levels of recruitment variability into the NWACS framework. A key ecosystem management objective is to reduce risk for Atlantic menhaden and their predators due to a changing environment. Consequently, more research is required to understand the relationship between specific environmental drivers and recruitment and mortality for Atlantic menhaden and the focal species. Finally, the ERP models developed for this assessment lacked seasonal and spatial dynamics, which are important to more fully understand the interaction between Atlantic menhaden and their predators (Buchheister et al., 2016). These species undergo extensive, overlapping migrations, and preliminary runs of the NWACS-MICE model indicated that assumptions about the seasonal availability of prey can impact model results.



Management

Another challenge faced was understanding and quantifying uncertainty in this process given the data needs and modeling assumptions. The multi-model approach and accompanying sensitivity analyses used for the ERP assessment helped characterize uncertainty from model structure and assumptions, but more work needs to be done to quantify the uncertainty in the NWACS-MICE output and the uncertainty introduced by translating between models. A management strategy evaluation (MSE) could be part of this process, to help translate uncertainty in to risk for management consideration. An MSE for Atlantic menhaden could provide a framework to define management goals with various stakeholders, including those from multiple species, and assess the tradeoffs between management objectives in an ERP context. Additionally, it could be valuable for incorporating socioeconomic data, evaluating the robustness to uncertainty of reference points and control rules, and possibly provide an opportunity to evaluate the benefits of improved data collection (Southeast Data Assessment and Review [SEDAR], 2020a). While the data and models that provide scientific ecosystem management advice can and should be improved further, changes to the management structure and process will be necessary to move full EBFM forward. The NWACS-MICE tool can explore a wide range of ecosystem scenarios for the key ERP species in terms of long-term biomass levels or F rates to set reference points and evaluate tradeoffs between Atlantic menhaden and their predator species. However, managers are limited in the scenarios they can explore because the targets and thresholds for the other key ERP species are set by single-species management plans and separate Management Boards within ASMFC, and, in some cases, in collaboration with the federal Fisheries Management Councils. Management objectives for these species, including F and biomass targets for each species, are currently set independently of each other.

The ERPs developed here represent an ecosystem approach to fisheries management; they account for ecosystem considerations in the management of a single species (Link, 2010). True EBFM abandons the single-species framework in favor of a full ecosystem framework. The path to true EBFM will require the discussion of trade-offs between Atlantic menhaden and their predators occurring across Boards and agencies to develop consistent management objectives for individual species and the ecosystem. Expanding from the key ERP species identified here to management of the full ecosystem will require integrating state, federal, and ASMFC management bodies to bring managers and stakeholders of all ecosystem species together to evaluate trade-offs and set management objectives. This is a significant shift in how fisheries management in the United States operates and will not be a quick or easy change. But incremental progress toward fuller ecosystem-based management is still possible.

In addition to ASMFC’s efforts, the New England Fishery Management Council has also made progress toward ecosystem management with the development of Amendment 8 to the Atlantic herring fishery management plan. This amendment proposed a harvest control rule that would explicitly account for Atlantic herring’s role as forage by limiting F to 80% of FMSY when biomass is high and setting it at zero when biomass is low. Although this is a different approach from ASMFC’s ERPs, it is attempting to meet the same objective of incorporating ecosystem considerations into management, representing the potential for parallel instead of fully integrated ecosystem approaches in the near term. An ecosystem indicator approach was recently developed for the San Francisco Bay Pacific herring (Clupea pallasii) fishery (Thayer et al., 2020) that differs from the Atlantic menhaden approach but also provides a path for assessing and managing forage fishes. Additionally, Howell et al. (2021) contrast the ecosystem based approach the United States took as described here with that of the Irish Sea. The full implementation of ecosystem-based fishery management on the United States East Coast may not be realized for many years, but there are achievable intermediate steps along this path, starting with Atlantic menhaden ERPs, that have significant value for managers, stakeholders, and the ecosystem.



LESSONS LEARNED

Many aspects of the Atlantic menhaden fishery make its management unique compared to other forage fishes. For example, the largest sector, the reduction fishery, is no longer a multi-state operation. Therefore, the majority of socioeconomic impacts of adopting ERPs for the Atlantic menhaden fishery will affect one large operator rather than numerous smaller operators as is the case for many other forage species. Other aspects of the fishery also likely aided adoption of ERPs, such as its relationship with striped bass and their shared management agency. The role of high-profile or charismatic predators is not unique to Atlantic menhaden; for example, a network of marine protected areas were established in South Africa to prohibit sardine fishing around African penguin (Spheniscus demersus) colonies (e.g., Pichegru et al., 2010) and areas were closed to fishing in Alaska to protect forage for Steller sea lions (Eumetopias jubatus; National Marine Fisheries Service [NMFS], 2003). However, ASMFC also manages striped bass in addition to Atlantic menhaden, a circumstance which likely made the development and progression to EAFM easier than had they been managed by different agencies. Despite some aspects of the Atlantic menhaden fishery that make it unique, this case study could be a formula for implementing ERPs for other species complexes. All forage fish management bodies and science groups could benefit from clearly defined objectives, the identification of key predator species of interest, the exploration of multiple models, and the recognition of trade-offs made for management. There were several important and broadly applicable lessons learned from this experience that could help others along the path to implementing EAFM and hopefully, 1 day, EBFM (Table 4).


TABLE 4. Key lessons learned from the ASMFC ERP assessment.

[image: Table 4]

Data Requirements


Align Stock Assessment Schedules of Key Species

All of the focal species had single-species stock assessments with a terminal year of 2017. This meant that all input data for these species – total removals, indices of abundance, life history data, and stock assessment outputs – were collected and vetted by the appropriate technical committees and available for the ERP WG to incorporate into ecosystem models. Purposefully aligning the key single-species assessments in the future will benefit future assessment updates and benchmark assessments.



Modeling


Consider a Multi-Model Approach

The multi-model approach, rather than selecting a single model from the outset, allowed trade-offs between model complexity and data requirements to be evaluated. Also, it allowed the uncertainty due to model structure and assumptions to be better understood by comparing similarities and differences across model predictions and outputs (Drew et al., 2021). This approach led to the development of a tool that combined the strengths of two different models, using the ecosystem dynamics captured by the NWACS-MICE model to provide long-term strategic advice, while the more detailed population dynamics of the single-species model provided short-term tactical advice. The model development process focused on consistent data inputs across models wherever possible and identifying consistent outputs and metrics to make comparisons across models as informative and useful as possible.



Form a Dedicated Workgroup

Having a dedicated ERP WG, which included not just expertise in ecosystem modeling but also expert knowledge of the population and fisheries dynamics of Atlantic menhaden and other key ERP species, allowed for the preservation of institutional knowledge and maintained consistency through the long development process. Additionally, a standing workgroup showed commitment from the ASMFC and state and federal agencies to pursuing EAFM for Atlantic menhaden.



Management


Define Both Biological and Socioeconomic Objectives Through Early Engagement of Managers and Stakeholders

Incorporating ecosystem considerations into management can be achieved through a wide range of scientific and management approaches. The appropriate approach will depend on the specific context of the fishery and ecosystem, as well as manager preferences on the tradeoffs amongst competing ecosystem and socioeconomic objectives. The 2015 workshop brought together managers, scientists, and stakeholders to develop concrete objectives for the ecological management of Atlantic menhaden. The participants also developed performance metrics that could be used to determine whether those objectives were being met. This framework was essential to the ERP WG’s process, allowing the group to evaluate candidate models based on whether or not they provided necessary information to managers, and having this information sooner would have made the process more efficient. Establishing clear goals and objectives at the beginning of the process is crucial. In addition, continued stakeholder pressure kept the process of developing and adopting ERPs a high priority for ASMFC and shaped the final implementation.



Engage a Diversity of Collaborators and Funding Sources

Close collaboration among managers, stock assessment scientists, and academia introduced a range of expertise and models into the development of ERPs. Additionally, a significant amount of funding external to the ASMC was critical to the completion of the models included in the assessment, including from NOAA, Lenfest Ocean Program, The Nature Conservancy, and United States state agencies. Sustained financial investment is needed to develop the modeling tools to support Atlantic menhaden EAFM and EBFM, although the amount of investment is expected to decrease with fully developed tools.



Embrace Incremental Progress

Atlantic States Marine Fisheries Commissions ERP assessment represents over two decades of work by Commission, state, federal, and academic scientists to bring ecosystem management from a purely theoretical concept into practical application. Full EBFM represents a huge paradigm shift in the assessment and management structures from the states up through the federal and international levels. Intermediate steps and approaches can be achieved for both the science and the policy components. These can then set the stage for more advanced models and a more comprehensive EBFM in the future. The implementation of ERPs for Atlantic menhaden that are embedded within the existing single-species management framework represents an important intermediate step, allowing ecosystem considerations to be brought into Atlantic menhaden management while work continues on improving modeling and data collection and restructuring the management framework.
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Offshore wind farms (OWFs) are an important source of renewable energy accounting for 2.3% of the European Union's electricity demand. Yet their impact on the environment needs to be assessed. Here, we couple a hydrodynamic (including tides and waves) and sediment transport model with a description of the organic carbon and mineral particle dynamics in the water column and sediments. The model is applied to the Belgian Coastal Zone (BCZ) where OWFs currently occupy 7% of its surface area which is estimated to double in the next 5 years. The impact of OWFs on the environment is represented through the filtration of the water column and fecal pellets production by the blue mussel, the dominant fouling organism. Our model simulations show that the impact of biodeposition on the mud particle sedimentation and on sediment composition is small compared to the fluxes associated with tidal deposition and resuspension and the lateral inputs. In contrast, the total organic carbon (TOC) flux to the sediment is significantly altered inside the OWF perimeters and TOC deposition is increased up to 50% in an area 5 km around the monopiles. Further away, the TOC flux to the bottom decreases with a notable effect up to 30 km away. The major changes are found along the direction of the main residual current and tidal ellipse's major axis. In addition, sub-mesoscale gyres act as retention areas with increased carbon deposition. A future OWF in the BCZ will be located close to gravel beds in a Natura 2000 area, considered as vulnerable habitats and biodiversity hotspots. The different scenarios for this OWF, varying in turbine number and positioning, are compared in terms of impact on the carbon and mineral particle deposition flux in the BCZ and, particularly, to these gravel beds. The scenarios show that the number of turbines has only a slight impact on the TOC deposition flux, unlike their positioning that significantly alters the TOC flux to the gravel beds. The TOC deposition flux exceeds 50%, when the turbines are placed next to the gravel beds; while a limited increase is simulated, when the turbines are located the farthest possible from them.

Keywords: offshore wind farms, coupled models, COAWST, filtration model, sediment modeling, carbon deposition flux, blue mussel, biodeposition


1. INTRODUCTION

The European Union (EU) heavily invests in the development of renewable energy, and offshore wind farms (OWFs) are an important contributor. In 2019, a record amount of EU energy capacity of 3.6 GW was installed offshore (Komusanac et al., 2019). This accounts for 24% of newly installed capacity of all wind turbines, currently responsible for 15% of total energy production in the EU.

OWFs affect the surrounding sediment bed and associated benthic communities in many different ways. Each monopile foundation is protected by an artificial scour protection layer (e.g., gravels) that attracts fouling species who use it as a hard substrate. The underwater parts of turbine foundations also provide a substrate for fouling species, with the most abundant in the North Sea being the blue mussel Mytilus edulis, the amphipod Jassa herdmani and the plumose anemone Metridium senile (Krone et al., 2013; De Mesel et al., 2015). These organisms feed on the suspended particulate matter (SPM) in the water column, which they partially expel in the form of fecal pellets, further referred as FPs (Callier et al., 2006). Deposited FPs contain a large amount of carbon, and its influx into the sediment bed may disrupt the carbon balance and affect local ecosystems through changes in sedimentology and oxygen fluxes (Mirto et al., 2000; Christensen et al., 2003; Carlsson et al., 2010). Remote sensing (Vanhellemont and Ruddick, 2014) and in-situ measurements (Baeye and Fettweis, 2015) have shown SPM plumes over a kilometer in length in the wake of the turbines. Their exact origin is unknown, possibly it is a combination of biodeposited and resuspended materials with dynamically trapped SPM (Forster, 2018), due to the splitting of the current around the foundation and reconvergence downstream, (i.e., the island effect). These plumes show that the impact of OWFs is not local and may affect a much larger area than just the OWF perimeter.

Upscaling the local effect of particle filtration and biodeposition by fouling organisms beyond the concession area requires the combination of laboratory experiments, sampling campaigns, and modeling. Slavik et al. (2019) used a model to estimate that mussels living on monopile foundations could cause a depletion of 8% of the primary production (PP) in the large vicinity of the OWFs, and an increase far outside the OWF perimeter. Field observations are limited to the immediate vicinity of the turbines and show higher organic matter content, finer sediments and changing macrofaunal communities (Coates et al., 2014; Lefaible et al., 2018). However, a regional quantification of the biodeposition effects on organic and mineral particle fluxes to the bottom and resulting changes in the sediment composition is not yet available.

This paper targets the upscaling of biodeposition at the OWFs using the three-dimensional hydrodynamic model ROMS (Regional Ocean Modeling System) coupled with the wave model SWAN (Simulating WAves Nearshore), the sediment model CCSTM (Community Coastal Sediment Transport Model) and an upgraded version of the filtration model from Slavik et al. (2019), within the COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) framework (Warner et al., 2010). The model is applied to the Belgian Coastal Zone (BCZ), where the OWFs current concession area (CCA) occupies 238 km2, while for the next 5 years a new concession area (NCA) is planned, resulting in a doubling of the surface currently occupied by OWFs (Figure 1B). Different sets of simulations are performed (e.g., baseline, positioning scenarios) and compared in terms of the impact of OWF-induced biodeposition on the organic and mineral particle fluxes to the bottom. The simulations are analyzed with the aim of providing recommendations for a spatial design of the NCA that would reduce the changes in the TOC flux to the sediment in the Natura 2000 area and particularly on the protected gravel beds. In an accompanying paper (De Borger et al., 2020a), the consequences for sediment biogeochemistry of these scenarios are addressed.


[image: Figure 1]
FIGURE 1. (A) Overview of North Sea OWFs from a website https://www.4coffshore.com/offshorewind/, accessed on 31/10/2020. Black rectangular corresponds to the right panel (BCZ). (B) The BCZ (black contour) and distribution of OWFs (see the legend on the lower-left corner; and for further details—Table 2) which were operational by April 2020 (colored dots) or were under construction or planned (colored contours). The thick green line represents the Natura 2000 protected area; the gravel beds that host hotspots of biodiversity are colored in red-brown.




2. MATERIALS AND METHODS


2.1. Environmental Characteristics of the Investigated Area

The Southern Bight of the North Sea (SBNS) lies between the UK on the west and the European Union on the east and is connected with the Atlantic Ocean through the strait of Dover on the south and through the North Sea proper in the North (Figure 2A). The SBNS is divided into three major regions (Laevastu, 1963): two coastal areas are influenced by freshwater input from the continent or from Great Britain, while the middle area is dominated by the saline Atlantic water. The SBNS is influenced by periodic semi-diurnal tides, whose amplitude reaches up to 3 m. The residual water flow is directed toward the northeast, following the eastern branch of the Gulf Stream and North-Atlantic current. However, along the Belgian coast the flow can be perpendicular and even opposite due to the complex bathymetry and river inputs (Delhez and Carabin, 2001). In the winter, the main residual current is faster due to the influence of dominant SW winds (Ivanov et al., 2020), which expose the European coast to strong waves originating predominantly from the Dover strait (Neill and Hashemi, 2013). Those waves break at the shallow depths of the BCZ and play an important role in sediment resuspension (10% of the total bottom erosion in the BCZ; Fettweis and Van den Eynde, 2003). The sediment composition in the region is diverse, but sands are the dominant sediment class (Figure 2A). The strait of Dover, characterized by the strongest currents, has the highest content of coarse sediments. In the BCZ, near Zeebrugge and around the Scheldt estuary, vast Holocene mud fields can be found (Figure 2B), also in Fettweis and Van den Eynde (2003).


[image: Figure 2]
FIGURE 2. Distribution of median sediment grain size (composed from Verfaillie and Van Lancker (2006); Wilson et al. (2018)) over the SBNS (A) and BCZ (B) with the residual currents (black arrows) superimposed for the SBNS.


The SBNS and the BCZ have a huge potential for wind energy production (Schillings et al., 2012, see all operational and planned stations of the North Sea on Figure 1A). Despite already having several operational OWFs, Belgium is still well behind the European annual total of 15% of energy generated by wind power (data for 2019 by Komusanac et al., 2019). At the same time, Belgium is the only EU country (by 2019), where offshore wind energy generation (4645 GMW) is higher than the onshore (3474 GMW), with still a large prospect for further developments.

In the new Belgian Marine Spatial Plan 2020–20261 the Belgian government designated the NCA to build a new OWF (Figure 1B). However, the NCA overlaps with the northern part of the Vlaamse Banken2, an area that is protected under the European Natura 2000 network for the preservation of rare and endangered species and their habitats (Evans, 2012). A part of the Vlaamse Banken is characterized by the presence of gravel beds that serve as hotspots of biodiversity in the BCZ (Houziaux et al., 2008). These gravel beds cover ~580 km2 or ~17% of the BCZ and ~16% of the Natura 2000 area. Despite being called “gravel,” they are mostly gravelly sand, with sand and gravel being major components. In addition to the Belgian NCA, a French OWF is also planned near Dunkirk (Figure 1B), bordering the Belgian Natura 2000 and close to the gravel beds. The effect of this French OWF may eventually superimpose on that of the NCA.

The Belgian gravel beds and neighboring sandy habitats serve as a substrate for whelks, top snails and “dead man's fingers,” one of the northernmost corals, and form unique ecosystems with top members of the food chain including various fish, marine birds (e.g., terns) and seals (Degraer et al., 2009). They also act as breeding grounds for fish, including herring, which find shelter there. The Belgian gravel beds, however, suffer from mechanical disruption (i.e., aggregate extraction, that smother them through sedimentation of fine materials), from fishing activities (trawling) and in the future also possibly from construction works, e.g., OWF building (Lindeboom et al., 2011). These stressors endanger bottom integrity and may compromise the conservation of biodiversity associated with these gravel beds.



2.2. The Model

The hydrodynamic model ROMS, the wave model SWAN and the sediment model CCSTM are coupled within the COAWST framework (Warner et al., 2010) to simulate the organic and mineral particle dynamics governed by PP, sinking, deposition, and resuspension, as well as by the filtration and biodeposition processes associated to the OWF filtering communities. The capacity of the hydrodynamic model to represent temperature, salinity, vertical stratification, tidal and residual currents and water transport through the strait is extensively validated with in-situ and satellite observations in Ivanov et al. (2020). That paper also analyses the impact of atmospheric patterns on the simulated fields. The filtration model is based on Slavik et al. (2019), but has been modified to consider the vertical distribution of filter feeders along the monopile foundation and to include tidal dynamics, causing parts of the monopile to be only intermittently immersed (see further details in section 2.2.3 and Supplementary Material 3). Organic matter is described with two fractions, representing slow and fast degradable carbon pools.

Scenario simulations for the NCA monopile positionings are designed based on the different options that are envisaged for the new OWF. All scenarios for the NCA are similar in terms of the total amount of energy delivered, but differ as concerning the number of turbines, their distribution and installed nameplate capacity per turbine. Each scenario is mapped on the model grid, by assigning for each grid cell a number of monopiles and their diameter.


2.2.1. Coupled Modeling System COAWST

The hydrodynamics of the SBNS and eastern part of the English Channel (EC) is solved using the three-dimensional ROMS model. The model domain extends from 3°W to 6°E and from 49°N to 55°N with a horizontal resolution of 5 km. The BCZ is covered with a high resolution subdomain, with grid cells of 1 km long, two-way nested in the coarse resolution model. Over the vertical, terrain-following sigma-coordinates are used with 15 layers, with a refined resolution near the surface (several cm) and coarse resolution at the bottom (1–4 m, depending on the water depth). At the lateral open sea boundaries with the central North Sea and the EC, the products from the Copernicus Marine Environment Monitoring Service (CMEMS3) are used for temperature, salinity and velocities, and from TPXO (Egbert et al., 2010)—for the tides. The discharges from the major rivers (the Seine, the Thames, the Rhine, and the Maas) are imposed as point sources of water and heat, while the Scheldt is represented as a channel and its discharge is imposed 30 km inshore, at the city of Terneuzen. Daily-averaged river discharges and their water temperatures are taken from the data archive provided by the Swedish Meteorological and Hydrological Institute (SMHI, Lindström et al., 2010. At the air-sea interface, the model is forced with the hourly ECMWF Era-Interim product4 at a horizontal resolution of 0.125° interpolated on the model grid. Full details on the implementation of the ROMS hydrodynamics model in our domain can be found in Ivanov et al. (2020).

The sediment deposition and resuspension processes are tightly conditioned by the bottom drag due to wave action, in addition to tidal and residual currents. Therefore, the ROMS hydrodynamic model is coupled with the wave model SWAN using the Model Coupling Toolkit (MCT) implemented in COAWST (Warner et al., 2010). SWAN is forced at the open boundaries of the coarse grid by the hourly wave periods, heights and directions, acquired from the WaveWatch III product “glo_30m” (Tolman, 1989). SWAN was run on the same grid as ROMS using two way nesting. The vertical distribution of organic and mineral particles in the sediment is described by the CCSTM. The dynamics of sedimentary and water column particles is coupled through deposition and erosion processes that depend on local hydrodynamics (bottom shear stress, see section 2.2.2 and Supplementary Material 2 for details). The coupling of the ROMS, SWAN and CCSTM is described in Supplementary Material 1, while the validation of the wave model is provided in Supplementary Material 4.



2.2.2. Organic and Mineral Particle Model

Rather than representing the cycle of carbon from primary producers to detritus through heterotrophs, we short-circuited the food chain. Therefore the vertically integrated CMEMS primary production NORTHWESTSHELF_REANALYSIS_BIO_004_0115 is imposed as a surface organic carbon source for two classes of detrital carbon: the fast and slow degradable particulate organic carbon (POC), respectively POCf and POCs. Both POC compartments are subject to vertical sinking and to a loss term that lumps degradation and respiration processes (equations are described in Supplementary Material 2).

The CCSTM implemented in COAWST allows for the inclusion of an arbitrary number of cohesive and non-cohesive sediment classes. Here, the sediments are described through one class of (cohesive) mud (referred as SMUD) and two classes of (non-cohesive) sand: medium sand (median grain diameter D = 0.22 mm) and coarse sand (D = 0.7 mm), respectively referred as SSANDm and SSANDc. Three classes are necessary to account for muddy sediment texture, e.g., near the Belgian coast at Zeebrugge (Fettweis and Van den Eynde, 2003). Field campaign data (Toussaint et al., 2021) and regional sediment maps (Verfaillie and Van Lancker, 2006; Wilson et al., 2018) showed a wide range of median grain sizes for different stations over the domain, requiring multiple sediment classes for correct model parametrization. In addition, when POCf and POCs settle upon the sediment bed, they are also considered as cohesive sediment fractions and add to the fast and slowly degradable sedimentary carbon compartments (respectively SPOCf and SPOCs).

Each sediment class is represented in the model by its mass fraction that can vary in three dimensions: horizontally and vertically in the sediment bed. Sediment particles are transported vertically within the sediment bed through biodiffusion, while in the upper bed layer they are subjected to resuspension (see Supplementary Material 2 for the equations). Sediment class dynamics is governed by a set of parameters: median grain diameter, dry density, settling velocity, critical shear stresses for erosion and deposition, erodibility and porosity (see Table 1). Because mud has been extensively studied in the BCZ, most of its parameters such as the settling velocity, critical shear stresses for erosion and deposition and erodibility are available from studies of Fettweis and Van den Eynde (2003) and Mercier and Delhez (2007). However, there are relatively few studies of sand dynamics, and some of its parameter estimates may vary in an order of magnitude. Therefore sand parameters are mostly calibrated to fit the SPM observation for different tidal conditions (see section 3.1) and to keep the model at steady state (i.e., no trend of the medium and coarse sand fractions over the years of integration). For each sediment bed grid cell, the vertical profiles of total erodibility, critical erosion stress and biodiffusion are calculated as a mass fraction-weighted sum of each sediment class property.


Table 1. Parameters associated with each modeled class of organic and non-organic particles.
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Seventeen vertical layers are defined for the sediment bed: upper 10 layers (where biodiffusion is mostly active) are 1 cm thick, next 4 are 10 cm; last 3 are 50 cm thick. The biodiffusion coefficient is assumed to be horizontally uniform; however, vertically it varies according to a sigmoid function, with a value of 0.2 cm2 d−1 at 1 cm depth, 0.05 cm2 d−1 at 10 cm and 0 cm2 d−1 at 30 cm (based on Figure 8 from Zhang and Wirtz, 2017). In COAWST, the sediment bed can act as an entity (cohesive bed), or as an ensemble of separate sediment classes acting on its own (non-cohesive bed) or as a mixed bed, with a “cohesiveness” coefficient that depends on the mud quantity and defines how the bed behaves at each grid cell (Sherwood et al., 2018). Several tests were conducted with the settings similar to R-0 scenario from section 2.3, but using different options for the CCSTM model seabed characterization mode (i.e., cohesive, non-cohesive, mixed). Results were compared with in-situ observations and evidences from the literature for organic matter carbon content in the sediment, suspended sand concentration near the bottom during spring tides, TOC deposition at the stations and SPM concentration in the water column (more information in section 3.1), as well as for the steady-state of all the sediment classes. The “cohesive” formulation provided the best compromise in terms of model skills and was therefore adopted for the main simulations.

The spatial distribution of the mass fraction of mud and medium and coarse sand is initialized from a regional product of composite maps (Wilson et al., 2018), updated with the local grain size data from Verfaillie and Van Lancker (2006) and from the Belgian Science Policy project FaCE-iT (Functional biodiversity in a Changing sedimentary Environment: Implications for biogeochemistry and food webs in a managerial setting) field campaign of 2020. Although the flocculation process is not resolved by our model, the mud parametrization intrinsically accounts for flocculation through a higher sinking speed (Fettweis and Van den Eynde, 2003), which is particularly important to represent the mud fields near Zeebrugge. The initial distribution of SPOCf and SPOCs is estimated by prerunning the model for 1 year, acquiring the annual-averaged bottom fluxes of both carbon pools and then by estimating the steady-state concentration of carbon using the formula of the converging infinite geometric series. At the lateral boundaries, a concentration of mud of 100 mg m−3 is imposed at the Dover Strait (Mercier and Delhez, 2007); 36,000 mg m−3—at the Scheldt (Baeye and Fettweis, 2015) and 33,800 mg m−3 at the Rhine (Asselman, 1999).

Further technical details, including model equations and a list of state variables and parameters, are given in Supplementary Materials 2, 3.



2.2.3. Filtration Model

In the framework of the FaCE-iT project, one C-Power (the first Belgian OWF) turbine installed on a gravity-based foundation (Wu et al., 2019) was studied in detail during annual ship-based field campaigns in 2016–2019. Particularly, the abundance of fouling species was estimated in-situ, while the amount of produced FPs was estimated in a set of laboratory experiments6. The main biofouling organisms in the BCZ are the blue mussel Mytilus edulis, the amphipod Jassa herdmani and the plumose anemone Metridium senile, but the latter two have negligible biodeposition relative to that by the blue mussel (Vanaverbeke et al., 2020). Therefore, only mussels are considered in the filtration and biodeposition model. Blue mussels are assumed to be uniformly distributed between the mean sea surface level and 6 m of depth along the monopile foundation with a density of 6468 individuals m−2 (Kerckhof et al., 2010; De Mesel et al., 2015). For each monopile, the total amount of mussels that are involved in the filtration process (i.e., submerged) at a given time is calculated using the total surface area available for biofouling and the instant water level (see Supplementary Material 3 for details).

The mussels filter the two organic carbon pools (POCs and POCf) and inorganic fine particles (MUD) from the surrounding waters and produce feces with an enhanced sinking speed, that consist of organic (FPPOCs and FPPOCf) and inorganic particles (FPMUD). These fecal pellets rapidly sink to the bottom where they add to the mud and sedimentary carbon pools. Notice that in the water column TOC = POCs + POCf + FPPOCs + FPPOCf. The filtration model parameterizes the filtration, production of feces and respiration. Model formulations are based on the model from Slavik et al. (2019), that uses empirical relations of the filtration rate and available carbon by Bayne et al. (1993). In our implementation, filtration can only happen on the submerged part of the monopile foundation; tidal dynamics causes parts of the monopile to be exposed to the air at times.

The filtration model is embedded into COAWST as a part of the CCSTM to represent the impact of biofouling organisms on the SPM and sediment dynamics. A schematic representation of the organic and mineral particle model is shown on Figure 3, while details on its mathematical formulation and main hypotheses are presented in Supplementary Material 2.


[image: Figure 3]
FIGURE 3. Schematic representation of the carbon and mineral particle model including the filtration model. The filtration model describes the transformation of organic and inorganic materials into fecal pellets that sink to the bottom to feed the sedimentary compartment.




2.2.4. Implementation of Wind Farms Distribution

The OWFs are represented in the model via two variables: mean monopile radius and number of monopiles per grid cell. The mean monopile radius (m) is used to calculate the area available for filtration by fouling organisms given an instant water level. Here, the area covered by mussels is considered to be an ideal cylinder. The number of monopiles per grid cell is used to calculate the total filtration rate and FPs production within a grid cell. It is assumed that all monopiles in a grid cell are of the same diameter (true for the fine resolution grid).

Table 2 summarizes the main characteristics of operational and planned OWFs, distributed across the model grid. Three types of turbine foundations are installed in the region of the BCZ: the large majority of them are monopiles, except for the first Belgian OWF C-Power, where 48 jacket foundations and 6 gravity-based foundations can be found (Wu et al., 2019). For the simplicity of computation of the biofouled area, it is assumed that all the turbine foundations are monopiles. If the exact coordinates of monopiles in an OWF are not available, monopiles foundations are distributed uniformly over model grid cells assigned to the OWF perimeter. This explains why the number of monopiles per grid cell can be a decimal number in Table 2. If no information is found regarding the monopile diameter, a diameter of 8 m is assumed. The new OWF at the NCA and Dunkirk OWF have the least available public information, because their construction has not yet started. For these two OWFs, only the total amount of energy delivered by each OWF is known, while information about the monopile type, their number (true for the new OWF at the NCA), turbine nameplate capacity, diameter, and location is not yet in the public domain.


Table 2. Information about existing and planned OWFs (see Figure 1 for the localization of each OWF).
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2.3. Scenarios Design and Policy-Driven Questions

During project meetings with representatives of the WWF-Belgium, concerns have been raised about a future OWF in the NCA, partially covering the Natura 2000 zone, that may impact its fragile gravel beds ecosystems in the negative way.

The stakeholders formulated two main policy-driven questions; therefore the developed scenario simulations and associated analyses were designed to answer them. Those questions are:

1. What is the design of the NCA in terms of number of turbines and location that would preserve the gravel beds?

2. If we place nevertheless the NCA turbines inside of the Natura 2000, what effect will it cause?

The scenarios have been defined as follows. The total amount of energy that will be delivered by the new OWF has already been known from https://www.4coffshore.com/offshorewind/, accessed on 31/07/2020. However, the design of the OWF in terms of number and placement of the turbines was not yet decided. Using information about the total energy to be delivered and the nominal capacity of different models of turbines in existing regional OWFs, we defined scenarios that vary in the number of turbines and placement (Figure 4 and Table 3). For the placement we chose two contrasted configurations. In the first positioning scenario, all the turbines are concentrated in the northern part of the NCA (i.e., the Northern placement, scenarios N-250, N-210, and N-162) in order to maximize the distance to the gravel beds. In the alternative scenario, the turbines are located in the south of the NCA overlapping with the gravel beds (i.e., the Southern placement, scenarios S-250, S-210, and S-162). Note, that even in the Northern scenario some monopile foundations need to be placed inside the Natura 2000 area to match the projected total energy production, but these turbines are still at least 2 km away from the closest gravel bed. Then, for each of these two positioning scenarios, we defined three sub-scenarios for the nominal capacity per turbine, based on examples from the region: one with 250 8.4-MW turbines (respectively N-250 and S-250) as currently installed in the SeaMaid or Norther OWFs, one with 210 10-MW turbines (respectively N-210 and S-210) as in the Dutch Borssele-V OWF and one with 162 13-MW turbines (respectively N-162 and S-162) as expected for the Dunkirk OWF (based on the total energy delivered and the projected number of turbines). For each scenario, a distance between monopiles of 9–18 times the rotor diameter (which is 100–150 m) is guaranteed to allow recovery of the wind (Choudhry et al., 2014). This means that we have 2 monopiles per km2 (i.e., per grid cell of the fine resolution grid).


[image: Figure 4]
FIGURE 4. Mapping of the monopiles over the NCA under two scenarios of localization of the wind farm: Northern placement (N) avoids the gravel beds while Southern placement (S) overlays with the gravel beds. For each placement, we consider three types of installed nameplate capacity, resulting in 162, 210, and 250 monopiles. These scenarios are referred to as N-250, N-210, N-162, S-250, S-210, S-162. In each case, the total amount of delivered energy by the OWF at the NCA is fixed at 2100 MW.



Table 3. List of scenarios that are selected for running the model.
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The design of these 6 scenarios is targeted toward finding an optimal location of the turbines that would minimize the impact of the NCA on the Natura 2000 area and, in particular, on the gravel beds. We do not target a minimization of the costs associated with cable extension and maintenance of the monopile. We also ignore practical constraints due to the bathymetry that may prevent the building of monopile foundations at some places.

In addition, we performed a “Dunkirk” (D-210) scenario that considers the Dunkirk OWF (Table 3), because its concession zone is drawn very close to the BCZ and hence could potentially affect Natura 2000 ecosystems. For this scenario, we assume that the 46 monopiles of Dunkirk are built as close as possible to the BCZ, with a density of 2 monopiles per grid cell, in order to envisage the most unfavorable situation. For this additional scenario, we use the N-210 positioning scenario for turbines in the NCA. Lastly, we run the reference (R-0) scenario, without biodeposition associated with OWF biofouling organisms, to estimate the carbon deposition and sedimentary structure without human interventions. Each scenario is run for 1 year starting from the same initial conditions.




3. RESULTS

In this section, we assess the ability of the model to simulate the seasonal dynamics and spatial distribution of SPM in comparison with a satellite product. The impact of the OWF biodeposition on the carbon and mud flux to the bottom is assessed under different scenarios (Table 3). Areas of statistically significant changes of the simulated annual average of the TOC deposition fluxes are identified using a t-test modified for auto-correlated time series (see Supplementary Material 6). In what follows, we will qualify as (non) significant changes, the changes in the TOC fluxes that do (not) result in annual average values that are found statistically significant. However, it should be noted that even changes in the carbon flux that do not result in statistically different annual averages can potentially impact the biogeochemistry and ecosystem. For instance, De Borger et al. (2020a) show that small but persistent changes in the TOC flux to the sediment can alter the carbon storage and remineralization process. We also highlight how the hydrodynamics (residual currents, tides, sub-mesoscale gyres) determine the spatial pattern of changes and the far-field effect. Simulated changes sometimes propagate far beyond the OWF border. The simulated waves (significant wave height, wave period) and associated shear stress are compared with tidal gauges and literature in Supplementary Material 4.


3.1. Validation of the Organic and Mineral Particle Model

The simulated SPM concentration in the water column is compared with the CMEMS inorganic SPM satellite product for the year 2019 (OCEANCOLOUR_ATL_OPTICS_L3_NRT_OBSERVATIONS_009_0347). Throughout the year, the simulated SPM content is higher along the coast than in the offshore. In winter, the SPM concentration increases everywhere in the BCZ and the SPM patch associated with the river plume becomes larger, because the bottom resuspension is enhanced by the wave action. This spatio-temporal pattern is in agreement with satellite observations (Figure 5A), even if we note that the observed plume is extending more offshore covering the area from France to the Netherlands. This mismatch is attributed to the underestimation by the model of the bottom stress along the coast due to the limited spatial resolution of the model and the complex bathymetry. It does not have an effect on the SPM at the CCA and NCA, because the SPM at the offshore station D6 is indeed quite well-simulated (see Figure 5C).


[image: Figure 5]
FIGURE 5. (A) Surface SPM in winter (top) and summer (bottom), left column—satellite, right column—model. (B) Positions of the monitoring stations (background—bathymetry). (C) Satellite and model SPM boxplots at those monitoring stations for spring (H) and neap (L) tide.


The comparison of the simulated SPM with that obtained from the satellite at monitoring stations (see positions on Figure 5B) for spring and neap tides shows a good agreement in terms of median values and ranges (Figure 5C), except for station 780, where the simulated mud concentration is too high during the spring tide, possibly because of too high bottom stress. Offshore, at station 330, SPM near the bottom reaches a concentration of 3 g m−3 during high tide, in line with observations by Baeye and Fettweis (2015). The model tends to underestimate SPM concentration during the neap tide (for all stations), and overestimate it during the spring tide (for all stations except st. 130).

The simulated spatial fluxes of organic carbon to the sediment are used in De Borger et al. (2020b) to force a diagenetic model that is run at monitoring stations (for model calibration). The diagenetic model (OMEXdia) estimates the flux of dissolved inorganic carbon (DIC) and sediment community oxygen consumption (SCOC), that can be compared with FaCE-iT field campaign data. The fitting of the OMEXdia-simulated DIC outflux and SCOC to these data allows to constrain the degradation and sinking rates of the organic carbon in our model. Using the parameters described in Table 1, we are able to simulate POC flux to the sediment that supplies OMEXdia-simulated SCOC and DIC outflux with a spatial variability and intensity that are consistent with the majority of the stations sampled during the FaCE-iT ship-based field campaigns 2017–2019 (see Supplementary Material 6).



3.2. Impact of OWFs on Carbon and Mineral Particle Flux to the Bottom of the BCZ: Scenario Simulations

Here, we show that the OWF biodeposition significantly changes the carbon flux into the sediment and alters the mud flux. This change sometimes propagates far beyond the OWF concession domain. We highlight how the hydrodynamics (residual currents, tides, sub-mesoscale gyres) determine the spatial pattern of changes and the far-field effect. For the different NCA scenarios we compare changes in the carbon fluxes to surrounding sediments.


3.2.1. General Features of the OWFs Footprint on Carbon Flux to the Seabed

The distribution of changes of relative values (>|1|%, D-210 scenario with respect to R-0 scenario) in the TOC flux to the bottom shows that the largest changes are found in the vicinity of 2 km around the monopile foundations, and exclusively consist of a flux increase up to 15% and more (Figures 6A,C). Note, here the “distance to the closest monopile” means the distance between the center of a grid cell and the closest grid cell containing at least one monopile; i.e., if a location is “5 km away from the monopile,” it means that it is 5 ± 1.4 km away. At 2–5 km from the monopile, the overall fluxes are still higher (1–10%), although this effect drastically decreases with an increasing distance (from 9% at 2 km down to 3% at 3 km; see Figure 6C). Beyond 5 km from the monopile, the carbon flux is lower compared to R-0 situation and reaches its maximum decrease of 2% at a distance of 9–13 km. The reduction of the flux however does not exceed 2% and hence is significantly smaller than the maximum increase of 2–15% simulated close to the monopile. A marginal (~0.5 %) decrease of the flux is also simulated further than 30 km away from the monopiles.


[image: Figure 6]
FIGURE 6. Changes in the annual TOC deposition flux (in %) under the D-210 scenario compared to the R-0 simulation. (A) Scatter plot of changes in TOC flux for each grid cell within 30 km of a closest monopile as a function of water depth and distance to the closest monopile. (B) Area-weighted annual TOC changes for each particular water depth; (C) Area-weighted annual TOC changes at each particular distance to the closest monopile; (D) Cumulative bar plot of the number of monopiles for each concession area as a function of the water depth.


The distribution of the changes in the carbon flux as a function of water depth (Figure 6B) shows that the depths between 16 and 32 m experience an increased TOC flux (up to 6%) to the bottom, while in the shallow waters (<15 m) and in the deep parts of the domain (up to 45 m deep) we simulate a decrease up to 2%. The 16–32 m depth range where we simulate an enhanced deposition corresponds to the depth where we find most of the monopiles (Figure 6D). However, most turbines are located at 29 m depth (Figure 6D); while the maximum increase in TOC fluxes is simulated at 24 m depth (Figure 6B). This difference indicates that the OWF impact is larger at shallower depths, with a possible explanation that shallower depths experience higher deposition of TOC under the same conditions of its production, because a smaller amount of TOC degrades while sinking, compared to the deeper regions.



3.2.2. Effect of the Hydrodynamics on the Carbon Flux

The horizontal pattern of changes in the TOC flux to the sediment (under the N-250 scenario) is aligned with the M2 tidal ellipse major axis in the SW–NE direction (M2 accounts for 70% of the amplitude of the tides in the region). The ebb and flood of the tidal current transport FPs up to 20–30 km away from the OWF (Figure 7A); while in the SE–NW direction (i.e., tidal ellipse's minor axis), moderate (>10%) changes do not extend beyond 2–3 km.


[image: Figure 7]
FIGURE 7. Spatial distribution of the annual change (%) in the TOC deposition flux integrated under N-250 scenario with superimposition of the M2 tidal ellipses (A) and the residual currents (B). Enumerated white circles denote retention gyres. In (A) the green and red rectangles correspond to cut-offs (C–E). Each blue dot represents two monopiles. (C) Changes (in %) in the TOC deposition flux under D-210 scenario compared to R-0 simulation. Blue dots—possible location of monopiles (each dot represents 2 monopiles) and blue frame—border of Dunkirk OWF. Green polygon—Natura 2000. Pink-semi transparent polygons—gravel beds. (D,E) Change (%) compared to the R-0 simulation of yearly-integrated TOC deposition flux: N-250 case and S-250 case, respectively.


The effect of residual currents8 results in the net transport of TOC in the NE direction (Figure 7B). More important, residual currents in the Natura 2000 area flow predominantly northward, transporting the filtered carbon outside the NCA and hence protecting the local gravel beds from an increased carbon flux. In between the CCA and NCA, the residual current is strong and flows northward. Here, the changes are moderate and no cumulative impact of the CCA and NCA is observed. The density of monopiles affects the amplitude of the maximum change. The largest increase of carbon flux (>50%) is observed where the monopile density is ≤ 2 km−2 (e.g., at Belwind, Northwind, C-Power, and the NCA).

In addition to the general pattern of change, the distribution of the TOC flux to the bottom displays a patch of an enhanced TOC deposition of a few kilometers in scale, that can be associated with the residual hydrodynamics (e.g., convergences, divergences, gyres), that are particularly intense in this region due to the complex bathymetry and interactions with riverine plumes (Ivanov et al., 2020). In particular, residual gyres act as retention areas for TOC, leading to marked patches of the enhanced carbon deposition. For example, the SE boundary of the CCA (Norther OWF) displays a sharp gradient of carbon flux change from a slight decrease (2–3%) to a 50% increase within 2–3 km (between gyres #1 and #2 on Figure 7B). This marked gradient is associated with the presence of a gyre (#1) that retains most of the filtered carbon close to the OWF. On the other hand, a residual flow around this gyre is responsible for spreading a share of the filtered TOC southward, therefore at station 330 (see Figure 7A), located more than 10 km away from the closest OWFs, a slight increase in carbon deposition is observed. Similarly, several patches of enhanced deposition changes are associated with large residual gyres in the CCA (#2) and NCA (#3), which act as retention areas, where the TOC can be locally degraded, limiting the spread of the material and hence reducing the far-field impact of the OWF biodeposition.

Model simulation under the D-210 scenario shows that the building of the new Dunkirk OWF close to the BCZ will result in an increase (up to 10%) of the TOC flux inside two “tongues” separated by an area of a slight decrease in TOC flux (Figure 7C). This reduced deposition area corresponds to a bottom dune with shallower depths. Therefore, the Dunkirk OWF redistributes the TOC flux to the sediment from the shallow regions to the deeper ones. We should note that the changes in TOC deposition flux to the local gravel beds is approximately five times smaller than the TOC flux changes caused by the NCA placement over the northern Natura 2000 gravel beds possibly due to the fact that for the Dunkirk OWF there are fewer projected monopiles.



3.2.3. Impact of the Design of the NCA on the Carbon Flux

Figures 7D,E zoom in on the NCA for the N-250 and S-250 scenarios compared to the R-0 simulation. They show the annual relative change of the TOC flux to the sediment. The patch of the carbon deposition in and around the CCA is the same for both cases and thus not shown. The patterns however are significantly different for the NCA, especially for the large gravel bed (pink color on Figure 8B), that is less impacted in the N-250 scenario compared to S-250. In N-250 scenario, this gravel bed faces a relative increase of TOC flux (~10%) in its northern part compared to R-0 scenario, with no flux alteration in its southern part. In S-250 scenario, the whole area of this gravel bed experiences a 50% TOC deposition flux increase compared to R-0 simulation.


[image: Figure 8]
FIGURE 8. (A) Annual TOC fluxes to the gravel beds, simulated under the scenarios of monopiles distribution defined for the NCA in Table 3 and for R-0 scenario. The TOC fluxes are spatially averaged over the gravel beds located inside (cyan) and outside (pink) the NCA. (B) Position of gravel beds inside the NCA and Natura 2000 (pink) and outside of the NCA but inside the Natura 2000 (cyan).


Under the different scenarios for the NCA (Table 3), the TOC flux to the gravel beds inside and outside of the NCA was more affected by the positioning of the monopiles than by their total number (Figure 8). The simulated TOC flux to the gravel beds inside the NCA increases by 48% (S-162) up to 67% (S-250) in the case of the southern placement, and only by 1.5% (N-162) to 8% (N-250) in the case of the northern placement. Outside the NCA, the TOC flux to the gravel bed does not change substantially (<1%) on average, but spatial variability of this effect has been evidenced, with some gravel beds receiving a higher flux (up to 10%; further discussion in section 4.2).




3.3. OWFs Footprint on the Mud Flux to the Seabed

Similar to organic carbon, mud in the water column is filtered by mussels and integrated in FPs. However, the model shows that the contribution of biodeposition to the mud background deposition is marginal (i.e., less than 1%) and that the mud dynamics is mainly governed by the lateral inputs (from the Strait of Dover and the rivers) and by deposition/resuspension processes. The spatial distribution of the mud flux to the sediment due to biodeposition shows a marked seasonal variability similar to that of the suspended TOC in the water column (Figure 9) with the highest (> 200 mg m−2 d−1) values in summer when the mussel filtration rate is highest because of high rates of PP, whereas lowest values (biodeposition is suppressed by resuspension) are modeled in winter when the stronger bottom shear stress hampers deposition. The zone of increased mud flux to the bottom extends beyond the OWFs area following the general direction of the residual currents. Note that, since the model does not account for flocculation of fecal pellets and mineral fine particles, it may overestimate the mud dispersal and hence, underestimate the mud deposition around the wind farms (see further discussion in subchapter 4.3).


[image: Figure 9]
FIGURE 9. Flux of filtered mud (FPMUD) to the sediments for different months of the year under N-250 scenario.





4. DISCUSSION


4.1. OWF Footprint on the Sedimentary Environment

The filtration of SPM in the water column and subsequent FPs production by fouling mussels on OWFs' monopiles result in a conversion of slowly sinking organic and inorganic SPM into fast sinking particles and a redistribution of particle fluxes to the sediment. While, sinking and in case of resuspension after deposition, FPs are transported by tidal and residual currents. The spatial pattern of the particle flux to the bottom thus reflects the local hydrodynamics around the monopile where they are produced. The area of influence of the monopiles depends on the settling velocity vs. transport, mixing conditions and bottom shear stress. Hence, due to the predominant offshore direction of the residual currents along the Belgian coast (especially in the eastern part) and the quasi-alongshore orientation of the tidal ellipses, no significant influence of the OWFs on the near-shore environment is found.

Our model simulations show that the inorganic mud content in the water column and in the sediment bed is marginally (less than 1%) modified by mussel biodeposition, because the order of magnitude of the filtration and FPs flux is small (Figure 9) compared to lateral transport and erosion of muds. In contrast, OWFs considerably modify the TOC flux to the bottom, establishing a zone with enhanced carbon deposition (by 2–15% on average, and up to 50% locally and sporadically) around the monopiles that stretches in the direction of the residual current, and is aligned with the major axis of the tidal ellipse. At the same time, larger regions, located mostly perpendicular to the main direction of the regional residual current and along the minor axis of the tidal ellipse, are affected by a moderate (up to 10%) decrease (Figure 7). This implies that the filtering action of OWF biofouling fauna concentrates the deposition of planktonic organic carbon around OWFs, that would otherwise be more homogeneously spread across the domain. A visible far-field effect in the form of a reduced deposition is simulated up to 30 km away from the monopile. On the smaller spatial scales, the changed deposition exhibits features associated with sub-mesoscale gyres. These gyres trap the FPs in their center and act as retention areas with enhanced deposition, degradation and reduced spreading. The area of statistically significant TOC deposition flux changes includes OWF perimeters, but can also stretch up to several km in the direction NE-direction, when the residual current is aligned with the major tidal axis.

The simulated enhanced carbon deposition up to 50% around the monopile area and in the center of sub-mesoscale gyres has the potential to alter the sedimentary environment in terms of composition, grain size and biogeochemistry. Indeed, the field studies in the area revealed a decrease in median grain size (from 427 to 312 μm) coinciding with an increase in organic matter content (from 0.4% up to 2.5%) in the vicinity of the turbines in Belgian OWFs (Coates et al., 2014; Lefaible et al., 2018).



4.2. OWFs Foodprint on the Natura 2000 Region

Model development and scenario definitions have been designed to address the concerns of policymakers about the positioning and number of NCA monopile foundations. More specifically, the number and placement of turbines have been investigated so as to minimize (and in possible to prevent) a negative effect on the Natura 2000 region and, in particular, to safeguard the nearby gravel beds. Model simulations, run under the different scenarios of the OWF design for the NCA, show that the number of installed turbines has an order of magnitude less impact on the TOC deposition flux than their positioning (Figure 8A). The statistical analysis has also confirmed that the area of statistically significant changes in the TOC deposition flux is much larger between two different placement scenarios of the same turbine energy capacity, than between two different energy capacity scenarios of the same placement (see Supplementary Figures 5B,C). The simulations demonstrate that when all the turbines are located in the northern part of the NCA, with only a reduced number in the Natura 2000, the increase of carbon deposition to the Natura 2000 gravel beds located within the NCA is nowhere higher than 10%. In contrast, when the turbines are all located in the southern part of the NCA, this increase exceeds 50%, and even some gravel beds outside the NCA are impacted. This might affect the preservation of the biodiversity of the gravel beds, through a possible negative impact on filter feeding organisms (Essink, 1999). Luckily, the NE-direction of regional residual currents and the alignment of the tidal ellipses with the coast favor the transport of material away from the Natura 2000 area, preserving the majority of gravel beds outside the NCA even in the case of a southern positioning, except for the northern part of the gravel bed located close to the NCA.

In the direction opposite of the residual current and beyond 5 km from the NCA, the carbon deposition flux decreases up to 10%. For instance, under the northern placement scenarios (Figure 7D), a large gravel bed which borders the NCA (the northernmost cyan-color gravel bed on Figure 8B) receives a decreased deposition flux. However, in the southern placement scenarios (Figure 7E), the northern part of this gravel bed is heavily impacted by the increased carbon deposition.

Considering the future Dunkirk OWF, the logical conclusion would be to place its turbine foundations as far as possible from the Belgian border to prevent them from affecting gravel beds in the eastern part of the Natura 2000 area. In the most extreme case as shown here, this OWF will increase TOC deposition to the closest Belgian gravel beds by 10% (however, this does not result in a change in the mean annual TOC flux that is found statistically significant).



4.3. Current Model Limitations

The model resolution of 1 km limits the tracing of small-scale spatial features in the carbon flux dynamics. Indeed most of the effects are located within 5 km from monopiles, which is close to our limit in spatial resolution. While, this approach is sound for a first assessment of the regional impact, it shows that finer resolution is needed to detail the small-scale part of this distribution (i.e., <10 km). Typically, one way to exploit this information would be to decide that a new level of nesting should be employed in a 10 km vicinity around OWFs.

According to the simulations, the impact of OWF biofouling filtration on the mud content in the upper layers of the sediment bed is negligible compared to the important mud remobilization through the action of tides (Figure 9). In the field, the mud component of feces can be much less resuspendable, if the FPs do not decompose quickly and thus are still large in size. In addition, the flocculation process may play an important role at the OWFs, but is not included into the model, because of lack of data on FP decomposition. Decomposing FPs can potentially form flocs from any combination of non-organic material and organic carbon. Unfortunately, current scientific knowledge is limited for the flocculation/decomposition process and for the dynamics of hybrid mineral and organic aggregates in general. Hence, including flocculation and FPs decomposition processes into the model could be considered as speculation, which complicates simulations without adding a trustworthy added value.

In this study, the impact of OWF on the environment is limited to the filtration and biodeposition effects associated with the biofouling mussels. However, wind turbines and their foundations affect the local hydrodynamics (e.g., currents, mixing) and winds intensity. For instance, the presence of monopiles foundations and scour protection layers alters the circulation and increases bottom roughness, shear stress, resuspension, mixing, and stratification (e.g., Grashorn and Stanev, 2016; Rennau et al., 2012). There are some evidences in the literature that monopile foundations may alter the mesoscale circulation with the generation of eddies (e.g., the Karman eddies, Simpson et al., 1982) associated to the splitting and merging of the current around the pylone (the so-called “island effect”) and upwelling-downwelling (Christiansen and Hasager, 2005) induced by alteration of the wind patterns (the “shadow effect” evidenced by van der Molen et al., 2014). This intensification of the mesoscale circulation and production of eddies may enhance the trapping of biodeposits but this effect has not been quantified here.

Remote sensing as well as some notable in-situ studies (e.g., Baeye and Fettweis, 2015) evidence the existence of a sediment wake around the monopiles. However, this wake should yet be sampled to determine the quantity of mud and carbon in there, to further upgrade the model with information regarding sediment classes of filtered matter. Hopefully, the advent of hyperspectral remote sensing and field work, scheduled to calibrate the analysis of those data, will provide further insights into the size class distribution and composition of marine suspended aggregates, and may therefore allow to advance marine modeling in that regard. However, the model resolution of 1 km2 can be a potential limitation in modeling of this wake, which stretches by only a couple of kilometers away from the monopile and is only several tenths of meters wide.

The model constraint, which keeps the proportion of filtered organic carbon to mud as 40:60 essentially limits the filtration capacity of mussels by the available carbon. This simplification is derived from a laboratory FP analysis, but in the field, under North Sea conditions, this proportion can be different. The model also does not take into account the seasonal cycle of mussels growth (i.e., the mussel mass is assumed constant at 300 mg), due to lack of field data, as well as their interannual variability. In the field, mussel clumps tend to grow until a certain critical size until they are dislocated and fall down. We also assumed that the mussels cover the upper 6 m of the monopile with an equal density, without taking into account some variability, not including mussels below the 6 m depth mark and mussels located above the mean sea level. In addition, in the field mussels can grow on each other, transforming the cylinder surface area into a 3D fractal-like surface, but we neglect this due to the lack of corresponding studies. Despite all these limitations, we used the best available estimates from the FaCE-iT ship-based field campaign data and laboratory analyses, combined with the knowledge from the literature. We may guess that implementation of all these biological and ecosystemic constraints and processes would give better results on the interannual scale (brief analysis in Supplementary Material 5), but only marginally better results on the spatial scale.




5. CONCLUSION

The European Green Deal targets climate neutrality at the Horizon 2050. This ambitious objective requires continuing decarbonizing the energy system by increasing the part of renewable energy. In this context, the number of OWFs has sprung along European coasts and everywhere in the world with consequences for marine biodiversity and biogeochemistry that are hardly known at ecosystem scale. Our tool allows to upscale the local effect of OWF biofouling communities on a single turbine foundation over the regional scale using a well-validated coupled hydrodynamic-wave-sediment-filtration model with taking into account potential synergistic and antagonistic effects of neighboring monopile foundations. Such tools are needed to support the implementation of the EU policies, including the Blue Growth strategy (Eikeset et al., 2018), the Marine Spatial Planning Directive, the Habitat Directive (Coffey and Richartz, 2003) and Marine Strategy Framework Directives, the latter through the assessment of Descriptor 6 “Seafloor integrity.”

Our main conclusions can be summarized as follows:

1. The filtering action of OWF biofouling fauna induces a significant increase in TOC deposition within the OWF perimeter that rarely stretches beyond it. Around the turbine (<2 km) the TOC flux to the seabed increases annually on average by 2–15% but this increase may amount to 50% in certain areas. This increase can potentially affect surrounding benthic communities.

2. Beyond 5 km from the monopile, the carbon flux decreases compared to the reference situation and reaches its maximum decrease at a distance of 9–13 km then decreases to 0.5% at 30 km. The decrease of the flux does not exceed 2% and hence is tangibly smaller than the increase.

3. Model simulations assess the extension of the impact and clearly highlight that the effect of OWFs on carbon dynamics is not spatially uniform but rather exhibits a high degree of variability in response to the local hydrodynamics and, in particular, residual and tidal circulation, wave- and current induced bottom stress and local gyres. In particular, these local gyres act as retention areas inside which the carbon deposition may be enhanced.

4. Hydrodynamics must be included in assessing the scale of potential OWF effects on marine communities. Our results suggest that placing monopile foundations at least 3 km downstream (following the residual circulation) from vulnerable communities (e.g., gravel beds ecosystems) can considerably limit strong alteration in TOC deposition flux. For the most cases, placing the OWF at least 7 km upstream would result in very little (<5%) overall changes in the local carbon flux. For the direction, orthogonal to the dominant M2 tidal ellipse, this distance shrinks down to 2–4 km, depending on the direction of the residual current.

5. The scenarios of the NCA design show that in a configuration where the turbines are not overlapping with the gravel beds and are located mostly outside the Natura 2000 area, the gravel beds are hardly affected and the simulated enhanced deposition is very local and less than 10%. In contrast, when the turbines are all located in the Natura 2000 area, partly overlapping with the gravel beds, the enhanced carbon deposition to some of them amounts to 50%, which will likely alter the preservation of their biodiversity. Contrary to their placement, changing the number of turbines (from 162 up to 250) significantly affects TOC deposition flux over a much smaller area.

In the shallowest region of the BCZ, the seasonal variability of the TOC flux to the bottom can amount to 70–80% which would suggest that the seabed communities of such regions are already adapted to the variability of the TOC flux. Further work is needed to connect the simulated changes in carbon deposition flux with the type of seabed communities in regions of OWFs.
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FOOTNOTES

1https://www.health.belgium.be/fr/consultation-publique-le-plan-damenagement-des-espaces-marins-pour-la-partie-belge-de-la-mer-du-nord#article (accessed October 31, 2020).

2https://eunis.eea.europa.eu/sites/BEMNZ0001 (accessed July 29, 2020).

3http://marine.copernicus.eu/

4https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets (accessed October 31, 2020).

5https://resources.marine.copernicus.eu/documents/PUM/CMEMS-NWS-PUM-004-011.pdf

6Mavraki and Voet, unpublished.

7https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=OCEANCOLOUR_ATL_OPTICS_L3_NRT_OBSERVATIONS_009_034

8Here, under “residual current” we mean an Eulerian circulation over the period of simulation, definition aligned with Ivanov et al. (2020).

9http://www.emodnet-geology.eu
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The North Sea is affected by eutrophication problems despite the decreasing riverine nutrient fluxes since the late 1980s. Formally, assessment of the eutrophication state of European marine environments is based on their historical state. Model estimates are increasingly used to support monitoring data that often do not encompass such pre-eutrophic conditions. However, various sources of uncertainties emerge when producing these estimates. In this study, we systematically quantify various sources of uncertainties in terms of variability, and assess their importance for the North Sea. For the reconstruction of the historical state, we use two coupled physical-biogeochemical model systems: ECOHAM on a 20-km grid for the European shelf and GPM on a high-resolution (1.5–4.5 km) grid for the Southern North Sea. To gain insights into the impacts due to the uncertainty in riverine loadings, we consider the historical nutrient inputs from two alternative watershed-models (MONERIS and E-HYPE). Overall, the modeled historic state based on E-HYPE shows higher nutrient concentrations compared to the state based on MONERIS, especially in the coastal regions. Assessing the degree of methodological uncertainties by an inter-comparison of different sources and against natural variabilities provides insight into the reliability of the model-based reconstruction of the historical state. We find that in regions influenced by freshwater from major rivers uncertainties owed to riverine loading scenarios exceed the natural sources of variability. For the offshore regions, natural sources of variability dominate over those caused by model- and scenario-related uncertainties. These findings are expected to assist decision makers and researchers in gaining insight into the degree of confidence in evaluating the model results, and prioritizing the need for refinement of models and scenarios for the production of reliable projections.

Keywords: eutrophication, river nutrient loads, uncertainty, biogeochemical model, OSPAR comprehensive procedure, MSFD Descriptor 5, North Sea, Chlorophyll-a


INTRODUCTION

Eutrophication, i.e., the increase in the supply rate of organic matter (Nixon, 1995), and the inter-linked consequences associated with it, such as hypoxia (Fennel and Testa, 2019), harmful algal blooms (Anderson et al., 2012), and loss of diversity and ecological resilience (Elliott and Whitfield, 2011), are a major concern in coastal systems across the globe, including, but not limited to, the Baltic Sea (e.g., Gustafsson et al., 2012), Black Sea (e.g., Capet et al., 2016), Chesapeake Bay (e.g., Harding et al., 2016), Gulf of Mexico (e.g., Fennel and Laurent, 2018), northern Adriatic Sea (Giani et al., 2012), and Yellow Sea (e.g., Xiao et al., 2017). A recent inter-regional assessment of eutrophication in European seas is presented by Friedland et al. (2021).

In all the above-mentioned examples, eutrophication processes have been “cultural” (Smith, 1998) by means of increased nutrient loading from riverine and atmospheric sources, driven mainly by anthropogenic activities such as intensified farming and industrial activities, as well as dense human populations, resulting in excessive primary production rates in response (Smith, 2006). Such “cause-effect relationship” is also central to the definition of eutrophication by the Oslo-Paris Commission (OSPAR; for an overview to abbreviations see Table 1) as “the enrichment of water by nutrients causing an accelerated growth of algae and higher forms of plant life to produce an undesirable disturbance to the balance of organisms present in the water and to the quality of the water concerned.” It refers to the undesirable effects resulting from anthropogenic enrichment by nutrients (OSPAR, 2017).


TABLE 1. List of abbreviations and acronyms.

[image: Table 1]Natural factors, such as hydrodynamical processes, can modulate the eutrophication response (Cloern, 2001). For instance, in systems characterized by long water residence times or persistent salinity stratification, such as the Baltic Sea and Black Sea, sensitivity to nutrient loading tends to be stronger and meteorological variability or climatic trends can become highly relevant (Oguz et al., 2006; Carstensen et al., 2014). In systems characterized by weak stratification and high turbidity, the primary production response can become dampened, such as in San Francisco Bay (e.g., Cloern and Jassby, 2012). The fact that eutrophication responses are determined by the combination of physical and biogeochemical processes highlights the inter-disciplinary nature of the problem, and the necessity to utilize coupled physical-biogeochemical models.

The North Sea is a semi-enclosed shelf sea adjacent to the northeast Atlantic Ocean. Its circulation is characterized by an anti-cyclonic pattern, driven by a southward Atlantic inflow in the northern North Sea, of which about 85% is recirculated north of the Dogger Bank (Lenhart and Pohlmann, 1997; Pätsch et al., 2017). The circulation south of the Dogger Bank is governed by the English Channel inflow, which follows the continental coast and finally joins the Baltic outflow to leave the North Sea at its north-eastern boundary along the Norwegian Trench. The catchment area covers heavily industrialized and populated regions, that have led to increased eutrophication mainly within the Southern North Sea (SNS) (Emeis et al., 2015), despite the relatively high flushing rates driven by this very dynamic circulation system. Eutrophication problems have been reported for the south-eastern North Sea since the early 1970s (Jickells, 1998). Within the coastal region, increased residence times (Schwichtenberg et al., 2017) and an estuarine-like circulation that leads to trapping of organic matter (Hofmeister et al., 2017) result in an exacerbation of these problems, depending on the distance to riverine inputs and bathymetric features (van Beusekom et al., 2019).

In 1987, OSPAR agreed on a commitment to aim to achieve a substantial reduction (in the order of 50%) of nutrients into regions where these inputs are likely to cause pollution. The ambitious target set for phosphorus has been met, while the reduction target for nitrogen has not yet been achieved by all OSPAR Contracting Parties bordering the North Sea because of the particular difficulties of achieving reductions in nutrients from agricultural sources (Claussen et al., 2009). This led to an increased N:P ratio of the nutrient loads of the major rivers entering the North Sea, likely influencing phytoplankton communities (Brauer et al., 2012) and being less effective in diminishing the risk of harmful algal blooms (Burson et al., 2016). To gain estimates and a realistic timeframe for limiting eutrophication, OSPAR established the Intersessional Correspondence Group on Eutrophication Modelling (ICG-EMO). In a first model comparison, the OSPAR objective to provide nutrient reduction targets that result in more balanced N:P ratios was analyzed (Lenhart et al., 2010). It was the first time that model-based nutrient reduction scenarios have been used in an OSPAR eutrophication assessment. In the meantime, the EU put two legal frameworks into practice: the Water Framework Directive (WFD; European Commission, 2000, 2009) and the Marine Strategy Framework Directive (MSFD; European Commission, 2008). While the WFD mainly focuses on transitional and near-coastal waters, the MSFD covers the European marine waters, like the North Sea and adjacent seas. The aim of the MSFD under Descriptor 5 Eutrophication is to achieve (or restore) the “Good Environmental Status” (GES) in the marine environment (OSPAR, 2003, 2017).

Gathering the OSPAR assessment reports (OSPAR, 2003, 2017), which are based on national assessment reports under the so-called Common Procedure, the EU Commission critically remarked the use of national threshold levels for the eutrophication indicators and demanded a harmonized assessment. In response, OSPAR referred to a model study within the JMP-EUNOSAT project (Enserink et al., 2019; EUNOSAT report). They defined internationally coherent assessment levels and assessment areas that reflect natural conditions independent of national boundaries. To derive ecological relevant threshold values for the assessment areas, it is necessary to determine the reference status of the North Sea not impacted by human-induced pressures (European Commission, 2003; Borja et al., 2012). However, such unaffected regions are not available anymore in the North Sea. Therefore, hindcasts of so-called “historic” conditions that represent the “pre-eutrophic” state of the system need to be considered as background level (European Commission, 2003).

Thereby, two main problems have to be addressed: Firstly, “historic” does not define a specific year. Thus, it was interpreted by the OSPAR forum, in which the historic scenario was defined in view of the MSFD application, that a period with little influence of anthropogenic activities should be selected. This implies a situation before the intensification of industrialization and agricultural production by the use of inorganic nitrogen fertilizer based on the Haber–Bosch process, which corresponds roughly to the end of the 19th century. Secondly, hardly any measurements are available for this period, but just anecdotal evidence that, for example, the water transparency and the macrophyte coverage in the German Bight was still high. In the absence of historical data with sufficient coverage, modeling becomes a viable tool for estimating the reference conditions of a system (European Commission, 2003). To allow the marine models to estimate the reference state (e.g., Schernewski et al., 2015), they need reliable information about the historic nutrient inputs, which were also not observed. Hence, catchment models are applied, e.g., the fine scale model MONERIS was used by Kerimoglu et al (2018), which covers German and Dutch nutrient inputs. The JMP-EUNOSAT project (Enserink et al., 2019; EUNOSAT report) utilized estimates from the Swedish E-HYPE model, which covers the whole North Sea catchment including adjacent sea regions (Blauw et al., 2019).

Since the nutrient inputs from two catchment models, MONERIS and E-HYPE, differ strongly in the complexity of their process formulation, which for example, explains a higher need for more detailed input data for MONERIS that leads to a lower coverage of catchment areas, their impacts on marine environmental conditions are considered separately in the presented study. This is necessary to assess the uncertainty of the simulated historic concentrations of DIN, DIP, and chlorophyll-a, which form the basis for the derivation of the GES target concentration under MSFD. Therefore, investigating the variability in the reaction of the eutrophication indicators under different historic conditions will help to identify problems in the derivation of the threshold values and in the use of the newly defined assessment areas.

In this study, we analyze how different assumptions, like nutrient influx and plankton dynamics, influence the historical status in the North Sea. We further estimate how the resulting differences in the historic simulation can be judged based on comparisons against the differences between the results produced by two different biogeochemical models, and through natural sources of uncertainty. Here, uncertainty is accounted for by spatial, seasonal, and inter-annual variability as resolved by the applied models. Specifically, we determine how uncertainty ranges in model estimates for historic reference conditions compare to ranges of natural variability of nutrient and phytoplankton concentrations.



MATERIALS AND METHODS


The Model System

For the analysis, we used a nested model system consisting of two ecosystem models. ECOHAM (ECOlogical model HAMburg) has already been used in early stages of the OSPAR modeling activities (OSPAR ICG-EMO; Lenhart et al., 2010). The application for the Northwest European continental shelf (NECS setup) includes the relevant nutrient cycles (nitrogen, phosphorous, and silicate), as well as two state variables for phytoplankton, detritus and zooplankton, bacteria, and oxygen (Lorkowski et al., 2012). ECOHAM uses the same regular 20 km grid as the HAMSOM model, which provides the hydrodynamical forcing files (Figure 1 left). Große et al. (2017) provide an extensive description of this setup and further details of the ECOHAM biogeochemical model. With the NECS-setup ECOHAM covers all national river contributions that are affected by the two scenarios.


[image: image]

FIGURE 1. Model systems with model bathymetry. Left: ECOHAM (the red box indicates the region on the right) and Right: GPM.


For a better representation of the steep gradients both in the hydrodynamic (e.g., salinity) as well as for the biogeochemical (e.g., nutrients) conditions in the nearshore regions, we use a second model, which offers a fine-scale grid for the SNS and German Bight. This SNS setup includes GETM as hydrodynamical component (Burchard and Bolding, 2002) to which the newly established biogeochemical “Generalized Plankton Model,” GPM (Kerimoglu et al., 2020) is coupled. GPM consists of a flexible generic plankton module and an ECOHAM-based geochemical component. The setup is established on an irregular grid with a horizontal grid cell resolution of 1.5 km in the coastal region and up to 4.5 km toward the outer boundary (Figure 1 right; Kerimoglu et al., 2017). Along the open ocean boundaries, we used clamp boundary conditions for temperature, salinity, oxygen and all variables bound to DIM, DOM and detritus pools (see Kerimoglu et al., 2020) from ECOHAM, whereas we assume zero-gradient boundary conditions for the variables bound to phytoplankton and zooplankton variables. Therefore, this nested setup is capable of taking into account changes in the river loads outside the SNS-domain and consider them in the representation of GPM.



Forcing Data

Nutrient inputs are based on a riverine database developed within ICG-EMO by Sonja van Leeuwen (NIOZ) covering about 250 rivers within the Northwest European Shelf domain. As part of this database, the river information for the German and Dutch rivers including the Scheldt are provided by the University of Hamburg and described in a technical report (Pätsch and Lenhart, 2019). For the representation of the atmospheric nitrogen deposition, we used data from EMEP1 (Iversen et al., 1989; Bartnicki et al., 2011) for the relevant years for both models.



Reconstruction of the Historical State

We compared two reconstructions of the historical riverine nutrient inputs from two different watershed models: MONERIS and E-HYPE. The “Modelling of Nutrient Emissions in River Systems” (MONERIS; Venohr et al., 2011) has been used by Hirt et al. (2014) for a reconstruction of the pre-industrial nutrient regime in the German Baltic region based on historical records back to 1880. Gadegast and Venohr (2015) adopted this approach for the SNS catchment areas. The authors provided historic concentrations for seven river systems: Rhine, Meuse, Lake Ijssel, Ems, Weser, Elbe, and Eider. For all other European rivers not covered by MONERIS, we applied a discharge-weighted average reduction calculated from the reductions for the rivers considered by MONERIS (Table 2).


TABLE 2. Percentage reduction between MONERIS estimate for historic state and measured concentrations based on the ICG-EMO database for the period 2006–2014.

[image: Table 2]The “Hydrological Predictions for the Environment” model (HYPE; Lindström et al., 2010; Donnelly et al., 2016) calculates water cycle and quality for various regions around the globe, from which we used the application to Europe (thus, E-HYPE). We calculated the discharge-weighted change between 1900 and the control run and applied the reduction value for each river.

Both GPM and ECOHAM require specification of organic (ON and OP) and dissolved inorganic (DIN and DIP) forms of N and P in rivers. Historic estimates were available only for total nitrogen (TN) and total phosphorous (TP) from E-HYPE and TN, DIN, and TP from MONERIS (Gadegast and Venohr, 2015). The historical estimates for DIN and TN by MONERIS correspond to very similar reductions in DIN and ON for most rivers (Kerimoglu et al, 2018; Table 2). We therefore assumed that the reductions in DIN and DIP are equal to those in ON and OP, and we calculated these based on the reductions in TN and TP. As in Kerimoglu et al (2018), considering the loss of historical denitrification potential of major estuaries like Rhine and Elbe (e.g., de Jonge and de Jong, 2002; Dähnke et al., 2008) that have not been taken into account, we assumed 50% lower TN concentrations, reflecting an upper limit for N removal in estuaries (Seitzinger, 1988).

We use EMEP data of atmospheric nitrogen deposition with their original load information for the control run. For the historic scenarios the data are scaled to estimate values back to 1880 (1900 for the E-HYPE run) based on the method described in Schöpp et al. (2003), which were applied in the same form for both scenarios. More details on this method are given in Große et al. (2016).



Variables and Evaluation Areas

For the assessment, we calculated the OSPAR eutrophication indicators (OSPAR, 2003) of dissolved inorganic nitrogen (DIN as sum of nitrate, NO3, and ammonium, NH4) and phosphorous (DIP as phosphate, PO4) and chlorophyll-a (CHL) standing stock. In ECOHAM, we derived CHL from phytoplankton carbon concentration using a fixed CHL:C ratio of 50 mg Chl (g C)–1. GPM estimates CHL prognostically, based on a photo-acclimation scheme (Kerimoglu et al., 2020).

DIN and DIP concentrations are calculated as average winter values from December to February and CHL as average concentration over the growing season (shortly “summer” hereafter) from March to September following OSPAR definitions. Changes in phytoplankton in the rivers due to the scenarios are not taken into account, however the phytoplankton biomass from the rivers enters the models as detritus contribution. The model results were assessed for the years 2006–2014, but the sensitivity of the results to different definitions of seasons and year intervals was also tested. When comparing the results averaged for the intervals 2002–2008 and 2009–2014, the largest differences occurred for DIN, but these were still insignificant (<5%). When the winter season included November according to the WFD definition (European Commission, 2003), winter nutrient concentrations were not significantly affected (<1%). When the growing season included October according to the WFD definition (European Commission, 2003), largest differences occurred at ECOHAM (up to 9% higher), whereas excluding March (e.g., as in Kerimoglu et al, 2018) led to CHL differences of max. 4% (higher or lower, depending on the model). However, none of these differences affected the findings of the presented study qualitatively.

The OSPAR Hazardous Substances and Eutrophication Committee (HASEC) has agreed on adopting the subdivision of the North Sea based on ecologically relevant assessment areas, as established in the JMP-EUNOSAT project (Enserink et al., 2019; EUNOSAT report) with some adaptations, but the process is not entirely finished. We use the latest shapefile (version COMP4 v7e) that represents the current setup of these assessment areas as provided by OSPAR ICG-EMO in August 2020 (Figure 2).
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FIGURE 2. Assessment areas as defined for the eutrophication assessment by OSPAR (solid lines; COMP4 as of August 2020). In gray shades, the model extents of ECOHAM (left panel) and GPM (both panels) are given. The right panel shows the focus region of the central and Southern North Sea including numbers and acronyms of analyzed COMP-areas: SNS, Southern North Sea; ENS, Eastern North Sea; GBC, German Bight Central; RHPM, Rhine plume; EMPM, Ems plume; ELPM, Elbe plume.




Simulations and Analysis

We simulated with both model systems the current state of the ecosystem as a Control run “C” for the years 2006–2014 (with eight years spin-up prior to this period) for comparison with the historical state. To represent the historical scenarios based on MONERIS (“M”) and E-HYPE (“E”), we applied the same physical forcing, but adapted the nutrient loads to historical status (see section “Reconstruction of the Historical State”). Hereafter, we refer to “model” as the biogeochemical models ECOHAM and GPM and to “scenarios” distinguishing simulations using river loads based on MONERIS and E-HYPE (though these are models themselves).

To compare changes in concentrations of DIN, DIP, and CHL, we calculate the percentage difference for the analysis. Thus, in section “Historical State According to the Two Scenarios” the percentage deviation of control concentrations (C) from historic state (HE and HM) are calculated as:
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We normalized the absolute differences in historic concentrations as estimated by E-HYPE and MONERIS also by the control concentration C to compare better the scenario uncertainty:
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Quantifying Variability

To quantify different sources of uncertainty we considered the lateral, seasonal and inter-annual variabilities for both scenario runs for each model. To achieve this, we calculated in a first step the daily mean concentration for DIN, DIP, and CHL resulting in a time series of daily values for 2006–2014 at each horizontal grid cell for each simulation. To quantify the seasonal variability, we calculated the seasonal variance (winter for nutrients and summer for CHL) for each year and then the average standard deviation across years for each grid cell. For the inter-annual variability, we first calculated the inter-annual variance for each day and from this the average standard deviation within the season on the model grid. Additionally, we calculated the seasonal mean concentration for each assessment area (see section “Variables and Evaluation Areas”) as climatology for each cell on a refined high-resolution grid. Finally, we calculated the standard deviation within the assessment area (representing the lateral variability).

The main objective is to gain insight into the significance of the differences emerging through the use of different biogeochemical models (GPM and ECOHAM) and historical riverine loading scenarios (MONERIS and E-HYPE), in relation to these natural sources of variability, and how these relations vary in different regions. This means that we first look at the differences in the mean concentrations between the scenarios for each of the two models, and then relate these differences to the variability represented by the related standard deviation. For better comparability, we calculate the percentage deviation as standard deviation relative to mean value for each source of variability as well as between models and scenarios.




RESULTS


Current State According to the Two Biogeochemical Models

First, we investigated the differences in the model setups to reproduce the nutrient distributions in the control run “C” (Figure 3). The average spatial patterns over years 2006–2014 for respective seasons estimated by the two models are similar: Winter DIN and DIP are highest in the coastal region (exceeding 10 mmol N m–3 and 1 mmol P m–3 for DIN and DIP, respectively) with maxima close to river outlets of rivers Thames, Rhine, Weser, and Elbe. Nutrient concentrations decrease in the offshore region to 3–5 mmol N m–3 and 0.4–0.5 mmol P m–3. For the summer standing stock of CHL, the coastal concentrations exceed 4 mg Chl m–3, while in the open North Sea these are below 3 mg Chl m–3. Differences between model estimates exist as well: GPM shows a more distinct near-shore nutrient front. In the offshore zones, differences are less pronounced. Nearshore DIN and CHL concentrations estimated by GPM are overall higher, while ECOHAM estimates higher offshore DIP concentrations.
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FIGURE 3. Results from the Control run (“C”): DIN (A,D), DIP (B,E) concentration as December–February average, and CHL (C,F) concentration as March–September average from ECOHAM (A–C, upper panel) and GPM (lower panel, D,E). DIN and CHL colors are on a log10 scale.




Historical State According to the Two Scenarios

The historical nutrient input estimates from MONERIS for the Dutch and German rivers are reduced by 76.8% for TN compared to the control run (Table 2). This is substantially above the reduction estimated by E-HYPE (63%; Table 3) for these rivers. For TP the difference between the two catchment models is even more pronounced: while MONERIS estimate of the historic state corresponds to, on average, 69% reduction (Table 2), the average estimated reduction of E-HYPE is 45% (Table 3), i.e., a difference of 24% relative to the current conditions.


TABLE 3. Percentage reduction between E-HYPE estimate for the historic state and measured concentrations based on the ICG-EMO database for the period 2006–2014.

[image: Table 3]The response from the average (2006–2014) values of DIN, DIP, and CHL as obtained by GPM to the reductions in riverine loadings based on MONERIS and E-HYPE historic estimates are shown in Figure 4. In comparison to the control run, DIN shows for both catchment models the largest reductions in the range of 50–90% except for the north-western model region (Figures 4A,D). For DIP, reductions are below 20% for most of the model domain with larger reductions only in the coastal regions (Figures 4B,E). For CHL the changes compared to the control run are less pronounced than for nutrients. Changes reach 20–50% in the coastal region but are <10% in the offshore region, decreasing toward the north-western part of the model domain. In this area, the CHL concentration is higher in the historical run compared to the control run (Figures 4C,F). This increase is due to the combination of surplus Si in the historic state (as a result of earlier N and P depletion), and the maintenance of low N-limitation in this area, driven by the relatively high DIN concentrations prescribed at the boundary, resulting in a southward N-flux governed by the dominant circulation pattern (results not shown). Based on both scenarios, the change of CHL concentration in the river mouth zones of Rhine and Elbe are less changed than in the other coastal regions (<20%), which is more pronounced in the comparison for the E-HYPE scenario.
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FIGURE 4. Percentage change between historical run (“H”) and control run (“C”) from GPM based on river discharge from MONERIS (A–C) and E-HYPE (D–F) as ΔX = (Hx – C)/C × 100, where HX and C stand for the concentration of each variable [DIN (left), DIP (center), and CHL (right)] in the Historic (X for MONERIS and E-HYPE) and Control state C, averaged within the respective seasons. (G–I) Percentage difference between concentrations according to the two historical scenarios normalized by the control run (CE – CM)/CC × 100. Dashed lines indicate the 20 and 50% isolines. Mind the different color scale for the lower panels.


To understand better the differences in the projections according to the two historical scenarios, we calculated D, defined as the percentage difference of historic concentrations based on E-HYPE from those based on MONERIS, relative to the control concentrations. Reductions of all three variables are overall larger based on MONERIS compared to using E-HYPE, i.e., concentrations in the historical scenario based on E-HYPE are higher (Figures 4G–I) and D is positive. D is largest for DIP, reaching 50% in the coastal region (Figure 4H), whereas in the offshore region D of DIN is more pronounced, though for both nutrients the difference is low (<20%), decreasing toward Northwest reaching zero north of the Dogger Bank. Like for nutrients, CHL is higher in the E-HYPE scenario than in the MONERIS forced run, though its D-value in the coastal zone is less pronounced than for nutrients especially in the vicinity of the Rhine and Elbe inlet and remains below 20% (Figure 4I) throughout the model domain. The results based on ECOHAM are qualitatively comparable for nutrients and thus not shown here (but are available in Supplementary Figure A1). However, for CHL ECOHAM shows largest differences in simulations from MONERIS and E-HYPE in the Weser and Elbe region (Supplementary Figure A1I) in contrast to the minima calculated with GPM.



Internal Sources of Variability Within Assessment Areas

We compare (Figures 5, 6) the outcome of the two scenarios for each of the two model applications against different variability ranges as described in section “Quantifying Variability.” Here, the mean represents the average concentration for each assessment area. This value is independent of the analysis of the variability, i.e., it is identical in all categories of variability (for all bars of the same color). For the representation of the variability, we considered three categories of variability: lateral (within each area), seasonal and inter-annual. The given numbers in Figures 5, 6 indicate standard deviation as percentage of the mean to obtain comparability between the parameters.
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FIGURE 5. Bar-plots of mean and standard deviations for each biogeochemical model (GPM: bars 1 and 3; ECOHAM: 2 and 4) and hydrological model (MONERIS: 1 and 2; E-HYPE: 3 and 4) based on lateral, seasonal, and inter-annual variability in three off-shore areas (from top to bottom): Southern North Sea (A–C), German Bight (D–F), and Eastern North Sea (G–I). Numbers above the bars indicate relative variability (i.e., SD/mean × 100).
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FIGURE 6. Bar-plots of mean and standard deviations for each biogeochemical model (GPM: bars 1 and 3; ECOHAM: 2 and 4) and hydrological model (MONERIS: 1 and 2; E-HYPE: 3 and 4) based on lateral, seasonal, and inter-annual variability in three river plume areas (from top to bottom): Rhine plume (A–C), Ems plume (D–F), and Elbe plume (G–I). Numbers above the bars indicate relative variability (i.e., SD/mean × 100).


The results for three offshore areas are shown in Figure 5:

Southern North Sea area (No. 11, SNS): The water in this assessment area is influenced by the English Channel and covers most of the western part of the Southern North Sea, reaching up to the Humber plume. The mean concentrations are similar for both scenarios for DIN and DIP, while CHL estimates from GPM are significantly higher than those of ECOHAM. Because of the large extent, the lateral variability in nutrients is higher than temporal variabilities in both models: Lateral variability for DIN exceeds 60% in GPM and 45% in ECOHAM for both scenarios, while for DIP both models reach 12–13% for each of the scenarios. The variability of CHL is similar for lateral and seasonal variability: Deviations in GPM are 25% for lateral compared to 19–20% for seasonal variability. ECOHAM shows larger variability with seasonal variability (38–39%) exceeding lateral variability (29–35%).

German Bight central (No. 12, GBC): The German Bight area has a triangular shape and represents the deep Elbe channel extension. In general, the differences in all four simulations are small. The results are more sensitive to the river load estimates than to the biogeochemical model. One exception are the higher mean values for the E-HYPE scenario. The difference between the mean values for the models and the scenarios are small for DIN and larger for DIP, while the results for CHL are similar. The variability for DIN and DIP is small except for the lateral variability of the GPM/E-HYPE. For CHL, the highest variability is in the seasonal component.

Eastern North Sea (No. 31, ENS): The Eastern North Sea area represents a region east of the Dogger Bank, which reaches up to the northern tip of Denmark. The area is characterized by offshore conditions, but is most susceptible for oxygen depletion events because of its shallow depth. Small but obvious differences can be seen between scenarios and models for DIN and DIP, but these differences vanish for mean chlorophyll concentration. For DIN, these differences are within the range of the lateral variability for all model simulations, while for DIP we found distinct difference between the two GPM simulations and those from ECOHAM. For CHL the seasonal variability is largest, followed by the lateral variability for the GPM model results in both scenarios.

Overall, the variability is within 3–64% for all scenarios and areas and generally highest for DIN. The differences between mean concentrations among the biogeochemical models and the two scenarios are mostly <10%. In addition to these offshore regions, we compared three river plume areas, which results we show in Figure 6:

Rhine plume (No. 23, RHPM): This area does not cover the region of the direct Rhine input but corresponds to the narrow coastal part along the Dutch coast up to Texel Island. There are large discrepancies between the mean concentrations of the different scenarios and models. The lateral variability is high for all variables, but most prominent for DIN (73–76% for all models/scenarios). Therefore, the lateral variability covers a larger range than the differences between the mean concentrations for the different models and scenarios. For the seasonal and inter-annual variability, this is not the case. For DIN and DIP the differences of mean concentrations between the models and scenarios exceed the seasonal and inter-annual variability. For CHL, mean values are higher for the E-HYPE scenarios compared to respective MONERIS-based runs with both biogeochemical models for all variables, while both GPM simulations reveal higher concentrations than the ECOHAM runs except for DIP using MONERIS. ECOHAM shows higher variability in CHL (23–65%) than GPM (7–36%). However, the differences in the mean values for the models and the scenarios are larger than this range of variability.

Ems plume (No. 24, EMPM): This area corresponds to the narrow coastal part between the two large rivers Rhine and Elbe. The mean nutrient concentrations show a clear distinction between the scenarios but are close for the two models. The overall variability is much less than in the Rhine river plume area. Higher variability can be seen for the lateral and seasonal variability for CHL, especially for the ECOHAM model results.

Elbe Plume (No. 20, ELPM): The key results in the Elbe plume area, extending along the North Frisian and Danish coast, are similar to the Ems area, as the simulations with E-HYPE have higher concentrations than those with MONERIS, especially for DIP (Figure 6H). These differences between the scenarios for DIP are much larger than all the related variability plots. For CHL, we see the same pattern as for nutrients, but the differences between models are larger. The most prominent source of variability in DIN is the spatial component of about 60% for GPM in both scenarios (35–40% with ECOHAM). Here the lateral variability covers the range between the mean for the different scenarios. For DIP, the variability is about 5% for most runs, except for lateral variability of both models (10–18%). Even though the lateral variability is high for the E-HYPE scenario in both models, it does not cover the mean values from the MONERIS scenario. For CHL, the variabilities differ between models: While with GPM the lateral variability is highest at 35%, at ECOHAM this component is similar, but seasonal variability is dominating at 45–50%. Here, the differences between the models are larger than the respective variability. Nevertheless, the larger phosphorus reduction generally results in lower CHL values for both models in the MONERIS scenario.

The river plume regions have higher mean values as well as larger variability in comparison to the offshore regions as shown in Figure 6. In these regions, also the differences between the two models and the two historical scenarios become more prominent. Overall, the variability was larger in ECOHAM in the plume regions, while GPM showed more often larger variability in the offshore regions, specifically for the inter-annual variability of nutrients. The differences in variability were also broader in the coastal regions when comparing simulations with the two biogeochemical models. In contrast, for simulations using MONERIS or E-HYPE variability was similar. Concerning the mean values, simulations with E-HYPE resulted in higher concentrations than those with MONERIS.



Inter-Comparison of Uncertainties Against Internal Sources of Variability

Based on these findings, we relate the sources of internal variability (lateral, seasonal, and inter-annual) to the variability between the models and the river input scenarios (Figure 7). This comparison shows that lateral variability is most often the largest source (indicated bold in Supplementary Table A1), followed by variability through river scenarios and models. Seasonal variability has a secondary influence, while inter-annual variability is least in most cases. However, the sources are differently distributed among indicators: For DIN, lateral variability is the most prominent source, while seasonal and river variability are less. In contrast, for DIP the river loads induce the largest variability with lateral being less notable. For CHL lateral and seasonal variability are similarly large. Among the river plume areas, we find distinct differences specifically between the Rhine plume area (21, RHPM) and the Elbe plume area (20, ELPM), two major rivers entering the North Sea, that shape the nutrient dynamics of the south-western North Sea. The Rhine plume area has the highest variability that is mostly pronounced for the lateral variability. Differences between the two scenarios or simulations are relatively lower, indicating that the natural variability exceeds the respective model uncertainties. The Rhine plume area shows the largest variability for all indicators, followed by the Elbe plume and the SNS (see Supplementary Table A1 for the numbers).
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FIGURE 7. Comparisons of sources of variability (lateral, seasonal, inter-annual, model, and river scenario) of DIN, DIP, and CHL in six assessment areas. Top: offshore-regions Southern North Sea (blue), German Bight (turquoise), and Eastern North Sea (green). Bottom: coastal plume regions Rhine (red), Ems (orange), and Elbe (yellow). Variability is given as standard deviation normalized by mean values (as percentage).





DISCUSSION

To assess the health of an ecosystem, establishing reference conditions is important (Borja et al., 2012). While biogeochemical models are considered as useful tools to meet this objective, various sources of uncertainty pose challenges to obtain reliable and representative model-based projections. Among a number of potential sources of uncertainty, the presented study focused on the impact of the model representation (both on the grid resolution and the description of the biogeochemical processes like phytoplankton growth) of the physical-biogeochemical model, and the riverine loading scenarios, which were used to obtain the model-based reconstruction of the historical (i.e., pre-eutrophic) state of the North Sea. Here, we discuss some specific findings before we analyze in more detail the relevance of the river load scenarios (see section “Relevance of the Riverine Loading Scenario”), the biogeochemical models (see section “Relevance of the Biogeochemical Model”) and the uncertainty from the different simulations (see section “Importance of Model-Based Uncertainties Relative to Internal Sources of Variability”), and giving some suggestions for future studies (see section “Suggestions for Future Modeling Studies”).

First, reductions of the historic state as estimated by the two catchment models, MONERIS and E-HYPE, are more pronounced for TP (69.2 vs. 45%) than for TN (76.8 vs. 63%, see Tables 2, 3). The disparities especially for TP between MONERIS and E-HYPE have been found to be related with differences in the representation of the urban population, connectedness to sewage systems and the level of treatment applied (OSPAR ICG-EUT, personal communication). How does this translate into the model results from GPM and ECOHAM?

One interesting feature is that reductions of CHL close to rivers Rhine and Elbe are small, specifically in the simulation using E-HYPE. This is explained by higher DIP concentration in the E-HYPE scenario that promotes phytoplankton growth, whereas P-limitation is more pronounced in the MONERIS simulations.

For ECOHAM, this follows a picture that has been described in Emeis et al. (2015) where a major reduction within the vicinity of the Rhine and the Elbe could only be achieved by an additional reduction of DIP. In contrast, the GPM model reacts to the general reduction in both scenarios nearly in the same way for CHL, resulting in nearly no contrast for these areas in the comparison of the river input scenarios (Figure 4I). These differences compared to the control simulations help to understand the state of the pre-eutrophic North Sea.

Second, when models are used for projecting the state of a system under different (past or future) conditions, various sources of uncertainty become relevant: specific models used, definition of scenarios, or the interaction with other models, if these are used as “forcing.” It is often not straightforward to evaluate the relative importance of these various sources of uncertainties, and to decide how significant they are. Here, we aimed to consistently quantify these uncertainties in terms of variability, and assess their importance by comparing these to the internal sources of variability (Figure 7). Pappenberger and Beven (2006), in the context of hydrological modeling, address the importance of naming uncertainty of modeling studies in (political) decision-making. Allen et al. (2006) describe different methods to quantify uncertainty as a means of (single) model validation (against data). Here, we consider three sources of internal variability: lateral (spatial), (intra-) seasonal, and inter-annual, and we assess these in various COMP-areas for each variable: DIN, DIP, and CHL.

The isolines of DIN and DIP in general, with an exception of the E-HYPE scenario from GPM, are related to the small band of Elbe dominated water, which can be seen in the analysis from Lenhart and Große (2018; Figures 4A,B). The variability analysis for the Ems plume (Figures 6D–F) provides a similar picture, only with a reduced variability for CHL. The generally low variability can be related to the fact that the area is rather narrow along the East Frisian coast. In the German Bight area, the differences in all four simulations are small, even though the assessment area represents a region with distinct gradients from the coast to the offshore regions. This indicates that this area represents a rather homogeneous water body.

For the Rhine plume (Figures 6D–F), the differences between the two scenarios are large for all displayed concentration and comparable with the differences between the models. Here, the wide range within the DIN concentrations stands out, especially within the lateral variation, compared to the rather narrow band for DIP. From our analysis, we could not distinguish, whether this is related to the narrow coastal region this area represents or variations in the nitrogen load of the Rhine. As a result, the lateral variations within CHL are substantial, and cover a wider range than the differences between the scenarios and the models. Despite the large extent covered by the SNS area (area 11), including a coastal gradient in the parameters, we found only small variability, except for the lateral variability in DIN. This can be explained by the influence of a large varying nitrogen transport from the Rhine plume, which also influences the variability in the lateral and seasonal CHL concentration.


Relevance of the Riverine Loading Scenario

Since the WFD as well as the MSFD demand a historic perspective for the definition of the “pre-eutrophic” state of the marine environment, the question remains how to achieve estimates of the nutrient loadings associated with these (historic) conditions. So far, only one method is known for the North Sea, which is based on measurements. While making use of the distinctive isotopic signature of river-borne nitrogen, and by reconstructing the isotopic ratios in sediment cores with an ecosystem model, Serna et al. (2010) provided an estimate of the historic state of the system. However, since the sediment core data do not provide information on the relative contribution of different rivers, the authors assumed a uniform level of nitrogen reduction (90% reduction compared to the present loads) in all rivers, which is not necessarily realistic. Some restoration efforts have been done for certain rivers (see Topcu et al., 2011 for an overview), whereas for some others, such efforts have been lacking.

An alternative is applying catchment models, which, for each river, provide nutrient load estimates based on the historical records and estimates of population density and land use. The studies by Desmit et al. (2018) and Kerimoglu et al (2018) followed this approach, based on the estimates by the catchment models “Riverstrahler” focusing on the English Channel/Bay of Biscay regions and “MONERIS,” investigating the SNS region, respectively.

Here, we considered the reductions in river loads as estimated by two different hydrological models, MONERIS and E-HYPE. The calculations from MONERIS are based on historical records, for example on land use, population density and other factors around 1880, which lead to detailed estimates on the historic loads for a number of rivers (Venohr et al., 2011). In contrast, the E-HYPE estimates are based on a spatially large model with assumptions on the reduced impact from point and rural sources, land use and fertilization, which are available for all European river systems around 1900 (Blauw et al., 2019). When comparing the two model approaches, they differ in the per capita production of N and P and in the application of atmospheric nitrogen deposition. Nevertheless, the estimates are comparable for nitrogen, whereas they differ considerably for phosphorus without a plausible explanation so far (see Tables 2, 3). The assumption of nitrogen retention has a significant impact on the actual reduction. Neglecting retention, the average nutrient reduction from the MONERIS reduction estimates would have been 54% in the weighted average (compared to 77% used here). We can conclude therefore that the differences between the years of the application of the catchment models are less than the differences in the methods applied.

In the scenario application of the ecosystem models based on MONERIS input, the simulation results show larger nutrient reductions in comparison to the control run than those using estimates by E-HYPE. Consequently, the simulations using E-HYPE loadings returned consistently higher CHL concentrations than those from MONERIS. In the offshore regions, differences between both scenarios became less pronounced. For nitrogen, the difference between the two catchment models (13%) in river input has translated approximately to the differences estimated for the marine waters, while marine phosphorous concentrations differ clearly. The percentage change in river input differs by about 24%, but increases up to 50% in the North Sea (see Figure 4G). This can partly be explained by the distribution of riverine input. While the average reduction in E-HYPE-based TP-loads is 45%, largest reductions have been estimated for Spain (75%), Denmark (57%), Norway and United Kingdom (51%), and Ireland (50%). Spanish and Irish river discharges hardly influence nutrient dynamics of the North Sea, whereas the influence of Danish (mostly toward the Skagerrak/Kattegat) and Norwegian river outputs is rather limited to the north-eastern part of the North Sea (and not covered by GPM). In contrast, reductions of historical river loads for France (28%), Netherlands (41%), and Germany (15%), which substantially influence nutrient dynamics in the SNS, are significantly lower in the MONERIS scenario.



Relevance of the Biogeochemical Model

When considering the differences between the scenarios and the resulting ecosystem simulation results, applying the same river input scenario to two different models provides an outlook on the differences of the marine model simulation results. Consistent to the variations between the river input scenarios, differences between the models were larger in the coastal regions than in the off-shore areas. CHL concentrations were thereby consistently higher in the river plume regions in GPM than in ECOHAM.

GPM predicts larger cross-shore nutrient gradients, which is owed to the much finer spatial resolution of 1.5–4.5 km along the continental coast. In HAMSOM/ECOHAM the mesh size of 20 km restrains the model from resolving the coastal zone and supports increased mixing with inflowing Atlantic water from the English Channel. The similar concentrations in the offshore regions as estimated by GPM and ECOHAM are as expected, given that GPM uses boundary conditions for dissolved inorganic nutrient, dissolved organic material and detritus pools estimated by ECOHAM, and suggest that the resolution of ECOHAM is sufficient for simulating these regions. Slightly higher offshore nutrients in ECOHAM may be due to the differences in the parameterization of limitation and plankton stoichiometry. ECOHAM uses a fixed N:P ratio for phytoplankton, while GPM represents prognostic variables for phytoplankton-N and -P.

In general, one can conclude from the scenario simulations presented here that differences between the biogeochemical models were smaller than the differences between the historic input scenarios (Figure 7). This can be attributed to the fact that both models have been validated and thus general structures are similar. Thus, biogeochemical model-based uncertainties are rather structural – defined by Arhonditsis et al. (2008) as difference in equations as described above, rather than input uncertainties.



Importance of Model-Based Uncertainties Relative to Internal Sources of Variability

For most instances, we found that within the single scenarios, the variability among the three analyzed eutrophication indicators is least for DIP and that lateral variability is highest for the nutrients, while for CHL the seasonal variability is similar or higher than the spatial one (Figure 7). Since CHL undergoes a distinct seasonal cycle of spring bloom, summer depletion and fall bloom, the maximum CHL concentration as considered by the OSPAR Common Procedure (OSPAR, 2003) is a useful supplementary indicator.

In the SNS (11, “SNS” in Figure 2), the largest considered assessment area, lateral variabilities are largest, compared to the other offshore areas. These can be explained by the considerable salinity gradient in this region (Desmit et al., 2015). In contrast, the German Bight central area (12, GBC) is less affected by this lateral variability.

The lateral variability depends on how homogeneous the water mass is reflected by the assessment area definition. This is not only related to typical water mass characteristics, like temperature and salinity, but also to homogeneity in the overall environmental parameter like SPM which in relation to the light limitation can govern the response of CHL to historic reduction levels in the riverine nutrient input. Different levels of DIP reduction can cause variations in the resulting response of the CHL concentration especially within the vicinity of the major rivers entering the North Sea like Rhine and Elbe. These differences have been shown to be larger than the differences in the model representation.

In this context, the question arises in which way the OSPAR definition of the time intervals representing “winter” for nutrients and “growing season” for CHL have influence on the outcome. However, our analysis with different time intervals showed no significant influence on the outcome of each of the tested scenarios (see Supplementary Tables A2, A3). Some changes can be related to differences in the biogeochemical models, like those found for changes in variation of growing season: ECOHAM showed a more pronounced fall bloom with increased concentrations in October as well as the bloom in March compared to GPM. The effect on nutrient levels was similar in both models and reduced values is expected with nutrients depleted at that time. Variation in the period had no significant impact supporting to use shorter periods, which can save on computational time and effort.

The variables we focused on in this study, DIN, DIP, and CHL, all represent concentrations that can be easily compared to observations. As such, they have been also selected by OSPAR as assessment indicators. However, these variables are not necessarily the most representative of the ecosystem functioning or most comparable between different modeling approaches. For instance, CHL can acclimatively respond to changes in light or nutrient availability, and this can significantly modify the apparent eutrophication response (Kerimoglu et al, 2018). Moreover, modeled CHL can be strongly sensitive to “cosmetic” assumptions that do not affect any other modeled quantity, such as CHL:C ratio being a certain fixed factor (like in ECOHAM). In contrast, Net Primary Production (NPP) is more directly related with the functioning of an ecosystem, and the model estimates are more robust. It should be noted that the mean NPP estimates of different models can not be expected a priori to be similar relative to their CHL estimates: depending on the prevailing environmental conditions, the variability in NPP can be indeed smaller than CHL (e.g., lateral and between model variability in the Rhine Plume, compare Supplementary Figure A2B vs. Figure 6C), but they can also be larger (e.g., between-model variability in the Eastern North Sea, compare Supplementary Figure A2E vs. Figure 5I). However, due to the scarcity of respective observation data, skill of models are often not evaluated with regard to such alternative quantities like NPP.

When it comes to the use of the model simulation for decision support, the question of the reliability of the model results is equally important as a transparency of the processes within the model simulation. Even well validated models provide different results for different regions, despite the fact that the setup was carefully planned, like the use of common river loads, boundary condition, and atmospheric nitrogen deposition. It needs to be pointed out that in model comparison studies the fact of nudging of boundary to models that cover smaller domains is an important aspect to include effects of river nutrient load reduction from sources that are outside their own domain (Lenhart et al., 2010). Only by nudging the boundary condition the comparability of the results within the smaller domains in comparison to the wider domain models can be guaranteed, which is an important aspect in the use of the model results as the basis for deriving threshold values. It should be noted that this introduces some dependency between the models we used: if we had compared two entirely independent models (i.e., no exchange of information at the boundaries), the variability among the models (Figures 5–7) might have been larger.



Suggestions for Future Modeling Studies

In the current study, we aimed to gain an overview of the relative importance of uncertainties related to model choice and scenario definitions, and evaluate the importance of each in various assessment regions. It is possible to refine such comparisons further to the level of sub-modules or individual process descriptions or specific assumptions, to assess their relevance in particular. Modular schemes that allow coupling various model components (see, e.g., Bruggeman and Bolding, 2014; Lemmen et al., 2018) would facilitate such a task.

In addition to the changes within the eutrophication indicators, one also want to have a deeper understanding of the contributions from different riverine sources in relation to the newly defined assessment areas. For this purpose, the so-called “trans-boundary nutrient transports” (TBNT) approach provides a method for the tracing of an element, like nitrogen, from individual sources throughout the entire biogeochemical cycle, including the physical transport processes (Ménesguen and Hoch, 1997). By the use of this method, the relative contribution of river loadings can be quantified for different regions (e.g., Lenhart and Große, 2018).

An established method for coping with the difference between model results is the application of the so-called “weighted ensemble modelling.” In a first step, the ensemble means are calculated, and then each ensemble member can be weighed based on its skill score (e.g., Skogen et al., 2014). This skill score is usually based on a cost function, which judges the performance of one model output on some key parameter vs. in situ data. While this method is well established within the hydrodynamical modeling community, the drawback for its use in ecosystem modeling application is the amount and especially the spatial coverage of in situ data that are needed.

The findings from this study show different sources of variability in biogeochemical model simulations. When using such models for the projection of future or target states, further sources need to be considered: temperature, which is projected to further increase in the future, is a main factor for the timing of the spring bloom (Wiltshire et al., 2015). Additionally, other influences such as changes in the food web can further influence the peak as well as regional differences of the spring bloom (Mills et al., 1994). Such changes in the ecosystem structure can be further sources of variability and need to be captured by biogeochemical models.




CONCLUSION

In this study, we considered different influences that can affect the simulation of the pre-eutrophic North Sea, which shall provide a basis for estimating the reference state and GES thresholds. Since the available reductions provided by both catchment models differed considerably both for TN and even more in TP, we analyzed these differences in the context of the internal variability and in comparison to two biogeochemical models.

Our results show that (i) both, the biogeochemical models and the hydrological models have an impact on the nutrient and chlorophyll-a levels, but less than lateral and seasonal variability, in general; (ii) close to the regions of freshwater influence (ROFI) of major rivers, specifically the Rhine plume, uncertainties owed to riverine loading scenarios become more important, exceeding the natural sources of variability; (iii) for other coastal regions, like in the Ems/Elbe plume areas, uncertainties due to the biogeochemical models are more pronounced than those related with the river load scenarios; (iv) in the offshore areas, the natural variability generally dominates over the model-induced uncertainties; (v) in some offshore areas, such as SNS, differences in scenarios are subject to a high degree of spatio-temporal variability, indicating a need for an improvement of process descriptions in biogeochemical models employed, or more refined description of assessment areas. Overall, we conclude that the model uncertainty is sufficiently low for use in eutrophication assessment.

These findings are expected to assist decision makers and researchers in gaining insight into the degree of confidence when evaluating the model results, and prioritizing the need for refinement of models and scenarios for the production of reliable projections. For the influence of the biogeochemical model, we propose using a larger ensemble of models, which can provide a more robust estimate, even though the need for in situ data makes the approach far more demanding. For the comparisons of scenario application, we suggest to apply only one change at a time so that the differences between the models can be analyzed in this context. Thereby, we expect our results to be relevant for the model-based assessment of the eutrophication status of coastal systems.
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The fate and effects of microplastics in the marine environment are an increasingly important area of research, policy and legislation. To manage and reduce microplastics in the seas and oceans, and to help understand causes and effects, we need improved understanding of transport patterns, transit times and accumulation areas. In this paper, we use a particle tracking model to investigate the differences in dispersal and accumulation of microplastics with different properties (floating and sinking) in the North Sea. In these simulations, particles were released with a uniform horizontal distribution, and also from rivers at rates proportional to the river runoff. The results showed that floating particles can accumulate temporarily on salinity fronts and in gyres, and are deposited predominantly on west-facing beaches. Sinking particles moved more slowly and less far, accumulated in deeper areas associated with fine sediments, and were deposited more on west- and north-facing beaches. The model was also applied to the MSC Zoe incident of 1 January 2019, in which 342 containers were lost north of the Dutch Wadden islands in the southern North Sea, tracking two types of microplastics with similar properties (∼5mm floating HDPE pellets and ∼0.6mm sinking PS grains) to identify release locations and potential accumulation areas. We used field observations collected by a citizen science initiative (waddenplastic.nl) to constrain the model results. For these simulations, particles were released along the ship’s trajectory and at locations on the trajectory where debris was found. The simulations of the MSC Zoe incident showed that over 90% of floating (∼5mm) HDPE pellets beached within 3–7 weeks, and predominantly on the more eastern Dutch Wadden Islands in agreement with the field observations, and that most of the sinking (∼0.6mm) PS grains were still at sea after 6 weeks, and a large proportion may have been deposited on German shores. The work is relevant to Descriptor 10 (Marine Litter) of the EU Marine Strategy Framework Directive.

Keywords: micro plastics, marine litter, particle tracking model, accumulation, anthropogenic impact, North Sea


INTRODUCTION

Accumulating plastic pollution is now recognized as a growing environmental concern in the preservation of marine life (GESAMP, 2019). This concern stems from the continuously increasing production of plastic waste, the persistent character of plastic in the environment, and poor waste management and littering that allows plastic to find its way into the oceans (e.g., Bergmann et al., 2019) where it remains for long time periods. Plastic pollution has long been recognized as a threat and has therefore been included in the Marine Strategy Framework directive (MSFD, Descriptor 10: Marine Litter; EUC, 2008, 2017). Microplastics (smaller than 5 mm) are mentioned as being of particular concern as they can be ingested by animals and cause harm. The main aim of MSFD Descriptor 10 is to prevent plastics from entering the environment, but there are also guidelines for assessing the status, setting targets, monitoring and reporting (GESAMP, 2019). Efforts to set threshold values for marine litter for MSFD reporting are on-going (Werner et al., 2020).

Microplastic pollution has gained attention in the last decade (Galgani et al., 2010), as evidence that it is harming marine biota is mounting (e.g., Chapron et al., 2018). To manage and reduce microplastics in the marine environment, understanding of transport patterns, transit times and accumulation is needed. A recent review of ocean transport mechanisms is given by Van Sebille et al. (2020).

A comprehensive report on microplastics in the marine environment has been compiled by GESAMP (2016). Sources of (micro-)plastics in the marine environment are many, including production facilities, land- and sea-based consumers, and waste management facilities and processes. Plastics can enter the ocean from shipping, coasts, rivers or the atmosphere. Sources from shipping include waste disposal, sewage, and accidents. Shipping accidents can include loss of containers containing plastic items; a survey covering 2014–2016 estimated the world-wide annual loss, including catastrophic losses, at 1390 containers (World Shipping Council, 2017). Microplastics can either be produced as such (e.g., industrial granulates, or small parts), or be formed by fragmentation of macroplastics. Potential effects on the marine environment include changes in growth and feeding behavior (e.g., Chapron et al., 2018). Biota can also influence the fate of microplastics, e.g., through burial (e.g., Gebhardt and Forster, 2018) which prevents them temporarily from further dispersal, biofouling (e.g., Kooi et al., 2017) which changes their buoyancy, or incorporation in fecal pellets (e.g., Cole et al., 2016) which removes them from the water column and brings them to the sea bed.

Nevertheless, quantitative data on the amounts of plastics and in particular microplastics in the marine environment remain fragmented, and models may provide additional information (see the review of Canals et al., 2021, and references therein). This holds in particular for plastics on or in the sea bed, where observations are much more time consuming and expensive than at the sea surface. They also found that in particular global ocean models lack resolution near the sea bed to accurately represent currents in the boundary layer which are important for dispersal of sinking plastic particles. Regional sigma coordinate models fare better in this respect. As with any forward time-stepping model, good knowledge and representation of initial conditions, in this case sources of plastics and their release as a function of time, is of crucial importance for models accurately represent real-world plastic concentrations. Another important factor to simulate plastic dispersal is the buoyancy of plastic particles in sea water which affects their vertical position in the water column. As plastics have accumulated in the marine environment during several decades, and plastic sources and releases are typically not registered, accurate simulations of plastic distributions in general do not seem achievable. Moreover, during such long periods of time, changes in buoyancy and fragmentation would need to be predicted, and current knowledge is insufficient to include such processes in models (Canals et al., 2021). These uncertainties hold in particular for microplastics, which are often the products of fragmentation, and for which observations are only recently becoming available. Specific accidental releases of microplastics, however, provide opportunities to collect more precise source and destination data, allowing models to be used to help reconstruct the events.

In the night of January 1st 2019, the container vessel MSC Zoe lost 342 containers in a storm while sailing north of the Dutch Wadden islands1 (Figure 1B for a representation of part of the ship’s trajectory). More than 11 metric tons of semi-transparent 0.5-mm PS (polystyrene) granules were lost from a container that remained hanging over the side of the ship. These particles are slightly heavier than water, and would typically sink to the seabed (see Table 1 for characteristics). They may, however, be (re)suspended by currents and waves. So far, none of these granules have been found onshore or offshore, possibly because they resemble sand grains. Also, an unknown quantity of white HDPE (high density polyethylene) pellets, most likely also originating from MSC Zoe, washed up on the beaches in very large numbers, loose but also in bags, typically concentrated along the high-water mark. A more complete account of the immediate aftermath of the incident is given by Philippart et al. (2019).


TABLE 1. Particle characteristics.
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It is unknown where the PS grains and HDPE pellets were lost exactly. Here, we will use a particle tracking model, coupled to a hydrodynamics model, in combination with the observations from citizen science platform (See text footnote 5) to identify potential release locations for the HDPE pellets. We will also run scenarios to simulate where the PS grains, which have as yet not been found, may have ended up.

To put these simulations into perspective, and illustrate some of the mechanisms influencing the transport of floating and sinking particles, we have also carried out two hypothetical, schematic release scenarios for particles with the same characteristics for the wider North Sea. These runs provide useful first insights into potential microplastics dispersal patterns and mechanisms, and potential accumulation areas in the North Sea. Lagrangian particle tracking models have been applied in the North Sea many times, to study subjects such as current patterns (e.g., Backhaus, 1985), radionuclide dispersal (Schönfeld, 1995), larvae dispersal (e.g., Savina et al., 2010; Tiessen et al., 2014), litter transport (Neumann et al., 2014), and 3D circulation (Ricker and Stanev, 2020).



MATERIALS AND METHODS


Study Area

The North Sea is a relatively shallow shelf sea with depths typically less than approximately 150 m (Figure 1).


[image: image]

FIGURE 1. Topography of the area of interest. (A) The North Sea. Inset: full domain of the hydrodynamical model. Blue rectangle: Dutch Wadden Sea (B). (B) Dutch Wadden Sea and approximate route of MSC Zoe (blue line; Table 2). Bathymetry contours in m below mean sea level.


The tides in the North Sea are semi-diurnal, with dominant M2 tidal amplitudes over 2 m along the UK east coast, near Dover Strait, and in the German Bight, and amphidromic points near the Norwegian coast, in the central southern North Sea and in the southern bight of the North Sea (e.g., Davies et al., 1997). Maximum surface currents at spring tide are about 1.4 ms–1 in the western and southern parts of the Southern Bight of the North Sea, reducing to 0.3 ms–1 in the central North Sea (Hydrographical Survey, 2000).

Wind can induce depth-averaged surge currents of up to 1 ms–1 in the North Sea (Flather, 1987). The overall residual circulation pattern in the North Sea is anti-clockwise (e.g., North Sea Task Force, 1993; Holt et al., 2001). The time and depth-averaged atmospherically induced residual currents are about 1/3 of the tidal residuals and directed to the north in the southern bight, and to the northeast in the southern North Sea (Prandle, 1978). Combined residual current speeds in the Southern Bight are approximately 0.05 m/s (Prandle, 1978).

Thermal stratification occurs in summer to the northern parts of the southern North Sea whereas the southern parts remain well-mixed, and separated by the Frysian Front (Otto et al., 1990). Under stratified conditions, a subsurface jet induced by density differences transports water around the north, east and southeast slopes of the Dogger Bank into the Oyster Grounds (Brown et al., 1999; Hill et al., 2008). The thermal stratification breaks down in the autumn, and is absent throughout the winter.

On a more local scale, fresh-water outflow of the river Rhine forms a plume along the Dutch coast to the North, resulting in density-driven coastward near-bottom currents and offshore surface currents of several cms–1 (Visser, 1992; Simpson, 1997). A similar plume is present in the German Bight and associated with the river Elbe (e.g., Schrum, 1997). UK coastal waters converge in the East Anglian plume, which is mostly recognizable by its elevated levels of turbidity, crosses the North Sea to the northeast to the south of Dogger Bank (see Dyer and Moffat, 1998 for a detailed description).

The North Sea is one of the most heavily trafficked seas in the world, including cargo ships. An early survey of floating marine litter in the North Sea found several items per square km (Dixon and Dixon, 1983). A recent study using survey data from 1995 to 2017 revealed tens to over a hundred of litter items per square km on the sea floor (Maes et al., 2018). An inventory of harmonized Europe-wide data on beach litter (Hanke et al., 2019), drawing data from a number of sources, showed typical abundances of several hundreds of litter items per survey (typically a stretch of about 100 m of beach) for beaches boardering the North Sea. The numbers varied for each individual beach during the 5 years included in the study. Averaged over these 5 years, the spatial pattern in abundance of items showed little variation around the coasts of the North Sea, except for larger numbers in the Skagerrak area. The spatial distribution of sampled beaches was variable, with several tens of km between sampled beaches along the Continental coast, relatively few sampled beaches along the UK east coast, and no beaches sampled along the west coast of Norway. A recent survey of microplastics at the sea surface and in the sea bed of the southern North Sea (Lorenz et al., 2019) found concentrations of several tens per m2 at the surface, and several hundreds per kg sediment in the bed, the vast majority smaller than 100 μm.

The Wadden Sea (Figure 1B) is a UNESCO World Heritage site and conservation area. Most of the area is protected under the Natura 2000 Habitats Directive (EUC., 1992). It consists of substantial tidal flat areas and salt marshes, intersected by tidal creeks and channels. It includes a string of barrier islands, stretching from the northern Dutch coast to Germany and Denmark, which separate this coastal sea from the North Sea.



Field Observations of HDPE Pellets

Field observation were carried out as part of a citizen science project. Volunteers could participate via a web-based mobile app, based on the ArcGIS Survey123 application, which was hosted at the website (See text footnote 5). In the webapp, participants were ask to locate the wrack line at the beach (along the high tide line), and randomly select a 0.4 × 0.4 m quadrat within this line. Next, users were asked to enter the observation date, note whether wrack was present within the quadrat, and record the number of pellets within the quadrat in categories (0, 1–10, 11–100, > 100). In addition, the webapp also asked whether other types of plastic were present within the quadrat, or within a 5 m radius. Participants were asked to space observations by at least 10 m when taking multiple samples.



Model Description

The model consists of the 3D hydrodynamic model GETM2 (Burchard and Bolding, 2002, of which the development version maintained by the Leibniz Institute for Baltic Sea Research, IOW, was used) and an Individual Behavior Model (IBM) for particle tracking (General Individuals Tracking Model, GITM). Three-dimensional flow fields were stored every hour by the hydrodynamic model, and used off-line by the IBM to calculate particle advection and diffusion.

General Individuals Tracking Model solves the shallow-water, heat balance and density equations, and was run on a spherical grid covering the north-west European continental shelf with approximately 5 km horizontal resolution and with 25 layers in the vertical (van der Molen et al., 2016). The model was forced with realistic winds, temperature and humidity data derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-5 reanalysis (Copernicus Climate Change Service (C3S), 2017). The open boundaries were forced with tidal elevations derived from gridded harmonic constituents based on Topex Poseidon satellite altimetry (Le Provost et al., 1998). Moreover, the open boundaries were forced with depth-resolved boundary conditions for temperature and salinity from the ECMWF ORAS4 Ocean reanalysis (Balsema et al., 2013)3. Fresh water was introduced into the model at 132 river mouth locations based on observations from the National River Flow Archive4 for UK rivers, the Agence de l’eau Loire-Bretagne, Agence de l’eau Seine-Normandie and IFREMER for French rivers, the DONAR database for Netherlands rivers, ARGE Elbe, the Niedersächsisches Landesamt für Ökologie and the Bundesanstalt für Gewässerkunde for German rivers, and the Institute for Marine Research, Bergen, for Norwegian rivers. The north-west European continental shelf model setup was used before in combination with GITM to investigate the dispersal of eggs and larvae of seabass (Beraud et al., 2017), of epifouling species on offshore structures (van der Molen et al., 2018a; Tidbury et al., 2020), and of spiny lobster (Whomersley et al., 2018). For the current work, the setup was updated to use the modern atmospheric and oceanic boundary conditions forcings mentioned above, and the bathymetrical representation of intertidal areas along the coasts of The Netherlands, Germany and Denmark was improved by reducing the drying threshold, ensuring drainage at low tide, and masking grid cells at the approximate location of barrier islands as land. These updates have not significantly changed the results of the setup, so readers are referred to earlier papers (van der Molen et al., 2016: tidal currents and elevations; van der Molen et al., 2018b: water temperature at stations) for validation results.

The IBM GITM includes particle advection and diffusion, and biological development and behavior. The advection-diffusion elements of GITM were based on a re-coded version of the lagrangian advection-diffusion method developed by Wolk (2003). The method uses a semi-analytical advection method, which provides a sub-gridcell approximation that ensures that particles follow stream lines exactly, and a random walk method with advective correction (Visser, 1997) to simulate diffusion (Hunter et al., 1993), which uses a constant diffusion coefficient in the horizontal and a variable diffusion coefficient in the vertical that is based on the vertical turbulent eddy diffusivity obtained from the turbulence closure model in GETM. The horizontal diffusion coefficient was set to 0.5 m2s–1 here, which results in jumps of up to 7 m in one 10 s model time step.

General Individuals Tracking Model allows specification of additional vertical motion of Lagrangian particles that was used here to simulate microplastics particles with simple floating or sinking behavior (a fixed vertical velocity) that did not change in time. Hence, particle size was not accounted for explicitly. As microplastics are small, particles were assumed not to be driven directly by wind. Particles near the sea bed remain in the water column, so represent microplastics with a negligible erosion shear stress threshold. Particles that touch the shoreline are assumed to have beached and are not advected further. Modeled Lagrangian particles have exact positions, so their trajectories are only influenced by the resolution of the hydrodynamics model through the extent in which the hydrodynamics are resolved. Particle characteristics are given below.



Modeling Approach

Separate model scenario runs were carried out with focus on the North Sea, and with focus on the MSC Zoe incident. These are described separately below.



North Sea Scenarios

The year 2017 was the last year for which complete forcing fields for the model were available when this study started: for 2018 and 2019, the open boundary forcing for temperature and salinity from the ORA-S4 repository was not yet available. Hence, we have used the year 2017 (after several years of spinup) for the North-Sea wide simulations to have the most realistic representation of the flow in the wider domain.

Three types of particle tracking runs were carried out to assess the general dispersal patterns in the wider North Sea: i) a neutrally buoyant particle test, ii) an instantaneous release scenario, and iii) a proportional release scenario from river mouths.


Neutrally Buoyant Particle Test

For illustration purposes, a model experiment was carried out releasing a single, neutrally buoyant particle at each river mouth or sluice location and plotting the particle tracks. The results were compared with the residual circulation.



Instantaneous Release Scenario

To identify potential accumulation areas of marine microplastics, assuming absence of knowledge about sources, particles were released on 1 January 2017, distributed uniformly over the part of the model domain covering the North Sea and the eastern part of the English Channel (1 particle released in every grid cell, 53524 particles in total).



Proportional Release Scenario From River Mouths

To obtain first estimates of dispersal patterns for particles from potential terrestrial sources, particles were released continuously throughout the year 2017 from the river mouths at rates proportional to the instantaneous river runoff (52306 particles in total).



Particle Characteristics

For both the instantaneous release scenario and the Proportional release scenario from river mouths, runs were carried out with two different types of particles: positively buoyant (floating toward the surface), and negatively buoyant (sinking toward the bottom). Here, we assume that the properties of the particles do not change over time to provide insight into the spatial distributions of the (temporary) accumulation areas of these types of particles, and use the vertical velocities of the two types of micro-plastics lost by MSC Zoe as examples, where the vertical velocities were set to the end points and the mid points of the potential ranges to assess sensitivity (see Table 1). The standard settings for HDPE pellets were a vertical particle velocity of 0.06 ms–1 and −0.004 ms–1 for PS grains. For an overview of the model runs, see Table 2. In reality, the buoyancy of plastic particles may change over time: biofouling for instance, will decrease buoyancy (e.g., Chubarenko et al., 2016). As a result, real plastic particles in the sea will gradually change their behavior. In the model, the vertical drift of these particles is counter-acted by vertical mixing induced by turbulent diffusion, resulting in vertical distributions near the surface or bottom that depend on the balance between the local intensity of turbulent mixing and the particle’s vertical velocity. As the negatively buoyant particles have less than half the density of marine sediments, and also a lower settling velocity than the fine sands that constitute the typical matrix of sediments in the area, we may assume that, in absence of biological burial processes, these particles do not enter the sea bed for substantial periods of time. Hence, the reflective boundary condition of the model at the sea bed may lead to an over-estimate of transport rates, but presumably not by orders of magnitude.


TABLE 2. Overview of model runs.
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MSC Zoe Scenarios

Scenario runs were carried out to investigate the potential dispersal of the two types of micro-plastics lost by MSC Zoe, with particles parameterised in the same way as in North Sea Scenarios.


HDPE Pellets Released on Trajectory

To represent HDPE pellets, 20100 particles were released at 67 positions (300 at each position), every 6 min on the course of MSC Zoe (using data from Marine Traffic, 2020). Of particles that beached within a rectangular area coinciding with where pellets were reported on (See text footnote 5) the release positions were analyzed to estimate the most likely areas where HDPE pellets may have been lost.



HDPE Pellets Released at Specific Locations

Subsequently, within these broader areas, specific model experiments were carried out releasing 10000 particles at four locations where recovery operations suggested that containers were lost, leading to the most likely origin of the HDPE pellets.



PS Grains Released on Trajectory

To represent PS grains, 20100 particles were released at 67 positions in the same way as the HDPE pellets. Because of lack of observations, and because the container that held the PS grains remained on board and may have lost its cargo anywhere or gradually, we could not do a similar exercise for the PS grains. Instead, we subdivided the trajectory of the MSC Zoe into four sections, and plotted the dispersal of the PS particles from each of these to get an impression of the fate of these grains if they had been lost there.



Sensitivity Runs

Most of the above scenario simulations were carried out with the three vertical velocities (ends of the ranges and mid-points) per particle type (Table 1). In addition, runs were carried out using a high value for the horizontal diffusion coefficient. A summary of the runs is included in Table 2.



Ocean Boundary Conditions

The simulations were run from January to November 2019 to realistically reproduce the hydrodynamic conditions in the aftermath of the container loss on 1 January 2019. For the years 2018 (needed for spinup) and 2019, ORAS4 Ocean reanalysis results were not available at the start of the study, so climatological ocean boundary conditions were constructed for these years based on the ORAS4 data of the 10 year period 2008–2017. As the ocean boundaries are far away from the incident location in coastal waters, we expect this to have only a minor influence on the results. For river runoff also, climatologies were used to extend beyond the observed data.





RESULTS


North Sea Scenarios


Residual Circulation and Neutrally Buoyant Particles Test

In general, marine microplastics can be expected to be transported in the direction of the residual circulation. The modeled depth-averaged residual circulation, obtained from a tidal harmonic analysis for the year 1983 (Figure 2) carried out for model validation before running the hindcast up to the years used for this study, shows the anti-clockwise circulation pattern in the North Sea. Single, neutrally buoyant particles released at river mouths and sluices around the North Sea in the model followed this pattern unless they beached (Figure 2B).
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FIGURE 2. (A) Modeled depth-averaged residual velocity (in cm s–1) in the North Sea for 1983. Every third grid cell was plotted, and velocities smaller than 1 cm s–1 were omitted to highlight the overall pattern. (B) Tracks of neutrally buoyant particles released at river mouths on 1 January 2017, until 30 December 2017. The colors indicate tracks of individual particles, but note that spatially separated particle tracks may have the same color. For visibility, only every fifth track was plotted. The black dots are the river mouth locations. Directions of travel are generally in the direction of the residual circulation.




Instantaneous Release Scenario

Results of the uniform, instantaneous release experiment showed, for floating particles and after a year, over 99% of particles had beached (Figure 3A). Particles beached on all North Sea coasts, but the highest concentrations were on the west-facing coast of Denmark. Floating particles beached only sporadically on the UK east coast. For sinking particles (Figure 3B), 45% of particles were still at sea at the end of the year. This contrast with the floating particles could be expected, as currents near the sea bed are generally weaker and the sea-bed topography plays a role. Sinking particles accumulated in the Oyster Grounds, off the central UK east coast, and in particular in the Skagerrak. Sinking particles also beached on all coasts, but were, in contrast with floating particles, more evenly distributed with higher concentrations on north-facing coasts and the Norwegian coast of the Skagerrak. The simulations with vertical particle velocities at the ends of the ranges resulted in similar distribution patterns (Figures 3C–F).
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FIGURE 3. Particle densities (number of particles per grid cell) for the instantaneous release scenario on 30 December 2017. (A) Floating particles (0.06 ms–1), (B) sinking particles (−0.004 ms–1), (C) floating particles (0.05 ms–1), (D) sinking particles (−0.0015 ms–1), (E) floating particles (0.07 ms–1), (F) sinking particles (−0.006 ms–1). Coordinates are latitude and longitude in degrees.




Proportional Release Scenario From River Mouths

Results for the proportional riverine release simulation case for floating particles (Figure 4A) showed, after a year, particles in elevated concentrations at sea in the Rhine plume, in low concentrations in a curved band across the North Sea from the UK to Denmark, and in the Skagerrak and the southern part of the Norwegian trench. Floating particles could still be at sea in this experiment as opposed to the uniform release experiment (Instantaneous Release Scenario), as here particles were released throughout the year. Particles had beached on all North Sea coasts, but in highest concentrations along the Dutch coast, the western Danish coast, and the southern tip of Norway. Sinking particles (Figure 4B) only rarely ended up offshore, and for most rivers, beached relatively near their river mouth of origin, resulting in high local particle concentrations. Apparently, transport mechanisms to bring coastally released sinking particles (far) offshore were weak, so this experiment does not show the offshore accumulations of sinking particles evident in the uniform release scenario, where particles started out offshore (Instantaneous Release Scenario). Also for this model experiment, the simulations with vertical particle velocities at the ends of the ranges resulted in similar distribution patterns (Figures 4C–F). In these results, the magnitude of the concentrations should not be interpreted as a realistic reflection of reality, as the assumed intensity of particles released proportionally to river runoff in the model is probably a strong simplification (other factors, such as population density and habits are likely to modulate this). Moreover, rivers are not the only sources of marine microplastics.
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FIGURE 4. Particle densities (number of particles per grid cell) for the proportional release experiment. (A) Density on 30 December 2017 for floating particles (0.06 ms–1), (B) density on 30 December 2017 for sinking particles (−0.004 ms–1), (C) floating particles (0.05 ms–1), (D) sinking particles (−0.0015 ms–1), (E) floating particles (0.07 ms–1), (F) sinking particles (−0.006 ms–1). Coordinates are latitude and longitude in degrees.





MSC Zoe Incident


Field Observations of HDPE Pellets

In total, participants of the “Waddenplastic” citizen science project collected 440 individual observations between 01-01-2019 and 01-03-2019. Results demonstrate that the highest pellets densities (particularly the > 100 class, and 11–100 to a lesser degree) typically occurred at the most eastern Dutch Wadden Sea Islands (Schiermonnikoog and Rottum), and the mainland behind them (Figure 5). The majority of these observations were collected in the first 3 weeks after the incident, but do extend to the end of February 2019, as indicated by the bar plots (Figures 5B,D,F,H).
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FIGURE 5. Observations of HDPE pellets at the surface in a 0.4 × 0.4 m rectangle, entered on (See text footnote 5) in January and February 2019; maps of spatial distribution and histograms with number of observations per day. (A,B) No pellets, (C,D) 1–10 pellets, (E,F) 11–100 pellets, (G,H) more than 100 pellets. Locations are in decimal degrees latitude and longitude. Every mark is a separate observation, i.e., each location was visited once.




Modeled HDPE Pellets Released on Trajectory

For the experiment with a mid-range vertical particle velocity, around 50% of the particles representing floating HDPE pellets beached within 3 weeks in our model simulations (Figure 6B) under conditions of winds with a significant northerly component (Figure 6A). Simulations with vertical particle velocities at the ends of the range gave nearly identical results, and are not shown here. For the high horizontal diffusion coefficient of 12 m2s–1 around 50% of the particles representing floating HDPE pellets beached within 10 days, and more than 90% had beached within 17 days. Particles representing sinking PS grains remained active for much longer, with 50% still moving after 6 weeks for the high horizontal diffusion coefficient of 12 m2s–1 that showed the most rapid decline in the number of active particles (Figure 6C). For the experiments with a high horizontal diffusion coefficient of 12 m2s–1 the particles with the smallest sinking velocity remained active the longest.
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FIGURE 6. Time series of the simulated aftermath of the MSC Zoe incident. (A) Wind speed and direction to the north of Ameland (53.5N, 5.75E) at 6 h intervals from the ECMWF ERA5 reanalysis; (B) number of live particles representing HDPE pellets released along the trajectory of MSC Zoe; (C) number of live particles representing PS grains released along the trajectory of MSC Zoe. Legend: combination of diffusion coefficient and vertical particle velocity.


The reconstruction of the most likely release areas of the floating HDPE pellets are given in Figure 7 for the mid-range vertical particle velocity and both horizontal diffusion coefficients. The magenta rectangle represents the area where most pellets were found5 (Figure 5). The density of modeled particles in this area is plotted at a time when most particles had beached. Also plotted is the density of the same particles at their release positions on the trajectory of MSC Zoe. Of some of the particles, the tracks are also plotted to give an impression of the dispersal pathways. The density of particles on the trajectory of MSC Zoe can be interpreted as an indication of the probability of where the HDPE pellets were lost. The tracks suggest that the pellets first drifted in a south-westerly direction, then, after a change in wind speed and direction, in a south-easterly direction, and finally roughly along the coast to the east. The initial drift was more to the west than the wind direction, because of the Coriolis effect and because northerly winds set up a clock-wise circulation in the North Sea (Furnes, 1980). The results for the high horizontal diffusion coefficient were similar, but more smoothed than those for the low coefficient. The model results suggest that the highest release probability was north of Ameland and (western) Schiermonnikoog. Within this region, locations where cargo was found on the sea bed include north of the western side of Ameland, north of the inlet between Ameland and Schiermonnikoog, and north of the eastern end of Schiermonnikoog (Rijkswaterstaat, pers. comm.).
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FIGURE 7. Results of reconstruction of the most likely release areas of HDPE pellets. The relative density of particles (fraction of the total number of particles released per 1 × 1 km rectangle) that arrived in the magenta rectangle is shown. Also shown is the relative density of the same particles (fraction of the total number of particles released per 1 × 1 km rectangle) at their starting positions along the trajectory of MSC Zoe. In addition, the tracks of a subset of these particles is show. The gray line is the the coast line. With a vertical velocity of 0.06 ms–1 and: (A) a horizontal diffusion coefficient of 0.5 m2s–1, (B) a horizontal diffusion coefficient of 12 m2s–1.




Modeled HDPE Pellets Released at Specific Locations

Dedicated release experiments from the four locations in the vicinity of Ameland and Schiermonnikoog where recovery operations suggested that containers were lost (Figure 8) showed that the position north of the inlet between Ameland and Schiermonnikoog gives a spatial distribution pattern that corresponds best with the observations from (See text footnote 5) (Figure 5). The release locations north of the western side of Ameland result in high densities of particles on Ameland which were not observed. Moreover, the release location to the north of the eastern end of Schiermonnikoog results in a low number of particles beaching on Schiermonnikoog, and none to the west, also not corresponding with observations. The experiment with a vertical particle velocity of 0.05 ms–1 for the position north of the inlet between Ameland and Schiermonnikoog (Figure 9E) resulted in very similar distributions as for the mid-range vertical particle velocity (Figure 9C). The experiment with the high horizontal diffusion coefficient of 12 m2s–1 resulted in more spatial spread of the particles, and higher concentrations due to a higher rate of beaching (Figure 9F).
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FIGURE 8. Results of releases of particles representing HDPE pellets from positions of estimated container loss (Rijkswaterstaat, pers. comm.) within the area of high release probability (Figure 7). Colors represent the fraction of particles released that arrived in a 1 × 1 km rectangle. (A–D) For the four estimated positions of container loss with a vertical velocity of 0.06 ms–1 and a diffusion coefficient of 0.5 m2s–1. (E,F): As (C), but with a vertical velocity of 0.05 ms–1 and a diffusion coefficient of 12 m2s–1, respectively.
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FIGURE 9. Results of releases of particles representing PS grains from four parts of the trajectory of MSC Zoe. Colors represent the fraction of particles released that arrived in a 1 × 1 km rectangle. Vertical velocity was −0.004 ms–1 and the horizontal diffusion coefficient was 0.5 m2s–1.




Modeled PS Grains Released on Trajectory

The tracking results of the particles representing sinking PS grains (Figure 9) released on the four sections of the trajectory of the MSC Zoe suggests that the grains remained much more offshore than the floating HDPE pellets, took much longer to reach the coast, and were transported much further to the east. Of all these sections, many particles (for numbers see Table 3) reached the German coast. Also, from the first three sections, particles reached Schiermonnikoog, and for all four sections the area between Ameland and the German border. Hence, within the Netherlands, and without additional information, this may be the area with the highest probability to find PS grains released by MSC Zoe in the field. For all four sections, higher modeled particle densities were simulated typically on the western ends of the islands. Along the coast of the main land, the shore south of Schiermonnikoog received high densities of particles from the releases on all but the easternmost section of the trajectory of the MSC Zoe. Larger sinking velocities resulted in less transport to the east as demonstrated for the third part of the trajectory (Figures 10A–C). High horizontal diffusion also resulted in less transport to the east (Figure 10D).


TABLE 3. Percentage of particles representing PS grains remaining in the Netherlands, or reaching Germany or Denmark, for releases on four parts of the trajectory of MSC Zoe (see also Figure 9), and different settings for the vertical partical velocity and horizontal diffusion coefficient.
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FIGURE 10. Sensitivity of the results for PS grains for the third part of the trajectory. (A) As Figure 9c; (B) with vertical velocity of −0.0015 ms–1; (C) with vertical velocity was −0.006 ms–1; (D) with a horizontal diffusion coefficient of 12 m2s–1.






DISCUSSION AND CONCLUSION

Microplastic pollution has been incorporated in the EU Marine Strategy Framework Directive descriptor 10 (Marine Litter), and has potentially harmful effects on marine biota (e.g., Besseling et al., 2018). Hence, to manage and reduce microplastics in the marine environment we need to identify sources, understand transport patterns, transit times and accumulation sites. In this study, we have taken a modeling approach to this, focussing on the wider North Sea area. We have conducted a simultaneous release model, and experimentally modeled a proportional riverine release, both for floating and sinking microplastic pellets (HDPE and PS, respectively). We subsequently applied these models to the MSC Zoe incident in January 2019, where microplastics were released when this vessel lost 342 containers, and linked the model results to actual pellet counts through a citizen science initiative (See text footnote 5). Our model simulations showed that floating particles can accumulate temporarily on salinity fronts and in gyres, and are deposited predominantly on west-facing beaches. Sinking particles moved more slowly and less far, accumulated in deeper areas, and were deposited more on west- and north-facing beaches. The MSC Zoe model showed that floating HDPE pellets beached mostly within 3–7 7 weeks on the most eastern Dutch barrier islands, which was in agreement with citizen science observations. In contrast, sinking PS grains stayed at sea substantially longer (> 6 weeks) and were very likely deposited further east along German barrier island coastlines. However, no ground-truthing data was available for PS grains to validate the model. Our model results indicate pathways of marine microplastics transport that may help managing the clean-up of microplastics along northern European beaches, contributing to the EU Marine Strategy Framework Directive.

The dispersal of floating and sinking particles was substantially different in all model experiments. In shelf seas, such differences are caused by a combination of stratification and coriolis-induced velocity veering (e.g., Shapiro et al., 2004). Floating particles tended to concentrate in areas that are known for the presence of salinity fronts, in agreement with observations (Barnes et al., 2009), whereas concentrations of sinking particles were more related with large-scale sea-bed topography. These general results were also found in another modeling study (Ricker and Stanev, 2020). Over time, floating material in the area will beach, whereas a proportion of sinking material may remain at sea. The difference in transport paths of floating and sinking particles indicates that microplastics of mixed behavior (floating first, sinking later; e.g., because of biofouling or degradation) are likely to have different dispersal and accumulation characteristics, which will depend on the timing of the changes in buoyancy. This change will depend on the initial buoyancy of the microplastics, and on the rate and nature of the bio-fouling or degradation. The rate of bio-fouling is likely to depend on the time of year. In combination with the seasonality of stratification, this is an interesting topic that could be investigated further. Moreover, sinking plastics may get temporarily or permanently buried in the sea bed, and these processes need to be studied further to understand their importance and enable inclusion in models.

The physical processes within a Region Of Freshwater Influence (ROFI), such as that of the river Rhine which plays a significant role along the continental coast, are many, time-varying and complex, and depending on wind, tides and river runoff (Simpson, 1997). However, when fluctuating components are removed, on average an estuarine type circulation remains in the cross-shore direction, with surface currents having an offshore component, and bottom currents having an onshore component (Heaps, 1972; Simpson, 1997). Over a longer period of time, such as considered here, this density-driven circulation would tend to concentrate particles near the salinity front at the surface (Barnes et al., 2009), and near the coast at the bottom. Although the model is not expected to represent all the physical processes in the ROFI in detail because of the 5 km resolution, sinking particles in the Rhine ROFI area accumulated near the coast in correspondence with these mechanisms and floating particles accumulated at some distance away from the coast. Plots of particle density of the proportional release experiment with a mid-range vertical particle velocity of 0.06 ms–1 at four time slices in the year, and overlain with salinity contours (Figure 11) illustrate that these areas of higher density of floating particles indeed aligned with salinity features. We have plotted salinity contours here rather than density contours, because surface temperature gradients were relatively small, and salinity can be measured directly and defines the river plumes. A perfect fit for these is not expected, because of the time-varying components of the currents. A more rigorous study of these phenomena, with different assumptions but similar results, is given by Ricker and Stanev (2020).


[image: image]

FIGURE 11. Particle densities (number of particles per grid cell) for the proportional release experiment for floating particles, for four time slices during the simulated year in 90 day intervals, with 33.0 and 34.5 salinity contours (magenta lines). (A) 31 March, (B) 29 June, (C) 27 September, and (D) 26 December.


The current results suggest the following (temporary) accumulation areas for the wider North Sea:

For floating particles:

• beaches (for the continental coast in particular west-facing beaches and the Wadden Sea, for Norway most coasts bordering the Norwegian Trench)

• the salinity front off the continental coast

• the gyre in the Skagerrak

For sinking particles:

• beaches (similar patterns as for floating particles but in different proportions)

• deeper areas (in particular the Oyster Grounds and the Norwegian Trench and Skagerrak)

The offshore accumulation areas of the sinking particles may be compared qualitatively with the observations of macro-litter (Maes et al., 2018), who found higher concentrations in the Oyster grounds area than elsewhere in the North Sea. Their study did not extend into the Norwegian Trench and the Skagerrak. Sinking micro-plastics have settling velocities that are more similar to those of silts and clays than sands. Hence, they may be expected to accumulate in the more muddy areas. Indeed, comparison of the spatial distribution pattern of sinking particles from the uniform release experiment with that of fine sediments in the North Sea (e.g., Van der Molen et al., 2017; Wilson et al., 2018) shows a reasonable level of correspondence. The data on beach (macro) litter (Hanke et al., 2019) does not show the details of the distribution of the beached model particles presented here. It is not clear, however, to which extent the model results can be compared with these data, as the data represent a wide range of macroplastics and other materials rather than specific microplastics, do not distinguish floating from sinking material, the sampled beaches were relatively widely inter-spaced. Moreover, the source locations of this material will have been different (and most likely included locally deposited litter) from the simulated sources used in this study.

The details of the density patterns of particles from these simulations are not expected to be realistic, because of the schematic nature of these simulations. However, they are sufficient to demonstrate the different fate of floating and sinking particles. A more realistic level of detail can only be achieved with more detailed information on the spatial and temporal distribution of sources of microplastics. Such information is only gradually starting to become available. For instance, estimations of macroplastics emissions in European river catchments show large differences between catchments (Roex et al., 2019), suggesting that this may also hold for microplastics, and challenging the assumption of proportionality to river runoff used here. Additional simulations could be considered for other years to assess potential interannual variability in microplastics dispersal, for instance by identifying and using contrasting years in terms of average wind patterns (i.e., residual circulation), temperature (i.e., stratification) and/or river runoff (i.e., source distribution). In a model assessment of residual circulation of the North Sea, Mathis et al. (2015), for instance, found standard deviations for the strength of annual in- and outflows of around 10% of the mean, so a limited effect on microplastic dispersal can be expected. Also, starting runs at different times of the year could be considered, however, comparing such experiments would have the additional complication that they would cover different periods of time.

The results of the simulations of the MSC Zoe incident showed that almost all of the floating HDPE pellets beached to the south and east of their release position within 3–7 weeks. The position of the beached pellets was confirmed by citizen science data (see text footnote 5) that was collected in the field in the 2 months after the incident. The HDPE pellet deposition did not follow the main pattern of dispersal evident in the North Sea wide model experiments, because of the specific wind conditions (northerly winds) during and in the days following the incident. Under more average, southwesterly wind conditions, the HDPE pellets would most likely have been transported much further to the East and North, and might have beached in large numbers on the German coast and/or the Danish west coast. Hence, it is advisable that international agreement is reached on updated guidelines for vessel routing (e.g., avoid shallow waters during storm) in the area in the interest of all parties to reduce the risk of similar incidents in the future. The simulations show that the most likely release position of the HDPE pellets was to the north of the inlet between Ameland and Schiermonnikoog (Zoutkamperlaag) if they were stored in a single container, but for this case the model does not represent the pellets found west of Schiermonnikoog. If they were stored in multiple containers, it is possible that pellets were also lost to the north of Ameland. It is also possible that transport processes due to waves, which were not represented in the model, have contributed to the dispersal of the HDPE pellets, and/or that a significant number of the bags that contained the pellets have remained intact for some time and these bags were influenced by an additional ‘sail effect’, or, although unlikely, originated from a different source.

In contrast, the sinking PS grains in the simulations of the MSC Zoe incident remained at sea for much longer than the HDPE pellets, because near-bed currents are weaker due to friction with the seabed, are much less susceptible to winds than surface currents, and are likely to have a different direction than the prevailing winds because of Ekman veering. The PS grains followed the residual circulation pattern to a much larger extent, and traveled much further to the East. The simulations suggest that it is likely that most of them reached the coasts of Germany and some even reached Denmark. The most likely location to find them in The Netherlands is on the beaches and in the back-barrier area of the island of Schiermonnikoog. A sampling program in these areas is therefore recommended.

The sensitivity experiments with different vertical particle velocities illustrate effects on the dispersal, in particular for the sinking PS grains. In the marine environment, this could lead to a level of sorting by the hydrodynamical processes, in similarity to sediment grains of different sizes. In this study, the differences between floating and sinking behavior resulted in larger differences in particle dispersal than the differences in vertical particle velocity within the expected ranges for HDPE pellets and PS grains. The horizontal diffusion coefficient affected the level of spreading of the particles. It also had a strong influence on the beaching of particles. This is not surprising, as in this model, in absence of the horizontal diffusion-driven random walk process, the semi-analytical particle advection scheme allows particles follow stream lines exactly, and particles cannot beach. Hence, in the current model, beaching is related directly the horizontal diffusion coefficient. In reality, near-shore wave-driven processes are likely to play a significant role in beaching of microplastics, and research into their effects and how these can be implemented in particle tracking models is desirable.

For reliable simulations of the details of the spatial distributions, in particular within the Wadden Sea, the current model is unsuitable, and a high-resolution model is required. First simulations with such a model, however, did not provide much additional insight into the dispersal of HDPE pellets, and it could not be applied to PS grains because the model domain was limited to the Dutch Wadden Sea area.

This study’s simulations have demonstrated that marine microplastics in the North Sea transgresses national boundaries. Hence, reducing the amounts of litter on the seabed and the beaches requires an international effort to eliminate both land-based and sea-based sources. Land-based sources can be dealt with using national legislation and enforcement, although international agreement is desirable. Sea-based sources can best be managed by international collaboration and enforcement. For the North Sea, such international cooperation, agreements and legislation are pursued by OSPAR6 and the EU Marine Strategy Framework Directive (EUC, 2008, 2017). Within the context of the EU Marine Strategy Framework Directive, the MSC Zoe incident illustrates that improved shipping guide lines to reduce the risk of such incidents should be investigated and implemented.
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1 rijkswaterstaat.nl/water/vaarwegenoverzicht/waddenzee/afhandelingcontainerramp-met-de-msc-zoe/index.aspx

2 http://www.getm.eu

3 ftp-icdc.cen.uni-hamburg.de/EASYInit/ORA-S4/monthly_1x1

4 www.ceh.ac.uk/data/nrfa/index.html

5 waddenplastic.nl

6 oap.ospar.org/en/ospar-actions



REFERENCES

Backhaus, J. O. (1985). A three-dimensional model for 679 the simulation of shelf sea dynamics. Deutsche Hydrografische Zeitschrift 38, 165–187. doi: 10.1007/BF02328975

Balsema, M. A., Mogensen, K., and Weaver, A. T. (2013). Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 139, 1132–1161. doi: 10.1002/qj.2063

Barnes, D. A. K., Galgani, F., Thompson, R. C., and Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Phil. Trans. R. Soc. B 364, 1985–1998. doi: 10.1098/rstb.2008.0205

Beraud, C., van der Molen, J., Armstrong, M., Hunter, E., Fonseca, L., and Hyder, K. (2017). The influence of oceanographic conditions and larval behaviour to settlement success - the European seabass Dicentrarchus labrax (L.). ICES J. Mar. Sci. 75, 455–470. doi: 10.1093/icesjms/fsx195

Bergmann, M., Mützel, S., Primpke, S., Tekman, M. B., Trachsel, J., and Gerdts, G. (2019). White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5:eaax1157. doi: 10.1126/sciadv.aax1157

Besseling, E., Redondo-Hasselerharm, P., Foekema, E. M., and Koelmans, A. (2018). Quantifying ecological risks of aquatic micro- and nanoplastic. Crit. Revi. Environ. Sci. Technol. 49, 32–80. doi: 10.1080/10643389.2018.1531688

Brown, J., Hill, A. E., Fernand, L., and Horsburgh, K. J. (1999). Observations of a seasonal jet-like circulation in the central North Sea cold pool margin. Estuar. Coast. Shelf Sci. 48, 343–355. doi: 10.1006/ecss.1999.0426

Burchard, H., and Bolding, K. (2002). GETM – a General Estuarine Transport Model. Scientific Documentation. Brussels: European Commission. Tech. Rep. EUR 20253 EN.

Canals, M., Pham, C. K., Bergmann, M., Gutow, L., Hanke, G., van Sebille, E., et al. (2021). The quest for seafloor macrolitter: a critical review of background knowledge, current methods and future prospects. Environ. Res. Lett. 16:023001. doi: 10.1088/1748-9326/abc6d4

Chapron, L., Peru, E., Engler, A., Ghiglione, J. F., Meisterzheim, A. L., Pruski, A. M., et al. (2018). Macro- and microplastics affect cold-water corals growth, feeding and behaviour. Sci. Rep. 8:15299. doi: 10.1038/s41598-018-33683-6

Chubarenko, I., Bagaev, A., Zobkov, M., and Esuikova, E. (2016). On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull. 108, 105–112. doi: 10.1016/j.marpolbul.2016.04.048

Cole, M., Lindeque, P. K., Fileman, E., Clark, J., Lewis, C., Halsband, C., et al. (2016). Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environ. Sci. Technol. 50, 3239–3246. doi: 10.1021/acs.est.5b05905

Copernicus Climate Change Service (C3S), (2017). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS), March 2019. Avaliable at: https://cds.climate.copernicus.eu/cdsapp#!/hom (accessed February 26, 2021).

Davies, A. M., Kwong, S. C. M., and Flather, R. A. (1997). Formulation of a variable-function three-dimensional model, with application to the M2 and M4 tide on the North-West European Continental Shelf. Cont. Shelf Res. 17, 165–204. doi: 10.1016/s0278-4343(96)00025-8

Dixon, T. J., and Dixon, T. R. (1983). Marine litter distribution and composition in the North Sea. Mar. Pollut. Bull. 14, 145–148. doi: 10.1016/0025-326x(83)90068-1

Dyer, K. R., and Moffat, T. J. (1998). Fluxes of suspended matter in the East Anglian plume. Southern North Sea. Cont. Shelf Res. 18, 1311–1331. doi: 10.1016/s0278-4343(98)00045-4

EUC, (2017). COMMISSION DIRECTIVE (EU) 2017/845 of 17 May 2017 Amending Directive 2008/56/EC of the European Parliament and of the Council as Regards the Indicative Lists of Elements to be Taken Into Account for the Preparation of Marine Strategies. Avaliable at: https://mcc.jrc.ec.europa.eu/main/document.py?code=201712062331&title=COMMISSION%20DIRECTIVE%20(EU)%202017/845%20of%2017%20May%202017 (accessed February 26, 2021).

EUC. (1992). Council Directive (92/43/EEC) of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Avaliable at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31992L0043

EUC, (2008). Directive 2008/56/ec of the European Parliament and of the Council of 17 June 2008 Establishing a Framework for Community Action in the Field of Marine Environmental Policy (Marine Strategy Framework Directive). Avaliable at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0056 (accessed February 26, 2021).

Flather, R. A. (1987). Estimates of extreme conditions of tide and surge using a numerical model of the North-west European Continental Shelf. Estuar. Coast. Shelf Sci. 24, 69–93. doi: 10.1016/0272-7714(87)90006-0

Furnes, G. K. (1980). Wind effects in the North Sea. J. Phys. Oceanogr. 10, 978–984. doi: 10.1175/1520-0485(1980)010<0978:weitns>2.0.co;2

Galgani, F., Fleet, D., van Franeker, J., Katsanevakis, S., Maes, T., Mouat, J., et al. (2010). “Marine strategy framework directive task Group 10 report marine litter,” in JRC Scientific and Technical Reports EUR 24340 EN - 2010, ed. N. Zampoukas, (Luxembourg: Office for Official Publications of the European Communities).

Gebhardt, C., and Forster, S. (2018). Size-selective feeding of Arenicola marina promotes long-term burial of microplastic particles in marine sediments. Environ. Pollut. 242, 1777–1786. doi: 10.1016/j.envpol.2018.07.090

GESAMP. (2016). “Sources, fate and effects of microplastics in the marine environment: part two of a global assessment,” in (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection), eds P. J. Kershaw and C. M. Rochman, (London: GESAMP), 220. Rep. Stud. GESAMP No. 93.

GESAMP, (2019). “Guidelines or the monitoring and assessment of plastic litter and microplastics in the ocean,” in ), (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection), eds P. J. Kershaw, A. Turra, and F. Galgani, (London: GESAMP), 130. Rep. Stud. GESAMP No. 99.

Hanke, G., Walvoort, D., van Loon, W., Addamo, A. M., Brosich, A., del Mar Chaves Montero, M., et al. (2019). EU Marine Beach Litter Baselines, EUR 30022 EN. Luxemburg: Publications Office of the European Union, doi: 10.2760/16903

Heaps, N. S. (1972). Estimation of density currents in the Liverpool Bay area of the Irish Sea. J. R. Astron. Soc. 30, 415–432. doi: 10.1111/j.1365-246X.1972.tb05825.x

Hill, A. E., Brown, J., Fernand, L., Holt, J., Horsburgh, K. J., Proctor, R., et al. (2008). Thermohaline circulation of shallow tidal seas. Geophys. Res. Lett. 35:L11605. doi: 10.1029/2008GL033459

Holt, J. T., James, I. D., and Jones, J. E. (2001). An s coordinate density evolving model of the northwest European continental shelf, part 2, Seasonal currents and tides. J. Geophys. Res. 106, 14035–14053. doi: 10.1029/2000JC000303

Hunter, J. R., Craig, P. D., and Philips, H. E. (1993). On the use of random walk models with spatially variable diffusivity. J. Computat. Phys. 106, 366–376. doi: 10.1016/S0021-9991(83)71114-9

Hydrographical Survey (2000). Tidal heights and streams, Coastal waters of the Netherlands and adjacent areas. Hydrographer of the Royal Dutch Navy, The Hague: HP33, 308.

Kooi, M., van Nes, E. H., Scheffer, M., and Koelmans, A. A. (2017). Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971. doi: 10.1021/acs.est.6b04702

Le Provost, C., Lyard, F., Genco, M. L., and Rabilloud, F. (1998). A hydrodynamic ocean tide model improved by assimilation of a satellite altimeter-derived data set. J. Geophys. Res. 103, 5513–5529. doi: 10.1029/97JC01733

Lorenz, C., Roscher, L., Meyer, M. S., Hildebrandt, L., Prume, J., Löder, M. G. J., et al. (2019). Spatial distribution of microplastics in sediments and surface waters of the southern North Sea. Environ. Pollut. 252, 1719–1729. doi: 10.1016/j.envpol.2019.06.093

Maes, T., Barry, J., Leslie, H. A., Vethaak, A. D., Nicolaus, E. E. M., Law, R. J., et al. (2018). Below the surface: twenty-five years of seafloor litter monitoring in coastal seas of North West Europe (1992–2017). Sci. Total Environ. 630, 790–798. doi: 10.1016/j.scitotenv.2018.02.245

Marine Traffic, (2020). Marine Traffic Information. Avaliable at: http://marinetraffic.com. (accessed May 27, 2020)

Mathis, M., Elizalde, A., Mikolajewicz, U., and Pohlmann, T. (2015). Variability patterns of the general circulation and sea water temperature in the North Sea. Prog. Oceanogr. 135, 91–122. doi: 10.1016/j.pocean.2015.04.009

Morét-Ferguson, S., Law, K. L., Proskurowski, G., Murphy, E. K., Peacock, E. E., and Reddy, C. M. (2010). The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar. Pollut. Bull. 60, 1873–1878. doi: 10.1016/j.marpolbul.2010.07.020

Neumann, D., Callies, U., and Matthies, M. (2014). Marine litter ensemble transport simulations in the southern North Sea. Mar. Pollut. Bull. 86, 219–228. doi: 10.1016/j.marpolbul.2014.07.016

North Sea Task Force, (1993). North Sea Quality Status Report 1993, Frendensborg: Olsen and Olsen, 132.

Otto, L., Zimmerman, J. T. F., Furnes, G. K., Mork, M., Saetre, R., and Becker, G. (1990). Review of the physical oceanography of the North Sea. Netherlands J. Sea Res. 26, 161–238. doi: 10.1016/0077-7579(90)90091-T

Philippart, K., Hanssen, L., and van Dijk, J. (2019). Wat zijn de gevolgen van de door MSC Zoe verloren lading voor de Noordzeekustzone en de Waddenzee? Onderzoeks- en monitoringplan voor de korte- en langetermijngevolgen van microplastics voor het Waddengebied en haar bewoners. Position Paper 2019-01, Leeuwarden: Waddenacademie.

Prandle, D. (1978). Residual flows and elevations in the southern North Sea. Proc. R. Soc. Lond. Ser A 359, 189–228. doi: 10.1098/rspa.1978.0039

Ricker, M., and Stanev, E. V. (2020). Circulation of the European Northwest Shelf: a lagrangian perspective. Ocean Sci. 16, 637–655. doi: 10.5194/os-16-637-2020

Roex, E., Wolters, H., van Duijnhoven, N., Benitez Sanz, C., van der Meulen, M., and Wortelboer, R. (2019). Establishment of an EU Pressure Inventory”. Deliverable to Task B1 of the BLUE2 Project “Study on EU Integrated Policy Assessment for the Freshwater and Marine Environment, on the Economic Benefits of EU Water Policy and on the Costs of its Non- Implementation”. Report to DG ENV. Avaliable at: https://ec.europa.eu/environment/blue2_study/pdf/BLUE2_B1_FINAL_REPORT.pdf (accessed February 26, 2021).

Savina, M., Lacroix, G., and Ruddick, K. (2010). Modelling the transport of common sole larvae in the southern North Sea: influence of hydrodynamics and larval vertical movements. J. Mar. Syst. 81, 86–98. doi: 10.1016/j.jmarsys.2009.12.008

Schönfeld, W. (1995). Numerical simulation of the dispersion of artificial radionuclides in the English Channel and the North Sea. J. Mar. Syst. 6, 529–544. doi: 10.1016/0924-7963(95)00022-H

Schrum, C. (1997). Thermohaline stratification and instabilities at tidal mixing fronts: results of an eddy resolving model for the German Bight. Cont. Shelf Res. 17, 689–716. doi: 10.1016/S0278-4343(96)00051-9

Shapiro, G. I., Van der Molen, J., and De Swart, H. E. (2004). The effect of velocity veering on sand transport in a shallow sea. Ocean Dyn. 54, 415–423. doi: 10.1007/s10236-004-0089-4

Simpson, J. H. (1997). Physical processes in the ROFI regime. J. Mar. Syst. 12, 3–15. doi: 10.1016/S0924-7963(96)00085-1

Tidbury, H., Taylor, N., van der Molen, J., Garcia, L., Posen, P., Callaway, A., et al. (2020). Social network analysis, a tool for application to Marine Spatial Planning: the influence of offshore platforms on marine connectivity in the North Sea and the potential implications of decommissioning. J. Appl. Ecol. 57, 566–577. doi: 10.1111/1365-2664.13551

Tiessen, M. C. H., Fernand, L., Gerkema, T., van der Molen, J., Ruardij, P., and van der Veer, H. W. (2014). Numerical modelling of physical processes governing larval transport in the southern North Sea. Ocean Sci. 10, 357–376. doi: 10.5194/os-10-357-2014

van der Molen, J., Garcia, L., Whomersley, P., Callaway, A., Posen, P., and Hyder, K. (2018a). Modelling connectivity of larval stages of sedentary marine communities between offshore structures in the North Sea. Sci. Rep. 8:14772. doi: 10.1038/s41598-018-32912-2

van der Molen, J., Ruardij, J., Mooney, K., Kerrison, P., O’Connor, N. E., Gorman, E., et al. (2018b). Modelling potential production of macroalgae farms in UK and Dutch coastal waters. Biogeosciences 15, 1123–1147. doi: 10.5194/bg-15-1123-2018

van der Molen, J., Ruardij, P., and Greenwood, N. (2016). Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: results of a biogeochemical model. Biogeoscienses 13, 2593–2609. doi: 10.5194/bg-13-2593-2016

Van der Molen, J., Ruardij, P., and Greenwood, N. (2017). A 3D SPM model for biogeochemical modelling, with application to the northwest European continental shelf. J. Sea Res. 127, 63–81. doi: 10.1016/j.seares.2016.12.003

Van Sebille, E., Aliani, S., Law, K. L., Maximenko, N., Alsina, J. M., Bagaev, A., et al. (2020). The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 15:023003. doi: 10.1088/1748-9326/ab6d7d

Visser, A. W. (1997). Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Mar. Ecol. Prog. Ser. 158, 275–281. doi: 10.3354/meps158275

Visser, M. (1992). “. On the distribution of suspended matter and the density driven circulation in the Dutch coastal area,” in Dynamics and Exchanges in Estuaries and the Coastal Zone, Coastal Estuarine Studies 40, ed. D. Prandle, (Washington, D.C: AGU), 551–576. doi: 10.1029/CE040p0551

Werner, S., Fischer, E., Fleet, D., Galgani, F., Hanke, G., Kinsey, S., et al. (2020). Threshold Values for Marine Litter, EUR 30018 EN. Luxembourg: Publications Office of the European Union, doi: 10.2760/192427JRC114131

Whomersley, P., van der Molen, J., Holt, D., Trundle, C., and Fletcher, D. (2018). Modelling the dispersal of spiny lobster (Palinurus elephas) larvae from populations found in southwest England: implications for future fisheries management and conservation measures. Front. Mar. Sci. 5:58. doi: 10.3389/fmars.2018.00058

Wilson, R. J., Speirs, D. C., Sabatino, A., and Heath, M. R. (2018). A synthetic map of the northwest European Shelf sedimentary environment for applications in marine science. Earth Syst. Sci. Data 10, 109–130. doi: 10.5194/essd-10-109-2018

Wolk, F. (2003). Three-Dimensional Lagrancian Tracer Modelling in Wadden Sea Areas. Diploma thesis, Carl von Ossietzky University Oldenburg, Hamburg, 85.

World Shipping Council, (2017). Containers Lost at Sea - 2017 Update, Vol. 4. Avaliable at: http://www.worldshipping.org/industry-issues/safety/Containers_Lost_at_Sea_-_2017_Update_FINAL_July_10.pdf (accessed February 26, 2021).


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 van der Molen, van Leeuwen, Govers, van der Heide and Olff. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 17 June 2021
doi: 10.3389/fmars.2021.632243





[image: image]

Offshore Windfarm Footprint of Sediment Organic Matter Mineralization Processes

Emil De Borger1,2*, Evgeny Ivanov3, Arthur Capet3, Ulrike Braeckman1, Jan Vanaverbeke1,4, Marilaure Grégoire3 and Karline Soetaert1,2

1Department of Biology, Marine Biology Research Group, Ghent University, Ghent, Belgium

2Department of Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research (NIOZ), Yerseke, Netherlands

3Modeling for Aquatic SysTems (MAST), University of Liège, Liège, Belgium

4Operational Directorate Natural Environment, Marine Ecology and Management, Royal Belgian Institute of Natural Sciences, Brussels, Belgium

Edited by:
Howard Townsend, National Marine Fisheries Service (NOAA), United States

Reviewed by:
Jenny R. Hillman, The University of Auckland, New Zealand
Natalia Serpetti, National Institute of Oceanography and Experimental Geophysics (OGS), Italy

*Correspondence: Emil De Borger, emil.de.borger@nioz.nl

Specialty section: This article was submitted to Marine Ecosystem Ecology, a section of the journal Frontiers in Marine Science

Received: 22 November 2020
Accepted: 11 May 2021
Published: 17 June 2021

Citation: De Borger E, Ivanov E, Capet A, Braeckman U, Vanaverbeke J, Grégoire M and Soetaert K (2021) Offshore Windfarm Footprint of Sediment Organic Matter Mineralization Processes. Front. Mar. Sci. 8:632243. doi: 10.3389/fmars.2021.632243

Offshore windfarms (OWFs) offer part of the solution for the energy transition which is urgently needed to mitigate effects of climate change. Marine life has rapidly exploited the new habitat offered by windfarm structures, resulting in increased opportunities for filter- and suspension feeding organisms. In this study, we investigated the effects of organic matter (OM) deposition in the form of fecal pellets expelled by filtering epifauna in OWFs, on mineralization processes in the sediment. OM deposition fluxes produced in a 3D hydrodynamic model of the Southern Bight of the North Sea were used as input in a model of early diagenesis. Two scenarios of OWF development in the Belgian Part of the North Sea (BPNS) and its surrounding waters were calculated and compared to a no-OWF baseline simulation. The first including constructed OWFs as of 2021, the second containing additional planned OWFs by 2026. Our results show increased total mineralization rates within OWFs (27–30%) in correspondence with increased deposition of reactive organic carbon (OC) encapsulated in the OM. This leads to a buildup of OC in the upper sediment layers (increase by ∼10%) and an increase of anoxic mineralization processes. Similarly, denitrification rates within the OWFs increased, depending on the scenario, by 2–3%. Effects were not limited to the OWF itself: clear changes were noticed in sediments outside of the OWFs, which were mostly opposite to the “within-OWF” effects. This contrast generated relatively small changes when averaging values over the full modeling domain, however, certain changes, such as for example the increased storage of OC in sediments, may be of significant value for national / regional carbon management inventories. Our results add to expectations of ecosystem-wide effects of windfarms in the marine environments, which need to be researched further given the rapid rate of expansion of OWFs.

Keywords: offshore windfarm, early diagenesis, modeling, organic carbon, filtration


INTRODUCTION

Rising concern for global climate change has increased the urgency to lower carbon emissions from individual and industrial energy consumers (United Nations, 2015). The transition from fossil fuel driven energy production toward renewable energy sources from solar, hydrodynamic, and wind sources, is a booming industry in alignment with the goal of achieving “carbon-neutral” anthropogenic development (European Commission, 2020). Offshore windfarms (OWFs), groupings of wind turbines on submerged sediments, offer part of the solution in the energy transition. Compared to terrestrial windfarms, the advantages of a flat, wind-swept marine area, and the possibility to build larger structures, overrule increased construction and maintenance costs (Inger et al., 2009; Bergström et al., 2014).

With respect to marine life, the presence of the turbine substructure and the scour protection layer (a layer of rocks around the foundation base that prevents erosion) on the seabed represents the addition of a new type of habitat, which spans the full water column (Krone et al., 2013). Many organisms, mostly filter- and suspension feeders, thrive on this new habitat. For wind turbine substructures in the North Sea, a clear vertical succession of fouling fauna can be observed, from the barnacle Semibalanus balanoides in the intertidal zone, to the blue mussel Mytilus edulis in the upper subtidal, the amphipod Jassa herdmani below that, and the anemone Metridium senile in the lower regions of the foundation (De Mesel et al., 2015; Mavraki et al., 2020). The attraction of organisms extends beyond the surface of the turbine foundations. Fish species such as cod (Gadus morhua) and pouting (Trisopterus lusculus) are known to aggregate near turbine foundations (Reubens et al., 2011; Langhamer, 2012), and benthic communities of macrofauna have been observed to change, alongside a fining of the sediment and an enrichment with organic matter (OM) (Bergström et al., 2012; Coates et al., 2014; Leewis et al., 2018). Deposition of fecal pellets by the fouling fauna, as well as biomass falling from the structures is a likely source of this enrichment (Krone et al., 2013; Lefaible et al., 2019).

For sediment biogeochemistry, this increased carbon deposition may have far-reaching effects. In sediments, OM is mineralized to free inorganic nutrients available for water column processes by the respiration activities of microbes and fauna (Soetaert and Middelburg, 2009; Provoost et al., 2013). Sediments in shelf seas represent a considerable sink of carbon, either at the short-term by means of temporary storage before mineralization takes place, or over longer timescales as partially degraded carbon is buried in deep sediment layers where its reactivity decreases (Legge et al., 2020). Moreover, shelf sea sediments are of vast importance for the removal of excess nitrogen from the ecosystem through denitrification, the mineralization of OM through nitrate reduction, which produces nitrous oxide and dinitrogen gas (Middelburg et al., 1996; Galloway et al., 2004; Seitzinger et al., 2006).

Recently, Slavik et al. (2019) used a model that included the filtration by blue mussels attached to wind turbine foundations to show how this process can decrease primary production up to 8% in the OWF footprint, but also have effects noticeable 50 km away from these concentrations of filter feeders. Similarly, by upscaling carbon tracer experiments, Mavraki et al. (2020) calculated an uptake of 1.3% of the primary production standing stock by M. edulis and J. herdmani in the Belgian Part of the North Sea (BPNS), an area characterized by rapid OWF expansion. This highly localized removal of primary produced carbon will likely cause a significant transfer of reactive organic carbon (OC) in the form of fecal pellets and dislodged biomass from the water column to sediments in the vicinity of OWFs.

Observational evidence of mineralization processes in OWF sediments, let alone of changes thereof, is rare (Toussaint et al., 2021) due to the difficulties of sampling sediments there. However, consequences of organic enrichment on sediment biogeochemistry are well described for example in fish and mussel aquaculture. Here, increased deposition of organic material (i.e., feces, fish feed, dead biomass) causes an increase in mineralization activity in the sediment, which increases sedimentary oxygen consumption, and an increase in anoxic mineralization processes. This leads to higher CO2 release from sediments, increased exchange of nutrients, and a higher total OC content in the sediment (Nizzoli et al., 2005; Kalantzi and Karakassis, 2006; Valdemarsen et al., 2010; Rampazzo et al., 2013; Bannister et al., 2014).

In this research, we model the potential effects of increased carbon deposition related to filtration by fouling fauna in OWFs on benthic mineralization processes. To do so, we used output generated by Ivanov et al. (2021) who implemented a model describing filtration by blue mussels on turbine substructures in a hydrodynamic model of the Southern North Sea, including the full BPNS and parts of the bordering French and Dutch coastal zones (Figure 1; Ivanov et al., 2020). In biomass, M. edulis is by far the dominant species present on turbine foundations (Joschko et al., 2008; Krone et al., 2013). Whereas alterations to sediment and OM transport to sediments from the water column under different scenarios of turbine placement in a new concession area are evaluated in an accompanying paper (Ivanov et al., 2021), we used the OM deposition fluxes as input for a model of sediment biogeochemistry (OMEXDIA, Soetaert et al., 1996a), to investigate potential changes to mineralization pathways in the sediment. This was done for three cases: the first containing the current OWFs present in the model domain, the second a likely future scenario starting form 2026 when additional OWFs have been constructed and fully colonized in planned concession zones in the BPNS, and the Dunkirk OWF in the French coastal zone (Figure 1), and a third case containing no OWFs as a point of reference.
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FIGURE 1. Median grain size (μm) of sediments in the modeled domain, with the Belgian Part of the North Sea (BPNS) delineated in black. Current OWF developments (2021) outlined in purple, and future developments (operational ± 2026) in orange, with letters corresponding to concession zone characteristics in Table 3. Black dots correspond to stations sampled for sediment biogeochemistry by Toussaint et al. (2021), used as reference material.


Seeing the analogy with aquaculture developments, we expected to find increased carbon concentrations in the OWF sediments through increased OM input, and increased anoxic mineralization, and nitrogen removal from the sediment through denitrification.



MATERIALS AND METHODS

The response of the sediment metabolism to alterations in carbon deposition induced by OWFs was represented by a dynamic model of early diagenesis (OMEXDIA, Figure 2; Soetaert et al., 1996a,b). The diagenetic model was forced by the carbon deposition estimated by Ivanov et al. (2021). This carbon deposition was estimated under different scenarios of OWF development (and without, see section “Study Area and Scenarios”), by implementing a representation of the filtration and feces production processes associated to monopile fouling mussels in a three-dimensional hydrodynamic-wave-sediment transport model (COAWST; Warner et al., 2010). In essence, COAWST models the distribution of OM and sediment in the water column, which are subject to hydrodynamics, deposition-erosion processes, and simple degradation processes. A part of the OM is deposited and incorporated on the sediment. This part is what is used as input for the OMEXDIA model, which calculates how OM in the sediment is remineralized to free nutrients. The coupling between the 3D hydrodynamic model and the 1D model of sediment biogeochemistry was performed only in one direction (i.e., the water column provides the carbon flux to the sediment but no feedback from the sediment to the water column is considered). The spatial grid consisted of 91 by 101 cells (see Figure 1) covering the BPNS and surrounding waters, resulting in 9,191 dynamic implementations of OMEXDIA, each involving 50 vertical layers. Lateral exchanges between the diagenetic models are considered to be irrelevant.


[image: image]

FIGURE 2. Schema of the coupling of the COAWST hydrodynamic sediment transport model to OMEXDIA.



Modeling Procedure


Description of Pelagic Organic Matter

The annual cycle of OM deposition was modeled using the COAWST model framework (Warner et al., 2010), consisting of: a three-dimensional hydrodynamic model (ROMS; Regional Ocean Modeling System), a module describing OM and mineral particle dynamics through the water column and sediment bed (CCSTM; Community Coastal Sediment Transport Module), and a module for wave activity (SWAN; Simulating Waves Nearshore) (Supplementary Figure 2). The COAWST model was solved with a horizontal resolution of 5 km, downscaled to 1 km over the BPNS using a two-way nesting procedure (Ivanov et al., 2020). The ROMS module was configured and validated for the modeling domain by Ivanov et al. (2020), whereas implementation and validation and the CCSTM and SWAN modules were performed by Ivanov et al. (2021). For clarity, fundamentals of the CCSTM and SWAN modules are noted below, while for details we refer to Ivanov et al., in press.


Inclusion of OM Transport

The sediment module (CCSTM) was set up to describe the dynamics of three size-classes of mineral particles (i.e., silt, medium sand, coarse sand, with median grain sizes of 4, 22, and 750 μm respectively), and of two classes of OC of differing degradability (Fast and Slow degrading OC, resp. FDOC and SDOC, the inputs to the sediment diagenesis model). FDOC and SDOC originate from primary production at the water surface, which is forced by the daily vertically-integrated primary production product delivered by the Copernicus Marine Environment and Monitoring Service (Copernicus Marine Service Information, E. U, 2020).



Implementation of Filtration by Mytilus edulis

Filtration of OM by the blue mussel M. edulis on turbine foundations was implemented in grid cells containing OWFs as a conversion of silt, and the two classes of OC (FDOC, SDOC), to fecal silt, fecal fast, and fecal slow degrading matter (Ivanov et al., 2021). These fecal substances have exactly the same characteristics as the “non-fecal” forms, except for the sinking speed, which is 1,000 times higher (18 mm s–1) to account for the increased size and mass of the fecal pellets (Callier et al., 2006).

The filtration rate was determined by the M. edulis biomass in each grid cell, directly dependent on the available substructure surface in the cell. For this, all turbine foundations were assumed to be monopiles (including both C-Power concession zones; Table 3). All mussels were parametrized to be individuals of an average size [300 mg dry mass, Bayne et al. (1993)], occurring at a density of 6,468 ind. m–2 of substructure surface over a depth interval of 6 m starting from the water surface (Kerkhof F., personal communication). The M. edulis life cycle and seasonal biomass dynamics were not taken into account. The daily OC flux to the sediment from fecal pellets was added to the daily carbon flux stemming from sinking of primary production, to achieve the net carbon flux to the sediment for each grid cell, for each day of the year (Figure 2).



Sediment Early Diagenesis


Model Description

Mineralization processes in the sediment layer were modeled using a dynamic implementation of the early diagenesis model OMEXDIA (Soetaert et al., 1996a,b). In this model, the concentrations of two classes of reactive OC present in OM (fast decaying detritus FDET, and slow decaying detritus SDET), oxygen (O2), nitrate (NO3–), ammonium (NH4+), dissolved inorganic carbon (DIC), and oxygen demand units (ODUs, reduced substances generated in anoxic mineralization) are described on a 1D grid. This vertical grid has 50 layers of increasing thickness, starting from 0.01 cm at the sediment-water interface (SWI), extending down to a sediment depth of 200 cm.

In each sediment layer, the fractions of organic detritus (carbon) are mineralized to DIC and other reaction products through oxic or anoxic mineralization, or in denitrification (resp. reaction 1–3 in Table 1), with these processes mediated by concentrations of O2, and NO3– in each layer through first order or Monod reaction kinetics (Soetaert et al., 1996a). Oxygen is additionally consumed in nitrification (the oxidation of ammonium), and the reoxidation of reduced substances produced in anoxic mineralization (reaction 4–5 in Table 1). To investigate changes in OM reactivity, the average reactivity was calculated as follows (Eq. 1):


TABLE 1. Diagenetic reactions used in OMEXDIA.

[image: Table 1]
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where rFast and rSlow are the degradation rates (d–1) of fast and slow decaying detritus.

Transport of modeled substances between layers is caused by advection (sediment accretion), molecular diffusion (for solutes), and bioturbation (for solids). Bioturbation was implemented as a depth-dependent biodiffusion coefficient (Db, cm2 d–1, Eq. 2), starting from the surface biodiffusion coefficient (Db0), remaining constant for a certain mixed depth Lmix, and decreasing below that layer to 0 according to a constant attenuation coefficient (Dbcoeff).
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The magnitude of the surface biodiffusion coefficient Db0, was modified in each grid cell i as dependent on three temporally and/or spatially variable factors: bottom water temperature, sediment median grain size, and the incoming carbon flux (Eq. 3).
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The temperature effect assumed a doubling of organismal metabolism for every increase in temperature of 10 degrees (Q10 of 2, Eq. 3, Davis and McIntire, 1983; Wrede et al., 2018). Median grain size (MGS, retrieved from the COAWST model, Ivanov et al., 2021) was used to scale the surface biodiffusion coefficient (Db0), consistent with its relation to the calculated bioturbation potential of the species community [BPc, Solan et al. (2004)]. The BPc–MGS relation was based on measurements of Braeckman et al. (2014) and Toussaint et al. (2021). BPc values were highest for median grain size values of 100–175 μm, which represent fine sandy sediments in the BPNS, and were low where sediments consisted mostly of silt (MGS < 63 μm) and were too anoxic to allow for deep living species (Pearson and Rosenberg, 1978), and in coarse sands starting from MGS > 400 μm (see Supplementary Figure 1). This relation was parametrized as a skewed normal distribution (dsn, see Supplementary Information). Benthic activity was also assumed to be stimulated by high incoming OM flux (Cflux). This was represented by scaling Db0,i according to the ratio between the actual deposition flux and the maximal deposition flux at the same location (maxFluxi, Eq. 3, Dauwe et al., 1998; Zhang and Wirtz, 2017). The mixed layer depth (in cm) was estimated following Zhang and Wirtz (2017), using the ratio of fast decaying OC relative to total OC deposited (pFast) to represent the OC quality or palatability (Eq. 4).
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Parametrization and Implementation

Porosity and mean grain size were extracted from the COAWST model for each grid cell. Daily fluxes to the sediment of fast degrading OC, and slow degrading OC (fFDOC, fSDOC mmol C m–2 d–1) from the COAWST model were mapped 1:1 to upper boundary fluxes of fFDET and fSDET in OMEXDIA. The ratio fFDOC / (fFDOC + fSDOC) was taken as the measure of the quality (pFast; the reactivity) of the total deposited carbon [Cflux, (fFDOC + fSDOC)]. Parameter values for rate and inhibition constants were those used by Soetaert et al. (1996a) (Table 2). For time-variable upper boundary conditions, daily bottom water concentrations of O2, NO3–, NH4+, and DIC were extracted from the IBI MFC biogeochemical analysis and forecast system (Sotillo et al., 2015; E.U. Copernicus Marine Service Information, 2020). An advection rate w of 0.1 cm y–1, an average value for a dynamic coastal sea (Boudreau, 1997; Mouret et al., 2009) was used for the entire domain.


TABLE 2. Definition of the parameters and values of fixed parameters.

[image: Table 2]The biogeochemical model was implemented in R (R Core Team, 2020), the concentration changes of simulated species due to transport were calculated using the R-package ReacTran (Soetaert and Meysman, 2012), and the resulting system of differential equations was solved using the deSolve package (Soetaert et al., 2010). Molecular diffusion coefficients were calculated using R-package marelac (Soetaert and Petzoldt, 2018). The initial conditions for a dynamic run were obtained by the steady-state solution, using the R-package rootSolve (Soetaert, 2009).

Several runs of COAWST and OMEXDIA were done to fine-tune model parameters. During these calibration experiments, the SCOC and DIC fluxes produced by OMEXDIA forced by the COAWST carbon deposition were compared with field observations collected at six reference stations (Provoost et al., 2013; Toussaint et al., 2021). Parameters that were calibrated were degradation rates for OC in the water column and in the sediment, the sinking rates of OC and fecal pellets, and the base bioturbation value Db0. Details of the validation are provided in the Supplementary Table 1, and in Ivanov et al. (2021).



Study Area and Scenarios

Three simulations were performed, corresponding to different states of OWF development in and around the BPNS (Figure 1). Simulation “baseline” represents the situation before 2008, when no OWFs were present. Simulation “current” is the current situation, in which all turbines in the eastern concession zone in the BPNS are constructed (399 turbines, density of 1–5 turbines km–2), as well as the Borsele OWFs in the Dutch coastal zone (173 turbines, density of 0.75–1 km–2) bordering the BPNS (Table 3). The number of turbines in the concession zones was used to estimate their density in the model (Table 3). Simulation “future” is a likely scenario after 2026 (Figure 1), in which the western concession zone in the BPNS (210 turbines) is developed with a turbine density of 2 km–2, with as little as possible intrusion in the Natura 2000 area “Vlaamse Banken” (Figure 1). Intrusion into Natura 2000 areas may not be allowed, and requires compensation measures (EC, 2001). In this “future” scenario, the planned OWF in the French coastal zone (46 turbines, two turbines km–2) bordering the BPNS is also included. Planned capacity and number of turbines for the “future” scenario were retrieved from 4C offshore (2020). Modeling results were aggregated over different scales: over the OWF area (OWF locations, grid cells containing OWFs—an area totaling 442.5 and 636.6 km2 in the “current” and “future” scenario, respectively), over the full modeling domain (9,140.4 km2), and for the BPNS (3,366 km2). Effects on sediments outside of the OWFs were also quantified, by considering only grid cells without OWFs in either the BPNS, or the full modeling domain (Outside OWFs). Changes to biogeochemical processes in these different spatial scales were quantified relative to corresponding cells in the baseline scenario.

TABLE 3. Properties of current, and future OWF zones implemented in the modeling scenarios.

[image: Table 3]The duration of the dynamic biogeochemical model simulations was set to 20 years to evaluate the effects of OWF placement near the end of their expected lifetime of 20–25 years. Output of the last year of the model simulations is presented in the “Results and Discussion” sections, averaged throughout the year and represented as a daily rate in line with the constant mussel biomass on the turbine substructures, and to focus on spatial differences across the modeling domain.



RESULTS


The Baseline Scenario

The baseline simulation (no OWFs) showed a gradient of decreasing OM processing away from the shore, with averaged total mineralization rates in excess of 40 mmol C m–2 d–1 nearest to shore, and lowest rates (5–10 mmol C m–2 d–1) in the northwestern part of the model domain (Figure 3A). This pattern largely followed the grain size distribution (Figure 1). The bulk of the OC mineralization occurred through anoxic mineralization, which followed the same patterns as total mineralization (Figure 3B). Rates of oxic mineralization related inversely to the grain size (compare Figure 3C with Figure 1), with higher total oxic mineralization rates in coarser sediments on the sandbanks in the center of the BPNS and in the northwest of the model domain, and lowest rates in finest sediments nearshore, and in the northeast of the modeling domain (Figure 3C). Denitrification rates were highest near the outflow of the Scheldt estuary (0.4–1.1 mmol C m–2 d–1), decreasing to below 0.4 mmol m–2 d–1 20–30 km away from this source (Figure 3D).
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FIGURE 3. Process rates in mmol C m–2 d–1 for the baseline scenario (no OWFs) for (A) total mineralization, (B) anoxic mineralization, (C) oxic mineralization, and (D) denitrification. White outline represents the BPNS. Density distributions of the values are represented as black shapes corresponding to the axis from the color key.




Wind Farm Effects


Within OWF

Rates of all mineralization processes increased within the OWF areas both in the “current” and “future” scenarios, resulting in a higher total mineralization of OC within these areas. On average, total mineralization rates within OWFs were 26.8 and 29.5% (values reported as “current” and “future” scenario) higher compared to baseline conditions, with maximal increases in individual cells of up to 69% (Figures 4A,B). This was in line with the similar increase of the OC flux (Table 4).
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FIGURE 4. Changes (in %) in rates of total mineralization (A,B), anoxic mineralization (C,D), oxic mineralization (E,F), and denitrification (G,H) relative to the baseline scenarios for the “current” scenario (left column), and the “future” scenario (right column), with the BPNS outlined in black. Density distributions of the values are represented as black shapes corresponding to the axis from the color key.



TABLE 4. Averaged values and relative changes between tested scenarios and the baseline of carbon mineralization processes for the current (C) and future (F) scenarios, subdivided in values over locations with OWFs, the BPNS excluding OWFs (far-field BPNS), the domain excluding OWFs (Far-field domain), the BPNS, and the full domain.

[image: Table 4]Increases in total mineralization rates were predominantly supported by increased anoxic mineralization (Figures 4C,D), followed by oxic mineralization (Figures 4E,F). Denitrification increased by 2.3 and 2.5% on average (Figures 4G,H and Table 5), resulting in additional removal of 7 and 10.7 kmol y–1 N respectively. These higher denitrification rates within OWFs originated from the increased OM influx. When considering the relative contribution of denitrification to OM respiration, instead the proportion of denitrified OM decreased by 17.8 and 19.6% (Table 5).


TABLE 5. Averaged values and relative changes between tested scenarios and the baseline of carbon mineralization processes for the current (C) and future (F) scenarios, subdivided in values over locations with OWFs, the BPNS excluding OWFs (far-field BPNS), the domain excluding OWFs (Far-field domain), the BPNS, and the full domain.

[image: Table 5]Less of the incoming OC flux was returned to the water column as DIC, with this conversion decreasing by −3.6 and −4.5% in the “current” and “future” scenario, respectively (Table 4). Consequently the amount of reactive carbon stored in sediments of OWFs increased. The amount of OC in the upper 10 cm increased by 9.7 and 11% on average (Table 4), and up to 37% in individual cells (Figure 5). The constant deposition of fresh OM additionally increased the reactivity of the OC within OWFs by similar values (Figure 5).
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FIGURE 5. Changes (%) to (A,B) total organic carbon (FDET + SDET) in the top 10 cm of the sediment and (C,D) reactivity of this organic material, for the “current” scenario (left column) and “future” scenario (right column). Belgian BPNS outlined in black. Density distributions of the values are represented as black shapes corresponding to the axis from the color key.




Outside OWF

Offshore windfarms also affected biogeochemistry in sediments beyond their area (“Outside OWF full domain,” Tables 4, 5), with effects mostly in the opposite direction as observed for the within-OWF changes (Figure 4). Outside of the OWF area, the incoming OC flux decreased for both scenarios (0.2 and 0.3% vs. baseline). Likewise, the total mineralization rates were lower (0.1 and 0.1% vs. baseline), with associated decreases in individual mineralization processes (Figures 4A,E,G,D). In the “future” scenario, oxic mineralization increased also across most of the modeling domain outside of the OWFs, while denitrification increased only for sediments closest to shore (Figures 4F,H). Overall, this decreased the contribution of denitrification to total mineralization (part denitrified) in the future “scenario” by 0.2%, with proportionally less N removed as a result, whereas in the “current” scenario this proportion increased by 0.1%. The average storage of reactive carbon outside of the OWFs decreased by 0.4% in the “current” scenario (Table 4), and decreased more northeast of the OWFs (Figures 4, 5A,C). For the “future” scenario (Figures 4, 5B,D), carbon storage increased by 0.8% (Table 4).

Considering only the BPNS, patterns are reversed (“Outside OWF BPNS,” Tables 4, 5). OC deposition fluxes increased slightly outside of the OWF area in both scenarios, by 0.3 and 0.4%, resulting in increased mineralization rates of 0.3 and 0.6% (“current” and “future”). The conversion efficiency of incoming OC to DIC on the other hand, decreased by 0.2 and 0.6%, relative to the baseline scenario (Table 4). This was associated to an increase in the amount of carbon stored in the sediments of the BPNS outside of OWF grid cells of 0.3 and 2%.



Full Domain Effects

The effect of the presence of OWFs in the entire modeling domain was an average increase in the total benthic mineralization of 1.4% in the “current” scenario, increasing to 1.9% in the “future” scenario, and an increased reactive carbon content of the sediment by 0.2, and 0.5% (resp. “current” and “future,” Table 4). Total denitrification also increased over the full domain by 0.03 and 0.2%, whereas the proportion of denitrified organic material decreased by 0.6 and 1.4% (Table 5). As a result of this balance between enhanced benthic respiration and decreased contribution of denitrification, the total annual N removal increased by 0.1 and 0.2%. Within the BPNS only, the direction of changes to individual processes was similar to patterns seen in the full domain, though percentage-wise, values were higher (“BPNS,” Tables 4, 5).



DISCUSSION


Scope of the Results

The work shown here represents a first investigation of the large-scale effects of blue mussels on offshore wind substructures on OM mineralization in the sediment. With a mechanistic implementation of the filtration activities of M. edulis in a coupled hydrodynamic—biogeochemical sediment model, we estimated potential changes to mineralization intensities and pathways for two scenarios of OWF development in a coastal sea. That said, the limited availability of validation material for the baseline state, and some particular assumptions made in the model represent difficulties in assessing the robustness of the results.

Top down, the mineralization of OM in sediments depends on the amount of OM that is deposited from the water column. In our approach, this amount is regulated by primary production in near the water surface, redistribution of OM by blue mussels when there are OWFs present, and the hydrodynamic regime of the area. In COAWST, the CMEMS primary production product was used to force primary productivity on the water column, whose deposition on the sediment surface is only as realistic as the modeled hydrodynamics forces that affect it in the water column. Overall, the COAWST model reproduced observed SPM distributions quite well (Ivanov et al., 2021), with exception of some nearshore, muddy areas where there appears to be a mismatch between modeled and actual bottom shear stress (Ivanov et al., 2021). As a result, modeled DIC and O2 fluxes compared quite well with reference material (Supplementary Table 1), except in the previously mentioned muddy area, and in a location where the seabed is subject to periodic disturbances in the form of dumping of dredging material (station 130, Supplementary Table 1; van de Velde et al., 2018). However, these types of sediments do not occur in the domain where OWFs are placed, increasing our confidence in the model performance in those areas.

The lack of extensive validation data makes it impossible to numerically estimate the model error. Traditional methods for the validation of spatial models rely either on satellite products, or datasets with temporally coherent measurements (e.g., buoys) of variables with which the model output may be compared, and some type of error can be calculated. For sediment biogeochemistry, these types of measurements do not yet exist in the modeling domain. For now, available information derived from point measurements such as sediment grain size and porosity, OM sinking and degradation rates, bioturbation activity (related to benthic biomass), and nutrient exchange rates were used as input values or as reference material (e.g., Verfaillie et al., 2006; Braeckman et al., 2014; Provoost et al., 2013; Zhang and Wirtz, 2017; Toussaint et al., 2021). The challenge of validating benthic-pelagic coupling models is well known (e.g., Luff and Moll, 2004; Griffiths et al., 2017). Promising technical developments aimed at facilitating the comparison between in-situ observations and model outputs include eddy covariance derivation of benthic nutrient and oxygen fluxes, which allows for an increase of the spatial footprint of measurements (Berg et al., 2003), and regular benthic sampling through automated benthic stations, which can better constrain the temporal variability of in-situ flux acquisition (e.g., Toussaint et al., 2014; Moriarty et al., 2017).

The implementation of the filtration effect of M. edulis and its effect on modeled benthic mineralization processes was similarly based on available reference material. The mussel biomass in the model was constant throughout the year, and mussels were assumed to be adults with an average dry biomass of 300 mg DW ind.–1. Reported biomass of M. edulis on offshore constructions varies strongly in time and space, but is mainly constrained between 110 and 768 mg DW ind.–1 (e.g., Bouma and Lengkeek, 2012; Krone et al., 2013, converted values). The chosen biomass of 300 mg DW ind.–1 thus represents slightly smaller sized individuals compared to the known average, and corresponds to the average size of individuals used in the experiments of Bayne et al. (1993) in which M. edulis filtration behavior was characterized. Since predictions of filtration effects, including those presented here, hinge on this important value, it would serve future impact assessments well to collect more data about the community composition and seasonal dynamics of M. edulis and other organisms on offshore structures. For example, the potentially large contribution of the amphipod J. herdmanii to OM assimilation of turbine substructures has recently come to light (Mavraki et al., 2020). Similar to Slavik et al. (2019), seasonal variation in mussel biomass was not implemented despite a tendency of biomass to increase toward summer (Krone et al., 2013). This is, however, not a consistent feature [see Bouma and Lengkeek (2012)], and would have introduced the need to dynamically model the biomass of mussels on the turbine substructures. A dynamic description of the mussel biomass would only have been possible with a feedback loop between the sediment and the water-column. Without such a feedback loop, the one-way mass transfer to the sediment in the shape of dead M. edulis biomass would introduce an erroneous distribution of carbon in the model. This does not mean that there was no seasonality in the production of fecal pellets; phytoplankton concentrations in the water column varied according to the CMEMS PP product, and the filtration rate is metabolically scaled according to the ambient temperature (see Ivanov et al., in press). Both vary throughout the year.

Specifically, feedback from OMEXDIA to COAWST was omitted to manage the computational load, while still representing biogeochemical processes in the sediment in high resolution. Thus, we implicitly assumed that primary production in the water column would not be affected by potential changes in ambient nutrient concentrations resulting from the sediment, whereas in reality this will definitely be the case (Floeter et al., 2017). Specifically, a dynamic coupling with a water column biogeochemistry model (Luff and Moll, 2004; Slavik et al., 2019), would make it possible to investigate whether water column nutrient concentrations in OWFs can be expected to decrease, or increase as a result of the transfer or OM to the sediment, and whether this in turn affects phytoplankton concentrations. Especially in shallow shelf seas, nutrients regenerated in the sediment co-regulate primary production events in the water column (Ruardij and Van Raaphorst, 1995; Soetaert and Middelburg, 2009). A negative feedback on phytoplankton blooms for example, would decrease fecal pellet production and subsequent storage of OC in the sediment, thus introducing self-regulation in the system. Which way this feedback may go is a pathway of future investigation, as this chain of events will depend on the complex interplay between water depth, hydrodynamics, nutrient regeneration, and filtration by fouling fauna.

So in summary, the presented model results are based on available literature data, and a pragmatic methodology allowing for a first investigation of these complex processes, but absolute values should be interpreted with the previously mentioned remarks in mind.



Strong Local Effects and Consequences for Surrounding Sediments

Modeled impacts of OWFs extended over the full modeling domain, with strongest effects on sediment biogeochemistry within the OWF itself, and weaker but clear effects on surrounding sediments. Deposition of highly reactive OC increased as a result of fecal pellet production by M. edulis. Total benthic mineralization within the OWFs thus increased by 26.8–29.5% in two scenarios that either considered the “current” situation, where OWFs comprised 443 km2, or a “future” situation where the domain of OWFs was increased to 636 km2. At the same time, OM deposition and mineralization decreased in regions surrounding the OWFs. Rates of oxic mineralization, denitrification, and anoxic mineralization as well as the carbon storage all decreased in sediments surrounding the OWFs (Figures 4, 5), with effects extending to the boundaries of the modeling domain, suggesting impacts beyond the model boundaries. In all likelihood, impacts extend beyond the artificial modeling domain, which was chosen to represent the BPNS, until net changes are evened out. Indeed, in this model run, the OWFs merely redistribute the same amount of produced OM, as there was no feedback provided to the water column and subsequently the rates of primary productivity.

For both scenarios of OWF development, extended halo’s of altered benthic processing were mostly situated to the northeast of the OWFs (e.g., see Figure 4A), in line with the main direction of the residual current present in the region (Supplementary Figure 3: current rosette; Ivanov et al., 2020). Since OWFs act as filters of OM that locally shunt OM from the water column to the sediment, water transported further NE became relatively depleted of OM compared to the baseline (Ivanov et al., 2021). As a result, OM deposition and subsequent mineralization processes decreased in the wake of the OWFs.

The “future” placement of additional OWFs in the west of the BPNS and in the French coastal zone toward 2030 changed mineralization patterns considerably compared to the “current” scenario. With increasing OWF area, the effect halo’s of different OWFs begin to overlap, with more pronounced effects throughout the domain (Figure 4). Most striking was the increase of oxic mineralization in the majority of sediments in the modeling domain (Figure 4F). Within the OWFs, OM is concentrated, resulting in higher deposition, which is partly mineralized by oxic mineralization, but mostly by anoxic mineralization. This combined effect of OM trapping in multiple OWFs decreased the OC load on the sediments outside of the OWF area to a point where most of it is mineralized in surficial sediment layers, by consuming oxygen.

Denitrification was also affected by the expansion of the OWF area in the model domain, showing on one hand an increase of denitrification in nearshore sediments, and on the other hand a decreasing denitrification further away from the coastline (Figure 4H). This interesting pattern can be explained by a shift from high to more intermediate OM loadings discussed previously. Denitrification is known to peak at intermediate carbon loadings (Soetaert et al., 2000), and at high nitrate concentrations, conditions that are met nearshore due to high NO3– loadings of the Scheldt outflow. While the zones of denitrification shifted spatially, the overall denitrification throughout the entire modeling domain barely increased (0.03–0.17% for “current” and “future” scenario, Table 5). From this, we derive that the amount of N removed from the aquatic environment is only marginally increased by this scenario, with total increases of 3.2 and 13.1 kmol N on an annual basis, which represents about 0.1–0.4% of the annual N input of the Scheldt estuary (45 kT N y-1; Brion et al., 2006).

Whereas the physical effects of wind turbine foundations on the water column have so far only been noticed within 1–5 km away from OWF areas (Rivier et al., 2016; Floeter et al., 2017), the scale over which e.g., water filtration, feces production, deposition and resuspension interact to alter OM dynamics is still relatively unknown. Our results point to a region of influence that is of similar magnitude as the effect on water column primary productivity (NPP). Slavik et al. (2019) described a decrease of NPP of up to 8% on an annual basis within the OWF and further reductions up to 20 km away. Conversely, NPP increased up to 50 km away. It is thus increasingly likely that the placement of OWFs has far-reaching effects on benthic-pelagic ecosystem functioning.

These spatial effects raise the issue of transboundary impacts. Biogeochemical alterations induced by OWFs installed in one country can have an impact on the functioning of the benthic ecosystem in another country. The region on the western boundary of the BPNS, including part of the newly foreseen OWF expansion area, is a Natura 2000 area (Figure 1), an area containing threatened habitats and species protected under European law. Among others, this area contains rare gravel bed habitats, which are highly sensitive to anthropogenic disturbances, but are of great importance for species that require hard substrates for reproduction such as the common whelk, the Atlantic bobtail, and the spotted catshark [respectively Buccinum undatum, Sepiola atlantica, Scyliorhinus canicula; Degraer et al. (2009)]. For example, increased particle concentrations originating from OWF can clog the filtering apparatus of filter feeders, or limit visibility for visual predators in this valuable Natura 2000 area (Essink, 1999). This region, already directly impacted by the placement of OWFs in the North, and by domain-wide effects caused by the compounding effects of multiple OWFs (Figures 4, 5), additionally may be impacted by the placement of the Dunkirk OWF, whose increased particle production is carried into the BPNS by the residual current.

Whereas the EU is at the forefront of transboundary marine spatial planning (Li and Jay, 2020), the transboundary biogeochemical effects of OWFs are not yet being considered in projects tasked with investigating this complex problem (European MSP platform, 2020). By indicating the potential transboundary effects that the Dunkirk OWF may have on the Belgian Natura 2000 area, our results indicate that this will be necessary with future expansions of OWFs.



Increased Carbon Storage

In the model, carbon cycling in the sediment was altered by the presence of OWFs. Twenty years after the installation of OWFs, the deposited OC was returned less efficiently to the water column within the OWF areas, resulting in an increased build-up of OC in the sediment (Table 4). The additional deposition primarily translated to an increase in anoxic mineralization rates (by max. 75% locally), with oxic mineralization increasing less (30–40%, Figure 4). With higher deposition, concentrations of OC in the upper 10 cm of sediment increased by 10–11% within OWFs, while this is 0.2–0.5% when extrapolated over the entire area covered by our model. As such, OWFs installed on the permeable sediments of the Southern North Sea became local sinks for carbon relative to the baseline scenario. As such, the current and future windfarm concession zones in the BPNS increased the total amount of reactive carbon trapped in the upper 10 cm of the sediment by 28,715–48,406 tons of carbon respectively, coinciding with 0.014–0.025% of Belgium’s annual greenhouse gas emissions (118.5 million tons in CO2 equivalents in 2018, VMM et al., 2020). In that sense, the carbon potentially stored in OWFs represents a small but significant carbon offset in carbon accounting, which can be added to the intrinsic carbon economy of OWFs. In Belgium, an energy production of 3391 GWh was attributed to OWFs in 2018 (at 0 tCO2 GWh−1; operational cost only; Belgian Debt Agency, 2018). Compared to a gas turbine for example (380 tCO2 GWh−1), this corresponds to 1288580 tCO2 not emitted by using wind-generated power. When including the life cycle (material sourcing, construction, …), this factor ranges between 14 and 111 (depending on the reference chosen; Dolan and Heath, 2012). This would reduce CO2 emissions between 1041037 and 2858613 tCO2. To this, our estimated quantities in the sediment contribute an additional 1, to 4.6 %.

Naturally, this storage is of limited duration. Firstly, sediment disturbing activities such as bottom trawling may or may not be prohibited within OWFs (e.g., the United Kingdom and France allow trawling outside a 50 m radius around individual turbines, whereas in Belgium, Netherlands, and Germany it is prohibited completely). Bottom trawling will resuspend sediments, likely lowering the build-up of OM as presented here (De Borger et al., 2021). Secondly, the expected lifespan of a wind turbine is 20–25 years (Nghiem and Pineda, 2017) after which, in theory, the concession zone needs to be restored to its original condition by the concession holder (Kruse et al., 2019). In case of such full decommissioning, the increased OM input will cease while the decommissioning activities themselves can trigger the release of accumulated carbon to the water column as they will most likely include sediment disturbing activities. However, when alternative partial decommissioning scenarios would be considered whereby part of the subtidal structure would either remain in place, be repurposed, or translocated (Fowler et al., 2020); OM filtration by fouling fauna and subsequent local carbon storage in sediments should be considered an important decision criterion.



Growth Urges Research

The currently installed wind energy capacity in the North Sea is 18.5 GW, and is expected to rise to 70 GW by 2030 in order to achieve 30% of renewable energy targeted by the EU (Nghiem and Pineda, 2017; Selot et al., 2019). Thus under the impulse of the ongoing “blue acceleration,” the rapid development of the ocean economy (Jouffray et al., 2020), new offshore energy provisions are expected to contribute heavily to the expansion of man-made structures at sea collected under the term “ocean sprawl” (Duarte et al., 2013; Bishop et al., 2017; Jouffray et al., 2020). Concurrently, decommissioning of OWF developments, as well as of oil and gas installations reaching their end-of-life is expected to increase strongly in the coming decades (Kruse et al., 2019; Fowler et al., 2020). This means that despite recently intensified research efforts, a full cycle of OWF development to decommissioning will take place before the ecological effects are fully known. Recently, several knowledge gaps on the ecological effects of decommissioning of offshore structures have been identified (Fowler et al., 2020), but possible effects on benthic ecology extending beyond the OWF areas are still overlooked. Even then, additional factors such as the ongoing expansion of OWF’s to deeper waters (Ramirez et al., 2020), where biotic and abiotic factors are different still, will again lead to a novel set of feedbacks to the ecosystem.

Despite these current shortcomings, modeling studies such as ours generate new hypotheses to validate or falsify in future research on the effects of OWFs on biogeochemistry in the sediment (e.g., do changes in the benthic community around offshore structures affect denitrification rates differently than those modeled as a result of only increased OM deposition and solute availability), and indicate where research should be performed to improve on models (e.g., OM deposition rates and quality). Furthermore, this approach is not limited to the chosen model domain. Both COAWST and OMEXDIA are flexible models that have been applied to a variety of marine settings [OMEXDIA: (e.g., Soetaert et al., 1996a; Soetaert and Herman, 2009; Laurent et al., 2016; Khalil et al., 2018; De Borger et al., 2021), COAWST: Warner et al., 2010; Fennel et al., 2013; Bolaños et al., 2014; Zang et al., 2020], including other regions where OWF development may take place. So for now, we have provided a simplification of a complex ecological chain of events, that may be used as a basis in future model developments.



CONCLUSION

Water-column filtration induced by the presence of large densities of filter feeding fouling fauna on offshore wind turbines caused the displacement and aggregation of fresh OC from the water column to sediments. We show that sediments in OWFs become sites of intense OC mineralization, with a halo of reduced mineralization outside of the OWF areas. With this, the body of evidence is growing that OWFs have both local and larger scale ecosystem effects. Field measurements of sediment functioning near wind turbines are needed to give weight to our results and guide future model developments. Given the current proliferation of OWFs in North Sea waters and other shelf seas around the globe, more studies toward the positive and negative ecosystem effects of these structures are urgently needed.



DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.



AUTHOR CONTRIBUTIONS

ED implemented and performed biogeochemical model simulations, analyzed results, and prepared the manuscript. EI implemented and performed COAWST model simulations, and contributed to the manuscript. AC, UB, JV, MG, and KS conceptualized the study and contributed to the manuscript. All authors contributed to the article and approved the submitted version.



FUNDING

ED and EI are doctoral research fellows funded by the Belgian Science Policy Office BELSPO, contract BR/154/A1/FaCE-It. UB is a postdoctoral research fellow at Research Foundation—Flanders (FWO, Belgium) (Grant 1201720N).



ACKNOWLEDGMENTS

We would like to thank Toussaint et al. for the data needed to parametrize the sediments used in this modeling exercise.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars.2021.632243/full#supplementary-material



REFERENCES

4C offshore (2020). Global Offshore Windfarms. Available online at: https://www.4coffshore.com/offshorewind/ (accessed August 24, 2020)

Bannister, R. J., Valdemarsen, T., Hansen, P. K., Holmer, M., and Ervik, A. (2014). Changes in benthic sediment conditions under an atlantic salmon farm at a deep, well-flushed coastal site. Aquac. Environ. Interact. 5, 29–47. doi: 10.3354/aei00092

Bayne, B. L., Iglesias, J. I. P., Hawkins, A. J. S., Navarro, E., Heral, M., and Deslous-Paoli, J. M. (1993). Feeding behaviour of the mussel, Mytilus edulis: responses to variations in quantity and organic content of the seston. J. Mar. Biol. Assoc. U. K. 73, 813–829. doi: 10.1017/S0025315400034743

Berg, P., Røy, H., Janssen, F., Meyer, V., Jørgensen, B. B., Huettel, M., et al. (2003). Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique. Mar. Ecol. Prog. Ser. 261, 75–83. doi: 10.3354/meps261075

Bergström, L., Kautsky, L., Malm, T., Ohlsson, H., Wahlberg, M., Rosenberg, R., et al. (2012). The Effects of Wind Power on Marine Life–A Synthesis. Bromma: Swedish Environmental Protection Agency.

Bergström, L., Kautsky, L., Malm, T., Rosenberg, R., Wahlberg, M., Åstrand Capetillo, N., et al. (2014). Effects of offshore wind farms on marine wildlife–a generalized impact assessment. Environ. Res. Lett. 9:034012. doi: 10.1088/1748-9326/9/3/034012

Belgian Debt Agency (2018). Green OLO Allocation Report 2018. Available online at: https://emis.vito.be/sites/emis/files/articles/3331/2019/GreenOLO-ImpactReport2018.pdf

Bishop, M. J., Mayer-Pinto, M., Airoldi, L., Firth, L. B., Morris, R. L., Loke, L. H. L., et al. (2017). Effects of ocean sprawl on ecological connectivity: impacts and solutions. J. Exp. Mar. Bio. Ecol. 492, 7–30. doi: 10.1016/j.jembe.2017.01.021

Bolaños, R., Tornfeldt Sørensen, J. V., Benetazzo, A., Carniel, S., and Sclavo, M. (2014). Modelling ocean currents in the northern Adriatic Sea. Cont. Shelf Res. 87, 54–72. doi: 10.1016/j.csr.2014.03.009

Boudreau, B. P. (1997). Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments. Berlin: Springer-Verlag.

Bouma, S., and Lengkeek, W. (2012). Benthic Communities on Hard Substrates of the Offshore wind Farm Egmond Aan Zee (OWEZ). Culemborg: Bureau. Waardenburg bv Noordzeewind, 84.

Braeckman, U., Foshtomi, M. Y., Van Gansbeke, D., Meysman, F., Soetaert, K., Vincx, M., et al. (2014). Variable importance of macrofaunal functional biodiversity for biogeochemical cycling in temperate coastal sediments. Ecosystems 17, 720–737. doi: 10.1007/s10021-014-9755-7

Brion, N., Jans, S., Chou, L., and Rousseau, V. (2006). “Nutrient loads to the Belgian Coastal Zone,” in Current Status of Eutrophication in the Belgian Coastal Zone, eds V. Rousseau, C. Lancelot, and D. Cox (Brussels: Presse Universitaire de Bruxelles), 17–43.

Callier, M. D., Weise, A. M., McKindsey, C. W., and Desrosiers, G. (2006). Sedimentation rates in a suspended mussel farm (Great-Entry Lagoon, Canada): biodeposit production and dispersion. Mar. Ecol. Prog. Ser. 322, 129–141. doi: 10.3354/meps322129

Coates, D. A., Deschutter, Y., Vincx, M., and Vanaverbeke, J. (2014). Enrichment and shifts in macrobenthic assemblages in an offshore wind farm area in the Belgian part of the North Sea. Mar. Environ. Res. 95, 1–12. doi: 10.1016/j.marenvres.2013.12.008

Copernicus Marine Service Information, E. U (2020). Atlantic- European North West Shelf- Ocean Biogeochemistry Reanalysis. Available online at: http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=NORTHWESTSHELF_REANALYSIS_BIO_004_011 (accessed April 4, 2020)

Dauwe, B., Herman, P. M. J., and Heip, C. H. R. (1998). Community structure and bioturbation potential of macrofauna at four North Sea stations with contrasting food supply. Mar. Ecol. Prog. Ser. 173, 67–83. doi: 10.3354/meps173067

Davis, M., and McIntire, C. (1983). Effects of physical gradients on the production dynamics of sediment-associated algae. Mar. Ecol. Prog. Ser. 13, 103–114. doi: 10.3354/meps013103

De Borger, E., Tiano, J., Braeckman, U., Rijnsdorp, A. D., and Soetaert, K. (2021). Impact of bottom trawling on sediment biogeochemistry: a modelling approach. Biogeosciences 18, 2539–2557. doi: 10.5194/bg-18-2539-2021

De Mesel, I., Kerckhof, F., Norro, A., Rumes, B., and Degraer, S. (2015). Succession and seasonal dynamics of the epifauna community on offshore wind farm foundations and their role as stepping stones for non-indigenous species. Hydrobiologia 756, 37–50. doi: 10.1007/s10750-014-2157-1

Degraer, S., Braeckman, U., Haelters, J., Hostens, K., Jacques, T., Kerckhof, F., et al. (2009). Studie Betreffende Het Opstellen Van Een Lijst Van Potentiële Habitatrichtlijngebieden in het Belgische Deel Van de Noordzee. Brussel: Koninklijk Belgisch Instituut voor Natuurwetenschappen.

Duarte, C. M., Pitt, K. A., Lucas, C. H., Purcell, J. E., Uye, S. I., Robinson, K., et al. (2013). Is global ocean sprawl a cause of jellyfish blooms? Front. Ecol. Environ. 11:91–97. doi: 10.1890/110246

Dolan, S. L., and Heath, G. A. (2012). Life cycle greenhouse gas emissions of utility-scale wind power: systematic review and harmonization. J. Ind. Ecol. 16:464. doi: 10.1111/j.1530-9290.2012.00464.x

E.U. Copernicus Marine Service Information (2020). Atlantic Iberian Biscay Irish Ocean Biogeochamical Analysis And Forecast. Available online at: https://resources.marine.copernicus.eu/?option=com_csw&task=results?option=com_csw&view=details&product_id=IBI_ANALYSIS_FORECAST_BIO_005_004 (accessed August 17, 2020).

EC (2001). Assessment of Plans and Projects Significantly Affecting Natura 2000 Sites: Methodological Guidance on the Provisions of Article 6(3) and (4) of the Habitats Directive 92/43/EEC. Brussels: European Commission.

Essink, K. (1999). Ecological effects of dumping of dredged sediments; options for management. J. Coast. Conserv. 5, 69–80. doi: 10.1007/BF02802741

European Commission (2020). European Climate Law. COM(2020) 80 Final 0036, 25. Brussels: European Commission, doi: 10.1017/CBO9781107415324.004

European MSP platform (2020). Projects. Available online at: https://www.msp-platform.eu/msp-practice/msp-projects (accessed August 20, 2020)

Fennel, K., Hu, J., Laurent, A., Marta-Almeida, M., and Hetland, R. (2013). Sensitivity of hypoxia predictions for the northern Gulf of Mexico to sediment oxygen consumption and model nesting. J. Geophys. Res. Ocean. 118, 990–1002. doi: 10.1002/jgrc.20077

Floeter, J., van Beusekom, J. E. E., Auch, D., Callies, U., Carpenter, J., Dudeck, T., et al. (2017). Pelagic effects of offshore wind farm foundations in the stratified North Sea. Prog. Oceanogr. 156, 154–173. doi: 10.1016/j.pocean.2017.07.003

Fowler, A. M., Jørgensen, A.-M., Coolen, J. W. P., Jones, D. O. B., Svendsen, J. C., Brabant, R., et al. (2020). The ecology of infrastructure decommissioning in the North Sea: what we need to know and how to achieve it. ICES J. Mar. Sci. 77, 1109–1126. doi: 10.1093/icesjms/fsz143

Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., et al. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226. doi: 10.1007/s10533-004-0370-0

Griffiths, J. R., Kadin, M., Nascimento, F. J. A., Tamelander, T., Törnroos, A., Bonaglia, S., et al. (2017). The importance of benthic -pelagic coupling for marine ecosystem functioning in a changing world. Glob. Chang. Biol. 23, 2179–2196. doi: 10.1111/gcb.13642

Inger, R., Attrill, M. J., Bearhop, S., Broderick, A. C., James Grecian, W., Hodgson, D. J., et al. (2009). Marine renewable energy: potential benefits to biodiversity? An urgent call for research. J. Appl. Ecol. 46, 1145–1153. doi: 10.1111/j.1365-2664.2009.01697.x

Ivanov, E., Capet, A., Barth, A., Delhez, E. J. M., Soetaert, K., and Grégoire, M. (2020). Hydrodynamic variability in the Southern Bight of the North Sea in response to typical atmospheric and tidal regimes. Benefit of using a high resolution model. Ocean Model. 154:101682. doi: 10.1016/j.ocemod.2020.101682

Ivanov, E., Capet, A., De Borger, E., Degraer, S., Delhez, E. J. M., Soetaert, K., et al. (2021). Offshore wind farm footprint on organic and mineral particle flux to the bottom. Front. Mar. Sci. doi: 10.3389/fmars.2021.631799 (Accepted for publication).

Joschko, T. J., Buck, B. H., Gutow, L., and Schröder, A. (2008). Colonization of an artificial hard substrate by Mytilus edulis in the German Bight. Mar. Biol. Res. 4, 350–360. doi: 10.1080/17451000801947043

Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H., and Nyström, M. (2020). The blue acceleration: the trajectory of human expansion into the ocean. One Earth 2, 43–54. doi: 10.1016/j.oneear.2019.12.016

Kalantzi, I., and Karakassis, I. (2006). Benthic impacts of fish farming: meta-analysis of community and geochemical data. Mar. Pollut. Bull. 52, 484–493. doi: 10.1016/j.marpolbul.2005.09.034

Khalil, K., Laverman, A. M., Raimonet, M., and Rabouille, C. (2018). Importance of nitrate reduction in benthic carbon mineralization in two eutrophic estuaries: modeling, observations and laboratory experiments. Mar. Chem. 199, 24–36. doi: 10.1016/j.marchem.2018.01.004

Krone, R., Gutow, L., Joschko, T. J., and Schröder, A. (2013). Epifauna dynamics at an offshore foundation–implications of future wind power farming in the North Sea. Mar. Environ. Res. 85, 1–12. doi: 10.1016/j.marenvres.2012.12.004

Kruse, M., Lindaas, J. C., Olivares, A., Korporaal, H., de Keijzer, D., Ring, H., et al. (2019). Market Analysis Decom Tools 2019. European Union, Kristiansand.

Langhamer, O. (2012). Artificial reef effect in relation to offshore renewable energy conversion: state of the art. Sci. World J. 2012:386713. doi: 10.1100/2012/386713

Laurent, A., Fennel, K., Wilson, R., Lehrter, J., and Devereux, R. (2016). Parameterization of biogeochemical sediment-water fluxes using in situ measurements and a diagenetic model. Biogeosciences 13, 77–94. doi: 10.5194/bg-13-77-2016

Leewis, L., Klink, A. D., and Verduin, E. C. (2018). Benthic Development in and Around Offshore Wind Farm Prinses Amalia Wind Park near the Dutch Coastal Zone Before and After Construction (2003-2017). Amsterdam: Eurofins AquaSense.

Lefaible, N., Braeckman, U., and Moens, T. (2019). “Evaluation of turbine-related impacts on macrobenthic communities within two offshore wind farms during operational phase,” in Environmental Impacts of Offshore Winid Farms in the Belgian Part of the North Sea: Marking a Decade of Monitoring, Research and Innovation, eds S. Degraer, R. Brabant, B. Rumes, and L. Vigin (Brussels: Marine Ecology and Management (MARECO)), 65–71.

Legge, O., Johnson, M., Hicks, N., Jickells, T., Diesing, M., Aldridge, J., et al. (2020). Carbon on the northwest European shelf: contemporary budget and future influences. Front. Mar. Sci. 7:143. doi: 10.3389/fmars.2020.00143

Li, S., and Jay, S. (2020). Transboundary marine spatial planning across Europe: trends and priorities in nearly two decades of project work. Mar. Policy 118:104012. doi: 10.1016/j.marpol.2020.104012

Luff, R., and Moll, A. (2004). Seasonal dynamics of the North Sea sediments using a three-dimensional coupled sediment-water model system. Cont. Shelf Res. 24, 1099–1127. doi: 10.1016/j.csr.2004.03.010

Mavraki, N., De Mesel, I., Degraer, S., Moens, T., and Vanaverbeke, J. (2020). Resource niches of co-occurring invertebrate species at an offshore wind turbine indicate a substantial degree of trophic plasticity. Front. Mar. Sci. 7:379. doi: 10.3389/fmars.2020.00379

Middelburg, J. J., Soetaert, K., Herman, P. M. J., and Heip, C. H. R. (1996). Denitrification in marine sediments: a model study. Global Biogeochem. Cycles 10, 661–673. doi: 10.1029/96GB02562

Mouret, A., Anschutz, P., Lecroart, P., Chaillou, G., Hyacinthe, C., Deborde, J., et al. (2009). Benthic geochemistry of manganese in the Bay of Biscay, and sediment mass accumulation rate. Geo Mar. Lett. 29, 133–149. doi: 10.1007/s00367-008-0130-6

Moriarty, J. M., Harris, C. K., Fennel, K., Friedrichs, M. A. M., Xu, K., and Rabouille, C. (2017). The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhône River, France: a numerical modeling study. Biogeosciences 14, 1919–1946. doi: 10.5194/bg-14-1919-2017

Nghiem, A., and Pineda, I. (2017). Wind Energy in Europe: Scenarios for 2030. Brussels: WindEurope.

Nizzoli, D., Welsh, D. T., Bartoli, M., and Viaroli, P. (2005). Impacts of mussel (Mytilus galloprovincialis) farming on oxygen consumption and nutrient recycling in a eutrophic coastal lagoon. Hydrobiologia 550, 183–198. doi: 10.1007/s10750-005-4378-9

Pearson, T. H., and Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Annu. Rev. 16, 229–311. doi: 10.2983/035.034.01211u110

Provoost, P., Braeckman, U., Van Gansbeke, D., Moodley, L., Soetaert, K., Middelburg, J. J., et al. (2013). Modelling benthic oxygen consumption and benthic-pelagic coupling at a shallow station in the southern North Sea. Estuar. Coast. Shelf Sci. 120, 1–11. doi: 10.1016/j.ecss.2013.01.008

R Core Team (2020). R: A language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Ramirez, L., Fraile, D., and Brindley, G. (2020). in Offshore Wind in Europe: Key Trends and Statistics 2019, ed. C. Walsh (Brussels: WindEurope).

Rampazzo, F., Berto, D., Giani, M., Brigolin, D., Covelli, S., Cacciatore, F., et al. (2013). Impact of mussel farming on sedimentary geochemical properties of a Northern Adriatic area influenced by freshwater inflows. Estuar. Coast. Shelf Sci. 129, 49–58. doi: 10.1016/j.ecss.2013.06.001

Reubens, J. T., Degraer, S., and Vincx, M. (2011). Aggregation and feeding behaviour of pouting (Trisopterus luscus) at wind turbines in the Belgian part of the North Sea. Fish. Res. 108, 223–227. doi: 10.1016/j.fishres.2010.11.025

Rivier, A., Bennis, A. C., Pinon, G., Magar, V., and Gross, M. (2016). Parameterization of wind turbine impacts on hydrodynamics and sediment transport. Ocean Dyn. 66, 1285–1299. doi: 10.1007/s10236-016-0983-6

Ruardij, P., and Van Raaphorst, W. (1995). Benthic nutrient regeneration in the ERSEM ecosystem model of the North Sea. Netherlands J. Sea Res. 33, 453–483. doi: 10.1016/0077-7579(95)90057-8

Seitzinger, S., Harrison, J. A., Böhlke, J. K., Bouwman, A. F., Lowrance, R., Peterson, B., et al. (2006). Denitrification across landscapes and waterscapes: a synthesis. Ecol. Appl. 16, 2064–2090.

Selot, F., Fraile, D., and Brindley, G. (2019). Offshore Wind in Europe: Key Trends and Statistics 2018. Brussels: WindEurope, doi: 10.1016/S1471-0846(02)80021-X

Slavik, K., Lemmen, C., Zhang, W., Kerimoglu, O., Klingbeil, K., and Wirtz, K. W. (2019). The large-scale impact of offshore wind farm structures on pelagic primary productivity in the southern North Sea. Hydrobiologia 845, 35–53. doi: 10.1007/s10750-018-3653-5

Soetaert, K. (2009). rootSolve: Nonlinear Root Finding, Equilibrium and Steady-State Analysis of Ordinary Differential Equations.

Soetaert, K., and Herman, P. M. J. (eds). (2009). A practical guide to ecological modelling: Using R as a simulation platform. Dordrecht: Springer Netherlands. doi: 10.1007/978-1-4020-8624-3

Soetaert, K., Herman, P. M. J., and Middelburg, J. J. (1996a). A model of early diagenetic processes from the shelf to abyssal depths. Geochim. Cosmochim. Acta 60, 1019–1040. doi: 10.1016/0016-7037(96)00013-0

Soetaert, K., Herman, P. M. J., and Middelburg, J. J. (1996b). Dynamic response of deep-sea sediments to seasonal variations: a model. Limnol. Oceanogr. 41, 1651–1668. doi: 10.4319/lo.1996.41.8.1651

Soetaert, K., and Meysman, F. (2012). Reactive transport in aquatic ecosystems: rapid model prototyping in the open source software R. Environ. Model. Softw. 32, 49–60. doi: 10.1016/j.envsoft.2011.08.011

Soetaert, K., and Middelburg, J. J. (2009). Modeling eutrophication and oligotrophication of shallow-water marine systems: the importance of sediments under stratified and well-mixed conditions. Hydrobiologia 629, 239–254. doi: 10.1007/s10750-009-9777-x

Soetaert, K., Middelburg, J. J., Herman, P. M. J., and Buis, K. (2000). On the coupling of benthic and pelagic biogeochemical models. Earth Sci. Rev. 51, 173–201. doi: 10.1016/S0012-8252(00)00004-0

Soetaert, K., and Petzoldt, T. (2018). marelac: Tools for Aquatic Sciences.

Soetaert, K., Petzoldt, T., and Setzer, R. W. (2010). Solving differential equations in R: Package deSolve. J. Stat. Softw. 33, 1–25. doi: 10.18637/jss.v033.i09

Solan, M., Cardinale, B. J., Downing, A.L., Engelhardt, K. A., Ruesink, J. L., and Srivastava, D. S. (2004). Extinction and ecosystem function in the marine benthos. Science 306, 1177–1180. doi: 10.1126/science.1103960

Sotillo, M. G., Cailleau, S., Lorente, P., Levier, B., Aznar, R., Reffray, G., et al. (2015). The myocean IBI ocean forecast and reanalysis systems: operational products and roadmap to the future copernicus service. J. Oper. Oceanogr. 8, 63–79. doi: 10.1080/1755876X.2015.1014663

Soetaert, K., and Herman, P. M. J. (2009). A practical Guide to Ecological Modelling: Using R as a Simulation Platform, eds K. Soetaert and P. M. J. Herman (Dordrecht: Springer Netherlands). doi: 10.1007/978-1-4020-8624-3

Toussaint, E., De Borger, E., Braeckman, U., De Backer, A., Soetaert, K., and Vanaverbeke, J. (2021). Faunal and environmental drivers of carbon and nitrogen cycling along a permeability gradient in shallow North Sea sediments. Sci. Total Environ. 767:144994. doi: 10.1016/j.scitotenv.2021.144994

Toussaint, F., Rabouille, C., Cathalot, C., Bombled, B., Abchiche, A., Aouji, O., et al. (2014). A new device to follow temporal variations of oxygen demand in deltaic sediments: the LSCE benthic station. Limnol. Oceanogr. Methods 12, 729–741. doi: 10.4319/lom.2014.12.729

United Nations (2015). “Adoption of the Paris Agreement, Proposal by the President, Draft decision,” in Conference of the Parties. Twenty-First Session. 21932, 32, (New York, NY: United Nations).

van de Velde, S., Van Lancker, V., Hidalgo-Martinez, S., Berelson, W. M., and Meysman, F. J. R. (2018). Anthropogenic disturbance keeps the coastal seafloor biogeochemistry in a transient state. Sci. Rep. 8:5582. doi: 10.1038/s41598-018-23925-y

Valdemarsen, T., Kristensen, E., and Holmer, M. (2010). Sulfur, carbon, and nitrogen cycling in faunated marine sediments impacted by repeated organic enrichment. Mar. Ecol. Prog. Ser. 400, 37–53. doi: 10.3354/meps08400

Verfaillie, E., Van Lancker, V., and Van Meirvenne, M. (2006). Multivariate geostatistics for the predictive modelling of the surficial sand distribution in shelf seas. Cont. Shelf Res. 26, 2454–2468. doi: 10.1016/j.csr.2006.07.028

VMM, VITO, AWAC, IBGE-BIM, IRCEL-CELINE, and ECONOTEC (2020). Belgium ’ s Greenhouse Gas Inventory (1990-2018) National Inventory Report. Belgium: Flemish Environment Agency (VMM).

Warner, J. C., Armstrong, B., He, R., and Zambon, J. B. (2010). Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system. Ocean Model. 35, 230–244. doi: 10.1016/j.ocemod.2010.07.010

Wrede, A., Beermann, J., Dannheim, J., Gutow, L., and Brey, T. (2018). Organism functional traits and ecosystem supporting services–a novel approach to predict bioirrigation. Ecol. Indic. 91, 737–743. doi: 10.1016/j.ecolind.2018.04.026

Zhang, W., and Wirtz, K. (2017). Mutual dependence between sedimentary organic carbon and infaunal macrobenthos resolved by mechanistic modeling. J. Geophys. Res. Biogeosci. 122, 2509–2526. doi: 10.1002/2017JG003909

Zang, Z., Xue, Z. G., Xu, K., Bentley, S. J., Chen, Q., D’Sa, E. J., et al. (2020). The role of sediment-induced light attenuation on primary production during Hurricane Gustav (2008). Biogeosciences 17, 5043–5055. doi: 10.5194/bg-17-5043-2020


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 De Borger, Ivanov, Capet, Braeckman, Vanaverbeke, Grégoire and Soetaert. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 22 June 2021
doi: 10.3389/fmars.2021.624355





[image: image]

Management Strategy Evaluation: Allowing the Light on the Hill to Illuminate More Than One Species

Isaac C. Kaplan1*, Sarah K. Gaichas2, Christine C. Stawitz3, Patrick D. Lynch4, Kristin N. Marshall1, Jonathan J. Deroba2, Michelle Masi5, Jon K. T. Brodziak6, Kerim Y. Aydin7, Kirstin Holsman7, Howard Townsend3, Desiree Tommasi8,9, James A. Smith8,9, Stefan Koenigstein9,10, Mariska Weijerman6 and Jason Link11

1Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States

2Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, MA, United States

3ECS Federal in Support of Office of Science and Technology, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States

4Office of Science and Technology, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Silver Spring, MD, United States

5Southeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Galveston, TX, United States

6Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, HI, United States

7Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States

8Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States

9Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, United States

10Southwest Fisheries Science Center (Environmental Research Division), National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Monterey, CA, United States

11Office of the Assistant Administrator, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, MA, United States

Edited by:
Athanassios C. Tsikliras, Aristotle University of Thessaloniki, Greece

Reviewed by:
Doug Butterworth, University of Cape Town, South Africa
Brett W. Molony, Oceans and Atmosphere (CSIRO), Australia

*Correspondence: Isaac C. Kaplan, Isaac.Kaplan@noaa.gov

Specialty section: This article was submitted to Marine Fisheries, Aquaculture and Living Resources, a section of the journal Frontiers in Marine Science

Received: 31 October 2020
Accepted: 17 May 2021
Published: 22 June 2021

Citation: Kaplan IC, Gaichas SK, Stawitz CC, Lynch PD, Marshall KN, Deroba JJ, Masi M, Brodziak JKT, Aydin KY, Holsman K, Townsend H, Tommasi D, Smith JA, Koenigstein S, Weijerman M and Link J (2021) Management Strategy Evaluation: Allowing the Light on the Hill to Illuminate More Than One Species. Front. Mar. Sci. 8:624355. doi: 10.3389/fmars.2021.624355

Management strategy evaluation (MSE) is a simulation approach that serves as a “light on the hill” (Smith, 1994) to test options for marine management, monitoring, and assessment against simulated ecosystem and fishery dynamics, including uncertainty in ecological and fishery processes and observations. MSE has become a key method to evaluate trade-offs between management objectives and to communicate with decision makers. Here we describe how and why MSE is continuing to grow from a single species approach to one relevant to multi-species and ecosystem-based management. In particular, different ecosystem modeling approaches can fit within the MSE process to meet particular natural resource management needs. We present four case studies that illustrate how MSE is expanding to include ecosystem considerations and ecosystem models as ‘operating models’ (i.e., virtual test worlds), to simulate monitoring, assessment, and harvest control rules, and to evaluate tradeoffs via performance metrics. We highlight United States case studies related to fisheries regulations and climate, which support NOAA’s policy goals related to the Ecosystem Based Fishery Roadmap and Climate Science Strategy but vary in the complexity of population, ecosystem, and assessment representation. We emphasize methods, tool development, and lessons learned that are relevant beyond the United States, and the additional benefits relative to single-species MSE approaches.

Keywords: management strategy evaluation, ecosystem-based fishery management, ecosystem modeling, operating models, simulation testing


INTRODUCTION


What Is MSE?

Management strategy evaluation (MSE) has become a common best practice for managing living marine resources (Sainsbury et al., 2000; Punt et al., 2014b). MSE was developed to implement adaptive environmental management for renewable resources (Walters, 1986; Smith and Sainsbury, 1999; Punt et al., 2014b; Edwards and Dankel, 2016) and is a flexible approach that generally can be applied to any fishery system. It involves a simulation approach that serves as a “light on the hill” (Smith, 1994) allowing us to “assess the consequences of a broad range of management strategies or options [under uncertainty], and presenting the results in a way that lays bare the trade-offs across a range of management options”. MSE builds on a long history of simulation testing of harvest control rules and associated estimation methods and data (e.g., de la Mare, 1986; Butterworth et al., 1997; Kirkwood, 1997; de La Mare, 1998; Butterworth and Punt, 1999; Smith and Sainsbury, 1999). The MSE approach provides a:


•Clearly defined set of management objectives

•Set of performance criteria related to achieving the objectives

•Set of management strategies or regulations to evaluate

•Means of calculating the performance of each strategy under uncertainty

•Evaluation of trade-offs and communication of this with decision makers



A recent international working group defined MSE as “a process whereby the performances of alternative harvest strategies are tested and compared using stochastic simulations of stock and fishery dynamics against a set of performance statistics developed to quantify the attainment of management objectives” (Anon, 2018), and we adopt their terminology for this and other language, with small local adaptations (see Appendix).

Involvement of stakeholders such as commercial and recreational fishers, seafood processors, non-extractive users, conservationists, and the general public is essential if MSE is to be used for complex ecosystem problems with potential trade-offs between users (Feeney et al., 2019); this is also true for single species MSE applications. Input from stakeholder groups determines management objectives, the selection of alternative management options, and the communication of results especially in relation to tradeoffs (Punt et al., 2014b). Objectives and performance criteria can include ecological, social and economic components of the ecosystem under study (Nielsen et al., 2018), with the expectation that different sets of performance metrics will resonate with each group.

Most commonly this simulation approach involves iteratively repeating steps of the MSE loop (Figure 1). Overall, the goal of the MSE is to find the strategies (management, monitoring, or assessment) that achieve the objectives and are robust to the important uncertainties, which are simulated through the evaluation process.
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FIGURE 1. Adapted from Sainsbury et al. (2000). Management strategy evaluation iteratively tests performance of our monitoring, assessment and policies (right side) within the simulated ‘virtual world’ of the operating model (left side). Here we highlight in green some of the ecosystem aspects that can be incorporated into each step of the MSE loop.


The key components of a MSE process can be expressed in a set of general steps (see Punt et al., 2014b), and these can be mapped to the MSE loop (Figure 1). Operating models represent the simulated dynamics of the fishery system and will include components for the population and ecosystem dynamics, fishery resources, and social-economic aspects of the fishing fleet dynamics. Monitoring simulates observations of the populations or ecosystem represented by the operating model, with realistic error, survey design and intensity. Assessment and Parameter Estimation involves analyzing the simulated monitoring data, typically by applying a Bayesian or frequentist estimation model configuration to fit the simulated monitoring data. Alternative management policies are implemented to influence the dynamics of the fishery system to achieve the management objectives, typically via feedback or ‘closed-loop’ policies that depend on the dynamic state of the fishery system. Performance metrics represent the management objectives in a tangible manner (Feeney et al., 2019). Via an iterative process of simulation and replication, the MSE ‘experiment’ aims to see how well each management policy performs conditioned on the operating models and estimation models, and how this policy ranks against others. This simulation experiment requires that the set of paired combinations of an operating model and management strategies be simulated with sufficient randomization and replications to assess the relative performance of the tested strategies.

Historically many MSEs have been devised for management focused on individual species, with ecological processes such as drivers of recruitment or growth being implicitly included (de la Mare, 1986; Bergh and Butterworth, 1987). For example, MSE has been used to evaluate management systems for the international Baltic cod (Gadus morhua) fishery (Bastardie et al., 2010), including comparing controls on fishing effort (input controls) versus catch (output controls), while accounting for key uncertainties in cod recruitment regimes and fleet adaptation. MSE has also been used to assess the sensitivity of a newly employed management procedure in a rock lobster (Jasus edwardsii) fishery to non-stationarity in processes such as recruitment and growth (Punt et al., 2013). More recently, environmental drivers of stock productivity and catchability, such as temperature and oxygen, have been explicitly included into MSE (e.g., A’mar et al., 2009; Ianelli et al., 2011; Froehlich et al., 2017; Haltuch et al., 2019a, b). MSE has also been used to assess the value of incorporating short-term sea surface temperature forecasts into the harvest guideline for Pacific sardine, Sardinops sagax (Tommasi et al., 2017).

The value of further incorporating ecosystem processes into MSE has been emphasized in the literature and in recent policy documents guiding the United States approach to Ecosystem Based Fishery Management (EBFM) (Link et al., 2015; Busch et al., 2016; NOAA, 2016a, b). At the same time, stakeholders increasingly recognize the need to develop MSE frameworks able to assess performance of management actions relative to ecosystem-based objectives. For instance, in management of small pelagic fisheries, provision of adequate forage for dependent species is an important management objective to evaluate and requires use of multi-species ecosystem models (e.g., Robinson et al., 2015; Punt et al., 2016b). Within the US, bolstering the representation of ecosystem processes within MSE helps address EBFM goals including recognizing “physical, biological, economic, and social interactions among the affected fishery-related components of the ecosystem, including humans,” and optimizing “benefits among a diverse set of societal goals” (NOAA, 2016b). Other nations have similar commitments to EBFM (FAO, 2003, 2009; EU, 2008; Hobday et al., 2011). In the United States the emphasis on diverse goals, and trade-offs among them, is underscored by sometimes conflicting mandates to safeguard fisheries, endangered species, and marine mammals. Additional mandates include treaty agreements with sovereign tribes, which are considered in policy decisions related to fishery harvest, for instance within ‘usual and accustomed’ fishing areas in the Pacific Northwest. Cultural objectives and related tradeoffs are also important, and outside the United States they have been directly incorporated into MSE for small-scale fisheries (Plagányi et al., 2013). Identifying trade-offs among these mandates is a key concept of EBFM (Brodziak et al., 2004; Link, 2010; NOAA, 2016a). MSEs encourage stakeholders to identify management objectives and lay bare trade-offs among them, and as such are inherently suited for use in EBFM.

As we illustrate below, many types of ecosystem modeling can serve as “raw material,” to slot into various locations within the MSE loop (Figure 1). A variety of ecosystem models have been developed to support EBFM (Plagányi, 2007), including in the United States (Townsend et al., 2008, 2014, 2017, 2019; Link et al., 2010). Model types include whole ecosystem models; models of intermediate complexity that either extend single species approaches or explicitly include multiple species; individual-based models; bioenergetic models; length-based and size-spectrum models; and multivariate statistical approaches (Plagányi, 2007; Link et al., 2011). However, only a limited number of examples (e.g., Fulton et al., 2014, 2019) have brought these models formally and fully into MSE, though some authors have noted the value of doing so. For instance, Punt et al. (2014b) called for more ecologically realistic operating models, while also bringing in realistic uncertainty to simulated monitoring, assessment, and management. NOAA (2016a) noted that “executing MSEs at the ecosystem level can capture major drivers, pressures, and responses, as well as emergent properties that would be missed if explored on a taxa-by-taxa basis.” These authors acknowledge that building on the extent to which MSEs incorporate ecological mechanisms, and leveraging ecosystem modeling capacity to do so will increasingly be a fruitful way to address uncertainties and refine science and management.



MSE Is Expanding Beyond Single Species Approaches Into EBFM Applications

Here, we describe how and why MSE is growing from a single species approach to one relevant to ecosystem science. In particular, different ecosystem modeling approaches can slot within each of the components of an MSE (Figure 1), to meet particular natural resource management needs.

Ecosystem models can serve as operating models for MSE, providing simulated population and ecosystem dynamics that include ecological complexity sufficient to challenge simulated monitoring, assessment, and management policies. In the United States, for example, we have developed multiple ecosystem, food web, individual-based, and size-spectrum models (see for example National Ecosystem Modeling Workshop workshops: Townsend et al., 2008, 2014, 2017; Link et al., 2010). The trophic and spatial complexity of these models means that they differ in assumptions from commonly used stock assessment methods, thus providing an alternative test of estimation models and management strategies. Ecological models often include alternate scenarios for climate, oceanography, and ecological relationships (e.g., Punt et al., 2016b; Marshall et al., 2017; Woodworth-Jefcoats et al., 2019), which can bound the uncertainty around operating model dynamics within the MSE simulation testing (Link et al., 2010, 2012).

Ecosystem models can also contribute to consideration of monitoring to better design surveys, sampling density, and sample sufficiency. Using a relatively simple spatial and environmentally driven model of Pacific hake (Merluccius productus), one case study below investigates sampling and monitoring of this species, and how this affects management performance. Fulton et al. (2019) compared performance of data-rich to data-poor assessment and management strategies, illustrating the potential value of monitoring data to improve decision making. Alternatively, ecosystem models can identify sensitive, responsive metrics that can be derived from monitoring data and that capture shifts in ecosystem-level response (Hollowed et al., 2020).

Within an MSE, assessments and estimation models can explicitly include terms representing the effects of predation, growth, recruitment, and environmental relationships (Holsman et al., 2016; Haltuch et al., 2019b), and the performance of these terms can be tested within MSE. Such tests have been included in studies addressing both climate and predation impacts on stock assessments in the Northeast United States (Miller et al., 2016; Trijoulet et al., 2019, 2020). For the Bering Sea, the CEATTLE model (Holsman et al., 2016) is being used to evaluate the performance of alternative climate-informed and climate naive reference points for use in multi- and single-species assessments. In this study, the operating model includes process error via temperature effects on growth and random draws of recruitment impacted by climate (Holsman et al., 2020) for both single (decoupled species) and multispecies modes (coupled models through bioenergetics-based predation between species) of the model. Simulated assessments estimate fishery and survey selectivity, as well as predator prey suitability, and biological reference points are estimated following the approach of Holsman et al. (2018).

Multispecies and environmental considerations can be built into harvest control rules, which can be tested in MSE (Kaplan et al., 2020). Robust relationships between productivity of a stock and an environmental driver can be challenging to identify, particularly for species with long pre-recruit survival windows (Haltuch et al., 2019a). However, when such relationships exist (e.g., Haltuch et al., 2019b), catch limits can be increased or decreased depending on current environmental conditions, which serve as a proxy for the population’s productivity. For instance, the harvest strategy for Pacific sardine adjusts the harvest fraction depending on water temperature (Hill et al., 2019), and this harvest strategy and alternatives were extensively tested in an MSE framework before adoption of this rule (Hurtado-Ferro and Punt, 2014). An MSE has also been employed to test performance of this harvest guideline based on forecast, rather than recent past, temperature conditions (Tommasi et al., 2017). Fulton et al. (2019) developed MSEs with end-to-end ecosystem operating models, demonstrating that aggregate catch limits set at a group level can be more effective at achieving both economic and conservation objectives than single-species harvest strategies. Related simulations analyses by Gaichas et al. (2017) found similar results when incorporating aggregate catch limits within a management procedure; in this case the multi-species operating model was length-structured and included predation and temperature-dependent consumption. As demonstrated in the case study below involving swordfish fishing closures, MSE with spatial operating models can be used to assess performance of different spatial management strategies, including those that are dynamic and environmentally informed. Ecosystem models can also test the utility of ecosystem indicators in novel decision criteria and harvest rules (Fay et al., 2015; Fulton et al., 2019; Tam et al., 2019) that extend beyond classical single species management.

Management strategy evaluation is explicitly focused on allowing managers and stakeholders to see trade-offs (Smith, 1994) – and increasingly these tradeoffs are multi-species and multi-sector, therefore there is a natural progression toward ecosystem considerations and applying ecosystem models to calculate performance metrics reported from MSEs. This is increasingly the case as we attempt to devise management that is robust under climate change and in an increasingly crowded ocean. Many early examples of MSE (Bergh and Butterworth, 1987; Punt and Donovan, 2007) focused on single species, with limited examples of pioneering multispecies approaches (e.g., Sainsbury, 1988). More recently, operating models have developed to incorporate objectives and performance metrics that include multiple species (Dichmont et al., 2008), spatial structure (Hurtado-Ferro et al., 2014), and predator–prey interactions (Punt et al., 2016b).




CASE STUDIES

Here, we present case studies that illustrate how MSE in the United States is being increasingly expanded to include ecosystem considerations. We highlight methods, tool development and lessons learned, and the added benefits relative to single species MSE approaches. We focus on recent case studies that emphasize different components of the MSE process. One or more of the coauthors of the present manuscript participated in development of each of these case studies. Most have been featured within the National Ecosystem Modeling Workshops mentioned above, but here we summarize them for broader audiences. In general, these case studies are strategic investigations in which the models represent key aspects of the ecology, fisheries, and management, but are not fully conditioned on (i.e., statistically fitted to) observed historical data. For a recent United States example of ecosystem models conditioned on observed survey biomass, harvest, and diets, we refer the reader to Holsman et al. (2020). We set our four case studies within the goal of full ecosystem MSE, as depicted in Figure 1. We note when shortcuts were necessary, or when aspects of the MSE loop have not yet been completed; these approaches were taken in line with the primary aim of highlighting progress and opportunities to incorporate ecosystem aspects into MSE.


Testing Operational Stock Assessment Approaches With Atlantis Ecosystem Models: The Best of Both Worlds


Goal of the Project

There is a critical need to identify estimation model (stock assessment) configurations that are robust to ongoing changes in fish population dynamics that result from ecosystem variability and climate change (Karp et al., 2019). While MSEs are routinely conducted with stock assessment modeling frameworks (e.g., Kell et al., 2007), these frameworks are not designed to directly incorporate climate-driven cumulative impacts to population dynamics (e.g., temperature and/or ocean acidification driven changes in growth combined with changing predator–prey interactions). While end-to-end ecosystem models, such as Atlantis (Fulton et al., 2011), can account for climate drivers and cumulative impacts directly, incorporating full operational stock assessment models within Atlantis presents a substantial challenge, and achieving thousands of replicate Atlantis runs per MSE scenario (as would be needed if Atlantis was used as an estimation model) requires more computing power than many institutions have. For practical MSEs that fully evaluate cumulative climate impacts on stock assessment to identify assessment methods that are most robust to real-world complexity, some combination of approaches is needed.

For the California Current and Nordic/Barents Seas, a project is underway to simulation test estimation models using Atlantis ecosystem operating models; these estimation models mimic those used in real-world stock assessments. Ecosystem models for the California Current off the United States West Coast (Kaplan et al., 2017; Marshall et al., 2017) and Nordic and Barents Seas off Norway (Hansen et al., 2016, 2019a) have been forced with climate scenarios that include ocean acidification and warming ocean temperature. These ecosystem models are spatially explicit and include biological groups ranging from primary producers to top predators. Scenarios run with Atlantis ecosystem models have demonstrated the cumulative impacts of temperature and ocean acidification changes throughout food webs around the world (Olsen et al., 2018).

In this case study, simulated ‘‘data’’ are being extracted from climate-forced Atlantis models to perform stock assessments on small pelagic and larger demersal species across two ecosystems. As noted above, this case study is a strategic exercise that does not condition models on any particular historical period, but instead generates simulated data that roughly captures species and ecosystem productivity and variability. A new R package (atlantisom1) was developed as part of this project to extract both true and “sampled” survey index and catch data from the ecosystem models, and pass data to the Stock Synthesis 3 (SS3; Methot and Wetzel, 2013) assessment framework as the estimation model. Within SS3, the initial focus has been to evaluate the efficacy of different modeling structures for somatic growth (e.g., time-varying, empirical, or constant), to account for changing productivity driven by climate change over the simulated time period. Initial proof-of concept results are included here, and because the tools are being developed to be generally applicable, this approach can be used to evaluate the robustness of any stock assessment method to climate-driven changes in population dynamics (or to other cumulative impacts simulated within Atlantis). A central feature of the case study is that the structural assumptions of the stock assessment differ from those of the complex operating model (Atlantis), similar to the way that we expect the stock assessment to differ from complex real-world ecological dynamics.



Where in the MSE Loop the Ecosystem Considerations Are Added

Compared to most MSEs to date, this effort uses a more complex operating model (Atlantis), with the primary benefit of generating realistic scenarios for climate-driven time-varying growth and mortality in the future. For example, Atlantis models can be driven by 3D fields of temperature, salinity, pH, and water flux from fully resolved oceanographic models (e.g., ROMS) to produce complex ecosystem reactions to the changed conditions and emergent food web and fishery responses. In our case, the California Current Atlantis model is driven by ocean conditions that include differential warming along the coast and at depth that increases carnivorous zooplankton (euphausiids) biomass, which in turn drives a response of an increase in forage fish somatic growth (weight-at-age) and therefore biomass by the end of the simulation. The food web included in this operating model also drives larger variability in growth through the simulation period, which is driven by trophic relationships but not specifically by warming conditions. Finally, Atlantis can include recruitment variability for particular species as is needed to add realistic process uncertainty for stock assessment, and here the Atlantis operating model is parameterized to exhibit variability in sardine recruitment that mimics recruitment variability in stock assessments.

The “Assessment and parameter estimation” portion (Figure 1) does not attempt to directly incorporate ecosystem information, though the aim is to identify estimation model configurations that successfully provide advice when challenged with complex ecosystem effects. The “Monitoring” portion of the MSE loop is a simplified version of a real-world single-species stock assessment structured similarly to the Pacific sardine assessment model used on the United States West Coast, in which the “data” come from the Atlantis operating model combined with user-defined survey specifications (timing, areas, selectivity, observation error) implemented by atlantisom. Therefore, input data include both changing biology in response to ecosystem projections and realistic sampling error (Figure 2). The biology in the operating model’s 80 year fishing and climate scenario illustrated in Figure 2 responds to 30 years of unfished conditions, then 25 years of overfishing (1.5x FMSY), followed by 25 years of recovery during reduced fishing (0.5x FMSY). In this example, effects of climate change (warming) are manifest starting at simulation year 55, via Q10 effects on metabolic rates. Within Atlantis, sardine recruitment is based on a Beverton–Holt relationship, with process variability drawn from a lognormal distribution. The atlantisom package automates writing assessment input files by importing actual Stock Synthesis data input files from the Pacific sardine assessment (Hill et al., 2017), and replacing biomass, life history parameter values, and composition data with values simulated in our Atlantis operating model. Atlantisom explicitly includes options for incorporating uncertainty and bias associated with survey and catch observations. Performance metrics for assessment model evaluations are intentionally focused on those related to the stock assessment, including those related to population size, fishing intensity, and depletion (i.e., the proportion of pre-exploitation abundance to which a population has been reduced). To date, we have not dynamically included the Management policies or Implementation portions of the MSE loop; the emphasis has been on estimation model performance when confronted with a complex operating model.
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FIGURE 2. (A, top) Time series of ‘true’ (dark purple line) biomass from California Current Atlantis run with fishing and climate scenario, and survey biomass index (blue points) sampled with atlantisom (summer survey of all model areas with catchability set to 0.5, observation error set to 0.1; in other words, an excellent survey). Note that ‘true’ here means output directly from the operating model, not data from historical surveys or otherwise conditioned on real-world observations. (B, center) Example SS3 model fit (green line) to survey index generated by atlantisom (blue points with error bars); output of r4ss. (C, bottom) Comparison of true Atlantis biomass (dark purple line) with SS3 estimated biomass (green points) for a sample model run.




Results

As a proof of concept, we present outputs of a simulated single-species assessment of a small pelagic fish, using generated data from the Atlantis operating model with atlantisom as the link between Atlantis and Stock Synthesis. Using this approach, we can visualize fits to data and other standard assessment diagnostics as for any other SS3 model using r4ss, a commonly used package for SS3 output visualization and diagnostics (Taylor et al., 2019; Figure 2B). However, the added benefit here is we can now compare SS3 outputs to Atlantis “truth,” for example, for estimated biomass (Figure 2C). Users can then calculate any desired skill assessment metrics to evaluate which model configurations are most robust to the climate forcing combined with errors introduced by observation systems. One caveat is that these operating models are not conditioned on past data; though they capture key aspects of species productivity and variability, they do not recreate historical trends and are not intended as tactical tools to assess estimation model performance over real historical periods.



Lessons Learned

Using existing infrastructure for single-species modeling (such as Stock Synthesis and associated programs) is the best way to use MSE to test real-world estimation models (i.e., those found in operational stock assessments), rather than approximating with scaled down or simplified versions. This approach has the additional benefit of leveraging existing stock assessment workflows and tools to quickly construct flexible estimation models with a wide range of biological complexity and accuracy. The time-consuming component of constructing the estimation model, as is typical in stock assessment, is in data processing and model tuning.

Using existing infrastructure for ecosystem modeling (like Atlantis) is the best way to incorporate complex biophysical interactions likely to be encountered in the real world into MSEs. A common criticism of simulation testing in general is that it is difficult to produce data with as many challenges as are observed in the real world; Atlantis combined with atlantisom allows the user to create a complex virtual world and an observation system with similar bias, variability, and autocorrelation, but still have true characteristics for comparison with estimation model outcomes. Additionally, the complex Atlantis model allows us to explore how biophysical interactions may manifest through the ecosystem to affect the species dynamics visible to the estimation model, i.e., tracing ecological mechanisms and identifying the direction and magnitude of potential changes in recruitment, growth, and mortality, rather than pre-specifying these changes as might be necessary in a simpler operating model.

There are also a growing number of tools developed specifically for the construction of single-species MSEs. Tools associated with single-species models are increasingly more flexible in accepting input data of a number of different structures while the range of single-species models is expanding to facilitate quickly and efficiently running MSEs (ss3sim: Anderson et al., 2014, MSE, mseR). Our study highlights the importance of these flexible tools for MSE; historically most single-species MSEs have focused on parameter misspecification and not model misspecification, where operating and estimation models differ in scope (e.g., single-species vs. ecosystem). The value of “mix-and-match” tools that can pair different simulations with evaluation structures enables faster construction of MSEs with a wide variety of model specifications. This also allows flexibility in cases when practical logistics limit the deployment of a complex model, for instance due to constraints on staff, computing, or data. We envision the atlantisom package or similar tools to be useful to construct ecosystem model-derived data for a variety of single-species models across other model types. The atlantisom code in particular is being applied to the California Current, Norwegian, and Northeast US Atlantis models, and should be generic to the 30+ Atlantis models developed globally. The atlantisom code is also now being used to pass Atlantis operating model data to Norwegian cod estimation models that apply the State Space Assessment Model (SAM) and a Bayesian production model, rather than SS3.




Swordfish Spatial Closures, and Future Seas


Goal of the Project

The Future Climate Change and the California Current Project (‘Future Seas,’ Pozo Buil et al., 2021) aims to develop end-to-end MSE frameworks for three fisheries in the California Current Large Marine Ecosystem (CCLME), namely Pacific sardine, albacore (Thunnus alalunga), and swordfish (Xiphias gladius), to identify climate-resilient management strategies for these fisheries and to evaluate the impacts of climate change on the fishing communities that depend on them. As distribution changes for all three species are expected to occur in response to climate change, it was important that the operating models be spatially explicit, and that the species distributions would be reflective of changes in the regional oceanography. To that end, each operating model integrated data on regional historical and future projections of the oceanography and biogeochemistry of the CCLME produced by a high-resolution regional ocean model (ROMS), downscaled from global climate models. The operating models also needed to be spatially explicit to link changes in distribution to port-specific landings and social vulnerability indices. Stakeholder engagement suggested that port-level metrics and profits were key performance metrics. Below we focus on the swordfish MSE.

The swordfish MSE was created to evaluate spatial management strategies used for bycatch mitigation (Smith et al., 2021). The drift gillnet fishery (DGN) was used as a case study, given the availability of spatially explicit catch data from an extensive observer program, the existence of a large static spatial closure aimed at reducing bycatch of leatherback turtles, Dermochelys coriacea (the Pacific Leatherback Conservation Area, PLCA), and the development of a multi-species dynamic bycatch risk tool for this fishery (‘EcoCast’; Hazen et al., 2018). The MSE was designed to simulate swordfish catch and the bycatch of leatherback turtles and blue sharks (Prionace glauca) by a dynamic fleet that moved in response to static and dynamic time-area closures. This is an example of a multi-species MSE in which the species are not trophically linked. There are very few observed bycatch events for leatherback turtles in the DGN, which made evaluation of the PLCA and a dynamic alternative challenging. Instead, our analysis used this fishery and these species as a foundation to create a realistic, but flexible, simulation to evaluate static and dynamic closures more generally. Part of this evaluation was identifying conditions in the fishery (such as the size of an observer program), and characteristics of the bycatch species (such as the strength of static geographic associations), that influenced the relative performance of static and dynamic closures. Our static closures consisted of either a box drawn around the majority of observed bycatch events (based loosely on the PLCA), or a static correlative model of bycatch risk based on latitude and longitude only. The dynamic closure was based on the EcoCast approach, which identifies areas of high and low bycatch risk based on correlative species distribution models.



Where in the MSE Loop the Ecosystem Considerations Are Added

Ecosystem elements are included in the operating model and management policies. Our operating model consisted of: (1) statistical models, informed by ROMS, to predict potential catch and bycatch of three species throughout the fishable domain (the United States West Coast Exclusive Economic Zone); (2) an agent-based model to simulate fishing locations and effort in open areas (Smith et al., 2020); and (3) the calculation of catch and bycatch at the simulated fishing locations (Figure 3). The management process simulated three possible closure scenarios: no closure; a static closure encompassing most observed bycatch events (enacted for part of the year, like the current PLCA); and a daily updated dynamic closure (based on EcoCast). These closures then determined the locations available to be fished in the operating model. The static and dynamic closures were created using data from a simulated observer program, which provided the management process with the catch and bycatch data from a subset of fishing trips. The different closure scenarios were evaluated against performance measures including catch and bycatch, and trip-level profits (at both the fleet and port levels). Three species were modeled: swordfish (the target species, which influences fishing location decisions), leatherback turtles (the key bycatch species, and focus of the spatial closures), and blue shark (a common bycatch species in the DGN, and able to be considered in the multi-species EcoCast framework).
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FIGURE 3. A schematic of the structure of the swordfish MSE, evaluating various spatial closure strategies. ABM, agent-based model; SDM, species distribution model; ROMS, regional ocean modeling system.


Given the reliance of this simulation on fine spatial resolution and correlative models, we ignored population dynamics – assuming that stock size was constant and localized depletion could be ignored. We considered this a reasonable assumption, given our more general focus on comparing static and dynamic closures, as well as the relatively low bycatch rate of leatherback turtles, the high mobility of swordfish, the comparatively small amount of stock-wide fishing mortality for swordfish due to the drift gillnet fishery, and the stability of the Western and Central North Pacific Ocean swordfish stock (ISC Billfish Working Group, 2018).



Results

Our focus was on comparing the relative performance of static and dynamic closures under various scenarios of species distribution and data availability. It was clear that highly dynamic closures require considerable data, and when data are scarce or species have less dynamic habitats, a static closure can be most effective (Static closure, Type 2 in Figure 4); but to avoid effort redistribution issues the static closure should be designed to close areas based on potential (not observed) bycatch. However, static closures can close large blocks of area and greatly impact fishing opportunity (Static closure, Types 1 and 2 in Figure 4). When sufficient data exist, and the species is associated with dynamic ocean variables, more complex models can be developed to create spatial closures (i.e., based on species distribution models) which often close less area, or leave open ‘pockets’ of lower risk habitat, with less impact on fishing opportunity (Dynamic closure in Figure 4). It also became clear that if a management goal is to reduce current bycatch levels, closures would ideally account for the distribution and redistribution of fishing effort (not just the distribution of species), especially for widely distributed bycatch species with low occupancy in their suitable habitat. This is because closures may close areas that are rarely fished (so bycatch is not reduced), or may move fishing into only moderately less risky habitats (and bycatch is not reduced as much as expected). In these cases, failing to consider the fishery distribution means that very large reductions in fishing effort are required to successfully reduce bycatch.
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FIGURE 4. Example results from the spatial closure MSE. The maps show the distribution of fishing effort (number of simulated sets) under three closure scenarios (two types of static, and one dynamic). Under each map is a corresponding radar plot summarizing mean closure performance, relative to no closure, for 10 performance metrics (values toward the outside of the plot indicate better performance). The dashed red line is the observed historical fishing effort, and the black dashed line is the static closure boundary (arrows indicate the closed side; dynamic closure not shown). The distribution of effort in the no closure scenario was most similar to the distribution in the dynamic closure scenario. The ten radar plot performance metrics are: ‘TotSF’ total swordfish catch per fishing season; ‘SFset’ mean number of swordfish caught per set; ‘TotLB’ total number of leatherback turtles caught per season; ‘LBset’ mean number of turtles caught per set; ‘LB/SF’ the number of turtles caught per swordfish caught; ‘TotBS’ the total number of blue sharks caught per season; ‘Profit’ the mean profit per fishing trip from swordfish revenue minus fuel and crew costs; ‘Dist’ the mean distance traveled per fishing trip; ‘Sets’ the number of successful fishing sets (i.e., effort); ‘Area’ the amount of area open to fishing. Figure adapted from Smith et al. (2021).




Lessons Learned

This MSE highlighted the modeling challenges associated with working across models from different disciplines and resolutions. Regional ocean models are highly spatially and temporally resolved, as are agent-based fishing models, whereas population dynamics models used in stock assessments are generally run at seasonal or yearly resolution for a single spatial domain. In the swordfish case study, it seemed prudent to forego attempts to integrate population dynamics, given the desired high spatial resolution of our closures. These challenges in creating a realistic operating model drove our decision to create an MSE that examined more general aspects of spatial closures, rather than a tactical analysis of the optimum turtle closure for the DGN itself. An interesting challenge was having both a correlative operating model (i.e., the statistical catch models) and a correlative management scenario (the dynamic closures based on SDMs built from data simulated by the operating model). This created a scenario in which managers could have perfect information on the location and drivers of species distributions. Thus, a key consideration was ensuring realistic error entered the MSE during the data subsetting process in the observer program stage, and the SDM creation process in the closure creation stage (Figure 3), which was achieved by ensuring similar accuracy of EcoCast in the real and simulated worlds. Multi-species MSEs like this one, with fine spatial and temporal resolutions, and aimed at modeling species distributions, will likely remain challenging to build for management of particular fisheries and species. This is why we did not use this analysis to identify the best closure strategy for a specific fishery, but instead created a realistic fishery on which to test multiple variations of the operating model and management process to identify conditions under which static or dynamic closures performed better.




Pacific Hake MSE: Testing the Robustness of Transboundary Management to Monitoring and Climate Change


Goal of the Project

The Pacific Hake MSE focuses on a single species, exploring how a dynamic migratory stock responding to future scenarios of climate change could influence the ability of the binational management body to meet its objectives. Pacific Hake is managed under an international treaty between the United States and Canada, and an ongoing MSE process is occurring in close collaboration with managers and industry representatives from both countries. A hake-focused MSE is now in its second iteration, having begun several years ago motivated in part by Marine Stewardship Council certification (Tavel Certification Inc, 2009). The previous iteration explored the performance of the harvest control rule in the face of uncertainty in assumed parameter values (Hicks et al., 2016). The focus of this iteration of the Hake MSE has shifted and the complexity of the operating models has increased.

Goals for this iteration of the hake MSE were co-created by analysts and the international management body responsible for the management of Pacific Hake, the Joint Management Committee (Jacobsen et al., 2020). The three goals are to (1) evaluate the performance of current hake management procedure under alternative hypotheses about current and future environmental conditions; (2) better understand the effects of hake distribution and movement on both countries’ ability to catch fish; and (3) better understand how fishing in each country affects the availability of fish to the other country in future years.



Where in the MSE Loop the Ecosystem Considerations Are Added

The operating models for the Hake MSE are spatial, with two areas, one for United States and one for Canada, and have four seasonal time-steps. Hake move between areas, with higher density in the northern area in summer and in the southern area in winter. The fraction of fish that move northward is a function of fish age, with a larger fraction of older age classes migrating northward (more detail on model specification and parameterization available in Jacobsen et al., 2020). The movement and distribution of fish roughly matches recent research on spatially and age-dependent relationships between temperature and the hake distribution observed by an acoustic survey (Malick et al., 2020).

We are exploring two types of management procedures and two types of uncertainty scenarios in the Hake MSE to address the goals above (Jacobsen et al., 2020). The alternative management procedures explore the performance of the current harvest control rule and the effects of changing the frequency of fishery independent surveys. The harvest control rule mimics the threshold rule that is in place for hake (and many other species globally), implementing a default harvest rate when stock biomass is above a trigger reference point, reducing the harvest rate as stock size declines, and prohibiting fishing below a limit reference point or minimum stock size. The uncertainty scenarios explore the sensitivity of performance to future hypotheses about climate-driven movement and changes in the age-dependent selectivity of the fisheries in the two countries. Here we focus on evaluating the robustness of the status quo harvest rule with alternative observation frequencies to climate scenarios.

This MSE explores all the major categories of uncertainty. In particular, an observation model is simulated from the operating model with error, and an estimation model closely mimics the coastwide (non-spatial) assessment model currently in use. We also included an implementation model in several scenarios (not described here) to account for catches being consistently below the annual catch limit imposed by managers, which in turn is typically lower than the allowable biological catch under the treaty.

Within the MSE loop (Figure 1), ecosystem considerations are included in the operating model implicitly in the form of climate change scenarios that force fish movement as described above. Ecosystem considerations are not included in other aspects of this MSE. The choice of simplicity here was made to explore the sensitivity of the operating model to assumptions about movement. If assumptions about movement have large implications, then we could build additional complexity and more realistic projections. However, if changing the movement rates (i.e., fraction of the stock moving northward) has little effect on the performance metrics, then building a more complicated model and scenarios may be of less value. Performance metrics currently focus on stock status, catch, variability in catch, and spatial metrics that describe biomass and catch in the two countries.



Results

Simulation testing suggests that the current harvest rule used for hake is relatively robust to the climate scenarios explored, at a coastwide scale. Shifting the distribution of the stock northward resulted in less than ten percent change in relative spawning biomass and long-term average catch. However, the spatial structure in the model reveals larger changes in diverging directions in each country (Figure 5). If temperature-driven movement pushes more of the hake population into Canadian waters in summer in future years, the model projects slightly lower median biomass and catches in the United States and slightly more median biomass in Canada. Future catches in Canada are not projected to increase with greater biomass because the allocation of the coastwide catch between the two countries is fixed by the international treaty. However, the model does not capture any adaptive changes that could occur in the fisheries within each country; we assume full utilization of the quota if fish are present in an area and assume there will be no changes to the seasonal distribution of fishing mortality for either country during the projections.
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FIGURE 5. Trade-offs between long-term catch and mid-year vulnerable biomass in Canadian (A) and United States (B) waters under alternative fishery independent survey frequencies and hypothesized climate change scenarios that shift the distribution of the hake stock northwards during the fishing season. Each point represents the country-specific median of average vulnerable biomass and catch in the last 10 years of a 30 year projection over 100 simulated trajectories combining a survey frequency alternative and climate change scenario.


The alternative survey frequencies show that catches could increase with more frequent monitoring, even with a northward shift in the distribution of the population. This benefit is stronger for the United States fishery and increases with more dramatic climate-driven movement. Less frequent surveys lead to lower long-term median catches, but the effect is smaller than with increased survey frequency. These results are driven by increased uncertainty in the estimate of stock size with decreased frequency of observation resulting in increased probability of over-shooting the trigger reference point of the harvest control rule. Annual surveys allow the harvest rate to be set higher and with lower uncertainty.




Lessons Learned

Starting from an operating model that mimics an assessment model currently in use and building complexity iteratively has pros and cons. This project was developed from a previous iteration of the MSE with an operating model very similar to its estimation model (Hicks et al., 2016). New questions posed about the consequences of spatial structure and climate change required a more complex operating model (Pacific Hake Treaty Scientific Review Group, 2015). The goals for the MSE led to an operating model with spatial complexity (2-areas with fish moving seasonally between them). We chose to limit complexity because there were very limited data to inform the spatial distribution of the stock across seasons and its range, and general familiarity with and acceptance of the structure of the current assessment model by the hake management bodies. While the climate scenarios are qualitatively informed by empirical research, linking variability in hake distribution to temperature (Malick et al., 2020), they are more accurately characterized as sensitivity tests rather than true climate change scenarios (Punt et al., 2014a). Limiting operating model complexity at the expense of biophysical realism can save time in the model building phase of a MSE project and may facilitate quicker review by scientific review panels that tend to be familiar with the structure, assumptions, and behavior of assessment models. A potential downside of an approach that builds incrementally from an assessment model may be a tendency to undervalue the potential influences of structural assumptions that are similar between the operating and estimation models on the performance of alternative management strategies.



Multi-Species Harvest Control Rule in the Gulf of Mexico Using Atlantis


Goal of the Project

The Gulf of Mexico (GOM) MSE case study implemented a “blanket” harvest control rule to manage six reef fish groups in the GOM, using the Atlantis ecosystem model (Fulton et al., 2004). These reef fish included four species of snappers (Lutjanidae) and groupers (Serranidae) that are managed in the GOM using single-species stock assessments2, an aggregated group of Deep Serranid species, and an aggregated group of Other Lutjanids. However, considering all six reef fish groups can be co-caught by the same fishing gear (Saul and Die, 2016), assessing the efficacy of adapting a blanket policy seemed practical.

The term blanket was used in this application to describe how the chosen threshold harvest control rule considered the available biomass of all six reef fish groups simultaneously – under one “blanket” policy. Although the policy was applied across the reef fish at a species-complex-level, the available biomass of each individual stock was objectively considered, independently, in each iteration of the MSE, before a new fishing mortality rate (F) was prescribed in the subsequent iteration of the simulation. The primary goal of assessing the impact of changes in F at a complex-level was to show the potential benefits of a simple, adaptive management policy that could be applied across a range of co-caught species, while simultaneously accounting for ecosystem dynamics. The Atlantis model was used to explicitly represent biogeochemical processes in three dimensions (Fulton et al., 2004), while also simultaneously capturing interspecific interactions and fleet dynamics, and the role of these dynamic processes in implementing sustainable multi-species fisheries (Masi et al., 2018).



Where in the MSE Loop the Ecosystem Considerations Are Added

The Atlantis model of the GOM was applied as the operating model in the MSE loop. The parameterization and calibration of the operating model is specified in Ainsworth et al. (2015) with diet uncertainty characterized in Masi et al. (2014) and species distributions defined by Drexler and Ainsworth (2013). At each iteration of the GOM Atlantis MSE simulation, the biomass of the assessed stocks was fed internally (at annual time steps) into the Assessment and Exploitation submodels (Figure 6). Atlantis’s Exploitation submodel defines modeled fishing fleets, and was used to parameterize fleet-specific behavior: gear type, targeted species and selectivity pattern (Fulton et al., 2004). The Atlantis Exploitation submodel then supplied the simulated data to the Assessment submodel; note that this submodel was applied because it includes the integrated (“closed-loop”) MSE routine, even though in this case the assessment was assumed to have perfect knowledge of stock size (Figure 6). The Atlantis operating model included trophic interactions, biogeochemical processes and human interaction (via fleet dynamics).
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FIGURE 6. Atlantis submodels utilized in the Gulf of Mexico multispecies harvest control rule testing of Masi et al. (2018). This parallels the general MSE loop illustrated in Figure 1.




Performance Metrics, Objectives, and Trade-Offs, and How These Were Identified

The GOM Atlantis MSE used ecosystem-level performance metrics that were based on analysis in Masi et al. (2017), which evaluated a suite of GOM ecosystem indicators to assess their efficacy in tracking ecosystem perturbations that are caused by changes in F. Specifically, Masi et al. (2017) found that reef fish catch, Gag Grouper (Mycteroperca microlepis) biomass, and biodiversity metrics were among the top indicators, and these were subsequently utilized to score performance in the MSE. Additionally, ecological trade-offs were quantified by summarizing biomass at the guild level, which for instance illustrated interactions between species groups such as the shrimp, crab and benthic invertebrate guild, the pelagic fish guild, and the “all” reef fish (i.e., the assessed reef fish plus all other reef fish functional groups).



Results

By applying the harvest policy at a blanket-level, the GOM Atlantis ecosystem MSE was able to assess the impact of applying varying levels of F for all six reef fish groups both simultaneously and objectively. High levels of F applied to the reef fish complex, under the threshold harvest control rule, achieved a more Pareto-efficient trade-off frontier, where both higher levels of reef fish biomass and catch were attained (at equilibrium). This Pareto-efficiency was achieved because under higher levels of F, more of the large, carnivorous reef fish (those typically targeted by the fishery) were removed earlier in the simulation. With the largest predators in low abundance, smaller reef fish (those that are co-caught, but not typically targeted among the six assessed reef fish) had more prey available (thus increasing their productivity). This is considered a “cultivation effect,” where a reduction in top predators in the short term (i.e., in this case, the first 1–5 years of the simulation) resulted in increased productivity of the reef fish complex – as a whole, in the long term (Masi et al., 2018). To bracket the uncertainty associated with prey preference, this application utilized the Dirichlet distribution to define 10 alternate parameterizations of trophic pathways (Masi et al., 2014). Results were found to be robust to this uncertainty in trophic interactions and diet. Thus the trophic interactions were critically important in the model projections, but the cultivation effect was consistent across realistic uncertainty in the diet and trophic interactions.



Lessons Learned

In this MSE the biomass ‘observed’ by the Assessment submodel was derived annually using perfect knowledge, and simulated policies were implemented without process error (Figure 6). However, in reality stock assessments are not often performed annually, and assessment and implementation error can be substantial. Therefore the results could be considered a theoretical maximum benefit of applying a blanket, threshold harvest control rule policy to manage these 6 reef fishes. Future analyses should account for operational and implementation uncertainty, such as the ability of fishers and managers to actually achieve a target F, and should vary the number of years between assessment intervals. Typically, under single-species management policies a rebuilding plan would be implemented if the assessed stock fell below an established threshold (e.g., BMSY or biomass resulting from F30%), which is similar to how the threshold harvest control rule operated in this application. However, single-species approaches do not typically account for complex, ecosystem dynamics like the role of interspecific interactions on the available biomass of the targeted stock(s). Therefore, this MSE application offered unique, strategic insight that is not achievable through typical single-species approaches.





DISCUSSION


Common Lessons Learned and Challenges: Case Studies

The four case studies above illustrate that ecosystem models and ecosystem approaches improve multiple components of MSEs. The ecosystem modeling approaches considered above are extremely varied, ranging in taxonomic and spatial resolution, and varying in terms of complexity of assessments and management. This demonstrates the customization that is possible (and needed) to apply ecosystem modeling to directly support a range of ocean policy and management needs, ranging from minimizing turtle bycatch to managing fishery stocks across international borders. These case studies also illustrate the collaborative, interactive process that has evolved to support Ecosystem-Based Fishery Management in the United States (Townsend et al., 2019), and we suggest MSE as a natural pathway for that evolution.

Overall, our case studies here, and others globally (Fulton et al., 2014, 2019; Surma et al., 2018; Perryman et al., 2021), also demonstrate that very often ecosystem models fit naturally into MSE as operating models, though applications elsewhere in the MSE loop are emerging, e.g., ecosystem models are contributing to assessment and parameter estimation within the Bering Sea CEATTLE model (Holsman et al., 2016, 2020; Hollowed et al., 2020). In fact, overly simple or non-spatial single species focused models may not provide sufficient contrast to explore the necessary trade-offs facing marine ecosystems and their living marine resources. As demonstrated in some of the above case studies, the inherent complexity of ecosystem models can be beneficial when these are used as MSE operating models. This complexity enables evaluation of management performance and trade-offs across a broad set of metrics that are increasingly of interest to stakeholders, such as spatial complexity and impacts of management strategies on other ecosystem components (e.g., on protected species in the swordfish spatial closure MSE or on other target species in Gulf of Mexico Atlantis MSE).

To evaluate management options in the ecosystem context, an MSE operating model needs to be more complex (i.e., incorporates a broader set of drivers and interactions) than a stock assessment model to ensure that the broader array of issues that can impact marine populations is duly considered (Fulton et al., 2014; Punt et al., 2016b). Use of ecosystem models as operating models allows for an evaluation of management procedures (including data collection and assessment methods) under a broader set of uncertainties, including non-stationary, non-linear effects of climate change and climate variability (e.g., swordfish case study) and trophic dynamics (e.g., GOM Atlantis case study) that are difficult to approximate implicitly using single-species MSE approaches. Indeed, the case studies involving atlantisom, swordfish spatial closures, and Pacific hake all illustrate the need to have sufficiently similar assumptions in the MSE operating model and estimation model to enable linking these two components, but the desire to avoid unrealistically close matches between the ‘virtual world’ and the structure of the estimation model. In these case studies, the latter was achieved by having a different model structure for the operating model and the estimation model, in addition to simulating a realistic data collection scheme. However, the level of additional structural complexity presented in the operating model varied across case studies. For instance, the atlantisom case study maximized differences in the operating model/estimation model by using two completely different modeling approaches, thus allowing a more realistic assessment of the impacts of structural uncertainty on assessment model performance and estimated management quantities. In contrast, in the Pacific hake MSE, the operating model and estimation model were similar, but structural complexity was added into the operating model by increasing the spatial resolution from a 1-area to a 2-area model. The type of additional structural complexity in the operating model will ultimately be dictated by the management objectives of interest to stakeholders, the types of management strategies being examined, the data available to parameterize and condition more complex models, and the uncertainties thought to be most consequential for the system under consideration. Practical constraints on operating model complexity also include availability of skilled staff, computing, time limits for management decisions, and costs relative to value of the fishery or societal values related to conservation or cultural use.

The MSE process is well-suited to include the appropriate amount of complexity to address a question, with ecosystem approaches capable of informing both complexity and uncertainty in operating models. Once key objectives and uncertainties are identified and prioritized with managers and stakeholders, analysts need a range of tools available to build operating models and link them to estimation models appropriate to the situation. In some case studies here, such as for Pacific hake, limiting operating model complexity at the expense of biophysical realism saved time in the model building phase of a MSE project, facilitated reception among stakeholders familiar with the estimation model, and expedited scientific review by panels that were familiar with the structure, assumptions, and behavior of assessment models. However, more complex ecosystem analyses (Malick et al., 2020) informed the key climate driven spatial differences implemented in the hake operating model. In other cases, such as for Pacific swordfish spatial closures and the Gulf of Mexico Atlantis case study, complex ecosystem operating models incorporated more detailed system dynamics while evaluating more general management strategies. These last two cases were scientific research projects rather than management-initiated projects, and therefore were more free to sacrifice realism in the assessment estimation and management modeling, which revealed important ecosystem interactions that could not be addressed using single species assessment-based MSE.

As EBFM progresses in management arenas, approaches incorporating both ecosystem complexity and realistic assessment and management will become increasingly important, and access to a range of modeling tools will be critical. The atlantisom tool presented here aims to take advantage of Atlantis, a vetted and established ecosystem modeling framework, by making it easy to link to vetted and established stock assessment software such as SS3. This is not only efficient use of existing tools, but is a step toward including both ecological and assessment realism in an MSE analysis. Related examples that benefit from a range of modeling tools include the Atlantic herring (Clupea harengus) MSE, where a single species operating model in the spirit of the Pacific hake example here was linked to much simpler models of herring predators and fishery economics to meet the multiple objectives (and tradeoffs between them) of a wide range of stakeholders and the timeline of a management council (Deroba et al., 2019). The Bering Sea CEATTLE model (Holsman et al., 2016) similarly captures predator-prey interactions, and adds climate interactions in a much more sophisticated MICE modeling framework that is familiar to managers and reviewers accustomed to state of the art single species assessment models, and that is suited to address the key climate uncertainties identified by stakeholders. In a global review of MSE applications, Perryman et al. (2021) emphasize the need to have readily available modeling tools, particularly complex operating models, in order to properly address model error. As fishery managers tackle complex questions involving spatial relationships, species interactions, and climate effects as well as stock assessment performance, having a range of mix-and-match tools available to analysts will answer these questions more effectively and efficiently.

The case studies focused on Pacific hake, swordfish, and atlantisom, as well as previous experience (Townsend et al., 2019), all strongly argue for interdisciplinary collaboration to be a central part of MSE. Strong interdisciplinary collaboration is particularly necessary when building complex ecosystem models coupled with flexible stock assessment frameworks, as in the atlantisom case study, or when developing complex modeling frameworks for assessing climate impacts (swordfish spatial closures case study). This type of approach to MSEs requires technical expertise across the fields of ecology, biology, population dynamics, oceanography, climate science, economics, and social science, as well as experience implementing the specific modeling platforms being used. Thus, projects like atlantisom and the Pacific hake study are relatively large endeavors, but a major benefit of these efforts is the facilitation of productive collaborations that bring together a diversity of expertise. Previous experience suggests that this collaboration should extend to stakeholders, to define management objectives (i.e., MSE performance metrics), and to decide who makes those decisions (Feeney et al., 2019). In practice, stakeholder participation is an important but difficult process (see next section below). Experience with single species MSEs suggests that best practices include carefully selecting stakeholders and possibly “intermediary groups” (Feeney et al., 2019; Miller et al., 2019), education about MSE, facilitators, and extensive investment in communication and graphics (Feeney et al., 2019; Goethel et al., 2019; Miller et al., 2019).



Lessons for Ecosystem MSE From Beyond the Case Studies

The ecosystem-oriented MSE case studies presented here reflect and build upon lessons learned from single-species MSEs. First, incorporating uncertainty is a central premise of MSE, including observation errors for data inputs, process errors for system dynamics, and structural uncertainties about how the system operates (Punt et al., 2014b). Best practices for addressing uncertainty in ecosystem modeling (Link et al., 2010, 2012) apply to ecosystem models used in MSE. These best practices include methods for handling parameter, structural, and scenario uncertainty in a variety of model types (Link et al., 2010, 2012; Fulton et al., 2011; Morzaria-Luna et al., 2018; Hansen et al., 2019a). In particular, ecosystem models can play a critical role in testing the role of structural uncertainty, from testing the impacts of missing key processes using simpler variants of more complex models (Trijoulet et al., 2019) to analyses where the operating model and estimation model are fundamentally and intentionally mismatched, as in atlantisom. While some uncertain processes can be specified based on observational data, other ecosystem processes may still be largely unknown and at the frontiers of research, for instance potential fundamental shifts in ocean circulation, nutrient supply, and productivity under climate change. In these cases, the MSE process allows this uncertainty to be incorporated. In single species MSE, multiple operating models are often needed because fishery systems are complex, i.e., have many components and interrelationships among components, and have some components that are typically not observable with a high degree of certainty. Similarly, ecosystem-oriented MSE can use multiple operating models parameterized to bracket the range of uncertainties considered important by managers and stakeholders.

A second challenge identified in single species MSE has been simulating a realistic estimation model fitting process efficiently, which has also been noted in the atlantisom case study. The model fitting process for single species stock assessments may depend on individual analyst decisions on parameter specification (e.g., fixed or estimated, bounded or unbounded, etc.) as well as data weighting (Francis, 2011; Maunder and Punt, 2013). Within single species assessments and estimation models used in MSE, parameters may be unidentifiable and may need to be constrained or set at fixed assumed values rather than being freely estimated. When Ecosystem MSEs include climate and predation interactions in the estimation model, as in the CEATTLE model (Holsman et al., 2016, 2020; Moffitt et al., 2016), these fitting challenges may be exacerbated (based on a higher number of parameters), or reference points may shift relative to those calculated from single species models. Nevertheless, testing of novel, ecologically enhanced harvest control rules and reference points with MSE before implementation may require the use of ecosystem-enhanced estimation models. Such testing necessitates availability of sufficient computing resources, but would allow comparison of the potential of ecosystem-based management measures relative to those without EBM measures, at least in the near-term (Holsman et al., 2020).

Experience from single species and more complex MSEs to date demonstrates that managing and communicating large volumes of outputs and results is critical both for analysts and stakeholders (Deroba et al., 2019; Feeney et al., 2019). Calculation of performance metrics for ecosystem MSE involves adding dimensions beyond those typically handled in single species MSE. This will require a synthesis of additional performance metrics (e.g., Fulton et al., 2014) to quantify how robust individual strategies are, and their ranking relative to other strategies. Improved efficiency in analysis and output management will benefit MSE at any level of organization (see “Institutional Support for Ecosystem MSE,” below).

One of the main challenges for any MSE is stakeholder engagement (Goethel et al., 2019). As the scope of MSEs with ecosystem considerations broadens, so will the effort required to meet each element of best practice in stakeholder engagement (Feeney et al., 2019). For example, MSEs that include ecosystem considerations will have a broader suite of interested stakeholders to consider, have the need for experts from increasingly diverse backgrounds, and have more objectives with associated output metrics that must be communicated and graphically displayed. Nonetheless, for a recent example that demonstrates that Ecosystem MSE can address and communicate disparate metrics (goals) and trade-offs between them, including blending quantitative metrics for fishery targets (e.g., target species biomass or total catch) and more qualitative metrics (e.g., social wellbeing), see Fulton et al. (2019). Stakeholder and management engagement from the onset can also help strengthen the MSE approach by winnowing a large array of potential questions and metrics down to those of highest utility and importance. Inclusion of diverse perspectives helps balance tradeoff analyses through derivation of performance metrics that reflect multiple social, cultural and ecological goals (e.g., equity and diversity across profit, stability, and resiliency metrics). Finally, early engagement helps demystify models, encourages uptake and utility of results, and provides an iterative process for refining future MSEs.



Scanning the Horizon: New Ecosystem MSE Capabilities Required for Decision Making

Marine policy makers are increasingly confronted with spatial trade-offs as species shift distribution under climate change (Poloczanska et al., 2013), new ocean uses such as wind energy emerge3 (Kirkpatrick et al., 2017), and opportunities for spatial management strategies are developed (Hazen et al., 2018). Accounting for spatial structure in operating models remains a challenge for any MSE, and most analyses model a small number of zones to account for (for example) species migration (Hurtado-Ferro et al., 2014; O’Neill et al., 2014), as in the Pacific hake case study, and spatial differences in management regulations (Schweder et al., 1998; Bastardie et al., 2010), stock distribution (Dichmont et al., 2006) or population processes such as growth and recruitment (Punt et al., 2016a). Dichmont et al. (2013) designed a fine-scale MSE to evaluate spatial closures for Australia’s Northern prawn fishery, linking the spatially resolved operating model (Ecospace) to additional existing models of prawn population dynamics and effects of trawling within each grid cell. Beyond these examples, further incorporation of spatial processes in stock assessment (Mormede et al., 2017), the integration of species distribution models and population dynamics (Berger et al., 2017), and collection of fine-scale spatial data, should encourage MSE development at finer spatial resolutions. One caveat is that the configuration of spatial models may need to be reconsidered as species ranges shift under climate change. Though we have advocated ‘mix and match’ software approaches to combine available operating models and estimation models, we acknowledge that many such existing models were configured to match present-day species distributions and migratory behavior. The Pacific hake case study partly addresses the implications of future changes in migratory behavior within the California Current. However, larger scale shifts in distribution (Morley et al., 2018), driven by climate change, would force new geometries for operating models, such as the California Current and Gulf of Mexico Atlantis models which were structured around historical biogeography and fishing areas.

Similarly, improved capabilities for short and medium term ocean forecasting are needed for single species and ecosystem MSEs addressing climate impacts. While climate models provide forecasts at 50+ years that are at an appropriate timescale for many MSEs of long term harvest strategies, fishery stakeholders and managers are primarily interested in the short term performance of strategies and the implications of climate change on decisions made on the seasonal, annual, and 3–5 years timescales. Initiatives such as the NOAA Climate Fisheries Initiative (NOAA, 2020) that improve ocean model capability and availability and evaluate predictive ability at these management relevant timescales, will benefit MSE at multiple levels.

In any MSE process, one aspect of ‘scanning the horizon’ is to define ecosystem aspects (i.e., the structural design decisions) that are meaningful to users and practical and feasible for managers. For instance, trophic interactions need to be explicitly incorporated into the operating model if multi-species fisheries trade-offs are to be addressed. Length structure and time-varying growth of a stock realistically parameterized in an operating model can ultimately be used to inform its status and set catch size limits. Impacts of environmental drivers on population processes need to be represented in operating models if the potential to use climate or environmental indices for informing management is to be tested. These are critical design choices in the construction of estimation models and operating models.

Methods borrowed from integrated ecosystem assessment, such as conceptual models and risk assessments (Holsman et al., 2017) can be helpful to support these decisions and tailor the Ecosystem MSE to local needs. By qualitatively characterizing the components of fisheries systems and their interactions, conceptual models can provide an initial assessment of system feedbacks, response to perturbation, and possible management trade-offs (Dambacher et al., 2009; Harvey et al., 2016). Conceptual models and risk and vulnerability assessments can thus support the selection of ecological components and processes for the operating model, facilitate interdisciplinary communication, and help to set realistic objectives for the Ecosystem MSE (Heemskerk et al., 2003; Gaichas et al., 2016).

To inform future decision making, ecosystem MSEs should quantify performance in terms of a commonly applied set of metrics. Punt (2017) listed the standard set of performance metrics for single species MSE, including biomass, catch, variability of catch, and profit. However, Punt (2017) also noted the lack of consistent output metrics in ecosystem MSEs, though generally those metrics attempt to summarize status of habitats and non-target species, recovery of threatened and endangered species, and at times social and management objectives. In the last several years progress has been made, as many ecosystem modeling efforts have converged upon using similar sets of performance metrics based on ecological indicators and guild-level biomass (Marshall et al., 2017; Olsen et al., 2018; Fay et al., 2019; Hansen et al., 2019b; Kaplan et al., 2020; Nilsen et al., 2020). Further tailoring of ecosystem performance metrics requires long-term commitment to stakeholder engagement, which in the United States is typically at the level of Fishery Management Councils.



Institutional Support for Ecosystem MSE

In the United States, moving ecosystem MSE from an academic and research exercise to one relevant to decision making has required institutional investments (mostly by NOAA Fisheries) that can be replicated in other contexts. Firstly, NOAA Fisheries has committed to building expertise and capacity within the agency for enhanced use of MSEs and ecosystem MSE (e.g., Karp et al., 2018; Lynch et al., 2018). The NOAA Integrated Ecosystem Assessment program has identified MSEs as a core step in the assessment of the status of coupled social-ecological systems (Levin et al., 2013). Multiple strategic initiatives within NOAA Fisheries have identified ecosystem MSEs as important for effective management including the Climate Science Strategy (Link et al., 2015; Busch et al., 2016), and the Ecosystem-Based Fisheries Management Road Map (NOAA, 2016a, b) which provides a framework for ecosystem approaches and ecosystem modeling, and emphasizes MSE.

Secondly, MSE will increasingly benefit from a national (and international) focus on shared code via ‘toolbox’ support, including ecosystem, single species, economic, and protected species models housed within the NOAA Fisheries Integrated Toolbox4. This integrated, cross-disciplinary approach to hosting tools commonly used by NOAA Fisheries is in its early stages, with existing tools being added incrementally. However, by using a standardized, open-source approach, this toolbox creates the potential to better connect various tools, such as single species assessment models with ecosystem models (e.g., the atlantisom case study in this paper). This national approach to providing open access to vetted stock assessment tools has been beneficial for the progression of ecosystem MSEs, since developing a methodology for integrating ecosystem model outputs into broadly used assessment model platforms is easier, technically (e.g., atlantisom), and also provides an entry point to ecosystem considerations for the many United States fishery managers and decision makers familiar with these stock assessment models. Other available tools include methods for species distribution modeling, metapopulation dynamics, and risk assessment, among others. There is an obvious benefit of sharing lessons learned, code bases, and common tools across the disciplines within NOAA Fisheries, which ultimately reduces the time to build, test, and then use a model for an MSE application. In particular, a library of shared tools including existing vetted models for ecosystem MSE would reduce the timeframe needed for analytical development, and allow for more nimble response to management questions and allocation of necessary time to stakeholder engagement. Our move toward open access MSE tools emphasizing reproducibility builds on international efforts, including single species MSE (Kell et al., 2007) and related bio-economic frameworks (Garcia et al., 2017).

Thirdly, ecosystem MSEs in the United States benefit from recent developments in terms of model review and vetting by Fishery Councils and others. The MSE process explicitly aims to inform managers and stakeholders about the predicted implications of potential management actions. In accordance with developing scientific advice under the Magnuson-Stevens Fishery Conservation and Management Act (Anonymous, 2007), NOAA Fisheries utilizes the Center for Independent Experts (CIE)5 to perform independent peer review of agency science, and this process has previously been used to vet ecosystem models in the US (see footnote 3). However, the bulk of CIE reviews has been focused on single species stock assessments, and there is an increased demand for these as well as demand for new reviews of ecosystem models. Regional Fishery Councils should be involved early in the review process in order to facilitate understanding about model strengths and shortcomings prior to presenting MSE outputs at Council meetings. Lessons learned from successful ecosystem model reviews (Kaplan and Marshall, 2016) are being incorporated into ecosystem model updates, for example in the Northeast US.

We acknowledge that the institutional support for ecosystem MSE varies by region and nation. MSE has been used widely in South Africa and Australia, and is seeing growing use in Europe and North America in situations with relatively abundant resources to support the effort. A MSE approach in other contexts with fewer resources may look different, with simpler operating models and estimation models. The principles from the case studies we describe here still apply and relatively simple models (e.g., Carruthers and Hordyk, 2018) may be useful to form scenarios that explore uncertainty in the ecosystem implicitly (sensu Punt et al., 2014a). In some cases, limited resources may be better deployed to support a stakeholder process to improve buy-in of an eventual decision or adoption of a management procedure, rather than increasing model complexity. Ecosystem MSEs, like single species MSEs, cannot be a one size fits all approach, and need to take under consideration both research and management needs and available resources (Nakatsuka, 2017).




CONCLUSION AND NEXT STEPS

Management strategy evaluation, whether at the single species, multispecies, or ecosystem level, has the potential to greatly improve natural resource management by testing strategies in advance to show the potential benefits and drawbacks of each under uncertainty. Though MSE requires substantial investment, our experience within the United States has been that we gain efficiency, avoid legal challenges, and better scope the issues of a problem and in so doing improve decisions. More and more marine ecosystem stakeholders are seeing MSEs as a useful tool to address the challenges they are facing, and have begun to explicitly ask for more of this, such that NOAA Fisheries has recognized the need to expand capacity in this area. The case studies reviewed here demonstrate a wide range of applications of ecosystem information into MSE, as well as the advances in modeling – and better application of existing models – that can greatly increase the inclusion of ecosystem considerations in MSE. Although MSE is a substantial investment, it is well suited for complex questions surrounding ecosystem interactions.

Management agencies in the United States and around the world have identified needs for ecosystem MSEs. The United States Pacific Fishery Management Council recently hosted a workshop for the Scientific and Statistical Committees of the eight Regional Fishery Management Councils on the topic of MSEs to inform fishery management decisions. The workshop specifically identified “ecosystem MSEs” as a subcategory within MSEs, and noted the inherent challenges of incorporating ecosystem dynamics in the MSE process, given the complex nature of ecosystem functioning (DeVore and Gilden, 2019). The types of ecosystem MSEs identified at the workshop included MSEs focused on issues related to climate change, spatial management, multiple objectives and trade-offs, and predator-prey dynamics. Given the potential complexity of ecosystem MSEs, workshop participants emphasized the importance of effective communication to managers and stakeholders so they have enough information to remain engaged and contribute throughout the MSE process. Similarly, a Working Group of the International Council for the Exploration of the Sea (ICES) concluded that multi-species and technical (e.g., gear, mixed stock) interactions should always be included when necessary, or at a minimum, the given process be approximated to the extent possible (ICES, 2019). Also in recognition of the complexity of MSEs, ICES (2019) reviewed the common communication strategies used through much of Europe, provided an overview of available interactive graphics software, and suggested some standardization of communication tools within ICES. All of the case studies reviewed here have addressed ecosystem aspects identified by United States fishery managers, are generally consistent with international best practice, and demonstrate that the inherent challenges can be met.
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APPENDIX | GLOSSARY OF MSE TERMS

Despite focusing on examples from the United States, we generally follow MSE terminology consistent with a recent international tuna workshop (Anon, 2018). Key terms are listed below from that report, with our minor adaptations noted in bold italics.
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One of the significant challenges to using information and ideas generated through ecosystem models and analyses for ecosystem-based fisheries management is the disconnect between modeling and management needs. Here we present a case study from the U.S. West Coast, the stakeholder review of NOAA’s annual ecosystem status report for the California Current Ecosystem established by the Pacific Fisheries Management Council’s Fisheries Ecosystem Plan, showcasing a process to identify management priorities that require information from ecosystem models and analyses. We then assess potential ecosystem models and analyses that could help address the identified policy concerns. We screened stakeholder comments and found 17 comments highlighting the need for ecosystem-level synthesis. Policy needs for ecosystem science included: (1) assessment of how the environment affects productivity of target species to improve forecasts of biomass and reference points required for setting harvest limits, (2) assessment of shifts in the spatial distribution of target stocks and protected species to anticipate changes in availability and the potential for interactions between target and protected species, (3) identification of trophic interactions to better assess tradeoffs in the management of forage species between the diet needs of dependent predators, the resilience of fishing communities, and maintenance of the forage species themselves, and (4) synthesis of how the environment affects efficiency and profitability in fishing communities, either directly via extreme events (e.g., storms) or indirectly via climate-driven changes in target species availability. We conclude by exemplifying an existing management process established on the U.S. West Coast that could be used to enable the structured, iterative, and interactive communication between managers, stakeholders, and modelers that is key to refining existing ecosystem models and analyses for management use.

Keywords: ecosystem-based fisheries management, ecosystem modeling, fisheries science, fisheries management, natural resource management


INTRODUCTION

Fish stocks do not live isolated from, but exist as part of an ecosystem, and their dynamics are intrinsically related to those of their habitat, prey, and predators, from environmental conditions to humans. In recognition of the need to assess the cumulative of effects and trade-offs of fisheries management actions considering these ecological interactions there has been a longstanding worldwide push for ecosystem-based fisheries management (EBFM, May et al., 1979; Pikitch et al., 2004; Link, 2010; Fogarty, 2014; Holsman et al., 2017; Skern-Mauritzen et al., 2018; Fulton, 2021). In the United States, scientists have been exploring and coordinating the use of ecosystem models to address ocean ecosystem science and management questions for over a decade (Townsend et al., 2008, 2014, 2017; Link et al., 2010). The National Oceanic and Atmospheric Administration (NOAA), the U.S. federal agency responsible for marine ecosystem science and ecosystem-based fisheries management in Federal waters, has prioritized ecosystem modeling as necessary to better assess the trade-offs we make to maintain resilient and productive ecosystems, and to respond to climate, habitat, and ecological change (National Marine Fisheries Service, 2016a,b). Nevertheless, progress, in the United States and elsewhere, in using ecosystem models and analysis to guide fishery decision-making has been slow (Skern-Mauritzen et al., 2016; Townsend et al., 2019).

One of the significant challenges to using information and ideas generated through ecosystem modeling is a lack of connection between modeling and management priorities (Link et al., 2012). Ecosystem modelers are not necessarily asking the same questions of their models as those asked by legal mandates or by managers implementing those mandates. This disconnect between scientific interest and management needs may contribute to the perceived slow pace in the uptake and implementation of ecosystem-based management (Hilborn, 2011; Cowan et al., 2012; Marshall et al., 2018). Townsend et al. (2019) suggests that scientists can better understand and tune models to address management priorities by working more closely with managers, within existing processes to implement legal mandates.

Indeed, establishment of an effective scientists-decision makers knowledge exchange has been recognized as a major challenge to successful science-based management of complex socio-ecological systems (Cvitanovic et al., 2015). Frameworks for facilitating the uptake of scientific research in natural resources management, such as the System Approach Framework (SAF, Hopkins et al., 2011), structured decision making approaches (Gregory et al., 2012), and integrative assessments (see review by Mach and Field, 2017) stress that ongoing two-way exchange of information between scientists and decision makers and participatory communication methods are key to facilitate uptake of scientific analysis for management of complex systems (Lidström and Johnson, 2020). Use of scientific knowledge in support of decision-making is dependent on such knowledge being perceived as salient to the decision-makers (Cvitanovic et al., 2015; Mach and Field, 2017). Iterative dialogue between scientists, managers and stakeholders can ensure scientific analysis and models are relevant to the decision-making process (Hopkins et al., 2011; Cvitanovic et al., 2015; Mach and Field, 2017).

There are also technical issues that can limit use of ecosystem models in decision making. These have been widely discussed elsewhere (Skern-Mauritzen et al., 2016, 2018; Holsman et al., 2017; Schuwirth et al., 2019), but we synthesize them here. There needs to be sufficient data to develop a basic mechanistic understanding of the system (Skern-Mauritzen et al., 2016; Schuwirth et al., 2019) and few research programs exist to empirically quantify processes at this level of complexity (Wells et al., 2020). Such data requirements become more difficult to meet with increasing complexity of the approach being considered (Holsman et al., 2017; Skern-Mauritzen et al., 2018), which in turn comes at the cost of greater estimation uncertainty (Link et al., 2011). This uncertainty needs to be quantifiable and factored into management decisions (Holsman et al., 2017; Skern-Mauritzen et al., 2018; Schuwirth et al., 2019). For tactical management applications, predictive performance of ecosystem models also needs to be sufficient for the model to be useful (Skern-Mauritzen et al., 2018; Schuwirth et al., 2019). Thus, increases in estimation uncertainty need to be balanced by reductions in process uncertainty to maintain adequate predictive performance (Link et al., 2011). Model output also needs to be at an appropriate temporal and spatial resolution to inform management (Schuwirth et al., 2019). These issues, however, should not prevent the use of ecosystem-based approaches to improve the status quo and meet the needs of decision-makers for scientific information that considers feedback and interactions between multiple ecosystem components (Patrick and Link, 2015; Skern-Mauritzen et al., 2018). The most appropriate ecosystem model will necessarily vary in complexity depending on the policy issue and data availability, and guidelines exist to inform choice of analytical tool (e.g., Weijerman et al., 2015; Holsman et al., 2017).

In this paper, we demonstrate a practical process, based within the framework of national laws and on the practices identified by Townsend et al. (2019), to better connect ecosystem models and analyses with fisheries management (Figure 1). We define ecosystem models and analyses as a broad suite of analytical tools which incorporate interactions between physical, biological, and/or human components of the ecosystem, ranging from empirical approaches to end-to-end ecosystem models. Fisheries in the exclusive economic zone off the U.S. West Coast are managed under the advice of the Pacific Fishery Management Council (PFMC). The PFMC established a regular process through which new ecosystem initiatives are co-developed to address ideas and issues that affect multiple species and fisheries (Pacific Fishery Management Council (PFMC), 2013). In doing so, this process provided an avenue for managers, stakeholders, and scientists to work together to find solutions to policy issues, the type of forum identified as necessary by Townsend et al. (2019). Here, we use the second PFMC ecosystem initiative, the PFMC’s stakeholder review of ecosystem status indicators, to identify emerging fisheries policy issues in the U.S. West Coast that require ecosystem information. This process echoes the Issue Identification step in the SAF framework, in which a policy issue is identified in collaboration with stakeholders so that the analytical tool can be developed for the specific decision context defined with stakeholders (Dinesen et al., 2019). We then connect the management questions to existing ecosystem models by specifying how their output could address some of the concerns raised by stakeholders and decision-makers about future trade-offs expected for living marine resource management in the California Current Ecosystem (CCE).
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FIGURE 1. Overview of the process to facilitate integration of ecosystem models and analyses into fisheries management proposed by Townsend et al. (2019) on left and adaptation of that process to address multiple issues as presented in this paper on right.




MATERIALS AND METHODS


California Current Ecosystem Status Reports

California Current ESRs are developed annually by the NOAA California Current Integrated Ecosystem Assessment (CCIEA) team. These reports focus on biophysical, economic and social indicators related to attributes such as abundance and population condition of key species, community composition and energy/material flows, extent and condition of habitat, and fisheries engagement and social vulnerability in coastal communities. In 2017, the PFMC formalized a process for technical review of individual indicators and analyses (Box 1) so that new topics for in-depth technical assessment are identified annually in March and then reviewed in detail in September (Pacific Fishery Management Council (PFMC), 2017b; Box 1).


BOX 1. Glossary of terms and acronyms related to the United States West Coast approach to Ecosystem Based Fisheries Management.

Pacific Fishery Management Council (PFMC, or Council) – Management entity established under the Magnuson-Stevens Fishery Conservation and Management Act (MSA) responsible for advising the federal government on managing fisheries within the exclusive economic zone (EEZ) off the United States West Coast. Develops fishery management plans (FMPs) and fishery regulations to implement the FMPs. Advised by stakeholders (U.S. states and tribes, commercial and recreational fisheries participants, environmental and other non-governmental organizations, and the public) through Advisory Subpanels (https://www.pcouncil.org/documents/2019/09/cop-2.pdf/), assisted with monitoring and analyses by Technical/Management Teams (https://www.pcouncil.org/documents/2019/09/cop-3.pdf/) and Workgroups (https://www.pcouncil.org/documents/2019/09/cop-8.pdf/) (including the Ecosystem Workgroup, EWG), and provided scientific advice by the Scientific and Statistical Committee (SSC) (https://www.pcouncil.org/documents/2019/09/cop-4.pdf/.

Fishery Ecosystem Plan (FEP) (https://www.pcouncil.org/documents/2013/07/fep_final.pdf/) – PFMC’s formalized approach to Ecosystem Based Fisheries Management (EBFM). Includes a process through which the PFMC takes up ecosystem initiatives to address ideas and issues that affect multiple species and fisheries.

California Current Ecosystem Status Report (ESR) (E.g., https://www.pcouncil.org/documents/2020/02/g-1-a-iea-team-report-1.pdf/) – Annual report to the PFMC providing an ecosystem overview outside of focal resource stocks and populations, considering how outside factors influence focal resources, identifying linkages between different ecosystem components. Prepared by the NOAA California Current Integrated Ecosystem Assessment (CCIEA) (https://www. integratedecosystemassessment.noaa.gov/regions/california-current-region/index.html).

Stakeholder review – Review of policy, regulatory, or scientific product by stakeholders and members of the public. Process followed under the second ecosystem initiative (https://www.pcouncil.org/actions/initiative-2-coordinated-ecosystem-indicator-review/) to review the reliability and utility of existing ESR indicators, and identify desirable additions. Involved Council, its advisory bodies, the SSC, and public comment. Technical review – Review of scientific or analytic product by the SSC or its subcommittees. For the ESR, technical review involves an annual process of topic selection by the Council in conjunction with its advisory bodies and the CCIEA, followed by reviews by the SSC’s Ecosystem Based Management Subcommittee.

Methodology review – In-depth technical reviews of methods that are held periodically and as needed. Reviewers include members of the SSC and often outside experts, and reviews follow specific Terms of Reference (TOR) (E.g., https://www.pcouncil.org/documents/2018/06/terms-of-reference-for-the-methodology-review-process-for-groundfish-and-coastal-pelagic-species-for-2019-2020-june-2018.pdf/) that may also reflect established Council Operating Procedures (COP) (https://www.pcouncil.org/documents/2019/09/cop-15.pdf/). Required for changes to assessment methods or forecasts, and used for other complex topics as warranted.

Management Strategy Evaluation (MSE) – A process and modeling framework used to assess performance of management strategies given uncertainty relative to a set of predefined management objectives.





PFMC Initiative to Review Indicators

While technical reviews of the statistical analyses and models are useful, they do not provide incentives for broad stakeholder and manager participation in ESR development and refinement. In 2015, the PFMC addressed this shortcoming by proposing a new ecosystem initiative, the “Coordinated Ecosystem Indicator Review” (Figure 2). This initiative outlined a stakeholder review process (Box 1) to address four questions (Pacific Fishery Management Council (PFMC), 2017a): (1) What can the PFMC reasonably expect to learn from, or monitor with, the existing indicators in the ESR? (2) How well do the existing indicators accomplish their intent, and are any redundant? (3) Are there alternate indicators, information, or analyses that may perform better in context? and (4) Are there additional ecosystem indicators that could help inform PFMC decision-making?
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FIGURE 2. Overview of opportunities for stakeholder feedback (orange boxes) on ESR indicators and ecosystem models and analyses in the PFMC management process.


In early 2016, the PFMC hosted a series of webinars to present the ESR indicators and discuss the four questions detailed above. Webinars were open to the public and were widely advertised by the PFMC in advance during their meetings, on their website, through their ∼1500 address email list, and through notice in participating government publications. The PFMC compiled all comments and recommendations raised during the discussion portions of the webinars. From March to September 2016, the PFMC also directly solicited feedback on the initiative’s four focal questions from its scientific and technical advisors and stakeholders. Between the live webinars and the solicitation to review the recordings of the webinars, the PFMC received 88 comments and recommendations from stakeholders and the public.



Using Public Process Results to Refine Ecosystem Modeling Planning

In this paper, we consider how the ideas generated in the initiative’s public review process might be used in ecosystem modeling planning. From the 88 comments and recommendations (Pacific Fishery Management Council (PFMC), 2016a,b) we selected only those that emphasize the need for ecosystem-level understanding, which acknowledges that ESRs should include not only status and trends of different indicators, but also a synthesis of how indicators interact and affect one another. Comments were characterized as belonging to the ecosystem-level understanding theme if they related to interactions between ecosystem components. The interactions considered were (1) interactions between species, (2) interactions between fishers and species, (3) impacts of abiotic components on species, and (4) impacts of abiotic components on fisheries. The authors found 17 comments that matched these criteria and thus were salient to the ecosystem-level understanding theme and could be addressed through greater inclusion of ecosystem model outputs in the ESR or in other reports to or conversations with the PFMC. These are reported in Table 1. Per Townsend et al. (2019), for each comment, we identified the relevant policy issue, management objectives, and the existing management process that would be used to address the problem (Table 1). In the Results and Discussion section, we describe in more detail the ecosystem-information needs highlighted in the 17 comments and assess which EBFM modeling activities could contribute to resolving the management concerns. We connect the policy issues highlighted in the stakeholder comments to specific models and analyses in Table 2. In Table 2 we present existing modeling products, but also highlight the additional modeling needs required to improve management utility. Here, EBFM modeling activities are defined broadly as those models and analyses used to assess interactions between physical, biological, and/or human components of the ecosystem. These tools include a variety of empirical approaches, species distribution models, biophysical models, climate-informed population dynamic models, multispecies models, food web models, and end-to-end ecosystem models.


TABLE 1. Comments from the stakeholder review of ESR Indicators that could be informed by ecosystem models and analyses with relevant policy issues, management objectives, and existing management processes to address them.
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TABLE 2. Overview of existing or potential modeling products that could be developed to address the specified comments from managers and stakeholders.
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RESULTS


Environmental Drivers of Biological Productivity

The first set of ecosystem-level understanding comments (Table 1, Comments 1–8) highlighted the need for improved scientific advice on how climate, physical oceanography and biogeochemistry indicators are related to biological productivity (i.e., recruitment, mortality, or growth of target and protected species). Comments 2 to 5 emphasized the requirement for improved quantification of how oceanographic processes, and in particular upwelling, affect species of management concern, such as salmon or groundfish. Comment 6 suggested, given the cumulative and potentially synergistic impacts of a variety of climate drivers on a species’ productivity, a need for a more in-depth synthesis of how environmental conditions interact to affect biological components. Comments 7 and 8 stress the need to also assess the utility of seabirds as indicators of forage or salmon productivity. Ultimately, as reflected in Comment 1, stakeholders are interested in anticipating the risk of an undesirable outcome and minimizing its impact, and thus need relevant indicators for forecasting and risk assessment.

This topic was associated with the highest number of comments (Table 1), perhaps because productivity indicators can inform the setting of species-specific harvest levels, one of the main management measures used by PMFC. Harvest levels are often dependent on a forecast of stock biomass and on reference points (fishing intensity or biomass thresholds that should not be crossed or targets to be achieved) derived from stock assessments. Use of climate-linked natural mortality in stock assessment can generate less variable reference points on which to base catch advice (O’Leary et al., 2019). If predictive skill is sufficient, the integration of environmental indicators of recruitment can also improve estimates of reference points (Basson, 1999). In addition, short-term recruitment forecasts can enable managers to alert fishing communities of potential changes in harvest levels, allowing for development of potential remediation strategies (Tommasi et al., 2017b). However, the added benefit of including environmental indicators into the estimation of stock-status depends on the species’ life-history type (Haltuch et al., 2019b). Environmentally informed short-term recruitment forecasts are particularly important for semelparous species like salmon, as there is no direct carryover of spawning biomass across years, or for forage species whose fishable biomass consists in large part of young age classes (Tommasi et al., 2017c). Catch advice for long-lived stocks may instead be more responsive to changes in natural mortality (Bax, 1998).

Usefulness of stock productivity indicators to management decisions is also dependent on their availability relative to the timing of council decision making. Some environmentally based forecasts of salmon returns are dependent on ocean conditions during first ocean entry 2 or 3 years prior (e.g., Rupp et al., 2012; Burke et al., 2013), and thus rely on past, observed environmental covariates. This has facilitated their inclusion in some management-relevant salmon forecasts (Burke et al., 2013; Litz and Hughes, 2020). However, for other species and salmon stocks (e.g., Satterthwaite et al., 2020) key indicators may need to be forecasted months to a year in advance to improve catch advice or even longer to inform stock status projections (e.g., for groundfish). Thanks to recent advancements in global climate prediction systems, forecasts of biologically relevant variables in coastal regions months to years in advance can be skillful in some regions (Stock et al., 2015; Tommasi et al., 2017a,b; Hervieux et al., 2019; Jacox et al., 2019a; Park et al., 2019; Jacox et al., 2020). Integration of such forecasts with environmentally informed single species population dynamics models can enable managers to set more effective catch limits, but their utility will be dependent on how well management needs align with the regions and times with adequate forecast skill. For example, sea surface temperature (SST) forecast skill in the CCE is variable in space (with highest skill in more northern latitudes) and time (with highest skill for late winter and early spring forecasts) (Jacox et al., 2019a). In an evaluation of management performance for sardine, ecological and economic metrics were improved by SST forecasts only up to 4 months in advance, as forecast skill degraded at longer lead times (Tommasi et al., 2017c). This 4-month lead time may not be sufficient for inclusion of such approaches into current CPS management timelines (Tommasi et al., 2017c), but other applications may be able to leverage greater predictability for different seasons, lead times, regions, or environmental variables.

Use of environmental indicators of stock productivity to inform tactical decisions (e.g., catch advice) require adequate process understanding of the environment-species response, long time series of both biological and environmental variables at appropriate spatial and temporal scales, a strong effect of the environmental covariate on stock dynamics, and the ability to monitor and skillfully forecast the indicator (Skern-Mauritzen et al., 2018; Haltuch et al., 2019b). Improvements of management performance with the use of climate-enhanced stock assessments and environmental covariate-based harvest control rules (HCRs, e.g., Howell et al., 2021) as compared to other methods needs to be carefully evaluated with management strategy evaluation (Haltuch et al., 2019b). In some cases, application of survey-derived recruitment indicators may be more appropriate (Walters and Collie, 1988). Nevertheless, since the stakeholder review of ESR indicators, some analyses and models that speak to the needs highlighted in Comments 1–8 have been developed and used to inform PFMC management decisions (Table 2). We highlight those examples below and then discuss future research avenues.

For salmon, in 2017, the Council’s advisory bodies expressed concern about increasing variability in salmon escapements and worsening performance of forecasts (Pacific Fishery Management Council (PFMC), 2017c). This, along with earlier calls to investigate potential threshold values in indicators reported in the ESR (Pacific Fishery Management Council (PFMC), 2015b), prompted Satterthwaite et al. (2020) to investigate non-linear relationships between environmental covariates and forecast performance for Chinook salmon stocks of particular management concern. While mechanistic drivers of salmon demographic rates need to be investigated further before direct inclusion into pre-season forecast models, the work demonstrates that environmental indicators could be used indirectly to alert managers that forecast performance may be poor and that a precautionary approach may be warranted (Satterthwaite et al., 2020).

Similar correlative approaches also inform the PFMC’s environmentally driven exploitation rates in the HCR for Pacific sardine (Sardinops sagax, Pacific Fishery Management Council (PFMC), 2020), based on the recognition that the spawner-recruit relationship barely extended above the replacement line during cool periods, while indicating substantial compensation (surplus production) during warm periods (Jacobson and MacCall, 1995). In this case, rather than the environmental indicator being included directly in the stock assessment to inform a short-term forecast of fishable biomass, an age-structured population dynamics model with an environment-recruitment link was first used to determine how the fishing mortality reference point depends on a temperature indicator, and then a management strategy evaluation (MSE) was employed to compare performance of different types of harvest control rules and potential environmental indicators (Hurtado-Ferro and Punt, 2014). Temperature-dependent fishing mortality target reference points are also utilized for tactical management of cod (Gadus morhua) and whiting (Merlangius merlangus) in the Celtic Sea (Howell et al., 2021).

A relationship between sea level and recruitment has also been identified and included in the 2019 assessment for sablefish (Anoplopoma fimbria, Haltuch et al., 2019c). However, inclusion of the environmental indicator in the stock assessment did not influence assessment output as it was consistent with survey length and compositions (Haltuch et al., 2019c). For long-lived species like groundfish that recruit into the fishery at older ages and for which recent recruits make up a smaller fraction of the biomass, a short-term forecast (sub-annual to annual) of fishable biomass is largely informed by the observed fishery and survey data. A short-term recruitment forecast may therefore not substantially improve short-term biomass forecast skill and derived management measures. For this life history type, environmentally informed recruitment forecasts may inform longer-term (2 years onward) projections of stock biomass or reference points. To date, projections have not considered environmental conditions; however, it may be beneficial to do so in cases like sablefish, for which an environment-recruitment relationship has been established. However, the environmental covariate would need to be forecasted with adequate skill.

At PFMC, efforts to improve our understanding of drivers of species productivity and the performance of biomass forecasts and projections will continue in the future and are of interest to managers and stakeholders (Table 1, comments 1–8). There are numerous avenues by which ecosystem science could contribute, which are highlighted below and in Table 2. Improvements to ecosystem indicator development, such as the use of multivariate statistical techniques that reduce the dimensionality of a large set of covariates with minimal information loss, could refine inputs to existing environmentally driven forecasts (e.g., Rupp et al., 2012; Burke et al., 2013; Muhling et al., 2018). Exploratory statistical analyses based on improved ecological understanding of species interactions (e.g., trophic relationships) and employing a variety of data sources can also inform development of new productivity indicators (e.g., Tolimieri et al., 2018). Wells et al. (2017), examining seabird diet and forage survey data, demonstrated that salmon survival decreases when common murre (Uria aalge) switch from foraging juvenile rockfish (Sebastes spp.) offshore to anchovy inshore following changes in upwelling. Where seabird data exists, such an analysis could be extended, as suggested by Comment 8, to inform development of indicators for salmon stocks in the Northern CCE. Similar statistical models could be used to identify ecosystem indicators, such as seabird abundance or reproductive success, that relate to forage fish abundance (Comment 7).

Ecosystem models capturing the mechanistic processes leading to changes in demographic rates are also a promising tool to develop indicators to inform forecasts. For instance, processes occurring during the critical early ocean entry period have long been thought to be a major driver of overall cohort abundance for salmon (Pearcy, 1992; Beamish and Mahnken, 2001). Fiechter et al. (2015) developed a spatially explicit bioenergetics model of salmon linked to a configuration of the Regional Ocean Modeling System (ROMS) with biogeochemistry, and an index of juvenile salmon growth potential derived from this model was capable of describing a large proportion of variation in cohort strength (Henderson et al., 2019). The ROMS-informed bioenergetic model enabled synthesis of how oceanographic indicators (including krill concentration) affect juvenile growth potential (Fiechter et al., 2015). Then, a multivariate statistical technique was used to summarize the spatial variation in growth across years to inform a regression model of Central Valley Chinook salmon survival (Henderson et al., 2019). This model could now provide projections of juvenile survival informing pre-season forecasts of Central Valley Chinook returns, and a similar approach could be expanded to other stocks and species.

It could also be fruitful for ecosystem modelers to turn their attention to factors operating later in the life cycle that could influence growth, maturation rates or mortality. For salmon, improved estimation of maturation rates and mortality can inform forecasts based on sibling regressions where the returns of younger age classes in the previous year are used to forecast returns of older ages from the same cohort in forecast years (Peterman, 1982), as well as projections of future fishable biomass. Indeed, integration of an environmentally informed mortality parameterization in a population dynamics model of summer flounder (Paralichthys dentatus) in the U.S. East Coast resulted in improved biomass estimates (O’Leary et al., 2018).

Development of the Henderson et al., 2019 ecosystem model and derived salmon productivity indicators were facilitated by advancements in ocean modeling of the CCE. Assimilation of observational oceanographic data with ROMS has now enabled the development of a fine-scale reconstruction of physical ocean conditions going back to 1980 (Neveu et al., 2016)1. These capabilities were also essential for the development of key indicators of rockfish recruitment (Schroeder et al., 2018), sablefish recruitment (Tolimieri et al., 2018), petrale sole (Eopsetta jordani) recruitment (Haltuch et al., 2020), and new indices of upwelling (Jacox et al., 2018) or upwelling habitat compression (Santora et al., 2020) that may be relevant to target and protected species.

However, as evidenced by Pacific sardine (McClatchie et al., 2010; Jacobson and McClatchie, 2013; Zwolinski and Demer, 2019), correlative relationships can break down over time (Myers, 1998). Thus, an adaptive process enabling regular re-evaluation of the relationships between environmental indicators and fish productivity needs to be in place if they are to inform management (Skern-Mauritzen et al., 2016). For salmon, the PFMC has established processes for annual technical review of proposed changes to forecast methodology (Pacific Fishery Management Council (PFMC), 2008). The existing ESR indicator technical review process could enable an annual re-evaluation of the correlative relationships between stocks and their environment and allow for periodic refinements to the oceanographic, ecosystem and statistical models used to estimate species responses to the environment. Predictions derived from ecosystem-based models (e.g., Henderson et al., 2019) might be considered as competing models of existing approaches, and the ESR process could also provide a platform where different approaches are discussed, compared, and potentially integrated in a forecast ensemble, as is regularly done in weather and climate forecasting (Kirtman et al., 2014; Bauer et al., 2015).



Species Distributions and Their Overlap

The second set of ecosystem-level understanding comments (9 and 10), reflects the management need for more spatial distribution information to minimize the risk of interactions between fisheries and protected species, thereby increasing opportunities to fish for the target species (Table 1). This information need has become particularly critical in recent years, as populations of protected predators (e.g., sea lions) in the CCE recover, increasing the potential for overlap with fisheries (McClatchie et al., 2018). In addition, Comment 10 highlights the need to assess the links between changes in prey availability over space and predator distribution (Table 1). Understanding spatiotemporal overlap between predators and potential prey species is particularly important for the development of a more ecosystem-focused approach to fisheries management (Carroll et al., 2019; Link et al., 2020). A number of negative ecological and economic events occurring within the CCE in recent years, including, but not limited to, unusual mortality events for sea lions and seabirds (Wells et al., 2013), and unprecedented whale entanglements (Santora et al., 2020), were the result of changes in predator distribution linked to changes in forage availability and unprecedented environmental conditions. These incidents served to highlight the need for spatial tools mapping changes in species overlap in response to changes in environmental conditions.

Species Distribution Models (SDMs) are a common tool used to describe the distribution of species, often in relation to their environment, or in relation to space and time covariates that act as proxies for unobserved processes. These geostatistical models allow for the inclusion of multiple predictors and are flexible enough to capture complex or non-linear relationships between a species and its environment (Guisan and Zimmermann, 2000; Elith and Leathwick, 2009; Norberg et al., 2019). SDMs developed using long observational time series can be used to describe the typical distributions of species. As such they have the potential to highlight anomalous changes in species distributions as a function of environmental change and to examine or anticipate how environmental conditions cause variability in species associations (Carroll et al., 2019; Table 2), making them useful tools to address Comments 9 and 10. Indeed, SDMs have been applied in various management contexts worldwide although predominantly in terrestrial systems. SDMs can be used to assess historical or climatological distributions (Valinia et al., 2014), dynamic distributions (Stanton et al., 2012), or predict how species distributions will change over multiple forecast horizons, from short-term forecasts (Payne et al., 2017) to climate change projections (Briscoe et al., 2016). A spatiotemporal mixed-effects model (vector autoregressive spatiotemporal model) has become an important SDM for fisheries scientists who seek to develop accurate historical indices of abundance for use in stock assessment (Thorson, 2019b). SDMs have also been used to produce climatological prediction maps of marine mammals to assess risk from sonar operations (Forney et al., 2012; Roberts et al., 2016; Robinson et al., 2017), to describe temperature-driven interannual variability in the distribution of Pacific hake (Merluccius productus) in the context of its joint management by the United States and Canada (Malick et al., 2020a), for spatial management planning (e.g., Leathwick et al., 2008; Valavanis et al., 2008; Esselman and Allan, 2011; Smith et al., 2020), and climate change impact assessments (e.g., Hazen et al., 2013; Kleisner et al., 2017). Of particular interest to managers is the use of SDMs to minimize interactions between fisheries and protected species or vulnerable life stages (e.g., Hobday et al., 2011; Howell et al., 2015; Lewison et al., 2015 and references therein, Druon et al., 2015; Little et al., 2015; Hazen et al., 2018).

Most SDMs have been applied in a historical context, to describe and understand drivers of past changes in species distribution and their overlap. An increasing number of studies are also using SDMs for climate change applications (e.g., Shelton et al., 2020), but use of SDMs to anticipate short- to medium-term (days to years) changes in species availability has only recently begun to receive attention (e.g., Kaplan et al., 2016; Thorson, 2019a) despite the need for such products (Comment 9). Model-based distribution forecasts have been used to reduce unintended catch of southern bluefin tuna in the East Australia Current (Hobday et al., 2010) and to explore reducing seabird interactions in the North Pacific Transition Zone (Žydelis et al., 2011). Since the stakeholder review of ESR indicators, pioneering applications have also been developed for the CCE that address Comments 9 and 10, as outlined below and in Table 2.

SDMs and satellite data or ocean model output are providing near-real time likelihoods of ship strike risk for blue whales (Balaenoptera musculus) in the California Current (Hazen et al., 2017; Abrahms et al., 2019), and the ratio of catch to bycatch of protected species in the California swordfish fishery (Brodie et al., 2018; Hazen et al., 2018; Welch et al., 2019; Table 2). The latter example, termed EcoCast, integrates predictions of habitat suitability for a target species (swordfish, Xiphias gladius) and multiple bycatch species (blue sharks, Prionace glauca; leatherback turtles, Dermochelys coriacea; and California sea lions, Zalophus californianus) to provide an integrated map of opportunity and risk. This tool is now fully operational (Welch et al., 2019), providing daily predictions for use by fishery managers and fishers when deciding where to fish or adjust management regulations. (Operational, here, and throughout the paper is defined as in Welch et al. (2019), “self-contained workflows that run automatically at a prescribed temporal frequency”). In the northern CCE, the J-SCOPE project uses a ROMS model with biogeochemistry and provides twice-annual seasonal forecasts that have shown skill for physical and biochemical conditions, including hypoxia, at lead times up to ∼4 months (Siedlecki et al., 2016), and these are being used to forecast Pacific hake and sardine distributions and migration (Kaplan et al., 2016; Malick et al., 2020b) and inform the ESR (Harvey et al., 2019).

Several recent advancements may allow for further development of SDMs to anticipate changes in species distributions and their overlap in the CCE at longer lead times (1–12 months), and thus expand their relevance for management applications (Comments 9 and 10). Advancements include improvements in the availability of output from global climate prediction systems at lead times up to a year, the configuration of regional ocean models to downscale such predictions for the CCE, and the implementation of SDMs that use ocean model fields as input (e.g., Brodie et al., 2018). Indeed, decision support tools at these longer lead times have been used to model the distribution of target and bycatch species in Australian fisheries up to 4 months in advance using output from global climate prediction systems (Hobday et al., 2011; Eveson et al., 2015).

Continued development of such products would require further interactions between PFMC managers, stakeholders, and scientists to determine species, regions, and timeframes of interest, and to ensure that physical and ecological forecast skill aligns with management needs. The ESR technical review that has created opportunities to begin those discussions may continue to provide a forum moving forward. Predictions of extreme events may be of particular interest to managers, and several steps must be taken to evaluate whether such predictions can be useful. For example, temperature anomalies were predictable for some but not all periods of the persistent 2014–2016 CCE heatwave (Jacox et al., 2019b), and the ability of SDMs to capture species distribution shifts under these novel conditions, even with perfect environmental data, differs by SDM model type and species (Becker et al., 2020; Muhling et al., 2020). Thus, more work is required to assess whether SDM forecast skill is adequate for management applications, as skillful forecasting of species distribution changes requires that both environmental conditions and species responses to those environmental changes are accurately predicted. This research will include the determination of which SDM architectures are best suited to anticipate changes in species distributions over the timescales most relevant to managers.



Trophic Interactions and Management Trade-Offs

Comments 11 and 12 highlight the need for ecosystem synthesis to examine the tradeoffs between protection of dependent predators, sustainability of fish populations, including both forage and the higher trophic level target species feeding on them, and the resilience of fishing communities (Table 1). It is becoming apparent that trophic cascades resulting from variability in forage can have substantial and surprising consequences on coastal communities on the U.S. West Coast (Wells et al., 2017; Santora et al., 2020). Therefore, in addressing Comments 11 and 12 (Table 1), modeling frameworks enabling a broad approach to evaluating tradeoffs should be considered. Below, we focus on tools well suited to address these tradeoffs: end-to-end models, management strategy evaluation, and spatial modeling, and highlight specific examples of their application in the CCE to inform management issues. These examples are also reported in Table 2 and avenues for further research are discussed.

In the CCE, fishery managers must weigh the provision of adequate forage for dependent species against the importance of the CPS (sardine, squid, anchovy and mackerel) fishery to West Coast communities, while also safeguarding the forage species themselves. This balancing act is not unique to this region, and tradeoffs between forage fish harvest and predators have long been the focus of global analyses, modeling, and task forces (e.g., Cury et al., 2011; Smith et al., 2011; Pikitch et al., 2012). The need for consideration of trophic interactions in the management of CCE CPS fisheries was recognized early on by the PFMC, with the earliest information on trophic interactions informing management advice being derived from simple correlative relationships. For example, the first FMP passed by the PFMC, the 1978 Northern Anchovy FMP, included a cutoff parameter below which large-scale harvest was not allowed to provide adequate forage for brown pelicans (Anderson et al., 1980). Information about similar trophic relationships were instrumental in the PFMC’s decision in the early 2000s to reduce the Allowable Biological Catch of shortbelly rockfish, a previously non-targeted species, based on the significance of pelagic juvenile shortbelly rockfish to seabirds, salmon and other higher trophic level predators.

End-to-end ecosystem models like Atlantis (Fulton et al., 2011) and Ecopath with Ecosim (Christensen and Walters, 2004), which model the entire food-web from plankton to top predators, can be used to assess the bottom-up effects of increased removals of forage fish on piscivorous fish species and protected species, such as marine mammals and seabirds, that depend on forage fish as prey, as well as the top-down impacts of increasing predator biomass on forage fish (Table 2). Given the long-standing objective of ensuring adequate forage for predators in the CPS FMP, and consistent with the 1998 Ecosystem Principles Advisory Panel (Ecosystem Principles Advisory Panel (EPAP), 1999), end-to-end ecosystem models became increasingly important to PFMC CPS management efforts during the early 2000s. For example, later amendments to the CPS FMP addressing krill management in the CCE were informed by both empirical data and insights from mass balance ecosystem models (Field et al., 2006). Confronting the management needs with the limitations of both the data and the models was helpful in this effort, as a key outcome was the recognition that the apparent high consumption of krill by key predators was often inconsistent with (considerably greater than) the estimates of krill abundance and productivity (Pacific Fishery Management Council (PFMC), 2009). Although the reasons for this inconsistency remain unknown, this limitation informed the decision to ultimately prohibit a directed CCE krill fishery in the absence of improved information for management.

Recognizing that models that include ecosystem processes and interactions are key to better informing the tradeoffs between forage needs and fisheries, among other things, the PFMC asked for a methodology review (Box 1) of the California Current Atlantis model in June 2014 (Pacific Fishery Management Council (PFMC), 2014; Kaplan and Marshall, 2016). The review process served as a platform to provide feedback on improvements required to increase utility of the model to management. For instance, the review noted that many of the management scenarios integrated in the CCE Atlantis model up to that point in time were not well aligned with specific PFMC management needs. Following the Atlantis methodology review and stakeholder review of ESR indicators, end-to-end ecosystem models for the CCE continue to be refined and have been used to evaluate long-term trophic impacts of U.S. West Coast groundfish fisheries (Pacific Fishery Management Council (PFMC), 2015a) and to assess the impacts of depleted forage species on predators (Koehn et al., 2016; Kaplan et al., 2017, 2019). The CCE Atlantis model can also be used to simulate the risks of climate-driven changes in the ocean environment, such as upwelling (Comments 3 and 4) and ocean acidification (Comment 13) on the CCE food-web, and it was linked to downscaled global climate projections to evaluate how the impacts of ocean acidification on benthic invertebrates may propagate through the CCE food-web and its fisheries (Marshall et al., 2017; Table 2). Clearly, end-to-end ecosystem models including species interactions and environmental drivers can potentially be further applied to assess tradeoffs between the ecosystem and economic impacts of management decisions (Table 2), but continued dialogue between managers and modelers is required to further tailor ecosystem models to answer management needs.

MSE has been widely used in fisheries management to highlight tradeoffs associated with alternative management actions, and to identify procedures that are robust to uncertainty (Punt et al., 2016a; ICES, 2021). MSE is therefore also an important tool to address Comments 11 and 12, related to how harvest rules for forage species may affect dependent predators, and vice versa. In simpler “one way” or bottom-up cases, an ecosystem model can be used to trace impacts of harvest rules on forage fish populations and fishery yields, and subsequently on predators. This was done in a recent herring MSE on the U.S. East Coast (Deroba et al., 2019; Feeney et al., 2019). Complex “two way” cases trace top-down impacts of predators on forage fish as well as bottom-up impacts on predators and are of interest when investigating multispecies harvest control rules or ecosystem reference points need to be tested. Kaplan et al. (2021) discuss additional applications of ecosystem models within MSE, including as operating models, and to simulate monitoring, assessment, and harvest control rules.

In one MSE example from the CCE, Punt et al. (2016b) applied a models of intermediate complexity for ecosystem assessments (MICE, Plagányi et al., 2014) rather than an end-to-end ecosystem model to assess the impact of CPS harvest rules on dependent predators. MICE typically simulate prey-predator interactions, but on a smaller set of ecosystem components. These simpler multispecies models are useful for answering targeted management questions relative to a specific policy concern. Their lower complexity allows, as in stock assessment, for parameter estimation based on fits to data, and uncertainty quantification, making them well suited for MSEs, and more readily understood by management bodies familiar with stock assessment models. The Punt et al. (2016a) MSE examined the links between the forage base and higher trophic level species (Comment 11), specifically the links between the population dynamics of sardine and anchovy and of two protected predator species, brown pelican (Pelecanus occidentalis) and California sea lion. The MSE was able to assess the tradeoffs between fishing on CPS and protection of predators (Comment 12, Table 2) by testing performance of current harvest policies for sardine with respect to both fishery and conservation goals. The MICE was developed in parallel with the Atlantis and Ecopath models mentioned above, facilitating model development, comparison and engagement with managers (Francis et al., 2018; Kaplan et al., 2019). Unlike the Ecopath or Atlantis applications, this MICE was able to quantify the performance of realistic management measures (including reproductive success and survival of protected species) while considering uncertainty in environmentally driven recruitment scenarios for sardine and anchovies as well as structural uncertainty regarding predator dependence on forage (Punt et al., 2016b).

Linking changes in the availability of forage species to higher trophic levels within particular geographic areas, the need highlighted by Comment 11, requires spatially explicit modeling for population dynamics of the species of interest. Both the CCE Atlantis and MICE model described above are spatial and can address Comment 11. However, the models have so far assumed a spatial distribution of forage species that remains constant over time. Considering the evidence for environmentally driven spatio-temporal variability in forage species (Muhling et al., 2020), with impacts on predator demographic rates, particularly for central place foragers such as sea lions (Fiechter et al., 2016), and on port-level availability to fishers (Smith et al., 2021), a valuable goal for future research is the refinement of existing ecosystem models in the CCE to include environmentally driven changes in forage distribution, as has been done elsewhere (e.g., Coll et al., 2019; Moullec et al., 2019). Given their fine-scale representation of spatial movement processes, individual based models (IBMs) are also suited to evaluate impacts of varying prey dynamics on central-place predator distribution and foraging behavior. For example, a multi-species IBM model of sardine, anchovy, and sea lions coupled to a regional ocean model with biogeochemistry was used to examine the impacts of environmental variability and prey availability on sea lion feeding success in the central CCE (Fiechter et al., 2016).



Interactions Between the Environment and Fishing Communities

The final set of comments (14–17) underscores the need for understanding how changes in climate variability, mediated via ecosystem processes, affect fishing communities (Table 1). Climate change is expected to alter fish abundance and distribution (Cheung et al., 2010; Morley et al., 2018) and PFMC advisory bodies are interested in evaluating the potential risk of shifting species availability to coastal communities (Comments 14–15). Fine scale oceanographic data from remote sensing and ocean models, in combination with spatially explicit survey, tagging or logbook data, has enabled development of SDMs for a variety of PFMC-managed species (e.g., Thorson et al., 2016; Shelton et al., 2020). When data on fisher behavior (e.g., trip distance) is available from logbooks, port-specific fishing grounds can be identified and target species availability from SDMs over the fishing grounds can be computed (Rogers et al., 2019). Below, and in Table 2 we provide CCE-specific examples of how environmentally informed ecosystem models have been integrated with economic analyses to address comments 14–17, and what gaps remain.

With regards to the groundfish fishery in the CCE, indices of groundfish availability over distinct fishing grounds have been computed over the historical period (Selden et al., 2019; Table 2) and integrated into the ESRs (Harvey et al., 2019). To address comments 14–15, future work could develop such indices using environmentally informed SDMs to assess climate-induced shifts in economic opportunity (e.g., Smith et al., 2020), and project such changes into the future to assess the vulnerability of coastal communities to risk from climate change, as has been done for New England and Mid Atlantic fishing communities (Rogers et al., 2019). When spatially explicit other ecosystem models can also inform port-level socio-economic indices. In the CCE, the spatially explicit structure of the Atlantis model allowed translation of the results assessing climate impacts on the CCE food-web and its fisheries (Marshall et al., 2017) to port-based fishing communities and fleet-level economic effects (Hodgson et al., 2018). These model results have been presented to the PFMC’s to inform an ongoing strategic initiative on the effects of climate variability and change on fish stocks and fishing communities (Kaplan et al., 2018). By the explicit consideration of biological processes, end-to-end ecosystem models and MICE also have high potential to assess the cumulative effects of multiple environmental drivers (Comment 6, Table 2), e.g., under long-term climate change (Ainsworth et al., 2011; Koenigstein et al., 2016).

There is also a need to assess how extreme weather events directly affect safety of fishers (Comment 16, Table 1). Climate-change driven shifts in the frequency and strength of extreme weather events have the potential to directly affect the safety of commercial, recreational, and subsistence fishers. An active area of atmospheric research is concerned with how climate change may drive changes in storminess (Knutson et al., 2010; Dominguez et al., 2012; Kossin et al., 2016; Mölter et al., 2016; Ornes, 2018; Swain et al., 2018; Teich et al., 2018). Fishers and boaters are among the most sophisticated consumers of weather forecast information (Savelli and Joslyn, 2012; Finnis et al., 2019; Kuonen et al., 2019). Understanding how fishers respond to extreme weather events such as storms is essential to assessing the vulnerability of fishers and fishing communities to potential changes in storminess (Sainsbury et al., 2018), as well as consideration of how fishery-specific management and regulatory incentives affect fishers’ safety by influencing the level of risk fishers take to catch and land their fish (Pfeiffer and Gratz, 2016). Indeed, modeling work has shown that catch shares and other types of management that eliminate a race for fish and allow flexibility in the timing of trips decrease the propensity to take trips in hazardous weather (Petursdottir et al., 2001; Pfeiffer and Gratz, 2016; Petesch and Pfeiffer, 2019; Pfeiffer, 2020). Hidden Markov Models provide a tool to uncover underlying fisher behavior from vessel tracking data, such as from vessel monitoring systems or automatic identification systems. Such models and data sources are being increasingly used to determine simple behavioral states of fishers, e.g., ‘fishing’ or ‘searching’ (Joo et al., 2015), as well as to identify environmental factors that influence their behavior (Watson et al., 2018). Future work may employ behavioral models informed by environmental conditions to examine how fisher behavior changes in response to adverse weather conditions, produce estimates of fishers’ risk tolerance, and help promote safety at sea by evaluating the change in risk from fishery policies and climate change (Table 2).

Integration of environmental indicators with socio-economic models can also enable quantification of the impact of extreme events on fishing communities (Comment 17, Table 2). For instance, the 2014–2016 marine heatwave in the CCE triggered an unprecedented harmful algal bloom (HAB) (McCabe et al., 2016; Ryan et al., 2017), leading to considerable economic losses in fisheries for Dungeness crab (Metacarcinus magister) (Moore et al., 2019). To better alert communities of potential fisheries closures during HABs and mitigate their effects via adaptive actions, advisory bodies requested development of a HAB index at a localized scale and for a quantification of the economic impacts of HABs on fisheries participants (Comment 17). Moore et al. (2019) have developed a localized, community-specific index of lost fishing opportunity from HABs by computing the proportion of the Dungeness crab fishing season lost to HAB closures, which may be of interest to managers. In a follow-up study, Moore et al. (2020), using regression models built from fishers’ survey data, found that individuals who were exposed to longer fisheries closures, as measured by the HAB index, suffered greater income losses. Moore et al. (2020) also identified potential adaptive actions to reduce the impact of HABs on Dungeness crab fishery participants. These actions include income diversification and fishing for alternate species or in alternate areas. In addition, Anderson et al. (2016) developed a model to provide nowcasts and 1–3 day forecasts of HABs for the California coast2 by linking ROMS and satellite output to a statistical model of the likelihood of a toxic algal bloom. To better assess Comment 17 and assess the socioeconomic impacts of future shifts in HAB dynamics, future work could focus on developing more holistic models linking the socioeconomic analyses identifying the effects of HAB on fisheries described above to predictive HAB models.



DISCUSSION

For scientific information and analyses to directly support or affect public policies and regulations, the policymaking process should promote opportunities for scientists to engage with policymakers (Hopkins et al., 2011; Cvitanovic et al., 2015). Although ecosystem modeling is relatively new to fisheries management, it has entered a policymaking space where the ongoing examination of the best scientific information available to analyze management questions is both expected by fisheries managers and required by law [16 U.S.C. §1851(a)(2), see also 16 U.S.C. §1362(2), §1386(a), and §1536(a)(2)]. U.S. federal fisheries management has a 40 + year history of discussing, debating, and improving fisheries science by bringing that science into the public arena and testing it through application to ongoing fisheries. Engaging in the existing policy making space of the fishery management council process allows ecosystem modelers to make that needed connection between modeling and management priorities.

In assessing the responses of managers and stakeholders to the review of ESR indicators, we demonstrated that policy needs for ecosystem science go beyond the setting and use of environmental indicators to improve forecasts of biomass and reference points required for the setting of harvest limits. Other uses of ecosystem models and analysis identified included: (1) assessment of shifts in the spatial distribution of target stocks and protected species to anticipate changes in availability and the potential for interactions between fisheries and protected species, (2) identification of trophic interactions to better assess tradeoffs between protection of dependent predators and resilience of fishing communities in the management of forage species and to holistically assess the impact of climate change on PFMC-managed species, and (3) synthesis of how the environment affects fishing communities, either via extreme events such as HABs or storms or via climate-driven changes in target species availability, to promote efficiency and profitability of fisheries. The identified policy needs largely reflect the broad aims of EBFM (National Marine Fisheries Service, 2016a) but were brought forward directly by managers and stakeholders operating in the CCE and thus are relevant to their experience and specific requirements and are more regionally actionable. By including a stakeholder review of ESR indicators into an existing policy discussion process, other regions could replicate our work to ensure that their ecosystem modeling complements legally mandated avenues for using best available science in management and for setting research priorities (Box 1, Pacific Fishery Management Council (PFMC), 2018). Given limited resources, the process here outlined could then be followed by an ecosystem risk assessment (Holsman et al., 2017) to prioritize analyses and model development to focus on initially, as was done successfully by the U.S. Mid-Atlantic Fishery Management Council (Gaichas et al., 2018).

While existing ecosystem modeling capabilities in the region can address many of the policy needs identified by the ESR comments (Table 2), for some applications, improvements in ecosystem modeling capabilities are required to further the utility of ecosystem models and analyses to management needs (Table 2). Comments 1 and 10 stressed the need to anticipate future changes in productivity or species interactions. While ecosystem models and analyses have shown skill for some species in predicting changes in productivity and distribution over the historical period using observed data or data assimilative ocean model output (e.g., Brodie et al., 2018; Tolimieri et al., 2018) and have in some cases been used to assess impacts of climate change (Hazen et al., 2013; Haltuch et al., 2019a), the skill of near term (months to years in advance) ecological forecasts needs to be tested to assess their utility to the setting of catch limits, biomass projections, or spatial management measures at the spatiotemporal scales that are relevant to managers. Development of forecasting capabilities for fish productivity or distribution changes would also benefit from expansion of the use of ecosystem models and analyses linked to oceanographic models to improve mechanistic understanding and to develop indicators with high explanatory power in modeling changes in species responses to environmental variability (e.g., Brodie et al., 2018; Tolimieri et al., 2018; Henderson et al., 2019). Utility of such methods should be assessed relative to current approaches and as part of a forecasting ensemble.

The ESR comments also show a clear desire on the part of managers and stakeholders to better assess the broader ecosystem impacts of management actions, particularly with regards to the tradeoffs between the forage needs of predators, fisheries for prey and predator species, and protections for non-target predator stocks. In light of the stakeholders’ and managers’ comments, ecosystem models have the potential to be used more routinely to assess the impact of changes in forage to dependent predators when linked to stock assessments (e.g., Drew et al., 2021) or MSE model output (e.g., Deroba et al., 2019), and to develop multispecies harvest control rules (HCRs) or ecosystem-level reference points (Link, 2018; Fulton et al., 2019; Holsman et al., 2020). This is in addition to their demonstrated utility in addressing specific strategic questions, such as the role of krill in the ecosystem (e.g., Pacific Fishery Management Council (PFMC), 2009) or the impact of climate change on PFMC-managed species (e.g., Marshall et al., 2017). However, in some cases, model refinements to include more realistic fishing scenarios based on current harvest rules or more realistic responses to environmental variability, particularly with regards to changes in species distribution, may be required before implementation (Table 2).

Many comments also acknowledged the need to better integrate human dimension considerations when assessing impacts of management policies on port-level socioeconomic metrics, particularly within the context of climate variability and change. While case studies for specific regions and fisheries have shown promising approaches (e.g., Plagányi et al., 2013; Rogers et al., 2019; Selden et al., 2019), further development of methods linking spatially explicit biological models to socioeconomic outcomes, as well as improved consideration of the diversity of harvesting portfolios (Frawley et al., 2021), is required. In particular, links to on-shore community impacts, many of which are qualitative socio-cultural measures, have been neglected and may require direct consultation with communities rather than quantitative modeling (Okamoto et al., 2020). This will necessitate further communication not only between ecosystem modelers and managers, but also between ecosystem modelers, managers, and (non-economic) social scientists. While the findings presented here can, in collaboration with managers and stakeholders, help refine ecosystem modeling planning, ecosystem model development for improved management applicability also needs to be balanced with research and development innovations to identify emerging information needs.

As ecosystem modeling insights evolve to more explicitly inform both tactical and strategic management, the means to better quantify and present uncertainty in such model outputs or scenarios will become more critical (Link et al., 2012; Weijerman et al., 2015; Jacobsen et al., 2016; Haltuch et al., 2019b). Combining information across approaches via model averaging or ensembles (Marmion et al., 2009; Ianelli et al., 2016; Karp et al., 2019), or using Bayesian updating (Staton and Catalano, 2019) or state-space models (Fleischman et al., 2013) to formally integrate observations and modeled effects of drivers from multiple stages of a species life cycle may provide more reliable model output, and improved characterization of forecast uncertainty (i.e., model spread) on which to base decisions (Ianelli et al., 2016). Agreement in the predictions of an ensemble of structurally different ecosystem models can also increase stakeholder confidence in the model results (Jacobsen et al., 2016). MSE frameworks, which assess robustness of alternative management strategies to a range of uncertainties captured by a set of diverse operating models (Punt et al., 2016a), may be useful to both characterize uncertainty and communicate to stakeholders its impact on management performance.

Despite the growing need for ecosystem information and existing ecosystem modeling capabilities in the region potentially useful to the identified policy needs, only a few of these models or analyses have been implemented in management frameworks (Table 2). With regards to stock assessment science, there is a well-established routine review process that has enabled continued feedback between managers and modelers, and model refinement aimed at improving utility to management issues. Indeed, our work demonstrates that most implementations of ecosystem analysis in the PFMC have been via the development of indices for single-species climate informed population dynamics models (i.e., salmon forecasts, sardine HCR, sablefish stock assessment) aimed at deriving better estimates of biomass and reference points on which to base harvest decisions. These models are embedded in the PFMC process: council advisory bodies are familiar with them, they are regularly used to set catch limits, and their limitations and potential improvements are routinely discussed during their review process. This has facilitated faster uptake of ecosystem consideration in the PFMC via this type of vetted models. However, examples from other regions have demonstrated that regular dialogue between ecosystem modelers and advisory bodies via existing management council processes can foster, gradually, adoption of new management approaches (e.g., Holsman et al., 2016, 2019; Ianelli et al., 2019; Drew et al., 2021).

We suggest that in the PFMC and elsewhere, uses of ecosystem models and analyses could similarly be vetted and refined within the existing technical review, methodology review, stock assessment, and harvest setting process, or addressed in a more targeted review process such as for the Atlantis model in the CCE [Kaplan and Marshall, 2016, or as ‘key runs’ in ICES (2021)]. As for stock assessment, such interactions between managers and ecosystem modelers should be iterative. As highlighted in Figure 3, we propose that, for the PFMC, the annual technical review of ESR indicators, coupled with more in-depth methodology reviews when warranted, could serve as a forum for routine, iterative dialogue between managers and ecosystem modelers. This forum would enable discussion of ecosystem models and analyses showing potential utility but requiring further discussion on key details (e.g., species, timescales, and spatial scales of interest) with managers and stakeholders for implementation (Figure 3 and Table 2). For those analyses and models that have already been reviewed or implemented, this forum would provide a platform for periodic review of model refinements or new applications. The manager-modelers idea sharing process here presented (Figure 3) could enable the structured, iterative, and interactive communication between managers, stakeholders, and modelers that is key to refining existing ecosystem models and analyses for management use.


[image: image]

FIGURE 3. Overview of the PFMC forum for routine discussion of ecosystem models and analyses and the management process and policy issues informed by those models and analyses.


This paper explicitly looks at the comments on ESR indicators that pertained to an ecosystem-level understanding of fish stocks and fisheries. However, the comments that PFMC received on ESR indicators also ranged into questions about spatial management and links between climate variability and shifting stock distribution, extreme climate events, forecasting future risk, and about better understanding fishing community dependence on fishery resources and vulnerability to shifting stock availability. For natural resource managers, discussions of these wide-ranging questions and ideas are possible when working in an open, public process that involves stakeholders with diverse and sometimes competing goals. For ecosystem modelers, being open to the ideas that drive management processes and being willing to listen for how management processes communicate those ideas is key to successful connections between their models and management needs.

Several key aspects of our case study are present in other management systems for public trust resources, and this study may serve as a blueprint for matching models to management needs in a variety of policy making processes worldwide. To facilitate adoption of scientific knowledge in support of management decisions, existing natural resources management frameworks (e.g., Hopkins et al., 2011; Gregory et al., 2012; Mach and Field, 2017; Francis et al., 2018) highlight the need for continued, iterative engagement between scientists and decision makers. Here we find that both ecosystem scientists and managers have pre-existing tools in place, but nexus points between the science and management communities need to be present to foster information sharing and support the development of ecosystem models of interest and use to resource managers and the public. Development and use of ecosystem models should be guided by established best practices for model use (e.g., Collie et al., 2016; Punt et al., 2016a), forums like ecosystem modeling workshops that focus on model improvements and information sharing (e.g., Weijerman et al., 2016; Townsend et al., 2017), and science integration templates like integrated ecosystem assessment (e.g., Levin et al., 2009; Harvey et al., 2020). Resource management processes that require regular assessments of key resources (stocks, habitats, protected species) and activities (fishing, conservation actions) foster the scientific data collection that supports ecosystem modeling. Management processes, like fishery management councils, that maintain space in their processes for discussing ecosystem science and EBFM signal their openness to considering and using new ecosystem information as it arises and can serve as forums to facilitate matchmaking between models and management needs (see Figures 2, 3).
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Marine conservation areas are an important tool for the sustainable management of multispecies, small-scale fisheries. Effective spatial management requires a proper understanding of the spatial distribution of target species and the identification of its environmental drivers. Small-scale fisheries, however, often face scarcity and low-quality of data. In these situations, approaches for the prioritization of conservation areas need to deal with scattered, biased, and short-term information and ideally should quantify data- and model-specific uncertainties for a better understanding of the risks related to management interventions. We used a Bayesian hierarchical species distribution modeling approach on annual landing data of the heavily exploited, small-scale, and data-poor fishery of Chwaka Bay (Zanzibar) in the Western Indian Ocean to understand the distribution of the key target species and identify potential areas for conservation. Few commonalities were found in the set of important habitat and environmental drivers among species, but temperature, depth, and seagrass cover affected the spatial distribution of three of the six analyzed species. A comparison of our results with information from ecological studies suggests that our approach predicts the distribution of the analyzed species reasonably well. Furthermore, the two main common areas of high relative abundance identified in our study have been previously suggested by the local fisher as important areas for spatial conservation. By using short-term, catch per unit of effort data in a Bayesian hierarchical framework, we quantify the associated uncertainties while accounting for spatial dependencies. More importantly, the use of accessible and interpretable tools, such as the here created spatial maps, can frame a better understanding of spatio-temporal management for local fishers. Our approach, thus, supports the operability of spatial management in small-scale fisheries suffering from a general lack of long-term fisheries information and fisheries independent data.

Keywords: small-scale fisheries, spatio-temporal management, Chwaka Bay, Western Indian Ocean region, coral reefs, seagrass, Bayesian hierarchical model


INTRODUCTION

Small-scale fisheries employ over 90% of the world’s capture fishers (FAO., 2015, 2018) and are the major livelihood and protein suppliers in many coastal communities around the world (Chuenpagdee, 2011; Belhabib et al., 2015; Teh and Pauly, 2018; Loring et al., 2019; Salas et al., 2019). It is believed that well-managed small-scale fisheries can contribute to poverty alleviation and food security (Bene et al., 2007; Purcell and Pomeroy, 2015). However, assessing and managing these fisheries is challenging given the large number of species caught and the adaptive behavior of fishers in space, time, and fishing methods (Wiyono et al., 2006; Salas et al., 2007; Daw, 2008). The lack of alternative livelihoods and the strong resource dependency of many small-scale fishing communities impede common management measures such as total allowable catches or effort regulations (Pomeroy, 2012). Within the context of a global agenda to protect 10% of coastal and marine ecosystems through area management by 2020 (CBD, 2010), many tropical countries attempt to manage their coastal areas through different use-zones (Wells et al., 2007; De Santo, 2013).

Such an example is found in Zanzibar (Tanzania), where most of the coastline has been designated a conservation area ranging from general use zones to locally managed partially protected and privately managed no-take areas (McLean et al., 2012; Rocliffe et al., 2014). Zanzibar has achieved international targets by protecting 11% of its continental shelf, but a rapid appraisal by regional experts estimated that only 25% of the coral reef MPAs are effective (Rocliffe et al., 2014). Chwaka Bay on the east coast of Zanzibar is an important, year-round fishing area, which is part of Zanzibar’s large Mnemba Island Marine Conservation Area management plan (MIMCA) (McLean et al., 2012). But compliance with mesh-size and gear regulations is low (de la Torre-Castro and Lindström, 2010; Wallner-Hahn et al., 2016), making the bay a general use zone. A long history of intense exploitation (de la Torre-Castro and Rönnbäck, 2004; Rehren et al., 2018a), an increase in fishing effort (de la Torre-Castro and Lindström, 2010; Department of Fisheries Development., 2016), the use of illegal gears, and spatial use-conflicts (de la Torre-Castro and Lindström, 2010) have led to concerns for the sustainability of Chwaka Bay’s fisheries. In a participatory workshop in 2016, invited fishers advocated for implementing a no-take zone to combat the decrease in their catches and the reoccurring user conflicts (Rehren, 2017).

However, a prerequisite for the success of such no-take zones is to understand the spatial distribution of target species and identify its environmental drivers. While the people of Chwaka Bay strongly depend on fisheries resources for livelihoods and food security (Jiddawi, 2012), fisheries managers face scarcity and low-quality of data (Rehren et al., 2020). Because of the high-cost and spatial limitations of fisheries independent data collection, often the only source of information is landings data of individual fishers. This information is relatively easy to collect but comes with a strong sampling bias (Pennino et al., 2019). Spatio-temporal modeling approaches, therefore, need to account for all dependencies in the data, use information from different sources, and quantify associated uncertainties. The latter is particularly important to better understand the risks related to management interventions. Bayesian hierarchical species distribution models are well suited for this purpose because they allow for a more accurate estimation of uncertainty, given that observed data and model parameters can be considered as random variables (Banerjee et al., 2004).

We use a Bayesian hierarchical species distribution modeling approach on landing data from different fishing gears collected in 2014 to assess and predict the distribution range of key target species of Chwaka Bay. We identify common environmental drivers of distribution and areas of overlapping high relative abundance to prioritize potential conservation areas. The analyzed species represent key target resources found in fisheries catches throughout the Western Indian Ocean. Thus, our results serve as baseline information for future studies in the region.



MATERIALS AND METHODS


Study Area

Chwaka Bay is a semi-enclosed bay-system located on the East Coast of Zanzibar (Tanzania) (Figure 1). The bay is relatively shallow, with depths up to 20 m in the outer borders and some parts of the bay falling dry during low tide. The sea surface temperature ranges from 25 to 31°C and salinity from 35‰ at the bay opening to 26‰ in the bay proper (Jiddawi and Lindström, 2012). Strong tidal currents, with a mean tidal range of 3.2 m (Nyandwi and Mwaipopo, 2000), cause high turbidity in the bay by stirring up sediments (Gullström et al., 2006). The north-eastern (November–March) and south-eastern (April–October) monsoons drive the bay’s climate, with the latter showing stronger winds, longer rain periods, and lower temperatures (Shaghude et al., 2012). The bay consists of a large mangrove forest on the southern shore, dense seagrass meadows throughout the bay, and a fringing reef at the bay opening. These habitats form a continuum through particulate organic matter exchange (Mohammed et al., 2001) and tidal, seasonal, foraging, and ontogenetic migration of fish (Gullström et al., 2012).
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FIGURE 1. Chwaka Bay, Zanzibar (Tanzania). The bay comprises large mangrove stands in the south, a fringing reef at the bay opening, and coral patches inside the bay. Seagrass meadows are found throughout the bay with dense aggregations toward the central part.


The diversity of habitats and the protection from wave energy through the fringing reef give rise to a highly productive, year-round fishing area surrounded by several fishing villages (Figure 1). The local community highly depends on the fisheries’ resources for income and protein supply (Jiddawi and Lindström, 2012). The fishery targets multiple species ranging from invertebrates (e.g., sea cucumber, octopus), reef- and seagrass-associated fish (e.g., parrotfish and rabbitfish) to large pelagic species (e.g., mackerels and jacks). The main fishing gears are basket traps, dragnets, handlines, spears, and, to a minor extent, floatnets, longlines, fences, and gillnets (Rehren et al., 2018a). Dragnet fishers are mainly from Chwaka village located in the south of the bay, and their numbers have increased over the years (de la Torre-Castro and Lindström, 2010). The nets are weighted down with stones and dragged over the seafloor. Spatial use-conflicts arise from dragnets’ damage to sensitive habitats and basket traps from other fishers (Jiddawi and Ohman, 2002; Mangi and Roberts, 2006; de la Torre-Castro and Lindström, 2010). Following a prohibition of dragnets in 2001, the fishing grounds off Marumbi village were demarcated with buoys to ensure the protection of Marumbi fishers from dragnet fishing (de la Torre-Castro and Lindström, 2010). Despite this locally enforced zone, all gears are deployed throughout the entire bay. For over 20 years, fishers report decreases in their catch rates (de la Torre-Castro and Rönnbäck, 2004; Geere, 2014), which, together with the use of small mesh sizes and destructive gears, has led to a general concern of overfishing in the bay (de la Torre-Castro and Lindström, 2010; de la Torre-Castro et al., 2014).



Data Collection

Fisheries data, habitat, and depth information were collected by the first author during the north–east monsoon (January–June) and the south–east monsoon (September–December) season in 2014. Data collection was carried out on 18 days per month at the main landing sites (i.e., Chwaka village, Uroa village, and Marumbi village, Figure 1), covering a minimum of 30% of the fishing boats that went fishing on the day of sampling. The number of fishers sampled per gear and landing site was based on the gear and landing site’s relative proportion. The catch was classified to family, or if possible to species level (Bianchi, 1985; Anam and Mostarda, 2012), weighed to the nearest 1 g, and standardized to weight per fisher [weight per unit of effort (WPUE), kg fisher–1]. The data collection was done directly at the beach during landing before the fishers sold their catch. Individuals of any size caught during fishing were landed and used at least for home consumption. The number of fishers, boat, gear, and fishing hours and the type of gear, boat, and propulsion were also collected. We assigned each sample to the corresponding lunar cycle (i.e., full moon, third quarter, new moon, and first quarter) and season (i.e., north–east monsoon and south–east monsoon). Information about the fishing location was collected as the name of the fishing ground. In April and December 2014, the main fishing grounds (71%) were mapped together with experienced fishers. The depth and seagrass and sand percentage cover were collected for 57% of the mapped fishing grounds and on additional non-fished, random locations in the bay. Depth was measured with a diving computer and corrected with the tide level records obtained from the Tanzania Ports Authority.1 The substrate percentage cover was estimated within 2–6 quadrats at each location. Depth, seagrass, and sand were then interpolated within the spatial extent of the sampling locations using kriging techniques. Seagrass nor sand displayed any trend, and thus ordinary kriging was used with a spherical and exponential variogram model, respectively. Depth distribution showed a clear trend, and thus universal kriging with a cubic variogram model was applied to data detrended by a second-order polynomial trend surface analysis. The interpolation was done using the geoR package (Ribeiro et al., 2020). Shapefiles of coral reef presence–absence were obtained from the Institute of Marine Science, Zanzibar. The daily sea-surface temperature of 2014 was obtained from the GHRSST level 4 data set (0.01° × 0.01°) downloaded from the OPeNDAP data repository2 using the XML package (Temple Lang, 2020) implemented in the R software. The temperature was transformed from Kelvin to Celsius, and the annual average was calculated. We used the habitat variables, depth, temperature, lunar cycle, and season as explanatory variables for the distribution of the WPUE of the most dominant species in the catches (Table 1). We chose the above explanatory variables because they have been identified as key predictors to determine spatial patterns of marine species (e.g., Beger and Possingham, 2008; Moore et al., 2009; Roos et al., 2015). The spatial distribution of the WPUE values was used as a proxy for the species’ relative abundance.


TABLE 1. Key characteristics of the analyzed target species.
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Statistical Analysis

All analyses and graphics were performed in R (R Core Team, 20203). Prior to the analysis, the explanatory variables were standardized (i.e., difference from the mean divided by the corresponding standard deviation) (Gelman et al., 2014) using the decostand function in the vegan package (Oksanen et al., 2019) to better interpret both the direction (positive or negative) and magnitude (effect sizes) of the parameter estimates. We used the variance inflation factor (VIF, <3) (Zuur et al., 2009) and the Pearson correlation statistic to exclude covariates with high multi-collinearity. Only sand and seagrass were correlated for all species, and thus sand was removed from the analysis. Categorical variables were examined for an imbalance in the number of observations. Potential interactions between the response and a predictor covariate conditioned on other covariates were examined using coplots. Interactions between covariates were included in the model selection process if clear changes in the slope were observed, and the number of observations in each group was good enough to allow for such an analysis.

The relationship between the logarithm of the WPUE and predictors was modeled using a normal distribution (Figure 2). We included an independent and identically distributed random metier effect (Gómez-Rubio, 2020) that accounts for variations in WPUE due to differences in fishing methods and technologies (hereafter metier effect). Metiers were assigned to the different samples based on the associated fishing village,4 vessel, gear, and propulsion type. We further accounted for spatial autocorrelation by including a numeric vector with a mean of 0 and a Matern covariance function linking each observation to a spatial location. Thus, our model accounts for independent, region-specific, and metier-specific noise not explained by the available covariates. For the parameters involved in the fixed effects, vague Gaussian priors with a mean of 0 and a variance of 100 were used, while a gamma prior distribution on the precision τ with parameters 1 and 0.00005 was used for the metier effect. The random spatial effect only depends on two hyperparameters: the range and the variance of the spatial effect. Penalized complexity priors (Fuglstad et al., 2018) were used to describe prior knowledge on these hyperparameters. We set a prior range of 1 km with a probability of 0.05 for it to be lower and a prior variance of 1.7–2 (depending on the species) with a probability of 0.05 for it to be higher. We performed a sensitivity analysis of the choice of priors for the spatial effect by testing different priors and verifying that the posterior distributions were consistent and concentrated well within the support of the priors (Supplementary Figure 1).
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FIGURE 2. Graphical representation of the model. The logarithm of the WPUE (γi) follows a normal distribution. For the fixed effects parameters, vague Gaussian priors with a mean of 0 and a variance of 100 were used. ζi is a Gaussian distributed random metier effect with a mean of 0 and a precision τζ. By default, INLA assigns a gamma prior with parameters 1 and 0.00005 to the precision. The random spatial effect (ωi) is approximated with a Matern covariance function (Q). The parameters κ and τω determine the range and the total variance of the spatial effect. The penalized complexity priors of these parameters follow a normal distribution. This adaption of a Kruschke style diagram was generated using Bååth (2013) template for LibreOffice.


Bayesian inference was performed using the Integrated Nested Laplace Approximations (INLA) approach (Rue et al., 2009) with its corresponding package.5 INLA uses the so-called Stochastic Partial Differential Equation approach to approximate the Gaussian field with the Matern covariance function by a Gaussian Markov random field (Rue et al., 2009).

We selected the most parsimonious model, starting with all covariates (except those with VIF values > 3), based on the goodness-of-fit using the deviance information criterion (DIC) (Spiegelhalter et al., 2002) and Watanabe–Akaike information criterion (WAIC) (Watanabe, 2010; Supplementary Table 1). The model selection process was automated by using the Bdiclcpomodel_stack function available on GitHub.6 We included covariates in the final model if the probability for the regression parameters’ posterior distribution to be below or above zero was 80% or higher (depending on the relationship).7 The final model was evaluated with the log-conditional predictive ordinate (log-CPO) (Roos and Held, 2011), which is a “leave-one-out” cross-validation index to assess the predictive power of the model (Pennino et al., 2019). The CPO values were also used to identify outliers. We further evaluated the final model through residual plots (homogeneity of variance, outliers) (Supplementary Figure 2) and visualizing model predictions. Model assumptions were also analyzed by visualizing the predictive integral transform (Supplementary Figure 3), which measures the probability of a new value to be lower than the observed value (Held et al., 2010). INLA has built-in functions allowing for a linear interpolation of the spatial effect within each triangle into a finer regular grid. The resulting high-resolution map of the spatial effect can be seen as a proxy for the species’ relative abundance.8 The spatial effect maps were then stacked, and the posterior distribution of the mean, first, and third quantile was calculated to identify overlapping areas of high relative abundance.

Figures were created using the ggplot2 package, and maps were created with the marmap (Pante et al., 2020), mapdata (Richard A. Becker and Ray Brownrigg, 2018), mapproj (R by Ray Brownrigg McIlroy et al., 2018), cowplot (Wilke, 2019), ggspatial (Dunnington, 2018), rnaturalearth (South, 2017a), and rnaturalearthdata (South, 2017b) packages.9



RESULTS


Drivers and Distribution of Target Species

Spatial dependencies and the random metier effect contributed strongly to the explained variance and hence improved model performance. The temporal covariates had a relatively strong effect on species distribution. While the third quarter and full moon were important covariates for Siganus sutor and Lethrinus lentjan (Figure 3), season was only important in the distribution of Leptoscarus vaigiensis. This relationship was positive, indicating higher relative abundances for L. vaigiensis during the south–east monsoon season (Figure 3). The strong positive relationship between the third quarter moon phase and the distribution of L. lentjan indicates that this is a relevant predictor of high WPUE values. Important environmental drivers were highly variable among species, but the magnitude of their effects was relatively similar (Figure 3). While depth was an important predictor for the distribution of L. vaigiensis, L. lentjan, and Lutjanus fulviflamma, temperature was important for Scarus ghobban, L. vaigiensis, and Lethrinus mahsena (Figure 3). S. sutor showed a much smoother spatial trend in relative abundance across the bay than the other species and had higher numbers of observations (twofold) (Figure 4). This species is highly dominant in the catches throughout the year and was particularly caught north of Uroa. The spatial pattern of relative abundance generally shows a clear south to north trend (Figure 4). None of the environmental variables were found to be important in the distribution of S. sutor (Figure 3), and only full moon was selected as a relevant predictor forming a negative relationship with abundance. The emperor species showed a strong positive relationship with depth (Figure 5), leading to higher relative abundances around the bay opening close to Uroa and Michamvi (Figure 4). Reef occurrence was the strongest predictor of L. mahsena (Figure 3), intensifying the spatial pattern of high relative abundances around the bay opening where the fringing reef is present. The distribution of L. fulviflamma and S. ghobban, contrastingly, showed a spatial pattern of higher relative abundances in the south of the bay (Figure 4). Although the distribution of L. fulviflamma was driven by greater depth, it is even stronger driven by high seagrass cover (Figure 5). It is present in dense seagrass meadows in the bay proper and around Chwaka village. The relative abundance of L. vaigiensis indicated a slightly negative relationship with seagrass and a strong positive relationship with depth (Figure 5), leading to a spatial pattern of high values around Uroa toward the bay opening and in the middle of the bay (Figure 4). The posterior distribution of the standard deviation of all spatial effects was relatively high, with the highest values toward the bay opening and the south of the bay, where the number of observations for the target species decreases (Figure 4).
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FIGURE 3. Summary of the selected environmental drivers for each species and the value of the corresponding slope. The legend represents the probability of the slope (Importance) to be below (negative, red) or above (positive, blue) zero.
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FIGURE 4. Posterior mean and standard deviation of the spatial random effect. Letters indicate the position of the villages: C, Chwaka; M, Marumbi; U, Uroa; Mi, Michamvi. Black lines depict the reef.
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FIGURE 5. Functional response of the weight per unit of effort of each species to their main environmental drivers. Solid lines and shaded regions are the mean and 95% credibility intervals, respectively. NEMS stands for North–East Monsoon Season and SEMS for South–East Monsoon Season.




Identifying Areas of High Relative Abundance

Two main areas of high relative abundance were found by overlaying the mean posterior distribution of the spatial effect from all analyzed species: one area in the north of Uroa village and one area in front of Marumbi village (Figure 6). High relative abundances of the target species were also found close to the patch reefs inside the bay, which is a fishing area frequently visited by fishers even under unfavorable wind conditions as it is partly protected by the fringing reef. The fringing reefs and the deeper outer parts do not seem to create areas of particular high relative abundance for the analyzed target species. The area in front of Marumbi corresponds to the demarcated dragnet-free zone enforced by the Marumbi villagers. The area in the north of Uroa lies in the region suggested by the fishers as a no-take zone during the participatory workshop conducted in 2016. Both also remain areas of higher relative abundance in the posterior distribution of the upper and lower quantiles.
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FIGURE 6. Posterior distribution of the mean, first, and third quantile of the combined spatial effect of the analyzed species to identify areas of overlapping high relative abundance. The dots represent a dragnet free zone (blue) enforced by the Marumbi fishers and the area proposed for the implementation of a no-take zone during the participatory workshop in 2016 (black). Letters indicate the position of the villages: C, Chwaka; M, Marumbi; U, Uroa; Mi, Michamvi. Black lines depict the reef.




DISCUSSION


Main Drivers of Species Distribution

Understanding species distribution is a key aspect in setting successful spatio-temporal management plans (Franklin, 2009; Lawler et al., 2011; Guisan et al., 2013). The results from this study provide information on important distribution drivers of the WIO’s key target species and commonalities among them.

The environmental drivers found to be important for species distribution were highly dissimilar between the different species. This was very apparent among species of the same family: for the two emperor species, relevant selected predictors were opposite and for the two parrotfish, the only common environmental driver was temperature. Contrastingly, season was only an important driver of the distribution of L. vaigiensis. The weak influence of seasons on fish density is a general pattern observed in Chwaka Bay’s mangrove creeks (Mwandya et al., 2010) and the seagrass meadows close to Chwaka and Marumbi village (Lugendo et al., 2007). Only the heavy rain season from April to May has been shown by Lugendo et al. (2007) to induce significant changes in environmental factors and fish density inside the mangrove creeks of Chwaka Bay. This suggests relatively stable annual catches of the other target species, representing a significant part of trap and dragnet catch (Rehren et al., 2018a). Reduced temporal fluctuations in catches and the protection from wave energy through the fringing reef makes the bay a vital fishing ground that decreases the vulnerability of the fishing community. Attempts to reallocate fishing efforts to offshore areas, which has been part of past management actions (Gustavsson et al., 2014), need to compensate for a potential increase in income uncertainty.

The full moon lunar phase was the only relevant predictor for S. sutor. This species is of high importance to Chwaka Bay’s fishery since it dominates the main gears, and its annual yield strongly exceeds all other target species (Rehren et al., 2018b). S. sutor grazes over algae beds, and juveniles mainly use seagrass meadows as nurseries (Dorenbosch et al., 2005; Lugendo et al., 2005; Kimirei et al., 2011). Larger individuals are usually found around reefs and are associated with deeper depths (Kimirei et al., 2011). Accordingly, the spatial distribution of S. sutor shows a clear increasing trend in relative abundance toward the bay opening and, thus, deeper areas. S. sutor, unlike the more sedentary emperor species, is a relatively mobile species with a home range of about 900 m (Ebrahim et al., 2020a). This might explain its smoother distribution and the lack of patches in the spatial random effect compared to the other species.

Our analysis indicates that seagrass plays an important role in the distribution of the emperor species L. mahsena, the parrotfish L. vaigiensis, and the snapper L. fulviflamma. L. fulviflamma uses seagrass meadows and particularly mangrove swamps as nursery areas (Lugendo et al., 2005; Kimirei et al., 2011), explaining the higher relative abundances found in the south of the bay. During the workshop in 2016 with 30 participants, fishers reported that L. fulviflamma used to occur in higher quantities in the bay and that the species seemed to have moved toward deeper waters due to an increase in water temperatures (Rehren, 2017). While our model indicates a positive relationship of L. fulviflamma distribution with depth, temperature was not selected as a relevant predictor. Along this line, other studies conducted in Tanzania mainland found that depth best explained the size-frequency distribution of L. fulviflamma among habitats (Kimirei et al., 2015) with adult specimens found on deeper reefs (Kimirei et al., 2011). Temperature, however, was selected as the main driver for three of the other analyzed species, including S. ghobban, and overall species density is also negatively related to temperature in mangrove and mud/sand habitats of the bay (Lugendo et al., 2007). Dorenbosch et al. (2005) found high juvenile densities (>70%) and intermediate adult densities (30–70%) of S. ghobban in seagrass meadows, likely explaining its high relative abundance found in the central bay and in the south of the bay where seagrass meadows occur.

Lethrinus mahsena, also found to be driven by seagrass cover, is a generalist occurring in all habitats of the bay (Dorenbosch et al., 2005) and is particularly associated with coral patches and fringing reefs adjacent to seagrass beds (Gell and Whittington, 2002; Locham et al., 2010). This observation also matches our findings that the most important driver of its abundance was reef, followed by temperature and seagrass. Accordingly, areas of high relative abundance of L. mahsena were found around coral patches inside the bay, which are surrounded by large seagrass meadows and at the fringing reef in the north of Uroa. High relative abundances were also found in front of Marumbi village, a fishing ground dominated by dense seagrass beds.

Little information was available for the other emperor species, L. lentjan, which occurs in all habitats of the bay (Lugendo et al., 2005). The adult part of the population mostly occurs around the reef areas (Dorenbosch et al., 2005). Depth was the only environmental predictor selected in our model and probably explains the higher relative abundances in the north of Uroa and the area around Michamvi.

While L. vaigiensis mainly occurs in seagrass beds (Dorenbosch et al., 2005; Lugendo et al., 2005) and feeds on seagrass plants (Gullström et al., 2011), our results showed a slight negative relationship between seagrass cover and relative abundance. Although these results seem counterintuitive, Gullström et al. (2011) also found a negative relationship between shoot density and the variability of juvenile and adult density of L. vaigiensis. Fish assemblages in coral reef and seagrass habitats in Kenya likewise showed a decrease in overall density with increasing seagrass density (Chirico et al., 2017). The authors argued that this relationship possibly arises due to the reduced movement ability of fish in very dense and relatively short seagrass beds. Stronger environmental drivers of L. vaigiensis were depth and temperature in our models, which probably explains its high relative abundance around the north of Uroa and in the middle of the bay. Gullström et al. (2011) also found temperature to be a driver for the abundance of L. vaigiensis within different seagrass meadows in Chwaka Bay, but not depth. The authors, however, mainly studied seagrass meadows along the shore, which does not represent the full range of depth in the bay, possibly explaining the differences in our model results.



Potential Areas for Conservation

Spatio-temporal management is a key strategy to help mitigate conflicts among fishers and protect essential habitats and target species, without entirely depriving fishers of their economic basis (Rassweiler et al., 2012; Kerwath et al., 2013; Sale et al., 2014; Di Franco et al., 2016; Sala et al., 2021). In the WIO region, the implementation of conservation areas has been a prime management tool to reduce anthropogenic pressures (IUCN., 2004). In this study, we identified areas of high relative abundance of six key target species of the region to provide information for the prioritization of such conservation areas.

The identified overlapping areas of high relative abundance are in the north of Uroa, close to reef areas, and in front of Marumbi village, dominated by seagrass meadows. Furthermore, areas close to the patch reefs surrounded by seagrass meadows inside the bay also showed higher relative abundances. Both emperor species, the rabbitfish S. sutor, and the parrotfish L. vaigiensis would benefit from the closure of fishing in the selected areas. Except for Uroa, the identified areas do not occur on the proper fringing reef that runs along the bay opening. Although we use the analyzed WPUE values as a proxy for relative abundance, the absence of high relative abundances on the fringing reef is likely a mere reflection of the distribution of effort: the exposure and deeper depths at the fringing reef make it harder to fish with the main fishing methods. However, the WPUE distribution pattern indicates that proper reef areas with high coral cover are not necessarily areas with the highest fishing pressure in small-scale fisheries of the WIO region and that non-reef areas in Chwaka Bay may be as suitable for spatio-temporal management plans. These findings match the observation from de la Torre-Castro et al. (2014) that seagrass meadows, and not reefs, are the fishing grounds with the highest community benefits for the fishers of Chwaka village. In the WIO region, spatial management plans are often implemented to protect a specific habitat (Turpie et al., 2000; Wells et al., 2007; Rocliffe et al., 2014), which has led to the disproportionate representation of coral reefs in marine conservation areas (Wells et al., 2007; de la Torre-Castro et al., 2014; Chirico et al., 2017). The need to include seagrass meadows into fisheries management efforts has not only been highlighted for the bay (de la Torre-Castro et al., 2014) but globally (Unsworth et al., 2019).

Conservation areas are often selected without incorporating fisher’s behavior in the implementation of spatio-temporal management plans, which has led to weak compliance (McClanahan et al., 2006; Rosendo et al., 2011) and reduced benefits for fishing communities (Benjaminsen and Bryceson, 2012). For instance, Marine parks in Kenya have been established with little consultation of fishing communities, and in Tanzania, examples of opposing the enforcement of existing conservation areas exist (Wells et al., 2007). This is surprising as fishers have shown to possess strong ecological knowledge about their target stocks (Silvano and Valbo-Jørgensen, 2008). Lopes et al. (2018) have shown that fisher’s knowledge can even be reliable enough for predicting species occurrence. These observations are also reflected in our analysis: the two areas of high relative abundance correspond to the areas that: (1) have been prioritized by fishers for the dragnet free zone in front of Marumbi village in 2001 (de la Torre-Castro and Lindström, 2010); and (2) have been proposed as a potential no-take zone in the workshop of 2016 (Rehren, 2017). This study has been conducted to support local spatio-temporal management actions with quantitative information. In a series of upcoming participatory workshops, the relative abundance maps with their associated uncertainties will be used to effectively visualize and convey our key findings to the local stakeholders. With these workshops, we aim to combine short-term fisheries dependent data and fishers’ knowledge to synthesize the most relevant information about the spatial dynamics of Chwaka Bay’s fisheries and target resources and to prioritize spatial management actions.



Potential and Limitations of the Approach

In many small-scale fisheries, dependence on resources for livelihood and protein supply is high, making their sustainable management particularly important (Belhabib et al., 2015; Teh and Pauly, 2018; Loring et al., 2019; Salas et al., 2019). Appropriate management plans are, however, impeded by the notorious lack of data (Salas et al., 2007; Salayo et al., 2008; Samoilys et al., 2015). Fisheries independent surveys are often cost-intensive and visual census data collected around Zanzibar are spatially limited and only represent a temporal snapshot (Rehren et al., 2020). Fisheries catch information, on the other hand, is collected throughout the WIO region at a subset of landing sites (UNEP-Nairobi Convention and WIOMSA, 2015) and thus becomes the most cost-effective and accessible source of information when evaluating the spatio-temporal dynamics of target resources. Suppose that fishers’ catches represent thousands of sampling observations (García-Quijano, 2007) and those fishers use multiple gears catching a multitude of species. In that case, it can be argued that fisheries catches as a whole might better reflect species relative abundance than spatially and temporally limited visual census data. Bayesian hierarchical modeling approaches can better handle problems associated with this data, such as spatial dependencies and the fisher effect, through their direct incorporation in the model formulation (Banerjee et al., 2004; Pennino et al., 2019).

Our analysis shows that a large part of the variance was explained by the random effect terms highlighting the importance of spatial dependencies and effects stemming from the use of different gears, boats, and propulsions. The latter effect is very high, suggesting that Chwaka Bay’s fisheries might be better managed based on fishing units. This requires flexible and adaptive management approaches tailored around the dynamic behavior of fishers in space, time, and fishing methods. A clear benefit of Bayesian models in data-poor situations is the provision of uncertainty associated with the data and the parameter estimates (Banerjee et al., 2004; Fonseca et al., 2017). This is particularly important when the stakes are high, as is the case in small-scale fishing communities. Our analysis shows that the uncertainties associated with our results are relatively high, particularly for the areas in the south and the north of the bay. A central issue associated with fisheries-dependent data is that fishers have prior knowledge of the probability of catching their target species at a given location leading to sampling bias. Furthermore, in our case study, greater depths and the presence of hard corals make fishing harder for dragnet fisher, lowering the number of observations at the fringing reef. Our approach does not account for such sampling bias in the data, which might have influenced the identification of the high relative abundance areas. Another limitation is the difficulty in obtaining a precise geo-localization of the catch in tropical, small-scale fisheries because of the large number of vessels, their dynamic behavior, and the lack of technical equipment. Usually, the spatial location of the catch is associated with a fishing ground name and mapped subsequently, or the fishing ground location is identified on a map by the fisher. These procedures reduce the spatial precision of the catch and can mislead inference. The observation that our model selects the same area for conservation as fishers did during the participatory workshop in 2016 (Rehren, 2017) increases the confidence in our model results. It must be noted that these action plans were formulated and discussed with a limited number of fishers. A comparison of our results with information from ecological studies about the habitat preference and ecology of four of the analyzed species also suggests that our approach predicts the distribution of the analyzed species reasonably well. For the remaining two species (i.e., S. ghobban, L. lentjan), not enough information was found to evaluate our models properly. For S. sutor, it is likely that we missed to include the distribution of macroalgae in the bay as a predictor variable because S. sutor grazes on epibenthic algae and feeds on macroalgae thalli (Ebrahim et al., 2020b). But it is also possible that the spatial change in environmental or habitat variables in the bay is not strong enough to significantly affect S. sutor’s distribution because the area is relatively small and S. sutor’s mobility is relatively high. Salinity and primary productivity are other predictors that have been identified to drive species distribution (Roos et al., 2015; Gonzáles-Andrés et al., 2016; Coll et al., 2019). Studies from the bay, however, suggest that salinity is not a driver of fish density (Lugendo et al., 2007) and that habitat variables generally are more important predictors for fish assemblages and abundance (Gullström et al., 2008; Mwandya et al., 2010).

Information on environmental drivers at a high-resolution scale is often lacking, making it difficult to model the distribution of resources in small fishing areas such as Chwaka Bay. We used data collected by the first author about depth and habitat variables and interpolated them to get an estimate at all fishing grounds. Thereby, we did not consider the uncertainty associated with the covariate estimations, which can cause erroneous inference and a biased estimate of the covariate effect (Martínez-Minaya et al., 2018). Consequently, we compared models with and without the interpolated data: while some species had similar spatial random effect maps, for other species using the non-interpolated data resulted in peaks or throughs at missing locations (Supplementary Figure 4). In other words, including only a subset of the data would have resulted in misidentifying areas of high relative abundance. Ideally, information on environmental covariates should be available at all fishing grounds to avoid potential misalignment.

Areas prioritized by the fishing community or the approach used here may not be sufficient to achieve ecological objectives. The structural complexity of seagrass meadows in the bay, for instance, is an important factor that can drive fish abundance (Gullström et al., 2008) and habitats often function together with surrounding habitats determining fish composition through seascape structure (Berkström et al., 2012). Furthermore, the areas prioritized by the Chwaka Bay fishers are relatively small, while large marine protected areas are associated with higher success, particularly when protecting highly mobile species (Claudet et al., 2008; Vandeperre et al., 2011; Edgar et al., 2014; White et al., 2017). But it has also been shown that small community-based marine protected areas established in coral reef developing nations may nonetheless be highly successful (Ban et al., 2011; Chirico et al., 2017). In the long-term such conservation efforts need to be scaled up to regional or national levels to achieve the ecological principles of complementarity, representativeness, and connectivity (Ban et al., 2011).
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FOOTNOTES

1https://www.ports.go.tz/index.php/en/customer-center/sea-tide-tables?limitstart=0 (accessed 05.02.2015).

2https://opendap.jpl.nasa.gov/opendap/

3www.r-project.org

4Potential factors associated with higher variability in WPUE between fishers of different villages includes the travel distance to less/more productive fishing grounds and the possession of different levels of knowledge about fishing grounds and species.

5http://www.r-inla.org/

6https://github.com/MgraziaPennino/SDMs-with-INLA

7The only exception was the covariate seagrass in the model of Leptoscarus vaigiensis, which was selected by the goodness-of-fit indicators but had only a probability of 70% for the posterior distribution to be below zero. We kept this covariate given its importance as habitat and food item for Leptoscarus vaigiensis.

8The data and the script for the model construction can be accessed at https://github.com/Jrehren/Frontiers-2020-Rehren-Supporting-spatial-management-with-Bayesian-approach

9Source code for the map can be accessed at https://github.com/MgraziaPennino/Create_map_study_area/blob/master/Map_study_area.R
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Aquaculture and marine renewable energy are two expanding sectors of the Blue Economy in Europe. Assessing the long-term environmental impacts in terms of eutrophication and noise is a priority for both the EU Water Framework Directive and the Marine Strategy Framework Directive, and cumulative impacts will be important for the Maritime Spatial Planning under the Integrated Maritime Policy. With the constant expansion of aquaculture production, it is expected that farms might be established further offshore in more remote areas, as high-energy conditions offer an opportunity to generate more power locally using Marine Renewable Energy (MRE) devices. A proposed solution is the co-location of MRE devices and aquaculture systems using Multi-Purpose Platforms (MPPs) comprising offshore wind turbines (OWTs) that will provide energy for farm operations as well as potentially shelter the farm. Disentangling the impacts, conflicts and synergies of MPP elements on the surrounding marine ecosystem is challenging. Here we created a high-resolution spatiotemporal Ecospace model of the West of Scotland, in order to assess impacts of a simple MPP configuration on the surrounding ecosystem and how these impacts can cascade through the food web. The model evaluated the following specific ecosystem responses: (i) top-down control pathways due to distribution changes among top-predators (harbor porpoise, gadoids and seabirds) driven by attraction to the farming sites and/or repulsion/killing due to OWT operations; (ii) bottom-up control pathways due to salmon farm activity providing increasing benthic enrichment predicated by a fish farm particle dispersal model, and sediment nutrient fluxes to the water column by early diagenesis of organic matter (recycled production). Weak responses of the food-web were found for top-down changes, whilst the results showed high sensitivity to increasing changes of bottom-up drivers that cascaded through the food-web from primary producers and detritus to pelagic and benthic consumers, respectively. We assessed the sensitivity of the model to each of these impacts and the cumulative effects on the ecosystem, discuss the capabilities and limitations of the Ecospace modeling approach as a potential tool for marine spatial planning and the impact that these results could have for the Blue Economy and the EU’s New Green Deal.

Keywords: Ecopath with Ecosim, Ecospace, Marine Strategy Framework Directive, marine spatial planning, multi-purpose platform, offshore wind, West Coast of Scotland, aquaculture


INTRODUCTION

The concepts of “Blue Growth” and “Blue Economy” refer to sustainable use of ocean resources enhancing economic growth within a system that preserves marine ecosystem health. The energy trilemma on providing secure, sustainable, and affordable energy is a growing challenge, which drives expansion of renewable energy production from the marine environment (World Energy Council, 2019). To mitigate the impact of climate change, the need of expanding the renewable energy installations has also increased and therefore the installation of renewable energy devices at sea (Dannheim et al., 2020). The sustainable use of marine resources is also facing the challenge of providing food and energy for an increasing global human population, which is expected to exceed 9 billion by the middle of the twenty-first century (United Nations, 2019).

The United Nations’ 2030 agenda (United Nations, 2015) sets out Sustainable Development Goals (SDGs) to shift the world toward a sustainable society, with food production (including aquaculture) a key target area (Food and Agriculture Organization [FAO], 2020). Many SDGs directly relate to fisheries and aquaculture, both of which are of critical importance in providing nutrition and employment to millions around the world (Food and Agriculture Organization [FAO], 2020). In 2016 the global production of proteins from marine sources peaked at 171 million tons with aquaculture accounting for 20% of the average per capita intake of animal protein for 3.2 billion people (Food and Agriculture Organization [FAO], 2020). Aquaculture production has seen an annual global increase of ∼6% between 2001 and 2016 and in EU it is expected to increase to 30% by 2030 (Food and Agriculture Organization [FAO], 2020).

Scotland is aiming to double fish farming production by 2050 (Gatward et al., 2017; Weaver et al., 2020). The sector is a major contributor to the Scottish economy, dominated by production of Atlantic Salmon (Salmo salar), and concentrated in sheltered rural sites in western and northern Scotland such as inshore sea lochs (Thompson et al., 1995; Aquaculture Scotland, 2020). Competition for space in near-shore coastal zones can, however, limit expansion of this industry (Jackson et al., 2011). To help alleviate conflicts over spatial management, offshore aquaculture has emerged as a viable alternative for increasing the global seafood production (Gentry et al., 2017; Lester et al., 2018). However, despite the growing interest, in-depth understanding of the ecological implications of offshore farming is necessary in order to develop a consensus of rules to support the management of farm infrastructure vulnerable to storms and wave action of the open seas (Froehlich et al., 2017). Combining the extraction of more than one marine resource has been suggested as a solution for lowering energy production costs by allowing shared use of space and infrastructure through co-located technologies (Stefanakou et al., 2016; Stuiver et al., 2016). Offshore Renewable Energy (ORE) systems such as offshore wind farms, wave device converters, solar energy storage systems, as well as aquaculture, transport and leisure facilities have been proposed as suitable candidates for co-location of Multi-Purpose Platforms (MPPs) (Da Rocha et al., 2010; Casale et al., 2012; Quevedo et al., 2013; H2Ocean, 2018; Abhinav et al., 2020).

MPPs seek to optimize efficient use of marine space to include multiple users, benefit from shared infrastructure and provide opportunities for localized generation of power for off-grid applications (Stuiver et al., 2016; Holm et al., 2017). However, the overall effects of such an aggregation of activities on the surrounding environment may be difficult to predict. By definition, MPPs would contain various elements, each of which can exert different pressures on the surrounding environment (Figure 1).
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FIGURE 1. Schematic representation of potential environmental interactions of a hypothetical MPP structure, including aquaculture activity (e.g., fish pens, a barge, and associated mooring structures) co-located with wind turbines, wave device converters, solar PV panels and on board energy storage capacity. Green arrows indicate potential for attraction of species (fish, mammals, birds, epifauna); yellow arrows indicate potential wider ecosystem impacts (substrate availability for invasive species, detritus enrichment, enhanced recycled production, noise); red arrows indicate potential adverse/lethal impacts (dislocations and collisions of birds and bats with wind turbines; underwater noise).


ORE can impact species both indirectly, e.g., by changing habitat properties and directly, e.g., by causing collision risks with moving turbine components (Vanermen et al., 2019; Benjamins et al., 2020) and, for diving species, with static underwater structures (Grecian et al., 2010). ORE site selection is fundamentally important to minimize the direct and indirect impacts on selected species. These impacts could be minimal (Benjamins et al., 2020) or severe when located in key areas, e.g., migration routes, feeding ground (Polaris Wind Power Network, 2018; Vanermen et al., 2019). A main concern, especially when many turbines are placed in close proximity, is the impact that ORE devices can have on acoustically-sensitive species by producing continuous low frequency noise (Madsen et al., 2006; Tougaard et al., 2009, 2020; Bailey et al., 2010; Brandt et al., 2011).

Aquaculture can also have multiple impacts on the surrounding ecosystems (Callier et al., 2018) from increasing productivity around a site due to excess feed spilling into the water column and the accumulation of sedimentary organic matter also enhancing epibenthic communities growth (Tuya et al., 2006; Mente et al., 2010; Bagdonas et al., 2012; Keeley et al., 2014; Skilbrei and Otterå, 2016) as well as the attraction of wild populations of mid- and top-predators (Ross, 1988; Quick et al., 2004; Dempster et al., 2010; Piroddi et al., 2011). These impacts will be affected by moving aquaculture into more exposed, offshore waters even without integration into an MPP; for example, the “footprint” of farm-derived eutrophication of the benthos is expected to be larger, but less intense due to stronger currents and greater water depths in these areas. The co-location of ORE devices with aquaculture site can present synergies and conflicts within the impacts of the single elements. For instance the presence of the fish cages can attract top-predators, which could increase risks of exposure to noise and entanglement (Würsig and Gailey, 2002; Kemper et al., 2003; Benjamins et al., 2014; Dolman and Brakes, 2018).

ORE systems can also have potential benefits: supplying new habitat for colonization of benthic species (Wilson and Elliott, 2009; Krone et al., 2013; Nall et al., 2017; Dannheim et al., 2020), and supplying new nursery areas and feeding grounds (artificial reef effect) (Coolen, 2017; Gill et al., 2018). Similar to existing offshore infrastructure (e.g., oil and gas platforms), an MPP may require establishment of local exclusion zones to other industries (e.g., fishing), thereby inadvertently creating small marine protected areas (Coates et al., 2016; Roach et al., 2018).

Evaluating potential effects of novel or hypothetical infrastructure such as an operational MPP system in a marine ecosystem is challenging and requires an ecosystem-based approach to investigate the cumulative effects of the different MPP elements (Abhinav et al., 2020). Ecosystem models have proven to be a useful tool for modeling natural and anthropogenic variability (Hyder et al., 2015) and, in specific cases have been also used to inform management measures (Fulton et al., 2015; Gascuel et al., 2016). The Ecopath with Ecosim and Ecospace (EwE) modeling approach is considered one of the most suitable tools for evaluating the direct and indirect effects of anthropogenic pressures on ecosystem dynamics (Colleter et al., 2014; Coll et al., 2015; Hyder et al., 2015). EwE models have been successfully used to evaluate how such pressures cascade through the food web. For example, changes to the spatial distribution of top predators (cetaceans, large fish, and seabirds) will affect the entire marine ecosystem through top-down control pathways (Morissette et al., 2010; Piroddi et al., 2011). Similarly, changes in primary productivity can cascade through the food-web by means of bottom-up controls (Coll et al., 2016; Piroddi et al., 2017) as well as environmental drivers (Coll et al., 2016; Serpetti et al., 2017). In recent releases of the EwE software, the options to drive (one-way coupling) Ecospace with external spatial-temporal drivers (Steenbeek et al., 2013, 2016; Christensen et al., 2014) offers the opportunity to apply multiple physical, oceanographic, and environmental drivers that define the cumulative foraging capacity of each functional group and/or species (Christensen et al., 2014). In recent studies this new capability has been explored even further allowing coupling with many other modeling approaches that interact at different levels with the Ecospace framework from hydrodynamic advections models (Tierney et al., 2018), to general additive models predicting top-predators spatial distributions (Harvey, 2018) and habitat preferences (Puts et al., 2020), and to Bayesian hierarchical modeling to explore advantages, limitations and future developments of all coupled modeling techniques (Coll et al., 2019).

In this paper we develop a high-resolution Ecospace model to investigate potential impacts (negative and positive) of a hypothetical Multi-Purpose Platform (MPP) located south west of the Isle of Muck, on the West Coast of Scotland (Figure 2). The hypothetical MPP used consists of an anchored, floating barge with wind turbines (Abhinav et al., 2019; Recalde et al., 2019), co-located with an salmon farm site. The west coast of Scotland is a key region for salmon production, hosting around 200 farming sites located within sheltered fjordic areas (Adams et al., 2020). As the region seeks to achieve sustainable expansion of both aquaculture (Weaver et al., 2020) and of OWT installations, also minimizing the impact on the environment (Tett et al., 2018), this ecosystem represented a perfect opportunity to test the impacts of an MPP site in order to assess conflicts and synergies of its elements.
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FIGURE 2. ICES VIa area, showing the continental shelf bathymetry map (up to 200 m depth profile; extracted from https://www.gebco.net/) and the sediment composition around Isle of Muck, the existing operational fish farm (red dot), the Multi-Purpose Platform (MPP) site (black dot) and the Ecospace model domain (black box).


The model’s sensitivity to individual and cumulative impacts of the different pressures produced by the MPP elements on the surrounding ecosystem were investigated. Limitations and capabilities of Ecospace as a potential tool for marine spatial planning were discussed as well as the use of offshore MPP in order to maximize the aquaculture and renewable energy productions within the concepts of “Blue Growth” and “Blue Economy.”



MATERIALS AND METHODS

The model was built in Ecopath with Ecosim and Ecospace (EwE) version 6.6. This modeling suite has been considered one of the most suitable tools for evaluating the direct and indirect effects of anthropogenic pressures on spatial scale ecosystem dynamics. Ecopath is a mass balance food-web model representing a snapshot of the ecosystem in a given year, and Ecosim that models the temporal dynamics. Ecopath defines the predator/preys species interactions, with species that can also be grouped together in a “functional group” based on trophic and ecological similarities in concurrency with the impact of fishery that is modeled as a top-predator (Christensen and Walters, 2004). Ecosim models use foraging arena theory (Ahrens et al., 2012) where each predator/prey interaction is defined by vulnerability parameters that, assessing the vulnerability of a prey to its predators, affect the strength of the trophic interactions: top-down for vulnerabilities values greater than 2, or bottom-up for vulnerabilities values between 1–2 (for fitted vulnerability please refer to Supplementary Table 4).

The Ecospace domain created in this study is based on the Ecopath, a mass balance model that creates a baseline snapshot of the ecosystem in a given year (1985 in this case), and Ecosim that models the temporal dynamics (1985–2013 in this case). The model includes five fleets (demersal trawl, nephrops trawl, other trawl, potting and diving, and pelagic trawl) and a total of 43 functional groups including marine mammals (5), seabirds (1), fish (23, six of which were composed of adult and juvenile stages for cod, haddock and whiting), invertebrates (5), cephalopods (1), zooplankton (2), benthos (3), primary producers (2), and detritus (1) (Alexander et al., 2015; Serpetti et al., 2017; Harvey, 2018). The Ecopath with Ecosim model was previously fitted to time-series observations (29-year period), cross-validated and used to assess the uncertainty in input data (Serpetti et al., 2017).

Two Ecospace models have previously been developed for this region (Alexander et al., 2016; Harvey, 2018), both covering the same large-scale domains (∼110,000 km2) of the continental shelf (out to ∼200 m depth) encompassing Division Vla of the International Council for Exploration of the Sea (ICES; Figure 2).

In Harvey (2018) the following three cetacean groups were defined: “Harbor porpoises,” “Dolphins” and “Minke whales,” with the distinction based on the ecology and hearing sensitivity ranges of high-, mid- and low-frequency noise for each cetacean group (National Marine Fisheries Service, 2018). For details of Ecopath and Ecosim model input and temporal fitting please refer to Supplementary Material.



ECOSPACE MODEL UPDATE

Using the most updated Ecopath with Ecosim model for this ecosystem (Harvey, 2018; Supplementary Material), a high resolution Ecospace model was created for the area south west of the Isle of Muck (Figure 2). The resolution of the model (approximately 100 m × 100 m resolution) was chosen in order to better assess the impact of habitat eutrophication by aquaculture that generally, at these depths, showed a foot-print of a few kilometers (Adams et al., 2020; Supplementary Material NewDEPOMOD outputs.mp4).

The isle of Muck, the smallest of Scotland’s Small Isles, was chosen as a potential study site for this project due to its exposed location and the presence of a nearby operational salmon farm, upon which the present hypothetical case could be modeled as it currently hosts the most offshore salmon farm in Scotland (Figure 2). The current farming site is approximately 500 m from shore off the north-eastern corner of Muck, however we located the hypothetical MPP site off the Southwest at the same distance to simulate more exposed conditions, while still potentially being able to use data output to represent the current farming site. The Ecospace habitat map was created in QGIS (version 3.10.10) by combining extracted georeferenced sediment substrates (from the Mapping European Seabed Habitats project1) and depth (from Seazone/Edina2) properties at each grid node (Figure 2), following the habitat categories (Table 2) adjusted from Alexander et al. (2016).

Please refer to Supplementary Materials for all functional group habitat based foraging, dispersal rates and fishery habitat allocation (Supplementary Table 5).

The baseline Ecopath, Ecosim and Ecospace model was first run without the addition of the MPP site where species distribution changes (1985–2013) were driven by temporal fishing mortalities (from the fitted model in Ecosim) according to different preferences of the functional groups’ habitat foraging usage (Table 2) and their dispersal rates (Supplementary Table 5). The MPP was then virtually located as a new habitat in 2011 and kept operational for 3 years to the end of the temporal model extension (2013) (Supplementary Figure 2). MPP impacts were assessed as an average over the 3 years.

Within the multiple impacts that could be assessed using Ecospace, we focused on top-down ecosystem responses [attraction of top predators (predatory fish, marine mammals, and seabirds) to the MPP site for food vs. incidental mortality of seabirds due to collision with operational OWTs and displacement of marine mammals due to turbine noise] and bottom-up responses (eutrophication by farming activity).


Predator Attractions by Farming Activity (Gadoids, Seabirds, and Seals)

In the West Coast of Scotland, gadoids species such as saithe (Pollachius virens), Atlantic cod (Gadus morhua), whiting (Merlangius merlangus), and haddock (Melanogrammus aeglefinus) have been found to be the most prevalent around the fish farms (Dempster et al., 2009, 2010; Ghanawi and McAdam, 2020). Their attraction is not only directly attributed to excess food, but it also acts as an indirect beckoning via the increase of prey. While smaller cod and whiting consumed excess food pellets (Ghanawi and McAdam, 2020), larger cod, presumably adults, have been found to predate on saithe in the immediate vicinity of salmon farms (Bagdonas et al., 2012).

Multiple reasons arise for the attraction of seabirds and other top predators to the MPP site, from the attraction to the fish farms, either by the fish in the cages and the enhanced productivity around them (Forrest et al., 2007; Vanermen et al., 2015; Dierschke et al., 2016; Callier et al., 2018), and from the attraction to the physical structures that can provide resting and roosting spots (Garthe and Hüppop, 2004; Drewitt and Langston, 2006; Forrest et al., 2007; Dierschke et al., 2016; Callier et al., 2018).

Both gray and harbor seals rely particularly on sandeel and gadid species (Supplementary Table 2), however, as opportunistic feeders, seals prey on available demersal and pelagic fish, including salmonids, as well as cephalopods (Scottish-Government, 2016; Wilson and Hammond, 2019). The high density of fish, both salmonids in the cages and expected concentrations of wild fish, is suspected to attract seals to the vicinity of fish farms. On the West Coast of Scotland, both gray seals (Halichoerus grypus) and harbor seals (Phoca vitulina) are present with overlapping distributions, however, harbor seals showed a more coastal behavior, typically remaining within 50 km from shore (Northridge et al., 2013; Jones et al., 2015).



Seabirds Offshore Wind-Turbine Induced Dislocation

OWTs would potentially cause seabirds attraction to the physical structures for some species and significant avoidance from others (Vanermen et al., 2015, 2019). Mitigating combined impacts might be found associating OWTs and fish farms. Vanermen et al. (2019) summarized the results of a monitoring program designed to identify specie-specific seabirds responses to wind farms: they identified significant avoidance by northern gannet, common guillemot and razorbill of 98, ∼60, and ∼75%, respectively, in contrast, attraction to the wind farm could be demonstrated for herring and great black-backed gulls. In our case of study, the seabirds functional groups is represented by 12 species of seabirds (Waggitt et al., 2020), with Atlantic puffin, common guillemot, northern fulmar and northern gannet showing the highest contributions within the functional group (Table 1). Of the 12 seabird species in the modeled area, the three species showing significant avoidance of the wind farm represented 45% of the biomass group in proportion to their avoidance responses (Table 1; Vanermen et al., 2019). Species showing the attraction of the OWTs represented only a small proportion of the functional group biomass therefore this pressure was not assessed in this study.


TABLE 1. Seabirds functional group composition, biomasses, species contributions, and proportion of biomass dislocation for the three species (in bold) showing significant avoidance of wind farms.
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Offshore Wind-Turbine Underwater Noise

Operational wind turbines mounted atop a floating barge, such as the MPP proposed here, can be expected to transmit noise into the marine environment. Characteristics and environmental significance (if any) of this underwater noise output depend crucially on technical design features of both turbine(s) and barge, as well as ambient noise levels in the surrounding area. While some information is available on underwater sounds produced by fixed offshore wind turbines (Madsen et al., 2006; Tougaard et al., 2020), similar data on existing floating offshore wind turbines are, as yet, almost non-existent. Turbines proposed here (Abhinav et al., 2019; Recalde et al., 2019) are also much smaller than those used in offshore wind farms, whether fixed or floating, which will affect their sound outputs in terms of both loudness and frequency range. Based on results reported by Madsen et al. (2006) and Tougaard et al. (2020), it can be assumed that sounds produced by floating turbine-bearing structures such as the MPP proposed here will likely be mainly lower-frequency sounds with dominant frequencies of ∼1 kHz or less.

An artificial structure like a barge with wind turbines can transmit low frequency underwater noise that may affect species sensitive to this pressure (Madsen et al., 2006; Tougaard et al., 2020). Marine species differ in terms of their sensitivity to underwater noise of different frequencies (Southall et al., 2007, 2019).

Given the expected (hypothetical) underwater noise output of an MPP of the type proposed here, species with greater sensitivity to lower frequencies (e.g., phocid seals and baleen whales, after Southall et al. (2019) might be able to detect the noise from an MPP at distances of several km under quiet ambient noise conditions, with detection ranges for species less sensitive to lower frequencies (e.g., harbor porpoise) being considerably smaller (Madsen et al., 2006). However, this is crucially dependent on the size and type of the turbine (e.g., direct drive or with gear box), potential cumulative effects of multiple turbines, ambient noise from other sources (e.g., shipping), wind speeds and which sound propagation model is used (Tougaard et al., 2020; Stöber and Thomsen, 2021).

Toothed whales such as harbor porpoises utilize echolocation for spatial orientation, foraging and communication (Soto et al., 2006; Gomez et al., 2016; Forney et al., 2017), and have been observed to alter their feeding behaviors when co-occurring with shipping (Dyndo et al., 2015; Wisniewska et al., 2018). However, there is a lack of data with respect to the impacts that continuous noise produced from a static source such as a OWT might have on cetaceans (Tougaard et al., 2020; Stöber and Thomsen, 2021). Porpoises have been observed to reoccupy operational (fixed) offshore wind farms once construction has ceased, suggesting that these turbine noise outputs do not deter porpoises under all circumstances (Scheidat et al., 2011; Teilmann and Carstensen, 2012).

Harbor porpoises have been found to stop feeding for 15 min when closer than 1 km from a source of low frequency noise such as a shipping vessel (Dyndo et al., 2015; Wisniewska et al., 2018). As the low-frequency noise source in our study is continuous and static we assumed the porpoises might cease their feeding behavior at distances from 1 km (Dyndo et al., 2015) up to 7 km at which they no longer are seen to be affected (Wisniewska et al., 2018). It is important to underline that these assumptions are not taking into consideration the species’ capability of acclimation and habituation to background noise.

Like cetaceans, pinnipeds are noise-sensitive species. They are known to behaviorally react to pile driving and shipping noise with avoidance, alteration of diving behaviors (Mikkelsen et al., 2019), interruption of feeding and abandonment of vital habitat (Gomez et al., 2016). However, harbor seals have been shown to not avoid at least some operational offshore wind farm areas (Russell et al., 2016). Harbor seals showed lower sensitivity to low frequency noise compared to porpoises with recorded avoidance up to 500 m from tidal turbine noise (Hastie et al., 2017) and significant decreases up to 2 km (Joe Onoufriou, St Andrews University, EIMR2020 conference, April 21st–23rd, 2020).

Because of lack of information and specific studies assessing the acoustic characteristics of the noise produced by the wind turbines associated with a barge within the MPP, we inferred the responses to this pressure using knowledge gathered assessing the impact of other low-frequency noise sources such as shipping noise for harbor porpoises and preliminary results of tidal turbine noise on harbor seals. Sigmoid functions were used to build the response functions within the avoidance distances and distances from which species no longer are seen to be affected. To simulate the effect of low frequency underwater noise produced by the OWTs, a distance layer from the MPP site was created and response functions related to this distance were applied for harbor porpoise and seals to simulate their responses (Figure 3).
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FIGURE 3. Hypothetical Species distance response functions for harbor porpoise and harbor seals developed for the purposes of this study. The intercept between spatial distance and the species response functions determined the consumption rate scaling factor.


As for the other MPP impact the distance layer was linked to the model with the spatial-temporal framework in 2011, when the hypothetical MPP site was set up. The response functions were applied to the distance layer in order to scale the consumption rates to simulate the cessation of feeding and spatial avoidance of the MPP noise.



Detritus Enrichment: NewDepomod Modeling Approach

In order to assess the organic enrichment caused by the farming cages co-located within MPP site, a particle-tracking modeling software called NewDEPOMOD was used. NewDEPOMOD predicts the depositional footprint of wasted feed and feces on the seabed below and surrounding the fish farm (Adams et al., 2020; Chary et al., 2021). This modeling approach is used widely in Scotland for the licensing of new farms, and expansion of existing farms, and is currently the only model accepted by the Scottish Environment Protection Agency (Scottish Environment Protection Agency, 2020) for aquaculture waste management. The program is coupled with the WeStCOMS hydrodynamic model (Aleynik et al., 2016) to simulated in situ depositional discharges.

A NewDEPOMOD model run was carried out at the MPP site for a configuration of 8 cages (2 × 4 configuration) with a total production of 2,400 tons of salmon per year. A snapshot of the deposition was taken each day, starting from day 10 (to enable some deposition to accumulate), until the end of the run (365 days). The final deposition was calculated as weighted averages interpolated over 100 m cell grid of carbon deposition from the last 90 days of the model run. The deposition covered a total of 91,250 m2, with a highest deposition concentration of 422 gC m–2 yr–1. The annual output deposition was interpolated monthly within the georeferenced model domain (Figure 4; Supplementary Material NewDEPOMOD outputs.mp4) and linked to the Ecospace grid in order to force the relative biomass of detritus in the footprint domain using the temporal-spatial framework plug-in (Steenbeek et al., 2016).
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FIGURE 4. NewDEPOMOD annual carbon deposition output interpolated by the georeferenced Ecospace model domain (100 m × 100 m).




Nutrient Enrichment by Enhanced Secondary Production

The excess organic matter that reach the seabed is mineralized in the sediment, creating a localized increase of recycled nutrients. In shallow shelf seas, nutrients regenerated in the sediment co-regulate primary production events in the water column (Ruardij and Van Raaphorst, 1995; Soetaert and Middelburg, 2009).

Across sediment types, in shallow waters, recycled production can contribute up to 25% of the winter dissolved inorganic nitrogen maximum (Serpetti, 2012). Therefore, assuming that nitrate is often the limiting nutrient of primary productivity (Ryther and Dunstan, 1971; Vitousek and Howarth, 1991) and completely depleted during spring bloom (Serpetti, 2012), we might expect a proportional local increasing of annual primary production driven by nitrogen regenerated from the organic matter enrichment under the fish farm. Therefore we applied a relative annual increase of 25% of phytoplankton biomass proportionally to the intensity of the farming foot-print spatial extent at monthly steps. This percentage is just a crude estimation as we are considering only recycled production by sediment organic matter remineralization processes without considering the remineralization in the pelagic domain neither the local loss of nutrients due to advection and currents. Quantifying the nutrient loadings by fish farms is still controversial, similar nitrogen eutrophication rates were estimated by other case of studies in the Baltic Sea coastal areas (Bonsdorff et al., 1997; Nordvarg, 2001), however, Honkanen and Helminen (2000) also highlighted that local changes of chlorophyll-a is a better indicator for assessing the enhanced productivity caused by fish-farms.



SETTING SCENARIOS AND MODEL OUTPUTS

A region of about 8 km2 was set around the MPP site (box in Figures 2, 4) and model outputs were extracted within the region in order to compare the biomass changes across the scenarios tested. In Ecospace, a fishery exclusion zone was set in this region, therefore the fisheries included this model were not operational close to the MPP elements. A total 6 scenarios were run in Ecospace for the full 29-year period of the model, testing the impact of MPP pressures after the installation of the MPP in 2011:

1. Baseline: no addition of the MPP;

2. Addition of the OWTs, testing the impacts of low frequency noise and induced displacement by OWTs for selected sensitive seabirds species;

3. Addition of the salmon farming habitat, testing the attraction of selected top-predators;

4. Addition of the salmon farming habitat, testing the attraction of selected top-predators and detritus enrichment;

5. Addition of the salmon farming habitat, testing the attraction of selected top-predators, detritus enrichment and phytoplankton increased induced by enhanced recycled production; and

6. Testing cumulative impact of all pressures at the same time.

The MPP multiple impacts were implemented in Ecospace in different ways and activated at a specific time and space using the temporal-spatial framework plug-in (Steenbeek et al., 2016). In Ecospace the salmon farm was added in 2011 as a new habitat (Supplementary Figure 2). Species attraction to the farm was simulated by changing the relative habitat foraging usage for selected species (saithe, Atlantic cod, whiting, haddock, seabirds, and harbor seals) with the highest proportion of preferences at the “farming” habitat (Table 2).


TABLE 2. Relative changes made for habitat preferences to simulate attraction to the farming site with references used.
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Seabird displacement was simulated (2011–2013) forcing the relative temporal-spatial biomass at the “farming habitat” ± 0.5 km.

Salmon farm-induced eutrophication was simulated by proportionally forcing the relative temporal-spatial biomass of detritus in correspondence to the farming foot-print, and the enhanced recycled production directly impacted the relative biomass of phytoplankton for the same spatial foot-print.



RESULTS

Species biomasses were extracted within the region for each scenario and biomass changes for scenarios 2–6 were visualized by standardizing the species biomasses by the baseline in scenario 1 “no addition of the MPP” (Table 3 and Figure 5).


TABLE 3. Mean relative annual biomasses changes (2011–2013) of functional group across scenario 1–6.
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FIGURE 5. Species relative annual biomasses changes (2011–2013) assessing the impact of MPP pressures within the region for each scenario. Biomass changes for scenarios 2–6 were visualized standardizing the species biomasses by the baseline “no addition of the MPP.”


The results showed between ± 5–25% relative changes for most of the functional groups due to the MPP pressures (Table 3 and Supplementary Figures 3, 4). Higher responses were found for harbor porpoises (down to ∼45%) when testing the assumed impact of OWTs noise, for sandeels (up to ∼20%) and large and small zooplankton (up to ∼30 and 60%, respectively), when testing the impact of detritus enrichment (scenario 5) and primary production (scenario 6).

In Scenario 2 harbor seals and porpoises are the functional groups assumed to be impacted by the low frequency noise produced by OWTs: porpoises showed highest sensitivity (defined by the avoidance of noise up to 7 km from the source; Figure 3), as defined by the response function to this pressure, causing a decrease of their relative biomass within the region of ∼45% (Figure 5), whilst harbor seals showed ∼1% decrease within the region (Figure 5) although localized within 2 km from the MPP source location (Supplementary Figure 3). The decrease of harbor porpoises within the region showed a weak evidence of top-down control through the food-web without significant increases of its major prey species (diet proportion ∼50% juvenile whiting and ∼25% sandeels) (Supplementary Figure 2).

Whiting, and cod and haddock to a lesser extents, also declined under the scenario testing exclusively the impact of noise (scenario 2; Table 3 and Figure 5). Porpoises and gadoids are competing for whiting (adult and juveniles) as a main prey (Supplementary Table 2), and saithe also exhibited a top-down control on whiting (Supplementary Table 4), therefore the decline on whiting is determined by cumulative impact of all his predators changes within the region.

Induced seabirds dislocation by OWTs determined a decrease of seabirds biomass of 8% within the region (Figure 5, scenarios 2 and 6) and the change was significant within a radius of about 0.5 km from the MPP site (Supplementary Figure 5).
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FIGURE 6. Species relative biomasses extracted at the end of the scenario 6 simulation (2013) showing the relative foot-print increases of phytoplankton, small zooplankton, large zooplankton, and detritus, infauna and epifauna.


In scenarios 3–5 an overall increase of relative biomasses were recorded as expected with the enhancement of region productivity driven by either fish farming attraction of wild stock to salmon cages, detritus enrichment, and enhanced primary production (Supplementary Figures 3, 4). Only a few groups showed decreasing patterns under these scenarios, including poor cod (Trisopterus minutus) with <1% decreases due to predations of many predators (Supplementary Table 2), Nephrops with <2% decreases only in scenario 4 caused by rays’ predation pressure) and lobsters with <4% decreases due to cannibalism). In scenarios 3–5, all the gadoids are attracted to the farming site with saithe being the most responsive to this attraction due to their large increase in biomass up to 2013 (Serpetti et al., 2017) and their top-down controls on other gadoid preys (Supplementary Table 4).

In scenario 4, detritus enrichment rapidly cascaded through the food-web, with an increase in infauna, with a diet consisting of 95% detritus increase, and epifauna, that feed on both detritus and infauna (approximatively 40% each in this model) (Supplementary Table 2). The detritus enrichment caused small increases of biomass for most of the benthic species such as gurnards, rays, benthic sharks, and crabs (Figure 5, Table 3, and Supplementary Figure 4).

Similarly, changes of phytoplankton (scenarios 5 and 6) directly impacted small and large zooplankton with propagation of the increasing production to the pelagic species such as benthopelagic fish, herring and sandeels (Figure 5, Table 3, and Supplementary Figure 4).

In scenario 6 the cumulative impacts overruled the negative effects caused by the noise pressure (Table 3, negative values in scenario 2), and by predator attraction (Table 3, negative values in scenario 3) for most of the species impacted. Only harbor porpoises and seabirds did not show cumulative mitigating impacts (Table 3 and Figure 5).

Under scenario 3, attraction of top-predators, many prey species showed small decreases (Table 3) due to increased predation mortality manly driven by gadoids. This decreases were overruled by increasing benthic productivity (scenario 4) and primary production (scenario 5 and 6) for benthic and pelagic domains, respectively.

Under scenario 4, Nephrops showed a decrease of 2% driven by increasing predation mortality by crustaceans, flatfish and cod, however, the enounced primary production (scenario 5 and 6) overcome this decrease supplying more food for this species (Table 3).

Overall, the results did not showed a cumulative negative impact on any functional group.

Spatially, the biomasses of phytoplankton and detritus are forced on the grid cells proportionally to the carbon deposition output from NEWDepomod (Figure 4): these signals cascaded through the food-web (to small and large zooplankton and to infauna and epifauna from phytoplankton and detritus, respectively) showing larger diffused footprints according to their dispersal rates (∼30 km/year for small-, large zooplankton and epifauna and 3 km/year for infauna) (Figure 6 and Supplementary Table 5).



DISCUSSION

This study focused on a preliminary investigation on the small scale impacts which would occur from a hypothetical Multi-Purpose Platform (MPP) off the West Coast of Scotland. The study quantitatively applies pressures produced by the MPP (aquaculture co-located with offshore wind turbines (OWTs) in order to assess their potential impact on the food-web. The pressures were applied one at time to disentangle the conflicts and synergies of the MPP elements.

The overall changes in biomass calculated within the 8 km2 region set around the MPP site (box in Figures 2, 4) were presented as percentages of changes in relation to the baseline “no addition of the MPP.” The choice of the size of the region was a compromise within potentially small spatial impact of seabirds and harbor seals dislocations as well as attraction to the farm of various top-predators (Supplementary Figure 5), medium spatial impact of salmon farms’ eutrophication, from a few 100 m in shallow waters to 2–3 km in deeper-water (Figure 6) and the uncertain responses of cetaceans to noise that might extend over tens of kilometers (Supplementary Figure 5).

Consequently, the size of the region within which we assessed the MPP’s impacts might have led to overestimation of the impact of top-predators’ noise avoidance whilst underestimating the effects of farm-related eutrophication.

The overall results showed small impacts (both increases and decreases) between ± 5–25% relative changes for most of the functional groups (Supplementary Figure 3). Higher impacts were found for harbor porpoise (with ∼45% decrease) and, small and large zooplankton (with more than 60 and 30% increases, respectively) (Figure 5), but these were localized to a few km from the MPP site (Figure 6 and Supplementary Figure 2).

The ability of species such as harbor seals and porpoises to detect and react to the sound emitted by operational OWTs has been identified as a potential concern, especially when considering cumulative noise from multiple turbines (Koschinski et al., 2003; Tougaard et al., 2020; Stöber and Thomsen, 2021). The model was able to represent estimates of avoidance behavior of sensitive species to underwater noise. When the impact of noise produced by OWTs was tested (Scenario 2), a significant decrease of 45% for harbor porpoise within the region). Like other cetaceans, harbor porpoises rely greatly on their sense of sound for orientation, mating and feeding. Low frequency noise is a known deterrent for cetaceans and they have been documented to avoid high traffic areas (Dyndo et al., 2015; Forney et al., 2017; Wisniewska et al., 2018). Wind turbines might produce low frequency noise: areas with wind turbines could potentially displace cetaceans to areas of suboptimal foraging with reduced prey availability (Forney et al., 2017).

The response function to noise for this species was created using a conservative approach, with a gradual displacement between 0 and 7 km from the source (Supplementary Figure 5), and considering a small impact produced by four wind turbines associated to one barge: if multiple off-shore farm sites are transformed to MPP, the impact on harbor porpoises might be more significant.

While numerous studies exist on the effects of shipping noise on cetaceans and pinnipeds (Dyndo et al., 2015; Mikkelsen et al., 2019), studies on impacts from sustained low frequency noise from operational single or arrays of OWTs are rare. However it has been shown that both species groups to return to OWT farms after initial displacement during construction are not readily available (Scheidat et al., 2011; Teilmann and Carstensen, 2012). Moreover, here we are not considering species habituation to noise.

A recent study demonstrated that seals also responded to low frequency noise from ships by changing their diving behavior (Mikkelsen et al., 2019). Here the potential impact of noise was simulated by a response function using preliminary results from a recent study showing dislocation of harbor seal up to 2 km from a tidal turbine noise source (Joe Onoufriou and Laura Palmer, St Andrews University, EIMR2020 conference presentations, April 21st–23rd 2020) (Figure 3 and Supplementary Figure 5). This assumption was reinforced by recent studies that showed that the low frequency noise can be 5 dB higher than ambient noise at 2.3 km distance from an operational tidal turbine (Risch et al., 2020) that can cause significant avoidance (78%) at 140 m from the source (Palmer et al., in review): however tidal turbines produce considerably louder noise than wind farms. Harbor seals can show significant displacement (up to 25 km) from the wind farm construction site during piling activity, however, not significant displacement during construction as a whole was found (Russell et al., 2016). Spatial and temporal quantification of avoidance of wind farms by harbor seals is therefore still uncertain, accurate environmental assessments are then required in order to quantify the duration of any avoidance (Russell et al., 2016).

Since intermittent low frequency noise alters species behavior for a short duration, a sustained noise from OWTs may alter it for longer, which could have an impact on their food consumption rates. Assessing the impacts of continuous noise is challenging (Mikkelsen et al., 2019) and in this study we are not considering the possibility that species could habituate to the noise to a point at which it no longer interferes with their feeding behaviors. The reason behind habituation which would be recorded as reduced behavioral responses has, however, been misinterpreted and often attributed to other causes (Wright et al., 2007). It is difficult to model animal responses as each individual can behave differently depending on its natural behavior and the historical environmental pressures it has endured. In our approach the impact of noise on the species can only be modeled to show population level responses, therefore we are not considering individual behaviors and ecological adaptation to this pressure. There are different sources of low-frequency noise that can affect top-predators in the West Coast of Scotland, from shipping noise (Harvey, 2018), to tidal turbines (Hastie et al., 2017). Our results in relation to noise impacts are strongly dependent on the source of the noise and species responses to this pressure. The functions that we used have been built inferring these responses from other sources of noise rather than OWTs because of current lack of data. Our results suggested the importance of quantitative measures of noise produced (Risch et al., 2020; Tougaard et al., 2020; Stöber and Thomsen, 2021) in relation with species specific responses (Teilmann and Carstensen, 2012).

Harbor seals are known to be opportunistic feeders and their attraction to fish farms have been controversial. Some studies found them in the vicinity of fish farms (Nelson et al., 2006), while others find no attraction to fish farms (Jacobs and Terhune, 2000). Our model output showed an increase of only ∼3–4% under scenarios testing attraction and increasing production (scenario 3–5). The results for seabirds for the same scenarios mirrored these results with small increases when testing the salmon farms attraction pressure. Seabirds have shown avoidance as well as attraction to OWTs to varying degrees depending on the species (Furness et al., 2013; Marques et al., 2014; Vanermen et al., 2015, 2019; Dierschke et al., 2016; Callier et al., 2018). As the responses are species-specific we used a recent monitoring study that identified sensitive species to attraction and avoidance by offshore wind farms in the Belgian part of the North Sea (Vanermen et al., 2019) and applied proportional dislocations, however, to better assess these impacts the seabirds group should be separated by relevant species. Our results did not show a trade-off with increasing productivity around the salmon farm mitigating the impact of induced dislocation by OWTs on seabird biomass at the MPP site.

Changes of top-predator distributions might have an effect of their prey through top-down controls. In this study only small responses of prey driven by predation were found, with the exception of whiting, which unexpectedly decreased in concurrency to the decrease of its predator, harbor porpoise, when testing the impact of noise (scenario 2). This is due to complex predator/prey and competition interactions: porpoises, cod and saithe are competing for whiting (adult and juveniles) as a main prey, and saithe also exhibited a top-down control on juvenile stages of the other gadoid species. This results suggested that the predation pressure and competition within gadoids have a stronger control on these stocks that other top-predators (Baudron et al., 2019). Ecospace spatial simulations showed that the decrease of whiting biomass is determined by small cumulative impacts among its predators, mainly on its juvenile stages. Temporal scenarios showed that this pressure impacted whiting trophic interactions only at the beginning of the simulation. In fact, the food web reached a new equilibrium by the end of the simulation that suggest that whiting biomass will not be affected by these pressures in the longer run (steady state) (Supplementary Figure 6).

The overall changes caused by MPP pressures are impacting different pathways of the food-web. Scenarios 2 and 3 tested the impact of top-predator distribution changes driven by noise and salmon farming site attraction, respectively: predator top-down controls are weakly cascading thought the food-web as their impacts were distributed across multiple preys reflecting the complexity of their trophic interactions. The attraction to the MPP site was applied to all gadoid top-predators (scenario 3) and model confirmed the higher response (higher relative biomass) of saithe around the farming site being predators of other gadoids and more reliant on excess feed (Dempster et al., 2009, 2010). Saithe is a generalist species, feeding on many organisms including crustaceans, herring, Norway pout, zooplankton and juvenile stages of other gadoid species (Du Buit, 1991; Sarno et al., 2005; Homrum et al., 2012; Supplementary Table 2), upon which saithe exert top-down control (Alexander et al., 2015; Serpetti et al., 2017; Baudron et al., 2019) making the relationships within these groups particularly complex to disentangle. In Norway, mature cod were found feeding on saithe in the vicinity of salmon farms (Bagdonas et al., 2012), suggesting that more data are needed to understand the relationships between these species. Moreover, some mid-trophic level species such as cod and sole (Solea solea) also seems to show behavioral responses to noise (Bailey et al., 2014), which might mitigate this attraction to the MPP site, however, this was not tested in this model.

Scenarios 4–5 tested the impact of two different bottom-up pressures affecting the food-web through two different pathways: detritus enrichment and enhanced primary production. Bottom-up pathways have high energy transfer efficiency (Armengol et al., 2019), where the energy mainly flows to few predators groups, and can strongly affect food web structure and biodiversity (Moore et al., 2004). The detritus pathways did not show an amplification of the signal as the energy produced by the consumption of detritus weakens after each predator- prey interactions (Moore et al., 2004). However, this might be due to the fact that the model does not have a well-defined microbial loop, therefore missing the trophic relationships between infauna and bacterial communities that could amplifying the detritus pathway. Future work should include the microbial loop in the model to highlight the dissipation of energy through these pathways. The primary productivity pathway, however, showed an amplification of the signal through the food-web (Christensen, 2013; Chust et al., 2014), with a large increase of relative biomass of small zooplankton; however this amplification did not cascade to higher trophic level (e.g., large zooplankton and herring) as found for ecosystems with a more planktonic food web structure with high energy transfer efficiency (Heymans and Baird, 2000; Armengol et al., 2019).

Pressures caused by MPP elements impacted different pathways of the food-web with evidence of cumulative mitigating impact. The cumulative application of pressures (scenario 6) that lead to increased productivity of the region e.g., attraction of wild fish (scenario 3), detritus and phytoplankton enrichments (scenario 4 and 5) seems to override the negative impact of noise on harbor seal, adult cod and haddock and whiting adults and juveniles (Table 3).

Harbor porpoises were not attracted to the MPP site: the overall increases in productivity simulated in scenario 2-4- and 5 did not increase their relative biomasses within the region probably due to their high dispersal rate (Supplementary Table 5) and therefore their capability on feeding in other grounds.

Unexpectedly, seabirds did not show cumulative mitigating pressures despite their increases within the region under enhanced productivity scenarios (Table 3): this is probably caused by the relatively strong impact of spatial displacement within the size of the region (Supplementary Figure 5) and highlight, once again the necessity of separated this functional group in relevant species in order to better assess this impacts.

The spatial distributions of infauna and epifauna and small and large zooplankton responded to the farming foot-print enrichment by both detritus and phytoplankton in relation to their dispersal rates, suggesting the importance of carrying out a sensitivity test with different rates and the need for sampling infauna and epifauna on a real farm site in order to validate the model results. Moreover, NewDepomod was run for 1 year and the monthly model output was coupled with Ecospace at monthly timesteps, assuming that the farm was kept operational for 3 continuous years. The 3 years average was chosen for this specific case study as salmon farming production cycle lasts about 2–3 years, often fallowed after harvesting, for 2–6 months, before farming a new generation at the same site (Mowi, 2020). During this time we also assumed that OWTs will not be operational.

The implementation of the MPP pressures perturbated the ecosystem: after 3 years, many functional groups are approaching a new steady state with few exceptions such as cod, benthic fish species and lobster and velvet crab, within invertebrate species (Supplementary Figure 7). Other benthopelagic fish is the only group that could reach significant higher biomass at steady state of the cumulative scenario (Supplementary Figure 7): this group very heterogeneous, constituted by 39 species with pelagic and benthic feeding habits, therefore taking advantage of both productivity increases via detritus and phytoplankton.

This model is a preliminary study of a hypothetical MPP development on a single site. Moving toward renewables as a greener and more sustainable option in the face of climate change, and the necessity of aquaculture production, we propose the use of MPP to maximize the benefits of these expansions and minimize their impacts. In these hypothetical simulations, the proposed MPP site contained a small barge with four wind turbines, however, wind may sometimes be unreliable and not produce sufficient energy to run the farm. An addition of wave energy converter to the MPP would supplement the power produced by the turbines (Langhamer et al., 2010).

As for any model, validation is an important aspect to produce accurate predictions. Assessing uncertainties of EwE spatial outputs associated to the input data is not currently possible in Ecopath with Ecosim. However there are a few examples of validation of Ecospace predictions using spatial time-series of biomass and fishing effort (Romagnoni et al., 2015) and Bayesian belief network approach coupled with Ecospace in order to validate and/or drive the model to assess its performances (Coll et al., 2019). The limited availability of validation material for this study, and uncertainties around the assumptions made regarding noise pressure responses and species habitat preferences were the main limitations to this study. Therefore in future a sensitivity test should be carried out in order to assess the model performances for different proportions of species habitat preferences, for different dispersal rates, and for different response functions to noise. Model validation is also critical through the collection of target data around fish farms and floating OWTs areas.

An MPP site may have difficulties in gaining support from local stakeholders due to conflict of interest for fishers because of the likelihood of imposition of fishery exclusion zones near farms (Bagdonas et al., 2012). To avoid competition for areas between fisheries and aquaculture, a realistic management framework which enforces restrictions would be required if interactions between fisheries and aquaculture become intense (Dempster et al., 2009, 2010). This would also disrupt the aforementioned “ecological service” of the fish feeding on excess waste from the farm as this new food source for wild fish stock may reduce their quality and consequently the value of the catches (Uglem et al., 2020).

The site at which this hypothetical MPP was added in this study was chosen based on the availability of data for an existing farm located in the vicinity of the Isle of Muck. No assessments were carried out to assess whether this would be an economically viable placement for a salmon farm. Future investigations will also need a Marine Environmental Impact Assessment (MEIA). MPPs provide a unique opportunity for more effective usage of marine spaces and economic growth, here presented by a combination of aquaculture and energy. They may also provide more environmentally friendly solutions such as integrated multi-trophic aquaculture systems which are extending aquaculture production while reducing nitrogen release (Troell et al., 2009). These prospects are regarded as possibilities to move into a future with more sustainable economic developments at sea and therefore toward Blue Growth and a Blue economy (Stuiver et al., 2016).

Ecospace can be a useful tool for investigating the potential impact of cumulative pressures on the food-web. The model was able to simulate the impact of several potential pressures produced by the MPP that are impacting the ecosystem food-web from different levels, from top-predator pathways (top-down controls), mid-trophic levels (simulating spatial distribution changes due to predator attractions to salmon farms), to phytoplankton and detritus pathways (bottom-up controls). In some cases the model was also able to identify potential mitigating impact through cumulative effects with detritus and phytoplankton enrichments that seems to mitigate the indirect impact of noise for some species.

Ecospace computations are quite demanding (as they perform the food-web interactions of many species in time and space); therefore it is not possible to run models with high resolution and large spatial domains. A new plug-in, currently under development (Steenbeek et al., 2019), will allow to scale up Ecospace high-resolution models to larger scales. This will allow us to scale-up the results presented in here to a larger West Coast of Scotland Ecospace model domain (Alexander et al., 2016; Harvey, 2018) in order to assess the single and cumulative impacts of multiple MPP installations in the ecosystem.

The impacts of these pressures remain site-specific, depending on the food-web structure, currents, water stratification, potential anoxia events and of course type of aquaculture. Environmental impacts vary considerably depending on the specie farmed, the association of shellfish and kelp farming, through Integrated Multi-Trophic Aquaculture could be an alternative solution to reduce eutrophication by fish farming (Buck et al., 2018).

The major limitation of this approach was based on the lack of current data to develop accurate response function to noise. The responses to this pressure on harbor porpoise and harbor seal were inferred using different sources of noise (from shipping and tidal turbines, respectively) due to lack of quantitative responses of this species in relation to noise generated by OWTs. Consequently these outputs cannot currently be used for spatial management until better specific quantitative data in relation to OWT noise and potential avoidance responses among marine species can be collected and model outputs validated. Similarly, the seabird group used here included a wide range of species with very different ecological needs. Further work is required to adequately separate out these species to allow more accurate evaluation of food web impacts caused by developments such as the MPP in this study.



DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.



AUTHOR CONTRIBUTIONS

NS carried out the analysis and wrote the manuscript. SBe and JW contributed to the analysis and writing the manuscript. SBr carried out the NEWDepomod model run. MC, DR, and BW contributed to editing the manuscript. BH carried out the Ecopath with Ecosim update and model fitting. JH contributed to writing the manuscript and in the model analysis. AH contributed to editing the manuscript and support for aquaculture topic. SR contributed on the scenarios runs in Ecospace and writing the manuscript. All authors contributed to the article and approved the submitted version.



FUNDING

This work was supported by the Engineering and Physical Sciences Research Council UK (EPSRC) and the Natural Environment Research Council UK (NERC), through grant EP/R007497/1 and EP/R007497/2, and the Natural Science Foundation of China (NSFC) through grant 51761135013.



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars.2021.694013/full#supplementary-material


FOOTNOTES

1
http://www.searchmesh.net/

2
http://edina.ac.uk/


REFERENCES

Abhinav, K. A., Collu, M., Benjamins, S., Cai, H. W., Hughes, A., Jiang, B., et al. (2020). Offshore multi -purpose platforms for a blue growth: a technological, environmental and socio-economic review. Sci. Total Environ. 734:138256. doi: 10.1016/j.scitotenv.2020.138256

Abhinav, K. A., Collu, M., Ke, S., and Binzhen, Z. (2019). “Frequency domain analysis of a hybrid aquaculture-wind turbine offshore floating system,” in ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, (New York, NY: American Society of Mechanical Engineers).

Adams, T., Black, K., Carpenter, T., Hughes, A., Reinardy, H., and Weeks, R. (2020). Parameterising resuspension in aquaculture waste deposition modelling. Aquac. Environ. Interact. 12, 401–415. doi: 10.3354/aei00372

Ahrens, R. N. M., Walters, C. J., and Christensen, V. (2012). Foraging arena theory. Fish Fish. 13, 41–59. doi: 10.1111/j.1467-2979.2011.00432.x

Alexander, K. A., Heymans, J. J., Magill, S., Tomczak, M. T., Holmes, S. J., and Wilding, T. A. (2015). Investigating the recent decline in gadoid stocks in the west of Scotland shelf ecosystem using a foodweb model. ICES J. Mar. Sci. 72, 436–449. doi: 10.1093/icesjms/fsu149

Alexander, K. A., Meyjes, S. A., and Heymans, J. J. (2016). Spatial ecosystem modelling of marine renewable energy installations: gauging the utility of ecospace. Ecol. Model. 331, 115–128. doi: 10.1016/j.ecolmodel.2016.01.016

Aleynik, D., Dale, A. C., Porter, M., and Davidson, K. (2016). A high resolution hydrodynamic model system suitable for novel harmful algal bloom modelling in areas of complex coastline and topography. Harmful Algae 53, 102–117. doi: 10.1016/j.hal.2015.11.012

Aquaculture Scotland (2020). Interactive Map of Scottish Marine Finfish Aquaculture Sites. Available online at: http://aquaculture.scotland.gov.uk/map/map.aspx (Accessed March 15, 2021)

Armengol, L., Calbet, A., Franchy, G., Rodríguez-Santos, A., and Hernández-León, S. (2019). Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci. Rep. 9:2044. doi: 10.1038/s41598-019-38507-9

Bagdonas, K., Humborstad, O.-B., and Løkkeborg, S. (2012). Capture of wild saithe (Pollachius virens) and cod (Gadus morhua) in the vicinity of salmon farms: three pot types compared. Fish. Res. 134–136, 1–5. doi: 10.1016/j.fishres.2012.06.020

Bailey, H., Brookes, K. L., and Thompson, P. M. (2014). Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquat. Biosyst. 10:8. doi: 10.1186/2046-9063-10-8

Bailey, H., Senior, B., Simmons, D., Rusin, J., Picken, G., and Thompson, P. M. (2010). Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals. Mar. Pollut. Bull. 60, 888–897. doi: 10.1016/j.marpolbul.2010.01.003

Baudron, A. R., Serpetti, N., Fallon, N. G., Heymans, J. J., and Fernandes, P. G. (2019). Can the common fisheries policy achieve good environmental status in exploited ecosystems: the west of Scotland demersal fisheries example. Fish. Res. 211, 217–230. doi: 10.1016/j.fishres.2018.10.024

Benjamins, S., Harnois, V., Smith, H. C. M., Johanning, L., Greenhill, L., Carter, C., et al. (2014). Understanding the Potential for Marine Megafauna Entanglement Risk from Marine Renewable Energy Developments (Report No. 791). Inverness: Scottish Natural Heritage.

Benjamins, S., Masden, E., and Coll, M. (2020). Integrating wind turbines and fish farms an evaluation of potential risks to marine and coastal bird species. J. Mar. Sci. Eng. 8:414. doi: 10.3390/jmse8060414

Bonsdorff, E., Blomqvist, E. M., Mattila, J., and Norkko, A. (1997). Coastal eutrophication: causes, consequences and perspectives in the Archipelago areas of the northern Baltic Sea. Estuar. Coast. Shelf Sci. 44, 63–72. doi: 10.1016/S0272-7714(97)80008-X

Brandt, M. J., Diederichs, A., Betke, K., and Nehls, G. (2011). Responses of harbour porpoises to pile driving at the Horns Rev II offshore wind farm in the Danish North Sea. Mar. Ecol. Prog. Ser. 421, 205–216. doi: 10.3354/meps08888

Buck, B. H., Troell, M. F., Krause, G., Angel, D. L., Grote, B., and Chopin, T. (2018). State of the art and challenges for offshore Integrated Multi-Trophic Aquaculture (IMTA). Front. Mar. Sci. 5:165. doi: 10.3389/fmars.2018.00165

Callier, M. D., Byron, C. J., Bengtson, D. A., Cranford, P. J., Cross, S. F., Focken, U., et al. (2018). Attraction and repulsion of mobile wild organisms to finfish and shellfish aquaculture: a review. Rev. Aquac. 10, 924–949. doi: 10.1111/raq.12208

Casale, C., Serri, L., Stolk, N., Yildiz, I., and Cantu’, Y. M. (2012). Synergies, Innovative Designs and Concepts for Multipurpose use of Conversion Platforms. ORECCA Project Report-WP4 (FP7).

Chary, K., Callier, M. D., Covès, D., Aubin, J., Simon, J., and Fiandrino, A. (2021). Scenarios of fish waste deposition at the sub-lagoon scale: a modelling approach for aquaculture zoning and site selection. ICES J. Mar. Sci. fsaa238. doi: 10.1093/icesjms/fsaa238

Christensen, V. (2013). Ecological networks in fisheries: predicting the future? Fisheries 38, 76–81. doi: 10.1080/03632415.2013.757987

Christensen, V., and Walters, C. J. (2004). Ecopath with ecosim: methods, capabilities and limitations. Ecol. Model. 172, 109–139. doi: 10.1016/j.ecolmodel.2003.09.003

Christensen, V., Coll, M., Steenbeek, J., Buszowski, J., Chagaris, D., and Walters, C. J. (2014). Representing variable habitat quality in a spatial food web model. Ecosystems 17, 1397–1412. doi: 10.1007/s10021-014-9803-3

Chust, G., Allen, J. I., Bopp, L., Schrum, C., Holt, J., Tsiaras, K., et al. (2014). Biomass changes and trophic amplification of plankton in a warmer ocean. Glob. Chang. Biol. 20, 2124–2139. doi: 10.1111/gcb.12562

Coates, D. A., Kapasakali, D.-A., Vincx, M., and Vanaverbeke, J. (2016). Short-term effects of fishery exclusion in offshore wind farms on macrofaunal communities in the Belgian part of the North Sea. Fish. Res. 179, 131–138. doi: 10.1016/j.fishres.2016.02.019

Coll, M., Akoglu, E., Arreguin-Sanchez, F., Fulton, E. A., Gascuel, D., Heymans, J. J., et al. (2015). Modelling dynamic ecosystems: venturing beyond boundaries with the Ecopath approach. Rev. Fish Biol. Fish. 25, 413–424. doi: 10.1007/s11160-015-9386-x

Coll, M., Pennino, M. G., Steenbeek, J., Sole, J., and Bellido, J. M. (2019). Predicting marine species distributions: complementarity of food-web andBayesian hierarchical modelling approaches. Ecol. Model. 405, 86–101. doi: 10.1016/j.ecolmodel.2019.05.005

Coll, M., Steenbeek, J., Sole, J., Palomera, I., and Christensen, V. (2016). Modelling the cumulative spatial-temporal effects of environmental drivers and fishing in a NW Mediterranean marine ecosystem. Ecol. Model. 331, 100–114. doi: 10.1016/j.ecolmodel.2016.03.020

Colleter, M., Gascuel, D., Albouy, C., Francour, P., de Morais, L. T., Valls, A., et al. (2014). Fishing inside or outside? A case studies analysis of potential spillover effect from marine protected areas, using food web models. J. Mar. Syst. 139, 383–395. doi: 10.1016/j.jmarsys.2014.07.023

Coolen, J. W. P. (2017). North Sea Reefs: Benthic Biodiversity of Artificial and Rocky Reefs in the Southern North Sea. Ph.D. Thesis. Wageningen: Wageningen University.

Da Rocha, A. B., Lino, F. J., Correia, N., Matos, J. C., Marques, M., and Morais, T. (2010). Offshore Renewable Energy Development of Ocean Technology Projects at INEGI. Available online at: https://web.fe.up.pt/˜falves/offshore.pdf (accessed April 7, 2021).

Dannheim, J., Bergström, L., Birchenough, S. N. R., Brzana, R., Boon, A. R., Coolen, J. W. P., et al. (2020). Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research. ICES J. Mar. Sci. 77, 1092–1108. doi: 10.1093/icesjms/fsz018

Dempster, T., Sanchez-Jerez, P., Uglem, I., and Bjorn, P. A. (2010). Species-specific patterns of aggregation of wild fish around fish farms. Estuar. Coast. Shelf Sci. 86, 271–275. doi: 10.1016/j.ecss.2009.11.007

Dempster, T., Uglem, I., Sanchez-Jerez, P., Fernandez-Jover, D., Bayle-Sempere, J., Nilsen, R., et al. (2009). Coastal salmon farms attract large and persistent aggregations of wild fish: an ecosystem effect. Mar. Ecol. Prog. Ser. 385, 1–14. doi: 10.3354/meps08050

Dierschke, V., Furness, R. W., and Garthe, S. (2016). Seabirds and offshore wind farms in European waters: avoidance and attraction. Biol. Conserv. 202, 59–68. doi: 10.1016/j.biocon.2016.08.016

Dolman, S. J., and Brakes, P. (2018). Sustainable Fisheries management and the welfare of bycaught and entangled cetaceans. Front. Vet. Sci. 5:287. doi: 10.3389/fvets.2018.00287

Drewitt, A. L., and Langston, R. H. W. (2006). Assessing the impacts of wind farms on birds. IBIS 148, 29–42. doi: 10.1111/j.1474-919x.2006.00516.x

Du Buit, M. H. (1991). Food and feeding of saithe (Pollachius virens L.) off Scotland. Fish. Res. 12, 307–323. doi: 10.1016/0165-7836(91)90015-8

Dyndo, M., Wisniewska, D., Rojano-Doñate, L., Ryan, P., and Madsen, T. (2015). Harbour porpoises react to low levels of high frequency vessel noise. Sci. Rep. 5:11083. doi: 10.1038/srep11083

Food and Agriculture Organization [FAO] (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in Action. Rome: FAO.

Forney, K. A., Southall, B. L., Slooten, E., Dawson, S., Read, A. J., Baird, R. W., et al. (2017). Nowhere to go: noise impact assessments for marine mammal populations with high site fidelity. Endanger. Species Res. 32, 391–413. doi: 10.3354/esr00820

Forrest, B., Keeley, N., Gillespie, P., Hopkins, G., Knight, B., Govier, D., et al. (2007). Review of the Ecological Effects of Marine Finfish Aquaculture: Final Report. Cawthron Report 1285. Nelson: Cawthron Institute.

Froehlich, H. E., Smith, A., Gentry, R. R., and Halpern, B. S. (2017). Offshore aquaculture: i know it when i see it. Front. Mar. Sci. 4:154. doi: 10.3389/fmars.2017.00154

Fulton, E. A., Bax, N. J., Bustamante, R. H., Dambacher, J. M., Dichmont, C., Dunstan, P. K., et al. (2015). Modelling marine protected areas: insights and hurdles. Philos. Trans. R. Soc. B Biol. Sci. 370:20140278.

Furness, R. W., Wade, H. M., and Masden, E. A. (2013). Assessing vulnerability of marine bird populations to offshore wind farms. J. Environ. Manag. 119, 56–66. doi: 10.1016/j.jenvman.2013.01.025

Garthe, S., and Hüppop, O. (2004). Scaling possible adverse effects of marine wind farms on seabirds: developing and applying a vulnerability index. J. Appl. Ecol. 41, 724–734. doi: 10.1111/j.0021-8901.2004.00918.x

Gascuel, D., Coll, M., Fox, C., Guenette, S., Guitton, J., Kenny, A., et al. (2016). Fishing impact and environmental status in European seas: a diagnosis from stock assessments and ecosystem indicators. Fish Fish. 17, 31–55. doi: 10.1111/faf.12090

Gatward, I., Parker, A., Billing, S., and Black, K. D. (2017). Scottish Aquaculture: A View Towards 2030. Scotland: Scottish Aquaculture Innovation Centre.

Gentry, R. R., Lester, S. E., Kappel, C. V., White, C., Bell, T. W., Stevens, J., et al. (2017). Offshore aquaculture: spatial planning principles for sustainable development. Ecol. Evol. 7, 733–743. doi: 10.1002/ece3.2637

Ghanawi, J., and McAdam, B. J. (2020). Using fatty acid markers to distinguish between effects of salmon (Salmo salar) and halibut (Hippoglossus hippoglossus) farming on mackerel (Scomber scombrus) and whiting (Merlangius merlangus). Aquac. Res. 51, 2229–2242. doi: 10.1111/are.14568

Gill, A. B., Birchenough, S., Jones, A., Judd, A., Jude, S., Payo-Payo, A., et al. (2018). Offshore Energy and Marine Spatial Planning. London: Routledge.

Gomez, C., Lawson, J., Wright, A., Buren, A., Tollit, D., and Lesage, V. (2016). A systematic review on the behavioural responses of wild marine mammals to noise: the disparity between science and policy. Can. J. Zool. 94, 801–819. doi: 10.1139/cjz-2016-0098

Grecian, W. J., Inger, R., Attrill, M. J., Bearhop, S., Godley, B. J., Witt, M. J., et al. (2010). Potential impacts of wave-powered marine renewable energy installations on marine birds. IBIS 152, 683–697. doi: 10.1111/j.1474-919x.2010.01048.x

H2Ocean (2018). Development of a Wind-Wave Power Open-Sea Platform Equipped for Hydrogen Generation with Support for Multiple Users of Energy. Stuart, FL: H2Ocean.

Harvey, B. J. (2018). Exploring Impacts of Noise From Shipping and Acoustic Deterrent Devices on Cetaceans on the West Coast of Scotland using an Ecosystem Modelling Approach. Ecosyst.-Based Manag. Mar. Syst. MSc.

Hastie, G. D., Russell, D. J. F., Lepper, P., Elliott, J., Wilson, B., Benjamins, S., et al. (2017). Harbour seals avoid tidal turbine noise: implications for collision risk. J. Appl. Ecol. 55, 684–693. doi: 10.1111/1365-2664.12981

Heymans, J. J., and Baird, D. (2000). A carbon flow model and network analysis of the northern Benguela upwelling system. Namibia. Ecol. Model. 126, 9–32. doi: 10.1016/S0304-3800(99)00192-1

Holm, P., Buck, B. H., and Langan, R. (2017). “Introduction: new approaches to sustainable offshore food production and the development of offshore platforms,” in Aquaculture Perspective of Multi-Use Sites in the Open Ocean, eds B. Buck and R. Langan (Cham: Springer).

Homrum, E., Hansen, B., Steingrund, P., and Hátún, H. (2012). Growth, maturation, diet and distribution of saithe (Pollachius virens) in Faroese waters (NE Atlantic). Mar. Biol. Res. 8, 246–254. doi: 10.1080/17451000.2011.627921

Honkanen, T., and Helminen, H. (2000). Impacts of fish farming on eutrophication: comparisons among different characteristics of ecosystem. Int. Rev. Hydrobiol. 85, 673–686. doi: 10.1002/1522-2632(200011)85:5/6<673::AID-IROH673<3.0.CO;2-O

Hyder, K., Rossberg, A. G., Allen, J. I., Austen, M. C., Barciela, R. M., Bannister, H. J., et al. (2015). Making modelling count - increasing the contribution of shelf-seas community and ecosystem models to policy development and management. Mar. Policy 61, 291–302. doi: 10.1016/j.marpol.2015.07.015

Jackson, D., Drumm, A., Fredheim, A., Lader, P., Fernáandez Otero, R., Institute, M., et al. (2011). OATP (Evaluation of the promotion of Offshore Aquaculture Through a Technology Platform). Galway: Marine Institute.

Jacobs, S. R., and Terhune, J. M. (2000). Harbor seal (Phoca vitulina) numbers along the new brunswick coast of the bay of fundy in autumn in relation to aquaculture. Northeast. Nat. 7, 289–296. doi: 10.2307/3858361

Jones, E. L., McConnell, B. J., Smout, S., Hammond, P. S., Duck, C. D., Morris, C. D., et al. (2015). Patterns of space use in sympatric marine colonial predators reveal scales of spatial partitioning. Mar. Ecol. Prog. Ser. 534, 235–249. doi: 10.3354/meps11370

Keeley, N. B., Macleod, C. K., Hopkins, G. A., and Forrest, B. M. (2014). Spatial and temporal dynamics in macrobenthos during recovery from salmon farm induced organic enrichment: when is recovery complete? Mar. Pollut. Bull. 80, 250–262. doi: 10.1016/j.marpolbul.2013.12.008

Kemper, C. M., Pemberton, D., Cawthorn, M., Heinrich, S., Mann, J., Würsig, B., et al. (2003). Aquaculture and marine mammals: co-existence or conflict? CSIRO Publishing. Available online at: https://risweb.st-andrews.ac.uk/portal/en/researchoutput/aquaculture-and-marine-mammals-coexistence-or-conflict(e4ce9e02-e800-4fe1-a99c-71a6c2ecf469).html (Accessed April 7, 2021).

Koschinski, S., Culik, B. M., Henriksen, O. D., Tregenza, N., Ellis, G., Jansen, C., et al. (2003). Behavioural reactions of free-ranging porpoises and seals to the noise of a simulated 2 MW windpower generator. Mar. Ecol. Prog. Ser. 265, 263–273. doi: 10.3354/meps265263

Krone, R., Gutow, L., Joschko, T. J., and Schröder, A. (2013). Epifauna dynamics at an offshore foundation – Implications of future wind power farming in the North Sea. Mar. Environ. Res. 85, 1–12. doi: 10.1016/j.marenvres.2012.12.004

Langhamer, O., Haikonen, K., and Sundberg, J. (2010). Wave power—Sustainable energy or environmentally costly? A review with special emphasis on linear wave energy converters. Renew. Sustain. Energy Rev. 14, 1329–1335. doi: 10.1016/j.rser.2009.11.016

Lester, S. E., Stevens, J. M., Gentry, R. R., Kappel, C. V., Bell, T. W., Costello, C. J., et al. (2018). Marine spatial planning makes room for offshore aquaculture in crowded coastal waters. Nat. Commun. 9:945. doi: 10.1038/s41467-018-03249-1

Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K., and Tyack, P. (2006). Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Mar. Ecol. Prog. Ser. 309, 279–295. doi: 10.3354/meps309279

Marques, A. T., Batalha, H., Rodrigues, S., Costa, H., Pereira, M. J. R., Fonseca, C., et al. (2014). Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52. doi: 10.1016/j.biocon.2014.08.017

Mente, E., Martin, J. C., Tuck, I., Kormas, K. A., Santos, M. B., Bailey, N., et al. (2010). Mesoscale effects of aquaculture installations on benthic and epibenthic communities in four Scottish sea lochs. Aquat. Living Resour. 23, 267–276. doi: 10.1051/alr/2010030

Mikkelsen, L., Johnson, M., Wisniewska, D. M., Neer, A., van Siebert, U., Madsen, P. T., et al. (2019). Long-term sound and movement recording tags to study natural behavior and reaction to ship noise of seals. Ecol. Evol. 9, 2588–2601. doi: 10.1002/ece3.4923

Moore, J. C., Berlow, E. L., Coleman, D. C., Ruiter, P. C., de Dong, Q., Hastings, A., et al. (2004). Detritus, trophic dynamics and biodiversity. Ecol. Lett. 7, 584–600. doi: 10.1111/j.1461-0248.2004.00606.x

Morissette, L., Kaschner, K., and Gerber, L. R. (2010). Ecosystem models clarify the trophic role of whales off Northwest Africa. Mar. Ecol. Prog. Ser. 404, 289–302. doi: 10.3354/meps08443

Mowi (2020). Salmon Farming Industry Handbook 2019. Norway: Mowi, 118.

Nall, C. R., Schläppy, M.-L., and Guerin, A. J. (2017). Characterisation of the biofouling community on a floating wave energy device. Biofouling 33, 379–396. doi: 10.1080/08927014.2017.1317755

National Marine Fisheries Service (2018). 2018 Revisions to: Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0): Underwater Thresholds for Onset of Permanent and Temporary Threshold Shifts (Report No. NMFS-OPR-59). Washington, DC: NOAA.

Nelson, M., Gilbert, J., and Boyle, K. (2006). The influence of siting and deterrence methods on seal predation at Atlantic salmon (Salmo salar) farms in Maine, 2001–2003. Can. J. Fish. Aquat. Sci. 63, 1710–1721. doi: 10.1139/f06-067

Nordvarg, L. (2001). Predictive models and eutrophication effects of fish farms. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 602. Available online at: https://www.diva-portal.org/smash/get/diva2:166747/FULLTEXT01.pdf (Accessed April 29, 2021)

Northridge, S., Coram, A., and Gordon, J. (2013). Investigations on Seal Depredation at Scottish Fish Farms. Report to Marine Scotland. Edinburgh: Scottish Government.

Piroddi, C., Bearzi, G., and Christensen, V. (2011). Marine open cage aquaculture in the eastern Mediterranean Sea: a new trophic resource for bottlenose dolphins. Mar. Ecol. Prog. Ser. 440, 255–266. doi: 10.3354/meps09319

Piroddi, C., Coll, M., Liquete, C., Macias, D., Greer, K., Buszowski, J., et al. (2017). Historical changes of the Mediterranean Sea ecosystem: modelling the role and impact of primary productivity and fisheries changes over time. Sci. Rep. 7, 1–18.

Polaris Wind Power Network (2018). The Demolition of all 48 Taiwan Wind Turbines in Long Island, Shandong Province, in Chinese. Available online at: http://news.bjx.com.cn/html/20170821/844599.shtml (accessed May 29, 2018).

Puts, M., Taylor, M., Núñez-Riboni, I., Steenbeek, J., Stabler, M., Mollmann, C., et al. (2020). Insights on integrating habitat preferences in process-oriented ecological models – a case study of the southern North Sea. Ecol. Model. 431:109189. doi: 10.1016/j.ecolmodel.2020.109189

Quevedo, E., Cartón, M., Delory, E., Castro, A., Hernández, J., Llinás, O., et al. (2013). “Multi-use offshore platform configurations in the scope of the FP7 TROPOS Project,” in Proceedings of the 2013 MTS/IEEE OCEANS - Bergen, (Bergen: IEEE), 1–7. doi: 10.1109/OCEANS-Bergen.2013.6608061

Quick, N. J., Middlemas, S. J., and Armstrong, J. D. (2004). A survey of antipredator controls at marine salmon farms in Scotland. Aquaculture 230, 169–180. doi: 10.1016/S0044-8486(03)00428-9

Recalde, L., Yue, H., Leithead, W., Anaya-Lara, O., Liu, H. D., and You, J. (2019). “Hybrid renewable energy systems sizing for offshore multi-purpose platforms,” in International Conference on Offshore Mechanics and Arctic Engineering-American Society of Mechanical Engineers, 7. doi: 10.1115/OMAE2019-96017

Risch, D., van Geel, N., Gillespie, D., and Wilson, B. (2020). Characterisation of underwater operational sound of a tidal stream turbine. J. Acoust. Soc. Am. 147, 2547–2555. doi: 10.1121/10.0001124

Roach, M., Cohen, M., Forster, R., Revill, A. S., and Johnson, M. (2018). The effects of temporary exclusion of activity due to wind farm construction on a lobster (Homarus gammarus) fishery suggests a potential management approach. ICES J. Mar. Sci. 75, 1416–1426. doi: 10.1093/icesjms/fsy006

Romagnoni, G., Mackinson, S., Hong, J., and Eikeset, A. M. (2015). The Ecospace model applied to the North Sea: evaluating spatial predictions with fish biomass and fishing effort data. Ecol. Model. 300, 50–60. doi: 10.1016/j.ecolmodel.2014.12.016

Ross, A. (1988). Controlling Nature’s Predators on Fish Farms: A Report. United Kingdom: Marine Conservation Society.

Ruardij, P., and Van Raaphorst, W. (1995). Benthic nutrient regeneration in the ERSEM ecosystem model of the North Sea. Neth. J. Sea Res. 33, 453–483. doi: 10.1016/0077-7579(95)90057-8

Russell, D. J. F., Hastie, G. D., Thompson, D., Janik, V. M., Hammond, P. S., Scott-Hayward, L. A. S., et al. (2016). Avoidance of wind farms by harbour seals is limited to pile driving activities. J. Appl. Ecol. 53, 1642–1652. doi: 10.1111/1365-2664.12678

Ryther, J. H., and Dunstan, W. M. (1971). Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171, 1008–1013. doi: 10.1126/science.171.3975.1008

Sarno, B., Glass, C., and Smith, G. (2005). Differences in diet and behaviour of sympatric saithe and pollack in a Scottish Sea Loch. J. Fish Biol. 45, 1–11. doi: 10.1111/j.1095-8649.1994.tb01080.x

Scheidat, M., Tougaard, J., Brasseur, S., Carstensen, J., Petel, T., van, P., et al. (2011). Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea. Environ. Res. Lett. 6:025102. doi: 10.1088/1748-9326/6/2/025102

Scottish Environment Protection Agency (2020). Aquaculture Modelling Regulatory Modelling Guidance for the Aquaculture Sector July 2019 – Version 1.1. Available online at: https://www.sepa.org.uk/media/450279/regulatory-modelling-guidance-for-the-aquaculture-sector.pdf (Accessed November 27, 2020)

Scottish-Government (2016). Grey and Harbour Seal Diet Composition and Prey Consumption in the West of Scotland 2010/11 Supporting Paper. Calton Hill: Scottish-Government.

Serpetti, N. (2012). Modelling and Mapping the Physical and Biogeochemical Properties of Sediments on the North Sea Coastal Waters. Available online at: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.553875 (Accessed December 1, 2020).

Serpetti, N., Baudron, A. R., Burrows, M. T., Payne, B. L., Helaouët, P., Fernandes, P. G., et al. (2017). Impact of ocean warming on sustainable fisheries management informs the ecosystem approach to fisheries. Sci. Rep. 7:13438. doi: 10.1038/s41598-017-13220-7

Skilbrei, O. T., and Otterå, H. (2016). Vertical distribution of saithe (Pollachius virens) aggregating around fish farms. ICES J. Mar. Sci. 73, 1186–1195. doi: 10.1093/icesjms/fsv261

Soetaert, K., and Middelburg, J. J. (2009). Modeling eutrophication and oligotrophication of shallow-water marine systems: the importance of sediments under stratified and well-mixed conditions. Hydrobiologia 629, 239–254. doi: 10.1007/s10750-009-9777-x

Soto, N. A., Johnson, M., Madsen, P. T., Tyack, P. L., Bocconcelli, A., and Borsani, J. F. (2006). Does intense ship noise disrupt foraging in deep-diving cuvier’s beaked whales (ziphius Cavirostris)? Mar. Mamm. Sci. 22, 690–699. doi: 10.1111/j.1748-7692.2006.00044.x

Southall, B. L., Finneran, J. J., Reichmuth, C., Nachtigall, P. E., Ketten, D. R., Bowles, A. E., et al. (2019). Marine mammal noise exposure criteria: updated scientific recommendations for residual hearing effects. Aquat. Mamm. 45, 125–232. doi: 10.1578/am.45.2.2019.125

Southall, B. L., Bowles, A. E., Ellison, W. T., Finneran, J. J., Gentry, R. L., Greene, C. R., et al. (2007). Marine mammal noise exposure criteria: initial scientific recommendations. Aquat. Mamm. 33, 411–414. doi: 10.1578/AM.33.4.2007.411

Steenbeek, J., Buszowski, J., Christensen, V., Akoglu, E., Aydin, K., Ellis, N., et al. (2016). Ecopath with Ecosim as a model-building toolbox: source code capabilities, extensions, and variations. Ecol. Model. 319, 178–189. doi: 10.1016/j.ecolmodel.2015.06.031

Steenbeek, J., Claudet, J., and Coll, M. (2019). “Assessing the ecological and fisheries benefits of MPA networks in the Western Mediterranean Sea using a geographically nested ecosystem modelling approach,” in Ecopath 35 Years Conference: Making Ecosystem-Based Management Operational, (Florida, USA: Ecopath Research and Development Consortium).

Steenbeek, J., Coll, M., Gurney, L., Melin, F., Hoepffner, N., Buszowski, J., et al. (2013). Bridging the gap between ecosystem modeling tools and geographic information systems: driving a food web model with external spatial-temporal data. Ecol. Model. 263, 139–151. doi: 10.1016/j.ecolmodel.2013.04.027

Stefanakou, A., Dagkinis, I., Lilas, T., Maglara, A., and Vatistas, A. (2016). “Development of a floating wind-desalination multi-use platform (MUP) in the context of optimal use of maritime space,” in Proceedings of the Offshore Energy and Storage Symposiyum (OSES) and Industry Connector Event, (Valletta: University of Malta).

Stöber, U., and Thomsen, F. (2021). How could operational underwater sound from future offshore wind turbines impact marine life? J. Acoust. Soc. Am. 149:1791. doi: 10.1121/10.0003760

Stuiver, M., Soma, K., Koundouri, P., van den Burg, S., Gerritsen, A., Harkamp, T., et al. (2016). The governance of multi-use platforms at sea for energy production and aquaculture: challenges for policy makers in European seas. Sustainability 8:333. doi: 10.3390/su8040333

Teilmann, J., and Carstensen, J. (2012). Negative long term effects on harbour porpoises from a large scale offshore wind farm in the Baltic—evidence of slow recovery. Environ. Res. Lett. 7:045101. doi: 10.1088/1748-9326/7/4/045101

Tett, P., Verspoor, E., Hunter, D.-C., Coulson, M., Hicks, N., Davidson, K., et al. (2018). Review of the Environmental Impacts of Salmon Farming in Scotland. Report for the Environment, Climate Change and Land Reform (ECCLR) Committee. The Scottish Parliament. Oban: Scottish Association for Marine Science, 196.

Thompson, S., Treweek, J. R., and Thurling, D. J. (1995). The potential application of strategic environmental assessment (sea) to the farming of Atlantic Salmon (Salmo-Salar L) in Mainland. J. Environ. Manag. 45, 219–229. doi: 10.1006/jema.1995.0070

Tierney, K. M., Heymans, J. J., Muir, G. K. P., Cook, G. T., Buszowski, J., Steenbeek, J., et al. (2018). Modelling marine trophic transfer of radiocarbon (C-14) from a nuclear facility. Environ. Model. Softw. 102, 138–154. doi: 10.1016/j.envsoft.2018.01.013

Tougaard, J., Henriksen, O. D., and Miller, L. A. (2009). Underwater noise from three types of offshore wind turbines: estimation of impact zones for harbor porpoises and harbor seals. J. Acoust. Soc. Am. 125, 3766–3773. doi: 10.1121/1.3117444

Tougaard, J., Hermannsen, L., and Madsen, P. T. (2020). How loud is the underwater noise from operating offshore wind turbines? J. Acoust. Soc. Am. 148, 2885–2893. doi: 10.1121/10.0002453

Troell, M., Joyce, A., Chopin, T., Neori, A., Buschmann, A. H., and Fang, J.-G. (2009). Ecological engineering in aquaculture — potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297, 1–9. doi: 10.1016/j.aquaculture.2009.09.010

Tuya, F., Sanchez-Jerez, P., Dempster, T., Boyra, A., and Haroun, R. J. (2006). Changes in demersal wild fish aggregations beneath a sea-cage fish farm after the cessation of farming. J. Fish Biol. 69, 682–697. doi: 10.1111/j.1095-8649.2006.01139.x

Uglem, I., Karlsen, O., Sanchez-Jerez, P., and Saether, B. S. (2014). Impacts of wild fishes attracted to open-cage salmonid farms in Norway. Aquac. Environ. Interact. 6, 91–103. doi: 10.3354/aei00112

Uglem, I., Toledo-Guedes, K., Sanchez-Jerez, P., Ulvan, E. M., Evensen, T., and Sæther, B. S. (2020). Does waste feed from salmon farming affect the quality of saithe (Pollachius virens L.) attracted to fish farms? Aquac. Res. 51, 1720–1730. doi: 10.1111/are.14519

United Nations (2015). Transforming our World: the 2030 Agenda for Sustainable Development. Available online at: https://www.un.org/sustainabledevelopment/development-agenda/ (Accessed March 15, 2021)

United Nations (2019). World Population Prospects 2019: Highlights. Available online at: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (Accessed March 15, 2021).

Vanermen, N., Courtens, W., Walle, M., Verstraete, H., and Stienen, E. (2019). Seabird Monitoring at the Thornton Bank Offshore Wind Farm-Final Displacement Results After 6 Years of Post-Construction Monitoring & an Explorative Bayesian Analysis of Common Guillemot Displacement Using INLA. 85–116.

Vanermen, N., Onkelinx, T., Courtens, W., Van de walle, M., Verstraete, H., and Stienen, E. W. M. (2015). Seabird avoidance and attraction at an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia 756, 51–61. doi: 10.1007/s10750-014-2088-x

Vitousek, P. M., and Howarth, R. W. (1991). Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115. doi: 10.1007/BF00002772

Waggitt, J. J., Evans, P. G. H., Andrade, J., Banks, A. N., Boisseau, O., Bolton, M., et al. (2020). Quantifying seabird and cetacean distributions at annual and monthly scales in the North-East Atlantic. J. Appl. Ecol. 57, 253–269. doi: 10.1111/1365-2664.13525

Weaver, R., Hanks, J., Low, J., Flint, J., Nixon, C., and Ferguson, A. (2020). Supporting the Economic, Social and Environmental Sustainability of the UK’sMarine Sectors. Victoria Quay: Marine Scotland.

Wilson, J. C., and Elliott, M. (2009). The habitat-creation potential of offshore wind farms. Wind Energy 12, 203–212. doi: 10.1002/we.324

Wilson, L. J., and Hammond, P. S. (2019). The diet of harbour and grey seals around Britain: examining the role of prey as a potential cause of harbour seal declines. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 71–85. doi: 10.1002/aqc.3131

Wisniewska, D., Johnson, M., Teilmann, J., Siebert, U., Galatius, A., Dietz, R., et al. (2018). High rates of vessel noise disrupt foraging in wild harbour porpoises (Phocoena phocoena). Proc. R. Soc. B Biol. Sci. 285:20172314. doi: 10.1098/rspb.2017.2314

World Energy Council (2019). World Energy Trilemma Index. London: World Energy Council.

Wright, A., Aguilar de Soto, N., Baldwin, A., Bateson, M., Beale, C., Clark, C., et al. (2007). Are Marine Mammals Stressed By Anthropogenic Noise? J. Comp. Psychol. 20, 274–316.

Würsig, B., and Gailey, G. A. (2002). “Marine mammals and aquaculture: conflicts and potential resolutions,” in Responsible Marine Aquaculture, eds R. R. Stickney and J. P. McVay (New York, NY: CAP International Press), 45–59. doi: 10.1079/9780851996042.0045


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Serpetti, Benjamins, Brain, Collu, Harvey, Heymans, Hughes, Risch, Rosinski, Waggitt and Wilson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	
	REVIEW
published: 26 August 2021
doi: 10.3389/fmars.2021.622206






[image: image2]

Using Global-Scale Earth System Models for Regional Fisheries Applications

Kelly A. Kearney1,2*, Steven J. Bograd3, Elizabeth Drenkard4, Fabian A. Gomez5,6, Melissa Haltuch7, Albert J. Hermann1,8, Michael G. Jacox3,9, Isaac C. Kaplan7, Stefan Koenigstein3,10, Jessica Y. Luo4, Michelle Masi11, Barbara Muhling3,10, Mercedes Pozo Buil3,10 and Phoebe A. Woodworth-Jefcoats12


1Joint Institute for the Study of the Atmosphere and Ocean (JISAO) (now Cooperative Institute for Climate, Ocean, and Ecosystem Studies; CICOES), University of Washington, Seattle, WA, United States

2NOAA Alaska Fisheries Science Center, Seattle, WA, United States

3NOAA Southwest Fisheries Science Center, Monterey and La Jolla, La Jolla, CA, United States

4NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, United States

5Stennis Space Center, Northern Gulf Institute, Mississippi State University, Starkville, MS, United States

6NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States

7NOAA Northwest Fisheries Science Center, Seattle, WA, United States

8NOAA Pacific Marine Environmental Laboratory, Seattle, WA, United States

9NOAA Earth System Research Laboratory, Boulder, CO, United States

10Institute of Marine Studies, University of California, Santa Cruz, Santa Cruz, CA, United States

11Galveston Lab, NOAA Southeast Fisheries Science Center, Galveston, TX, United States

12NOAA Pacific Islands Fisheries Science Center, Honolulu, HI, United States

Edited by:
Howard Townsend, National Marine Fisheries Service (NOAA), United States

Reviewed by:
Laurent Marcel Cherubin, Florida Atlantic University, United States
 Daniele Bianchi, University of California, Los Angeles, United States

*Correspondence: Kelly A. Kearney, kelly.kearney@noaa.gov

Specialty section: This article was submitted to Marine Ecosystem Ecology, a section of the journal Frontiers in Marine Science

Received: 28 October 2020
 Accepted: 21 July 2021
 Published: 26 August 2021

Citation: Kearney KA, Bograd SJ, Drenkard E, Gomez FA, Haltuch M, Hermann AJ, Jacox MG, Kaplan IC, Koenigstein S, Luo JY, Masi M, Muhling B, Pozo Buil M and Woodworth-Jefcoats PA (2021) Using Global-Scale Earth System Models for Regional Fisheries Applications. Front. Mar. Sci. 8:622206. doi: 10.3389/fmars.2021.622206



Climate change may impact ocean ecosystems through a number of mechanisms, including shifts in primary productivity or plankton community structure, ocean acidification, and deoxygenation. These processes can be simulated with global Earth system models (ESMs), which are increasingly being used in the context of fisheries management and other living marine resource (LMR) applications. However, projections of LMR-relevant metrics such as net primary production can vary widely between ESMs, even under identical climate scenarios. Therefore, the use of ESM should be accompanied by an understanding of the structural differences in the biogeochemical sub-models within ESMs that may give rise to these differences. This review article provides a brief overview of some of the most prominent differences among the most recent generation of ESM and how they are relevant to LMR application.
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INTRODUCTION

Environmental conditions can affect living marine resources (LMRs) through a number of mechanisms. Physical and chemical properties such as temperature, salinity, oxygen concentration, and pH can directly influence the vital rates of many organisms. These direct effects may manifest themselves within specific populations through increasing or decreasing growth, reproduction, and mortality (Pörtner, 2012); changes in geographic distribution as populations shift toward more favorable habitat; or shifts in the phenological timing of environmentally influenced events such as phytoplankton blooms (Karp et al., 2019). Food web interactions further complicate the potential influence of even small changes within one population (Ainsworth et al., 2011; Fay et al., 2017; Marshall et al., 2017; Masi et al., 2018).

The integration of these environmental and ecological processes has become an explicit aim of regional ecosystem-based fisheries management (EBFM) frameworks (Marshall et al., 2017; Holsman et al., 2020), and global Earth system models (ESMs) offer an enticing tool to the regional fisheries scientist to potentially quantify these many impacts of environmental change on LMRs. The representation of the biosphere within these coupled models has expanded rapidly over the past several iterations of the Intergovernmental Panel of Climate Change (IPCC) assessment reports. Most general circulation models (GCMs) that participated in the Coupled Model Intercomparison Project Phase 3 (CMIP3) (Meehl et al., 2007) coupled only physical ocean and atmosphere components and did not include any representation of ocean or land biology. By CMIP5 (Taylor et al., 2012), a dozen modeling centers included an ESM variant (i.e., a GCM that also simulates chemical and biological components of the Earth system) with some form of ocean biogeochemistry (Bopp et al., 2013). The recent simulations released under CMIP6 (Eyring et al., 2016) continue this trend, with most modeling centers further developing their biogeochemical models to quantify the impact of biogeochemical and lower-trophic-level processes on both the carbon cycle and on LMRs (Kwiatkowski et al., 2020).

However, there are several complexities involved in connecting ESM output to the regional marine ecosystem models that support LMR management. Similarly to GCMs, ESMs are designed to emphasize global scale dynamics over regional processes (Stock et al., 2011). Bias correction and/or downscaling may, therefore, be required before ESMs can sufficiently capture regional patterns of greatest relevance to LMRs, particularly in productive coastal waters (Holt et al., 2009; Brown et al., 2016; Muhling et al., 2018; Xiu et al., 2018; Echevin et al., 2020; Drenkard et al., 2021). The taxonomic diversity of phytoplankton and zooplankton in ESMs may also be insufficient to represent characteristics important to higher-order consumers, such as energy density or lipid content of various zooplankton assemblages or the relative effects of ocean acidification on different plankton communities (e.g., Rose et al., 2010; Miller et al., 2017; Gao et al., 2019). In addition, even in downscaled ESMs the spatio temporal resolution may be insufficient for linking life stage-specific, highly localized responses of higher-trophic-level LMRs to their biophysical environment (Petitgas et al., 2013; Hollowed et al., 2020). As marine ecosystem models are built to capture different aspects of these responses, they can also have different theoretical frameworks, objectives, and modeling structures, leading to difficulties in the direct comparison of projections among different models (Tittensor et al., 2018; Lotze et al., 2019). Projections from marine ecosystem models coupled to ESMs can, therefore, be widely divergent, incorporating considerable uncertainty from both model types (Lotze et al., 2019). Lastly, projections of managed resources such as fish stocks are complicated by the effects of fishing removals and management structures that interact with bottom-up drivers of stock size (Woodworth-Jefcoats et al., 2015; Barange, 2019; Lotze et al., 2019). Successfully working through these issues typically requires multidisciplinary collaborations with expertise from physical and biological oceanography up through resource assessment and management (Stock et al., 2011; Hollowed et al., 2020). Despite these challenges, ESMs offer an opportunity to provide LMR managers with projections of future ecosystem states, facilitating the development of climate-resilient management strategies.

While a number of existing studies discuss, in comprehensive detail, the predicted changes in lower trophic level variables across the suite of CMIP5 and CMIP6 ESM model simulations and the potential mechanisms underlying both the mean trends and variations between models (Bopp et al., 2013; Laufkotter et al., 2015; Kwiatkowski et al., 2020), these comparisons typically focus on large-scale patterns in nutrient cycling and are primarily targeted toward a biogeochemistry audience. For the reasons detailed above, the LMR end user typically approaches these models from a different perspective (Rose et al., 2010), and the output variables in which they are most interested may show different trends, variabilities, and skills across the spatiotemporal scales of interest (Table 1). In this study, we follow in the footsteps of these existing reviews, particularly Laufkotter et al. (2015) and Séférian et al. (2020), but from the point of view of a regional fisheries end user. The performance of each model may vary widely depending on the region of focus and the scientific question under consideration, and attempting to perform a full intercomparison of global ESM simulation output on a regional scale is well beyond the scope of this study. Instead, we highlight key structural differences within the CMIP6 suite of ESMs and discuss the ways in which these differences may lead to variability among the predicted ecological indicators most relevant for higher trophic levels. We hope that by highlighting these structural differences, we provide an entry point for LMR end users to better diagnose the potential drivers of biogeochemical and ecosystem uncertainties within their regions of interest.


Table 1. Biogeochemical model output variables of interest for purposes of constraining fish processes.
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ACCESS TO, USE OF, AND INTERPRETATION OF GLOBAL-SCALE ESMS

While an ESM is often referred to as a single entity, each ESM is made up of many coupled sub-models representing the different components of the Earth system. Within modern ESMs, these components typically include the atmosphere, ocean, land, ocean biogeochemistry, and sea ice. While the primitive equations governing the atmospheric and ocean components of ESMs are well established, ocean biogeochemical models are less mature, often based on empirical relationships and with far fewer observations constraining the underlying equations and parameters than in their physical counterparts. As a result, the state variables and process equations included in both global and regional scale biogeochemical models vary widely, with model complexity ranging from three- to four-box nutrient/phytoplankton/zooplankton/detritus models to complex multi resource, multiple-plankton functional type models with dozens of state variables (Friedrichs et al., 2007). Even within model intercomparison experiments, there is little standardization of prognostic biogeochemical models; for example, only gas exchange and carbonate chemistry are standardized within the CMIP6 protocol, with all other processes (e.g., primary production, nutrient cycling, and plankton community composition) left to the discretion of individual modeling centers (Orr et al., 2017). Substantial differences also exist in the parameterization of unresolved physics among models (due to their computationally limited spatial/temporal resolution) with potentially strong impacts on biogeochemistry.

Table 2 includes a comprehensive list of all models that contributed at least one ocean biogeochemical output variable to the CMIP5 or CMIP6 experiments. The coupled model acronyms listed in this table correspond to the data set names used by the Earth System Grid Federation (ESGF) data portal where the model data for the CMIP experiments can be found (https://esgf-node.llnl.gov/search/cmip6/). The biogeochemical models used within this collection range from the carbonate chemistry OCMIP protocol (Orr et al., 2017), without any explicit simulation of biotic processes, to the full ecosystem models. Given time and resource constraints, using this entire suite of ESMs is impractical for a regional application. Therefore, the first step in using global ESMs in a regional context typically involves choosing the subset of ESMs best suited to answering the research question of interest. However, making an informed choice on this front can be a daunting task due to the high complexity of the numerous ESMs.


Table 2. A list of global earth system models from the 5th and 6th Coupled Model Intercomparison Projects (CMIP5 and CMIP6).
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A variety of best practices have been suggested regarding choosing global ESMs to address regional questions, either through direct use or via statistical or dynamical downscaling (Drenkard et al., 2021). One suggestion is to choose models whose outputs span the envelope of uncertainty for a key variable (Cheung et al., 2016; Pozo Buil et al., 2021). Alternatively, one may limit use to models that faithfully capture the historical observed state of a particular quantity that is known to affect the ecosystem of interest, e.g., seasonal sea ice in the Bering Sea (Overland et al., 2011), upwelling and horizontal transport off the California coast (Combes et al., 2013; Di Lorenzo et al., 2013), or hypoxia due to riverine influence in the Gulf of Mexico (de Mutsert et al., 2016; Fennel et al., 2016). Between these two alternatives is a model choice based on emerging constraints (Eyring et al., 2019; Hall et al., 2019), which is a process-based approach that acknowledges that some models are likely better suited than others for a given climate change application but also that historical model fidelity does not necessarily translate to accurate climate sensitivity under future forcing (Pierce et al., 2009).

Consideration of the broad array of biogeochemical model specifications can be beneficial when using ESMs within an LMR context, both for informing the choice of which models can best address the relevant questions and interpreting the potential underlying mechanisms leading to inter-ESM differences in output. This is particularly important given the large influence of biogeochemical model structure and parameterization on an long-term predictions of LMR-relevant variables of ESM such as pH, oxygen, and net primary productivity. Within long-term climate change simulations, Frölicher et al. (2016) found that while uncertainties related to ESM internal variability and emissions scenario choice dominate the predicted end-of-century uncertainty range for physical ocean variables like temperature and carbon chemistry variables like pH, biological output variables like net primary production were far more sensitive to model uncertainty (i.e., uncertainty resulting from the use of different numerical formulations and parameterizations for physical and biological processes).

However, from a practical standpoint, making an informed choice regarding which ESMs to use for a regional application can be difficult. While global model documentation has become more common and more cohesive in recent years (Journal of Advances in Modeling Earth Systems, 2018–2020), and model cross-comparisons are available in the literature (e.g., Kwiatkowski et al., 2020; Séférian et al., 2020), this model documentation is often disconnected from common data access points and, therefore, difficult for end users unfamiliar with the biogeochemical literature to locate. Major modeling experiments (e.g., CMIP3, CMIP5, and CMIP6) do not include “release notes” to highlight how models have changed from one iteration to the next, and often the specific details of a model are spread over numerous publications, reflecting the iterative development of each model. The lack of centralized documentation or cross-comparison of the many ESM options available to LMR end users often presents a barrier to making an informed choice regarding model selection. Additionally, LMR researchers often encounter challenges in accessing model output. The storing and sharing of very large datasets is a challenge for the major modeling centers; their choices of which variables to archive and at what resolution are often driven by limited space and do not always meet LMR needs for high spatiotemporal resolution. Public datasets often include only a small subset of the depth-resolved ocean and biogeochemical variables at a monthly temporal resolution. Even monthly resolution may not be sufficiently fine to resolve phenological patterns in biologically relevant fields; for example, Asch et al. (2019) used 8-day resolution ESM output to resolve sub-monthly shifts in mean phytoplankton bloom timing under climate change. In the past, LMR scientists have needed to establish personal relationships within major modeling centers in order to get access to non-publicly archived variables. In cases where the variables of interest were not archived, either at all or at sufficient resolution, new ESM simulations may be needed, increasing the need for direct collaboration even further. This level of collaboration is difficult to maintain with even one modeling center, much less multiple; this high barrier to access further complicates the process of making an informed selection of ESMs.

In the following sections, we compare and contrast how key biogeochemical processes are represented within the CMIP6 models with explicit biogeochemical models. We choose this subset from the full list in Table 2 as a practical consideration, given that these models are most likely to be of interest to LMR end users in the coming years. We do not attempt to analyze differences in output values or how skillfully each model performs when compared to observations. Particularly when extracting results within a small region, as is typical in LMR applications, which models are most appropriate can be dependent on the exact research question being asked. For an overview of model performance across the CMIP5 and CMIP6 generations of models, we instead refer readers to Séférian et al. (2020). This study instead is intended to demystify some of the key processes being simulated within complex ESMs, allowing LMR end users to make more informed choices with regard to the models that may best suit their applications and to diagnose potential sources of model spread that influence predictions of LMR-relevant metrics.



A COMPARISON OF CMIP6 ESMS

We focus on a few common features of the CMIP6 ESMs for this intercomparison: the structure of each model (i.e., the state variables and biological processes included), the formulations used to calculate primary production, the role of temperature in mediating various biological rates, zooplankton predator-prey function responses, detrital remineralization formulations, and river runoff implementations. These particular features were chosen as key components shared across the models that are most likely to influence the metrics, such as primary and secondary production, zooplankton biomass and community composition, and trophic transfer efficiency, that LMR end users may be most interested in. These metrics are typically those that can be used to predict species biomass, recruitment, and survival; shifts in spatial distribution; and trophic interactions, particularly with respect to target species of commercial, recreational, and subsistence harvest (Tommasi et al., 2021). The highlighted dissimilarities between models may play varying roles in contributing to inter-model spread, depending on the particular region, ecosystem, and metric of interest, but we hope that highlighting these model differences will provide a starting point for the often complex task of connecting model uncertainty to specific physical and biogeochemical drivers.

We note that there are also a few processes that may be of potential interest to LMR researchers that we chose not to highlight. We do not address processes related to gas exchange or carbonate chemistry; these processes are explicitly specified as part of the CMIP6 Ocean Model Intercomparison Project biogeochemical (OMIP-BGC) simulation protocols (Orr et al., 2017) and as such are implemented in the same way across all models within the CMIP6 suite. We also do not address certain processes that involve the coupling of the biogeochemical model components to other parts of the earth system, such as atmospheric deposition of iron. We avoid these processes primarily as a practical consideration, since they are not part of the biogeochemical models themselves, but rather a function of the other model components (such as the atmospheric and land models) that each biogeochemical model may be coupled to. We make an exception for river runoff, given its often large impact on the near-shore ecosystems that are of interest to LMR scientists.


Functional Groups and Processes

The CMIP6 models vary widely in structural complexity. This variety reflects the numerous applications for which different models were designed. Many ESMs were originally designed primarily to “close” the carbon cycle, i.e., to allow the full inventory of the oceanic processes influencing oceanic sequestration of carbon emissions. As such, their focus was less on resolving the ecosystem components themselves but rather on constraining the biologically mediated fluxes of carbon between the surface waters and deep ocean. More recently, ESMs have developed a dual role, serving both the original carbon system closure purpose and the ability to resolve energy transfer within more realistic and complex planktonic food webs. In terms of structural complexity, the CMIP6 biogeochemical models can be loosely grouped into a few categories.

At the simple end of the spectrum lies BLING, the biogeochemical model that runs within the CM4 model of GFDL (Figure 1). With only three explicitly tracked state variables and implicit treatment of the living biota, the low complexity of BLING aims to capture the impact of biology on global nutrient cycles while adding minimal computational overhead (Galbraith et al., 2010; Dunne et al., 2020). Its lack of explicitly resolved primary or secondary producers likely limits its use in the living marine resource context. The tradeoff, though, is that it can be run within higher-resolution simulations than its more complex and computationally heavy counterparts. This, along with its diagnostic estimates of biologically relevant outputs like chlorophyll and carbon-system quantities, may be useful to coastal regional applications where increased horizontal resolution outweighs the need for greater state variable resolution.


[image: Figure 1]
FIGURE 1. Schematic for the BLING model. Figures 1–12. Schematics for the CMIP6 ESMs. Boxes indicate state variables, and solid arrows represent fluxes between state variables; dashed lines indicate that the rate of change of one state variable is calculated proportionately to another. Colors indicate the base element for each state variable, with blue, green, pink, orange, and gray representing nitrogen, phosphorous, silicon, iron, and carbon, respectively. State variable boxes are positioned vertically based on functional role, indicating whether the functional group includes producers (and within that, subcategories of nitrogen fixers, Si-users, and CaCO3-users), consumers, or detritus. Horizontal position indicates the approximate mean size of the cells/bodies/particles represented by each state variable.


The second category of models includes traditional NPZD models that include single phytoplankton, zooplankton, and detrital compartments. This category includes CMOC of CCCMA (Figure 2), WOMBAT of CSIRO (Figure 3), and MRI-NPZD model of the Japanese Meteorological Research Institute (Figure 4). The HAMOCC model (Figure 5), variants of which are run within the models of Norwegian Climate Center and Max Planck Institute, also uses a single state variable each for phytoplankton and zooplankton but separates detritus into dissolved and particulate detritus. The OECO of MIROC model (Figure 6) uses two phytoplankton functional groups to distinguish nitrogen-fixing diazotrophs from non-nitrogen-fixing producers but otherwise falls into this simpler category of model. While several models in this category consider multiple limiting macronutrients (nitrogen, phosphorous, and silicon) and micronutrients (iron), they assume constant stoichiometric ratios of these nutrients within the food web.


[image: Figure 2]
FIGURE 2. Schematic for the CMOC model. See Figure 1 caption for details.



[image: Figure 3]
FIGURE 3. Schematic for the WOMBAT model. See Figure 1 caption for details.



[image: Figure 4]
FIGURE 4. Schematic for the MRI NPZD model. See Figure 1 caption for details.



[image: Figure 5]
FIGURE 5. Schematic for the HAMOCC model. See Figure 1 caption for details.



[image: Figure 6]
FIGURE 6. Schematic for the OECO model. See Figure 1 caption for details.


On the more complex end of the spectrum, the remaining models partition phytoplankton, zooplankton, and detritus into multiple state variables. This group of models includes PISCES (Figure 7), which is used in both the CNRM and IPSL models; COBALT of GFDL (Figure 8); CanOE of CCCMA (Figure 9); NOBM of NASA Goddard (Figure 10); MEDUSA of the UK (Figure 11); and MARBL of the CESM model (Figure 12). Phytoplankton within these models are separated into 2–4 functional groups; functional groups are typically defined based on their interactions with different nutrient pools, their size, and their accompanying influence on metabolic rates, and in the case of the NOBM model, by optical properties. Size is also one of the primary features used to separate zooplankton functional groups due to the role of body size in determining prey preferences, metabolic rates, and the partitioning of mortality and metabolic byproducts into the different detrital pools. Non-living organic material is categorized by either size or lability. This more complex category of models typically allows for variable stoichiometry within the primary producer and detrital state variables; most assume a fixed stoichiometry for consumers, though the MARBL model is an exception to this. Allowing for variable vs. fixed stoichiometry has been demonstrated to significantly impact simulated trophic transfer efficiency under climate change scenarios (Kwiatkowski et al., 2019), so this additional complexity may be particularly important for LMR applications.


[image: Figure 7]
FIGURE 7. Schematic for the PISCES model. See Figure 1 caption for details.



[image: Figure 8]
FIGURE 8. Schematic for the COBALT model. See Figure 1 caption for details.



[image: Figure 9]
FIGURE 9. Schematic for the CanOE model. See Figure 1 caption for details.



[image: Figure 10]
FIGURE 10. Schematic for the NOBM model. See Figure 1 caption for details.



[image: Figure 11]
FIGURE 11. Schematic for the MEDUSA model. See Figure 1 caption for details.



[image: Figure 12]
FIGURE 12. Schematic for the MARBL model. See Figure 1 caption for details.


With an increase in the number of state variables in a model comes an increase in the complexity of connections between those state variables, and the number of parameters (each with its own uncertainty) necessary to constrain them. These connections include both the pathways that pass biomass and energy to higher trophic levels and the pathways that lead to export from or recycling of nutrients in the surface waters. A more complex model may be better able to capture the shifts in community composition and prey quality that are key to simulating upper trophic level recruitment and survival. For example, environmental conditions that favor larger phytoplankton species often lead to higher transfer efficiencies to upper trophic level species, while small phytoplankton production is often directed toward smaller grazers and the microbial loop (Azam et al., 1983; Armengol et al., 2019). These potential shifts in energy pathways are of particular interest in LMR applications that focus on plankton groups in their role as “fish food” rather than as regulators of biogeochemical pathways (Rose et al., 2010). Van Oostende et al. (2018) also found that adding an additional phytoplankton group to their model of the California Current system led to better resolution of both chlorophyll maxima and coastal hypoxia. Likewise, explicitly resolving different zooplankton size classes can increase the types of ecosystem analyses that are possible based on ESM output. For example, the GFDL COBALT model is essentially a more ecosystem-heavy version of its predecessor, TOPAZ (Dunne et al., 2013). By adding three explicit zooplankton groups (and bacteria) in place of the implicit zooplankton parameterization found in TOPAZ, COBALT has been able to be used for a diverse set of LMR applications: to model and predict fisheries catch in LMEs (Stock et al., 2017; Park et al., 2019), to couple to offline models to examine distributions of fish functional types (Petrik et al., 2019) and the impact of jellyfish on the global carbon cycle (Luo et al., 2020), and to examine the impacts of migration and light-dependent grazing on the vertical distribution of carbon, nutrients, and chlorophyll (Bianchi et al., 2013; Moeller et al., 2019). Greater resolution of detrital components may allow for better resolution of the different time scales over which material may be exported to deep water, transported into or out of a region of interest, or returned to the nutrient pools. These remineralization pathways can directly affect the local availability of nutrients that, in turn influence rates of primary production. This is particularly true in shallow shelf systems, where nutrients exported below the mixed layer may be reintroduced to surface waters by mixing events (Huang et al., 2015; Flynn et al., 2020). Particle export ratios and fluxes to the benthic ecosystems have also been shown to be better predictors of fisheries productivity (Friedland et al., 2012; Stock et al., 2017) and of the composition of fish communities (Van Denderen et al., 2018; Petrik et al., 2019) than net primary productivity alone. It is important to note, however, that while the state variables and processes included in more complex models often reflect our best estimation of the Earth system processes that influence both lower and upper trophic level dynamics, the added complexity does not necessarily impart greater skill (Séférian et al., 2020).



Phytoplankton Growth Limitation Terms

Primary productivity rates and phytoplankton biomass are some of the most commonly extracted ESM variables of interest to LMR end users. As the base of the food web, plankton production often determines the characteristics of the food web that can be supported in a given region. Changes to the magnitude, community composition, or timing of spring and fall blooms may impact the survival of upper trophic level species (Platt et al., 2003; Durant et al., 2007; Schweigert et al., 2013; Malick et al., 2015; Asch et al., 2019). Because the most important process controlling interior ocean pH is organic matter cycling, the processes limiting primary production also influence the pH (Lauvset et al., 2020). Acid-base reactions involved in nutrient uptake also have an impact on both pH and alkalinity (Wolf-Gladrow et al., 2007). Therefore, model structure related to the regulation of primary production may influence many of the key properties of interest to LMR end users.

Phytoplankton growth rates vary based on a number of factors, chief among them temperature, light, and availability of both the macronutrients and micronutrients necessary for growth. Within ESMs, maximum phytoplankton growth rate is typically modeled as a temperature-dependent maximum potential growth rate modulated by limitation terms (with values ranging from 0 to 1) that reduce that rate based on limited nutrient supplies and light. While this concept is consistent across all CMIP6 models, the exact implementation of each limitation term and the manner in which they interact vary from model to model. We will address variations in the temperature-dependent maximum growth rate in section 3.3 and focus here on the light- and nutrient-limitation terms.

Nutrient-limitation terms typically fall into one of two broad categories. The first category calculates limitation as a function of ambient nutrient concentration. The majority of the CMIP6 ESMs use this approach for limitation terms related to the macronutrients (i.e., nitrogen and phosphate) (Tables 3, 4). Monod curves (Monod, 1942), also referred to as Michaelis-Menten curves due to their functional equivalence to the enzyme kinetics equation (Michaelis and Menten, 1913), define limitation in terms of a half-saturation constant (KX). This is the most common nutrient-limitation term equation found in the CMIP6 ESMs. The MPI-NPZD model instead opts for an optimal uptake kinetics approach (Smith et al., 2009) that accounts for tradeoffs in nutrient encounter rates and assimilation rates; like the Monod curve, this approach assumes growth rate is a function of external nutrient concentration. The second category of limitation uses an internal cell quota model. A quota-model limitation term is based on the internally stored concentration of a particular element rather than the ambient concentration, and it allows for uptake and storage of one or more nutrients beyond immediate needs. This style of limitation term can be more appropriate when dealing with elements like silicon and iron; Fe:C and Si:C ratios can vary much more widely within cells relative to macronutrients like N and P. Within the CMIP6 suite, COBALT and PISCES use quota models for iron limitation. BLING also uses a variant on the quota model for iron limitation, adapted to infer cell quota from uptake rates. CanOE uses a quota model for both nitrogen and iron uptake.


Table 3. Nitrogen nutrient-limitation factors across all CMIP6 ESMs.
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Table 4. P, Fe, and Si nutrient-limitation factors across all CMIP6 ESMs.
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Phytoplankton can acquire nitrogen from a variety of different organic and inorganic compounds, and the sources that contribute to the nitrogen limitation term of each model provide additional potential for model structural divergence (Table 3). Non-nitrogen-fixing phytoplankton typically acquire nitrogen from two primary forms: nitrate or ammonium. The relative use of new (nitrate-based) vs. regenerated (ammonium-based) nutrient sources for production reflects whether an ecosystem is dominated by larger phytoplankton species that pass energy up the food chain and contribute to higher export ratios of carbon from surface to deep water, or whether the ecosystem is dominated by smaller phytoplankton with production primary recycled within the microbial loop (Dunne et al., 2005). Due to its reduced state, ammonium is more readily utilized by phytoplankton for growth (Gruber, 2008). In addition, the presence of high concentrations of ammonium can directly inhibit the uptake of nitrate (O'Neill et al., 1989; Dortch, 1990; Frost and Franzen, 1992; Paulot et al., 2015). Therefore, the limitation terms of many of the CMIP6 ESMs are formulated to favor ammonium uptake over nitrate uptake and to adjust nitrate uptake in the presence of ammonium. PISCES, COBALT, CanOE, MARBL, and NOBM track the separate use of NH4 vs. NO3, with total nitrogen limitation being a sum of the two individual limitation terms. COBALT and PISCES account for both ammonium preference and its inhibition on nitrate, as well as inhibition of ammonium uptake of nitrate in the presence of very high concentrations of nitrate (O'Neill et al., 1989). NOBM and CanOE impose a preference for NH4 over NO3 but do not apply any inhibition terms to the uptake of either nutrient. OECO, HAMOCC5.1, and HAMOCC6 track NO3 only. CMOC and MEDUSA, meanwhile, track only a single pool of nitrogen. A number of the ESMs also account for nitrogen fixation. Nitrogen fixers are able to transform N2 gas into fixed nitrogen (NH4), and in models they are typically differentiated from other phytoplankton groups through the elimination of an N-limitation term in their growth equation. COBALT, OECO, HAMOCC6, and MARBL all simulate nitrogen-fixing diazotrophs in this manner. The NOBM model instead uses an additional factor to increase the N-limited growth rate of the cyanobacteria group when N is low, representing a shift within the functional group from non-nitrogen-fixing to nitrogen-fixing cyanobacteria. CMOC simulates only a single nutrient pool and single phytoplankton group but provides a flux of nitrogen into its surface nutrient pool based on implicit parameterizations of diazotrophic bacteria. Likewise, CanOE parameterizes nitrogen fixation as an input source to the ammonium field, dependent on light, temperature, and iron concentration and inhibited by high inorganic nitrogen.

Phytoplankton growth rates can also be very sensitive to even small variations in light and light sensitivity (e.g., Walsh et al., 2003). A number of different empirical curves, known as photosynthesis-irradiance (PI or PE) curves, have been proposed to quantify the relationship between solar irradiance and photosynthesis (e.g., Jassby and Platt, 1976; Platt and Jassby, 1976; Platt et al., 1980). Within the CMIP6 suite, NOBM uses the simplest form, identical to its Monod nutrient-limitation terms, with a functional-group-specific light half-saturation parameter. MEDUSA, OECO, and MPI-NPZD use a hyperbolic tangent curve (Smith, 1936; Jassby and Platt, 1976):
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where μmax(T) is the light- and nutrient-replete growth rate at temperature T, α describes the initial slope of the PI curve, and I is the solar irradiance.

The remaining models base their PI curves on that of Geider et al. (1997):
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where αchl is the chlorophyll-specific initial slope of the PI curve, θchl is the chlorophyll-to-carbon (chl:C) ratio, and μmax(T, N) is temperature- and nutrient-mediated growth rate under light-replete conditions. In this form, the light-limitation curve is a function of nutrient and temperature limitation, such that nutrient concentration and temperature play both a direct and indirect role in modulating growth. The WOMBAT model simplifies this relationship by using μmax(T) in place of μmax(T, N). By introducing a chl:C parameter, this function captures the process of photoadaptation, where phytoplankton increase their chlorophyll levels to compensate for low light levels. COBALT and BLING account for the effects of both irradiance and nutrient limitation when calculating the θchl value. MARBL and CanOE compute a prognostic chlorophyll with chlorophyll biosynthesis calculated as a function of light and nutrient availability (after Geider et al., 1998). Within CMOC, PISCES, NOBM, and MEDUSA2, θchl is a function of irradiance only. WOMBAT, OECO, and HAMOCC do not account for variation in chl:C ratios in their light-limitation factors.

A final structural difference arises in how each model applies colimitation from nutrients, light, and temperature. In general, primary productivity models use one of two models: a minimum limiting factor model (Liebig and Playfair, 1843) or a multiplicative model. All models in the CMIP6 suite use a minimum model across nutrients but vary regarding the colimitation with light. PISCES, COBALT, MARBL, and HAMOCC calculate a separate minimum limiting nutrient factor and light limitation factor, both applied multiplicatively to a temperature-dependent maximum uptake rate [note that for the models that use the Geider et al. (1997) nutrient-mediated light formulation, and this implementation in effect determines whether there is enough light to reach the nutrient-limited rate]. CanOE uses a similar implementation but with the nutrient-limitation factor calculated as the minimum of N- and Fe-based cell quota terms rather than using the same limitation term as for uptake. CMOC, NOBM, OECO, MRI-NPZD, and WOMBAT calculate a single limiting factor across both nutrient and light limitation and apply this to a temperature-dependent uptake rate.



Temperature Influence on Biological Rates

Variations in temperature dependence at various trophic levels, both within a single model and across models, can play a key role in determining how primary and secondary production rates in each ESM respond relative to each other both seasonally and under long-term climate change scenarios. This in turn can influence whether an increase in temperature leads to higher or lower trophic transfer efficiencies (i.e., fraction of production at one trophic level relative to one below it), which is of particular interest when quantifying how changes affect upper trophic level species. For example, Reum et al. (2020) found that temperature dependency assumptions were a key source of intermodel uncertainty in their examination of the impact of climate change on the Bering Sea food web.

The exponential scaling of maximum plankton growth rate with temperature was first reported by Eppley (1972), and the resultant “Eppley-curve” is an empirical function widely used to estimate primary productivity from satellites (Morel, 1991; Behrenfeld and Falkowski, 1997) and incorporated in models (e.g., Stock et al., 2014). The majority of the CMIP6 models formulate their temperature-dependent factors using an Eppley-style exponential curve, with coefficients that reflect updated data compilations (e.g., Brush et al., 2002; Bissinger et al., 2008).

The Arrhenius-Van't Hoff equation (Arrhenius, 1915) is an alternative to the Eppley function that has traditionally been used to describe the rates of chemical reactions. However, it can also be used to describe biological rates, as metabolic rates are typically limited by a rate-limiting biochemical step, such as Rubisco carboxylation for autotrophic growth and adenosine triphosphate (ATP) synthesis for heterotrophic growth (Gillooly et al., 2001; Brown et al., 2004). These ideas have been incorporated into the metabolic theory of ecology (MTE; Brown et al., 2004) that broadly describes how metabolic rates scale with biomass and temperature. MTE uses the activation energy (Ea) of the rate-limiting enzymatic reaction to describe the temperature dependence of metabolic rates. This mechanistic derivation of temperature limitation leads to a similarly-shaped temperature vs. rate curve as the more empirically derived Eppley formulation; though within the temperature range of most biological processes (0–40C), there can be up to a 10–15% difference in rates when using the Eppley formulation vs. the Arrhenius (or MTE) equation (Gillooly et al., 2002). Within the CMIP6 suite, CMOC and CanOE rely on the Arrhenius-Van't Hoff equation for their temperature sensitivities.

The sensitivity of the various temperature curves used within the CMIP6 models can be compared by looking at the Q10 value, i.e., the acceleration of a given reaction when the temperature is increased by 10°C. While the exact equations used vary, all models within the CMIP6 suite apply a similar temperature dependence to phytoplankton growth rate, with similar Q10 values (Table 5).


Table 5. Q10 factor associated with various model processes for a given ESM.
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However, the models differ when it comes to the effect of temperature on other processes. In PISCES, COBALT, NOBM, and MARBL, zooplankton grazing rates are also temperature dependent. Within PISCES, the zooplankton grazing rate is more strongly influenced by temperature than phytoplankton nutrient uptake, while in NOBM, the reverse is true; COBALT and MARBL apply the same Q10 factors to both processes. In the remaining models, the zooplankton grazing rate is unaffected by temperature. Detrital remineralization is also temperature dependent in all models except for MRI-NPZD and HAMOCC. Within CMOC, CanOE, and PISCES, the detrital remineralization Q10 values are higher than those for phytoplankton uptake rate, while in the remaining models the Q10 factors are the same. The temperature dependence of nutrient recycling and the microbial loop have been highlighted as a key source of uncertainty in projections of both the magnitude and direction of net primary productivity under climate change (Taucher and Oschlies, 2011). Finally, phytoplankton and zooplankton mortality rates are temperature dependent in a handful of models. WOMBAT, MARBL, BLING, and COBALT include temperature terms in their phytoplankton mortality rates, while PISCES, COBALT, and MARBL apply similar terms to zooplankton mortality.

From the perspective of modeling of higher trophic levels such as fish, the assumptions regarding temperature effects are critical. While warming may increase overall primary productivity, limits on the zooplankton grazing rate and increases in zooplankton mortality may serve as bottlenecks that prevent increased primary production from reaching fish and higher trophic levels. Likewise, the relative response of remineralization processes may alter the balance between benthic vs. pelagic energy pathways. Laufkötter et al. (2017) found that changes to the temperature dependence of remineralization rates within an ESM could strongly influence surface nutrient concentration and the extent of oxygen minimum zones. Therefore, assumptions of the ESM can strongly influence predictions when coupled to higher trophic level models.



Zooplankton Functional Response

Zooplankton functional response is one area where the CMIP6 models tend to converge structurally, with all models using either a type 2 or type 3 functional response (Table 6). A type 2 functional response, which is used in the NOBM, CanOE, MARBL, and HAMOCC models, is defined as one where grazing rate increases linearly at low prey biomass and approaches a threshold rate at high prey biomass; the functional form is concave down everywhere (Gentleman et al., 2003). A type 3 functional response is similar, except for the presence of an inflection point that decreases predator grazing rates at low prey biomass relative to a type 2 function (Gentleman et al., 2003). Sigmoidal type 3 functional responses are used in WOMBAT, CMOC, MEDUSA, OECO, and MRI-NPZD; PISCES uses a type 3 threshold model instead. COBALT falls in between, using a type 2 response but with a small prey biomass adjustment to limit grazing at very low prey concentrations. This limited number of functional response forms contrasts with the many functional responses applied in ecosystem models for higher trophic levels, such as those summarized in Hunsicker et al. (2011).


Table 6. Per unit biomass grazing functional responses of predator j on prey i, with other available prey groups k.
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Where grazers can feed on multiple prey groups (including either phytoplankton, zooplankton, or detrital prey sources), many of the models calculate grazing rates using a single-resource model, where the grazing rate on a particular prey species is determined independently of whether other prey are present. PISCES, COBALT, NOBM, MEDUSA, and CanOE do consider total prey availability when calculating grazing rates. NOBM and CanOE calculate grazing as a function of total prey, with predation distributed across the prey species proportional to prey availability. MEDUSA and PISCES both use prey preferences, such that grazing rate is a function of both prey availability and the relative preference of predator for each prey species. COBALT uses a similar preference-based model but adds a switching function such that predator preference for prey increases when that prey is abundant.



Detrital Remineralization

The biological carbon pump is a collection of processes that determine the export and associated remineralization of particulate organic carbon (POC) produced by biological activity at the ocean surface (Passow and Carlson, 2012). These processes play a key role in the global carbon cycle; because carbon is assimilated by biological processes in the surface waters and then sequestered at depth, through both the soft-tissue pump (sinking of organic matter) and carbonate pump (sinking of carbonate mineral shells), the ocean takes up far more atmospheric CO2 (Sarmiento and Gruber, 2006, and citations within) than through the solubility pump alone. The strength of the biological pump is estimated to be between 5 and 13 Pg C yr−1 (Laws et al., 2000; Dunne et al., 2007; Henson et al., 2011), though models from the CMIP5 era ranged in the lower end of those estimates (5–8 Pg C yr−1) (Laufkötter et al., 2016).

In addition to the role this process plays in the global carbon cycle, detrital remineralization can affect regional patterns in nutrient concentration. The speed at which material is transported from the surface waters to below the mixed layer may affect nutrient limitation and, therefore, primary production. Particularly in shallow coastal environments, how detrital remineralization is simulated and parameterized may influence whether organic material is recycled within the water column, is fed into a benthic food web, or is subject to burial.

Aside from the models that treat organic matter remineralization in a highly generalized fashion (e.g., BLING, CMOC, MRI-NPZD), CMIP6 models generally treat detrital remineralization in similar ways, though specific implementation may vary. In general, particulate organic matter in models is produced through a combination of phytoplankton loss and aggregation processes, and zooplankton grazing and mortality (Laufkötter et al., 2016). The specific type of detrital particle impacts the particle sinking speed or remineralization rates, which are correlated quantities. Particles that sink faster and/or are protected from bacterial remineralization have lower remineralization rates and, thus, longer remineralization length scales (defined as the depth at which 63% of the organic matter has been converted to inorganic forms). A key factor determining whether a detrital particle is protected or is faster-sinking is the presence of ballast materials (lithogenic particles, biogenic silica, and calcium carbonate), originating from organisms such as diatoms, coccolithophores, and foraminifera, and dust deposition (Armstrong et al., 2002; Francois et al., 2002; Klaas and Archer, 2002; Dunne et al., 2007). ESMs focus on characterizing ballast materials properly in order to achieve a representation of both ballasting and non-ballasting POM remineralization at depth, often relying on a variant of the Klaas and Archer (2002) mineral ballasting model.

The treatment of ballasting and non-ballasting particulate organic matter in CMIP6 models can then be divided into those that use a flux attenuation scheme (MARBL, HAMOCC, and OECO) and those that have sinking particles, whether in one or multiple size classes (COBALT, CanOE, PISCES, MEDUSA, and NOBM; also see the categorization of Séférian et al., 2020). In a flux attenuation scheme, organic material losses such as non-predatory mortality, egestion, and aggregation are collected into an implicit detrital pool that is then redistributed across depth to various inorganic nutrient pools based on depth profiles of remineralization rates. Treatment of ballast materials in this case results in the “hard POM” distributing more evenly throughout deeper depths, associated with their (implicitly) faster sinking speeds (e.g., Abell et al., 2000). In the remaining schemes, the organic material losses flow to one or more detrital state variables within the model grid cell in which the loss process occurs; the detrital state variables are then subject to vertical sinking. For the size-differentiated detrital models, loss fluxes are typically categorized based on the size and type of source material, with larger and ballasted particles sinking more quickly than smaller and non-ballasted ones. In the majority of models, these size- and type-specific sinking speeds are constants though some models also take the effect of temperature on sinking speed and/or remineralization into account (e.g., NOBM and COBALT).



River Runoff

For regional LMR applications, river runoff can be important due to its impact on a coastal circulation, vertical stratification, salinity, nutrient and dissolved organic matter concentration, biological production, and carbon chemistry (e.g., Dagg and Breed, 2003; Lohrenz et al., 2008; Gomez et al., 2019). Physical impacts include buoyancy-driven coastal currents such as the Alaska Coastal Current and associated mesoscale eddies (Stabeno et al., 2016). Large riverine inputs of nutrients can lead to coastal eutrophication, and the subsequent remineralization of organic matter can promote hypoxia and enhanced acidity near bottom, especially in regions with poor ventilation and weak buffer capacity (Bianchi et al., 2010; Cai et al., 2011, 2017; Fennel et al., 2016). In addition, the biogeochemical signature of land-influenced river water is distinct from that of ocean-derived water. The usually more acidic water from rivers determines decreased aragonite saturation levels (Duarte et al., 2013), increasing the vulnerability of coastal regions to ocean acidification. Riverine input of dissolved iron can have a substantial impact on coastal production (Coyle et al., 2019).

Within the CMIP6 suite of models, a wide variety of approaches are used to resolve riverine processes (Table 7). Freshwater fluxes in many models are calculated as part of the coupled ESM. When this is the case, the river fluxes are a function of processes within the atmosphere, ocean, and land components of the model, and they respond to changes in the simulated climate. In other models, freshwater fluxes are derived from an external data set, such as the river runoff climatologies of Dai and Trenberth (2002) and Dai et al. (2009). Many of the global models add runoff as a surface flux to the ocean within a specified distance from the coast (Griffies et al., 2016). This technique only partially compensates for the severely limited resolution of the true estuarine circulation and mixing (and consequent boundary currents) by coarse ocean model grids. Some of the CMIP6 models include significant improvements to the surface flux approach used in CMIP5. These include the following: (1) the estuarine box model technique (Sun et al., 2017) now incorporated into CESM2 (Danabasoglu et al., 2020) and (2) enhanced vertical mixing in coastal grid cells receiving riverine input, now incorporated into MOM6 of GFDL (R. Hallberg, pers. comm.).


Table 7. River runoff treatment in the CMIP6 ESMs.
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Biogeochemical riverine inputs, when included, primarily rely on external river export models, including the Integrated Model to Assess the Global Environment-Global Nutrient Model (IMAGE-GNM) (Beusen et al., 2015, 2016), the Global Nutrient Export from Watersheds (NEWS) model (Seitzinger et al., 2005; Mayorga et al., 2010), and the Global Erosion Model (GEM) (Ludwig and Probst, 1996).

Overall, the CMIP6 suite of ESMs does not represent the spatiotemporal variability in regional-scale riverine fluxes of either freshwater or of nutrients, DIC, and alkalinity well; they are typically designed to capture global-scale trends that may not be appropriate when focusing on smaller regional scales. For example, the GFDL ESM4 input forcing (coupled to COBALT) assumes a river DIC of 320 mmol m−3 and a river total alkalinity (TA) of 420 meq m−3; these values are defined to compensate for global DIC and TA losses such that mass balance within the biogeochemical model domain is maintained. However, observations suggest that river DIC is usually greater than river alkalinity (see Figure 8 in Moore-Maley et al., 2018). With respect to global river discharge datasets, Kearney (2019) found that the algorithms used to fill spatiotemporal gaps in river gauge measurements within the Dai and Trenberth (2002) dataset were inappropriate for snow-influenced rivers like those emptying into the Bering Sea. Fully coupling the biogeochemical processes connecting the ocean and land systems, including those associated with rivers, the benthic ecosystem, and the continental shelf, remains an outstanding task that ESMs have not yet been implemented. When applying global ESM results to highly river-influenced areas, LMR end users may need to carefully consider potential limitations like these.




CONCLUSIONS

Projections of changing climate, across both short and long timescales, are playing an increasingly important role in many LMR management strategies (Link et al., 2015). The ability of management frameworks to use ESM output may be dependent on the complexity of the ecosystem models used to support decision-making that can range from population dynamics models with no environmental covariates included, through to complex end-to-end ecosystem models incorporating movement, bioenergetics, and fishing fleet dynamics (Fulton et al., 2011; Marshall et al., 2019). However, as Ecosystem-Based Fishery Management becomes more widely implemented, assessment and management processes will likely become more able to ingest ecosystem indicators and ESM projections. Even if current frameworks are not able to easily include environmental covariates, they can still be considered using Management Strategy Evaluation or scenario planning (Haward et al., 2013; Punt et al., 2016; Surma et al., 2018).

To support this endeavor, LMR scientists and managers must not only have access to climate and biogeochemical model output but also understand the differences among models in terms of simulating key processes, resolution, etc. The complexity of the suite of models and the constraints on getting needed model output have thus far been a hindrance for using the model output for LMR science and management. This study provides a summary of some of the key points LMR end users may need to consider when using the CMIP6 suite of biogeochemical model output and also provides an entry point to the more in-depth descriptions found in the primary documenting literature for each model (see Table 2).
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