About this Research Topic
In this Research Topic, our goal is to abstract somewhat from the physiological descriptions and enumeration of RNA species and primarily focus on the underlying mechanistic aspects that identify with the RNA-specific functions. How RNA is discriminated from DNA in particular cases of molecular recognition? Why RNA is used for certain processes rather than DNA, proteins or other macromolecules? What is a structural, thermodynamic and kinetic basis of RNA-directed reactions? The goal of this Topic is to create a place where the most recent research as well as ideas on purely mechanistic aspects of RNA as a primary biopolymer for building molecular machines could be extensively presented.
The scope of this Research Topic is indeed broad from the perspective of organisms, (patho)physiological conditions or processes involved. However, the Topic contributions must bring new, reshape, or review the existing knowledge about structure and molecular mechanisms of RNA function. Background information on biological importance enough to place the mechanisms in focus into a broader picture must nonetheless be included. We encourage research that would provide a deeply mechanistic interpretation of RNA including structural, thermodynamic and kinetic analyses and that would include genetic, evolutionary and medical considerations of RNA-mediated molecular interactions and reactions.
Summarized below are non-exclusive examples of themes that could comprise this topic. Work of any kind (original in vivo, in vitro or in silico experimental, review, commentary or highlight) is encouraged.
• RNA-encoded alternative and non-canonical splicing events.
• Molecular functions and interactions of long non-coding and circular RNA.
• Broad catalytic and catalysis-augmenting function of RNA, such as in CRISPR-Cas9 and similar systems.
• Stability, repair and degradation mechanisms involving RNA:DNA and RNA:RNA hybrids (telomeres, R-loops, retrotransposons, micro RNAs).
• Mechanisms of RNA editing.
• Variations of decoding into amino acids guided by structure and sequence of RNA (messenger, transfer and ribosomal).
• Principles and evolution of the genetic code from the perspective of RNA structure and interactions.
• Mechanisms of messenger RNA recognition and conveying by the ribosomes, such as during any or all phases of mRNA translation into proteins.
• Structural and sequence contexts of RNA nucleotide modifications and their molecular functions.
• Mechanisms of specific molecular recognition mediated by RNA structures in naturally occurring or synthetic instances, such as in RNA viruses and RNA-based biosensors, or in single-molecule nano-devices.
• Mechanisms of therapeutically applicable coding and non-coding RNA function.
Topic Editor Kirk Jensen holds patents related to the Research Topic subject. All other Topic Editors declare no competing interests.
Keywords: RNA, molecular interactions, ribozyme, catalytic RNA, RNA binding proteins, splicing, translation, transcription
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.